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Summary

Solid state based quantum information processing is focused on physical im-
plementation of all necessary elements of quantum computation and quantum
information in solid state systems, mainly due to their scalability compared
to e.g. optical systems. Among many proposals to realize these types of de-
vices, such as quantum dots as charge qubits or Josephson junction circuits, we
study here one of the most promising candidates, i.e., the spin of an electron
confined to a quantum dot as a qubit. Experimentally, it has been shown that
the relaxation rate of this two level system can be pushed above few seconds in
low magnetic fields. Moreover, using spin echo techniques, the spin dephasing
time can be maximized up to milliseconds with the current technology. This
long spin decay time is one of the main reasons that make this system desirable
for quantum computation and quantum information purposes.

In the first chapter of this thesis, we reexamine the recent measurement
based proposal called one-way quantum computation which exploits entangle-
ment and local measurements as tools to perform quantum computation on N
qubits. Although it was suggested in the original work to entangle the qubits
via the nearest neighbor Ising interaction, we investigate here how one can
generate the so-called cluster states with the Heisenberg interaction. We ex-
tend our method to include more general forms of Heisenberg interaction such
as asymmetric coupling of adjacent qubits. These forms of couplings, rather
than Ising interaction, are more encountered in solid state devices, and there-
fore make it possible to perform one-way quantum computation with electron
spins in quantum dots coupled via exchange interaction to their adjacent spins.

Chapters II, III, and IV are devoted to the study of the spin-orbit interac-
tion in heterostructure quantum dots and its effect on the spin dynamics. We
observe that one can actually use spin-orbit interaction to manipulate the spin
state of an electron on time scales much smaller than the spin dephasing time.
Specifically, in chapter II, we study the effect of a nearby functioning quan-
tum point contact (QPC) on the relaxation of the electron spin and show that
the charge fluctuations in QPC lead to spin relaxation of the confined elec-
tron in the presence of spin-orbit interactiom and an applied magnetic field.
We also address the relation of this rate to the microscopic parameters of the
system and find some geometrical dependence of the spin relaxation time on
the orientation of the QPC on the substrate. Moreover, we show in chapters
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vi SUMMARY

III and IV that the spin-orbit interaction can play a positive role, in order to
rotate the spin around the Bloch sphere. We consider different mechanisms,
particularly, Electron Dipole Spin Resonance (EDSR) and holonomic unitary
gates in quantum dots. We verify that these mechanisms of spin manipulation
can be realized in solid state systems with the state of the art semiconductor
technologies.

Chapter V of this thesis covers a slightly different topic and focuses on the
role of the Coulomb interaction in electronic transport. There, we review the
non-analytic corrections to the Fermi liquid behavior and their consequences
on the momentum occupation number of the electrons in a two dimensional
electron gas (2DEG). As an example, we calculate the tunneling rate from an
interacting electron reservoir onto a quantum dot and compare our result to
the corresponding case for electron tunneling between bilayer 2DEGs. More-
over, within RPA approximation, we find that the electron-plasmon coupling
leads to a quadratic frequency dependence of the electron self energy at low
frequencies at the Fermi surface. This correction suppresses the same order
corrections due to the particle-hole bubble.

Finally, the details of some calculations, which did not fit into the bulk of
the thesis, and the collection of related references are presented at the end of
this manuscript.
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Chapter 1

Cluster States From Heisenberg

Interaction

1.1 Abstract

We show that a special type of entangled states, cluster states, can be created
with Heisenberg interactions and local rotations in 2d steps where d is the
dimension of the lattice. We find that, by tuning the coupling strengths,
anisotropic exchange interactions can also be employed to create cluster states.
Finally, we propose electron spins in quantum dots as a possible realization of
a one-way quantum computer based on cluster states.

1.2 Introduction

Entanglement plays a crucial role in quantum information processing [1]. Quan-
tum algorithms (in particular, Shor’s algorithm, to find the prime factors of
an n-bit integer) exploit entanglement to speed up computation. In addition,
quantum communication protocols use entangled states as a medium to send
information through quantum channels. However, creating entangled states is
a great challenge for both theoretical and experimental physicists. Recently,
Briegel and Raussendorf [2] introduced a special kind of entangled states, the
so-called cluster states, which can be created via an Ising Hamiltonian [3].
These states are eigenstates of certain correlation operators (see Eqs. (1.5)
and (1.6) below). It has been shown that via cluster states, one can imple-
ment a quantum computer on a lattice of qubits. In this proposal, which is
known as “one way quantum computer”, information is written onto the clus-
ter, processed, and read out from the cluster by one-qubit measurements [4].
In other words, all types of quantum circuits and quantum gates can be im-
plemented on the lattice of qubits by single-qubit measurements only. The
entangled state of the cluster thereby serves as a universal resource for any
quantum computation. However, in this model, cluster states are created with
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2 CHAPTER 1. CLUSTER STATES

an Ising interaction, which maybe difficult to realize, in particular in a solid
state system. Here, we propose an alternative way to create the same states
with a Heisenberg interaction (isotropic exchange interaction), but in several
steps, where the number of steps depends on the dimension of the lattice of
cubic symmetry. Furthermore, we consider some deviations from the Heisen-
berg Hamiltonian due, for example, to lattice asymmetry, and obtain the same
cluster state by tuning the exchange coupling strengths. It turns out that if
these coupling strengths satisfy certain conditions, which can be tuned exper-
imentally, we can obtain a cluster state, up to an overall phase. Following
Ref. [5], we propose a lattice of electron spins in quantum dots as a possi-
ble realization of this scheme in solid-state systems. In this system, electron
spins in nearest-neighbor quantum dots are coupled via a Heisenberg exchange
interaction.

This paper is organized as follows: Section II is devoted to a brief introduc-
tion to cluster states. In Section III we introduce an alternative way to create
cluster states. Section III.C considers the anisotropic Heisenberg interaction
between qubits on a lattice and how to get cluster states via this interaction.
Finally, in Section IV, we propose electron spins in quantum dots as a physical
realization of this proposal.

1.3 Cluster states

A cluster state [2] is an entangled state which has special features suitable for
implementing a quantum computer on an array of qubits. According to this
scheme, we can obtain a cluster state by applying an Ising Hamiltonian (~ = 1)

H = g(t)
∑

<a, a′>

1− σ(a)
z

2

1− σ(a′)
z

2
, (1.1)

on a special kind of initial state. Here, σ(a)
i , i ∈ {x, y, z} are Pauli matrices

at lattice site a and < a, a′ > denotes that a′ is the nearest neighbor of a
. Furthermore, g(t) allows for a possible overall time dependence. To be
specific, consider a qubit chain (see Fig. 1.a) prepared initially in a product
state |φ0〉 =

⊗

a |+〉a, where index a refers to the sites of the qubits and |+〉a
is eigenstate of σ(a)

x with eigenvalue 1. The time evolution operator for the
qubit chain is then given by

U(θ) = exp (−i θ
∑

a

1− σ(a)
z

2

1− σ(a+1)
z

2
) , (1.2)

with θ =
∫

g(t)dt. From now on we assume that θ = π [2]. Because the
terms in the Ising Hamiltonian (1.1) mutually commute, we can decompose



1.4. CLUSTER STATES FROM HEISENBERG INTERACTION 3

the evolution operator U(π) into two-particle operators as follows,

U ≡ U(π) =
∏

a

U (a,a+1) , (1.3)

U (a,a+1) =
1

2
( 1 + σ(a)

z + σ(a+1)
z − σ(a)

z σ(a+1)
z ). (1.4)

Therefore, U is a product of two-qubit conditional phase gates [1]. More
generally we can define the cluster states as the eigenstates of the following
correlation operators

K(a)
∣

∣φ{κ}

〉

C
= (−1)κa

∣

∣φ{κ}

〉

C
, (1.5)

K(a) ≡ σ(a)
x

⊗

b∈ nbgh(a)

σ(b)
z , (1.6)

with κ ∈ {0, 1} . A cluster state is completely specified by the eigenvalue
equation (1.5) and it can be shown [6] that all states

∣

∣φ{κ}

〉

C
are equally

suitable for computation. For simplicity we put κ = 0 for all lattice sites.
The detailed proof of the above assertions and properties of cluster states,
especially their application in implementing a one way quantum computer,
have been given in Refs. [4] and [6]. We note that in one dimension a cluster
is a qubit chain with nearest neighbor interaction. However, in more than one
dimension, the cluster does not have a regular shape. In the latter case, qubits
can be arranged in a multi-dimensional square lattice such that only some of
the lattice sites are occupied by qubits. A cluster is then defined as a set of
qubits where any two qubits are connected by a sequence of neighboring sites
that are occupied by a qubit.

1.4 Cluster states from Heisenberg interaction

Cluster states are produced through Ising interactions. However, an ideal Ising
interaction is difficult to obtain in nature especially in a solid state environ-
ment. So, how can such states be created? The usual spin-spin interaction is
(nearly) isotropic in spin space and is described by the Heisenberg Hamilto-
nian [7],

H = −J
∑

<ij>

S(i)
x S(j)

x + S(i)
y S(j)

y + S(i)
z S(j)

z , (1.7)

~S(i) = (S(i)
x , S(i)

y , S(i)
z ) =

1

2
~σ(i) (~ = 1), (1.8)

where ~S(i) and ~S(j) are spin-1
2

operators at lattice sites i and j, and J is the ex-
change coupling constant, which is assumed to be constant for all spin pairs and
is positive (negative) for ferromagnetic (antiferromagnetic) coupling. Next we
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describe a method to create cluster states via Heisenberg instead of Ising inter-
action. We start with one dimension and then generalize to higher dimensions.

1.4.1 One-dimensional case

Recall that all operators U (a,a+1) in U (Eqs. (4.13) and (1.4) above) mutually
commute and they can therefore be applied in arbitrary order, i.e. at the same
or different times. (see Fig. 1.a). Suppose we have a one-dimensional N-qubit
chain where all qubits are prepared in the |+〉 state. The initial state of the
cluster is then (as before)

⊗

a∈C |+〉a , and the index a refers to the lattice
site. The idea is to apply first the sequence U (1,2) U (3,4) U (5,6) . . . , and then in
a second step, the sequence U (2,3) U (4,5) U (6,7) . . . . In other words, first we let
qubits 1-2, 3-4, 5-6, ... interact with each other, and then qubits 2-3, 4-5, 6-7,
... (Fig. 1.b). We obtain the same result (4.13), but now we have entangled
the qubits in our chain pairwise in each step. This means that each qubit is
entangled with only one of its nearest neighbors in each step. In one dimension,
there are two nearest neighbors for each qubit, thus we entangle our chain in
two steps.

We note that U (a,a+1) , given by Eq.(1.4), describes a conditional phase shift.
On the other hand, in Ref. [5] it was shown that this evolution operator can
also be realized with a Heisenberg Hamiltonian (obtained e.g. via a Hubbard
model) and local one-qubit rotations (see also next section). Therefore, the
problem of generating a cluster state with a Heisenberg interaction has been
solved provided in each step each qubit interacts with only one of its nearest
neighbors.

1.4.2 Higher dimensions

In two dimensions, the minimum number of steps increases to four in a two
dimensional square lattice. In general for a d-dimensional cubic lattice, the
minimum number of steps required is 2d. (Note that cluster states are only
defined on lattices with cubic symmetry. See also the last paragraph in Section
II).

However, in dimensions higher than one, there is no regular shape for an
arbitrary cluster. How then, can we obtain cluster states with just 2d steps?
There may be several optimal ways to do this but we mention only one. For
simplicity, consider a two dimensional cluster and suppose that this cluster
can be contained within a rectangle of n rows and m columns. Now, entangle
all qubits in the cluster within each of these n rows independently (recall that
each row requires two steps to be entangled). Then, do the same for the m
columns. There is no need to worry about the qubits which are within the
rectangle but not part of the cluster, since they are excluded automatically if
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vvvvvvvvvvv

(a)

vvvvvvvvvvv

(b)

Figure 1.1: (a) A one-dimensional cluster (a qubit chain). The connecting
lines represent the interaction between nearest neighbors. (b) An alternative
way to entangle a one-dimensional cluster. The qubits which are connected by
straight lines are entangled in the first step and those connected by semicircles
are entangled in the subsequent step.

we do not entangle them to their nearest neighbors. The idea is the same for
d = 3 cubic lattice, except that we would need 6 steps to entangle the cluster.

1.4.3 Anisotropic Heisenberg Hamiltonian

We do not consider the most general form of an anisotropic Heisenberg model
since it is beyond the scope of this work. Here we introduce a special case,
known as symmetric anisotropic Heisenberg model (SAH) which does not
include the cross-spin terms. It has the following form in one dimension

HSAH =
∑

a

H
(a,a+1)
SAH , (1.9)

H
(a,a+1)
SAH = α(t)S(a)

x S(a+1)
x

+β(t)S(a)
y S(a+1)

y + γ(t)S(a)
z S(a+1)

z . (1.10)

This situation occurs for example, when our lattice does not have enough
symmetry to use the isotropic interaction. However,

[

S(a)
p S(a+1)

p , S(a)
q S(a+1)

q

]

= 0 , (1.11)
∀ p, q = x, y, z .

Therefore, these three terms in the Hamiltonian mutually commute and conse-
quently when we write the unitary evolution operator for two adjacent qubits,
U

(a,a+1)
SAH , it can be decomposed into three unitary operators. The order of

application of these three operators does not matter

U
(a,a+1)

SAH = U (a,a+1)
xx U (a,a+1)

yy U (a,a+1)
zz , (1.12)

U (a,a+1)
xx = exp (−i Jxx S

(a)
x S(a+1)

x ) , (1.13)
U (a,a+1)

yy = exp (−i Jyy S
(a)
y S(a+1)

y ) , (1.14)

U (a,a+1)
zz = exp (−i Jzz S

(a)
z S(a+1)

z ) . (1.15)
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Now, according to our alternative method to create cluster states, if the coef-
ficients α, β and γ satisfy the following conditions,

Jxx =

∫

α(t) dt = 4nπ , (1.16)

Jyy =

∫

β(t) dt = 4mπ , (1.17)

Jzz =

∫

γ(t) dt = (2k + 1)π , (1.18)

where n, m, and k are arbitrary integers, Then U
(a,a+1)
xx and U

(a,a+1)
yy are just

unity operators (up to a minus sign) and do not affect the initial state 1.
If we could tune these coefficients properly in our lattice, we would get the
same cluster states, up to some local (single-qubit) operations. The crucial
point is that U (a,a+1)

SAH and U
(a+1,a+2)

SAH do not commute and thereby, we can
not decompose USAH , the total evolution operator of the cluster with an SAH
interaction, into two-qubit evolution operators. This is why we need at least
two steps to entangle the chain.
In general, when the Hamiltonian includes cross-spin terms, (the asymmetric
anisotropic Heisenberg model (AAH)), the problem can not be solved exactly
because the terms in the AAH Hamiltonian do not mutually commute. There
is still a hope of solving this problem if we have the following interaction
between spins 2:

H
(a,a+1)
AAH = α′(t)S(a)

x S(a+1)
y + β ′(t)S(a)

y S(a+1)
x + γ′(t)S(a)

z S(a+1)
z . (1.19)

Again, the terms in this Hamiltonian mutually commute and we can de-
compose the two-qubit evolution operator like above. However, this Hamilto-
nian is related to the previous Hamiltonian (1.10) via a single-qubit unitary
transformation (through π/2-rotation of one of the spins about the z-axis) and
therefore, both have the same structure. In the end, we emphasize that the
basic cornerstone of this method is that in each step, each qubit can inter-
act with only one of its nearest neighbors. Generalizing the above method to
higher dimensions is straightforward (see previous section). Therefore we have
shown that the problem of creating cluster states with more realistic interac-
tion models other than Ising, can be solved exactly.

1For the special case n = m = 0, the time evolution operator U
(a,a+1)
SAH reduces to Eq.

(1.4), up to a minus sign, depending on the value of k.
2x, y and z can be changed in cyclic permutation.



1.5. PHYSICAL REALIZATION OF THE MODEL 7

1.5 Physical realization of the model

In Refs. [5], [8] and [9], a detailed scenario has been proposed for how quantum
computation may be achieved in a coupled quantum dots system. In this pro-
posal, a qubit is realized as the spin of the excess electron on a single-electron
quantum dot. A mechanism has been proposed there for two-qubit quantum-
gate operation that operates by a purely electrical gating of the tunneling
barrier between neighboring quantum dots, rather than by spectroscopic ma-
nipulation as in other models. Consider two quantum dots which are labeled
by “1” and “2” and coupled to each other via exchange interaction (see below).
If the barrier potential is “high”, tunneling is forbidden between dots, and the
qubit states are held stably without evolution in time (t). If the barrier is
pulsed to a “low” voltage, the usual physics of the Hubbard model [7] says that
the spins will be subject to a transient Heisenberg coupling,

H = J(t)~S(1) · ~S(2) , (1.20)

where J(t) is the time-dependent exchange constant which is produced by the
turning on and off of the tunneling matrix element [5, 8].

For instance, a quantum XOR gate is obtained by a simple sequence of
operations [5]:

UXOR = ei π
2
S

(1)
z e−i π

2
S

(2)
z U

1
2
swe

iπS
(1)
z U

1
2
sw , (1.21)

where Usw is a swap gate, created in this model via Heisenberg interaction, and
eiπS

(1)
z etc. are single-qubit operations only, which can be realized by applying

local Zeeman interaction. (It has been established that XOR along with single-
qubit operations may be assembled to do any quantum computation [10].) Note
that the XOR of Eq. (1.21) is given in the basis where it has the form of a
conditional phase-shift operation; the standard XOR is obtained by a simple
basis change for qubit “ 2 ” . According to Eq. (1.21), we need 5 steps to realize
an XOR gate. However, in Ref. [11] it has been shown that for a certain choice
of system parameters (for example, opposite direction of the local B fields),
we can generate an XOR gate in one step. The crucial observation now is that
the XOR operation can be written as [5] UXOR = 1

2
+ S

(1)
z + S

(2)
z − 2S

(1)
z S

(2)
z ,

which has exactly the same form as U (a,a+1) in Eq. (1.4). In other words,
we can generate the operation U (a,a+1) (and thus the cluster states) with the
Heisenberg interaction as described e.g. by the sequence in Eq. (1.21). We
finally note that an alternative way to achieve the XOR operation is given
by [5] UXOR = eiπS

(1)
z U

− 1
2

sw e−i π
2
S

(1)
z Usw e

i π
2
S

(1)
z U

1
2
sw. This form has the potential

advantage that the single qubit operations involve only spin 1.
The mechanisms described above for performing gate operations with spin

qubits are independent of the details of the pulse shape P (t), where P stands
for the exchange coupling J or the Zeeman interaction. It is only the value of
the integral

∫ τ

0
P (t)dt (mod 2π) which determines the quantum gate action.
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This is true provided that the parameters P (t) are switched adiabatically,
guaranteeing the validity of the effective Hamiltonian Eq. (1.20). The un-
wanted admixture of a state with double occupation of a dot in the final state
is found to be tiny if a suitable pulse is used and the adiabaticity criterion is
fulfilled [12, 13].

We note that as long as an XOR (or CNOT) gate is realized, cluster states
(and consequently, a one-way quantum computer) can be generated. This
result does not depend on the type of interaction in the system. Therefore,
other proposals such as trapped ion [14] and superconducting qubits [15], can
be used as well, to create cluster states.

1.6 Concluding remarks

In summary, an alternative way, using Heisenberg interaction between qubits,
was introduced to create cluster states which is useful for solid state systems.
In this method the qubits in the cluster are entangled pairwise, leading to
2d steps in d-dimensional cubic lattices. Furthermore, by tuning the coupling
strengths of the interaction, it is possible to create cluster states via anisotropic
Heisenberg exchange interaction. Experimentally, these cluster states can be
generated in coupled quantum dots or similar systems.



Chapter 2

Spin Decay in a Quantum Dot

Coupled to a Quantum Point

Contact

2.1 Abstract

We consider a mechanism of spin decay for an electron spin in a quantum dot
due to coupling to a nearby quantum point contact (QPC) with and without
an applied bias voltage. The coupling of spin to charge is induced by the spin-
orbit interaction in the presence of a magnetic field. We perform a microscopic
calculation of the effective Hamiltonian coupling constants to obtain the QPC-
induced spin relaxation and decoherence rates in a realistic system. This rate
is shown to be proportional to the shot noise of the QPC in the regime of large
bias voltage and scales as a−6 where a is the distance between the quantum
dot and the QPC. We find that, for some specific orientations of the setup
with respect to the crystallographic axes, the QPC-induced spin relaxation
and decoherence rates vanish, while the charge sensitivity of the QPC is not
changed. This result can be used in experiments to minimize QPC-induced
spin decay in read-out schemes.

2.2 Introduction

Recent progress in nanotechnology has enabled access to the electron spin in
semiconductors in unprecedented ways [9, 16, 17], with the electron spin in
quantum dots being a promising candidate for a qubit due to the potentially
long decoherence time of the spin [5,18]. Full understanding of the decoherence
processes of the electron spin is thus crucial. On the other hand, as a part of a
quantum computer, read-out systems play an essential role in determining the
final result of a quantum computation. However, read-out devices, in general,
affect the spin state of the system in an undesired way. Quantum point contacts

9
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(QPCs) which are used as charge detectors [19–25], in particular, couple to the
spin via the spin-orbit interaction. For small GaAs quantum dots, the spin-
orbit length (λSO ≈ 8 µm) is much larger than the dot size (λd ≈ 50 nm) and
thus the spin-orbit interaction presents a small perturbation. Nevertheless, we
will see that shot noise in the QPC can induce an appreciable spin decay via
this weak spin-orbit coupling.

Quite remarkably, the number of electrons in quantum dots can be tuned
starting from zero [26–28]. More recently, Zeeman levels have been resolved
[29] and the spin relaxation time (T1) has been measured, yielding times of
the order of milliseconds in the presence of an in-plane magnetic field of 8 T
[22, 23]. In these experiments, based on spin-charge conversion [5] , use is
made of a QPC located near the quantum dot as a sensitive charge detector
to monitor changes of the number of electrons in the dot. The shot noise
in the QPC affects the electron charge in the quantum dot via the Coulomb
interaction, and therefore, it can couple to the electron spin as well, via the
spin-orbit interaction. While charge decoherence in a quantum dot due to a
nearby functioning QPC has been studied both experimentally [20, 21] and
theoretically [30–32], we show here that the same charge fluctuations in the
QPC introduce spin decay via spin-orbit and Zeeman interactions. Note that
several read-out schemes utilizing a QPC have been considered before [33]
in the context of the spin qubit. However, in Ref. [33] the QPC was used
for charge read-out, while the spin state of the qubit was converted into the
charge state of a reference dot [5]. Recently, a different read-out scheme has
been implemented [22], in which the reference dot was replaced by a Fermi
lead and the QPC was coupled directly to the spin qubit.

The effect of spin-orbit interaction on spin relaxation and decoherence was
considered in Ref. [34]. There, it was shown that the decoherence time T2 due
to spin-orbit interaction approaches its upper bound [34], i.e. T2 = 2T1, deter-
mined by spin-flip processes [34,35]. Measurements of T1 have been performed
on spins in electrostatically confined (lateral) quantum dots [22] (T1 ≃ 0.85 ms)
and self-assembled quantum dots [36] (T1 ≃ 20 ms). The measured spin relax-
ation times T1 in both cases agree well with the theory in Refs. [34] and [35].
In addition to the spin-orbit interaction, the hyperfine interaction plays an im-
portant role in quantum dots [37–50]. Measurements of the spin decoherence
time T2 have recently been performed in a self-assembled quantum dot [47]
(T ∗

2 ≃ 16 ns) as well as in a double-dot setup for singlet-triplet decoherence
(T2 ≃ 10µs) [50]. Finally we note that a number of alternative schemes to
measure the decoherence time of the electron spin in quantum dots have been
proposed [51–53].

Motivated by these recent experiments, we study here the effect of the
QPC on spin relaxation and decoherence in a quantum dot. For this, we first
derive an effective Hamiltonian for the spin dynamics in the quantum dot
and find a transverse (with respect to the external magnetic field) fluctuating
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magnetic field. We calculate microscopically the coupling constants of the
effective Hamiltonian by modeling the QPC as a one-dimensional channel with
a tunnel barrier. We show that this read-out system speeds up the spin decay
and derive an expression for the spin relaxation time T1. However, there are
some regimes in which this effect vanishes, in the first order of spin-orbit
interaction. The relaxation time will turn out to be strongly dependent on
the QPC orientation on the substrate, the distance between the QPC and the
quantum dot, the direction of the applied magnetic field, the Zeeman splitting
EZ , the QPC transmission coefficient T , and the screening length λsc (see
Fig. 2.1). Although this effect is, generally, not larger than other spin decay
mechanisms (e.g. coupling of spin to phonons [34] or nuclear spins [44–46]),
it is still measurable with the current setups under certain conditions. The
following results could be of interest to experimentalists to minimize spin decay
induced by QPC-based charge detectors.

The paper is organized as follows. In Section II we introduce our model
for a quantum dot coupled to a quantum point contact and the corresponding
Hamiltonian. Section III is devoted to the derivation of the effective Hamilto-
nian for the electron spin in the quantum dot. In Section IV we derive micro-
scopic expressions for the coupling constants of the effective Hamiltonian and
discuss different regimes of interest. Finally, in Section V, we calculate the elec-
tron spin relaxation time T1 due to the QPC and make numerical predictions
for typical lateral quantum dots.

2.3 The model

We consider an electron in a quantum dot and a nearby functioning quantum
point contact (QPC), see Fig. 2.1, embedded in a two-dimensional electron
gas (2DEG). We model the QPC as a one-dimensional wire coupled via the
Coulomb interaction to the electron in the quantum dot. We also assume
that there is only one electron inside the dot, which is feasible experimentally
[22, 24, 26–29]. The Hamiltonian describing this coupled system reads H =
Hd +HZ +HSO +HQ +HQd, where

Hd =
p2

2m∗
+ U(r), (2.1)

HZ =
1

2
gµBB · σ =

1

2
EZn · σ, (2.2)

HSO = β(−pxσx + pyσy) + α(pxσy − pyσx), (2.3)

HQ =
∑

lkσ

ǫkC̄
†
lkσC̄lkσ, (2.4)

HQd =
∑

ll′kk′σ

ηll′(r)C̄†
lkσC̄l′k′σ. (2.5)
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Here, Q refers to the QPC and d to the dot, p = −i~∇ + (e/c)A(r) is the
electron 2D momentum, U(r) is the lateral confining potential, with r = (x, y),
m∗ is the effective mass of the electron, and σ are the Pauli matrices. The
2DEG is perpendicular to the z direction. The spin-orbit Hamiltonian HSO in
Eq.(2.3) includes both Rashba [54] spin-orbit coupling (α), due to asymmetry
of the quantum well profile in the z direction, and Dresselhaus [55] spin-orbit
couplings (β), due to the inversion asymmetry of the GaAs lattice. The Zeeman
interaction HZ in Eq. (3.6) introduces a spin quantization axis along n =
B/B = (cosϕ sinϑ, sinϕ sinϑ, cosϑ). The QPC consists of two Fermi liquid
leads coupled via a tunnel barrier and is described by the Hamiltonian HQ,
where C̄†

lkσ, with l = L,R, creates an electron incident from lead l, with
wave vector k and spin σ. We use the overbar on, e.g., C̄lkσ to denote the
scattering states in the absence of electron on the dot. The Hamiltonian HQd

in Eq. (2.5) describes the coupling between the quantum dot electron and the
QPC electrons. We assume that the coupling is given by the screened Coulomb
interaction,

ηll′(r) = 〈lk| e2

κ|r −R| δ̃(R− a)|l′k′〉, (2.6)

where R = (X, Y ) is the coordinate of the electron in the QPC and κ is the
dielectric constant. The Coulomb interaction is modulated by a dimension-
less screening factor δ̃(R − a), where a = (0, a) gives the QPC position (see
Fig. 2.1). 1 The quantum dot electron interacts with the QPC electrons mostly
at the tunnel barrier; away from the tunnel barrier the interaction is screened
due to a large concentration of electrons in the leads. For the screening fac-
tor we assume, in general, a function which is peaked at the QPC and has a
width 2λsc (see Fig. 2.1). Note that λsc is generally different from the screen-
ing length in the 2DEG and depends strongly on the QPC geometry and size.
Generally, ηll′ are k-dependent, however, their k-dependence turns out to be
weak and will be discussed later.

2.4 The effective Hamiltonian

The quantum dot electron spin couples to charge fluctuations in the QPC via
the spin-orbit Hamiltonian (2.3). The charge fluctuations are caused by elec-
trons passing through the QPC. To derive an effective Hamiltonian for the
coupling of spin to charge fluctuations, we perform a Schrieffer-Wolff transfor-
mation [56,57], H̃ = exp(S)H exp(−S), and remove the spin-orbit Hamiltonian
in leading order. We thus require that [Hd +HZ , S] = HSO, under the condi-
tion λd ≪ λSO, where λd is the quantum dot size and λSO = ~/m∗(|β|+ |α|)

1Strictly speaking, the screening factor depends also on r, δ̃(R − a, r). However, since
usually λd . λs, we approximate δ̃(R − a, r) ≈ δ̃(R − a, 0) ≡ δ̃(R − a), keeping in mind
that |r| . λd.
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1
θ (1)

1
x′ (1)

1
y′ (1)2 λsc

a

Y

I

QD

QPC

L R 1
λd (1)Xr

R

Figure 2.1: Schematic of the quantum dot (QD) coupled to a QPC. The (X,Y )
frame gives the setup orientation, left (L) and right (R) leads, with respect to the
crystallographic directions x′ ≡ [110] and y′ ≡ [1̄10]. The dot has a radius λd and
is located at a distance a from the QPC. The vector R describes the QPC electrons
and r refers to the coordinate of the electron in the dot. The noise of the QPC
current I perturbs the electron spin on the dot via the spin-orbit interaction.

is the shortest spin-orbit length. The transformed Hamiltonian is then given by

H̃ = Hd +HZ +HQ +HQd + [S,HQd] , (2.7)

S =
1

Ld + LZ
HSO =

1

Ld

∞
∑

m=0

(

−LZ
1

Ld

)m

HSO, (2.8)

HSO = iLd(σ · ξ), (2.9)

where L is Liouville superoperator for a given Hamiltonian defined by LA ≡
[H,A] and ξ is a vector in the 2DEG plane and has a simple form in the
coordinate frame x′ = (x + y)/

√
2, y′ = (y − x)/

√
2, z′ = z, namely, ξ =

(y′/λ−, x
′/λ+, 0), where λ± = ~/m∗(β ± α) are the spin-orbit lengths. For a

harmonic dot confinement U(r) = 1
2
m∗ω2

0r
2, we have

1

Ld
x =

−i
~m∗ω2

0

(

px +
eBz

c
y

)

, (2.10)

1

Ld
y =

−i
~m∗ω2

0

(

py −
eBz

c
x

)

, (2.11)

1

Ld

pj =
im∗

~
rj , (j = x, y). (2.12)
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In addition, we have the following relations for the Zeeman Liouvillian

Lm
Z (σ · ξ) =















iEm
Z [n× ξ] · σ, for odd m > 0

−Em
Z [n× (n× ξ)] · σ, for even m > 0,

(2.13)

where EZ = gµBB is the Zeeman splitting. The last term in Eq. (2.7) gives the
coupling of the dot spin to the QPC charge fluctuations. The transformation
matrix S (to first order in spin-orbit interaction) can be derived by using the
above relations (see Appendix A). We obtain

−iS = ξ · σ + [n× ξ1] · σ − [n× [n× ξ2]] · σ, (2.14)
ξ1 = ((α1py′ + α2x

′)/λ−, (α1px′ − α2y
′)/λ+, 0) , (2.15)

ξ2 = ((β1px′ + β2y
′)/λ−, (−β1py′ + β2x

′)/λ+, 0) , (2.16)

α1 =
~

m∗

EZ [E2
Z − (~ω0)

2]

(E2
Z − E2

+)(E2
Z − E2

−)
, (2.17)

α2 =
EZ~ωc(~ω0)

2

(E2
Z −E2

+)(E2
Z − E2

−)
, (2.18)

β1 =
~

m∗

E2
Z~ωc

(E2
Z − E2

+)(E2
Z − E2

−)
, (2.19)

β2 = E2
Z

(~ωc)
2 + (~ω0)

2 − E2
Z

(E2
Z −E2

+)(E2
Z − E2

−)
, (2.20)

where E± = ~ω ± ~ωc/2, with ω =
√

ω2
0 + ω2

c/4 and ωc = eBz/m
∗c. Here, we

assume E± − |EZ | ≫ |EZλd/λSO|, which ensures that the lowest two levels in
the quantum dot have spin nature. Below, we consider low temperatures T
and bias ∆µ, such that T,∆µ ≪ E± − |EZ|, (hence only the orbital ground
state is populated so that its Zeeman sublevels constitute a two level system)
and average over the dot ground state in Eq. (2.7). We obtain, using Eqs.
(2.10)-(2.13), the following effective spin Hamiltonian

Heff =
1

2
gµB [B + δB(t)] · σ, (2.21)

and the effective fluctuating magnetic field δB(t) is then given by the operator

δB(t) = 2B × [Ω1(t) + n×Ω2(t)] , (2.22)

Ω1 =
e~2γ1

m∗

(

λ−1
− Ey′ , λ−1

+ Ex′, 0
)

,

Ω2 =
e~2γ2

m∗

(

−λ−1
− Ex′, λ−1

+ Ey′, 0
)

,

γ1 =
m∗

~EZ

α1 =
E2

Z − (~ω0)
2

(E2
+ − E2

Z)(E2
− − E2

Z)
,

γ2 =
m∗

~EZ
β1 =

EZ~ωc

(E2
+ − E2

Z)(E2
− − E2

Z)
,
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where we have gone to the interaction picture with respect to the lead Hamil-
tonian H ′

Q = HQ + 〈HQd〉d and omitted a spin-independent part. Note that
the coordinate-dependent part of S drops out and thus α2, β2 do not enter.
Here and below, we use 〈. . . 〉d to denote averaging over the dot ground state.
Note that H ′

Q describes the QPC, while it is electrostatically influenced by the
quantum dot with one electron in the ground state. Obviously, H ′

Q can be
rewritten in the same form as HQ in Eq. (2.4), but with a different scattering
phase in the scattering states. To denote the new scattering states, we omit
the overbar sign in our notations. We have introduced an effective electric field
operator E(t) in the interaction picture, [57]

E(t) =
1

e
〈∇HQd(t)〉d

=
∑

ll′kk′σ

εll′e
i(µl−µl′ )t/~C†

lkσ(t)Cl′k′σ(t), (2.23)

εll′ =
1

e
〈∇ηll′(r)〉d, (2.24)

where the fermionic operators Cl′k′σ correspond to scattering states in the leads
with the dot being occupied by one electron (H ′

Q is diagonal in Cl′k′σ). Here,
µl, l = L,R, are the chemical potentials of the left (L) and right (R) leads,
with ∆µ = µL − µR being the voltage bias applied to the QPC driving a
current I. Note that in the absence of screening (δ̃(R− a) = 1 in Eq. (2.6)),
E coincides with the electric field that the quantum dot electron exerts on the
QPC electrons.

As a first result, we note that the fluctuating quantum field δB(t) is trans-
verse with respect to the (classical) applied magnetic field B (cf. Ref. [34]).
The magnetic field fluctuations originate here from orbital fluctuations that
couple to the electron spin via the spin-orbit interaction. The absence of time
reversal symmetry, which is removed by the Zeeman interaction, is crucial for
this coupling. We assume no fluctuations in the external magnetic field B. In
our model, the dot electron spin couples to a bath of fermions, in contrast to
Ref. [34] where the bath (given by phonons) was bosonic.

To calculate the coupling constants εll′ in Eq. (2.23), it is convenient
to first integrate over the coordinates of the dot electron. We thus obtain
E(R) = E0(R)δ̃(R − a), see Eq. (2.6), where R refers to the location of the
electrons in the QPC and the bare (unscreened) electric field is given by

E0(R) =
e

κ

〈

R− r

|R− r|3
〉

d

=
eR

κR3

(

1 +
3

4

λ2
d

R2
+ . . .

)

. (2.25)

Consequently, the coupling constants in Eq. (2.23) read εll′ = 〈lk|E(R)|l′k′〉,
where |lk〉 denote the scattering states in the leads. Here, we have assumed a
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parabolic confinement for the electron in the dot, set the origin of coordinates
in the dot center (〈r〉d = 0) and averaged with the dot wave function

Ψd(r) = exp
(

−r2/2λ2
d

)

/λd

√
π, (2.26)

which is the ground state of the electron in a symmetric harmonic potential in
two dimensions. While we choose a very special form for the ground state wave
function, this does not affect substantially the final result, i.e. the relaxation
time T1. This is because any circularly symmetric wave function leads to the
same form for E0(R) except that it just alters the second term in Eq. (2.25)
which is very small compared to the first term (about one hundredth) and
negligible. An analogous argument applies to asymmetric wave functions.

2.5 Coupling constants εll′

To proceed further, we construct the scattering states out of the exact wave
functions of an electron in the QPC potential. While this is a generic method,
we consider for simplicity a δ-potential tunnel barrier for the QPC,

V (X) =
~

2b

m∗
δ(X), (2.27)

where b gives the strength of the delta potential. Then, the electron wave
functions in the even and odd channels are given by

ψe(X) =
√

2















cos(kX + φ), X < 0,

cos(kX − φ), X > 0,

(2.28)

ψo(X) =
√

2 sin kX, (2.29)

where φ = arctan(b/k), k =
√

2m∗E/~2 and, for convenience, the sample
length is set to unity. Note that φ = π/2− δ, where δ ≡ δe − δo is the relative
scattering phase between the even (e) and odd (o) channels. The transmission
coefficient T through the QPC is related to φ by T (k) = cos2 φ. We construct
the scattering states in the following way









ψL
sc

ψR
sc









= U









ψe

ψo









, U =
−i√

2









eiδ −1

eiδ 1









. (2.30)

Up to a global phase, Eq. (2.30) is valid for any symmetric tunnel barrier.
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2.5.1 Three limiting cases

We calculate now the matrix elements of E(R) using the wave functions (2.28)
and (2.29). Three interesting regimes are studied in the following.

(i) λsc ≪ k−1
F ≪ a, where λsc is the screening length in the QPC leads

and kF is the Fermi wave vector. In this case, we set δ̃(R − a) = 2λscδ(X).
By calculating the matrix elements of ε with respect to the eigenstates of the
potential barrier, Eqs. (2.28) and (2.29), we obtain

εee = 4λscT E0(a), εoo = εeo = 0, (2.31)

where we used the odd and even eigenstates and
∫

dY |Φ(Y )|2E(X, Y ) =
E(X, a). Here, Φ(Y ) is the QPC wave function in the transverse direction
with width ≪ λsc. Going to the Left-Right basis, Eq. (2.30), which is more
suitable for studying transport phenomena, we obtain









εLL εLR

εRL εRR









=
1

2
εee









1 1

1 1









. (2.32)

Note that in this case we have εll′ ∝ T , where l, l′ = L,R, see Eqs. (2.31) and
(2.32).

(ii) k−1
F ≪ λsc ≪ a. In this case, we set δ̃(R−a) = Θ(X+λsc)−Θ(X−λsc),

where Θ(X) is the step function, and we obtain in leading order in 1/kFλsc

εee = εoo =
2eλsc

κa2

(

1 +
3λ2

d

4a2
− λ2

sc

2a2
+ . . .

)

eY , (2.33)

εeo =
eλ2

sc cos δ

κa3

(

1 +
3λ2

d

4a2
− 3λ2

sc

4a2
+ . . .

)

eX . (2.34)

In the above equations, eY is a unit vector parallel to a and eX is a unit vector
perpendicular to a (see Fig. 2.1). Further, we assumed that ~vF ∆k ≤ EZ ≪
~vFλ

−1
sc ≪ EF , where ∆k = k − k′, vF is the Fermi velocity, and EF = ~vFkF

is the Fermi energy. Going as before to the Left-Right basis, we obtain









εLL εLR

εRL εRR









=









εee − εeo cos δ iεeo sin δ

−iεeo sin δ εee + εeo cos δ









. (2.35)

Note that in this case we have εLR ∝
√

T (1− T ), see Eqs. (2.34) and (2.35).
Since typically λsc & k−1

F , we expect case (ii) to describe realistic setups. A
more general case, k−1

F , λsc ≪ a, is studied in Appendix B.
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(iii) k−1
F , a≪ λsc. In this regime, we neglect the screening (δ̃(R−a) = 1 in

Eq. (2.6)). Then, we obtain the following expressions for the coupling constants

εoe = εeo =
4ke

κ
{K0(2ka) sin δ

+
π

2
cos δ [I0(2ka)− L0(2ka)]

}

eX , (2.36)

εee =
2e

κ

{

1

a
− 2k cos(2δ)K1(2ka)

+
π

2
k sin(2δ)

[

2

π
− 2I1(2ka) + L1(2ka) + L−1(2ka)

]}

eY , (2.37)

εoo =
2e

κ

{

1

a
− 2kK1(2ka)

}

eY , (2.38)

where In and Kn are the modified Bessel functions and Ln is the modified
Struve function. Here, we assumed ∆k ≪ a−1 ≪ λ−1

sc .
Since usually ka ≫ 1, the k-dependence of the coupling constants in

Eqs. (2.36)-(2.38) is suppressed. One can use the following asymptotic ex-
pressions for a≫ k−1

F ,

εoe = εeo ≈
2e cos δ

κa
eX , (2.39)

εee ≈ εoo ≈
2e

κa
eY . (2.40)

In this case, the transformation to the Left-Right basis is given in Eq. (2.35)
and we obtain εLR ∝

√

T (1− T ) as in case (ii).

2.5.2 Consistency check

Next we would like to verify whether our model predicts a realistic charge
sensitivity of the QPC exploited in recent experiments [20, 28, 58]. For this
we estimate the change in transmission δT through the QPC due to adding
an electron to the quantum dot. The coupling in Eq. (2.5) (with coupling
constants ηll′(r) given in Eq. (2.6)) is responsible for this transmission change
δT . It is convenient to view this coupling as a potential δV (X) induced by
the dot electron on the QPC. From Eq. (2.6), we obtain

δV (X) =
e2

κ
√
X2 + a2

δ̃(X), (2.41)

where we have integrated over the dot coordinates r = (x, y) and the QPC
coordinate Y , neglecting terms O(λ2

d/a
2). The screening factor δ̃(X) is peaked

around X = 0 with a halfwidth λsc. We consider two regimes.
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(i) δV (X) is a smooth potential. In this regime, ~
2/m∗ā2 ≪ δV (0)≪ EF ,

with ā = min(λsc, a) being the width of δV (X). Therefore, the dot elec-
tron provides a constant potential (like a back gate) to the QPC, implying
that δV (X) merely shifts the origin of energy for the QPC electrons by a
constant amount, δV (0). From the geometry of the current experimental se-
tups [20, 28, 58] it appears reasonable to assume that this is the regime which
is experimentally realized. The transmission change δT can then be estimated
as

δT ≈ −δV (0)
∂T (E)

∂E

∣

∣

∣

∣

EF

= −δV (0)

EF
T (1− T ), (2.42)

T (E) = cos2 φ =
E

E + ~2b2/2m∗
, (2.43)

where T = T (E = EF ). By inserting typical numbers in Eq. (2.42), i.e.
T = 1/2, EF = 10 meV, and δV (0) = e2/κa [δ̃(0) = 1], with a = 200 nm and
κ = 13, we obtain δT /T ≈ 0.02, which is consistent with the QPC charge
sensitivity observed experimentally [28].

(ii) δV (X) is a sharp potential. In this regime, adding an electron onto
the quantum dot modifies the shape of the existing tunnel barrier in the QPC.
Assuming sharp potentials, we obtain

δT ≈ −2δA

A
T (1− T ), (2.44)

where δA =
∫

δV (X)dX andA =
∫

V (X)dX = ~
2b/m∗. In deriving Eq. (2.44),

we assumed that δA ≪ A. Additionally, we assumed that both potentials
δV (X) and V (X) are sharp enough to be replaced by δ-potentials. Redefining
ā such that δA = āδV (0), we quantify the latter assumption as ā≪ 1/b, where
b is the strength of V (X) in Eq. (2.27). Note that for this regime the screening
is crucial, because δA→∞ for λsc →∞.

2.6 Spin relaxation rate

2.6.1 k-independent case

Next we use the effective Hamiltonian (2.21) with Eqs. (2.22), (2.23) and (2.35)
to calculate the spin relaxation time T1 of the electron spin on the dot in lowest
order in δB. In the Born-Markov approximation [59], the spin relaxation rate
is given by [34]

Γ1 ≡ 1/T1 = ninjΓ
r
ij, (2.45)

where n = B/B is the unit vector along the applied magnetic field, Γr
ij is the

spin relaxation tensor (see appendix C), and we imply summation over repeat-
ing indices. To evaluate T1, it is convenient to use the following expression,
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obtained in Ref. [34],

1

T1
= J +

ii (ωZ)− ninjJ +
ij (ωZ)− εkijnkJ −

ij (ωZ), (2.46)

where εijk is the antisymmetric tensor and ωZ = |EZ|/~ is the Zeeman fre-
quency (for detailed derivation of Eq. (2.46) see appendix C). J ±

ij (ωZ) are
Fourier transforms of anticommutators of the fluctuating fields (with 〈δB(t)〉 =
0)

J +
ij (w) =

g2µ2
B

4~2

∫ +∞

−∞

〈{δBi(0), δBj(t)}〉 cos(wt)dt,

J −
ij (w) =

g2µ2
B

4~2

∫ +∞

−∞

〈{δBi(0), δBj(t)}〉 sin(wt)dt, (2.47)

which are evaluated in Eq. (2.46) at the Zeeman frequency ωZ . Here and below,
〈C〉 ≡ Tr(ρLρRC) where ρL (ρR) refers to the grand-canonical density matrix
of the left (right) lead at the chemical potential µL (µR), and Tr is the trace
over the leads. In our particular case, the second and third terms in Eq. (2.46)
vanish. The reason for vanishing of the second term is the transverse nature of
δB(t) in Eq. (2.22), i.e. niδBi(t) = 0. The third term vanishes because each
of the εll′ in Eq. (2.35) is either real or imaginary. The time dependence of
the anticommutators of fluctuating fields at zero temperature, together with
their Fourier transforms (at finite temperature T ) are given by the following
expressions

〈{δBi(0), δBj(t)}〉 ∝
A(t)

t2
, (2.48)

J +
ij (w) ∝ E2

ZS(~w), ∆µ = 0, (2.49)
S(x) = x coth(x/2kBT ), (2.50)

where A(t) is an oscillatory function of t with period ∆µ and S(~w) is the
spectral function of the QPC which is linear in frequency at zero temperature.
This time behavior shows that the QPC leads behave like an Ohmic bath. This
Ohmic behavior results from bosonic-like particle-hole excitations in the QPC
leads, possessing a density of states that is linear in frequency close to the
Fermi surface. In the spin-boson model, having an Ohmic bath is sometimes
problematic and needs careful study because of the non-Markovian effects of
the bath [60]. However, we find that the Born-Markov approximation is still
applicable since the non-Markovian corrections are not important in our case,
due to the smallness of the spin-orbit interaction. 2

2In the spin-boson model an appreciable non-Markovian contribution emerges for cou-
pling constants α = ~/T1EZ & 10−2 [60]. Since typically ~/T1EZ . 10−4 in the case we
studied here [cf. Tables (2.1) and (2.2)], we see that non-Markovian effects are negligible.
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For the fluctuating field δB(t), we use the Born-Markov approximation [59]
and obtain from Eqs. (2.46) and (2.47) the spin relaxation rate

1

T1

= 4π~ν2 (MLL +MRR)S(EZ)

+4π~ν2MLR [S(EZ + ∆µ) + S(EZ −∆µ)] , (2.51)

where ν = 1/2π~vF is the density of states per spin and mode in the leads and
the coefficients Mll′ read

Mll′ = ωll′ · ωl′l −
(

n · ωll′
)(

n · ωl′l
)

, (2.52)

ωll′ = Ωll′

1 + n×Ωll′

2 ,

Ωll′

1 =
e~γ1EZ

m∗

(

λ−1
− εll′

y′ , λ−1
+ εll′

x′ , 0
)

,

Ωll′

2 =
e~γ2EZ

m∗

(

−λ−1
− εll′

x′ , λ−1
+ εll′

y′ , 0
)

,

where Ωll′

i (i = 1, 2 and l, l′ = L,R) are matrix elements of the operators Ωi

with respect to the leads. In addition, in deriving Eq. (2.51) we assumed
T,∆µ ≪ EF . Note that, if the transmission coefficient of the QPC is zero or
one (T = 0, 1), then Eq. (2.51) reduces to

1

T1
= 4π~ν2(MLL +MRR)EZ , T ≪ EZ . (2.53)

On the other hand, the equilibrium part of the relaxation time is obtained by
assuming ∆µ = 0,

1

T1
= 4π~ν2(MLL +MRR + 2MLR)EZ , T ≪ EZ . (2.54)

Therefore, even with zero (or one) transmission coefficient or in the absence
of the bias, the spin decay rate is non-zero due to the equilibrium charge
fluctuations in the leads.

Another case of interest is the large bias regime EZ ≪ ∆µ ≪ ~ω0, which
simply means that only the second term in Eq. (2.51) appreciably contributes
to the relaxation rate. Therefore, the non-equilibrium part of Eq. (2.51) is
given by

1

T1

≈ 8π~ν2MLR∆µ, EZ , T ≪ |∆µ±EZ | ≪ ~ω0. (2.55)

To estimate the relaxation time, we use typical experimental parameters for
GaAs quantum dots (see, e.g., Ref. [22]). We consider an in-plane magnetic
field B which leads to Ω2 = 0 (γ2 = 0) and, for simplicity, assume that B

is directed along one of the spin-orbit axes (say x′, see Fig. 2.1). In this
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Table 2.1: Equilibrium (∆µ = 0) relaxation time T1 (ms) with B along x′, see
Fig. 2.1.

T1 (B = 14 T ) T1 (B = 10 T ) T1 (B = 8 T ) T1 (B = 6 T ) θ T

0.9 2.77 5.64 13.78 0 0

1.85 5.57 11.3 27.57 0 0.5

∞ ∞ ∞ ∞ 0 1

0.1 0.32 0.66 1.62 π/4 0

0.1 0.33 0.68 1.67 π/4 0.5

0.11 0.34 0.7 1.72 π/4 1

0.06 0.17 0.35 0.86 π/2 0

0.06 0.17 0.35 0.86 π/2 0.5

0.06 0.17 0.35 0.86 π/2 1
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Table 2.2: Non-equilibrium (EZ ≪ ∆µ = 1 meV) relaxation time T1 (ms) with
B along x′, see Fig. 2.1.

T1 (B = 14 T ) T1 (B = 10 T ) T1 (B = 8 T ) T1 (B = 6 T ) θ T

0.9 2.77 5.64 13.78 0 0

0.95 2.25 3.8 7.32 0 0.5

∞ ∞ ∞ ∞ 0 1

0.1 0.32 0.66 1.62 π/4 0

0.1 0.32 0.64 1.54 π/4 0.5

0.11 0.34 0.7 1.72 π/4 1

0.06 0.17 0.35 0.86 π/2 0

0.06 0.17 0.35 0.86 π/2 0.5

0.06 0.17 0.35 0.86 π/2 1
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special case we obtain the following expression for k−1
F ≪ λsc ≪ a (case (ii) of

Sec. 2.5.1),

MLR ≃
e4~2

m∗2κ2

λ4
sc

λ2
+a

6

E2
Z cos2 θ

(~2ω2
0 − E2

Z)2
T (1− T ), (2.56)

or equivalently, the relaxation rate is given in terms of the QPC shot noise

1

T1
≈ 8π2e2~4

m∗2κ2

ν2λ4
sc

a6λ2
+

E2
Z cos2 θ

(~2ω2
0 − E2

Z)2
SLL, (2.57)

SLL =
e2∆µ

π~
T (1− T ), (2.58)

where SLL is the current shot noise in the left lead of the QPC, and due to cur-
rent conservation, SLL = SRR = −SLR = −SRL [61]. We note that Eq. (2.57)
is the non-equilibrium part of the relaxation rate. Thus, even if the constant
equilibrium part (∼ MLL,MRR in Eq. (2.51)) is of comparable magnitude,
the non-equilibrium part can still be separated, owing to its bias dependence.
Moreover, at low temperatures and large bias voltages, the relaxation rate is
linear in the bias ∆µ and proportional to the current shot noise in the QPC,
1/T1 ∝ T (1−T )∆µ. The latter relation holds in cases (ii) and (iii) of Sec. 2.5.1,
whereas in case (i) we have 1/T1 ∝ T 2∆µ.

The lifetime T1 of the quantum dot spin strongly depends on the distance a
to the QPC. For the regime (ii) in Sec. 2.5.1, the non-equilibrium part of 1/T1

depends on a as follows, 1/T1 ∝ a−6. A somewhat weaker dependence on a
occurs in the regimes (i), 1/T1 ∝ a−4, and in the regime (iii), 1/T1 ∝ a−2. On
the other hand, the charge sensitivity of the QPC scales as a−1, which allows
one to tune the QPC into an optimal regime with reduced spin decoherence
but still sufficient charge sensitivity.

The spin lifetime T1 strongly depends on the QPC orientation on the sub-
strate (the angle θ between the axes x′ and X in Fig. 2.1). For example, in
the regimes (ii) and (iii) (with ka ≫ 1), the non-equilibrium part of the re-
laxation rate vanishes at θ = π/2, for an in-plane magnetic field B along x′.
Analogously, in the regime (i), both the equilibrium and the non-equilibrium
parts of the relaxation rate vanish at θ = 0, for B ‖ x′.

We summarize our results in Tables (2.1) and (2.2), where we have eval-
uated the relaxation time T1 (Eqs. (2.54) and (2.51)) for a QPC located at
a = 200 nm away from the center of a GaAs quantum dot with λd ≈ 30 nm,
assuming λsc = 100 nm, λSO = 8µm, and kF = 108 m−1. Here, we use coupling
constants derived for the regime (ii) in Sec. 2.5.1.

Finally, we remark that, for a perpendicular magnetic field (B = (0, 0, B)),
we have

Mll′ = ωll′ ·ωl′l, n = ez, (2.59)
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Figure 2.2: Relaxation rate Γ1 = 1/T1 as a function of the bias ∆µ applied to the
QPC for cases (ii) and (iii), see Sec. IV.A. The magnetic field B is along x′ with
magnitude B = 10 T.

and the relaxation rate can be calculated analogously. The only difference
is that Ω2 is no longer zero and the matrix elements Mll′ are given by more
complicated expressions.

2.6.2 k-dependent case

In this regime we use the k-dependent coupling constants which are given in
Eqs. (2.36)-(2.38) and in Appendix B. Using Eq. (2.46), the relaxation rate is
given now by the following expression

1

T1
= −εkijnkJ −

ij (ωZ)

+ 4π~ν2
∑

ll′

∫

dE

∫

dE ′Mll′(E,E
′)f(E)[1− f(E ′)]

×{δ(∆E + µl′ − µl − ~ωZ) + δ(∆E + µl′ − µl + ~ωZ)}, (2.60)

where ∆E = E ′−E and f(E) = [exp(E/kBT )+1]−1 is the Fermi distribution
function and the energies are measured from the Fermi level µl in each lead.
The matrix elements Mll′(E,E

′) are given by Eq. (2.52), however, in this
case they are k-dependent through E = ~vFk. Fig. 2.2 shows the numerical
results for the relaxation rate Γ1 = 1/T1 as a function of the bias ∆µ for an
in-plane magnetic field B of 10 T in both cases. We note that the relaxation
rate in case (iii) is typically two orders of magnitude larger than in case (ii),
which underlines the important role played by the screening length λsc in the
QPC-induced spin relaxation in a quantum dot.
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2.7 Concluding remarks

In conclusion, we have shown that charge read-out devices (e.g. a QPC charge
detector) induces spin decay in quantum dots due to the spin-orbit interaction
(both Rashba and Dresselhaus). Due to the transverse nature of the fluctuating
quantum field δB(t), we found that pure dephasing is absent and the spin
decoherence time T2 becomes twice the relaxation time T1, i.e. T2 = 2T1.
Finally, we showed that the spin decay rate is proportional to the shot noise
of the QPC in the regime of large bias (∆µ ≫ EZ) and scales as a−6 (see
Fig. 2.1). Moreover, we have shown that this rate can be minimized by tuning
certain geometrical parameters of the setup. Our results should also be useful
for designing experimental setups such that the spin decoherence can be made
negligibly small while charge detection with the QPC is still efficient.



Chapter 3

Electric Dipole Induced Spin

Resonance in Quantum Dots

3.1 Abstract

An alternating electric field, applied to a quantum dot, couples to the electron
spin via the spin-orbit interaction. We analyze different types of spin-orbit
coupling known in the literature and find two efficient mechanisms of spin
control in quantum dots. The linear in momentum Dresselhaus and Rashba
spin-orbit couplings give rise to a fully transverse effective magnetic field in
the presence of a Zeeman splitting at lowest order in the spin-orbit interac-
tion. The cubic in momentum Dresselhaus terms are efficient in a quantum dot
with non-harmonic confining potential and give rise to a spin-electric coupling
proportional to the orbital magnetic field. We derive an effective spin Hamil-
tonian, which can be used to implement spin manipulation on a timescale of
10 ns with the current experimental setups.

3.2 Introduction

Coherent manipulation of electron spin is at the heart of spintronics [9, 16]
and quantum computing with spins [5]. In the proposal of Ref. [5], the spin
of an electron confined to a quantum dot is used as qubit to store and process
quantum information. A quantum register consisting of an array of such spin-
1/2 quantum dots is operated by a set of quantum gates that act on single
spins and pairs of neighboring spins [5]. Among the simplest quantum gates
are the spin rotations on the Bloch sphere. With the help of only a static
magnetic field and an electron-spin-resonance (ESR) pulse, one can change
the state of the spin qubit at will. It is important, however, that the ESR
pulse can be applied locally to each of the quantum dots, ensuring that the
spins are accessed independently from one another. For an ESR [51, 62, 63]
to occur, usually, the electron is exposed to an alternating magnetic field of a

27
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frequency ωac that matches the electron Zeeman splitting. However, because
strong local electric fields are easier to obtain than strong local magnetic fields,
interest arises in spin resonance induced by electric fields.

Recently, Kato et al. [64] have demonstrated three-dimensional control of
spins in a GaAs/AlxGa1−xAs heterostructure with the use of an alternating
electric field. The mechanism of spin coupling to the electric field relies on a
specially engineered Landé g tensor in the heterostructure, achieved by mod-
ulating the Al content during the MBE growth [65]. The resulting g tensor
is both anisotropic and space-dependent, and allows control over the direction
and magnitude of the spin precession frequency [64, 66]. A g-factor modula-
tion resonance (g-TMR) occurs similarly to an ESR, when the frequency of the
electric field matches the Zeeman splitting [64]. Rashba and Efros [67–69] have
further proposed to use the standard (Dresselhaus [55] and Rashba [54]) spin-
orbit couplings to achieve an electric dipole induced spin resonance (EDSR)
in quantum wells. Rashba and Efros [67–69] have shown that the EDSR is
highly efficient in quantum wells, promising electron spin control on a timescale
ω−1

R ≃ 100 ps, where ωR is the Rabi frequency [62]. These results have impor-
tant practical implications in spintronics, where spins of extended electrons
are used as a resource to accomplish information processing. In the context of
quantum computing, however, interest arises in the spin of a localized electron.
A natural question is, therefore, “What is the microscopic mechanism of EDSR
in quantum dots and how strong is the EDSR effect?”

EDSR has nearly half-a-century long history. It has been first observed for
extended electrons in bulk semiconductors, [70, 71] and studied more recently
for donor-bound electrons in Cd1−xMnxSe [72, 73] and extended electrons in
two-dimensional electron gases [74, 75] and epilayers [76]. The “forbidden”
electric-dipole transition between the electron spin-up and spin-down states
becomes possible in the presence of spin-orbit interaction. Absorption spec-
tra of EDSR provide information about the value of the electron g factor and
the strength of the spin-orbit coupling. In two-dimensional electron systems,
one expects the Dresselhaus spin-orbit interaction [55] to be enhanced com-
pared to bulk semiconductors, because of the confinement of electron motion
in one direction. Furthermore, the Rashba spin-orbit interaction [54] arises
in heterostructures lacking inversion symmetry, such as, e.g., heterojunctions.
In some systems, the Rashba coupling constant can be efficiently tuned by
electric fields [77].

In quantum dots [78], the spin-orbit interaction is generally suppressed due
to complete localization of electron motion [79–81]. Typically, the quantum
dot lateral size λd is smaller than the spin-orbit length λSO, and any effect of
the spin-orbit interaction is suppressed as a power of λd/λSO and therefore is
expected to be weak. This expectation contrasts with the case of electrons in
quantum wells, where the EDSR meets most favorable conditions [67–69]. The
Zeeman interaction in quantum dots plays an important role for observing spin-
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QD

y′ [1̄10]

Gate 1

φ

Gate 2
x′ [110]

S

E(t)

Figure 3.1: Schematic of a setup for electric field control of spin via the spin-orbit
interaction. The quantum dot (QD) contains a single electron with spin S = (~/2)σ,
deep in the Coulomb blockade valley. The gates 1 and 2 are used to generate an
alternating electric field E(t), which acts via the spin-orbit interaction on the electron
spin. As a result, an electric dipole spin resonance (EDSR) occurs if the frequency
of E(t) is tuned to match the Larmor frequency ωZ = EZ/~.

orbit effects [34, 35]. Without the Zeeman interaction, the Rashba and linear
in momentum Dresselhaus spin-orbit terms do not contribute to spin-related
phenomena at the first order of spin-orbit interaction. This “absence of spin-
orbit” at the leading order in quantum dots has been discussed extensively
in the literature [34, 35, 79–81]. Below, we show that a similar result arises
also for the cubic in momentum Dresselhaus terms in the case when the dot
confining potential is quadratic and the perturbation is linear in the electron
coordinates.

In this paper, we consider the use of EDSR for control of individual elec-
tron spins in quantum dots. We derive an effective spin Hamiltonian for a
quantum-dot electron, subject to ac electric fields. We show that there are two
major mechanisms of EDSR in quantum dots. One arises from the linear in
momentum Dresselhaus and Rashba spin-orbit couplings in combination with
the Zeeman interaction. The other arises from the cubic Dresselhaus terms in
combination with the cyclotron frequency. We estimate the strengths of both
EDSR effects and compare them to the ordinary ESR. We find that despite a
strong suppression, compared to quantum wells, the EDSR in quantum dots
is still an efficient mechanism of spin manipulation and can be used alone or
together with ESR to achieve control of spin on a timescale ω−1

R ≃ 10 ns.

3.3 EDSR setup

We consider a quantum dot containing a single electron with charge −e and
spin S = (~/2)σ, where σ = (σx, σy, σz) are the Pauli matrices. The quantum
dot is in the Coulomb blockade regime with extraction (U−) and addition
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(U+) energies that are large compared to the temperature, so that the dot
occupation remains constant. An external electric field E(r, t) is applied to
the quantum dot. In practice, E(r, t) can be generated by a pair of gates, as
sketched in Fig. 3.1, to which an ac signal of frequency ωac is supplied from
an external circuit (not shown). The Hamiltonian describing the quantum dot
electron in the external alternating field reads

H = H0 + V (r, t), (3.1)

where V (r, t) = e
∫ r

dr′ ·E(r′, t) is the potential energy of the electron in the
external electric field andH0 is the “unperturbed” Hamiltonian (see further). In
particular, for an electric field constant in space E(r, t) = E(t), the potential
energy reads V (r, t) = eE(t) · r.

For practical applications, it is a good idea to use two gates, as shown
in Fig. 3.1, because this allows larger amplitudes of E(t) to be applied to
the quantum dot, while still maintaining the dot within the same Coulomb
blockade valley. Ideally, the ac voltage drop is distributed between the two
gates symmetrically and the dot potential is kept constant by counteracting
potential shifts quadratic in the electric field. For a harmonic quantum dot,
the desired ac potential reads

V (r, t) = eE(t) · r +
(eE(t))2

2meω2
0

, (3.2)

where me is the electron effective mass and ω0 is the oscillator frequency. Then
the only effect of the ac signal on the dot confinement is shifting the dot center
as a function of time by the amount

r0(t) = −eE(t)

meω
2
0

. (3.3)

The amplitude of r0(t) is going to be a relevant parameter in our following
analysis. Therefore, setups in which the dot can be easily moved on the sub-
strate by gates are particularly interesting in the context of this paper. We
discuss the case of r0 ∼ λSO in Sec. 3.7, whereas for the bulk of the chapter
we restrict ourself to r0 ≪ λSO .

The Hamiltonian H0 consists of several terms,

H0 = Hd +HZ +HSO, (3.4)

where Hd is the Hamiltonian of a confined electron,

Hd =
p2

2me
+ U(r), (3.5)

with p = −i~∂/∂r + (e/c)A(r) being the electron momentum, c the speed of
light in vacuum, and U(r) the quantum dot confining potential. We restrict
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our consideration to quantum dots with strong confinement along one axis,
such as, e.g., quantum dots defined in a two-dimensional electron gas (2DEG).
For GaAs, the 2DEG lies, typically, in the crystallographic plane (001) and has
a width d ≃ 5 nm, which ensures a strong size quantization along z ‖ [001].
The in-plane motion of the electron is described by the Hamiltonian (3.5),
where r = (x, y) is the electron in-plane coordinate; whereas the transverse
motion (along z) has already been integrated out in Eqs. (3.1)-(3.5). In the
absence of external time-dependent fields, A(r) accounts for the orbital effect
of a static magnetic field B. Assuming that B is constant in space, we have
A(r) = Bz(−y/2, x/2, 0) in the symmetric gauge. Note that the in-plane
components Bx and By are not present in A(r), because the motion along z
is strongly quantized (d≪

√

~c/eBx(y)).
The magnetic field B also induces a Zeeman splitting EZ = gµBB and a

spin quantization axis n = B/B via the Zeeman interaction,

HZ =
1

2
gµBB · σ =

1

2
EZn · σ, (3.6)

where g is the electron g-factor and µB is the Bohr magneton. In GaAs,
the magnitude of the g-factor is anomalously small (g ≈ −0.44) compared to
other AIIIBV semiconductors. The Zeeman energy is, therefore, much smaller
than the cyclotron energy ~ωc = ~eBz/mec by a factor gme/m ≪ 1 (with m
being the electron mass in vacuum), for magnetic fields applied transversely
to the 2DEG. In Sec. 3.6, we derive an efficient spin-electric coupling that
is proportional to ~ωc, but present only in non-harmonic quantum dots. We
remark that the magnetic field is an important ingredient in our EDSR scheme,
since at B = 0 no spin-electric coupling can be obtained at the first order of
the spin-orbit interaction (see further).

In Eq. (3.4), HSO stands for the spin-orbit Hamiltonian. We start with
considering the so-called “linear in p” spin-orbit interaction,

HSO = α(pxσy − pyσx) + β(−pxσx + pyσy), (3.7)

which is the sum of the Rashba (α) [54] and 2D Dresselhaus (β) [55, 82] spin-
orbit interactions. This type of spin-orbit interaction gives rise to a sizable
phonon-induced spin relaxation rate 1/T1 [34, 35], of the same order of mag-
nitude as experimentally measured [22, 36, 83]. Moreover, in the 2D limit the
linear in p spin-orbit interaction is dominant, because β ∝ 1/d2.

In the standard EDR scheme, an alternating magnetic field is generated
by a current in a nearby conductor. In our setup, see Fig. 3.1, no charge flow
is ideally present between the gates. However, the alternating electric field
E(r, z, t) gives rise to a displacement current, with the current density

JD(r, z, t) =
κ

4π

∂E(r, z, t)

∂t
, (3.8)
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where κ is the electric permittivity. The external magnetic field B acquires,
thus, an ac-component, B → B + B(t), where B(t) = ∇×A(t). The vector
potential A(r, z, t) is obtained as usual from Ampere’s law [84]

∇2A = −4πµ

c
(J + JD) , (3.9)

where µ is the magnetic permittivity and J is the charge flow density (in our
case J = 0). In Eq. (3.9), we adopted the Coulomb gauge ∇ ·A = 0 and used
the notation ∇ = (∂/∂r, ∂/∂z).

The magnetic field B(t) couples to the electron spin via the Zeeman inter-
action in Eq. (3.6) [with B → B + B(t)], giving rise to an ESR source, which
can be used, in principle, for spin manipulation in quantum dots. However,
the amplitude of B(t) is, in practice, extremely small; it is proportional to 1/c,
as expected from the relativistic nature of B(t). Furthermore, the proximity
of the top gates to the 2DEG decrease the displacement current enclosed by
the magnetic field lines penetrating the quantum dot. Using Eq. (3.9), we es-
timate B = µκc−1Lz∂E/∂t ≈ 10−6 G, for a quantum dot which is Lz = 100 nm
below the gates plane and an electric field E(t) = E0 sin(ωact), with amplitude
µκE0 = 102 V/cm and frequency ωac/2π = 109 Hz. As we show below, a much
stronger effective magnetic field arises from the EDSR effect in the present
setup, and therefore, the displacement current can be safely ignored.

Recently, a sizable ESR effect has been obtained with the help of a wire
placed on top of a GaAs double dot [85]. In this case, J 6= 0 and the magnitude
of B(t) is estimated from Eq. (3.9) to be B = πµc−1I/(Ly + Lz), where I is
current in the wire and 2Ly is the lateral size of the wire. For Ly = Lz = 100 nm
and I = 1 mA, the magnetic field obtained in this setup is on the order of
B ∼ 10 G.

3.4 Spin-electric coupling

Now, we focus on the electric-field component of the ac-signal and show that,
together with the spin-orbit interaction HSO and Zeeman splitting HZ , it suf-
fices to generate a sizable EDSR field in the quantum dot. For simplicity, we
set B(t)→ 0 from now on and choose A(t) = 0. As a result, we retain only a
constant in space and time magnetic field B = B(cosϕ sinϑ, sinϕ sinϑ, cosϑ)
and an alternating electric field E(r, t) = (1/e)∇V (r, t). Thus, we consider
further the Hamiltonian in Eq. (3.1), assuming that H0 is time-independent
and describes the dot in the absence of ac fields.

We aim at diagonalizing H0 using a Schrieffer-Wolff transformation, sim-
ilar to Ref. [34]. We thus look for a transformation matrix S such that the
transformed Hamiltonian H̃0 = exp(S)H0 exp(−S) is fully diagonal, see Ap-
pendix D. At B = 0, the ground state of H0 (and also of H̃0) is a Kramers
doublet, because the spin-orbit interaction is always time-reversal symmetric
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(at B = 0). We therefore choose to encode the qubit into the ground state
Kramers doublet of the quantum dot. Owing to the mixed spin and orbital
nature of the states an alternating potential V (r, t), such as in Eq. (3.1),
couples to the qubit. We proceed to derive this coupling, by calculating the
transformation matrix S at the leading order of spin-orbit interaction,

S =
1− P
L̂d + L̂Z

HSO +O(H2
SO), (3.10)

where L̂d and L̂Z are Liouville superoperators, i.e. L̂dA = [Hd, A] and L̂ZA =
[HZ , A], ∀A. The projector P projects onto the diagonal (or degenerate) part
of the Hilbert space ofHd+HZ , which ensures applicability of “non-degenerate”
perturbation theory. The coupling of spin to electric fields is then found by
applying the same Schrieffer-Wolff transformation to the potential V (r, t). We
obtain the following effective Hamiltonian for our qubit in the presence of an
alternating potential V (r, t), to leading order in the spin-orbit interaction,

Heff = HZ + 〈ψ0|[S, V (r, t)]|ψ0〉, (3.11)

where S is the transformation matrix in Eq. (3.10) and |ψ0〉 is the quantum
dot ground state. For a quantum dot with a harmonic confining potential,
U(r) = meω

2
0r

2/2, the transformation matrix S was calculated in Ref. [86]
to all orders of the Zeeman interaction and the first order of the “linear in p”
spin-orbit interaction. For simplicity, we consider here only the linear in B
terms,

S = iξ · σ − EZ

meω2
0

[n× ζ] · σ, (3.12)

ξ = (λ−1
− y′, λ−1

+ x′, 0),

ζ = (λ−1
− ∂/∂y′, λ−1

+ ∂/∂x′, 0),

where λ± = ~/me(β ± α) are the spin-orbit lengths, and the vectors ξ and ζ

are given in the coordinate frame (see Fig. 3.1)

x′ = (x+ y)/
√

2, (3.13)
y′ = −(x− y)/

√
2, (3.14)

z′ = z. (3.15)

The first term in Eq. (3.12) commutes with scalar potentials and therefore
drops out in Eq. (3.11). More generally, for arbitrary confining potential, the
first term is replaced by i(1−P)ξ ·σ, resulting nevertheless in no coupling of
spin to electric fields. The second term in Eq. (3.12), however, allows us to
express the coupling of spin to charge via the electric field

E(t) = (1/e)〈ψ0|∇V (r, z, t)|ψ0〉 (3.16)
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that acts on the quantum dot electron. For the harmonic confining potential,
we obtain

Heff =
1

2
gµBB · σ +

1

2
h(t) · σ, (3.17)

h(t) = 2gµBB ×Ω(t), (3.18)

Ω(t) =
−e
meω

2
0

(

λ−1
− Ey′(t), λ−1

+ Ex′(t), 0
)

. (3.19)

The dimensionless field Ω(t) describes a combined effect of the spin-orbit inter-
action and electric fields (or more generally potential fluctuations) on the qubit.
Ω(t) was calculated in Ref. [34] for the phonon potential and in Ref. [86] for
the shot-noise of a QPC nearby the quantum dot. In our case, Ω(t) is merely
a classical driving field generated by the ac-signal.

Considering further a constant in space (at least on the scale of the quan-
tum dot), alternating electric field E(t) = E0 sin(ωact) of amplitude E0 =
E0(cosφ, sinφ, 0), where φ is the angle of E0 with respect to the axis x′, see
Fig. 3.1, we obtain explicitly Ω(t) = Ω0 sin(ωact), with

Ω0 =
−eE0

meω2
0

(

λ−1
− sinφ, λ−1

+ cosφ, 0
)

. (3.20)

To give an estimate for the amplitude Ω0 in GaAs quantum dots, we assume
λ+ ≈ λ− ≈ λSO = 8µm, ~ω0 = 1 meV, and E0 = 102 V/cm, which yields
Ω0 ∼ 10−3.

The amplitude of the resulting effective magnetic field due to EDSR is
found from Eq. (3.18) to be

δB0 = 2B ×Ω0. (3.21)

The maximal amplitude is obtained for B ⊥ Ω0, which in experiment can
easily be arranged for by, e.g., choosing B ‖ z. In-plane magnetic fields can
also be used, provided E(t) is linearly polarized. For example, an electric
field E(t) aligned with x′ generates, according to Eq. (3.19), a dimensionless
field Ω(t) along y′. In this case, B should be chosen along x′ for maximal
spin-electric coupling.

Using our previous estimate for Ω0 ∼ 10−3, we obtain from Eq. (3.21) that
δB0 ∼ 1 mT for a magnetic field B = 1 T oriented transversely to Ω0. In
principle, the dimensionless factor Ω0 can be increased up to Ω0 ∼ 1. How-
ever, this requires a specially designed setup, where the value of the electron
displacement r0 in Eq. (3.3) approaches the spin-orbit length λSO.

Next we remark that Ω(t) in Eq. (3.19) can be written by the order of
magnitude as Ω(t) ∼ r0(t)/λSO. More rigorously, we rewrite Eq. (3.19) in the
following form

Ωi(t) =
∑

j

(

λ−1
SO

)

ij
r0j(t), (3.22)



3.4. SPIN-ELECTRIC COUPLING 35

where
(

λ−1
SO

)

ij
is a tensor of inverse spin-orbit lengths,

(

λ−1
SO

)

ij
=









0 1/λ−

1/λ+ 0









, (3.23)

with 1/λ± = me(β ± α)/~ and the frame (x′, y′) was used to represent the
tensor. For order of magnitude estimates, it is useful to introduce the scalar

1

λSO
=

1√
2
‖λ−1

SO‖, (3.24)

where ‖λ−1
SO‖ is the Frobenius norm of (λ−1

SO)ij. In the case of Eq. (3.23), we
have 1/λSO = (me/~)

√

α2 + β2.
Despite the fact that Eq. (3.22) was obtained considering the harmonic con-

fining potential as an example, its generality suggests that it should remain
valid for quantum dots of arbitrary confinement, provided, to a good approx-
imation, the ac-signal merely displaces the quantum dot parallel to itself by
a vector r0(t) as a function of time. Note that r0(t) is the only available pa-
rameter to be compared with λSO in the limit of strong confinement (λd → 0).
We extend the class of Hamiltonians considered here to any combination of
confinement and ac-voltage potential that can be rewritten in the form

U(r) + V (r, t) = U (r − r0(t)) + V0(t), (3.25)

where V0(t) is independent of r. We note that, as before, the electron wave
function extension λd is assumed to be small compared to the spin-orbit length
λSO at each moment in time. Equation (3.25) need not be satisfied exactly.
Note that λd enters only in the definition of r0(t) and does appear alone as
a parameter in Eq. (3.22). Therefore, defining r0(t) as the average electron
position, r0(t) =

∫

r |ψ(r, t)|2 d2r, we expect Eq. (3.22) to be valid to leading
order also when the electron probability density |ψ(r, t)|2 changes shape, but
the dot size changes weakly.

Equations (3.17), (3.18), and (3.22) form the basis of EDSR in quantum
dots and can be used to efficiently manipulate the electron spin by electrical
gates. Finally, we remark that Eqs. (3.17)-(3.19) have been derived under the
assumption r0 ≪ λSO, and therefore, can be used only for Ω0 ≪ 1. In Sec. 3.7
we discuss the case of Ω0 ∼ 1 in more detail. A further assumption in deriving
Eqs. (3.17)-(3.19) was that the frequency spectrum of E(t) lies well below the
size-quantization energy ~ω0. This adiabaticity constraint is generic to the
spin-based quantum computation [5, 9]; it guarantees that the electron is not
excited to higher in energy orbital levels.
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3.5 Spin dynamics and coherence

The electron spin obeys the Bloch equation [87–90]

〈Ṡ〉 = [ωZ + δω(t)]× 〈S〉 − Γ〈S〉+ Υ, (3.26)

where ωZ = gµBB/~ is the Larmor spin-precession frequency and δω(t) =
h(t)/~. The spin relaxation tensor Γij and the inhomogeneous part Υi are
due to the environment and can be derived microscopically [34, 87–89] within
the Born-Markov approximation. Strictly speaking, Γij and Υi in Eq. (3.26)
depend also on the driving. In particular, Γij acquires, in general, a time-
dependent part. However, we neglect these effects here since the energy scales
are well separated. Indeed, from experiments [22,36,83] and theory [34,35], we
infer that Γij,Υi ∼ (102−106) s−1, i.e. they are very small, so that the regime
Γij,Υi ≪ δω ≪ ωZ holds. In this regime, the rotating wave approximation [90]
is valid. We consider a completely general driving field

δω(t) = δωa sin(ωact) + δωb cos(ωact), (3.27)

which can be realized in practice by implementing two independent electric
fields at the quantum dot site. This is, however, by no means necessary for
our EDSR scheme.

The Rabi frequency then reads

ωR =
1

2
(δωa × n− [δωb × n]× n) . (3.28)

Here, we assume that ωac is not far from resonance, i.e. |ωac − ωZ| < ωac/2. In
a coordinate frame (X, Y, Z) with Z ‖ B, the spin dynamics is approximated
as follows

〈S±(t)〉 ≈ S̃±(t)e±iωact (3.29)
〈SZ(t)〉 ≈ S̃Z(t), (3.30)

where S± = SX ± iSY . The spin S̃(t) obeys a simpler (static) Bloch equation

˙̃
S = (δ + ωR)× S̃ − Γ̃S̃ + Υ̃, (3.31)

where δ = (ωZ − ωac)n gives the detuning from resonance. The relaxation
tensor Γ̃ij is diagonal, with Γ̃XX = Γ̃Y Y = 1/T2 and Γ̃ZZ = 1/T1, and Υ̃i

assumes Υ̃i = Γ̃ijS
T
j . Here, T1 and T2 are the relaxation and decoherence

times in the absence of driving measured in experiment [22, 36, 83], and ST =
−(ng/2|g|) tanh(EZ/2kBT ) is the thermodynamic value of spin, with T being
the temperature.
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The time-evolution of S̃ in Eq. (3.31) is simplest in a coordinate frame
(X ′, Y ′, Z ′), with Z ′ ‖ (δ + ωR), and reads

S̃X′(t) = S0
⊥e

−t/T̃2 sin

(

t
√

δ2 + ω2
R + φ

)

,

S̃Y ′(t) = S0
⊥e

−t/T̃2 cos

(

t
√

δ2 + ω2
R + φ

)

,

S̃Z′(t) = S̃T + (S0
Z′ − S̃T )e−t/T̃1 , (3.32)

where S0
⊥, S0

Z′, and φ give the initial spin state, 〈S(0)〉 ≡ S̃(0) = (S0
⊥ sinφ, S0

⊥ cosφ, S0
Z′),

in the coordinate frame (X ′, Y ′, Z ′). Furthermore, the decay times T̃1 and T̃2

read

1

T̃1

=
1

δ2 + ω2
R

(

δ2

T1

+
ω2

R

T2

)

,

1

T̃2

=
1

2(δ2 + ω2
R)

(

ω2
R

T1

+
2δ2 + ω2

R

T2

)

. (3.33)

The stationary value of spin S̃T := S̃(t→∞) to leading order reads

S̃T = − g

2|g|
(δ + ωR)δ

δ2 + (T1/T2)ω2
R

tanh (EZ/2kBT ) . (3.34)

Note that at resonance (δ = 0), the right-hand side in Eq. (3.34) vanishes.
Therefore, in the vicinity of resonance, S̃T is determined by the subleading
order term, which can be obtained from Eq. (3.34) by replacing the numerator
(δ + ωR)δ → (1/T2)[ωR × n]. Measurement of S̃T in the presence of driving
provides information about the spin lifetimes T1,2. For instance, at resonance
the relaxation time T1 can be accessed at the leading order of Γij/ωR ≪ 1,

S̃T (δ = 0) = − g

|g|
ωR × n

2T1ω
2
R

tanh (EZ/2kBT ) . (3.35)

Finally, we estimate the Rabi frequency ωR using Eq. (3.28) and the pa-
rameters from Sec. 3.4. For Ω0 ∼ 10−3, |g| = 0.44, and B = 10 T we obtain
ωR ∼ 108 s−1. We conclude that, with the present quantum-dot setups, EDSR
enables one to manipulate the electron spin on a time scale of 10 ns, which is
considerably shorter than the spin lifetimes, for which values between 1 and
150 ms (depending on the applied magnetic field) in gated GaAs quantum dots
have been reported recently [22, 83].

3.6 p3-Dresselhaus terms

Next we consider the so-called p3 terms of the Dresselhaus spin-orbit interac-
tion [82],

HSO =
γ

2
(pypxpyσx − pxpypxσy) , (3.36)
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where γ = αc/
√

2m3
eEg is the spin-orbit coupling constant, with αc (≈ 0.07

for GaAs [82]) being a dimensionless constant defined in Ref. [91] and Eg the
band gap. For simplicity, we impose here the dipolar approximation for the
ac-signal,

V (r, t) = e

∫ r

0

dr′ ·E(r′, t) ≈ eE(t) · r. (3.37)

Quite remarkably, if the quantum dot potential is harmonic, U(r) =
∑

ij uijrirj ,
then the spin does not couple to E(t) at the first order of HSO and zeroth order
of EZ . Indeed, the second term in Eq. (3.11) vanishes for V (r, t) = eE(t) · r
and S = L̂−1

d HSO because of the following two identities

〈ψ0|[L̂−1
d HSO, r]|ψ0〉 = 〈ψ0|[L̂−1

d r, HSO]|ψ0〉, (3.38)

[L̂−1
d r, HSO] = 0, ∀ HSO(p). (3.39)

The latter is specific to Hd in Eq. (3.5) with a harmonic U(r), for which the
operator L̂−1

d r can be expressed via the components of p− (e/c)Bz × r. Note
that, generally, [p, HSO] = (e/c)[Bz × r, HSO] for any HSO that is a function
of only p = (px, py). Thus, for a harmonic confining potential, one is left with
the same dominant mechanism as considered above for the "linear in p" terms.
Expanding in terms of the Zeeman interaction, we recover Eqs. (3.17) and
(3.18) with Ω(t) given now by

Ωi(t) = − e

meω2
0

∑

j

(

λ−1
SO

)

ij
Ej(t), (3.40)

(

λ−1
SO

)

ij
=
me

~
〈ψ0|

∂2HSO

∂σi∂pj

|ψ0〉, (3.41)

where (λ−1
SO)ij is a tensor of inverse spin-orbit lengths, and as before we consider

U(r) = meω
2
0r

2/2. For HSO in Eq. (3.36), we obtain explicitly (λ−1
SO)ij =

1
4
γω0m

2
eδij and Ωi(t) = −γemeEi(t)/4ω0. To estimate the strength of the

resulting EDSR, we note that γ ∼ βd2/~2, and therefore the amplitude of
h(t) = 2gµBB × Ω(t) is down now by a factor d2/λ2 ≪ 1 compared to the
p-terms.

Next we consider a quantum dot with non-harmonic potential U(r) and
show that the p3-terms in Eq. (3.36) give rise to a spin-electric coupling pro-
portional to the cyclotron frequency ωc = eBz/mec. Since ~ωc differs paramet-
rically from EZ (EZ/~ωc = gmeB/2mBz), the p3-terms can be as significant
as the p-terms, provided EZ/~ωc . d2/λ2, which is realistic for GaAs quantum
dots. Note that for the p-terms no spin-electric coupling proportional to ωc

arises at the first order of HSO. We thus leave out L̂Z in Eq. (3.10) and con-
sider a confining potential U(r) that differs from a harmonic one by a function
W (r),

U(r) =
∑

ij

uijrirj +W (r) ≡ UH(r) +W (r), (3.42)
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where uij are real coefficients and W (r) = O(r3). While in general W (r) need
not be small compared to HH = p2/2me + UH(r), in the following we expand
the denominator of Eq. (3.10) in terms of W ≪ HH , considering therefore only
small deviations of U(r) from harmonic potentials. Then, using Eqs. (3.11),
(3.17), and (3.37), we obtain at leading order in ωc

hi(t)

ωc

= eE(t) · 〈ψ0|[R(r),
∂2SH

∂ωc∂σi

]|ψ0〉
∣

∣

∣

∣

ωc=0

, (3.43)

where we set ωc → 0 in the right-hand side of Eq. (3.43) after evaluat-
ing ∂SH/∂ωc in the symmetric gauge, with SH defined as [HH , SH ] = HSO.
The linear relationship between hi and ωc holds for ωc ≪ ω0, where ω0 ≡
2
√

det(u)/meTr(u). In Eq. (3.43), the perturbation W (r) enters via the func-
tion R(r) defined as follows

Ri(r) =
∑

j

(

u−1
)

ij

∂W (r)

∂rj
. (3.44)

Note that 〈R/r〉 ∼ W0λd/~ω0λW is the small parameter of our expansion in
terms of W (r), with W0 and λW . λd being, respectively, the characteristic
amplitude and length scale of the variation of W (r) over the quantum dot
size. It is important to note that the antisymmetric part of W (r) drops out
in Eq. (3.43) because HSO is also antisymmetric with respect to r → −r.

Next, as an example, we consider UH(r) = meω
2
0r

2/2 and W (r) = ηr4, and
obtain

1

2
h(t) · σ =

eγη~2ωc

9meω4
0

(Ey(t)σx + Ex(t)σy) . (3.45)

Here, we have used the deformation quantization theory [92,93], which allowed
us to considerably simplify the derivation of Eq. (3.45) by performing most of
the calculation in classical mechanics and only at the final stage come back to
quantum mechanics. We have also carried out a fully quantum derivation of
Eq. (3.45) and recovered the same result.

To estimate the strength of the resulting EDSR, we note that

h ∼ ~ωc(λd/λSO)(eλdE0/~ω0)〈R/r〉, (3.46)

where λSO = 4/γω0m
2
e (≈ λ2

d/[0.01 nm] for GaAs) is the spin-orbit length of the
p3-terms and the parameter 〈R/r〉 ∼ W (λd)/~ω0 characterizes the deviation
of the quantum dot confinement from harmonic. In practice, 〈R/r〉 can be as
large as unity, but here we assume 〈R/r〉 ∼ ηλ4

d/~ω0 = 0.1. For an electric field
with amplitude E0 = 102 V/cm and a GaAs quantum dot with ~ω0 = 1 meV,
we obtain the equivalent of an ac magnetic field δB(t) = h(t)/gµB that has
an amplitude δB0 ≈ 1 mT at Bz = 1 T and |g| = 0.44. In contrast to the
previous mechanism, δB(t) can have here also a finite longitudinal component
δB‖(t) = n(n · δB(t)), which however vanishes if B ‖ z.
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Finally, we note that the p3-terms can also be relevant for spin relaxation in
quantum dots with non-harmonic confining potential. Of course, the magnetic
field has to have an out-of-plane component for this spin-electric coupling to
dominate over the one considered in Sec. 3.4.

3.7 Discussions

The coupling of spin to electric fields that we have derived above can be used
in a variety of ways to access and manipulate the electron spin in experiments.
The effective Hamiltonian in Eq. (3.17) has the same form as the Hamiltonian
of an ESR effect. This shows that ESR and EDSR are mutually interchangeable
and the choice of the effect to be used depends on the particular experimental
setup. In GaAs quantum dots, the spin-orbit interaction is weak enough to
ensure long coherence times and, at the same time, strong enough to allow room
for spin manipulation on an experimentally accessible timescale of ∼ 10 ns.
Much shorter timescales can be achieved in InAs quantum dots, because of a
much stronger spin-orbit coupling and a larger electron g-factor. In contrast,
the EDSR effect is of little use in materials with very weak or nearly absent
spin-orbit interaction, such as, e.g., carbon-nanotube quantum dots. To make
order-of-magnitude estimates easier, we draw an analogy between the EDSR
and ESR effects in terms of the particular way the B and E fields couple to
the electron spin S = (~/2)σ.

We recall that the ESR effect occurs as a result of the Zeeman interaction
of the electron spin with an ac magnetic field. It is convenient to write this
interaction in the form of a magnetic dipole interaction,

HESR = −µ ·B(t), (3.47)

where B(t) is the ac magnetic field and µ is the electron magnetic moment,

µ = −1

2
gµBσ, (3.48)

where g is, in general, a tensor, see Eq. (D.18).
By analogy with the ESR effect, the EDSR effect can be viewed as arising

from an interaction between the ac electric field E(t) and a spin-electric mo-
ment ν. The respective spin-electric interaction is then analogous to Eq. (3.47)
and reads

HEDSR = −ν ·E(t), (3.49)

where the spin-electric moment ν is due to an interplay between the spin-orbit
interaction and some time-reversal breaking interaction, such as the Zeeman
interaction. This analogy is not complete. Equation (3.49) is valid only for
ac electric fields E(t) that oscillate around zero, whereas Eq. (3.47) holds also
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for static B-fields. The reason why a static electric field E cannot be used in
Eq. (3.49) will become clear after we explain the origin of ν in Eq. (3.49).

The spin-electric moment ν arises because the dipolar transitions in the
quantum dot become allowed, e.g., for the ground state

〈ψ0↑|r|ψ0↓〉 6= 0. (3.50)

The electron charge density operator ρ(r) = −eδ(r − rel), where rel is the
electron coordinate, acquires spin-dependent terms in the transformed basis,

|ψns〉 = e−S|ψn〉|χs〉, (3.51)
ρ̃(r) = eSρ(r)e−S, (3.52)

where e−S is the transformation used in Section 3.4 and studied in detail in
Appendix D. One can present ρ̃(r) as a sum of two terms,

ρ̃(r) = ρ̄(r) + δρ(r), (3.53)

where ρ̄(r) is spin independent and δρ(r) is proportional to the spin. Then
the spin-electric moment can be written as follows,

ν =

∫

rδρ(r)dv, (3.54)

where dv is the elementary volume of integration. Equation (3.54) unveils
the physical meaning of the spin-electric moment ν: due to the mixed spin
and orbit nature of the electron density, the electron spin couples to the first
moment (dipole moment) of the electron.

While oscillating around an equilibrium position, the electron produces a
time-dependent dipole moment, part of which is proportional to the electron
spin. Obviously, in a static electric field, one can set to zero the electron dipole
moment, because the new electron position can be taken as the equilibrium
one. Therefore, only the change of the moment as a function of time has a
physical meaning for single electrons (as for any other monopoles). In contrast,
the electron magnetic moment µ couples to static magnetic fields, because one
can view µ as arising from a pair of Dirac monopoles of opposite signs, for
which the relative distance between them has an absolute meaning.

Equation (3.54) is written in a very general (operator) form. After taking
the expectation value in the orbital ground state |ψ0〉, we obtain

ν = −1

2
¯̄νσ, (3.55)

¯̄νij = 2e
∂

∂σj

〈ψ0|eSrie
−S|ψ0〉, (3.56)

where the derivative with respect to σj is defined as a usual derivative of an
expression that is linear in σ. Note that Eq. (3.55) is analogous to Eq. (3.48)
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where the role of gµB is played by the tensor ¯̄ν. Using Eqs. (3.17)-(3.19) we
obtain for the linear in momentum spin-orbit interaction,

¯̄νij = −2egµB

meω
2
0

εjklBk

(

λ−1
SO

)

li
. (3.57)

Similarly, for the p3 Dresselhaus terms we obtain from Eq. (3.45)

¯̄νij =
2eγη~2ωc

9meω4
0









0 1

1 0









, (3.58)

where we use the coordinate frame (x, y) to represent the tensor. Note that in
both cases ¯̄νij is proportional to the magnetic field (or one of its components).
The spin-orbit interaction produces no spin-electric coupling at B = 0, because
of the time-reversal symmetry of spin-orbit interaction.

The analogy between µ and ν is also seen in the pairwise interaction be-
tween spins in separate (not tunnel coupled) quantum dots [94]. For an un-
screened Coulomb interaction between electrons, the spin-spin interaction is
analogous to the magnetic dipole-dipole interaction [94],

Hdd =
∑

i<j

νi · νjr
2
ij − 3(νi · rij)(νj · rij)

κr5
ij

, (3.59)

where rij = ri−rj is the distance between two quantum dots (rij ≫ λd) and κ
is the electric permittivity of the material. For further detail and a microscopic
derivation of Eq. (3.59) we refer the reader to Ref. [94].

Next we discuss the limitations of our theory. Throughout the paper, we
have assumed that the spin orbit interaction is weak compared to the dot level
spacing, or, in other words, that λd/λSO ≪ 1. This assumption allowed us to
use the perturbation theory to find the unitary transformation exp(−S), see
Appendix D. Of course, this restriction was not necessary, if, e.g., we were to
apply numerical methods to diagonalize the Hamiltonian. In particular, note
that Eq. (3.54) is meaningful whenever the unitary transformation exp(−S)
exists. The latter is always the case, including also extended states. Our
perturbative results are qualitatively correct for λd . λSO and can be used in
experiments to estimate the strength of the EDSR effect. The case λd ≫ λSO

is more seldom and requires a separate theoretical investigation.
As a second limitation, we would like to mention the adiabaticity criterion.

In Sections 3.4 and 3.6, we have derived effective Hamiltonians for the low
energy subspace of the quantum dot Hilbert space. For the validity of this
effective description, it is important that the switching (on and off) of the
effective interaction occurs on a time scale that is larger than the inverse level
spacing in the quantum dot. Obviously, this criterion excludes applicability of
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our theory to extended states. In practice, however, the finite temperature T
imposes a more stringent criterion on the confinement energy, ~

2/meλ
2
d ≫ kBT .

The third limitation of our theory is a small amplitude of oscillation of the
quantum dot, r0/λSO ≪ 1. We have shown in Section 3.4 that the EDSR effect
is proportional to this small parameter. Thus, for breaking the time-reversal
symmetry by the Zeeman interaction we have (by order of magnitude)

ωR ∼ ωZ
r0
λSO

, (3.60)

where ωZ = EZ/~. Similarly, for breaking the time-reversal symmetry by the
orbital B-field effect (Section 3.6), we have

ωR ∼ ωc
r0
λSO
〈R/r〉 , (3.61)

where 〈R/r〉 is the small parameter of deviation of the quantum dot confine-
ment from harmonic. We remark that our theory remains qualitatively valid
also for r0/λSO ∼ 1 and for 〈R/r〉 ∼ 1. Beyond these limits, we do not expect
the Rabi frequency to grow indefinitely. The Rabi frequency is bound in the
case of Eq. (3.60) by ωR ≤ ωZ , and in the case of Eq. (3.61) by ωR ≤ ωc. We
conclude that, by designing quantum dot setups that allow for large oscillation
amplitudes r0 . λSO, the EDSR effect can be strongly enhanced, beyond the
numeric estimates made in Sections 3.4, 3.5, and 3.6.

In conclusion, the EDSR mechanisms presented above provides a means of
implementing local electrical control of electron spins in quantum dots.





Chapter 4

Non-Abelian Spin Rotator

4.1 Abstract

With the help of the spin-orbit interaction, we propose a scheme to perform
holonomic single qubit gates on the electron spin confined to a quantum dot.
The manipulation is done in the absence (or presence) of an applied magnetic
field. By adiabatic changing the position of the confinement potential, one can
rotate the spin state of the electron around the Bloch sphere in semiconductor
heterostructures. The dynamics of the system is equivalent to employing an
effective non-Abelian gauge potential whose structure depends on the type
of the spin-orbit interaction. As an example, we find an analytic expression
for the electron spin dynamics when the dot is moved around a circular path
(with radius R) on the two dimensional electron gas (2DEG), and show that
all single qubit gates can be realized by tuning the radius and orientation of
the circular paths. Moreover, using the Heisenberg exchange interaction, we
demonstrate how one can generate two-qubit gates by bringing two quantum
dots near each other, yielding a scalable scheme to perform quantum computing
on arbitrary N qubits. This proposal shows a way of realizing holonomic
quantum computers in solid-state systems.

4.2 Introduction

The emergence of geometrical phases in quantum mechanical systems and
their physical and geometrical consequences were first recognized by Berry
and Simon in their works on cyclic quantum evolution [95, 96]. Soon after
that, Wilczek and Zee discovered the connection between (non-Abelian) gauge
fields and the adiabatic dynamics of such systems, where the dimension of
non-Abelian geometric phases is given by the n-fold degeneracy of the eigen-
states of the Hamiltonian [97]. Moreover, Aharonov and Anandan [98] general-
ized Berry’s idea to non-adiabatic evolutions, however, the resulting geometric

45
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phase is not given anymore by the holonomy in the parameter space of the
Hamiltonian but in the projective Hilbert space. Although, at the time, ge-
ometrical phases were already known in classical systems [99], their quantum
mechanical counterparts are physically richer and more subtle.

Based on the above mentioned ideas, a variety of schemes for holonomic
(HQC) and geometric (GQC) quantum computation have been proposed, which
recently attained a considerable attention, and believed to be promising can-
didates to implement quantum computers using topological transformations
as qubit gates [100, 101]. In HQC, for example, one can perform quantum
computing by encoding quantum information in the degenerate levels of the
Hamiltonian and adiabatically traversing closed loops (holonomies) in the pa-
rameter space of the Hamiltonian. So far, many theoretical (and experimental)
investigations have been made to implement such Hamiltonians in physical sys-
tems, for example, confined ions in a linear Pauli trap [102]. The experiment
by Jones et al. [103] was the first attempt in this direction where they realized
geometric two-qubit gates between a pair of nuclear spins. Note that geomet-
rical phases are generally small compared to dynamical phases. Being a small
effect on top of a large effect, makes it challenging for the experimentalists to
identify and employ them for quantum computation.

Among several proposals for HQC and GQC, solid state matrix is usu-
ally more desirable due to its potential in realizing large scale qubit systems.
Specifically, spin of an electron in a quantum dot, as a two level system, has
been shown to be a suitable qubit [5], meanwhile, rapid experimental progress
in the field of semiconductor spintronics made it possible to access individual
electron spin in low dimensional systems [9]. Manipulating the spin of the elec-
trons/holes in semiconductors is, therefore, one of the objectives of spintron-
ics [9, 104]. Among different tools to achieve this goal is to apply an external
magnetic field, in combination with the spin-orbit interaction, in a controlled
way. Recently, there has been a great progress in developing techniques to ma-
nipulate electrically the electron/hole spins in two dimensional electron/hole
gases (2DEGs/2DHGs) and quantum dots (QDs) [64, 66–68, 75–77, 105–107].
However, most of the previous works on confined electrons are based on the
assumption that the quantum dot itself is almost frozen in real space. More-
over, the presence of an applied magnetic field is usually assumed in order to
break the time reversal symmetry, which is essential in electron spin resonance
(ESR) schemes. The question is: what is the dynamics of the spin sector if we
move the quantum dot in the absence (or presence) of the magnetic field? If
time reversal symmetry is not broken, a convenient way to study the dynamics
of such a system is to employ non-Abelian gauge fields [97]. In spite of the fact
that the origin of non-Abelian gauge fields in classical/quantum field theories
and the current problem is somewhat different, as long as the dynamics is
concerned, they play the same role.

Using an effective non-Abelian gauge potential [97, 104, 108], we propose
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a novel technique to manipulate topologically the spin of an electron inside a
quantum dot without using any applied magnetic field. Although the rotation
of the the electron spin in a moving quantum dot has been studied in previous
works [104, 108], our goal here is to implement systematically all necessary
single qubit gates for quantum information processing. We consider a setup,
where the quantum dot can be moved on the substrate at distances comparable
to λSO, the spin-orbit length. In addition, we assume that the electron is
strongly confined to the quantum dot at a length scale λd ≪ λSO, where λd is
the dot size . We study the case which the confining potential is only displaced
parallel to itself by a vector r0(t) without changing its shape, see Fig. 4.2.
Moreover, we assume that the driving electric field is classical and only quantize
the electron dynamics (for the discussion of the quantum fluctuations of the
electromagnetic fields which lead to the decoherence of the Kramers doublets,
see Ref. [108]). For a moving quantum dot around a circular path, we derive
an exact solution of the Schrödinger equation for the spin sector, in the first
order in spin-orbit interaction. In addition, we show how one can generate
different single- and two-qubit rotations and perform quantum computing on
N spins.

4.3 The Model and Basic Relations

We consider a lateral quantum dot [78] formed by depleting the 2DEG via a
set of metallic gates that allow the quantum dot position r0 to be changed
at will to distances comparable to the spin-orbit length in the 2DEG. Such
rolling quantum dots can be defined using, for example, a set of gates shown
in Fig. 4.1. Two layers of finger-like gates (separated by an insulator) form
a grid, which construct the dot confining potential at virtually any position
under the grid by simultaneously pulsing several gates. A relatively different
setup is shown in Fig. 4.3, which makes use of a quantum ring and allows the
quantum dot to be moved along a circular trajectory.

The electron motion in the plane of the 2DEG, and in the presence of a
time-dependent dot confining potential, is governed by the Hamiltonian

H(t) = Hd(t) +HZ +HSO, (4.1)

where Hd(t) describes the moving dot with one electron,

Hd(t) =
p2

2me
+ U (r − r0(t)) , (4.2)

with p = −i~∂/∂r + (e/c)A(r) and r = (x, y) being the electron momen-
tum and coordinates, respectively. For the vector potential A(r), we choose
the cylindric gauge, A(r) = Bz (−y/2, x/2, 0), where Bz is the component
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Figure 4.1: A set of metallic gates, deposited on top of the heterostructure, control
the quantum dot position in the (x,y)-plane. The gates that define the current dot
position are highlighted in a darker color. The superimposed gates are separated
from each other by an insulating layer. The measurement site is used to initialize
and read out the spin state of the quantum dot with the help of additional controls
(not shown here). By applying time-dependent voltages to the gates, one is able
to move the quantum dot along a desired trajectory, thus forming, for instance, a
Wilson loop (dashed line) [97].

of the magnetic field normal to the 2DEG plane. The dot confinement po-
tential U(r, t) = U (r − r0(t)) changes adiabatically with respect to the size-
quantization energy in the dot and, thus, no transitions between orbital levels
occur. For simplicity, we also assume that the shape of the dot confinement
does not change in time, while the dot is moved along its trajectory r0(t).
In Eq. (4.1), the Zeeman interaction reads HZ = 1

2
EZ · σ, with |EZ| be-

ing the Zeeman energy and σ = (σx, σy, σz) the Pauli matrices. We note
that the quantization axis is generally not along the magnetic field and one
has EZi = µBgijBj , where µB is the Bohr magneton, gij is the g-factor ten-
sor in the 2DEG, and B is the magnetic field. The last term in Eq. (4.1),
HSO, denotes the spin-orbit interaction which has the following general form
HSO = 1

2
h(p) ·σ, where h(p) = −h(−p) is an odd-power polynomial in p. In

GaAs 2DEG with the [001] growth direction, for example, the leading order
(lowest power in p) spin-orbit interaction terms read

HSO = α(pxσy − pyσx) + β(−pxσx + pyσy), (4.3)

where α and β are the Rashba and Dresselhaus coupling constants, respectively
[54, 55].

Considering first a stationary quantum dot potential U(r), we set r0(t)→ 0
in Eq. (4.2) and denote the time-independent Hamiltonian by H with the
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following eigenvalue equation, H|ψns〉 = Ens|ψns〉, where n = 0, 1, 2 . . . and
s = ±1/2 are the orbital and spin quantum numbers, respectively.

The eigenstates of H are related to the eigenstates of Hd+HZ via a unitary
transformation (see Appendices D and E)

|ψns〉 = e−S |ψn〉 |χs〉 , (4.4)

where |ψn〉 and |χs〉 are obtained by solving Hd|ψn〉 = En|ψn〉 and HZ |χs〉 =
sEZ |χs〉, respectively.

We are mainly interested here in spin dynamics in the absence of the applied
magnetic field, therefore, we set A(r) = 0, and focus on the lowest-in-energy
subspace n = 0 (for the discussion of the spin dynamics in the presence of an
applied magnetic field, see Appendix E). The suitable qubit is then defined
as |↑〉 = |ψ0,1/2〉 and |↓〉 = |ψ0,−1/2〉. In the absence of magnetic fields, the
quantization axis can, therefore, be chosen arbitrarily. However, once it is
chosen, all subsequent spin rotations are then with respect to this axis.

Given a linear in momentum spin-orbit interaction in Eq. (4.3), and a
symmetric confining potential U(r) = U(−r), we have explicitly found the
generator of the rotation for the Kramers doublet (see Appendix E), as one
moves the dot along a given path

∆ = 1− iσ · λ−1
SO · δr0, (4.5)

λ−1
SO ≡









0 1/λ−

1/λ+ 0









, λ± =
~

me(β ± α)
, (4.6)

where σ are Pauli matrices acting on the Kramers doublet states and S =
iσ ·λ−1

SO · r [105] . According to Eq. (4.5), the electron state, in the space of a
Kramers doublet, is rotated during the displacement by an angle ∼ δr0/λSO.
This interpretation of the spin-orbit interaction effect is identical to the stan-
dard interpretation given to semiclassical electrons. In the latter, the electron
with the momentum p travels a distance l = pt/me during a time t and changes
its spin by an angle proportional to l/λSO. This coincidence is not accidental,
because in the semiclassical picture one also assumes that the electron moves
in a wave packet of an extension that is much smaller than λSO. The speed
at which the electron moves is unimportant at B = 0, because the path r0(t)
is the only information that determines the spin rotation. In particular, if
the electron travels along some path forward and then returns the same way,
but not necessarily at the same speed, then the initial and final spin states
coincide.

We note that, for the linear in momentum HSO, the tensor λ−1
SO in Eq.

(4.6) is independent of the electron orbital state |ψn〉, which means Eq. (4.5) is
valid for all symmetric wave packets at the zeroth order of λd/λSO. Therefore,
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(c)

(a)

1

Figure 4.2: (a) Trajectory of the quantum dot center r0(t) and the evolution of
the spin state due to displacement. The spin state changes when going from r0 to
r0 + δr0, due to the infinitesimal transformation (E.17). Since the directions of δr0

can be different in different parts of the curve, the infinitesimal transformations do
not commute with each other and have to be ordered along the path of integration.
(b) Two oriented circles with the same radii R but different centers (with their
corresponding holonomic rotations at P ) show the typical paths for the quantum
dot on the 2DEG. (c) Moving the dot along the circles will rotate the spin of the
electron around the η axis. For instance, blue (1) and red (2) circles in (b) correspond
to φ = 0 and φ = −π

2 , respectively.
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we can consider also a point-like electron, for which the orbital wave function
reads ψr0(r) = δ(r − r0). Integrating Eq. (4.5) over an arbitrary path we
obtain an exact expression for this case,

ψr0s(r, σ) = e−i
R

σ·λ−1
SO ·dr0δ(r − r0)χs(σ), (4.7)

where the exponent is ordered (to the left) along the path of integration. To
simplify notations, we use

∫

dr0 to denote the contour integral
∫ r0

0
dr′ and

agree that any exponent of an integral to be ordered along the path of integra-
tion. The radius vector r0(t) gives us the path where we choose the beginning
of the path at r0 = 0, and denote the running (present) point of the path by
r0. Eq. (4.7) determines how the spin of an electron is transformed (at B = 0)
as the electron is moved along an arbitrary path. The difference between the
spin and the Kramers doublet disappears here, since for point-like electrons
we can take S → 0. However, the transformation rule in Eq. (4.7) arises from
the fact that ∂S/∂r remains constant while taking S → 0. Moreover, it holds
exactly for the linear in momentum spin-orbit interaction, because λSO

−1 is
independent of the orbital state. For the p3 terms, 1/λSO is proportional to
the electron energy and Eq. (4.7) can be written only if HSO is first linearized
around a given energy.

We developed a code to calculate numerically the spin dynamics for an
arbitrary path, however as an example, we consider a point like quantum dot
(strong confining potential) moving around a circle with radius R (see Fig. 4.3).
Using Eq. (4.5), the dynamical equation for the electron spin is then given by

d

dφ
χs(φ) = iMDRχs(φ), (4.8)

MDR ≡ R(
sinφ

λ+
σy −

cosφ

λ−
σx), (4.9)

where χs(φ) = (v1, v2) is the spinor, φ is the angle between the starting point
vector r0(0) and the x axis, and MDR is a Hermitian matrix due to both
Dresselhaus (MD) and Rashba (MR) spin orbit interaction (e.g. for the only
Rashba interaction we have MDR = MR = −M∗

D). In addition to trivial
solutions for a linear path in Eq. (4.7), there are also simple analytical solutions
for any elliptic or hyperbolic path (x2/a2± y2/b2 = 1, where a and b are conic
section parameters), provided a/λ+ = b/λ−. We show here the solution for
a φ = 2π rotation, counterclockwise along the blue (1) circle in Fig. 4.2, for
Dresselhaus only where MDR =MD and λ+ = λ− ≡ λR

χs(2π) = exp(− i
2
η · σ)χs(0), (4.10)

η = 2π(1− 1

ǫ
)(

2

λ
, 0, 1), (4.11)

ǫ =
√

1 + 4/λ2.
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Figure 4.3: Same as in Fig. 4.1, except that the quantum dot is defined using a
single layer of metallic gates deposited on top of a ring. The ring can be obtained
out of a heterostructure by means of etching or defined with the help of an atomic
force microscope using the oxidation technique of Refs. ( [110], [111]).

Mathematically speaking, transformation (4.10) is an element of the holonomy
group of point P , generated by the non-Abelian vector potential [100, 109],
where this non-Abelian feature is a direct consequence of the Kramers de-
generate doublets. Therefore, in the absence of any time reversal symmetry
breaking interactions (like e.g. an applied magnetic field or magnetic impu-
rities), the Kramers doublets are robust degenerate states and we are able to
use the non-Abelian feature of the effective gauge potential to manipulate the
spin.

4.4 Single qubit rotations: Hadamard and phase

gates

The transformation (4.10) is nothing but a rotation along the vector η at
point P which is in the x-z plane and makes an angle θ = arctan( 2

λ
) with the

z axis, see Fig. 4.2. Therefore, for large values of λ (small circles), θ ≈ 0 and
one would able to realize arbitrary rotations around z axis (phase gate) with
reasonable precision. Moreover, moving counterclockwise along the red (2)
circle in Fig. 4.2 leads to the same result as in the blue (2) circle, but now the
rotation takes place in the y-z plane. Therefore, depending on the orientation
of the circles and their corresponding radii, we can, in principal, achieve all
kinds of rotations around the Bloch sphere.
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To be more specific, we show how to generate the Hadamard gate by ro-
tations around two non-orthogonal axes (in our case z and η directions) [112]
and, for convenience, we only consider the Dresselhaus term (α = 0). As
shown in Eq. (4.10), circles with different radii and/or orientations lead to
different rotations. In particular, if we go counterclockwise along a full circle
from point P which makes an angle φ with x axis (see Fig. 4.2), the electron
spin will transform as follows

U11 = − cosπǫ+
i

ǫ
sin πǫ,

U12 =
2ieiφ

λǫ
sin πǫ,

U11 = U∗
22, U12 = −U∗

21,

where Uij is the unitary transformation which acts on the initial spin state.
Geometrically, U is the matrix corresponding to a rotation around η axis which
lies in the same plane as z axis and P (see Fig. 4.2.c).

Hadamard gate can be achieved (up to a global phase) by a clockwise π
2

rotation around y axis followed by a counterclockwise π rotation around z axis,

H =
1√
2









1 1

1 −1









= i Uz(π) Uy(−
π

2
). (4.12)

The rotation around z with an arbitrary angle has already been discussed
above, therefore, we show here how one can implement Uy(

π
2
). The main

problem is that, according to Eqs. (4.10,4.11), the magnitude and the direction
of the vector η are not independent variables (both are functions of the variable
λ). Moreover, the vector η is not in general orthogonal to z axis. To obtain
an arbitrary rotation around, say, y axis, we need to perform 3 rotations (two
around η and one around z axis). Specifically, we want to know for which
values of λ, ±π

2
rotations around y axis can be achieved. One can show that

[112]

Uy(γ) = Uη(θ)Uz(φ)Uη(θ), (4.13)

cos η =
cos2 θ sin2 γ

2
± cos γ

2

√

1− cot2 θ sin2 γ
2

cos2 θ sin2 γ
2
− 1

,

tan (
φ

2
) = − sin η cos θ

sin2 θ + cos η cos2 θ
, η = |η|,

where for our purpose, Uy(
π
2
), we need to evaluate Eq. (4.13) at γ = π/2.

Obviously, there are an infinite number of solutions corresponding to different
values of λ. Therefore, the π/2 rotation around y axis, and consequently the
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Figure 4.4: Schematic of the two-qubit rotation setup. The confined electrons
are brought together at the intersection of the circular paths (with their potential
profile shown in the inset at this point), where they interact via Heisenberg exchange
interaction. The (holonomic) single-qubit operations are done at position P (P ′)
while the (exchange) two-qubit gates are performed at position G (G′).

Hadamard gate, is achievable in our scheme. Together with the phase gate
(arbitrary rotation around z axis), all single qubit operations can be realized.

We note that the quantum fluctuations of the driving field will lead to
the decoherence of the Kramers doublets even in the absence of the applied
magnetic field, however, this rate saturates at the zero field strength [108]. For
typical lateral GaAs quantum dots with the size λd ∼ 50 nm which corresponds
to the orbital quantization ω0 ∼ 1 meV, the estimated decoherence rate Γ ∼
µs−1 [108]. Obviously, to implement efficient single qubit gates by using a ring
of tunnel-coupled quantum dots, the pulsing and the total travel time of the
quantum dot should be then much smaller than the decoherence time Γ−1. On
the other hand, the adiabaticity criterion puts a limit on the velocity v of the
moving quantum dot in order to keep the electron in its ground state doublet.
Therefore, one needs to satisfy ΓλSO ≪ |v| ≪ λdω0 at any moment in time
for a quantum dot which is displaced on the scale of λSO. Recent experiments
on tunnel-coupled quantum dots show the ability to transfer the electron wave
function over few hundreds of nm (from one dot to the other) in 1 ns [78]. We
observe that, for instance, for the spin-orbit length λSO ∼ 3 µm, this pulsing
time is perfectly within the range of the above mentioned condition and our
scheme is, therefore, experimentally feasible.
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4.5 Two-qubit gates, read out, and quantum com-

putation

For quantum computing, in addition to single qubit rotations, two qubit oper-
ations are needed as well (e.g. CNOT gate). Here, we propose a scalable setup
to perform quantum computation on arbitraryN qubits (see. Fig. 4.4). To this
end, we move two quantum dots around a circular path and bring them close
to each other, e.g. from the position P (P ′) to G (G′), as shown in Fig. 4.4.
The top gates are introduced to control over the wave functions of the confined
electrons at the touching points of the circles. By lowering the potential bar-
rier (Vg) between two quantum quantum dots, the residing electron spins can
couple to each other (due to the overlap of their orbital wave functions) via
the Heisenberg exchange interaction [5,37]. It has already been shown that by
electrically engineering the gate potentials, one can generate the SWAP gate,
and eventually the CNOT gate, between two spins [5]. However, this additional
step, i.e. moving two quantum dots towards each other to perform two-qubit
gates, leads to a spin rotation of each electron, see Eqs. (4.8,4.9), and there-
fore this partial spin dynamics should also be taken into account. For practical
purposes, we assume that the radius of the (holonomic) single-qubit gates (R)
is smaller than the radius of the two-qubit circles (R′), to avoid spatial overlap
of different local single-qubit operations, see Figs. 4.2.b and 4.4. The read-out
part of the scheme is accomplished by applying an external magnetic field,
using different techniques such as spin-to-charge conversion [78].

As an example, we observe that our scheme is able to produce the so
called cluster states on N qubits [2]. The peculiar properties of cluster states
made them a suitable candidate for realizing quantum computers in quantum
optical and solid state systems [2, 4, 113, 114]. One of the main advantages of
one-way quantum computation is that these set of entangled states (cluster
states) are produced once, and then quantum computation is done by local
(adaptive) measurements of the qubits. Therefore, there is no need to perform
two-qubit gates during the information processing. In Fig. 4.4, we showed
a one dimensional linear chain of qubits, however, this scheme can be easily
generalized to higher dimensional lattices, and in principal be used to generate
cluster states and perform holonomic one-way quantum computing in solid
state environments.





Chapter 5

Momentum Distribution Function

of the Two-Dimensional Electron

Liquid: Non-analytic Corrections

to the Fermi Liquid Behavior

5.1 Abstract

We compute the momentum distribution function for the electrons in a two-
dimensional electron liquid. The dominant contribution to the electron self
energy comes from the non-analytic corrections to the Fermi liquid. We employ
the leading low-frequency terms in the self-energy expansion to calculate the
electron momentum occupation number nk. Furthermore, within the Rapid

Phase Approximation (RPA), we show that the electron-plasmon coupling at
the Fermi surface leads to a quadratic frequency term in the self energy which
scales as the inverse of the density. Finally, we derive an expression for the
electron tunneling from an interacting lead onto a single-level quantum dot.

5.2 Introduction

Long after Landau’s seminal work on interacting fermions [115], this topic is
still pursued by many condensed matter physicists and there are many prob-
lems yet to be solved in fermionic systems. According to his theory, there is
a one-to-one mapping between the low-energy single-particle excitations of a
Fermi liquid and the corresponding excitations of a Fermi gas. However, one
needs to renormalize certain physical quantities, such as mass, charge and spin
susceptibilities, due to the inter-particle interactions. The aim of this chapter
is not to give an introduction to Landau’s Fermi liquid theory (we refer the in-
terested reader to the classic book by Pines and Nozierés [116]), but instead to

57
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study a handful of problems which are interested in mesoscopic physics, more
specifically the role of the electron-electron interaction in 2DEG on electronic
transport. One of the main quantities of interest is the electron momentum
distribution which approaches the Fermi function in the absence of Coulomb
interaction. To this end, one needs to know the real and imaginary parts of
the exact electron Green’s function. However, this is a formidable task and
one is only able to calculate this function approximately. Until now, there
have been many efforts to include exchange and correlation effects (beyond
RPA) in calculations of the electron self energy, e.g. by introducing local field
factors [57,117–119]. However, the final result of different methods (like the ef-
fective mass and the renormalization factor ZF ) are not generally in agreement
with each other and depend on the different approximation schemes. On the
other hand, Monte Carlo calculations are widely considered as a consistency
check, nevertheless, they suffer from the finite-size corrections which fail to
produce the thermodynamic limit in certain density regimes [120].

We follow here the approach presented first by Chubukov and Maslov [121]
to calculate the first leading terms in the (on-shell and off-shell) electron self
energy. It has been noted that the on-shell self energy does not have a regular
analytic perturbative expansion for small frequencies ω and the subleading cor-
rection is logarithmic in frequency [121]. However, having a regular expansion
in frequency for the on-shell self energy is not a requirement of a generic Fermi
liquid theory. We use their result to calculate the electron momentum occupa-
tion number nk and show that the non-analytic corrections to the self energy
lead to a deviation of nk from the Fermi distribution (step function) at zero
temperature. However, to observe this small change is experimentally chal-
lenging. We believe that the remaining contributions to the self energy, such
as short-range correlation effects or larger frequency terms, can explain the dis-
crepancy between our calculations and previous works. Next, we investigate
the electron coupling to the collective modes of the medium, the plasmons.
We show that there is a ω2 correction to the electron self energy at the Fermi
surface which is a direct consequence of the absence of the plasmonic gap in
the spectrum of the electrons in two dimensions. Finally, we calculate the
tunneling rate of electrons from an interacting two-dimensional electron lead
onto a single-level quantum dot. We find that there is no linear dependence
on the bias voltage V for the tunneling rate, even in low bias regime.

5.3 Momentum distribution

We start with the calculation of the momentum distribution function of an in-
teracting two-dimensional electron gas, or equivalently, electron liquid. Through-
out this chapter, we consider only zero-temperature properties of a Fermi liq-
uid. The momentum occupation number for the electrons (not quasi-particles)
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is generally given by the following expression [57]

nk =
1

2π

∫ +∞

−∞

A(k, ω)nF (ω)dω, (5.1)

G(k, ω) =
1

ω − ǫk − Σ(k, ω)
, (5.2)

A(k, ω) = −2 Im G(k, ω) = − 2Σ
′′

(k, ω)

(ω − ǫ̃k)2 + Σ′′(k, ω)2
, (5.3)

ǫ̃k = ǫk + Σ
′

(k, ω), (5.4)

where nF (ω) is the Fermi function, A(k, ω) is the spectral function of the
system, and Σ

′

and Σ
′′

are the real and imaginary part of the self energy
Σ, respectively. Eq. (5.1) has a clear physical interpretation: the spectral
function is simply the probability of having a particle with momentum k and
energy ω (~ = 1), and the Fermi function nF (ω) gives the probability of the
corresponding levels to be occupied. Therefore, the integration over frequency
leads to the electron momentum distribution. Note that in the limit of weak
interaction (high densities), the spectral function A(k, ω) has a very sharp peak
at the single quasi-particle excitations and its width is given by the imaginary
part of the self energy. However, in the regime of strong interaction (low
densities), the spectral function is generally broadened and has a much more
complicated form.

The electron self energy Σ(k, ω), or mass operator, is defined via a Dyson
equation which relates the exact (interacting) single-particle Green’s function
G(k, ω) to its corresponding free particle G0(k, ω)

G = G0 +G0ΣG. (5.5)

At zero temperature, the Fermi function reduces to the step function Θ(−ω),
and the momentum distribution is given by

nk =
1

2π

∫ 0

−∞

A(k, ω)dω. (5.6)

We recall that the imaginary part of the self energy is directly related to
the lifetime, or equivalently, the mean free path of the quasi-particles on the
mass shell

1

τk
= −2Σ

′′

(k, ωk). (5.7)

In two dimensions, the on-shell lifetime of the quasi-particles reads [117]

1

τk
= f(rs)

ǫ2k
4πEF

ln
4 EF

|ǫk|
, (5.8)

f(rs) = 1 +
1

2
(

rs

rs +
√

2
), (5.9)

A(k, ω) ≃ −2 Im
Zk

ω − ǫk + i/2τk
, (5.10)
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Figure 5.1: Momentum distribution for fermions calculated according to Eq. (5.11)
for rs = 1. The clear deviation from the expected result for fermionic distribution
is due to the fact that we chose an on-shell (frequency-independent) form of the self
energy.

where rs is a dimensionless parameter which is inversely proportional to the
density [117], and we assume that the renormalization factor Zk = ZF is
constant. The momentum distribution function nk is then given by

nk = ZF [
1

2
+

1

π
arctan(−2τkǫk)]. (5.11)

As it is shown in Fig. 5.1, the behavior of the function disagrees with the
previous theoretical and experimental works. This is mainly due to the fact
that we neglected the frequency dependence of the imaginary part of the self
energy and just used the mass-shell expression for τk.

Furthermore, if one uses the zero-frequency RPA form of the dielectric
function ǫRPA(q) to screen the Coulomb potential Vc = 2πe2/q , the self energy
will be given by

Σ(k, iωn) = −kBT
∑

q,iqm

V RPA(q)G0(q + k, iqm + iωn) (5.12)

= −kBT
∑

q

V RPA(q)
∑

iqm

1

iωn + iqm − ǫq+k

(5.13)

=
∑

q

V RPA(q)[1− nF (ǫq+k)], (5.14)

V RPA(q) ≡ Vc(q)

ǫRPA(q)
=

2πe2

q + qTF
, (5.15)

where iωn (iqm) are Matsubara frequencies [57] and qTF is the Thomas-Fermi
screening wavelength. Therefore, the static RPA (or any other static screening
of the Coulomb interaction) gives no frequency dependence for the self energy.
This is due to the fact that the exchange (Fock) self energy is only a function of
the electron momentum. However, we realize that the frequency dependence
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of the self energy plays the major role in obtaining the correct momentum
distribution, and therefore, we need to go beyond the static model.

To this end, we study the finite-frequency RPA model given by the following
potential

V RPA(q, ω) ≡ Vc(q)

ǫRPA(q, ω)
=

Vc(q)

1− Vc(q)χ0(q, ω)
, (5.16)

where χ0(q, ω) is the Lindhard function for non-interacting electrons [117]. The
self energy then reads

Σ(k, iωn) = −kBT
∑

q,iΩm

V RPA(q)

ǫRPA(q, iΩm)

1

iωn + iΩm − ǫq+k

(5.17)

= − 1

(2π)3

∫

d2qVc(q)

∫

dΩ

ǫRPA(q, iΩ)

1

i(Ω + ωn)− ǫq+k

, (5.18)

where we used the zero-temperature limit

kBT
∑

Ωm

→ 1

2π

∫

dΩ. (5.19)

5.4 Electron-plasmon coupling: The electron self

energy

To calculate the retarded self energy, it is more convenient to use the method
proposed by Quinn and Ferrell [57, 122]: one first does the analytic continua-
tion of the self energy (on the complex frequency plane to the real axis), and
Matsubara summation is performed afterwards,

Σret(k, ω) = Σret
l (k, ω) + Σret

r (k, ω) , (5.20)

where Σret
l is the part (the so-called line term) which we obtain by changing the

order of the integration and the analytic continuation, and Σret
r is the error part

(residue term) by doing so. It can be shown that Σret
l is a real function, how-

ever, we are interested here in the imaginary part of the self energy. Therefore,
we present only the calculation for Σret

r , given by the following expression [57]

Im Σret(k, ω) = Im Σret
r (k, ω) , (5.21)

Σret
r (k, ω) =

1

(2π)2

∫

d2q
Vc(q)

ǫRPA(q, ǫk+q − ω)

×[Θ(ω − ǫk+q)−Θ(−ǫk+q)]. (5.22)

We observe that the main contribution to this integral comes from the poles of
the integrand, which are the zeros of ǫRPA(q, ǫk+q − Ω). However, these poles



62 CHAPTER 5. MOMENTUM DISTRIBUTION

are nothing but the plasmonic modes [117]. Calculations based on classical
models of the electron liquid give the following dispersion relations for the
plasmons in three and two dimensions [117], 1

ωp(q) =

√

nq2Vc(q)

m
=















√

4πne2

m
3D

√

2πne2q
m

2D

. (5.23)

Obviously, the nature of the collective modes in 3D is different from 2D due to
the q-dependence of the plasmon frequency. This means that, in contrast to
3D, plasmons can exist in a two-dimensional electron liquid even at very low
frequencies and there is no gap in their spectrum.

The corresponding long-wavelength expansion of the RPA dielectric func-
tion ǫRPA (vF q ≪ ω) is then given by

ǫRPA(q, ω) ≃ 1− 2πne2q

mω2
. (5.24)

Whereas the real part of the dielectric function is zero at the plasmon fre-
quency, its imaginary part yields a delta function [117]

Im [
1

ǫRPA(q, ǫk+q − ω)
] = −π

2
Ωp(q)δ(ω + Ωp(q)− ǫk+q). (5.25)

For simplicity, we calculate only the imaginary part of the self energy at the
Fermi surface and for negative frequencies which is given by

Σ
′′

(kF , ω) = −e
2

4

∫

d2qΩp(q)δ(ω + Ωp(q)− ǫkF +q)

×[Θ(ω − ǫkF +q)−Θ(−ǫkF +q)]. (5.26)

Because ω < 0 and vF q ≪ |ω|, the first step function gives zero and Ωp(q) ≃
ωp(q), which enormously simplifies the above integral

Σ
′′

(kF , ω) ≃ e2

4

∫

dq

∫

dθωp(q)δ[ω + ωp(q)]Θ(−ǫkF +q) , (5.27)

where θ is the angle between kF and q. However, the angular integration is
restricted to π

2
≤ θ ≤ 3π

2
. Our final result for the electron self energy at the

Fermi surface reads

Σ
′′

(kF , ω) =
πe2

4

∫

dq ωp(q) δ[ω + ωp(q)] =
m

4n
ω2. (5.28)

1The first quantum correction to the plasmon frequency yields Ωp(q) = ωp(q)(1 + 3aBq

8 ),
where aB is the Bohr radius. In our calculations, we neglect the (higher order) quantum
corrections to the plasmonic spectrum because we are mainly interested in small momentum
transfer q.
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We note that the above result is valid for any frequency and, due to its positive
sign, suppresses the same order correction which comes from the electron-hole
bubble [121]. Another peculiar feature of the electron-plasmon coupling is that
the self energy scales as the inverse of the density. Therefore, in low-density
regimes this contribution becomes very important. However, this result can
not be applied to very low density regimes, due to the breakdown of the RPA.

5.5 Non-analytic part of the self energy

Among three physically distinct bosonic non-analyticities in a generic Fermi
liquid at zero temperature [121], we focus here on the non-analiticity in the
particle-hole bubble (the response function), see Fig. 5.2, given by (in Matsub-
ara representation) [57]

Πph(Q, iΩm) ≡ −
∫

d2p dωn

(2π)3
G0(p, ipn)G0(p + Q, ipn + iΩm) , (5.29)

ΠQ→ 0
ph (Q, iΩm) =

m

2π
(1− |Ωm|

√

v2
FQ

2 + Ω2
m

), (5.30)

at small frequency and momentum transfer. In the single particle-hole bubble
approximation, see Fig. 5.2, the self energy reads

Σ(k, iωn) = −kBT U2
∑

iΩm

∫

d2Q

(2π)2
G0(k + k, iωn + iΩm)

×Πph(Q, iΩm), (5.31)

where kB is the Boltzmann constant, and T is the temperature. U is the Fourier
transform of the Coulomb interaction which we assumed to be momentum
independent (the so-called contact interaction).

The non-analytic part of the self energy for the interacting electrons in two
dimensions is given by the following equation (ω < 0)

Σ
′′

(k, ω) = − mU2

8π3vF
2

∫ |ω|

0

dΩΩ ln
4W

|B| , (5.32)

B = (ǫk − ω)(2Ω + ω − ǫk) +
Ω2

2EF
(3ω − ǫk + Ω), (5.33)

where W ∼ EF is the upper cut-off in the integration over vFQ. Note that the
leading order on-shell self energy is then logarithmic in frequency ω, as shown
before [121]

Σ
′′

(k, ωk) = − 3U2m

16π3v2
F

ω2
k log

W

ωk

. (5.34)
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Figure 5.2: Electron-hole (a) and electron-electron (b) bubble diagrams.

We need to stress that linearizing the electron dispersion relation leads to
an on-shell singularity in the electron self energy, however, it is an artificial
singularity and can be removed either by introducing the curvature of the
Fermi surface (as we did here) or by replacing the contact interaction U with a
dynamical interaction, e.g. RPA interaction [121]. To calculate the momentum
distribution, we need to know both on- and off-shell expressions for the self
energy and that is why the simple form in Eq. (5.34) is not sufficient.

To go further, we approximate the form of the spectral function for low fre-
quencies and momentum and calculate its contribution to the total momentum
distribution function

nk ≃ 1

2π

∫ 0

−ωc

A(k, ω)dω

= −1

π
Im

∫ 0

−ωc

dω

(1 + α)ω − (1 + β)ǫk − iΣ′′(k, ω)
, (5.35)

where ωc is a small frequency cut-off and α = − ∂
∂ω

Σ
′ and β = ∂

∂k
Σ

′ are the
coefficients of the linear expansion of the real part of self energy at the Fermi
surface and zero frequency. Moreover, they are both positive and normally
α & β [118].

The numerical evaluation of the integral is given in Figs. 5.3, 5.4, and
5.5, for different densities, where the size of the step (the renormalization fac-
tor ZF ), and α and β are estimated from RPA calculations [118, 123]. The
parameters of the system are chosen for two-dimensional electrons in GaAs
heterostructures. Evidently, the graphs follow the true behavior of the distri-
bution function for interacting fermions, however, their energy (momentum)
dependence is smaller compare to previous calculation. In particular, the jump
at the Fermi surface is shifted downwards. We address this discrepancy to
the absence of exchange and correlation corrections to the self energy. More-
over, we approximated Coulomb interaction with a momentum-independent
contact interaction. However, better approximation can be achieved by in-
troducing charge and density fluctuations in the calculation of the self energy,
which through local field factors, lead to an effective momentum and frequency
dependent interaction between the electrons [118, 119].
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Figure 5.3: Momentum distribution function for rs = 0.5. The origin of the axis is
at the Fermi surface where we have linearized the energy spectrum (shown in Fermi
energy units) for small energies around the Fermi energy.
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Figure 5.4: Momentum distribution function for rs = 1.
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Figure 5.5: Momentum distribution function for rs = 5.
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5.6 Electron tunneling from a 2DEG into a quan-

tum dot

The usual approach in charge transport models is to treat the leads as non-
interacting electron gas with the corresponding Fermi distribution. Although
this picture is a good approximation for high density electron leads, however,
it fails in the regime of low density which the Coulomb interaction plays a cru-
cial role. In this section, we calculate the electron tunneling from a correlated
electron lead into a single-level quantum dot which is given by [57]

ΓL =

∫

〈ṄL(r)〉dr, (5.36)

ṄL(r) = i[H,NL] = i[HT , NL], (5.37)

HT =
∑

σ

tσ(r)d†σψσ(r) + c.c , (5.38)

NL(r) =
∑

kσ

c†kσckσ , ψσ(r) =
∑

k

eik·rckσ, (5.39)

where ΓL is the electron tunneling rate from the left lead, NL is the correspond-
ing number operator, tσ(r) is the coordinate dependent tunneling amplitude
for an electron possessing spin σ, and ckσ and ψσ(r) are the annihilation oper-
ators for the electrons in the leads and the quantum dot, respectively. Using
the commutation relations for Fermionic operators yields

ṄL(r) = i
∑

kσ

tσ(r)eik·rd†σckσ − t∗σ(r)e−ik·rc†kσdσ. (5.40)

Next, we expand the S matrix in the interaction picture and retain only first
order term in the tunneling probability [57]

〈ṄL〉 = i

∫ ∫ ∫ t

−∞

〈[NL(t, r) , HT (t′, r′)]〉dt′dr′dr (5.41)

= −
∫

dr

∫

dr′

∫ ∞

−∞

dt′Θ(t− t′)

×{ei∆µ(t′−t)〈[M(t, r),M †(t′, r′)]〉
−ei∆µ(t−t′)〈[M †(t, r),M(t′, r′)]〉}. (5.42)

It is more convenient to introduce here the retarded Green’s function for the
operator M(t, r) and its corresponding Fourier transform

Gret(t) = −i Θ(t)〈[M(t),M †(0)]〉, (5.43)

G̃ret(−∆µ) =

∫ ∞

−∞

e−i∆µtGret(t)dt. (5.44)

It can be shown that the average tunneling rate is proportional to G̃ret(−∆µ)
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Figure 5.6: Electron tunneling from a correlated lead onto a single-level quantum
dot. It is assumed that the quantum dot is empty before tunneling occurs.

[57]. To this end, we employ the Matsubara formalism for the imaginary
(bosonic) frequencies. The corresponding retarded Green’s function will be
given by the analytic continuation

G̃(iω) = −
∑

kσk′σ′

∫

dr

∫

dr′tσ(r)t∗σ′(r′)ei(k·r−k′·r′)

×
∫ β

0

eiωτ〈Tτd
†
σ(τ)ckσ(τ)c†k′σ′dσ′〉, (5.45)

where β = kBT . The correlator in the above equation factors into a product
of Green’s functions for the lead GL and the quantum dot GD

〈Tτd
†
σ(τ)ckσ(τ)c†k′σ′dσ′〉 = 〈Tτckσ(τ)c

†
k′σ′〉〈Tτdσ′d†σ(τ)〉, (5.46)

〈Tτckσ(τ)c†k′σ′〉 = δσσ′ δkk′ Gσ
L(k, τ), (5.47)

〈Tτdσ′d†σ(τ)〉 = δσσ′ Gσ
D(−τ), (5.48)

G̃(iω) =
∑

kσ

∫

dr

∫

dr′eik·(r−r′)tσ(r)t∗σ′(r′)

× 1

β

∑

ip

Gσ
L(k, ip)Gσ

D(ip− iω), (5.49)

where we consider only a single-orbital-level quantum dot. To simplify further,
we assume that the tunneling is local and spin-independent tσ(r) = t δ(r),
where the origin of the coordinate system is located at the barrier between the
lead and the quantum dot. Using the Matsubara sum rules and performing
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the analytic continuation yields (ω < 0)

Im G̃ret(ω) =
∑

kσ

|tσ|2
∫

dǫ

2π
nF (ǫ)[Aσ

L(k, ǫ) Im Gσ
D(ǫ− ω − iη)

+Aσ
D(ǫ) Im Gσ

L(k, ǫ+ ω + iη)]

=
∑

k

|t|2
∫

dǫ nF (ǫ)[AL(k, ǫ)δ(ǫ− ω)

−AL(k, ǫ+ ω)δ(ǫ)]

= |t|2
∑

k

AL(k, ω)[nF (ω)− 1

2
], (5.50)

ΓL = 2 Im G̃ret(ω) = |t|2
∑

k

AL(k, ω) T = 0. (5.51)

Note that for noninteracting electrons, the spectral function AL(k, ω) reduces
to a delta function δ(ω − ǫk) and one can replace the sum over k by integral
over frequencies

∑

k

→
∫

d2k

(2π)2
→ NL

∫

dǫk , (5.52)

ΓL = NL |t|2. (5.53)

Physically, it means that the quantum dot acts as an energy filter, picking
only those electrons which have the same energy as of the dot, see Fig. 5.6,
and the sum over k gives the total number of such electrons available in the
lead. Consequently, our scheme can be used to scan the spectral function for
different frequencies for a wide range of energies as long as the bias voltage is
smaller than the quantum dot orbital level spacing. It has been shown that the
current through bilayer quantum wells is linear in voltage V (∆µ), for small
voltages across the barrier [124]. Here, in contrary to the usual tunneling
between two leads, there is no linear voltage-dependence of the tunneling rate
for small bias voltages, due to the energy conservation and the very narrow
phase space available for the electrons to scatter into.



Appendix A

Transformation matrix S

To derive the expression for the Schrieffer-Wolff transformation matrix S in
Chapter (2), we note that applying 1

Ln
d

on ξ yields linear combinations of
momentum and position operators. Therefore, we make an ansatz for S, like
we did in Eq. (2.14), with

ξ1 = ((α1py′ + α2x
′)/λ−, (α̃1px′ + α̃2y

′)/λ+, 0) , (A.1)

ξ2 =
(

(β1px′ + β2y
′)/λ−, (β̃1py′ + β̃2x

′)/λ+, 0
)

. (A.2)

Then by inserting this ansatz into the relation [Hd +HZ , S] = HSO, we obtain
a set of algebraic equations for the coefficients αi, βi, α̃i, and β̃i (i = 1, 2). We
find that

α̃1 = α1, α̃2 = −α2, (A.3)
β̃1 = −β1, β̃2 = β2, (A.4)

with the coefficients αi and βi given in Eqs. (2.17)-(2.20).
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Appendix B

QPC transmision coefficents:

k–dependent coupling constants,

k−1

F , λsc ≪ a

The coupling constants εee, εoo and εee, presented in Section (2.5) of Chap-
ter (2), are generally k-dependent. In the regime where k−1

F , λsc ≪ a we obtain
the following relations

εee =
e

4κa4k3
{2k3λsc(4a

2 + 3λ2
d − 2λ2

sc) + 6kλsc cos 2(kλsc + δ)

−(3 + 4a2k2 + 3k2λ2
d − 6k2λ2

sc) sin 2(kλsc + δ)

+(3 + 4a2k2 + 3k2λ2
d) sin(2δ)}eY , (B.1)

εoo =
e

4κa4k3
{2k3λsc(4a

2 + 3λ2
d − 2λ2

sc) + 6kλsc cos(2kλsc)

= −(3 + 4a2k2 + 3k2λ2
d − 6k2λ2

sc) sin(2kλsc)}eY , (B.2)

εoe =
e

8κa5k4
{−(9 + 4a2k2 + 3k2λ2

d − 18k2λ2
sc) cos(2kλsc + δ)

(9 + 4a2k2 + 3k2λ2
d − 6k4λ4

sc + 6k4λ2
dλ

2
sc + 8a2k4λ2

sc) cos δ

−(9 + 4a2k2 + 3k2λ2
d − 6k2λ2

sc)2kλsc sin(2kλsc + δ)}eX , (B.3)

with δ being the relative scattering phase. The transformation to the Left-
Right basis is given by

εLL =
1

2
(εee + εoo − 2εeo cos δ), (B.4)

εRR =
1

2
(εee + εoo + 2εeo cos δ), (B.5)

εLR = ε∗
RL =

1

2
(εee − εoo + 2iεeo sin δ). (B.6)

Here, as before, we have assumed that ~vF ∆k ≤ EZ ≪ ~vFλ
−1
sc ≪ EF . Note

that the coupling constants εLR and εRL in Eq. (B.6) have both real and imag-
inary parts. Therefore, the last term in Eq. (2.46) does not vanish in general.
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Nevertheless, we find that for an in-plane magnetic field B = (Bx, By, 0) this
term vanishes, because only a single component of δB(t) (namely δBz(t), see
Eq. (2.22)) is present for in-plane fields, which leads to εkijnkJ −

ij (ωZ) = 0 (see
also Eqs. (2.47) and (2.60)).



Appendix C

Spin relaxation rate

To calculate the spin decay rate, we will need the master equation for the
dynamics of the system. The time evolution of the combined system-bath
density matrix can be written in the following form (~ = 1)

ρ̇tot = −i[H, ρtot ], (C.1)
H = HS +HB +HSB, (C.2)

where ρtot is the total density matrix of the system-bath in the Schrödinger
picture and the dot stands for the time derivative. In Eq. (C.2), HS, HB, and
HBS denote the system, bath, and interaction Hamiltonians, respectively. In-
tegrating over the bath degrees of freedom and using the Born-Markov approx-
imation, one arrives at the Bloch-Redfield equations for the reduced density
matrix of the system [59]

ρ̇nm = −iǫnmρnm −
∑

kl

[Γ
(+)
nllkρkm + Γ

(−)
lkkmρnl

−Γ
(−)
kmnlρlk − Γ

(+)
kmnlρlk], (C.3)

where ǫkm = ǫk − ǫm, with ǫm being the energy eigenstate of the system,
HS|m〉 = ǫm|m〉. The coefficients Γ

(±)
kmnl are time-independent in this approxi-

mation and are given by the following correlators of the system-bath coupling

Γ
(−)
kmnl =

∫ ∞

0

dte−iǫkmt〈k|HSB|m〉〈n|HSB(t)|l〉, (C.4)

Γ
(+)
kmnl = [Γ

(−)
lnmk]

∗, (C.5)

where HSB(t) = exp(iHBt)HSB exp(−iHBt) and the overbar denotes averaging
over the bath.

For our spin-1/2 system coupled to fluctuating (quantum) magnetic fields,
we have (see Eqs. (2.21) and (2.22))

HS =
1

2
gµBB · σ, (C.6)

HSB(t) =
1

2
gµBδB(t) · σ. (C.7)
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Substituting these expressions into Eq. (C.4), we obtain

Γ
(−)
kmnl = 〈k|σi|m〉〈n|σj|l〉Jij(ǫkm), (C.8)

Jij(ω) =
g2µ2

B

2

∫ ∞

0

e−iωt〈δBi(0)δBj(t)〉dt. (C.9)

where in the above and the following equations, we imply summation over
repeating indices (like i) but not for spin indices (like m). Next we relate
the spin-1/2 density matrix ρ in Eq. (C.3) to the average spin 〈S〉, using the
following expression

ρ =
1
2

+ 〈S〉 · σ, (C.10)

where 1 is the unity matrix in the spin space. Multiplying Eq. (C.3) on both
sides by σ and tracing over the spin, we arrive at the Bloch-Redfield equation
for the average spin,

〈Ṡ〉 ≡ 1

2
TrS(ρ̇σ) = ω × 〈S〉 −←→Γ 〈S〉+ Υ, (C.11)

where ω stands for the spin precession frequency, defined as follows ω =
∑

n ǫnσnn, the tensor
←→
Γ denotes the spin relaxation tensor, and the vector

Υ is the inhomogeneous part of the Bloch-Redfield equation. From the Born-
Markov approximation we obtain

←→
Γ 〈S〉 =

1

2

∑

nm

[

(σi)mn J
∗
ij(ǫnm) {(〈S〉 · σ) [σ, σj ]}nm

+ (σi)mn Jij(ǫmn) {[σj ,σ] (〈S〉 · σ)}nm

]

, (C.12)

Υ = −1

4

∑

nm

[

(σi)mn J
∗
ij(ǫnm) {[σ, σj ]}nm

+ (σi)mn Jij(ǫmn) {[σj ,σ]}nm

]

, (C.13)

where n,m = ± refer to the spin indices. The relaxation tensor
←→
Γ can be gen-

erally divided into two parts: (i) a pure relaxation part
←→
Γ r, which originates

from processes of energy exchange with the bath (ǫmn 6= 0), and (ii) a dephas-
ing part

←→
Γ d, which originates from energy conserving scattering (ǫmn = 0).

Setting n = m in the sum of Eq. (C.12), we obtain for the dephasing part

←→
Γ d〈S〉 =

∑

n

(σi)nn

[

J∗
ij(0) + Jij(0)

]

×
{

〈S〉 (σj)nn − (σ)nn 〈Sj〉
}

,

= ni

[

J∗
ij(0) + Jij(0)

]

{〈S〉nj − n〈Sj〉} . (C.14)
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Differentiating the i-th component of the latter expression with respect to 〈Sj〉,
we arrive at the tensor [34]

Γd
ij = δijnpnqJ

+
pq(0)− ninpJ

+
pj(0). (C.15)

Here and below, we use the following notations

J±
ij (ω) = Re [Jij(ω)± Jij(−ω)] , (C.16)
I±ij (ω) = Im [Jij(ω)± Jij(−ω)] . (C.17)

Note that both terms in Eq. (C.15) can be presented as scalar products of n

with δB, as it can be seen by taking n inside the time integral and averaging
sign in Eq. (C.9) for any terms of the type

∑

i niJij . Therefore, for δB(t) in
Eq. (2.22), the tensor

←→
Γ d is identically zero, due to the transverse nature of

the fluctuating field.
Setting now n = −m in the sum of Eq. (C.12), we obtain for the pure

relaxation part

←→
Γ r〈S〉 =

∑

n

(σi)−n,n[J∗
ij(ǫn,−n) + Jij(ǫ−n,n)]

×{〈S〉(σj)n,−n − (σ)n,−n〈Sj〉}. (C.18)

Differentiating with respect to 〈Sj〉 as before and introducing ω = |ω|, we
arrive at the following expression [34]

Γr
ij = δij(δpq − npnq)J

+
pq(ω)− (δip − ninp)J

+
pj(ω)

−δijεkpqnkI
−
pq(ω) + εipqnpI

−
qj(ω). (C.19)

The inhomogeneous part of the Bloch-Redfield equation Υi is calculated in the
same way,

2Υi = njJ
−
ij (ω)− niJ

−
jj(ω) + εipqI

+
pq(ω)

+εiqknknp[I
+
pq(ω)− I+

pq(0)]. (C.20)

In the secular approximation, Γij ≪ ω, the solution of Eq. (C.11) reads

〈SX(t)〉 = S0
⊥e

−t/T2 sin(ωt+ ϕ0),

〈SY (t)〉 = S0
⊥e

−t/T2 cos(ωt+ ϕ0),

〈SZ(t)〉 = ST + (S0
Z − ST )e−t/T1 , (C.21)

where 〈SZ(t)〉 ≡ n · 〈S(t)〉 is the spin projection along the magnetic field,
〈SX(t)〉 and 〈SY (t)〉 are complementary spin projections in the plane perpen-
dicular to n. Note that, here, the axes X and Y do not refer to the electron
position in the QPC, as used in Chapter 2. The electron spin is initialized
repeatedly in one and the same state, which is characterized by the average
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spin value 〈S(0)〉 = (S0
⊥ sinϕ0, S

0
⊥ cosϕ0, S

0
Z). Each time, the spin is left to

evolve in the presence of the magnetic field and the Markovian bath, relaxing
in the long-time limit to the equilibrium value

ST =
n (n ·Υ)

(n · ←→Γ ·n)
= − ng

2|g| tanh

(

~ω

2kBT

)

. (C.22)

The relaxation time T1 and the decoherence time T2 in Eq. (C.21) are defined
as follows [34]

1

T1
= ninjΓij = ninjΓ

r
ij , (C.23)

1

T2
=

1

2
(δij − ninj) Γij. (C.24)

Note that from Eq. (C.15) it follows that ninjΓ
d
ij = 0, and therefore the re-

laxation time T1 is determined solely by the pure relaxation part Γr
ij. In

contrast, the decoherence time T2 is determined by the total relaxation tensor
Γij = Γr

ij + Γd
ij. Separating the contributions of Γr

ij and Γd
ij in Eq. (C.24), we

arrive at
1

T2
=

1

2T1
+

1

Tϕ
, (C.25)

where 1/Tϕ is the dephasing contribution to the decoherence rate,

1

Tϕ

=
1

2
(δij − 2ninj) Γd

ij = ninjJ
+
ij (0). (C.26)

As mentioned above, for δB(t) in Eq. (2.22) we have 1/Tϕ = 0, which results
in T2 = 2T1, provided no other dephasing mechanism is present.

Finally, substituting Eq. (C.19) into Eq. (C.23), we obtain

1

T1

= (δij − ninj) J
+
ij (ωZ)− εkijnkJ

−
ij (ωZ). (C.27)

Note that the tensors J±
ij (ω) present in Eq. (C.27) are expressed in terms of

the tensor Jij(ω) given in Eq. (C.9). Furthermore, the time integration from
0 to +∞ in Eq. (C.9) can be extended to an integration from −∞ to +∞,
provided one calculates relaxation rates. Indeed, in all sums over repeating
indices in Eq. (C.27), one can rearrange the terms in such a way that only
integrals from −∞ to +∞ appear. As a result, from Eq. (C.27), we arrive at
Eq. (2.46), in which the quantities J ±

ij (w), given in Eq. (2.47), contain only
symmetric time integrals, which is convenient for calculation.



Appendix D

Schrieffer-Wolff transformation

and fine structure

In this Appendix, we first work out the Schrieffer-Wolff transformation to the
third order of perturbation theory and for a general weak perturbation. Then,
we consider an example Hamiltonian and use the Schrieffer-Wolff transfor-
mation to partly diagonalize the Hamiltonian. Finally, we analyze the fine
structure of the transformed Hamiltonian and complete its diagonalization by
an additional unitary transformation.

As in standard perturbation theory, we consider a Hamiltonian H = H0 +
H1, where H1 is a weak perturbation with respect to H0. For the matrix
elements of H1, we assume

〈n|H1|m〉 = 0, for En = Em, (D.1)
〈n|H1|m〉 ≪ En − Em, for En 6= Em, (D.2)

where |n〉 and En are, respectively, the eigenstates and eigenvalues of H0, and
are obtained from H0|n〉 = En|n〉.

The projector P, defined as follows

PA =
∑

nm
En=Em

Anm|n〉〈m|, ∀A (D.3)

projects onto the diagonal or degenerate part of H0. In the particular case,
when the spectrum of H0 is non-degenerate, P assumes PA =

∑

nAnn|n〉〈n|,
∀A. From Eq. (D.1) and the definition (D.3), it follows that

PH1 = 0, (D.4)
PH0 = H0. (D.5)

Next we look for a unitary transformation that brings the Hamiltonian
H = H0 +H1 to a partly diagonal form,

H̃ = eS′

(H0 +H1) e
−S′

= H0 + ∆H, (D.6)
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where the operator ∆H obeys P∆H = ∆H . Here, S ′ = −S ′† is the transfor-
mation matrix. The unitary transformation in Eq. (D.6) is called the Schrieffer-
Wolff transformation [56]. We expand S ′ and ∆H in terms of the perturbation
H1:

S ′ = S ′(1) + S ′(2) + S ′(3) + . . . , (D.7)
∆H = ∆H(1) + ∆H(2) + ∆H(3) + . . . , (D.8)

where the superscripts give the order of perturbation theory. Substituting
Eqs. (D.7) and (D.8) into Eq. (D.6), we find a set of equations for S ′,

[H0, S
′(1)] = H1, (D.9)

[H0, S
′(2)] =

Q
2

[S ′(1), H1], (D.10)

[H0, S
′(3)] =

Q
2

[S ′(2), H1] +
Q
12

[S ′(1), [S ′(1), H1]] +

Q
4

[S ′(1),P[S ′(1), H1]], (D.11)

where Q ≡ 1 − P. It is important to note that S is defined in Eqs. (D.9)-
(D.11) up to terms PM , where M is arbitrary. Such terms drop out on the
left-hand side in Eqs. (D.9)-(D.11) because [H0,PS ′] = 0. Thus, PS ′ can be
chosen arbitrarily, which shows that there are infinitely many transformation
matrices S ′ that satisfy Eq. (D.6). For simplicity, we choose PS ′ = 0 and
address the fine structure of H̃ = H0 + ∆H later on. For the operator ∆H ,
we obtain

∆H(1) = 0, (D.12)

∆H(2) =
P
2

[S ′(1), H1], (D.13)

∆H(3) =
P
3

[S ′(1), [S ′(1), H1]]. (D.14)

Introducing the Liouvillean L̂0: L̂0A = [H0, A], ∀A, we can formally solve
Eqs. (D.9)-(D.11) one by one. For example, the transformation matrix at the
lowest order reads S ′(1) = QL̂−1

0 H1. For ∆H , we recover then the perturbation
theory expansion in a more familiar form,

∆H = −PH1L̂
−1
0 H1 + PH1L̂

−1
0 H1L̂

−1
0 H1 + . . . , (D.15)

with the usual convention, PL̂−1
0 A = 0, ∀A, adopted.

Next, we remark that the fine structure of H̃ = H0 +∆H can be addressed
in each particular case by means of degenerate perturbation theory. As an
example, we consider here the Hamiltonian H = H0 +H1, with H0 = Hd +HZ

and H1 = HSO. Here, Hd is given in Eq. (3.5), with U(r) = meω
2
0r

2/2, HZ
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is given in Eq. (3.6), and HSO is given in Eq. (4.3). Using the transformation
matrix S ′ = S, with S given in Eq. (3.12), we obtain a diagonal Hamiltonian,
H̃ = Hd +HZ , at the first order of HSO. At the second order of HSO, however,
a fine structure in the energy spectrum arises. At B = 0, the transformed
Hamiltonian reads

H̃ =
p2

2me
+
meω

2
0

2
r2 +

1

2
∆SOℓzσz, (D.16)

where ℓz = −i(x∂/∂y − y∂/∂x) is the electron rotational momentum and
∆SO = 2me(β

2−α2). The Kramers doublets are identified, in this case, as the
pairs of states with quantum numbers (ℓz, σz) and (−ℓz,−σz). For ℓz > 0, the
two-fold orbital degeneracy is lifted and a splitting ∆SOℓz arises. Note that
the ground orbital state, which has ℓz = 0, remains doubly degenerate in this
case.

At B 6= 0, the fine-structure interaction in Eq. (D.16) is modified by both
the Zeeman energy EZ and the cyclotron frequency ωc. For simplicity, we omit
terms ∼ ∆SOEZ/~ω0, but keep terms ∼ ∆SOωc/ω0, assuming that EZ ≪ ~ωc.
Then, the Hamiltonian (D.16) acquires two extra terms

EZ

2
n · σ +

∆SO

4λ2
σzPr2, (D.17)

where λ =
√

~/meωc is the magnetic length and we use the symmetric gauge,
A(r) = Bz(−y/2, x/2, 0). The last term in Eq. (D.17) can be viewed as a
renormalization of the electron g-factor. Allowing for an anisotropic Zeeman
interaction,

Heff
Z =

1

2
µB

∑

ij

gijσiBj , (D.18)

we obtain that the tensor gij is diagonal in the main crystallographic frame,
with

gxx = gyy = g,

gzz = g +
m∆SO

~2
〈ψn|r2|ψn〉, (D.19)

wherem is the electron mass in vacuum and ψn is the electron orbital state. For
the ground orbital state, the corrected g-factor reads gzz = g +m∆SO/me~ω,
where ω =

√

ω2
0 + ω2

c/4. Note that the sign of the correction is given by
the sign of β2 − α2 contained in ∆SO. The spin quantization axis does not,
in general, coincide with the magnetic field direction n and is given by the
following unit vector

ñ =
n + ζnz

√

1 + ζ(2 + ζ)n2
z

, (D.20)
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where ζ = (gzz − g)/g. An additional unitary transformation can be used to
diagonalize the 2× 2 blocks of Zeeman-split Kramers doublets,

H̃eff
Z = eS′′

Heff
Z e−S′′

=
1

2
ẼZn · σ (D.21)

where ẼZ = EZ

√

1 + ζ(2 + ζ)n2
z is the renormalized Zeeman energy and

e−S′′

=

√

1 + n · ñ
2

− i ζ [n× nz] · σ
√

ζ2n2
z(1− n2

z)

√

1− n · ñ
2

. (D.22)

So far, we have considered a given orbital state ψn, for which the tensor gij is
given in Eq. (D.19). The transformation above is also valid in general, provided
ζ is understood as a diagonal operator, ζ = (m∆SO/g~

2)Pr2.
We summarize by mentioning that the unitary transformation in Eq. (D.6)

can, in principle, be adjusted to give a fully diagonal H̃ = H0 + ∆H , i.e. we
had not to require PS ′ = 0 in the first place. However, in practice, it is more
convenient first to apply the non-degenerate perturbation theory, Eqs. (D.9)-
(D.15), and then, at the end, complete the diagonalization of H0 + ∆H by a
second unitary transformation. The latter is specific to each particular case
and amounts, in general, to applying the degenerate perturbation theory. For
the sake of simplicity, we shall refer to S in the main text of the thesis as
to the full transformation matrix, despite the fact that the respective unitary
transformation comes, in practice, as a product of two unitary transformations.
Thus, we denote the product e−S′

e−S′′ by e−S in the main text. Finally, we
remark that e−S′′ ≈ 1 +O(H2

SO).



Appendix E

The non-Abelian spin rotation

generator

The transformation matrix S = −S† in Eq. (4.4) can be evaluated by per-
turbation theory in HSO or by diagonalizing the Hamiltonian H for a specific
potential U(r). At the leading order in HSO, S satisfies the operator equation

[Hd +HZ , S] = HSO, (E.1)

whereas the energy levels of H coincide, at this order, with the energy levels
of Hd +HZ . A detailed analysis of the transformation in Eq. (4.4) is given in
Refs. [86, 105].

Next we consider the Schrödinger equation,

i~
∂Ψ(r, t)

∂t
= H(t)Ψ(r, t), (E.2)

in the presence of a time-dependent displacement-vector r0(t). At each mo-
ment in time, the Hamiltonian H(t) has an instantaneous basis of states, which
we denote by |Φnsr0〉, where the index r0 indicates that the dot is centered at
r0. Obviously, the states |Φnsr0〉 can be obtained from Eq. (4.4) by means of
a displacement by the vector −r0. In the presence of a magnetic field, the
instantaneous eigenstates read

Φnsr0(r) = e(ie/~c)f(r,r0)T−r0ψns (r) , (E.3)

where f (r, r0) is a gauge function satisfying the equation

−∂f (r, r0)

∂r
= A(r − r0)−A(r). (E.4)

In Eq. (E.3), Ta = exp(a ·∂/∂r) denotes the translation operator by a vector a

and for the cylindric gauge A(r) = Bz (−y/2, x/2, 0), we can choose f (r, r0) =
r0 ·A(r).
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The solutions of the Schrödinger equation (E.2) can be looked for in terms
of the instantaneous basis in Eq. (E.3),

Ψ(r, t) =
∑

ns

ans(t)Φnsr0(t) (r, t) , (E.5)

where the coefficients ans(t) satisfy the normalization condition
∑

ns |ans(t)|2 =
1 and we have used the notation Φnsr0(t) (r, t) = exp (−iEnst/~) Φnsr0(t) (r) for
the Schrödinger picture of Eq. (E.3). By substituting Eq. (E.5) into Eq. (E.2)
we obtain a set of equations for ans(t)

dans

dt
=
i

~

∑

n′s′

v0(t) · 〈ψns| p̃(t) |ψn′s′〉 eiωnsn′s′ tan′s′, (E.6)

where v0(t) = dr0(t)/dt is the velocity of the slipping dot and ωnsn′s′ =
(Ens −En′s′) /~. The quantity p̃(t) depends on t only through r0(t) and is
defined as follows

p̃ = −i~ ∂

∂r
− e

c
Tr0

∂f(r, r0)

∂r0
T−r0 . (E.7)

For our choice of gauge, i.e. cylindrical gauge, we obtain p̃ = −i~∂/∂r −
(e/c)A(r + r0). Note that the choice of f (r, r0) is not unique; In general, one
can also include terms of the form g0(r0) + sg3(r0) |ψns〉〈ψns| and, at B = 0,
additionally terms of the form g1(r0) |ψns〉〈ψn,−s|+ isg2(r0) |ψns〉〈ψn,−s|, where
gj(r0) are arbitrary real functions of r0.

Next we consider a specific situation for which we can further simplify
Eq. (E.6).

We can further define a resting qubit at a position r0 using the transfor-
mation in Eq. (E.3). Let the quantum dot be driven along a trajectory r0(t)
between two points rA = 0 and rB during a time interval T , such that

r0(0) = rA, r0(T ) = rB, (E.8)
v0(0) = 0, v0(T ) = 0. (E.9)

The probability for the qubit to leak out of its subspace by the end of the pulse
is given by

Pleak =
∑

n6= 0
s=±1/2

|ans(T )|2 . (E.10)

The coefficients ans(T ) can, therefore, be found by solving Eq. (E.6) with the
initial condition

∑

s |a0s(0)|2 = 1. At the leading order in the driving, we have

ans(T ) ≃ i

~

∫ T

0

dt v0(t) · 〈ψns| p̃(t) |σ〉 eiωns0σt, (E.11)

where |σ〉 = |ψ0σ〉 denotes the qubit state at t = 0. Since the matrix elements
〈ψns| p̃(t) |σ〉 do not depend on time for n 6= 0, the coefficients ans(T ) in
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Eq. (E.11) are, thus, proportional to the Fourier transform of the quantum
dot velocity v0(t) evaluated at the orbital transition frequency ωns0σ ≃ ω0. It
is, therefore, sufficient to devise pulses of v0(t) with the spectral weight below
the orbital frequency ω0 in order to avoid leakage from the qubit subspace.

It is convenient to have an adiabaticity criterion based on the differential
properties of v0(t). We note that Eq. (E.6) can be rewritten in terms of the
new unknowns ãns = ans exp (−itEns/~) as follows

dãns

dt
= − i

~

∑

n′s′

Hnsn′s′(t)ãn′s′, (E.12)

Hnsn′s′(t) = Ensδns,n′s′ − v0(t) · 〈ψns| p̃(t) |ψn′s′〉 . (E.13)

One can identify Eq. (E.13) with H(t) = H(t)− i~∂/∂t, expressed in the time-
depended basis (E.3). For the case of B = 0, Eq. (E.13) has been previously
obtained in Ref. [108]. The virtue of Eq. (E.13) is that Hnsn′s′(t) depend
on time only through a perturbation ∝ v0(t), which vanishes at t = 0, T .
Applying the adiabaticity criterion to the Hamiltonian in Eq. (E.13) for the
orbital transitions out of the qubit subspace, we obtain that the condition

∣

∣

∣

∣

dv0

dt
· 〈ψns| p̃ |σ〉

∣

∣

∣

∣

≪ ~ω2
0 (E.14)

must be satisfied at any moment in time in order for the pulse to be adiabatic.
If r0(t) changes adiabatically with respect also to the Zeeman energy EZ ,

then |as(t)| is independent of time, i.e. the qubit follows adiabatically the
change of its basis states. In the opposite case, when B = 0, the states |ψns〉
in Eq. (4.4) are degenerate with respect to the spin index s to all orders of HSO,
due to the Kramers theorem. In this case, the change of the instantaneous basis
can be interpreted as a unitary operation on the qubit. In order to tell what
is the qubit instantaneous basis at B = 0, one has, in principle, to consider a
finite B and follow the energy levels of the quantum dot in the limit of B → 0.
Here, it is important to note that the spin-orbit interaction gives rise to an
anisotropic Zeeman interaction at the second order of HSO [105]. As a result,
the spin quantization axis and the magnetic field are not necessarily aligned
with each other. To avoid the need of state finding, we denote 〈ns|e−S|n,−s〉
by αns and remark that αns = O (H2

SO).
Returning now to Eq. (E.5), we consider an infinitesimal displacement of

the quantum dot in the (x,y)-plane by δr0 and derive the corresponding gen-
erators of the qubit transformation under translations. We encode the qubit
into the instantaneous states of the n-th orbital level of the Hamiltonian (4.1).

Let r0(t) = r0 be the position of the quantum dot center at time t and
r0(t + δt) = r0 + δr0 be the new position at time t + δt. The infinitesimal
transformation that takes the state Ψ(t) to a new state Ψ(t + δt) is given in
Eq. (E.2). Starting from a basis state Φns(t) at time t, we obtain the following
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state at time t+ δt,

Ψns(t+ δt) = Φns(t)−
i

~
H(t)Φns(t)δt. (E.15)

The overlap of this state with the basis state Φns′(t + δt), generates an in-
finitesimal transformation of the Kramers doublet, where from Eq. (E.3), we
find the basis state at time t+ δt,

Φns′(t+ δt) = Φns′(t)−
i

~

[

dr0

dt
· p̃ +H(t)

]

Φns′(t)δt. (E.16)

Thus, the desired infinitesimal transformation reads

〈Φns′(t+ δt)|Ψns(t+ δt)〉 = δs′s +
i

~
δr0 · 〈Φns′(t)|p̃|Φns(t)〉. (E.17)

For a qubit that is encoded into the instantaneous states of the n-th orbital
level of the Hamiltonian (4.1), the infinitesimal transformation (E.17) can be
rewritten as

|s(t)〉 → exp (G · δr0) |s(t)〉. (E.18)

Here, |s(t)〉 denotes the qubit state at time t and the 2× 2 matrices and

Gss′ =
i

~
〈ψns|p̃|ψns′〉 (E.19)

are the corresponding generators of the transformations that take place on
the qubit under parallel translations of the quantum dot on the substrate. In
deriving Eq. (E.19) we made use of our choice of gauge, see the text below
Eq. (E.3).

It is important to note that, along with spin-orbit interaction-induced
SU(2) transformations on the qubit, Eqs. (E.18) and (E.19) account also for
the Aharonov-Bohm phase due to the orbital magnetic field. It is, therefore,
convenient to subdivide G into Abelian and non-Abelian parts,

Gss′ = Ga
ss′ + Gna

ss′, (E.20)

Ga
ss′ = δss′

∑

p

1

2
Gpp. (E.21)

For a point-like quantum dot, we obtain the Abelian generators

Ga
ss′ = (−ie/~c)δss′A(r0), (E.22)

recovering, thus, the usual expression for the Aharonov-Bohm phase (eiϕAB)

ϕAB = − e

~c

∫

C

A(r0) · dr0 (E.23)
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in going around a closed path C. Note that it is always possible to sum up
independently the phase due to the Abelian generators, because [Ga,Gna] = 0.
In what follows, we focus on the non-Abelian generators Gna since they give
rise to useful unitary operations on the qubit.

To calculate the matrix elements 〈Φns′(t)|p̃|Φns(t)〉, we make use of Eq. (E.3)
and the following property e−ief/~cp̃eief/~c = p, and obtain that

〈Φns′(t)|p̃|Φns(t)〉 = e
i
~
(Ens′−Ens)t〈ψns′ |Tr0pT−r0|ψns〉, (E.24)

where |ψns〉 are the states in Eq. (4.4) and Ens are the energies corresponding
to these states. Obviously, if the Zeeman energy is large, the exponential factor
in Eq. (E.24) oscillates rapidly as a function of time and the transformation
in Eq. (E.17) averages out to unity. For the latter to take place, it is sufficient
that

∣

∣

∣

∣

dr0

dt
· 〈ψns|Tr0pT−r0|ψn,−s〉

Ens −En,−s

∣

∣

∣

∣

≪ 1. (E.25)

Estimating further |〈ψns|Tr0pT−r0|ψn,−s〉| ∼ ~/λSO and Ens −En,−s ≈ EZ , we
obtain that the spin rotator is inefficient at small speeds of the dot,

~ṙ0 ≪ EZλSO. (E.26)

In the absence of magnetic fields, the transformation in Eq. (E.17) acquires
the form

∆ = 1 + δr0 · 〈ψns′|
∂

∂r
|ψns〉. (E.27)

Note that Eq. (E.27) can as well be derived from the infinitesimal version of
the identity |Φns(t)〉 = Tδr0T−δr0 |Φns(t)〉 = Tδr0 |Φns(t + δt)〉. Thus, the spin
rotation takes place (at least at B = 0), because the confinement defines local
Kramers states, which differ from each other along the dot trajectory. An
illustration of the dot trajectory is given in Fig. 4.2. The radius-vector r0(t)
describes a curve as a function of time and, as the dot is moved along that
curve, the local Kramers state changes. The infinitesimal transformation in
Eq. (E.27), or more generally in Eq. (E.17), has to be ordered along the path
of integration when integrated over δr0. This ordering occurs because the spin
matrices in Eq. (E.27) do not always commute with each other at different
points of the path due to generally different directions of δr0 at these points.

Further, it is convenient to refer to the Kramers doublets |Φns(t)〉 as to spin
states that are locally defined at each point of the dot trajectory. Mathemati-
cally, we perform a mapping given by the following canonical transformation,

|Φns,r0〉 = eief/~cT−r0e
−S|ψn〉|χs〉, (E.28)

which is obtained by substituting Eq. (4.4) into Eq. (E.3) and omitting the
free evolution factor e−(i/~)Enst from ψns(r, t). For a given quantum number n,
this transformation, obviously, maps the Kramers doublet at position r0 onto
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a spin-1/2 space: |χs〉, (s = ±1/2). Equation (E.27) can then be rewritten in
an operator form

∆ = 1+ δr0 · 〈ψn|eS ∂

∂r
e−S|ψn〉, (E.29)

where S contains Pauli matrices, which should now be regarded as effective
operators in the Hilbert space of a local Kramers doublet (n, r0).

For a small quantum dot the transformation matrix S is small, because
λd ≪ λSO [86]. In this case, one can expand the transformation to the first
order, e±S ≈ 1± S. Then, Eq. (E.29) acquires the form (B = 0)

∆ = 1− δr0 · 〈ψn|
∂S

∂r
|ψn〉, (E.30)

where we used 〈ψn|∂/∂r|ψn〉 = 0.
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