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Abbreviations 
 
BCIP          5-bromo-4-chloro-3-inodolyl-phosphate 

CA              corpus ammonis (hippocampal region) 

DG             dentate gyrus (hippocampal region) 

DIG            digoxigenin 

DIV            day in vitro 

GFP           green fluorescent protein 

EC             entorhinal cortex 

FISH          fluorescent in situ hybridization 

HDAC       histone deacetylase 

HOX          homeobox 

MAP2       microtubule-associated protein 2 

NMDA      N-methyl-D-aspartate 

Rps9          ribosomal protein S9 

OR            olfactory receptor 

Stx3           syntaxin 3 

Thy1          thymus cell antigen 1, theta 

TSA           trichostatin A 

UTR          untranslated region 
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1. INTRODUCTION 
 
1.1 Overview 

  In order to understand how neural circuits process information, it is important to 

identify the genetic subpopulations that make up the circuits and elucidate their 

individual connectivities and functions. For example, in the olfactory system, 

individual olfactory sensory neurons express only one odorant receptor (OR) gene, 

and sensory neurons expressing the same odorant receptor converge upon the same 

glomeruli (Buck and Axel, 1991; Ngai et al., 1993; Ressler et al., 1994). These 

findings have significantly contributed to understand how the olfactory system 

processes the information from different odors.  Another well-dissected system is the 

mouse retina, where parallel ON and OFF pathways consist of distinct layers of 

interconnected neurons that exhibit distinct responses to light stimuli (Wässle, 2004). 

In the adult retina, subpopulations of ON or OFF bipolar cells connect selectively to 

subpopulations of ON or OFF ganglion cells (Wässle, 2004). Although activity plays 

a role in establishing these selective connections, current evidence that the genetically 

based cell identity of each subpopulation has a major role in establishing synaptic 

specificity in this circuit during development (Kerschensteiner et al., 2009). 

The specification of motor neuron subpopulations and their selective connectivities to 

particular  muscles was also studied extensively at the molecular level. There are 

several steps to specify these subpopulations, including the combinatorial expression 

of homeobox (HOX) genes, that of LIM-homeodomain transcription  factors (TFs), 

the expression of intermediate TFs based on HOX genes, and the expression of TFs 

induced by peripheral signals (Jessell, 2000; Sanguinetto, 2008) (Fig.1). Interestingly, 

early-born neurons influenced the specification of late-born neurons in this system 

(Jessell, 2000) (Fig.1). 

 

 

 

 

 

                                          
                                         Figure 1. A hierarchy of motor neuron identities  
                                                           and retinoid signaling by early-born neurons  
                                                           (from Jessell, 2000)  



 - 6 -

 Comparable studies as to whether there may be principal neuron subpopulations in 

the hippocampus, and whether this may affect their connectivities have not been 

available, and their investigation forms the object of this thesis work.   

 

 

 

 
1.2 Hippocampus anatomy 

Structurally, the hippocampus can be divided into three main subregions: dentate 

gyrus (DG), CA3 and CA1. The principal neuron in the DG is called the granule cell, 

which receives its main input from the entorhinal cortex (EC), and projects to CA3. In 

the hippocampus of a rat, there are around 1.2 million of granule cells (West et al., 

1991). In the CA3 region, the principal neuron is called the CA3 pyramidal cell, 

which receives its main inputs from granule cells and from the EC, and projects to 

CA1. In the CA1 region, the principal neuron is called CA1 pyramidal cell, which 

gets its main inputs from CA3 pyramidal cells and from the EC, and sends output to 

the EC via the subiculum or directly. In all three regions, principal neurons form 

distinct layers, which are densely-packed. (Fig.1) 

 

 

 

 

 
 

 

 

 

 

 

 

 

      Figure 1. anatomy of hippocampus (modified from Andersen P. et al. 2007) 
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1.3 Hippocampus functions 

There are many lines of evidence suggesting that the hippocampus plays an 

important role in learning and memory in mammals, including the mouse and man. 

One famous example is the case of HM. In this case, most of the hippocampus of the 

patient had to be removed because of epilepsy. After the surgery, early memories 

were normal and there was no impairment of personality or general intelligence. 

However, new long-term memory was not acquired (Scoville and Milner, 1957). 

Therefore, it was suggested that the hippocampus plays an important role in acquiring 

new episodic memories, but not in storing long-term memories like neocortex.  

People’s performance on many learning and memory tasks improves following sleep, 

especially slow-wave sleep (Marshall et al., 2006). It has been hypothesized that this 

improvement is due to interactions between the hippocampus and neocortex during 

sleep, leading to a transfer of newly acquired representations from the hippocampus to 

neocortex to form long-term memories.  

 Recent studies have provided evidence that the hippocampus plays an important role 

especially in spatial representation and spatial memory in several mammalian species 

(Moser et al., 2008). In the hippocampus, it was demonstrated that there were “place 

cells”, which exhibited a high rate of firing whenever an animal was in a certain place, 

the so-called “place field” (O’Keefe and Dostrovsky, 1971). It was also suggested that 

the hippocampus encoded not only spatial information, but also temporal information 

about events (Hampson et al., 1993).  In fact, the sequences of firing patterns of 

multiple CA1 pyramidal cells during the awake experience were replayed in the same 

sequences of firing patterns during sleep (Lee and Wilson, 2002).   

 Using mouse genetics it could be shown that each subregion of the hippocampus has 

its particular functions. For example, NMDA receptors in DG are important for 

pattern separation (McHugh et al., 2007). NMDA receptors of CA3 or CA1 pyramidal 

cells are necessary for associative memory recall and memory formation respectively 

(Nakazawa et al., 2002; Tsien et al., 1996). In these experiments, the critical step was 

to produce transgenic mice which express Cre recombinase only in the specific 

subregion of the hippocampus (Fig2). 
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Figure 2. Specific Cre expression patterns in the each transgenic line.  
                (from Nakazawa et al., 2002; Tsien et al., 1996; McHugh et al., 2007) 
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1.4 Hippocampus along the dorsoventral axis 

  Early anatomical studies have provided evidence that the afferent and efferent 

connectivities of the hippocampus change along its dorsoventral axis. In rodents, the 

dorsal half of the hippocampus receives inputs from the lateral and caudomedial 

portion of the entorhinal cortex, and tends to send outputs to the lateral entorhinal 

cortex and dorsal lateral septum (Sahay and Hen, 2007) (Fig.3). On the other hand, 

the ventral half of the hippocampus receives mainly inputs from the rostromedial 

entorhinal cortex, and sends projections to the prefrontal cortex, the amygdala and 

nucleus accumbens, as well as the medial entorhinal cortex (Sahay and Hen, 2007) 

(Fig.3). The hippocampus also has distinct connectivities with other brain regions 

between dorsal and ventral regions of the hippocampus. 

 

 

 

 

 

 

 

 
       Figure 3. differential connectivity of the hippocampus along the dorsoventral axis   

 CA3 pyramidal cells also have well-defined place fields, and the scale of 

representation increases almost linearly from the dorsal region to the ventral region 

(Kjelstrup et al., 2008). Partial hippocampal lesion experiments have provided 

evidence that the dorsal hippocampus is critically important for spatial learning, 

whereas the ventral hippocampus is not (Moser and Moser, 1998; Sahay and Hen, 

2007). 

These evidences suggest that the hippocampus has discrete functions in its dorsal and 

ventral subdivisions. This gives rise to the possibility that the principal neurons in the 

hippocampus are not homogenous along the dorsoventral axis. 
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1.5 Gene expression patterns in the hippocampus  

Recent studies have showed that there is specific regional or cellular regulation of 

gene expression patterns in the hippocampus. Some genes were exclusively expressed 

in a particular subregion of the hippocampus, e.g. in DG, CA3 or CA1 (Lein et al., 

2004). Furthermore, the Allen Institute for Brain Science provided in situ 

hybridization data for more than 20,000 genes throughout the whole brain, including 

the hippocampus (Lein et al., 2007). These data allowed to identify molecular 

domains in the hippocampus characterized by the expression of specific combinations 

of genes (Thompson et al., 2008) (Fig.4). Interestingly, these molecular domains 

corresponded to extra- and intrahippocampal connectivity patterns (Thompson et al., 

2008) (Fig.4).  

     

 

 

 

 

 

                                                                                                                    

 

 

 

 

 

 
     Figure 4. Concordance between molecular domains and hippocampal connectivity  
                     (from Thompson et al., 2008)  

It was also demonstrated through single-cell microarray analysis that individual CA1 

pyramidal cells can exhibit cellular heterogeneity at the gene expression level 

(Kamme et al., 2003). 

These findings indicate that principal neurons in the hippocampus are not 

homogeneous at the molecular level. However, these studies did not clarify whether 

or not there may be distinct subpopulations of principal neurons in the hippocampus. 
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1.6 Genetic tools to dissect the neuronal circuit 

Since neurons and their processes are densely packed in the nervous system, little 

information about individual neurons can be obtained if all of them are labeled. This 

has led to efforts to analyze smaller subsets of neuronal populations. The first 

successful method was discovered by Camillo Golgi in the 19th century. The Golgi 

staining can label a small population of neurons and almost completely visualize their 

dendritic and axonal processes. Although the Golgi staining had enormous impact for 

neuroscience, there were also limitations. For example, it does not label reliably all 

axonal branches and fine terminal arborizations, and it cannot be used for live tissue 

experiments. To overcome these limitations, several transgenic mice which expressed 

the fluorescent proteins or lacZ were generated (Caroni, 1997; Feng et al., 2000; 

Martin et al., 2002; Zong et al., 2005; Livet et al., 2007). One strategy is to label 

particular neuronal lineages (Martin et al., 2002; Zong et al., 2005). Using site-

specific interchromosomal recombination, Mosaic Analysis with Double Markers 

(MADM), it was demonstrated that the lineage of neurons plays a role in directing the 

axonal projection pattern of granule cells in the mouse cerebellum (Zong et al., 2005). 

A clonal analysis was also done in the hippocampus, where experimental mouse 

chimeras expressing lacZ demonstrated that there may be specific distribution patterns 

of neurons belonging to the same lineage (Martin et al., 2002) (Fig.5).  

 

 

 

 

 

 

 

 

 

 

 

 
 Figure 5. The distribution patterns of lacZ positive cells (modified form Martin et al., 2002) 

                     a) dentate gyrus,  b) CA3 pyramidal cells, c) the hippocampus and other brain 
                      structures 
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A different strategy to label small populations of neurons is to generate transgenic 

mice expressing fluorescent proteins under the Thy1 promoter (Caroni, 1997; Feng et 

al., 2000; Livet et al., 2007).  Although only small fractions of neurons in the 

hippocampus are labeled in these transgenic mice, it had remained unclear whether 

neurons are labeled in a random manner, or whether the patterns may reflect the 

existence of specific subpopulations in the hippocampus. This thesis tried to address 

this question, and at the same time to address the larger question of whether principal 

neurons in the hippocampus may be subdivided into genetically defined 

subpopulations. In order to address this question, three transgenic mice: Lsi1, Lsi2 

and Lmu1 expressing membrane GFP under the Thy1 promoter were analyzed 

(Caroni, 1997). In Lsi1 or Lsi2 mice, some (5-25 % of total) granule cells, CA3 and 

CA1 pyramidal cells are GFP-positive in the hippocampus (Fig.6). On the other hand, 

all granule cells and CA1 pyramidal cells are GFP-positive and around 50 % CA3 

pyramidal cells are GFP-positive in the Lmu1 line (Fig.6).  
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             Figure 6 the distribution patterns of GFP-positive cells in Lmu1, Lsi1 or Lsi2 mice 
                            a) GFP signal in the hippocampus   b) in situ hybridization for GFP 
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2. Results            2.1   submitted 
SELECTIVE CONNECTIVITY AMONG MATCHED HIPPOCAMPAL 

PRINCIPAL NEURON SUBPOPULATIONS 

 

Yuichi Deguchi1, Flavio Donato1, Ivan Galimberti1, Erik Cabuy, and Pico Caroni 

Friedrich Miescher Institute, Maulbeerstrasse 66, CH-4058 Basel, Switzerland 
1These authors contributed equally to the work 

Send correspondence to: 

Pico Caroni  

Friedrich Miescher Institute, Maulbeerstrasse 66, CH-4058 Basel, Switzerland 

email: caroni@fmi.ch    tel: 0041 61 6973727  Fax: 0041 61 6973976  

The extent to which individual neurons are interconnected in a selective manner 

within brain circuits is an unsolved problem in neuroscience. Two opposite views 

posit dedicated labeled lines of specifically interconnected neurons, versus tabula 

rasa models of randomly interconnected networks. Even in dense mammalian 

cortical circuits, apparently equivalent neurons can be organized into 

preferentially interconnected microcircuits. However, it has remained unclear 

whether microcircuits might reflect genetically defined subpopulations of 

selectively interconnected neurons, as opposed to self-organizing random 

networks. Here we show that the principal neurons of the major hippocampal 

subdivisions consist of genetically distinct subpopulations that interconnect 

selectively across subdivisions. In two Thy1 mouse lines, transgene expression in 

each subdivision visualizes matched principal neuron subpopulations that exhibit 

unique patterns of gene expression, and share neurogenesis windows, and 

temporal schedules of synaptogenesis. Marker genes shared among the matched 

subpopulations map near olfactory receptor gene clusters, a property which we 

find preferentially associated with neuronal subtype markers. Matched 

subpopulations exhibit selective connectivity at mossy fiber-to-pyramidal neuron 

synapses in CA3. Our results provide genetic, developmental and anatomical 

evidence for the existence of selectively interconnected principal neuron 

subpopulations in a cortical structure. The results further suggest that unique 

and co-ordinate schedules of neurogenesis and circuit assembly may underlie the 

establishment of specific microcircuits in the brain.  
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 There is now compelling evidence for selective connectivity in cortical 

circuits1-8, but whether this selectivity may involve specific subpopulations of neurons 

has remained unclear1,9. Investigating microcircuits has posed unique technical 

challenges due to the vast numbers of neurons and synapses in central neuropil1,3,7. 

Transgenic mouse lines based on a modified mouse Thy1.2 promoter cassette have 

produced stable expression patterns restricted to subgroups of neurons in the adult10. 

In „sparse“ Thy1 lines, high-level transgene expression in few neurons within several 

neuronal populations has been widely exploited to trace and image neuronal processes 

and their synaptic connections at high resolution11,12. Notably, although the lines 

exhibit clear variegations effects (i.e. unpredictable variations in the numbers of 

transgene-expressing neurons among individuals of the same mouse line), the 

distribution of labeled cells in these Thy1 lines is not entirely random. For example, in 

three different „sparse“ lines, transgene expression among retinal amacrine cells was 

restricted to very few defined subtypes13. „Sparse“ Thy1 lines may thus provide 

suitable tools to investigate whether defined subpopulations of neurons establish 

selective synaptic connections.   

 

The principal tri-neuronal circuit in the hippocampus, which relays granule 

cells (GCs) in the dentate gyrus (DG) to pyramidal neurons in CA3 and then 

pyramidal neurons in CA1, provides an attractive system to investigate the notion of 

subpopulations of selectively interconnected neurons in cortical structures. Thus, there 

is a wealth of anatomical and functional information about hippocampal circuits14-17. 

Furthermore, principal neurons in the hippocampus are well segregated into layers, 

and exhibit prominent transgene expression in „sparse“ Thy1 lines12,14. We therefore 

used the two „sparse“ Thy1 reporter lines Lsi1 and Lsi2, which overexpress 

membrane-targeted GFP (mGFP) in few neurons12,18, to investigate the possible 

existence and the connectivities of principal neuron subpopulations in the 

hippocampus.    

 

Molecularly distinct principal neuron subpopulations  

 

To investigate the possibility that mGFP-positive neurons in Lsi1 and Lsi2 

mice may visualize subpopulations of principal neurons in the hippocampus, we 
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analyzed their transcriptomes in the adult, their appearance during hippocampal 

neurogenesis, and their maturation during the establishment of hippocampal circuits. 

These three properties of Lsi1 and Lsi2 neurons were compared to those of a random 

population of principal neurons in DG, CA3 and CA1. In the second part of the study 

we analyze the connectivities between mGFP-positive GCs and CA3 pyramidal 

neurons in Lsi1 and Lsi2 mice (Supplementary Fig. 1). 

 

We first analyzed gene expression patterns of transgene-positive hippocampal 

GCs in adult Lsi1 and Lsi2 mice. Forty-to-fifty mGFP-positive cells were collected 

individually from three defined hippocampal positions using laser-dissection 

microscopy, and then analyzed as pools on Affimetrix chips19. The procedure was 

repeated for a total of 3 Lsi1 and Lsi2 mice each, at 2, 4, 8 and 16 weeks of age. For 

comparison, similar sets of GCs were collected from 3 Lmu1 Thy1 mice, which 

exhibit broad expression of mGFP in the DG12 (Supplementary Fig. 2). When 

compared to average values, Lsi1 and Lsi2 GCs each exhibited 150-250 genes which 

were either up- or downregulated at least 2-fold at 16 weeks (p<0.05; Fig. 1a; 

Supplementary Fig. 3). Some of the genes downregulated in Lsi1 or Lsi2 GCs 

exhibited expression values >50-fold lower than the average population, and some 

genes were altered in opposite ways in Lsi1 and Lsi2 GCs (Supplementary Fig. 4). 

The range within which the fractions of transgene-expressing GCs over total numbers 

of GCs varied in individual transgenic mice was 3-20% (Lsi1), and 1-15% (Lsi2) 

(N=50 mice each), but gene enrichment values over average GCs were closely 

comparable in GCs from mice with different frequencies of transgene-positive 

neurons (Fig. 1b), suggesting that the fractions of Lsi1 and Lsi2 GCs in DG may be at 

least 20%, respectively 15%.  

 

 Transgene-positive hippocampal CA3 and CA1 pyramidal neurons in Lsi1 and 

Lsi2 mice also exhibited unique gene expression patterns (Fig. 1c; Supplementary 

Fig. 5). Like for GCs, the subpopulation patterns of gene expression were independent 

from the frequencies of transgene-expressing cells in individual mice (Fig. 1c). To 

carry out a non-biased subpopulation test based on gene expression profiles, we took a 

group of 492 genes, consisting of 100 genes with the highest deviations from average 

values at 16 weeks in either Lsi1 or Lsi2 GCs, CA3 pyramidal neurons or CA1 

pyramidal neurons (total of 600 genes, minus 108 overlaps), and used the genes to 
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analyze the combined gene profiling databases including four different postnatal ages 

(2w, 4w, 8w, 16w), thus generating hierachical trees of cell type relatedness (i.e. 

determining which cell type/genotype/age samples are most related to another). With 

the exception of the 2 weeks samples, where developmental aspects were apparently 

predominant, this unbiased in silico test for relatedness consistently separated Lsi1 

and Lsi2 principal neurons from average populations, irrespective of age (Fig. 1d).  

 

Matched subpopulations in DG, CA3 and CA1 

 

 Among the transcripts specifically regulated in opposite ways in Lsi1 and Lsi2 

principal neurons, a small group was shared among GCs in the DG, and pyramidal 

neurons in CA3 and CA1 (Fig. 2a). These included a 3’ UTR splicing variant of 

Syntaxin 3 (STX3(3’); excluded from Lsi2 neurons, enriched in Lsi1 neurons), and a 

3’ UTR sequence of ribosomal protein S9 (S9(3’); excluded from Lsi1 neurons, 

enriched in Lsi2 neurons) (Fig. 2a). Double-in situ hybridization of hippocampal 

sections confirmed these relationships at the level of individual neurons, thus 

providing evidence that Lsi1 and Lsi2 subpopulations are homogeneous with respect 

to the expression of subsets of genes (Fig. 2b). For clarity, we will designate the 

entire Subpopulation of potentially Lsi1- or Lsi2-positive Hippocampal Principal 

neurons as HP(Su1), respectively HP(Su2) neurons. HP(Su1) neurons are thus 

(STX3(3’)+, S9(3’)-), whereas HP(Su2) neurons are (STX3(3’)-, S9(3’)+).  

 

 To investigate what might underlie the visualization of hippocampal principal 

neuron subpopulations in „sparse“ Thy1-mGFP transgenic mice, we determined the 

insertion sites of the transgenes in these mice. In Lsi1 mice, Thy1-mGFP transgene 

copies had inserted at one single locus, near the centromere on chromosome 16 

(Supplementary Fig. 6). Lsi2 mice also exhibited transgene copies near the 

centromere, but on chromosome 19 (Supplementary Fig. 6). Centromeric regions 

exhibit compacted chromatin consistent with pronounced transgene silencing. In 

addition, the two particular chromosomal insertion sites correspond to two of the only 

four centromeric regions in the mouse genome that exhibit an Olfactory Receptor 

(OR) gene cluster in their vicinity20 (less than 15 MB from centromeric edge; 

Supplementary Fig. 6). By contrast, the single transgene insertion site in Lmu1 mice 

was located on chromosome 2, neither near a centromere, nor near an OR cluster 
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(Supplementary Fig. 6). A survey of published neuronal types and subtypes marker 

genes revealed that the latter have a high probability to map near OR sites. Thus, from 

a list of genes specifically expressed in major cortical or retinal cell types, all of them 

were more than 10 MB away from an OR cluster, whereas 48.5% (respectively 74%) 

of a subtype marker21,22 list mapped within 1 MB (respectively 5 MB) from an OR 

cluster (Fig. 2c; Supplementary Fig. 7). We then determined the extent to which 

shared HP(Su1)- and HP(Su2)-selective genes are located near OR clusters. When 

400 genes were picked randomly among those expressed in all GCs, 4.8% of the 

genes mapped within 1 MB from an OR cluster (Fig. 2c). Genes varying within Lsi1 

GCs between 8 weeks and 16 weeks exhibited similar low correlations to OR clusters 

(3.8% within 1 MB; Fig. 2c). By contrast, when only genes up- or down-regulated in 

all HP(Su1) or HP(Su2) neurons (i.e. in DG, CA3 and CA1) were considered, 52% of 

them mapped within 1 MB of an OR cluster (Fig. 2c). These shared genes were 

regulated in a closely comparable manner in transgene-positive neurons in DG, CA3, 

CA1 (Fig. 2d). Furthermore, OR vicinities were maximised, when only genes up-

regulated 4-5-fold or down-regulated more than 5-fold in Lsi1 or Lsi2 neurons were 

included in the analysis (e.g. for >2x versus >5x down in Lsi1: 6.8% versus 23% 

within 1 MB; Fig. 2c). Therefore, like neuronal subtype marker genes, genes 

specifically enriched in HP(Su1) or HP(Su2) principal neurons have a high probability 

to map near OR clusters.  

 

Matched spatio-temporal patterns of neurogenesis 

 

We next analyzed the temporal patterns of HP(Su1) and HP(Su2) neurogenesis 

in Lsi1 and Lsi2 mice. We injected mice with BrdU at defined times during 

embryonic development or early postnatally, and analyzed hippocampal sections from 

1 month-old mice for BrdU labeling and mGFP signals23. Only strongly BrdU labeled 

cells that did not undergo further rounds of DNA replication and cell division 

subsequent to BrdU incorporation were included in the analysis. Consistent with 

previous reports, the overall population of GCs was generated during two broad 

rounds of neurogenesis, one peaking between E12 and E15, and the second one 

peaking between P3 and P724-26 (Fig. 3a). Lsi1 GCs exhibited sharper temporal 

neurogenesis patterns, with peaks within the earlier 25% of each granule cell 

neurogenesis wave (Fig. 3a). Lsi2 GCs were produced with a shift of about 2 days 
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compared to their Lsi1 counterparts, but still within the first half of the embryonic and 

postnatal neurogenesis waves (Fig. 3a). No Lsi1 or Lsi2 GCs were detected among 

adult born GCs (0/240 Doublecortin-positive GCs in 3 mice each, at 4 months). In 

close correspondence to Lsi1 GCs, Lsi1 CA3 and CA1 pyramidal neurons were 

produced during the earliest phase of their corresponding neurogenesis processes (Fig. 

3b). Lsi2 CA3 pyramidal neurons were produced during a defined early window of 

developmental time, slightly later than Lsi1 neurons, whereas for CA1 pyramidal 

neurons Lsi2 and Lsi1 overlapped extensively (Fig. 3b). When different individuals 

from the same mouse line were compared, varying total numbers of Lsi1 or Lsi2 

mGFP-positive GCs (or pyramidal neurons) did not affect the fractions of transgene-

positive cells produced during any neurogenesis interval (Figs. 3a, b), suggesting that 

variegation effects only influenced the probability of mGFP expression within defined 

subpopulations of GCs.  

 

 We then investigated the specification of HP(Su1) and HP(Su2) 

subpopulations. In Lsi1 mice, pairs of mGFP-positive radial glia were already 

detected in the hippocampal neuroepithelium (HN) at E10.5, at a time preceding 

precursor neurogenesis26-28 (Fig. 3c). Increasing numbers of transgene-positive 

postmitotic neuroblasts were detected along the HN at various distances from the 

presumptive Hem from E11.5 on, indicating the presence of Lsi1 GCs, CA3 

pyramidal neurons, and CA1 pyramidal neurons27 already at this early age 

(Supplementary Fig. 8). Comparable radially oriented groups of mGFP-positive cells 

were detected in Lsi2 embryos with a delay of 1-1.5 days of development 

(Supplementary Fig. 8). Systematic spatial mapping of labeled cells in several 

embryos at the same developmental time or in adult mice, revealed that mGFP-

positive cells were distributed according to specific, reproducible and distinct patterns 

in the two lines of transgenic mice (Supplementary Fig. 8). Time lapse imaging of 

hippocampal explant cultures from Lsi1 embryos provided evidence that mGFP-

positive postmitotic neuroblasts migrated and developed into GCs (Supplementary 

Fig. 9).   

 

 To determine whether Lsi1 neurons are representative of the earliest 

subpopulation of principal neurons during hippocampal neurogenesis, we compared 

spatial patterns of mGFP-positive cells to those of EdU-incorporating cells (a BrdU 
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analogue that can be visualized under non-denaturing conditions29). Between E11.5 

and E12.5, spatial patterns of precursor neurogenesis (Tbr2+)30 and of mGFP-positive 

Lsi neurons were closely comparable (Fig. 3d). Zones of early neurogenesis at 

E11.527,28 (EdU+) correponded to reproducible discrete territories depleted of Nestin- 

and Ki67-positive neuronal precursors 2 days later, and enriched in mGFP+ 

neuroblasts, suggesting that early hippocampal neurogenesis proceeded according to 

non-random spatial patterns (Fig. 3d). Consistent with the notion that Lsi1 neurons 

are representative of the earliest principal neurons in the hippocampus, neurons 

labeled with BrdU between E11.5 and E12.5, co-distributed with transgene-positive 

Lsi1 neurons in adult CA3 (Supplementary Fig. 8).  

 

Matched distinct temporal patterns of synaptogenesis 

 

 To investigate how HP(Su1) and HP(Su2) subpopulations insert into 

hippocampal circuits, we analyzed the dendrites and axons of mGFP-expressing 

neurons between P5 and P10, during the early phases of adult hippocampal 

synaptogenesis31. A comparison of Lsi1 and Lsi2 CA3 pyramidal neurons suggested 

that Lsi1 neurons anticipated Lsi2 neurons by 2-4 days (Fig. 4a). Within CA3b, where 

earliest born Lsi2 neurons accumulate first, Lsi1 and Lsi2 pyramidal neurons were 

each homogeneous with respect to maturation, and exhibited no overlap in maturation 

or spinogenesis between P5 and P10 (Fig. 4a). Closely comparable maturation and 

spinogenesis patterns were detected for distal CA1 pyramidal neurons (next to 

subiculum; Fig. 4a). Consistent with these marked temporal differences in 

hippocampal circuit assembly, Lsi1 GCs downregulated the developmental markers32 

Doublecortin and Sema3C before Lsi2 GCs, and both subpopulations matured before 

the average of all GCs (Fig. 4b). Lsi1 mossy fibers established large mossy fiber 

terminals in stratum lucidum between P5 and P7, where these frequently contacted 

Lsi1 pyramidal neurons from P7 on (Fig. 4c). By contrast, no mossy fiber terminals 

were detectable along Lsi2 mossy fibers at P7; at P10, the terminals were rare and 

small, but they often contacted Lsi2 pyramidal neurons (Fig. 4c). Presynaptic patterns 

of synaptogenesis were also qualitatively different between Lsi1 and Lsi2 mossy 

fibers, with the latter establishing smaller terminals and being more prone to collateral 

formation (Figs. 4c; Supplementary Fig. 10). In parallel to a delay in mossy fiber 

synaptogenesis, dendritic development in Lsi2 GCs lagged by 3-4 days behind that in 
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Lsi1 GCs at all positions along the blades31 (Fig. 4c). Comparable distinct timings, 

rates and patterns of presynaptic maturation were detected between Lsi1 and Lsi2 

mossy fibers in organotypic slice cultures (Supplementary Fig. 10).  

 

To provide independent evidence for the presence of distinct subpopulations of 

hippocampal principal neurons exhibiting pronounced differences in synaptic 

maturation, we analyzed transgene-positive CA3 pyramidal neurons and mossy fibers 

in Lmu1 mice. At P7, the analysis revealed the expected presence of subpopulations 

of mossy fibers and CA3 pyramidal neurons maturing in patterns comparable to those 

of HP(Su1) and HP(Su2) neurons, and that of additional transgene-positive neurons 

maturing after these early subpopulations of principal neurons (Fig. 4d).   

  

Selective connectivity within principal neuron subpopulations 

 

 To determine whether matched HP(Su1) (or HP(Su2)) principal neurons 

exhibit synaptic contacts selectively with another, we analyzed contacts between 

mGFP-positive Lsi1 (or Lsi2) mossy fiber terminals and CA3 pyramidal neurons in 

adult mice. Only events in which the distance between mossy fiber terminals (>3 μm 

diameter) and pyramidal neuron dendrites was smaller than 0.2 μm were considered 

as putative contact sites. For more than 70% of these putative synaptic contacts, we 

determined whether mGFP/Bassoon accumulation sites (presynaptic) were apposed to 

mGFP/Pi-GluR1 puncta (postsynaptic) (Supplementary Fig. 11), and validated the 

vast majority of those putative synapses (48/50) by this procedure18. Due to the very 

low connectivity between GCs and pyramidal neurons in dorsal hippocampus14, the 

likelyhood of finding such synaptic contacts by chance is extremely low. Nevertheless, 

a systematic analysis of 100 x 100 x 55 μm volumes yielded frequent contact sites 

between mGFP-positive cells (Fig. 5a). A statistical analysis revealed that the 

likelyhood that these frequencies were chance events was 10-5 or less (Fig. 5a). 

Comparable selective contacts between mGFP-positive GCs and CA3 pyramidal 

neurons were detected for Lsi2 neurons (Fig. 5a). 

 

 To determine whether principal neuron subpopulations related through their 

neurogenesis time windows in the DG and in CA3 may exhibit synaptic connections 
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selectively with another, we compared the distributions of Lsi1 mossy fiber terminals 

(early presynaptic subpopulation) to that of clusters of CA3 pyramidal neurons 

labeled in an unbiased manner with BrdU either at the beginning (early postsynaptic 

population; HP(Su1)-like) or at the end (late postsynaptic population; no overlap with 

HP(Su1)) of CA3 neurogenesis. As expected, mGFP-positive Lsi1 CA3 pyramidal 

neurons co-distributed with some, but not all clusters of „early labeled“ pyramidal 

neurons (not shown), and clusters of Lsi1 mossy fiber terminals co-distributed with 

„early-labeled“ pyramidal neuron clusters irrespective of whether they contained 

transgene-positive cells (Fig. 5b). By contrast, no Lsi1 mossy fiber terminal clusters 

co-distributed with „late labeled“ pyramidal neuron clusters, which consistently 

coincided with mGFP-labeled mossy fiber stretches with little or no large mossy fiber 

terminals (Fig. 5b). These results suggest that early-born HP(Su1) mossy fibers 

selectively establish synaptic connections with early-born, but not with late-born 

pyramidal neurons in CA3. 

 

 To further investigate the notion that selective connectivity between Lsi1 or 

Lsi2 principal neurons in DG and CA3 is based on selective recognition processes 

between subpopulations of cells, we analyzed the connectivity of Lsi1 and Lsi2 

neurons in a  Reelin-/- background, where the cell layer organisations in hippocampal 

DG and CA3 are majorly disrupted33. As expected, the positions of GCs and CA3 

pyramidal neurons, and the trajectories of mGFP-positive mossy fibers were 

obviously abnormal in the absence of Reelin (Supplementary Fig. 11). Transgene-

expressing Lsi1 neurons now populated the outer layer of neocortex, supporting the 

notion that Lsi1 neurons maintained their identities in the absence of Reelin33 

(Supplementary Fig. 11).  Notably, the disruption of hippocampal layer organization 

did not affect the frequencies by which Lsi1, respectively Lsi2 mossy fibers and CA3 

pyramidal neurons established synaptic connections with each other (Supplementary 

Fig. 11).    

 

Conclusions and implications 

 

 We have shown that matched principal neuron subpopulations in DG, CA3 

and CA1 defined by their distinct patterns of gene expression, distinct early 

neurogenesis windows, and distinct timings of synaptogenesis, exhibit selective 
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connectivity at mossy fiber-to-pyramidal neuron synapses in CA3 (Supplementary 

Fig. 1). A detailed analysis of total Lsi1 and Lsi2 principal neuron numbers in the 

hippocampus provides further insights into how these subpopulations may be 

specified during development. Published figures of total principal neuron numbers in 

rat hippocampus, normalized to CA3, yield values of 1 (CA3), 4.8 (GCs) and 1.5 

(CA1)14. Remarkably, corresponding values of total transgene-positive neurons were 

1 (CA3), 4.4 ± 0.2 (GCs), and 1.5 ± 0.1 (CA1) for Lsi1, and 1 (CA3), 4.6 ± 0.1 (GCs), 

and 1.4 ± 0.1 (CA1) for Lsi2 (N=5 mice each; absolute numbers within each mouse 

line varying by a factor of up to 2.7). Therefore, total fractions of HP(Su1) (or 

HP(Su2)) neurons in the three main hippocampal subdivisions are closely comparable. 

These findings suggest that the subpopulations are specified through a mechanism that 

allocates fixed proportions of neurons within the neurogenesis processes that lead to 

principal neurons in DG, CA3 and CA1. The allocation is made early in neural 

development, and may manifest for each particular subpopulation as a probability 

function of time during neurogenesis.  

 

 Our findings that HP(Su1) and HP(Su2) neurons reflect two early 

subpopulations of hippocampal principal neurons are consistent with previous reports 

that neurons generated early during neurogenesis also mature and insert into circuits 

at faster rates34,35. It is tempting to speculate that selective connectivity within 

HP(Su1) and HP(Su2) neurons might be causally related to their temporally co-

ordinate maturation, but further studies will be required to directly test this possibility. 

That distinct temporal sequences of neurogenesis are coupled to specific patterns of 

synaptogenesis has been shown conclusively for Drosphila34-37, but no corresponding 

evidence had been reported for vertebrates.   

 

 To what extent may hippocampal connectivity be influenced by subpopulation 

specificities? A preliminary analysis revealed frequent contacts between matched 

mGFP+ CA3 and CA1 pyramidal neurons in our mice, but an assessment of selective 

connectivity in this part of the hippocampal circuit is more difficult due to the high 

degree of connectivity between these neurons14. However, if, as our findings suggest, 

temporally coincident maturation is a factor affecting synaptic specificity, outcomes 

may differ between sparse connectivity systems such as the mossy fiber to pyramidal 

neuron synapses in CA3, and highly interconnected systems like the recurrent 
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collaterals in CA3 or the Schaffer collaterals in CA1. Thus, for each subpopulation 

synaptogenesis in stratum lucidum was established rapidly, within 1-2 days, whereas 

synapse densities increased during at least 5 days in stratum radiatum and stratum 

lacunosum moleculare. Accordingly, specificities may be highest for low-density, fast 

assembling synapse systems. Timing-based schemes favoring selective 

synaptogenesis in rapidly maturing sparse systems may thus assign important roles to 

driver synapses38 in circuit assembly and maturation. How the subpopulations and 

their microcircuits may have specific roles in hippocampal information processing 

remains to be determined. 

 

 

 

Methods 

 

Thy1 reporter mice were as described; reelin mutant mice were from Jackson’s 

Laboratories. Antibodies: rabbit anti-GFP (Invitrogen), mouse anti-MASH1 (BD 

Pharmingen), mouse anti-Nestin and rabbit anti-Prox1 (Chemicon International), goat 

anti-NeuroD1 (Santa Cruz), rabbit anti-Tbr2/Eomes and rat anti-BrdU (Abcam).  

The protocol for LDM collection and microarray analysis of few mGFP-labeled 

neurons was as described19. Average present call values were 40-48%.  The double in 

situ hybridization protocol was as described39; signals from DIF or FITC labeled 

probes were amplified and detected using TSA plus Cyanine 3 or TSA plus Cyanine 5 

system (PerkinElmer). 

Immunocytochemistry was on PFA-fixed tissue (50 μm floating sections); detection 

was with Alexa 488, 568 and 647 conjugated antibodies (Molecular Probes). For 

analysis in the lamellar plane, hippocampi were dissected from perfused brains after 

O/N post-fixation, embedded in 3% agarose gel, and sliced transversally with a tissue 

chopper (McIlwain, 100 μm slices).  

The BrdU labeling method in vivo was carried out in 24h intervals, as described23. 

EdU detection was as described29 (Invitrogen Click-it EdU). 

Maturity Scores were based on published immature/mature features31, using 3D 

Imaris software. Individual features were assigned a value between 0 (least mature) 

and 3 (most mature), and values were summed. Parameters for dendrites were length, 



 - 25 -

diameter, diameter change at branchpoint, swellings, spines; axons: swellings, 

collaterals, filopodia, volume of terminals. For spine densities, only protrusions 

shorter than 2 μm, with an evident connection to the main shaft were included. 

Statistical differences were assessed by the student’s t-Test. 

To investigate transgene-positive mossy fiber / CA3 pyramidal neuron connectivities, 

lamellar sections were processed for immunocytochemsitry (Bassoon and Pi-GluR1), 

and non-overlapping CA3 stratum lucidum volumes containing mGFP+ pyramidal 

neurons were analyzed. Lengths were 100 μm (expect one terminal per 100-140 μm 

along CA314) and depths were 55 μm. Average pyramidal neuron numbers within 

these volumes was 173 (dorsal third of hippocampus). For each mGFP+ pyramidal 

neuron within the volume we determined the number of putative synaptic contacts 

with mGFP+ mossy fibers. We then computed probability mass functions (binomial 

distributions) as follows: Pr(K=k) = f(k; n; p) = (n!/k!(n-k)!) pk(1-p)n-k, where k is 

number of connections found, n is (number of mGFP+ mossy fibers) x (average 

number of mGFP+ pyramidal neurons), and p is the probability for each contact 

(1/173; independent and identically distributed).  
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Figure 1 

Distinct transcriptomes of Lsi1 and Lsi2 hippocampal principal neurons. 

(a) Transcriptomes of Lsi1 and Lsi2 GCs. Left: numbers of genes up- or down-

regulated compared to average (16 weeks data). Right: columns are average values 

from 3 mice.  

(b) Comparable gene expression profiles in GCs from mice with many (15-20% of 

total) or few (2-5% of total) GFP-positive neurons. Columns are values in one mouse 

each. 

(c) Transcriptomes of Lsi1 and Lsi2 pyramidal neurons. Details like in (a, b). 

(d) In silico cell grouping. The unbiased hierarchical tree algorithm grouped cells 

according to subpopulations of GCs, and pyramidal neurons in CA3 an CA1. 
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Figure 2 

Identification of matched HP(Su1) and HP(Su2) subpopulations.  

(a) Examples of transcripts co-regulated in Lsi1 or Lsi2 principal neurons in DG, CA3 

and CA1.  

(b) Marker combinations identifying Lsi1 and Lsi2 principal neurons in the 

hippocampus. Combined GFP/in situ hybridization detection. Arrows: GFP+/marker+ 

(yellow) and GFP+/marker- (green). Quantitative analyses: data from 8 sections each, 

covering all anterior-posterior levels of hippocampus; N=3 mice each. Right: 

distribution of STX3(sv) and Rps9 transcripts among pyramidal neurons in CA3.  

(c) High probability for subtype specific genes to map near OR clusters. Left: 

relationship between subtype markers and OR cluster vicinity. Random: 400 random 

genes in average GCs; Maturation: genes enriched in Lsi1 (16w) over Lsi1 (8w) GCs; 

HP(Su1), HP(Su2): genes selectively regulated in all Lsi1 or Lsi2 principal neurons. 

Right: optimization of OR vicinity for genes up- (4-5 fold) or down-regulated (>5 

fold) in Lsi1 or Lsi2 principal neurons.  

(d) Genes up- or down-regulated in all three types of Lsi1 hippocampal principal 

neurons are closely co-regulated in GCs, and in pyramidal neurons in CA3 and CA1. 

Each line represents one gene, and its deviation from average values. 
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Figure 3 

Specification of Lsi1 and Lsi2 principal neurons during hippocampal neurogenesis. 

(a) Lsi1 and Lsi2 GCs are generated during early phases of neurogenesis. Top: BrdU 

labeling experiment; arrows: BrdU+/GFP+ GC (yellow), BrdU+/GFP- GC (red) and 

weakly BrdU+ GC (white). Lower panels, left: fractions of total GFP+ GCs labeled 

with BrdU at different time intervals (avrg.: fractions of all GCs labeled with BrdU). 

Averages from 3 mice each; values normalized to throughs between two neurogenesis 

peaks; vertical line: through between early and late neurogenesis wave for average 

GCs. Right panel: fractions of BrdU+/GFP+ neurons are not affected by total numbers 

of GFP+ GCs. 

(b) Neurogenesis of Lsi1 and Lsi2 hippocampal pyramidal neurons. Details as in (a).  

(c) Transgene expression during hippocampal neurogenesis. Expression in radial glia 

cells (left) and neuroblast groups (right). Some of the GFP+ neuroblasts are Nestin+ 

(right, arrow). 

(d) Specification of Lsi1 neuroblasts during hippocampal neurogenesis. At E11.5, 

GFP+ neuroblasts (arrows) co-distribute with regions of proliferating precursors 

(Tbr2+; top, right). At E13.5, GFP+ neuroblasts (white arrows) accumulate in defined 

Ki67-depleted non-proliferating regions (N=6) that had been labeled with EdU at 

E11.5 (arrow), and are now depleted of Nestin precursors (arrow). 

Bar: 20 μm. 
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Figure 4 

Distinct synaptogenesis schedules of HP(Su1) and HP(Su2) subpopulations. 

(a) Non-overlapping dendritic maturation and synaptogenesis processes in Lsi1 and 

Lsi2 pyramidal neurons in CA3 and CA1. Left and center: representative panels and 

camera lucidas. *, **, **: p<0.05, p<0.01, p<0.001.  

(b) Immature GC transcript contents in Lsi1, Lsi2 and average GCs. Dcx: 

Doublecortin. 

(c) Non-overlapping dendritic maturation and synaptogenesis processes by Lsi1 and 

Lsi2 GCs. Arrows: presence (yellow) or absence (green) of specific contacts between 

mossy fibers and pyramidal neurons. Scatter plot: presynaptic maturation index values.  

(d) Synaptogenesis subgroups within Lmu1 pyramidal neurons and mossy fibers at P7. 

Panel and camera lucida: representative examples of labeled dendrites (panel, stratum 

radiatum) and mossy fibers (lucida). Bar: 10 μm.  
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Figure 5 

Selective connectivity between matched GCs and CA3 pyramidal neuron 

subpopulations. 

(a) Analysis of stratum lucidum synapses in Lsi1 and Lsi2 mice. The panels show 

examples of verified contacts (yellow arrows) in Lsi1 mice at one month. Quantitative 

analysis: cumulative probability values for first 10 volumes (averages from 3 mice 

each). 

(b) Lsi1 mossy fibers establish synapses facing clusters of early- but not late-born 

pyramidal neurons. Panels: examples from 1 mo Lsi1 mouse labeled with BrdU at 

E15.5-16.5 (late-born pyramidal neurons). Yellow arrows: Lsi1 mossy fiber stretch 

facing BrdU+ neurons, and devoid of mossy fiber terminals (white arrows). 

Quantitative analysis: 30 clusters each, from 3 mice.    
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Supplementary Fig. 1 

Schematic of main findings.  
 



 - 37 -

 
Supplementary Fig. 2 

Distribution of transgene-positive cells in Lmu1, Lsi1 and Lsi2 mice. 

In situ hybridization in 2 mo mice. Note how positive neurons are detected in the 

same structures but in different numbers in Lmu1, Lsi1 and Lsi2 mice. 
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Supplementary Fig. 3 

Distinct transcriptomes of Lsi1 and Lsi2 hippocampal GCs. 

Left: reproducibility of microarray analysis. Right: heat map for 30 differentially 

regulated genes at 4 different ages. 
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Supplementary Fig. 4 

Genes up- or downregulated in Lsi1 or Lsi2 granule cells. Values are averages from 3 

mice (16 weeks). 
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Supplementary Fig. 5 

Genes up- or downregulated in Lsi1 or Lsi2 CA3 or CA1 pyramidal neurons. Values 
are averages from 3 mice (16 weeks). 
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Supplementary Fig. 6 

Visualization of transgene insertion sites by FISH. The positions of OR clusters are 

indicated by bars and numbers on the chromosome schematics on the right. The 

insertion sites for Lsi1 and Lsi2 mice are near centromeres, on two of the four mouse 

chromosomes with OR clusters near centromeres (C7, C14, C16, C19). 
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Supplementary Fig. 7 

Subtype-specific genes  and shared matched subpopulation genes have a high 

probability to map near OR clusters. Subtype genes: all known retinal neuron markers, 

and all DRG markers. Cell type markers: known general retinal and interneuron 

markers. Mm: mus musculus; Hs: homo sapiens. 
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Supplementary Fig. 8 

Specification of Lsi1 and Lsi2 principal neurons during hippocampal neurogenesis 

and comparison to distributions in adult hippocampus. 

(a) Left: representative patterns of GFP+ neuroblast distributions in HN of Lsi1 and 

Lsi2 embryos (Hem to the left). Right: Spatial distribution of GFP+ neuroblasts in HN 

of Lsi1 and Lsi2 embryos at E11.5. The heat map (top) visualizes specific differences 

between Lsi1 and Lsi2 embryos at the same developmental age; the quantitative 

analysis (bottom) represents average values for 3 embryos each. 

(b) Patterns of Lsi1 and Lsi2 pyramidal neurons in the adult hippocampus. Left: 

representative 3D-maps of GFP+ pyramidal neurons (white dots) throughout CA1 and 

CA3. Right: quantitative analysis of the distributions. Median values from 3 mice 

each; note resemblance to distributions in HN (a).  

(c) Comparable distributions of early (E11.5-12.5) BrdU-labeled and GFP+ Lsi1 

pyramidal neurons (e.g. arrows). Heat map data from 1 mo mouse. Panel on the right: 

cluster of BrdU+/GFP+ pyramidal neurons in CA3 (arrow). 
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Supplementary Fig. 9 

Maturation of GFP-positive Lsi1 neuroblasts. 

(a) Time lapse imaging of Lsi1 E13.5 slice culture. Neuroepithelium on the right. 

Note mitotic division of Lsi1 neuroblast to generate GFP+ Lsi1 daughter cells. 

(b) Time lapse imaging of DIV3 Lsi1 E15.5 slice culture. The camera lucida 

highlights a neuroblast that develops dendritic and axonal primordia between DIV3 

and DIV6. 

(c) Maturation of mGFP-positive neuroblasts in vivo. Immunocytochemistry panels 

visualize mGFP+ cells co-expressing Mash1 (E15.5; early progenitors), NeuroD1 

(E17.5; postmitotic neuroblasts) and Prox1 (P2; immature granule cells).  
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Supplementary Fig. 10 

Distinct mossy fiber properties by Lsi1 and Lsi2 GCs in vitro and in vivo. 

(a) Mossy fiber maturation in vitro. Panels: examples of comparable mossy fiber 

maturation stages in P2 + 4DIV Lsi1 and P3 + DIV5 Lsi2 slice cultures. The 

quantitative analysis is based on time lapse imaging of Lsi1-P2 and Lsi2-P3 cultures, 

from DIV1 on. Numbers of collaterals per mossy fiber that will have grown (process 

gains) or shrunk (process losses) one day later. Synaptogenesis coincides with a phase 

of increased collateral dynamics; it is maximal from days +1 to +3 in Lsi1 mossy 

fibers, and from days +3 to +6 in Lsi2 mossy fibers. Averages from 4 mossy fibers 

each.  

(b) Distinct hilar collateral arborizations in Lsi1 and Lsi2 mossy fibers in vivo. 

Camera lucidas: illustration of longitudinal and transversal hilus collateral axes for a 

Lsi1 and a Lsi2 GC at 1 mo. Longitudinal axis: from cell body to beginning of CA3; 

transversal axis: longest extent of collateral extension perpendicular to longitudinal 

axis. Quantitative analysis: Lsi1 mossy fiber collaterals arborize through larger extent 

of hilus that their hilar counterparts. Ellipse areas were computed for individual mossy 

fibers, based on their longitudinal and transversal axes. N=20 each.  
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Supplementary Fig. 11 

Selective connectivity between mossy fiber and CA3 pyramidal neuron 

subpopulations. 

(a) Left: example of verified mossy fiber terminal/pyramidal neuron contact (yellow 

arrows) in Lsi1 mouse at one months. Lsi1 mossy fiber from left to right; Lsi1 

pyramidal neuron dendrite from bottom left to top right. High-mag panels are single 

confocal planes. Right: example of quantitative analysis raw data for six individual 

volumes along CA3 in a 1 mo Lsi1 mouse. The values for „contacts“ are the number 

of mossy fiber terminals contacting individual Lsi1 pyramidal neurons inside that 

volume (e.g. six of them in volume #1). 

(b) Selective connectivity between Lsi1 or Lsi2 subpopulations in the absence of 

Reelin. Left: Disruption of cortical organization in Reelin-/- mice: GFP+ Lmu1 

neurons in layer 5 and 6 are displaced towards the pia in the absence of Reelin. 

Center: disruption of cell layering in the hippocampus, and clustering of Lsi1 mossy 

fiber terminals in CA3 (arrows) in the absence of Reelin. Right: selective stratum 

lucidum connectivity in Lsi- and Lsi2-Reelin-/- mice. 
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Supplementary Fig. 12 

Heat map procedure to analyze the distribution of transgene-positive cells in an E11.5 

Lsi1 embryo (Fig. 3b). 

Upper panel: Workflow description for dataset acquisition. Confocal acquisition and 

3D stiching (a; XuvTools); alignment at single plane level (b; Photoshop CS3); 3D 

reconstruction (c, Imaris); spot tracing (d); rotation and spot density analysis (Matlab). 

Lower panels: Heat map generation based spot positioning procedure. A sliding 

window procedure (Matlab) based on local spot densities generates a heat map 

(center); background (revealing individual sections, center) is filtered, and HN outline 

is added (dotted line) to generate the final map on the right.  
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2.2 Additional data  
 

This section contains further results and preliminary findings all concerning the 

subtypes of principal neurons in the hippocampus. 

 

 

2.2.1 Distribution patterns of GFP-positive cells 

 It has been suggested that subregions in the hippocampus can be subdivided into 

molecular domains based on gene expression patterns (Thompson et al., 2008). The 

comprehensive 3D reconstructions of the distributions of GFP-positive cells in the 

hippocampus of Lsi1 or Lsi2 mice revealed that there GFP-positive cells were absent 

from some of the subdomains (Fig.1). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 1.  no GFP-positive cells in entire hippocampal subdomains. 
                white dot: GFP-positive cell, blue surface: outline of the dentate gyrus or CA3 
                pyramidal cell layer, red: particular molecular domains 
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We further determined whether GFP-positive cells in the Lsi1 or Lsi2 mice may be 

clustered in the adult. To address this question, a clustering program was used as 

analytical tool. In this program, if the distance between two cells is shorter than the 

threshold distance in 3D, these two cells are assigned the same color (Fig.2).   

 

 
 
 
 
 
 
 
 
 
                                    Figure 2. clustering program 
 
 
More GFP-positive granule cells or CA3 pyramidal cells in Lsi1 or Lsi2 belonged to 

larger clusters than was obtained with a random distribution pattern for the same total 

number of cells (Fig.3). 

 

 

 

 

 

 

 

 
 

Figure 3. visualizing the clusters larger than a certain number 
DG: The threshold was 40 μm. Clusters contained more than 24 cells were presented. 
CA3: The threshold was 50 μm. Clusters contained more than 5 cells were presented. 
The Y axis of the charts was the total number of the cells. 
 
These results suggested that GFP-positive granule cells or CA3 pyramidal cells in 

Lsi1 or Lsi2 tend to be more clustered than would be predicted from a random 

distribution. 
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2.2.2 The chromosomal location of the transgene in Lsi3 mice    

 Another transgenic mouse line (Lsi3), which expresses GFP under the Thy1 promoter 

was generated in the laboratory of S. Arber. Granule cells in adult Lsi3 mice were 

sparsely labeled. The chromosomal location of the GFP construct in Lsi3 was 

identified by FISH. This revealed that the construct had also inserted in the vicinity of 

an OR gene cluster, although not in the vicinity of a centromere (Fig.4). 

 

 

 

 

 

 

 

 
             Figure 4. the chromosomal location of the construct in Lsi3 
                             C: chromosome number, Blue bars and numbers on the left side: OR genes 
                             location, numbers on the right side: possible location range of the construct  
 

  

This finding would be consistent with the possibility that the vicinity to an OR gene 

cluster plays a role in generating the sparse labeling patterns. 
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2.2.3  HDAC inhibitor treatment in hippocampal slice cultures 

 Chromatin modifications have a role in learning and memory (Fischer et al., 2007; 

Vecsey et al., 2007; Guan et al., 2009). For example, histone deacetylase (HDAC) 

inhibitors enhance memory and synaptic plasticity (Vecsey et al., 2007), and 

environmental enrichment induced hippocampal and cortical acetylation and 

methylation of histones 3 and 4 (Fischer et al., 2007).  

To investigate whether chromatin modifications may influence the properties of 

hippocampal subpopulations, I analyzed trichostatin A (TSA)-treated hippocampal 

cultures. 

 When TSA was administered to the hippocampal slices from Lsi1 mice, the intensity 

of the GFP signal was increased in a reversible manner (Fig.5). By contrast, no GFP-

negative neurons became GFP-positive during the TSA treatment.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
    Figure 5.  TSA changed the GFP intensity of Lsi1 positive granule cells in the slice culture  
         a) time-lapse imaging of Lsi1 GFP-positive granule cells in the hippocampal slice culture 

red arrow: 500 nM TSA in culture medium, blue arrow: no TSA in culture medium 
DIV: day in vitro  

         b) GFP intensity of a cell body, light green: No TSA in culture medium 
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 Interestingly, the total volume of GFP-positive large mossy fiber terminals was 

reversibly increased by the TSA in Lsi1, but not in Lsi2 slice cultures. (Fig.6).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 6. TSA increased volume of mossy fiber terminals in hippocampal slice cultures  
               a) time-lapse images and drawing of large mossy fiber terminals 
               b) ratios of total terminal areas between two different time points (later time point/ 
                   earlier time point) 
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Previous studies in the lab have demonstrated that environmental enrichment 

increases the morphological complexities of large mossy fiber terminals in Lsi1 mice 

(Galimberti, 2006) (Fig.7). 

For example, the number of satellite terminals of large mossy fiber terminals was 

increased after the environmental enrichment (Galimberti, 2006) (Fig.7). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 Figure 7. morphological changes of large mossy fiber terminals after environmental   
                enrichment (from Galimberti 2006) 
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Since environmental enrichment induced the acetylation of histones in the 

hippocampus, this gave rise to the question whether the HDAC inhibitor treatment in 

hippocampal slice cultures mimicked the effect of environmental enrichment in vivo. 

To address this question, a detailed morphological analysis was performed for GFP-

positive large mossy fiber terminals in Lsi1 slice cultures. Indeed, the numbers of 

satellite terminals were increased after the TSA treatment (Fig.8). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
   Figure 8. increase of satellite terminals after the TSA treatment 
                  green: satellite terminals, green with the white outline: core terminals which are on 
                  the main axon  
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Microtubule-associated protein 2 (MAP2) is known to be up regulated in the 

hippocampus after the environmental enrichment (Fischer, 2007). In hippocampal 

slice cultures, the TSA treatment also enhanced MAP2 protein levels in the dendritic 

regions of CA3 and CA1 pyramidal cells, but not in the dendritic region of granule 

cells (Fig.9). Since hippocampal slices were cultured without the entorhinal cortex, 

the absence of MAP2 up regulation upon TSA in granule cells may be due to an 

absence of synaptic afferents to these neurons. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
            Figure 9.  MAP2 staining after TSA treatment in hippocampal slice cultures 
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2.2.4 Sexual dimorphisms in the hippocampus 

 Animals have evolved innate beheviours that result in stereotyped social and sexual 

responses to the environment. Despite dramatic behavioral differences between the 

sexes, the anatomical and molecular mechanisms underlying these differences are 

poorly understood. 

 By doing in situ hybridization for GFP, we found that there were consistently many 

more GFP-positive cells in 8 weeks old Lsi1 female mice than in 8 weeks old Lsi1 

male mice (Fig.10).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                 Figure 10. the distribution patterns of GFP-positive cells in adult Lsi1  

 

Furthermore, there were GFP-positive cells in the layer 1-3 of the cortex and the inner 

CA3 pyramidal cell layer only in 8 weeks old Lmu1 female mice but not in 8 weeks 

old Lmu1 male mice (Fig.11)  
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                   Figure 11. the distribution patterns of GFP-positive cells in adult Lmu1  

 By contrast, the difference for the number of GFP-positive cells was not pronounced 

between 2 weeks old Lsi1 male and female mice (Fig.12). 

 

 

 

 

 

 

 

 

 

 

 

                                                                                  
 
 
 
 Figure 12. the distribution patterns of GFP-positive cells in 2 weeks old Lsi1 mice                                                     
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And the distribution patterns of GFP-positive cells were similar in 8 weeks old Lsi2 

male and female mice (Fig.13). This suggests that the Thy1 promoter is not just more 

active in female transgenic mice than in male transgenic mice. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                Figure 13. the distribution patterns of GFP-positive cells in adult Lsi2 mice 
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Microarray analyses were performed for the GFP-positive granule cells, CA3 and 

CA1 pyramidal cells in Lsi1 female mice to investigate whether GFP-positive cells in 

the Lsi1 female have similar gene expression patterns to those in  Lsi males. The 

results were that many shared genes which were co-regulated among GFP-positive 

cells in different regions of Lsi1 male were also co-regulated in the same manner 

among GFP-positive cells in different regions of Lsi1 female (Fig.14). Furthermore,  a 

hierarchical tree  generated for each line and time point based on 679 genes which are 

the sum of top 100 highest fold change genes from 9 comparisons with random 

samples (male Lsi1 or Lsi2; DG, CA3 and CA1 and female Lsi1; DG, CA3, CA1; 221 

genes were overlapped) showed that GFP-positive cells in Lsi1 female mice were 

more similar to GFP-positive cells in Lsi1 male mice than those in Lsi2 male mice, or 

in average principal neurons (Fig.14). 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
    Figure 14. gene expression analysis of GFP-positive cells in Lsi1 female mice 
                    a) expression value of shared genes M; male mice, Fe; female mice 
                    b) hierarchical tree  
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Interestingly, there were also genes exhibiting distinct expression patterns in males 

and females. For example, the genes which were down regulated in granule cells from 

2 weeks to 16 weeks old male mice exhibited still high expression values like granule 

cells of 2 weeks old male  in granule cells, CA3 and CA1 pyramidal cells of 8 weeks 

old female mice (Fig.15). In addition, genes which were up regulated in granule cells 

from 2 weeks to 16 weeks in male mice exhibited low expression values in granule 

cells, CA3 and CA1 pyramidal cells of 8 weeks old female mice (Fig.15). By contrast, 

typical developmental genes such as doublecortin were down regulated at 8 weeks in 

both male and female mice (Fig.15). 

      

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 15. gene expression pattern of hippocampal principal neurons in male and female  
                 a) genes were down regulated from 2 weeks to 16 weeks in granule cells of male  
                     mice. 
                 b) genes were up regulated from 2 weeks to 16 weeks in granule cells of female  
                     mice. 
                 c) developmentally down regulated genes 
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About one third of the genes up regulated in female mice (compared with male mice 

at 8 weeks of age) overlapped with the genes up regulated in 2 weeks old male mice 

(compared with 16 weeks old male mice) (Fig.16). By contrast, less than 5 % of the 

genes up regulated in female mice overlapped with the genes down regulated in 2 

weeks old male mice (Fig.16). The genes down regulated in female mice also 

exhibited a similar trend.  

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 16. overlap between sexual dimorphism genes and developmentally regulated genes 
                  Genes were calculated based on the T-Test (p<0.05, more than 2 fold) between 
                  male and female (Male-Female) or between 2 weeks and 16 weeks (2w-16w). 
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3. Discussion and Conclusion  
3.1 The subpopulations in the hippocampus 

In this thesis, it was demonstrated that there are subpopulations of principal neurons 

in the hippocampus. They were identified through gene expression patterns, the 

timing of neurogenesis, preferential connectivity within the subpopulation, and 

distinct distribution patterns throughout the whole hippocampus. Since there was no 

GFP-positive cell in some hippocampal molecular subdomains in Lsi1 or Lsi2 mice, 

this suggests that molecular domains of the hippocampus may consist of  different 

combinations of neuronal subpopulations. However, it is totally unclear whether these 

subpopulations may have distinct functional significance. In the nervous system, 

subpopulations of neurons often exhibit distinct connectivity, which may relate to the 

specific function of that subpopulation. For example, there were at least two different 

subpopulations: ‘Fear neurons’ and ‘Extinction neurons’ in the basal amygdala 

classified according to the activity patterns during freezing behaviour (Herry et al., 

2008). It was shown that Fear neurons received the input from the ventral 

hippocampus whereas Extinction neurons did not (Herry et al., 2008). These two 

subpopulations had distinct connectivity to other brain regions.  

It is known that the functions and connectivity to other brain regions are not exactly 

the same from dorsal to ventral hippocampus (Sahay and Hen, 2007). And GFP-

positive CA3 and CA1 pyramidal cells in Lsi1 or Lsi2 were not distributed 

homogenously throughout the hippocampus. Therefore, there is the possibility that the 

GFP-positive subpopulation in Lsi1 or Lsi2 might have distinct functions and 

connectivity. CA1 pyramidal cells in the ventral hippocampus are known to have 

more connectivities with amygdala than CA1 pyramidal cells in the dorsal 

hippocampus. In fact, in Lsi1 mice, there were more GFP-positive CA1 pyramidal 

cells in the ventral hippocampus than in the dorsal hippocampus. By contrast, in Lsi2 

mice, there were more GFP-positive CA1 pyramidal cells in the dorsal hippocampus. 

Therefore, it would be interesting to investigate whether GFP-positive CA1 pyramidal 

cells in Lsi1 mice may tend to establish connectivity with the amygdala, whereas 

GFP-positive CA1 pyramidal cells in Lsi2 mice may not. If these two subpopulations 

should have different connectivities, this would imply that they also have distinct 

functions.  
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 In a related study, GFP-positive granule cells in Lsi1 mice differed from GFP-

positive granule cells in Lsi2 in terms of the number of highly plastic terminals 

(Galimberti, submitted). Likewise, the morphological responses to an HDAC inhibitor 

were different between GFP-positive granule cells in Lsi1 and Lsi2 in hippocampal 

slice cultures. Taken together, these observations suggest that these two 

subpopulations of principal neurons in the hippocampus may have distinct roles in 

learning and memory. 

 

 

3.2 Genetic backbones of subpopulations 

 Surprisingly, GFP-positive hippocampal principal neurons in Lsi1 or Lsi2 shared co-

regulated genes among the different subregions: DG, CA3 and CA1. This suggests 

that there are particular transcriptional regulation mechanisms which control 

transgene expression, and that these mechanisms also influence transcriptional 

regulation of subpopulation specific genes. In other words, each subpopulation could 

underlie slightly different gene regulatory environments. GFP signals were detectable 

already in embryonic stages of Lsi1 or Lsi2 mice. Furthermore, the cell type 

specificities of GFP expression patterns was maintained in Lsi1 or Lmu1-reeler 

mutant mice, which exhibited the expected disruptions in the cell layering of 

hippocampus and neocortex (Rakic and Caviness, 1995). It was shown that even 

neuronal stem cells in the subventricular zone are not homogenous, and prespecify the 

fate of the neurons they produce (Merkle, et al., 2007). Accordingly, our findings are 

consistent with the possibility that the fate of the principal neuron subpopulations in 

the hippocampus is already predetermined genetically before neuronal circuits are set 

up. 
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3.3 Genetic approach to dissect the neuronal circuits 

I have shown that GFP-positive cells in Lsi1 or Lsi2 mice are not labeled randomly, 

but instead reflect the existence of specific subpopulations in the hippocampus. 

However, the mechanism of transgene expression in these mice remains poorly 

understood. If the expression of transgenes could be controlled in a specific and 

predictable manner, this would provide valuable tools for the functional analysis of 

neuronal subpopulations by expressing Cre-recombinase, channelrhodopsins or other 

functional proteins as a transgene in a specific manner. 

 Here I showed that the constructs in Lsi1 or Lsi2 mice had inserted in the vicinity of 

OR gene clusters, whereas the construct in Lmu1 mice did not. OR genes are 

distributed to around 50 gene clusters at different loci on mouse genome (Godfrey et 

al., 2004). Each olfactory sensory neuron expresses only one OR gene, and silences 

all the other OR genes by an unknown mechanism. OR genes are thus highly 

regulated in a subpopulation specific manner. Surprisingly almost all other known 

subpopulation markers in the retina, dorsal root ganglia (DRG) neurons and the 

cerebellum were also located in the vicinity of OR genes on the mouse genome as 

well as the human genome. This suggests that the unknown mechanism which 

regulates expression patterns of OR genes could work not only in the olfactory system 

but also in many brain structures. Therefore, the genomic region in the vicinity of OR 

gene could exhibit subpopulation specific regulation properties. At this point, it is not 

possible to say what the mechanism for this regulation may be. Nevertheless, these 

findings suggest testable ways to generate transgenic mice which express the 

transgene only in certain subpopulations of neurons in the nervous system. Also in 

addition, these findings may help to identify subpopulation specific marker genes by 

determining whether candidate genes are in the vicinity of an OR gene cluster.  
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3.4 Sexual dimorphisms in the hippocampus 

 There are published reports of sexual dimorphisms in the hippocampus. For instance, 

the number of granule cells of the hippocampus in females is smaller than in males, 

and this number depended on gonadal hormone levels (Tabibnia et al., 1999; Galea et 

al., 1999). Furthermore, the numerical density of synapses between mossy fiber 

terminals and apical dendritic excrescences of CA3 was higher in the female rat 

hippocampus than in male (Maderia et al., 1991). Moreover, sex differences have 

been reported in hippocampal-dependent learning and memory. For example, male 

mice exhibited better spatial working and reference memory than female mice 

(Gresack and Frick 2003). There were also different behavioral responses between 

male and female rats in contextual fear memory tests (Gresack et al., 2009). Finally, 

morphological changes in response to chronic glucocorticoid stress were different 

between male and female mice (Liu et al., 2006): after 2 weeks of elevated 

corticosterone levels, the total length and branch points of apical dendrites of CA3 

pyramidal cells in male mice were decreased, but those in females were increased 

(Liu et al., 2006). Thus, the hippocampus can respond in different ways in male and 

female mice. However, the basis for these differences between male and female 

hippocampus is not understood.  

 One possibility is that the properties of many principal neurons in the hippocampus 

are slightly different between male and female mice and/or that the compositions of 

subpopulations are different. Here I show that there are more GFP-positive cells in 

adult Lsi1 female than adult Lsi1 males, and that these GFP-positive cells in Lsi1 

females expressed Lsi1 specific marker genes in a similar way to those in Lsi1 males. 

Furthermore, some of the genes which were up regulated in Lsi1 GFP-positive cells 

were detected at higher levels in pools of average neurons in female mice than in male 

mice. This suggests that the proportion of the Lsi1 subpopulation may be higher in the 

hippocampus of female mice compared with male mice. 

What could be the mechanism underlying this observation? Around 6000 genes were 

up or down regulated more than 2 fold between granule cells of 2 weeks old male and 

16 weeks old male mice. Interestingly, around 20 % the genes up-regulated in 2 

weeks compared with 16 weeks overlapped with genes up-regulated in 8 weeks old 

females compared with 8 weeks old males. In addition, there was much less overlap 

between genes up-regulated in 2 weeks (compared with 16 weeks) and genes up-

regulated in 8 weeks old males (compared with female). In other words, some of the 
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transcriptional changes that took place between 2 weeks old males and adult males did 

not take place in female mice, where these genes maintained their 2 weeks expression 

levels in adult female mice. Furthermore, the difference in the number of GFP-

positive cells between 2 weeks old Lsi1 male and female mice was not pronounced. 

Since gonadal hormones like testosterone usually start to be secreted from puberty on, 

these time courses suggested a role for gonadal hormones in bringing about these 

differential regulations. Accordingly, the additional fraction of GFP-positive cells in 

Lsi1 female mice might reflect gonadal hormone regulation. One report has 

demonstrated that neonatal testosterone treatment of rat females resulted in a more 

male-like hippocampus in terms of the shape of granule cell layers, and the 

performance in a spatial navigation task (Roof, 1992). Therefore, it would be 

interesting to determine whether the injection of testosterone can alter the expression 

patterns of GFP-positive cells especially in Lsi1 or Lmu1 females, and also the 

composition of subpopulations in the hippocampus. In a more ambitious context, this 

might also change the connectivity properties between the hippocampus and the 

amygdala. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 - 67 -

3.5 Conclusions and further consideration 

What is the most exciting moment in science? There could be many answers.  

I would like to say that one of them is to find the ‘unexpected’ interesting thing. I 

think that a human brain may not be smart enough to predict what evolution has been 

generating for billions of years. That is why ‘unexpected’ findings could be so 

important. 

 In this thesis, the first unexpected finding was the specific GFP expression patterns in 

Lsi1, Lsi2 or Lmu1 mice. The endogenous thymus cell antigen 1, theta (Thy1) gene is 

highly expressed in almost all neurons including all granule cells, CA3 and CA1 

pyramidal cells in the hippocampus. One could think that almost all neurons express 

the transgene when the Thy1 promoter is used for transgene expression. In fact, only a 

few principal neurons in the hippocampus were GFP-positive in Lsi1 or Lsi2 mice. 

And more interestingly, these GFP-positive cells were not labeled randomly but 

reflecting specific subpopulations revealed by  gene expression analysis, distinct 

distributions of GFP-positive cells and timing of neurogenesis. 

 The second unexpected finding was that the GFP-positive cells in Lsi1 or Lsi2 mice 

shared common properties such as gene expression patterns and the timing of 

neurogenesis among different subregions in the hippocampus. The GFP-positive 

granule cells tend to exhibit preferential connectivity to GFP-positive CA3 pyramidal 

cells in Lsi1 or Lsi2 probably due to these common properties. Intriguingly, some of 

these co-regulated subpopulation specific genes were alternative splicing variants. 

Since 3’ UTR arrays were used for this microarray analysis, splicing variants were 

only detectable if they exhibited differences in their 3’ UTR. Therefore, it is possible 

that more alternative splicing variants are shared among GFP-positive cells of 

different subregions in Lsi1 or Lsi2. If splicing variants of cell adhesion molecules are 

also shared, this might also contribute to establish preferential connectivity between 

GFP-positive cells. 

 The third unexpected finding was that there was subpopulation specific regulation in 

the vicinity of OR gene clusters. OR genes are known to be regulated in a 

subpopulation specific manner. However, so far, there had been no evidence 

suggesting that loci in the vicinity of OR gene clusters may be regulated in a 

subpopulation specific manner. I have shown here that known subpopulation specific 

marker genes mapped in the vicinity of OR gene clusters whereas broad cell type 

marker genes did not. However, subpopulation marker genes specific for 
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developmental stages were not correlated OR gene clusters. This suggests that 

chromatin structures or other epigenetic modifications in immature neurons may not 

yet be set up like in mature neurons, and that many subpopulation specific gene 

regulation properties become effective in mature neurons to contribute to the 

properties of neuronal subpopulations in the adult. 
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4. Supplementary Materials and methods 
4.1 Microarray analysis 

Microarray analysis was done using the data analysis software Expressionist 

(Genedata, Basel, Switzerland). The hierarchical tree was calculated based on the 

median values of the each experiment by the clustering tool of Expressionist. 

The distance analysis for olfactory receptor genes was performed using Mus musculus 

(build 37.1) and Homo sapiens (build 36.3) genome data (National Center for 

Biotechnology Information, NCBI). 

 

 
4.2 In situ hybridization 

In situ hybridization was done by the standard nonradioactive protocol. Brains were 

frozen in 2-methylbutane. The thickness of frozen sections was 20 μm. Probes were 

labeled by digoxigenin (DIG). The color reaction was detected by the NBT/BCIP 

reaction. 

Sequences of probes for the in situ hybridization 

GFP 

GCGGGGATCCGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCC
ATCCTGGTCGAGCTGGACGGCGACGTAAACGGCCACAAGTTCAGCGTGTC
CGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGTTCA
TCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGACCACCC
TGACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATGAAGCAG
CACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCAC
CATCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGT
TCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTC
AAGGAGGACGGCAACATCCTGGGGCACAAGCTGGAGTACAACTACAACA
GCCACAACGTCTATATCATGGCCGACAAGCAGAAGAACGGCATCAAGGTG
AACTTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCTCGCCGA
CCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCTGCCCG
ACAACCACTACCTGAGCACCCAGTCCGCCCTGAGCAAAGACCCCAACGAG
AAGCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGCCGCCGGGATCAC
TCTCGGCATGGACGAGCTGTACAAGTAAAGCGGCCGCCTCGAGGGCGC 
 

Stx3-sv1 (NM_011502 or NM_001025307) 

ACACAGCCTGAAGGCCAGGATGGTGGTGAAGAGGCAGGCATTACAACAT
GCCCAACTCAACAGGGTCATACTGAACTCAGTGAGGCTGTCTCTCAGATC
ATGGTACTCCCTACTTTTACTCTAATGGCTCTTCTAGGTCGCATTCTTAACC
AACCACATGTCTGCTTCCTCTTTCAGGGTCCAAGAATAGTTTTTAATTCAT
AGATTGTTTAAGGATAGGCACTATGCCTATCTCGAATACTACCATGTCCCT
TCTCTTAGCACACAGTGCCTGCCACTTTCAGATGTCTGCTTACTTATAGTC
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AAGCTTTGATTTCATTCATGGATGAGTCTTTGAGCTTGGCTTTTAACTCTTT
AAGGTACCATTGGGAACATGATTTTTTATTAATCAGAGGCACATAGAAAA
ATATGGCAACACCCCTATTACCATACCATACCTGTCACAGTGTTCTGTTTT
GAGGGATGGTGCTTATGTAGAAGCTGGCTTTGTATTGATGGTATAAATTTC
TATTAGTACTCTCATTTGTCAGAGATGATAGTTGGTCTCAGGATGGAGGTT
CATTCAATAAATTCATTCCTCCAACAAAAGAAAGAAGTTTATACTATGAC
CCAGCTCCCAAACAAGCACACCATGTTATCTGGAACAATGGAAGGAAGCC
AAGGGGATAAAGTGGGACGAGGCTGCTGCTTCAGCCTCACCATGTCTGTG
GTAGAATAGGCTGCAGGTCAGTGAAATGTGCAAGAAACTGGTCCAAACAC
ATTTCTAACTCAAGTGTCACTGTGTTCCACTTTAAAAATAATTTACTTTGA
GACTATTACATTTTACATTCATTAAAAATAAATGAAAATCTGCGTCTAACT
TTTGAAAGTAAGTGTTAACTTACTTGAATGCTGGTTCCCCCAGAAAAACTG
ATTACTCTTGTTACGGACAAATGAAGCTGGCACCATGA 
 

Rps9 

CCCGGGAGCTGTTGACGCTAGACGAGAANGAATCCCGGCGTNNNNTTNNA
GNCAANNCTNNCCTGNGGCGGCTTNTTCNCATTGGGGTGCTGGACGAGGG
CAAGATGAAGCTGGATTACATCCTGGGCCTGAAGATTGAGGATTTCTTGG
AGAGGCGGCTGCAGACCCAGGTCTTTAAGCTGGGCCTGGCCAAATCTATT
CACCATGCCCGTGTGCTCATCCGCCAACGTCACATTAGGGTCCGCAAGCA
GGTGGTGAACATCCCATCCTTCATTGTTCGCCTGGACTCTCAGAAGCACAT
CGACTTCTCCCTCCGTTCTCCTTATGGCGGCGNCCGTCCAGGCCGAGTGAA
GAGGAAGAATGCCAAGAAAGGCCAGGGCGGGGCTGGAGCTGGTGATGAT
GAGGAAGAGGATTAATTAATACTTGGCTGAACTGGAGGATTGTCT 
 

 

4.3 3D reconstruction of the adult hippocampus 

In situ hybridization for GFP was performed according to a standard protocol, using 

digoxigenin-labeled probes for nonradioactive detection. Consecutive coronal sections 

were cut at 20 μm throughout a whole hippocampus. Pictures were aligned using 

AutoAligner (Bitplane AG). Spots were put and the contour surface of the CA3 

pyramidal cell layer was drawn manually using the 3D/4D image analysis software 

Imaris (Bitplane AG). 

 
 
4.4 FISH (Fluorescence in situ hybridization)   

The FISH experiments were performed by SeeDNA (Ontario, Canada). 

Chromosomal spreads preparation: Lymphocytes were isolated from the spleen of a 

mouse and cultured at 37 ˚C in RPMI 1640 medium supplemented with fetal calf 

serum, concanavalin A, lipopolysaccharide and mercaptoethanol. The mouse cells 
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were harvested and chromosomal slides were made by conventional method 

preparation including hypotonic treatment, fixation and air dry. 

 Probe labeling, in situ hybridization and dual color FISH detection: DNA probe for 

GFP was labeled by Digoxigenin (Heng et al, 1992). The procedure for hybridization 

and detection was performed according to Heng et al., 1992; Heng et Tsui, 1993. 

Briefly, slides were baked at 55˚C for 1 hour. After RNase treatment, the slides were 

denatured in 70 % formamide in 2xSSC followed by dehydrated with ethanol. Probes 

were denatured in a hybridization mix consisting of 50% formamide and 10% dextran 

sulphate. The probe was loaded on the denatured chromosomal slides. After over 

night hybridization, the slide was washed and detected as well as amplified (Heng, 

1993). Digoxigenin labeled probe was detected by Rhodamine. 

 Image analysis: FISH signals were observed under fluorescent microscopy. Images 

were captured by CCD camera and merged by RS Image software. 

 

 

4.5 Hippocampal slice culture 

Hippocampal slice cultures, long-term live imaging of slice cultures and staining for 

hippocampal slices were performed according to these protocols (Gogolla et al., 2006; 

Gogolla et al., 2006; Gogolla et al., 2006). The final concentration of TSA was 500 

nM in the culture medium. When culture medium was changed every 3 days, new 

TSA was added into the culture medium and stayed for next 3 days. 
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