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Summary

T cell tolerance is achieved through multiple mechanisms. In this study we have tried to

characterize tolerance and T cell development in various situations. First, in the setting of bone

marrow transplantation, we could show that radioresistant T cells from immunocompetent mice

protect against the development of syngeneic graft-versus-host disease whereas

immunodeficient mice succumb to autoimmunity. However, co-injection of sorted regulatory T

cells is able to prevent the development of the disease. Second, by further investigating

radioresistant T cells in the thymus of bone marrow chimera, we could show that a small

population of host-derived DN1-2 pro-thymocytes showed similar properties of radioresistance.

Moreover, this small population is able to generate a single wave of developing T cells, which

participate in immune protection of the host before donor-derived T cells can provide protective

immune reconstitution. Third we took advantage of the protective role of regulatory T cells

during syngeneic bone marrow transplantation described above to study γ/δ T cell development

and to investigate the role of the rearranged β chain found in 15% of γ/δ T cells. We could show

that the γ/δ-derived β chain is actually indistinguishable from the β chain isolated in α/β T cells

and is able to take part in the development of fully functional α/β T cells. Finally, we have

generated double transgenic mice by expressing the agonist antigen ovalbumin in specific cell

subsets concomitantly with OVA-specific TCR. Several similar models have been previously

used to study tolerance and development of regulatory T cells. We characterized the tolerant

status of these mice and showed that the choice of the agonist along with the TCR affinity for

the same agonist is playing a significant role in the outcome of double transgenic mice.
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Part I

Sublethally-irradiated, immuno-deficient, C57Bl/6 RAG-2 gene-deleted recipient mice

reconstituted with T cell-depleted bone marrow grafts frequently developed diarrhea, lost weight

and showed signs of auto-immunity, dying between four and seven weeks after reconstitution.

Mice died despite evidence of efficient donor-derived hemato-lymphoid reconstitution and

disease was associated with the presence of IgG anti-nuclear antibodies. Auto-immunity was

initiated by T cells, but could be prevented by transfer of naturally arising regulatory T cells. In

contrast, lethally-irradiated, bone marrow-reconstituted immuno-competent, C57Bl/6 mice

survived without signs of auto-immunity. Survival of immuno-competent mice was shown to be

due to the presence of residual, extra-thymically-located, radio-resistant, functional regulatory T

cells. The importance of regulatory T cells was further shown by the reduced survival of

immuno-competent BM recipients whose CD25+ T cells had been depleted prior to bone marrow

transplantation. The implications of these results in the context of syngeneic graft-versus host

disease following BM transplantation will be discussed.

Part II

It has been known for more than thirty years that in lethally irradiated bone

marrow chimeras, part of the reconstituted T cell compartment is derived from the irradiated

host. However, the detailed origin and functional activity of these host-derived T cells has not

been thoroughly analysed. Here, we generated bone marrow chimeras by reconstituting lethally

irradiated C57BL/6 mice with either syngeneic RAG2-deficient or CD3-epsilon-deficient BM

neither of which is capable of generating T cells and therefore, all surviving T cells were

exclusively host-derived. We show that in the absence of donor-derived cells, host-derived T

cells can reconstitute 35% of the normal T cell pool. By comparing thymectomized versus non-

thymectomized host, we show that host-derived T cells comprised a major (70%) subpopulation

of de novo generated, thymus-derived, polyclonal, naïve cells and a minor subpopulation of

surviving, peripheral, oligoclonal, memory-like cells. Host-derived thymocytes regenerated from

conventional DN1-2 prothymocytes and their differentiation recapitulated normal thymic

ontogeny. Thus, host-derived T cells might provide a first line of defence against infections

during recovery from lymphopenia after BMT. This conclusion is supported by the fact that host-

derived T cells were fully functional.
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Part III

Between 10 and 20% of the peripheral γδ T cells express cytoplasmic TCRβ proteins, but

whether such TCRβ chains can partake in αβ T cell development has never been systematically

investigated. Therefore, we reconstituted the T cell compartment of CD3ε deficient mice with

Pax5-TCRβ deficient pro B cells expressing, via a retroviral vector, TCRβ chains from either

peripheral γδ or αβ T cells. The thymi of recipients reconstituted with pro B cells containing

empty vector were small (10-15 x106 cells), contained few γδ T but no αβ T cells. In contrast,

thymi from mice receiving pro B cells containing γδ or αβ T cell-derived β chains contained 80-

120 x106 cells, and showed a normal CD4, CD8 and αβ TCR expression pattern. However,

regardless of the source of TCRβ chain, 4 weeks after transplantation, mice developed diarrhea,

lost weight and showed signs of autoimmunity dying 5 to 15 weeks following reconstitution.

Autoimmune disease induction could be prevented by co-transfer of regulatory T cells thereby

allowing the functionality of the generated T cells to be assessed. Results obtained show that

TCRβ chains from γδ T cells can efficiently take part in αβ T cell development. The implications

of these findings for γδ T cell development will be discussed.

Part IV

In order to avoid autoimmunity the T cell compartment has to be tolerant to self. In the thymus T

cell tolerance (central tolerance) is established by deletion (negative selection) while peripheral

T cell tolerance is mediated by the induction of anergy, by suppression through Tregs and by

activation induced cell death. Recently we showed that transgenic mice expressing Influenza

hemagglutinin (HA) under of the kappa light chain (KLC) promoter when crossed with the

mouse expressing a CD4, HA specific TCR (TCR-HA) led to the formation of TCR-HA

regulatory T cells. On the contrary when mice expressing HA under the control of the CD11c

promoter were crossed with TCR-HA mice, these double transgenic mice developed systemic

autoimmunity. Analysis of the T cell compartments in these mice revealed that TCR-HA T cells

escape negative selection in the thymus by the expression of a second endogenous TCR alpha

chain. Thus the systemic autoimmunity seems to be caused by T cells expressing two TCRs. In

order to test whether the development of systemic autoimmunity is restricted to the HA system

or more general we have now generated transgenic mice expressing OVA under control of the

CD11c and KLC promoter. From both transgenic lines founders have been identified that show

strong negative selection in the thymus and the periphery of OT1 (MHCI restricted OVA specific

TCR) and OT2 (MHCII restricted OVA specific TCR) T cells.
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Introduction

In order to face the multiple and various attacks coming from the environment, vertebrates

have throughout evolution developed an immune system with different levels of complexity

involving many different cell types with various degree of specialisation.

Haematopoiesis

Every cell of the immune system originates from a common precursor located in the bone

marrow (BM): the haematopoietic stem cell (HSC). HSCs are defined by their ability to renew

themselves and to give rise to all mature blood cell types. These unique properties of

pluripotency and self-renewal capacity have been used for many years in clinical care through

bone marrow transplantation for reconstituting a life-long complete haematopoietic system in

immunodeficient patients.

Haematopoiesis begins in the mouse embryo as early as embryonic day E7.5 in the yolk sac

(Figure 1) (Dzierzak and Speck, 2008). Around E10, haematopoietic stem cells migrate to the

foetal liver where they undergo further differentiation. They colonise thymus and spleen around

E11 and E12.5, respectively. Finally, starting at E15, the BM becomes the main site for

haematopoiesis and ensures continuous production of 1011 to 1012 blood cells daily throughout

life.

Figure 1: Haematopoiesis:

Arrows above indicate the onset of specific hematopoietic cell generation and/or appearance;
arrows below indicate the earliest time of colonisation of the secondary hematopoietic territories.
Adapted from Dzierzak and Speck, 2008.
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Among the HSC population, a small fraction lacking expression of the cytokine receptor fms-

related tyrosine kinase 3 (FLT3) is able to self-renew, whereas FLT3+ population are non-

renewing cells and are referred to as multipotential progenitors (MPP). Three different lineages

arise from HSCs that are defined as Lineage negative (Lin-) Stem-cell antigen 1 positive

(SCA1+) cKIThi (also called CD117) (LSK). The erythroid cell lineage is represented by red blood

cells and megakaryocytes. These cells arise from megakaryocyte/erythroid progenitors (MEPs),

which themselves originate from MPPs. The common myeloid progenitor (CMP), derived from

MPPs, gives rise to granulocytes, megakaryocytes, and macrophages. Myeloid cells can play a

role in innate, adaptive immunity and coagulation. Finally, the third lineage is comprised of

lymphoid cells such as B and T lymphocytes that are key players in adaptive immunity. These

cells develop from a Common lymphoid Progenitor (CLP) characterised by low expression of

cKIT, high level of interleukin 7 receptor α-chain (IL-7Rα) and FLT3.

Along their differentiation towards committed precursors, HSCs express various key

transcription factors such as Pax5 or Ikaros (Figure 2). These transcription factors are essential,

as mutations or deletions of their genes result in a complete or partial block in cell lineage

development. They have been used to define different developmental stages of haematopoiesis

in that they reflect the commitment of a cell to a discrete cell lineage. In addition, these

developmental stages can be characterized by surface expression of various receptors for

cytokines, such as the receptor for IL-7 or growth factors like colony stimulating factor (CSF).

Receptor expression is tightly regulated since it conditions the responsiveness of a stage-

specific cell to receive a signal that allows it to further differentiate. Many of the ligands for these

receptors, cytokines as well as growth factors, are provided by the microenvironment and more

specifically by stromal cells that support HSC growth and differentiation. Hence, the HSC’s fate

is thought to be determined by the microenvironment, which provides the growth factors

necessary for cell survival.



12

Figure 2: The genetic control of B-cell specification and commitment in the bone marrow.

This diagram shows a scheme of the genetic switch that regulates early B-cell specification. For
simplicity, only some of the differentiation stages are shown. The developmental steps that are affected
by the mutation of specific transcription factors are indicated. In some cases, the simultaneous mutation
of two factors is required for a developmental phenotype to be observed. ID2 (inhibitor of DNA binding 2)-
deficient mice have impaired natural killer (NK)-cell development and increased E2A activity, which
correlates with an increased frequency of class switching to IgE. BCR, B-cell receptor; EBF, early B-cell
factor; CLP, common lymphoid progenitor; IRF, interferon-regulatory factor; LEF1, lymphoid-enhancer-
binding factor 1; OBF1, OCT (octamer-binding transcription factor)-binding factor 1; PAX5, paired box
protein 5; PHSC, pluripotent haematopoietic stem cell; SOX4, sex-determining region Y (SRY) box 4
(adapted from Matthias and Rolink).

Different models have been proposed to describe haematopoiesis. Whereas it was originally

thought that HSC differentiation was rather linear, with a progressive loss of lineage potential

corresponding with increasing differentiation, recent studies have shown that committed

progenitors may actually maintain the potential to differentiate into various lineages until late in

development. As an example, pro B cells from Pax5-deficient mice can develop into myeloid,

NK and T cells both in vivo and in vitro (Rolink et al., 2002). Among the different models that

have been suggested, the widely accepted Weissman model is based on cell surface

phenotype (Figure 3) (Kondo et al., 2003) A second model based on analyses of transcription

factor mutant mice has been proposed by Singh et al. (Figure 4) (Medina and Singh, 2005).

Finally, based on studies on in vitro proliferation of murine fetal liver progenitors, Katsura et al.

proposed that all progenitors maintain a myeloid potential early into lymphoid and erythroid

differentiation (Figure 5) (Katsura, 2002). It may be possible that these models are not mutually

exclusive but rather complementary to one another. Indeed, Rolink et al. has proposed a fourth

model integrating these previous models (Rolink et al., 2006). We have chosen to base our

work on the Rolink model of haematopoiesis, which results of the integration of the previous

models and our experiments (Figure 6).
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Figure 3: Weissman Model

Conceptual hematopoietic trees in adult mice: Indicated cell populations can be purified based on the cell
surface phenotype. Not all of the linear relationships in this figure have been proven. Multipotent
progenitors (MPPs), at least at the population level, can differentiate into all types of hematopoietic cells,
but have no detectable self-renewal potential in vivo. Megakaryocyte progenitors have recently been
identified. Pro T cells are present in the thymus (Adapted from Kondo et al., 2003.).

Figure 4: Singh Model

Developmental scheme for the generation of B cell precursors from multipotential hematopoietic
progenitors: Alternate cell fate options (myeloid and T-lineage) are also shown. LTRC and STRC
represent long- and short-term multilineage reconstituting cells. CMP, ELP, and ETP denote common
myeloid progenitor, early lymphoid progenitor and early thymic progenitor, respectively. Regulatory
molecules (signaling receptors and transcription factors) that are genetically demonstrated to be
important for development are indicated. Bold case font is used to indicate changes in activity or
expression state of the relevant transcription factor. Solid (experimentally based) and dotted arrows
(proposed) highlight regulatory connections that can be assembled to form rudimentary networks. Cell
fate specification and commitment are sequential transitions. CD19 is a B cell surface marker and pBCR
refers to the pre-B cell receptor that is assembled after productive rearrangements of the IgH locus
(Adapted from Medina et al., 2005.).
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Figure 5: Katsura Model

Model of lineage commitment in hematopoiesis: A new model of hematopoiesis proposed from findings
with the MLP–MTB and MLP–METB assays. Myeloid potential accompanies early stages of all T, B and
erythroid (E) progenitors. T-cell and B-cell progenitors are produced from the common myelo-lymphoid
progenitor (CMLP; p-MTB) through the intermediate p-MT and p-MB bipotent stages, respectively. It is
still unclear whether a myeloid (M)-specific pathway independent of T, B or erythroid pathways exists. T,
B, M, E and Meg (megakaryocyte) in this figure indicate the progenitor’s name but not the name of
mature cells (Adapted from Katsura et al., 2002.).

Figure 6 Current working model of hematopoietic development.

Figure 6 depicts our current working model of hematopoietic development. HSCs with long-term self-
renewing capacity give rise to ones with only limited self-renewing potential. As proposed by the Katsura
model mentioned above, the short-term self-renewing HSC gives rise to a progenitor with erythroid and
myeloid (PEM) potential. The next cell in the scheme is a progenitor with a developmental potential
restricted to the myeloid and lymphoid lineages (MLP). These cells are the direct precursors of the
common myeloid progenitor (CMP), a cell type with a developmental potential restricted to the myeloid
lineages. MLPs will moreover give rise the common lymphocyte progenitors (CLP), and some of the
MLPs will migrate to the thymus (TSP: thymic seeding progenitor) and will there undergo the T cell
differentiation program. Early stages of T and B cell development will be described in more detail below.
The solid arrows in the model indicate the main developmental pathway. The broken arrows indicate the
lymphocyte precursors in the bone marrow that still possess T cell developmental potential and
thymocyte precursors that possess B cell developmental potential (Adapted from Rolink et al., 2006).
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Innate immunity

As a first line of defence against infection, the innate immune system mediates specific and

direct responses against pathogens but does so with rather limited recognition capability and

short-lived protective immunity. It includes four different levels of protection.

First, physical invasion of pathogens is prevented by an intact anatomical barrier. Thus, the skin

and the mucosal surfaces of the gastrointestinal, respiratory and urogenital tracts are critical for

efficient defence against pathogen attack. Second, regulation of pH and/or temperature

maintains a physiological barrier that ensures further host protection. A third level of defence

involves numerous soluble factors present in the blood or extracellular compartment. These

include hydrolytic or digestive enzymes that degrade proteins of harmful microorganisms. In

addition, antimicrobial substances such as α-defensins, interferon produced after viral infection,

and complement components all play roles in fighting pathogen attacks. Finally, phagocytosis

and endocytosis are used by multiple cell types and constitute the last degree of innate

immune-mediated protection. Every cell can perform pinocytosis, on the other hand endocytosis

is often mediated through a cell surface receptor. Phagocytosis is a property of specialized cell

types such as macrophages, neutrophils, and dendritic cells; these cells can internalize and

digest whole pathogenic microorganisms via specialized protein machinery.

Innate mechanisms are based on the detection of conserved molecular structures shared by a

large group of pathogens, called pathogen-associated molecular patterns (PAMPs), by pattern

recognition receptors. As an example, lipopolysaccharide, a cell-wall component of all gram-

negative bacteria, is recognized by Toll-like receptor 4 on the surface of dendritic and other

cells. In this system, pattern recognition receptors signal the presence of infection and induce

the production of antimicrobial proteins or peptides as well as pro-inflammatory cytokines. They

also trigger the transcription of various gene products that control subsequent adaptive immune

response.
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Figure 7: Ligand specificities of TLRs

Toll-like receptors (TLRs) recognize a variety of pathogen-associated molecular patterns (PAMPs).
Recognition of lipopolysaccharide (LPS) by TLR4 is aided by two accessory proteins: CD14 and MD-2.

TLR2 recognizes a broad range of structurally unrelated ligands and functions in combination with several
(but not all) other TLRs, including TLR1 and TLR6. TLR3 is involved in recognition of double-stranded
(dsRNA). TLR5 is specific for bacterial flagellin, whereas TLR9 is a receptor for unmethylated CpG motifs,
which are abundant in bacterial DNA. G+, Gram-positive; G–, Gram negative; GPI, glycophosphoinositol;
RSV, respiratory syncytial virus. Adapted from Medzhitov, 2001.

Innate immunity offers the advantage of triggering an immediate response before activation of

the adaptive immune system. However, it displays a limited repertoire of recognition molecules

and lacks the properties of memory or long-lasting immunity. The interaction of different cell

types of the innate immune response with the lymphocytes of adaptive immunity allows for a

coordinated response that is both immediate and powerful in the elimination of foreign

pathogens.

Adaptive immunity

In parallel with innate immunity, vertebrates have developed an adaptive immune system to

respond more efficiently to immune challenges. Adaptive immune responses allow the host to

respond in a highly specific manner to a broader range of antigens, to develop memory

responses, and to discriminate between self and non-self.

Key players of adaptive immunity are lymphocytes. There are two major types of lymphocytes,

namely B cells and T cells. These are very specialized cells that display each of the specific

features mentioned above. They are highly specific via cell surface expression of the T cell

receptor (TCR) or B cell receptor (BCR). Moreover, they encompass a highly diverse repertoire

of specificity through gene recombination, and/or somatic hypermutation in the case of B cells.

They are also able to differentiate into long-lived memory cells. Finally, through continual clonal

selection throughout their development, T cells are able to distinguish non-self antigen

presented exclusively by major histocompatibility complexes (MHC).

B lymphocytes

B cells initially develop from a common lymphoid progenitor within the bone marrow and further

differentiate into mature B cells within secondary lymphoid organs.

B cells are specialized in triggering a humoral immune response specifically aimed at

eradicating extracellular pathogens. They respond to antigen stimulation by differentiating into

plasmocytes [plasma cells?], which produce a large quantity of antibodies directed against
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specific antigenic epitopes. One cell is able to produce only one specific type of antibody able

to bind one particular epitope of a given antigen. Their diversity potential is so high that B cells

can together produce up to 1011 different antibodies.

B cell differentiation and germinal center reaction

Progenitor B cells, the first cells of the B lymphocyte lineage, develop within the bone marrow.

They proliferate and differentiate into precursor B cells by influence of stromal cell products like

stem cell factor (SCF) and interleukin 7 (IL-7) (Figure 8).

Figure 8: B cells develop from early haematopoietic progenitors.

The main compartments — bone marrow, thymus and blood — are shown. The various developmental
stages that have been defined are indicated, as well as their relative order. Dashed arrows show
pathways that are not yet firmly established. Pluripotent hematopoietic stem cells (PHSCs), multipotential
progenitors (MPPs), common myeloid progenitors (CMPs), early lymphoid progenitors (ELPs) and
common lymphoid progenitors (CLPs) are known as lineage (Lin)- cells; these cells lack detectable
expression of any of the markers that are associated with cells of the mature blood lineages or their
committed progenitors -- that is, CD3, CD8, B220, CD11b, CD19, GR1 and TER119. Cells that are
defined as LSK are Lin- stem-cell antigen (SCA)hiKIThi, which is a possible precursor stage to early T-cell-
lineage progenitors (ETPs) (Schwarz and Bhandoola, 2004) Using the Hardy classification (Hardy and
Hayakawa, 2001), pro-B cells (also known as fraction B/C) are defined as B220+CD43+, and pre-B cells
(also known as fraction C'/D) are defined as B220+CD43- surface IgM-. BCR, B-cell receptor; DC,
dendritic cell; FLT3, fms-related tyrosine kinase 3; NK, natural killer; IL-7R, -chain of the interleukin-7
receptor (Adapted from Matthias and Rolink, 2005.).

B cell maturation involves immunoglobulin (Ig) gene rearrangement, leading to extraordinary

antibody diversity. This process consists of somatic rearrangement of germline-encoded

immunoglobulin segments, the V(D)J genes, creating a new sequence encoding for a unique

BCR molecule (Figure 9). One single productive rearrangement occurs in an individual

lymphocyte due to the mechanism of allelic exclusion: as soon as a productive rearrangement is

accomplished, any further rearrangement is blocked. Recombination activating gene products
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RAG-1 and RAG-2 are essential for the gene recombination process to occur. During the

process of recombination, the terminal deoxynucleotidyl transferase (TdT) enzyme provides

further junctional diversity by adding a few nucleotides at the gene segment junctions.

Figure 9: General scheme of V(D)J recombination for assembly of antigen-receptor genes.

Antigen receptors consist of two protein chains that are encoded by independent loci. One locus (the first
receptor-chain locus) is generated by the assembly of individual germline variable (V), diversity (D) and
joining (J) minigene elements from among multiple minigene elements. The other locus (the second
receptor-chain locus) lacks D elements and is assembled by direct V-to-J joining. V, D and J elements are
recombined through the activity of recombination-activating gene 1 (RAG1)–RAG2 protein complexes and
the non-homologous end-joining machinery to generate VDJ or VJ combinations. Upon transcription,
mRNAs that encode the protein chains are generated and spliced as indicated by the red lines. D-
element-encoded regions, and junctions between V, D and J elements, are centrally displayed in the
antigen-receptor antigen-combining site, as depicted in the inset. C, constant (Adapted from (Nemazee,
2006).

Upon completion of the heavy chain rearrangement, a pro B cell becomes a pre B cell. Further

rearrangement of the Ig light chain provides the immature B cell with a given antigenic

specificity. When they leave the bone marrow en route to the spleen, B cells are still immature

and are characterized by membrane-bound immunoglobulin IgM that together with heterodimers

of Ig-α and Ig-β forms the B cell receptor (BCR). They also express on their surface flow-

cytometric markers B220 (CD45R) and CD19. Throughout the maturation process, if an

immature B cell encounters a self-antigen, it becomes anergic or dies by apoptosis. This
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process is known as negative selection. However, there is also evidence that at least some

immature B cells can be rescued from apoptosis by receptor editing. In other words, B cells

are able to express a second light chain to form a novel non-autoreactive BCR (Nemazee,

2000; Tiegs et al., 1993).

Once in the periphery, activation, proliferation and differentiation of a given mature B cell

requires an encounter with its specific antigen (Figure 10). These steps occur in the lymph

nodes or in the spleen, depending on whether the antigen originates in the lymphatic vessels or

blood, respectively. A B cell binds the antigen, internalizes it, and presents it on its MHC II

surface molecules. The initial activation of B cells takes place in the paracortex, where T and B

cells interact, via CD40, the MHC II-Ag complex and cytokines, to form a B-T conjugate. This

interaction leads to proliferation of B cells to form primary foci. B cells then differentiate into

plasma cells that secrete IgM isotypes. Subsequently, a few activated B cells along with some

Thelper cells migrate to primary follicles, which becomes secondary follicles. Subsequently

proliferation of activated B cells forms a germinal center. Activated B cells undergo clonal

expansion and somatic hypermutation; they are then called centroblasts and constitute the so-

called dark zone of the germinal center. The selective survival of high-affinity centroblasts leads

to their differentiation into centrocytes.  Centrocytes move to the light zone where they

encounter antigen presented by follicular dendritic cells. Subsequently, centrocytes will form two

kinds of progeny: small memory B cells and large plasmablasts. The first population of cells will

go back to the bone marrow and recirculate in the periphery. Plasmablasts remain

predominantly in the lymph nodes as short lived memory cells, but may also be found in the

bone marrow as long-lived memory cells.
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Figure 10: Activated B cells form germinal centers in lymphoid follicles

Some B cells activated in the primary focus migrate to form a germinal center within a primary follicle.
Germinal centers are sites of rapid B-cell proliferation and differentiation. Follicles in which germinal
centers have formed are known as secondary follicles. Within the germinal center, B cells commence
their differentiation into either antibody-secreting plasma cells or memory B cells. Plasma cells leave the
germinal center and migrate to the medullary cords or leave the lymph node altogether via the efferent
lymphatics and migrate to the bone marrow. Memory B cells continue to recirculate through the B-cell
zones of secondary lymphoid tissue (not shown) and some may preferentially reside in the splenic
marginal zone (Adapted from Immunobiology, Janeway, Charles A.; Travers, Paul; Walport, Mark;
Shlomchik, Mark New York and London: Garland Science ; 2001.).

T lymphocytes

T lymphocytes are thymus-derived and are specialized in immunity against intracellular

microbes such as viruses or intracellular bacteria and provide help to B cells in the generation of

antibodies.
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The Thymus

The thymus is a bilobed organ located in the upper anterior thorax where T cell development

occurs. Each lobe is comprised of an outer cortex, which contains a dense collection of

thymocytes, and an inner medulla, which contains fewer thymocytes. Three major cell types of

distinct developmental origin are found in the thymus, mesenchymal cells and thymic epithelial

cells constituting the stroma and bone marrow-derived T lymphocytes. Mesenchymal

components of the stroma derive from the neural crest; they are a constituent of the thymic

capsule and septae but can also be found in the cortex. Mesenchymal cells have been shown to

influence thymic development in two different ways. First, they influence the initial stage of

thymic formation by regulating thymic epithelial cell differentiation and proliferation through

various interactions and production of fibroblast growth factor (FGF). Second, mesenchymal

fibroblasts support T cell precursor survival and early maturation by secreting IL-7. Thymic

epithelial cells (TEC) are stromal cells of endodermal origin. They originate from the third

pharyngeal pouch to form a thymic anlage, which attracts cells of haematopoietic origin at day

E11.5. TECs constitute a complex network that provides an optimal microenvironment for the

development of bone marrow-derived cells, namely thymocytes, macrophages and dendritic

cells (DC). During development, there is mutual interaction between thymic epithelial cells and

thymocytes such that the latter influence the development, survival and organization of the

thymic epithelial network, which in return supports thymocyte maturation by providing cytokines

essential for thymocyte proliferation.

The rate of T cell production is not constant throughout lifetime. Production is highest during

younger years and drastically slows down in adults to a level just sufficient for maintaining a

constant peripheral pool of T cells. This age-related thymic involution is responsible for the

absence of new T cell production in older individuals.

In the mature thymus, TECs are subdivided into medullary and cortical (mTEC and cTEC,

respectively).  TECs mediate central tolerance along with BM derived thymic DCs (BMdDCs).

Uncommitted lymphoid precursors coming from the BM enter the thymic cortex via blood

vessels at the cortico-medullary junction. The most immature thymocytes do not express

antigen receptors or T cell markers such as CD4 or CD8, and are hence called double-negative

(DN CD4-CD8-) thymocytes. They represent about 5% of the total thymocyte population. In the

cortex, thymic precursors undergo intense proliferation and differentiation for about one week.

Thymocytes migrate from the cortex, transitioning from DN to double-positive (DP CD4+CD8+),

then through the medulla, where the vast majority of thymocytes become single-positive (SP

CD4-CD8+ or CD4+CD8-). Along the way, they interact with various cell types, namely cTEC and

macrophages in the cortex and mTECs, thymic DCs and macrophages in the medulla (Figure
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11). En route to the medulla, thymocytes rearrange their TCR, first the β chain followed by the

α chain, to become CD4+CD8+ DP cells. A particular population of DN cells do not rearrange

their β and α TCR genes, but rather rearrange their γ and δ genes. These cells acquire only the

CD3 surface marker, do not transition through the CD4+CD8+DP stage, and become γ/δ T cells.

Specifics of the development of this particular population will be discussed in a specific chapter

later. CD4+CD8+DP thymocytes undergo positive selection in the cortex, which allows for the

selection of cells able to recognize self-MHC molecules. This is followed by negative selection,

which eliminates cells recognizing self-antigens. These two processes will be discussed in more

detail later.

Figure 11: Cellular composition of the thymus.

The major cell types and the sequential cell-cell interactions along the migratory route of developing
thymocytes are depicted here. The different APCs are color-coded. mTECs, highlighted in red, play an
essential role in self-tolerance induction toward tissue-restricted self-antigens. Shaded areas depict
functionally distinct stratified microenvironments as recently proposed (Petrie, 2003). (Adapted from
Kyewski, 2006.)

More than 95% of thymocytes will die by apoptosis in the thymus throughout the maturation

process, either because they were not able to produce a functional TCR or failed to receive a

survival signal after positive selection or rearrangement of their TCR genes or because they

received an apoptotic signal during negative selection. The dying cells are ingested by

macrophages present in the cortex as well as in the medulla.

After positive and negative selection, thymocytes downregulate one of their co-receptors, either

CD8 or CD4, and become a SP CD4+CD8- or SP CD4-CD8+. αβTCR CD4+CD8- T cells

represents about 12% of the adult thymocyte population. These are MHCII-restricted and have

a helper activity function. On the other hand, αβTCR CD4-CD8+ T cells display a cytolytic

activity and are MHCI-restricted. Once these two mature populations reach the periphery, they

are called CD4+ helper (Th) and CD8+ cytolytic (CTL) T lymphocytes.
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Early T cell development

As mentioned above, MLP give rise to B cells as well as T cells. Although it has been shown

that other progenitors retain T cell lineage potential – i.e., they are able to initiate T cell

development when artificially injected intravenously - MLP are considered to be the most

probable physiological originator of the early T-cell progenitor. Since there are no HSCs within

the thymus, there is a constant need for BM progenitors to colonize the thymus in order to

maintain a constant rate of T cell development. It is thought that thymus-settling progenitors

(TSPs) characterised by a ckitintCCR9+CD44+CD25-Flt3+ phenotype migrate to the thymus to

undergo T cell differentiation.

One very important determinant for T cell commitment is Notch1 receptor signaling, as the

thymus of Notch1 deficient mice is colonised by B cell precursors (Radtke et al., 1999). Many

studies have been trying to characterise the earliest TSP, which retains B cell potential and

loses it upon Notch signaling as shown by Radtke et al. It is well established that these cells

belong to the DN CD4-CD8- population.

The DN population can be subdivided into four different subsets according to CD25 and CD44

markers, corresponding with four successive developmental stages (Figure 12). T cell

progenitors enter the thymus via the blood as LinlowckithighCD25- cells and then develop into DN1

cells, which are CD25-CD44+. When they acquire CD25 cell surface marker to become DN2,

they start to rearrange the β chain locus. DN3 thymocytes downregulate CD44 and c-kit to

become CD25+CD44-. They are arrested at this stage until they productively rearrange the β

chain locus of the TCR; this checkpoint is called β selection. TCR β chain pairs with a surrogate

pre-Tα chain, and the whole pre-TCR is expressed on the cell surface. This pairing signals

through the cytoplasm and triggers entry into the cell cycle. Surface expression of the pre-TCR

is associated with the DN4 stage: low level of surface CD3, loss of CD25, completion of β

rearrangement, cell proliferation, and finally acquisition of CD4 and CD8. Once proliferation is

over, DP decrease in size and start to rearrange the α locus gene segment, which results in DP

cells expressing low levels of αβTCR on their surface along with the CD3 complex. These cells

are ready to undergo positive and negative selection.
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Figure 12: Immature thymocyte progenitor subsets.

a. Subsets of double-negative (DN) thymocytes, based on their expression of CD25 and CD44 and
their sequential development through the DN1 (CD25-CD44+), DN2 (CD25+CD44+) and DN3
(CD25+CD44-) stages, are shown. CD25-CD44- cells, which are also called DN4 cells, express
Cd4 and Cd8 mRNA and are termed pre-double-positive (pre-DP). Early T-cell progenitors
(ETPs), which are c-kithiCD25-CD44hi, are efficient T-cell progenitors that are transcriptionally
equivalent to DN1 cells.

b. Defining ETPs. C57Bl/6 total thymocytes (25x106 cells) were stained with antibodies specific for
c-kit and CD25, as well as a cocktail of antibodies specific for the following lineage (Lin) markers:
NK1.1, T-cell-receptor -chain (TCR), TCR, macrophage receptor 1 (MAC1), B220, TER119 (also
known as Ly76), CD3, CD8, CD8, CD11c and CD19, but not CD4 because some ETPs express
of CD4 on the cell surface. Gating for lineage markers is adjusted so as not to exclude c-kithi cells
that are expressing low levels of Lin (left panel). ETPs are defined as Linlowc-kithiCD25- (right
panel), (Adapted from Bhandoola and Sambandam, 2006).

TSPs are included in the DN1 population and can be distinguished from B, NK and myeloid

thymic cells by expression of the c-kit marker. In addition, it has been recently shown that the

DN1 population can be further subdivided into DN1.1 and DN1.2. DN1.1 cells are characterised

by Flt3 ligand receptor (CD135) and CC-chemokine receptor 9 expression, whereas DN1.2

cells, which are the direct downstream progeny of DN1.1 cells, do not (Sambandam et al.,

2005). DN1.1 cells are most probably the earliest thymic progenitors since they retain a B cell

potential. It has to be noted that, while these DN1.1 cells are in a very low number in adult

mouse thymi, they are much more numerous and hundred times more potent for B cell

development in newborn mice.

Table 1 shows the main markers used to distinguish between early thymocyte populations.
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Table 1: Cell-surface markers expressed by early thymocytes.

It has been previously shown that DN1 and DN2 require Notch signaling, IL-7 and c-kit, which is

under the control of Notch signaling. These cells are not yet committed to the T cell lineage; but

while TSP can still generate B cells, DN cells have lost B cell potential. On the other hand, DN3

and DN4 lose c-kit expression, DN3 showing intermediate levels and DN4 being negative for c-

kit. They are unable to differentiate into anything other than T cells. DN3 still require Notch

signaling to continue T cell development, but their growth is independent of IL-7 and c-kit.

TCR gene rearrangement in αβ T cells

During development from DN to DP, thymocytes undergo TCR gene rearrangement in a similar

manner as the immunoglobulin gene rearrangement occuring in B cells.

The TCR molecule is a membrane-bound antigen receptor made up of two different

polypeptides, either αβ or γδ. We will mainly talk in this section about αβ TCR; γδ TCR will be

the subject of a separate chapter. The TCR molecule displays high structural and sequence

similarity with Ig from B cells and is indeed encoded by homologous genes. Each chain is

composed of a variable and a constant region, the variable part containing the antigen-binding

cleft.

Germline TCR genes are organised similarly as Ig genes: V and J segments form the α and γ

chains whereas V, D and J segments form the β and δ loci (Rowen et al., 1996). The same

enzymatic machinery as in B cells, RAG1 and RAG2, performs this gene segment

recombination (Shinkai et al., 1992). As a result, a genetic defect affecting the control of V(D)J

recombination will equally affect T and B cells and leads to lack of functional lymphocytes in the

deficient individual. The high diversity of TCR sequences is a result of somatic recombination

within sets of gene segments. It is also a result of junctional variability through the addition of P
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and N nucleotides at the junctions between V and J segments or V, D and J segments of the

α or β chain (Abbey and O'Neill, 2008; Nemazee, 2006). In contrast to that of the BCR, TCR

gene rearrangement displays lower diversity within the constant regions, which encode for the

transmembrane polypeptides. Since the TCR is not secreted like immunoglobulins, the constant

region does not mediate any particular functions and only the variable region is important in

recognition of Ag presented by MHC molecule. In addition, the variability of the TCR has to be

restricted to some extent in order to ensure binding with the MHC molecule. Although

controversial, it is thought that the highest degree of diversity is focused on the variable part of

the α chain. Indeed, more than 60 J gene segments can be found in the TCRα locus, and the

CDR3s of the α and β chains show a great degree of hypervariability. These two regions take

part in the formation of the centre of the TCR, the portion that binds the Ag. Finally, somatic

hypermutation does not occur during TCR gene recombination unlike during BCR gene

recombination.

T cells, like B cells, have a high degree of allelic exclusion, meaning that one specific cell is

carrying only one specific TCR. However, whereas it is true concerning the β chain, it appears

to be not as stringent for the α chain. It has been reported that one TCR β chain can actually

pair with two different α  chains on the same cell. This phenomenon might allow some

autoreactive T cells to escape negative selection by downregulating the autoreactive α chain

and expressing a new α chain, thereby acquiring a new non-autoreactive TCR (Figure 13).

Indeed it has been reported by Sarukhan et al. that once they reach the periphery, these dual

TCR-expressing T cells carry the two different TCRs on their surface and trigger autoimmune

disorders (McGargill et al., 2000; Sarukhan et al., 1998; Zal et al., 1996).

Figure 13: Editing versus positive selection as mutually exclusive aspects of receptor selection.



27

In double-positive (CD4+CD8+) thymocytes, which express T-cell receptors (TCRs), the threshold for
positive selection requires weak signaling after recognition of self-peptide–MHC complexes. Agonists,
by contrast, trigger tolerance by inducing developmental arrest and either apoptosis or, possibly,
receptor editing.

Altogether, the TCR coupled with the CD3 molecule forms the TCR receptor complex. CD3 is in

charge of transmitting the signal sensed by the TCR, which has short cytoplasmic tails (Figure

14). Ag binding of the TCR leads to cellular activation by phosphorylation of ITAM sequences of

the CD3 intracytoplasmic tail. This is followed by release of second messengers such as inositol

tri-phosphate (IP3) and Ca++. This leads to NFκB (Nuclear factor kappa B) as well as NF-AT

(Nuclear Factor of Activated T cells) nuclear translocation. In parallel MAPK (Mitogen Activated

Protein Kinase) cascade is triggered and induce translocation of various transcription factors in

the nucleus, which set off transcription of specific genes. It should be noted that monoclonal

anti-CD3 antibody can actually bypass the TCR Ag sensing requirement and lead to a similar

activation effect (Cantrell, 1996).

CD4 and CD8 function as co-receptor molecules by transducing TCR signals and stabilising

interactions with MHC I or II. Intracellularly, these two molecules interact with leukocyte specific

tyrosine kinase (lck).

Figure 14: A current model for TCR-mediated signal transduction.

Interaction of antigen with TCR/CD3 complex initiates a series of biochemical events, of which the
earliest is phosphorylation of various proteins on tyrosine residues. Stimulation of PTKs is coupled
to the hydrolysis of PLCγ1, which results in a rise in intracellular Ca2+, and activation of PKC
through IP3 and DAG pathways, respectively. Activation of Lck, Fyn, and ZAP-70 induces
localization of adaptor proteins Shc, Grb2, and Sos to the cytoplasmic membrane. Associations of
these adaptor proteins with Ras, allows the rapid conversion of Ras from the inactive form (GDP-
Ras) to the active form (GTP-Ras). Activation of Ras results in sequential phosphorylation and
activation of a series of enzymes involved in MAPK cascade that eventually transmit the
stimulatory signal received from cytoplasmic membrane into the nucleus. Abbreviations: TCR, T
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cell receptor; APC, antigen presenting cell; MHC, major histocompatibility complex; PLCg1,
phosphlipase C-gamma 1; DAG, diacylglycerol; IP2, phosphoinositol biphosphate; IP3, inositol 1,4,5-
triphosphate; SH2, Src-homology-2; PTB; phosphotyrosine binding; PKC, protein kinase C; NFATc,
nuclear factor of activated T cell; CaN, calcineurin; CaMK, calcium calmodulin-dependent protein

kinase; MAPK, mitogen-activated protein kinase; MEK, MAPK kinase; MKP1, MAPK phosphatase-
1 (Adapted from Pahlavani, 1998).

Selection of MHC-restricted αβTCR specific for foreign antigens

As discussed earlier, antigen receptor gene recombination guarantees antigen recognition with

a high degree of diversity and specificity. Nevertheless, the TCR has to be tested for its antigen

recognition properties, in terms of affinity and specificity. The interaction of the TCR with the

thymic environment will condition the fate of the TCR-bearing thymocyte, in other words,

survival or death. Ultimately, thymocytes must be simultaneously MHC-restricted and specific

for foreign Ag but tolerant to self-antigen. Subsequent developmental steps involve peptide-

MHC complex interaction with the TCR of stromal cells.

Developing thymocytes whose receptor interacts weakly with self-peptide-MHC complex will

survive; this process is called positive selection. The lymphocytes that do not receive any signal

die by neglect since they are of useless specificity. This default fate occurs for the majority of

thymocytes. Additionally, negative selection will ensure that lymphocytes whose receptor binds

strongly to self–antigen receive an apoptotic signal. This prevents any auto-reactive T cells from

joining the mature T cell repertoire.

Positive selection

Small DP quiescent thymocytes, which have passed the β selection checkpoint, actively

rearrange the α TCR locus, but unlike for the β chain, productive α chain rearrangement is not

sufficient to downregulate recombination machinery expression and to stop further

rearrangement. Only after MHC restriction of the αβ TCR has been checked does the cell

trigger termination of the recombination process (Brandle et al., 1992). Although the α and β

chains display, as mentioned above, an inherent propensity to bind to MHC molecules, TCR-

MHC matching is actually quite rare due to the high degree of polymorphism of MHC molecules

(Zerrahn et al., 1997). That is why the majority of DP thymocytes maintain an elevated level of

RAG expression and stay undifferentiated. One thymocyte can perform multiple recombinations

at the same allele, which starts at the 5’ end of the J locus to end at the 3’ end. This increases

the probability for a cell to get an MHC- restricted TCR (Petrie et al., 1993). This process is,

however, limited in time by the life span of a DP thymocyte, estimated as no more than 3 to 4

days. RORγ and TCF1 are thought to be the transcription factors regulating the Bcl-XL gene
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expression, allowing the DP cell to survive (Ioannidis et al., 2001; Sun et al., 2000). If a cell

fails to receive a signal induced by weak recognition of the TCR and peptide-MHC within a

time frame of 3 to 4 days, RORγ and TCF1 will not trigger Bcl-XL expression and the cell will

consequently die by neglect.

In addition, due to incomplete allelic exclusion of the α locus, one single developing lymphocyte

has the ability to express two different rearranged α chains during positive selection; this “TCR

editing” process enhances the yield of positive selection (Nemazee, 2006). It is estimated that

about one-third of the mature T cell population will possess two α chains on their surface.

The nature of the specific ligand for positive selection is still unclear. Whereas it was originally

thought that most of the peptides displayed by MHC molecules during positive selection are

self-peptides, the situation regarding this statement seems to be more complex. It is clear that

the TCR affinity for positively selecting ligands is much lower than for negative selection (Liu et

al., 1998). In fact, Naeher et al. identified a constant affinity threshold for negative versus

positive selection in MHCI-restricted thymocytes and demonstrated that there is clear correlation

between selection potential and apparent affinity, defined as the strength of interaction between

MHC ligand and the TCR and its co-receptor (Naeher et al., 2007). Previously, this question has

been addressed mainly through the study of transgenic TCR systems, which represent forced

TCR expression; these models have a different kinetics of TCR expression than WT mice. It has

been shown that it is not mandatory for the positively selecting peptide presented by MHC to

have structural homology to the antigenic peptide ligand (Ignatowicz et al., 1997). In addition,

these peptides have been shown to be non-stimulatory in in vitro assays (Berg et al., 2000). In

conclusion, positive selection seems to be mediated through the presentation of rare, low

affinity self-peptide ligands with more or less structural homology to the antigenic peptide (Starr

et al., 2003).

All of the physical components of the TCR complex (α and β chain, CD3γ and CD3ε) and of its

signaling pathway (src and syk kinases, ZAP 70, LAT or PLCγ for example) are required for

positive selection to occur, but a few other transcription factors are suspected to play a role as

well in this process. Helix-loop-helix family members like E proteins seem to play an important

role of positive selection probably through their capacity to regulate RAG gene expression and

TCR locus accessibility (Quong et al., 2002). In addition, a mouse deficient in Schnurri-2, a zinc

finger transcription factor, has been found to have a block in positive selection (Takagi et al.,

2001).

Importantly, positive selection is carried out within an intact three-dimensional (3D) thymic

microenvironment formed by a network of cTECs, which are the second key cellular component
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in positive selection (Hare et al., 2001). This has been shown by performing bone marrow

chimera experiments from mice with distinct MHC haplotypes. The 3D architecture is of great

importance since a monolayer culture of cTECs is unable to complete positive selection (Sato et

al., 2001). In addition to presenting the positive selection ligand by MHC, cTECs provide the

specialized accessory interaction necessary for positive selection. Advanced microscopy

techniques have allowed visualization of thymocytes migrating through the 3D network of the

thymic cortex, sampling cTEC for recognition of peptide/MHC complex and stopping for a

couple hours when finding the corresponding match (Bousso et al., 2002).

Positive selection coordinates expression of CD4 and CD8 molecules according to the TCR

specificity for MHCI or MHCII and potential effector functions, helper or cytotoxic, respectively. It

is generally admitted that positive selection depends on the engagement of both the TCR and

its co-receptor, but the link between this engagement and the lineage commitment of

thymocytes towards CD8 or CD4 T cell is not quite clear.

Negative selection

In order to eliminate any potential autoreactive T cells from the mature T cell repertoire,

developing thymocytes undergo negative selection. The thymocyte engages its TCR with a high

affinity ligand in the thymus, which leads to apoptosis.

Various models have been used to study clonal deletion, but the differences between these

models have led to very little consensus concerning the mechanisms underlying negative

selection. Classical models in the field are based on TCR transgenic mice that concomitantly

express self-antigen where both TCR and Ag are expressed as transgenes. Transgenic TCR

expression kinetics in these systems are all different, with some being expressed much earlier

than in physiological conditions. The affinity between the TCR and its specific ligand may also

greatly differ between one system and another (Pircher et al., 1989). Finally, the cell type

expressing transgenic self-antigen might also play a significant role in the TCR-ligand

interaction outcome.

Clonal deletion can also be induced by using cross-linking antibodies, which present the

drawback of generating huge T cell activation. This induces the production of inflammatory

cytokines and steroid hormones, and leads to nonspecific death of DP thymocytes (Page et al.,

1998; Xue et al., 1996). In vitro assays in which thymocytes are incubated with cross-linking

antibodies also show a high rate of non-specific apoptosis among thymocytes. Additionally, this

method does not consider the possible requirement for costimulatory factors. Finally, Ab

crosslinking might induce a qualitatively distinct signal through the TCR than the one induced by

peptide-MHC ligand interaction.
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A third technique to study clonal deletion has used direct injection of peptides of interest.

Again, this has led to overwhelming activation in the thymus involving cytokine-mediated

stromal cell activation, recruitment of eosinophils, and finally collapse of thymic architecture

(Martin and Bevan, 1997; Murphy et al., 1990).

In conclusion, the most physiologic model for studying negative selection seems to use TCR

transgenic mice where the TCRαβ molecule is not expressed earlier than normal and where the

frequency of the responder T cell is not artificially high (Starr et al., 2003).

It is thought that about 5% of the total thymocytes undergo negative selection, and a similar

proportion of cells undergo positive selection (Palmer, 2003). Despite the sequential location of

DN to SP cells from the cortex to the medulla, respectively, the two events seems to be rather

independent of each other since negative selection can happen either before or after positive

selection and T cells seem to be able to undergo negative selection at all stages of

development.

Heterogeneous TCR transgenic models have been used to characterise thymocytes undergoing

negative selection. In some cases, clonal deletion appears to occur early during the transition

from DN to DP stage, whereas in other models, it occurs later at the DP stage (Stockinger,

1999). The first situation, however, is believed to be a transgenic artefact; normal mice are

indeed thought to undergo negative selection at the DP stage. Nevertheless, it is possible that

two different molecular mechanisms govern clonal deletion, one mechanism for early clonal

deletion in transgenic mice and another mechanism driving late negative selection in WT mice.

This is further supported by the fact that DP T cells are found in the cortex whereas SP

thymocytes reside in the medulla. Physiologically, clonal deletion is thought to happen more

efficiently at later stages, during the DP→SP transition, since it requires intact and strong

surface expression of TCRαβ  (Sant'Angelo and Janeway, 2002). It has been shown to involve

MHCII-restricted TCR T cells displaying a CD24high phenotype. This subpopulation of SP

thymocytes is called semi-mature and becomes apoptotic in response to antigenic stimulation.

After clonal deletion, SP CD4 T cells down regulate CD24 (Kishimoto and Sprent, 1997).

The location of negative selection has been controversial as some experiments indicate that it

occurs in the cortex (von Boehmer, 1990), while others suggest the medulla (Burkly et al.,

1993). TCR transgenic mice expressing high-affinity self antigen show atrophy of the cortex

along with a high rate of clonal deletion among DP thymocytes, but again, the abnormally high

expression of transgenic TCR on DP cells might introduce a bias in the negative selection in

those mice (Sprent and Kishimoto, 2001). In addition, mice with MHCII expression restricted to

the cortex area show an increase in mature auto-reactive CD4 T cells, proving that indeed some

negative selection occurs outside of the cortex (Laufer et al., 1996). Another observation
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favouring this idea is the lack of expression of the co-stimulatory molecules CD80 and CD86

on the surface of cTEC although they are thought to play a role in clonal deletion (Degermann

et al., 1994). In contrast, in the medulla, two types of antigen presenting cells (APC) are present

and crucial for negative selection -- bone marrow-derived dendritic cells (BMdDCs) and mTECs.

Medullary TECs are central players in negative selection in that they are responsible for

promiscuous gene expression (PGE) (Klein et al., 2000). PGE refers to the ability of these cells

to express and present nearly the entire peripheral self-peptide repertoire of an individual. PGE

is, at least partially, under the control of the autoimmune regulator transcription factor (AIRE);

and AIRE deficiency in patients leads to a multi-organ autoimmune syndrome known as

Autoimmune Polyendocrine Syndrome type 1 (APECED) (Anderson et al., 2002). mTECs have

been shown to be efficient APCs and capable of mediating negative selection of CD4 auto-

reactive T cells (Laufer et al., 1999). DCs present in the thymus are thought to be very important

for central tolerance and are able to acquire self-antigen from mTECs by the mechanism of

cross-presentation and induce clonal deletion of both developing CD4 and CD8 T cells

(Gallegos and Bevan, 2004).

The question of whether the TCR signal is by itself sufficient to induce negative selection or if a

second signal is required is still unresolved. The first insight into this issue has been the

observation that antibodies against the TCR added to thymocytes in vitro is not sufficient to

promote clonal deletion while the use of APCs restores negative selection (Punt et al., 1994).

Two co-stimulatory molecules, namely B7-1 and B7-2, have been proposed to provide a second

signal to DP thymocytes, inducing apoptosis (Page et al., 1993). In fact, anti-CD28 mAbs used

in vitro have been shown to have a similar effect on DP thymocytes. Similarly, the addition of

anti-CD43 and anti-CD5 mAbs in vitro has been reported to provoke an increased death rate

among CD4+CD8-CD24hi (Kishimoto and Sprent, 1999). Surprisingly, gene knock-out (KO) or

mutant mice for these co-stimulatory molecules, such as CD28-/- animals, show normal

thymopoiesis (Walunas et al., 1996). CD40L deficiency in thymocytes results in impaired

negative selection, although this block is incomplete and CD40L deficiency might only delay

negative selection (Foy et al., 1995). LIGHT, a TNF receptor family member which binds to

lymphotoxin β receptor, has likewise been proposed to provide a second signal for negative

selection, but again the corresponding KO mouse model does not show any deficiency in

thymopoiesis (Wang et al., 2001). It could well be that co-stimulatory function is so important for

negative selection that several molecules are responsible for it; this redundancy among co-

stimulatory molecules would explain the lack of an observed phenotype in single KO mice. On

the contrary, high-affinity interactions involved in clonal deletion do not require co-stimulation.

This difference between high-affinity versus low-affinity interactions may underlie the differences

in negative selection between whether an endogenous or an exogenous ligand is used
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Unlike positive selection, it appears that the CD4 and CD8 co-receptors do not participate in

clonal deletion, perhaps due to the high-affinity of the interaction which makes it less

dependent on any co-receptor involvement.

A simplistic view in the field presumes that recognition of low-affinity peptide-MHC complex

ligand mediates positive selection whereas high-affinity interactions lead to clonal deletion.

However, the mechanisms behind these events are not clear. Understanding the mechanisms

of positive versus negative selection is further complicated by the paradox that the same TCR

binding has to result in two different downstream signaling events leading to opposite cell fates.

There are two ways of explaining the outcome of thymic selection. The first one considers the

rate of occupancy of TCR molecules at a given time point, the cell being able to count how

many TCRs are engaged. It is assumed that the higher the affinity, the more TCRs are

interacting with peptide-MHC ligands. A certain threshold number of occupied TCRs could

trigger negative selection. This interpretation, however, has not been verified consistently by

experiments (Sebzda et al., 1994). Another explanation would consider the sensing of

differential durations of the TCR/peptide-MHC interaction. If the length of TCR engagement with

peptide/MHC complex is short, the cell will receive only an early TCR signal; this is the case

with low-affinity-mediated positive selection. If the TCR forms a sustained interaction with its

ligand due to high affinity, both early and late TCR signals would be triggered, followed by

clonal deletion. This version has been supported by surface plasmon resonance studies

showing a slow off rate for high-affinity ligands and fast off rate corresponding to low-affinity

ligands (Alam et al., 1996). This is known as kinetic proofreading. Some of the problems raised

with Surface Plasmon Resonance are that it does not account for the role of co-stimulatory

molecules and does not explain what happens when the TCR binds an intermediate-affinity

ligand.

Along with this kinetic differentiation in thymic selection outcome, a similar kinetics of

extracellular signal regulated kinase (ERK) activation has been observed. In the presence of

positively selecting ligands, a slow and sustained accumulation of ERK has been reported

whereas negatively selecting ligands induce a strong but transient burst of ERK activity (Werlen

et al., 2000).

The signaling pathway and transcription factors involved in negative selection are a vast area of

investigation that will not be extensively discussed herein, but will just be mentioned for

completeness. As in positive selection, all TCR complex components are necessary for negative

selection. The MAPK pathway seems to be involved in a differential kinetics-related manner,

involving the same molecules as positive selection, namely p38, Jun N-terminal Kinase (JNK)

and ERK. Linker for activation of T cells (LAT) acts upstream of the MAPK pathway to activate

it, and the recruitment of the adaptor GRB2 to LAT seems also to be of primary importance.
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Phosphatase and tensin homologue (PTEN), the nuclear orphan steroid receptor (NUR77),

and NFκB are also implicated in negative selection, as in positive selection. On the other

hand, the FAS apoptotic pathway seems to be dispensable for deletion of self-reactive

thymocytes. Rather, pathways mediated by B-cell lymphoma 2 anti-apoptotic protein (BCL-2)

family members have been shown to be more relevant, via involvement of the pro-apoptotic

factor BCL-2 interacting mediator of cell death (BIM) (Werlen et al., 2003).

Figure 15: Kinetics of positive and negative selection signals.

(A) During positive selection, LAT phosphorylation, Ca2+ mobilization, and ERK activation are
slowly induced over a sustained period of time. This contrasts with the induction of p38 and JNK,
which are activated with different kinetics. Low-affinity pMHC ligands, which occupy the TCR for a
relatively short time, could induce the phosphorylation of Tyr175 and Tyr195 on LAT. This might
recruit Gads, SLP-76, and PLC-1 and lead to the slow production of DAG and the slow activation of
RasGRP, Ras, and ERK. (B) During negative selection, LAT phosphorylation, Ca2+ mobilization,
and ERK activation are rapidly and transiently induced. High-affinity ligands occupy the TCR for
longer times and might induce the phosphorylation of Tyr175, Tyr195, and Tyr136. The
phosphorylation of the Tyr136 residue might stabilize PLC-1 within the growing TCR signalosome,
leading to the rapid activation of Ras and ERK. High-affinity ligands could also lead to the
phosphorylation of Tyr113, Tyr132, and Tyr235, which recruit Grb-2 and the guanine nucleotide
exchange factor, Sos. This could increase the speed of ERK activation. Diacylglycerol kinase
(DGK) and RasGAP might terminate ERK activity. Interestingly, the kinetics of p38 and JNK
activation during negative selection are the same as during positive selection (Adapted from
Werlen, 2003).

Agonist selection

As previously mentioned, thymocyte fate is thought to be conditioned by TCR affinity. DP

thymocytes encountering a low-affinity peptide-MHC complex are positively selected,

thymocytes encountering high-affinity ligands undergo clonal deletion, and DP cells unable to

display a functional TCR or with no affinity for MHC peptide die by neglect. A fourth pathway of

differentiation has been described whereby thymocytes can actually be selected following

encounter with a high-affinity TCR agonist ligand (reviewed in Baldwin et al., 2004). Agonist
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selection has been shown to drive the development of three mature T cell populations, namely

NK T cells, CD8αα intraepithelial cells T lymphocytes (IEL) of the gut, and CD4+CD25+

regulatory T cells. These populations are self-reactive and share common phenotypic and

functional properties. They are all involved in the regulation of the immune response.

NK T cells are CD1d-restricted, CD1 molecules being non-classical MHC I molecules. The

majority of NK T cells express invariant rearranged TCR Vα14 chain, which recognises an

unidentified agonist endogenous glycolipid associated with CD1d molecules. Development of

NK T cells requires an encounter with the CD1d-glycolipid complex exclusively on BMdDCs of

the thymus (Kronenberg and Gapin, 2002). They are thought to arise from DP thymocytes as

shown by transfer experiments (Gapin et al., 2001). At the end of their thymic development, they

acquire the marker NK1.1, as well as other activation markers such as CD44. Finally, they are

specialised in regulating immune responses through the secretion of cytokines.

CD8αα intraepithelial lymphocytes also have regulatory functions. They are numerous in the gut

and represent about 50% of all intraepithelial T cells. They are MHC I-restricted and, like NK T

cells, display an activated phenotype. Several studies have suggested that they arise after

agonist selection; in fact, they are increased in TCR transgenic mice expressing agonist ligand

(Leishman et al., 2002). Whether these cells originate within or outside the thymus has been the

subject of controversy. An experiment using fetal thymic organ culture (FTOC) in combination

with high-affinity agonist ligand suggests that the development site of these CD8αα T cells is

within the thymus (Cheroutre and Lambolez, 2008; Hogquist and Bonnevier, 1998). It is

furthermore unclear whether CD8αα are derived from DP or DN T cells. One argument in favour

of the latter hypothesis is the expression of the Fc fragment of IgE, high-affinity I receptor γ

polypeptide (FcεR1γ) signal transducer, within the TCR complex of this lymphocyte population

(Heiken et al., 1996). On the other hand, Eberl and Littman showed that CD8αα IEL express a

reporter gene that is only activated after β selection (Eberl and Littman, 2004).

Finally, naturally thymic-derived CD4+CD25+ regulatory T cells (Tregs), which will be discussed

in further detail in a later chapter, are also selected through agonist selection. Tregs are able to

inhibit T cell proliferation in vitro and to prevent many autoimmune disorders in vivo, such as

colitis or diabetes (Mottet et al., 2003; Salomon et al., 2000). Caton et al have shown that

haemagglutin (HA)-specific TCR transgenic mice expressing the agonist ligand HA under the

control of various promoters display various levels of deletion but a striking increase in the

CD4+CD25+ T cell population (Apostolou et al., 2002; Jordan et al., 2001). This subset carries

particular surface activation markers on their surface, such as CD25, GITR and CD5. They are

generated in the thymus where they are presumed to be selected by radioresistant APCs

presenting high-affinity self-antigen. It is still under debate whether thymic epithelial cells or
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thymic BMdDCs are the physiologic cell type supporting their development (Apostolou et al.,

2002). They have been shown to be self-reactive since they expand rapidly after adoptive

transfer into lymphopenic hosts (Hsieh et al., 2004). Tregs can also arise from CD4+CD25-

peripheral T cells through specific conditions of antigen encounter. Thymic derived regulatory T

cells cannot be distinguished from their peripheral counterparts since they are phenotypically

identical.

All of the above three subsets share common features such as partially activated phenotype,

regulatory function, and a dominant role for agonist interaction during their development.

However, this does not imply that they share a similar development pathway. The discovery of

FoxP3 repressor and its close association with regulatory T cell phenotype and function, as well

as the reporter gene knock-in mouse generated by Rudensky et al., have proven the existence

of a unique regulatory T cell lineage (Fontenot et al., 2003; Fontenot et al., 2005a; Fontenot et

al., 2005b). Nevertheless, it is not yet clear whether the other populations represents a unique

lineage or merely a specific activation state of T cells.

It is also unclear whether agonist selection is a variation of positive or negative selection or if it

represents a particular type of antigen reactivity. These cell subsets might develop at a specific

stage of development through interaction with MHC-peptide complex or react to agonist

stimulation in a different way than clonal selection. It appears that both selection features may

be involved (ref. Baldwin TA). Another question raised is whether their specific phenotype

allows them to survive clonal deletion or if the agonist encounter drives their development. It

seems that although TCR affinity seems to dictate the fate of these cells, upregulation of

costimulation or signaling molecules are necessary for these cells to develop (Baldwin et al.,

2004).

It has been hypothesized that different degrees of avidity would allow agonist-selected T cells to

avoid deletion; however, despite indications that avidity might play a role, direct proof has not

been provided (Jordan et al., 2000). Another possibility is that agonist presentation occurs

through different APC types. For example, it is not quite clear which cell type induces regulatory

T cell development. Laufer et al. have shown that cortical epithelial expression of MHCII could

support the differentiation of Tregs (Bensinger et al., 2001) whereas studies by Aschenbrenner

et al. argue in favour of a role for Aire+mTECs in the selection of Tregs (Aschenbrenner et al.,

2007).

Receptor editing

As discussed previously, quasi-random gene rearrangement ensures a high diversity of TCR

specificities, while the risk of generating autoreactive thymocytes is limited through elimination

of cells carrying unsuitable Ag receptors. According to the Burnett model, this is accomplished
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through the control of lymphocyte survival and proliferation illustrated best as clonal deletion.

Recently, increasing evidence has suggested the existence of alternative regulatory

mechanisms, such as receptor editing. This is defined as a feedback mechanism by which the

antigen receptor could signal either to cease or to continue recombination, thereby controlling

the maintenance or the alteration of Ag receptor specificity (Nemazee, 2006). It basically

decides to turn the recombination machinery on or off depending on the nature of the signal

received. In this manner, receptor editing excises a rearranged Ag receptor gene segment by

producing a secondary rearrangement and results in alteration of the original receptor

specificity. Receptor editing has been shown to play a major role in central tolerance by

replacing auto-reactive receptors of developing thymocytes with innocuous ones, preventing

subsequent autoimmune disease from developing in the periphery (Santori et al., 2002). As

mentioned previously, this phenomenon is well established in B cells and is thought to happen

in an analogous mode in T cells (Nemazee, 2000).

There is essentially no editing at the level of the TCR β chain. After a proliferative burst of pre-T

cells along with the first chain rearrangement, thymocytes modify DNA accessibility for RAG1

and 2 proteins in order to maintain allelic exclusion. This is done by deacetylation of the Vβ

gene during the transition form DN to DP stage (Tripathi et al., 2002). On the other hand, the α

chain locus is more prone to receptor editing. In fact, as mentioned earlier, the recombination of

the α  chain is less stochastic than the β chain recombination due to 5’ to 3’ sequential

recombination attempts at the TCRA locus.

Rearrangement events occur in the thymic cortex. It has been known for a while that TCR cell

surface expression is not sufficient to stop recombination events; rather, only successful positive

selection leads to termination of RAG protein expression (Brandle et al., 1992; Brandle et al.,

1994). In fact, recombination is ongoing at the DP stage. As reported earlier, high-affinity

interaction presumably leads to clonal deletion but negative selection studies have been limited

by the wide use of TCR transgenic models, which in the vast majority present a forced

expression of the TCR and subsequently promote a distinct form of central tolerance. Wang et

al. first showed that negative selection might actually lead to receptor editing (Wang et al.,

1998). At the same time, Mc Gargill et al. showed that receptor editing represents a major

developmental mechanism in OT1 transgenic mice expressing OVA as a self-Ag on the surface

of cTECs, and they proposed that auto-reactive DP thymocytes can undergo receptor editing in

the cortex upon encountering their Ag provided that TCR expression is not abnormally

premature (McGargill et al., 2000). The OT1 transgenic mice demonstrate decreased deletion

and activation of auto-reactive T cells, as well as internalisation of the TCR, with maintained

RAG expression. An increase in endogenous rearrangements at the TCR α locus leads to

higher numbers of cells expressing the endogenous α chain pairing with the transgenic β chain.
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This Ag-induced TCR internalization provides thymocytes with the opportunity to rearrange

other receptors and edit their specificity. Contrary to these findings, another study by Buch et

al. argues that receptor editing might not be a governing principle in thymic development since

their HY-I, a VαJα knock-in combined with a cre-lox system of TCRδ mice, produce a negligible

amount of receptor-edited T cells (Buch et al., 2002). They interpret these results as sequential

gene rearrangement being a direct consequence of positive selection screening.

It is not clear what the factors promoting receptor editing are. The avidity, the stage of deletion

during negative selection, either early or late, or the tissue specificity have been proposed to

influence the occurrence of receptor editing (McGargill and Hogquist, 2000). It seems that the

type of cells presenting the Ag would also be a major determinant since, according to McGargill

and Hogquist, cTECs are not able to provide any costimulation factor to developing T cells nor

are they able to provoke apoptosis in the same cells. It has to be mentioned though that a

double transgenic mouse model developed in our lab co-expressing HA-specific TCR and HA

agonist in DCs displays a high rate of TCR editing despite the presence of costimulation

molecules on the surface of the DCs.

When secondary gene rearrangement of the TCR occurs at a different allele than the primary

gene rearrangement, it does not lead to excision of the first TCR gene rearrangement, such that

one T cell then carries two different receptor specificities. This dual TCR receptor expression

has generally been considered as a potential hazard for the peripheral immune system since T

cells with an auto-reactive TCR can escape negative selection and reach the periphery

(McGargill and Hogquist, 2000). Another group challenged this idea by considering dual TCR T

cells as a way to expand the TCR repertoire for foreign antigens (Gavin and Rudensky, 2002;

He et al., 2002). Nevertheless, autoimmunity due to dual receptor expressing T cells has only

been described in TCR transgenic contexts and are likely overtly exaggerated in these systems

compared to wild-type situation (McGargill and Hogquist, 2000).

In conclusion, the importance of TCR editing in the pathway of central tolerance in physiological

conditions is unknown at present. It may concern only a minority of developing self-reactive T

cells but cannot be overlooked.

T cell tolerance

The immune system faces the dual challenges of mounting an adequate immune response

against an incredibly high range of pathogens while at the same time limiting any reaction

against a large variety of self-antigen. The latter process is called tolerance. A fine-tuned

balance between these two processes prevents the two pathological extreme situations of

immunodeficiency and autoimmunity. Central tolerance refers to the mechanisms preventing the

development of auto-reactive immune cells in primary sites of lymphocyte development.
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Although this is an efficient process, it does not eliminate all self-reactive lymphocytes. Thus,

peripheral tolerance also exists to control the activation and proliferation of self-reactive

mature cells in lymphoid and non-lymphoid organs. Induction of T cell anergy, T cell deletion,

and immunological ignorance are some mechanisms of peripheral tolerance.

Central tolerance

In the thymus, central tolerance is achieved through selection and development of a T cell

repertoire targeting foreign antigens and devoid of any self-reactivity. An immature T cell

encountering its cognate antigen in the thymus becomes self-tolerant through induction of

anergy, a state of non-responsiveness to Ag stimulation, clonal deletion, receptor editing, or the

development of regulatory T cell population as described earlier. This results in the impairment

or elimination of high-affinity self-reactive T cells.

One longstanding question was how developing T cells encounter peripheral antigens in the

thymus. It had been hypothesised for a long time that Ag could access the thymus via blood

vessels, either in a soluble form or carried by recirculating cells such as immature DCs. In fact,

Le Douarin and colleagues were the first to show that tolerance was mediated by the thymus.

They transplanted thymectomised birds with thymic anlage and rendered them tolerant (Ohki et

al., 1987). Almost ten years later, Asano et al showed that neonatal thymectomy of mice up to 3

days after birth resulted in multi-organ autoimmunity (Asano et al., 1996). They were the first to

identify a CD4+CD25+ regulatory T cell population. Finally, when generating a transgenic mouse

model using tissue specific promoter elements, unexpected expression of the transgenic gene

product was reported in the thymus in addition to targeted organ specific expression (reference

rudensky GFP knock in).

This led to the discovery years later of promiscuous expression of tissue-restricted self-antigens

(TSA) specifically by thymic stromal cells (Derbinski et al., 2001). Derbinski et al. identified a

variety of peripheral antigens expressed specifically in mTEC that are often targets of

autoimmune disorders. They also showed that promiscuous gene expression is a property

conserved in the thymus throughout life, even during age-related thymic involution, and that it is

independent of any developmental regulation. Interestingly, TSA genes do not show any

structural or functional commonalities but have been shown to organise in genetic clusters

(Derbinski et al., 2005; Gotter et al., 2004). Other studies have suggested a link between thymic

promiscuous gene expression and tolerance induction (Klein et al., 1998; Klein et al., 2000).

The identification of the autoimmune regulator AIRE, which in humans is associated with the

multiorgan autoimmune disorder known as autoimmune polyendocrinopathy candidiasis

ectodermal dystrophy (APECED) (Bjorses et al., 1998), and the generation of AIRE KO mice

(Anderson et al., 2002) revealed new insights into this field. AIRE is a transcription factor
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displaying a nuclear localisation signal and several DNA binding domains. It is expressed

specifically in MHCIIhigh CD80high mTECS in the thymus (Derbinski et al., 2005) and controls

promiscuous gene expression (PGE) in the thymic medulla (Anderson et al., 2002). Liston et al.

directly demonstrated that AIRE is indeed responsible for negative selection of organ-specific T

cells through regulation of TSA expression (Liston et al., 2003).

Although it acts in a gene-specific manner, how AIRE controls PGE is still unclear. AIRE has

been shown to co-localize and function in cooperation with CREB binding protein (CBP), which

controls expression of a wide range of genes, but there is no experimental evidence yet for

direct binding of AIRE to CIS-acting sequences of target genes (Pitkanen et al., 2000; Pitkanen

et al., 2005). The genetic clustering of PGE suggests that molecular regulation might be

dictated by epigenetic mechanisms to ensure that TSA expression mirrors practically all tissues

in the body irrespective of developmental or spatio-temporal expression patterns.

PGE is not restricted to mTECs, but rather can also occur in cTECs as well as thymic DCs.

Furthermore, TSA expression is not always controlled by AIRE; C-reactive protein (CRP) and

glutamic acid decarboxylase 67kDa (GAD67) are two examples of peripheral antigens whose

expression is not regulated by AIRE (Anderson et al., 2002). In addition, there is phenotypic

heterogeneity upon AIRE loss: APECED can be sporadic and slow to develop; the phenotype of

AIRE KO mouse differs according to genetic background; and finally, disease onset is actually

much accelerated after bone marrow transplantation (BMT) of WT into AIRE-/- hosts (Anderson

et al., 2002). These observations led to the conclusion that some other genes might

compensate for lack of AIRE and sustained PGE may play a role in tolerance independent of

AIRE.

Given the very low concentration of TSA synthesized by mTECs and the rare number of mTECs

displaying a given peripheral antigen (1-3%), T cells have to scan extensively the stromal cell

compartment for expression of self-antigen, necessitating a very high degree of motility during

their time of residence in the medulla (Kyewski and Klein, 2006). In addition, considering the low

efficiency of mTECs in inducing apoptosis, it is quite possible that thymic DCs help mTECs in

inducing clonal deletion through cross-presentation. Thymic DCs can indeed acquire TSA via

the presence of apoptotic mTECs; they have been described to have a high turnover of about 3

weeks. Antigen spreading can also be mediated by secreted exosomes or by gap junction’s

transfers shown by in vitro data (Harshyne et al., 2001; Neijssen et al., 2005; Thery et al., 2002).

This would increase the availability of tolerizing antigen for T cells undergoing negative

selection. In fact, Bevan and Gallegos have reported such a mechanism in the thymus

(Gallegos and Bevan, 2004).
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Figure 16: Presentation of self-proteins by bone marrow_derived APCs versus mTECs (MEC) for
tolerance induction in the thymus.

APCs, as represented by dendritic cells (DCs), efficiently present endogenously synthesized proteins to
both CD4+ and CD8+ T cells and circulate proteins to CD4+ T cells. APCs thus induce tolerance (clonal
deletion) to ubiquitous proteins, whether they are secreted or arise intracellularly. Tolerance to ubiquitous
antigen may also be mediated by MECs (Medullary Epithelial Cells, not illustrated). However, the principal
role of MECs may be to purge T cells that are reactive to tissue-specific antigens (TSAs). Such deletion is
the result of ectopic expression of TSAs by MECs. How MECs are able to synthesis TSAs is still
unknown, but recent work has indicated that AIRE, a putative transcription factor, is centrally involved in
this process. In direct support of this idea, Liston et al show that clonal deletion of T cells reactive to a
neo-TSA is abolished or greatly reduced in the absence of AIRE (Adapted from Sprent 2003).

Regulatory T cells

As mentioned earlier, despite negative selection, some autoreactive T cells reach the periphery

and represent a potential hazard for the individual. Regulatory T cell subsets are supposed to

control the proliferation and effector functions of these harmful autoreactive T cells. There are

numerous subpopulations of regulatory T cells, in addition to CD8αα+ and NK T cells mentioned

earlier. The CD4 T cell subset includes IL-10-producing Tr1 regulatory T cells (Groux et al.,

1997) and transforming growth factor β (TGF-β)-producing T helper type 3 cells (Chen et al.,

1994) that are confined in the periphery. We will mainly focus here on the natural thymus-

derived CD4+CD25+FoxP3+ population and peripheral induced Tregs, which altogether

represent about 10% to 15% of the peripheral CD4 T cell population.

Phenotype and Function

Recent studies have implicated so-called naturally-arising regulatory T cells (Treg) as key

components controlling autoimmunity (Kronenberg and Rudensky, 2005; Sakaguchi et al.,

1995; Shevach, 2004). Tregs were first described as a population of CD5highCD4+ cells that

upon transfer could protect mice from autoimmune disease caused by neonatal thymectomy

(Sakaguchi et al., 1982). Later, it was shown that during mouse ontogeny, Tregs appeared
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shortly after birth and that CD25, the alpha chain of the IL-2R complex, could be used as a

surrogate marker for these cells (Fontenot et al., 2005a; Sakaguchi et al., 1995). More

recently, the transcription factor FoxP3 has been shown to be critically associated with Treg

function (Hori et al., 2003); and indeed a knock-in transgenic mouse line containing a GFP-

FoxP3 construct indicated that FoxP3 may be used as a lineage marker for Tregs (Fontenot et

al., 2005b). Many phenotypic features of Tregs, namely spontaneous CD25 expression,

glucocorticoid-induced tumour necrosis factor receptor (GITR) (Shimizu et al., 2002) and

cytotoxic T lymphocyte antigen 4 (CTLA-4) constitutive expression (Read et al., 2006), as well

as down-regulation of CD4, CD3 and TCRβ transcripts and surface antigen expression are

similar to those of activated T cells (Bosco et al., 2006b; Gavin et al., 2002b; Kasow et al.,

2004). Natural Tregs are anergic:  they respond very poorly to TCR stimulation and do not

produce IL-2 in vitro although their survival is critically dependent on this specific cytokine.

However, this anergy can be overcome by adding anti-CD28 mAb and IL-2 to the culture,

although at the expense of their suppressive capacity. Surprisingly, they proliferate extensively

in vivo and more specifically in lymphopenic conditions (Cozzo et al., 2003). The repertoire of

TCR expressed by Treg is generally thought to be broad; however, it would seem that their TCR

have a relatively high affinity for self antigens (Hsieh et al., 2004). Thus, their CD5high phenotype

may have protected them from negative selection in the thymus (Azzam et al., 2001).

Functionally, Tregs inhibit the proliferation and cytokine production of naïve responder T cells in

vitro (Thornton and Shevach, 1998). Their main functional role in vivo (Asano et al., 1996)

appears to be in preventing the activation and reducing the expansion of activated T cells

(Sakaguchi, 2004). Tregs are part of the natural T cell repertoire and suppress harmful

immunopathological responses to self or foreign antigen. Indeed, several experiments have

shown that regulatory T cells exert dominant extrathymic immune regulation. CD4+CD25+ Tregs

have been shown to inhibit experimental autoimmune encephalomyelitis (EAE) (Olivares-

Villagomez et al., 1998) as well as spontaneous immune diabetes in susceptible mouse strains

(Salomon et al., 2000; Tang et al., 2006). Another model of natural Treg-mediated immune

regulation is the inflammatory bowel disease (IBD) model reported by Powrie et al., whereby the

severe colitis in SCID mice reconstituted with CD4+CD45Rbhi can be inhibited by cotransfer of

CD4+CD45RBlo containing the CD25+ subset. Finally, natural Tregs mediate tolerance to

alloantigen in transplantation experiments, impede anti-tumour immunity, and control

homeostasis (Sakaguchi et al., 2001).

Natural Treg-mediated inhibition of T cell expansion can be seen as advantageous in situations

of autoimmunity, but they may be disadvantageous in situations of lymphopenia-induced

proliferation or anti-tumour immunity (Dolnikov et al., 2003; Nomura and Sakaguchi, 2005).
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Foxp3

Mice carrying the spontaneous X-linked Scurfy mutation and humans affected by the rare

Immunodysregulation, Polyendocrinopathy, Enteropathy, X-linked (IPEX) syndrome share

similar symptoms and suffer from autoimmunity (Wildin et al., 2001). Their disease is

characterised by chronic polyclonal activation and hyperproliferation of CD4+ T cells, which

produce a variety of pro-inflammatory cytokines, display decreased activation threshold, and

show diminished dependence on co-stimulation signals leading to multi-organ lymphocytic

infiltrations. Brunkow et al. in 2001 were the first to clone the gene responsible for the disease,

namely Foxp3 (Brunkow et al., 2001). It belongs to the forkhead/winged helix family of

transcriptional repressors and carries a zinc finger as well as a leucine zipper motif. The

forkhead domain has been recently shown to be required for both DNA binding and nuclear

localization whereas the leucine zipper motif mediates homodimerization. The less

characterized N-term domain has been shown to mediate suppression by binding to NFAT/AP-1

sites of 5’ regulatory sequences of cytokine genes and more specifically the IL-2 promoter,

explaining the anergic phenotype of regulatory T cells (Lopes et al., 2006).

Foxp3 is a critical element for the differentiation and function of mouse regulatory T cells (Hori et

al., 2003; Khattri et al., 2003), and adoptive transfer of natural regulatory T cells is able to

prevent disease in scurfy mice (Fontenot et al., 2003). In addition, ectopic expression of Foxp3

in CD4+T cells endows non-regulatory T cells with regulatory properties such as anergy and

suppressive ability (Khattri et al., 2003; Khattri et al., 2001). Based on these studies, Foxp3 has

been well established as a mediator of genetic mechanisms governing dominant tolerance and

a Treg-lineage specification marker. It has to be noted, however, that Foxp3 seems to behave

differently in humans as activation-mediated Foxp3 induction has been reported in CD4+CD25+

T cells (Walker et al., 2003).

The generation of a knock-in allele encoding a Foxp3-gfp fusion product has provided many

insights into FOXP3 biology (Fontenot et al., 2005a) and Treg function in general. This new tool

allows for tracing much more faithfully regulatory T cell fate in vivo and facilitates sorting of

natural Tregs. It is now clear that FOXP3 is highly restricted to T cells.

Regulatory T cell development

CD4+CD25+ Tregs represent 5% of thymic CD4 SP T cells and are capable of suppressive

activity in vitro. It has been reported that, despite their presence in neonates, they are not

functional before 3 to 4 days after birth (Asano et al., 1996). CD25+ is acquired relatively late

during T cell development, during transition from the DP to SP stage. Moreover, Foxp3-gfp mice

have allowed identification of GFP-positive cells preferentially within the CD4 SP thymocyte

population, although about 11% of FOXP3+ cells are also found within the DP CD24hi subset. It



44

has not been clearly demonstrated that the former is the progeny of the latter, but this

demonstrates that commitment to Treg occurs during late stages of development (Fontenot et

al., 2005a).

For years, the origin of regulatory T cells had been a subject of intense debate, some

considering Tregs as products of effector T cell differentiation and others favouring the

existence of an independent thymic-derived Treg lineage. It appears today that both of these

hypotheses are correct:  a unique thymic-derived FOXP3+ CD4+ T cell population is well

established as an independent lineage, but generation of FOXP3-expressing Tregs from

effector T cells also occurs in the periphery. In this section, we will mainly focus on thymic

development of natural Tregs. Multiple studies have reported increased generation of natural

Tregs in double transgenic mice co-expressing a specific TCR and its agonist in the thymus

(Apostolou et al., 2002; Jordan et al., 2001). From these studies, it was concluded that the

choice of Treg lineage is induced upon binding of TCR to its cognate Ag. It was hypothesized

that this interaction, at an avidity just below the threshold required for negative selection, would

promote development of regulatory T cells (Maloy and Powrie, 2001). Indeed, Jordan et al.

showed that the affinity of the TCR for its antigen determines the T cell developmental outcome,

namely regulatory T cell commitment versus negative selection (Jordan et al., 2000). An

alternate view on regulatory T cell development is defended by van Santen et al., who argue

that T cells are stochastically selected towards the Treg lineage (van Santen et al., 2004). They

found no increase in absolute numbers of Tregs in a similar model of double transgenic mice,

but rather only an increase in the percentage of Tregs. They explained this observation by the

fact that Tregs are merely more resistant to induced apoptosis. As a result, preferential survival

of Tregs would inflate their percentage within the total thymic cell population while CD4+CD25-

are eliminated by negative selection. These two models are not mutually exclusive, and further

studies using the KI Foxp3-gfp model have helped reconcile the two hypotheses. Lin et al. have

shown that when Foxp3 is replaced by a non-functional copy of the gene fused with egfp, a true

population of Tregs with classical Treg phenotype develops, although these Treg-like cells do

not show suppressive capacity either in vivo or in vitro (Lin et al., 2007). It seems that the high-

affinity TCR-Ag/MHC interaction initiates the development of a Treg cell-like precursor, which

upon TCR signalling induces FOXP3 expression. In addition to TCR signaling, other

costimulatory molecules influence Treg commitment. For example, CD28-deficient (CD28-/-) as

well as B7-deficient (B7 being a ligand for CD28 expressed by medullary DCs) mice have

decreased numbers of regulatory T cells, and CD28-/- mice do not show an increase in Treg

percentage in the double transgenic condition (Salomon et al., 2000).  TSLP-differentiated DCs,

which are known to upregulate B7 expression, have also been reported as capable of inducing

regulatory T cells (Watanabe et al., 2005). Other molecules, such as CD40 or CTLA-4, have
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been shown to be involved in Treg development. However, although a decrease in Tregs has

been reported in the corresponding deficient animals, the remaining Tregs are functional and

capable of suppression, suggesting that these molecules are not absolutely necessary for Treg

development. On the other hand, TGF-β and IL-2 have been shown to be required for Treg

survival and maintenance in the periphery but not for development (Buhlmann et al., 2003;

Furtado et al., 2002; Kumanogoh et al., 2001; Marie et al., 2005).

The thymic cells responsible for Treg selection have also been a matter of debate. Long ago, it

was shown that radio-resistant thymic elements of the thymus were responsible for T cell-

mediated tolerance (Ohki et al., 1987). It is now widely accepted that radio-resistant elements

can mediate selection of CD4+CD25+ Tregs. According to Jordan and Apostolou, BM-derived

DCs expressing self-Ag induce anergy of CD4+CD25- Tregs whereas TECs mediate

development of regulatory T cells. Again, there is always the possibility of cross-presentation

between the two cell types (Gallegos and Bevan, 2004). In fact, it has been suggested that

thymic DCs can also mediate Treg selection (Graca et al., 2006). Some studies argue for a

major role for cTEC whereas others favour the medullary component of thymic epithelium

(Aschenbrenner et al., 2007; Bensinger et al., 2001). In support of the latter, deficiencies in

genes playing a key role in the mTECs, such as NFκB, show an impaired regulatory T cell

compartment. In addition, green cells of the Foxp3-gfp KI mice generated by Rudensky’s

laboratory are found as a majority in the medulla (Fontenot et al., 2005a). Moreover, mTECs

express all of the costimulatory molecules that may influence Treg development, such as CD80

and CD86, MHCII, and specific cytokines. However, it is not clear if only the medullary

component is required or if Tregs are generated in the cortex with the medulla being necessary

for further development.

What are the peptide ligands presented to Treg precursors? Based on  the increase in Tregs

generated in double transgenic mice, the fact that they proliferate robustly in lymphopenic hosts,

and the lack of protection against a specific organ when the Tregs originate from an animal

lacking this organ (Seddon and Mason, 1999; Taguchi and Nishizuka, 1980), it is natural to

hypothesise that presentation of tissue-restricted self Ag would select for regulatory T cells. It is

also tempting to suggest a role for TSA, promiscuously expressed by mTEC, in the selection of

Tregs. However, the Treg compartment is normal in AIRE-deficient mice, suggesting that AIRE

is not needed for Treg generation. Hsieh et al. have shown that the TCR repertoire of Tregs

partially overlaps with the repertoire of conventional T cells and, in fact, that the same TCR

could be expressed by both self-reactive T cells and Tregs (Hsieh et al., 2004; Hsieh et al.,

2006) A recent study showed selection of Tregs specific for self antigen by AIRE+ mTECs

presenting that Ag, along with the concomitant deletion of self-reactive conventional T cells by

thymic DCs cross-presenting TSA (Aschenbrenner et al., 2007). AIRE+ mTECs seem to be
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sufficient for Treg generation, but it remains uncertain whether they are the only cells capable

of supporting Treg selection. In contrast, the same study showed that Ag presentation by DCs

is dispensable for agonist-specific T cells. It may be that the two cell types cooperate with each

other, perhaps through cross presentation. It remains obscure how thymic DCs and mTEC

manage to elicit negative selection and Treg production at the same time.

Homeostasis of Tregs in the periphery and de novo generation

As mentioned previously, TGFβ and IL-2 have been shown to be necessary for the peripheral

maintenance of natural Tregs (D'Cruz and Klein, 2005; Fontenot et al., 2005a; Li et al., 2006;

Marie et al., 2005), although this has been recently challenged by Liu et al. (Liu et al., 2008).

The partially activated phenotype of Tregs suggests continuous stimulation of these cells. In

addition, their repertoire is thought to tend towards self-reactivity. The source of IL-2 is

presumed to be CD4+CD25- naïve T cells.. The presence of cognate antigen in the periphery is

also thought to be necessary for the maintenance of natural Tregs. Indeed, adoptive transfer of

peripheral Tregs from athyroid rats are unable to inhibit thyroiditis, whereas thymocytes isolated

from the same donor are effective in doing so. This last experiment argues in favour of organ-

specific, antigen-driven peripheral maintenance of Tregs. On the other hand, adoptive transfer

of Ag-specific Tregs generated from double transgenic Ag-specific TCR/ agonist mice can

survive for several weeks in a host lacking this agonist: they are able to proliferate and to

suppress Ag-driven CD4 and CD8 responses in vivo against Ag expressing tumour cells after

priming (Klein et al., 2003). The discrepancy between the two studies may lie in the use of

lymphopenic mice in earlier studies, which do not reflect physiologic homeostatic conditions. It is

also quite possible that the priming of Ag-specific Tregs by immunization enhanced their

suppressive potential in Klein’s studies whereas such priming does not occur in the Le Douarin

model of organ-specific tolerance. It would be interesting to use Foxp3-gfp knock-in Treg cells

and physiologic non-lymphopenia driven autoimmune models, such as diabetes, to better define

the factors driving homeostatic proliferation of Ag-specific Tregs. If not agonist-driven, Treg

homeostatic proliferation may alternatively be driven by MHCII molecules, as suggested by

Gavin et al. (Gavin et al., 2002a). However, it has been quite challenging to prove a direct effect

of MHCII deficiency on Tregs and to distinguish between MHCII-mediated effects on

development versus on homeostasis of Tregs (Bochtler et al., 2006; Shimoda et al., 2006)

Despite the major role of natural thymic-derived regulatory T cells, it is well established now that

other regulatory T cells can be induced from naïve T cells in the periphery, under specific

conditions. Their phenotype and function are indistinguishable from those of thymic-derived

Tregs: they are FOXP3-positive and capable of suppression (Walker et al., 2003). Three

examples support this concept. Apostolou and Von Boehmer reported that the generation of
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CD4+CD25+ suppressor T cells is a normal component of the host response to the introduction

of low concentrations of antigen (Apostolou and von Boehmer, 2004). Furthermore, specific

tolerogenic conditions also promote differentiation of naïve T cells into regulatory T cells, which

is mediated by a specific DC subset called tolerogenic (Mahnke and Enk, 2005). Finally, TGFβ

has been shown to induce a regulatory phenotype in naïve T cells (Chen et al., 2003). However,

it is not clear whether these induction protocols genuinely educate naïve T cell to display a

regulatory phenotype and to acquire regulatory function or if they merely induce proliferation of

a previously undetectable Treg population.

Mechanisms of suppression

The mechanism underlying the suppressive function of regulatory T cells has been the subject

of a substantial number of studies, which have suggested involvement of many alternate

molecules and/or pathways. This might be due to the variety of models used to characterise

Treg-mediated suppression. For one, the in vitro setting might be quite different from the in vivo

setting. Even among in vitro suppression assays, conditions may vary depending on the source

of Tregs used – whether taken directly ex vivo or expanded through IL-2 and anti-CD28 mAb

stimulation, in the presence of APCs or TGFβ in the culture medium. In vivo, the use of different

models of autoimmunity for studying Treg-mediated suppression might further account for the

discrepancies in identification of suppression mechanisms. In addition, before the development

of the FoxP3-gfp mouse tool, the definition of regulatory T cells by the CD25 marker or various

markers shared by other activated Teffs might have led to isolation of heterogeneous or distinct

Treg populations acting by different mechanisms.

In vitro data support a mechanism based on cell-cell contact. Studies have also shown that TCR

activation of regulatory T cells is necessary for suppression, although once activated, Tregs can

inhibit Teff proliferation in a manner independent of TCR specificity. In vitro data have further

shown that this suppression mechanism is insensitive to TGFβ or IL-10 blockade, which does

not seem to be the case for in vivo experimental models. Barthlott et al. have suggested a

mechanism based on competition for IL-2 between Teffs and Tregs since the survival and

proliferation of both of these subpopulations are highly dependent on this cytokine (Barthlott et

al., 2003; Barthlott et al., 2005). Tregs would consume the IL-2 available in the local

environment, which would then inhibit Teff proliferation. This hypothesis has been questioned

by the fact that addition of IL-2 in so-called classical inhibition assays does not overcome

suppression (Duthoit et al., 2005). A role for CTLA-4 as mediator of suppression has also been

suggested as CTLA-4 is well known for its inhibitory effect. However, peripheral Tregs of CTLA-

4-deficient mice display normal suppressive function, albeit reduced numbers (Kataoka et al.,

2005; Read et al., 2006). In humans, Grossman et al. have shown a role for perforin- and
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granzyme-dependent pathways in Treg-mediated suppression, mediating apoptosis of Teffs.

However, no evidence for killing has been found in Teffs undergoing Treg-mediated

suppression in mice (Grossman et al., 2004). In vivo, some cytokines have been shown to play

a role in Treg-mediated suppression. For example, Treg-mediated suppression in IBD involves

IL-10 and TGFβ  (Annacker et al., 2001). Recently, a new molecular target, cyclic adenosine

monophosphate (cAMP), has been proposed as a mediator for suppression. cAMP is a second

messenger, able to inhibit T cell proliferation and IL-2 production when added in vitro. It is

proposed that this molecule is transmitted via gap junctions formed between effector and

regulatory T cells (Bopp et al., 2007). In conclusion, several molecules seem to be involved in

the suppression mediated by Tregs, but none of these mechanisms have been found to be

absolutely essential for this inhibitory function. This suggests that perhaps several mechanisms

are involved and that the cell might be able to adapt its suppression mechanism depending on

its local environment or the conditions of suppression.

In addition, some molecules can regulate the suppressive function of Tregs. These include

cytokines like IL-2 and TNFα, as well as costimulatory factors like CD80 and CD86. For

example, ligation of CD40 or activation of TLRs on DCs appears to abrogate the effect of Tregs

(Pasare and Medzhitov, 2003; Serra et al., 2003).

Therapeutic perspectives in Humans

The enthusiasm raised by Tregs also lies in their great therapeutic potential to control

physiological and pathological immune responses. In cancer patients, depletion of Tregs leads

to an increased T cell response against tumour-associated Ag when stimulated in vitro with

tumour antigen (Danke et al., 2004; Nishikawa et al., 2005). In addition, FoxP3+ Tregs are often

found in tumours and are suspected to impede immunosurveillance by reducing responsiveness

of Teffs towards tumour cells. Promoting the depletion of Tregs specifically in the tumour might

be a promising approach for cancer immunotherapy to enhance the anti-tumour immune

response.

During infection, depletion of natural Tregs enhances the immune response to pathogenic

microbes, as reviewed by Belkaid and Rouse (Belkaid and Rouse, 2005). Tregs have even

been shown to be responsible for long-term persistence of Leishmania major in chronically

infected mice (Belkaid et al., 2002). They serve to control the quality and the magnitude of anti-

microbial immune responses and are thought also to play a role in termination of the immune

response.

Finally, one can use the ability of Tregs to expand in vitro or in vivo and their stable suppressive

property to induce tolerance in autoimmune diseases, to treat allergy, or to suppress graft

rejection (Kang et al., 2007). Moreover, techniques aimed at clonally expanding Ag-specific
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natural Tregs are of great potential since Ag-specific Tregs have been shown to be more

effective in models of autoimmune diabetes, BMT, and organ transplantation. However, the

need for more specific and reliable surface molecular markers is necessary to discriminate

between Tregs and Teffs. CD127, the IL7 receptor α chain, has been found to correlate with

both FoxP3 and regulatory activity and will likely be of great help in isolating true human Tregs.

It is also possible to take advantage of the conversion of adaptive T cells into Tregs under

specific conditions of antigenic stimulation to enhance transplant tolerance since Tregs are

suspected to limit the inflammatory response during organ rejection. Additionally, treatments

that preferentially dampen effector T cell function while preserving and even enhancing Treg

function may prove beneficial. One example is anti-CD3 Mab therapy administered to NOD

mice, which reverses diabetes due to Treg induction (You et al., 2007). Finally, the induction of

pDCs may promote tolerance since pDCs are able to induce Tregs in the periphery (Ochando et

al., 2006).

γ/δ T cells

γ/δ T cells are non-MHC-restricted, nonconventional T cells. They are located in the epithelia of

various tissues constituting the internal and external surfaces of the body, such as the tongue,

skin, reproductive tract, and lung. In addition, other γ/δ T cells can be found in secondary

lymphoid organs, representing 1 to 5% of circulating T cells. They are characterized by a limited

repertoire due to unique invariant γ and δ chain combinations corresponding to each specific

tissue. They are thought to act as a first line of defence in primary immune responses and also

play roles in immunoregulation, tumour surveillance, and wound healing (Hayday and Tigelaar,

2003). γ/δ T cells are the first T cells to develop during ontogeny. Specific subsets of γ/δ T cells

expressing unique TCR chain combinations develop in waves, with increasing TCR complexity,

during the transition from foetal to adult thymus; and they sequentially populate the different

tissues mentioned above. Each wave of γ/δ T cell development corresponds to different

hematopoietic progenitor cohorts with distinct developmental potential (Ikuta et al., 1990). In

addition, foetal or newborn stroma may provide specific properties favouring the development of

specific γ/δ T cell subsets since the adult thymus is unable to support differentiation of those γ/δ

T cell subsets developing during foetal life. These early developing γ/δ T cell subsets are tissue-

specific and are characterized by a very simple TCR composition. For example, dendritic

epidermal T cells (DETCs) present in the skin carry invariant Vγ and Vδ gene segments,

specifically Vγ5Vδ1, without any junctional diversity since thymic TdT activation occurs later in

their development. In contrast, γ/δ T cells developing in the adult thymus present a higher

variability of Vγ, being Vγ2, Vγ1.1 or Vγ1.2, and in addition possess highly diverse junctional
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sequences; these T cells will migrate to secondary lymphoid organs. Lastly, Vγ5 T cells

constitute intestinal intraepithelial lymphocytes. Some γ/δ T cells have also been reported to

develop extrathymically (Lefrancois and Puddington, 1995).

γ/δ T cells develop from a common DN progenitor giving rise to either α/β or γ/δ T cells. The

molecular events leading to lineage bifurcation between the two populations has not been fully

resolved but this lineage decision is thought to be determined at the DN2 stage, despite the fact

that DN2 precursors of γ/δ T cell are indistinguishable from α/β DN2 precursors. γ/δ T cells

never go through a DP stage, and signals through the γ/δ TCR regulate differentiation into

mature γ/δ T cells, characterized by down-regulation of CD24. Following the DN3 stage, γ/δ T

cells do not undergo a β selection checkpoint-induced proliferative burst like α /β  T cell

precursors as they do not express pre-TCR but rather the definitive form of the γ/δ TCR.

Therefore, major clonal expansion of γ/δ T cells occurs after completion of their maturation.

To account for γ/δ development, two models have been proposed. One is a selective model

whereby lineage specification is thought to be mainly determined in thymocyte precursors

before TCR gene rearrangement starts. The adequacy of the subsequent random TCR

rearrangement would allow for survival or death. The other is an instructive model whereby the

signal originating from the TCR influences uncommitted progenitors towards either α/β  or γ/δ

fates. As detailed below, various studies have supported these models, but to date, none can

entirely explain the physiological situation and fully validate one of the models.

The selective model is supported by the observations of Durum et al. that a pro-T cell population

carrying high levels of IL-7Rα is more prone to develop towards the γ/δ T cell lineage whereas

IL-7 Rα low or negative pro-T cells will preferentially differentiate into α/β (Durum et al., 1998;

Kang et al., 2001). Further support for this hypothesis was provided by Maki et al., who showed

that IL-7Rα-deficient mice are devoid of γ/δ T cells (Maki et al., 1996). The theory of TCR-

independent lineage specification is also supported by the fact that some DN2 cells display a

bias in lineage potential before the TCR is expressed on their surface, as shown by the clonal

analysis potential of DN2 in Notch ligand-dependent cell culture (Ciofani et al., 2006). Garcia-

Peydro et al. also suggested a positive role for Notch in the development of γ/δ T cells from very

early precursors (Garcia-Peydro et al., 2003). Surprisingly, a deficiency in Notch specifically at

the transition from DN2 to DN3 stage favours an increase in γ/δ T cell production. These two

seemingly contradictory results have been reconciled by Ciofani et al., who showed that Notch

is essential for early γ/δ T cell development up to the DN2 stage but not beyond the DN3 stage

(Ciofani et al., 2006). This is in contrast to the continuous requirement of Notch throughout α/β

T cell development up to the DP stage.
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The instructive model, on the other hand, proposes that signals from the γ/δ TCR regulate γ/δ

cell development. It is based on the observation that pre-Tα−deficient mice show a great

increase in γ/δ T cell differentiation. In addition, γ/δ TCR transgenic mice show inhibition of α/β T

cell development. Moreover, developing T cells expressing γ/δ TCR are excluded from the α/β

lineage (Kang et al., 1995; Livak et al., 1995). These findings support the conclusion that γ/δ

TCR expression is not neutral, but rather drives T cell progenitors towards the γ/δ T cell

pathway. In addition, it was previously argued that the γ/δ TCR signal is stronger than the signal

delivered by pre-TCR (Hayes et al., 2003). Nevertheless, these experiments do not directly

prove that TCR dictates lineage decision as its expression may simply allow for survival of cells

that are already committed. In addition, this theory is challenged by the fact that γ/δ TCR chain

rearrangement occurs in α/β T cell progenitors and that intracellular β chain rearrangement has

been reported in about 15% of γ/δ T cells. Ultimately, it has been suggested that lineage

decision might be conditioned by the quality or the strength of the TCR signal, and indeed,

despite a high similarity between the two TCR signaling pathways, γ/δ TCR have been shown to

induce a stronger signal than α/β TCR (Haks et al., 2005; Hayes et al., 2005). Through the use

of γ/δ TCR transgenic mice, Hayes et al. were able to alter γ/δ versus α/β T cell numbers by

adjusting the strength of TCR signaling. The stronger the TCR signal, the more γ/δ and the

fewer α/β T cells that developed. More recently, Kreslavsky et al. showed through single cell

analysis that there is no commitment to either the α/β or γ/δ lineage before TCR expression and

that modification of TCR signaling can change lineage commitment (Kreslavsky et al., 2008).

These reports provide new insights in favour of this quantitative model of commitment.

In addition to the two models described above, Pennington et al. have proposed an alternate

possibility. They defined a γ/δ-biased gene expression profile to identify γ/δ precursors and

found them to be absent in pre-Tα mice and RAG-deficient mice. Based on this, they proposed

that failure of γ/δ T cell development was due to the lack of DP T cells by a so called “trans-

acting” feedback via the LTβ receptor.

Thymic ligands for positive selection of γ/δ T cells have been investigated for years before

Boyden et al. identified one of them recently. It was previously thought that γ/δ T cells might be

selected by encountering their cognate antigen in the peripheral tissues where they migrate.

This encounter with self-antigen would induce their survival. Indeed, by mapping and genetic

complementation of a mouse strain devoid of Vγ5Vδ1 epidermal T cells, Boyden et al. showed

that Skint1, expressed in the thymus and skin, positively selects epidermal γ/δ T cells (Boyden

et al., 2007).
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Aim of the study:

We propose to study tolerance and T cell development throughout different models. We first

observed that immunodeficient mice reconstituted with bone marrow from syngeneic host suffer

from autoimmunity whereas immunocompetent mice stayed healthy. We have tried to identify

the radioresistant cell subset responsible for this protection. In a second study we investigated

further on radioresistant thymocytes to identify the origin of the single wave of differentiation of

host derived T cells observed in mice reconstituted with bone marrow. In a third part we propose

to explain the presence of β  chain in the cytoplasm of γ /δ  T cells by reconstituting

immunodeficient mice with Pax5 KO cells transfected with β chain isolated from either α/β or γ/δ

T cells. Finally we have developed a new double transgenic system by crossing mice

expressing OVA antigen under the control of KLC and CD11c promoter and OT1 and OT2 mice.

This will allow us to study T cell tolerance through regulatory T cell development and anergy

induction.
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Results

Part I: Regulatory T cells control auto-immunity following syngeneic

bone marrow transplantation.

Angèle Bénard, Rhodri Ceredig, and Antonius G Rolink.

Introduction

Reconstitution of the lympho-hemopoietic system by bone marrow (BM)

transplantation is a frequently used treatment modality for various haematological abnormalities,

including anaemia, leukaemia and lymphoma (Nakase et al., 2005) and more recently fulminant

auto-immunity (van Bekkum, 2004). Although this is frequently carried out with BM from haplo-

disparate donors, even in situations where the BM graft is haplo-identical, patients can develop

syngeneic graft versus host disease (GVH) (Adams et al., 2004; Latif et al., 2003; Spaner et al.,

1998). Disease can be acute, starting at day 8 (Latif et al., 2003) or more chronic starting at

about 5 weeks (Adams et al., 2004) following BM transplantation, a time when lymphoid

reconstitution has begun, but when the patient is still relatively lymphopenic. Many of the

features of syngeneic chronic GVH, including diarrhoea, weight loss, cutaneous and

lymphocytic infiltrations in multiple organs and the presence of auto-antibodies are also seen in

systemic auto-immune diseases such as inflammatory bowel disease (IBD), rheumatoid

arthritis, systemic lupus erythematosis and systemic sclerosis (Lyons et al., 2005)

Recent studies have implicated so-called naturally-arising regulatory T cells

(Treg) as key components controlling auto-immunity (Kronenberg and Rudensky, 2005;

Sakaguchi et al., 1995; Shevach, 2004). Treg were first described as a population of

CD5highCD4+ cells that upon transfer could protect mice from auto-immune disease caused by

neonatal thymectomy (Sakaguchi et al., 1982). Later it was shown that during mouse ontogeny,

Tregs appeared shortly after birth and that CD25, the alpha chain of the IL-2R complex, could

be used as a surrogate marker for these cells(Fontenot et al., 2005a; Sakaguchi et al., 1995).

More recently, the transcription factor FoxP3 has been shown to be critically associated with

Treg function (Hori et al., 2003) and indeed a knock-in transgenic mouse line containing a GFP-

FoxP3 construct indicated that FoxP3 may be used as a lineage marker for Treg (Fontenot et

al., 2005b). Many phenotypic features of Treg, namely spontaneous CD25 expression, down-

regulation of CD4, CD3 and TCRβ transcripts and surface antigen expression are similar to

those of activated T cells (Bosco et al., 2006b; Gavin et al., 2002b; Kasow et al., 2004). The

repertoire of TCR expressed by Treg is generally thought to be broad; however, it would seem
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that their TCR have a relatively high affinity for self antigens (Hsieh et al., 2004). Thus their

CD5high phenotype may have protected them from negative selection in the thymus (Azzam et

al., 2001). Functionally, Treg inhibit the proliferation of naïve responder T cells in vitro (Thornton

and Shevach, 1998). Their main functional role in vivo (Asano et al., 1996) appears to be in

preventing the activation and reducing the expansion of activated T cells (Sakaguchi, 2004).

This inhibition of T cell expansion can be seen as advantageous in situations of auto-immunity,

but may be disadvantageous in situations of lymphopenia-induced proliferation or anti-tumor

immunity (Dolnikov et al., 2003; Nomura and Sakaguchi, 2005). It is therefore rather paradoxical

that auto-immunity is controlled in a dominant fashion by a population of T cells which is itself

intrinsically auto-reactive (Kronenberg and Rudensky, 2005).

In the mouse, syngeneic BM transplantation of immuno-competent recipients rarely results in

disease. In contrast, in man, syngeneic GVH has been reported to develop with a cumulative

incidence of 18% among syngeneic hematopoeitic cell transplant recipients (Adams et al.,

2004). This difference could be due to the relatively faster kinetics of reconstitution in mice,

which is of the order of weeks compared with months in man. However, in analyzing the

reconstitution potential of sub-lethally irradiated immuno-deficient recipient mice with in vitro-

generated, T cell-restricted, BM-derived progenitor cells, recipient mice frequently died between

four and six weeks after reconstitution (A. Rolink unpublished observations). Mice died despite

evidence indicating that the T cell compartment was being well reconstituted by donor-derived

cells. In this report we describe results of experiments where the outcome of syngeneic BM

transplantation in sublethally-irradiated immuno-deficient C57Bl/6 RAG-2-/- was compared with

that in immuno-competent WT C57Bl/6 recipients. Whereas immuno-competent mice survived,

immuno-deficient mice succumbed to auto-immunity with diarrhea and weight loss beginning at

three weeks following BM transplantation. Disease was associated with IgG anti-nuclear

antibodies. Auto-immunity was initiated by T cells but could be prevented by co-transferring

naturally-arising regulatory T cells with the BM inoculum. Survival of immuno-competent

recipients was shown to be due to the presence of residual, extra-thymically-located, radio-

resistant, functional regulatory T cells in the lethally-irradiated host. Moreover depletion of

regulatory T cell in wild type mice prior to bone marrow transplantation resulted in a phenotype

similar to that of immuno-deficient hosts although with milder clinical symptoms. T h e

implications of these results in the context of BM transplantation will be discussed.
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Results

RAG-2-/- mice show symptoms of autoimmune disease following
transplantation of syngeneic RAG proficient BM.

When sublethally-irradiated Bl/6 Ly5.2 RAG-2-/- mice were reconstituted with C57Bl/6 wild type

(WT) Ly5.1 T-cell depleted BM and despite successful reconstitution of T lymphopoiesis in the

thymus and B lymphopoiesis in the BM, most animals died between four and seven weeks later.

Figure 1.A shows the survival curve of a group of 25 RAG-2-/- mice from 5 individual

experiments reconstituted with T cell-depleted BM from WT syngeneic donors. Until about 33

days, 100% mice survived, but from then on there was a progressive decrease in survival with

only 20% of mice surviving beyond 50 days.

Figure 17: A. Survival curve of C57Bl/6.Ly5.1→C57Bl/6.RAG-2-/-.Ly5.2 BM chimeras.

Sub-lethally irradiated Ly5.2 RAG2-/- mice were transplanted with T cell depleted bone marrow from Ly5.1
C57Bl/6 mice. Shown is the pooled survival curve of 25 mice from four different experiments. Survival did
not differ between individual experiments.

Prior to day 33, mice began having diarrhoea and when groups of five to six mice were

individually weighed following BM transplantation (Figure 1B) there was progressive weight loss

from day 21 with mice loosing approximately 40% of their initial body weight by day 42. Thus,

diarrhoea and weight loss preceded death of the mice.
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Figure 1: B. Weight loss among BM chimeras.

Shown is the kinetic of mean weight loss in one group of six BM chimeras. Mice were weighed every
three days over a six-week observation period.

Inspection of the intestines from mice with diarrhoea showed that the lower third of the colon

was dilated with thickening of the wall. Histological analysis of this region (Figure 1C1) showed

characteristic features of IBD (Maloy et al., 2005), namely epithelial hyperplasia, extensive

lymphocytic infiltration of the lamina propria, crypt abscesses and destruction of the mucous

membrane with prominent ulceration.

Figure 1C1. Widespread lymphocytic infiltration in non-lymphoid organs of immuno-deficient mice after
bone marrow transplantation.

The upper picture is a photograph of H+E stained 3_m paraffin sections of the lower third of the colon
from Bl/6→RAG2-/- BM chimeras (Original magnification x100).

Histological analysis of other organs, for example the liver (Figure 1C2), also showed evidence

of lymphocytic infiltration.
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Figure 1C2. Widespread lymphocytic infiltration in non-lymphoid organs of immuno-deficient mice after
bone marrow transplantation.

The upper picture is a photograph of H+E stained 3_m frozen sections of liver from Bl/6→RAG2-/- BM
chimeras (Original magnification x400).

Moreover the architecture of secondary lymphoid organs was disturbed in that discrete lymphoid

follicles were absent (Figure 1C3).

Figure 1C3. Disorganised cellular architecture in lymphoid organs of immuno-deficient mice after bone
marrow transplantation.

The upper picture is a photograph of immunohistochemical analysis of 5_m frozen sections of spleen
from Bl/6→RAG2-/- BM chimeras (Original magnification x100). Sections were stained for peanut
agglutinin (red) and IgM (green).

Flow cytometric analysis of LN cells from mice with diarrhoea was carried out. Results obtained

(Figure 2) showed that whereas there was clear evidence of B cell (left cytogram) and T cell

(middle cytogram) reconstitution, further analysis of gated CD4+ cells (right cytogram) showed

that many had up-regulated CD69 and CD25 expression. Two color analysis of gated CD4+ T

cells showed that ~19% were CD69+CD25-, 18% CD69+CD25+ and 12% CD69-CD25+. Thus,

CD4+ T cells from affected mice showed an activated phenotype.
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Figure 18: Lymphocyte reconstitution in sub-lethally-irradiated C57Bl/6.Ly5.1_C57Bl/6.RAG-2-/-.Ly5.2 BM
chimeras.

Shown are two-color cytogram displays of LN cells from BM chimeras stained with the indicated mAb. In
each panel, quadrants are placed so that 100% unstained cells were contained in the lower left quadrant.
In the upper right panel, the % positive cells in each quadrant is indicated. The left panel shows B cell
reconstitution, the middle panel that of CD4 and CD8 T cell subpopulations and the right panel expression
of CD69 and CD25 on gated CD4+ T cells. See text for details.

Onset of disease in RAG-2-/- recipient mice is mediated by T cells.

In RAG-2-/- mice reconstituted with syngeneic WT BM, onset of diarrhoea and weight loss

coincided with a state of relative lymphopenia during the initial phase of lymphocyte

reconstitution. In addition, CD4+ T cells from affected mice showed evidence of extensive

activation. Therefore, to see whether T cells were responsible for initiating disease, RAG-2-/-

mice were reconstituted with BM from donors incapable of reconstituting the T cell

compartment, namely Ly5.1 CD3ε-/- mice. In six Ly5.2 RAG-2-/- mice reconstituted with Ly5.1

CD3ε-/- BM and in which the BM B cell compartment was fully reconstituted with Ly5.1 B cells,

none developed signs of diarrhoea or weight loss with all mice surviving until six months

following reconstitution (Figure3). Thus, T cells were responsible for initiating disease in BM-

transplanted mice.

Figure 19: Absence of weight loss among BM chimeras transplanted with CD3ε-/- bone marrow.
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Shown is the kinetic of mean weight loss in two groups of BM chimeras. The first group (n=6) was RAG-

/- mice transplanted with wild type bone marrow and the second group (n=5) were RAG-/- mice
transplanted with CD3ε-/- bone marrow Mice were weighed every three days over a six-week

observation period.

Co-transplantation of regulatory T cells protects RAG-2-/- recipient
mice from disease.

RAG-2-/- mice reconstituted with syngeneic BM manifested signs of IBD and this was initiated by

T cells. Previous experiments have shown that naturally arising regulatory T cells could protect

lymphopenic mice from IBD (Martin et al., 2004). Therefore, to see if naturally arising regulatory

T cells could protect BM transplanted mice from IBD, Ly5.2 RAG-2-/- recipient mice were

reconstituted with a mixture of T cell-depleted Ly5.2 BM together with 1-3x105 sorted Ly5.1

CD4+CD25+ LN cells. In three groups of experimental mice, no diarrhoea or weight loss was

noted. Gross inspection of the intestines showed them to be normal and histological analysis of

the lower third of the colon confirmed this (Figure4) showing a completely normal picture.

Figure 20A

Figure 20B
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Absence of lymphocytic infiltration in non-lymphoid organs of bone marrow transplanted, regulatory T
cells coinjected immuno-deficient mice.

Hematoxylin and eosin staining of the gut in RAG2-/- mice transplanted with bone marrow cells along
with CD4+CD25+ T cells. The luminal epithelial is intact and thin, there is no lymphocytic infiltration
detectable, and the crypt size is limited. (Original magnifications, x100)

Histological analysis of other organs from these mice showed the total absence of lymphocytic

infiltration. Moreover secondary lymphoid organs showed a normal architecture. However,

relatively large numbers of germinal centers were present in the spleen. This finding strongly

suggests that, although not showing signs of disease, an immune response was ongoing in

these mice.

Figure 21: cellular architecture in lymphoid organs of immuno-deficient mice after bone marrow
transplantation and co-injection of Treg.

The upper picture is a photograph of immunohistochemical analysis of 5_m frozen sections of spleen
from Bl/6 + Treg→RAG2-/- BM chimeras (Original magnification x100). Sections were stained for peanut
agglutinin (red) and IgM (green)

The phenotype of the transferred Ly5.1+ CD4+CD25+ T cells as well as that of the cohort of T

cells derived from the BM donor was analyzed by three-color flow cytometry. Figure 6 shows the

results of a typical experiment of spleen cells seven weeks after BM transplantation. Thus, 0.2%

of gated lymphocytes expressed Ly5.1, the Ly5 allotype of the injected CD4+CD25+ LN T cells

(Figure 6.A, histogram). Further analysis of gated Ly5.1+ spleen cells (right cytogram displays)

showed that they were practically all CD4+CD8- cells (right upper cytogram) with the vast

majority (80%, lower right cytogram) retaining the CD25+ phenotype.
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Figure 22A. CD4+CD25+ T cells co-injected into recipient mice survive for up to 9 weeks following BM
reconstitution

Sub-lethally-irradiated (500Rad) Ly5.2.RAG2-/- mice were reconstituted with T cell-depleted Ly5.2.Bl/6
WT BM together with sorted Ly5.1+CD4+CD25+ T cells. The top histogram is of spleen cells from one of
four similar experiments stained with FITC-labeled anti-Ly5.1mAb. and shows the presence of residual
Ly5.1+CD4+CD25+ regulatory T cells at this time. Cytogram displays show the two color staining profiles
of gated donor-derived (left, Ly5.1-) and injected Ly5.1+CD4+CD25+ (right) T cells stained for CD4 and
CD8 (upper cytograms) or CD4 and CD25 (lower cytograms). Figures in the upper right quadrant of each
panel show the % of positive cells in each quadrant. See text for details.

Thus, the transferred Ly5.1+ cells were not contaminated by cells capable of reconstituting the

host thymus and they persisted in recipient mice for up to ten weeks after BM transplantation.

When gated on Ly5.1-negative (namely Ly5.2+) cells, the spleen contained the expected

subpopulations of donor-derived CD4+ and CD8+ T cells, with in this case a high CD4/CD8 T

cell ratio (~4) (left upper cytogram). However, the proportion of CD25+ cells among the CD4+

subpopulation was relatively low (~7%, left lower cytogram).  As is the case for naturally-arising

CD25+ regulatory T cells, donor-derived CD4+CD25+ cells had a slightly decreased CD4

expression (Bosco et al., 2006b). Additional staining of LN cells from such chimeras with CD4,

CD25 and CD69 showed that co-transplantation of Treg prevented, to a large extent, the
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activation of BM donor-derived T cells. Thus only 11.6% of BM donor CD4 cells expressed the

early activation marker CD69 (Figure 6B) compared with 36.6% in the chimera without co-

transferred Tregs (Figure 2). Moreover, most gated CD25+ cells were now CD69-negative

(Figure 3.B), confirming that they were not simply activated CD25+ T cells. Thus, co-transfer of

naturally arising CD25+ regulatory T cells to BM transplanted mice inhibits the activation of BM-

derived T cells and also protected mice from IBD.

Figure 6B. Donor-derived CD4+ T cells retain a naive phenotype.

The two-color cytogram shows the CD69 versus CD25 staining profile of Bl/6 WT-derived CD4 cells in
C57Bl/6.Ly5.2→C57Bl/6.RAG-2-/-.Ly5.2 BM chimeras co-injected with sorted Ly5.1.CD4+CD25+ T cells.

Co-transplantation of regulatory T cells prevents the formation of

auto-antibodies in RAG-2-/- recipients.

Given the fact that BM transplanted mice showed signs of systemic auto-immunity, we decided

to investigate whether the serum from such mice contained auto-antibodies. For this, frozen

sections of kidneys from RAG-2-/- mice were incubated with serum from BM transplanted RAG-

2-/- mice reconstituted with or without Tregs and the presence of autoantibodies determined by

indirect immunofluorescence.

Figure 23A: Immunofluorescent detection of anti-nuclear autoantibodies
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A. Kidney sections of RAG-/- mice were incubated with serum samples of RAG-/- mice transplanted with
bone marrow cells alone (left picture), or co-injected with CD4+CD25+ T cells (middle picture) and goat
anti-mouse IgG FITC labeled antibody was used to detect anti-nuclear autoantibodies The right panel
shows a negative control without the addition of serum. (original magnification, x200)

Figure 7B: Co-injection of regulatory T cells inhibits the formation of antinuclear auto-antibodies in BM
chimeras

Shown are the titers of anti-nuclear auto-antibodies, detected by indirect immunofluorescence as
described, in sera from BM chimeras co-injected (left, BM+Treg) or not (right, BM) with sorted
CD4+CD25+ regulatory T cells.

As shown in Figure 7B, whereas the serum of BM-transplanted mice contained readily-

detectable anti-nuclear antibodies, they were undetectable in BM recipients co-transferred with

Tregs.

Normal Bl/6 mice do not develop symptoms of auto-immunity

following BM transplantation

Auto-immunity was only seen when RAG-2-/- recipients were reconstituted with T cell-depleted

BM. Normal Bl/6 mice reconstituted with T cell depleted BM did not suffer from IBD. To see

whether radio-resistant, host-derived, naturally-arising CD25+ regulatory T cells were

responsible for protecting mice from IBD, a series of chimeras was established in which normal

Ly5.1+ Bl/6 mice were reconstituted with T cell-depleted Ly5.2+ Bl/6 BM alone. As expected, no

diarrhoea or weight loss was seen in normal Bl/6 recipients. Again, histological analysis of

intestines and other organs showed no abnormality (not shown). Flow cytometric analysis of LN

cells at six weeks following BM transplantation showed the presence of a significant (14%)

population of host-derived (Ly5.1+) cells (Figure 8.A, histogram) and further analysis of these

gated host-derived LN cells (right cytograms) showed that most (93.5%) were T cells, being

74% CD4+ and 19.5% CD8+. Further analysis of the CD4+ subpopulation (lower right cytogram)

showed that 18.7% (13.9/74.5) were CD25+ cells, the latter again having a slightly reduced CD4

expression as is characteristic of Treg. Parallel analysis of the donor-derived (Ly5.1-negative)
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population showed that, as expected, the majority (67%, lower left quadrant) expressed

neither CD4 nor CD8 and were mostly CD19+ B cells. Indeed, after six weeks, analysis of the

thymus and BM in such chimeras showed that 98.8% ± 0.7 (n=5) of thymocytes and 100% BM

CD19+ cells were donor-derived. This result showed that with this irradiation dose, the

progenitor T and BM B cell lineage was fully reconstituted with donor-derived cells and that

there was no detectable population of surviving host-derived B cells (not shown). Donor-derived

T cells (23.4% CD4 and 9% CD8) had a normal CD4:CD8 ratio and additional analysis of the

CD4+ cells (lower cytogram) showed a distinct population of 7.5% CD25+ cells.

Figure 8A: Radio-resistant, host-derived CD4+CD25+ regulatory T cells protect WT recipients from
autoimmune disease.

The top histogram is of LN cells from C57Bl/6.Ly5.2→C57Bl/6. Ly5.1 BM chimeras stained with FITC-
labeled anti-Ly5.1 mAb. and shows the presence of 14% residual, host-derived, cells. Below are
cytogram displays of cells stained for CD4 and CD8 (upper cytograms) or CD4 and CD25 (lower
cytograms) and gated for either donor (Ly5.1-, left) or host (Ly5.1+right) derived cells. C57/Bl6 Ly5.1+ mice
were irradiated with 9.5 Gy before being reconstituted with T cell-depleted BM cells from Bl/6 Ly5.2+ mice.

To show that radio-resistant, host CD4+CD25+ T cells possessed regulatory function, we carried

out a classical T cell co-culture assay (Thornton and Shevach, 1998) using naïve
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Ly5.1+CD4+CD25- responder T cells and as potential inhibitory cells host-derived

Ly5.2+CD4+CD25+ T cells from Ly5.1_Ly5.2 BM chimeras six weeks after BM transplantation.

Results obtained (Figure 8B) show clearly that when stimulated with anti-CD3ε mAb in the

presence of irradiated APC, naïve T cells alone proliferated normally (left stippled bar) but that

addition of Ly5.2+CD4+CD25+ host-derived T cells from chimeras inhibited this proliferation (right

filled bars). Thus, the host-derived CD4+CD25+ subpopulation that survived lethal irradiation

possessed classical T regulatory activity.

Figure 8B. Host-derived radio-resistant CD4+CD25+ T cells retain regulatory T cell function.

Shown are the 3H thymidine counts from cultures containing Ly5.1+CD4+CD25- responder naive T cells
cultured either alone (left column) or together with sorted Ly5.2+CD4+CD25+ host-derived cells from
C57Bl/6.Ly5.→C57Bl/6. Ly5.2 BM chimeras at the indicated ratios. Cells were cultured as described in
Methods for 72 hours with anti-CD3 mAb and irradiated spleen cells as APC. Each column represents the
mean of 3H-thymidine incorporation from triplicates wells.

Compared with donor-derived cells, the host-derived Ly5.1+CD4+ subpopulation was relatively

enriched in CD25+ cells (Fig 8A, bottom cytograms). This suggested that CD25+ T cells might

preferentially survive a lethal dose of irradiation. The possibility also existed that host-derived

CD4+CD25+ T cells were the progeny of the transient, host-derived, cohort of thymocytes

generated following irradiation and BM reconstitution (Hori et al., 2003). To determine whether

the thymus was required for the appearance of these peripheral CD4+CD25+ cells, recipient

adult mice were first thymectomized and one week later, irradiated and reconstituted with T-cell-

deficient RAG-2-/- BM. In these thymectomised mice, any surviving T cells must have been in an

extra-thymic location at the time of irradiation. Flow cytometric analysis of LN cells from such a

chimera at 5 weeks following reconstitution showed that about 3% were CD4+ TCRβ+ T cells

and about 38% of these expressed CD25 (Figure 9).
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Figure 24: Preferential survival of CD4+CD25+ host T cells following irradiation.

Shown is a cytogram display of LN cells from a six week-old B/6 mouse that had been thymectomised,
one week later 4.5 Gy body-irradiated, reconstituted with BM from Bl/6.RAG2-/- donors and stained with
the indicated markers. As shown, about 35% (0.84/2.96) of surviving host-derived CD4 cells expressed
CD25.

However, it should be noted that the number of host-derived T cells in thymectomized chimeras

was dramatically lower than in euthymic controls. Thus the majority of host peripheral T cells in

BM chimeras are the progeny of the cohort of thymocytes generated following irradiation and

BM reconstitution.

Regulatory T cell depleted Bl/6 mice suffer from IBD following BM

transplantation

To check whether among radio-resistant cells, regulatory T cells were the ones responsible for

protecting the mice against IBD, we depleted mice of Tregs prior to irradiation and BM

reconstitution. It has been previously shown that injection of anti-CD25 mAb in vivo depletes the

regulatory T cell compartment (Oldenhove et al., 2003), and several groups have used this

approach to boost anti-tumor immune responses (Dannull et al., 2005). Anti-CD25 mediated

depletion might not eliminate all regulatory T cells (Fontenot et al., 2005b; Kohm et al., 2006),

nevertheless so far it is the only method of eliminating the majority of regulatory T cells in vivo.

Therefore, groups of 5 Ly5.2+Bl/6 mice received either a single 0.5mg dose of PC61 anti-CD25

mAb intra-venously or PBS as control. After 5 days, mice were lethally irradiated (8Gy) and

subsequently reconstituted with T cell depleted Ly5.1+Bl/6 wild type BM. Three weeks after

reconstitution, mice started losing weight and by 6 weeks anti-CD25-treated mice had lost 34%

of their initial body weight (Figure10), accompanied by extensive diarrhea. Out of 5 mice, 1 died

after 4 weeks and the other 4 were sacrificed 7 weeks after transplantation according to

Institutional guidelines due to their deteriorating health.
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Figure 25: Mice depleted of regulatory T cells suffer weight loss after BM reconstitution.

Ly5.2+Bl/6 mice were lethally-irradiated with 9.5Gy and then transplanted with T cell depleted bone
marrow cells from Ly5.1+C57Bl/6 mice. Bone marrow transplanted Bl/6 mice were weighted every 7 days
for 6 weeks. The above figure represents the mean weight variation from one group of five mice.

 Flow cytometry analysis with an anti-CD25 mAb recognizing a CD25 epitope distinct from that

recognized by PC61, the CD25 mAb used for in vivo depletion, showed that CD25+ cells had

been reduced by between 92.5% and 99.9%. In addition, in the absence of CD25+ cells,

surviving CD4+CD25- cells were in a more activated state as shown by enrichment for CD69+

cells (Figure 11).

Figure 26: Donor-derived CD4+ T cells show an activated phenotype when mice are depleted from
regulatory T cells prior to bone marrow transplantation.

The two-color cytogram shows the CD69 versus CD4 staining profile of lymph nodes Bl/6 WT-derived
CD4 cells in C57Bl/6.Ly5.1→C57Bl/6.Ly5.2 BM chimeras treated with anti-CD25 MAb prior to bone
marrow transplantation.

However, clinical parameters were not as severe as in RAG2-/- recipients presumably because,

as shown by others, some regulatory T cell activity still remains following anti CD25 mAb

depletion (Fontenot et al., 2005b; Kohm et al., 2006).
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Discussion

Bone marrow transplantation, whether by haplo-identical or non-identical grafts, is a frequently

used clinical procedure for the reconstitution of the immune system following chemotherapeutic

and irradiation treatment (Van Bekkum, 2003). One of the major complications of such a

procedure is the appearance of GVH especially in cases were patients are transplanted with BM

from haplo-disparate donor. However, and thus far for largely unknown reasons, a similar type

of GVH is also seen even when a haplo-identical graft is used. Clinically, this is marked by

cutaneous, hepatic and gastrointestinal infiltrations (Nakase et al., 2005). In this report, we have

investigated this phenomenon in a mouse model of syngeneic BM transplantation. These

studies were initiated because lethally or sub-lethally irradiated immuno-deficient RAG-2-/- mice

reconstituted with either T cell-depleted BM or in vitro-generated T cell-committed lymphoid

progenitors developed diarrhoea and weight loss, frequently dying four to seven weeks after

reconstitution (Balciunaite et al., 2005b). Here, we show that so-called naturally arising

regulatory T cells, either transferred together with the bone marrow graft, or derived from

endogenous radio-resistant T cells of the host, protect recipient mice from developing auto-

immunity. In corollary, depletion of Treg in WT mice prior to BM transplantation resulted in the

appearance a relatively mild, non-lethal, disease.

Reconstituted mice developed diarrhoea and weight lost. Histological analysis of the lower third

of the colon showed the classical signs of inflammatory bowel disease (IBD), namely epithelial

hyperplasia, extensive lymphocytic infiltration of the lamina propria, crypt abscesses and

destruction of the mucous membrane with prominent ulceration (Figure 1). Initiation of this

disease was T cell-dependent as shown by absence of disease in mice reconstituted with CD3e-

/- BM (Figure 2). Transfer of naturally arising regulatory T cells prevented the appearance of IBD

in this model (Figure 2). Auto-immunity was only seen when RAG-2-/- recipients were

reconstituted with T-cell depleted BM and onset of IBD could be prevented by transferred

naturally arising CD25+ regulatory T cells. However, WT Bl/6 mice reconstituted with BM did not

suffer from IBD. One clear difference between RAG-2-/- and Bl/6 mice is the presence of a

mature T cells in the latter prior to irradiation. It is known that some thymocyte progenitors

(Ceredig and MacDonald, 1982) and peripheral T cells (Lowenthal and Harris, 1985) can

survive a lethal dose of irradiation. Indeed, it was shown some time ago that mitogen-activation

of normal mouse peripheral T or B cells rendered them more resistant to irradiation in vitro

(Lowenthal and Harris, 1985). In addition it as been recently reported that recipient CD4+ T cells

surviving irradiation can regulate chronic graft-versus-host disease in a B10.D2 (H-2d)→BALB/c

(H-2d) MHC-compatible, multiple minor histocompatibility antigen-incompatible BM

transplantation model(Anderson et al., 2004).
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Functional tests indicated that host-derived CD4+CD25+ cells inhibited the proliferation of anti-

CD3e-activated naïve responder T cells in vitro, thereby satisfying the criterion that they were

genuine regulatory T cells (Thornton and Shevach, 1998). Moreover, depletion of CD25+ cells in

lethally-irradiated Bl/6 WT mice prior to reconstitution led to development of IBD as observed

when using immuno-deficient hosts, although to a milder extent. Interestingly, naturally arising

CD25+ regulatory T cells (Treg) share many features with activated T cells, namely down-

regulation of CD4, CD3 and TCRb as well as expression of CD25(Bosco et al., 2006a; Kasow et

al., 2004). In addition, transcriptome analysis has shown that Treg contain abundant transcripts

of pro-survival genes, for example GITR (Nocentini et al., 1997) and more recently Bcl-xL has

been suggested to be up-regulated in Tregs(Minamimura et al., 2006). They are thought to be

constantly encountering their cognate self-antigen in the periphery and therefore to be in a

semi-activated state (Hsieh et al., 2004). However by comparing thymectomized mice

transferred with RAG-/- BM with WT recipients transplanted with WT BM, we could show that

most of the host radio-resistant regulatory T cells were probably derived from the thymus.

Anderson et al. recently reported that radio-resistant Tregs could prevent chronic GVH in a

mouse model of BM transplantation across multiple minor histocompatibility loci (B10.D2 (H-

2d)→BALB/c (H-2d)) (Anderson et al., 2004). Thus BALB/c RAG2-/- mice transplanted with BM

from B10.D2 develop a severe GVH whereas the same recipients transplanted with BM from

WT BALB/c, used as controls, stayed healthy. Unlike what we report here, the authors did not

describe any signs of syngeneic GVH. However, it should be noted that the mice in their

experiments were treated with antibiotics throughout the time course of the experiment. When

we treated our RAG2-/- BM recipients with antibiotics, we observed milder disease with more

animals surviving. These findings strongly suggest that the antigenic load, and more specifically

the gut flora, seem to play important roles in determining disease onset and evolution in this

experiment setting. In this context, it is worthwhile noting that mice prone to IBD do not develop

this disease when kept under germ-free conditions (Contractor et al., 1998; Madsen et al., 2000;

Mahler and Leiter, 2002; Panwala et al., 1998). We conclude that the syngeneic GVH described

in the present paper might be strongly influenced by antigen-driven T cell responses. This is

substantiated by the activated phenotype of T cells in RAG2-/- recipients. The fact that Tregs can

prevent both the activated phenotype and disease onset might suggest that they are controlling

the strength of this immune response.

Another parameter worthy of consideration is the age of the recipient mice. No sign of disease

was observed in sub-lethally irradiated neonatal RAG2-/-Bl/6 mice transplanted with WT

syngeneic BM. At least two mutually non-exclusive explanations could explain this. Firstly, the

antigenic load in neonatal mice may be dramatically lower than in adults and secondly the

neonatal thymus might be more efficient at generating Tregs.
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The T cell-induced auto-immune disease seen in immuno-deficient mice reconstituted with

syngeneic BM resembles, in many ways, the so-called syngeneic GvH disease seen in a

clinical setting. In our mouse model, Treg of either host or donor origin play a key role in

controlling both the severity of IBD and the appearance of auto-antibodies. Using reconstitution

of the lympho-hemopoietic system, after BM transplantation, development of autoimmunity is

clearly dependant upon the number of regulatory T cells. This leads us to propose that infusion

of such cells into BM transplant recipients should be considered as a treatment modality for the

prevention of syngeneic GVH.

Material and methods

Mice.

Ly5.1 and Ly5.2 C57BL/6 (Bl/6), Ly5.1 Bl/6 CD3ε gene deleted (CD3ε-/-) (Malissen et al., 1995)

and Ly5.2 Bl/6 RAG-2-/- (Shinkai et al., 1992) mice were maintained in our own animal SPF

facilities. Male and female mice were used at 8 weeks of age and all experiments carried out

according to Institutional guidelines. Adult thymectomy (ATx) was performed on six week-old

C57Bl/6 mice and mice were used 7 weeks later and absence of residual thymus tissue verified

at the time of autopsy.

Reagents and antibodies.

The following mAb were purchased from PharMingen (San Diego, USA): anti-CD25FITC (7D4),

anti-CD62LFITC (MEL-14), FITC or biotin-conjugated anti-CD8α (53-6.7), anti-CD69PE (H1.2F3),

anti-TCRβPE (H57-597). Anti-CD4PE (RM4-5) antibody was purchased from eBioscience (San

Diego, USA). The anti-Ly5.1FITC (A20) and anti-Ly5.2FITC (104) antibodies were produced and

labeled in our laboratory according to standard techniques. To reveal biotin-labeled antibody,

Streptavidin-APC (Becton Dickinson, San Diego, USA) was used. Anti-CD25 mAb PC61 was

purified from hybridoma culture supernatant by standard procedures.

Flow cytometric analysis and sorting.

Single-cell suspensions of thymus, spleen and lymph nodes were prepared in PBS

supplemented with 2% FBS and 0.2% sodium azide as described previously (Balciunaite et al.,

2005b). Cells were adjusted to 20–10 _ 106 cells/ml and 0.5–1 _ 106 cells incubated for 30 min

at 4°C with the indicated reagents at saturating concentrations as previously described. Stained

cells resuspended in PBS 2% FBS 0.2% azide containing propidium iodide (PI) were analyzed

using a FACSCalibur (Becton Dickinson) and data analyzed using CellQuest (Becton
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Dickinson). Viable lymphoid cells were defined by a combination of FSC, SSC and PI

fluorescence. Stained cells were sorted on a on a FACSAria (Becton Dickinson).

Bone marrow transplantation and adoptive transfer of regulatory T
cells:

Bone marrow cell suspensions from 3 to 5 Bl/6 donor mice were prepared by flushing femurs

and tibias with PBS using a 23g needle. After red blood cell lysis, T cells were depleted by re-

suspending cells in a mixture of rat IgM anti-CD90 (AT83) anti-CD4 (RL172) and anti-CD8α

(31M) monoclonal antibody (mAb) hybridoma supernatants and incubated for 20 min at 4°C

(Ceredig and Rolink, 2002). Following a washing step, antibody-coated cells were lysed by

adding rabbit complement (Low-Tox, Cedarlane, Canada) dissolved in serum-free Dulbecco’s

Modified Eagle’s Medium (DMEM). After incubation for 45 min at 37°C, cells were washed and

resuspended in DMEM prior to injection. To obtain naturally-arising regulatory T cells, spleen

cell suspensions from Ly5.2+ Bl/6 mice were stained with anti-CD4PE (RM4-5) and anti-CD25FITC

(7D4) antibodies and CD4+CD25+ cells sorted on a FACSAria. The purity of sorted cells was

always > 98%.

For in vivo regulatory T cell depletion, mice received one injection of anti-CD25 mAb (PC61;

0.5mg/injection i.v.) 5 days prior to irradiation and BM transplantation.

Viable BM and sorted cells were counted and resuspended in DMEM. Mice were reconstituted

with 200µl containing 3 x 106 T cell-depleted BM cells alone or together with 1-3x105 sorted

CD4+CD25+ cells. Recipient mice were γ-irradiated using a Cobalt source (Gammacell 40,

Atomic Energy of Canada, Ltd) four hours prior to reconstitution.  RAG-2-/- mice were irradiated

with 4Gy and Bl/6 mice with 9.5Gy. Chimeric mice were weighed once a week for up to 12

weeks and analyzed between 4 and 12 weeks. The origin and composition of lymphoid cells

was determined by means of the Ly5.1 and Ly5.2 markers.

Functional regulatory T cell assay:

The ability of CD4+CD25+ T cells from chimeras to inhibit the in vitro proliferation of naïve T cells

was carried out as previously described (Thornton and Shevach, 1998). Briefly, CD4+CD25-

naïve T cells and CD4+CD25+ isolated from chimeras were purified by sorting. Antigen-

presenting cells (APC) were T cell-depleted, irradiated syngeneic spleen cells from Bl/6 mice.

Control cultures contained 2.5x104 CD4+CD25- naïve responder T cells, 5x104 APC and 0.1µg

anti-CD3ε mAb. To test for inhibition, 2.5x104 CD4+CD25+, obtained from the indicated chimeric

mice were added. Cells were cultured in round-bottomed 96-well plates for 72 hours and

1µCi/well of 3H-thymidine was added for the last 8 hours prior to harvesting.
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Immunohistochemistry and histological staining:

Organs were snap frozen in Tissue-Tek OCT compound (Sakura Finetechnical, Tokyo, Japan)

and 5 _m sections cut on a cryostat. Sections were then fixed for 10 min in acetone and stored

at _20 °C. For staining, sections were covered with antibody solution at saturating

concentrations and incubated for 30 min at RT. For the second step, sections were washed in

PBS and incubated with a Neutralite Avidin-TXRD/PBS (Southern Biotech) solution for 15 min at

RT. Primary antibodies used included anti-CD90FITC, anti-IgMCy5 (M41) and biotinylated peanut

agglutinin (Vector laboratories). Slides were washed; one to two drops of a 1:1 mixture of PBS

and glycerin were placed onto the slide and covered with a coverslip (Harfst et al., 2005). A 10_

or 5_ objective was used for magnification. Intestines were fixed in 4% par formaldehyde,

embedded in paraffin, cut in 3 µm sections and stained with haematoxylin/eosin.

For detection of serum anti-nuclear antibodies, snap-frozen sections of kidneys from RAG-2-/-

mice were incubated with sera diluted 1:10 to 1:10,240 and bound antibodies revealed with a

1:50 dilution of FITC-labeled, mouse IgG subclass-specific secondary antibodies (Jackson

ImmunoResearch Laboratories). The pattern and titer of anti-nuclear antibodies were assessed

using an incident-light fluorescence microscope (Zeiss axioskope) and serum titer defined as

the highest dilution showing specific nuclear staining.



73

Part II: Auto-reconstitution of the T cell compartment by radio-

resistant hematopoietic cells following lethal irradiation and bone

marrow transplantation

Nabil Bosco, Lee Kim Swee, Angèle Bénard, Rhodri Ceredig and Antonius Rolink

Introduction

In man, syngeneic or allogeneic bone marrow (BM) transplantation (BMT) with

BM donors is a frequently used treatment modality, which has curative results for a variety of

haematological disorders such as malignant or genetic-based immune deficiencies.

Nevertheless, the restoration of an adaptive immune system (with both B and T cells) in

transplanted patients is a very slow process and during the initial reconstitution phase, patients

are lymphopenic.  T cell recovery plays a key role in the clinical recuperation of patients post-

BMT as they lack adequate T cell-mediated immunity: they often succumb to one of several life-

threatening infections, especially cytomegalovirus (CMV) infections (reviewed in Gress et al.,

2007; Hakim and Gress, 2005). Roosnek and colleagues recently showed that the presence of

residual host- (surviving the conditioning regimen) or donor-derived (persisting and expanding

from the BM inoculum) CMV-specific CD8+ memory T cells could provide efficient anti-viral

immunity and help patients combat CMV infections in the lymphopenic period following BMT

(Chalandon et al., 2006). Therefore, in man, it seems that donor and recipient immune infection

history should be taken into account in designing the best BMT protocol strategy including

whether the donor BM should be T cell depleted and how recipients should be conditioned. The

ability of patients, especially adults, to regenerate T lymphocytes after BMT or conditioning

therapy-related depletion of the host mature T lymphocyte compartment has emerged as a

critical problem in clinical medicine. However, studies in man are difficult to control

experimentally and animal models are required to dissect and improve BMT outcomes.

We and others have shown that host-derived T cells are present in lethally

irradiated mouse BM chimeras (Anderson et al., 2004; Benard et al., 2006; Komatsu and Hori,

2007). However, the origin and function of these cells were not fully-characterized. This

prompted us to examine more carefully the host-derived T cell pool in chimeric mice. We

recently showed that host-derived T cells were enriched in extra-thymically located, radio-

resistant, functional CD4+CD25+ regulatory T cells which could prevent a syngeneic graft-

versus-host (GvH) disease following BMT (Benard et al., 2006).

The object of the current study was to characterize further host-derived T cell

development and function in chimeric mice. To this end, we generated chimeras by
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reconstituting lethally-irradiated C57BL/6 mice with either syngeneic RAG2-/- or CD3ε-/- BM. In

such chimeras, donor-derived BM progenitors are not able to generate T cells and surviving T

cells will be exclusively host-derived. We showed that host T cells contain a mixture of de novo-

generated naïve T cells and surviving peripheral memory-like cells. We found that host-derived

thymopoiesis was initiated by DN1-2 prothymocytes having a conventional (CD44high, CD117high,

CD25-/+) phenotype and we further demonstrate that T lymphopoiesis recapitulates normal

thymic ontogeny after BMT. Additionally, by comparing host-derived T cell numbers in non-

thymectomized (NTX) versus thymectomized (TX) hosts, we observed that the differentiation of

host-derived thymocytes provided an important cohort of naïve, functional, mature T cells

having a large TCR repertoire and accounting for up to 35% of the total T cell number found in a

control chimeric or unmanipulated mice. Moreover, by using TX hosts, we could show that there

was a second population of extra-thymically located, CD44highCD62L- memory-phenotype,

functional T cells having an oligoclonal TCR repertoire. These host-derived T cells might provide

a first line of defence against infections during recovery from lymphopenia after BMT.

Results

Host-derived T cells following BMT in lethally-irradiated mice.

More than 30 years ago, it was already recognised that in lethally irradiated BM chimeras, part

of the T cell compartment was of host origin (Ceredig and MacDonald, 1982; Hirokawa et al.,

1985; Kadish and Basch, 1975; Lesley et al., 1990; Sharrow et al., 1983). However, the precise

origin and functional activity of these host-derived T cells has not been thoroughly analysed. In

order to study host-derived lymphocytes, we reconstituted lethally-irradiated C57Bl/6 CD45.2

mice with T-cell depleted (TCD) BM from C57Bl/6 CD45.1 donors. After six months, to

characterise the host- and donor-derived lymphoid compartments of chimeric mice, we stained

splenocyte suspensions with combinations of CD45 allotype-specific antibodies, CD3 for T cells,

and CD19 for B cells and analysed them by FACS. As expected, in these syngeneic bone

marrow transplantation (BMT) experiments, all recipient mice survived (10/10) indicating a good

BM engraftment and there was no evidence of Graft-vs-Host disease (GvHD). However, a

sizeable host-derived CD45.2+ lymphocyte population survived even as long as 6 months after

BMT. Host-derived lymphocytes in chimeric mice were exclusively CD3+ and represented about

5% total splenic T cells (Figure 1A).

Figure 1: Host-derived T cells are present in lymphoid and peripheral organs of mouse BM chimeras.
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Figure 1A

Experimental design. Lethally-irradiated C57Bl/6 CD45.2 mice were reconstituted with T-cell depleted
(TCD) BM from C57Bl/6 CD45.1 donors.

After six months, splenocyte suspensions were stained for CD3, CD19 and CD45 allotype. A typical result
of FACS analysis is shown. CD3+ T cells and CD19+ B cells were gated as shown in left dot-plot and the
proportion of CD45.2+ (host-derived cells) was quantified as shown in the right histograms (N.D., not
detected).

Importantly, the absence of host-derived CD19+ B cells ruled out the possibility that host-derived

multi-potent cells had survived in our chimeras; this was further confirmed by analysis of the BM

where all progenitor compartment were donor-derived (data not shown). Additional phenotypic

analysis of host-derived T cells showed that both CD4+ and CD8+ cells were present and that

they were enriched in CD44high CD62L+/- cells compared with their donor-derived partners

(Figure 1B).
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Figure 1B

In the upper dot-plots, shown are CD4 and CD8 distribution in splenocytes. In the middle and lower dot-
plots data shown are CD44 and CD62L expression on gated CD4+ (middle dot-plots) or CD8+ (lower dot-
plots). Cells were either CD45.1+ donor-derived (left dot-plots) or CD45.2+ host-derived (right dot-plots).
Shown in B-C are representative results of 5-10 mice analyzed. Numbers in the quadrants indicate
percentages of cells.

Thus, host-derived T cells are still present in chimeric mice and are mostly composed of

CD44high memory-like cells (Tough and Sprent, 1994). To evaluate whether host-derived T cells

could be found in other locations, we studied lymphocytes isolated from the blood, gut, liver,

lung, lymph nodes and skin of chimeric mice 6 months after reconstitution. Again, none of these

organs contained host-derived B cells (data not shown) but did contain host-derived T cells in

different proportions. As shown in figure 1C, about 3-5% of blood, LN and spleen, and 10-20%

of gut, liver, lung and skin CD3+ T cells were host-derived. Together, these data revealed the

presence of a substantial pool of host-derived mature T cells in chimeric mice despite lethal

irradiation preceding BMT.
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Figure 1C

T cells chimerism in blood (Bl.), gut, liver (Liv.), lung (Lu.), lymph nodes (LN), spleen (Spl.) and skin (Sk.)
was analysed. Bar histogram represents the mean ± SD of host-derived T cells (CD3+CD45.2+) from 3-5
mice.

Following BMT most host-derived T cells are derived from a single

wave of thymic T cell differentiation.

Multiple origins could explain the persistence of host-derived mature T cells in chimeric mice.

Firstly, host-derived T cell progenitors could survive and generate T cells. These progenitors

could reside either within the thymus or elsewhere and generate either thymus-derived T cells

or extrathymic-derived T cells respectively. Secondly, some host-derived mature T cells could

represent radio-resistant, resident T cells. These hypotheses are not mutually exclusive and to

discriminate between them, we generated several chimeric mouse combinations as described

below.

To demonstrate that the host thymus is still able to produce T cells following lethal irradiation

and BMT, chimeras were generated by reconstituting lethally irradiated C57Bl/6 mice with

C57Bl/6.RAG2-/- BM. In such chimeras, donor-derived BM progenitors are not able to generate

T cells and surviving T cells will be exclusively host-derived. We tracked host-derived T cells in

the thymus and spleen from 1 to 6 weeks following BMT. The total number of thymocytes

rapidly decreased and reached about 2 x 106 cells one week post-BMT. Reduction of cell

number occurred in each CD4 and CD8-defined thymocyte subset, but the degree of reduction

varied among the subsets, possibly reflecting their relative radio-sensitivity (CD4+CD8+ double

positive (DP) > CD4+CD8- or CD4-CD8+ single positive (SP)). Figure 2A shows the changes in

proportion of each T cell subsets in thymus and spleen.

Figure 2: Host-derived T cells in lethally irradiated chimeras are mainly coming from a transient wave of T
cell differentiation within the thymus.
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Figure 2A

Shown in the upper part is the experimental design. Lethally-irradiated C57Bl/6 mice were reconstituted
with total BM from C57Bl/6.RAG2-/- donors. Thymus and spleen were analyzed at week 1, 2 and 6 post-
BMT. Shown are CD4 versus CD8 staining on viable lymphocyte gate. Numbers on the top of the
quadrants and in the quadrants indicate mean organ cell numbers ± SD and percentages of cells
respectively.

As reported by others (Penit and Ezine, 1989), DP thymocytes are highly susceptible to

irradiation and, in the first week following BMT, decreased rapidly from 89.6% in control non-

irradiated mice to 3.3%. In contrast, at one week post-BMT, we observed a relative enrichment

of CD4+ SP cells, representing 73.2% of total thymocytes whereas they represented only about

10% of thymocytes in control mice. At two weeks post-BMT, thymocyte number had increased

to reach a maximum of 45 x 106 cells, representing about 50% of control thymus cellularity. At

that time, the CD4 and CD8 distribution was very similar to controls.  Additionally, phenotypic

analysis revealed that SP thymocytes in chimeric mice were indistinguishable from controls,

expressing high level of CD3 and TCRβ, and about 5% of CD4+ SP cells were FoxP-3+ (data not

shown). At six weeks, thymus cellularity had decreased to less than 1 x 106 cells. At this time,

the thymic rudiment contained exclusively host-derived SP cells.

In the spleen of these chimeras, results reflected what we observed in the thymus. Thus, as

early as one week post-BMT, there was a dramatic loss of cellularity and spleens contained a
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mean of only 10.8 x 106 cells. CD4+ T cells represented almost all radio-resistant T cells. At 2

weeks post-BMT, splenocyte number peaked at 17.1 x 106 cells, finally decreasing to ~8-10 x

106 cells at 6 weeks. Throughout this time, the numbers of CD4+ T cells exceeded that of CD8+

T cells. The percent CD4+ T cells at 1, 2 and 6 weeks post-BMT were 8.5, 2.9 and 39.8 whereas

those of CD8+ cells were 1.1, 1.4 and 6.7 respectively. Interestingly and as already documented

by others, host splenocytes contained about 0.4 % DP cells; this could reflect some degree of

so-called extra-thymic T cell differentiation (Allman et al., 2001; Antica and Scollay, 1999;

Garcia-Ojeda et al., 1998; Terra et al., 2005). Thus, as we (Ceredig and MacDonald, 1982) and

others (Kadish and Basch, 1975; Penit and Ezine, 1989; Sharrow et al., 1983) have previously

shown, following lethal irradiation and BMT, a single wave of host-derived reconstitution

occurred (herein referred as auto-reconstitution), but the nature of the radio-resistant T cell

precursors responsible for this remained undefined. Additionally, we observed a significant

number of mature T cells in the periphery as long as 6 weeks post-BMT. It should be noted that

this pool of host T cells could comprise a mixture of (i) radio-resistant mature peripheral T cells

that had survived and expanded (ii) T cells derived de novo from the host thymus and (iii) some

not well-characterized T cells generated via extra-thymic differentiation.

Next, to clarify the relative contribution of these processes to the host-derived T cell pool, we

generated chimeras where C57Bl/6.CD3ε-/-.CD45.1 BM was transferred into lethally irradiated

C57Bl/6.CD45.2 hosts which were either thymectomized (referred herein as TX) or not

thymectomized (referred herein as NTX). In these chimeras, all mature T cells would be host-

derived with those in TX recipients being of only extra-thymic origin and those in NTX recipients

a mixture of extra-thymically and thymus-derived cells. Thus, the difference in T cell numbers

between these two groups of chimeras would reveal the contribution of thymic-derived T cells to

the overall pool. As shown in figure 2B, the donor-derived B cells in the spleen of NTX and TX

were very similar to controls and represented 50-60 x106 cells or 70-87% splenocytes

respectively 2-3 months post-BMT. In contrast, the mean number of host-derived T cells was

about 20 x106 in control chimeras, decreasing to ~7 x106 cells in NTX and to only about 2 x106

cells in TX chimeras.
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Figure 2B

Shown in the upper part is the experimental design. Lethally-irradiated C57Bl/6.CD45.2 mice were
thymectomized (TX) or not (NTX) and reconstituted with BM from C57Bl/6.CD3ε-/-.CD45.1 donors.
Chimeras were analyzed 8-12 weeks post-BMT. Bar histograms represent total B (black bars) and T
(white bars) lymphocyte numbers ± SD (n=10) in controls and chimeras. , P <0.01.

Thus, in the spleen, 5 x106 host-derived T cells were thymus-derived whereas only 2 x106 were

from an extra-thymic origin. In TX chimeras, histological analysis of spleen sections revealed

abnormal follicular architecture with small, scattered, T cell areas reflecting their severe

lymphopenia. In contrast, spleen sections from NTX animals displayed normal features (figure

2C).

Figure 2C
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Frozen spleen sections from chimeras described in figure 2B were prepared and stained as described
in materials and methods. B cells appear in red and T cells in green. Scale bar, 100 µm.

Our results show that (i) in chimeras where all T cells are host-derived, about 35% [(7/20)

x100] of the normal T cell pool could be formed and maintained and (ii) more importantly, at

least 71% [100 – (2/7 x100)] of host-derived T cells are derived from the thymus. This value

may be an underestimate because it assumes that the extra-thymically derived T cell pool

remained constant in TX versus NTX recipients.

Thymus-derived host T cells originate from radio-resistant DN1-2 like
thymocytes.

The above results demonstrated that most (>70%) host-derived mature T cells were derived

from a single wave of thymocyte differentiation. The presence of a host-derived thymocyte

precursor has been proposed (Ceredig and MacDonald, 1982; Kadish and Basch, 1975; Penit

and Ezine, 1989; Sharrow et al., 1983), however, whether it is an intra-thymic “classical”

progenitor or an “atypical” cell was not resolved. Indeed, it had been proposed recently (Maillard

et al., 2006) that reconstitution of the thymus in the BM chimeras was derived directly from an

“atypical” CD25+CD44-CD117- DN3-like precursor. Therefore, complementary approaches were

undertaken to further characterise host-derived thymocyte precursors.

As host-derived mature lymphocytes were almost exclusively T cells, we concluded that this

radio-resistant precursor should reside within the thymus where T cell precursor commitment is

thought to take place. In order to demonstrate that a pool of intra-thymic T cell precursors

survive lethal irradiation and can differentiate into mature thymocytes, we carried out foetal

thymus organ culture (FTOC) experiments with foetal thymus lobes from lethally irradiated

pregnant mice. As shown in figure 3A (and data not shown), one week after FTOC, irradiated

thymi contained TCRβ+ DP and SP cells in a proportion similar to that of controls. The same

experiments were carried out with pieces of adult thymus in organ culture (ATOC). Again, we

observed typical signs of thymocyte differentiation and despite lethal irradiation, organ-cultured

adult thymi contained TCRβ+ DP and SP cells one week after ATOC (data not shown).

Figure 3:  Radio-resistant DN1-2 thymocyte precursors reside in the thymus following lethal irradiation.
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Figure 3A

Shown are the CD4 versus CD8 profiles of day-7 FTOC with (right) or without (left) lethal irradiation (950
cGy) at day 0. Numbers in the quadrants indicate percentages. Shown is one representative experiment
out of 5 conducted independently.

Next, C57Bl/6 mice were reconstituted with RAG2-/- BM and treated with anti-IL-7Rα mAb

immediately after BMT (figure 3B, right graph). At two weeks post-BMT, following anti-IL-7Rα

treatment, the number of host-derived T cells was greatly diminished with thymocyte cellularity

reduced from ~50 to 1 x 106 cells. This reduction in cellularity was associated with a block of DN

to DP stage transition (figure 3B, left panels). We conclude that some T cell precursors survive

lethal irradiation, reside within the thymus and that their differentiation is IL-7 dependent.
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Figure 3A

The same chimeras as in figure 2A were done and following BMT either injected i.p. with 300 µg of anti-
IL-7R blocking antibody (A7R34) in 200 µl of PBS once a week (treated) or with PBS only (sham). Two

weeks post-BMT, mice were killed and their thymus analysed by FACS. Shown are CD4 versus CD8
profiles (left dot-plots) and mean thymocyte numbers ± SD (n=3) in a logarithmic scale (right histogram
bars). , P <0.05.

The properties of these thymocyte progenitors were reminiscent of those of typical DN1-2

thymocyte precursors (Balciunaite et al., 2005a; Balciunaite et al., 2005c; Ceredig and Rolink,

2002). We therefore enriched DN cells from C57Bl/6.CD45.1  C57Bl/6. CD45.2 chimeric mice

from 1 to 3 weeks post-BMT and by CD44 and CD117 staining, we were able to reveal the

presence of CD44+CD117high cells corresponding to ~0.3 to 0.6% of DN preparations (Figure

4A, left dot plots). As shown in figure 4A, this population contained CD117high DN1

(CD44+CD25-) and DN2 (CD44+CD25+) T cell precursors.

Figure 4: Radio-resistant DN1-2 thymocytes recapitulate normal thymic ontogeny in vitro.

Figure 4A

Shown in the left is the experimental design. Lethally-irradiated C57Bl/6.CD45.2 mice were reconstituted
with TCD BM from C57Bl/6.CD45.1 donors. Thymi were analyzed at week 1, 2 and 3 post-BMT. Shown in
the right are CD44 versus CD117 on DN preparation and CD44 versus CD25 staining on gated
CD44+CD117High cells from an unmanipulated control or a chimeric mouse. CD44+CD25- and
CD44+CD25+ represent DN1 and DN2 respectively. Numbers in the quadrants indicate representative
percentages.

We then quantified the host- and donor-origins of DN1 and DN2 cells from chimeras 1 to 3

weeks post-BMT (Figure 4B, bar graphs). At 1 week post-BMT, DN1-2 cells were detected

which were ~99% host-derived and this proportion decreased to ~90% at 2 weeks and finally to
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less than 1-5% at 3 weeks post-BMT. Thus, early “classical” T cell progenitors exist in the

thymus of chimeric mice even though they are rare cells. Initially, the CD117high progenitor

compartment is almost exclusively host-derived but later gets diluted by donor-derived cells.

Figure 4B

Bar histograms display the kinetics and mean numbers (n= 3-5 mice for each time point) of host- and
donor-derived DN1 and DN2 cells in black and white respectively from 1 to 3 weeks post-BMT.

We next addressed the T-cell development potential in vitro of host-derived thymic

CD44+CD117high cells found in chimeric mice at week 1 post-BMT. About 2x103 cells were

sorted and differentiation potential was assessed by plating them on OP9-DL1 stromal cells

(supporting T-lineage development) in the presence of IL-7. Cells expanded rapidly, reaching

about 105 cells one week after culture when they were harvested and analyzed by FACS. They

underwent typical T-lineage development features by up-regulation of CD25 and down

regulation of CD44 expression (figure 4C left dot-plot). One week post-BMT, 95% of the cells

were CD45.2+ host-derived (figure 4C right histogram).
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Figure 4C

The same chimeras as described in figure 4A were done, 5 mice were killed pooled and used to sort
CD44+CD117High DN1 and DN2 cells one week after BMT. About 2000 cells were plated on OP9-DL1
stroma with IL-7 and analysed by FACS 7-10 days later to assess their in vitro T-cell development
potential. Shown are CD44 versus CD25 profiles and CD45.1 (donor-derived) or CD45.2 (host-derived)
proportion of recovered thymocytes.

Taken together, our results characterize for the first time the nature of genuine radio-resistant T

cell precursors. These cells are (i) intra-thymic in location, (ii) grow in an IL-7-dependent

fashion, (iii) display a normal CD117high phenotype and (iv) are functional bona-fide DN1-DN2

cells with canonical T cell developmental potential.

Host-derived T cells are functional, but presence of the thymus is

required to ensure an unbiased TCR repertoire

A series of chimeras comparing NTX and TX hosts were generated and analysed further to

evaluate the functional importance of the thymus in auto-reconstitution. Phenotypically, the most

notable difference between the two subpopulations was the increased proportion of naïve

(CD44lowCD62L+) T cells in NTX hosts (17% and 11.8% for CD4+ and CD8+ T cells respectively)

compared with TX hosts (1.8% and 2.3% for CD4+ and CD8+ T cells respectively) (Figure 5A).

In controls (un-manipulated or Bl/6Bl/6 chimeras), most T cells displayed a naïve phenotype

with 66.8% and 46.2% of CD4+ and CD8+ T cells respectively (Figure 5A left panels) having the

CD44lowCD62L+ phenotype. Thus, NTX chimeras contained a higher proportion of memory

phenotype (CD44HighCD62L-) T cells whereas in TX chimeras almost all T cells were of this

phenotype.

Figure 5: Phenotype, repertoire and functionality of host-derived T cells in lethally-irradiated BM chimeras.
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Figure 5A

Shown are CD44 and CD62L expression on gated CD4+ TCRβ+ (upper dot-plots) or CD8+TCRβ+ (lower
dot-plots). Numbers in the quadrants indicate mean percentages ± SD from at least 5 mice analysed per
group.

The reduced T cell number in TX hosts, where T cells are only extra-thymically derived

combined with their severe T cell lymphopenia might result in a repertoire bias and a

consequent functional defect. To investigate the repertoire question further, we stained T cells

from 10 mice from each group of chimeras with a panel of anti-TCR Vβ-specific mAbs. As

shown in Figure 5B, the TCR Vβ repertoire of CD4+ and CD8+ T cells in NTX chimeras

consistently resembled that found in controls. This was in clear contrast to that of TX chimeras

where in many mice the TCR Vβ repertoire was frequently biased.
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Figure 5B

Vβ repertoire analysis among CD4+ and CD8+ T cells by FACS in chimeras. Each symbol represents a
single mouse from control (), NTX () or TX () group. Black bars represent mean value in control
group. Ten mice per group were analysed.

Next, to determine if TX hosts had functional defects, we measured their ability to mount a T-

dependent (TD) antibody response. As shown in figure 5C, 14 days following NIP-OVA

immunisation, NTX chimeras were able to mount a TD antibody response as efficiently as

controls. This was in striking contrast to TX chimeras, where only 4 out of 10 mice were able to

mount a TD immune response.
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Figure 5C

Depicted is T cell-dependent antibody responses in different group of chimeras day 14 after NIP-OVA
immunization. Shown are relative titers of IgG anti-NIP specific antibodies. Each bar represents a single
mouse and 5-10 mice were analyzed. When the ratio [anti-NIP IgG titers after immunization / anti-NIP IgG
titers before immunization] was below 10 (horizontal line) we considered that the mouse did not mount a
T-dependent response. In control and NTX group, 5/5 mice made a specific response with ratio >100.
Among TX group, only 4/10 mice made a specific response (hatched bars). Control, NTX or TX chimeras
were the same as described in figure 2B.

Taken together, our results show that host-derived T cells in chimeras are functional but in TX

hosts, their oligoclonal nature frequently resulted in an inability to mount an efficient antigen-

specific TD antibody response.

Discussion

By carefully studying the kinetics of development, distribution, phenotype and function of the

host-derived T cells in BM chimeras, we have clarified their previously unappreciated, but

important, contribution to the restoration of the immune system. We called this process “auto-

reconstitution”. We revealed that following lethal irradiation, host-derived haematopoietic cells in

secondary lymphoid organs were almost exclusively composed of T cells and totally devoid of B

cells. In addition, host-derived T cells represented a considerable proportion of total T cells

(~5% of all T cells six months post-BMT). Kinetic analysis showed that the proportion of host-

derived T cells decayed as donor-derived T cell development slowly took place in Bl/6Bl/6

chimeras. In these competitive settings, where the donor BM generated T cells, it was not

possible to study host-derived T cells exclusively. Thus, we generated non-competitive BM

chimeras in which BM donor cells (either RAG2-/- or CD3ε-/-) were incapable of generating T

cells. Then, we were able for the first time to quantify precisely host-derived T cells in these
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non-competitive chimeric settings. Surprisingly, auto-reconstitution could generate a pool of T

cells equivalent to 35% that in normal mice. We could also show that T cell auto-reconstitution

had two origins: (i) a major, thymic-dependent pathway (TD) and (ii) a minor, thymic-

independent pathway (TI). Indeed, in CD3ε-/-Bl/6 chimeras, by comparing host-derived T cell

numbers in euthymic (NTX) versus athymic (TX) hosts, we could quantify TD and TI pathways.

Thus, the TD pathway accounted for 70% of host-derived T cells, thereby representing the main

source of host T cells in an auto-reconstituted T cell compartment. This estimate is based on the

assumption that the size of the TI compartment is not drastically altered by the TD cohort of T

cells and vice versa.

The TD T cells were composed of the progeny of a single wave of T-cell differentiation which

reached a maximum 2 weeks following BMT. As host-derived thymocyte differentiation is only

transient and ceases around 3-4 weeks, the thymus does not contain any DP cells later on and

its cellularity decreases dramatically. This has been previously characterized by others (Ceredig

and MacDonald, 1982). The TD cohort of T cells provides a large number of naïve T cells with a

diverse TCR Vβ repertoire. Logically, this observation led us to investigate the nature of radio-

resistant thymocyte progenitors.

Recently, when addressing the cellular origin of the host-derived cohort of thymocytes

regenerating in BM chimeras, Maillard et al. (Maillard et al., 2006) suggested that they arose

from an abnormal sequence of differentiation starting from a donor-derived CD25+ CD44-

CD117- “DN3-like” stage and therefore might involve an atypical thymocyte progenitor. In

contrast, we could detect the presence of genuine, or “conventional” CD25-/+ CD44+ CD117high

DN1-2 cells. Such conventional DN1-2 cells were few in number, representing around 2000

cells per mouse one week post-BMT. Further analysis indicated that these T cell progenitors

were mainly (~95-99%) host-derived initially and were then replaced by donor derived

progenitors around 3 weeks post-BMT.

The toxicity of ionizing radiation to cells is associated with massive apoptosis which is

particularly acute in hematopoietic organs, well-known to be highly radiosensitive. Lethal γ-

irradiation triggers DNA breaks which in turn activate DNA repair mechanisms and/or p53-

dependent apoptosis, unless DNA repair has been carried out correctly (Jeggo and Lobrich,

2006a; O'Driscoll and Jeggo, 2006). There is a body of literature addressing the radio-sensitivity

of lymphoid cells, but so far, there are no clear mechanisms demonstrating why only some

subpopulations of cells can survive lethal irradiation damage. From in vitro experiments with cell

lines, it has been proposed that the cell cycle status at the time of irradiation might determine

their radio-sensitivity (Jeggo and Lobrich, 2006b; Lobrich and Jeggo, 2007; Pawlik and

Keyomarsi, 2004). Thus, cycling cells harbour much more DNA alterations than their quiescent

counterparts and are more prone to die. This dogma by itself would hardly explain what is going
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on in vivo in lethally irradiated mice. Indeed, it would seem that memory T cells, which are

known to be more rapidly cycling than their naïve counterparts, survive whereas B cells, some

of which are known to be more cycling than others, are totally deleted. Thus, we believe that

certain niches throughout the body might provide lymphocytes with a particular environment

with specific radio-protective signals. In our study, the gut contained a higher proportion of

radio-resistant T cells and could be an interesting candidate for such a radio-protective niche

even though we cannot exclude a preferential relocalisation of surviving T cells following total

body irradiation (TBI). Interestingly, a role for the gut in radioprotection was recently proposed

because a polypeptide-drug derived from commensal salmonella flagellin, which binds to Toll-

like receptor 5 and which activates nuclear factor-κB signalling, was able to prevent mice from

gastrointestinal and hematopoietic disorders following lethal TBI (Burdelya et al., 2008).

Furthermore, in recipient mice where the anti-apoptotic gene Bcl-2 was constitutively over-

expressed (H2K-BCL-2 transgenic mouse), even host-derived B cells survived following TBI and

BMT (data not shown and (Domen et al., 1998)). Thus, the clear contrast in survival properties

of B versus T cells might (at least partly) be due to intrinsic differences in their expression of

pro- versus anti-apoptotic genes. By intracellular staining, we have already observed a higher

baseline level of Bcl-2 expression in T cells versus B cells. Clearly, the issue of the differential

survival of T versus B cells following lethal irradiation is warranted and might shed light on

important pathways for radioprotection at the cellular level.

As shown in TX recipients, the minor, TI-derived, T cell component of auto-reconstitution was

composed of the progeny of mature, radio-resistant peripheral CD4+ and CD8+ T cells.

Following their survival and expansion post-irradiation, they expressed a biased TCR Vβ

repertoire. Phenotypically, these TI cells had a CD44High CD62L+/- memory-like phenotype which

could correspond to their initial phenotype or to a phenotype acquired upon lymphopenia-

induced expansion (Bosco et al., 2005; Bosco et al., 2006a). Additionally, as we and others

have previously shown, these cells were enriched in FoxP-3+ regulatory T cells (Anderson et al.,

2004; Benard et al., 2006; Komatsu and Hori, 2007; Roord et al., 2008). Following BMT in mice,

these TI Treg cells protected the host from GvHD complications in syngeneic conditions

(Benard et al., 2006). Others studies have shown that Treg, as well as memory T cells, are

more resistant to γ-irradiation, chemotherapy or antibody-mediated depletion in vitro and in vivo

(Anderson et al., 2004; Benard et al., 2006; Bourgeois and Stockinger, 2006; Gladstone et al.,

2007; Walzer et al., 2002). The molecular mechanisms behind these interesting observations

are still unknown and require further experiments.

Functionally, in NTX CD3ε-/-Bl/6 thymus-bearing chimeras, host-derived CD4+ T cells alone

were sufficient to mount a TD immune response whereas in TX recipients, the immune

response was frequently impaired. Clinically, it is recommended that patients be re-vaccinated
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following BMT in order to restore a high level of protection against many vaccine-preventable

diseases such as measles, tetanus, hepatitis or polio (Avigan et al., 2001; Gangappa et al.,

2008; Ljungman et al., 2005; Parkman, 2008; Patel et al., 2007). In this context, mouse BM

chimeras might provide a relevant experimental system to study immune response or diseases

associated with lymphopenia subsequent to conditioning regimens and BMT in humans.

Published observations suggested that host-derived cytomegalovirus-specific (CMV) CD8+

memory T cells could provide efficient anti-viral immunity and help patients survive the severe

lymphopenic period following BMT (Chalandon et al., 2006). However, studies in man are

difficult to control experimentally and animal models are required to dissect and improve the

outcome of BMT.

In conclusion, our results demonstrate a so-far unappreciated, but important, residual host-

derived thymic activity following conditioning and BMT. These thymus-derived T cells constitute

a significant population of T cells with a polyclonal TCR Vβ repertoire and normal functional

properties. By analysing thymectomised recipients, we could demonstrate that in their absence,

lymphopenia was more severe, the T cell repertoire was frequently oligoclonal and immune

responses were compromised. Therefore, strategies should be developed to improve and

expand the TD and/or the TI cohort of T cells which together could serve as a first line of

defence in lymphopenic hosts until donor-derived T cell reconstitution takes place. In this

regards, improving thymic reconstitution and peripheral T cell survival by, for example, infusing

IL-7/anti-IL-7 complexes (Boyman et al., 2006; Boyman et al., 2008) during thymus regeneration

would appear to be a promising approach.

Materials and methods

Mice.

Female C57Bl/6, C57Bl/6.RAG2-/-, and C57Bl/6.CD3ε-/- mice of either CD45.1 or CD45.2

genotype were maintained in our SPF animal facility. As BM donors, mice were used at 4-8

weeks of age and recipients were killed by CO2 inhalation prior to analysis. These studies were

approved by the institute animal care and user committee.

Thymectomies.

At 4 to 6 weeks of age, mice were anesthetized and thymus was removed by suction through a

small upper sternal incision. That thymectomy had been complete was verified in each animal

by anatomical inspection at the time of sacrifice.
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Cell preparation, immunofluorescence staining and FACS analysis.

Lymphoid organs (thymus, spleen or lymph nodes) were removed from adult unmanipulated or

chimeric mice at the indicated times. Single-cell suspensions were generated by disruption of

organs through a 40 µm nylon mesh via a syringe plunger and were washed once with 2% FCS-

supplemented DMEM. Spleen cell suspensions were depleted of red cells by NH4Cl treatment

prior to staining. Lymphocyte suspensions from liver, lung and skin were prepared by standard

procedures and Percoll density gradient centrifugation performed as previously described

(Schleussner and Ceredig, 1993) prior to cell recovery. Biotin-, FITC-, PE-, PE.Cy7-, or APC-

conjugated mAbs were either home made or purchased from BD Biosciences or eBioscience

(San Diego, CA). Cell staining was performed as previously described (Bosco et al., 2005;

Bosco et al., 2006a) prior to FACS analysis with a FACScalibur and CELLQuest Pro software

(BD Bioscience). The data presented are of live-gated cells based on a combination of forward-

and side-scatter signals and when possible propidium iodide exclusion.

Bone marrow transplantation.

Bone marrow cell suspensions from CD45 allogenic donor mice were prepared by flushing

femurs and tibias with PBS using a 23g needle. After a red blood cell lysis step, T cells were

depleted when necessary by resuspending cells in a mixture of rat IgM anti-CD4 (RL172) and

anti-CD8α (31M) mAb hybridoma supernatants and incubated for 20 min at 4°C. Following a

washing step, antibody-coated cells were lysed by adding a 1:10 dilution of screened rabbit

serum as source of complement in serum free Dulbecco’s modified Eagle’s medium (DMEM) for

45 min at 37°C. Then, cells were washed, resuspended in serum-free DMEM and counted prior

to injection. Host mice were lethally γ-irradiated with a single dose of 950 cGy at a dose of 80 to

90 cGy/min using a Cobalt-source (Gammacell 40, Atomic energy of Canada, Ltd) 4h prior to

receiving 5x106 bone marrow cells intravenously. Chimeric mice were analysed at the indicated

time points and the host and donor origin of lymphoid cells determined by means of labelled

CD45.1- or CD45.2-specific mAbs.

Fetal thymic organ cultures

Fifteen-day pregnant C57Bl/6 mice were lethally irradiated (950 cGy) prior to embryo removal.

Thymus lobes from irradiated or control un-irradiated embryos were then used for FTOC. For

staining, lobes were dissociated by passing through needles of decreasing size as previously
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described (Balciunaite et al., 2005c), washed in DMEM medium and then stained and

analyzed by flow cytometry.

Thymus DN preparation, cell sorting and culture on OP9-DL1 stroma.

From total thymocytes, CD4-CD8- double negative (DN) cells from control or chimeric mice were

prepared by complement-mediated lysis of CD4 and CD8 expressing thymocytes as described

above. DN thymocytes were then stained with combinations of fluorescently-labelled CD25,

CD44 and CD117 (c-kit) mAbs and pooled CD25- DN1 and CD25+ DN2 cells sorted as

CD117highCD44+ cells using a FACSAria sorter (BD Biosciences). Reanalysis of sorted cells

indicated that their purity was routinely ≥ 98%.

OP9 stromal cells expressing the Notch ligand delta-like-1 (OP9-DL1) were kindly provided by

Professor Juan-Carlos Zúñiga-Pflücker (University of Toronto, ON, Canada) and maintained in

IMDM supplemented with 5 x 10–5 M β-mercaptoethanol, 1 mM glutamine, 0.03% (wt/vol)

Primatone (Quest, Naarden, The Netherlands), 100 U/mL penicillin, 100 µg/mL streptomycin,

and 2% heat-inactivated fetal bovine serum (FBS). Two days prior to coculture, 104 stromal cells

were seeded per well of a 24-well plate. At day 0, stromal cells had grown to semi-confluency

and were then -irradiated with 3000 cGy, culture medium removed and replaced by

supplemented DMEM plus IL-7 (~10ng/mL). To these cultures were added ~5x103 sorted DN1

and DN2 thymocytes. At day 10-14 of culture, cells were either analysed by FCM or kept in

culture after transfer to fresh OP9-DL1 stromal cells.

T cell-dependent antibody responses.

To induce a T cell-dependent antibody response, reconstituted chimeric mice were injected

subcutanously with 200µl complete Freund’s adjuvant emulsion containing 50 µg total NIP-

ovalbumin. Sera were obtained after bleeding prior to and 14 days after immunization and

stored at –20°C. Hapten-specific IgG antibody titres were determined by enzyme-linked

immunosorbent assay (ELISA) as previously described (Ceredig et al., 2006).

Immunofluoresecent staining of spleen sections.

Spleens were snap frozen with dry ice in Tissue-Tek OCT compound and then 5 to 7-µm

sections cut on a cryostat. Sections were then fixed for 10 min in acetone and stored at -80°C.

For staining, sections were covered with an antibody solution at saturating concentration diluted

in PBS-1% FBS for 1h at room temperature. Anti-B220Biotin and anti-CD90FITC were used to

discriminate B and T cell areas respectively, and PNABiotin (Peanut Agglutinin, Vector
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Laboratories) and anti-IgMFITC (M41) used to reveal germinal centres (GC). For the second

step, sections were washed in PBS (three times 10 min) and incubated 30 min at room

temperature with a Neutralite Avidin-Texas-Red reagent (Southern Biotech) diluted in PBS.

Then, sections were washed, coverslipped and analyzed under a fluorescence microscope

(Zeiss axioskope) with a 10 to 20x objective.

Statistical analyses.

Data are presented as the mean and SEM. Comparisons between groups were done using a

Student’s two-tailed t test for independent events. P values of less than 0.05 were considered

significant (, p value <0.05 and , p value <0.01).
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Part III: TCRβ chains derived from peripheral γδ T cells can take part

in αβ Τ cell development

by Nabil Bosco, Corinne Engdahl, Angèle Bénard, Johanna Rolink, Rhodri Ceredig and

Antonius G. Rolink

Introduction

T cell development takes place in the thymus from progenitors of bone marrow

origin. By now it is generally believed that a cell called a thymus settling progenitor (TSP),

characterized by the expression of CD44, CD117, CD135 and the chemokine receptor CCR9

(Benz and Bleul, 2005; Bhandoola et al., 2007; Schwarz et al., 2007; Zediak et al., 2005) is the

bone marrow cell that enters the thymus. However, transplantation experiments in T cell

deficient mice have indicated that other progenitors can enter the thymus and may take part in T

cell development (Balciunaite et al., 2005b; Bhandoola et al., 2007; Martin et al., 2003).

Early T cell progenitors in the thymus lack CD4 and CD8 expression and are

therefore called double negative (DN) cells. Based on the differential expression of CD44, CD25

and CD117, DN cells can be subdivided into DN1-4 subpopulations. Thus DN1 cells are CD44+,

CD25- and CD117High and within this population, TSPs are included as a CD135+ subpopulation

(Bhandoola et al., 2007; Ceredig et al., 2007; Ceredig and Rolink, 2002; Zediak et al., 2005).

DN1 cells differentiate through a CD44+, CD25+, CD117high DN2 stage to become CD44-,

CD25+, CD117-/low DN3 cells (Ceredig and Rolink, 2002). Both DN1 and 2 cells still possess

multi-lineage developmental potential, including that for NK, dendritic and myeloid cells

(Balciunaite et al., 2005c; Bell and Bhandoola, 2008; Wada et al., 2008). However, B cell

lineage potential seems to be restricted to the TSP population within the DN1 subset (Benz and

Bleul, 2005; Bhandoola et al., 2007; Ceredig et al., 2007; Zediak et al., 2005). By largely

unknown mechanisms, commitment to the T cell lineage is acquired at the DN2 to DN3 cell

transition (Balciunaite et al., 2005a; Balciunaite et al., 2005c). However, cells at the DN3 stage

still have the option to develop into either αβ or γδ T cell lineage cells (Hayday and Pennington,

2007; Kreslavsky et al., 2008; von Boehmer et al., 1998). A relatively large number of studies

have indicated that the expression of the pre-TCR plays a crucial role in the development of αβ

T cells (Fehling et al., 1995; Kreslavsky et al., 2008; von Boehmer et al., 1998). Recent,

elegant, single cell studies have indicated that γδ TCR expressing cells still have the option to

develop into either γδ  or αβ TCR expressing T cells (Haks et al., 2005; Hayes et al., 2005;

Kreslavsky et al., 2008). The strength of the TCR-mediated signal that a γδ T cell receives

seems to determine the outcome of this option. Thus, a strong signal (positive selection) drives

these cells into the γδ T cell lineage whereas no, or a weak, signal leads to the differentiation
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into αβ T cell lineage cells (Haks et al., 2005; Hayes et al., 2005; Kreslavsky et al., 2008). The

finding that at least some peripheral γδ T cells are positively selected in the thymus strongly

supports this model (Hayday and Pennington, 2007; Lewis et al., 2006).

It is well known that 10-20% of the peripheral γδ T cells express a

TCRβ protein in their cytoplasm (Wilson and MacDonald, 1998). However, it still unknown why

these cells became γδ and not αβ T cells and why they maintain TCRβ gene transcription and

protein expression. Here we tested whether TCRβ chains isolated from peripheral γδ T cells

could take part in the development αβ T cells. To this end, cDNAs encoding expressed TCRβ 

genes were cloned from sorted lymph node γδ T cells and retrovirally introduced into in vitro-

propagated Pax-5/TCRβ double deficient pro-B cells. The potential of these transduced cells to

give rise to αβ T cells was analyzed in vivo in sublethally-irradiated CD3ε-deficient recipient

mice. Results obtained unambiguously demonstrated that with respect to the reconstitution of

the thymus and the peripheral αβ T cell compartment in this experimental system, TCRβ chains

from γδ T cells were as efficient as those derived from αβ T cells at reconstituting the αβ T cell

compartment. Thus the TCRβ chains found in γδ T cells can potentially mediate αβ T cell

development. The potential implications of these findings for γδ – αβ T cell development will be

discussed.

Results

Thymus reconstitution by Pax5/TCRβ double deficient proB cells

Previously, we have shown that upon transplantation into immune-deficient hosts, in vitro-

propagated Pax5 deficient pro-B cells could readily reconstitute all thymocyte subpopulations as

well as peripheral lymphoid organs with mature αβ T cells (Rolink et al., 1999). Now, we have

generated a Pax5 x TCRβ  double-deficient pro-B cell line in order to test the ability of TCRβ  

chains of different origins to take part in αβ  T cell development. As a first control,

Pax5/TCRβ  double  deficient pro-B cells were transduced with an empty pMIG retroviral vector

and 5 – 7 days later sorted for GFP expression. After a further two weeks of in vitro propagation,

cells were injected intra-venously into sub-lethally irradiated CD3ε-deficient recipient mice.

Three weeks after transfer, the thymi of these mice contained 10 – 15 x 106 cells, 85 – 95% of

which were GFP positive (Figure 1A). Of the GFP+ cells, 15 – 20% were DN, 65 – 75 % DP and

5 – 10% single CD4+ (Figure 1B). Analysis of TCR expression on these various subpopulations

revealed that 15 – 25% DN cells were γδ TCR+ whereas the other subpopulations of CD4/8-
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defined cells were not (Figure1 C-E). Obviously, none of the cells expressed αβ TCR (Figure

1 C-E).  Thus, Pax5/TCRβ  double  deficient pro-B cells can modestly reconstitute the thymus

of CD3ε-deficient mice and some of the resulting DN cells express a γδ TCR.

Figure1: Phenotype of thymocytes in CD3ε-deficient mice three weeks after the injection of PAX5/TCRβ
double deficient proB cells transduced with empty pMIG vector.

(A) Shown is the GFP expression. (B) Shown are the CD4 and CD8 expression on the GFP positive cells.
(C-E) gd TCR (dotted histograms), ab TCR (bold histograms) and controls (thin line histograms) on gated
DN (C), DP (D) and CD4 single positive (E) GFP positive thymocytes. Numbers represent the percentage
of cells in one representative mouse, more than 10 were analyzed.

Thymus reconstitution by Pax5/TCRβ  double deficient pro-B cells

using TCRβ  chains from γδ or  αβ T cells

Previously it was shown that about 10-15% of the peripheral γδ T cells are cytoplasmically

TCRβ+ (Wilson and MacDonald, 1998), results confirmed in Figure 2.
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Figure 2: Cytoplasmic TCRβ expression by γδ T cells from WT Bl/6 lymph nodes.

Lymph node cells were stained for γδ TCR cell surface expression and subsequently for intracellular
TCRβ. Histograms represent γδ TCR positive gated cells. Thin line histogram represents the control and
the bold line histogram represents the TCRβ stained sample. The number indicates the percentage of
positive cells in one representative mouse.

To test whether TCRβ chains derived from γδ T cells could take part in αβ T cell development,

we firstly amplified by RT-PCR cDNA from sorted LN γδ T cells (as shown in supplementary Fig.

1) using oligonucleotides specific for Vβ4, Vβ6 or a Vβ8 family members. Amplicons were

sequenced prior to cloning into a pMIG retroviral vector and expressed in the

Pax5/TCRβ double  deficient pro-B cells. (The TCR Vβ sequences used in this study are shown

in Supplementary Table I). Subsequently, TCRβ-expressing, GFP+ cells were injected i.v. into

sublethally-irradiated CD3ε deficient mice. Pax5/TCRβ double  deficient pro-B cells transduced

with vectors containing TCRβ chains amplified from sorted LN αβ  T cells (as shown

supplementary Fig. 1) were used as controls. Three weeks later, the thymus of mice that had

received Pax5/TCRβ   double  deficient pro-B cells transduced with γδ T cell-derived TCRβ

chains contained between 80 and 130 x 106 cells (Figure 3A). Similar thymocyte numbers were

found in recipients of Pax5/TCRβ double  deficient pro-B cells transduced with TCRβ chains

derived from sorted LN αβ T cells (Figure 3A). Thus, thymus cellularity in both groups were

close to those of wild type mice and moreover, were 5 -10 fold greater than in mice that had

received cells transduced with the empty vector (Figure 3A).

Figure 3: Numbers and phenotype of thymocytes derived from CD3ε deficient mice at 3 weeks after the
injection of Pax5/TCRβ double deficient pro B cells transduced with TCRβ derived from lymph node αβ or

γδ T cells.
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Figure 3A

Numbers of thymocytes recovered are shown. Each symbol represents the mean ± SD of 5 mice. Groups
A, B and C were mice injected with different γδ T cell derived TCRβ chain transduced cells. Groups D, E
and F were mice injected with different αβ T cell derived TCRβ  chain transduced cells. Group G
represents the mice that were injected with empty vector transduced cells.

With respect to CD4, CD8 and TCR expression, thymocytes from recipient mice reconstituted

with cells expressing TCRβ chains from either TCRγδ or TCRαβ-derived cells were very similar

to those of wild type mice. Figure 3B and 3C show a typical example of thymocytes from mice

reconstituted with either γδ or αβ-derived TCRβ chains. For comparative purposes, both of

these transduced TCRβ ’s used a Vβ8 family member. In both recipients, over 95% of

thymocytes were GFP+ with 2-5% DN, 75-85% DP, 5-10% CD8 single positive and 10-20% CD4

single positive cells. Moreover, as in wild type mice, αβ TCR expression was low on DP cells

and relatively high on single positive cells. Surprisingly, and in marked contrast to the mice that

had received the Pax5/TCRβ double deficient pro B cells transduced with the empty vector (see

Figure 1), no γδ T cells were detected in the thymus of these mice (see supplementary Fig. 2).
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Figure 3B

GFP, CD4, CD8, αβ TCR and Vβ8 expression by thymocytes derived from a mouse injected with cells
transduced with a Vβ8 using TCRβ chain derived αβ T cells. Three lower histograms represent αβ TCR
(bold line histogram) and Vβ8 (dotted line histogram) expression by double positive (DP) and single
positive CD8 and CD4 cells. Thin line histograms represent the negative controls. Numbers in quadrants
represent the percentage of one representative mouse among 5 analyzed.
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Figure 3C

GFP, CD4, CD8, αβ TCR and Vβ8 expression by thymocytes derived from a mouse injected with cells
transduced with a Vβ8 using TCRβ chain derived γδT cells. Three lower histograms represent αβ TCR
(bold line histogram) and Vβ8 (dotted line histogram) expression by double positive (DP) and single
positive CD8 and CD4 cells. Thin line histograms represent the negative controls. Numbers indicate the
percentage of cells. (>5 mice were analyzed independently).

Taken together, these results indicate that TCRβ chains from γδ cells can guide αβ T cell

development as efficiently as those from αβ T cells. This conclusion is based on the combined

results obtained with 6 TCRβ chains derived from γδ T cells and 6 from αβ Τ cells.

Reconstituted mice develop lethal autoimmune disease

In a next set of experiments, we wanted to test the functional capacity of αβ T cells generated

from TCRβ transduced Pax5/TCRβ  double deficient pro-B cells. However, these studies were

hampered by the fact that independently of the origin of the transduced TCRβ chains, from four

weeks after injection, all recipient mice showed weight loss and had diarrhea and practically all

died within 5 to 15 weeks after transplantation (Figure 4A).

Figure 4: CD3ε mice injected with TCRβ transduced Pax5/TCRβ double deficient pro B cells develop a
fatal autoimmune disease.

Figure 4A

Survival curve of CD3ε mice injected with empty vector transduced cells (, 12 mice), γδ T cell derived
TCRβ transduced cells ( , 15 mice) and αβ T cell derived TCRβ transduced cells ( , 15 mice) are
shown.
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Moreover, all mice had relatively high titers of IgG anti-nuclear autoantibodies in their serum

(Figure 4B).

Figure 4B

IgG anti-nuclear autoantibody titer in CD3ε mice injected with γδ T cell derived TCRβ transduced cells
(groups A-C,,,_) and αβ T cell derived TCRβ transduced cells (groups D-F,, ,) are depicted.

Histological analysis revealed pathological signs resembling inflammatory bowel disease of the

large intestines (Figure 4C) and marked leukocyte infiltrations in the lungs (Figure 4D).

Figure 4 C-D

C and D. Shown are representative pictures of widespread lymphocytic infiltration in non-lymphoid organs
of CD3ε mice injected with TCRβ transduced Pax5/TCRβ double deficient pro B cells. Picture in C is a
photograph of a H+E stained section of the lower colon (magnification x240). Picture D is a photograph of
a H+E stained section of the lung (magnification x240).
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No such signs of disease were observed among mice that had received Pax5/TCRβ double

deficient pro-B cells transduced with the empty vector. Thus, the presence of αβ T cells

developing from the TCRβ-transduced Pax5/TCRβ  double deficient pro-B cells seemed to be

the cause of this disease. This was despite the fact that T cells in mice reconstituted with pro-B

cells expressing TCRβ chains from either γδ or αβ cells contained FoxP3+ cells (not shown).

Recently, we showed that sublethally-irradiated C57Bl/6 RAG-2 deficient mice reconstituted with

T cell-depleted wild type syngeneic bone marrow developed a similar type of disease (Benard et

al., 2006). In that study, we also demonstrated that the disease induction could be prevented by

the co-transplantation of naturally-arising regulatory T (Treg) cells (Benard et al., 2006). To test

whether naturally-arising regulatory T cells could also prevent the development of the disease in

CD3ε-deficient recipients, mice were injected with a mixture of 2 x105 sorted GFP+ Treg cells

from FoxP3 knock-in mice and 5 x 106 TCRβ-transduced Pax5/TCRβ  double deficient pro-B

cells. As in the previous experimental system, co-injection of Treg cells protected the mice from

developing lethal autoimmune disease. Thus, mice containing co-injected Treg did not show

weight loss, had no diarrhea and did not have elevated IgG anti nuclear autoantibody titers in

their serum. At 8 weeks after injection, these mice were analyzed for the presence of T cells in

the periphery. In the spleen of all injected mice, 10 – 20 % cells were GFP positive and

expressed TCRVβ, in this case Vβ8, introduced into injected proB cells and the vast majority

expressed an αβ TCR. In corollary, GFP+ Vβ8-, i. e. cells derived from the injected Treg, were

undetectable (not shown). The lymph nodes contained 50-60% GFP+, αβ TCR+ T cells. An

example of such CD3ε-deficient mice injected with Pax5/TCRβ  double deficient pro-B cells

expressing a Vβ8 TCR chain from either a αβ  or γδ T cell are shown in Figures 5A and 5B

respectively. In the first mouse (Figure 5A) 53% of lymph node cells were GFP positive and

67.5% GFP+ cells expressed CD4 and 12% CD8. In all recipients, a low, but significant, number

of GFP+, CD4- CD8- cells were found, none of which expressed a TCR. Phenotypically, these

cells resembled the injected Pax5/TCRβ  double deficient pro-B cells and thus most likely were

cells that had not homed to the thymus and did not differentiate into T cells. Both GFP+ CD4 and

CD8 cells expressed an αβ TCR that used in this case the Vβ8 TCR chain (Figure 5A).

Therefore, these peripheral GFP+ T cells were derived from the transduced cells and not from a

contamination in the co-injected Treg population.

Figure 5. Phenotype and function of peripheral T cells derived from TCRβ transduced PAX5/TCRβ double
deficient proB cells when mice were co-injected with 2x105 polyclonal Treg cells.
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Figure 5A

GFP, CD4, CD8 and TCR expression by lymph-node cells of a CD3ε-deficient mouse at 8 weeks after
injection of PAX5/TCRβ double deficient pro B cells transduced with a Vβ8 using TCRβ chains derived
from αβT cells. The CD4-CD8 dot plot represents GFP positive cells. The histograms show αβ TCR (bold
line) and Vβ8 (dotted line) expression on gated CD8 and CD4 cells. Thin line histograms represent the
negative controls. Numbers represent the percentage of one representative mouse among 5-10 analyzed.
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Figure 5B

GFP, CD4, CD8 and TCR expression by lymph node cells of a CD3ε-deficient mouse at 8 weeks after
injection of PAX5/TCRβ double deficient proB cells transduced with a Vβ8 using TCRβ chains derived
from γδ T cells. The CD4-CD8 dot plot represents GFP positive cells. The histograms show αβ TCR (bold
line) and Vβ8 (dotted line) expression on gated CD8 and CD4 cells. Thin line histograms represent the
negative controls. Numbers in quadrants represent the percentage of one representative mouse among
5-10 analyzed.

Figure 5B shows the equivalent staining from a CD3ε-deficient mouse reconstituted with cells

transduced with a γδ T cell-derived Vβ8 TCR chain. In this mouse, 54% of cells were GFP+ with

53.8% GFP+ cells expressing CD4 and 40.9% expressing CD8. Again, all CD4 and CD8 cells

expressed a Vβ8 αβTCR (Figure 5B).

αβ T cells in reconstituted mice are functional

To address the functionality of these αβ T cells, their responsiveness to anti-CD3ε antibody

activation was measured. Figure 5C shows the results of such an experiment. Thus T cells

obtained from mice reconstituted with cells transduced with αβ or γδ-derived TCRβ chains

responded equally well and similar to T cells derived from wild type Bl/6 mice, thereby indicating

that these T cells were fully functional.
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Figure 5C

3H-thymidine incorporation upon anti-CD3 stimulation. Groups A-C are MACS purified T cells from CD3ε-
deficient mice injected with PAX5/TCRβ double deficient proB cells transduced with different TCRβ
chains derived from γδ T cells. Groups D-F are MACS purified T cells from CD3ε-deficient mice injected
with PAX5/TCRβ double deficient proB cells transduced with different TCRβ chains derived from αβ T
cells. Group G represents T cells derived from wild type B6 mice. White columns show the amount of 3H-
thymidine incorporated in absence anti-CD3 stimulation.

In vitro activation of ex vivo isolated T cells derived from P5TB cells transduced with different TCRβ’s

In order to test whether these T cells were also able to induce T cell dependent humoral

immune response, various groups of mice were injected with NIP-Ova in alum and 14 days

later, the specific IgG anti-NIP titers determined. Serum taken at day 7 before immunization was

used as a negative control and serum from identically immunized Bl/6 mice as a positive control.

CD3ε deficient mice in which the T cell compartment was reconstituted with cells expressing

TCRβ chains from either γδ or αβ T cells had IgG anti-NIP titers 3 -10 fold above control levels

(Figure 5D). In fact, in every individual mouse, the titer was higher after immunization, indicating

that these T cells could provide help for a humoral response. However, the anti-NIP titers in the

reconstituted mice were 5-10-fold lower than in wild type Bl/6 mice (Figure 5D). This latter result

most likely reflects the oligoclonality of the T cell repertoire generated in these reconstituted

mice restricted as it is by the expression of a single TCRβ chain. Importantly, the anti-NIP titers

of CD3ε-deficient mice reconstituted with Treg alone were not significantly different from non-

reconstituted CD3ε-deficient mice (data not shown).
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Figure 5D

Depicted are IgG anti-NIP titers at 7 days before (filled symbols) and 14 days after NIP-Ova immunization
(non-filled symbols). A ( ,  ) shows wild type B6 mice (n=4), B ( ,  ) shows titers found in mice
injected with PAX5/TCRβ double deficient proB cells transduced with different TCRβ chains derived from
γδ T cells (n=12) and C (, ) shows titers found in mice injected with PAX5/TCRβ double deficient proB
cells transduced with different TCRβ chains derived from αβ T cells (n=13).

Discussion

Although it has been known for many years that γδ T cells can express a TCRβ chain (Wilson

and MacDonald, 1998), the reason why these cells did not end up in the αβ T cell lineage is still

obscure. Using a novel strategy for reconstituting the T cell compartment of recipient mice with

cells expressing individual TCRβ chains, the data presented here clearly and formally

demonstrate that TCRβ chains isolated from γδ T cells can take part in αβ T cell lineage

development and that the resulting mature T cells are fully functional.

Previously, we have shown that for developing B cells, not all expressed IgH chains could pair

with the surrogate light chain molecules λ5 and VpreB to form a pre BCR (ten Boekel et al.,

1997). In an analogous fashion, one could have imagined that for T cell development, not all the

TCRβ chains would be able to pair with preTα and be able to form a pre TCR. This might have

been particularly the case for TCRβ chains expressed by γδ T cells.  However, the data

presented herein strongly argue against this. All the TCRβ chains derived from γδ T cells used

in this study were as efficient in the generation of αβ T cells as those derived from αβ T cells.

The fact that thymus cellularity in reconstituted mice was close to that of normal wild type mice

and much higher than that in preTα deficient mice (Fehling et al., 1995) strongly indicates that T

cell development in these mice went via a preTCR-driven proliferation stage. Previously it has

been shown that allelic exclusion of the TCRβ locus is mediated by the preTCR (Aifantis et al.,
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1997; Krotkova et al., 1997). Recently, using αβ T cell-derived transgenic TCRβ chains,

Ferrero et al (Ferrero et al., 2007) have analyzed TCRβ allelic exclusion specifically in γδ T

cells of both wild type and preTα deficient mice. They clearly demonstrated that in wild type γδ T

cells, expression of a TCRβ transgene resulted in allelic exclusion of the endogenous TCRβ

locus, whereas on a preTα deficient genetic background, they did not. This result also indicates

indirectly that TCRβ chains expressed by γδ T cells can form a preTCR.

At least 3 different scenarios could be imagined to explain why TCRβ-expressing γδ T cells can

nevertheless develop. First, γδ T cells that have been generated and selected and therefore

committed to the γδ lineage could still rearrange and express a TCRβ chain, which in this case

might be inert. Whether such a scenario is feasible is rather questionable since these cells

would have to still express the various enzymes required for the rearrangement after selection

and commitment. That the TCRβ chains isolated from γδ cells seem to be fully functional also

makes this scenario unlikely.

Second, γδ T cells expressing a TCRβ chain might have developed from a precursor that did not

express preTα and thus, despite expressing TCRβ protein, were unable to form a pre TCR. The

preTα “knock-in” Cre-reporter mouse recently described by the Fehling group (Luche et al.,

2007) would be an ideal tool with which to test whether γδ T cells are derived from precursors in

which the preTα gene was never expressed. Third, and to us the most appealing scenario,

TCRβ expressing γδ T cells are derived from cells that co-express the γδ TCR and the pre TCR.

The strength of TCR signal that these cells would receive via their γδ TCR would determine their

fate. Thus, and as recently shown (Haks et al., 2005; Hayes et al., 2005; Kreslavsky et al.,

2008), a strong signal would drive these cells into γδ T cell lineage in these cells would TCRβ+

while a weak or no signal would drive these cells into the αβ T cell lineage. When true, the

expression of a pre TCR would not automatically be an absolute sign for αβ T cell commitment

as previously has been suggested (Kreslavsky et al., 2008).

Expression of and signaling via the TCRβ/preTCR complex at the DN3 stage leads to a very

strong proliferative expansion and differentiation of cells to the next stage of development,

namely DN4 cells. This proliferation accounts for the fact that about 75% of the VDJ TCR

β rearrangements found in DN4 cells are in frame (Dudley et al., 1994; Kisielow and von

Boehmer, 1995; von Boehmer, 2005). This process is also referred to as preTCR mediated β

selection (Dudley et al., 1994; Kisielow and von Boehmer, 1995; von Boehmer, 2005).

Mertsching et al. (Mertsching et al., 1997) determined the in frame/out of frame ratios of VDJ

TCRβ rearrangements in fetal thymic γδ T cells and found 42% of them to be in frame. Since

this is about the double of the percentage one would expect from a non-selected repertoire (i.e.

22.2% in frame) these authors concluded that some γδ T cells in the thymus were β selected.  A
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similar conclusion was reached by Wilson et al. (Wilson and MacDonald, 1998) by showing

that about twice as many thymic γδ T expressing a TCRβ were in cell cycle compared to those

that did not. However, it should be noted that pre TCR expression is not a requirement for γδ T

cell generation since TCRβ (Mombaerts et al., 1992) as well as preTa (Fehling et al., 1995)

deficient mice have normal, or even elevated, numbers of γδ T cells.

Another point worth mentioning is the finding that CD3ε-deficient mice transplanted with the

Pax5/TCRβ double deficient pro-B cells transduced with the empty vector generated decent

numbers of γδ T cells in the thymus whereas those injected with TCRβ chains derived from

either γδ or αβ T cells did not. These findings suggest that early expression of TCRβ chains

prevents γδ T cell development or makes it very inefficient (Gerber et al., 2004; von Boehmer et

al., 1988).

Recently, we showed that sublethally-irradiated RAG-2 and CD3ε deficient mice reconstituted

with wild type syngeneic bone marrow cells develop a fatal autoimmune disease whose

induction could be prevented by the co-transplantation of Treg cells (Benard et al., 2006). The

development of a similar type of disease is also observed here in mice injected with TCRβ

transduced cells and not with those transduced with the empty vector. Thus, the presence of αβ

T cells expressing the rather limited (only 1 TCRβ chain) T cell repertoire derived from these

transduced cells might not be responsible for causing this disease.  Also in this experimental

system the disease could be prevented by the co-injection of Treg cells. Despite reconstituted

mice containing FoxP3+ cells in both thymus and periphery, by themselves, they were incapable

of preventing the onset of autoimmunity. The crucial questions arising from these observations

are why in these chimeric settings are insufficient endogenous TReg generated and why should

there be a requirement for co-transfer of TReg to prevent autoimmunity? Thus far, we have not

been able to answer these questions. Nevertheless, by preventing the onset of autoimmune

disease, we have been able to address the functional activity of the T cells derived from the

TCRβ transduced cells. With respect to anti-CD3 stimulation, our findings demonstrate that they

are practically identical to T cells from wild type mice. Moreover, the T cells derived from TCRβ

transduced cells were also able to provide help for a T cell-dependent B cell response.

However, in these mice, antibody titers were 5 -10 fold lower than those observed in wild type

mice. This latter is most likely due to the fact that in the chimeric mice, TCR receptor diversity is

limited by the expression of a single TCRβ chain.

Previously the Pax5 deficient pro B cell system has successfully been used to analyze mutant

forms of the LAT adaptor in vivo (Ardouin et al., 2005). Herein, we have demonstrated that

TCRβ chains isolated from γδ T cells can very efficiently participate in αβ T cell development

and can give rise to functional T cells. Thus the reconstitution of mice with Pax5 deficient pro B
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cells expressing various genes is an easy, rapid and very powerful way to analyze the function

of such genes in T cell development in vivo.

Materials and Methods

Mice

C57Bl/6, CD3ε deficient (Malissen et al., 1995) and Foxp3/EGFP reporter (Wang et al., 2008)

mice were maintained in our own animal SPF facilities. Female mice were used at 6 to 12

weeks of age and all experiments were carried out according to Institutional guidelines. PAX5+/-

(Urbanek et al., 1994) and TCRβ-/- (Mombaerts et al., 1992) mice were bred at the former Basel

Institute for Immunology to generate PAX5-/- TCRb-/- double deficient mice.

TCRβ  chain cloning and vector construction

Full-length Vβ4, Vβ6 and Vβ8 using TCRβ cDNA’s were amplified from cDNA of sorted

lympnode γδ or αβ T cells using the following primers:

TCRβ-Vβ4-Fwd: Atagctgcagcctgtgtgacactgctatg

TCRβ-Vβ6-Fwd: atagctgcaggaaactccctccaaactatg

TCRβ-Vβ8-Fwd: Atcaagcttcatatcctagaggaagcatg

TCRβ-Cβ1-Rev: ataggatccatcttcacatctgacttcatga

TCRβ-Cβ2-Rev: Ataggatccataaaagtttgtctcaggaattt

Products were cloned into the pGem Teasy vector (Promega) after specific digestion with

restriction enzymes (bold characters above are introduced restriction sites digested with PstI for

Vβ4 and Vβ6 or HindIII for Vβ8 and BamHI for Cβ1 or Cβ2) and sequenced. In frame products

were subsequently cloned into the pMIG plasmid (Addgene plasmid 9044), allowing the bi-

cistronic expression of TCRβ together with green fluorescent protein (GFP). The retroviral

vectors were transfected into the Phoenix retroviral packaging line (ATCC Number: SD 3443).

Cell culture and retroviral infection

Pro B cells were derived from PAX5-/- TCRβ-/- double deficient mice and were grown on a

monolayer of γ-irradiated ST-2 stromal cells in IMDM supplemented with 5x10-5M β -

mercaptoethanol, 1mM glutamine, 0.03‰ (w/v) Primatone (Quest, Naarden, NL), 100U/ml

penicillin, 100 µg/ml streptomycin and 2% FCS and in the presence of recombinant IL-7. Cells
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were transferred every 3 days on a new layer of irradiated stromal cells. Pro-B cells were

retroviral transduced by spin-infection using standard procedures. Infections resulted in 10-

20% GFP positive cells. High GFP expressing cells were sorted using a FACS ARIA (BD

Biosciences) and expanded.

For anti-CD3 stimulation 96-well plates were coated with 50 µl PBS containing 5µg/ml anti-

CD3ε (clone: 2C11) overnight at 4 degree. After extensive washing 105 purified T cells were

added per well. T cells were purified by MACS according to the manufacturer’s instruction. After

3 days 1 µCi/well 3H-thymidine was added for the last 18 h prior to harvesting.

Reconstitution of CD3ε-/- mice

CD3ε-/- mice at 6-12 weeks of age were γ-irradiated (450 Gray) and 3-5 h thereafter i.v. injected

with 5x106 pro B cells and in some experiments with 2x105 Treg cells. Treg cells were obtained

from Foxp3/EGFP reporter mice by sorting.

Antibodies and flow cytometry

The following mAb’s labeled with various fluorochromes were purchased from BD Biosciences:

anti-CD4 (RM4-5), anti-CD8α (53-6.7), anti-TCRβ (H57-597), anti-γδTCR (GL3) and anti-Vβ8

(F23.1). Cell staining was performed as previously described (Rolink et al., 1996). Samples

were analyzed using a FACSCalibur (Becton Dickinson). For cell sorting a FACSAria was used

(Becton Dickinson).

Immune responses

Mice were immunized i.p. with 100µg NIP-Ova (Biosearch Technologies Inc., Novato, CA) in

alum. At day 14 after immunization the mice were bled and the serum IgG anti-NIP titer was

determined by ELISA as previously described (Schubart et al., 1996).

Histology

Organs were fixed in 4% paraformaldehyde and embedded in parafin. Sections of 3µm were

prepared and stained with hematoxylin/eosin.
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Supplementary data

Supplementary Figure 1. Gating strategy and post-sort analysis of LN derived αβ and γδ T cells.

Inguinal, axillary and brachial LN from 4-week old C57Bl/6 mice were pooled and cell suspensions
stained with APC-labeled anti-TCRαβ (H57) and PE-labeled anti-TCRγδ (GL3) prior to being sorted with a
FACS Aria (BD Biosciences). The upper panel shows a cytogram display of stained cells and the gates
used for sorting. Figures in % show the proportion of gated cells. Below are shown post-sort cytograms
indicating that the purity of sorted TCRαβ cells was 99.9% (left cytogram) and of TCRγδ cells 99.6% (right
cytogram) in both cases, contaminating cells were not of the opposite TCR specificity.
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Supplementary Figure 2. Expression of TCRβ chains by PAX5/TCRβ double deficient proB cells
abolishes TCRγδ expression.

Shown are cytogram displays of gated GFP+ thymocytes stained with the indicated markers from mice
reconstituted with PAX5/TCRβ double deficient proB cells transduced with either TCRβ-expressing (upper
panels), or empty-vector (lower panels). As shown in the middle panel, expression of a TCRβ chain
abolished TCRγδ expression. Results are from a representative mouse. Numbers in quadrants represent
the percent positive cells.

Supplementary Table I. Shown are the sequences and Vβ family names of six TCRβ chains

from either αβ or γδ sorted LN T cells used in this study for transduction of PAX5/TCRβ double

deficient proB cells. Above each sequence, is from the left to the right, the name of the given

clone, its αβ or γδ origin and Vβ family.
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12.3 alpha-beta V beta 4
ATGGGCTCCATTTTCCTCAGTTGCCTGGCCGTTTGTCTCCTGGTGGCAGGTCCAGTCGACCCGAAAATTATCCAGAAACC
AAAATATCTGGTGGCAGTCACAGGGAGCGAAAAAATCCTGATATGCGAACAGTATCTAGGCCACAATGCTATGTATTGGT
ATAGACAAAGTGCTAAGAAGCCTCTAGAGTTCATGTTTTCCTACAGCTATCAAAAACTTATGGACAATCAGACTGCCTCAA
GTCGCTTCCAACCTCAAAGTTCAAAGAAAAACCATTTAGACCTTCAGATCACAGCTCTAAAGCCTGATGACTCGGCCACAT
ACTTCTGTGCCAGCAGCCAGGAGGGGGGGGCCGGTGCAGAAACGCTGTATTTTGGCTCAGGAACCAGACTGACTGTTC
TTGAGGATCTGAGAAATGTGACTCCACCCAAGGTCTCCTTGTTTGAGCCATCAAAAGCAGAGATTGCAAACAAACAAAAG
GCTACCCTCGTGTGCTTGGCCAGGGGCTTCTTCCCTGACCACGTGGAGCTGAGCTGGTGGGTGAATGGCAAGGAGGTC
CACAGTGGGGTCAGCACGGACCCTCAGGCCTACAAGGAGAGCAATTATAGCTACTGCCTGAGCAGCCGCCTGAGGGTC
TCTGCTACCTTCTGGCACAATCCTCGAAACCACTTCCGCTGCCAAGTGCAGTTCCATGGGCTTTCAGAGGAGGACAAGTG
GCCAGAGGGCTCACCCAAACCTGTCACACAGAACATCAGTGCAGAGGCCTGGGGCCGAGCAGACTGTGGAATCACTTC
AGCATCCTATCATCAGGGGGTTCTGTCTGCAACCATCCTCTATGAGATCCTACTGGGGAAGGCCACCCTATATGCTGTGC
TGGTCAGTGGCCTGGTGCTGATGGCCATGGTCAAGAAAAAAAATTCCTGA

137.6 gamma-delta V beta 6
ATGAACAAGTGGGTTTTCTGCTGGGTAACCCTTTGTCTCCTTACTGTAGAGACCACACATGGTGATGGTGGCATCATTACT
CAGACACCCAAATTCCTGATTGGTCAGGAAGGGCAAAAACTGACCTTGAAATGTCAACAGAATTTCAATCATGATACAATG
TACTGGTACCGACAGGATTCAGGGAAAGGATTGAGACTGATCTACTATTCAATAACTGAAAACGATCTTCAAAAAGGCGAT
CTATCTGAAGGCTATGATGCGTCTCGAGAGAAGAAGTCATCTTTTTCTCTCACTGTGACATCTGCCCAGAAGAACGAGAT
GGCCGTTTTTCTCTGTGCCAGCAGGACTGGGGGGCAAGACACCCAGTACTTTGGGCCAGGCACTCGGCTCCTCGTGTTA
GAGGATCTGAGAAATGTGACTCCACCCAAGGTCTCCTTGTTTGAGCCATCAAAAGCAGAGATTGCAAACAAACAAAAGGC
TACCCTCGTGTGCTTGGCCAGGGGCTTCTTCCCTGACCACGTGGAGCTGAGCTGGTGGGTGAATGGCAAGGAGGTCCA
CAGTGGGGTCAGCACGGACCCTCAGGCCTACAAGGAGAGCAATTATAGCTACTGCCTGAGCAGCCGCCTGAGGGTCTC
TGCTACCTTCTGGCACAATCCTCGAAACCACTTCCGCTGCCAAGTGCAGTTCCATGGGCTTTCAGAGGAGGACAAGTGG
CCAGAGGGCTCACCCAAACCTGTCACACAGAACATCAGTGCAGAGGCCTGGGGCCGAGCAGACTGTGGAATCACTTCA
GCATCCTATCATCAGGGGGTTCTGTCTGCAACCATCCTCTATGAGATCCTACTGGGGAAGGCCACCCTATATGCTGTGCT
GGTCAGTGGCCTGGTGCTGATGGCCATGGTCAAGAAAAAAAATTCCTGA

31.1 alpha-beta V beta 6
ATGAACAAGTGGGTTTTCTGCTGGGTAACCCTTTGTCTCCTTACTGTAGAGACCACACGTGGTGATGGTGGCATCATTAC
TCAGACACCCAAATTCCTGATTGGTCAGGAAGGGCAAAAACTGACCTTGAAATGTCAACAGAATTTCAATCATGATACAAT
GTACTGGTACCGACAGGATTCAGGGAAAGGATTGAGACTGATCTACTATTCAATAACTGAAAACGATCTTCAAAAAGGCG
ATCTATCTGAAGGCTATGATGCGTCTCGAGAGAAGAAGTCATCTTTTTCTCTCACTGTGACATCTGCCCAGAAGAACGAG
ATGGCCGTTTTTCTCTGTGCCAGCAGTGGGGACACCTTGTACTTTGGTGCGGGCACCCGACTATCGGTGCTAGAGGATC
TGAGAAATGTGACTCCACCCAAGGTCTCCTTGTTTGAGCCATCAAAAGCAGAGATTGCAAACAAACAAAAGGCTACCCTC
GTGTGCTTGGCCAGGGGCTTCTTCCCTGACCACGTGGAGCTGAGCTGGTGGGTGAATGGCAAGGAGGTCCACAGTGGG
GTCAGCACGGACCCTCAGGCCTACAAGGAGAGCAATTATAGCTACTGCCTGAGCAGCCGCCTGAGGGTCTCTGCTACCT
TCTGGCACAATCCTCGAAACCACTTCCGCTGCCAAGTGCAGTTCCATGGGCTTTCAGAGGAGGACAAGTGGCCAGAGGG
CTCACCCAAACCTGTCACACAGAACATCAGTGCAGAGGCCTGGGGCCGAGCAGACTGTGGAATCACTTCAGCATCCTAT
CATCAGGGGGTTCTGTCTGCAACCATCCTCTATGAGATCCTACTGGGGAAGGCCACCCTATATGCTGTGCTGGTCAGTG
GCCTGGTGCTGATGGCCATGGTCAAGAAAAAAAATTCCTGA

146.1 gamma-delta V beta 8
ATGTCTAACACTGCCTTCCCTGACCCCGCCTGGAACACCACCCTGCTATCTTGGGTTGCTCTCTTTCTCCTGGGAACAAA
ACACATGGAGGCTGCAGTCACCCAAAGCCCAAGAAACAAGGTGGCAGTAACAGGAGGAAAGGTGACATTGAGCTGTAAC
CAGACTAATAACCACAACAACATGTACTGGTATCGGCAGGACACGGGGCATGGGCTGAGGCTGATCCATTATTCATATGG
TGCTGGCAGCACTGAGAAAGGAGATATCCCTGATGGATACAAGGCCTCCAGACCAAGCCAAGAGAACTTCTCCCTCATT
CTGGAGTTGGCTACCCCCTCTCAGACATCAGTGTACTTCTGTGCCAGCGGTGATGGGACAAACACAGAAGTCTTCTTTGG
TAAAGGAACCAGACTCACAGTTGTAGAGGATCTGAGAAATGTGACTCCACCCAAGGTCTCCTTGTTTGAGCCATCAAAAG
CAGAGATTGCAAACAAACAAAAGGCTACCCTCGTGTGCTTGGCCAGGGGCTTCTTCCCTGACCACGTGGAGCTGAGCTG
GTGGGTGAATGGCAAGGAGGTCCACAGTGGGGTCAGCACGGACCCTCAGGCCTACAAGGAAAGCAATTATAGCTACTG
CCTGAGCAGCCGCCTGAGGGTCTCTGCTACCTTCTGGCACAATCCTCGCAACCACTTCCGCTGCCAAGTGCAGTTCCAT
GGGCTTTCAGAGGAGGACAAGTGGCCAGAGGGCTCACCCAAACCTGTCACACAGAACATCAGTGCAGAGGCCTGGGGC
CGAGCAGACTGTGGGATTACCTCAGCATCCTATCAACAAGGGGTCTTGTCTGCCACCATCCTCTATGAGATCCTGCTAGG
GAAAGCCACCCTGTATGCTGTGCTTGTCAGTACACTGGTGGTGATGGCTATGGTCAAAAGAAAGAATTCATGA
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174.10 gamma-delta V beta 8
ATGTCTAACACTGCCTTCCCTGACCCCGCCTGGAACACCACCCTGCTATCTTGGGTTGCTCTCTTTCTCCTGGGAACAAG
TTCAGCAAATTCTGGGGTTGTCCAGTCTCCAAGATACATAATCAAAGGAAAGGGAGAAAGGTCCATTCTAAAATGTATTCC
CATCTCTGGACATCTCTCTGTGGCCTGGTATCAACAGACTCAGGGGCAGGAACTAAAGTTCTTCATTCAGCATTATGATAA
AATGGAGAGAGATAAAGGAAACCTGCCCAGCAGATTCTCAGTCCAACAGTTTGATGACTATCACTCTGAGATGAACATGA
GTGCCTTGGAGCTAGAGGACTCTGCCGTGTACTTCTGTGCCAGCTCTCTCTTAAGCTCCTATGAACAGTACTTCGGTCCC
GGCACCAGGCTCACGGTTTTAGAGGATCTGAGAAATGTGACTCCACCCAAGGTCTCCTTGTTTGAGCCATCAAAAGCAGA
GATTGCAAACAAACAAAAGGCTACCCTCGTGTGCTTGGCCAGGGGCTTCTTCCCTGACCACGTGGAGCTGAGCTGGTGG
GTGAATGGCAAGGAGGTCCACAGTGGGGTCAGCACGGACCCTCAGGCCTACAAGGAGAGCAATTATAGCTACTGCCTG
AGCAGCCGCCTGAGGGTCTCTGCTACCTTCTGGCACAATCCTCGAAACCACTTCCGCTGCCAAGTGCAGTTCCATGGGC
TTTCAGAGGAGGACAAGTGGCCAGAGGGCTCACCCAAACCTGTCACACAGAACATCAGTGCAGAGGCCTGGGGCCGAG
CAGACTGTGGAATCACTTCAGCATCCTATCATCAGGGGGTTCTGTCTGCAACCATCCTCTATGAGATCCTACTGGGGAAG
GCCACCCTATATGCTGTGCTGGTCAGTGGCCTGGTGCTGATGGCCATGGTCAAGAAAAAAAATTCCTGA

38.7 alpha-beta V beta 6
ATGAACAAGTGGGTTTTCTGCTGGGTAACCCTTTGTCTCCTTACTGTAGAGACCACACATGGTGATGGTGGCATCATTACT
CAGACACCCAAATTCCTGATTGGTCAGGAAGGGCAAAAACTGACCTTGAAATGTCAACAGAATTTCAATCATGATACAATG
TACTGGTACCGACAGGATTCAGGGAAAGGATTGAGACTGATCTACTATTCAATAACTGAAAACGATCTTCAAAAAGGCGAT
CTATCTGAAGGCTATGATGCGTCTCGAGAGAAGAAGTCATCTTTTTCTCTCACTGTGACATCTGCCCAGAAGAACGAGAT
GGCCGTTTTTCTCTGTGCCAGCAGTCGGGACTGGGGGGGCCCAGACACCCAGTACTTTGGGCCAGGCACTCGGCTCCT
CGTGTTAGAGGATCTGAGAAATGTGACTCCACCCAAGGTCTCCTTGTTTGAGCCATCAAAAGCAGAGATTGCAAACAAAC
AAAAGGCTACCCTCGTGTGCTTGGCCAGGGGCTTCTTCCCTGACCACGTGGAGCTGAGCTGGTGGGTGAATGGCAAGG
AGGTCCACAGTGGGGTCAGCACGGACCCTCAGGCCTACAAGGAGAGCAATTATAGCTACTGCCTGAGCAGCCGCCTGA
GGGTCTCTGCTACCTTCTGGCACAATCCTCGAAACCACTTCCGCTGCCAAGTGCAGTTCCATGGGCTTTCAGAGGAGGA
CAAGTGGCCAGAGGGCTCACCCAAACCTGTCACACAGAACATCAGTGCAGAGGCCTGGGGCCGAGCAGACTGTGGAAT
CATTTCAGCATCCTATCATCAGGGGGTTCTGTCTGCAACCATCCTCTATGAGATCCTACTGGGGAAGGCCACCCTATATG
CTGTGCTGGTCAGTGGCCTGGTGCTGATGGCCATGGTCAAGAAAAAAAATTCCTGA

22.2 alpha-beta V beta 6
ATGAACAAGTGGGTTTTCTGCTGGGTAACCCTTTGTCTCCTTACTGTAGAGACCACACATGGTGATGGTGGCATCATTACT
CAGACACCCAAATTCCTGACTGGTCAGGAAGGGCAAAAACTGACCTTGAAATGTCAACAGAATTTCAATCATGATACAATG
TACTGGTACCGACAGGATTCAGGGAAAGGATTGAGACTGATCTACTATTCAATAACTGAAAACGATCTTCAAAAAGGCGAT
CTATCTGAAGGCTATGATGCGTCTCGAGAGAAGAAGTCATCTTTTTCTCTCACTGTGACATCTGCCCAGAAGAACGAGAT
GGCCGTTTTTCTCTGTGCCAGCAGTATGGGGACAGGGGAGAATTCGCCCCTCTACTTTGCGGCAGGCACCCGGCTCACT
GTGACAGAGGATCTGAGAAATGTGACTCCACCCAAGGTCCCCTTGTTTGAGCCATCAAAAGCAGAGATTGCAAACAAACA
AAAGGCTACCCTCGTGTGCTTGGCCAGGGGCTTCTTCCCTGACCACGTGGAGCTGAGCTGGTGGGTGAATGGCAAGGA
GGTCCACAGTGGGGTCAGCACGGACCCTCAGGCCTACAAGGAGAGCAATTATAGCTACTGCCTGAGCAGCCGCCTGAG
GGTCTCTGCTACCTTCTGGCACAATCCTCGCAACCACTTCCGCTGCCAAGTGCAGTTCCATGGGCTTTCAGAGGAGGAC
AAGTGGCCAGAGGGCTCACCCAAACCTGTCACACAGAACATCAGTGCAGAGGCCTGGGGCCGAGCAGACTGTGGGATT
ACCTCAGCATCCTATCAACAAGGGGTCTTGTCTGCCACCATCCTCTATGAGATCCTGCTAGGGAAAGCCACCCTGTATGC
TGTGCTTGTCAGTACACTGGTGGTGATGGCTATGGTCAAAAGAAAGAATTCATGA

46.4 gamma-delta V beta 4
ATGGGCTCCATTTTCCTCAGTTGCCTGGCCGTTTGTCTCCTGGTGGCAGGTCCAGTCGACCCGAAAATTATCCAGAAACC
AAAATATCTGGTGGCAGTCACAGGGAGCGAAAAAATCCTGATATGCGAACAGTATCTAGGCCACAATGCTATGTATTGGT
ATAGACAAAGTGCTAAGAAGCCTCTAGAGTTCATGTTTTCCTACAGCTATCAAAAACTTATGGACAATCAGACTGCCTCAA
GTCGCTTCCAACCTCAAAGTTCAAAGAAAAACCATTTAGACCTTCAGATCACAGCTCTAAAGCCTGATGACTCGGCCACAT
ACTTCTGTGCCAGCAGCCAAGAACCAGCAGAAGTCTTCTTTGGTAAAGGAACCAGACTCACAGTTGTAGGATTGCGGCTT
TCCTATGCAAGCCACCACAGCTCTCTTACATCTCAGTGTAGGAGTGAATGTGGAACATCAGAGGATCTGAGAAATGTGAC
TCCACCCAAGGTCTCCTTGTTTGAGCCATCAAAAGCAGAGATTGCAAACAAACAAAAGGCTACCCTCGTGTGCTTGGCCA
GGGGCTTCTTCCCTGACCACGTGGAGCTGAGCTGGTGGGTGAATGGCAAGGAGGTCCACAGTGGGGTCAGCACGGACC
CTCAGGCCTACAAGGAGAGCAATTATAGCTACTGCCTGAGCAGCCGCCTGAGGGTCTCTGCTACCTTCTGGCACAATCC
TCGCAACCACTTCCGCTGCCAAGTGCAGTTCCATGGGCTTTCAGAGGAGGACAAGTGGCCAGAGGGCTCACCCAAACCT
GTCACACAGAACATCAGTGCAGAGGCCTGGGGCCGAGCAGACTGTGGGATTACCTCAGCATCCTATCAACAAGGGGTCT
TGTCTGCCACCATCCTCTATGAGATCCTGCTAGGGAAAGCCACCCTGTATGCTGTGCTTGTCAGTACACTGGTGGTGATG
GCTATGGTCAAAAGAAAGAATTCATGA
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68.5 gamma-delta V beta 6
ATGAACAAGTGGGTTTTCTGCTGGGTAACCCTTTGTCTCCTTACTGTAGAGACCACACATGGTGATGGTGGCATCATTACT
CAGACACCCAAATTCCTGATTGGTCAGGAAGGGCAAAAACTGACCTTGAAATGTCAACAGAATTTCAATCATGATACAATG
TACTGGTACCGACAGGATTCAGGGAAAGGATTGAGACTGATCTACTATTCAATAACTGAAAACGATCTTCAAAAAGGCGAT
CTATCTGAAGGCTATGATGCGTCTCGAGAGAAGAAGTCATCTTTTTCTCTCACTGTGACATCTGCCCAGAAGAACGAGAT
GGCCGTTTTTCTCTGTGCCAGCAGTATATGGACAGGGGGCGACTCCGACTACACCTTCGGCTCAGGGACCAGGCTTTTG
GTAATAGAGGATCTGAGAAATGTGACTCCACCCAAGGTCTCCTTGTTTGAGCCATCAAAAGCAGAGATTGCAAACAAACA
AAAGGCTACCCTCGTGTGCTTGGCCAGGGGCTTCTTCCCTGACCACGTGGAGCTGAGCTGGTGGGTGAATGGCAAGGA
GGTCCACAGTGGGGTCAGCACGGACCCTCAGGCCTACAAGGAGAGCAATTATAGCTACTGCCTGAGCAGCCGCCTGAG
GGTCTCTGCTACCTTCTGGCACAATCCTCGCAACCACTTCCGCTGCCAAGTGCAGTTCCATGGGCTTTCAGAGGAGGAC
AAGTGGCCAGAGGGCTCACCCAAACCTGTCACACAGAACATCAGTGCAGAGGCCTGGGGCCGAGCAGACTGTGGGATT
ACCTCAGCATCCTATCAACAAGGGGTCTTGTCTGCCACCATCCTCTATGAGATCCTGCTAGGGAAAGCCACCCTGTATGC
TGTGCTTGTCAGTACACTGGTGGTGATGGCTATGGTCAAAAGAAAGAATTCATGA

80.2 gamma-delta V beta 6
ATGAACAAGTGGGTTTTCTGCTGGGTAACCCTTTGTCTCCTTACTGTAGAGACCACACATGGTGATGGTGGCATCATTACT
CAGACACCCAAATTCCTGATTGGTCAGGAAGGGCAAAAACTGACCTTGAAATGTCAACAGAATTTCAATCATGATACAGTG
TACTGGTACCGACAGGATTCAGGGAAAGGATTGAGACTGATCTACTATTCAATAACTGAAAACGATCTTCAAAAAGGCGAT
CTATCTGAAGGCTATGATGCGTCTCGAGAGAAGAAGTCATCTTTTTCTCTCACTGTGACATCTGCCCAGAAGAACGAGAT
GGCCGTTTTTCTCTGTGCCAGCAGGCGACTGGGGGGGACGGATTATGAACAGTACTTCGGTCCCGGCGCCAGGCTCAC
GGTTTTAGAGGATCTGAGAAATGTGACTCCACCCAAGGTCTCCTTGTTTGAGCCATCAAAAGCAGAGATTGCAAACAAAC
AAAAGGCTACCCTCGTGTGCTTGGCCAGGGGCTTCTTCCCTGACCACGTGGAGCTGAGCTGGTGGGTGAATGGCAAGG
AGGTCCACAGTGGGGTCAGCACGGACCCTCAGGCCTACAAGGAGAGCAATTATAGCTACTGCCTGAGCAGCCGCCTGA
GGGTCTCTGCTACCTTCTGGCACAATCCTCGAAACCACTTCCGCTGCCAAGTGCAGTTCCATGGGCTTTCAGAGGAGGA
CAAGTGGCCAGAGGGCTCACCCAAACCTGTCACACAGAACATCAGTGCAGAGGCCTGGGGCCGAGCAGACTGTGGAAT
CACTTCAGCATCCTATCATCAGGGGGTTCTGTCTGCAACCATCCTCTATGAGATCCTACTGGGGAAGGCCACCCTATATG
CTGTGCTGGTCAGTGGCCTGGTGCTGATGGCCATGGTCAAGAAAAAAAATTCCTGA

86.4 alpha-beta V beta 8
ATGTCTAACACTGCCTTCCCTGACCCCGCCTGGAACACCACCCTGCTATCTTGGGTTGCTCTCTTTCTCCTGGGAACAAA
ACACATGGAGGCTGCAGTCACCCAAAGCCCAAGAAACAAGGTGGCAGTAACAGGAGGAAAGGTGACATTGAGCTGTAAT
CAGACTAATAACCACAACAACATGTACTGGTATCGGCAGGACACGGGGCATGGGCTGAGGCTGATCCATTATTCATATGG
TGCTGGCAGCACTGAGAAAGGAGATATCCCTGATGGATACAAGGCCTCCAGACCAAGCCAAGAGAACTCCTCCCTCATT
CTGGAGTTGGCTACCCCCTCTCAGACATCAGTGTACTTCTGTGCCAGCGGTGATAACAATCAAAACACCTTGTACTTTGG
TGCGGGCACCCGACTATCGGTGCTAGAGGATCTGAGAAATGTGACTCCACCCAAGGTCTCCTTGTTTGAGCCATCAAAA
GCAGAGACTGCAAACAAACAAAAGGCTACCCTCGTGTGCTTGGCCAGGGGCTTCTTCCCTGACCACGTGGAGCTGAGCT
GGTGGGTGAATGGCAAGGAGGTCCACAGTGGGGTCAGCACGGACCCTCAGGCCTACAAGGAGAGCAATTATAGCTACT
GCCTGAGCAGCCGCCTGAGGGTCTCTGCTACCTTCTGGCACAATCCTCGAAACCACTTCCGCTGCCAAGTGCAGTTCCA
TGGGCTTTCAGAGGAGGACAAGTGGCCAGAGGGCTCACCCAAACCTGTCACACAGAACATCAGTGCAGAGGCCTGGGG
CCGAGCAGACTGTGGAATCACTTCAGCATCCTATCATCAGGGGGTTCTGTCTGCAACCATCCTCTATGAGATCCTACTGG
GGAAGGCCACCCTATATGCTGTGCTGGTCAGTGGCCTGGTGCTGATGGCCATGGTCAAGAAAAAAAATTCCTGA

99.1 alpha-beta V beta 8
ATGTCTAACACTGCCTTCCCTGACCCCGCCTGGAACACCACCCTGCTATCTTGGGTTGCTCTCTTTCTCCTGGGAACAAA
ACACATGGAGGCTGCAGTCACCCAAAGCCCAAGAAACAAGGTGGCAGTAACAGGAGGAAAGGTGACATTGAGCTGTAAT
CAGACTAATAACCACAACAACATGTACTGGTATCGGCAGGACACGGGGCATGGGCTGAGGCTGATCCATTATTCATATGG
TGCTGGCAGCACTGAGAAAGGAGATATCCCTGATGGATACAAGGCCTCCAGACCAAGCCAAGAGAACTTCTCCCTCATT
CTGGAGTTGGCTACCCCCTCTCAGACATCAGTGTACTTCTGTGCCAGCGGTGATGCTTATTCTGGAAATACGCTCTATTTT
GGAGAAGGAAGCCGGCTCATTGTTGTAGAGGATCTGAGAAATGTGACTCCACCCAAGGTCTCCTTGTTTGAGCCATCAAA
AGCAGAGATTGCAAACAAACAAAAGGCTACCCTCGTGTGCTTGGCCAGGGGCTTCTTCCCTGACCACGTGGAGCTGAGC
TGGTGGGTGAATGGCAAGGAGGTCCACAGTGGGGTCAGCACGGACCCTCAGGCCTACAAGGAGAGCAATTATAGCTAC
TGCCTGAGCAGCCGCCTGAGGGTCTCTGCTACCTTCTGGCACAATCCTCGCAACCACTTCCGCTGCCAAGTGCAGTTCC
ATGGGCTTTCAGAGGAGGACAAGTGGCCAGAGGGCTCACCCAAACCTGTCACACAGAACATCAGTGCAGAGGCCTGGG
GCCGAGCAGACTGTGGGATTACCTCAGCATCCTATCAACAAGGGGTCTTGTCTGCCACCATCCTCTATGAGATCCTGCTA
GGGAAAGCCACCCTGTATGCTGTGCTTGTCAGTACACTGGTGGTGATGGCTATGGTCAAAAGAAAGAATTCATGA
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Part IV: T cell mediated tolerance in double transgenic mice co-

expressing OVA specific TCR and OVA as agonistic antigen.

Introduction

As reported earlier, T cell tolerance is mediated through diverse mechanisms at different levels.

In the thymus, central tolerance is achieved through negative selection and regulatory T cell

development. In the periphery it is the result of a combination of effects, namely induction of

apoptosis, activation induced cell death, regulatory T cell mediated suppression and anergy.

Models of choice for studying T tolerance are double transgenic mice expressing a given

antigen and a TCR specific for this same antigen. The choice of the promoter used in transgenic

constructs allows for the restriction of antigen expression in specific cell subsets and therefore

for the study of different mechanisms of tolerance. These models enable to follow Ag specific T

cells fate, tolerance or autoimmunity in the periphery being the direct read out in these double

transgenic mice.

Despite strong negative selection, CD11c-HA x TCR-HA mice suffer severe systemic auto-

immunity and hyper-inflammation symptoms start at 3 weeks of age (Figure 1A). Most of them

consequently died about 5 weeks after birth (Figure 1B). On the opposite KLC-HAxTCR-HA

double transgenic mice display no detectable antinuclear auto-antibodies (ANA).

Figure 27: CD11c-HAxTCR-HA mice suffer from systemic autoimmunity.

A. IgG ANA titers in serum of TCR-HA and HA double transgenic mice. When comparing different
groups of double transgenic mice expressing specifically HA in various cell types, only the mice
expressing HA in the DCs population and expressing HA specific TCR, suffer from autoimmune
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disease. They display very high titer of ANA. In contrast the level of ANA in KLC-HAxHA-TCR
mice is in the normal range of a wild type mouse. Those mice are protected from autoimmunity.

B. CD11c-HAxTCR-HA mice succumb to systemic autoimmunity starting at 5 weeks of age. The
presence of antinuclear auto-antiodies, extensive lymphocytic infiltration and arthritis leads to
rapid death of these double transgenic mice.

When CD11c-HA mice were crossed with TCR-HA mice, DCs express HA in the thymus and

induce negative selection of the T cells expressing HA specific TCR.

However a specific population of T cells was able to escape negative selection thanks to TCR

editing, by expressing on their surface a second TCR α  chain while down regulating

autoreactive alpha chain.

After being positively selected, these dual TCR expressing T cells reach the periphery where

they express on their surface two different TCRs, one of the two being autoreactive.

The encounter with self-antigen, namely HA presented by DCs in the periphery, leads to their

proliferation and triggers effector functions. As a consequence, mice die of systemic

autoimmunity (Figure 2).

Figure 2: Theoretical model of T cell mediated autoimmunity development in CD11c-HAxTCR-HA mice.

When HA is presented by thymic DCs, the majority of HA specific T cells are eliminated by negative
selection. However the few T cells undergoing receptor editing, down regulate transgenic α chain. Hence
they are able to escape negative selection and are responsible for autoimmunity in the periphery.

On the contrary, double transgenic mouse models, where agonist antigen is presented by

TECs, have been reported to have an increase in Treg population (Jordan et al., 2001). This led

to the conclusion that interaction of a T cell with its agonist antigen presented by radio-resistant

TECs leads to Treg development. As an example, KLC-HA x TCR-HA showed sharp increase of

regulatory T cells, mice stayed healthy and did not show any sign of autoimmunity (Figure 3).
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Figure 3: Theoretical model of Regulatroy T cell development in KLC-HAxTCR-HA mice.

In the alternative model where HA is expressed under the control of KLC promoter, thymic epithelial cells
present the neo self-antigen to developing T cells thanks to promiscuous gene expression. This is
supposed to drive HA specific TCR cells towards regulatory T cells development as reported in several
other similar studies. In fact HA specific T cells can be found in higher proportion in the periphery where
they have been shown to exert their suppressive function on effector HA specific T cells as shown on the
graph. Autoimmunity in these mice is thought to be prevented by the higher proportion of regulatory T
cells.

Following these observations two working hypotheses were proposed, the first one being that

expression of HA by DCs promotes development of dual TCR expressing T cells responsible for

autoimmunity, whereas when HA is presented by TECs, Tregs development is favoured and

autoimmunity is prevented.

However the question still remains whether this phenomenon is specific to the HA system or if it

can be generalized to any other neo-self antigen expression system. To resolve this issue, we

generated double transgenic mice according to the same principle but using a different antigen

namely chicken ovalbumin (OVA) as an intracellular protein antigen.

We generated for this purpose two different transgenic mouse strains expressing chicken OVA

cDNA under the control of CD11c and KLC promoter, restricting expression to DCs and B cells

respectively. We crossed these mice with OT1 and OT2 mice, carrying a transgenic TCR

specific for OVA, respectively MHC-I and MHC-II restricted.

The generation of transgenic mice CD11c-OVA and KLC-OVA

We proposed to study tolerance under different conditions where OVA antigen expression is

restricted to particular cell types. For this purpose we used two different DNA plasmid constructs
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generated to direct Ova cDNA transcription by cell specific promoters, namely CD11c

promoter to target expression of antigen to DCs and KLC promoter to target OVA expression

to B cells.

Cloning of chicken ovalbumin cDNA

The chicken ovalbumin cDNA used for all constructs is a 1.8Kb digested out with EcoRI

restriction enzyme from the pAc-Neo-Ova vector, a gift from Dr. M.J. Bevan (Moore et al.,

1988). The cDNA encode for a soluble cytosolic protein of 385 amino acids (AA) with a

molecular weight of 43kDa, OVA protein contains one disulfide bond and carries two major T

cell epitopes encoded by AA258-265 recognised by MHC-I restricted CD8+ T cells of OT1 mice and

AA323-339 recognised by MHC-II restricted T cells of OT2 mice (Figure 2).

Figure 28: Restriction map of pAc-neo-Ova.

The complete Ova cDNA was subcloned into the mammalian expression vector pHI3APr-l-neo at the
BamHI and Hindlll sites, under control of the human 6-actin promoter. This plasmid also contains the
neomycin resistance gene, under control of the SV40 promoter, to provide a selectable marker for
transfection. (Adapted from (Moore et al., 1988).
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Figure 29: Ova sequence

In red is shown the open reading frame amino acid (AA) sequence corresponding to the OVA protein.
Two cysteins engaged in a disulfide bond are shown in brown and OT1 and OT2 epitope AA sequence is
displayed respectively in blue and green.

Cloning of the CD11c promoter-Ova DNA construct

Detection of the CD11c β2 integrin by mAb N418 has pointed out that its expression was

restricted to mouse dendritic cells (Agger et al., 1990; Metlay et al., 1990). It is thought to be the

most faithful molecule for dendritic cells and its corresponding promoter is considered to drive

expression with a high specificity to dendritic cells of various tissues including spleen and

thymus.

We used the pBSK(-)-CD11c promoter-HA construct  originally obtained from Dr T. Brocker

from which we cloned out HA sequence by using EcoRI sites. Ova cDNA was removed from the

pAC-Neo-Ova vector from Michael Bevan by EcoRI mediated restriction digest and then

inserted into pBSK(-)-CD11c promoter vector.

The pBSK(-)-CD11c promoter vector contains a long sequence containing 5900bp located

upstream the CD11c start codon providing all the promoter elements (Brocker et al., 1997). It

includes also a rabbit β -globin cDNA expression cassette containing splicing sites and

polyadenylation signal generally used to stabilize and prevent the degradation of the cDNA of

interest (Cavener and Ray, 1991). The Ova cDNA sequence was inserted into this cassette at

the EcoRI site as it was reported to support productive DNA expression (Kouskoff et al., 1993).
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Figure 30: pBSK(-)-CD11c promoter-OVA

In green is shown OVA cDNA sequence surrounded by β-globin cassette in red. Enzyme restriction sites
are indicated in black.

The linear DNA fragment used to generate transgenic mice was obtained by XhoI/NotI

restriction digest and used to transform ES cells injected into blastocyst of Bl/6 mice.

Cloning of the KLC promoter-Ova DNA construct

The β-globin cassette was cloned out of the CD11c promoter construct, a pBSK(-) backbone by

PstI/ClaI restriction digest. This 1.2kb fragment was inserted into a PstI/ClaI digested pBSK(+)

backbone vector resulting in pBSK-β-globin cassette vector. This vector was digested with

EcoRI and into that site the OVA fragment, isolated also by EcoRI from pAC-Neo-Ova, was

inserted.

The KLC promoter and H.C enhancer representing a fragment of 2kb was cloned out of the

vector pCD4-Hg1 CE1, kindly provided by Klaus Karjalainen, by a EcoRI/XbaI restriction digest.

This fragment was inserted into a pBSK(+) copy digested by the same enzymes, EcoRI and

XbaI. This insertion provided the pBSK(+)-KLC-HC vector with new restriction enzyme sites for

EcoR5 and NotI, which were used to clone out the KLC promoter and H.C. enhancer fragment.

This fragment was then inserted into the pBSK-β-globin-Ova beforehand digested with NotI and

SmaI. EcoRV and SmaI are restriction enzymes generating blunt end DNA that allowed the

ligation of KLC promoter and H.C. enhancer fragment to pBSK-β-globin-OVA.
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Once again the linear DNA fragment used to generate transgenic mice was obtained by

XhoI/NotI restriction digest. Transgenic constructs were transfected into packaging cells and

tested for OVA expression in vitro.

Screening for the presence of Ova transgene in transgenic mice

Offsprings of foster mothers were analyzed for the presence of the OVA transgene. Hence, Ova

specific PCR on tail DNA revealed the mice that had integrated the transgenic construct into

their genome. The following primers specific for Ova were used: Ova upstream primer: 5’-

C A A T C C T G C C A G A A T A C T T G C - 3 ’  a n d  O v a  dowstream primer: 5’-

TCCATCTTCATGCGAGGTAA-3’ resulting in a PCR product of 554bp. As positive controls,

primers specific for β-actin were used. After 39 cycles (20s 94°C, 30s 55°C, 80s 72°C) amplified

DNA was detected on a 1.5% agarose gel containing ethidium bromide.

OT1 mice

OT1 mice were a kind gift of Ed Palmer. These mice were originally developed by Hogquist et Al

(Barnden et al., 1998; Hogquist et al., 1994). OT1 mice express a Vα2/Vβ5 TCR derived from

the Kb-restricted OVA257-264 specific T cell clone 149.2. This TCR recognizes the OT1 peptide

SIINFEKL in the context of H-2Kb.

OT1 mice display normal numbers of lymphocytes in the thymus and in the periphery. FACS

analysis in the thymus showed a bigger CD8 SP T cell population than WT mice; with a parallel

increase in CD4 SP T cell population (Figure 8). The expression of the specific Vα2/Vβ5 TCR

starts early at the DN stage for 95% of the DN cells and stays high throughout all stages of

thymic development. Surprisingly CD4 SP T cell subpopulation show also high expression of

both transgenic TCR chains and Va2+Vb5+ cell population represents up to 90% of CD4 SP T

cell population. In fact MHC-I restricted CD8SP T cells in OT1 mice are thought to engage

toward CD4SP development pathway (Barnden et al., 1998). DP T cells showed decreased

percentage of cells positive for Vα2/Vβ5, about 55% as well as decreased mean fluorescence

intensity of Vα2 and Vβ5. It has been previously reported that TCR expression level is lower in

DP and reaches its maximum expression level at SP stages.  A quarter of this DP population

does not express Vβ5 but is reduced by half at the following developmental stage of SP T cells.

It is noteworthy that among the CD4 SP T cell population a significant percentage of cells, about

7%, undergo TCR editing and downregulate Vα2 chain. This phenomenon is not observed in

the CD8 SP population. Eventually the highest expression level of Vα2/Vβ5 is found at the CD8

SP stage with 86% of cells displaying high mean fluorescence intensity.
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Figure 31: FACS analysis of thymic subpopulations from a Bl/6 OT1 mouse

The middle panel shows CD4 and CD8 expression on total thymocytes and Vβ5 and Vα2 expression on
gated CD4 SP T cells (upper left), gated DP (upper right), gated DN (lower left) and gated CD8 SP (lower
right). Numbers shown in each corner of the dot plots represents percentage of cells for each quadrant.

Eventually spleen and LN also showed normal numbers of lymphocytes compared to WT mice

but with considerable skewing towards CD8 T cell population unlike in the thymus (Figure 6).

The CD8 T cell population is more than 10 fold higher than the CD4 T cell population with

almost 95% of cells being OVA specific. In contrast the CD4 T cell population is very small and

the 20% of Vα2+Vβ5+ within CD4+ T cell population might be considered as MHC-I restricted

although this has not been checked. Again a minority of T cells showed TCR editing, being Vβ5+

but Vα2-.
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Figure 32: FACS analysis of a spleen of a Bl/6 OT1 mouse

The middle panel shows CD4 and CD8 expression on total splenocytes. Each CD4 and CD8
subpopulations are stained for Vβ5 and Vα2 on gated CD4+T cells (upper left) and gated CD8+ T cells
(lower right).

OT2 mice

OT2 mice were a kind gift of Hans Acha-Orbea. These mice were originally developed by

Barnden et Al (Barnden et al., 1998; Hogquist et al., 1994). OT2 mice on a Bl/6 background

express also Vα2 and Vβ5 TCR that pairs with the CD4 co-receptor. This TCR is specific for

OVA323-339 peptide: ISQAVHAAHAEINEAGR in the context of I-Ab MHC molecule.

These mice possess lower numbers of thymocytes, but lymphocyte numbers in the periphery

are comparable to WT mice. FACS analysis of the thymus show forced TCR transgene

expression already at the DN stage albeit at low level, this concerns only 8% of DN cells (Figure

7). The DP thymocyte population of OT2 mice display a higher percentage of cells expressing

the transgenic TCR, about 20%, but again with lower mean fluorescence intensity. Eventually

transgenic TCR expression reaches its strongest level in the SP CD4+ T cell population.

Vα2+Vβ5+ OVA specific T cells stand for 80% of the CD4+ SP cells in the thymus. There is a

significant skewing of T cell development towards CD4+ T cell population since the transgenic

TCR expressed by the majority of the T cells is MHC-II restricted, hence CD8+ T cell

compartment is very small and represents only about 1% of the whole thymic population.

Moreover about 50% of the CD8+ SP cells in these mice are Vα2+Vβ5+ suggesting that they are

MHC-II restricted as well.
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It is noteworthy that almost all SP CD4 T cell that are Vβ5 are also Vα2 positive whereas

about 2% of the Vα2+ CD4+ SP are not Vβ5 positive. Since allelic exclusion process is almost

perfect in the TCRβ locus it seems unlikely that these cells would have edited their TCRβ chain.

It is probable that those cells represent γ/δ T cells since Vα2 mAb is known to cross-react with

Vγ8 TCR chain. It has to be noted that the percentage of Vα2+ T cell in CD4 SP of a WT thymus

is about 12%.

Figure 33: FACS analysis of thymic subpopulations from a Bl/6 OT2 mouse

The middle panel shows CD4 and CD8 expression on total thymocytes and Vβ5 and Vα2 expression on
gated CD4 SP T cells (upper left), gated DP (upper right), gated DN (lower left) and gated CD8 SP (lower
right). Numbers shown in each corner of the dot plots represents the percentage of cells for each
quadrant.

In the spleen, the pronounced skewing toward CD4 T cell population is again particularly

evident (Figure 8). CD4 T cell population is nearly four times bigger than the CD8 T cell

population. The majority of CD4 T cells, namely more than 80%, are OVA specific TCR bearing

T cells that are Vα2+ and Vβ5+, whereas it is not the case for the CD8 population where less

than 20% are Vα2+ and Vβ5+. LN of OT2 mice show a very similar pattern of expression in the

same populations.
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It is noticeable that very few T cells in these mice undergo spontaneous TCR editing since

nearly all Vβ5+ are also Vα2+.

Figure 34: FACS analysis of a spleen of a Bl/6 OT2 mouse

The middle panel shows CD4 and CD8 expression on total splenocytes. Each CD4 and CD8
subpopulations are stained for Vβ5 and Vα2 on gated CD4+T cells (upper left), and gated CD8+ T cells
(lower right). Numbers shown in each corner of the dot plots represents the percentage of cells for each
quadrant.

Results

CD11c-OVAxOT1 and KLC-OVAxOT1

Single Ova transgenic mice were crossed with OT1 transgenic animals. Hence F1 mice were

screened by PCR for OVA expression (as described earlier) and by FACS analysis for OT1

phenotype by using Vα2 and Vβ5 antibody.

Thymus, spleen and LN from these double transgenic animals were analyzed by flow cytometry

in order to monitor OVA specific T cell fate. Two founders from each mouse line CD11c-OVA

(designed as F3 and F4) or KLC-OVA (designed as F1 and F2) were selected for good negative

selection. The following figures show data from one or the other founder, as representative for

each mouse line since their phenotype were very similar. Cell numbers of thymus and spleen

are shown in Figure 9. Mice were used between 6 to 11 weeks of age.
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Figure 35: Thymocyte and splenocyte numbers of double transgenic mice KLC-OVAxOT1 and CD11c-
OVAxOT1 compared with OVA single transegnic mice.

Here is shown mean and standard deviation of thymocyte and splenocyte numbers from 7 to 11 week old
mice, either single or double transgenic: OT1 (n=2); KLC-OVA (n=6); CD11c-OVAxOT1 (n=6); KLC-
OVAxOT1 (n=6); CD11c-OVAxOT1 (n=11).

Double transgenic mice displayed numbers of thymocytes that are similar to single transgenic

OT1 mice. However, thymocyte numbers of double transgenic mice are lower than those of WT

or single transgenic CD11c-OVA or KLC-OVA. This can be explained by the relative immuno-

deficiency of OT1 mice, a feature that is common to several TCR transgenic mouse models

(Hogquist et al., 1994). Spleen and LN cell numbers did not differ between single and double

transgenic mice (Figure 9 and data not shown).

FACS analysis of the different thymic and peripheral T cell subpopulations showed that strong

negative selection is going on in these double transgenic mice (Figure 10). Thus the CD8 SP

compartment in the thymus dropped from about 23% in OT1 mice to 2% in double transgenic

mice Moreover a 4 - 6 fold reduction of peripheral CD8 T cells was observed.
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Figure 36: FACS analysis of thymic and spleen T cell subpopulations of single and double transgenic
mice.

Organs of OT1, CD11c-OVAxOT1 and KLC-OVAxOT1 were removed, washed, stained with fluorescent
anti-CD4 and anti-CD8 mAb and analysed by FACS. The upper row shows thymus cells and the lower
row represents spleen cells. All graphs are gated on lymphocyte population. Numbers shown in each
corner of the dot plots represents the percentage of cells for each quadrant.

The CD4 T cell compartment was affected as well, albeit to a lesser extent.

Along with percentages, cell numbers of CD8 SP population of double trangenic mice are also

greatly decreased compared to OT1 single transgenic mice, this illustrates faithfully the negative

selection mediated by OVA presentation in the thymus

CD11c-OVAxOT2 and KLC-OVAxOT2

The cellularity of the thymus in both double transgenic CD11c-OVAxOT2 and KLC-OVAxOT2

mice did not strongly differ from the single OT2 transgenic mice and was only slightly reduced

compared to single transgenics CD11c-OVA and KLC-OVA of the same age. However CD4 SP

population was absent in CD11c-OVAxOT2 and KLC-OVAxOT2 indicating strong negative

selection in double transgenic mice. FACS analysis of thymocytes showed that the CD4 SP

population dropped about 7 to 9 fold in double transgenic mice. Moreover, in the periphery the

number of CD4+ T cells was found to be 5 to 8 fold lower in double transgenic mice than in

single OT2 mice and practically none of them expressed the OVA specific OT2 TCR (data not

shown).
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Figure 37: double transgenic mice CD11c-OVAxOT2 and KLC-OVAxOT2 showed strong negative
selection of CD4 T cells.

A. Thymocyte numbers of double transgenic mice KLC-OVAxOT2 and CD11c-OVAxOT2. Here is
shown mean and standard deviation of thymocyte numbers from 6 to 14 week old mice, either
single or double transgenic: OT2 (n=2); CD11c-OVA (n=6), KLC-OVA (n=6); CD11c-OVAxOT2
(n=16); KLC-OVAxOT2 (n=8).

B. FACS analysis of thymic and spleen subpopulations of single and double transgenic mice.
Organs of OT2, CD11c-OVAxOT2 and KLC-OVAxOT2 were removed, washed, stained with
fluorescent anti-CD4 and anti-CD8 mAb and analysed by FACS. The upper row shows thymus
cells and the lower row represents spleen cells. All graphs are gated on lymphocyte population.
Numbers shown in each corner of the dot plots represents the percentage of cells for each
quadrant.

.
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OT2 cells proliferate in vivo when encountering CD11c-OVA APCs

and KLC-OVA B cells.

Given the results of the in vitro mixed lymphocyte reaction, we hypothesized that OT2 T cells

adoptively transferred in double transgenic host would show an anergic phenotype as well.

Interestingly OT2 cells, stained beforehand with CFSE to follow their division, show a high

degree of proliferation in the periphery of the double transgenic hosts as soon as day 3 after

adoptive transfer. In CD11c-OVA founder 3 and 4 after 3 days, only about 5% and less than 1%

respectively were still CFSE high whereas in Bl/6 hosts the same population represented 75 to

80% in spleen and LN. Similar results were obtained when KLC-OVA transgenic animal were

used as host mice. There is no difference between the proliferative capacity in the spleen or in

the LN and very little differences found between founders. When Bl/6 hosts were adoptively

transferred with OT2 cells and immunized 24 hours later subcutaneously by footpad injection

with OVA in CFA as a positive control, no proliferation could be recorded as shown by the high

MFI of the CFSE profile of OT2 cells in these mice. It might be due to early time point of

analysis since high dilution of CFSE staining could be seen a day 6 in the same mice (data not

shown). When markers for activation were analysed by FACS and despite extensive

proliferation of OT2 cells in the periphery of double transgenic mice, we could only characterise

naïve status of these cells. As a conclusion OVA specific T cells in the periphery of double

transgenic mice are not anergic in vivo and even able to proliferate in the periphery. It might be

interesting to examine further these adoptively transferred mice to follow development of any

pathology on a long-term basis.
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Figure 38: OT2 adoptively transferred into CD11c-OVA and KLC-OVA hosts proliferate in the periphery.

OT2 lymph node cells were stained with CFSE and injected intraveinously of CD11c-OVA (F3 and F4) or
KLC-OVA (F1 and F2) or Bl/6 hosts (n=2-3 for each group). 24hrs later half of the Bl/6 mice were
immunized subcutaneously with OVA/CFA and on day 3 after adoptive transfer spleen and lymph node
cells were isolated, stained with fluorescent labelled mAb to perform FACS analysis and examined for
CFSE dilution. Here is shown lymphocytes gated on CD4+Vα2+Vβ5+ T cells OT2 cells.

Discussion

We have generated four different mouse strains expressing the ovalbumin antigen in specific

cell subsets along with MHC I or MHC II restricted TCR specific for ovalbumin, i.e CD11c-

OVAxOT1, KLC-OVAxOT1 and CD11c-OVAxOT2, KLC-OVAxOT2. These mice represent

models to study central as well as peripheral T cell tolerance. We have shown that all these

mice are tolerant and do not display any sign of autoimmunity unlike previously observed in a

similar HA model using the same promoters (Curti et Al.). Sharp reductions of OVA specific CD8

SP or OVA specific CD4 SP T cells respectively for OT1 and OT2 systems in the thymus of

double transgenic mice show that these populations were negatively selected and that negative

selection is almost complete in these mice. However a few autoreactive T cells escape negative

selection. In the periphery these OVA specific Vβ5+ Vα2+ T cells represent 0.1 to 1x106 cells

(data not shown). This number can be considered relatively low, however in a WT mouse the

frequency of peripheral T cells specific for a given peptide epitope has been evaluated as 0.5 to

1x10-5 which is 150 to 1500 times less than the number of OVA specific T cells in double

transgenic mouse. Despite the presence of a few OVA specific T cells in the periphery, their

numbers do not seem to be sufficient for triggering autoimmunity, since no antinuclear
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autoantibodies, splenomegaly or sign of arthritis could be detected. Similar to double

transgenic OVA mice CD11c-HAxTCR-HA mice previously developed in our laboratory show

practically complete negative selection. However, in contrast to CD11c-OVAxOT2 mice,

significant numbers of phenotypically activated T cells expressing the TCR clonotype can be

found in the periphery of CD11c-HAxTCR-HA. In addition the number of antigen specific T cells

varies between the HA and the OVA model, whereas 6.5+ TCR cells represent about 10% of the

CD4+ T cell peripheral population in CD11c-HAxTCR-HA, only 3% CD4+ T peripheral T cells are

Va2+Vb5+ cells. The difference between the two models may lie in the efficiency of antigen

presentation. Despite clear evidence of thymus presentation of OVA shown by nearly complete

negative selection, it might be hypothesized that OVA presentation in the periphery is

qualitatively or quantitatively different from HA and is by consequence not able to activate and

trigger proliferation of OVA specific T cells in the periphery. Our last experiment showing

proliferation of naïve OT2 cells after adoptive transfer into CD11c-OVA as well as KLC-OVA

mice disproves this last hypothesis. OVA in CD11c-OVA or KLC-OVA mice is efficiently

presented and is able to trigger proliferation of OVA specific T cells. However double transgenic

mice show limited proliferation of OVA specific T cells, one of the probable explanations for this

lack of response despite efficient OVA presentation is that OVA specific T cells in double

transgenic mice may display anergic properties.

The characterization of the anergic state of OVA specific T cells in double transgenic cells could

be further analysed by measuring the response of these cells to ex vivo restimulation with OVA

or in vivo immunization with antigen pulsed DCs. Because of the very low numbers of OVA

specific T cells in the periphery of double transgenic mice, this experiment is technically

challenging and could not be performed.

To account for the difference observed between the two systems, it is noteworthy that already

single transgenic mice, namely TCR-HA and OT2 mice are different. Whereas the first strain

display only 30 to 40% of clonotype positive CD4+ T cells in the periphery, the second possess

about 90% of OVA specific T cells in the periphery. The low frequency of clonotype positive T

cells in TCR-HA mice could be interpreted as a result of a low probability of pairing between the

α and the β chain of the HA-TCR. Indeed T cells from TCR-HA single transgenic show a high

occurrence of TCR editing which is more pronounced in double transgenic mice. Conversely

TCR editing seems to be a minor event in OVA double transgenic mice (data not shown). In fact

TCR editing is supposed to be responsible for the development of autoimmunity in CD11c-

OVAxTCR-HA mice, it allows HA-TCR T cells to escape thymic negative selection but give rise

to dual TCR expressing cells which get activated in the periphery. Due to stronger negative

selection and minimum TCR editing, a lower number of OVA specific T cells are found in the

periphery, in addition these cells display anergic properties.
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We have shown that Ova presentation in the periphery of CD11c-OVA as well as KLC-OVA

mice is sufficient for triggering proliferation of naïve OT2 cells. However this proliferation does

not lead to hyperinflammation in double transgenic mice. What could account for the anergy of

OVA specific T cells compared to activation of HA specific T cells?

The nature of the antigen might influence the degree of activation in the periphery and could

explain the discrepancies observed between the two models. Indeed OVA is a large protein of

about 45kDa expressed intracellularly in CD11c-OVA as well as in KLC-OVA double transgenic

mice. On the opposite HA is a highly immunogenic protein isolated from a virus and attached to

the membrane. Because of its intracellular location, OVA would be expected to be processed

and presented through MHC class I mediated presentation pathway to CD8 T cells. In addition it

has been shown that professional APCs can capture antigen as debris from apoptotic antigen

expressing cells by either receptor mediated endocytosis, pinocytosis or phagocytosis.

Eventually if OVA is released extracellulary, APCs could load surface MHC-II molecules with

OVA peptide. It is known that OVA specific T cells become anergic upon encounter with a

soluble form of OVA (Lohr et al 2004). That is why OVA specific ELISA test was developed to

detect any possible presence of OVA in the serum of those mice, but OVA concentration was

below detection threshold of the ELISA (data not shown).

The relevance of the use of these two systems could also be discussed, in fact all double

transgenic systems mentioned previously used MHC-II restricted TCR and MHC-II ligand as

agonist antigen. In our case, the expression of the entire OVA protein displaying two different

epitopes, each of them being the ligand for either MHC-I or MHC-II allowed to study tolerance of

both CD4 and CD8 T cells by using OT1 and OT2 mice. We could show that negative selection

happens in both CD8 and CD4 population.

Considering these elements it is assumed that OVA peptide presentation in the thymus would

be relatively low especially in KLC-OVAxOT2 mice. In fact it is known that MHC products and

MHC-peptide complexes densities are 10 to 100 times higher on DC than on other APCs like

TECs through promiscuous gene expression (Inaba). This could explain the slight difference

observed between negative selection in CD11c-OVAxOT2 and KLC-OVAxOT2 mice. However

both levels of expression either on DCs or on TECs are sufficient to induce strong degree of

negative selection.

The mechanisms of tolerance in the periphery have been well described for OVA as an agonist

antigen by Kawahata et Al. (ref). They showed that OVA specific T cells in OVA expressing

mice are able to proliferate in the periphery to a limited extent and get activated without

triggering inflammation. The presence of negative selection in both double transgenic systems

is a direct proof for OVA expression in the thymus, however it is possible that OVA expression
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in the periphery of those mice would be weaker, this has been suggested by in vitro mixed

lymphocyte reaction in single transgenic mice (data not shown). Although the level of Ova

presentation is sufficient to provoke proliferation in vivo as shown by CFSE dilution of OVA

specific T cells after adoptive transfer experiment, it might be too low to break tolerance and

instead would induce anergy.

Furthermore the discrepancy between HA and OVA systems might lie in the affinity of the TCR

to its specific antigen or in the antigen dose available. Indeed CD4+ T cell stimulation with high

antigen concentration or strong agonist peptides can bypass the need for costimulation, more

specifically for CD28 signal (Teh hs 1997). This might well be the case in the HA double

transgenic mice since HA is considered to bind to HA-specific TCR with very high affinity (jordan

2001). Although the affinity of OT1 T cells for OVA257-264 peptide/Kb is relatively high with a Kd of

about 6.5µM and the one of OT2 T cells for OVA323-339 peptide/Kb is thought to be lower, this

difference of affinity between the two models could account for the difference in their capacity of

activating T cells.

Eventually the HA system developed previously in our lab and the OVA system described here

present many dissimilarities and might not be fully comparable.

Current experiments are ongoing to breed our double transgenic mice on the RAG deficient

background; this would lead to the production of only OVA specific T cells. Our prediction is that

this would not however trigger autoimmunity in these mice. Another way to induce hyper

inflammation would be to inject mice with CPG or LPS and see if activation of APCs would be

able to induce response of OVA specific T cells. Finally long term adoptive transfer of naïve

OT1 and OT2 cells into CD11c-OVA and KLC-OVA will allow us to check whether autoimmunity

develops or not in OVA expressing host.

Materials and methods

Mice

CD11c-OVA and KLC-OVA mice were generated as indicated above. CD11c-OVA and KLC-

OVA mice as well as C57Bl/6 mice were maintained in our own animal SPF facilities. Female

mice were used at 6 to 12 weeks of age and all experiments were carried out according to

Institutional guidelines.
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Reagents and antibodies.

The following mAb were purchased from PharMingen (San Diego, USA): anti-CD25FITC (7D4),

FITC or biotin-conjugated anti-CD8α (53-6.7). Anti-CD4PE (RM4-5).

Flow cytometric analysis

Single-cell suspensions of thymus, spleen and lymph nodes were prepared in PBS

supplemented with 2% FBS and 0.2% sodium azide as described previously (Balciunaite et al.,

2005b). Cells were adjusted to 20–10 _ 106 cells/ml and 0.5–1 _ 106 cells incubated for 30 min

at 4°C with the indicated reagents at saturating concentrations as previously described. Stained

cells resuspended in PBS 2% FBS 0.2% azide were analyzed using a FACSCalibur (Becton

Dickinson) and data analyzed using FlowJo (Tree Star). Viable lymphoid cells were defined by a

combination of FSC, SSC.

Adoptive transfer

LN cell suspensions from 3 to 5 OT2 donor mice were prepared. After red blood cell lysis, LN

cells were washed, stained with 10µM CFSE for 5 min at room temperature, washed again and

resuspended in DMEM prior to i.v. injection. CD11c-OVA and KLC-OVA or Bl/6 recipient mice

received about 10x106 cells LN OT2 cells. Twenty-four hours later Bl/6 mice were immunized by

footpad injection with OVA/CFA. Three days later mice were killed and spleen and LN were

analyzed by FACS.
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Abbreviations

3D Three-dimensional

AA Amino acids

AIRE Autoimmune regulator

ANA Antinuclear autoantibody

APECED Autoimmune Polyendocrine Syndrome type 1

APC Antigen presenting cells

ATOC Adult thymic organ culture

BCL-2 B-cell lymphoma 2 anti-apoptotic protein

BCR B cell receptor

BIM BCL-2 interacting mediator

Bl/6 C57 BL6 mice

BM Bone marrow

BMT Bone marrow transplantation

BMdDCs Bone marrow derived dendritic cells

BSA Bovine serum albumin

cAMP Cyclic adenosine monophosphate

CBP CREB binding protein

CD Cluster of differentiation

CLP Common lymphoid progenitor

CMP Common myeloid progenitor

CMLP Common myeloid lymphoid progenitor

CMV Cytomegalovirus

CRP C reactive protein

CSF Colony stimulating factor

CTL Cytotoxic T lymphocyte

CTLA4 Cytotoxic T-lymphocyte antigen 4
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DC Dendritic cell

DETC Dendritic epidermal T cell

DMEM Dulbecco’s modified Eagle’s medium

DN Double negative

DP Double positive

DsRNA Double strand ribonucleic acid

EAE Experimental autoimmune encephalomyelitis

EBF Early B cell factor

ELISA Enzyme-linked immunosorbent assay

ELP Early lymphoid progenitor

ERK Extracellular signal-regulated kinase

ETP Early thymic progenitor

FACS Fluorescence-activated cell sorting

FBS Fetal bovine serum

FcεR1γ High-affinity IgE receptor

FGF Fibroblast growth factor

FLT3 Fms-related tyrosine kinase 3

FoxP3 Forkhead box P3

FTOC Fetal thymic organ culture

GAD67 Glutamic acid decarboxylase

GC Germinal center

GDP/GTP Guanosine di/tri-phosphate

GFP Green fluorescent protein

GITR Glucocorticoid-induced tumor necrosis factor receptor

GMP Granulocyte/macrophage progenitor

GRB2 Growth factor receptor-bound protein 2

GvHD Graft versus host disease

HA Hemagglutinin
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HSC Haematopoietic stem cell

IBD Inflammatory bowel disease

ID2 Inhibitor of DNA binding 2

IEL Intraepithelial lymphocyte

IFN-g Interferon gamma

Ig Immunoglobulin

IL Interleukin

IP3 Inositol 1,4,5-triphosphate

IPEX Immunodysregulation polyendocrinopathy enteropathy X-linked syndrome

IRF IFN regulatory factor

ITAM Immunoreceptor tyrosine-based activation motif

JNK Jun-N terminal kinase

KD Kilodalton

KLC Kappa light chain

KI Knock in

KO Knock out

LAT Linker for activation of T cells

LEF1 Lymphoid enhancer binding factor 1

Lck Leukocyte specific tyrosine kinase

Lin- Lineage negative

LN Lymph node

LPS Lipopolysaccharide

LSL Lineage negative, stem-cell antigen 1 positive,  cKIT high

MAb Monoclonal antibody

MAPK Mitogen-activated protein kinase

MEP Megakaryocyte/erythroid progenitor

MFI Mean fluorescence intensity

MHC Major histocompatibility complex
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MPP Multipotential progenitor

MyD88 Myeloid differentiation primary response 88

NF-AT Nuclear factor of activated T cell

NFκB Nuclear factor kappa B

NK Natural killer cell

NTreg Natural regulatory T cell

Nurr-77 Nuclear orphan steroid receptor

OBF1 Octamer binding transcription factor- binding factor 1

OVA Ovalbumin

PAMPs Pathogen-associated molecular patterns

Pax-5 Paired box protein 5

PBS Phosphate buffered saline

PCR Polymerase chain reaction

PFA Paraformaldehyde

PGE Promicuous gene expression

PHSC Pluripotent haematopeitic stem cell

PI Propidium iodide

PLCγ Phospholipase C gamma 2

PNA Peanut agglutinin

PRR Pathogen recognition receptor

PTEN Phosphatase and tensin homologue

RAG Recombination activating gene

Sca1 Stem-cell antigen 1

SCF Stem cell factor

SOX-4 Sex determining region Y box 4

SP Single positive

TBI Total body irradiation

TCD T cell depleted
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TCR T cell receptor

TD Thymus dependant

TdT Terminal deoxynucleotidyl transferase

M/cTEC Medullary/cortical thymic epithelial cell

Teff Effector T cell

TGFβ Tramforming growth factor beta

Th Helper T cell

TI Thymus indepedant

Treg Regulatory T cell

TLR Toll like receptor

TNF-α Tumor necrosis factor

TSA Tissue-restricted self-antigen

TSLP Thymic stromal lymphopoietin

TSP Thymus settling progenitor

TX Thymectomised

NTX Non-thymectomised

WT Wild type
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