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3. Minimal dimension of faithful representations 58
4. Minimal p-faithful representations of extensions of p-groups by tori 60

Bibliography 67

Chapter IV. Essential p-dimension of algebraic tori 69

v



1. Introduction 69
2. Proof of Theorem 1.2 73
3. The p-closure of a field 74
4. The group C(G) 76
5. Proof of Theorem 1.3(a) 78
6. p-isogenies 81
7. Proof of Theorem 1.3(b) 82
8. An additivity theorem 83
9. Modules and lattices 85
10. Proof of Theorem 1.3(c) 87
11. Tori of essential dimension ≤ 1 89
12. Tori split by cyclic extensions of degree dividing p2 91
Acknowledgments 94

Bibliography 95

Curriculum Vitae 98

vi



Overview

Essential dimension, introduced by Joe Buhler and Zinovy Reichstein and
in its most general form by Alexander Merkurjev, is a measure of complexity of
algebraic structures such as quadratic forms, hermitian forms, central simple algebras,
étale algebras etc. which are defined over fields. Informally, the essential dimension of
an algebraic structure is the number of parameters needed to define its objects up to
isomorphism. The objects of algebraic structures are often classified by cohomology sets
H1(K,G) (with respect to the fppf topology) of an algebraic group G. The set H1(K,G)
can be seen as the set of isomorphy classes of G-torsors over K. The essential dimension
of G-torsors (called essential dimension of G) gives an invariant of algebraic groups, which
will be of primary interest in this thesis.

The text is subdivided into four chapters as follows:

Chapter I+II: Multihomogenization of covariants and its application to
covariant and essential dimension
The essential dimension of a linear algebraic group G can be expressed via G-equivariant
rational maps ϕ : A(V ) 99K A(W ), so called covariants, between generically free G-
modules V and W . In these two chapters we explore a new technique for dealing with
covariants, called multihomogenization. This technique was jointly introduced with Hans-
peter Kraft and Gerald Schwarz in an already published paper [KLS], which
forms the second chapter.

Applications of the multihomogenization technique to the essential dimension of al-
gebraic groups are given by results on the essential dimension of central extensions, di-
rect products, subgroups and the precise relation of essential dimension and covariant
dimension (which is a variant of the former with polynomial covariants). Moreover the
multihomogenization technique allows one to extend a twisting construction introduced
by Matthieu Florence from the case of irreducible representations to completely re-
ducible representations. This relates Florence’s work on the essential dimension of cyclic
p-groups to recent stack theoretic approaches by Patrick Brosnan, Angelo Vistoli
and Zinovy Reichstein and Nikita Karpenko and Alexander Mekurjev.

A portion of the first chapter is accepted for publication in Transformation groups
[L2]. An earlier and larger version with the same title is published on Arxiv [L1].

Chapter III: Faithful and p-faithful representations of minimal dimension
The study of essential dimension of finite and algebraic groups is closely related to the
study of its faithful resp. generically free representations. In general the essential dimen-
sion of an algebraic group is bounded above by the least dimension of a generically free
representation minus the dimension of the algebraic group. In some prominent cases this
upper bound or a variant of it is strict.

In this chapter we are guided by the following general questions: What do faithful
representations of the least possible dimension look like? How can they be constructed?
How are they related to faithful representations of minimal dimension of subgroups?

In particular we investigate representations of an extension G of a p-group by a torus
(over an algebraically closed field). We will show that such an algebraic group G has a
finite p-subgroup F such that the least dimension of a representation of G with kernel
finite and of order prime to p is equal to the least dimension of a faithful representation of
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F . This result has been established in a combined effort with Zinovy Reichstein and
Mark MacDonald.

Along the way we also compute the minimal number of irreducible representations
needed to construct a faithful representation and therewith generalize a classical theorem
of Wolfgang Gaschütz (Endliche Gruppen mit treuen absolut-irreduziblen Darstel-
lungen, Math. Nachr. 12 (1954), 253-255).

Chapter IV: Essential p-dimension of algebraic tori
This chapter is joint work with Mark MacDonald, Aurel Meyer and Zinovy
Reichstein and is submitted for publication [LMMR]. We study a variant of essential
dimension which is relative to a prime number p. This variant, called essential p-dimension,
disregards effects resulting from other primes than p. In a recent paper Nikita Karpenko
and Alexander Merkurjev have computed the essential dimension of p-groups. We
extend their result and find the essential p-dimension for a class of algebraic groups, which
includes all algebraic tori and twisted finite p-groups.

Acknowledgments

I would like to thank my adviser Hanspeter Kraft for introducing me to the
subject of covariant and essential dimension and for guiding me during my thesis. He
carefully read this manuscript and several preprints for publication. I wish to thank him
for his tremendous support and for sharing his insights both into the mathematical and
non-mathematical world. While I was away in Vancouver for one month he took over my
duties as a teaching assistant. Thanks a lot!

Many thanks go to Zinovy Reichstein from whom I learnt a lot about essential
dimension and who agreed to referee this thesis. He greatly helped me to organize my stay
in Vancouver and to reach the frontiers of the research in essential dimension. I would
also like to thank the hosting math department of the University of British Columbia and
to Kay Behrend, who allowed me to use his office during my stay in Vancouver.

During my thesis I received financial support from a Schweizer Nationalfonds grant.
My stay in Vancouver was funded by the Freie Akademische Gesellschaft (FAG) of Basel.

It was a great pleasure to collaborate with Gerald Schwarz and Hanspeter
Kraft and with Aurel Meyer, Mark MacDonald and Zinovy Reichstein. I
found it very motivating to do mathematics together, be it at the blackboard or via
email. Special thanks go to Aurel, with whom I had lots of useful discussions ever since.

I enjoyed to take part in two conferences related to essential dimension, one in Lens
in 2008, the other in Banff in 2009. I want to thank the organisers for inviting me and
taking care of everything. Moreover I am grateful for useful conversations with some
of the participants, especially with Grégory Berhuy, Alexander Merkurjev and
Alexander Duncan.

Many thanks go to all my colleagues from Basel with whom I had a great time. Es-
pecially I want to thank Giordano Favi, Jonas Budmiger, Immanuel Stampfli,
Christian Graf, Martin Widmer and Philippe Habegger for stimulating math-
ematical discussions and problem solving.

Finally, I wish to thank my parents and to my wife Lauryna for their great confidence
in me and for the wonderful time spent together.

2



List of publications in peer-reviewed journals and on arxiv.org

including material of this thesis

[KLS] H. Kraft, R. Lötscher, G. Schwarz: Compression of finite group actions and covariant dimension,

II, J.Algebra 322(1) (2009), 94–107.

[L1] R. Lötscher: Application of multihomogeneous covariants to the essential dimension of finite

groups, Arxiv:0811.3852 (2008).

[L2] R. Lötscher: Application of multihomogeneous covariants to the essential dimension of finite

groups, (2009), accepted for publication in Transform. Groups.

[LMMR] R. Lötscher, M. MacDonald, A. Meyer, Z. Reichstein: Essential p-dimension of algebraic tori

(2009), Arxiv:0910.5574.

3





CHAPTER I

Multihomogeneous covariants and the essential dimension of

algebraic groups

1. Preliminaries

The purpose of this section is to introduce terminology, notation and recall several
equivalent definitions of essential dimension that will be used in the sequel.

Throughout this chapter we work over a base field k which will be assumed to be
infinite for simplicity. Unadorned tensor products will be taken over k. Sometimes we will
extend scalars to a larger field K/k. We will denote by k̄ (resp. ksep ⊆ k̄) an algebraic
(resp. separable) closure of k. All vector spaces and representations in consideration are
finite dimensional over the base field. All schemes in consideration will be of finite type
over the base field. We reserve the word variety for a geometrically integral separated
scheme defined over the base field. We define algebraic group to be an affine group scheme
over the base field. AG-module is a vector space V endowed with a morphism G→ GL(V )
of algebraic groups. A G-variety for an algebraic group G is a variety X with a regular
algebraic G-action G×X → X, x 7→ gx on it. Rational and regular maps between varieties
will always be defined over the base field. Finite groups will be considered as constant
algebraic groups over k. We will write finite algebraic group for a finite but not necessarily
constant algebraic group. An étale algebraic group is a smooth finite algebraic group.

The essential dimension of G was originally introduced by Buhler and Reichstein
[BR97, Re00] (for k of characteristic 0, assumed to be algebraically closed in the second
reference) in terms of compressions of generically free varieties: A G-variety X is called
generically free if there exists a G-invariant dense open subscheme U of X such that
the (scheme theoretic) stabilizer in G of every point x ∈ U(k̄) is trivial. A G-module V
is called generically free if the variety A(V ) representing the functor A 7→ V ⊗ A from
commutative k-algebras to sets is generically free. A compression of a generically free
G-variety Y is a dominant G-equivariant rational map ϕ : Y 99K X, where X is another
generically free G-variety. The essential dimension of G is then defined as the minimal
value of dimX − dimG taken over all compressions ϕ : A(V ) 99K X of a generically free
G-module V .

Later the essential dimension of G was reformulated by Merkurjev [BF03, Me09]
in the more general setting of algebraic groups G over arbitrary fields in terms of fields
of definition of G-torsors: A G-torsor (over a scheme Y ) is a scheme X with a right
action by G and a G-invariant morphism X → Y such that locally on X in the finitely
presented faithfully flat (fppf) topology X is G-equivariantly isomorphic to Y × G (cf.
[BF03, Definition 4.5]). The essential dimension of G is the least transcendence degree
of a field of definition of a generic G-torsor (see [BF03, Definition 6.3]).

We mainly take the following point of view: A covariant of G is a G-equivariant
rational map ϕ : A(V ) 99K A(W ), where V and W are G-modules. The covariant ϕ is
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CHAPTER I. Multihomogeneous covariants and essential dimension

called faithful the image closure ϕ(A(V )) is a faithful G-variety. The covariant ϕ is called
generically free if its image closure is a generically free G-variety. We denote by dimϕ the
dimension of the closure of the image of ϕ. In terms of covariants the essential dimension
can be defined as the minimal value of dimϕ − dimG taken over all generically free
covariants ϕ of G.

These three notions of essential dimension are shown to be equivalent in the following
lemma, which is a variant of [Fl08, Proposition 2.5]. For its formulation we need the notion
of a friendly open subset U ⊆ X, whose existence for every generically free G-variety X
is provided by a result of Gabriel (see [BF03, Theorem 4.7 and Definition 4.8]).

Definition 1.1. A friendly open subset of a generically free G-variety X is a G-

invariant dense open subvariety U ⊆ X which is the total space of a G-torsor U → Y .

Lemma 1.2. Let V and W be generically free G-modules. Let U ⊆ A(V ) be a friendly

open subset and T be the G-torsor over k(Y ) given by the generic fiber of a torsor U → Y .

The following values coincide:

• e1 := min{dimϕ− dimG | ϕ : A(V ) 99K A(W ) generically free covariant of G}.

• e2 := min{dimX − dimG | there exists a compression A(V ) 99K X}.

• e3 := min{trdegkK | K a field of definition of T}.

Proof. Clearly e2 ≤ e1 since a generically free covariant ϕ : A(V ) 99K A(W ) induces

a compression A(V ) 99K X := ϕ(A(V )).

In the next step we show e3 ≤ e2. Let ϕ : A(V ) 99K X be a compression with e2 =

dimX − dimG. Let U ′ ⊆ X be a friendly open subset and T ′ be the generic fiber of a

torsor U ′ → Y ′. We consider ϕ as a rational map U 99K U ′. We get an induced rational

map Y 99K Y ′ making the diagram

U //

��

U ′

��
Y // Y ′

commute. This implies that the torsor T is obtained from T ′ by pull back (cf. [BF03,

Lemma 6.11]). Hence e3 ≤ trdegk k(Y
′) = dimX − dimG = e2.

It remains to show e1 ≤ e3. Let Ũ ⊆ A(W ) be a friendly open subset and let Ũ → Ỹ

be a G-torsor. This torsor is versal for G (see [BF03, Definition 6.1, Remark 6.2] for the

case G is smooth or [Me09, Theorem 4.1] for the general case). Hence any G-torsor T ′

over an infinite field K is the pullback of Ũ → Ỹ by a K-rational point SpecK → Ỹ

of Ỹ . Now choose for T ′ a G-torsor over a subfield K ⊆ k(Y ) of transcendence degree

trdegkK = e3 such that T is obtained from T ′ by scalar extension to k(Y ) (note that

K is infinite as required, since we assume k to be infinite). This implies the existence of

a G-equivariant rational map ϕ : U 99K Ũ and a rational map ψ : Y → Ỹ completing a

6



2. Introduction

commutative cube (cf. [BF03, Lemma 6.11]):

T

zzttttttttttt
//

��

T ′

{{ww
ww

ww
ww

ww

��

U

��

∃ϕ // Ũ

��

Spec k(Y )

zzuuuuuuuuuu

// SpecK

∃
||xxxx

xxxxx

Y
∃ψ // Ỹ

Moreover we may consider ϕ as a generically free covariant A(V ) 99K A(W ) with e1 ≤

dimϕ− dimG ≤ trdegkK = e3. �

Remark 1.3. The statement of Lemma 1.2 also holds over a finite field k as long as

e3 > 0, which is equivalent to G not being special [Me09, Proposition 4.4]. An algebraic

group is called special if G has no non-trivial torsors over any field extensions of k. For

example G = GLn is special and for V = W = Mn the space of n × n square matrices

with left multiplication of G the values e1 = e2 = e3 are equal.

The statement holds in particular for finite algebraic groups (the only special finite

algebraic group is the trivial group, but in that case e1 = e2 = e3 = 0 are equal as well).

Hence as long as we only consider essential dimensions of finite algebraic groups we might

as well drop the assumption on k being infinite. The only other place where we need k to

be infinite is in section 10 and in Remark 6.3 where the essential dimension of elementary

abelian p-groups is considered.

Definition 1.4. We denote by edkG the common value e1 = e2 = e3 from Lemma

1.2 and call it the essential dimension of G.

Remark 1.5. Note that our definition of essential dimension differs from [BF03,

Definition 2.1], which uses Galois cohomology (or, equivalently, torsors in the étale topol-

ogy). The two definitions become equivalent, however, if G is smooth (cf. [BF03, Corol-

lary 6.16]). The definition we use appears in more recent articles on essential dimension

[BS08, Me09, TV10].

The value e3 from Lemma 1.2 depends neither on the choice of a generically free
G-module V [BF03] nor on the choice of a generically free G-module W . This has the
following consequence:

Lemma 1.6. For any generically free G-modules V and W there exists a generically

free covariant ϕ : A(V ) 99K A(W ) such that dimϕ = edk G+ dimG.

2. Introduction

In this chapter we will develop a multihomogenization technique for covariants and
invariants of algebraic groups and give applications thereof to the essential dimension
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CHAPTER I. Multihomogeneous covariants and essential dimension

of algebraic groups G. Given G-stable gradings V =
⊕m

i=1 Vi and W =
⊕n

j=1Wj of

generically free G-modules V and W a covariant ϕ = (ϕ1, . . . , ϕn) : A(V ) 99K A(W ) is
called multihomogeneous if the identities

ϕj(v1, . . . , vi−1, svi, vi+1, . . . , vm) = smijϕj(v1, . . . , vm)

hold true for all i, j and suitable mij . Here s is an indeterminate and the mij are integers,
forming some matrix Mϕ ∈ Matm×n(Z). Thus multihomogeneous covariants generalize
homogeneous covariants. A whole matrix of integers takes on the role of a single integer,
the degree of a homogeneous covariant. It will be shown that the degree matrix Mϕ and
especially its rank have a deeper meaning with regards to the essential dimension of G.
Theorem 5.2 states that if each Vi and Wj is irreducible then the rank of the matrix Mϕ

is bounded from below by the rank of the largest central diagonalizable subgroup Z(G, k)
(the k-center, see Definition 4.4). Moreover if the rank of Mϕ exceeds the rank of Z(G, k)
by ∆ ∈ N then edkG ≤ dimϕ−∆. This observation will be useful for several application,
in particular for proving upper bounds to edkG.

The rest of this chapter is structured as follows. In sections 3, 4 and 5 we give the
construction of multihomogenization and derive its basic properties. Then we proceed to
applications. Section 6 relates essential dimension with the so called covariant dimension
cdimkG of étale algebraic groups G, which is an analogue of essential dimension with
covariants assumed to be regular. It is well known that the two differ at most by 1 (for
a proof see [Re04]). We obtain the precise relationship between covariant and essential
dimension in case that G has a completely reducible faithful representation. Namely The-
orem 6.2 says that cdimkG = edkG if and only if G (is trivial or) has a nontrivial k-center,
otherwise cdimkG = edkG+ 1.

In section 7 a generalization of a result from [BR97] about central extensions is
obtained. For a finite group G and a central cyclic subgroup H which intersects the com-
mutator subgroup [G,G] of G trivially Buhler and Reichstein deduced the relation

edkG = edkG/H + 1

(over a field k of characteristic 0) under some further assumptions on H [BR97, Theorem
5.3]. We give a complete generalization for étale algebraic groups given by the identity

edkG = edkG/H + rankZ(G, k) − rankZ(G, k)/H,

where we only assume that G/H has a completely reducible faithful representation and
that H embeds into a diagonalizable direct factor of G/[G,G]. For details see Theorem
7.1.

Section 8 contains two results about the essential dimension of subgroups and direct
products, both obtained easily with the use of multihomogeneous covariants.

In section 9 we will use multihomogeneous covariants to generalize Florence’s twist-
ing construction from [Fl08]. This generalization gives a substitute to the use of alge-
braic stacks in the proof of the theorem of Karpenko and Merkurjev about the essen-
tial dimension of p-groups and previous work by Brosnan, Reichstein and Vistoli
[BRV07, BRV08]. The twisting construction relates the essential dimension of G with
generic splitting fields of certain central simple algebras. For a class of algebraic groups
G which includes finite p-groups, this relation will be exploited to give a precise formula
for the essential dimension of G.

8



3. The multihomogenization technique

In section 10 we consider the situation when a finite group G does not admit a
faithful completely reducible representation. That can only happen if char k = p > 0 and
G contains a nontrivial normal elementary abelian p-subgroup A. Proposition 10.1 relates
the essential dimension of G and G/A by edkG/A ≤ edkG ≤ edkG/A + 1 when A is
central.

3. The multihomogenization technique

3.1. Multihomogeneous maps and multihomogenization. Multihomogeniza-
tion has been introduced in [KLS09] (see Chapter II) for covariants of finite groups
over C. We give a more direct and general approach here.

Denote by X = Homk(∗,Gm
) the contravariant functor from the category of diag-

onalizable algebraic groups (over k) to the category of abelian groups, which takes a
diagonalizable algebraic group G to the set X(G) = Homk(G,Gm

) of characters defined
over k. For example X(T ) = Zr if T = Gr

m
is a split torus of rank r = dimT . In particular

X(G
m

) = Z.
Let T = Gm

m
and T ′ = Gn

m
be split tori. The homomorphisms D ∈ Homk(T, T

′)
defined over k correspond to linear maps X(D) : X(T ′) → X(T ) and to matrices MD ∈
Matm×n(Z) under the canonical isomorphisms

Homk(T, T
′) ∼= Hom(X(T ′), X(T )) = Hom(Zn,Zm) ∼= Matm×n(Z)

In terms of the matrix MD = (mij)1≤i≤m,1≤j≤n the homomorphism D is then given by

D(t1, . . . , tm) = (t′1, . . . , t
′
n) where t′j =

m∏

i=1

t
mij

i .

The above isomorphisms are compatible with composition of homomorphisms D ∈
Homk(T, T

′), D′ ∈ Homk(T
′, T ′′) on one hand and multiplication of matricesM ∈ Matm×n(Z),

M ′ ∈ Matn,r(Z) on the other hand (where T ′′ := Gr
m

is another split torus). That means
that MD′◦D = MD ·MD′ .

Let V be a graded vector space, V =
⊕m

i=1 Vi. We associate with V the torus TV ⊆
GL(V ) consisting of those linear automorphisms which act by multiplication of scalars on
each Vi. We identify TV with Gm

m
acting on A(V ) by

(t1, . . . , tm)(v1, . . . , vm) = (t1v1, . . . , tmvm).

Let W =
⊕n

j=1Wj be another graded vector space and TW ⊆ GL(W ) its associated torus.

Definition 3.1. A rational map ϕ = (ϕ1, . . . , ϕn) : A(V ) 99K A(W ) is called mul-

tihomogeneous (with respect to the given gradings V =
⊕m

i=1 Vi and W =
⊕n

j=1Wj) of

degree M ∈ Matm,n(Z) if

(1) ϕj(v1, . . . , svi, . . . , vm) = smijϕj(v1, . . . , vm),

for all i and j.

9



CHAPTER I. Multihomogeneous covariants and essential dimension

In terms of the associated homomorphism D ∈ Hom(TV , TW ) this means that

(2) TV × A(V )
(t,v)7→tv

//

D×ϕ
���
�

�
A(V )

ϕ

���
�

�

TW × A(W )
(t′,w)7→t′w

// A(W )

commutes.

Example 3.2. Let V =
⊕m

i=1 Vi be a graded vector space. If hij ∈ k(Vi)
∗ for 1 ≤

i, j ≤ m are homogeneous rational functions of degree rij ∈ Z then the map

ψh : A(V ) → A(V ), v 7→ (h11(v1) . . . hm1(vm)v1, . . . , h1m(v1) . . . hmm(vm)vm)

is multihomogeneous with degree matrix equal to M = (rij + δij)1≤i,j≤m, where δij is the

Kronecker delta.

Let ϕ : A(V ) 99K A(W ) be a multihomogeneous rational map. If the projections ϕj of
ϕ to A(Wj) are nonzero for all j, then the homomorphism D ∈ Homk(TV , TW ) is uniquely
determined by condition (2). We shall write Dϕ, Xϕ and Mϕ for D, X(D) and MD,
respectively. If ϕj = 0 for some j then the matrix entries mij of Mϕ, for i = 1, · · · , m, do
not give any information. For simplicity we will always assume that all components ϕj are
nonzero. There are various ways for dealing with zero components ϕj. For example one
can make the convention mij = 0 for such j and each i. Then all results in this chapter
go through, but some of the proofs would become more technical.

Given an arbitrary rational map ϕ : A(V ) 99K A(W ) we produce a multihomogeneous
map Hλ(ϕ) : A(V ) 99K A(W ) which depends only on ϕ and the choice of a suitable one-
parameter subgroup λ ∈ Homk(Gm

, TV ). In section 5 this procedure will be applied to
covariants for a group G.

Let ν : k(V × k) = k(s)(V ) → Z ∪ {∞} be the discrete valuation belonging to the
hyperplane A(V ) × {0} ⊂ A(V ) × A1. So ν(0) = ∞ and for f ∈ k(V × k) \ {0} the value
of ν(f) is the exponent of the coordinate function s in a primary decomposition of f .
Let Os ⊂ k(V × k) denote the valuation ring corresponding to ν. Every f ∈ Os can be
written as f = p

q
with polynomials p, q where s ∤ q. For such f we define lim f ∈ k(V )

by (lim f)(v) = p(v,0)
q(v,0)

. It is nonzero if and only if ν(f) = 0. Moreover ν(f − lim f) > 0

since lim(f − lim f) = 0, where lim f ∈ k(V ) is considered as element of k(V × k).
This construction can easily be generalized to rational maps ψ : A(V )×A1

99K A(W ) by
choosing coordinates on W . So for ψ = (f1, . . . , fd) where d = dimW and f1, . . . , fd ∈ Os

we shall write limψ for the rational map (lim f1, . . . , lim fd) : A(V ) 99K A(W ).
Let λ ∈ Homk(Gm

, TV ) be a one-parameter subgroup of TV . Consider

ϕ̃ : A(V ) × G
m
99K A(W ), (v, s) 7→ ϕ(λ(s)v)

as a rational map on A(V ) × A1. For j = 1 . . . n let αj be the smallest integer d such
that all coordinate functions in sdϕ̃j are elements of Os. Let λ′ ∈ Homk(Gm

, TW ) be the
one-parameter subgroup defined by λ′(s) = (sα1 , . . . , sαn) ∈ TW . Then we define Hλ(ϕ)
as the limit

Hλ(ϕ) := lim
(
(v, s) 7→ λ′(s)ϕ(λ(s)v)

)
: A(V ) 99K A(W ).

10



3. The multihomogenization technique

The limit Hλ(ϕ) = (Hλ(ϕ)1, . . . , Hλ(ϕ)n) depends only on ϕ and the choice of λ. By
construction and since we assume ϕj 6= 0 for all j we have (Hλ(ϕ))j 6= 0 for all j as well.

Our construction enjoys the following property:

Lemma 3.3. For any one-parameter subgroup λ ∈ Homk(Gm, TV ) we have

dimHλ(ϕ) ≤ dimϕ.

Proof. Choose a basis in each Wj and take their union for a basis of W . Let d =

dimW and write ϕ = (f1, . . . , fd) with respect to the chosen basis, where fj ∈ k(V ). Then

Hλ(ϕ) is of the form (lim f̂1, . . . , lim f̂d) where each f̂j ∈ Os ⊂ k(V × k) is given by

f̂j(v, s) = sγjfj(λ(s)v)

for some γj ∈ Z. Choose a maximal subset S = {j1, . . . , jl} of {1, . . . , d} with the property

that lim f̂j1, . . . , lim f̂jl are algebraically independent. It suffices to show that fj1 , . . . , fjl
are then algebraically independent, too. Without loss of generality j1 = 1, . . . , jl = l.

Assume that f1, . . . , fl are algebraically dependent. Let p ∈ k[x1, . . . , xl] \ {0} with

p(f1, . . . , fl) = 0. Since the algebraic independence implies lim f̂j 6= 0 for j = 1 . . . l we

have ν(f̂j) = 0. Set γ = (γ1, . . . , γl) and write p in the form

p =
∑

i∈Z

pi where pi =
∑

β∈Nl : β·γ=−i

cβx
β1
1 · · ·xβl

l .

Let d = min{i ∈ Z | ∃β ∈ Nl : β · γ = −i, cβ 6= 0}. That implies pd 6= 0. For j = 1 . . . l

there exists δj ∈ Os ⊂ k(V × k) such that f̂j − lim f̂j = sδj. By construction,

0 = s−dp(f1, . . . , fl)(λ(s)v) = s−dp(s−γ1 f̂1, . . . , s
−γl f̂l)(v)

= s−dp
(
s−γ1(lim f̂1 + sδ1), . . . , s

−γl(lim f̂l + sδl)
)
(v)

= pd
(
lim f̂1, . . . , lim f̂l

)
(v) + sh(v, s),

where h ∈ Os. Taking the limit shows pd
(
lim f̂1, . . . , lim f̂l

)
= 0, which concludes the

proof. �

It is quite immediate that Hλ(ϕ) is equivariant with respect to the homomorphism of
tori λ(G

m
) → λ′(G

m
) which sends λ(s) to λ′(s−1). However, to get equivariance for the

full tori TV and TW (i.e., such that Hλ(ϕ) is multihomogeneous) we have to choose the
one-parameter subgroup λ carefully.

Write ϕ in the form ϕ = 1
f
(ψ1, . . . , ψn) where each ψj : A(V ) 99K A(Wj) is regular and

f ∈ k[V ]. The space Mor(V,Wj) of regular maps A(V ) → A(Wj) carries a representation
of TV where Wj is equipped with the trivial action of TV . It decomposes into a direct sum
Mor(V,Wj) =

⊕
Mor(V,Wj)χ taken over all χ ∈ X(TV ), where

Mor(V,Wj)χ = {ψ ∈ Mor(V,Wj) | ψ(t−1v) = χ(t)ψ(v) for all t ∈ TV (k̄), v ∈ A(V )(k̄)}.

Thus ψ1, . . . , ψn can be written as sums ψj =
∑

χ ψ
χ
j where only finitely many ψχj are

different from 0. Similarly f ∈ k[V ] = Mor(V, k) has a decomposition f =
∑

χ f
χ with

the same properties. Let

S(ψ, f) = {χ ∈ X(TV ) | fχ 6= 0 or ∃j : ψχj 6= 0},

which is a finite subset of X(TV ).

11



CHAPTER I. Multihomogeneous covariants and essential dimension

Lemma 3.4. If T is a split torus and S ⊂ X(T ) is a finite subset then there exists a

one-parameter subgroup λ ∈ Homk(Gm, T ) such that the restriction of the map X(T ) →

Homk(Gm,Gm), χ 7→ χ ◦ λ to S is injective.

Proof. The claim can easily be shown via induction on the rank r = dimT of the

torus. Identifying X(T ) = Zr = Homk(Gm
, T ) and Homk(Gm

,G
m

) = Z the above map is

given by Zr → Z, α 7→ 〈α, β〉 :=
∑r

i=1 αiβi, where β ∈ Zr corresponds to λ. �

We will write 〈χ, λ〉 for the image of χ ◦ λ in Z, i.e., χ ◦ λ(s) = s〈χ,λ〉 for s ∈ G
m

(k̄).

Proposition 3.5. Let λ ∈ Homk(Gm, TV ) be such that the restriction of the map

X(TV ) → Z, χ 7→ 〈χ, λ〉 to S(ψ, f) is injective (such λ exists by Lemma 3.4). Then Hλ(ϕ)

is multihomogeneous.

Proof. For notational simplicity set ψ0 = f . There are unique characters χ0, χ1, . . . , χn
such that χj ◦λ is minimal (considered as an integer) amongst all χ ◦λ for which ψχj 6= 0,

for each j = 0 . . . n. The rational map A(V ) × A1
99K A(Wj) (or A(V ) × A1

99K A1 for

j = 0) given by

s−〈χj ,λ〉ψj(λ(s)v) = s−〈χj ,λ〉
∑

χ

ψχj (λ(s)v)

= s−〈χj ,λ〉
∑

χ

χ ◦ λ(s)ψχj (v)

=
∑

χ

s〈χ−χj ,λ〉ψχj (v)

has limit ψ
χj

j , which implies that Hλ(ϕ) = 1
fχ0

(ψχ1

1 , . . . , ψχn
n ). Define the homomorphism

D ∈ Homk(TV , TW ) by

D = (χ1χ
−1
0 , . . . , χnχ

−1
0 ).

Then Hλ(ϕ)(tv) = D(t)Hλ(ϕ)(v), showing the claim. �

3.2. Existence of minimal multihomogeneous covariants. We now go over to
the case where the graded vector spaces V =

⊕m
i=1 Vi and W =

⊕n
j=1Wj are furnished

with a representation of an algebraic group G. We assume that the subspaces Vi and
Wj are G-invariant. For λ ∈ Homk(TV , TW ) as in Proposition 3.5 the rational map
Hλ(ϕ) : A(V ) 99K A(W ) is multihomogeneous and has dimension dimHλ(ϕ) ≤ dimϕ.
Moreover, the rational map Hλ(ϕ) is again G-equivariant as a limit of G-equivariant
rational maps.

In general the covariant Hλ(ϕ) does not have to be generically free if the covariant ϕ
is. We will sidestep this difficulty with the following definition.

Definition 3.6. We call an algebraic group G friendly if every faithful G-variety is

generically free.

For example étale algebraic groups are friendly ([FF07, Lemma 1.1]). In contrast GLn
is not friendly for n > 1, since its natural faithful action on An is not generically free.
Moreover we have the following result:

12



3. The multihomogenization technique

Proposition 3.7. Let G be an algebraic group. Assume that one of the following

conditions is satisfied:

(A) Gk̄ is a direct product of a finite group and a torus

(B) G is finite and (Gk̄)
0 has only finitely many closed subgroups.

Then G is friendly.

Proof. Since both freeness and generic freeness can be tested over an algebraic clo-

sure (cf. Lemma 7.1 of Chapter IV) we may and will assume that k is algebraically closed.

(A) Case A: Here G is a direct product G = T × F of a (split) torus T and a finite

group F .

We first consider the case G = T . Let X be a faithful T -variety. Replacing X

by its normalization we may assume that X is normal (note that the T -action on

X can be lifted to its normalization and X is faithful or generically free if and

only if its normalization is). By [Su74, Introduction a)] X is covered by affine

open T -invariant sub-varieties. Hence we may assume that X embeds in A(V ) for

a T -module V . We choose V such that X does not embed in A(W ) for a proper

submodule W ⊆ V . Now let U be the intersection of X with the complement

of
⋃

A(W ) where W runs through all proper submodules of V formed by direct

sums of character spaces. This is a T -invariant dense open subset of X with free

T -action. Hence the claim follows.

The general case where G = T × F can be reduced to the case G = T with a

similar argument as in Chapter IV, Lemma 7.1.

(B) Case B: Here G is finite and G0 has only finitely many closed subgroups. We have

an exact sequence

1 → G0 → G→ Ḡ→ 1,

where Ḡ is étale. Note that G has only finitely many étale subgroups. Let X be

a faithful G-variety and set

U := X \ (
⋃

XH)

where H runs over all non-trivial closed subgroups which are either étale or

contained in G0. Clearly U is open, since each XH is closed and the union is

finite. Moreover by irreducibility and faithfulness of X the subset U is dense. We

want to show that every x ∈ U(k̄) has trivial stabilizer in G. The intersection

Gx ∩ G0 is trivial by construction of U . Hence Gx maps isomorphically onto a

closed subgroup of Ḡ, which is étale. Hence Gx is étale, too. Again this is only

possible if Gx is trivial. Replacing U by
⋂
g∈G(k) gU ⊆ U we may assume that U

is G-invariant (cf. [Sk02, p. 344]). Then U is a G-invariant dense open subset of

X with free G-action. This proves the claim.

�

Similarly as in [KS07, Lemma 4.1] we can prove the following result:

13



CHAPTER I. Multihomogeneous covariants and essential dimension

Lemma 3.8. Let ϕ : A(V ) 99K A(W ) be a faithful covariant between graded G-modules

V =
⊕m

i=1 Vi, W =
⊕n

j=1Wj. If W1, . . . ,Wn are all irreducible, then Hλ(ϕ) is faithful,

i.e., G acts faithfully on the image closure of Hλ(ϕ). In particular, if G is friendly then

Hλ(ϕ) is generically free again.

Proof. Let Nj and N ′
j denote the stabilizer of the image closure of ϕj and Hλ(ϕ)j,

respectively. It suffices to show Nj = N ′
j for j = 1 . . . n. Fix j. Both maps ϕj and Hλ(ϕ)j

are nonzero. Since Wj is irreducible it follows from Lemma 3.9 below that Nj and N ′
j are

both equal to the kernel of the G-action on A(Wj). The claim follows. �

Lemma 3.9. Let W be an irreducible G-module and X ⊆ A(W ) be a G-stable subva-

riety, which is not contained in {0}. Then the kernels of the G-action on X and A(W )

coincide.

Proof. We may assume that G acts faithfully on A(W ). Let N denote the kernel of

the G-action on X. This means X ⊆ A(WN). Since N is normal WN ⊆W is G-invariant.

By irreducibility and since X 6⊆ {0} we have WN = W . Faithfulness of the G-action on

A(W ) implies that N is trivial. �

Lemma 3.8 motivates the following definition:

Definition 3.10. G is called semi-faithful (over k) if it admits a completely reducible

faithful representation (over k).

A finite group G is semi-faithful over a field of char k = p > 0 if and only if it has
no nontrivial normal p-subgroups (cf. [Na47]). For an algebraic group G we have the
following partial characterization of semi-faithful groups:

Proposition 3.11. If G does not contain any nontrivial normal unipotent closed

subgroup then G is semi-faithful. The converse holds under the assumption that G(k) is

dense in G.

Proof. First assume that G does not have a nontrivial normal unipotent closed

subgroup. Let V be a faithful G-module. Then the kernel of the G-action on the direct

sum of the irreducible decomposition factors of V is a normal unipotent closed subgroup,

hence trivial. This implies that G is semi-faithful.

Conversely assume that G has a faithful completely reducible module V and that G(k)

is dense in G. Let H be a normal unipotent closed subgroup. Then by [Ja87, Proposition

6.16] the restriction of V to H is completely reducible as well. Since every module of a

unipotent group contains a nonzero fixed vector it follows that H acts trivially on V .

Hence H is trivial, which proves the claim.

�

Remark 3.12. Semi-faithfulness has been investigated in [Va05] for (smooth) reduc-

tive algebraic groups G. It is shown that every reductive group G is semi-faithful unless

possibly char k = 2. In characteristic 2 the groups SO2n+1 for n ≥ 1 are given as examples

of reductive and not semi-faithful algebraic groups. Moreover it is shown in that paper
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that a reductive group over a field of charcteristic 2 is semi-faithful if and only if Gksep

does not have a direct factor isomorphic to SO2n+1 for any n ≥ 1.

Remark 3.13. By a theorem of Rosenlicht the density assumption on G(k) in Propo-

sition 3.11 is satisfied if G is connected and k is perfect (and infinite), see e.g. [Bo69,

Corollary 18.3]. For reductive algebraic groups G the density assumption in Proposition

3.11 can be dropped as shown in [Va05].

Definition 3.14. A covariant ϕ : A(V ) 99K A(W ) of G is called minimal if it is

generically free and dimϕ = edkG.

Given completely reducible G-modules V =
⊕m

i=1 Vi and W =
⊕n

j=1Wj of a friendly
semi-faithful algebraic group G we can replace a minimal covariant ϕ : A(V ) 99K A(W )
by its multihomogenization Hλ(ϕ) (for suitable one-parameter subgroup λ of TV as in
Proposition 3.5) without loosing minimality, which follows from Lemma 3.3 and Lemma
3.8. This has the following consequence, which we will often use in the sequel:

Proposition 3.15. Let G be a friendly semi-faithful algebraic group. Then for any

completely reducible faithful G-modules V =
⊕m

i=1 Vi and W =
⊕n

j=1Wj there exists a

multihomogeneous minimal covariant ϕ : A(V ) 99K A(W ) of G.

Remark 3.16. For the validity of Proposition 3.15 we do not really need that every

faithful G-variety is generically free. It suffices that every faithful affine G-variety is gener-

ically free. For example the proposition holds for infinite and non-smooth algebraic groups

of multiplicative type as well. Non-affine G-varieties will come into play in Theorem 5.2

of section 5.

4. Multihomogeneous invariants

Let V =
⊕m

i=1 Vi and W =
⊕n

j=1Wj be graded G-modules. The primary goal of
this section is to find all possible degree matrices Mϕ associated to multihomogeneous
covariants ϕ : A(V ) 99K A(W ). To achieve this goal we have to study multihomogeneous
invariants of V .

An element f ∈ k(V ) is called multihomogeneous if it is multihomogeneous regarded
as a rational map A(V ) 99K A1. The nonzero multihomogeneous rational invariants of
V form a group under multiplication, which we denote by MG(V ). Note that MG(V )
depends on the grading of V .

For f1, . . . , fn ∈ MG(V ) and a covariant ϕ : A(V ) 99K A(W ) the rational map

ϕ̃ = (f1ϕ1, . . . , fnϕn) : A(V ) 99K A(W )

is again a covariant. This gives us a method of modifying covariants by tuples (f1, . . . , fn) ∈
MG(V )n. Note that the degree matrix of Mϕ̃ is obtained from Mϕ by adding to the jth
column the degree vector of fj for j = 1, . . . , n.

We will later make use of the following lemma:

Lemma 4.1. The set MG(V )∩k[V ]G generates k[V ]G additively. If k(V )G = Quot(k[V ]G)

(which happens in particular if G is étale) then MG(V ) generates k(V )G as a field.

15



CHAPTER I. Multihomogeneous covariants and essential dimension

Proof. The first claim follows from the fact that k[V ]G decomposes into a direct sum

of G-invariant weight spaces for the TV -action. The second claim follows easily from the

first claim. �

In order to see what effect the above modification of covariants by n-tuples of invari-
ants has on degree matrices, we need to study the possible degree vectors of multihomo-
geneous invariants.

Definition 4.2. Let V =
⊕n

i=1 Vi be a gradedG-module. The degree module DMG(V )

of V is the submodule of X(TV ) ≃ Zm formed by the degrees of multihomogeneous

invariants, i.e., the image of the group homomorphism deg : MG(V ) → X(TV ), f 7→

Xf(IdGm
). Equivalently it is the image of the group homomorphism

∏

f∈S

X(G
m

) → X(TV )

induced by the homomorphisms Xf : X(G
m

) → X(TV ), where S is any finite subset of

MG(V ) whose degrees generate DMG(V ).

In the sequel we aim to relate the degree module of V to a certain subgroup of G.
It is well known that every algebraic group G has a largest closed central subgroup of
multiplicative type, see [SGA3] where it is called centre réductif. The following central
subgroup of G is a split analogue and will play an important role in the sequel:

Lemma 4.3. There exists a (unique) largest closed central diagonalizable subgroup of

G.

Proof. By [SGA3, Théorème 4.4] G admits a (unique) largest central subgroup A

of multiplicative type. Its subgroup Splitk(A) constructed in Chapter IV, section 4 is the

(unique) largest central diagonalizable subgroup of G. �

Definition 4.4. We call the largest closed central diagonalizable subgroup from

Lemma 4.3 the k-center of G and denote it by Z(G, k).

Examples 4.5. • The k-center of an algebraic group G of multiplicative type

coincides with Splitk(G).

• If G is a finite group then

Z(G, k) = {g ∈ Z(G) | k contains primitive (ord g)th roots of unity}.

• The k-center of SL2 is µ2, which is smooth if and only if char k 6= 2. This example

shows that the k-center of a smooth (and even semi-simple) algebraic group can

be non-smooth. Similarly if T is a one-dimensional non-split torus over a field of

char k = 2 then Z(T, k) ≃ µ2 is non-smooth.

If G is semi-faithful then Z(G, k) is the largest closed subgroup of G which acts by
scalars on every irreducible representation of G over k:

Lemma 4.6. Let V =
⊕m

i=1 Vi be a completely reducible faithful G-module and ρ : G→

GL(V ) the corresponding homomorphism. Then ρ(Z(G, k)) = TV ∩ ρ(G).
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Proof. By definition of Z(G, k) and faithfulness of ρ the closed subgroup ρ(Z(G, k))

can be characterized as the largest closed central diagonalizable subgroup of ρ(G). Since

ρ(G) ∩ TV is central and diagonalizable it is contained in ρ(Z(G, k)). For the reverse in-

clusion we must show that ρ(Z(G, k)) is contained in TV . It suffices to show that Z(G, k)

acts by multiplication by scalars on every irreducible G-module W . As Z(G, k) is diag-

onalizable we may write W =
⊕

χ∈ΛWχ where Λ is a finite set of characters of Z(G, k)

defined over k and Z(G, k) acts on A(Wχ) via χ. Since Z(G, k) is central G preserves

each A(Wχ). Therefore W = Wχ for some χ ∈ Λ by irreducibility of W and the claim

follows. �

The following relationship between the degree module and the k-center of an étale
algebraic group G shows, that the possible degree vectors of multihomogeneous invariants
are only restricted by the influence of the k-center of G:

Proposition 4.7. Assume that G is étale and that V =
⊕m

i=1 Vi is a completely

reducible faithful G-module. Then the sequence

MG(V )
deg
−→ X(TV ) → X(Z(G, k)) → 1

is exact. In particular DMG(V ) = {χ ∈ X(TV ) | χ|Z(G,k) = 1} and X(TV )/DMG(V ) ≃

X(Z(G, k)).

Proof. Choose a finite subset S ⊆ MG(V ) such that the degrees of the elements of

S generate DMG(V ). We may replace the homomorphism deg : MG(V ) → X(TV ) by the

homomorphism X(
∏

f∈S G
m

) → X(TV ), since they both have image DMG(V ). Now the

claim becomes equivalent to exactness of the sequence

1 → Z(G, k)
ρ
→ TV →

∏

f∈S

G
m
.

Exactness at Z(G, k) follows directly from the faithfulness of V . Denote by Q the kernel

of the last map, which is the intersection of the kernels of the maps Df : TV → G
m

taken over all multihomogeneous invariants f ∈ S. Clearly ρ(Z(G, k)) ⊆ Q because

each f ∈ S is G-invariant. On the other hand let G̃ = ρ(G) · Q be the subgroup of

GL(V ) generated by ρ(G) and Q, defined as the image of the morphism ρ(G) × Q →

GL(V ), (g, h) 7→ gh of algebraic groups. This is again a finite algebraic group defined

over k and contains ρ(G) as a normal subgroup. The quotient G̃/ρ(G) ≃ Q/(Q ∩ ρ(G))

is diagonalizable. By construction we have MG(V ) = MG̃(V ) and Lemma 4.1 implies

k̄(V )G = Quot(k̄[V ]G) = Quot(k̄[V ]G̃) ⊆ k̄(V )G̃ ⊆ k̄(V )ρ(G), hence k̄(V )G = k̄(V )G̃. By

[Sk02] we get |G| = max(G : Gx) = [k̄(V ) : k̄(V )G] = [k̄(V ) : k̄(V )G̃] = max(G̃ : G̃x),

where the maxima are taken over all x ∈ V ⊗ k̄, and Gx (resp. G̃x) denotes the stabilizer

of x in G (resp. G̃). By Lemma 3.7 V ⊗ k̄ contains a point x with trivial stabilizer in

G̃ (note that (G̃k̄)
0 is finite and diagonalizable, hence contains only finitely many closed

subgroups). Hence |G| = |G̃| and Lemma 4.6 implies Q = ρ(Z(G, k)). �

Definition 4.8. For graded G-modules V =
⊕m

i=1 Vi and W =
⊕n

j=1Wj we denote

by mCov(V,W ) the space of multihomogeneous covariants ϕ : A(V ) 99K A(W ).

17



CHAPTER I. Multihomogeneous covariants and essential dimension

The formula

(f1, . . . , fn) · ϕ = (f1ϕ1, . . . , fnϕn) : A(V ) 99K A(W )

for (f1, . . . , fn) ∈ MG(V )n induces an action of the group MG(V )n on mCov(V,W ),
which respects faithfulness when all Wj are irreducible. Furthermore we get an action of
MG(V )n on the set S = {Xϕ : ϕ ∈ mCov(V,W )} ⊆ Hom(X(TW ), X(TV )) of all degrees
associated to multihomogeneous covariants. We will identify MG(V )n with the group
Hom(X(TW ),MG(V )) by associating with an element γ ∈ Hom(X(TW ),MG(V )) the n-
tuple (f1, . . . , fn) ∈ MG(V ) where fj = γ(χj) for the standard basis of X(TW ) formed by
the characters χj : TW → G

m
, t = (t1, . . . , tn) 7→ tj . Then the action on degrees is given

by

Hom(X(TW ),MG(V )) × S → S,

(γ, s) 7→ γs : X(TW ) → X(TV )

χ 7→ (deg γ(χ)) · s(χ).

From Proposition 4.7 we get the following result, which says that every possible degree
matrix of multihomogeneous covariants of an étale algebraic group can be obtained by
modifying an arbitrary multihomogeneous covariant by a suitable tuple of multihomoge-
neous invariants.

Corollary 4.9. If G is étale and V =
⊕m

i=1 Vi is completely reducible and faithful

then the group Hom(X(TW ),MG(V )) acts transitively on S.

Proof. Let s, s′ ∈ S and choose ϕ, ϕ′ ∈ mCov(V,W ) such that s = Xϕ and s′ = Xϕ′ .

Define D ∈ Homk(TV , TW ) by D(t) = Dϕ(t)Dϕ′(t−1) for t ∈ TV (k̄). Then D|ρ(Z(G,k)) =

1, since Dϕ and Dϕ′ are both the identity on ρ(Z(G, k)). By Proposition 4.7 this is

equivalent to saying that X(D) ∈ Hom(X(TW ),DMG(V )). Therefore X(D) comes from

some homomorphism γ ∈ Hom(X(TW ),MG(V )). By construction γs′ = s, finishing the

proof. �

In general modifying a minimal faithful multihomogeneous covariant ϕ : A(V ) 99K
A(W ) by a tuple of multihomogeneous invariants (f1, . . . , fn) ∈ MG(V )n will increase
the dimension of the covariant. In the rest of this section we show that certain tuples of
multihomogeneous invariants do not have this effect at all, whereas in general the increase
in dimension is not as large as it could be expected.

Let ϕ : A(V ) 99K A(W ) be a faithful multihomogeneous covariant. Let Nϕ ∈ N be the
greatest common divisor of the entries of the elements of imXϕ ⊆ X(TV ) ∼= Zm, where
m = dimTV . Then N−1

ϕ Xϕ : X(TW ) → X(TV ) is well defined and its image has a com-
plement in X(TV ). We distinct between two types of elements of Hom(X(TW ),MG(V ))
relative to ϕ:

Definition 4.10. A homomorphism γ : X(TW ) → MG(V ) is called of

18



5. Properties of multihomogeneous covariants

• type I relative to ϕ if it factors through N−1
ϕ Xϕ : X(TW ) → X(TV ), i.e., if there

exists a commutative diagram of the form

X(TW )
γ //

N−1
ϕ Xϕ %%JJJJJJJJJ

MG(V )

X(TV )

99sssssssss

• type II relative to ϕ if the image of γ equals the image of kerXϕ →֒ X(TW ) →

MG(V ).

Proposition 4.11. Every homomorphism γ : X(TW ) → MG(V ) decomposes as γ =

α · β where α : X(TW ) → MG(V ) is of type I relative to ϕ and β : X(TW ) → MG(V ) is

of type II relative to ϕ.

Proof. Choose decompositions X(TW ) = kerXϕ ⊕ A and X(TV ) = imN−1
ϕ Xϕ ⊕ B.

Define the homomorphisms α, β : X(TW ) → MG(V ) by

α|kerXϕ
= 1, β|kerXϕ

= γ|kerXϕ
and α|A = γ|A, β|A = 1.

Clearly β is of type II relative to ϕ and αβ = γ.

Note that the homomorphism N−1
ϕ Xϕ : X(TW ) → X(TV ) induces an isomorphism

from A to its image in X(TV ). Thus we may define ε : X(TV ) → MG(V ) by ε|B = 1 and

ε(N−1
ϕ Xϕ(χ)) = γ(χ) for χ ∈ A. This shows that α is of type I relative to ϕ, finishing the

proof. �

Proposition 4.12. If γ is of type I relative to ϕ then (γϕ)(V ⊗ k̄) ⊆ ϕ(V ⊗ k̄)

and in particular dim(γϕ) ≤ dimϕ. For arbitrary γ the dimension of γϕ is at most

dimϕ+ (rankX(TW ) − rankMϕ).

Proof. Let γ be of type I relative to ϕ. Then there exists ε : X(TV ) → MG(V )

such that γ = ε ◦ N−1
ϕ Xϕ. We have rational evaluation maps evγ : A(V ) 99K TW and

evε : A(V ) 99K TV , such that (γϕ)(v) = evγ(v)ϕ(v) and similarly for ε. Now let v ∈ V ⊗ k̄

such that evε and ϕ are defined at v. Choose t ∈ TV (k̄) such that tNϕ = evε(v). Then one

checks easily that evγ(v) = Dϕ(t), whence

(γϕ)(v) = evγ(v)ϕ(v) = Dϕ(t)ϕ(v) = ϕ(tv).

This proves the first claim.

The second claim follows from the first, since the image of kerXϕ →֒ X(TW ) →

MG(V ) is generated by r := rank(kerXϕ) = rankX(TW ) − rankMϕ functions. �

5. Properties of multihomogeneous covariants

5.1. The rank of the degree-matrix of a multihomogeneous covariant.

Definition 5.1. For a diagonalizable group D we denote by rankD the minimal

number of generators of the character group X(D) and call it the rank of D. Equivalently

this number can be expressed as the least dimension of a split torus in which D embeds.

19



CHAPTER I. Multihomogeneous covariants and essential dimension

For a faithful multihomogeneous covariant ϕ : A(V ) 99K A(W ) of a friendly semi-
faithful algebraic group we will prove the following inequality relating the rank of Mϕ and
the rank of the k-center Z(G, k) (see Definition 4.4):

Theorem 5.2. Let G be a friendly semi-faithful algebraic group and let ϕ : A(V ) 99K

A(W ) be a faithful multihomogeneous covariant between completely reducible faithful G-

modules V =
⊕m

i=1 Vi and W =
⊕n

j=1Wj. Then rankMϕ ≥ rankZ(G, k) and

edkG+ dimG− rankZ(G, k) ≤ dimϕ− rankMϕ.

In particular if ϕ is minimal then

rankMϕ = rankZ(G, k).

Remark 5.3. The case when G is a finite group with trivial center (and k = C) is

Proposition 3.4 of Chapter II.

Proof of Theorem 5.2. Let ρV : G → GL(V ) and ρW : G → GL(W ) denote the

representation homomorphisms. By Lemma 4.6 we have ρV (Z(G, k)) ⊆ TV . Since ϕ is equi-

variant with respect to both the tori- and G-action, ρW (Z(G, k)) = Dϕ(ρV (Z(G, k))) ⊆

Dϕ(TV ). Hence rankMϕ = rankDϕ(TV ) ≥ rank ρW (Z(G, k)) = rankZ(G, k).

The second inequality follows from the Proposition 5.4 below, which yields a com-

pression A(V ) 99K X ′/S of A(V ) to the geometric quotient of a dense open subset X ′ of

ϕ(A(V )) by a free action of a torus S of dimension rankMϕ − rankZ(G, k). �

Proposition 5.4. Let ϕ = (ϕ1, . . . , ϕn) : A(V ) 99K A(W ) be a faithful multihomoge-

neous covariant between completely reducible G-modules V =
⊕m

i=1 Vi and W =
⊕n

j=1Wj.

Then there exists a sub-torus S ⊆ Dϕ(TV ) of dimension rankMϕ − rankZ(G, k) and a

G-invariant dense open subset W ′ ⊆ A(W ) on which Dϕ(TV ) acts freely such that the geo-

metric quotient (ϕ(A(V ))∩W ′)/S exists as a variety and its induced G-action is faithful.

In the sequel we use the following notation:

Definition 5.5. Let V =
⊕m

i=1 Vi be a graded vector space. Define the variety PP(V )

by

PP(V ) := P(V1) × . . .× P(Vm).

It is the geometric quotient of the natural free TV action on the open sub-variety (A(V1)\

{0})× · · · × (A(Vm) \ {0}) ⊂ A(V ). We write πV : A(V ) 99K PP(V ) for the corresponding

rational quotient map.

For the proof of Proposition 5.4 we need Lemma 5.6 below. A special case is shown
in Chapter II, Lemma 3.3. A similar argument can be used to prove the more general
statement.

Lemma 5.6. Let V =
⊕m

i=1 Vi and W =
⊕n

j=1Wj be graded G-modules with each

Wj irreducible and let ϕ : A(V ) 99K A(W ) be a faithful multihomogeneous covariant. Let

πW : A(W ) 99K PP(W ) be the obvious G-equivariant rational map. Then the kernel of the

action of G on πW (ϕ(A(V ))) equals Z(G, k).
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5. Properties of multihomogeneous covariants

Proof of Proposition 5.4. The torusDϕ(TV ) contains Z(G, k) and has dimension

d := rankMϕ ≥ r := rankZ(G, k). By the elementary divisor theorem there exist a non-

negative integer a ≤ r, integers c1, . . . , ca > 1 and a basis χ1, . . . , χd of X(Dϕ(TV )) such

that

Z(G, k) =

a⋂

i=1

kerχcii ∩
d⋂

j=r+1

kerχj .

Set S :=
⋂r
i=1 kerχi. This is a subtorus of Dϕ(TV ) of rank d−r = rankMϕ− rankZ(G, k)

with S ∩ Z(G, k) = {1}.

Let W ′ :=
∏n

j=1(A(Wj) \ {0}). Since ϕ is multihomogeneous the closed subgroup

S ⊆ Dϕ(TV ) preserves X := ϕ(A(V )) and also the open subset X ′ := X ∩W ′ of X. The

S-action on X ′ is free in the sense of [MFK94, Definition 0.8] and in particular separated.

In the notation of [MFK94] X ′ coincides with (X ′)s(Pre). By [MFK94, Proposition 1.9]

a (uniform) geometric quotient X ′/S of X ′ by the action of the reductive algebraic group

S exists as a scheme of finite type over k. By [MFK94, Chap. 0, §2, Remark (2) and

Lemma 0.6] X ′/S is a variety. Moreover X ′/S is a categorical quotient. Since the G-action

on X ′ commutes with the S-action it passes to X ′/S. The kernel of the G-action on X ′/S

is contained in Z(G, k) by Lemma 5.6. Since Z(G, k) ∩ S = {1} it is trivial. �

Remark 5.7. Theorem 5.2 does not hold for non-friendly algebraic groups (with

faithful replaced by generically free) in general. For example the identity map of Mat2×2 is

a generically free covariant of GL2, which is a special algebraic group (hence edk GL2 = 0).

It is multihomogeneous and has degree matrix M = 1Mat2×2 of rank 2. The k-center of

GL2 is isomorphic to G
m

. However

edk GL2 + dimGL2 − rankZ(GL2, k) = 3 � 2 = dim IdMat2×2 − rankM.

To illustrate the usefulness of the existence of minimal multihomogeneous covariants
and Lemma 5.6 we give a simple corollary.

Corollary 5.8. Let G be a friendly semi-faithful algebraic group. Then edkG +

dimG ≥ rankZ(G, k). Moreover

• edkG + dimG = rankZ(G, k) if and only if G = Z(G, k), i.e., if and only if G

is diagonalizable.

• If edk G+dimG ≤ rankZ(G, k)+1, then G/Z(G, k) acts faithfully on a projective

rational curve. If moreover G/Z(G, k) is smooth then G is an extension of a closed

subgroup of PGL2 by Z(G, k).

Proof. By assumption G has a faithful completely reducible module V =
⊕m

i=1 Vi.

Let ϕ : A(V ) 99K A(V ) be a minimal multihomogeneous covariant of G and set X :=

ϕ(A(V )). Then Dϕ(TV ) acts generically freely on X. From this we deduce edkG +

dimG = dimX ≥ dimDϕ(TV ) = rankMϕ, which is equal to rankZ(G, k) by Theorem

5.2. By Lemma 5.6 the group G/Z(G, k) acts faithfully on the projective variety Y :=

πV ◦ ϕ(A(V )) ⊆ PP(V ). The non-empty fibers of the restriction X 99K Y, x 7→ πV (x) of

πV have dimension ≥ dimDϕ(TV ) = rankZ(G, k). Hence dimY ≤ dimX−dimDϕ(TV ) =

dimϕ− rankZ(G, k) = edkG+ dimG− rankZ(G, k).
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CHAPTER I. Multihomogeneous covariants and essential dimension

When edkG + dimG ≤ rankZ(G, k) the variety Y must be a single point, whence

G = Z(G, k). Conversely a diagonalizable group G embeds in GrankG
m

, which is special,

whence edkG + dimG ≤ dim GrankG
m

= rankZ(G, k). This solves the first case. In the

second case when edkG+dimG ≤ rankZ(G, k)+1 the unirational variety Y has dimension

≤ 1 and it follows by Lüroth’s theorem that Y is rational. When G/Z(G, k) is smooth

it acts faithfully on the normalization of Y , which is either P1 or a single point. Since

the automorphism group of P1 is PGL2 it follows in that case that G/Z(G, k) embeds in

PGL2. In other words G is an extension of a closed subgroup of PGL2 by Z(G, k). �

Remark 5.9. Corollary 5.8 can be used to classify friendly semi-faithful algebraic

groups with edkG+dimG− rankZ(G, k) ≤ 1. We conjecture that any finite semi-faithful

group G of edkG ≤ 2 with nontrivial k-center Z(G, k) embeds into GL2(k). In case of

k = C this follows from [KS07, Theorem 10.2] and the relationship between covariant

and essential dimension from [KLS09, Theorem 3.1] (see Chapter II).

5.2. Behavior under refinement of the grading. Let V =
⊕m

i=1 Vi be a graded

vector space. For each i let Vi =
⊕di

k=1 Vik be a grading of Vi. We call the grading V =⊕
i,k Vik a refinement of the grading V =

⊕
i Vi. Let ϕ = (ϕ1, . . . , ϕn) : A(V ) 99K A(W )

be a multihomogeneous rational map. We consider refinements both in V and in W =⊕n
j=1Wj where Wj =

⊕ej

l=1Wjl, and study the behavior of the rank of the degree matrix.

Set d =
∑m

i=1 di and e =
∑n

j=1 ej .

Proposition 5.10. (A) Refinement in V : Let λ be a one-parameter subgroup of

TV = Gd
m

such that Hλ(ϕ) : A(V ) 99K A(W ) is multihomogeneous w.r.t. the

refined grading on V and the old grading on W . Then

rankMHλ(ϕ) ≥ rankMϕ.

(B) Refinement in W : The map ϕ can be considered as a multihomogeneous rational

map ϕ′ : A(V ) 99K A(W ) with respect to the old grading on V and the refined

grading on W . Then

rankMϕ′ = rankMϕ.

(C) Refinement in both V and W : Consider ϕ′ as above and let λ be a one-parameter

subgroup of TV = Gd
m

be such that Hλ(ϕ
′) : A(V ) 99K A(W ) is multihomogeneous

w.r.t. the refined grading on both V and W . Then

rankMHλ(ϕ′) ≥ rankMϕ.

Proof. (A) Let (ai,j) = Mϕ ∈ Matm,n(Z) and (bik,j) = MHλ(ϕ) ∈ Matd,n(Z) be

the degree matrices of ϕ and Hλ(ϕ), respectively. Since Hλ(ϕ) is still multiho-

mogeneous with respect to the old grading on V we have
∑di

k=1 bik,j = ai,j for

i = 1 . . .m and j = 1 . . . n. Therefore the span of the rows of MHλ(ϕ) contains the

span of the rows of Mϕ. Hence rankMHλ(ϕ) ≥ rankMϕ.

(B) The maps ϕjl : V 99K Wjl are still multihomogeneous of the same degree as

ϕj : A(V ) 99K A(Wj). Thus the column span of Mϕ equals the column span of

Mϕ′ and hence rankMϕ = rankMϕ′ .

22



6. Covariant dimension versus essential dimension

(C) follows from (A) and (B).

�

6. Covariant dimension versus essential dimension

In this section G denotes an étale algebraic group. Recall the definition of the covariant
dimension of G:

Definition 6.1.

cdimkG := min{dimϕ | ϕ : A(V ) → A(W ) faithful regular covariant},

where V and W are faithful G-modules.

Note that this is the analogue of essential dimension with the only difference that the
minimum is taken over regular (rather than rational) covariants. Similarly as for essential
dimension the following holds: For any faithful G-modules V and W there exists a faithful
regular covariant ϕ : A(V ) → A(W ) with dimϕ = cdimkG.

The following result relates essential and covariant dimension of semi-faithful étale
algebraic groups. The special case when k = C is contained in Theorem 3.1 of Chapter II.

Theorem 6.2. Let G be a non-trivial semi-faithful étale algebraic group. Then cdimkG =

edkG if and only if Z(G, k) is non-trivial. Otherwise cdimkG = edkG+ 1.

Proof. For the proof we use the modification of multihomogeneous covariants by

(tuples of) multihomogeneous invariants from section 4.

Let V =
⊕n

i=1 Vi be a faithful completely reducible G-module. The case when Z(G, k)

is trivial follows from the inequality cdimkG ≤ edkG + 1 (cf. [Re04]) and Theorem

5.2, since Mϕ cannot be the zero-matrix for any non-constant regular multihomogeneous

covariant ϕ : A(V ) → A(V ).

Now assume that Z(G, k) is non-trivial. Let ϕ : A(V ) 99K A(V ) be a minimal multi-

homogeneous covariant. First assume that there exists a row vector β ∈ Zn such that all

entries of α := βMϕ are strictly positive. We may assume that ϕ is of the form ϕ = ψ
f

where f ∈ k[V ]G is multihomogeneous and ψ : A(V ) 99K A(V ) is a (faithful) regular mul-

tihomogeneous covariant. Consider ϕ̃ = (fα1ϕ1, . . . , f
αnϕn). It is of the form γϕ where

γ ∈ Hom(X(TV ),MG(V )) is of type I relative to ϕ. Since αj > 0 for all j the covariant ϕ̃

is regular. Proposition 4.12 implies

cdimkG ≤ dim ϕ̃ ≤ dimϕ = edkG.

We reduce to the case above by composing with a covariant as in Example 3.2. Since

V is faithful and Z(G, k) is non-trivial M cannot be the zero matrix. Write Mϕ = (mij)

and fix i0 and j0 with mi0j0 6= 0. Then ϕj0 6= 0 and we can find a homogeneous h ∈ k[Wj0 ]
G

of degree deg h > 0 such that h ◦ ϕj0 6= 0. For any r ∈ Z consider the covariant

ϕ′ : A(V ) 99K A(V ), v 7→ hr(ϕj0(v))ϕ(v).

Since h ◦ ϕj0 6= 0 and ϕ is faithful, ϕ′ is faithful, too. Clearly dimϕ′ ≤ dimϕ = edkG.

Moreover ϕ′ is multihomogeneous of degree Mϕ′ = (m′
ij) where m′

ij = mij + r deg hmij0 .

For suitable r ∈ Z this yields a matrix Mϕ′ where all m′
i0j

for j = 1 . . . n are strictly
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CHAPTER I. Multihomogeneous covariants and essential dimension

positive. Now for β = ei0 the entries of α = βMϕ are all strictly positive and we are in

the case above. �

Remark 6.3. The statement of Theorem 6.2 also holds in characteristic p for a finite

elementary abelian p-group A, which has essential dimension 1 by [Le07, Proposition 5],

trivial k-center Z(A, k) and covariant dimension 2, as the following argument shows: It

is enough to consider the case A = Z/pZ. Let V denote the 2-dimensional representation

of A where a generator a ∈ A acts as a(s, t) = (s, s + t). Suppose that there exists a

regular faithful covariant ϕ : A(V ) → A(V ) with X = ϕ(A(V )) of dimension 1. Then

the generator a induces an automorphism of order p on the normalization of X, which is

isomorphic to A1. Since in characteristic p no automorphism of A1 of order p has fixed

points we get a contradiction.

7. The central extension theorem

We show the following generalization of the theorem about the essential dimension of
central extensions from [BR97]:

Theorem 7.1. Let G be a friendly algebraic group. Let H be a closed subgroup of

Z(G, k) with H ∩ [G,G] = {e} and assume that G/H is semi-faithful and friendly. Let

H ′ be a direct factor of G/[G,G] containing the image of H under the embedding H →֒

G/[G,G] and assume that H ′ is diagonalizable. Then

edkG+ dimG− rankZ(G, k) ≤ edkG/H + dimG/H − rankZ(G/H, k).

Moreover if H is finite then equality holds, i.e.,

edkG− rankZ(G, k) = edkG/H − rankZ(G/H, k).

Remark 7.2. Theorem 7.1 generalizes the following results about central extensions:

[BR97, Theorem 5.3], [Ka08, Theorem 4.5], [Le04, Theorem 8.2.11], [BRV08, Theorem

7.1 and Corollary 7.2] and [BRV07, Lemma 11.2]. Some special cases of Theorem 7.1 are

also contained in Chapter II, see Corollaries 3.7 and 4.7 of Chapter II.

If G is a finite algebraic group of p-power order then Theorem 7.1 can be deduced

from Theorem 1.3 of Chapter IV.

Remark 7.3. Let rdimkG denote the least dimension of a faithful representation of

an algebraic group G. Under the assumptions of Theorem 7.1 one can show

rdimkG− rankZ(G, k) ≤ rdimkG/H − rankZ(G/H, k),

but equality does not need to hold.

Proof of Theorem 7.1. Embed H ′ in Gr
m

where r := rankH ′. There exist gener-

ators χ̂1, χ̂2, . . . , χ̂r of X(Gr
m

) = Zr and non-negative natural numbers n1, n2, . . . , nr such

that

H =
⋂

i

ker χ̂ni

i .
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7. The central extension theorem

If H is finite then n1, n2, . . . , nr are strictly positive and H ≃ µn1 × · · · × µnr
. Denote by

χi for i = 1, . . . , r the restriction of χ̂i to H ′. Then

H =
⋂

i

kerχni

i .

Let C be a direct complement of H ′ in G/[G,G] and denote by π : G → G/[G,G] =

H ′ × C → H ′ the projection onto H ′. Let W =
⊕m

i=1Wi be a completely reducible

faithful G/H-module and denote by kχi
the one-dimensional G-module where G acts

through χi ◦ π via scalar multiplication. Then

V := (

m⊕

i=1

Wi) ⊕ (

r⊕

j=1

kχj
)

is a completely reducible faithful G-module. We first prove the inequality edkG+dimG−
rankZ(G, k) ≤ rankZ(G, k) + dimG/H − rankZ(G/H, k): Let ϕ : A(W ) 99K A(W ) be a

minimal multihomogeneous covariant of G/H . Define a faithful covariant of G by

Φ: A(V ) 99K A(V ), (w, t1, . . . , tr) 7→ (ϕ(w), t1, . . . , tr).

Clearly Φ is multihomogeneous again with rankMΦ = rankMϕ+r = rankZ(G/H, k)+r,

where the last equality comes from Theorem 5.2. Moreover by the same theorem,

edkG+ dimG ≤ dim Φ − (rankMΦ − rankZ(G, k))

= edkG/H + dimG/H − rankZ(G/H, k) + rankZ(G, k).

Now assume that H is finite. We must show edkG/H − rankZ(G/H, k) ≤ edkG −

rankZ(G, k). Let ϕ : A(V ) 99K A(V ) be a minimal multihomogeneous covariant of G. Let

V ′ := (

m⊕

i=1

Wi) ⊕ (

r⊕

j=1

k
χ

nj
j

)

and consider the G-equivariant regular map

π : A(V ) → A(V ′), (w, t1, . . . , tr) 7→ (w, tn1
1 , . . . , t

nr

r ).

Since H ≃ µn1 × · · · × µnr
this is the quotient map for the geometric quotient of the

H-action on A(V ). The composition ϕ′ := π ◦ ϕ : A(V ) 99K A(V ′) is H-invariant, hence

we get a commutative diagram:

A(V )
ϕ′

$$H
H

H
H

H

π

��

ϕ //___ A(V )

π

��
A(V ′)

ϕ̄ //___ A(V ′)

where ϕ̄ : A(V ′) 99K A(V ′) is a faithful G/H-covariant. Since π is finite the rational

maps ϕ, ϕ′ and ϕ̄ all have the same dimension equal to edkG + dimG. Moreover ϕ′

and ϕ̄ are multihomogeneous as well. The degree matrix Mϕ′ is obtained from Mϕ by

multiplying its last r columns by n1, n2, . . . , nr > 0 and from Mϕ̄ by multiplying its

last r rows by n1, n2, . . . , nr > 0. Hence rankMϕ = rankMϕ′ = rankMϕ̄. Application
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of Theorem 5.2 yields: edkG/H + dimG/H − rankZ(G/H, k) ≤ dim ϕ̄ − rankMϕ̄ =

edkG+ dimG− rankZ(G, k). Since dimG/H = dimG this finishes the proof. �

Corollary 7.4. Let G be a friendly semi-faithful algebraic group and A be a smooth

finite diagonalizable algebraic group. Then

edk(G×A) − rank(Z(G, k) × A) = edkG− rankZ(G, k).

Proof. Apply Theorem 7.1 to the central subgroup {e} × A ⊆ G×A. �

Another application of the central extension theorem is the following corollary:

Corollary 7.5. Let V =
⊕m

i=1 Vi be a faithful completely reducible module of an étale

semi-faithful algebraic group G. Let ϕ : A(V ) 99K A(V ) be a minimal multihomogeneous

covariant. Then (the image closure of) the rational map πV ◦ ϕ : A(V ) 99K PP(V ) has

exactly dimension dimϕ− rankZ(G, k).

Proof. The inequality dim πV ◦ ϕ ≤ dimϕ− rankZ(G, k) was already shown in the

proof of Corollary 5.8. To prove the reverse inequality let p 6= char k be a prime and let

r ∈ N be such that Z(G, k) has a subgroup of the form µrp but none of the form µr+1
p . One

easily shows that V admits a faithful representation of G̃ := G×µn−rp where n = dimTV .

Corollary 4.9 implies the existence of γ ∈ Hom(X(TV ),MG(V )) such that γϕ is

D-equivariant for D = IdTV
. This turns ϕ̃ := γϕ into a faithful (multihomogeneous)

covariant for G̃. Corollary 7.4 shows that dim ϕ̃ ≥ edk G̃ = edk G + (n − rankZ(G, k)).

Since πV ◦ ϕ̃ = πV ◦ϕ we get dim πV ◦ϕ = dim πV ◦ ϕ̃ ≥ dim ϕ̃−n ≥ dimϕ− rankZ(G, k),

showing the claim. �

8. Subgroups and direct products

Proposition 8.1. Let H be a closed subgroup of an algebraic group G. Assume that

H and G are friendly and that G has a completely reducible faithful representation which

remains completely reducible when restricted to H. Then

edkH + dimH − rankZ(H, k) ≤ edkG+ dimG− rankZ(G, k).

Proof. Let V =
⊕m

i=1 Vi be a faithful G-module with each Vi irreducible which is

completely reducible as H-module and let ϕ : A(V ) 99K A(V ) be a minimal multihomo-

geneous covariant. By Theorem 5.2 rankMϕ = rankZ(G, k). Now consider ϕ as a covari-

ant for H . When replacing ϕ by a multihomogenization Hλ(ϕ) with respect to a refine-

ment into irreducible H-submodules we have rankMHλ(ϕ) ≥ rankMϕ by Proposition 5.10.

Hence again by Theorem 5.2 edkH+dimH− rankZ(H, k) ≤ dimHλ(ϕ)− rankMHλ(ϕ) ≤

dimϕ− rankMϕ = edkG+ dimG− rankZ(G, k). �

Remark 8.2. There exist pairs (H,G) of a finite group G with subgroup H such

that both H and G are semi-faithful over k, but none of the completely reducible faithful

representations of G restricts to a completely reducible representation of H . We found

some examples using the computer algebra system [MAGMA], the smallest (in terms of

the order of G) is a pair of the form H = S3, G = C2 ⋉ (C3 ⋉ (C3 ×C3)) in characteristic

2. Also there are examples in order 72 with G = Q8 ⋉ (C3 × C3) or G = C8 ⋉ (C3 × C3).
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Proposition 8.3. Let G1 and G2 be friendly semi-faithful algebraic groups such that

G1 ×G2 is friendly as well. Then

edk G1 ×G2 − rankZ(G1 ×G2, k) ≤ edkG1 − rankZ(G1, k) + edkG2 − rankZ(G2, k).

Proof. Let V =
⊕m

i=1 Vi and W =
⊕n

j=1Wj be faithful completely reducible mod-

ules of G1 and G2, respectively. Let ϕ1 : A(V ) 99K A(V ) and ϕ2 : A(W ) 99K A(W ) be

minimal multihomogeneous covariants for G1 and G2. Then rankMϕ1 = rankZ(G1, k)

and rankMϕ2 = rankZ(G2, k) by Theorem 5.2. The covariant ϕ1 × ϕ2 : A(V ⊕W ) 99K

A(V ⊕W ) for G1×G2 is again faithful and multihomogeneous with rankMϕ = rankMϕ1 +

rankMϕ2 = rankZ(G1, k) + rankZ(G2, k). Thus, by Theorem 5.2,

edkG1 ×G2 + dimG1 ×G2 − rankZ(G1 ×G2, k) ≤ dimϕ− rankMϕ

= dimϕ1 + dimϕ2 − rankZ(G1, k) − rankZ(G2, k).

Since dimϕ1 = edk G1 +dimG1 and dimϕ2 = edkG2 +dimG2 this implies the claim. �

Remark 8.4. We do not know of an example where the inequality in Proposition 8.3

is strict.

Example 8.5. Let k be a field which admits a cyclic extension of degree 6. Let l2 and

l3 be intermediate fields with [li : k] = i. Let Ti := R
(1)
li/k

(G
mli) denote the kernels of the

norm morphisms Rli/k(Gm,li) → G
m,k. Here Rl/k(Gm,l) is the algebraic group representing

the functor A 7→ G
m,l(A ⊗ l) = (A⊗ l)× from commutative k-algebras to groups, called

Weil restriction of G
m,l to k, and the maps (A⊗ l)× → A× send an element x ∈ (A⊗ l)×

to the determinant of the k-linear map on (A⊗ l) given by left-multiplication by x.

The (quasi-split) tori Rli/k(Gm,li) are well known to be special, i.e., edk Rli/k = 0

(see e.g. [FF07, p. 3892]). Moreover T2 and T3 have essential dimension 1 by [BF03,

Theorem 2.5]. We have µi ≃ Z(Ti, k) ⊂ Z(Rli/k(Gm,l), k) ≃ G
m,k. Hence T2, T3 and

T2 × T3 all have k-center of rank 1. Proposition 8.3 implies edk T2 × T3 ≤ 1 and since

edk T2 × edk T3 ≥ edk T2 = 1 [BF03, Remarks 1.16] it follows that edk T2 × T3 = 1.

The inequality edk T2×T3 ≤ 1 also follows from Proposition 8.1 considering T2×T3 as

a closed subgroup of the torus Rl2/k(Gm,l2)×Rl3/k(Gm,l3), which has essential dimension

0.

9. A generalization of Florence’ twisting construction

Twisting of quasi-projective varieties by torsors and its functorial properties have
been used by Mathieu Florence in his computation of the essential dimension of
cyclic p-groups [Fl08]. He starts with a faithful irreducible representation V of mini-
mal dimension of a cyclic p-group G = Z/prZ and a faithful homogeneous covariant
ϕ : A(V ) 99K A(V ). By homogeneity and since Z(G, k) acts trivially on P(V ) the covari-
ant ϕ induces a H := G/Z(G, k)-equivariant rational map ψ : P(V ) 99K P(V ). The twist
of P(V ) by a generic H-torsor is shown to be the Severi Brauer variety SB(D) associated
with a central division algebra D of p-power degree. The functorial properties of the twist
construction yield a rational map ψ̂ : SB(D) 99K SB(D) with dim ψ̂ ≤ dimψ. By a re-
sult of Nikita Karpenko every rational map SB(D) 99K SB(D) is dominant. Florence
concludes that ϕ is dominant as well.
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CHAPTER I. Multihomogeneous covariants and essential dimension

We will use the twisting construction for completely reducible modules of arbitrary
semi-faithful algebraic groups G and connect this construction with the stack-theoretic
approach used in [KM08, BRV07, BRV08]. Assume now that V =

⊕m
i=1 Vi is a faithful

completely reducible module of an algebraic group G and let ϕ = (ϕ1, . . . , ϕm) : A(V ) 99K
A(V ) be a multihomogeneous covariant of G with ϕj 6= 0 for all j (we do not assume that
ϕ is generically free). Since ϕ is multihomogeneous the composition πV ◦ ϕ : A(V ) 99K
PP(V ) =

∏m
j=1 P(Vi) is TV -invariant. Hence there exists a rational map ψ : PP(V ) 99K

PP(V ) making the diagram

A(V )
ϕ //___

πV

���
�

�
A(V )

πV

���
�

�

PP(V )
ψ //___ PP(V )

commute. Let C be any closed central diagonalizable subgroup of G. We view ψ as an
H := G/C-equivariant rational map. Let K/k be a field extension and E be an H-torsor
over K. We twist the H-equivariant rational map ψ (after scalar extension to K) by the
H-torsor E and obtain a rational map

EψK : EPP(V ⊗K) 99K EPP(V ⊗K).

Here the twist of a quasi-projective H-variety X by a H-torsor E is the categorical
quotient (E ×X)/H where H acts on E × X by h(e, x) = (eh−1, hx). For details of the
twist construction and its properties we refer to [Fl08, section 2] and [FF07].

In the sequel we use the connecting map

δ : H1(K,H) → H2(K,C)

in non-abelian cohomology (with respect to the fppf-topology) associated to the exact
sequence

1 → C → G→ H → 1

(see [Gi71]) and compose it with the map

χ∗ : H2(K,C) → H2(K,G
m

) ≃ Br(K)

induced by some character χ ∈ X(C), where Br(K) is the Brauer group of K. Now fix an
H-torsor E over K. Since H1(K,H) classifies H-torsors we can look at the image of the
class [E] ∈ H1(K,H) of E under the map χ∗ ◦ δ : H1(K,H) → Br(K). This yields a map

βE : X(C) → Br(K), χ→ βE(χ) := χ∗ ◦ δ([E]),

which is easily seen to be a group homomorphism. The twisted variety is now described
as follows:

Lemma 9.1. EPP(V ⊗ K) ≃
∏m

i=1 SB(Ai). Here SB(Ai) denotes the Severi-Brauer

variety of the twist Ai of EndK(Vi ⊗K) by the H-torsor E. Moreover the class of Ai in

the Brauer group Br(K) coincides with βE(χi) where χi ∈ X(C) is the character of C

through which C acts on A(Vi).

Proof. The first claim follows from [Fl08, Lemma 3.1]. For the second claim see

[KM08, Lemma 4.3]. �
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9. A generalization of Florence’ twisting construction

For a smooth projective variety X the number e(X) is defined as the least dimension
of the closure of the image of a rational map X 99K X. This number is expressed in terms
of generic splitting fields in the following Lemma 9.3.

Definition 9.2. Let X be a K-variety and D ⊆ Br(K) be a subgroup of the Brauer

group of K. The canonical dimension of X (resp. D) is defined as the least transcendence

degree (over K) of a generic splitting field (in the sense of [KM08, section 1.4]) of X

(resp. D). It is denoted by cd(X) (resp. cd(D)).

Lemma 9.3 ([KM06, Corollary 4.6]). Let X =
∏n

i=1 SB(Ai) be a product of Severi

Brauer varieties of central simple K-algebras A1, . . . , An. Then e(X) = cd(X) = cd(D),

where D ⊆ Br(K) is the subgroup generated by the classes of A1, . . . , An.

Our main result in this section is the following theorem, which is a generalization of
a result of Karpenko and Merkurjev [KM08, Theorem 4.2 and Theorem 3.1].

Theorem 9.4. Let G be a semi-faithful algebraic group and V =
⊕m

i=1 Vi a faithful

completely reducible G-module. Let E be a G/C-torsor over an extension K of k where C

is any closed subgroup of Z(G, k). Then

edkG+ dimG− rankZ(G, k) ≥ e
(
EPP(V ⊗K)

)
= cd(im βE).

Proof. Replacing V by a direct sum of enough copies of V we may assume that V is

generically free. Let ϕ̃ : A(V ) 99K A(V ) be a minimal covariant and denote by ϕ : A(V ) 99K

A(V ) its multihomogenization (which is faithful, but not necessarily generically free). Let

ψ : PP(V ) 99K PP(V ) be associated to ϕ as in the beginning of this section. Lemma 3.3

implies dimϕ ≤ dim ϕ̃ = edkG+dimG. Let us write dim θ for the dimension of the image

closure of a rational map θ like in the case of covariants. Since the image closure of EψK
is the twist of the image closure of ψK by E we have dim EψK = dimψK . Hence

e
(
EPP(V ⊗K)

)
≤ dim EψK ≤ dimψK = dimψ.

We now show that dimψ ≤ dimϕ − rankZ(G, k). Let X := ϕ(A(V )) ⊆ A(V ). The

fibers of πV |X : X → PP(V ) are stable under the torus Dϕ(TV ) ⊆ TV . The dimension of

Dϕ(TV ) is greater or equal to rankZ(G, k), since it contains the image of Z(G, k) under

the representation G →֒ GL(V ). Moreover Dϕ(TV ) acts generically freely on X. Hence the

claim follows by the fiber dimension theorem. Since V is faithful restricted to C the char-

acters χ1, . . . , χm generate X(C). Lemma 9.3 and Lemma 9.1 imply e
(
EPP(V ⊗K)

)
=

cd
(
EPP(V ⊗K)

)
= cd im βE, hence the claim. �

Remark 9.5 (The choice of the subgroups C ⊆ Z(G, k)). Karpenko and Merkurjev

work with the subgroup of elements of exponent p in Z(G, k). In their setting G is a p-group

and k contains a primitive pth root of unity, so C is the smallest subgroup of Z(G, k) with

the same rank as Z(G, k). In general the best lower bound is obtained with the maximal

choice, i.e., with the subgroup C = Z(G, k). This is seen as follows: Set Z = Z(G, k). For

a G/C-torsor E ′ over K let E denote its image under H1(K,G/C) → H1(K,G/Z). Then
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for any χ ∈ X(Z) we have a commutative diagram:

H1(K,G/C) //

��

H2(K,C)
(χ|C)∗//

��

H2(K,G
m

) // Br(K)

H1(K,G/Z) // H2(K,Z)
χ∗ // H2(K,G

m
) // Br(K)

Since every element of X(C) is the restriction of some character χ ∈ X(Z) this shows

that im(βE) = im(βE
′

), hence their canonical dimensions coincide.

We now go further to prove a generalization of Karpenko and Merkurjev’s [KM08,
Theorem 4.1]. This however involves two key results from their work:

Theorem 9.6 ([KM08, Theorem 2.1 and Remark 2.9]). Let p be a prime, K be a field

and D ⊆ Br(K) be a finite p-subgroup of rank r ∈ N. Then cdD = min {
∑r

i=1(Ind ai − 1)}

taken over all generating sets a1, . . . , ar of D. Here Ind ai denotes the index of ai.

For a central diagonalizable subgroup C of an algebraic group G and χ ∈ X(C) we

denote by Rep(χ)(G) the class of irreducible G-modules on which C acts through scalar
multiplication by χ.

Theorem 9.7 ([KM08, Theorem 4.4 and Remark 4.5]). Let 1 → C → G→ H → 1 be

an exact sequence of algebraic groups over some field k with C central and diagonalizable.

Then there exists a generic H-torsor E over some field extension K/k such that for all

χ ∈ X(C):

Ind βE(χ) = gcd{dimV | V ∈ Rep(χ)(G)}.

We have the following result:

Corollary 9.8 (cf. [KM08, Theorem 4.1]). Let G be a finite group whose socle C

is a central p-subgroup for some prime p and let k be a field containing a primitive p-th

root of unity. Assume that for all χ ∈ X(C) the equality

gcd{dimV | V ∈ Rep(χ)(G)} = min{dimV | V ∈ Rep(χ)(G)}

holds. Then edkG is equal to the least dimension of a faithful representation of G.

Proof. Let d denote the least dimension of a faithful representation of G. The upper

bound edkG ≤ d is clear. By the assumption on k we have rankC = rankZ(G, k) =

rankZ(G). Hence, by Theorem 9.4, it suffices to show cd(im βE) = d − rankC for a

generic H := G/C-torsor E over a field extension K of k.

By Theorem 9.6 there exists a basis a1, . . . , as of im βE such that cd(im βE) =∑s
i=1(Ind ai−1). Choose a basis χ1, . . . , χr of X(C) such that ai = βE(χi) for i = 1, . . . , s

and βE(χi) = 1 for i > s and choose Vi ∈ Rep(χi)(G) of minimal dimension. By assump-

tion dim Vi = gcd
{

dimV | V ∈ Rep(χi)(G)
}

, which is equal to the index of βE(χi) for

the H-torsor E of Theorem 9.7.

Set V = V1 ⊕ · · · ⊕ Vr. This is a faithful representation since every normal sub-

group of G intersects C = socG non-trivially. Then cd(im βE) =
∑s

i=1(Ind ai − 1) =
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9. A generalization of Florence’ twisting construction

∑r
i=1 Ind βE(χi) − rankC =

∑r
i=1 dimVi − rankC = dimV − rankC ≥ d − rankC. The

claim follows. �

We conclude this section with the following conjecture, which is based on Theorem
9.4 and the formula

(3) cd(D) =
∑

p

cd(D(p))

for any finite subgroup D ⊆ Br(K) with p-Sylow subgroups D(p). This formula was
conjectured in [CKM07] (in case D is cyclic) and discussed in [BRV07, section 7].

Conjecture 9.9. Let G be a finite group whose socle C := socG is central and let k

be a field containing a primitive p-th root of unity for every prime p dividing |C|. Assume

that for all χ ∈ X(C) of prime order min dimW = gcd dimW taken on both sides over

all W ∈ Rep(χ)(G). Then

edkG = dimV −
∑

p

rankC(p) + rankC,

where V =
⊕

Vp is a faithful representation of G, the direct sum being taken over all

primes p dividing |C|, and Vp is of minimal dimension amongst representations of G

whose restriction to C(p) is faithful.

Proof of Conjecture 9.9 assuming the truth of formula (3). “≤”: Consider

the identity map Id: A(V ) → A(V ), which is a multihomogeneous covariant. Theorem

5.2 implies edkG ≤ dim Id−(rankMId − rankZ(G, k)) = dimV −
∑

p rankC(p)+rankC.

“≥”: Choose a generic G/C-torsor E. Then edk G ≥ cd(im βE) + rankC, by Theo-

rem 9.4. The p-Sylow subgroup of the image of the abelian group C =
⊕

pC(p) equals

βE(C(p)). Formula (3) implies that cd imβE =
∑

p cd βE(C(p)), which can be computed

with the help of Theorems 9.6 and 9.7. Similarly as in the proof of Corollary 9.8 we get

the claim, using the replacement of gcd by min. �

Remark 9.10. The conditions socC ⊆ Z(G) and min dimW = gcd dimW for all

W ∈ Rep(χ)(G) and χ of prime order are satisfied for nilpotent groups. In that case Vp is

simply a faithful representation of minimal dimension of a p-Sylow subgroup of G.

Remark 9.11. Formula (3) was proven in [CKM07] in the special case where D is

cyclic of order 6 and k contains Q(ζ3), where ζ3 = e
2πi
3 . In particular let G = G2 × G3

where Gp is a p-group of essential dimension p for p = 2, 3. Then edk G = 4 for any field

k containing Q(ζ3).

Using the computer algebra systems [MAGMA] and [GAP] (and [SAGE] to com-

bine the two) we found several examples of non-nilpotent groups for which [CKM07,

Theorem 1.3] applies when k is a field containing Q(ζ3). These are groups (of order 432)

with socG = Z(G) ≃ C6 whose Sylow 2- and 3-subgroup have essential dimension 2 and

3, respectively. We get for their essential dimension edkG = (2 + 3) − 2 + 1 = 4.
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10. Normal elementary p-subgroups

Suppose that we are in the case of a non semi-faithful finite group G. Recall from
the remark above Proposition 3.11 that this happens precisely when char k = p > 0
and G contains a nontrivial normal p-subgroup A. Replacing A by the elements of Z(A)
of exponent p (which is again normal in G) we may assume that A is p-elementary. In
particular edk A = 1 by [Le07, Proposition 5]. We would like to relate edkG and edk G/A
and use this iteratively to pass to the semi-faithful case.

Proposition 10.1. If A is a elementary p-group, which is normal in G and if char k =

p then edkG/A ≤ edkG. If furthermore A is central in G then

(∗) edkG/A ≤ edkG ≤ edk G/A+ 1.

For the proof of Proposition 10.1 we make use of Merkurjev’s notion of the essential
dimension of a functor from the category of field extensions of k to the category of sets, see
[BF03]. Consider the Galois cohomology functor H1(∗, G), which takes a field extension
K/k to the Galois cohomology set H1(K,G) := H1(Gal(Ksep/K), G(Ksep)). An element
α ∈ H1(K,G) is said to descend to a subfield K0 ⊆ K (containing k) if α belongs to
the image of H1(K0, G) → H1(K,G). The essential dimension of α is defined as the
least transcendence degree (over k) of a subfield K0 to which α descends. The essential
dimension of G (from Definition 1.4) is then equal to the maximal essential dimension of
α taken over all K/k and α ∈ H1(K,G).

Proof of Proposition 10.1. Since A is normal there is the following exact se-

quence in Galois cohomology:

1 → H1(∗, A) → H1(∗, G) → H1(∗, G/A)

[Se64, Proposition 58]. For A is an elementary abelian p-group and char k = p we have

H2(∗, A) = 0. Moreover by [TV10, Lemma 3.2 and Lemma 3.3] H2(∗, Ã) = 0 for any

twisted form Ã of A. Therefore by [Se64, Corollary after Proposition 41] H1(∗, G) →
H1(∗, G/A) is a surjection of functors. In particular edkG/A ≤ edkG by [BF03, Lemma

1.9].

Now suppose that A is central in G. We have an action of H1(∗, A) on H1(∗, G) as

follows: Let K/k be a field extension and let [α] ∈ H1(K,A) and [β] ∈ H1(K,G) and set

[α] · [β] := [αβ] ∈ H1(K,G). Since A is central αβ satisfies the cocyle condition and its

class in H1(K,G) does not depend on the choice of α and β. Moreover it is well known

that two elements of H1(K,G) have the same image in H1(K,G/A) if and only if one

is transformed from the other by an element of H1(K,A), see [Se64]. Thus we have a

transitive action on the fibers of H1(K,G) ։ H1(K,G/A), and this action is natural in

K. That means we have a fibration of functors

H1(∗, A) H1(∗, G)։ H1(∗, G/A).

Now [BF03, Proposition 1.13 ] yields edk G ≤ edkG/A+ edk A = edk G/A+ 1. �

Remark 10.2. The inequality edkG ≤ edkG/A + 1 of Proposition 10.1 also follows

from a very recent result [TV10, Lemma 3.4] of Dajano Tossici and Angelo Vistoli.

More generally they show the inequality edk G ≤ edkG/A+ edK Ã for an algebraic group
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G, a commutative unipotent normal algebraic subgroup A of G, where K is some field

extension of k and Ã is a twisted form of A over K. When A is central, Ã is AK =

SpecF ×Spec k A.

Remark 10.3. If G is a finite p-group and A is a (not necessarily central) elementary

abelian p-subgroup contained in the Frattini subgroup of G then [Le04] gives the relations

(∗) as well.

Example 10.4. Let G denote the perfect group of order 8! = 40320 which is a central

extension of A8 by C2. The socle of this group socG = C2 is central.

Claim: edk G = 8 if char k 6= 2 and edk G ∈ {2, 3, 4} if char k = 2.

Proof. First consider the case when char k 6= 2. There exists a faithful irreducible

G-module of degree 8. This implies in particular that edkG ≤ 8. Moreover one may

check using a Computer algebra system like [MAGMA] or [GAP] that the degree of

every faithful irreducible representation of G is a multiple of 8. The faithful irreducible

representations of G are precisely the elements of Rep(χ)(G) where χ is the non-trivial

character of socG = C2. Hence the claim follows with Corollary 9.8.

Now consider the case of char k = 2. Proposition 10.1 implies that edk A8 ≤ edkG ≤

edk A8 + 1. The essential dimension of A8 ≃ GL4(F2) is either 2 or 3 [Ka06, Lemma 5.5

and Theorem 5.6], and the claim follows. �

33





Bibliography

[BF03] G. Berhuy, G. Favi: Essential dimension: a functorial point of view (after A. Merkurjev), Doc.

Math. 8 (2003), 279–330.

[Bo69] A. Borel: Linear Algebraic Groups, Benjamin (1969).

[BR97] J. Buhler, Z. Reichstein: On the essential dimension of a finite group, Compos. Math., 106 (1997),

159–179.

[BRV07] P. Brosnan, Z. Reichstein, A. Vistoli: Essential dimension and algebraic stacks, http://www.

math.ubc.ca/~reichst/pub.html, 2007.

[BRV08] P. Brosnan, Z. Reichstein, A. Vistoli: Essential dimension and algebraic stacks I, Linear Alge-

braic Groups and Related Structures Preprint Server, http://www.math.uni-bielefeld.de/LAG/

man/275.pdf, 2008.

[BS08] P. Brosnan, R. Sreekantan: Essential dimension of abelian varieties over number fields, C. R.

Acad. Sci. Paris, Ser. I 346(7-8) (2008), 417–420.

[CKM07] J.-L. Colliot-Thélène, N. Karpenko, A. Merkurjev: Rational surfaces and canonical dimension

of PGL6, Algebra i Analiz 19 (2007), no. 5, 159–178, translation in St.Petersburg Math.J. 19

(2008), no. 5, 793–804.

[FF07] G. Favi, M. Florence: Tori and essential dimension, J. Algebra 319(9) (2008), 3885–3900.

[Fl08] M. Florence: On the essential dimension of cyclic p-groups, Invent. Math. 171 (2008), 175-189.

[GAP] M. Schönert et al.: GAP Groups, Algorithms, and Programming. Lehrstuhl D für Mathematik,

Rheinisch Westfälische Technische Hochschule, Aachen, Germany, third edition, 1993.
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CHAPTER II

Compressions of finite group actions and covariant dimension, II

HANSPETER KRAFT, ROLAND LÖTSCHER AND GERALD SCHWARZ

(published in the Journal of Algebra)

Let G be a finite group and ϕ : V → W an equivariant polynomial map between
finite dimensional G-modules. We say that ϕ is faithful if G acts faithfully on ϕ(V ).

The covariant dimension of G is the minimum of the dimension of ϕ(V ) taken over all
faithful ϕ. In [KS07] we investigated covariant dimension and were able to determine
it in many cases. Our techniques largely depended upon finding homogeneous faithful
covariants. After publication of [KS07], the junior author of this article pointed out
several gaps in our proofs. Fortunately, this inspired us to find better techniques, involving
multihomogeneous covariants, which have enabled us to extend and complete the results,
simplify the proofs and fill the gaps of [KS07].

1. Introduction

For simplicity we take our ground field to be the field C of complex numbers. (Much
work has been done in the context of more general fields (see, for example, [Flo08, JLY02,
Led07, KM08]). In [Löt08] our results are extended to this context.) Let G be a finite
group. All G-modules that we consider will be finite dimensional. A covariant of G is an
equivariant morphism (= polynomial map) ϕ : V → W where V and W are G-modules.
The dimension of ϕ is defined to be the dimension of the image of ϕ:

dimϕ := dimϕ(V ).

The covariant ϕ is faithful if the group G acts faithfully on the image ϕ(V ). Equivalently,
there is a point w ∈ ϕ(V ) with trivial isotropy group Gw. The covariant dimension
cdimG of G is defined to be the minimum of dimϕ where ϕ : V → W runs over all
faithful covariants of G. If dimϕ = cdimG we say that ϕ is a minimal covariant . In
[KS07, Proposition 2.1] we show that there is a minimal covariant ϕ : V → W if V and
W are faithful. In particular, if V is a faithful G-module, then there is a minimal faithful
covariant ϕ : V → V .

Suppose that ϕ : V → W is a rational map which is G-equivariant. We call ϕ a rational
covariant. Then one can define the notion of ϕ being faithful and the dimension of ϕ as
in the case of ordinary covariants. The essential dimension edG of G is the minimum
dimension of all its faithful rational covariants. It is easy to see that

edG ≤ cdimG ≤ edG+ 1

(see [Rei04] or the proof of Theorem 2.5 below).
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Our results in [KS07] were largely based upon finding homogeneous minimal co-
variants. Unfortunately, this is not always possible [KS07, Remark 4.1]. In this paper,
however, we are able to show that there are always multihomogeneous minimal covariants.
This allows us to improve upon the results of [KS07]. In particular, we are able to obtain
the exact relation between covariant and essential dimension (Theorem 3.1):

cdimG =

{
edG+ 1, if the center of G is trivial

edG, otherwise.

In certain cases we are able to describe the image of a covariant (Proposition 4.1) and
deduce that for a faithful group G (i.e., G admits an irreducible faithful representation)
we have cdim(G×Z/pZ) = cdimG+1 if and only if the prime p divides the order |Z(G)|
of the center of G. This completes the analysis of [KS07, §5–6]. In the process we repair
the proofs of Corollaries 6.1 and 6.2 of [KS07]. They are supposed to be corollaries of
Proposition 6.1, but the hypotheses of the proposition are not fulfilled. In section 5 we give
some examples of covariant dimensions of groups, in part generalizing [KS07, Proposition
6.2]. In sections 6 and 7 we repair two proofs, one concerning a characterization of faithful
groups and their subgroups, and one about the classification of non-faithful groups of
covariant dimension 2. In section 8 we list some minor errata from [KS07].

We thank the referee for helpful comments.

2. Multihomogeneous Covariants

Let V = ⊕n
i=1Vi and W = ⊕m

j=1Wj be direct sums of vector spaces and let ϕ =
(ϕ1, . . . , ϕm) : V → W be a morphism where none of the ϕj are zero. We say that ϕ is
multihomogeneous of degree A = (αji) ∈Mm×n(Z) if, for an indeterminate s, we have

ϕj(v1, . . . , svi, . . . , vn) = sαjiϕj(v1, . . . , vn) for all j = 1, . . . , m, i = 1, . . . , n.

Whenever we consider the degree matrix A of some ϕ, we are always tacitly assuming
that ϕj 6= 0 for all j.

We now give a way to pass from a general ϕ to the multihomogeneous case. For

indeterminates s1, . . . , sn, we have ϕj(s1v1, . . . , snvn) =
∑

α ϕ
(α)
j sα for each j, where α =

(α1, . . . , αn) ∈ Nn and sα = sα1
1 . . . sαn

n . If β ∈ Rn, let α ·β denote the usual inner product.
Now suppose for illustration that m = 1 and dimW1 = dimVi = 1, i = 1, . . . , n. Then
ϕ = ϕ1 is just a polynomial in n variables. If the entries of β are linearly independent over
Q, then we can assign to any polynomial ϕ its initial term (corresponding to the monomial
ϕ(α) with the highest value of α·β.) In the yoga of Gröbner basis theory ([CLO07, Stu96])
we are assigning to each ϕ its initial term with respect to the weighted monomial ordering
given by β. This initial term is well-defined for any ϕ. In our situation, we only need the
initial terms to be well-defined for a finite collection of polynomials and we can choose
β ∈ Nn.

Returning to the general case, let β ∈ Nn and set hj = max{α · β | ϕ
(α)
j 6= 0}, j =

1, . . . , m. For r ∈ N set ϕ
(r)
j =

∑
α·β=r ϕ

(α)
j . Now we fix a β such that, for each r ∈ N and

each j, {α | α ·β = r and ϕ
(α)
j 6= 0} has cardinality at most 1. Thus ϕ

(r)
j is zero or consists

of one nonzero term ϕ
(α)
j . Moreover, ϕ

(hj)
j 6= 0 for all j and ϕmax := (ϕ

(h1)
1 , . . . , ϕ

(hm)
m ) is

multihomogeneous. Note that the hj and so ϕmax depend upon our choice of β.
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Remarks 2.1. (A) If the Vi and Wj are G-modules and ϕ is equivariant, so are

all the ϕ
(α)
j and ϕmax. Note that no entry in ϕmax is zero since the same is true

of ϕ.

(B) If ϕ : V → W is multihomogeneous of degree A = (αji) and ψ : W → U =⊕ℓ
k=1 Uℓ is multihomogeneous of degree B = (βkj) and all components of ψ ◦ ϕ

are non-zero, then the composition ψ ◦ϕ : V → U is multihomogeneous of degree

BA.

Concerning ϕmax there is the following main result.

Lemma 2.1. Let ϕ : V → W be a morphism where no ϕj is zero. Then dimϕmax ≤

dimϕ.

Proof. Let β and h1, . . . , hm be as above. We have an action λ of C∗ on W where

λ(t)(w) = (th1w1, . . . , t
hmwm) for w ∈ W and t ∈ C∗. We also have an action µ of C∗

on V by µ(t)(v1, . . . , vn) = (tβ1v1, . . . , t
βnvn) where t ∈ C∗ and v ∈ V . Let tϕ(v) denote

λ(t)(ϕ(µ(t−1)(v))) for t ∈ C∗ and v ∈ V . Then tϕ(v) = ϕmax(v) + tψ(t, v) for some

morphism ψ : C × V →W . Consider the morphism

Φ: C × V → C ×W, (t, v) 7→ (t, tϕ(v))

where 0ϕ := ϕmax. Let Y denote im Φ. Let p : Y → C be the morphism induced by the

projection C×W → C where Y denotes the closure of Y . Clearly, we have Y ∩({t}×W ) =

{t} × im tϕ for t ∈ C. Then

Y ∩ (C∗ ×W ) =
⋃

t6=0

{t} × λ(t)X

where X := imϕ, because the right hand side is closed in C∗ ×W . As a consequence, we

get

Y = Φ(C∗ ×W ),

hence p−1(t) = {t} × im tϕ for t 6= 0 and p−1(0) ⊃ {0} × imϕmax. Since Y is irreducible,

it follows that dimϕmax ≤ dimϕ. �

Corollary 2.2. Let p : Y → C be as in the proof above. If dimϕ = dimϕmax and

imϕ is C∗-stable, then p−1(0) is C∗-stable.

Proof. The hypotheses imply that {0} × imϕmax is an irreducible component of

p−1(0). Since imϕ is C∗-stable, then so is im tϕ for all t 6= 0 which implies that Y is stable

under the C∗-action λ · (t, w) := (t, λw) on C×W . It follows that p−1(0) is C∗-stable. �

Theorem 2.3. Let G be a finite group and let V = ⊕n
i=1Vi and W = ⊕m

j=1Wj be

faithful representations where the Vi and Wj are irreducible submodules. Then there is

a minimal regular multihomogeneous covariant ϕ : V → W all of whose components are

nonzero.

Proof. Let ϕ : V → W be a minimal covariant. We can always arrange that for

given v ∈ V and w ∈W , both with trivial stabilizer in G, we have ϕ(v) = w (see [KS07,

Proposition 2.1]. This is also proved in [Pop94, Theorem 7.1.12], cf. [BR97, Lemma
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3.2a].). Thus we can assume that all components of ϕ are nonzero. Then ϕmax : V → W

is a multihomogeneous covariant, dimϕmax ≤ dimϕ and ϕmax is faithful since all its

components are non-zero [KS07, Lemma 4.1]. �

Corollary 2.4. Let Vi be a faithful irreducible representation of the group Gi, i =

1, . . . , n. Then V = ⊕n
i=1Vi is a faithful representation of G := G1 × · · · × Gn, and there

is a minimal multihomogeneous covariant ϕ : V → V . �

We want to prove similar results for a rational covariant ψ : V → W . It is obvious
how to extend the definitions of minimal and multihomogeneous of degree A to rational
covariants where in this case the matrix A might contain negative entries.

Theorem 2.5. Let G be a finite group and let V = ⊕n
i=1Vi and W = ⊕m

j=1Wj be

faithful representations where the Vi and Wj are irreducible submodules. Then there is a

minimal rational multihomogeneous covariant ψ : V → W all of whose components are

non-zero and which is of the form ψ = h−1ϕ where h is a multihomogeneous invariant

and ϕ : V →W a multihomogeneous minimal regular covariant.

Proof. Let ψ : V → W be a minimal rational covariant. We can assume that all

components of ψ are nonzero. There is a nonzero invariant f ∈ O(V )G such that fψ is

regular. Define the regular covariant

ϕ := (fψ, f) : V → W ⊕ C, v 7→ (fψ(v), f(v))

which is faithful since ψ is. Moreover, either dimϕ = dimψ or dimϕ = dimψ + 1, where

the second case takes place if and only if ϕ(V ) is stable under scalar multiplication with

C∗. This follows from the fact that the composition of rational maps V → W ⊕ C →

P(W ⊕ C) →W is ψ.

As above we obtain a multihomogeneous covariant ϕmax : V →W ⊕ C which has the

form ϕmax = (ϕ1, . . . , ϕm, h). Now define the multihomogeneous rational covariant

ψmax := (
ϕ1

h
, . . . ,

ϕm
h

) : V →W

which is again faithful. Moreover, dimψmax ≤ dimϕmax ≤ dimϕ. So if dimϕ = dimψ

then ψmax is a minimal multihomogeneous rational covariant and we are done.

Now assume that dimϕ = dimψ + 1 so that ϕ(V ) is C∗-stable. If ϕ is not minimal

then there is a minimal homogeneous regular covariant ϕ̃ of dimension ≤ dimψ and we are

again done. Therefore we can assume that ϕ is minimal, hence dimϕmax = dimϕ. Since
tϕ(V ) is C∗-stable for all t 6= 0 it follows from Corollary 2.2 that ϕmax(V ) is C∗-stable,

too, and so

dimψmax ≤ dimϕmax − 1 = dimϕ− 1 = dimψ.

Hence, ψmax is a minimal multihomogeneous rational covariant. �

3. Covariant dimension and essential dimension

In this section we extend [KS07, Corollary 4.2] to arbitrary groups and give the exact
relation between covariant and essential dimension of finite groups.
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Theorem 3.1. Let G be a non-trivial finite group. Then cdimG = edG if and only

if G has a non-trivial center.

The proof is given in Corollary 3.5 and Proposition 3.6 below. We need some prepa-
ration. In this section we have faithful representations V =

⊕n
i=1 Vi and W =

⊕m
j=1Wj

where the Vi and Wj are irreducible submodules. We have a natural action of the tori C∗n

on V and C∗m on W . These actions are free on the open sets V ′ := {v = (v1, . . . , vn) |
vi 6= 0 for all i} ⊂ V and W ′ ⊂ W defined similarly. If ϕ : V → W is multihomogeneous
of degree A = (αji) then ϕ is equivariant with respect to the homomorphism

T (A) : C∗n → C∗m, s = (s1, . . . , sn) 7→ (sα1 , sα2 , . . . , sαm)

where αj := (αj1, αj2, . . . , αjn) and sαj = s
αj1

1 s
αj2

2 · · · s
αjn
n , as before. This implies that the

(closure of the) image of ϕ is stable under the subtorus imT (A) ⊂ C∗m. The actions of
G and C∗n commute and since each Vi is irreducible, considered as subgroups of GL(V ),
we have C∗n ∩G = Z(G).

Remark 3.2. Let ϕ : V → W be a multihomogeneous covariant of degree A. If

µ ∈ AQn ∩ Zm, then ϕ(V ) ⊂ W is stable under the C∗-action ρ(t)(w1, . . . , wm) :=

(tµ1w1, . . . , t
µmwm). It follows that for any invariant f ∈ O(V )G the morphism

(4) ϕ̃ : v = (v1, . . . , vn) 7→ (f(v)µ1ϕ1(v), . . . , f(v)µmϕm(v))

is a covariant with ϕ̃(V ) ⊂ ϕ(V ), hence dim ϕ̃ ≤ dimϕ. Moreover, if ϕ is faithful and f

multihomogeneous, then ϕ̃ is faithful and multihomogeneous of degree Ã := µ deg f + A,

i.e., α̃ji = µj degVi
f + αji.

This has the following application which will be used later in the proof of Corollary 4.4:

Let p be a prime which does not divide the order of the center of G. Then there is a minimal

multihomogeneous covariant ϕ : V → V of degree A 6≡ 0 mod p.

(Start with a minimal multihomogeneous covariant ϕ : V → V of degree A and assume

that A ≡ 0 mod p. We can choose a µ ∈ AQn ∩Zm such that µj0 6≡ 0 mod p for at least

one j0. Moreover, there is a multihomogeneous invariant f of total degree 6≡ 0 mod p

(see [KS07, Lemma 4.3]). But then µ deg f 6≡ 0 mod p, and so the covariant ϕ̃ given in

(4) is minimal and has degree µ deg f + A 6≡ 0 mod p.)

For the next results we need some preparation. Let ϕ : V → W be a multihomogeneous
faithful covariant of degree A = (αji) where all components ϕj are non-zero. Define
W ′ := {(w1, . . . , wm) ∈ W | wi 6= 0 for all i} =

∏m
j=1(Wj \ {0}). The group C∗m acts

freely on W ′ and W ′ →
∏m

j=1 P(Wj) is the geometric quotient. Let X := ϕ(V ) and

P(X) ⊂
∏m

j=1 P(Wj) the image of X, and set X ′ := X ∩W ′. Finally, denote by S ⊂ C∗m

the image of the homomorphism T (A) : C∗n → C∗m. Then we have the following.

Lemma 3.3. (A) dim P(X) ≤ dimX − dimS ≤ dimX − rankZ(G).

(B) The kernel of the action of G on P(X) is equal to Z(G).

Proof. We may regard G as a subgroup of
∏m

i=1 GL(Vi) and of
∏m

j=1 GL(Wj), and

so Z(G) = G ∩ C∗n and Z(G) = G ∩ C∗m.

(1) The first inequality is clear because X is stable under S. For the second we remark

that Z(G) ⊂ S since ϕ is G-equivariant and so T (A)z = z for all z ∈ Z(G).
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(2) Let g ∈ G act trivially on P(X). Then every x ∈ Xj := prWj
(X) is an eigenvector

of g|Wj. But Xj is irreducible and therefore contained in a fixed eigenspace of g on Wj .

Since Wj is a simple G-module this implies that g|Wj
is a scalar. �

Proposition 3.4. Let ϕ : V →W be a multihomogeneous faithful covariant of degree

A = (αji) where all components ϕj are non-zero. Assume that G has a trivial center. Then

edG ≤ dimϕ− rankA and cdimG ≤ dimϕ− rankA + 1.

In particular, if ϕ is a minimal regular covariant, then rankA = 1, and if ϕ is a minimal

rational covariant, then A = 0.

Proof. Let X := ϕ(V ), let P(X) ⊂
∏m

j=1 P(Wj) denote the image of X and set

X ′ := X ∩W ′. Finally, let S denote the image of T (A) : C∗n → C∗m. The torus S has

dimension rankA and acts generically freely on X := ϕ(V ) since all components of ϕ are

non-zero. Composing ϕ with the projection p : W → P(W1) × · · · × P(Wm) we obtain a

rational G-equivariant map ϕ′ : V → P(W1)×· · ·×P(Wm) such that ϕ′(V ) = P(X). Since

Z(G) is trivial, G acts faithfully on P(X), and dim P(X) ≤ dimX−dimS, by Lemma 3.3.

Thus p ◦ ϕ′ is a rational faithful covariant of dimension ≤ dimX − rankA, proving the

first claim. The second follows since cdimG ≤ edG + 1. �

Corollary 3.5. If G is a (non-trivial) group with trivial center, then

cdimG = edG+ 1.

Proof. Let ϕ : V → V be a minimal multihomogeneous regular covariant of degree

A. By Proposition 3.4, rankA = 1 and ϕ is not minimal as a multihomogeneous rational

covariant. Hence edG < dimϕ = cdimG and the claim follows. �

Proposition 3.6. If G has a non-trivial center, then cdimG = edG.

Proof. Let ψ : V → V be a multihomogeneous minimal rational covariant of degree

A = (αji) which is of the form h−1ϕ where h ∈ O(V )G is a multihomogeneous invariant

and ϕ : V → V a multihomogeneous regular minimal covariant (Theorem 2.5).

(a) If there is a β ∈ Zn such that all entries of γ := Aβ are > 0, then the covariant

ϕ := (hγ1ψ1, . . . , h
γnψn) : V → V is regular and faithful. Moreover, ϕ(V ) ⊂ ψ(V ) because

the latter is stable under T (A)(C∗n). Hence cdimG ≤ dimϕ ≤ dimψ = edG and we are

done.

(b) In general, A 6= 0, since otherwise the center of G would act trivially on the image

ψ(V ). If αj0i0 6= 0, choose a homogeneous invariant f ∈ O(Vj0) ⊂ O(V ) which does not

vanish on ψ(V ). For any r ∈ Z the composition ψ′ := (f r · Id) ◦ ψ is still faithful and

rational, and dimψ′ ≤ dimψ. Moreover, we get ψ′
j(v) = f r(ψj0(v)) · ψj(v). Therefore the

degree of ψ′
j in Vi0 is r · deg f · αj0i0 + αji0 for j = 1, . . . , n. Hence, for a suitable r, all

these degrees are > 0, and we are in case (a) with β := ei0 . �

In some of our applications we will need the following result.
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Corollary 3.7. Assume that the center Z(G) is cyclic (and non-trivial) and that

Z(G) ∩ (G,G) = {e}. If G/Z(G) is faithful, then G is faithful, too, and

edG = cdimG = cdimG/Z(G) = edG/Z(G) + 1.

Proof. It easily follows from the assumption Z(G) ∩ (G,G) = {e} that the center

of G/Z(G) is trivial and that every character of Z(G) can be lifted to a character of

G. Now let V be an irreducible faithful representation of G/Z(G) and let ϕ : V → V

be a homogeneous minimal covariant. Since G/Z(G) has a trivial center we may assume

that the degree of ϕ is ≡ 1 mod |Z(G)| (see Remark 3.2). If χ : G → C∗ is a character

which is faithful on Z(G) then V ⊗ χ is an irreducible faithful representation of G and

ϕ : V ⊗ χ → V ⊗ χ is G-equivariant and faithful. Hence cdimG = cdimG/Z(G). The

other two equalities follow with Proposition 3.6 and Corollary 3.5. �

4. The image of a covariant

In certain cases one can get a handle on the ideal of imϕ.

Proposition 4.1. Let V := ⊕n
i=1Vi and let ϕ = (ϕ1, . . . , ϕn) : V → V be a multiho-

mogeneous morphism of degree A = (αji). Assume that detA 6= 0. Then the ideal I(ϕ(V ))

of the image of ϕ is generated by multihomogeneous polynomials.

Proof. For v = (v1, . . . , vn) ∈ V we have

ϕ(s1v1, . . . , snvn) = (sα1ϕ1, . . . , s
αnϕn)(v)

where sαj = s
αj1

1 · · · s
αjn
n . Choose coordinates in each Vi and let M be a monomial in these

coordinates. Let β = β(M) denote the multidegree of M , so we have M(s1v1, . . . , snvn) =

sβM(v1, . . . , vn). Then M(ϕ(s1v1, . . . , snvn)) is M(ϕ(v)) multiplied by

(sα1 , . . . , sαn)β = sβ1α11+···+βnαn1
1 · · · sβ1α1n+···+βnαnn

n = sβA

where βA is the matrix product of β and A. If F ∈ I(ϕ(V )), we may write F =
∑

M cMM

where the cM are constants and M varies over all monomials in the coordinates of the

Vi. We have F (ϕ(s1v1, . . . , snvn)) =
∑

M cMs
β(M)AM(ϕ(v)). Hence, for any γ ∈ Nn, we

obtain ∑

β(M)A=γ

cMM ∈ I(ϕ(V )).

Since detA 6= 0, for any γ there is at most one β such that βA = γ. It follows that

every sum of the form
∑

β(M)=β cMM belongs to I(ϕ(V )). Thus I(ϕ(V )) is generated by

multihomogeneous polynomials. �

Corollary 4.2. Suppose that ϕ is as above and that there is a k, 1 ≤ k < n, such

that dimVk+1 = · · · = dimVn = 1. Then dimϕ = dim(ϕ1, . . . , ϕk) + (n− k).

Proof. Since the degree matrix A = (αji) exists, no ϕj is zero. Let m = dimV1 +

· · · + dimVk. By Proposition 4.1 the ideal of ϕ(V ) is generated by functions of the

form F (y1, . . . , ym)t
rk+1

k+1 · · · trnn where F is multihomogeneous. Such a function vanishes

on imϕ if and only if F (y1, . . . , ym) vanishes on the image of (ϕ1, . . . , ϕk). Thus the
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ideal I(ϕ(V )) is generated by functions not involving tk+1, . . . , tn. As a consequence,

ϕ(V ) = (ϕ1, . . . , ϕk)(V ) × Vk+1 × · · · × Vn. �

In order to apply Proposition 4.1 and Corollary 4.2 we need a version of [KS07,
Lemma 5.2].

Corollary 4.3. Let G = G1 × · · · × Gn and V = V1 ⊕ · · · ⊕ Vn where each Vi is

an irreducible representation of Gi, i = 1, . . . , n. Let ϕ : V → V be a multihomogeneous

covariant of degree A and suppose that the prime p divides |Z(Gi)| for all i. Then detA 6=

0, and the ideal I(ϕ(V )) is generated by multihomogeneous elements.

Proof. Let ξ be a primitive pth root of unity. Then we have ϕj(v1, . . . , ξvi, . . . , vn) =

ξαjiϕj(v1, . . . , vn). There is an element of Gj which acts as ξ on Vj and trivially on Vi if

i 6= j. Hence ξαji = 1 for i 6= j. If i = j, one similarly shows that ξαjj = ξ by equivariance

relative to Gj . This implies that

αji ≡

{
1 mod p for i = j,

0 mod p otherwise,

and so det(αij) 6= 0. Now apply Proposition 4.1. �

We say that G is faithful if it admits a faithful irreducible representation. We now get
the following result which extends Corollaries 6.1 and 6.2 of [KS07].

Corollary 4.4. Let G = G1 × · · · × Gn be a product of non-trivial faithful groups

and let p be a prime.

(A) If p is coprime to |Z(G)|, then cdim(G× Z/p) = cdimG.

(B) If p divides all |Z(Gi)|, then cdim(G× (Z/p)m) = cdimG+m.

In particular, if H is a non-trivial faithful group and m ≥ 1, then

cdim(H × (Z/p)m) =

{
cdimH +m if p divides |Z(H)|;

cdimH + (m− 1) otherwise.

Proof. Let Vi be a faithful irreducible representation of Gi. Then V := V1 ⊕ · · ·⊕Vn
is a faithful representation of G. By Corollary 2.4 there is a minimal multihomogeneous

faithful covariant ϕ = (ϕ1, . . . , ϕk) : V → V of degree A. For any δ = (δ1, . . . , δn) ∈ Zn

there is a linear action of Z/p on V where the generator 1̄ ∈ Z/p acts by

v = (v1, . . . , vn) 7→ (ζδ1v1, . . . , ζ
δnvn), ζ := e

2πi
p .

This actions commutes with the G-action and defines a G× Z/p-module structure on V

which will be denoted by Vδ. It follows that for µ = Aδ the multihomogeneous map ϕ is

a G × Z/p-equivariant morphism ϕ : Vδ → Vµ. If p is coprime to |Z(G)| we can assume

that A 6≡ 0 mod p (Remark 3.2). Then there is a δ such that µ = Aδ 6≡ 0 mod p and so

ϕ is a faithful covariant for the group G× Z/p, proving (1).

Assume now that p divides all |Z(Gi)|. There is a minimal multihomogeneous covariant

ψ : V ⊕ Cm → V ⊕ Cm for G × (Z/p)m where (Z/p)m acts in the obvious way on Cm.

Clearly, no entry of ψ is zero and by Corollaries 4.3 and 4.2, we get dimψ = dimϕ + m
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where ϕ : V ⊕ Cm → V is ψ followed by projection to V . Since each component of ϕ

is nonzero, ϕ is faithful for G [KS07, Lemma 4.1]. Thus dimϕ ≥ cdimG. But clearly,

cdim(G× (Z/p)m) ≤ cdimG +m, hence we have equality, proving (2). �

As an immediate consequence we get the following result.

Corollary 4.5. Let G be abelian of rank r. Then cdimG = r.

Remark 4.6. The corollary is Theorem 3.1 of [KS07]. The proof in [KS07] uses a

lemma whose proof is incorrect. The problem is that the quotient ring R/pR constructed

there may have zero divisors. However, one can give a correct proof of the lemma by paying

attention to the powers of the variables that occur in the determinant det(∂fi/∂xj). We

omit this proof since the lemma is no longer needed.

The following strengthens [KS07, Proposition 6.1], which in turn then simplifies other
proofs in the paper, e.g., the proof of Proposition 6.2.

Corollary 4.7. Let V = W ⊕ Cχ be a faithful representation of G where W is

irreducible and χ is a character of G. Let H denote the kernel of G → GL(W ). Assume

that there is a prime p which divides the order of H and such that the following two

equivalent conditions hold:

(i) There is a subgroup of kerχ acting as scalar multiplication by Z/p on W ;

(ii) There is a subgroup of G acting as scalar multiplication by Z/p on V .

Then cdimG = cdimG/H + 1.

Proof. It is easy to see that the two conditions are equivalent, because χ|H : H → C∗

is injective. Since G embeds into G/H × χ(G), we have cdimG ≤ cdimG/H + 1.

To prove the reversed inequality let (ϕ, h) : W ⊕Cχ →W ⊕Cχ be a minimal faithful

multihomogeneous covariant of degree deg(ϕ, h) = (αji). Since H is nontrivial, h cannot

be zero. By assumption, H contains a subgroup of order p which is mapped injectively

into C∗ by χ. Thus the subgroup acts trivially on W and by scalar multiplication on Cχ.

Therefore,

α22 ≡ 1 and α12 ≡ 0 mod p.

Similarly, condition (i) implies that

α11 ≡ 1 and α21 ≡ 0 mod p.

Thus det(αij) 6= 0, and so dim(ϕ, h) = dimϕ + 1 by Corollary 4.2. The equivariant

morphism ϕ : W⊕Cχ →W factors through the quotient (W⊕Cχ)/H which is isomorphic

to the G/H-module W ⊕C, and defines a faithful G/H-covariant ϕ̄ : W ⊕C → W . Hence,

dimϕ ≥ cdimG/H , and our result follows. �

Now consider the following commutative diagram with exact rows where ℓ > m ≥ 0,
µN ⊂ C∗ denotes the N -th roots of unity and π is the canonical homomorphism ξ 7→ ξp

ℓ−m

:

1 −−−→ K −−−→ G
χ

−−−→ µpℓ −−−→ 1∥∥∥
y π

y

1 −−−→ K −−−→ G′ χ′

−−−→ µpm −−−→ 1
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Corollary 4.8. In the diagram above assume that G′ is faithful and that the prime

p divides |Z(G′) ∩K|. Then cdimG = cdimG′ + 1.

Proof. Let ρ : G′ → GL(W ) be a faithful irreducible representation. Then V := W ⊕

Cχ is a faithful representation of G. Fix a p-th root of unity ζ ∈ C∗ and let z′ ∈ Z(G′)∩K

be such that ρ(z′) = ζ · Id. We have

G = {(g′, ξ) ∈ G′ × µpℓ | χ′(g′) = π(ξ)}

and so z := (z′, ζ) ∈ Z(G) acts as scalar multiplication with ζ on V . Now the claim follows

from Corollary 4.7. �

5. Some examples

We consider the covariant dimension of some products and semidirect products of
groups. We denote by Cn a cyclic group of order n.

Example 5.1. Consider the group G := C3 ⋊C4 where a generator of C4 acts on C3

by sending each element to its inverse. Then Z(G) ⊂ C4 is of order 2, (G,G) = C3 and

G/Z(G) ≃ S3. Hence edG = cdimG = cdimS3 = 2, by Corollary 3.7.

Example 5.2. Let H := S3 × S3. Since cdimS3 = 2 = edS3 + 1, we have cdimH =

edH + 1 ≤ 2 edS3 + 1 ≤ 3. We claim that cdimH = 3. Let G denote H × (Z/2Z)2. By

Corollary 4.4, cdimG = cdimH + 1. Since G contains a copy of (Z/2Z)4, its covariant

dimension is at least 4, hence it is 4, and so the covariant dimension of H is 3. The same

reasoning shows that cdimS3 × S4 = 4 and cdimS4 × S4 = 5.

Example 5.3. Let G := A4 ⋊C4 where a generator x of C4 acts on A4 by conjugation

with a 4-cycle σ ∈ S4. We get

Z(G) = 〈x2σ2〉 ≃ C2, (G,G) = A4, G/Z(G) ≃ S4.

Thus edG = cdimG = cdimS4 = 3, by Corollary 3.7. Moreover, G has a 3-dimensional

faithful representation—the standard representation of A4 lifts to a faithful representation

of G—and G contains a subgroup isomorphic to C2 × C2 × C2.

Example 5.4. Let σ ∈ Sn \ An be of (even) order m where n ≥ 4, and consider the

group G := An ⋊ Cm where a generator of Cm acts on An by conjugation with σ. Again,

we can apply Corollary 3.7 and get edG = cdimG = cdimSn.

Example 5.5. Let G := (C3 × C3) ⋊ (C4 × C8) where a generator x of C4 acts

on C3 × C3 by sending each element to its inverse, and a generator y of C8 by sending

the first component to its inverse and leaving the second component invariant. Then

Z(G) = 〈x2, y2〉 ≃ C2 × C4, (G,G) = C3 × C3 and G/Z(G) ≃ S3 × S3. Since the

center is not cyclic we cannot apply Corollary 3.7 directly, but have to pass through

the intermediate group Ḡ := G/〈x2〉 which has a cyclic center, namely 〈y2〉. Thus we

obtain ed Ḡ = cdim Ḡ = cdim Ḡ/Z(Ḡ) = cdimS3 × S3 = 3 by Example 5.2. Since Ḡ

is faithful we can apply Corollary 4.7: Take H := 〈x2〉 and choose for χ a lift of the

character χ̄ on Z(G) = 〈x2, y2〉 given by χ̄(x2) = −1 and χ̄(y2) = 1. We finally get

edG = cdimG = cdim Ḡ+ 1 = 4.
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Example 5.6. A recent general theorem due to Karpenko-Merkurjev [KM08]

is the following. For any finite p-group G the essential dimension edG equals the minimal

dimension of a faithful representation of G. Using this, Meyer-Reichstein [MR08]

have found formulas for the essential dimension of all p-groups. Here we give a simple

formula for the essential dimension of semidirect products Gp(k, ℓ, α) := Z/pk ⋉ Z/pℓ

where the generator 1̄ of Z/pk induces the automorphism α on A := Z/pℓ. Our results

generalize [KS07, Proposition 6.2].

cdimGp(k, ℓ, α) =

{
pk if α has order pk,

pd + 1 if α has order pd, d < k.

Note that C := pℓ−1A lies in the center of G := Gp(k, ℓ, α), so that the covariant dimension

and essential dimension are the same.

The second case follows from the first using Corollary 4.8. So we assume that α has

order pk. Let V be a faithful G-module. Then the (cyclic) center of G acts faithfully on

an irreducible component W of V , and Ker(G → GL(W )) is trivial since any nontriv-

ial normal subgroup of G intersects the center. Thus G is faithful. (One could also use

Proposition 6.1 below.)

Let V be an irreducible faithful representation of G. Then, since G is supersolvable,

V is induced by a character of a proper subgroup H . We claim that H is abelian. If not,

then (H,H) ⊂ (G,G) ⊂ A contains C, so C acts trivially on V , a contradiction. If H is

an abelian subgroup, we may consider a character of H which is faithful on H intersected

with the (cyclic) center. Then the induced representation is faithful of dimension [G : H ].

Thus we only need to show that any abelian subgroup H of G has order at most pℓ.

Let γ generate the canonical projection of H to Z/pk and let y generate H ∩ A. We

may assume that γ 6= e and that y 6= e. Now H is generated by x and y where x ∈ H has

image γ in Z/pk. Choose a generator z of A such that y = zp
r

for some r where 1 ≤ r < l.

Let γ(z) = zs+1, 0 < s < pl − 1. Since H is abelian, the commutator (x, y) = (x, zp
r

) is

trivial. It follows that γ(z)p
r

= zp
r

= zsp
r+pr

, so that pℓ divides spr and pℓ−r divides s.

Hence γ has order at most pr. It follows that H has order at most pℓ.

6. Faithful Groups

Let NG ⊂ G denote the subgroup generated by the minimal subgroups (under set
inclusion) among the nontrivial normal abelian subgroups of G. Our work in [KS07] used
the following criterion of Gaschütz.

Proposition 6.1 ([Gas54]). Let G be a finite group. Then G is faithful if and only

if NG is generated by the conjugacy class of one of its elements.

We have the following corollary [KS07, Corollary 4.1], which we need in the next
section.

Corollary 6.2. Let G be a non-faithful group and H ⊂ G a subgroup containing

NG. Then H is non-faithful, too.
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The proof given in [KS07] claims that NG ⊂ NH . But this is false. For example, let
G = S4 ⊃ D4. Then NG is the Klein 4-group, while NH = Z(D4) ≃ Z/2Z. Here is a
correct proof.

Lemma 6.3. Let N1, . . . , Nk be the minimal nontrivial normal abelian subgroups of a

finite group G. Then

(A) Each Ni is isomorphic to (Z/pZ)n for some n ∈ N and prime p.

(B) Let L be a G-normal subgroup of NG. There is a direct product M of a subset of

{N1, . . . , Nk} such that NG is the direct product LM .

Proof. By minimality, for any prime p and i, pNi is zero or Ni. Thus Ni ≃ (Z/pZ)n

for some p and n giving (1). For (2), inductively assume that we have found a G-normal

subgroup Mj of NG which is a direct product of a subset of {N1, . . . , Nj} such that LMj

is a direct product containing N1, . . . , Nj. We start the induction with M0 = {e}. If LMj

contains Nj+1, then set Mj+1 = Mj . If not, then Nj+1 ∩ LMj must be trivial, so that the

products Mj+1 := MjNj+1 and LMj+1 are direct where Nj+1 ⊂ LMj+1. Set M = Mk.

Then LM is a direct product containing all the generators of NG, hence equals NG. �

Corollary 6.4. NG is a direct product of a subset of {N1, . . . , Nk}, hence NG is

abelian. �

Proof of Corollary 6.2. The subgroup NG ∩ NH ⊂ NH is normal in H . By

Lemma 6.3 it has a complement M . Now assume that H is faithful. Then by Propo-

sition 6.1 there exists an element (c, d) ∈ NH = (NG∩NH)×M whose H-conjugacy class

generates NH . Then the H-conjugacy class of c generates NG ∩ NH . Now let Ni be one

of the minimal nontrivial normal abelian subgroups of G. By hypothesis, Ni ⊂ H , hence

Ni contains a minimal nontrivial H-submodule N ′. Then N ′ ⊂ NG ∩ NH . The smallest

G-stable subspace of NG containing N ′ is Ni, hence Ni lies in the G-submodule of NG

generated by the conjugacy class of c. Since Ni is arbitrary, we see that G is faithful. �

Remark 6.5. Let G1, G2, . . . , Gm be faithful groups. Then the product G1 ×· · ·×Gm

is faithful if and only if the orders of the centers Z(Gi) are pairwise coprime. In fact, the

center of the product is cyclic if and only if the orders |Z(Gi)| are pairwise coprime, and

in this case the tensor product of irreducible faithful representations Vi of Gi is irreducible

and faithful.

7. Groups of covariant dimension 2

In [Led07] it is shown that G has essential dimension one if and only if admits an
embedding into GL2 such that the only scalar matrix in the image is the identity. In
[KS07] we showed that a finite group of covariant dimension 2 is a subgroup of GL2 and
thus admits a faithful 2-dimensional representation. In particular, we have the following
result (cf. [KS07, Theorem 10.3]).

Theorem 7.1. If G is a non-faithful finite group of covariant dimension 2, then G is

abelian of rank 2.
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Unfortunately, there is a gap in the proof of Lemma 10.3 in [KS07] which is used in
the proof of the theorem. So we give a new proof here which avoids this lemma. We start
with the following result.

Lemma 7.2. If G is a non-commutative finite group of covariant dimension 2, then

G/Z(G) is isomorphic to a subgroup of PGL2.

Proof. We use the notation of section 3. Let ϕ : V → W be a multihomogeneous

minimal covariant of degree A. Set X := ϕ(V ) ⊂ W and let S denote the image of

the homomorphism T (A) : C∗n → C∗m. Since S is non-trivial, Lemma 3.3 shows that

dim P(X) ≤ 1 and that G/Z(G) acts faithfully on P(X). Thus dim P(X) = 1 and G/Z(G)

acts faithfully on the normalization P1 of P(X). The lemma follows. �

Proof of Theorem 7.1. Let G be a minimal counterexample, i.e., G is non-faithful

and non-commutative of covariant dimension 2, and every strict subgroup is either com-

mutative or faithful. By the lemma above, G/Z(G) is isomorphic to A5, S4, A4, or D2n,

and the image of NG in G/Z(G) is a normal abelian subgroup.

Claim 1: There are no surjective homomorphisms from G to A5, S4, or A4.

If ρ is a surjective homomorphism fromG to A5 then ρ(NG) is trivial. If ρ is a surjective

homomorphism from G to S4 then ρ(NG) ⊂ K where K ⊂ S4 is the Klein 4-group. In both

cases ρ−1(A4) ( G is neither faithful (by Corollary 6.2) nor commutative, contradicting

the minimality assumption.

Now assume that there is a surjective homomorphism ρ : G → A4, and let g3 ∈ G

be the preimage of an element of A4 of order 3. We may assume that the order of g3 is

a power 3ℓ. Since ρ(NG) ⊂ K, the strict subgroup S := ρ−1(K) ( G is commutative.

Denote by S2 the 2-torsion of S. Since ρ(S2) = K we see that S2 has rank 2. Moreover, S2

is normalized by g3, but not centralized, and so cdim〈g3, S2〉 ≥ 3 by [KS07, Corollary 4.4].

This contradiction proves Claim 1.

Claim 2: For every prime p > 2 the p-Sylow-subgroup Gp ⊂ G is normal and commutative

of rank ≤ 2. Hence G is a semidirect product G2 ⋉ G′ where G′ :=
∏

p>2Gp and G2 is a

2-Sylow subgroup.

From Claim 1 we know that G/Z(G) ≃ D2n. Then Claim 2 follows, because every

p-Sylow-subgroup of D2n for p 6= 2 is normal and cyclic.

Now we can finish the proof. The case that G = G2 is handled in [KS07, Lemma 10.2],

so we can assume that G′ is non-trivial. If G2 commutes with G′, then G2 is non-

commutative and faithful. Moreover, no Gp can be of rank 2, else we have a subgroup

which is a product H := G2 × (Z/p)2, and we have cdimH ≥ 3 by Corollary 4.4. So G′

has rank 1. Then G′ is cyclic, hence G is faithful by Remark 6.5, which is a contradiction.

Hence we may assume that G2 acts nontrivially on G′.

It is clear that NG = N2 × N ′ where N2 = NG ∩ G2 and N ′ := NG ∩ G′. Since G2

acts nontrivially on G′, there is a g ∈ G2 which induces an order 2 automorphism of some

Gp 6= {e}. Then one can see that g acts nontrivially on NGp
. Since G is not faithful, NG is

not generated by a conjugacy class (Proposition 6.1) and the same holds for the subgroup
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H := 〈g,N2〉⋉N ′ (Corollary 6.2). Thus H is neither faithful nor commutative, so that it

must equal G by minimality. It follows that each nontrivial Gp, for p 6= 2, is isomorphic

to either Z/p or (Z/p)2.

Suppose that Gp = (Z/p)2 for some p. If g acts trivially on Gp, then it must act

nontrivially on some Gq, and then we have the subgroup (〈g〉 ⋉ Gq) × (Z/p)2 which by

Corollary 4.4(2) has covariant dimension at least 3. If g acts by sending each element of

Gp to its inverse, then, by Corollary 4.4(1) and Corollary 4.5,

cdim〈g〉 ⋉Gp = cdim(〈g〉 ⋉Gp) × Z/p ≥ cdim(Z/p)3 = 3.

So we can assume that g acts on Gp fixing one generator and sending the other to its

inverse for every Gp of rank 2. Thus G′ is generated by the conjugacy class of a single

element. It follows that N2 must have rank 2 and g must commute with N2, else N2×G
′ is

generated by the conjugacy class of a single element. Suppose that 〈g〉∩N2 ≃ Z/2. If g acts

nontrivially on Z/p ⊂ G′, then 〈g,N2〉⋉Z/p contains a subgroup (〈g〉⋉Z/p)×Z/2 which

has covariant dimension 3, again by Corollary 4.4(2). If 〈g〉 ∩N2 = {e}, then we have the

subgroup (〈g〉 ⋉ Z/p) × (Z/2)2 which has covariant dimension three by Corollary 4.4(1).

This finishes the proof of the theorem. �

8. Errata to [KS07]

First sentence after Definition 4.1. Replace “simple groups.” by “nonabelian simple groups.”
Proof of Proposition 4.3, second paragraph. Replace “is divisible by m” with “is congruent
to 1 mod m.”
Proof of Corollary 5.1 last sentence. Replace “Corollary 4.3” by “Proposition 4.3.”
Proof of Proposition 6.1 second paragraph. Change ‘‘ϕ|W” to F |W .”
Proof of Proposition 6.1 first displayed formula. Replace “F (w, t)” and “F0(w, t)” by
“F (w, tm)” and “F0(w, t

m).”
Top of page 282. Change “trivial stabilizer” to “trivial stabilizer or stabilizer ±I.”

50



Bibliography

[BR97] J. Buhler and Z. Reichstein, On the essential dimension of a finite group, Compositio Math.

106 (1997), no. 2, 159–179.

[CLO07] David Cox, John Little, and Donal O’Shea, Ideals, varieties, and algorithms, third ed., Under-

graduate Texts in Mathematics, Springer, New York, 2007, An introduction to computational

algebraic geometry and commutative algebra.

[Flo08] Mathieu Florence, On the essential dimension of cyclic p-groups, Invent. Math. 171 (2008),

no. 1, 175–189.
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CHAPTER III

Faithful and p-faithful representations of minimal dimension

Throughout sections 1-3 of this chapter all groups are finite and k is an arbitrary

field (not necessarily infinite). All ZG-modules for a group G will be assumed to be of

finite order. In section 1 we relate faithfulness of representations of a group G with the

ZG-module structure of a certain abelian subgroup, called the abelian socle of G. In

section 2 we compute the minimal number of irreducible components needed for a faithful

representation of any semi-faithful group. Recall that a group is called semi-faithful (over

k) if it admits a faithful completely reducible representation (over k). As a consequence

we obtain a characterization of groups, which have a faithful representation with any fixed

number of irreducible components. Groups admitting an irreducible faithful representation

over an algebraically closed field of characteristic 0 have been characterized in [Ga54]. In

section 3 we investigate faithful representations of minimal dimension.

In section 4 the letter G denotes an algebraic group over an algebraically closed field

of characteristic 0, whose connected component G0 is a torus and whose component group

G/G0 is a p-group. We study representations with finite kernel of order prime to p and

relate these to faithful representations of a finite p-subgroup of G.

1. Faithful representations and the abelian socle

Definition 1.1. A foot of G is a minimal nontrivial normal subgroup of G. The

subgroup of G generated by the abelian feet of G is called the abelian socle of G, denoted

by socab(G). The subgroup of G generated by all feet of G is called the socle of G, denoted

by soc(G).

The following lemma is well known and a generalization to countable groups can be

found in [BH08].

Lemma 1.2. soc(G) = socab(G) × N1 × · · · × Nr, where N1, . . . , Nr are all the non-

abelian feet of G.

By construction soc(G) and socab(G) are normal subgroups of G. The abelian socle

has a ZG-module structure induced by the conjugation action of G. Since the abelian

feet are simple ZG-modules A is semi-simple. The following result contains the crucial

observation for our study of faithful representations and will be used in sections 2 and 3.

For a ZG-module A we denote by A∗ := Hom(A, k̄∗) its group of characters over k̄, which

becomes a ZG-module by endowing k̄∗ with the trivial G-action.

Proposition 1.3. Let V =
⊕m

i=1 Vi be a completely reducible kG-module. Let A :=

socab(G) and choose for every i some character χi ∈ A∗ appearing in Vi|A⊗ k̄. Then V is
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faithful if and only if the characters χ1, . . . , χm generate A∗ as a ZG-module, char k ∤ |A|,
and no nonabelian foot of G is in the kernel of V .

In the sequel for a ZG-module A we denote by rankZG(A) the least number of gener-

ators:

rankZG(A) := min {r ∈ N0 | ∃a1, . . . , ar ∈ A : 〈a1, . . . , ar〉ZG = A} ∈ N0

and by L(A) the lattice of ZG-submodules of A, where the meet-operation is given by

B ∩ C and the join-operation by B + C. Note that the word lattice is used here in a

different way than elsewhere, where a ZG-lattice is a free abelian group of finite rank

with a linear action of G.

For the proof of Proposition 1.3 we work with the lattices L(A) and L(A∗) where

A = socab(G). In general L(A) and L(A∗) are related as follows:

Lemma 1.4. Let A be a semi-simple ZG-module. Assume that either char k = 0 or

char k = p > 0 and p ∤ |A|.

(A) The map

α : L(A∗) → L(A), L 7→ {a ∈ A | ℓ(a) = 1 ∀ℓ ∈ L}

is an anti-isomorphism between L(A∗) and L(A) with inverse given by α−1(B) =

{ℓ ∈ A∗ | ℓ(a) = 1 ∀a ∈ A}.

(B) There exists a (non-canonical) isomorphism of lattices

β : L(A)
≃

−→ L(A∗)

which preserves size, i.e. |β(B)| = |B| for all B ∈ L(A).

(C) rankZG(A) = rankZG(A∗).

Proof. (A) The proof is straightforward.

(B) Since A is semi-simple it decomposes into isotypic components. Every submodule

of A is isomorphic to the direct sum of its intersections with the isotypic compo-

nents and it suffices to show the claim for every isotypic component of A. Thus

assume A = (Fq)m ⊗ V for some prime q with q 6= char k, some natural number

m and some irreducible FqG-module V , where (Fq)m is equipped with the trivial

action of G. We may identify A∗ = (Fq)m⊗V ∗. Every ZG-submodule of A is now

of the form W ⊗V for some sub vector-space W ⊂ Fmq . Define β : L(A) → L(A∗)

by β(W ⊗V ) = W ⊗V ∗. Then β is an isomorphism of lattices and preserves size,

since the assumption p ∤ |A| implies |V ∗| = |V |.

(C) Let Er ⊆ A for r ∈ N denote the (possibly empty) set of generating r-tuples of

the ZG-module A and let max(L(A)) be the set of maximal non-trivial elements

of L(A). The two sets are related by:

Er = Ar \
⋃

M∈max(L(A))

M r.
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Similarly for E∗
r ⊆ A∗ and max(L(A∗)) defined correspondingly with A∗ in place

of A we have

E∗
r = (A∗)r \

⋃

L∈max(L(A∗))

Lr

= (β(A))r \
⋃

M∈max(L(A))

(β(M))r

We claim for any r that |Er| = |E∗
r |. This implies in particular that A is generated

by r elements if and only if A∗ is, hence rankZG(A) = rankZG(A∗). The claim

follows from part (B) and the exclusion principle, which says that for subsets

Y1, . . . , Yt of a set Y we have

|Y \ ∪ti=1Yi| = |Y | −
t∑

i=1

(−1)t+1
∑

ν1<···<νi

|Yν1 ∩ · · · ∩ Yνi
|

�

For the case that k is not algebraically closed, we need to deal with irreducible repre-

sentations which are not absolutely irreducible. Let A be an elementary abelian q-group

where q is a prime, q 6= char k. We claim that the group algebra kA decomposes as

kA =
⊕

H⊆A

VH

where H runs over all cyclic subgroups of A∗ and

V〈χ〉 :=




∑

i∈F∗
q

γi
∑

χ(a)=i

a ∈ kA | γi ∈ k,
∑

i∈F∗
q

γi = 0





for χ 6= 1 and

V〈1〉 = k
∑

a∈A

a.

In fact every VH is a kA-submodule of kA. Over k̄ the group algebra k̄A decomposes into

the direct sum of all characters of A. Since V〈χ〉 ⊗k k̄ decomposes into the direct sum of

the characters χ, χ2, . . . , χq−1 the claim follows.

Now consider an abelian group A, which decomposes as A =
∏m

i=1Aqi where q1, . . . , qm
are distinct primes, q1, . . . , qm 6= char k, and Aqi is an elementary abelian qi group.

Lemma 1.5. Let χ1, . . . , χr be the characters appearing in the decomposition over k̄

of an irreducible kA-module V . Then 〈χi〉 = 〈χj〉 for every 1 ≤ i, j ≤ r.

Proof. Since the group algebras kAqi are of coprime dimensions and kA ≃ kAq1 ⊗

· · ·⊗kAqm the kA-module V is an exterior tensor product of irreducible kAqi-modules for

i = 1 . . .m. Hence it suffices to consider the case m = 1. In that case the claim follows

from the decomposition V =
⊕

VH above. �

In the sequel for a character χ ∈ Hom(A, k̄∗) of a group A we will denote by k̄χ the

one-dimensional A-module over k̄ on which A acts via χ.
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Proof of Proposition 1.3. Clearly if a non-abelian foot of G is contained in the

kernel of V , then V is not faithful. We have char k ∤ |A| in both sides of the equiva-

lence statement to prove (for the first statement when V is faithful see the remark after

Definition 3.10 of Chapter I).

Set L := 〈χ1, · · · , χm〉ZG ∈ L(A∗). First suppose that L 6= A∗. We must show that

V is not faithful. Let α be the lattice anti-isomorphism from Lemma 1.4(A) and set

B := α(L) ⊆ A, which is then a non-trivial normal subgroup of A contained in the kernel

of each χi and of any power of χi. Let Wi be any irreducible sub-representation of Vi|A
containing kχi

over k̄. By Lemma 1.5 Wi⊗ k̄ =
∑
k̄
χ

αij
i

for some αij ∈ N. Therefore B acts

trivially on Wi. Now since Vi is irreducible, Vi =
∑

g∈G gWi as vector spaces. For b ∈ B

and w ∈Wi we have bgw = g(g−1bg)w = gw, since B is normal. Thus B acts trivially on

V . Hence V is not faithful.

Conversely assume that V is not faithful and no nonabelian foot of G is in the kernel

of V . Hence some abelian foot B is in the kernel of V . This implies that B lies in the

kernel of each χi, whence in the kernel of each element of L. This implies that L 6= A∗. �

2. A generalization of Gaschütz’ theorem

Gaschütz’s theorem says that a finite group G admits a faithful irreducible complex

representation if and only if socab(G) is generated by the conjugacy class of one of its

elements, or equivalently, if and only if rankZG(socab(G)) ≤ 1. We have the following

generalization:

Theorem 2.1. Let G be a semi-faithful group. Then the minimal number of factors

of a decomposition series of a faithful representation of G over k equals rankZG socab(G) if

socab(G) 6= {e}, and equals 1 otherwise. Moreover the minimum is attained by a completely

reducible representation.

Remark 2.2. A criterion for a group to admit a faithful representation with any fixed

number of irreducible components was given by Shoda [Sh30] (in good characteristic) and

Nakayama [NA] (in positive characteristic). Their criterion is equivalent to Theorem 2.1

but this is not easy to verify directly.

We start with a lemma explaining how to pass from arbitrary to completely reducible

representations.

Lemma 2.3. Assume that char k = p > 0. Let V be a faithful representation of G. If

G does not contain any nontrivial normal subgroup of p-power order, then the direct sum

of the irreducible decomposition factors of V is faithful as well. Moreover the following

conditions are equivalent:

(i) G is semi-faithful (over k).

(ii) G does not contain any nontrivial normal p-subgroups.

(iii) p ∤ | socab(G)|.
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Proof. The first statement and the equivalence of (i) and (ii) were observed in Chap-

ter I, Proposition 3.11. The implication (iii) ⇒ (ii) follows from the fact that every non-

trivial p-group has a nontrivial abelian characteristic subgroup. The converse is clear. �

Proof of Theorem 2.1. By Lemma 2.3 the order of A = socab(G) is not divisible

by char k in case char k > 0.

Let V be a faithful representation of G over k. We want to show that the number of

factors of a decomposition series of V is at least the maximum of rankZG(A) and 1. Clearly

it is at least 1. By Lemma 2.3 we may assume that V is completely reducible. Proposition

1.3 implies that the number of irreducible components of V is at least rankZG(A∗), which

equals rankZG(A) by Lemma 1.4(C).

Conversely we must construct a faithful representation V over k with at most rankZG(A)

irreducible components if A is non-trivial, and a faithful irreducible representation V over

k if A is trivial. We first reduce to the case of k being algebraically closed: Assume that⊕n
i=1 Vi is a decomposition of a faithful representation into irreducible representations

over k̄. For each i take any irreducible representation V ′
i over k which contains Vi as a

decomposition factor over k̄. Then
⊕n

i=1 V
′
i is a faithful representation over k̄ and has the

same number of irreducible components.

Let N1, . . . , Nt be the non-abelian feet of G. By Lemma 1.2 the socle of G decomposes

as socG = A×N1 × . . .×Nt. For each i, since Ni has composite order it has a nontrivial

irreducible representation Wi. The (exterior) tensor product W := W1 ⊗ · · · ⊗Wt is then

irreducible (since k = k̄) and does not contain any of N1, · · · , Nt in its kernel. If A is trivial

this gives an irreducible representation of socG with the property that no foot of G is

contained in its kernel. Any irreducible representation whose restriction to socG contains

W (take e.g. an irreducible sub-representation of the induced G-module indGsocGW ) is

then faithful.

From now on assume A to be non-trivial. There exist r := rankZG(A∗) = rankZG(A)

characters χ1, . . . , χr of A which generate the ZG-module A∗. For every i choose an

irreducible representation Vi of G whose restriction to socG contains the irreducible rep-

resentation kχi
⊗W . Set V :=

⊕r
i=1 Vi. By Proposition 1.3 the representation V is faith-

ful. Moreover it has the required number of irreducible components. This finishes the

proof. �

Remark 2.4. The situation for non-semi-faithful groups is completely different, in

so far that the abelian socle tells us nothing about the number of decomposition factors

needed for a faithful representation. Take for example a field k of characteristic p and

consider the groups Gn = Z/pnZ, n ≥ 1. The abelian socle of Gn is the group of order

p with trivial Gn-conjugation action. However GLm(k) only admits elements of order pn

when m ≥ pn−1 + 1. Since the only irreducible representation of Gn over k is the trivial

representation, this implies that one needs at least pn−1 + 1 decomposition factors for a

faithful representation of Gn.

Remark 2.5. Let Γ be any subgroup of Aut(G) containing the inner automorphisms.

A representation ρ of G is said to be Γ-faithful if the only Γ-invariant subgroup of ker ρ
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is the trivial group. One can define Γ-feet, Γ-socle, abelian Γ-socle (denoted in the sequel

by AΓ(G)) by replacing normal subgroups by Γ-invariant subgroups (see [BH08]) and

generalize Theorem 2.1 in the following way: If char k = 0 or char k = p > 0 and p ∤
|AΓ(G)|, then the minimal number of irreducible components of a completely reducible

Γ-faithful representation of G equals the maximum of rankZΓA
Γ(G) and 1. The proof

remains basically the same.

There is the following application:

Corollary 2.6. Let n ∈ N and H ⊆ G be a subgroup containing socab(G) and

assume that H and G are semi-faithful. If H has a faithful representation over k with n

decomposition factors, then G has a faithful representation with n decomposition factors

as well.

Proof. This is a consequence of Theorem 2.1 and Lemma 2.7 below. �

Lemma 2.7. If H ⊆ G is a subgroup containing socab(G), then rankZH socab(H) ≥

rankZG socab(G).

Proof. Let h1, . . . , hr generate socab(H) as a ZH-module, where r = rankZH(socab(H)).

By semi-simplicity of socab(H) the ZH-submodule socab(H)∩socab(G) has an H-invariant

complement N in socab(H). Write hi = (gi, ni) where ni ∈ N and gi ∈ socab(H)∩socab(G).

Then g1, . . . , gr generate socab(H) ∩ socab(G) as a ZH-module. It suffices to show that

g1, . . . , gr generate socab(G) as a ZG-module. Let A be any abelian foot of G. By assump-

tion A ⊆ socab(G) ⊆ H . Let B ⊆ A be aH-foot. By construction B ⊆ socab(H)∩socab(G),

which is generated by g1, . . . , gr as a ZH-module. Since A is minimal, the ZG-module gen-

erated by B equals A. Hence A is contained in the ZG-module generated by g1, . . . , gr.

Since this holds for every abelian foot A of G the claim follows. �

3. Minimal dimension of faithful representations

We define the representation dimension of G over k as follows:

Definition 3.1. rdimk G := min{dimV | V faithful G-module over k}.

This numerical invariant gives an upper bound for edkG. In certain cases the two

invariants of G coincide, e.g. for p-groups when k contains a primitive p-th root of unity

[KM, Theorem 4.1].

In Chapter I we have defined the notion Rep(χ)(G) for characters χ of a central

diagonalizable subgroup of an algebraic group G. The following definition is an analog for

arbitrary abelian subgroups of a finite group G.

Definition 3.2. Let A be an abelian subgroup of G and χ ∈ A∗ := Hom(A, k̄∗).

Rep(χ)(G) := {V irreducible G-module | (V ⊗ k̄)|A ⊇ k̄χ}

To every group G and field k we associate the following function:

fG,k : A∗ → N0, χ 7→ min{dimV | V ∈ Rep(χ)(G)},
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where A = socab(G).

Proposition 1.3 has the following corollary:

Corollary 3.3. If the socle C = socG of G is abelian and char k ∤ |C|, then

rdimkG = min

{
r∑

i=1

fG,k(χi)

}

taken over all r ∈ N and all systems of generators (χ1, . . . , χr) of C∗ viewed as a ZG-

module.

It may happen that G has a faithful representation with d decomposition factors

but every faithful representation of minimal dimension has at least d + 1 decomposition

factors. However in the following situation that doesn’t occur and we can describe faithful

representations of minimal dimension more precisely. Recall the definition of a minimal

basis introduced in [KM]:

Definition 3.4. Let C be a vector space over some field F of dimension r ∈ N0 and

let f : C → N0 be a function. An F -basis (c1, . . . , cr) of C is called minimal relative to f

if

(5) f(ci) = min {f(c) | c ∈ C \ 〈c1, . . . , ci−1〉} ,

for i = 1, . . . , r where for i = 1 we use the convention that the span of the empty set is

the trivial vector space {0}.

Proposition 3.5. Let G be a group whose socle C := socG is a central p-subgroup

for some prime p and assume char k 6= p. Let V be any representation of G and let

V1, V2, . . . , Vr be its irreducible composition factors where dimVi+1 ≥ dimVi for all i. Let

χ1, . . . , χr ∈ C∗ = Hom(C, k̄∗) be characters such that Vi ∈ Rep(χi)(G). Then V is faithful

of dimension rdimk G if and only if r = rankC and (χ1, . . . , χr) forms a minimal basis

of (C∗, fG,k) with fG,k(χi) = dimVi. The dimension vector (dim V1, . . . , dimVr) does not

depend on the choice of a faithful representation V of dimension rdimkG.

Proof. By Lemma 2.3 since char k ∤ |C| we may replace V by its associated graded

representation V1 ⊕ . . . ⊕ Vr without changing faithfulness, decomposition factors and

dimension. Thus we will assume that V is completely reducible.

First assume that V is faithful and rdimkG = dimV . By Proposition 1.3 faithfulness

of V is equivalent to the statement that the characters χ1, . . . , χr generate C∗. Since V has

minimal dimension it follows that r = rankC. Let j ∈ {0, . . . , r} be maximal such that

(χ1, . . . , χr) is part of a minimal basis of C∗. We want to show that j = r. Assume to the

contrary that j < r. Hence there exists χ ∈ C∗ \〈χ1, . . . χj〉 and W ∈ Rep(χ)(G) such that

dimW < dimVi for all i > j. By elementary linear algebra there exists i > j such that

χ1, . . . , χi−1, χ, χi+1, . . . , χr generate C∗ as well. Let V ′ := V1⊕· · ·Vi−1⊕W⊕Vi+1⊕· · ·⊕Vr.
Then dimV ′ < dimV and V ′ is faithful, because V ′ is faithful restricted to C and every

normal subgroup of G intersects C = soc(G). This contradicts dimV = rdimk G.

59



CHAPTER III. Faithful and p-faithful representations of minimal dimension

Now assume that (χ1, . . . , χr) and (χ′
1, . . . , χ

′
r) form two minimal bases of C∗. We

show that fG,k(χi) = fG,k(χ
′
i) for all i = 1 . . . r. Let j ∈ {0, . . . , r} be the last in-

dex where (fG,k(χ1), . . . , fG,k(χj)) and (fG,k(χ
′
1), . . . , fG,k(χ

′
j)) coincide. Assume j < r

and fG,k(χ
′
j+1) < fG,k(χj+1). Then 〈χ1, . . . , χj〉 6= 〈χ′

1, . . . , χ
′
j〉. Hence there exists s ∈

{1, . . . , j} such that χ′
s /∈ 〈χ1, . . . , χj〉. Then fG,k(χj+1) > fG,k(χ

′
j+1) ≥ fG,k(χ

′
s), which

contradicts the definition of minimal basis. This implies uniqueness of the dimension vec-

tor. Moreover it follows that V has dimension rdimk G when (χ1, . . . , χr) forms a minimal

basis of (C∗, fG,k) and dimVi = fG,k(χi) for all i. �

Corollary 3.6. Let p be a prime and G1, . . . , Gn be groups. Assume that char k 6= p

and socGl is a central p-subgroup of Gl for l = 1, . . . , n. Then

rdimk

n∏

l=1

Gl =

n∑

l=1

rdimkGl.

The (statement and the) proof is very similar to [KM, Theorem 5.1] and Theorem

8.1 of Chapter IV. Since our situation is more general and we do not require k to contain

a primitive p-th root of unity, we include a short proof.

Proof. By induction it suffices to settle the case n = 2. Set G := G1×G2. Taking into

account the description of minimal faithful representations of Proposition 3.5 it remains

to create a minimal basis (χ1, . . . , χr) of (socG)∗ = (socG1)
∗ ⊕ (socG2)

∗ for fG,k subject

to the condition that each χi is contained in one of (socGl)
∗. Here r = rankZ(G) =

rankZ(G1) + rankZ(G2). Assume that (χ1, . . . , χj) is part of a minimal basis such that

each χi for i ≤ j is contained in one of (socGl)
∗. Choose χ ∈ (socG)∗ \ 〈χ1, . . . , χj〉

with fG,k(χ) minimal. Decompose χ as χ(1) ⊕ χ(2) where χ(l) ∈ (socGl)
∗ and choose W ∈

Rep(χ)(G) of minimal dimension. The definition of Rep(χ)(G) tells us that k̄χ ⊆ W ⊗ k̄.

Let ε1 and ε2 denote the endomorphism of G sending (g1, g2) to (g1, e) and to (e, g2),

respectively. The module of the representation ρW ◦ εi contains k̄χ(l) over k̄ and has the

same dimension as W . Now replace χ by χ(l) with l such that χ(l) lies outside the subgroup

of (socG)∗ generated by χ1, . . . , χj. This proves the claim. �

4. Minimal p-faithful representations of extensions of p-groups by tori

Throughout this section we fix a prime p and work over an algebraically closed field

k of characteristic 0. The symbol ζm for m ∈ N denotes a primitive root of unity in k of

order m. We assume that

ζrrm = ζm

for r ∈ N. For a commutative algebraic group G we write G[m] for the m-torsion subgroup

G[m] := {g ∈ G | gm = e}. If G is diagonalizable we write X∗(G) and X∗(G) for the

character (resp. co-character)-group of G.

We consider an algebraic group G which fits into an exact sequence

1 → T → G
π
→ H → 1,
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where T is a torus and H is a (finite) p-group. In other words G is an extension of a

p-group H by a torus T . We will always consider T as a closed subgroup of G.

A (rational) representation ρ : G→ GL(V ) is called p-faithful if its kernel is finite and

has order prime to p.

The class of p-faithful representations of extensions G of p-groups by tori (over more

general fields) will play an important role in Chapter IV as well. In fact the discussion of

this section is related to section 5 of Chapter IV where we show that for every irreducible

G-module V there exists a (finite) p-subgroup F of G such that the restriction of V to

F is irreducible. In this section we will find F such that every F -module W can be lifted

to G after modifying W with the help of suitable characters of T ∩ F . In the sequel we

will denote by G a fixed extension of a p-group H by a torus T . Our goal is to prove the

following result:

Theorem 4.1. There exists a (finite) p-subgroup F ⊆ G such that the least dimension

of a faithful representation of F equals the least dimension of a p-faithful representation

of G.

Remark 4.2. Theorem 4.1 implies the lower bound on the essential dimension of

G formulated in Theorem 1.3(a) of Chapter IV in case k is algebraically closed and of

characteristic 0.

We have another description of p-faithfulness for extensions of p-groups by tori, which

will become useful later:

Lemma 4.3. A closed normal subgroup N of G is finite of order prime to p if and

only if its intersection with Z(G)[p] is trivial.

Proof. This is a special case of Proposition 4.4 of Chapter IV. �

We need some group-theoretic preliminaries:

Lemma 4.4. Let r ∈ N be such that pr ≥ |H|. Then there exists a set-theoretic

section s : H → G of π such that the associated cocycle αs : H × H → T given by

αs(h, h
′) = s(hh′)−1s(h)s(h′) has values in T [pr]. Moreover in that case the subgroup

Gr of G generated by T [pr] and s(H) fits into a commutative diagram with exact rows:

1 // T // G // H // 1

1 // T [pr] //
?�

OO

Gr
//

?�

OO

H // 1

where T [pr] →֒ T and Gr →֒ G are the inclusion morphisms. In particular Gr is a p-

subgroup of G.

Proof. This follows from the fact that the cohomology group H2(H, T ) classifying

extensions of H by the H-module T is |H|-torsion. See [CGR, page 4] and cf. Lemma 5.4

of Chapter IV. �
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Lemma 4.5. Let Q be a p-group acting on T and let TQ denote the closed subgroup

of T formed by the fixed points under Q. For ℓ ∈ N define a homomorphism

µℓ : (X∗(T ) ⊗ Z/ℓZ)Q → TQ/(TQ)0 by µℓ(λ⊗ (i+ ℓZ)) := [λ(ζ iℓ)].

Then for m, ℓ ∈ N with the divisibility relations exp(TQ/(TQ)0) | ℓ | m we have a commu-

tative diagram with exact rows:

1 // X∗(T
Q) ⊗Z Z/ℓZ //

��

(X∗(T ) ⊗Z Z/ℓZ)Q
µℓ //

��

TQ/(TQ)0 // 1

1 // X∗(T
Q) ⊗Z Z/mZ // (X∗(T ) ⊗Z Z/mZ)Q

µm // TQ/(TQ)0 // 1

,

where the vertical homomorphisms are induced by the injection

Z/ℓZ →֒ Z/mZ, a + ℓZ 7→ a
m

ℓ
+mZ.

Moreover TQ/(TQ)0 is a p-group.

Proof. The commutativity of the diagram follows from the construction and our

choice of compatible roots of unity ζm and ζℓ. The injectivity of the first horizontal map

is clear.

If λ ∈ X∗(T
Q), then the value of λ(s) for s ∈ G

m
lies in (TQ)0, hence the class

of λ(ζℓ) in the quotient TQ/(TQ)0 is trivial. Conversely if t := λ(ζℓ) ∈ (TQ)0 for some

λ ∈ X∗(T ) with λ ⊗ 1 ∈ (X∗(T ) ⊗ Z/ℓZ)Q, then choose a complement T ′ of (TQ)0 and

write λ(s) = (µ(s), µ′(s)) ∈ T = (TQ)0 × T ′ for s ∈ G
m

. Then µ ∈ X∗((T
Q)0) can be

regarded as an element of X∗(T
Q) and µ(ζℓ) = λ(ζℓ) implies that the image of µ ⊗ 1 in

(X∗(T ) ⊗ Z/ℓZ)Q is equal to λ⊗ 1. Hence the image of the first horizontal map is equal

to the kernel of µℓ.

Each class in the quotient TQ/(TQ)0 can be represented by an element t ∈ TQ of

order divisible by ℓ (since TQ is isomorphic to (TQ)0 × TQ/(TQ)0 and the exponent of

TQ/(TQ)0 divides ℓ). Using an isomorphism T ≃ Gn
m

and representing t by (ζa1ℓ , . . . , ζ
an

ℓ )

one sees that there exists λ ∈ X∗(T ) such that t = λ(ζℓ). Since t ∈ TQ it follows that

λ⊗ 1 ∈ X∗(T ) ⊗Z Z/ℓZ is fixed by Q. This implies surjectivity of µℓ. Hence the first row

is exact and similarly the second row.

It remains to show that TQ/(TQ)0 is a p-group. Let m = prq denote the exponent of

TQ/(TQ)0 with r ∈ N0 and (q, p) = 1. Then

X∗(T
Q) ⊗Z Z/mZ = (X∗(T

Q) ⊗Z Z/prZ) × (X∗(T
Q) ⊗Z Z/qZ)

and

(X∗(T ) ⊗Z Z/mZ)Q = (X∗(T ) ⊗Z Z/prZ)Q × (X∗(T ) ⊗Z Z/qZ)Q.

Since TQ/(TQ)0 is the quotient of these two groups and (X∗(T ) ⊗Z Z/prZ)Q is a p-group

it suffices to show that

(X∗(T ) ⊗Z Z/qZ)Q = X∗(T
Q) ⊗Z Z/qZ.
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Let λ ∈ X∗(T ) such that λ ⊗ 1 ∈ (X∗(T ) ⊗ Z/qZ)Q. Then λ ⊗ 1 =
∑

g∈Q gλ ⊗ 1
|Q|

∈

X∗(T )Q ⊗ Z/qZ, using the fact that the order of Q is invertible modulo q. �

For constructing representations we need to work with characters χ ∈ X∗(T ) rather

than with co-characters λ ∈ X∗(T ). Choosing an isomorphism T ≃ Gn
m

the two groups can

be both identified with Zn. An element b := (b1, . . . , bn) ∈ Zn corresponds to χb ∈ X∗(T )

and λb ∈ X∗(T ) defined by

χb(t1, . . . , tn) = tb11 t
b2
2 · · · tbnn , λb(s) = (sb1 , sb2, . . . , sbn).

An automorphism ε ∈ Aut(T ) corresponds to an element Mε = (εij) of GLn(Z) by

ε(t1, . . . , tn) = (tε111 · · · tε1n
n , . . . , tεn1

1 · · · tεnn

n ).

We let Aut(T ) act on X∗(T ) by

(εχ)(t) = χ(ε−1(t))

and on X∗(T ) by

(ελ)(t) = ε(λ(t)).

Then ελb = λb is equivalent to Mεb = b whereas εχb = χb is equivalent to (M t
ε)

−1b = b,

where (Mε)
t denotes the transpose of Mε.

LetQ be a group acting on the torus T . Let Q̂ ⊆ GLn(Z) denote its image in GLn(Z) ≃

Aut(T ). Then for the fixed points the identification T = Gn
m

induces identifications

TQ = (Gn
m

)Q̂ and (X∗(T ))Q = (Zn)Q̂

whereas

(X∗(T ))Q = (Zn)Q̂
t

where Q̂t denotes the subgroup of GLn(Z) formed by the transposed matrices of elements

of Q̂. Note that X∗(T [m]) ≃ X∗(T ) ⊗Z Z/mZ for m ∈ N. Now Lemma 4.5 gives:

Corollary 4.6. Let Q ⊆ GLn(Z) be a p-group and let Qt ⊆ GLn(Z) denote its

transpose, which is again a p-group. Let T := Gn
m
. Then TQ

t

/(TQ
t

)0 is a p-group. Moreover

for r, s ∈ N with the relations exp
(
TQ

t

/(TQ
t

)0
)
≤ ps ≤ pr we have a commutative diagram

with exact rows:

1 // X∗(T )Q ⊗Z Z/psZ //

��

(X∗(T [ps]))Q
µ′s //

��

TQ
t

/(TQ
t

)0 // 1

1 // X∗(T )Q ⊗Z Z/prZ // (X∗(T [pr]))Q
µ′r // TQ

t

/(TQ
t

)0 // 1

where the second vertical arrow sends χ ∈ (X∗(T [ps]))Q to the character of T [pr] defined

by t 7→ χ(tp
r−s

), t ∈ T [pr], and µ′
r, µ

′
s correspond to the homomorphisms µpr , µps.

Lemma 4.7. Let Gr ⊆ G be a p-subgroup such as in Lemma 4.4 and s : H → Gr

be a section of the projection Gr → H. Let α := αs : H × H → T [r], (h, h′) 7→ αh,h′ =
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s(hh′)−1s(h)s(h′) be the corresponding 2-cocycle. Given another algebraic group Q and

morphisms ϕr : Gr → Q and ψ : T → Q of algebraic groups the map ϕ : G→ Q defined by

ϕ(s(h)t) = ϕr(s(h))ψ(t) for h ∈ H, t ∈ T

defines a morphism of algebraic groups provided that the following two conditions are

satisfied:

ψ(g−1tg) = ϕr(g)
−1ψ(t)ϕr(g) for all g ∈ Gr, t ∈ T.(6)

ψ(αh,h′) = ϕr(αh,h′) for all h, h′ ∈ H.(7)

Proof. Let h, h′ ∈ H and t, t′ ∈ T . Then

ϕ(s(h′)t′s(h)t) = ϕ(s(h′h)αh′,hs(h)
−1t′s(h)t)

= ϕr(s(h
′h))ψ(αh′,hs(h)

−1t′s(h)t)

= ϕr(s(h
′h))ψ(αh′,h)ψ(s(h)−1t′s(h))ψ(t)

= ϕr(s(h
′h))ϕr(αh′,h)ϕr(s(h))

−1ψ(t′)ϕr(s(h))ψ(t)

= ϕr(s(h
′h)αh′,hs(h)

−1)ψ(t′)ϕr(s(h))ψ(t)

= ϕr(s(h
′))ψ(t′)ϕr(s(h))ψ(t)

= ϕ(s(h′)t′)ϕ(s(h)t),

which shows that ϕ is a group homomorphism. Since H is finite the map s : H → Gr

is a morphism of varieties. Therefore G → Gr, g 7→ s(π(g)) as well as G → T, g 7→

s(π(g))−1g and thus ϕ are morphisms of varieties as well. Hence ϕ is a morphism of

algebraic groups. �

Lemma 4.8 (cf. [Se, Section 8.5, Theorem 16]). Let F be a p-group and T ′ a normal

abelian subgroup. Let ρ : F → GL(W ) be a representation of F . Then W has a basis

w1, . . . , wd such that ρ factors as

F
ρ

//

ϕ ""FF
FFFFFFF

GL(W )

Gd
m

⋊Sd

+
� ι

99ssssssssss

with ϕ(T ′) ⊆ Gd
m

where ι : Gd
m

⋊Sd →֒ GL(W ) is defined by ι(tσ)(wi) = tσ(i)wσ(i) for

t = (t1, . . . , tn) ∈ Gd
m

and σ ∈ Sd.

Proof of Theorem 4.1. Clearly a p-faithful representation of G becomes faithful

when restricted to any p-subgroup. So it remains to construct F and to show that for a

(minimal) faithful representation of F there exists a p-faithful representation of G of the

same dimension.

By Lemma 4.4 there exists r0 ∈ N and a (set-theoretic) section s : H → G of π : G→

H such that the associated cocycle αs : H×H → T takes values in T [pr0 ]. Identify T with

Gn
m

for some n ∈ N0 and let Ĥ denote the image of H in Aut(T ) = GLn(Z) under the

homomorphism H → Aut(T ) induced by the action of H on T . Now choose r ∈ N such
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that pr ≥ pr0+1 exp
(
TQ

t

/TQ
t0
)

for all subgroups Q ⊆ Ĥ. We set F := Gr, where Gr is

as in Lemma 4.4.

Let ρ : Gr →֒ GL(W ) be a faithful representation and d = dimW . We will show that

W affords a p-faithful representation of G. By Lemma 4.8, ρ factors through an (injective)

morphism

ϕr : Gr →֒ Gd
m

⋊Sd

of algebraic groups such that ϕr(T [pr]) ⊆ Gd
m

. Let χ1, . . . , χd ∈ X(T [pr]) denote the

characters of T [pr] defined by ϕr(t) = (χ1(t), . . . , χd(t)) for t ∈ T [pr]. The group H acts

on X(T [pr]) through the action on T [pr] and on {1, . . . , d} through Gr
ϕr
→ Gd

m
⋊Sd → Sd

(which factors through H since ϕr(T [pr]) ⊆ Gd
m

). Moreover we have hχi = χhi for i ∈

{1 . . . , d}.
Let Ω ⊆ {1, . . . , d} be a subset such that {1, . . . , d} =

⋃
ω∈ΩHω is a decomposition

into distinct H-orbits. Fix ω ∈ Ω. Consider the commutative diagram of Corollary 4.6

with s := r − r0 − 1 and Q the image of StabH ω in Aut(T ) = GLn(Z). Note that

pr ≥ ps ≥ exp
(
TQ

t

/(TQ
t

)0
)

by our choice of r and that χω ∈ (X∗(T [pr]))Q. Choose

γ ∈ X∗(T [pr−r0−1])Q such that µ′
r−r0−1(γ) = µ′

r(χω). Then µ′
r(p

r0+1γ) = µ′
r(χω). Hence by

the exactness of the bottom row in Corollary 4.6 there exists χ̂ω ∈ X∗(T )Q such that

(8) χ̂ω(t) = χω(t)γ
−1(tp

r0+1

)

for all t ∈ T [pr]. For i ∈ Hω, i = hω define χ̂i ∈ X∗(T ) by:

χ̂i = hχ̂ω.

Note that this definition does not depend on the choice of h ∈ H , since χ̂ω is fixed by

Q = StabH ω. Doing this for all ω ∈ Ω gives us characters χ̂1, . . . , χ̂d ∈ X(T ) such that

(9) hχ̂i = χ̂hi

for all h ∈ H and i ∈ {1, . . . , d} and, using equation (8), elements γ1, . . . , γd ∈ X∗(T [pr−r0−1])

such that

(10) χ̂i(t) = χi(t)γ
−1
i (tp

r0+1

)

for all t ∈ T [pr].

Define a homomorphism ψ : T → Gd
m

⋊Sd by setting

ψ(t) = (χ̂1(t), . . . , χ̂d(t)) ∈ Gd
m

for t ∈ T.

We want to apply Lemma 4.7 to obtain a morphism ϕ : G→ Gd
m

⋊Sd of algebraic groups

satisfying ϕ(s(h)t) = ϕr(s(h))ψ(t) for h ∈ H, t ∈ T . Condition 6 that we must check

follows from equation (9) and condition 7 follows from equation (10), using the fact that

αs takes values in T [pr0 ]. Hence such a ϕ exists. Composing it with ι : Gd
m

⋊Sd →֒ GL(W )

yields a representation of G of dimension d. It remains to show that this representation

is p-faithful.

By Lemma 4.3 it suffices to show that kerϕ∩Z(G)[p] is trivial. Let g ∈ kerϕ∩Z(G)[p]

and represent it by g = s(h)t for some h ∈ H, t ∈ T . Then hp = 1 and (s(h)t)t =
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t(s(h)t) implies that s(h) and t commute. Hence 1 = (s(h)t)p = (s(h))ptp. But (s(h))p =

s(hp)αh,hp−1 · · ·αh,h = α1,1αh,hp−1 · · ·αh,h ∈ T [pr0]. Hence

t ∈ T [pr0+1] ⊆ T [pr].

We claim that ϕr(s(h)t) = ϕ(s(h)t). It suffices to show that χ̂i(t) = χi(t) for all i ∈

{1, . . . , d}. This follows from equation (10). Hence g = s(h)t ∈ kerϕr = {e}. This shows

that kerϕ ∩ Z(G)[p] = {e}, hence finishes the proof. �
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CHAPTER IV

Essential p-dimension of algebraic tori

ROLAND LÖTSCHER, MARK MACDONALD, AUREL MEYER

AND ZINOVY REICHSTEIN

The essential dimension is a numerical invariant of an algebraic group G which may

be thought of as a measure of complexity of G-torsors over fields. A recent theorem of N.

Karpenko and A. Merkurjev gives a simple formula for the essential dimension of a finite

p-group. We obtain similar formulas for the essential p-dimension of a broader class of

groups, which includes all algebraic tori.

1. Introduction

Throughout this paper p will denote a prime integer, k a base field of characteristic

6= p and G a (not necessarily smooth) algebraic group defined over k. Unless otherwise

specified, all fields are assumed to contain k and all morphisms between them are assumed

to be k-homomorphisms.

We begin by recalling the notion of essential dimension of a functor from [BF].

Let Fieldsk be the category of field extensions K/k, Sets be the category of sets, and

F : Fieldsk → Sets be a covariant functor. As usual, given a field extension k ⊂ K0 ⊂ K,

we will denote the image of α ∈ F (K0) under the natural map F (K0) → F (K) by αK .

An object α ∈ F (K) is said to descend to an intermediate field k ⊆ K0 ⊆ K if α is in

the image of the induced map F (K0) → F (K). The essential dimension edk(α) is defined

as the minimum of the transcendence degrees trdegk(K) taken over all fields k ⊆ K0 ⊆ K

such that α descends to K0. The essential dimension edk(F ) of the functor F is defined

as the maximal value of edk(α), where the maximum is taken over all fields K/k and all

α ∈ F (K).

Of particular interest to us will be the functor ofG-torsors FG := H1(∗, G), which asso-

ciates to every K/k the set of isomorphism classes of G-torsors over Spec(K). The essential

dimension of this functor is usually called the essential dimension of G and is denoted

by the symbol edk(G). Informally speaking, this number may be thought of as a measure

of complexity of G-torsors over fields. For example, if k is an algebraically closed field of

characteristic 0 then groups G of essential dimension 0 are precisely the so-called special

groups, i.e., algebraic groups G/k with the property that every G-torsor over Spec(K) is

split, for every field K/k. These groups were classified by A. Grothendieck [Gro].

69



CHAPTER IV. Essential p-dimension of algebraic tori

For many groups the essential dimension is hard to compute, even over the field C of

complex numbers. The following related notion is often more accessible. Let F : Fieldsk →

Sets be a covariant functor and p be a prime integer, as above. The essential p-dimension

of α ∈ F (K), denoted edk(α; p), is defined as the minimal value of edk(αK ′), where K ′

ranges over all finite field extensions of K whose degree is prime to p. The essential p-

dimension of F , edk(F ; p) of F is once again, defined as the maximal value of edk(α; p),

where the maximum is taken over all fields K/k and all α ∈ F (K), and once again we will

write edk(G; p) in place of edk(FG; p), where FG := H1(∗, G) is the functor of G-torsors.

Note that edk(α), edk(F ), edk(G), edk(α; p), etc., depend on k. We will write ed

instead of edk if the reference to k is clear from the context. For background material on

essential dimension we refer the reader to [BR, Re, RY, BF, Me1].

We also remark that in the case of the functor FG of G-torsors, the maximal value of

edk(α) and edk(α; p) in the above definitions is attained in the case where α is a versal G-

torsor in the sense of [GMS, Section I.5]. Since every generically free linear representation

ρ : G→ GL(V ) gives rise to a versal G-torsor (see [GMS, Example I.5.4]), we obtain the

inequality

(11) edk(G; p) ≤ edk(G) ≤ dim(V ) − dim(G) ;

see [Re, Therem 3.4] or [BF, Lemma 4.11]. (Recall that ρ is called generically free if there

exists a G-invariant dense open subset U ⊂ V such that the scheme-theoretic stabilizer

of every point of U is trivial.)

N. Karpenko and A. Merkurjev [KM] recently showed that the inequality (11) is in

fact sharp for finite constant p-groups.

Theorem 1.1. Let G be a finite constant p-group over a field k containing a primitive

pth root of unity. Then

edk(G; p) = edk(G) = min dim(V ) ,

where the minimum is taken over all faithful k-representations G →֒ GL(V ).

The goal of this paper is to prove similar formulas for a broader class of groups G. To

state our first result, let

(12) 1 → C → G→ Q→ 1

be an exact sequence of algebraic groups over k such that C is central in G and isomorphic

to µrp for some r ≥ 0. Given a character χ : C → µp, we will, following [KM], denote by

Repχ the set of irreducible representations ϕ : G → GL(V ), defined over k, such that

ϕ(c) = χ(c) IdV for every c ∈ C.

Theorem 1.2. Assume that k is a field of characteristic 6= p containing a primitive

pth root of unity. Suppose a sequence of k-groups of the form (12) satisfies the following

condition:

gcd{dim(ϕ) |ϕ ∈ Repχ} = min{dim(ϕ) |ϕ ∈ Repχ}
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for every character χ : C → µp. (Here, as usual, gcd stands for the greatest common

divisor.) Then

edk(G; p) ≥ min dim(ρ) − dimG ,

where the minimum is taken over all finite-dimensional k-representations ρ of G such that

ρ|C is faithful.

Of particular interest to us will be extensions of finite p-groups by algebraic tori, i.e.,

k-groups G which fit into an exact sequence of the form

(13) 1 → T → G→ F → 1 ,

where F is a finite p-group and T is a torus over k. (A similar class of groups, where F is

assumed to be supersolvable, was studied in [BS2].) Note that in this paper when we will

work with a finite algebraic group F we will not assume it is constant, which is to say,

the absolute Galois group of k may act non-trivially on the separable points of G. For

the sake of computing edk(G; p) we may assume that k is a p-closed field (as in Definition

3.1); see Lemma 3.3. In this situation we will show that

(i) there is a natural choice of a split central subgroup C ⊂ G in the sequence (12)

such that the conditions of Theorem 1.2 are always satisfied.

(ii) Moreover, if G is isomorphic to the direct product of a torus and a finite twisted

p-group, then a variant of (11) yields an upper bound, matching the lower bound of

Theorem 1.2.

This brings us to the main result of this paper. We will say that a representation

ρ : G → GL(V ) of an algebraic group G is p-faithful if its kernel is finite and of order

prime to p.

Theorem 1.3. Let G be an extension of a (twisted) finite p-group F by an algebraic

torus T defined over a field k (of characteristic not p). In other words, we have an exact

sequence

1 → T → G→ F → 1 .

Denote a p-closure of k by k(p) (see Definition 3.1). Then

(a) edk(G; p) ≥ min dim(ρ) − dimG, where the minimum is taken over all p-faithful

linear representations ρ of Gk(p) over k(p).

Now assume that G is the direct product of T and F . Then

(b) equality holds in (a), and

(c) over k(p) the absolute essential dimension of G and the essential p-dimension

coincide:

edk(p)(Gk(p)) = edk(p)(Gk(p); p) = edk(G; p).

If G is a p-group, a representation ρ is p-faithful if and only if it is faithful. However,

for an algebraic torus, “p-faithful” cannot be replaced by “faithful”; see Remark 10.3.

Theorem 1.3 appears to be new even in the case where G is a twisted cyclic p-group,

where it extends earlier work of Rost [Ro], Bayarmagnai [Ba] and Florence [Fl]; see

Corollary 9.3 and Remark 9.4.
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If G is a direct product of a torus and an abelian p-group, the value of edk(G; p) given

by Theorem 1.3 can be rewritten in terms of the character moduleX(G); see Corollary 9.2.

In particular, we obtain the following formula for the essential dimension of a torus.

Theorem 1.4. Let T be an algebraic torus defined over a p-closed field k = k(p) of

characteristic 6= p. Suppose Γ = Gal(ksep/k) acts on the character lattice X(T ) via a finite

quotient Γ. Then

edk(T ) = edk(T ; p) = min rank(L) ,

where the minimum is taken over all exact sequences of Z(p)Γ-lattices of the form

(0) → L→ P → X(T )(p) → (0) ,

where P is permutation and X(T )(p) stands for X(T ) ⊗Z Z(p).

In many cases Theorem 1.4 renders the value of edk(T ) computable by known representation-

theoretic methods, e.g., from [CR]. We will give several examples of such computations

in Sections 11 and 12. Another application was recently given by Merkurjev [Me3], who

used Theorem 1.4, in combination with techniques from [Me2], to show that

edk(PGLpr ; p) ≥ (r − 1)pr + 1

for any r ≥ 1. (For r = 2 the above inequality is the main result of [Me2].) This represents

dramatic improvement over the best previously known lower bounds on edk(PGLpr). The

question of computing edk(PGLpr) is a long-standing open problem; for an overview,

see [MR1, MR2].

It is natural to try to extend the formula of Theorem 1.3(b) to all k-groups G, whose

connected component G0 is a torus. For example, the normalizer of a maximal torus in any

reductive k-group is of this form. For the purpose of computing edk(G; p) we may assume

that k is p-closed and G/G0 is a p-group; in other words, G is as in Theorem 1.3(a). Then

(14) min dimµ− dim(G) ≤ ed(G; p) ≤ min dim ρ− dimG ,

where the two minima are taken over all p-faithful representations µ, and p-generically free

representations ρ, respectively. Here we say that a representation ρ of G is p-generically

free if the ker(ρ) is finite of order prime to p, and ρ descends to a generically free repre-

sentation of G/ ker(ρ). The upper bound in (14) follows from (11), in combination with

Theorem 6.1; the lower bound is Theorem 1.3(a). If G is a direct product of a torus and a

p-group, then every p-generically free representation is p-faithful (see Lemma 7.1). In this

case the lower and upper bounds of (14) coincide, yielding the exact value of edk(G; p)

of Theorem 1.3(b). However, if we only assume G is a p-group extended by a torus, then

faithful G-representations no longer need to be generically free. We do not know how to

bridge the gap between the upper and the lower bound in (14) in this generality; however,

in all of the specific examples we have considered, the upper bound turned out to be

sharp. We thus put forward the following conjecture.
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Conjecture 1.5. Let G be an extension of a p-group by a torus, defined over a field

k of characteristic 6= p. Then

ed(G; p) = min dim ρ− dimG,

where the minimum is taken over all p-generically free representations ρ of Gk(p) over k(p).

The rest of the paper is structured as follows. Theorem 1.2 is proved in Section 2.

Section 3 is devoted to preliminary material on the p-closure of a field. Theorem 1.3(a)

is proved in Sections 4 and 5. In Section 6 we will show that if G → Q is a p-isogeny

then edk(G; p) = edk(Q; p). This result playes a key role in the proof of Theorem 1.3(b)

in Section 7. At the end of Section 7 we prove a formula for the essential p-dimension of

any finite group G by passing to a Sylow p-subgroup defined over k; see Corollory 7.2. In

Section 8 we prove the following Additivity Theorem 8.1: If G1 and G2 are direct products

of tori and p-groups, then

edk(G1 ×G2; p) = edk(G1; p) + edk(G2; p) .

In Section 9 we restate and amplify Theorem 1.3(b) (withG abelian) in terms of Gal(ksep/k)-

modules; in particular, Theorem 1.4 stated above is a special case of Corollary 9.2 which is

proved there. In Section 10 we prove Theorem 1.3(c) by using Theorem 1.3(b), additivity,

and the lattice perspective from Section 9. The last two sections are intended to illustrate

our results by computing essential dimensions of specific algebraic tori. In Section 11 we

classify algebraic tori T of essential p-dimension 0 and 1; see Theorems 11.1 and 11.5.

In Section 12 we compute the essential p-dimension of all tori T over a p-closed field k,

which are split by a cyclic extension l/k of degree dividing p2.

2. Proof of Theorem 1.2

Denote by C∗ := Hom(C, µp) the character group of C. Let E → SpecK be a versal Q-

torsor [GMS, Example 5.4], where K/k is some field extension, and let β : C∗ → Brp(K)

denote the homomorphism that sends χ ∈ C∗ to the image of E ∈ H1(K,Q) in Brp(K)

under the map

H1(K,Q) → H2(K,C)
χ∗

→ H2(K,µp) = Brp(K)

given by composing the connecting map with χ∗. Then there exists a basis χ1, . . . , χr of

C∗ such that

(15) edk(G; p) ≥
r∑

i=1

ind β(χi) − dimG,

see [Me1, Theorem 4.8, Example 3.7]. Moreover, by [KM, Theorem 4.4, Remark 4.5]

ind β(χi) = gcd dim(ρ) ,

where the greatest common divisor is taken over all (finite-dimensional) representations ρ

of G such that ρ|C is scalar multiplication by χi. By our assumption, gcd can be replaced

by min. Hence, for each i ∈ {1, . . . , r} we can choose a representation ρi of G with

ind β(χi) = dim(ρi)
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such that (ρi)|C is scalar multiplication by χi.

Set ρ := ρ1 ⊕ · · · ⊕ ρr. The inequality (15) can be written as

(16) edk(G; p) ≥ dim(ρ) − dimG.

Since χ1, . . . , χr forms a basis of C∗ the restriction of ρ to C is faithful. This proves the

theorem. �

3. The p-closure of a field

Let K be a field extension of k and Kalg an algebraic closure. We will construct a field

K(p)/K in Kalg with all finite subextensions of K(p)/K of degree prime to p and all finite

subextensions of Kalg/K
(p) of degree a power of p.

Fix a separable closure Ksep ⊂ Kalg of K and denote Γ = Gal(Ksep/K). Recall that

Γ is profinite and has Sylow-p subgroups which enjoy similar properties as in the finite

case, see for example [RZ] or [Wi]. Let Φ be a Sylow-p subgroup of Γ and KΦ
sep its fixed

field.

Definition 3.1. We call the field

K(p) = {a ∈ Kalg|a is purely inseparable over KΦ
sep}

a p-closure of K. A field K will be called p-closed if K=K(p).

Note that K(p) is unique in Kalg only up to the choice of a Sylow-p subgroup Φ in Γ.

The notion of being p-closed does not depend on this choice.

Proposition 3.2.

(a) K(p) is a direct limit of finite extensions Ki/K of degree prime to p.

(b) Every finite extension of K(p) is separable of degree a power of p; in particular,

K(p) is perfect.

(c) The q-cohomological dimension of Ψ = Gal(Kalg/K
(p)) is cdq(Ψ) = 0 for any

prime q 6= p.

Proof. (a) First note that Ksep is the limit of the directed set {KN
sep} over all normal

subgroups N ⊂ Γ of finite index. Let

L = {KNΦ
sep |N normal with finite index in Γ}.

This is a directed set, and since Φ is Sylow, the index of NΦ in Γ is prime to p. Therefore

L consists of finite separable extensions of K of degree prime to p. Moreover, KΦ
sep is the

direct limit of fields L in L.

If char k = 0, K(p) = KΦ
sep and we are done. Otherwise suppose char k = q 6= p. Let

E = {E ⊂ Kalg|E/L finite and purely inseparable for some L ∈ L}.

E consists of finite extensions of K of degree prime to p, because a purely inseparable

extension has degree a power of q. One can check that E forms a directed set.
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Finally note that if a is purely inseparable over KΦ
sep with minimal polynomial xq

n

− l

(so that l ∈ KΦ
sep), then l is already in some L ∈ L since KΦ

sep is the limit of L. Thus

a ∈ E = L(a) which is in E and we conclude that K(p) is the direct limit of E .

(b) K(p) is the purely inseparable closure of KΦ
sep in Kalg and Kalg/K

(p) is separable,

see [Win, 2.2.20]. Moreover, Gal(Kalg/K
(p)) ≃ Gal(Ksep/K

Φ
sep) = Φ is a pro-p group and

so every finite extension of K(p) is separable of degree a power of p.

(c) See [Se2, Cor. 2, I. 3]. �

We call a covariant functor F : Fields /k → Sets limit-preserving if for any directed

system of fields {Ki}, F(lim
→
Ki) = lim

→
F(Ki). For example if G is an algebraic group, the

functor FG = H1(∗, G) is limit-preserving; see [Ma, 2.1].

Lemma 3.3. Let F be limit-preserving and α ∈ F(K) an object. Denote the image of

α in F(K(p)) by αK(p).

(a) edk(α; p) = edk(αK(p); p) = edk(αK(p)).

(b) edk(F ; p) = edk(p)(F ; p).

Proof. (a) The inequalities ed(α; p) ≥ ed(αK(p); p) = ed(αK(p)) are clear from the

definition and Proposition 3.2(b) since K(p) has no finite extensions of degree prime to p.

It remains to prove ed(α; p) ≤ ed(αK(p)). If L/K is finite of degree prime to p,

(17) ed(α; p) = ed(αL; p),

cf. [Me1, Proposition 1.5] and its proof. For the p-closure K(p) this is similar and uses

(17) repeatedly:

Suppose there is a subfield K0 ⊂ K(p) and αK(p) comes from an element β ∈ F(K0),

so that βK(p) = αK(p). Write K(p) = limL, where L is a direct system of finite prime to

p extensions of K. Then K0 = limL0 with L0 = {L ∩K0|L ∈ L} and by assumption on

F , F(K0) = lim
L′∈L0

F(L′). Thus there is a field L′ = L ∩K0 (L ∈ L) and γ ∈ F(L′) such

that γK0 = β. Since αL and γL become equal over K(p), after possibly passing to a finite

extension, we may assume they are equal over L which is finite of degree prime to p over

K. Combining these constructions with (17) we see that

ed(α; p) = ed(αL; p) = ed(γL; p) ≤ ed(γL) ≤ ed(αK(p)).

(b) This follows immediately from (a), taking α of maximal essential p-dimension. �

Proposition 3.4. Let F ,G : Fields /k → Sets be limit-preserving functors and F →

G a natural transformation. If the map

F(K) → G(K)

is bijective (resp. surjective) for any p-closed field extension K/k then

ed(F ; p) = ed(G; p) (resp. ed(F ; p) ≥ ed(G; p)).

Proof. Assume the maps are surjective. By Proposition 3.2(a), the natural transfor-

mation is p-surjective, in the terminology of [Me1], so we can apply [Me1, Prop. 1.5] to

conclude ed(F ; p) ≥ ed(G; p).
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Now assume the maps are bijective. Let α be in F(K) for some K/k and β its image

in G(K). We claim that ed(α; p) = ed(β; p). First, by Lemma 3.3 we can assume that K

is p-closed and it is enough to prove that ed(α) = ed(β).

Assume that β comes from β0 ∈ G(K0) for some field K0 ⊂ K. Any finite prime to

p extension of K0 is isomorphic to a subfield of K (cf. [Me1, Lemma 6.1]) and so also

any p-closure of K0 (which has the same transcendence degree over k). We may therefore

assume that K0 is p-closed. By assumption F(K0) → G(K0) and F(K) → G(K) are

bijective. The unique element α0 ∈ F(K0) which maps to β0 must therefore map to α

under the natural restriction map. This shows that ed(α) ≤ ed(β). The other inequality

always holds and the claim follows.

Taking α maximal with respect to its essential dimension, we obtain ed(F ; p) =

ed(α; p) = ed(β; p) ≤ ed(G; p). �

4. The group C(G)

As we indicated in the Introduction, our proof of Theorem 1.3(a) will rely on The-

orem 1.2. To apply Theorem 1.2, we need to construct a split central subgroup C of G.

In this section, we will explain how to construct this subgroup (we will call it C(G)) and

discuss some of its properties.

Recall that an algebraic group G over a field k is said to be of multiplicative type if

Gksep is diagonalizable over the separable closure ksep of k; cf., e.g., [Vo, Section 3.4]. Here,

as usual, Gk′ := G×Spec k Spec(k′) for any field extension k′/k. Smooth connected groups

of multiplicative type are precisely the algebraic tori.

We will use the following common conventions in working with an algebraic group A

of multiplicative type over k.

• We will denote the character group of A by X(A).

• Given a field extension l/k, A is split over l if and only if the absolute Galois

group Gal(lsep/l) acts trivially on X(A).

• We will write A[p] for the p-torsion subgroup {a ∈ A | ap = 1} of A. Clearly A[p]

is defined over k.

Let T be an algebraic torus. It is well known how to construct a maximal split subtorus

of T , see for example [Bo, 8.15] or [Wa, 7.4]. The following definition is a variant of this.

Definition 4.1. Let A be an algebraic group of multiplicative type over k. Let ∆(A)

be the Γ-invariant subgroup of X(A) generated by elements of the form x − γ(x), as x

ranges over X(A) and γ ranges over Γ. Define

Splitk(A) = Diag(X(A)/∆(A)) .

Here Diag denotes the anti-equivalence between continuous ZΓ-modules and algebraic

groups of multiplicative type, cf. [Wa, 7.3].

Definition 4.2. Let G be an extension of a finite p-group by a torus, defined over a

field k, as in (13). Then

C(G) := Splitk(Z(G)[p]) ,
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where Z(G) denotes the centre of G.

Lemma 4.3. Let A be an algebraic group of multiplicative type over k.

(a) Splitk(A) is split over k,

(b) Splitk(A) = A if and only if A is split over k,

(c) If B is a k-subgroup of A then Splitk(B) ⊂ Splitk(A).

(d) For A = A1 × A2, Splitk(A1 × A2) = Splitk(A1) × Splitk(A2),

(e) If A[p] 6= {1} and A is split over a Galois extension l/k, such that Γ = Gal(l/k)

is a p-group, then Splitk(A) 6= {1}.

Proof. Parts (a), (b), (c) and (d) easily follow from the definition.

Proof of (e): By part (c), it suffices to show that Splitk(A[p]) 6= {1}. Hence, we may

assume that A = A[p] or equivalently, that X(A) is a finite-dimensional Fp-vector space

on which the p-group Γ acts. Any such action is upper-triangular, relative to some Fp-basis

e1, . . . , en of X(A); see, e.g., [Se1, Proposition 26, p.64]. That is,

γ(ei) = ei+ (Fp-linear combination of ei+1, . . . , en)

for every i = 1, . . . , n and every γ ∈ Γ. Our goal is to show that ∆(A) 6= X(A). In-

deed, every element of the form x − γ(x) is contained in the Γ-invariant submodule

Span(e2, . . . , en). Hence, these elements cannot generate all of X(A). �

Proposition 4.4. Suppose G is an extension of a p-group by a torus, defined over a

p-closed field k. Suppose N is a normal subgroup of G defined over k. Then the following

conditions are equivalent:

(i) N is finite of order prime to p,

(ii) N ∩ C(G) = {1},

(iii) N ∩ Z(G)[p] = {1},

In particular, taking N = G, we see that C(G) 6= {1} if G 6= {1}.

Proof. (i) =⇒ (ii) is obvious, since C(G) is a p-group.

(ii) =⇒ (iii). Assume the contrary: A := N ∩ Z(G)[p] 6= {1}. By Lemma 4.3

{1} 6= C(A) ⊂ N ∩ C(Z(G)[p]) = N ∩ C(G) ,

contradicting (ii).

Our proof of the implication (iii) =⇒ (i), will rely on the following

Claim: Let M be a non-trivial normal finite p-subgroup of G such that the commu-

tator (G0,M) is trivial. Then M ∩ Z(G)[p] 6= {1}.

To prove the claim, note that M(ksep) is non-trivial and the conjugation action of

G(ksep) on M(ksep) factors through an action of the p-group (G/G0)(ksep). Thus each

orbit has pn elements for some n ≥ 0; consequently, the number of fixed points is divisible

by p. The intersection (M ∩ Z(G))(ksep) is precisely the fixed point set for this action;

hence, M ∩ Z(G)[p] 6= {1}. This proves the claim.

We now continue with the proof of the implication (iii) =⇒ (i). For notational conve-

nience, set T := G0. Assume that N ⊳ G and N ∩ Z(G)[p] = {1}. Applying the claim to
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the normal subgroup M := (N ∩ T )[p] of G, we see that (N ∩ T )[p] = {1}, i.e., N ∩ T is

a finite group of order prime to p. The exact sequence

(18) 1 → N ∩ T → N → N → 1 ,

where N is the image of N in G/T , shows that N is finite. Now observe that for every

r ≥ 1, the commutator (N, T [pr]) is a p-subgroup of N ∩ T . Thus (N, T [pr]) = {1} for

every r ≥ 1. We claim that this implies (N, T ) = {1} by Zariski density. If N is smooth,

this is straightforward; see [Bo, Proposition 2.4, p. 59]. If N is not smooth, note that the

map c : N×T → G sending (n, t) to the commutator ntn−1t−1 descends to c : N×T → G

(indeed, N ∩T clearly commutes with T ). Since |N | is a power of p and char(k) 6= p, N is

smooth over k, and we can pass to the separable closure ksep and apply the usual Zariski

density argument to show that the image of c is trivial.

We thus conclude that N ∩ T is central in N . Since gcd(|N ∩ T |, N) = 1, by [Sch2,

Corollary 5.4] the extension (18) splits, i.e.,N ≃ (N∩T )×N . This turnsN into a subgroup

of G satisfying the conditions of the claim. Therefore N is trivial and N = N ∩ T is a

finite group of order prime to p, as claimed. �

For future reference, we record the following obvious consequence of the equivalence

of conditions (i) and (ii) in Proposition 4.4.

Corollary 4.5. Let k = k(p) be a p-closed field and G be an extension of a p-group

by a torus, defined over k, as in (13). A finite-dimensional representation ρ of G defined

over k is p-faithful if and only ρ|C(G) is faithful. �

5. Proof of Theorem 1.3(a)

The key step in our proof will be the following proposition.

Proposition 5.1. Let k be a p-closed field, and G be an extension of a p-group by a

torus, as in (13). Then the dimension of every irreducible representation of G over k is

a power of p.

Assuming Proposition 5.1 we can easily complete the proof of Theorem 1.3(a). Indeed,

by Proposition 3.4 we may assume that k = k(p) is p-closed. In particular, since we are

assuming that char(k) 6= p, this implies that k contains a primitive pth root of unity.

(Indeed, if ζ is a p-th root of unity in ksep then d = [k(ζ) : k] is prime to p; hence, d = 1.)

Proposition 5.1 tells us that Theorem 1.2 can be applied to the exact sequence

(19) 1 → C(G) → G→ Q→ 1 .

This yields

(20) ed(G; p) ≥ min dim(ρ) − dim(G) ,

where the minimum is taken over all representations ρ : G → GL(V ) such that ρ|C(G) is

faithful. By Corollary 4.5, ρ|C(G) is faithful if and only if ρ is p-faithful, and Theorem 1.3(a)

follows. �
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The rest of this section will be devoted to the proof of Proposition 5.1. We begin by

settling it in the case where G is a finite p-group.

Lemma 5.2. Proposition 5.1 holds if G is a finite p-group.

Proof. Choose a finite Galois field extension l/k such that (i) G is constant over l

and (ii) every irreducible linear representation of G over l is absolutely irreducible. Since

k is assumed to be p-closed, [l : k] is a power of p.

Let A := k[G]∗ be the dual Hopf algebra of the coordinate algebra of G. By [Ja,

Section 8.6] a G-module structure on a k-vector space V is equivalent to an A-module

structure on V . Now assume that V is an irreducible A-module and let W ⊆ V ⊗k l be

an irreducible A⊗k l-submodule. Then by [Ka, Theorem 5.22] there exists a divisor e of

[l : k] such that

V ⊗ l ≃ e

(
r⊕

i=1

σiW

)
,

where σi ∈ Gal(l/k) and {σiW | 1 ≤ i ≤ r} are the pairwise non-isomorphic Galois

conjugates of W . By our assumption on k, e and r are powers of p and by our choice of

l, dimlW = diml(
σ1W ) = . . . = diml(

σrW ) is also a power of p, since it divides the order

of Gl. Hence, so is dimk(V ) = diml V ⊗ l = e(diml
σ1W + · · ·+ diml

σrW ). �

Our proof of Proposition 5.1 in full generality will based on leveraging Lemma 5.2 as

follows.

Lemma 5.3. Let G be an algebraic group defined over a field k and

F1 ⊆ F2 ⊆ · · · ⊂ G

be an ascending sequence of finite k-subgroups whose union ∪n≥1Fn is Zariski dense in

G. If ρ : G → GL(V ) is an irreducible representation of G defined over k then ρ|Fi
is

irreducible for sufficiently large integers i.

Proof. For each d = 1, ..., dim(V ) − 1 consider the G-action on the Grassmannian

Gr(d, V ) of d-dimensional subspaces of V . Let X(d) = Gr(d, V )G and X
(d)
i = Gr(d, V )Fi

be the subvariety of d-dimensional G- (resp. Fi-)invariant subspaces of V . Then X
(d)
1 ⊇

X
(d)
2 ⊇ . . . and since the union of the groups Fi is dense in G,

X(d) = ∩i≥0X
(d)
i .

By the Noetherian property of Gr(d, V ), we have X(d) = X
(d)
md for some md ≥ 0.

Since V does not have any G-invariant d-dimensional k-subspaces, we know that

X(d)(k) = ∅. Thus, X
(d)
md(k) = ∅, i.e., V does not have any Fmd

-invariant d-dimensional

k-subspaces. Setting m := max{m1, . . . , mdim(V )−1}, we see that ρ|Fm
is irreducible. �

We now proceed with the proof of Proposition 5.1. By Lemmas 5.2 and 5.3, it suffices

to construct a sequence of finite p-subgroups

F1 ⊆ F2 ⊆ · · · ⊂ G

defined over k whose union ∪n≥1Fn is Zariski dense in G.
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In fact, it suffices to construct one p-subgroup F ′ ⊂ G, defined over k such that F ′

surjects onto F . Indeed, once F ′ is constructed, we can define Fi ⊂ G as the subgroup

generated by F ′ and T [pi], for every i ≥ 0. Since ∪n≥1Fn contains both F ′ and T [pi], for

every i ≥ 0 it is Zariski dense in G, as desired.

The following lemma, which establishes the existence of F ′, is thus the final step in

our proof of Proposition 5.1 (and hence, of Theorem 1.3(a)).

Lemma 5.4. Let 1 → T → G
π
−→ F → 1 be an extension of a p-group F by a torus T

over k. Then G has a finite p-subgroup F ′ with π(F ′) = F .

In the case where F is split and k is algebraically closed this is proved in [CGR, p.

564]; cf. also the proof of [BS1, Lemme 5.11].

Proof. Denote by Ẽx
1
(F, T ) the group of equivalence classes of extensions of F by T .

We claim that Ẽx
1
(F, T ) is torsion. Let Ex1(F, T ) ⊂ Ẽx

1
(F, T ) be the classes of extensions

which have a scheme-theoretic section (i.e. G(K) → F (K) is surjective for allK/k). There

is a natural isomorphism Ex1(F, T ) ≃ H2(F, T ), where the latter one denotes Hochschild

cohomology, see [DG, III. 6.2, Proposition]. By [Sch3] the usual restriction-corestriction

arguments can be applied in Hochschild cohomology and in particular, m ·H2(F, T ) = 0

where m is the order of F . Now recall that M 7→ Ẽx
i
(F,M) and M 7→ Exi(F,M) are

both derived functors of the crossed homomorphisms M 7→ Ex0(F,M), where in the first

case M is in the category of F -module sheaves and in the second, F -module functors,

cf. [DG, III. 6.2]. Since F is finite and T an affine scheme, by [Sch1, Satz 1.2 & Satz

3.3] there is an exact sequence of F -module schemes 1 → T → M1 → M2 → 1 and an

exact sequence Ex0(F,M1) → Ex0(F,M2) → Ẽx
1
(F, T ) → H2(F,M1) ≃ Ex1(F,M1). The

F -module sequence also induces a long exact sequence on Ex(F, ∗) and we have a diagram

Ẽx
1
(F, T )

&&MMMMMMMMMMM

Ex0(F,M1) // Ex0(F,M2)

88qqqqqqqqqqq

''NNNNNNNNNNN
Ex1(F,M1)

Ex1(F, T )

77ppppppppppp?�

OO

An element in Ẽx
1
(F, T ) can thus be killed first in Ex1(F,M1) so it comes from Ex0(F,M2).

Then kill its image in Ex1(F, T ) ≃ H2(F, T ), so it comes from Ex0(F,M1), hence is 0 in

Ẽx
1
(F, T ). In particular we see that multiplying twice by the orderm of F ,m2·Ẽx

1
(F, T ) =

0. This proves the claim.

Now let us consider the exact sequence 1 → N → T
×m2

−−→ T → 1, where N is the

kernel of multiplication by m2. Clearly N is finite and we have an induced exact sequence

Ẽx
1
(F,N) → Ẽx

1
(F, T )

×m2

−−→ Ẽx
1
(F, T )
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which shows that the given extension G comes from an extension F ′ of F by N . Then G

is the pushout of F ′ by N → T and we can identify F ′ with a subgroup of G. �

6. p-isogenies

An isogeny of algebraic groups is a surjective morphism G → Q with finite kernel. If

the kernel is of order prime to p we say that the isogeny is a p-isogeny. In this section

we will prove Theorem 6.1 which says that p-isogenous groups have the same essential

p-dimension. This result will play a key role in the proof of Theorem 1.3(b) in Section 7.

Theorem 6.1. Suppose G→ Q is a p-isogeny of algebraic groups over k. Then

(a) For any p-closed field K containing k the natural map H1(K,G) → H1(K,Q) is

bijective.

(b) edk(G; p) = edk(Q; p).

Example 6.2. Let Esc
6 , E

sc
7 be simply connected simple groups of type E6, E7 respec-

tively. In [GR, 9.4, 9.6] it is shown that if k is an algebraically closed field of characteristic

6= 2 and 3 respectively, then

edk(E
sc
6 ; 2) = 3 and edk(E

sc
7 ; 3) = 3.

For the adjoint groups Ead
6 = Esc

6 /µ3, E
ad
7 = Esc

7 /µ2 we therefore have

edk(E
ad
6 ; 2) = 3 and edk(E

ad
7 ; 3) = 3.

We will need two lemmas.

Lemma 6.3. Let N be a finite algebraic group over k (char k 6= p). The following are

equivalent:

(a) p does not divide the order of N .

(b) p does not divide the order of N(kalg).

If N is also assumed to be abelian, denote by N [p] the p-torsion subgroup of N . The

following are equivalent to the above conditions.

(a′) N [p](kalg) = {1}.

(b′) N [p](k(p)) = {1}.

Proof. (a) ⇐⇒ (b): Let N◦ be the connected component of N and N et = N/N◦

the étale quotient. Recall that the order of a finite algebraic group N over k is defined

as |N | = dimk k[N ] and |N | = |N◦||N et|, see for example [Ta]. If char k = 0, N◦ is

trivial, if char k = q 6= p is positive, |N◦| is a power of q. Hence N is of order prime

to p if and only if the étale algebraic group N et is. Since N◦ is connected and finite,

N◦(kalg) = {1} and so N(kalg) is of order prime to p if and only if the group N et(kalg) is.

Then |N et| = dimk k[N
et] = |N et(kalg)|, cf. [Bou, V.29 Corollary].

(b) ⇐⇒ (a′) ⇒ (b′) are clear.

(a′) ⇐ (b′): Suppose N [p](kalg) is nontrivial. The Galois group Γ = Gal(kalg/k
(p)) is

a pro-p group and acts on the p-group N [p](kalg). The image of Γ in Aut(N [p](kalg)) is

again a (finite) p-group and the size of every Γ-orbit in N [p](kalg) is a power of p. Since
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Γ fixes the identity in N [p](kalg), this is only possible if it also fixes at least p − 1 more

elements. It follows that N [p](k(p)) contains at least p elements, a contradiction. �

Remark 6.4. Part (b′) could be replaced by the slightly stronger statement that

N [p](k(p) ∩ ksep) = {1}, but we won’t need this in the sequel.

Lemma 6.5. Let Γ be a profinite group, G an (abstract) finite Γ-group and |Γ|, |G|

coprime. Then H1(Γ, G) = {1}.

The case where Γ is finite and G abelian is classical. In the generality we stated, this

lemma is also known [Se2, I.5, ex. 2].

Proof of Theorem 6.1. (a) Let N be the kernel of G → Q and K = K(p) be a

p-closed field over k. Since Ksep = Kalg (see Proposition 3.2(b)), the sequence of Ksep-

points 1 → N(Ksep) → G(Ksep) → Q(Ksep) → 1 is exact. By Lemma 6.3, the order of

N(Ksep) is not divisible by p and therefore coprime to the order of Ψ = Gal(Ksep/K).

Thus H1(K,N) = {1} (Lemma 6.5). Similarly, if cN is the group N twisted by a cocycle

c : Ψ → G, cN(Ksep) = N(Ksep) is of order prime to p and H1(K, cN) = {1}. It follows

that H1(K,G) → H1(K,Q) is injective, cf. [Se2, I.5.5].

Surjectivity is a consequence of [Se2, I. Proposition 46] and the fact that the q-

cohomological dimension of Ψ is 0 for any divisor q of |N(Ksep)| (Proposition 3.2).

This concludes the proof of part (a). Part (b) immediately follows from (a) and Propo-

sition 3.4. �

7. Proof of Theorem 1.3(b)

Let G = T × F , where T is a torus and F is a finite p-group, defined over a k. Our

goal is to show that

(21) edk(G; p) ≤ dim(ρ) − dimG ,

where ρ is a p-faithful representation of G defined over k.

Lemma 7.1. If a representation ρ : G→ GL(V ) is p-faithful, then G/ ker(ρ) → GL(V )

is generically free. In other words, ρ is p-generically free.

Proof. Since ker(ρ) has order prime to p, its image under the projection map G =

T × F → F is trivial. Hence ker(ρ) ⊂ T and T/N is again a torus. So without loss of

generality, we may assume ρ is faithful.

To show the claim we may assume that k = kalg. Indeed if U is a Gkalg-invariant dense

open subset of Vkalg defined over kalg with free Gkalg-action then the union of all translates

of U by elements of Gal(ksep/k) descends to a G-invariant dense open subset of V defined

over k with free G-action, see [Sp, Prop. 11.2.8].

Now since every faithful T -variety is generically free there exists a T -invariant dense

open subset U1 of V defined over k on which T acts freely. Replacing U1 by the intersection

of all gU1 where g runs over the elements of F (k) we may assume that U1 is G-invariant

(note that F is smooth and k = kalg).
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Let n be the order of F . Let U2 be the complement of the fixed point sets of non-

trivial elements of F (k). Then U2 is a dense open subset of V defined over k and it is

(automatically) G-invariant. Clearly F acts freely on U2.

Set U := U1 ∩ U2, which is a G-invariant dense open subset of V defined over k. It

remains to show that the G-action on U is free. First observe that G(k) acts freely on

U(k) (where k = kalg). Indeed, assume 1 6= g = (t, f) ∈ G(k) stabilizes some v ∈ U(k).

Since v ∈ U2(k), t
n 6= 1. Then 1 6= gn = (tn, 1) lies in T and stabilizes v. Since v ∈ U1(k),

this is a contradiction.

Moreover the Lie-stabilizer Lie(Gx) of every x ∈ U(k) is trivial because Lie(Gx) =

Lie(Tx) and T acts freely on U . The claim follows. �

Now suppose ρ is any p-faithful representation of G. Then (11) yields

edk(G/N ; p) ≤ dim(ρ) − dim(G/ ker(ρ)) = dim(ρ) − dim(G) .

By Theorem 6.1

edk(G; p) = ed(G/N ; p) ≤ dim(ρ) − dim(G) ,

as desired. This completes the proof of (21) and thus of Theorem 1.3(b). �

Corollary 7.2. Let G be a finite algebraic group over a p-closed field k = k(p). Then

G has a Sylow-p subgroup Gp defined over k and

edk(G; p) = edk(Gp; p) = edk(Gp) = min dim(ρ)

where the minimum is taken over all faithful representations of Gp over k.

Proof. By assumption, Γ = Gal(ksep/k) is a pro-p group. It acts on the set of Sylow-

p subgroups of G(ksep). Since the number of such subgroups is prime to p, Γ fixes at

least one of them and by Galois descent one obtains a subgroup Gp of G. By Lemma 6.3,

Gp is a Sylow-p subgroup of G. The first equality edk(G; p) = edk(Gp; p) is shown in

[MR1, 4.1] (the reference is for smooth groups but can be generalized to the non-smooth

case as well). The minimal Gp-representation ρ from Theorem 1.3(b) is faithful and thus

edk(Gp) ≤ dim(ρ), see for example [BF, Prop. 4.11]. The Corollary follows. �

Remark 7.3. Two Sylow-p subgroups of G defined over k = k(p) do not need to be

isomorphic over k.

8. An additivity theorem

The purpose of this section is to prove the following:

Theorem 8.1. Let G1 and G2 be direct products of tori and p-groups over a field k.

Then edk(G1 ×G2; p) = edk(G1; p) + edk(G2; p).

Let G be an algebraic group defined over k and C be a k-subgroup of G. Denote the

minimal dimension of a representation ρ of G (defined over k) such that ρ|C is faithful by

f(G,C).
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Lemma 8.2. For i = 1, 2 let Gi be an algebraic group defined over k and Ci be a

central k-subgroup of Gi. Assume that Ci is isomorphic to µrip over k for some r1, r2 ≥ 0.

Then

f(G1 ×G1;C1 × C2) = f(G1;C1) + f(G2;C2) .

Our argument is a variant of the proof of [KM, Theorem 5.1], where G is assumed to

be a (constant) finite p-group and C is the socle of G.

Proof. For i = 1, 2 let πi : G1 × G2 → Gi be the natural projection and ǫi : Gi →
G1 ×G2 be the natural inclusion.

If ρi is a di-dimensional k-representation of Gi whose restriction to Ci is faithful, then

clearly ρ1 ◦π1⊕ρ2 ◦π2 is a d1 +d2-dimensional representation of G1×G2 whose restriction

to C1 × C2 is faithful. This shows that

f(G1 ×G1;C1 × C2) ≤ f(G1;C1) + f(G2;C2) .

To prove the opposite inequality, let ρ : G1 × G2 → GL(V ) be a k-representation such

that ρ|C1×C2 is faithful, and of minimal dimension

d = f(G1 ×G1;C1 × C2)

with this property. Let ρ1, ρ2, . . . , ρn denote the irreducible decomposition factors in a

decomposition series of ρ. Since C1 × C2 is central in G1 × G2, each ρi restricts to a

multiplicative character of C1 ×C2 which we will denote by χi. Moreover since C1 ×C2 ≃

µr1+r2p is linearly reductive ρ|C1×C2
is a direct sum χ⊕d1

1 ⊕ · · ·⊕χ⊕dn
n where di = dim Vi. It

is easy to see that the following conditions are equivalent:

(i) ρ|C1×C2 is faithful,

(ii) χ1, . . . , χn generate (C1 × C2)
∗ as an abelian group.

In particular we may assume that ρ = ρ1 ⊕ · · · ⊕ ρn. Since Ci is isomorphic to µrip , we

will think of (C1 ×C2)
∗ as a Fp-vector space of dimension r1 + r2. Since (i) ⇔ (ii) above,

we know that χ1, . . . , χn span (C1 × C2)
∗. In fact, they form a basis of (C1 × C2)

∗, i.e.,

n = r1 + r2. Indeed, if they were not linearly independent we would be able to drop some

of the terms in the irreducible decomposition ρ1 ⊕ · · · ⊕ ρn, so that the restriction of the

resulting representation to C1 × C2 would still be faithful, contradicting the minimality

of dim(ρ).

We claim that it is always possible to replace each ρj by ρ′j , where ρ′j is either ρj◦ǫ1◦π1

or ρj ◦ ǫ2 ◦ π2 such that the restriction of the resulting representation ρ′ = ρ′1 ⊕ · · · ⊕ ρ′n
to C1 × C2 remains faithful. Since dim(ρi) = dim(ρ′i), we see that dim(ρ′) = dim(ρ).

Moreover, ρ′ will then be of the form α1 ◦ π1 ⊕ α2 ◦ π2, where αi is a representation of Gi

whose restriction to Ci is faithful. Thus, if we can prove the above claim, we will have

f(G1 ×G1;C1 × C2) = dim(ρ) = dim(ρ′) = dim(α1) + dim(α2)

≥ f(G1, C1) + f(G2, C2) ,

as desired.
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To prove the claim, we will define ρ′j recursively for j = 1, . . . , n. Suppose ρ′1, . . . , ρ
′
j−1

have already be defined, so that the restriction of

ρ′1 ⊕ · · · ⊕ ρ′j−1 ⊕ ρj · · · ⊕ ρn

to C1 × C2 is faithful. For notational simplicity, we will assume that ρ1 = ρ′1, . . . , ρj−1 =

ρ′j−1. Note that

χj = (χj ◦ ǫ1 ◦ π1) + (χj ◦ ǫ2 ◦ π2) .

Since χ1, . . . , χn form a basis (C1 ×C2)
∗ as an Fp-vector space, we see that (a) χj ◦ ǫ1 ◦ π1

or (b) χj ◦ ǫ2 ◦ π2 does not lie in SpanFp
(χ1, . . . , χj−1, χj+1, . . . , χn). Set

ρ′j :=

{
ρj ◦ ǫ1 ◦ π1 in case (a), and

ρj ◦ ǫ2 ◦ π2, otherwise.

Using the equivalence of (i) and (ii) above, we see that the restriction of

ρ1 ⊕ · · · ⊕ ρj−1 ⊕ ρ′j ⊕ ρj+1, · · · ⊕ ρn

to C is faithful. This completes the proof of the claim and thus of Lemma 8.2. �

Proof of Theorem 8.1. We can pass to a p-closure k(p) by Lemma 3.3. Let C(G)

be as in Definition 4.2. By Theorem 1.3(b)

ed(G; p) = f(G,C(G)) − dimG ;

cf. Corollary 4.5. Furthermore, we have C(G1 ×G2) = C(G1)×C(G2); cf. Lemma 4.3(d).

Applying Lemma 8.2 finishes the proof. �

9. Modules and lattices

In this section we rewrite the value of edk(G; p) in terms of the character module X(G)

for an abelian group G which is an extension of a p-group and a torus. Moreover we show

that tori with locally isomorphic character lattices have the same essential dimension. We

need the following preliminaries.

Let R be a commutative ring (we use R = Z and R = Z(p) mostly) and A an R-

algebra. An A-module is called an A-lattice if it is finitely generated and projective as an

R-module. For A = ZΓ (Γ a group) this is as usual a free abelian group of finite rank with

an action of Γ. Particular cases of RΓ-lattices are permutation lattices L = R[Λ] where Λ

is a Γ-set.

For Γ = Gal(ksep/k) the absolute Galois group of k we tacitly assume that our RΓ-

lattices are continuous, i.e. Γ acts through a finite quotient Γ. Under the anti-equivalence

Diag a ZΓ-lattice corresponds to an algebraic k-torus. A torus S is called quasi split if

it corresponds to a permutation lattice. Equivalently S ≃ RE/k(Gm
) where E/k is étale

and RE/k denotes Weil restriction.

Recall that Z(p) denotes the localization of the ring Z at the prime ideal (p). For a

Z-module M we also write M(p) := Z(p) ⊗M .

When Γ = Gal(ksep/k) we will often pass from ZΓ-lattices to Z(p)Γ-lattices. This

corresponds to identifying p-isogeneous tori:
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Lemma 9.1. Let Γ = Gal(ksep/k) and let M,L be ZΓ-lattices. Then the following

statements are equivalent:

(a) L(p) ≃M(p).

(b) There exists an injective map ϕ : L → M of ZΓ-modules with cokernel Q finite

of order prime to p.

(c) There exists a p-isogeny Diag(M) → Diag(L).

Proof. The equivalence (b) ⇔ (c) is clear from the anti-equivalence of Diag.

The implication (b) ⇒ (a) follows from Q(p) = 0 and that tensoring with Z(p) is exact.

For the implication (a) ⇒ (b) we use that L and M can be considered as subsets of

L(p) (resp. M(p)). The image of L under a map α : L(p) → M(p) of Z(p)Γ-modules lands in
1
m
M for some m ∈ N (prime to p) and the index of α(L) in 1

m
M is finite and prime to p

if α is surjective. Since 1
m
M ≃M as ZΓ-modules the claim follows. �

Corollary 9.2. Let G be an abelian group which is an extension of a p-group by

a torus over k and Γ := Gal(ksep/k) be the absolute Galois group of k = k(p). Let Γ act

through a finite quotient Γ on X(G). Then

edk(G; p) = min rankL− dimG ,

where the minimum is taken over all permutation ZΓ-lattices L which admit a map of

ZΓ-modules to X(G) with cokernel finite of order prime to p.

If G is a torus, then the minimum can also be taken over all Z(p)Γ-lattices L which

admit a surjective map of Z(p)Γ-modules to X(G)(p).

Proof. Let us prove the first claim. In view of Theorem 1.3(a) it suffices to show that

the least dimension of a p-faithful representation of Gk(p) over k(p) is equal to the least

rank of a permutation ZΓ-module L which admits a map to X(G) with cokernel finite of

order prime to p.

Assume we have such a map L → X(G). Using the anti-equivalence Diag we obtain

a p-isogeny G → Diag(L). We can embed the quasi-split torus Diag(L) in GLn where

n = rankL [Vo, Section 6.1]. This yields a p-faithful representation of G of dimension

rankL.

Conversely let ρ : G→ GL(V ) be a p-faithful representation of G. Since Gsep is diago-

nalizable, there exist characters χ1, . . . , χn ∈ X(G) such that G acts on Vsep via diagonal

matrices with entries χ1(g), . . . , χn(g) (for g ∈ G) with respect to a suitable basis of

Vsep. Moreover Γ permutes the set Λ := {χ1, . . . , χn}. Define a map ϕ : Z[Λ] → X(G)

of ZΓ-modules by sending the basis element χi ∈ Λ of L := Z[Λ] to itself. Then the p-

faithfulness of ρ implies that the cokernel of ϕ is finite and of order prime to p. Moreover

rankL = |Λ| ≤ n = dimV .

Now consider the case where G is a torus. Assume we have a surjective map α : L→
X(G)(p) of Z(p)Γ-modules where L = Z(p)[Λ] is permutation, Λ a Γ-set. Then α(Λ) ⊆
1
m
X(G) for some m ∈ N prime to p (note that 1

m
X(G) can be considered as a subset of

X(G)(p) since X(G) is torsion free). By construction the induced map Z[Λ] → 1
m
X(G) ≃
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X(G) becomes surjective after localization at p, hence its cokernel is finite of order prime

to p. �

Corollary 9.3. Let A be a finite (twisted) cyclic p-group over k. Let l/k be a minimal

Galois splitting field of A. Then

ed(A; p) = |Gal(l/k)|p = |Gal(l(p)/k(p))|,

where |Gal(l/k)|p denotes the p-primary part of |Gal(l/k)|.

Proof. The second equality follows from the properties of the p-closure. Moreover l(p)

is a minimal Galois splitting field of Ak(p). Since the essential p-dimension of A does not

change when passing to the p-closure, we can assume k = k(p). Set Γ = Gal(l/k) which is

now automatically a p-group. By Corollary 9.2 ed(A; p) is equal to the least cardinality of

a Γ-set Λ such that there exists a map ϕ : Z[Λ] → X(A) of ZΓ-modules with cokernel finite

of order prime to p. The group X(A) is a (cyclic) p-group, hence ϕ must be surjective.

Moreover Γ acts faithfully on X(A). Surjectivity of ϕ implies that some element λ ∈ Λ

maps to a generator a of X(A). Hence |Λ| ≥ |Γλ| ≥ |Γa| = |Γ|. Conversely we have a

surjective homomorphism Z[Γa] → X(A) that sends a to itself. Hence the claim follows.

�

Remark 9.4. In the case of twisted cyclic groups of order 4 Corollary 9.3 is due to

Rost [Ro] (see also [BF, Theorem 7.6]), and in the case of cyclic groups of order 8 to

Bayarmagnai [Ba]. Note that for p = 2 we have |Gal(l/k)|p = |Gal(l/k)| above since

the automorphism group of X(A) ≃ Z/2nZ is a 2-group. The case of constant groups

of arbitrary prime power order is due to Florence [Fl]; it is now a special case of the

Karpenko-Merkurjev Theorem 1.1.

10. Proof of Theorem 1.3(c)

We will prove Theorem 1.3(c) by using the lattice point of view from Section 9 and

the additivity theorem from Section 8.

Let Γ be a finite group. Two ZΓ-lattices M,N are said to be in the same genus if

M(p) ≃ N(p) for all primes p, cf. [CR, 31A]. It is sufficient to check this condition for

divisors p of the order of Γ. By a theorem of A.V. Rǒıter [CR, Theorem 31.28] M and

N are in the same genus if and only if there exists a ZΓ-lattice L in the genus of the free

ZΓ-lattice of rank one such that M ⊕ ZΓ ≃ N ⊕ L. This has the following consequence

for essential dimension:

Proposition 10.1. Let T, T ′ be k-tori. If the lattices X(T ), X(T ′) belong to the same

genus then H1(K, T ) = H1(K, T ′) for all field extensions of K/k. In particular

edk(T ) = edk(T
′) and edk(T ; ℓ) = edk(T

′; ℓ) for all primes ℓ.

Proof. Let Gal(ksep/k) act through a finite quotient Γ on X(T ) and X(T ′). By

assumption there exists a ZΓ-lattice L in the genus of ZΓ such that X(T )⊕ZΓ ≃ X(T ′)⊕
L. The torus S = Diag(ZΓ) has H1(K,S) = {1} for all field extensions K/k. The same

applies to the torus S ′ := Diag(L) since L is a direct summand of ZΓ ⊕ ZΓ. Therefore
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H1(K, T ) = H1(K, T ×S) = H1(K, T ′×S ′) = H1(K, T ′) for all K/k. This concludes the

proof. �

Corollary 10.2. Let k = k(p) be a p-closed field and T a k-torus. Then

edk(T ) = edk(T ; p) = min dim(ρ) − dim T,

where the minimum is taken over all p-faithful representations of T .

Proof. The second equality follows from Theorem 1.3(a) and the inequality edk(T ; p) ≤

edk(T ) is clear. Hence it suffices to show edk(T ) ≤ edk(T ; p). Let ρ : T → GL(V ) be a

p-faithful representation of minimal dimension so that edk(T ; p) = dim ρ − dimT . The

representation ρ can be considered as a faithful representation of the torus T ′ = T/N

where N := ker ρ is finite of order prime to p. By construction the character lattices X(T )

and X(T ′) are isomorphic after localization at p. Since Gal(ksep/k) is a (profinite) p-group

it follows that X(T ) and X(T ′) belong to the same genus. Hence by Proposition 10.1 we

have edk(T
′) = edk(T ). Moreover edk(T

′) ≤ dim ρ − dim T ′, since ρ is a generically free

representation of T ′. This finishes the proof. �

Proof of Theorem 1.3(b). The equality edk(p)(Gk(p); p) = edk(G; p) follows from

Lemma 3.3. Now we are assuming G = T ×F for a torus T and a p-group F over k, which

is p-closed. Notice that a minimal p-faithful representation of F from Theorem 1.3(a) is

also faithful, and therefore edk(F ; p) = edk(F ). Combining this with Corollary 10.2 and

the additivity Theorem 8.1, we see

ed(T × F ) ≤ ed(T ) + ed(F ) = ed(T ; p) + ed(F ; p) = ed(T × F ; p) ≤ ed(T × F ).

This completes the proof. �

Remark 10.3. The following example shows that “p-faithful” cannot be replaced by

“faithful” in the statement of Theorem 1.3(a) (and Corollary 10.2), even in the case where

G is a torus.

Let p be a prime number such that the ideal class group of Q(ζp) is non-trivial (this

applies to all but finitely many primes, e.g. to p = 23). This means that the subring R =

Z[ζp] ⊆ Q(ζp) of algebraic integers has non-principal ideals. Let k be a field which admits

a Galois extension l of degree p and let Γ := Gal(ksep/k), Γ := Gal(l/k) ≃ Γ/Γl ≃ Cp
where Γl = Gal(ksep/l) and Cp denotes the cyclic group of order p.

We endow the ring R with a ZΓ-module structure through the quotient map Γ → Γ

by letting a generator of Γ act on R via multiplication by ζp. The k-torus Q := Diag(R)

is isomorphic to the Weil restriction Rl/k(Gm
) and has a p-dimensional faithful represen-

tation. We will construct a k-torus G with a p-isogeny G→ Q, such that G does not have

a p-dimensional faithful representation.

Let I be a non-principal ideal of R. We may consider I as a ZΓ-module and set G :=

Diag(I). We first show that I and R become isomorphic as ZΓ-modules after localization

at p. For this purpose let I∗ = {x ∈ Q(ζp) | xI ⊆ R} denote the inverse fractional

ideal. We have I ⊕ I∗ ≃ R ⊕ R by [CR, Theorem 34.31]. The Krull-Schmidt Theorem

[CR, Theorem 36.1] for Z(p)Cp-lattices implies I(p) ≃ R(p), hence the claim. Therefore
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by Lemma 9.1 there exists a p-isogeny G → Q, which shows in particular that G has a

p-faithful representation of dimension p.

Assume that G has a p-dimensional faithful representation. Similarly as in the proof

of Corollary 9.2 this would imply the existence of a surjective map of ZΓ-lattices ZΓ → I.

However such a map cannot exist since I is non-principal, hence non-cyclic as a ZΓ-

module.

11. Tori of essential dimension ≤ 1

Theorem 11.1. Let k = k(p) be a p-closed field, Γ = Gal(kalg/k) be the absolute

Galois group of k and T be a torus over k. Then the following conditions are equivalent:

(a) edk(T ) = 0.

(b) edk(T ; p) = 0.

(c) H1(K, T ) = {1} for any p-closed field K containing k.

(d) X(T )(p) is a Z(p)Γ-permutation module.

(e) X(T ) is an invertible ZΓ-lattice (i.e. a direct summand of a permutation lattice).

(f) There is a torus S over k and an isomorphism

T × S ≃ RE/k(Gm),

for some étale algebra E over k.

(g) H1(K, T ) = {1} for any field K containing k.

Remark 11.2. A prime p for which any of these statements fails is called a torsion

prime of T .

Proof. (a) ⇔ (b) by Theorem 1.3(c).

(b) ⇔ (c) follows from [Me1, Proposition 4.4].

(b) ⇒ (d) follows from Corollary 9.2. Indeed, edk(T ; p) = 0 implies the existence of

a Z(p)Γ-permutation lattice L together with a surjective homomorphism α : L→ X(T )(p)

such that rankL = rankX(T )(p). It follows that α is injective and X(T )(p) ≃ L.

(d) ⇒ (e): Let L be a ZΓ-permutation lattice such that L(p) ≃ X(T )(p). Then by [CR,

Corollary 31.7] there is a ZΓ-lattice L′ such that L⊕ L ≃ X(T ) ⊕ L′.

(e) ⇔ (f): A permutation lattice P can be written as

P =

m⊕

i+1

Z[Γ/ΓLi
],

for some (separable) extensions Li/k and ΓLi
= Gal(kalg/Li). Set E = L1 ×· · ·×Lm. The

torus corresponding to P is exactly RE/k(Gm
), cf. [Vo, 3. Example 19].

(f) ⇒ (g) because H1(K,RE/k(Gm
)) = {1}.

(g) ⇒ (a) is obvious from the definition of edk(T ). �

Example 11.3. Let T be a torus over k of rank < p − 1. Then edk(T ; p) = 0. This

follows from the fact that there is no non-trivial integral representation of dimension

< p − 1 of any p-group, see for example [AP, Satz]. Thus any finite quotient of Γ =

Gal(kalg/k) acts trivially on X(T ) and so does Γ.
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Remark 11.4. The equivalence of parts (e) and (g) can also be deduced from [CTS,

Proposition 7.4].

Theorem 11.5. Let p be an odd prime, T an algebraic torus over k, and Γ =

Gal(kalg/k
(p)).

(a) ed(T ; p) ≤ 1 iff there exists a Γ-set Λ and an m ∈ Z[Λ] fixed by Γ such that

X(T )(p)
∼= Z(p)[Λ]/〈m〉 as Z(p)Γ-lattices.

(b) ed(T ; p) = 1 iff m =
∑
aλλ from part (a) is not 0 and for any λ ∈ Λ fixed by Γ,

aλ = 0 mod p.

(c) If ed(T ; p) = 1 then Tk(p)
∼= T ′ × S where edk(p)(S; p) = 0 and X(T ′)(p) is an

indecomposable Z(p)Γ-lattice, and edk(p)(T ′; p) = 1.

Proof. (a) If ed(T ; p) = 1, then by Corollary 9.2 there is a map of ZΓ-lattices

from Z[Λ] to X(T ) which becomes surjective after localization at p and whose kernel is

generated by one element. Since the kernel is stable under Γ, any element of Γ sends a

generator m to either itself or its negative. Since p is odd, m must be fixed by Γ.

The ed(T ; p) = 0 case and the converse follows from Theorem 1.4 or Corollary 9.2.

(b) Assume we are in the situation of (a), and say λ0 ∈ Λ is fixed by Γ and aλ0 is not

0 mod p. Then X(T )(p)
∼= Z(p)[Λ − {λ0}], so by Theorem 11.1 we have ed(T ; p) = 0.

Conversely, assume ed(T ; p) = 0. Then by Theorem 11.1, we have an exact sequence

0 → 〈m〉 → Z(p)[Λ] → Z(p)[Λ
′] → 0 for some Γ-set Λ′ with one fewer element than Λ. We

have

Ext1
Γ(Z(p)[Λ

′],Z(p)) = (0)

by [CTS, Key Lemma 2.1(i)] together with the Change of Rings Theorem [CR, 8.16];

therefore this sequence splits. In other words, there exists a Z(p)Γ-module homomorphism

f : Z(p)[Λ] → Z(p)[Λ] such that the image of f is 〈m〉 and f(m) = m. Then we can define

cλ ∈ Z(p) by f(λ) = cλm. Note that f(γ(λ)) = f(λ) and thus

(22) cγ(λ) = cλ

for every λ ∈ Λ and γ ∈ Γ. If m =
∑

λ∈Λ aλλ, as in the statement of the theorem, then

f(m) = m translates into ∑

λ∈Λ

cλaλ = 1 .

Since every Γ-orbit in Λ has a power of p elements, reducing modulo p, we obtain
∑

λ∈ΛΓ

cλaλ = 1 (mod p) .

This shows that aλ 6= 0 modulo p, for some λ ∈ ΛΓ, as claimed.

(c) Decompose X(T )(p) uniquely into a direct sum of indecomposable Z(p)Γ-lattices

by the Krull-Schmidt theorem [CR, Theorem 36.1]. Since ed(T ; p) = 1, and the essential

p-dimension of tori is additive (Thm. 8.1), all but one of these summands are permutation

Z(p)Γ-lattices. Now by [CR, 31.12], we can lift this decomposition to X(T ) ∼= X(T ′) ⊕

X(S), where ed(T ′; p) = 1 and ed(S; p) = 0. �
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Example 11.6. Let E be an étale algebra over k. It can be written asE = L1×· · ·×Lm
with some separable field extensions Li/k. The kernel of the norm RE/k(Gm

) → G
m

is

denoted by R
(1)
E/k(Gm

). It is a torus with lattice

m⊕

i=1

Z[Γ/ΓLi
] / 〈1, · · · , 1〉,

where Γ = Gal(ksep/k) and ΓLi
= Gal(ksep/Li). Let Λ be the disjoint union of the cosets

Γ/ΓLi
Passing to a p-closure k(p) of k, Γk(p) fixes a λ in Λ iff [Li : k] is prime to p for some

i. We thus have

edk(R
(1)
E/k(Gm

); p) =

{
1, [Li : k] is divisible by p for all i = 1, ..., m

0, [Li : k] is prime to p for some i.

12. Tori split by cyclic extensions of degree dividing p2

In this section we assume k = k(p) is p-closed. Over k = k(p) every torus is split by a

Galois extension of p-power order. We wish to compute the essential dimension of all tori

split by a Galois extension with a (small) fixed Galois group G. The following theorem

tells us for which G this is feasible:

Theorem 12.1 (A. Jones [Jo]). For a p-group G there are only finitely many genera

of indecomposable ZG-lattices if and only if G is cyclic of order dividing p2.

Remark 12.2. For G = C2 × C2 a classification of the (infinitely many) different

genera of ZG-lattices has been worked out by [NA]. In contrast forG = Cp3 orG = Cp×Cp
and p odd (in the latter case) no classification is known.

Hence in this section we consider tori T whose minimal splitting field is cyclic of degree

dividing p2. Its character lattice X(T ) is then a ZG-lattice where G = 〈g|gp
2
= 1〉 denotes

the cylic group of order p2. Heller and Reiner [HR], (see also [CR, 34.32]) classified all

indecomposable ZG-lattices. Our goal consists in computing the essential dimension of T .

By Corollary 10.2 we have edk(T ) = edk(T ; p), hence by the additivity Theorem 8.1 it will

be enough to find the essential p-dimension of the tori corresponding to indecomposable

ZG-lattices. Recall that two lattices are in the same genus if their p-localization (or

equivalently p-adic completion) are isomorphic. By Proposition 10.1 tori with character

lattices in the same genus have the same essential p-dimension, which reduces the task to

calculating the essential p-dimension of tori corresponding to the 4p + 1 cases in the list

[CR, 34.32].

Denote by H = 〈h|hp = 1〉 the group of order p. We can consider ZH as a G-lattice

with the action g · hi = hi+1. Let

δG = 1 + g + . . .+ gp
2−1 δH = 1 + h+ . . .+ hp−1

be the “diagonals” in ZG and ZH and

ǫ = 1 + gp + . . .+ gp
2−p.
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The following ZG-lattices represent all genera of indecomposable ZG-lattices (by 〈∗〉

we mean the ZG-sublattice generated by ∗):

M1 = Z
M2 = ZH
M3 = ZH/〈δH〉
M4 = ZG
M5 = ZG/〈δG〉
M6 = ZG⊕ Z/〈δG − p〉

M7 = ZG/〈ǫ〉
M8 = ZG/〈ǫ− gǫ〉

M9,r = ZG⊕ ZH/〈ǫ− (1 − h)r〉 1 ≤ r ≤ p− 1

M10,r = ZG⊕ ZH/〈ǫ(1 − g) − (1 − h)r+1〉 1 ≤ r ≤ p− 2

M11,r = ZG⊕ ZH/〈ǫ− (1 − h)r, δH〉 1 ≤ r ≤ p− 2

M12,r = ZG⊕ ZH/〈ǫ(1 − g) − (1 − h)r+1, δH〉 1 ≤ r ≤ p− 2

In the sequel we will refer to the above list as (L).

In (L) we describe ZG-lattices as quotients of permutation lattices of minimal pos-

sible rank, whereas [CR, 34.32] describes these lattices as certain extensions 1 → L →

M → N → 1 of Z[ζp2 ]-lattices by ZH-lattices. Therefore these two lists look differently.

Nevertheless they represent the same ZG-lattices. We show in the example of the lattice

M10,r how one can translate from one list to the other.

Let Zx be a ZG-module of rank 1 with trivial G-action. We have an isomorphism

M10,r = ZG⊕ ZH/〈ǫ(1 − g) − (1 − h)r+1〉 ≃ ZG⊕ ZH ⊕ Zx/〈ǫ− (1 − h)r − x〉

induced by the inclusion ZG⊕ ZH →֒ ZG⊕ ZH ⊕ Zx.
This allows us to write M10,r as the pushout

ZH
h 7→ǫ //

h 7→(1−h)r+x

��

ZG

��

ZH ⊕ Zx // M10,r

Completing both lines on the right we see that M10,r is an extension

0 → ZH ⊕ Zx→M10,r → ZG/ZH → 0

with extension class determined by the vertical map h 7→ (1− h)r + x cf. [CR, 8.12] and

we identify (the p-adic completion of) M10,r with one of the indecomposable lattices in

the list [CR, 34.32].

Similarly, M1, . . . ,M12,r are representatives of the genera of indecomposable ZG-

lattices.

Theorem 12.3. Every indecomposable torus T over k split by G has character lattice

isomorphic to one of the ZG-lattices M in the list (L) after p-localization and ed(T ) =
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ed(T ; p) = ed(Diag(M); p). Their essential dimensions are given in the tables below.

M rankM ed(T )

M1 1 0

M2 p 0

M3 p− 1 1

M4 p2 0

M5 p2 − 1 1

M6 p2 1

M rankM ed(T )

M7 p2 − p p

M8 p2 − p+ 1 p− 1

M9,r p2 p

M10,r p2 + 1 p− 1

M11,r p2 − 1 p+ 1

M12,r p2 p

Proof of Proposition 12.3. We will assume p > 2 in the sequel. For p = 2 the

Theoerem is still true but some easy additional arguments are needed which we leave out

here.

The essential p-dimension of tori corresponding to M1 . . . ,M6 easily follows from the

discussion in section 11. Let M be one of the lattices M7, . . . ,M12,r and T = DiagM the

corresponding torus. We will determine the minimal rank of a permutation ZG-lattice

P admitting a homomorphism P → M which becomes surjective after localization at p.

Then we conclude ed(T ; p) = rankP − rankM with Corollary 9.2.

We have the bounds

(23) rankM ≤ rankP ≤ p2 (or p2 + p),

where the upper bound holds since every M is given as a quotient of ZG (or ZG⊕ ZH).

Let C = Splitk(T [p]) the finite constant group used in the proof of Theorem 1.3. The

rank of C determines exactly the number of direct summands into which P decomposes.

Moreover each indecomposable summand has rank a power of p.

As an example, we show how to find C forM = M11,r: The relations gj ·(ǫ−(1−h)r); δH
are written out as

p−1∑

i=0

gpi+j −
r∑

ℓ=0

(
r

ℓ

)
(−1)ℓhℓ+j , 0 ≤ j ≤ p− 1;

p−1∑

i=0

hi

and the ksep-point of the torus are

T (ksep) =
{

(t0, . . . , tp2−1, s0, . . . , sp−1) |
p−1∏

i=0

tpi+j =

r∏

ℓ=0

s
(−1)ℓ(r

ℓ)
ℓ+j , 0 ≤ j ≤ p− 1;

p−1∏

i=0

si = 1
}

and C is the constant group of fixed points of the p-torsion T [p]:

C(k) =
{(
ζ ip, . . . , ζ

i
p, ζ

j
p , . . . , ζ

j
p

)
| 0 ≤ i, j ≤ p− 1

}
≃ µ2

p.

(Note that the primitive pth root of unity ζp is in k by our assumption that k is p-

closed). For other lattices this is similar: C is equal to Splitk(Diag(P )[p]) ≃ µrp where M

is presented as a quotient P/N of a permutation lattice P (of minimal rank) as in (L)
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and where r denotes the number of summands in a decomposition of P .

M rank C rank M possible rankP

M7 1 p2 − p p2

M8 1 p2 − p+ 1 p2

M9,r 2 p2 p2 + 1 or p2 + p

M10,r 2 p2 + 1 p2 + 1 or p2 + p

M11,r 2 p2 − 1 p2 + 1 or p2 + p

M12,r 2 p2 p2 + 1 or p2 + p

We need to exclude the possibility rankP = p2 + 1 for the lattices M = M9,r, . . . ,M12,r.

We can only have the value p2 +1 if there exists a character in M which is fixed under the

Galois group and nontrivial on C. The following Lemma 12.4 tells us, that such characters

do not exist in either case. Hence the minimal dimension of a p-faithful representation of

all these tori is p2 + p. �

Lemma 12.4. For i = 9, . . . , 12 and r ≥ 1 every character χ ∈Mi,r fixed under G has

trivial restriction to C.

Proof. By [Hi] the cohomology group H0(G,Mi,r) = MG
i,r of G-fixed points in Mi,r

is trivial for i = 11, has rank 1 for i = 9, 12 and rank 2 for i = 10, respectively. They are

represented by ZδH in M9,r, by Z(ǫ− (1 − h)r) in M12,r and by Z(ǫ− (1 − h)r) ⊕ ZδH in

M10,r, respectively. Since all these characters are trivial on

C = Splitk(Diag(ZG⊕ ZH)[p]),

the claim follows. �
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