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ABSTRACT 
 

The investigation of promoter activity and DNA-protein interactions is very important for 

understanding many crucial cellular processes, including transcription, recombination and 

replication. Promoter activity and DNA-protein interactions can be studied in the lab (in 

vitro or in vivo) or using computational methods (in silico). Computational approaches 

for analysing promoters and DNA-protein interactions have become more powerful as 

more and more complete genome sequences, 3D structural data, and high-throughput data 

(such as ChIP-chip and expression data) have become available. Modern scientific 

research into promoters and DNA-protein interactions represents a high level of co-

operation between computational and laboratorial methods. 

This thesis covers several aspects of the computational analysis of promoters and DNA-

protein interactions: analysis of transcription factor binding sites (investigating position 

dependencies in transcription factor binding sties); computational prediction of 

transcription factor binding sites (a new scanning method for the in silico prediction of 

transcription factor binding sites is described); computational analysis of crystal 

structures of DNA-protein interactions (multiple proteins bound to DNA); and 

computational predictions of transcription factor co-operations (investigating 

dependencies between transcription factors in human, mouse and rat genomes, and a new 

method of in silico prediction of cis-regulatory motifs and transcription start sites is 

described). In addition, this thesis reports how one statistical method for the analysis of 

transcription factor binding sites can be used for estimating the quality of multiple 

sequence alignments.  

The main finding reported in this thesis is that it is wrong to assume, a priori, that 

positions in transcription factor binding sites are all either independent or dependent on 

one another. Position dependencies should be tested using rigorous statistical methods on 

a case-by-case basis. When dependencies are detected, they can be modelled in a very 

simple way, which doesn’t require complex mathematical tools with a lot of parameters 

and more data. An example of such a model, including a web-based implementation of 

the algorithm, is reported in this thesis. It has also been shown that the conformational 
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energy (indirect readout) of DNA in complexes with transcription factors which have 

dependent positions in their binding sites is significant ly higher than in those with 

transcription factors which do not have dependent positions in their binding sites.  

The structural analysis of multiple protein-DNA interactions showed that the formation 

of interactions between multiple proteins and DNA results in a decrease in protein-

protein affinity and an increase in protein-DNA affinity, with a net gain in overall 

stability of complexes where multiple proteins are bound to DNA. This effect is clearly 

important for modelling transcription factor co-operativity. In addition, the physical 

overlap of two factors does not simply relate to the region on the DNA where the binding 

site is found. Two factors may lie very close together but possibly not physically overlap 

because their side-chains can interlink with one another. In this way, it is possible to find 

a large overlap between two transcription factor binding sites, but from a 3D perspective 

it is still possible for both factors to bind simultaneously. It may also be that one 

transcription factor binds to the minor and another to the major groove of DNA. That 

information is also useful for modelling transcription factor co-operativity. 

Moreover, this thesis reports the results from a computational prediction of dependencies 

(co-operativities) between transcription factors which usually act together in gene 

regulation in human, mouse and rat genomes. It is shown that that the computational 

analysis of transcription factor site dependencies is a valuable complement to 

experimental approaches for discovering transcription regulatory interactions and 

networks. Scanning promoter sequences with dependent groups of transcription factor 

binding sites improve the quality of transcription factor predictions. Finally, it has been 

demonstrated that modelling transcription factor co-operativities improves the quality of 

transcription start site predictions. For three genes (ctmp, gap-43 and ngfrap) in-vivo 

validation of the predicted transcription start sites is performed. 

Finally, the Bayesian method for the detection of dependencies between positions in 

transcription factor binding sites can easily be converted into a method for estimating the 

quality of multiple sequence alignments. That method is simple, linear complexity, which 

is easy to implement and which performs better than other state-of-the-art methods which 

are more complex. 
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1.  Introduction 
 

Computational techniques in molecular biology can be useful from both a theoretical and 

a practical point of view. From the theoretical point of view, computational methods can 

help to mine the huge amounts of data produced in the laboratory, in order to characterise 

the data, and find interesting patterns, clusters and rules. With the current expansions in 

biotechnology, the amount of high-throughput and other laboratory data increases every 

day, and the need for the mining of these data is increased. From the practical point of 

view, computational methods may be useful for different kinds of predictions and 

simulations, or for assistance in the laboratory. This is crucial for saving time, money and 

resources in laboratory research. Modern scientific research into promoters and DNA-

protein interactions represents a high level of co-operation between computational and 

laboratorial methods. 

 

1.1 DNA-binding proteins 
 

DNA-binding proteins are important for the regulation of many crucial cellular processes 

(including gene expression, recombination, translation and replication). Because of that, 

it is very important to investigate DNA-binding proteins and understand the DNA-

binding process. There are several kinds of DNA-binding proteins: 

 

• Transcription factors are regulatory DNA-binding proteins which play a crucial 

role in the regulation of gene expression. The total number of transcription factors 

in an organism increases with the number of genes in the genome [1] and with the 

size of the genome (there is a power-law relationship between genome size and 

total number of transcription factors as N~G1.9 for prokaryotes and N~G1.3 for 

eukaryotes, where N is the total number of transcription factors and G the number 

of genes) [2, 3]. The genome sequences of C. elegans and Drosophila reveal at 

least 1,000 transcription factors [4, 5]. There are probably 3,000 transcription 

factors in humans [6]. Yeast contains an average of one transcription factor per 20 
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genes, while humans appear to contain one factor for every ten genes [1]. 

Transcription factors can be activators of transcription processes, but they can 

also act by inhibiting the transcription of specific genes [7]. Based on this, we can 

separate transcription factors into two classes: transcription factor activators; and 

transcription factor inhibitors (repressors). Transcription factors bind to short 

DNA sequences known as transcription factor binding sites (TFBS, DNA-binding 

motifs, cis-regulatory elements).Transcription factor binding sites are usually very 

short and highly degenerate. It is possible to distinguish basal transcription factors 

and enhancer transcription factors based on the position of their DNA-binding 

motifs on the promoter. The part (domain) of the transcription factor that binds to 

DNA is called the transcription factor DNA-binding domain. Transcription factors 

can be classified according to the structural similarity of their DNA-binding 

domains (DBD) [8]1. Some well characterised DNA-binding domains include: the 

helix-turn-helix motif (found in homeobox transcription factors); the two 

cysteine-two histidine zinc finger (found in the Sp transcription factor family); the 

multi-cystine zinc finger (found in the steroid-thyroid hormone receptor family); 

and the Ets domain [7]. Apart from the DNA-binding domains, transcription 

factors usually contain a trans-activating domain (TAD) which contains binding 

sites for other proteins (transcription co-regulators) [7, 9]. In addition, 

transcription factors sometimes have a signal-sensing domain (SSD) (e.g. a 

ligand-binding domain) which senses external signals and, in response, transmits 

these signals to the rest of the transcription complex, resulting in up- or down-

regulation of gene expression [7]. Very often, the TAD and SSD are the same. In 

order to act as transcription activators or repressors, very often transcription 

factors should be activated (or deactivated) through their SSD by ligand binding 

(like nuclear receptors), interactions with other transcription factors (making cis-

regulatory modules), the binding of co-regulators and phosphorylation [10]. 

Transcription factor activators can also be classified based on their function [11]: 

                                                 
1 In the following text, the classification of all DNA-binding proteins is going to be based on the structural 

analysis of their DNA-binding motifs. 
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I. constitutively active - present in all cells at all times - general transcription 

factors, Sp1, CCAAT-binding protein, NF1 and many others; 

II. regulatory transcription factors 

II.A developmental (cell-specific) - expression is tightly controlled, but 

they require no additional activation once expressed - GATA, HNF, 

PIT-1, MyoD, Myf5, Hox, winged helix; 

II.B signal-dependent - requires external intra- or extracellular signal 

for activation  

II.B.1 the steroid receptor superfamily (extracellular ligand 

dependent - nuclear receptors); 

II.B.2 transcription factors activated by internal (cell-autonomous) 

signals (intracellular ligand-dependent - activated by small 

intracellular molecules - SREBP, p53, orphan nuclear receptors); 

II.B.3 transcription factors activated by cell-surface receptor-

ligand interactions (cell membrane receptor-dependent - second 

messenger signalling cascades resulting in the phosphorylation of 

the transcription factor);  

II.B.3.a constitutive nuclear factors activated by serine 

phosphorylation (reside in the nucleus regardless of 

activation state, e.g. CREB, AP-1, Mef2); 

II.B.3.b latent cytoplasmic factors (inactive forms reside in 

the cytoplasm but when activated are translocated into the 

nucleus, e.g. STAT, R-SMAD, NF-kB, Notch, TUBBY, 

NFAT); 

The repression of gene expression can occur by the transcription factor repressor 

binding to DNA and preventing an activator from binding and activating the 

transcription process, by the transcription factor repressor interacting with the 

activator and in that way preventing its DNA from binding, by the repressor 

binding to DNA with the activator and neutralising its ability to activate 

transcription, or by direct repression by inhibiting the transcription factor [7]. 

Because transcription factors play an important role, it is not unexpected that 
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alterations in them can result in human diseases [7, 12]. Such diseases can be 

divided into three major groups: developmental disorders, disorders of hormone 

responses and cancer [7]. 

 

• Histones are DNA-binding proteins responsible for the first, and most basic, level 

of chromosome organisation, the nucleosome, which was discovered in 1974 [13]. 

Histones are present in huge quantities in the cell (about 60 million molecules of 

each type per human cell) [13].The structural organisation of nucleosomes was 

determined after isolating them from unfolded chromatins using nucleases [13]. 

The nucleosome core particle consists of an octomer complex of eight histone 

proteins (two molecules of each of histones H2A, H2B, H3 and H4) and double-

stranded DNA (~146 bp long) wrapped around the octomer (Figure 1). Each 

nucleosome core particle is separated from the next by a region of linker DNA 

(which can vary in length from 0 up to about 80 bp, depending on the species 

[14]). The term nucleosome refers to a nucleosome core particle plus one of its 

adjacent DNA linkers. Nucleosomes are the first level of DNA packing 

(compressing DNA to about one-third of its initial length). There are indications 

that nucleosome organisation is encoded in eukaryotic genomes, i.e. that genomes 

use nucleosome sequence preference to control the distribution of nucleosomes in 

vivo in a way that strongly impacts on the ability of non-histone DNA binding 

proteins to access particular binding sites [15]. According to this statement, 

remodelling factors do not themselves determine the destinations of the 

nucleosomes that they mobilise. An array of nucleosomes, together with histone 

H1 molecules, is known as “beads on a string” and represents the second level of 

chromosome organisation. Histone H1 is larger than the core histones and is 

considerably less well conserved. Further nucleosome arrays are usually packed 

together into quasi-regular arrays to form a 30-nm fibre (solenoid, chromatin 

fibre). The next level of chromosome organisation is euchromatin and 

heterochromatin. Euchromatin makes up most of the interphase chromosomes, 

and probably corresponds to looped domains of 30-nm fibres. Euchromatin is 
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interrupted by heterochromatin, on which 30-nm fibres are subjected to additional 

levels of packing, and this usually renders it resistant to gene expression [13]. 

 

                                     
Figure 1. Complex between a nucleosome core particle (octomer) and a 146bp DNA 

fragment (source: 1aoi.pdb) 

 

• DNA-modifying enzymes such as: 

o Nucleases, which are enzymes that cleave the phosphodiester bonds 

between the nucleotide subunits of nucleic acids (i.e. catalyse the 

hydrolysis of nucleic acids [16]). Earlier, they were marked with the term 

“polynucleotidase” or “nucleodepolymerase” [17]. Nucleases have an 

important biological role but, in addition to that, they are used in the 

laboratory for recombinant DNA technology, molecular cloning and 

genomics. Nucleases are further described as endonucleases or 

exonucleases. Endonucleases break nucleic acid chains somewhere in the 

middle of a molecule, rather than at the ends. Exonucleases remove 

nucleotides from the ends of the molecule. There are many types of 

nucleases that have been isolated and characterised. Some of the more 

widely used nucleases are [18]: 

i. deoxyribonuclease I (DNase I) - an endonuclease that cleaves 

double-stranded or single-stranded DNA (does not cleave RNA). 

This is the most widely used nuclease and is purified from bovine 
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pancreas. Cleavage preferentially occurs adjacent to pyrimidine (C 

or T) residues, and major products are di-, tri- and tetranucleotides. 

Common applications of DNase I are: eliminating DNA (e.g. 

plasmid) from preparations of RNA; analysing DNA-protein 

interactions via DNase footprinting; and nicking DNA prior to 

radiolabelling by nick translation.  

ii. exonuclease III - the nuclease that removes mononucleotides from 

the 3’ termini of duplex DNA. This nuclease is purified from E. 

coli and frequently used to prepare a set of nested deletions of the 

termini of linear DNA fragments. 

iii. mung bean nuclease - a nuclease that digests single-stranded DNA 

to 5’-phosphorylated mono- or oligonucleotides. This nuclease is 

purified from mung bean sprouts and frequently used to remove 

single-stranded 5’ extensions from DNA (or RNA), leaving blunt, 

ligatable ends. 

iv. nuclease S1 - a nuclease that, in low concentrations, digests single-

stranded DNA or RNA, while in high concentrations digests 

double-stranded nucleic acids (DNA:DNA, DNA:RNA or 

RNA:RNA). This nuclease is purified from Aspergillus and 

frequently used to analyse the structure of DNA:RNA hybrids (S1 

nuclease mapping), and to remove single-stranded extensions from 

DNA to produce blunt ends. 

o Polymerases are enzymes which synthesise polynucleotide chains from 

nucleoside triphosphates. They function by adding nucleotides onto the 3’ 

hydroxyl group of the previous nucleotide in the DNA strand and work 

from the 5’ to the 3’ end [19]. 

o DNA integrases are enzymes produced by a retrovirus that helps in the 

integration of its genetic material into the DNA of infected cell [20]. 

o Helicases are enzymes which use the chemical energy in nucleoside 

triphosphates to break hydrogen bonds between bases and unwind the 

DNA double-helix into single strands [21]. 
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o Topoisomerases, ligases, DNA methylases and others. 

 

Thanks to an increased number of available 3D structures, it is now possible to analyse 

DNA-protein interactions from the structural point of view. In this way, a lot of valuable 

information about the general features of such complexes has been discovered [22-28].  

In addition, DNA-binding proteins have been classified based on the structures of the 

DNA-binding regions in the proteins [24]. There are several main structural classes of 

DNA-binding proteins: 

i. Helix-turn-helix proteins. This group of proteins has a characteristic DNA-

binding motif which contains 20 amino acids of two almost perpendicular α 

helices connected by a four-residue β turn (Figure 2) [29]. Many prokaryotic and 

eukaryotic transcription factors and enzymes belong to this class [30]. Helix-turn-

helix proteins bind to the major groove of DNA [29]. The prokaryotic 

transcription factors from this class bind to palindromic DNA sequences such as 

homodimers. Eukaryotic proteins from this class, such as members of the 

homeodomain family, bind both as monomers and heterodimers to non-

symmetrical target sites. There are 16 homologous families in this class [24]. 

 

 
Figure 2.  Crystal structure of the lambda repressor-operator complex (source: 

1lmb.pdb), as an example of a helix-turn-helix DNA-binding protein 

 

ii. Zinc-coordinate proteins. Proteins in this class have a DNA-binding motif which 

is characterised by the tetrahedral co-ordination of one or two zinc ions by 
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conserved cysteine and histidine residues (Figure 3) [30]. This is the largest single 

class of eukaryotic transcription factors [29]. There are four homologous families 

in this group (the ββα zinc-finger family, the hormone receptor family, the loop-

sheet-helix family and the gal4 family) [29]. 

                                         
Figure 3. Crystal structure of the human YY1 zinc finger (source: 1ubd.pdb), as an 

example of a zinc-coordinate DNA-binding protein 

 

iii. Zipper-type proteins. This class of DNA-binding proteins derives its name from 

the method of dimerisation used by its members (Figure 4) [29]. This class 

contains only eukaryotic DNA-binding proteins in two homologous families 

(leucine zipper family and helix-loop-helix proteins) [29]. The DNA binding site 

is pseudo-symmetrical, and typically eight base-pairs long.    

                          
Figure 4. Crystal structure of GCN4-BZIP (source: 1dgc.pdb), as an example of a 

zipper-type DNA-binding protein 
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iv. Other α-helix proteins. This class contains seven homologous families and 

eukaryotic and prokaryotic DNA-binding proteins. All proteins from this class use 

α helices as the main method of DNA binding (Figure 5) [29]. 

                                        
Figure 5. Crystal structure of the bovine papillomavirus-1 E2 DNA-binding domain 

(source: 2bop.pdb), as an example of another α-helix DNA-binding protein 

 

v. β-sheet proteins. DNA-binding proteins from this class use β-strand structures for 

DNA recognition and binding (Figure 6). This class only contains the TATA box-

binding protein family, which is characterised by the use of a wide β-sheet to bind 

the DNA. A ten-stranded anti-parallel β-sheet, which joins the domains, covers 

the DNA minor groove[29]. 

                                             
Figure 6. Crystal structure of the human TBP core domain (source: 1cdw.pdb), as an 

example of a β-sheet DNA-binding protein 
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vi. β-hairpin/ribbon proteins. DNA-binding proteins from this class are different 

from the TATA box-binding proteins in that they use smaller, two- or three-

stranded β-sheets or hairpin motifs to bind in either the DNA major or minor 

grooves [29] (Figure 7). This class contains six homologous families and 

eukaryotic and prokaryotic DNA-binding proteins. 

 

vii. Other DNA-binding proteins. This class contains two non-enzymatic homologous 

families which do not use any well defined secondary structural motifs for DNA 

binding. This class contains only eukaryotic DNA-binding proteins. 

 

viii. Enzymes. This class is separated from the other classes because it contains DNA-

binding proteins that have no common structural motifs for binding DNA, but 

which are brought together on the basis of their functions (all alter DNA structure 

through the catalysis of a chemical process) [29]. This class contains eukaryotic 

and prokaryotic DNA-binding proteins, and these proteins use an extensive 

combination of α-helices, β-strands and loops to recognise and bind DNA [29]. 

 

                                             
Figure 7. Crystal structure of the met repressor-operator (source: 1cma.pdb), as an 

example of a β-hairpin/ribbon protein DNA-binding protein 
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Identification and analysis of DNA-binding proteins (and transcription factors) and their 

binding sites can be performed in the laboratory (in vivo or in vitro) and using 

computational techniques (in silico). 

 

1.2 Promoters 
 

Promoters can be defined as the genomic regions that surround a transcription start site 

(TSS)2 or cluster of TSSs [31]. There is no precise definition of promoter length. Usually, 

it is defined empirically as the DNA region which is required to recruit the transcription 

initiation complexes and initiate transcription, together with external signals such as 

enhancer transcription factors [31]. 

It is possible to distinguish a core (or basal) promoter from an enhancer promoter 

(upstream promoter region). A core or basal promoter is a DNA region where basal 

transcription factors (basal machinery) bind. The enhancer promoter is a DNA region 

where additional transcription activators bind. Enhancers were first identified in viruses 

and then in cellular genes. Transcriptional repressors (transcriptional silencers), which 

repress the transcription process, can also bind in that region.  

There is a difference in transcription (and promoter) complexity between bacteria and 

eukaryotic organisms [13]. In the bacterial nucleus, there is only one type of RNA 

polymerase, and the key motif in promoters is the pribnow box. In the presence of the σ-

factors, bacterial RNA polymerases can recognise bacterial promoters without the help of 

any other transcription factors [32]. In contrast, eukaryotic nuclei have three RNA 

polymerases: 

 

i. RNA polymerase I (Pol I) 

ii. RNA polymerase II (Pol II) 

iii. RNA polymerase III (Pol III) 

                                                 
2 Transcription start site (TSS) is a nucleotide in the genome that is the first to be transcribed into a 

particular RNA [31]. 
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RNA polymerases I and III transcribe the genes that encode transfer RNA, ribosomal 

RNA and various small RNAs. RNA polymerase II transcribes all other genes, including 

all those that encode proteins [13]. Because of these RNA polymerases, there are three 

different classes of promoters in eukaryotic nuclei: 

i. Pol I promoters 

ii. Pol II promoters 

iii. Pol III promoters 

Pol I interacts with Pol I promoters complexed with UCS and a second factor (variously 

named SL1, TIFIB, D or Rib1). An Upstream binding protein (UBF) binds to the UCS 

and recruits TATA binding protein (TBP) together with the TBP associated factors 

(TAFs). Rm3/TIF-IA get phos and binds to Pol I then Pol I binds to UBF/SL1 via 

Rm3/TIF-IA. Pol II binds to Pol II promoters with basal transcription factors (TFIID, A, 

B, E, F, H and J) and different upstream (enhancer) transcription activators for different 

individual promoters (Figure 8). Pol II promoters contain TATAAA consensus sequence, 

called a TATA boxor a Hogness box (the spacing between the TATA box and the initiator 

is 25bp in all eukaryotes except plants where it is 35 bp).  Pol III binds to most Pol III 

promoters with TFIIIB and C, but to the 5S gene promoters with TFIIIA as well [33]. 

 

 

 

 

 

 

 

 

 

Figure 8. Pol II promoter organisation: the core promoter often contains a CpG island, a 

TATA box (TFIID-binding element), a BRE (TFIIB-binding element), a DPE 

(downstream promoter element) and an initiator element (at the TSS). The enhancer 

contains transcription activator binding sites (modules) 

TSSBRE

IIB

core (basal) promoterenhancer

IID Pol II
IIA IIF IIE

IIH
IIJ

basal machinerytranscription activators

TATA DPECpG
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There is an experimentally confirmed situation where genes lie on opposite strands, with 

their TSSs in close proximity with each other, to form so-called bidirectional promoters 

[34]. Trinklein et al. estimated that 1,352 gene pairs in the human genome have TSSs on 

the opposite strand that are less than 1 kbp away. In the mouse genome it is estimated that 

there are 1,638 gene pairs that have TSSs on the opposite strand that are separated by less 

than 1 kbp [35].  

 

Very often in mouse and human genomes, protein-coding genes are associated with more 

than one promoter region [31, 36]. Most well-supported alternative promoters are found 

at the 5’ ends of known cDNAs, or in protein-coding exons [31]. 

 

Analysis of promoters includes promoter identification, enhancer-promoter 

communications, TSS identification, and analysis of DNA methylation. Promoter 

analysis can be performed in the laboratory (in vivo or in vitro) and using computational 

techniques (in silico). 

 

1.3 Laboratory techniques for promoter and DNA-
protein interaction analysis 
 

There are two groups of laboratory methods for TSS identification: 

• Methods based on sequencing of cDNA 

i. RACE - rapid amplification of cDNA ends [37]. This method is used to 

detect the 5’ ends of individual RNAs and is useful for targeting particular 

loci of interest with higher scalability than hybridisation-based methods. 

However, this is a low-throughput method (different primers must be used 

for different methods), and information about the span of the full transcript 

is not retained. 

ii. 5’ tag sequencing [38], exemplified by the cap analysis of gene expression 

(CAGE) technique. These methods have the highest throughputs, but 

information about the span of the full transcript is not retained. 
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iii.  5’-3’ tag sequencing [31], exemplified by paired-end ditag technology 

(PET). Because both 5’ and 3’ ends are sequenced, more information is 

available and this method can be used together with ChIP to sequence 

DNA that is bound by a factor of interest. However, this method is a 

lower-throughput method than 5’ tagging. 

iv. next generation sequencing systems (ultrahigh-throughput methods) like 

Solexa, ABI and 454 [39]. 

• Methods that involve hybridisation of RNA or cDNA to DNA probes [31]: 

i. Nuclease protection methods [40] rely on hybridising a labelled DNA 

probe. These methods are designed to be complementary to a postulated 

TSS region, with a source of mRNA, and incubating with a nuclease 

(often S1 nuclease) that cleaves single-stranded molecules. Methods are 

gel-based, low-throughput and independent of reverse transcription, and 

require the use of radioisotopes in order to be best done. 

ii. Primer extension methods use a labelled primer that is complementary to 

an internal region of an mRNA used for reverse transcription. Methods are 

gel-based and low throughput, and require detection with radioisotopes 

[31]. 

iii. Tilling arrays provide a snapshot of all the transcribed regions in the 

genome, not only the 5’ or 3’ ends. Exon boundaries may be observed on 

high density tiling arrays (e.g. Affymetrix) with high precision (within 

35bp). The exact splice point is then easy to find by looking for splice 

junctions within the region of interest. Alternative-splicing information 

can also be distinguished by this technique because it provides a large 

number of signal measurements for each exon. The results represent 

integrated signals from all transcript variants but many into a single signal 

that must be deconvolved. Algorithms to do this more efficiently are under 

active development. 

 

There are several laboratory techniques for assessing DNA-protein interactions, 

including: 
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• Electrophoretic mobility shift assay (EMSA) [41, 42] where the binding of a 

sequence-specific DNA bound to a radioactively labelled DNA fragment gives the 

DNA-protein complex with a reduced mobility of the DNA in a non-denaturing 

polyacrylamide gel [43]. 

• DNase I protection (footprinting) assay [44, 45] where the binding of a protein to 

a specific region within a singly end-labelled DNA fragment protects it from 

digestion by DNase I [43]. 

• Methylation interference assay [46], which is based on the fact that methylation of 

specific guanine or adenine residues within the target DNA sequence inhibits the 

binding of a transcription factor to that site [43]. 

• UV cross-linking [47], which is based on the fact that when a protein-DNA 

complex is irradiated with UV light, it causes the formation of covalent bonds 

between pyrimidines and certain amino acid residues in the transcription factor 

that are in close proximity to the DNA [43]. 

• Southwestern blotting [48], which is based on the fact that cell extracts containing 

the DNA-binding protein are resolved by denaturing polyacrylamide gel 

electrophoresis followed by electrophoretic transfer to a nitrocellulose membrane 

[43]. 

• Chromatin immunoprecipitation (ChIP) assays and ChIP-chip (chromatin 

immunoprecipitation microarrays) methods [49, 50]. These methods are used to 

isolate DNA fragments that are bound to DNA-binding proteins or their 

complexes. They are especially useful when the protein of interest is known. ChIP 

assays capture in vivo DNA-protein interactions by cross-linking proteins to their 

DNA binding sites using formaldehyde. First, the DNA is fragmented into small 

pieces of 100-500 bp (average), and after that precipitation is done by 

transcription factor specific antibody. Finally, reversal of the cross-linking 

reaction releases the DNA for subsequent detection by PCR amplification [50]. In 

order to find where the protein binds across the whole genome, ChIP-chip can be 

used as a combination of a ChIP assay and tiling microarray (chip). ChIP-seq is a 

variant of this where the fragments from ChIP are sequenced in a next generation 

sequencer (for example Solexa or ABI). DNA that has undergone a ChIP assay 
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may be labelled with the fluorophore Cy5. Its signal, when bound to an array of 

target sequences, is compared with the signal of an equal amount of total input 

DNA which is labelled with Cy3 (e.g. Nimblegen arrays). Alternatively this may 

be done with a single sample hybridisation to an array where biotin is 

incorporated and detected with streptavidin-phycoerithrin (Affymetrix) In order to 

identify binding sites, one should compare the relative enrichment of 

immunoprecipitated DNA over total input DNA [50]. 

• Transfection assays [50]. Different type of plasmids (with different kinds of DNA 

binding elements) can be transfected separately into cultured cells and, after that, 

the activity of a reporter enzyme can be noted. 

• Proximity-dependent DNA ligation assays [51]. 

 

In order to study the biochemical properties of transcription factors, it is very often 

necessary to study them in pure (cloned) forms. There are two major categories for the 

purification and cloning of transcription factors [43]: 

i. biochemical purification of transcription factors 

ii. expression cloning of transcription factors (in situ detection of 

transcription factors, the yeast one-hybrid selection systems) 

 

3D crystal structure of DNA-protein interactions can be constructed by X-ray 

crystallography and nuclear magnetic resonance (NMR) spectroscopy (for small 

proteins). Crystal structures of DNA-protein complexes give precise information about 

the positioning of the proteins relative to the double helix (DNA).  

 

The laboratory methods for studying protein-DNA interactions and promoters are very 

useful, and are important for getting more knowledge about cellular processes such as 

transcription, recombination and replication. These methods produce a lot of information 

which cannot be analysed by simple observation, and therefore precise computational 

techniques should be applied. In this way, it is possible to understand the data produced 

by laboratory methods better. In addition, laboratory methods are usually very expensive 
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and time-consuming, and it is therefore possible to save time and resources by doing in 

silico research in combination with laboratory methods. 

 

1.4 Computational method for promoter and DNA-
binding protein analysis 
 

There are several computational approaches for studying promoters and their DNA-

binding proteins, such as: 

I. computational predictions of promoters, DNA methylation sites and TSSs; 

II. computational predictions of binding sites of DNA-binding proteins; 

III. computational structural analysis of DNA-protein crystal complexes. 

 

Computational approaches for analysing promoters have become more powerful as more 

and more complete genome sequences, ChIP data, 3D structural data and expression data 

have become available. The computational prediction of promoter regions and 

transcription start sites is still in its infancy; one of the main problems is that the promoter 

is defined functionally rather than structurally, which greatly limits the success of 

attempts to model it [52]. Some tools for the prediction of promoter regions or starts of 

transcription have already been published, including: McPromoter [53]; FunSiteP [54]; 

Dragon Promoter Finder [55]; Core-promoter [56]; WWW PromoterScan [57]; Promoter 

2.0 [58]; NNPP [59]; and FirstEF [60]. 

 

The computational prediction of transcription factor binding sites is also an open-research 

problem. The main problem is that binding sites for transcription factors are typically 

short and highly degenerate. Identification of such sequences in the promoter is not easy, 

because such short sequences are expected to occur at random every few hundred base 

pairs. So, the question is how to separate real motifs from false positives [61]. Methods 

for the computational prediction of transcription factor binding sites can be separated in 

two groups:  
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i. scanning methods (inferring binding specificities from known binding sites, 

examples of tools based on these methods including: MATCH [62], ConSite 

[63], MAPPER [64] and rVista [65]) 

ii. ab initio methods (inferring binding specificities without a prior knowledge of 

binding sites, examples of tools based on these method including: Gibbs 

sampler [66], MEME [67], Bioprospector [68] and YMF [69]). 

 

Computational representation of transcription factor binding sites (cis-regulatory motifs 

and DNA motifs) can be performed in two ways: 

- assuming that each base in the binding site occurs independently (Figure 9). Models 

based on this premise include [70, 71]: 

1. word (search for exact sequence match); 

2.consensus sequence (pattern representation, regular expression, average 

sequence form multiple binding sites); 

3. matrix profile (position frequency matrix, position weight matrix); 

4. sequence logos  

- incorporating dependencies between positions in transcription factor binding sites: 

1. Bayesian networks [72] 

2. optimised mixed Markov models [73], HMMs [64] and other Markov model 

variants [74] 

3. graph-based methods [75] 

4. generalised weight-matrix models and weight-array models [76] 

5. non-parametric methods [77]. 
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Figure 9. Examples of in silico representation of transcription factor binding sites, 

assuming that each base in the binding site occurs independently 

 

There are several strategies for improving the accuracy of in silico methods (both 

scanning and ab initio methods) for transcription factor binding site predictions: 

• Using structural information of transcription factors [78-80]: it is known that 

similar transcription factors bind in a similar way to DNA. Some DNA-binding 

proteins from the same family recognise binding sites which have similar length, 

symmetry and specificity [80]. 
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• Using comparative genomic-phylogenetic footprinting [81, 82]: sequence 

similarities resulting from selective pressure during evolution is a basic principle 

for many bioinformatical methods [83]. Key assumptions in the application of 

phylogenetic footprinting are: that the regulation of orthologous genes is 

controlled in the same way in different species; and that mutations within 

functional regions of genes will accumulate more slowly than mutations in 

regions with no sequence-specific function [70]. 

• Using information about nucleosome occupancy [84]: Segal et al. [15] reported, 

recently, a nucleosome-DNA interaction computational model which can be used 

to predict transcription factor binding sites taking into consideration that positions 

which are occupied by nucleosomes are not accessible for transcription factors. 

• Using models which assume dependencies between positions in transcription 

factor binding sites: it has been reported that methods which incorporate 

dependencies between positions in transcription factor binding sites predict 

binding sites more accurately (lower false positive rates) but, on the other hand, 

require a more complex mathematical approach (more parameters to estimate) and 

more data. However, a method is shown in this thesis for modelling position 

dependencies in a simple way that does not require complex mathematical models 

or any more data than models which assume independence of positions in 

transcription factor binding sites [85]. 

• Using modelling of co-operativity between transcription factors (combinatorial 

interactions between transcription factors) [86-88]: it is very well known that 

transcription factors (specially in eukaryotes) rarely act alone in regulating gene 

expression. In most cases, multiple factors bind DNA, sometimes in close 

proximity with each other, forming cis-regulatory modules (CRMs) [71]. 

 

Possible future work for improving in silico predictions could be in the field of DNA 

methylation and/or using functional information from transcription factors (perhaps 

transcription factors with the same function (section 1.1) bind to DNA in similar ways). 

And, finally, further work could include the construction of a unified framework which 

will unite all the previously mentioned strategies. 
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Computational structural analysis of DNA-protein crystal structures is actually data-

mining on a dataset of 3D structures. Thanks to the increased number of available 3D 

structures of DNA-protein interactions stored in the PDB (Protein Data Bank) database 

[89], this kind of computational analysis has become both possible and useful. Structural 

analysis of DNA-protein interactions can be useful for the classification of DNA-binding 

proteins [29] and the extraction of general features of the DNA-protein interface [22-24]. 

Examples of the classification of DNA-binding proteins based on computational 

structural analysis are shown in section 1.1. This is useful not only for the theoretical 

understanding of DNA-binding proteins, but also for the computational prediction of 

DNA-binding sites on DNA and also on protein [78-80].   
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2. Position dependencies in transcription 
factor binding sites (paper I) 

 
 

Most of the available tools for transcription factor binding site prediction are based on 

methods which assume no sequence dependence between the binding site base positions.  

The primary objective of this work was to investigate the statistical basis  for either a 

claim of dependence or independence, to determine whether such a claim is generally 

true, and to use the resulting data to develop improved scoring functions for binding-site 

prediction.  Using three statistical tests, the number of binding sites showing dependent 

positions has been analyzed. Transcription factor-DNA crystal structures are also 

analysed, in order to find a possible biological explanation of dependent positions. The 

final conclusions were that some factors show evidence of dependencies, whereas others 

do not. It was observed that the conformational energy (Z-score) of the transcription 

factor-DNA complexes was lower (better) for sequences that showed dependency than for 

those that did not (P < 0.02). It can be suggested that where evidence exists for 

dependencies, these should be modelled to improve binding-site predictions. However,  

when no significant dependency is found, this correction should  be omitted. This may be 

done by converting any existing scoring function which assumes independence into a 

form which includes  a dependency correction. An example of such an algorithm and its 

implementation as a web tool is presented. 

All supplemental materials for this paper are available in this chapter, and 

implementation of the presented algorithm is publicly available from 

http://promoterplot.fmi.ch/cgi-bin/dep.html 
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ABSTRACT

Motivation: Most of the available tools for transcription factor

binding site prediction are based on methods which assume no

sequence dependence between the binding site base positions. Our

primary objective was to investigate the statistical basis for either a

claim of dependence or independence, to determine whether such a

claim is generally true, and to use the resulting data to develop

improved scoring functions for binding-site prediction.

Results: Using three statistical tests, we analyzed the number of

binding sites showing dependent positions. We analyzed transcrip-

tion factor–DNA crystal structures for evidence of position depen-

dence. Our final conclusions were that some factors show evidence

of dependencies whereas others do not. We observed that the

conformational energy (Z-score) of the transcription factor–DNA

complexes was lower (better) for sequences that showed depen-

dency than for those that did not (P50.02). We suggest that where

evidence exists for dependencies, these should be modeled to

improve binding-site predictions. However, when no significant

dependency is found, this correction should be omitted. This may

be done by converting any existing scoring function which assumes

independence into a form which includes a dependency correction.

We present an example of such an algorithm and its implementation

as a web tool.

Availability: http://promoterplot.fmi.ch/cgi-bin/dep.html

Contact: edward.oakeley@fmi.ch

Supplementary information: Supplementary data (1, 2, 3, 4, 5, 6,

7 and 8) are available at Bioinformatics online.

1 INTRODUCTION

The transcription of genes is controlled by transcription factor

proteins (TFs) which bind to short DNA sequences known as

transcription factor binding sites (also known as DNA-binding

motifs or cis-regulatory sequences). TF-binding sites are usually

very short and highly degenerate, and such short sequences are

expected to occur at random every few hundred base pairs. This

makes their prediction extremely difficult. An important task in

the computational prediction of TF-binding sites is reducing

the false positive rate while still retaining a high sensitivity.

Currently, predictions rely on either scanning or ab initio

methods. Scanning methods infer binding sites from known,

experimentally verified binding sequences. Example tools

include ConSite (Sandelin et al., 2004a), Match (Kel et al.,

2003), Mapper (Marinescu et al., 2005), Patser

(Hertz et al., 1990), and rVista (Loots and Ovcharenko, 2004;

Loots et al., 2002). Ab initio approaches infer specificities

without any prior knowledge of binding sites, based on

sequence homology. Example tools include Gibbs sampler

(Lawrence et al., 1993), MEME (Bailey and Elkan, 1994),

Bioprospector (Liu et al., 2001), Yeast motif finder (Sinha and

Tompa, 2003) and ANN-Spec (Workman and Stormo, 2000).

Until recently, the most popular way of modeling binding sites

was to assume that each base in the site occurs independently,

e.g. consensus sequence (Day and McMorris, 1992), matrix

profiles (Stormo et al., 1982) and sequence logos (Schneider

and Stephens, 1990); for a review see (Wasserman and

Sandelin, 2004). Methods based on the assumption of

independence between positions are simple with small numbers

of parameters, making them easy to implement. These methods

are widely used and often considered as acceptable models for

binding-site predictions (Benos et al., 2002a). However, recent

experimental evidence (Benos et al., 2002b; Bulyk et al., 2002;

Man and Stormo, 2001; Udalova et al., 2002; Wolfe et al., 1999)

has prompted the development of models which incorporate

position dependencies. The related methods include Bayesian

networks (Barash, 2003), permuted Markov models (Zhao

et al., 2005), Markov chain optimization (Ellrott et al., 2002),

hidden Markov models (Marinescu et al., 2005), non-para-

metric models (King and Roth, 2003), and generalized weight

matrix models (Zhou and Liu, 2004). Methods based on

position-dependency models usually have better binding site

prediction accuracy with lower false positive rates. But these

methods require more complicated mathematical tools, with

more parameters to estimate, and require more experimental

data than are typically available (Barash, 2003; Ellrott et al.,

2002; King and Roth, 2003; Marinescu et al., 2005; Zhao et al.,

2005; Zhou and Liu, 2004). The purpose of this work is to

investigate whether or not TFs show position dependencies in

their binding sites. We suggest a rigorous statistical approach

for testing dependencies. Our findings indicate that there is no

universal answer. Some factors seem to show dependencies

whereas others do not. We, therefore, decided to allow both

possibilities within our model. Our method for modeling

dependencies is simply an extension of methods which assume

position independencies. It does not require complex*To whom correspondence should be addressed.
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mathematical tools or training data sets (and thus more data),

and we will show that it performs much better than existing

tools when dependencies are found and no worse when they are

not. We also analyzed available structural data to see if any of

the observed position dependencies can be explained by 3D

structures. We found that dependencies may be partially

explained by the 3D structure of TF–DNA complexes. TFs

with dependent positions also appear to fit their target

sequences better than those without dependencies.

2 METHODS

2.1 Testing dependencies

In this section, we describe methods to test dependencies in binding

sites.

Let us suppose that we have n binding sites of length k for a given TF:

b11 b12 . . . b1k

. . .

bn1 bn2 . . . bnk

ð1Þ

where bji � {a, c, g, t}, and 1� i� k, and 1� j� n. We introduce the

notation: Bi and Bj to represent random variables which can take values

from the set {a, c, g, t}, indices i and j represent positions in the binding

sites and 1� i, j� k and i 6¼ j,

Bi:
a c g t

Pða, iÞ Pðc, iÞ Pðg, iÞ Pðt, iÞ

� �
ð2Þ

and likewise for Bj.
Let N(i) be a vector of the frequencies N(i)¼ [N(a, i), N(c, i), N(g, i),

N(t, i)] where, N(a, i) is the frequency of base a at position i and so on.

Similarly, for column j we introduce a frequency vector N( j). Using a

maximum likelihood approach and the method of Lagrange multipliers,

we can estimate probabilities:

Pðb, iÞ ¼
Nðb, iÞ

n
, Pðb, jÞ ¼

Nðb, jÞ

n
ð3Þ

where b is one of the bases {a, c, g, t}.
First, we can calculate mutual information (Chiu and Kolodziejczak,

1991), a quantitative measure of pairwise sequence covariation. The

mutual information between positions i and j is given by:

Mij ¼
X
bi , bj

Pðbi, bj, i, jÞ log2
Pðbi, bj, i, jÞ

Pðbi, iÞPðbj, jÞ
ð4Þ

where, the probability P(bi, bj, i, j) can be estimated using the maximum-

likelihood method and the method of Lagrange multipliers:

Pðbi, bj, i, jÞ ¼
Nðbi, bj, i, jÞ

n
ð5Þ

where, N(bi, bj, i, j) is the frequency of base pairs bibj at positions i and j.

This is a descriptive measure of divergence from independence of i

and j. Mij varies between 0 and 2 bits. It is maximal when i and j are

perfectly correlated. If i and j are uncorrelated, the mutual information

is zero. Very often we do not have extreme values of Mij, and we cannot

deduce if i and j are independent using only the value of Mij. In order to

identify positions that may not be highly correlated as measured by Mij,

but are as correlated as they can be given the limited variability of the

individual positions, we can calculate two other values (Gutell et al.,

1992):

R1ði, jÞ ¼
Mij

Hi
, R2ði, jÞ ¼

Mij

Hj
ð6Þ

where Hi and Hj are entropies for positions i and j, respectively.

Hi ¼ �
X
b

Pðb, iÞ log2Pðb, iÞ, Hj ¼ �
X
b

Pðb, jÞ log2Pðb, jÞ ð7Þ

Both R values vary between 0 and 1 and, in general, they are not

equal. Therefore, if we use only Mij we may miss some correlated

positions, but some of these may be detected using R-values. However,

it should be emphasized that we cannot easily estimate the significance

of R-values. So, we will have false positives as well as true correlated

positions. R-values are also descriptive measures of dependencies

between two positions. A more formal way to test dependencies is

hypothesis testing:

H0: positions i and j are independent

H1: otherwise:
ð8Þ

To test this hypothesis, we can use a �2-test of independence (Ellrott

et al., 2002) on each pair of positions i and j:

X2 ¼
X
bi , bj

ðPðbi, bj, i, jÞ � Pðbi, iÞPðbj, jÞÞ
2

Pðbi, iÞPðbj, jÞ
ð9Þ

The distribution of X2 statistics is close to a �2 distribution with

(|bi|� 1)� (|bj|� 1) degrees of freedom, where |bi| is the number of

bases for which P(bi, i) is not zero, and likewise for |bj|. So, using X2

statistics and �2 distributions we can test the hypothesis at a given

significance level e.g. 0.05. This hypothesis may also be tested using a

G-test of independence (log-likelihood ratio test) (Sokal and Rohlf,

2003). For each pair of positions i and j, we can calculate G statistics:

G ¼ 2
X
bi , bj

Pðbi, bj, i, jÞ ln
Pðbi, bj, i, jÞ

Pðbi, iÞPðbj, jÞ

� �
ð10Þ

The distribution of G statistics is close to �2 with (|bi|� 1)� (|bj|� 1)

degrees of freedom where |bi| is the number of bases for which P(bi, i) is

not zero, and likewise for |bj|. Mij corresponds to a G-statistics value if

we log transform it. A general problem with both �2 and G-tests is small

sample sizes, i.e. small expected frequencies (in our notation these are

the values nP(bi, i) and nP(bj, j)). This is because the number of known

binding sites is usually small. Cochran (Cochran, 1954) suggested that

independence may be tested so long as we have more than one degree of

freedom. A minimum expected value of 1 is allowed, provided that no

more than 20% of the categories have expected values below 5. Here,

X2 statistics have been shown to be valid with fewer samples and more

sparse tables than G statistics. The G-statistic distribution is usually

a poor approximation to �2 when expected frequencies are55 (Agresti,

1990; Koehler, 1986; Koehler and Larntz, 1980; Larntz, 1978).

William’s correction for G (Williams, 1976) partially addresses this:

Gadj ¼
G

q
, q ¼ 1þ

ða2 � 1Þ

6nv
ð11Þ

where, a¼ (|bi|� 1)� (|bj|� 1)� 1, and v¼ a� 1 as this provides a

better approximation to the �2 distribution. Conahan found that if

expected frequencies are higher than 10, G statistics approximate well to

the exact multinomial probability distribution (Conahan, 1970). She

found that G statistics were adequate and better than X2 statistics,

where there are more than five degrees of freedom and expected

frequencies greater than or equal to 3. In all other cases she

recommends the exact test. Larantz, in his comparison of G and X2

statistics, did not consider the corrections of G statistics when drawing

his conclusion that X2 statistics fits the theoretical chi-squared

distribution better than G statistics do (Larntz, 1978). Sokal et al.

(Sokal and Rohlf, 2003) showed that G statistics with William’s

correction approximates to the �2 distribution more closely than they

do without the correction. It is very difficult to find a single rule to

cover all cases when the observed distributions of G statistics and X2

statistics are close to real �2 distributions, if we have small expected
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frequencies (Agresti, 1990). A safer way to test the hypothesis of

dependence is, therefore, to use exact methods like the exact

randomization (nonparametric) test (Sokal and Rohlf, 2003).

The problem with this test is that, even though we have small sample

numbers, there are a large number of possible outcomes, and their

complete enumeration is impractical. Because of this, we have to use a

Monte Carlo randomization test (Davison and Hinkley, 1997; Manly,

1997), in which the problem is solved by random sampling from

a simulated population. Monte Carlo randomization tests can be

performed using X2 or G statistics. We used X2 statistics with 10 000

replications in the statistics package R (GNU software).

Two random variables bi and bj are independent if

PðBi,BjÞ ¼ PðBiÞPðBjÞ: ð12Þ

Thus we can test the following hypotheses for dependence/indepen-

dence (instead of hypothesis testing (9)):

H0: distributions PðBi,BjÞ and PðBiÞPðBjÞ are the same

H1: otherwise:
ð13Þ

This form of hypothesis testing corresponds to a multinomial

goodness-of-fit test. As in (Bejerano, 2003, 2006; Bejerano et al.,

2004), we can test for a correlation between TF-binding site positions

using exact P-values (for hypothesis testing (13)). This approach gives

more accurate results than either �2 or G-tests (Bejerano, 2003, 2006;

Bejerano et al., 2004). The only problem with this approach is that it is

computationally expensive. However, a recent publication (Keich and

Nagarajan, 2006) has shown that grid approximations yield almost

identical results for the P-values but in far less time (Bejerano, 2006).

The final method we have used to test dependencies is a Bayesian

approach (Minka, 2003; Zhou and Liu, 2004). We can calculate the

Bayes factor BF(H0;H1) for hypothesis testing as follows (full

derivation of formula (4) can be found in Supplemental Material 1—

derivation 1)

BFðH0;H1Þ ¼
�

P
bi , bj

�bibj

� �

� nþ
P

bi , bj
�bibj

� �Y
bi

� Nðbi, iÞ þ �bi
� �

� �bi
� �

�
Y
bj

� Nðbj, jÞ þ �bj
� �

� �bj
� � Y

bi , bj

� �bibj
� �

� Nðbi, bj, i, jÞ þ �bibj
� � ð14Þ

We choose �bibj ¼ 1 and �bi ¼
P

bj
�bibj and the calculation should

include only bases bi, bj for which N(bi, i) 6¼ 0 and N(bj, j) 6¼ 0.

Using Stirling’s approximation (log�ðxþ 1Þ � x logx� x) it can be

shown that (Supplemental Material 1—derivation 2)

log2ðBFðH0;H1ÞÞ � �nMij ð15Þ

This gives us the relationship between BF and mutual information

(Minka, 2003). The relationship between these two values is better when

the sample size n is higher (due to the use of Stirling’s approximation).

We used formula (20) to calculate BF, and report that when

BF(H0;H1)50.1 there is strong evidence against the null hypothesis.

Thus, in this article we used three distinct methods for dependence

testing between the TF site base positions. These methods were:

(i) Monte Carlo randomization test with X2 or G statistics

(ii) Exact multinomial goodness-of-fit test

(iii) Bayesian hypothesis testing.

There is always a danger of type I errors (rejecting the null

hypothesis when in fact it is true) when applying multiple tests to

data. These may be minimized with Bonferroni’s correction or its

extensions/variants (e.g. Dunn–Šidák, Holm’s, Simes–Hochberg or

Hommel’s method). The Bonferroni adjustment of P-value (0.05/k,

where k is the number of tests) is very stringent and can introduce

type II errors, which are also important. The use of Bonferroni is much

debated (Perneger, 1998).

As a compromise, in the case of the Bayesian test, we propose that a

more stringent BF factor BF(H0;H1)50.1 could be used to report

stronger evidence against the null hypothesis.

2.2 New scoring function

Any existing scoring function which works with models that assume

independence between positions within binding sites, can easily be

modified to incorporate dependencies. These new functions do not have

dramatically more parameters, and do not require additional data or

complex mathematical approaches.

If we have n binding sites of length k for a given TF and sequence l

with length k, then to determine if a putative-binding site is for a given

TF we will follow the notation of (Wasserman and Sandelin, 2004)

where, wb,i is a position weight matrix (PWM) value of base b in

position i, calculated by:

Wb, i ¼ log2
Pðb, iÞ

PðbÞ
ð16Þ

where P(b) is the background probability of base b (P(b)¼ 0.25) and

P(b, i) is a corrected probability of base b at position i, and is

calculated by:

Pðb, iÞ ¼
Nðb, iÞ

n
þ aðbÞ ð17Þ

where a(b) is smoothing parameter (a(b)¼ 0.01).

The fit of any given DNA sequence can be quantitatively scored by

summing all the values of Wb,i for every base in the sequence (hereafter,

we will refer to this ‘old’ scoring function as Sold):

Sold ¼
Xk
i¼l

wli , i ð18Þ

For a large set of well-characterized binding sites, these scores are

proportional to the factor-binding energies (Stormo, 2000).

To incorporate position dependencies, we will extend this function

and this model for the representation of the TF-binding sites in the

following way.

First, we will introduce a corrected probability for the bases

b1b2 . . . bm in i1i2 . . . im dependent positions.

Pðb1, . . . , bm, i1, . . . , imÞ ¼
Nðb1, . . . , bm, i1, . . . , imÞ

n
þ aðb1, . . . , bmÞ ð19Þ

a(b1, . . . , bm) is a smoothing parameter and can be calculated by:

aðb1, b2, . . . , bmÞ ¼ aðb1Þ . . . aðbmÞ ð20Þ

Then we can calculate values which correspond to PWM values:

Wb1 ,..., bm , i1 ,..., im ¼ log2
Pðb1, . . . , bm, i1, . . . , imÞ

Pðb1Þ . . .PðbmÞ
ð21Þ

Finally, the new scoring function (Snew), which incorporates dependen-

cies, can be expressed thus:

Snew ¼
Xk1
i¼l

Wli , i þ
Xk2
i¼1

Wlji , ljiþ1
, ji , jiþ1

þ � � �þ

þ
Xkm
i¼l

Wlji ,..., ljiþm�1
, ji ,..., jiþm�1

ð22Þ

where, k1 is the number of independent positions, k2 is the number of

dependent positions order 2 (nucleotides at positions ji and jiþ1) and km
the number of dependent positions order m (nucleotides at positions ji,

jiþ1, . . . , jiþm�1). Higher-order dependencies can be constructed from
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the second-order dependencies in the following way: if we analyze three

positions i1, i2 and i3, and if every two combinations (i1� i2, i1� i3 and

i2� i3) are dependent, then we can claim that positions i1, i2 and i3 show

third-order dependencies. This approach may be extended to find mth-

order dependencies between km positions of a binding site. For the new

scoring function (22), higher order dependencies can be constructed in a

less stringent way: if we find when analyzing three positions i1, i2 and i3
that only two combinations (i1� i2, i2� i3 or i1� i3) are dependent, we

can say that there are third order dependencies among positions i1, i2
and i3. This will not have any influence on the final results (because of

equation (12)) and the logarithm property (log(P(Bi,Bj)) will tend

towards log(P(Bi))þ log(P(Bj))). Small differences may be observed

because of the smoothing parameters, but this helps in the practical

implementation of new scoring function.

Binding scores calculated by the scoring functions Sold and Snew can

be normalized according to (Bucher, 1990; Tsunoda and Takagi, 1999):

S0
old ¼

Sold � Smin
old

Smax
old � Smin

old

, S 0
new ¼

Snew � Smin
new

Smax
new � Smin

new

ð23Þ

where Smin
old ,Smax

old are the hypothetical minimum and maximum for Sold

and Smin
new, S

max
new are the hypothetical minimum and maximum for Snew

(analytic formula for their calculation is given in Supplemental

Material 1).

For the final implementation of the function (22), it is useful to

construct sequence dependency corrected matrices of TFs. However, in

practice, this can be very inefficient because the dimensions of these

matrices can be very high with a lot of zeros. Because of this, we provide

a database (available at http://www.fmi.ch/members/andrija.tomovic/

database.txt) with sequences and dependent positions written below

(estimated using a Monte Carlo randomization test with X2 without

Bonferroni’s correction or exact multinomial goodness-of-fit without

Bonferroni’s correction or Bayesian hypothesis testing with

BF(H0;H1)50.1 and higher order of dependencies in less stringent

variant). This is a compact and readable format of sequence

dependency corrected matrices of TFs from the JASPAR database

(Lenhard and Wasserman, 2002; Sandelin et al., 2004b). For the

identification of TF-binding sites by scoring function (22), we suggest

using the all-atom model, like it is used with function (18). In

combination with databases of good quality binding sites (such as

JASPAR) all-atom methods give better accuracy. If we cut the length of

binding sites, there may be dependent positions in this region which will

be lost to our function (22). Both the new (22) and old (18) scoring

functions are linear in complexity, so cutting would not improve

performance much.

3 RESULTS AND DISCUSSION

3.1 Distributions of transcription factors with

dependent positions

To determine the distributions of TFs with dependent

positions, we used the public database JASPAR (Lenhard
and Wasserman, 2002; Sandelin et al., 2004b) which contains

experimentally determined, high-quality binding sites. The

JASPAR database represents a curated and non-redundat
data-set (Lenhard and Wasserman, 2002; Sandelin et al.,

2004b). We selected all TFs for which there were binding
sequences (not only matrix profiles) and the final data set

contained 107 TFs with 3239 binding sites. We applied three

different tests (Section 2.1) to each of these binding sites to
establish how many factors showed position dependencies

(Table 1). We also show the effect of either applying

Bonferroni’s corrections or using the more stringent

BF(H0;H1)50.1 cut off. Rows A, B and C of Table 1 may

include some false positives, but rows D, E and F have a false

negative problem. A complete list of every pair of positions for

each TF is given in Supplemental Material 2. We also report

values of Mij, R1 and R2, as well as G-statistic values with their

degrees of freedom and P-values. In addition, we report the

adjusted G-statistic values with their degrees of freedom and

adjusted G-test P-values; the X2 statistics together with their

degrees of freedom and P-values; and also the average value of

expected frequencies and the percentage of expected values

smaller than 5 and smaller than 3. Finally, in this table we

report the P-values of the Monte Carlo randomization test with

X2 statistics, the exact multinomial ‘goodness-of-fit’ test and the

Bayesian factor (BF) values. From this analysis, we observe

that the sample sizes are not appropriate for either chi-squared

or G-tests of independence (column H in Supplemental

Material 2). As discussed previously (Section 2.1), this implies

that these two tests will give poor probability estimates. The

values of Mij, R1 and R2 may be used as descriptive measures of

position associations. There is good agreement between results

produced using the three ‘statistically correct’ tests we

attempted. The most stringent is the exact multinomial good-

ness-of-fit test, and the least stringent is the Monte Carlo

randomization test. Almost every pair of dependent positions

predicted by the exact multinomial goodness-of-fit test is also

reported by the other two tests. The Monte Carlo randomiza-

tion test gives more precise probabilities than either the chi-

squared or G-tests, but with low power because of the lack of

experimental data (small sample size).

In addition, we looked to see if the length and number of

known binding sites were different between the groups of TFs

with and without dependent positions (Table 2). The variances

of these two groups are not statistically different (tested by

Bartlett’s test). Using Student’s t-test, we tested the null

hypothesis that mean length and number of binding sites

between the two groups are equal against a one-tailed

alternative hypothesis that TFs without dependent positions

have shorter lengths and smaller numbers of known binding

sites. In each case, we obtained P-values less than 0.05 and thus

we should reject the null hypothesis and accept the alternative.

Table 1. Distributions of TFs with dependent positions tested

Statistical test TFs with dependent positions

A 74.77%

B 49.52%

C 62.62%

D 38.32%

E 23.26%

F 26.17%

A—Monte Carlo randomization test without Bonferroni’s correction; B—Exact

multinomial ‘goodness-of-fit’ test without Bonferroni’s correction; C—Bayesian

hypothesis testing BF(H0;H1)50.1; D—Monte Carlo randomization test with

Bonferroni’s correction; E—Exact multinomial ‘goodness-of-fit’ test with

Bonferroni’s correction; F—Bayesian hypothesis testing BF(H0;H1)50.01.
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These results imply that more factors may show dependencies

once additional binding-site data becomes available.

Based on the second-order dependencies (dinucleotide depen-

dencies), it is possible to construct higher order dependencies, as

explained in section 2. It is clear that when we have such

dependencies, there are lower order dependencies in all

combinations. Because of this, it is useful to analyze distributions

of dependencies of different orders km (2� km� 9) constructed in

a more stringent way (Supplemental Material 3). We analyzed

the distributions of TFs with dependent positions in structural

classes of TF–DNA-binding domains. We wanted to investigate

whether there is any tendency for certain folds to have position

dependencies (Supplemental Material 4). We noticed that some

structural classes contain TFswith position dependencies in their

binding sites detected by almost all statistical tests, such as:

T-BOX, P53, AP2, TRP, CAAT-box and MADS. Other classes

contain TFs without dependent positions like: ZH-FINGER-

DOF, ZH-FINGER-GATA, HOMEO/CAAT and ‘Unknown’

class. However, the major structural classes contain TFs with

and without dependent positions (bZIP, nuclear receptor, etc.).

3.2 Do position dependencies relate to 3D structures?

We wanted to investigate possible biological explanations of

the dependent positions we predicted. We investigated this by

examining 3D crystal structures when available. Possible

explanations of dependency include:

� active amino acids might interact with dependent nucleo-

tides either singly or in pairs via hydrogen bonds or salt

bridges;

� conformational changes in the structure of DNA caused by

one dependent base may alter the accessibility of the other

dependent bases to the binding site;

� something else.

We selected 32 TF–DNA co-crystal pairs of structures from

the PDB database at resolutions better than 3.0 Å (Berman

et al., 2000) corresponding to TFs with published binding sites

in JASPAR (September 2006) (Table Sup3-1 in Supplemental

Material 3). Direct contacts between bases and amino acids

were investigated (Table Sup3-2 in Supplemental Material 3).

There is no clear one-to-one correspondence between

dependent DNA-binding positions and their interactions with

TF. This is not a big surprise because these proteins recognize

specific DNA sequences not only via direct contact but also

indirectly, through specific sequence-dependent DNA confor-

mations, distortions or water-mediated contacts (Sarai and

Kono, 2005). Amino acids neighboring dependent bases may be

different from those around independent positions. In addition,

mutations in bases which do not directly contact the amino acid

may still affect the binding affinity (see references listed in Sarai

and Kono, 2005).
Next, we wanted to check whether there were any relation-

ships between dependent positions and conformational changes

of the DNA. We could calculate structural parameters to

describe the 3D nucleic acid structures using the software

package 3DNA (Lu and Olson, 2003), but there are many

parameters (shift, slide, rise, tilt, roll and twist) to describe the

structure of DNA, and because we have relatively few

sequences in our data set it is difficult to identify significant

effects. Similarly, if we want to investigate spatial distribution

patterns of neighboring amino acids around dependent posi-

tions, we will have a data-mining problem.

We decided to use the energy Z-scores (Ahmad et al., 2006;

Gromiha et al., 2004; Kono and Sarai, 1999) for TF–DNA

complexes for both ‘direct’ and ‘indirect’ readouts. The energy

Z-score for direct readouts quantifies the spatial distributions

of side chains around base pairs, and represents the base–

amino acid interaction energy. The energy Z-score for indirect

readouts quantifies DNA conformation, and represents the

conformational energy of DNA. The more negative the

Z-score, the better the target sequence fits into a given

structure (Ahmad et al., 2006). The list of all Z-score values

can be found in Supplemental Material 4. We tested the

Z-scores using a one-tailed Student’s t-test (Table 3). The

direct readout showed no difference between TFs with

dependent or independent positions (P40.1). However, the

conformational energy (indirect readout) was always signifi-

cantly lower for TFs with dependent positions (P50.02).

This means that TFs with dependent positions fit their target

DNA motifs better than those without. These results suggest

a possible relationship between position dependencies and the

3D structure of TFs.

Table 2. Average length and number of binding sites between a group of TFs with dependent positions and a group of TFs without dependent

positions

Statistical test Average length of TFs binding sites Average number of known binding sites

I II I II

A 11.67 8.25 32.85 22.64

B 12.15 9.43 34.66 25.77

C 11.66 9.3 35.791 20.775

D 12.19 9.89 39.15 24.61

E 11.92 10.265 45.04 25.82

F 12.00 10.34 50.96 22.91

I—group with dependent positions; II—group without dependent positions; A, B, C, D, E, F — notation the same as in Table 1.
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We investigated if DNA sequence length influences the

conformational energy. In the 32 cases we studied where we

have both a 3D crystal structure and a JASPAR matrix ID, we

performed one- and two-tailed t-tests on the lengths of

sequences found to show dependencies and those without

dependencies from each of the six dependency tests we

investigated. These results showed that five out of six of the

tests (two-tailed) and three out of six (one-tailed) do not show

significant differences in sequence length between the two

groups for which we have conformational energies

(Supplemental Material 6). If the conformation of the DNA

fragment is not sequence specific, then the conformational

energy is expected to fluctuate independently of fragment size.

But, if the conformation is sequence specific, then the total

energy should decrease with the size although the average

energy per base will not decrease if the energy distribution

is uniform (A. Sarai, personal communication). For these

reasons, we believe that sequence length is not the major factor

contributing to the significantly lower conformational energies

we found for the group of TFs with dependent positions.
We analyzed relationships between dependent position and

DNA stiffness to show the influence of DNA stiffness on

protein–DNA binding specificity (Gromiha, 2005). We calcu-

lated the average stiffness of DNA using the structure-based

sequence-dependent stiffness scale (Gromiha, 2005) for binding

sites with and without position dependencies (Supplemental

Material 7). In two cases, we found that the average stiffness

values are significantly larger (one-tailed Student’s t-test

P50.028) for sites with dependent positions (detected by

Bayesian hypothesis testing in both variants) than without

dependent positions. However, in the other four cases no

significant differences were found.

3.3 Evaluation of a new scoring function for the

prediction of TF-binding sites

The evaluation of ab initio methods for the prediction of

TF-binding sites is described in (Tompa et al., 2005). Here,

we will perform a slightly different validation. In order to

evaluate the new scoring function given by (22) and (23), we

performed a validation using both synthetic and experimentally

verified data.

First, we generated a random sequence from a third-order

Markov model background distribution using the program

RSA (van Helden, 2003). In this sequence, we planted binding

site 9 of the TF MA0006 at position 51. We had found one

dependent position in this TF. We then calculated a normalized

scoring value for each position in the sequence, using both the

old and new functions. We assigned a threshold of 0.7 as

indicating a match for a binding site (Fig. 1). The new scoring

function made one false-positive prediction and one true

positive, whereas the old scoring function made three false-

positive predictions and one true positive. We repeated this

with similar experiments (data available at http://www.fmi.ch/

members/andrija.tomovic/exp1.zip) using: MA0052 (two pairs

of dependent positions); MA0121 (four pairs of dependent

positions); and MA0041 (10 pairs of dependent positions). The

accuracy of the new scoring function improved as the number

of dependent positions increased. The so-called ‘twilight zone’

region of the plots also becomes narrower with a smaller

density. If there are no dependent positions, then the new and

Table 3. Average Z-score for direct and indirect readout for: I—a group of TFs with dependent positions; and II—a group of TFs without dependent

positions

Statistical test Average Z-score (direct readout) Average Z-score (indirect readout)

I II P-value I II P-value

A �2.5 �2.62 – �2.8 �1.791 0.00565**

B �2.67 �2.42 0.383 �3.0914 �2.01 0.0016**

C �2.667 �2.25 0.31 �2.747 �1.907 0.02*

D �3.054 �2.26 0.17 �3.22 �2.09 0.00152**

E �3.44 �2.3 0.111 �3.33 �2.29 0.0147*

F �3.1025 �2.32 0.186 �3.497 �2.147 0.0005***

*P50.05, **P50.01, ***P50.001.

A, B, C, D, E, F—notation the same as in Table 1. The variances of groups I and II are not statistically different (Bartlett’s test).

MA0006 Arnt-Ahr MA0052 MEF2A 
(1 pair of dependent positions) (2 pairs of dependent positions) 

MA00121 Ars MA0041 Foxd3 
(4 pairs of dependent positions) (10 pairs of dependent positions) 

Fig. 1. Comparison of old and new scoring functions with synthetic

data.
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old scoring functions are the same. We currently only apply our

correction for positions that show statistically significant

dependencies. If, instead, we factor the observed frequency

P-scores for all bases, regardless of their significance, then the

new function will tend towards the old function because of

Equation (12), and the logarithm property (log(P(Bi,Bj)) will

tend towards log(P(Bi))þ log(P(Bj)) but small differences may

be observed because of the smoothing parameters. The price for

doing this is computational time, and it does not appear to offer

any great advantage over the solution we have implemented.

To further evaluate our new scoring function, we generated

1850 random sequences sampled from a third-order Markov

model background distribution with lengths from 250 to 500.

In 50, we planted binding sites for MA0041 Foxd3, and we then

analyzed the true- and false-positive rates for different thresh-

old values using the new and old scoring functions (Fig. 2 and

Table Sup8-1 in Supplemental Material 8). Both functions have

good scores for true positives, but the new scoring function

gave better results. The biggest difference was in the false-

positive rate which was much better with the new scoring

function. Next, we generated five random sequences sampled

from a third-order Markov model background distribution

(with lengths from 400 to 600) in which we planted 0–3 binding

sites from a set of 15 (all 15 contained dependent positions).

The data set is given in Supplemental Material 8. We wanted to

measure the accuracy of prediction with the new scoring

function and compare it with other available tools and methods

(PATSER, ConSite and the old scoring function). Given that

almost all of the methods can detect true positives (i.e. they

have a high sensitivity), the accuracy of each method should

be estimated by its selectivity (false-positive rate). These results

are shown in Figure 3 and Table Sup8-2 in Supplemental

Material 8. Our new scoring function (22-23) performed best

with the smallest number of false positives per nucleotide and

per TF. Finally, we analyzed real experimental data. As

ConSite had the next best prediction results with the synthetic

data, we decided to use it for benchmark comparisons with the

experimental data as well. We used a set of genes showing

skeletal muscle-specific expression (Wasserman and Fickett,

1998). This set is an updated version from (Defrance and

Touzet, 2006) which has been used to evaluate such tools in the

past. This dataset includes upstream regions (2000 bp) of nine

genes (see Table Sup8-3 in Supplemental Material 8) and six

TFs from the JAPSAR database (MA0052, MA0055, MA0056,

MA0057, MA0079 and MA0083) which are known to be

involved in the regulation of skeletal muscle-specific expression.

MA0055’s binding sites are not listed in JASPAR, so its

detection will be unchanged from the old function (24). We

scanned the upstream sequence of the nine genes using all of the

TFs from JASPAR. There are 16 TFs (including MA0055) for

which there is no binding sequence information, only weight

matrices. These will be treated as having independent binding

(24), which will have a negative effect on the results from the

new scoring function, but is more realistic. However, even with

this limitation, the results from the new scoring function are

slightly better than those from ConSite (TableSup 8-3 in

Supplemental Material 8). The false-positive rate for all nine

sequences is smaller with the new scoring function, and the

true-positive rate is almost the same. ConSite detected one true

positive hit more (for three sequences) than our scoring

function with this data set.

4 CONCLUSIONS

In this work, we performed a detailed analysis of dependencies

within TF-binding sites. Our conclusion is that we cannot

assume that positions are either dependent or independent. This

must be tested using one of three proposed statistical tests.

Our structural analysis indicates that some of the predicted

dependencies agree with 3D structure data from TF–DNA

complexes. We propose that the dependencies we have

identified should be used in binding-site predictions. Previous

attempts at such modeling have required complex tools with

many parameters which really require more training data than

is currently available. Here, we present a simple way of

modeling these dependencies. We demonstrated how to modify

existing dependence-free scoring functions to consider depen-

dencies. Such modifications improve prediction quality for TFs

Fig. 2. ROC curves for new and old scoring functions, showing their

ability to predict binding sites. The x-axis shows the false-positive

rate (FP/(FPþTN))� 100, the y-axis shows the true-positive rate

(TP/(TPþFN))� 100.

Fig. 3. Average false-positive ratio per TF for different prediction

methods.
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with dependent positions. Our technique does not require

complex tools or more training data than scoring functions and

models which assume independence. This approach can be used

with any scoring function which assumes independence (one

such is presented here). We demonstrated this approach using

scanning methods for the prediction of TF-binding sites, but it

can be applied to work with ab initio methods and different

methods of prediction which incorporate comparative genomic

analysis (phylogenetic footprinting conservation).
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2.1 Supplementary material 1 
 
for the paper “Position dependencies in transcription factor binding sites” 

A. Tomovic and E. J. Oakeley 

 

Derivation 1. Derivation of formula (14) for calculating the Bayesian factor BF 

 

In order to test dependencies between positions in transcription factor binding sites by 

Bayesian hypothesis testing we have to calculate the Bayes factor BF(Ho; H1), which is 

similar to Minka (2003) and Zhou and Liu (2004) except that we use different notation 

and make a small modification. 

0 0
0 1

1 1

( , | ) ( )
( ; )

( | ) ( )
= i j

i j

P B B H P H
BF H H

P B B H P H
 (1) 

If we assume that P(H0) = P(H1) = 0.5 then (1) will be 

 

0
0 1

1

( , | )
( ; )

( | )
i j

i j

P B B H
BF H H

P B B H
=  (2) 

Under the null hypothesis, we have P(Bi, Bj) = P(Bi)P(Bj), and (2) will be 

0 1
0 1

1

( | ) ( | )
( ; )

( | )
i j

i j

P B H P B H
BF H H

P B B H
=  (3) 

Then, using the fact that: 

0 0( | ) ( , | )= ∫i i
p

P B H P B p H  (4) 

where p is a vector of [P(a,i), P(c,i), P(g,i), P(t,i)], 

a conjugate prior for p is the Dirichlet distribution: 

1
( )

( | ) ~ ( , , , ) ( , )
( )

i

bi i

ii

i

b
b

a c g t i
bb

b

P p Dir P b i
α

α
α α α α α

α
−

Γ
=

Γ

∑
∏∏

 (5) 

where P(b,i) > 0 and ( , ) 1=∑ iP b i . Given a Dirichlet prior, the joint distribution of Bi  

and p is: 



 43 

( , ) 1
( )

( , | ) ( , )
( )

α
α

α
α

+ −
Γ

=
Γ

∑
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i

i bi i

ii

i

b
N b ib

i i
bb

b

P B p P b i  (6) 

and the posterior is: 

( | , ) ~ ( ( , ) )
ii i bP p B Dir N b iα α+  (7) 

and, finally, we can calculate: 

0 0

( )
( ( , ) )

( | ) ( , | )
( ) ( )

α
α

α α

Γ
Γ +

= =
Γ + Γ

∑
∏∫ ∑

i

i i

ii i

i

b
b i b

i i
bb bp

b

N b i
P B H P B p H

n
 (8) 

and likewise for 0( | )jP B H . 

 

Then, we need to calculate 1( | )i jP B B H  and this is: 

1 1
ˆ

ˆ( | ) ( , | )= ∫i j i j
p

P B B H P B B p H  (9) 

where p̂  is a vector of [P(a,a,i,j), P(a,c,i,j), … ,P(t,t,i,j)] 

A conjugate prior for p̂  is the Dirichlet distribution: 

1,

,
,

( )
ˆ( | ) ~ ( , ,..., ) ( , , )

( )

i j
bbi j i j

i ji j

i j

b b
b b

aa ac tt i j
b bb b

b b
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α

α α α α
α

−
Γ

=
Γ

∑
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 (10) 

where P(bi,bj,i,j) and 
,

( , , , ) 1=∑
i j

i j
b b

P b b i j . Given a Dirichlet prior, the joint distribution of 

BiBj and p̂  is: 

( , , , ) 1,

,
,

( )
ˆ( , | ) ( , , , )

( )
α

α

α
α

+ −
Γ
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Γ

∑
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i j
i j bbi j i j

i ji j

i j

b b
N b b i jb b

i j i j
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b b

P B B p P b b i j  (11) 

and the posterior is: 

ˆ( | , ) ~ ( ( , , , ) )
i ji j i j b bP p B B Dir N b b i jα α+  (12) 

so we can calculate: 
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and thus BF can be calculated: 
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Because we choose αα = ∑ i j

b j

i b bb , we have: 

,
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(15) 

 

The calculation should include only bases bi, bj for which N(bi,i) ? 0 and N(bj,j) ? 0. 

 

Derivation 2. Derivation of formula (15): the relationship between BF and mutual 

information 

 

It is possible to show (like in Minka, 2003) that there is a relationship between the Bayes 

factor BF and mutual information Mij if we choose a uniform prior, i.e. 1kα =  

Using the fact that (1) 1Γ = , and the approximation 

1

( ) ( ) 1
( ) ( 1) ( 1)k

k k
n k n n n−

Γ Γ≈ ≈
Γ + Γ + Γ +

 

and Stirling’s approximation that log ( 1) logΓ + ≈ −x x x x , we get: 
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Mutual information and the Bayes factor become more closely related as the sample size 

n gets higher (because of the approximation of Stirling’s formula). 

 

 

Analytic formula for calculating the hypothetical minimum and maximum for Sold  

and Snew 

 

minSold  and maxSold  are hypothetically the minimum and maximum for Sold,  and minSnew  and 

maxSnew  are hypothetically the minimum and maximum for Snew calculated by : 

kminS = min Wold b b,ii=1
∑  

kmaxS = max Wold b b,ii=1
∑  

k k k1 2 mminS = min W + min W +...+ min Wnew b b,i b ,b b ,b j , j b ,...b b ,...b ,j,...,ji=1 i=1 i=11 2 1 2, 1 1i i+1 i+m-1 i+m-1 i i+m-1
∑ ∑ ∑

 

k k k1 2 mmaxS = max W + max W +...+ max Wnew b b,i b ,b b ,b j , j b ,...b b ,...b ,j,...,ji=1 i=1 i=11 2 1 2, 1 1i i+1 i+m-1 i+m-1 i i+m-1
∑ ∑ ∑
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Supplementary material 2 
for the paper “Position dependencies in transcription factor binding sites” 

A. Tomovic and E. J. Oakeley 

 

 

Detailed list of statistical values which describe dependence between all positions for 

each transcription factor from the JASPAR database. 

http://promoterplot.fmi.ch/cgi-bin/SupMat/2.xls 

 

 

Supplementary material 3 
for the paper “Position dependencies in transcription factor binding sites” 

A. Tomovic and E. J. Oakeley 

 

Detailed list of distributions of different order dependencies. 

http://promoterplot.fmi.ch/cgi-bin/SupMat/3.xls 

 

 

Supplementary material 4 
for the paper “Position dependencies in transcription factor binding sites” 

A. Tomovic and E. J. Oakeley 

 

Distributions of dependencies according to the structural classification of transcription 

factors. 

http://promoterplot.fmi.ch/cgi-bin/SupMat/4.xls 
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Supplementary material 5 
 
for the paper “Position dependencies in transcription factor binding sites” 

A. Tomovic and E. J. Oakeley 

 

Table Sup5-1. List of PDB and corresponding JASPAR IDs used in the structural analysis. This 

is actually the intersection of the PDB and JASPAR databases. There are four additional, unused, 

structures (1IFI, 6PAX, 1FOS and 1H89) which correspond to the JASPAR IDs MA0050, 

MA0068, MA0099 and MA0100. They were not used because only position weight matrices, and 

not binding sites, are provided in JASPAR (September, 2006). 

PDB ID JASPAR ID PDB ID JASPAR ID 

1EGW MA0001 1YNW MA0074 

1H9D MA0002 1FJL MA0075 

1AN4 MA0004 1BC8 MA0076 

1EGW MA0005 1PUE MA0080 

1R4I MA0007 1K60 MA0081 

1XBR MA0009 1J46 MA0084 

1K78 MA0014 1SKN MA0089 

1BY4 MA0017 1AN4 MA0093 

1NWQ MA0019 1B8I MA0094 

3HDD MA0027 1UBD MA0095 

1DUX MA0028 1GJI MA0101 

2HDC MA0031 1A1G MA0103 

1AN2 MA0058 1NWQ MA0102 

1AWC MA0062 1AN2 MA0104 

1DSZ MA0065 1SVC MA0105 

1B72 MA0070 1TSR MA0106 

 

 

 

 

 

 

 



 48 

Table Sup5-2. Structural analysis of co-crystal structures of TFs with DNA (I - at least one 

amino acid that interacted via hydrogen bonds or salt bridges with two binding site positions, both 

of which were found to be dependent; II - at least one amino acid that interacted via hydrogen 

bonds or salt bridges with two independent binding site positions; III - at least one pair of 

dependent binding site positions with no apparent contact with the transcription factor; IV - at 

least one position of any pair of dependent positions had contact with transcription factors via 

hydrogen bonds or salt bridges). 

 

Structural 

characteristic 

PDB ID-JASPAR ID 

I 1EGW-MA0001, 1AN2-MA0058, 1FJL-MA0075, 1K60-MA0081, 1AN2-MA0104, 

1TSR-MA0106 

II 1H9D-MA0002, 1AN4-MA0004, 1EGW-MA0005, 1R4I-MA0007, 1BY4-MA0017, 

1NWQ-MA0019, 3HDD-MA0027, 2HDC-MA0031, 1AWC-MA0062, 1DSZ-

MA0065, 1B72-MA0070, 1FJL-MA0075, 1BC8-MA0076, 1K60-MA0081, 1J46-

MA0084, 1AN4-MA0093, 1B8I-MA0094, 1GJI-MA0101, 1NWQ-MA0102, 1SVC-

MA0105, 1TSR-MA0106 

III 1EGW-MA0001, 1H9D-MA0002, 1EGW -MA0005, 1R4I-MA0007, 1XBR-MA0009, 

1K78-MA0014, 1BY4-MA0017, 1NWQ-MA0019, 2HDC-MA0031, 1DSZ-MA0065, 

1YNW-MA0074, 1K6O-MA0081, 1NWQ-MA0102, 1TSR-MA0106 

IV 1EGW-MA0001, 1H9D-MA0002, 1EGW -MA0005, 1R4I-MA0007, 1K78-MA014, 

1NWQ-MA0019, 1DUX-MA0028, 1AN2-MA0052, 1DSZ-MA0065, 1B72-MA0070,  

1FJL-MA0085, 1PUE-MA0080, 1J4G-MA0084, 1K6O-MA0081, 1GJI-MA0101, 

1NWQ-MA0102, 1A1G-MA0103, 1SVC-MA0105, 1TSR-MA0106 

 

We found six pairs of PDB ID-JASPAR ID in which there was at least one amino acid 

that interacted via hydrogen bonds or salt bridges with two dependent binding positions. 

At least one amino acid interacted with two independent binding positions in 21 pairs. 

However, as discussed before, we anticipate that many of these may become dependent 

as additional binding site information becomes available. We found 14 pairs in which 

there was at least one pair of dependent binding site positions with no apparent contact 

with TFs. There are 19 pairs in which at least one position of any pair of dependent 

positions had contact with TFs via hydrogen bonds or salt bridges. 
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Supplementary material 6 
 
for the paper “Position dependencies in transcription factor binding sites” 

A. Tomovic and E. J. Oakeley 

 

Distributions of energy Z-scores for direct and indirect readouts. 

http://promoterplot.fmi.ch/cgi-bin/SupMat/6.xls 

 

 

Supplementary material 7 
 
for the paper “Position dependencies in transcription factor binding sites” 

A. Tomovic and E. J. Oakeley 

 

Distributions of stiffness for each transcription factor. 

http://promoterplot.fmi.ch/cgi-bin/SupMat/7.xls 

 

 

Supplementary material 8 
 
for the paper “Position dependencies in transcription factor binding sites” 

A. Tomovic and E. J. Oakeley 

 

Table Sup8-1. The number of true positive (TP), true negative (TN), false positive (FP) and false 

negative (FN) results for the new and old scoring functions using different threshold values. 

new scoring function S’new old scoring function S’old THRESHOLD 

TP TN FP FN TP TN FP FN 

0.7 47 669,315 138 0 47 640,730 28,723 0 

0.8 46 669,362 91 1 46 666,112 3,341 1 

0.9 46 669,435 18 1 32 669,326 127 15 

For this experiment, we used the dataset available at: 

www.fmi.ch/members/andrija.tomovic/expTPTN-supp8.zip and matrixID: MA0041 
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Table Sup8-2. Average false positive rate per nucleotide and per TF for different methods. 

METHOD Average FP per nucleotide Average FP per TF 

S’new  (threshold = 0.7) 0.04 1.32 

S’new  (threshold = 0.8) 0.013 0.466 

S’old  (threshold = 0.7) 0.27 9.453 

S’old  (threshold = 0.8) 0.05 1.733 

ConSite (threshold = 0.7) 0.029 6.33 

ConSite (threshold = 0.8) 0.03 1.04 

PATSER 0.184 6.453 

For this experiment, we used the dataset available at: www.fmi.ch/members/andrija.tomovic/exp-

supp8.zip and matrixIDs: MA0006, MA0041, MA0048, MA0052, MA0054, MA0065, MA0066, 

MA0083, MA0086, MA0091, MA0097, MA0114, MA0116, MA0121 and MA0123 

 

Table Sup8-3. Comparison of the predictions from the new scoring function and ConSite with 

experimentally verified data. 

New scoring function S’new ConSite Gene RefSq ID 

TP FP TP FP 

NM_184041 MA0052, MA0055, MA0056, 

MA0057, MA0079 

78 MA0052, MA0055, MA0056, 

MA0057, MA0079 

81 

NM_001927 MA0052, MA0055, MA0056, 

MA0057, MA0079 

74 MA0052, MA0055, MA0056, 

MA0057, MA0079 

80 

NM_002479 MA0052, MA0056, MA0055, 

MA0057, MA0079 

84 MA0052, MA0056, MA0055, 

MA0057, MA0079 

87 

NM_079422 MA0052, MA0055, MA0056, 

MA0057, MA0079 

79 MA0052, MA0055, MA0056, 

MA0057, MA0079, MA0083 

86 

NM_003281 MA0052, MA0055, MA0056, 

MA0057, MA0079 

78 MA0052, MA0055, MA0056, 

MA0057, MA0079 

81 

NM_000257 MA0055, MA0056, MA0057, 

MA0079 

75 MA0052, MA0055, MA0056, 

MA0057, MA0079 

77 

NM_002471 MA0052, MA0055, MA0056, 

MA0057, MA0079 

78 MA0052, MA0055, MA0056, 

MA0057, MA0079 

82 

NM_001100 MA0052, MA0055, MA0056, 

MA0057, MA0079 

77 MA0052, MA0055, MA0056, 

MA0057, MA0079, MA0083 

80 

NM_005159 MA0052, MA0055, MA0056, 

MA0057, MA0079 

77 MA0052, MA0055, MA0056, 

MA0057, MA0079 

84 
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Note: MA0055 is not available in our database, because there is no sequence data in the JASPAR 

database (September, 2006), only profile. However, searching using profile it is possible to find 

it. 

 

 

Supplementary material 9 
 
Web-based implementation of the new scoring function (Figure 1), publicly available 

from http://promoterplot.fmi.ch/cgi-bin/dep.html. 

 

 
Figure 1. Web-based tool for the computational prediction of transcription factor binding sites 
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3. Computational structure analysis: 
multiple proteins bound to DNA (paper III) 
 

 
Computational structural analysis of protein-protein and single protein-DNA interactions 

(binary complexes) is well documented. The increased number of structures with multiple 

proteins bound to DNA gives a good opportunity for performing a descriptive data-

mining study on that kind of structure in order to extract useful information (structural, 

physical-chemical and thermodynamic parameters). This information can help further the 

theoretical understanding of DNA-protein interactions and, in addition, can be helpful for 

generating  hypothetical complexes, predicting DNA-binding specificities, designing 

novel DNA-binding proteins and predicting the assembly of transcription factor 

complexes. 

This chapter contains a paper which is currently under review (submitted). All 

supplementary materials (additional files) for this paper are available in this chapter, and 

the implementation of the algorithm presented is publicly available from 

http://promoterplot.fmi.ch/Collision1/ 

 



Computational Structural Analysis: Multiple Proteins
Bound to DNA
Andrija Tomovic*, Edward J. Oakeley

Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, Basel, Switzerland

Abstract

Background: With increasing numbers of crystal structures of protein:DNA and protein:protein:DNA complexes publically
available, it is now possible to extract sufficient structural, physical-chemical and thermodynamic parameters to make
general observations and predictions about their interactions. In particular, the properties of macromolecular assemblies of
multiple proteins bound to DNA have not previously been investigated in detail.

Methodology/Principal Findings: We have performed computational structural analyses on macromolecular assemblies of
multiple proteins bound to DNA using a variety of different computational tools: PISA; PROMOTIF; X3DNA; ReadOut; DDNA
and DCOMPLEX. Additionally, we have developed and employed an algorithm for approximate collision detection and
overlapping volume estimation of two macromolecules. An implementation of this algorithm is available at http://
promoterplot.fmi.ch/Collision1/. The results obtained are compared with structural, physical-chemical and thermodynamic
parameters from protein:protein and single protein:DNA complexes. Many of interface properties of multiple protein:DNA
complexes were found to be very similar to those observed in binary protein:DNA and protein:protein complexes. However,
the conformational change of the DNA upon protein binding is significantly higher when multiple proteins bind to it than is
observed when single proteins bind. The water mediated contacts are less important (found in less quantity) between the
interfaces of components in ternary (protein:protein:DNA) complexes than in those of binary complexes (protein:protein
and protein:DNA).The thermodynamic stability of ternary complexes is also higher than in the binary interactions. Greater
specificity and affinity of multiple proteins binding to DNA in comparison with binary protein-DNA interactions were
observed. However, protein-protein binding affinities are stronger in complexes without the presence of DNA.

Conclusions/Significance: Our results indicate that the interface properties: interface area; number of interface residues/
atoms and hydrogen bonds; and the distribution of interface residues, hydrogen bonds, van der Walls contacts and
secondary structure motifs are independent of whether or not a protein is in a binary or ternary complex with DNA.
However, changes in the shape of the DNA reduce the off-rate of the proteins which greatly enhances the stability and
specificity of ternary complexes compared to binary ones.
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Introduction

DNA-binding proteins are important for the regulation of many

crucial cellular processes (including transcription, recombination,

and replication). The number of DNA-binding proteins known is

very small compared to the number of regulatory controls they

must provide within the nucleus. The problem is solved, at least in

part, by the construction of higher-order regulatory complexes

composed of multiple proteins. Structural analyses of such

complexes may enable us to model the forces driving their

assembly and stability which in turn may help us to understand

these processes better. Such an understanding may help in

predicting DNA-binding specificities. Transcription factors, a large

subclass of DNA-binding proteins, are known to act cooperatively

in the regulation of gene expression [1–7]. Their complexes can

include both DNA and non-DNA-binding factors. The DNA-

binding factors may be located either remotely (at some distance)

or adjacent (with direct contacts) to their promoters [5].

Thanks to a large number of recent X-ray and NMR structures

of protein:protein, protein:DNA, and protein:RNA complexes, a

lot of valuable information about the general features of such

complexes has been discovered [8–23]. These results indicate that

it is very difficult to find universally characteristic rules which can

describe all protein-protein, protein-DNA, and protein-RNA

interactions. However, some general principles have been

deduced. For example, Lys or Arg pair preferentially with any

nucleotide in both protein:DNA and protein:RNA complexes

[16]; two-thirds of all protein-DNA interactions involve van der

Waals contacts, compared to about one-sixth involving hydrogen

bonds [18]; on average protein-protein interface has approxi-

mately the same non-polar character as the protein surface as a

whole and carries somewhat fewer charged groups (however, some
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interfaces are significantly more polar and others more non-polar

than the average) [17].

The current work comprises a structural analysis of macromo-

lecular assemblies where several proteins are bound to DNA, using

data from the Protein Data Bank (PDB) [24]. We analyzed the

following chemical and physical properties: the size of interfaces

between any two components; the number of residues/atoms

involved in contacts between components; residue interface

propensities and chemical composition; water-mediated contacts

in interfaces; secondary structure motifs in interfaces; and

interactions between amino acid side chains either with the

DNA or with another protein in the complex. Some of these

interface properties for ternary/quaternary complexes (i.e. com-

plexes involving two/three proteins bound to DNA) have been

compared with those obtained from binary complexes. One

possible hypothesis why the above-mentioned protein-DNA and

protein-protein interface properties are expected to depend on the

number of proteins in a complex is that when two proteins are free

(not bound to DNA) they are more able to find the best patches (on

both proteins) to produce the most stable complexes possible, with

the highest affinity between components. However, when one

protein is bound to DNA then there is a spatial limitation in the

movements that are possible in order to find the best interface

patches (on both proteins) in order to make stable complexes. This

is one possible explanation why protein-protein interface proper-

ties can be expected to be different in protein:protein and in

protein:protein:DNA complexes. A possible implication is that (if

properties are similar or the same) actually two DNA-binding

proteins bind first to each other and then bind to DNA together (as

a complex). A similar hypothesis can be derived for protein-DNA

interfaces in protein:DNA and in protein:{protein+}:DNA

complexes. One might suppose that these interfaces can be

different, because when one protein binds to DNA there is a

higher degree of freedom (rotational, translational) than when one

protein should bind to a previously-made protein:DNA complex.

This is useful (from a theoretical point of view) for better

understanding protein-DNA interactions which frequently involve

complexes of multiple proteins. In addition, this can be useful

(from a practical point of view) for the possible modelling of such

complexes (their prediction, prediction of order of processes,

modelling cis-regulatory modules, etc). In addition the nature of

protein-protein interface and protein-DNA interface might be

different that there is no any competition between them. This

aspect can be also considered with this kind of analysis performed

in this paper. In this work we have also calculated and compared,

the conformational change of DNA in binary complexes (i.e. single

protein-DNA complexes) and ternary/quaternary complexes

(protein-protein-DNA/protein-protein-protein-DNA). Next, we

analyzed protein-protein and protein-DNA energy binding affinity

in protein-protein, single protein-DNA and multiple proteins-

DNA complexes using several different tools. In addition, we

analyzed and compared the thermodynamic stabilities of these

complexes. We have provided an algorithm, and its web-based

implementation, for calculating overlapping interface volumes and

the number of interface atoms in collision between any two

components (macromolecules) from a 3D complex stored in a pdb

file.

Results and Discussion

We have performed computational structural analysis and

present herewith some general features we have observed about

macromolecular assemblies of multiple proteins bound to DNA.

The following tools were used in our analysis: PISA [25,26];

PROMOTIF [27]; X3DNA [28]; ReadOut [29]; DDNA [30] and

DCOMPLEX [31]. Additionally, we have developed and used an

algorithm for collision detection and overlapping volume of two

macromolecules. Web-base implementation of the algorithm is

freely available from http://promoterplot.fmi.ch/Collision1/ (see

Materials and Methods for details). All data sets, used in this study,

are from the PDB database (see Materials and Methods for a

definition of data sets used in this study).

Physical properties of interfaces
Do physical properties of interfaces depend on the number of

units in macromolecular assemblies? Are there any differences in

physical properties of interfaces among protein:protein:DNA,

protein:DNA and protein:protein complexes? In order to answer

these questions, we performed analysis of physical interface

properties of different macromolecular assemblies.

The number of interfaces in the dataset MutliProteins:DNA

together with their structural characteristics is summarized in

Table 1.

A detailed list of 52 protein-protein and 87 protein-DNA

interfaces is given in Table S1. These values represent the sample

sizes for the following hypothesis tests between protein-protein and

protein-DNA interactions: There was no significant difference in

average interface surface sizes (student’s t-test, p-value = 0.69); nor

the average number of interface residues (student’s t-test, p-

value = 0.76) nor the average number of atoms (p-value = 0.41).

Based on this we can conclude that protein-protein and protein-

DNA interfaces have similar average sizes and numbers of

residues/atoms involved in their interactions in protein:pro-

tein:DNA complexes. La Conte et al. [17] found that most

protein-protein interface areas are in the range of 1200–2000 Å2.

They consider the total area on both components (without

dividing by 2 to make the average area) as shown in formula (2).

The protein-protein and protein-DNA interface areas for

protein:protein:DNA complexes are also to this range (Table 1).

The average area of protein-protein interfaces of complexes in the

group-MultiProteins:DNA and the average area of protein-protein

interfaces of complexes in the group-Protein:Protein we observe

Table 1. Descriptive statistics of interfaces.

Interface type
Number of
interfaces

Average size of
interface (Å2)6SE

Average number
of interface
residues*6SE

Average number
of interface
atoms*6SE

Average number
of intermolecular
H-bonds6SE

Average number of
intermolecular salt
bridges6SE

Protein-protein 52 929.846179.4 49.568.4 190.9636.0 9.3663.7 4.0860.7

DNA-protein 87 1002.3656.5 52.262.9 222.2612.5 18.061.1 0.060.0

Descriptive statistics of protein-protein and protein-DNA interfaces of complexes from group-MultiProteins:DNA.
*For both components together in interface.
doi:10.1371/journal.pone.0003243.t001

Multiple Proteins Bound to DNA
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was comparable to those reported by Chakrabarti and Janin [9].

The DNA interface area sizes reported in Table 1 are comparable

with those reported in studies considering only single protein-DNA

complexes [15,21]. The number of residues/atoms in protein-

protein interfaces in this study was also comparable to previous

studies [9,17]. The situation is similar if we compare protein-DNA

interfaces of protein:protein:DNA complexes with protein-DNA

interfaces of protein:DNA complexes [15,21].

Based on this we can conclude that average interface size and

the average number of interfaces residues/atoms between two

macromolecules (DNA, protein) in any kind of complex (protein:-

protein, protein:DNA, protein:protein:DNA) are approximately

the same. In addition, it appears that these physical properties are

not influenced by the number of subunits in the complex.

Distribution of hydrogen bonds in interfaces
The purpose of this section was to investigate differences in

distributions of hydrogen bonds between interfaces of macromo-

lecular assemblies. There is a statistically significant difference in

the average number of intermolecular hydrogen bonds (H-bonds)

between protein-protein and DNA-protein interfaces (student’s t-

test, p-value,0.0001). The number of H-bonds observed in

previous protein-protein studies (mean 10.160.5) [17] is compa-

rable to those reported in this study for group-MultiProteins:DNA

(Table 1). The situation is similar if we compare protein-protein-

DNA verses protein-DNA interfaces [15,21]. The small observed

variations are due to small variations in the interface areas as the

number of hydrogen bonds is dependent on this area.

In Table S2 we report the numbers of hydrogen bonds observed

between the 20 amino acids and the four bases or the backbone of

the DNA for the complexes listed in the group-MutliPro-

teins:DNA. We found that H-bond pairs were significantly

different from random (Fisher’s test, p,1026). The most favoured

amino acid-DNA base H-bond is ARG-G. In Figure S1 we report

the distribution of H-bonds between the DNA bases and the

bound proteins in group-MutliProteins:DNA. 65.69% of all H-

bonds where between protein side chains and the DNA backbone

(Figure S1). Those H-bonds are not expected to confer specificity

of binding but rather assist in complex stability. Most amino acids

involved in H-bonds between the proteins and DNA (complex

from group-MultiProteins:DNA) are positively charged, presum-

ably because of the negative charge of DNA (Figure S2). For the

H-bonds at the protein-protein interfaces, the situation is different:

negative and positively charged amino acids have an approxi-

mately equal frequency due to the need to pair charges in

electrostatic interactions between donator and acceptor sites in the

two proteins. Very similar distributions of H-bonds are found in

groups –SingleSameProtein:DNA and –SubSetMultiProteins:DNA

(Table S3, Table S4, Figure S3, Figure S4).

Most H-bonds (53.3%) are made with phosphate groups of the

DNA at the protein:DNA interfaces. Very few H-bonds (12%) are

made with deoxyribose (Figure S1). This situation is the same as

that reported by Lejeune et al. [16] and Luscombe et al. [18] for

protein-DNA interactions. The distribution of H-bonds between

the participating amino acids and the DNA is given in Table S2.

Entries in Table S2 that diverge from the expected distribution

(favoured amino acid-base H-bonds) are also similar to those

observed by Luscombe et al. [18].

Distributions of interface residues
In this section we present results about distributions of interface

residues. We investigate if distributions of interface residues

dependent on the number of units in the complex and if there

are any differences in residue distributions between binary and

ternary complexes (protein:protein:DNA, protein:DNA, protein:-

protein). The amino-acid propensities for the protein-protein and

protein-DNA interfaces for complexes from the group-Multi-

Proteins:DNA are shown in Figure S5. For protein-DNA

interfaces, ARG and LYS have the highest propensity values

(.1.2), which indicates that they occur greater than 20% higher

frequently in the interfaces than in the whole dataset. On other

hand, many amino acids (ALA, ASP, CYS, GLN, GLU, ILE,

LEU, MET, PHE, PRO, and VAL) are disfavoured in the

interactions sites. For protein-protein interfaces, the situation is

different and MET is the most favoured residue at interaction sites.

In Figure S6 we report the distribution of amino acids involved in

protein-protein and protein-DNA interfaces in the complexes from

the group-MultiProteins:DNA. Aliphatic amino acids are domi-

nant in protein-protein interactions, while positively charged

amino acids are the most involved in protein-DNA interactions.

Those two distributions are significantly different, with a p-

value,0.0001 (Chi-square multinomial test). The complexes in

group-MutliProteins:DNA have a number of van der Waals

interactions between the amino acids in the proteins and either the

DNA bases or backbone that is significantly different from random

(Table S5, Fisher’s p-value,561026). In order to determine

which of the pairings are different from expected, we performed

individual Fisher’s tests on each pair. The distributions of interface

residues for protein-DNA interfaces of the complexes in the

groups-SubSetMultiProteins:DNA and –SingleSameProtein:DNA

are reported in Table S6 and Table S7.

Protein-protein interfaces are more hydrophobic than protein-

DNA interfaces (they contain significantly more aliphatic amino

acids, see Figure S6 for details). Protein-protein interfaces have

many more negatively charged amino acids and far fewer

positively charged amino acids than protein-DNA interfaces. All

these interface parameters give an indication of the overall polar

nature of protein-DNA interfaces. Given that the DNA molecule

surface is negatively charged, it is perhaps not surprising that it

favours positively charged protein surface patches.

The frequency distributions of amino acids in protein-DNA

interaction sites in this study from the group-MultiProteins:DNA

are similar to those reported by Lejeune [16] (Figure S5 and

Figure S6).

Distribution of interface structural motifs
We investigated if the distributions of structural motifs in

interfaces of components in ternary (protein:protein:DNA) com-

plexes are different from those in binary complexes (protein:pro-

tein and protein:DNA). In order to answer on this question we

calculate the propensity values for protein-protein and protein-

DNA secondary structure motifs from the group-MultiPro-

teins:DNA (shown in Figure 1). The most favoured protein-DNA

interface motif in is the helix, and the least favoured motifs are c-

turns, b-strands, and b-hairpins. At protein-protein interfaces, the

least favoured secondary structure motif is the b-bulge. The

distributions of secondary structure motifs between protein-protein

and protein-DNA interfaces are significant different (Chi-square

multinomial goodness-of-fit test, p-value,0.01). For protein-DNA

interfaces, the dominant structural motif is the helix. This result is

consistent with the observation that many DNA binding sites on

proteins are comprised of helix motifs [32]. The distribution of

secondary structure motifs in protein-protein interfaces for the

complexes used in this study (group-MultiProteins:DNA, Figure 1)

is similar to that observed by Guharoy and Chakrabarti [33] who

observed that the contribution of b-strands is lower than that of

helixes and that non-regular structural motifs appear in large

numbers.
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All previous results (from this and previous subsections) can be

summarized in the form:

Xprotein�protein protein : proteinð Þ

zXprotein�DNA protein : DNAð Þ

&Xprotein�protein protein : protein : DNAð Þ

zXprotein�DNA protein : protein : DNAð Þ

ð1Þ

where Xprotein-protein (C) and Xprotein-DNA (C) represent one of the

following interface parameters: area, number of residues, number

of atoms, number of H-bonds, distribution of residues, distribution

of H-bond partners or the distribution of structural interface motifs

in either protein-protein or protein-DNA interfaces respectively

where complex C is either a protein:protein, a protein:DNA or a

protein:protein:DNA complex. Formula (1) can be easily be

expanded to cover quaternary complexes (protein:protein:pro-

tein:DNA) as well, but for clarity we have only represented the

case for ternary complexes.

It is apparent from formula (1) that interface parameters under

discussion, for complexes composed of multiple proteins bound to

DNA, can be estimated from protein-protein and single protein-

DNA complexes alone. A more precise variant of formula (1), for

example in the form of a regression equation, would be possible to

derive if we had crystal structures of the same protein in all three

states: protein:protein; protein:DNA and protein:protein:DNA.

Our results indicate that the physical properties of protein:protein

and protein:DNA complexes, such as interface area, number of

interface residues/atoms and hydrogen bonds and the distribution

of interface residues and secondary structure motifs are no different

in binary or ternary complexes. Thus, if we have two (or more)

proteins which bind together, there will be no influence on these

interface parameters of their DNA-binding interface when they

bind together as a complex to DNA. This claim is not related to the

energy of these interactions and it is expected that the interaction

rate constants will not be the same for binary and multiple proteins

complexes. If two DNA binding proteins can also bind to each other

then this will tether them in the vicinity of the DNA such that when

one of the proteins binds to DNA the second will have a faster on-

rate because it will have a shorter distance to diffuse to find its

binding site thus maintain a higher effective local concentration

around the DNA. A detailed analysis of rate constants cannot

unfortunately be made from crystal structures which are by

definition static snapshots of this dynamic process.

Water molecules in protein-protein and protein-DNA
interactions

It has been discussed that water content and water mediated

contacts in the protein-DNA interface are important components

of protein-DNA interactions [34,35]. Protein-protein and protein-

DNA interfaces contain significant quantities of water [36].

Structural and biochemical data indicate that water-mediated

interactions are important for the stability and specificity of

recognition, despite the fact that interface solvent molecules

exchange rapidly with the bulk solvent [36]. We wanted to

evaluate the differences between water mediated contacts at

protein-DNA interfaces in protein:DNA complexes (single proteins

bound to DNA) and in protein:protein:DNA complexes (multiple

proteins bound to DNA). The average number of water mediated

contacts between the protein-DNA interfaces of protein:pro-

tein:DNA complexes is ,11.8261.3 (Table S8). This is markedly

different from the value of 28 reported for protein:DNA complexes

previously [36]. Similarly, we compared the water mediated

contacts in the protein-protein interfaces of protein:protein and

protein:protein:DNA complexes. The average number of water

molecules for protein-protein interfaces of complexes in the group-

MultiProteins:DNA was ,4.960.83 (Table S8), as compared to

,22 for protein-protein interactions in binary protein:protein

complexes reported by [36].

These results suggest that water mediated contacts in interfaces

of components in protein:protein:DNA complexes play less

important role in the stability and specificity of recognition then

in interfaces of components in the binary protein:protein and

protein:DNA complexes. However, as we discussed later in the

text there are other factors which are more important for stability

and specificity of component recognition in protein:protein:DNA

complexes.

DNA distortion
In order to check if DNA structural deformation is higher when

multiple proteins bind to DNA we performed computational

structural analysis of DNA structures. DNA distortion was

measured by calculating the root-mean-square deviation (rmsd)

when each DNA structure was fitted onto its corresponding

canonical A-DNA or B-DNA structure. Distributions of rmsd

values for all complexes from the groups MultiProteins:DNA

(black bars) and SingleSameProtein:DNA (white bars) were

calculated (Figure 2). Statistical analysis of these results showed a

significant difference in means of rmsd values (student’s t-test with

Figure 1. Secondary structure motif propensities. Secondary structure motif propensities for protein-protein and protein-DNA interfaces.
Propensity values which are significantly different from 1 (either above or below), evaluated by the statistical bootstrapping method, are marked with
‘‘*’’. Significant statistical differences between motif propensities of protein-protein and protein-DNA interfaces are marked with ‘‘#’’.
doi:10.1371/journal.pone.0003243.g001
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equal or unequal variance as appropriate, p-value,0.02) calcu-

lated for all complexes from the groups –MultiProteins:DNA, -

SingleProtein:DNA and –SingleSameProtein:DNA calculated

after fitting each DNA structure onto the corresponding canonical

A-DNA and B-DNA structures (Table 2). Further information for

each complex is given inTable S9, S10, S11 and S12. The rmsd

values for the group-SubMultiProteins:DNA are the same as those

for the group-MultiProteins:DNA.

The rmsd values of the group SubSetMultiProteins:DNA,

including comparisons with the group SingleSameProtein:DNA,

are given in Table S13. DNA distortion, however, is significantly

higher when multiple proteins are bound to the DNA (Figure 2,

Table 2, Table S13). It has been reported that when a single protein

binds to DNA it results in a higher rmsd (conformational change)

than that seen in the unbound DNA structure [15]. Here we reported

that there are also further conformational changes to the structure of

DNA which are induced when multiple proteins bind to it.

Energetic properties of interfaces
The energetic properties of cooperatives are useful for

understanding of how the essential macromolecular machines of

cellular function are assembled and how they work [37]. We

analyzed energetic and thermodynamic properties of different

mulitcomponent complexes (protein:protein:DNA, protein:DNA,

protein:protein). In Table 3 we report the free energy of

dissociation (DGdiss) and the free energy of solvation (DGint) in

kJ/mol for complexes from the four groups –MultiProteins:DNA, -

SubMultiProteins:DNA, -SingleProtein:DNA, and –SingleSame-

Protein:DNA. In Table 4 we also report energy Z-score values for

direct and indirect readouts for the three groups –MultiPro-

teins:DNA, -SubMultiProteins:DNA and –SingleProtein:DNA.

The p-values in Table 3 were obtained by comparing the means

of DGint, DGdiss and the Z-scores for the direct and indirect

readouts using the student’s t-test (with equal or unequal variance

as appropriate). We could not calculate energy Z-scores for the

indirect readouts of the group SubMultiProteins:DNA because the

DNA structure is the same for each complex, so the calculated Z-

scores would also be the same. Detailed lists of the DGint, DGdiss

and Z-scores for both the direct and indirect readouts of each

complex and each group are available in Table S14, S15, S16,

S17, S18, S19, S20, S21, S22 and S23.

Table 4 shows the average protein-DNA energy binding affinity

in kJ/mol for the MultiProteins:DNA, SubMultiProteins:DNA,

SingleProtein:DNA and SingleSameProtein:DNA groups; the

average protein-DNA overlapping volume (in Å3) and the number

of atoms in collision at the protein-DNA interfaces. All values were

compared against the MultiProteins:DNA group and a student’s t-

test was used to calculate the p-values. Further information on these

parameters can be found in Table S24, S25, S26, S27 and S28.

The average protein-protein binding energy for complexes from

the MultiProteins:DNA group (which are bound to DNA) is

significantly smaller (student’s t-test, p-value = 0.05) than that of

Figure 2. Distribution of rmsd values for measuring DNA distortion. Distribution of rmsd values calculated from fitting each DNA structure
in the complexes from group-MultiProteins:DNA (black bars) and group-SingleSameProtein:DNA (white bars) to a corresponding canonical B-DNA.
doi:10.1371/journal.pone.0003243.g002

Table 2. Measuring DNA distortion.

Dataset of complexes Average rmsd (6SE) from A-DNA Average rmsd (6SE) from B-DNA

Group-MultiProteins:DNA 8.2660.4 4.7160.5

Group-SingleProtein:DNA 5.9460.2(p,0.001) 3.4460.2 (p = 0.007)#

Group-SingleSameProtein:DNA 6.6660.6 (p = 0.02) 2.8760.4 (p = 0.004)#

Average rmsd values calculated from fitting each DNA structure in the complexes from group –MultiProteins:DNA, -SingleProtein:DNA, and –SingleSameProtein:DNA to
a corresponding canonical A-DNA and B-DNA.
p-values are calculated in comparison with Group A and obtained using the one-tailed Student’s t-test.
#unequal variance.
doi:10.1371/journal.pone.0003243.t002
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complexes from group-Protein:Protein (Table 5). The average

solvation energy (DGint) and free energy barrier of assembly

dissociation (DGdiss) for protein-protein complexes from group–

MultiProteins:DNA is, respectively, smaller and larger (student’s t-

test, p-value,0.001) than that found for complexes from group-

Protein:Protein (Table 5). A list of protein-protein binding

affinities for every complex in the MultiProteins:DNA and

Protein:Protein groups may be found in Table S29–S30.

The energetic properties of protein-DNA interfaces of the

complexes in group-SubSetMultiProteins:DNA, including their

comparisons with corresponding values from group-SingleSame-

Protein:DNA, are given in Tables S31 and S32.

The free energy barrier of assembly dissociation (DGdiss, Table 3)

is higher for complexes involving multiple proteins bound to DNA

(MultiProteins:DNA) than those involving only single protein-

DNA complexes (SubMultiProteins:DNA, SingleProtein:DNA

and SingleSameProtein). The SingleSameProtein:DNA and the

SubMultiProteins:DNA groups both contain proteins which are

also components of the complexes found in the MultiPro-

teins:DNA group, but the SubMultiProteins:DNA group was

formed by manually removing the extra protein units from the

complexes of group-MultiProteins:DNA in order to get single

protein-DNA complexes. We see that in comparison with the

SingleSameProtein:DNA group, complexes in the MultiPro-

teins:DNA group have significantly (p = 0.03, student’s t-test)

higher free energy barriers of assembly dissociation (DGdiss). This

means that multiple proteins-DNA complexes are more thermo-

dynamically stable than single protein-DNA complexes. Compar-

ing the MultiProteins:DNA group to the three other groups

(SubMultiProteins:DNA, SingleProtein:DNA, and SingleSame-

Table 3. Complex energies.

Dataset of complexes
Average (6SE) solvation
energy DGint (kJ/mol)

Average (6SE) DGdiss

(kJ/mol)
Average (6SE) energy
Z-score for direct readout

Average (6SE)energy Z-
score for indirect readout

Group-MultiProteins:DNA 2234.61.03618.4 50.4166.0 22.8160.2 22.3660.1

Group-SubMultiProteins:DNA 2123.2169.8 (p,0.001)# 47.1964.9 (p = 0.34) 21.7160.2 (p,0.001) —

Group-SingleProtein:DNA 2114.4968.6 (p,0.001)# 48.5265.3 (p = 0.41) 21.8460.3 (p = 0.005)# 22.1460.1 (p = 0.13)

Group-SingleSameProtein:DNA 299.79615.0 (p,0.001)# 31.0666.5 (p = 0.03) 21.3460.3 (p,0.001)# 21.4860.3 (p = 0.007)

Average solvation energy (kJ/mol), free energy barrier of assembly dissociation (kJ/mol), and energy Z-scores for direct and indirect readouts for groups –
MultiProteins:DNA, -SubMultiProteins:DNA, -SingleProtein:DNA and –SingleSameProtein:DNA.
p-values are calculated in comparison with Group-MultiProteins:DNA and obtained using the one-tailed Student’s t-test.
#unequal variance.
doi:10.1371/journal.pone.0003243.t003

Table 4. Affinity of components.

Dataset of complexes
Average (6SE) protein-DNA
energy binding affinity (kJ/mol)

Average (6SE) protein-DNA
overlapping volume (Å3)

Average (6SE) number of atoms
in collision in protein-DNA
interfaces

Group-MultiProteins:DNA 239.0560.9 4.2660.8 32.0664.1

Group-SubMultiProteins:DNA 230.9360.5 (p,0.001)# 2.0460.3 (p = 0.007)# 15.4461.9 (p,0.001)#

Group-SingleProtein:DNA 233.2060.6 (p,0.001) 3.1760.56 (p = 0.13) 20.4561.8 (p = 0.006)#

Group-SingleSameProtein:DNA 232.7960.9(p,0.001)# 2.31360.8 (p = 0.04)# 15.563.3 (p = 0.001)#

Average protein-DNA energy binding affinity (kJ/mol), interface overlapping volume (Å3) and average number of interface collision atoms for groups –
MultiProteins:DNA, -SubMultiProteins:DNA, -SingleProtein:DNA and –SingleSameProtein:DNA.
p-values are calculated in comparison with Group-MultiProteins:DNA and obtained using the one-tailed Student’s t-test.
#unequal variance.
doi:10.1371/journal.pone.0003243.t004

Table 5. Protein-protein interfaces energies.

Dataset of complexes
Average (6SE) protein-protein
binding free energy (kJ/mol)

Average (6SE) solvation
energy DGint (kJ/mol) Average (6SE) DGdiss (kJ/mol)

Group-MultiProteins:DNA 256.2766.3 2234.61.03618.4* 50.4166.0*

Group-Protein:Protein 267.2062.3 (p = 0.05)# 281.937610.1 (p,0.001)# 8.2262.9 (p,0.001)#

Average protein-protein binding free energy (kJ/mol), average solvation energy (kJ/mol) and average free energy barrier of assembly dissociation (kJ/mol) for protein-
protein complexes from group –MultiProteins:DNA and –Protein:Protein.
p-values are calculated in comparison with Group-MultiProteins:DNA and obtained using the one-tailed Student’s t-test.
#unequal variance.
*calculated for the whole complex (the same values as in Table 3).
doi:10.1371/journal.pone.0003243.t005
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Protein:DNA), we find a significantly smaller free energy (student’s

test, p-value,0.001, Table 3) of solvation gain upon complex

formation (DGint). The same result was found when comparing the

MutliProteins:DNA group to the SubSetMultiProteins:DNA

group (Table S31).

The energy Z-scores for direct and indirect readouts (confor-

mational energy) have more negative values for complexes with

multiple proteins bound to DNA (Table 3 and Table S31). More

negative Z-scores mean that the target DNA sequence fits into a

given protein structure better [29]. Therefore, DNA-binding

proteins fit their targets better when they form a ternary complex

with DNA. The Z-score also indicates that ternary complexes may

be more stable than binary ones. The binding energy affinity,

overlapping volume and number of atoms in collision (Table 4) is

significantly higher in protein-protein-DNA complexes than in

protein-DNA complexes. Differences in overlapping volume and

number of atoms in collision are due not only to the bigger

interface area (twice protein:DNA), but also to the higher affinity

of multiple proteins binding (interface area sizes for the

SingleProteins:DNA, SingleSameProteins:DNA and –SubMulti-

Proteins:DNA groups are similar, butthe SingleProtein:DNA and

SingleSameProtein:DNA groups have higher protein-DNA bind-

ing affinities, overlapping volumes and numbers of atoms in

collision than those in the SubMultiProteins:DNA group, Table 4

and Table S32). Cis-modules that contain transcription factor

binding sites (cis-motifs) of transcription factors which make direct

physical contact with each other have higher DNA-binding

affinities than cis-modules that contain transcription factor binding

sites (cis-motifs) of factors without direct mutual contacts. This

information may be used for the prediction of cis-regulatory

motifs/modules in the following way: if we say that the value of a

scoring function for binding sites which are close to one another

(where there might be the physical contact between corresponding

transcription factors) may have a lower threshold value than a

threshold which should be used for scoring function for binding

sites that are further away (where there might not be the physical

contact between corresponding transcription factors). Modelling

DNA:protein:protein:DNA interactions caused by the bending of

DNA would also be a possible explanation for introducing a

similar strategy; however, there is still not enough information for

computational modelling of DNA-bending (i.e. there are not yet

any computational strategies which can predict when two

transcription factors which are bound to DNA with a long

distance between them would have direct physical contact as a

consequence of DNA bending). In addition to that, another

important implication for the prediction of CRM or cis-motifs is

the overlap between transcription factors which have binding sites

close to each other. Based on our collision detection results, we

realized that sometimes when transcription factors bind to the

different grooves of DNA (major and minor) their binding sites can

overlap a lot, but from a 3D point of view there is no physical

overlap between factors. On the other hand, if two transcription

factors bind to the same groove (usually major) then there can be a

large overlap between them from a 3D point of view if there is a

large overlap between their binding sites (i.e. this situation is not

possible). In other words, if care is taken about the structural

classification of transcription factors (i.e. if they bind to the major

or minor groove) this information can also be used for CRM or

cis-motif predictions.

It is interesting to note that protein-protein affinities are higher

when proteins are not bound to DNA (Table 5). Interfaces

between proteins that are part of a multi-complex (with DNA) can

be weaker than those found in binary ones. Binding to DNA may

decrease protein-protein affinities, while increasing the overall

stability of the complex (significantly higher stability, student’s test,

p,0.001, Table 5). When two proteins bind freely in solution they

are largely unhindered in their rotational movement so they can

align themselves using the most energetically favourable orienta-

tion which gives them the optimal protein-protein binding energy.

When DNA is added to the complex, the three components must

arrange themselves to form a global energy minima. However the

requirement of binding to DNA introduces a restriction on the

possible arrangement of the components such that the protein-

protein binding may be weakened by this extra strain but the

additional synergistic stability of the three way complex more than

compensates for this effect (Table 5).

Conclusion
It is very difficult to determine the rules governing the assembly

of complexes by data-mining alone [38]. Universal conclusions for

the types of complexes used are unreliable because of the limited

number of available structures (44). However, many general

descriptive features can be elucidated even with a modest data

collection. As further structures become available, the confidence

in the results presented here can be further constrained. The

precedent for such studies, using similar or even smaller number of

structures is well documented (e.g. [10,15,19,23]).

In this paper, we conclude that protein-protein and protein-DNA

interface parameters, such as interface area, number of interface

residues/atoms and hydrogen bonds, and distribution of interface

residues, hydrogen bonds, van der Walls contacts and secondary

structure motifs in complexes where multiple proteins are bound to

DNA are no different in protein-protein, single protein-DNA or

multiple proteins-DNA complexes. Thus, if we have two (or more)

proteins which bind together, there will be no influence on these

interface parameters. Also, if we have one protein bound to DNA,

then that binding will have no influence (in terms of the interface

parameters mentioned) on the types of interface interactions that

can occur with subsequent protein-protein complex expansion. The

water mediated contacts in interfaces of components in protein:-

protein:DNA complexes play less important role (found in less

quantity) in the stability and specificity of recognition then in

interfaces of components in the binary protein:protein and

protein:DNA complexes. Distortion is significantly higher when

multiple proteins bind to DNA. This distortion is required to

accommodate multiple protein binding events. The combinatorial

assembly of transcription factors has been known for a long time to

play an important role in stabilizing regulatory complexes. A deeper

understanding of structural considerations may be helpful when

predicting the assembly of transcription factor complexes. The

formation of multiple protein interactions with DNA results in a

decrease in protein-protein affinity and an increase in protein-DNA

affinity with a net gain in overall stability for a protein-protein-DNA

complex. Such effects are clearly important for modelling

transcription factor cooperativity.

Materials and Methods

Definition of data sets
We selected 75 crystal complexes from the PDB database which

contained two or more proteins bound to DNA with a resolution

of 3.25 Å or less. We discarded all homologous complexes with less

than 30% protein sequence for all protein components using the

PISCES server [39,40]. Our final dataset contained 46 complexes

(Table S33). We determined the UniProt ID of each protein

component using the tool [41]. This dataset was called group-

MultiProteins:DNA. Most of the complexes from group-Multi-

Proteins:DNA are ternary (two proteins bound to DNA), but a few
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of them are quaternary (three proteins bound to DNA). A very few

of them contain one protein which does not make contact with

DNA but is bound to another protein which does have a direct

contact with DNA. We created a second dataset (group-

SubMultiProteins:DNA) from group-MultiProteins:DNA which

consisted of 91 structures (this number is smaller than 92, because

some of the proteins do not have direct contact with DNA), each of

which was a sub-structure containing only one protein unit plus

DNA. In addition, we analysed a set (group-SingleProtien:DNA,

Table S34) of single protein-DNA complexes (102 structures),

which was a subset derived from a previous study [16]. We found

17 PDB structures (group-SingleSameProtein:DNA, Table S35)

which contained single proteins and DNA, but the proteins were

all components of complexes in group-MultiProteins:DNA.

Corresponding subgroup of group-MultiProteins:DNA which

contains complexes for each where there is a partner in the

SingleSameProtein:DNA group we call this group-SubSetMulti-

Proteins:DNA (Table S36). The group-Protein:Protein (Table

S37), which contained 70 protein-protein complexes, came from a

previous study [9].

Physical and chemical analysis of interfaces
We used the PISA service from the European Bioinformatics

Institute [25,26] to calculate interface areas and compositions.

There are two possibilities for defining the interface between two

macromolecular components: the first approach defines the

interface as the protein surface area which becomes inaccessible

to solvents when two chains come into contact; the second method

defines the interface as the set of atoms, where the atom centers

from different proteins lie within a distance of 1–5 Å. Both

approaches are widely used in macromolecular complex analysis

and produce roughly equivalent results. The PISA service uses the

first approach. The interface area between macromolecular

components M1 and M2 is calculated as the difference in total

accessible surface areas of isolated and interfacing structures

divided by two, i.e.:

IA M1,M2ð Þ~ ASA M1ð ÞzASA M2ð Þ{ASA M1,M2ð Þ
2

ð2Þ

where ASA(M1) and ASA(M2) are the accessible surface areas of

macromolecular components M1 and M2 respectively, and

ASA(M1M2) is the accessible surface area of the complex of M1

and M2.

We also used the PISA service to calculate hydrogen bonds, salt

bridges, disulphide bonds and interface residues. However, PISA

provides no information about van der Waals contacts between

atoms (residues) because they may be in contact with several other

residues. This is the principal difference between the outputs for

van der Waals and hydrogen bonds, where inter-atomic links are

well determined. However, in order to produce results comparable

with previous studies, we have calculated van der Waals contacts

in the following way: all atoms not involved in hydrogen bonds but

separated by 3.9 Å or less are considered to be interacting through

van der Waals contacts [18]. We also analyzed the statistical

distribution of amino acid-amino acid and amino acid-nucleotide

pairs (‘‘interaction matrices’’) for hydrogen bonds and van der

Waal contacts. For all amino acid-amino acid and amino acid-

nucleotide pairs we calculated contingency tables. The expected

values for these tables are based on an assumption of random

interactions. We evaluated the contingency tables using Fisher’s

exact test for count data with simulated p-values based on 200000

repetitions (GNU R). The p-value obtained by Fisher’s exact test

indicates whether rows and columns in contingency tables are

independent or not. However, this does not provide information

about which of the pairings are different from expected. To

calculate this we performed individual Fisher’s tests (GNU R) for

each pair.

In order to determine the chemical characteristics of the

interfaces, we classified the interface residues using Eisenberg’s

hydrophobicity scale [42] in a similar way to Lejeune et al. [16]:

amino acids are assigned to groups which contain those that are

positively charged (Arg and Lys), negatively charged (Asp and Glu),

polar (Asn, Gln, His, Ser, and Thr), aliphatic (Ala, Ile, Leu, Met and

Val), aromatic (Phe, Trp, and Tyr), and particular (Cys, Gly, and

Pro). Multinomial distributions obtained in this study were

compared using the Chi-square multinomial goodness-of-fit test.

In addition, a general indication of the hydrophobicity of the

interfaces can be estimated using the residue interface propensities.

The residue interface propensities give a measure of the relative

importance of different amino acid (nucleic acid) residues in all the

interfaces of complexes. The propensity values can be calculated

using the accessible surface area of residues, as was done by Ellis et

al. [10], or using the frequencies of residues, as was done by

Lejeune et al. [16]. Both approaches have the same goal, to

determine the relative importance of the different residues.

Because of its simplicity, we have used the approach described

in [16]. Following that, the propensity Px for the interface residues

x (x and y are amino acid or DNA structures) can be calculated by:

Px~

Ix

,P
y

Iy

Tx

,P
y

Ty

ð3Þ

where Ix is the total number of residues x in the interface area, Tx

is the total number of residues in the whole dataset and similar for

Ty and Iy. If Px.1 it indicates that the residue x is ‘‘favoured’’ and

occurs more frequently at interfaces than in the dataset as a whole.

If Px,1 then residue x is ‘‘disfavoured’’ at interaction sites; in all

other cases we can say that residue x is neither over- nor under-

represented in the interface region in the complexes. In order to

evaluate whether a particular propensity value was significantly

different from 1 (either above or below), a statistical bootstrapping

method was implemented similar to [10].

Structural analysis of interfaces
We analyzed the types of secondary structures present within

protein-protein and protein-DNA interfaces using the PROMO-

TIF program [27]. PROMOTIF defines 11 different secondary

structure motifs: b-turns, c-turns, b-bulges, a-helices, 310-helices,

b-strands, b-sheets, bab units, y-loop, b-hairpins, and disulphide

bridges. For each structural motif we calculated propensities in the

same way as we did for residue propensities (formula (3)).

Analysis of DNA distortion
DNA distortions were estimated by calculating the root-mean-

square deviation (rmsd) when each DNA structure from a complex

was fitted onto the corresponding canonical A-DNA and B-DNA

structures as in [15], using the whole DNA from crystal strucutres

and without normalization to the length of the DNA used.

(Regions which are not in interactions do not have significant

deformation therefore their contributions to RMSD is not big.)

Canonical A-DNA and B-DNA for the nucleotide sequence (with

the same length) from the complex were constructed using
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X3DNA [28]. The fitting was performed with the McLachlan

algorithm [43] as implemented in the program ProFit [44].

Analysis of water molecules in protein-protein and
protein-DNA interactions

Water molecules are defined as interface water molecules if they

are less than 3.5 Å from the atoms of the two components of a

complex, as in [21]. This analysis was restricted to those structures

with 2.4 Å or better resolution as the identification of water in the

electron density map may be ambiguous at lower resolutions [21].

Analysis of energetic properties of interfaces
The chemical stability of complexes was analysed by calculating

the free energy barrier of assembly dissociation (DGdiss) and the

solvation free energy gain upon formation of the assembly (DGint)

in kJ/mol using PISA. Assemblies with higher positive values of

DGdiss are more thermodynamically stable, and that value indicates

that an external driving force is required to dissociate the

assembly. For the calculation of DGint and DGdiss we used

structures from all six groups (-MultiProteins:DNA, -SubMulti-

Proteins:DNA, -SingleProtein:DNA, -SingleSameProtein:DNA,

-SubSetMultiProteins:DNA and –Protein:Protein).

We calculated Z-scores for intermolecular and intramolecular

readouts using a ReadOut server [29]. Direct readouts (direct

contacts between amino acids and base pairs) and water-mediated

contacts are intramolecular energies, whereas indirect energies

quantify sequence-dependent DNA conformational energies. The

specificity of the complex is given by the Z-score, and larger negative

values correspond to higher specificities [45]. For the calculation of

the Z-score, we used the data from groups –MultiProteins:DNA,

-SubMultiProteins:DNA, -SingleProteins:DNA, -SingleSameProtein,

-SubSetMultiProteins:DNA.

We calculated binding energy affinities (protein-DNA) for each

structure in groups –MultiProteins:DNA, -SubMultiProteins:DNA,

-SingleProtein:DNA, -SingleSameProtein:DNA, and –SubSetMul-

tiProteins:DNA using the DFIRE energy function [30].

We compared the mean of DGint, DGdiss, the Z-score for direct

and indirect readouts, and the binding energy affinities between

group-MultiProteins:DNA and each of the other three groups

(-SubMultiProteins:DNA, -SingleProtein:DNA and –SingleSame-

Protein:DNA) using student’s t-test (one-tailed). Differences in the

variances of corresponding values between groups were calculated

using Bartlett’s test. In those cases where we had significant

differences in variance between groups, we used student’s t-test

with unequal variance.

For protein-protein complexes (group-Protein:Protein) we

calculated DGint and DGdiss using the PISA server. We have

calculated protein-protein binding energy affinities for complexes

from group-Protein:Protein and protein-protein subcomplexes

from group-MultiProteins:DNA using DCOMPLEX [31]. We

also compared the average protein-protein binding affinities,

average values of DGint and DGdiss between groups –Multi-

Proteins:DNA and –Protein:Protein.

Collision detections and overlapping volume of two
macromolecules

We calculated the number of atoms in collision and the volume

of the overlapping region for protein-protein and protein-DNA

interfaces from groups –MutliProteins:DNA, -SubMultiPro-

teins:DNA, -SingleProtein:DNA and –SingleSameProtein:DNA.

Collision detection between two macromolecules is actually

collision detection between complex objects, where these objects

are composed of collections of spheres. The most straightforward

algorithm for modelling this problem (in the case of two objects:

A1 and A2) is checking each sphere from object A1 against each

sphere from object A2, and we know that objects A1 and A2

intersect only if one or more of these pairs intersect. For two

objects with M and N spheres this algorithm requires O(MN) time

to complete. There are several geometric algorithms with better

speed for collision detection between objects in 3D space such as

those based on bounding-volume (BV) hierarchies [46,47],

algorithms based on axis-aligned bounding boxes AABB [48,49],

algorithms based on oriented bounding boxes [50], and spatial

hashing [51,52]. In this study we used an algorithm for collision

detection based on spatial hashing [51] and axis-aligned bounding

boxes AABB [48,49]. To perform this, we executed the following

steps (Figure S7):

i. Make an AABB around each macromolecule.

ii. Check if any pair of AABBs overlaps. In order for two AABBs

to overlap they must overlap on all three special axes. If there

is no overlap then they cannot be in collision. Otherwise they

may be in collision.

iii. Perform a special hashing on the overlapping region of each

pair of AABBs that contain macromolecules that may be in

collision.

The overlapping region (a rectangular prism) is divided into a

three dimensional grid of cells. Each cell in the grid is a cube with

side lengths equal to the diameter of the largest sphere (atom) in

the macromolecule. This is a uniform spatial subdivision. Each

sphere (atom) in the macromolecule can be assigned to the cell in

which it lies using a hash function as follows: First it is necessary to

make an AABB for each sphere. Then the (x,y,z) coordinates of the

six side centers are assigned to their corresponding cells using the

hash function (Figure 3).

Figure 3. Assignment of hash values to the atoms of a
macromolecule. Hash values are computed for all the grid cells
covered by the AABB of the sphere (atom) from a macromolecule. In
this case, sphere S falls into four cells and they are mapped onto a hash
table.
doi:10.1371/journal.pone.0003243.g003
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The hash function we used is given in formula (4) [52]:

h x, y, zð Þ~ trunc x=lð Þ � p1 xor trunc y=lð Þ � p2 xorð

trunc z=lð Þ � p3Þ mod n
ð4Þ

where p1, p2, and p3 are large prime numbers (in our case

73856093, 19349663 and 83492791 respectively). The size of a

cell is defined as 1, the hash table has a size ‘‘n’’. The function

‘‘trunc(x)’’ rounds the real number ‘‘x’’ down to the next integer.

The function ‘‘xor’’ is a Boolean exclusive-or operation.

To test whether a sphere ‘‘S’’ from another macromolecule

intersects with the first macromolecule, it suffices to find out if that

sphere intersects any of the spheres of another macromolecule that

share a cell with ‘‘S’’. The time complexity of this algorithm is

linear ‘‘O(n)’’, where ‘‘n’’ is the number of sphere-atoms found in

the overlapping region between two macromolecules AABBs.

We extended the collision detection algorithm so that it is able

to calculate the number of atoms which are in collision and their

overlapping volume. Instead of stopping the analysis as soon as

two atoms are found to be in collision, the algorithm is continued

until all of the atoms from the different macromolecules have been

counted. From this it is a simple matter to estimate the overlapping

volume from the colliding spheres.

Web-base implementation of the algorithm is freely available

from http://promoterplot.fmi.ch/Collision1/. The user submits

pdb files and then specifies which chains to test for collision. The

output lists the number of atoms from each protein which are in

collision and the volume of overlapping region. In addition, with

this tool user may display 3D complex from PDB files as

interactive web pages using the Corotna VRML Client plug-in

or any other VRML plug-in.

Supporting Information

Figure S1 Distribution of H-bonds according to the nucleotide

part (group-MultiProteins:DNA).

Found at: doi:10.1371/journal.pone.0003243.s001 (0.91 MB TIF)

Figure S2 Distribution of amino acids involved in H-bonds in

protein-protein and protein-DNA interfaces (group-MultiPro-

teins:DNA).

Found at: doi:10.1371/journal.pone.0003243.s002 (0.93 MB TIF)

Figure S3 Distribution of H-bonds according to the nucleotide

part (group-SingleSameProtein:DNA).

Found at: doi:10.1371/journal.pone.0003243.s003 (0.91 MB TIF)

Figure S4 Distribution of H-bonds according to the nucleotide

part (group-SubSetMultiProteins:DNA).

Found at: doi:10.1371/journal.pone.0003243.s004 (0.91 MB TIF)

Figure S5 Amino acid propensities for protein-protein and

DNA-protein interfaces (group MultiProteins:DNA). Propensity

values which are significantly different from 1 (either above or

below), as evaluated using the statistical bootstrapping method, are

marked with ‘‘*’’.

Found at: doi:10.1371/journal.pone.0003243.s005 (1.08 MB TIF)

Figure S6 Distribution of amino acids involved in interaction

sites of protein-protein and DNA-protein (group-MultiPro-

teins:DNA).

Found at: doi:10.1371/journal.pone.0003243.s006 (1.07 MB TIF)

Figure S7 Visualization of first several steps of the collision

detection algorithm. Situation (A) represents scenario when there

is on overlapping between two macromolecules and corresponding

axis-aligned bounding boxes either; situation (B) represents

scenario when there is no overlapping between two macromole-

cules but with overlapping between corresponding axis-aligned

bounding boxes; situation (C) represents scenario when there is

overlapping between two macromolecules and corresponding axis-

aligned bounding boxes.

Found at: doi:10.1371/journal.pone.0003243.s007 (3.00 MB TIF)

Table S1 Detailed list of interface parameters for each complex

from group-MultiProteins:DNA

Found at: doi:10.1371/journal.pone.0003243.s008 (0.09 MB

PDF)

Table S2 The number of observed hydrogen bonds between

amino acid and nucleotide moieties in protein-DNA interfaces

(group-MultiProteins:DNA)

Found at: doi:10.1371/journal.pone.0003243.s009 (0.07 MB

DOC)

Table S3 The number of observed hydrogen bonds between

amino acid and nucleotide moieties in protein-DNA interfaces

(group-SingleSameProtein:DNA)

Found at: doi:10.1371/journal.pone.0003243.s010 (0.07 MB

DOC)

Table S4 The number of observed hydrogen bonds between

amino acid and nucleotide moieties in protein-DNA interfaces

(group-SubSetMultiProteins:DNA).

Found at: doi:10.1371/journal.pone.0003243.s011 (0.06 MB

DOC)

Table S5 Number of observed van der Waals contacts between

amino acid and nucleotide moieties in protein-DNA interfaces

(group-MultiProteins:DNA).

Found at: doi:10.1371/journal.pone.0003243.s012 (0.06 MB

DOC)

Table S6 Number of observed van der Waals contacts between

amino acid and nucleotide moieties in protein-DNA interfaces

(group-SingleSameProtein:DNA).

Found at: doi:10.1371/journal.pone.0003243.s013 (0.07 MB

DOC)

Table S7 Number of observed van der Waals contacts between

amino acid and nucleotide moieties in protein-DNA interfaces

(group-SubSetMultiProteins:DNA).

Found at: doi:10.1371/journal.pone.0003243.s014 (0.06 MB

DOC)

Table S8 The number of water-mediated contacts in protein-

protein and protein-DNA intrerfaces of selected complexes in

group-MultipleProteins:DNA

Found at: doi:10.1371/journal.pone.0003243.s015 (0.04 MB

PDF)

Table S9 Detailed list of rmsd values calculated from fitting each

DNA structure in the complexes from group-MultiProteins:DNA

to a corresponding canonical A-DNA and B-DNA.

Found at: doi:10.1371/journal.pone.0003243.s016 (0.04 MB

PDF)

Table S10 Detailed list of rmsd values calculated from fitting

each DNA structure in the complexes from group-SinglePro-

tein:DNA to a corresponding canonical A-DNA and B-DNA.

Found at: doi:10.1371/journal.pone.0003243.s017 (0.04 MB

PDF)

Table S11 Detailed list of rmsd values calculated from fitting

each DNA structure in the complexes from group-SingleSame-

Protein:DNA to a corresponding canonical A-DNA and B-DNA.
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Found at: doi:10.1371/journal.pone.0003243.s018 (0.03 MB

PDF)

Table S12 Detailed list of rmsd values calculated from fitting

each DNA structure in the complexes from group-SubSetMutli-

Proteins:DNA to a corresponding canonical A-DNA and B-DNA.

Found at: doi:10.1371/journal.pone.0003243.s019 (0.04 MB

PDF)

Table S13 Average rmsd values calculated from fitting each

DNA structure in the complexes from group -SubSetMultiPro-

teins:DNA and -SingleSameProtein:DNA to a corresponding

canonical A-DNA and B-DNA.

Found at: doi:10.1371/journal.pone.0003243.s020 (0.03 MB

DOC)

Table S14 Detailed list of energies for each complex in group-

MultiProteins:DNA

Found at: doi:10.1371/journal.pone.0003243.s021 (0.04 MB

PDF)

Table S15 Detailed list of energies for each complex in group-

SubMultiProteins:DNA

Found at: doi:10.1371/journal.pone.0003243.s022 (0.04 MB

PDF)

Table S16 Detailed list of energies for each complex in group-

SingleProtein:DNA

Found at: doi:10.1371/journal.pone.0003243.s023 (0.04 MB

PDF)

Table S17 Detailed list of energies for each complex in group-

SingleSameProtein:DNA

Found at: doi:10.1371/journal.pone.0003243.s024 (0.04 MB

PDF)

Table S18 Detailed list of energies for each complex in group-

SubSetMultiProteins:DNA

Found at: doi:10.1371/journal.pone.0003243.s025 (0.04 MB

PDF)

Table S19 Detailed list of energies Z-scores (direct and indirect

readouts) for each complex in group-MultiProteins:DNA

Found at: doi:10.1371/journal.pone.0003243.s026 (0.04 MB

PDF)

Table S20 Detailed list of energies Z-scores (direct and indirect

readouts) for each complex in group-SubMultiProteins:DNA

Found at: doi:10.1371/journal.pone.0003243.s027 (0.04 MB

PDF)

Table S21 Detailed list of energies Z-scores (direct and indirect

readouts) for each complex in group-SingleProtein:DNA

Found at: doi:10.1371/journal.pone.0003243.s028 (0.04 MB

PDF)

Table S22 Detailed list of energy Z-scores (direct and indirect

readouts) for each complex in group-SingleSameProtein:DNA

Found at: doi:10.1371/journal.pone.0003243.s029 (0.04 MB

PDF)

Table S23 Detailed list of energy Z-scores (direct and indirect

readouts) for each complex in group-SubSetMultiProteins:DNA

Found at: doi:10.1371/journal.pone.0003243.s030 (0.04 MB

PDF)

Table S24 Detailed list of protein-DNA energy binding affinity,

overlapping volume and number of atoms in collision for each

complex in group-MultiProteins:DNA

Found at: doi:10.1371/journal.pone.0003243.s031 (0.04 MB

PDF)

Table S25 Detailed list of protein-DNA energy binding affinity,

overlapping volume and number of atoms in collision for each

complex in group-SubMultiProteins:DNA

Found at: doi:10.1371/journal.pone.0003243.s032 (0.05 MB

PDF)

Table S26 Detailed list of protein-DNA energy binding affinity,

overlapping volume and number of atoms in collision for each

complex in group-SingleProtein:DNA

Found at: doi:10.1371/journal.pone.0003243.s033 (0.05 MB

PDF)

Table S27 Detailed list of protein-DNA energy binding affinity,

overlapping volume and number of atoms in collision for each

complex in group-SingleSameProtein:DNA

Found at: doi:10.1371/journal.pone.0003243.s034 (0.04 MB

PDF)

Table S28 Detailed list of protein-DNA energy binding affinity,

overlapping volume and number of atoms in collision for each

complex in group-SubSetMultiProteins:DNA

Found at: doi:10.1371/journal.pone.0003243.s035 (0.04 MB

PDF)

Table S29 Detailed list of protein-protein binding free energy

for each protein-proteincomplex in group-MultiProteins:DNA

Found at: doi:10.1371/journal.pone.0003243.s036 (0.04 MB

PDF)

Table S30 Detailed list of protein-protein binding free energy

for each protein-proteincomplex in group-Protein:Protein

Found at: doi:10.1371/journal.pone.0003243.s037 (0.06 MB

PDF)

Table S31 Average solvation energy (kJ/mol), free energy

barrier of assembly dissociation (kJ/mol), and energy Z-scores

for direct and indirect readouts for groups -SubSetMultiPro-

teins:DNA, -SingleSameProtein:DNA

Found at: doi:10.1371/journal.pone.0003243.s038 (0.03 MB

DOC)

Table S32 Average protein-DNA energy binding affinity (kJ/

mol), interface overlapping volume (Å3) and average number of

interface collision atoms for groups -SubSetMultiProteins:DNA, -

SingleSameProtein:DNA

Found at: doi:10.1371/journal.pone.0003243.s039 (0.03 MB

DOC)

Table S33 List of PDB IDs used in the study (group-Multi-

Proteins:DNA), with description of component (including Swiss

Prot ID) and biological process of components.

Found at: doi:10.1371/journal.pone.0003243.s040 (0.08 MB

DOC)

Table S34 The list of PDB codes of complexes from group-

SingleProtein:DNA

Found at: doi:10.1371/journal.pone.0003243.s041 (0.03 MB

DOC)

Table S35 The list of PDB codes of complexes from group-

SingleSameProtein:DNA

Found at: doi:10.1371/journal.pone.0003243.s042 (0.03 MB

DOC)

Table S36 The list of PDB codes of complexes from group-

SubSetMultiProteins:DNA

Found at: doi:10.1371/journal.pone.0003243.s043 (0.03 MB

DOC)

Table S37 The list of PDB codes of complexes from group-

Protein:Protein
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3.1  Supplementary information 
 
for the paper “Computational Structural Analysis: Multiple Proteins Bound to 

DNA 

Available on- line: 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2532747/?tool=pubmed#s4 

Web-base implementation of the algorithm “Collision detections and overlapping 

volume of two macromolecules” is freely available from 

http://promoterplot.fmi.ch/Collision1/. 
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4. Dependencies between transcription 
factors in the human, mouse and rat genome 
(paper IV) 
 

 
Experimental strategies for detecting groups of transcription factors which work together 

at the level of the whole genome are very limited (too expensive, require lot of time, all 

resources are not available, such as antibodies from ChIP-chip). Thus, there is a need for 

the computational detection of transcription factor site dependencies.  

In this chapter,  a computational analysis of transcription factor site dependencies in 

human, mouse and rat genomes was performed. The results from the previous two 

chapters are integrated in this analysis. The scoring function introduced in chapter 2 is 

used to predict binding sites. The structural information observed in chapter 3 is used to 

model cooperativities between transcription factors. In addition, this chapter 

demonstrates, how in silico work can be combined with laboratory work. An in vivo 

validation of the computational prediction of transcription start sites for three genes 

(ctmp-1, ngfrap, gap-43; expressed in brain) was performed. 
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Abstract
Background: It is known that transcription factors frequently act together to regulate gene
expression in eukaryotes. In this paper we describe a computational analysis of transcription factor
site dependencies in human, mouse and rat genomes.

Results: Our approach for quantifying tendencies of transcription factor binding sites to co-occur
is based on a binding site scoring function which incorporates dependencies between positions, the
use of information about the structural class of each transcription factor (major/minor groove
binder), and also considered the possible implications of varying GC content of the sequences.
Significant tendencies (dependencies) have been detected by non-parametric statistical
methodology (permutation tests). Evaluation of obtained results has been performed in several
ways: reports from literature (many of the significant dependencies between transcription factors
have previously been confirmed experimentally); dependencies between transcription factors are
not biased due to similarities in their DNA-binding sites; the number of dependent transcription
factors that belong to the same functional and structural class is significantly higher than would be
expected by chance; supporting evidence from GO clustering of targeting genes. Based on
dependencies between two transcription factor binding sites (second-order dependencies), it is
possible to construct higher-order dependencies (networks). Moreover results about transcription
factor binding sites dependencies can be used for prediction of groups of dependent transcription
factors on a given promoter sequence. Our results, as well as a scanning tool for predicting groups
of dependent transcription factors binding sites are available on the Internet.

Conclusion: We show that the computational analysis of transcription factor site dependencies is
a valuable complement to experimental approaches for discovering transcription regulatory
interactions and networks. Scanning promoter sequences with dependent groups of transcription
factor binding sites improve the quality of transcription factor predictions.

Background
Transcription factors (TFs) are a major class of DNA-bind-
ing proteins and are a crucial element in the regulation of

gene expression. It is well established that many transcrip-
tion factors act together to regulate gene expression in
eukaryotes [1]. For example, the cooperation between E2F
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and NF-Y, two main regulators of cell cycle, has been
described in [2,3]. A commonly used experimental
method to identify interacting proteins is tandem affinity
purification (TAP), as reviewed in [4]. This approach
requires the expression of recombinant fusion proteins,
which is laborious, may interfere with protein function
and may lead to non-physiological expression levels of
the studied protein. A computational detection of poten-
tial interacting transcription factors could therefore com-
plement experimental approaches. There are many
prediction tools and databases of composite motifs and
cis-regulatory modules (multiple transcription factor
binding sites in a strict order and spacing) [5-21]. Most of
the tools for predicting cis-regulatory modules have been
limited by rigid assumptions on the architecture of the
module, such as length, number and order of contained
cis-motifs, distance between cis-motifs, and the DNA
strand on which a binding site must appear. It has been
shown that 98% of 375 known vertebrate composite ele-
ments have a distance of less than 100 bp [22]. Although
these assumptions can be valid for the detection of cis-reg-
ulatory modules, they are too restrictive to allow sensitive
detection of binding sites dependencies. Transcription
factor cooperativity can be achieved with different spatial
arrangements on different promoters. There are, for exam-
ple, transcription factors which co-occur and bind to the
promoter at very large distances (>1 Kbp) between them
(such as GAGA and Gal4 [23]). In order to overcome these
restrictions, we investigated transcription factor binding
sites dependencies in terms of how often their predicted
binding sites are found together within a window extend-
ing 1.5 Kb 5' and 200 bp 3' of the putative starts of tran-
scription in human, mouse and rat genes, without any
further assumption on their binding characteristics. This
leads to an approach that differs from prior approaches
for detecting cis-regulatory modules. Dependencies
between transcription factor binding sites are evaluated
using only co-occurrences among different promoter
sequences, disregarding any information on arrangement
and counts of occurrences within the same promoter.
Binding sites of two transcription factors that appear sig-
nificantly more often together (among different promot-
ers) than expected are indicative of a dependency between
them. Using this approach, even dependencies between
sites that do not occur in a strictly defined order and spa-
tial organization can be identified. Our approach for
quantifying tendencies of transcription factor binding
sites to co-occur is based on a scoring function which
incorporates dependencies between nucleotides [24], the
use of information about the structural class of each tran-
scription factors (minor or major groove binder) and con-
sidering the possible implications of varying GC content
of the sequences. The significant tendencies (dependen-
cies) have been detected by non-parametric statistical
methodology (permutation tests). Evaluation of obtained

results has been performed in several ways: reports from
literature (many of the significant dependencies between
transcription factors have previously been confirmed
experimentally); dependencies between transcription fac-
tors are not biased due to similarities in their DNA-bind-
ing sites; the number of dependent transcription factors
that belong to the same functional and structural class is
significantly higher than would be expected by chance;
supporting evidence from GO clustering of targeting
genes. The only restriction our method applies is to limit
the search to the 1.7 Kb window described above, without
any further restrictions on the distance between or the
organization of the binding sites (cis-motifs).

Based on dependencies between two transcription factor
binding sites (second-order dependencies), it is possible
to construct higher-order dependencies (networks).
Obtained results about dependencies among transcrip-
tion factor binding sites have been further used for devel-
opment of a web-based tool that allows scanning of
promoter sequences for groups of dependent transcrip-
tion factor binding sites http://promoterplot.fmi.ch/
TFDepSSeq1/. This tool can help in predicting transcrip-
tion factor binding sites in promoter analysis with rela-
tively high sensitivity and modest specificity (which is still
higher in comparison to single site prediction tools (such
as [24]).

Results and Discussion
Distributions of dependencies between transcription 
factors

From the JASPAR database, we selected all vertebrate tran-
scription factors (August 2007, total: 76) and made all the

possible 2-order combinations (in total:  = 2850).

There is no comprehensive transcription factor database
that would list all transcription factors with their target
binding sites. From publicly available databases, JASPAR
is currently the best annotated transcription factor data-
base (new version of JASPAR database has appeared in
2008 with 88 vertebrate transcription factors). Using pro-
moter sequences of all human, mouse and rat annotated
genes (see Materials and Methods section), we analysed
transcription factor site dependencies (see Material and
Methods section). The total number of significant
dependencies (significance level of 0.05/k, k = 75, see
Methods section) in the human, mouse and rat genomes
were 1438 (50.5%), 1239 (43.5%) and 1063 (37.3%),
respectively [see Additional file 1]. The corresponding
numbers of significant dependencies observed on back-
ground sequences [see Additional file 1] are significantly
smaller (Fisher's exact test, p-value < 0.001), and are

76
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about as high as expected based on the p-value threshold
(0.05*2850). On average, the numbers of significant
dependencies observed in the human, mouse and rat
genomes are about four times higher than those found in
the background sequences, which may indicate that statis-
tical dependencies could correspond to real biological
dependencies between transcription factors. The number
of the common dependent pairs between species was also
analysed [see Additional file 1] and we found a high con-
servation between species in terms of transcription factor
dependencies, further supporting the validity of our
results. Additional supporting evidence for our findings
was found from the literature for many of the significant
transcription factor combinations [25-29]. For example, it
has been reported that SP-1 and E2F interact directly in
delivering an activation signal to the basic transcription
machinery [25]. In our computational analysis, depend-
encies between binding sites of SP-1 and E2F were
detected separately in human, mouse and rat genomes,
with p-values < 0.0001 in each case. There was a similar
situation for USF1 and RUNX1: dependency was pre-
dicted in all three genomes, with p-values < 0.0001, and it
has been reported that they interact with each other [26].
Another example is the MAX and MYC-MAX dependency
which, as well as the MAX and MYCN dependency, was
predicted in all three genomes, with a p-value < 0.0001,
and has previously been identified [27]. The MAX-USF,
MYC-USF dependency (p < 0.0001) was described in [28],
NFkappaB-RELA, NFKB1-REL (p < 0.0001) in [29], and
the E2F1-NFY dependency (p < 0.0001) in [2,3]. There are
many other confirmatory examples which agree with the
computationally predicted transcription factor dependen-
cies. However, in order to perform a detailed investigation
of the number of true and false positives we would need a
precise text-mining tool to search the available scientific
literature. Moreover, an additional limitation for such an
investigation is that experimental information available
in the literature about interacting transcription factors is
certainly incomplete. Because of this, some of the results
that have been evaluated as incorrect predictions (false
positives) may in fact be true positives.

For each transcription factor, we analyzed the number of
its dependent mates in human, mouse and rat genomes.
The distributions of dependent mate numbers [see Addi-
tional file 2] are very heavily skewed from Gaussian (sig-
nificantly different from Normal distributions with p-
value < 0.01 detected by Kolmogorov-Smirnov, Cramer-
von Mises or Anderson-Darling test for all 3 genomes)
and follow a U-shaped distribution (e.g. Beta(a, b),

a<1,b<1). That was expected according to the fact that
there are "popular" (very often seen in dependent pairs)
and "unpopular" (rarely seen in dependent pairs) tran-
scription factors. For example a popular transcription fac-
tor in all three genomes is CREB. CREB was found to
regulate ~4000 target genes in the human genome, and a
majority of these are occupied in vivo [30]. In addition,
there is a large number of CREB-occupied loci in the rat
genome [31].

Some transcription factors, such as GATA2 and EN1, have
a very high number of predicted binding sites and are thus
predicted to regulate a large fraction of the analyzed pro-
moters. For such factors, a higher number of co-occur-
rences with other binding sites can be observed. While our
statistical approach will take this into account through an
increased number of expected random co-occurrences, we
wondered whether this could still cause a bias in our
results. We have therefore performed a correlation analy-
sis between the number of predicted single binding sites
and the number of dependent mates for each transcrip-
tion factors. We used the "Significance test for Pearson
correlation" which is valid for sample sizes where N > 6 to
assess these correlations. The Pearson's correlation coeffi-
cients were 0.04 (p-value = 0.75), -0.27 (p-value = 0.02)
and -0.39 (p-value < 0.01) for human, rat and mouse,
respectively. These results indicate that there might be
reduced statistical power for factors with many predicted
sites (correlation coefficient significantly different from
zero in the case of rat and mouse), potentially because
their lower site information content could give rise to
more noise in the site predictions. However, weak correla-
tion coefficients imply small influence of such noise on
obtained results.

Similarly, we investigated the influence of binding site
length on the number of dependent mates. Short binding
sequences could increase the frequency of detected bind-
ing sites. We have therefore performed a correlation anal-
ysis between the length of binding sites and the number
of dependent mates for each transcription factor. The
Pearson's correlation coefficients were -0.30 (p-value <
0.01), -0.17 (p-value = 0.14) and -0.06 (p-value = 0.60)
for human, rat and mouse, respectively. These results indi-
cate that at least for the analysis in human, shorter bind-
ing sites tend to give rise to more dependent pairs. We
cannot rule out that this is due to a higher number of false
positive predictions associated to TFs with short binding
sites. Yet, the observed correlation coefficients are weak,
and for mouse and rat not significantly different from
zero. This indicates that the resulting bias is weak and
does not dominate our results.

Another potential source of bias could be the sequence
composition of the promoters and binding motifs. For
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example, a GC-rich promoter sequence would be more
likely to contain predicted sites for GC-rich binding
motifs, and detection of dependencies between corre-
sponding factors could be biased. The stratification
according to GC-content used by our resampling
approach should control for the GC-content, but other
compositional biases might exist that we did not account
for. To investigate this issue, we performed a clustering of
transcription factors based on the similarity between their
binding sites [see Additional file 3]. This kind of clustering
is performed in [32], and we observed [see Additional file
3] that only few TFs had sufficiently similar binding site
specificities to be grouped together: the top two clusters
are Cluster-15 (containing 6 transcription factors) and
Cluster-5 (containing 5 transcription factors). The other
clusters contain less than 5 TFs, and 32 clusters only con-
tain a single TF. Moreover, the most popular/unpopular
transcription factors (we define a popular TF as a TF which
is involved in many pairwise interactions) always belong
to different clusters (do not have similar binding sites),
with only one exception with two popular transcription
factors (ARNT, USF1). We then analyzed if dependent
pairs are more likely to belong to the same cluster (Table
1). In 25 out of 469 dependent pairs (5.3%), both tran-
scription factors are part of the same cluster. Over all pos-
sible transcription factor pairs, both factors belong to the
same cluster in 33 of 1507 pairs (2.2%). This indicates
that similar binding site specificity might increase the
chance to be dependent by about 2.5-fold, but would still
only account for a minority of predicted dependent pairs.
Taken together, these results suggest that dependencies
between transcription factors cannot be explained by sim-
ilarity of their DNA-binding sites.

Next, we investigated how many dependent pairs contain
transcription factors that belong to the same structural
class, using the classification from JASPAR [33]. It has
been reported that transcription factors from the same
structural class tend to bind in a similar way [33-37]. We
found that belonging to the same structural class is related
to dependencies between transcription factors (Figure 1).
This is also in agreement with the statement that similar
structures imply similar functions, and similar functions
imply possible transcription factor binding site depend-
encies. An alternative way of classifying transcription fac-

tors is based on their functions (i.e. biological processes)
obtained from [38]. We investigated the distribution of
dependencies according to this classification (which only
covers 51 of the 76 factors used in this work), in a similar
way to the structural classification. In this situation
(which is more relevant for this study), we expected that
transcription factors that belong to the same functional
group (have the same or similar biological processes)
should be dependent more often than transcription fac-
tors from the different functional class. Indeed, the
number of dependent transcription factors that belong to
the same functional class is significantly higher (p = 0.04,
Chi-square test) than randomly expected in the human,
rat and mouse genomes (Figure 1). For the functional
analysis we did not use the all transcription factors used in
this study, because for some there was no reported func-
tional class available in [38]. This could have limited our
statistical sensitivity and might be the reason why the
functional enrichment was only marginally significant.

Finding groups of genes that are correlated throughout a
set of experiments leads to the hypothesis that these genes
are involved in common functions [39]. Further, we can
expect that these genes have similar sets of dependent
transcription factor binding sites. Knowledge of these sets
may be crucial for further understanding of regulatory net-
works. Following this we investigated distributions of
dependent transcription factor binding sites using the GO
ontology classification (biological process and molecular
function) of target genes whose promoters we used in the
study, using only GO classes that contained at least 25
genes. Clustering of dependent TFs was performed in the
following way: each dependent pair of TFs which had in
its target list at least 80% of promoters (genes) that belong
to the given GO class is assigned as relevant for that class.
All results are available from http://promoterplot.fmi.ch/
TFDEP1/TFdepGO.html. The predictions of dependent
transcription factor binding sites are more likely to be true
if they are supported by multiple lines of evidence. Figure
2 represents Venn diagrams for human, mouse and rat
results separately. Venn diagrams show the number of
total predicted dependent pairs, the number of predicted
dependent pairs conserved in two or three species, the
number of predicted dependent pairs supported by GO,
and the number of predicted dependent pairs supported

Table 1: Distributions of pair dependencies according the binding sites similarity clustering.

Dependent pairs A-B* Independent pairs A-B*

A&B belong to the same cluster 25 8
A&B belong to the different cluster 444 1063

p-value = 7.692106e-08 (Fisher's exact test)
*transcription factors for which cluster is not assigned [see Additional file 3] are omitted from analysis
The number (percent) of dependent/independent pairs (in all there genomes human+mouse+rat intersection) that belong to the same/different 
cluster (clustering of transcription factors is performed based on the similarity between their binding sites, see Additional file 3).

http://promoterplot.fmi.ch/TFDEP1/TFdepGO.html
http://promoterplot.fmi.ch/TFDEP1/TFdepGO.html
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by overlapped supporting evidence. We can see that the
highest number of dependent pairs is supported by 2 evi-
dences and all dependent pairs from GO analysis are sup-
ported by other 2 evidences for each species, further
supporting the validity of our results. Another potential
way to investigate dependencies between transcription
factors according to the GO classification of their target
genes would be to group the promoters belonging to the
same GO cluster and perform the same analysis (see sec-
tion 2.1) as performed previously with the set of all pro-
moters. However, in practice this approach proved under-
powered because of the limited number of promoters in
each GO class. There were too few promoters to apply the
same re-sampling techniques used for the whole genome.

It is likely that some protein-DNA complexes not only
contain two, but three or more cooperating transcription
factors. In order to identify such groups of more than two
dependent sites, one could apply the same method as for
pairs. In practise however, it is not feasible to enumerate
and analyze all combinations of three or more transcrip-
tion factor binding sites (for example, there are 70300
groups of three and over 1.2 million groups of 4 factors
from Jaspar). Instead, we used the results on significantly
associated pairs for extrapolation. Starting from depend-
encies of order two, we analyzed the dependencies of

higher orders as fully or partially connected transcription
factor networks. To make all results easily accessible, we
have provided a web-based tool, freely accessible from
http://promoterplot.fmi.ch/TFDEP1/ where users can
search by transcription factor name and retrieve our
results on dependencies (full and partial). For stringent
searching, users can require the transcription factor net-
work to be fully connected (e.g. for A-B-C dependencies it
is necessary to have A-B, A-C and B-C dependencies) and
represents exactly the results which would be obtained via
direct enumeration. Partial connectivity is less stringent
(e.g. for third-order only two combinations are necessary
to be dependent) and represents a less stringent approxi-
mation of the full enumeration results. Information
obtained in this way can be useful for designing biological
experiments where information about transcription fac-
tors that may cooperate is useful (design of regulatory
gene networks for various processes). In addition, the
results obtained about dependencies are potentially use-
ful for better understanding transcriptional networks in
human, mouse and rat genomes.

Computational prediction of groups of dependent 
transcription factors binding sites
Results from descriptive data-mining about dependencies
between transcription factor binding sites can be used for

Distributions according to the structural and functional classificationFigure 1
Distributions according to the structural and functional classification. Expected (random) and observed distributions 
of dependent pairs of TFs which belong to the same structural/functional class (* p < 0.05, Chi-square test; Expected distribu-
tion gives the numbers of dependent pairs of transcription factors which belong to the same structural/functional class that one 
would expect to obtain if there is no difference between proportions of dependent pairs that contain transcription factors 
from the same and different structural/functional classes).

http://promoterplot.fmi.ch/TFDEP1/
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the computational prediction of modules of dependent
binding sites. In order to evaluate the proposed tool, we
used experimentally verified data from [40,41]. From the
dataset of transcription factors which we used in this
study, we selected a subset which was known to be
involved in the regulation of skeletal muscle gene expres-

sion: MEF2, SP-1, SRF, MZF1_1-4 and MZF1_5-13. It is
known that a set of nine human genes (NM_184041,
NM_001927, NM_002479, NM_079422, NM_003281,
NM_000257, NM_002471, NM_001100 and
NM_005159) is regulated by combinatorial interactions
between the transcription factors listed above [41]. First,

Venn diagrams of the number of dependent transcription factor binding sites pairs in human, mouse and rat genomeFigure 2
Venn diagrams of the number of dependent transcription factor binding sites pairs in human, mouse and rat 
genome. Venn diagrams show the number of total predicted dependent pairs, the number of predicted dependent pairs con-
served in two or three species, the number of predicted dependent pairs supported by GO, and the number of predicted 
dependent pairs supported by overlapped supporting evidence.

Table 2: Computational prediction of groups of dependent transcription factors binding sites.

2-order TF dependency # (%)of promoters where module has been detected

MZF1_5-13 ↔ SP-1 9 (100%)

MZF1_1-4 ↔ MZF1_5-13 9 (100%)

MZF_1-4 ↔ SP-1 9 (100%)

MEF2 ↔ SRF 1 (11%)

General form of output after scanning promoter sequences for the given combination of transcription factors A and B.

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_184041
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_001927
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_002479
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_079422
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_003281
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_000257
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_002471
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_001100
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_005159
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we noticed that based on second order dependencies (in
human) among these transcription factors (Table 2) it was
possible to construct fifth-order partial dependencies
between them. We used the 2 Kbp upstream region of the
nine human genes and scanned them with modules of
order 2. We found (Table 2) that almost all second-order
modules were detected in all nine promoters.

Only module MEF2-SRF was not detected in all
sequences, however there are other combinations that
include one of these two transcription factors detected in
more sequences. This is not a surprise because not only
these 5 transcription factors are involved in the regulation
of skeletal muscle genes.

In order to further demonstrate the practical application
of the proposed tool, we can simulate the following sce-
nario: if we know that one specific transcription factor is
involved in the regulation of a set of genes, and we would
like to know which other possible transcription factors
might be involved, then we could use the proposed tool
to create a list of candidates. Specifically, using the set of
nine genes that showed skeletal muscle expression we
could start from the any of the 5 mentioned transcription
factors and then find the factors that might interact with it
in the regulation of these nine genes. Using the proposed
tool, we were able to predict all the other known transcrip-
tion factors reported to be involved in the regulation of
these genes (true positives). However, we also determined
another set of transcription factors for which no experi-
mental support exists (which we might consider as poten-
tial false positives).

In order to perform more detailed validation test, we used
transcription factors that were predicted and experimen-
tally identified as true positives, transcription factors that
were not predicted but experimentally reported for a given
promoter as false negatives, transcription factors that were
neither predicted nor experimentally reported as true neg-
atives and transcription factors that are predicted but not
experimentally reported are false positives (Table 3, with
muscle specific data from [40,41]). The second order
dependencies have been used in this evaluation. In addi-
tion, we have used promoters (and corresponding tran-
scription factors: HLF, TCF1(HNF1), FOXa2 (HNF3),
RORA, SOX17, cEBP, HNF4) of human liver specific genes
from [42] and performed similar validation (Table 4). We
noticed that sensitivity is relatively high and specificity rel-
atively low. While our method could detect almost all true
positives from both experiments, it produced many false
positive predictions similar to other tools for prediction of
transcription factor-binding sites. However, it is impor-
tant to mention that it is not guaranteed that the experi-
mentally reported transcription factors represent the
complete set of factors for the given genes (true positives).
Therefore, some of the false positives might be true posi-
tives and the actual specificity could be higher than esti-
mated here. In comparison to single site prediction tools
(such as [24], Table Sup eight-three and tools reported
there), our tool has an increased specificity and sensitivity.

Conclusion
In this paper we describe a data-mining study to identify
transcription factor site dependencies in the human,
mouse and rat genomes. Many of the predicted dependent

Table 3: Evaluation of prediction of dependent transcription factor binding sites using transcription factors involved in the regulation 
of skeletal muscle gene expression.

Promoter of human gene (Gene RefSq ID) TP TN FP FN Specificity Sensitivity

NM_000257 3 21 50 2 0.32 0.6

NM_001100 4 24 47 1 0.35 0.8

NM_001927 4 25 46 1 0.36 0.8

NM_002471 3 25 46 2 0.37 0.6

NM_002479 4 20 51 1 0.29 0.8

NM_003281 4 22 49 1 0.32 0.8

NM_005159 5 22 49 0 0.31 1

NM_079422 4 21 50 1 0.31 0.8

NM_184041 3 27 45 1 0.38 0.75

TP-true positives, FP-false positives, TN-true negative, FN-false negative, sensitivity = TP/(TP+FN), specificity = TN/(TN+FP)

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_000257
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_001100
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_001927
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_002471
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_002479
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_003281
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_005159
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_079422
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_184041
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transcription factors had been confirmed previously in
vitro or in vivo and have been reported in the literature:
these represent partial validation of our approach (agree-
ment between statistical and biological/experimentally
confirmed/dependencies). Dependencies between tran-
scription factors are not biased by similarities in their
DNA-binding sites. The distribution of transcription fac-
tors, whose binding sites are dependent, according to their
functional classification shows that they tend to be
involved in same biological process. Genes that are
involved in common functions tend to have similar sets of

dependent transcription factor binding sites. Knowing
these sets may further our understanding of gene regula-
tion networks. This is why we provided distributions of
dependent transcription factor binding sites in GO ontol-
ogy classes of target genes whose promoters we used in the
study and these results are available from http://promot
erplot.fmi.ch/TFDEP1/TFdepGO.html. Starting from the
dependencies of order 2, it is possible to construct higher
order dependencies (networks). All results can be
obtained via the web tool http://promoterplot.fmi.ch/
TFDEP1/. This information may help others in their inves-

Table 4: Evaluation of prediction of dependent transcription factor binding sites using transcription factors involved in the regulation 
of human liver.

Promoter of human gene (Ensembl ID) TP TN FP FN Specificity Sensitivity

ENSG00000150526 6 23 46 1 0.33 0.857

ENSG00000017427 6 20 49 1 0.29 0.857

ENSG00000084674 6 23 46 1 0.33 0.857

ENSG00000115718 5 23 46 2 0.33 0.714

ENSG00000116833 6 28 41 1 0.41 0.857

ENSG00000126218 6 21 48 1 0.30 0.857

ENSG00000136872 6 20 49 1 0.29 0.857

ENSG00000163581 6 25 44 1 0.36 0.857

ENSG00000163631 6 21 48 1 0.30 0.857

ENSG00000167165 6 28 41 1 0.40 0.857

ENSG00000167910 6 27 42 1 0.39 0.857

ENSG00000171759 6 26 43 1 0.37 0.857

ENSG00000173531 6 23 46 1 0.33 0.857

ENSG00000180432 6 23 46 1 0.33 0.857

ENSG00000101076 6 22 47 1 0.32 0.857

ENSG00000163631 6 21 48 1 0.30 0.857

ENSG00000145321 6 23 46 1 0.33 0.857

ENSG00000169562 6 22 47 1 0.32 0.857

ENSG00000132437 6 21 48 1 0.30 0.857

ENSG00000105398 6 24 45 1 0.35 0.857

ENSG00000131482 6 25 44 1 0.36 0.857

ENSG00000198610 6 25 44 1 0.36 0.857

TP-true positives, FP-false positives, TN-true negative, FN-false negative, sensitivity = TP/(TP+FN), specificity = TN/(TN+FP)

http://promoterplot.fmi.ch/TFDEP1/TFdepGO.html
http://promoterplot.fmi.ch/TFDEP1/TFdepGO.html
http://promoterplot.fmi.ch/TFDEP1/
http://promoterplot.fmi.ch/TFDEP1/
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tigation of transcriptional processes in human, mouse
and rat. In addition, we demonstrated how the informa-
tion obtained about dependencies could be used for the
computational prediction of modules of dependent tran-
scription factor binding sites http://promoterplot.fmi.ch/
TFDepSSeq1/. We validated the tool using experimentally
verified data set of transcription factors involved in the
regulation of skeletal muscle expression. We also demon-
strated how the proposed tool might be applied. Compu-
tational analysis of transcription factor site dependencies
is a complement to experimental approaches for discover-
ing transcription regulatory interactions and networks.

Methods
De novo detection of transcription factor site 
dependencies
The dataset used in this study comprised promoter
sequences (1500 bp upstream to 200 bp downstream of
annotated transcription start sites) of 18,799 human
(Ensembl Build 40, NBCI v36, hg18), 17,954 mouse
(Ensembl v38, NCBI m35, mm7) and 6,723 rat genes
(Ensembl v22, NCBI v3.1, rn3) taken from the cisRED
database, August 2007 [43]. The set of vertebrate tran-
scription factors (total 76) with their binding sites was
obtained from the non-redundant, curated and publically
available database JASPAR [44,45] (August, 2007). We
also used negative control sequences as a background in
order to see how many dependent transcription factors
can be found in sequences which are not real promoters
of selected genes. Background sequences were generated
for each species as described in [43], of 1000 concatenated
search regions that were randomly selected from the
genome's entire set of search regions.

In order to detect transcription factor site dependencies,
we first enumerated all second-order combinations of
transcription factors. Then, using the new scoring func-
tion introduced in our previous work [24], we predicted
binding sites for the given combination of transcription
factors on the aforementioned human/mouse/rat pro-
moter sequences. It is difficult to define a single optimal
score threshold for all TFs. Individually optimized thresh-
olds might be necessary to account for varying degrees of
specificity inherent to some TFs. Nevertheless, we used
universal but distance specific thresholds for this study:
0.88 if the distance between binding sites was longer than
5 bp, otherwise 0.80, because transcription factors with
direct contacts between them can make more stable com-
plexes with DNA even though their DNA-binding affini-
ties may be lower, as discussed in [46]. In our previous
paper [24] we suggested values between 0.8 and 0.9 as
optimal medium stringency thresholds for the prediction
of single transcription factor binding sites. Very similar
results are obtained if other thresholds are chosen from
this interval, with a ~5-10% difference between them

(data not shown). In addition for detection binding site
dependencies, we also included information about the
structural class of each transcription factor from the JAS-
PAR database. It is known that most transcription factors
bind to the major DNA groove, but some of them bind to
the minor groove. Practically, this means that overlapping
binding sites can be possible if one transcription factor
binds to the major and other to the minor groove (accept-
able structural arrangement). The strand of DNA deter-
mines the orientation of transcription factors on DNA.
Based on this observation, we allow that the binding sites
of two transcription factors can overlap (partially or even
completely) if those two transcription factors bind to
DNA in a different way (one to the major and one to the
minor groove). We analyzed both strands of the promoter
sequences. In summary, if there are two binding sites (of
different transcription factors) are further apart than 5 bp,
we treated them as "predicted" if scoring function is
higher than 0.88. If the distance is shorter then 5 bp (or
there is overlap between them) with acceptable structural
arrangement we treated them both as "predicted" even if
scoring function for any of them is smaller of 0.88 (but >=
0.8); finally if two binding sites (of different transcription
factors) overlap with an unacceptable structural arrange-
ment, then we treated only the one with the higher score
as "predicted".

For each promoter sequence we calculated the CG context
(%G + %C). Histogram distributions of GC content are
given in Additional file 4. We employed a Monte-Carlo re-
sampling approach to determine the significance of
observed co-occurring transcription factor binding sites as
follows. For a given combination of two transcription fac-
tors A and B, and the list of promoter sequences, the
results of the initial predictions can be represented as a
table in which we have calculated the number of pro-
moter sequences that have binding sites for both tran-
scription factors A and B [see Additional file 5]:

where

and n is the total number of sequences, Ai = 1 means that
sequence i has binding sites of transcription factor A, Ai =
0 means that sequence i has no binding sites of transcrip-
tion factor A, and similar for Bi.

Then, in a series of R replicates, we performed a permuta-
tion of the initial table [see Additional file 5] in the fol-
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lowing way: for each promoter sequence i (1 ≤ i ≤ n), we
randomly assigned to it another promoter sequence j (1 ≤
j ≤ n) which had a similar GC content, and we replaced
(swapped) values in column A between rows (sequences)
i and j (i.e. Ai <-> Bj).

In order to define the term "similar GC content between
sequences" we could have used equal intervals of GC con-
tent. However, we noticed that this would result in a
smaller number of sequences for permutation in high and
low GC bins. To correct for this, we produced 50 bins with
a fixed number of promoters per bin [see Additional file
6]. In this way, we ensured enough possible permutations
for each sequence and its corresponding GC content.
Using this method, we produced R permuted tables, and
for each permuted table we counted how many times we
had the value 1 in columns A and B (CountPermjAB was
performed substituting "CountPermAB" for "CountAB"
in equation (1)) for each table j (j = 1,... R). Finally, a p-
value was calculated in the following way:

where

and R is the resample size (number of replicates), and
adding 1 is the pseudocount that prevents us from under-
estimating the p-value when it is low or zero. We used an
adjusted p-value (with Bonferroni's correction) to correct
for multiple testing errors. Dependencies were declared
significant if the computed p-value was smaller than 0.05/
k (where k is the number of multiple tests). We determine
the number of re-sampling runs using the following for-
mula:

where P_threshold is the significance p-value threshold
selected which, in our case, corresponded to P_threshold
= 0.05/k where k = 75. We therefore selected R = 15,000 as
a compromise between accuracy in p-value estimation
and calculation time (R>>k/0.05 = 1500).

Higher-order transcription factor site dependencies
Starting from dependencies of order two, we constructed
dependencies of higher orders in the following way: if
transcription factors A-B, B-C and A-C are all dependent,

then we can claim that there is an order three dependency
between transcription factors A, B and C. (Note: it is not
true if only A-B and B-C are dependent pairs but A-C is
not). Third-order dependencies between the transcription
factors A, B and C can be represented as fully connected
graph as shown in Additional file 7. Other forms of third-
order dependencies (partial third-order dependencies) of
transcription factors (when any of two pairs of three tran-
scription factors are dependent) can be represented using
a not fully connected graph [see Additional file 7]. Higher
order dependencies between factors can be represented in
a similar way.

Scanning tool for predicting groups of dependent 
transcription factor binding sites
The computational prediction of cis regulatory motifs of
dependent transcription factors in scanning form can be
performed using information about dependencies
between transcription factor binding sites using the scor-
ing function which we introduced in a previous paper [24]
and, in addition, structural information (possible posi-
tion binding) between transcription factors as we
described in section "De novo detection of transcription
factor site dependencies". We used universal but distance
specific thresholds for the scoring function as described in
the same section. This method is implemented as a web-
based tool and it is available from: http://promoter
plot.fmi.ch/TFDepSSeq1/. Different cut-off values in the
range between 0.8 and 0.9 only had a minor influence on
the results in Table 3 and 4 (slightly varying only in the
number of false positives for different promoters from the
here shown numbers for different cut-off values). If very
different cut-off values are chosen (above 0.9 or bellow
0.8), a greater impact on the results as shown in Table 3
and 4 can be observed. As indicated in the section "De
novo detection of transcription factor site dependencies",
we think however that it is not recommended to use such
cut-off values.
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Additional file 1
Distribution of dependencies of order 2 in the human, mouse and rat 
genomes using real promoters sequences and background sequences.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-339-S1.PDF]
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Distributions of number of dependent mates in human, mouse and rat 
genome. File containing 3 histograms of number of dependent mates for 
each transcription factor in human, mouse and rat genome.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-339-S2.PDF]

Additional file 3
Distribution of dependent mates for each transcription factor in 
human, mouse and rat genome, including cluster information about 
similarity between binding sites.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-339-S3.PDF]

Additional file 4
Distribution of GC content in the human, mouse and rat promoters. 
File containing 3 histograms and corresponding fitted normal distribu-
tions.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-339-S4.PDF]

Additional file 5
Scanning promoter sequences. File containing a table that represents a 
general form of output after scanning promoter sequences for the given 
combination of transcription factors A and B.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-339-S5.PDF]

Additional file 6
Distributions of GC content in human promoters, represented by a 
histogram of 50 bins. File containing 3 histograms of 50 bins each.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-339-S6.PDF]

Additional file 7
Representation of higher order dependencies between transcription 
factors A, B and C. File containing fully connected graph (represents full 
3-order dependencies) and not fully connected graph (represents partial 
3-order dependencies).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-339-S7.PDF]
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4.1  Additional material 

 
for the paper 

Transcription factor site dependencies in the human, mouse and rat genome 

A. Tomovic, M. Stadler, E.J. Oakeley 

 

 

Figure A1  - Dependency distributions                                                              

Distribution of dependencies of order 2 in the human, mouse and rat genomes using real 

promoters sequences (black) and background sequences (white).                                   

*** p-value<0.001 calculated by Fisher’s exact test. 
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 Figure A2. Distribution of GC content in human promoters. Red line represents fitted    

 normal distributions (with mean 36.37 and standard deviation 12.39). 

 

 

 

 

 

 

 

 

 

 
Figure A3. Distribution of GC content in mouse promoters. Red line represents fitted normal 

distributions (with mean 38.31 and standard deviation 10.52) 
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Figure A4. Distribution of GC content in rat promoters. Red line represents fitted normal 

distributions (with mean 37.38 and standard deviation 10.04). 
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Figure A5. Distributions of GC content in human promoters, represented by a histogram of 50 

bins each of which contains exactly 375 sequences except for the final bin that contains 424 

sequences. The bin borders are given by the following array: 8.981424781, 5.48242334, 

17.12593356, 18.41206602, 19.41747573, 20.44093631, 21.36474411, 22.29249012, 

23.12616698, 23.98498806, 24.7291441, 25.47984645, 26.20016273, 27.00460829, 

27.80918728, 28.46153846, 29.14967054, 29.84140234, 30.46171171, 31.15845539, 

31.82561308, 32.55119454, 33.24845398, 33.94316855, 34.64765101, 35.33834586, 

36.08159796, 36.78516229, 37.51434034, 38.29867675, 39, 39.85849057, 40.58823529, 

41.41176471, 42.18403548, 43.12402698, 43.92567889, 44.80557168, 45.84569733, 

46.84638861, 47.81105991, 48.85386819, 49.95495495, 51.23558484, 52.43632337, 

53.92271663, 55.46651402, 57, 59.02891435, 61.63124641, 73. 
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Figure A6. Distribution of GC content in mouse promoters, represented by a histogram made up 

of 50 bins each of which contains 359 promoters except for the final bin which contains 363. The 

bin borders are given by the following array: 6.352941176, 17.2403734, 19.63499056, 

21.45005012, 22.78725459, 24.02251185, 25.10714286, 26.1328125, 27.07472775, 

27.90522753, 28.77659574, 29.55508475, 30.2972561, 31.01289134, 31.6612141, 32.36404834, 

33.04413429, 33.70245546, 34.35047951, 35.03348789, 35.6396217, 36.23529412, 

36.83417085, 37.40388964, 38, 38.58823529, 39.13783324, 39.70588235, 40.34151547, 

40.95908491, 41.55273438, 42.09115282, 42.70242393, 43.30949949, 43.92419175, 

44.53870626, 45.18167457, 45.82352941, 46.50491046, 47.23360656, 47.92176039, 

48.71520343, 49.47058824, 50.28735632, 51.17647059, 52, 53.11764706, 54.23529412, 

55.76470588, 57.93103448, 69.55017301. 
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Figure A7. Distribution of GC content in rat promoters, represented by a histogram with a fixed 

number of 50 bins each of which contains 134 promoters except for the final bin which contains 

157. The bin borders are given by the following array: 4.529411765, 16.98636469, 19.52821738, 

21.3672391, 22.79411765, 24.12698413, 25.11578197, 25.98833441, 26.88277669, 

27.65567766, 28.38883283, 29.07372401, 29.74322397, 30.60765191, 31.29147524, 

31.89577718, 32.45967742, 33.05882353, 33.59240069, 34.12556054, 34.70588235, 

35.3219697, 35.84715938, 36.42384106, 36.95968917, 37.49324689, 38.0010983, 38.55721393, 

39.05411994, 39.59854015, 40.13909588, 40.74844075, 41.31355932, 41.94117647, 

42.45951417, 43.01994302, 43.60097324, 44.26054458, 44.92273731, 45.60622914, 

46.33885623, 47.05882353, 47.91785511, 48.66589327, 49.52941176, 50.50223214, 

51.41176471, 52.65511459, 53.94117647, 55.92672414, 67.74916013. 
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Figure A8. Representation of higher order dependencies between transcription factors A, B and 

C. 
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Figure A9. Histogram of number of dependent mates for each transcription factor in rat genome 

 

 

 

 

 

 

 

 

 
Figure A10. Histogram of number of dependent mates for each transcription factor in mouse 

genome 
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Figure A11. Histogram of number of dependent mates for each transcription factor in human 

genome 

 

Table A1. The number of dependent mates for each transcription factor in human, mouse and rat 

genome, including cluster information (from [1]) about similarity between binding sites. 

Name TF-ID 

# dep-mate-

human 

# dep-mate-

mouse 

# dep-mate-

rat 

Cluster 

(from [1]) 

Pparg MA0066 0 0 0 Cluster-77 

pax6 MA0069 0 0 0 Cluster-71 

p53 MA0106 0 0 0 Cluster-78 

Roaz MA0116 0 0 0 - 

pprag-rxra MA0065 1 0 0 Cluster-91 

hnf4a MA0114 1 1 0 Cluster-32 

nr1h2-rxra MA0115 2 1 0 - 

pax5 MA0014 3 2 0 Cluster-98 

evi1 MA0029 8 6 0 Cluster-10 

Srf MA0083 6 5 1 Cluster-72 

spi1 MA0080 39 0 2 Cluster-69 

mzf1_1-4 MA0056 15 0 4 Cluster-85 

myc-max MA0059 16 10 4 Cluster-15 

Nfya MA0060 11 13 4 Cluster-46 

gata2 MA0036 41 0 5 Cluster-9 

TCF11-

MafG  MA0089 33 7 5 Cluster-26 

ddidt3-

cebpa MA0019 18 18 6 - 
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gata3 MA0037 31 0 7 Cluster-16 

Spib MA0081 14 18 7 Cluster-69 

en1 MA0027 40 0 8 Cluster-8 

ets1 MA0098 41 0 8 Cluster-2 

zeb1 MA0103 13 13 8 - 

pax2 MA0067 32 13 8 Cluster-30 

yy1 MA0095 15 0 9 Cluster-94 

nr3c1 MA0113 27 29 9 - 

sox9 MA0077 28 18 12 Cluster-20 

irf2 MA0051 32 34 13 Cluster-6 

foxd3 MA0041 27 22 16 Cluster-17 

Mafb MA0117 31 26 17 - 

sp1 MA0079 36 33 25 Cluster-74 

mzf_1_513 MA0057 33 30 27 Cluster-99 

bapx1 MA0122 47 41 28 - 

rreb1 MA0073 43 44 28 Cluster-68 

nkx2-5 MA0063 43 30 29 Cluster-41 

esr1 MA0112 45 44 29 - 

mef2a MA0052 45 42 32 Cluster-82 

T MA0009 44 43 34 - 

tlx1-nfic MA0119 44 42 35 - 

spz1 MA0111 42 42 36 - 

rxra-vdr MA0074 46 46 36 Cluster-91 

nfkb1 MA0105 39 43 38 Cluster-5 

Gfi MA0038 48 47 38 Cluster-88 

Sry MA0084 52 40 40 Cluster-20 

nhlh1 MA0048 38 47 41 - 

nr2f1 MA0017 51 51 41 Cluster-2 

hand1-

tcfe2a MA0092 48 47 42 Cluster-92    

pbx1 MA0070 50 51 42 Cluster-73 

elk1 MA0028 49 49 43 Cluster-2 

nf-kappab MA0061 45 48 44 Cluste r-5 

Mycn MA0104 47 48 44 Cluster-15 

nfil3 MA0025 51 49 44 - 

Staf MA0088 52 49 44 Cluster-81 

runx1 MA0002 55 52 44 - 

tal1-tcf3 MA0091 51 48 45 Cluster-7 

foxd1 MA0031 50 49 45 Cluster-17 

rora_2 MA0072 55 49 45 Cluster-93 

Cebpa MA0102 55 49 45 Cluster-14 

Max MA0058 50 50 45 Cluster-15 

arnt-ahr MA0006 50 51 45 Cluster-15 

Rel MA0101 51 50 46 Cluster-5 
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prrx2 MA0075 52 50 46 - 

sox5 MA0087 55 45 47 Cluster-20 

foxa2 MA0047 54 50 47 - 

Gabpa MA0062 54 52 47 - 

Rela MA0107 52 53 47 Cluster-5 

Ar MA0007 56 57 47 - 

elk4 MA0076 52 52 48 Cluster-2 

sox17 MA0078 54 52 48 - 

foxq1 MA0040 55 52 48 - 

usf1 MA0093 58 53 48 Cluster-15 

tcf1 MA0046 58 54 48 Cluster-21 

e2f1 MA0024 55 55 48 Cluster-35 

rora_1 MA0071 59 52 50 Cluster-44 

Hlf MA0043 63 54 50 Cluster-23 

Arnt MA0004 58 55 51 Cluster-15 

Creb MA0018 61 52 53 Cluster-3 

 

 

Table A2  - Scanning promoter sequences 

General form of output after scanning promoter sequences for the given combination of 

transcription factors A and B. 

 

 

transcription  factors promoter sequence  id (%GC) 

 

 

A 

 

B 

Prom-id1 (Pid1)% A 1 B 1 

Prom-id2 (Pid2)% A 2 B 2 

…. 

 
  

Prom-idn (Pidn)% A n B n 

 

Reference: 

 

1. Kielbasa, S.M., D. Gonze, and H. Herzel, Measuring similarities between 

transcription factor binding sites. BMC Bioinformatics, 2005. 6: p. 237. 
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4.2 Computational prediction of transcription factor 

start sites  
 

 

An additional practical application of results from descriptive data-mining about 

transcription factor site dependencies is that they can be used for in silico transcription 

start site prediction.  

 

4.2.1 Results 

 

In order to demonstrate this practical application, we selected three genes (ctmp, gap-43 

and ngfrap) with well-characterized promoters in mouse (positive control; Genomatix 

GmbH, Munich, Germany) but not in rat. In addition, the promoters of these rat genes did 

not belong to the set of upstream regions which we used to detect dependencies. We used 

2,000 bp upstream, and ~100 bp downstream, of the annotated (by Genomatix) mouse 

start and ~6,000 bp of 5’ sequence upstream of exon one of the rat gene ortholog. We 

identified the best matching window between the mouse and rat modules, and used the 

relative distance between conserved transcription factor patterns and the start of 

transcription in mouse to predict the corresponding start in rat (Table 1). Then we 

experimentally determined the actual starts for both the mouse and rat genes using 5’-

RACE on total brain RNA by sequencing (Figure 1 and 2, Table 1). 

The third column of Table 1 shows the predicted position (ppos) of transcription 

initiation, and the absolute error of this prediction: 

 

          error = |pos-ppos|      (8) 
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Table 1. Experimentally verified and computational predictions of the transcription start 

site on rat genes ctmp, gap-43 and ngfrap. 

Gene name 

chromosome/strand 

Experimentally verified 

position of transcription 

initiation (pos) 

Predicted start of 

transcription start site 

(ppos) 

absolute error  

|pos-ppos| 

ctmp                       

chr 2 / “+” 

             pos =   189296542          ppos = 189296401 

 

          141 

            gap-43 

 chr 11 / “+” 

            pos = 59989243          ppos = 59989221 

 

           22 

ngfrap                       

chr X / “+” 

             pos = 123586283                                                                                                                                    ppos = 123586556          273 

 

 
Figure 1. PCR gel for the mouse and rat 5’ end of gene ctmp. Mouse was used as a 

positive control, since the information about TSS is known. 
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Figure 2. PCR gel for the mouse and rat 5’ end of genes gap-43 and ngfrap. Mouse was 

used as a positive control, since the information about its TSS was known. 

 

We investigated the sequence similarity between each of the mouse and rat promoter 

sequences around the transcription start sites. We took 400bp upstream of the start and 

ran the blast 2 sequence program on them [1]. There was no significant alignment 

between the mouse and rat versions of either ctmp or ngfrap. There was a short (41/42 

bp) homology between the mouse and rat gap-43 promoters. These results showed that 

there was insufficient similarity between the promoters to identify the starts by sequence 

homology alone (or it can be done but error larger then 400bp). All other available tools 

for predicting the transcription start site [2-5] use sequence-based algorithms (without 

using any information about the transcription start site of ortholog genes). Accordingly, 

the comparison of the results obtained is not completely fair (Table 2). However, with 

this approach we demonstrate a new computational strategy for predicting transcription 

initiation. In addition, the idea of this application was to demonstrate the usefulness of the 

information obtained about dependencies in the computational promoter analysis, 

confirmed experimentally.  
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Table  2. Prediction of start sites (best predictions, January 2008) for the rat genes: ctmp, gap-

43,ngfrap by Promoter 2.0 [2], Dragon Promoter Finder [3], WWW Promoter Scan [4] and NNPP 

[5]. 

Predicted start (and absolute error) of transcription by 

 Gene 

Promoter 2.0 
Dragon 

PromoterFinder 

WWW Promoter 

Scan 
NNPP 

ctmp 
Ppos= 89292824 

error =3718 

ppos=no prediction 

error = 8  

ppos= 189295908 
error =634 

ppos= 189294725 
error=1817 

gap-43 
Ppos = 59987984 

error =1259 

ppos=no prediction   

error=8  

ppos=   no prediction 

 error =8  

ppos=59985353  

error=3890 

ngfrap 
ppos=123580105   

error =6178 

ppos=no prediction  

error = 8  

ppos= 123586024   

error =259 

ppos=123584655      

error= 1628 

 

 

4.2.2 Methods 

Computational prediction of transcription start sites 

 

For the computational prediction of transcription start sites we employed a combination 

of comparative genomics and the scanning computational prediction of groups of binding 

sites of dependent transcription factors. If we have two orthologous genes where we 

know the transcription start site for one but not for the other, we can first try a 

comparative genomics approach through sequence comparison in order to estimate where 

the transcription start site is. However, very often this is impossible in practice, because 

unambiguous alignment of sequences showing very little conservation can be difficult. 

An alternative is the following strategy: for the known promoter (Seq1, length ~1-2Kbp), 

predict all cis-regulatory modules. Then, for the gene for which we do not know the 

transcription start site, take ~6-8Kbp of sequence 5’ of exon one (Seq2) (with the 

condition that Seq2 is longer than Seq1). Predict binding sites of all 2-order dependent 

transcription factors in Seq1 and Seq2 and find the best-matched window with a length 

less than or equal to Seq1 in sequence Seq2. The best-matched window contains the 
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highest number of the same transcription factor groups conserved between Seq1 and 

Seq2. In order to describe the best-matched window, we introduce a scoring function F: 

 

                                                                                            

( 2)( 1, 2) ( 1)
i

i
c SSeqF Seq SSeq c Seq=                                          (1) 

where SSeqi2 is the subsequence of sequence Seq2 with the length of Seq1 (2kbp) and 

start i (1=i=length(Seq2)- length(Seq1)), c(Seq1) is the number of gorups in promoter 

Seq1, and c(SSeqi2) is the number of conserved groups in sequence SSeqi2. The scoring 

function has a value between 0 and 1. The window (subsequence of sequence Seq2), for 

which the scoring function is highest corresponds to the best-matched window, i.e.: 

 

                    2 argmax ( 1, 2)BMSeq F Seq SSeqii
=                              (2)  

Using the relative distance between average start binding sites of conserved transcription 

factor patterns, and the start of transcription in sequence Seq1, the corresponding start in 

BMSeq2 can be predicted, i.e. the start in sequence Seq2 (Figure 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Prediction of the transcription start site (TSS) on Seq2 based on the 

conservation of predicted cis-regulatory modules with Seq1, for which the TSS is known.  
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Wet-lab identification of transcription start site 

 

Experimental determination of the transcription start site for both the mouse and rat genes 

used in this work was performed by 5’-RACE on total brain RNA, followed by 

sequencing. RNA isolation from mouse and rat brain was performed using Trizol reagent 

(Invitrogen AG, Basel, Switzerland) according to the manufacturer’s instructions. 5’-

RACE was performed using the SMARTTM RACE cDNA Amplification kit from 

Takara Bio Company (Mountain View, USA) according to the manufacturer’s 

instructions. Mouse genes were a positive control in this experiment to confirm the 

Genomatix starts. The following gene-specific primers (Microsynth AG –Balgah, 

Switzerland) were used for the 5’RACE: gap-43 (mouse and rat) 

GCAACGGGAGCACATCCTTCTCCTT; ngfrap (mouse and rat) 

TTCTCCGGATCTCTCTCATCTCCTCCA; ctmp (mouse and rat) 

CCAGCTGGGGTTAGGGAGAGCATAGTCC. All PCR bands were gel-purified 

(QIAquick Gel Extraction Kit, QIAGEN AG, Hombrechtikon, Switzerland) and 

sequenced either using our in-house facility or else Microsynth AG, Balgah, Switzerland. 
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5.   Conclusions and Perspectives 
 

The first main finding reported in this thesis is that it is wrong to assume, a priori, that 

positions in transcription factor binding sites are all either independent or dependent of 

one another. Position dependencies should be tested using rigorous statistical methods on 

a case-by-case basis. When dependencies are detected, they can be modelled in a very 

simple way, which doesn’t require complex mathematical tools with a lot of parameters 

and more data. An example of such a model, including a web-based implementation of 

the algorithm, is reported in this thesis (http://promoterplot.fmi.ch/cgi-bin/dep.html). A 

possible biological explanation of position dependencies in transcription factor binding 

sites is given by exploring the 3D structure of DNA-protein complexes. It has been 

shown that the conformational energy (indirect readout) of DNA in complexes with 

transcription factors which have dependent positions in their binding sites is significantly 

higher than in those with transcription factors which do not have dependent positions in 

their binding sites. How to use modelling dependencies for the scanning method for the 

computational prediction of transcription factor binding sites has also been demonstrated. 

However, the proposed method can also be integrated into ab initio methods for 

transcription factor binding sites. The biggest advantage of ab initio methods is that they 

do not require any database of known binding sites. The next step will be the 

implementation/integration of the method for modelling dependenc ies into tools for the 

ab initio prediction of transcription factors based on over-represented motifs in the input 

sequences (MEME, Gibs sampling). In addition, computational detections of other 

signals in RNA/DNA sequences (such as splicing regulatory elements and translation 

regulatory elements) can also be based on a similar methodology, described in this thesis, 

with small modifications and adaptations for each specific problem. 

The structural analysis of DNA-protein (with one or more proteins) and protein-protein 

complexes confirmed that protein-protein and protein-DNA interface parameters, such as 

the interface area and the number of interface residues/atoms and hydrogen bonds, and 

the distribution of interface residues, hydrogen bonds, van der Waals contacts and 

secondary structure motifs in complexes where multiple proteins are bound to DNA are 
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no different in protein-protein, single protein-DNA or multiple protein-DNA complexes. 

Thus, if we have two (or more) proteins which bind together, there will be no influence 

on these interface parameters. Also, if we have one protein bound to DNA, then that 

binding will have no influence (in terms of the interface parameters mentioned) on the 

types of interface interactions that can occur with subsequent protein-protein complex 

expansion. Distortion is significantly higher when multiple proteins bind to DNA. This 

distortion is required to accommodate multiple protein-binding events. The combinatorial 

assembly of transcription factors has been known for a long time to play an important 

role in stabilising regulatory complexes. A deeper understanding of structural 

considerations may be helpful when predicting the assembly of transcription factor 

complexes. The formation of multiple protein interactions with DNA results in a decrease 

in protein-protein affinity and an increase in protein-DNA affinity, with a net gain in 

overall stability for a protein-protein-DNA complex. Such effects are clearly important 

for modelling transcription factor cooperativity. 

In addition, the physical overlap of two factors does not simply relate to the region on the 

DNA where the binding site is found. Two factors may lie very close together but not 

physically overlap because their side-chains can interlink with one another. In this way, it 

is possible to find a large overlap between two transcription factor binding sites, but from 

a 3D perspective  it is still possible for both factors to bind simultaneously. It may also be 

that one transcription factor binds to the minor and another to the major groove of DNA. 

That information is also useful for modelling transcription factor cooperativity. It has 

been confirmed that structural data can be useful for in silico promoter analysis. All 

available information should be integrated in order to make more realistic models for the 

simulation of a biological process.   

Next, this thesis reports the results from a computational prediction of dependencies 

between transcription factors which usually act together in gene regulation in the human, 

mouse and rat genomes. Constructing higher order dependencies/cooperativites between 

transcription factors (network) in human, mouse and rat is very important for 

understanding the gene expression process (http://promoterplot.fmi.ch/TFDEP1/). The 

strategy for this prediction is based on the scanning method which incorporates position 

dependencies (described in chapter 2 of the thesis) plus some structural information (as 
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indicated above and in chapter 3). It has been shown in laboratory research that many 

transcription factors interact together in the regulation of gene expression. These 

discoveries have been used as positive controls for the computational prediction of 

transcription factor dependencies reported in this thesis. In combination with data from 

genomics, proteomics and matabolomics projects, the proposed network can be 

expanded. It is shown that modelling transcription factor cooperativities (dependencies) 

improves the quality of transcription factor binding sites 

(http://promoterplot.fmi.ch/TFDepSSeq1/). In addition, the transcription start site can be 

predicted computationally using comparative genomics and groups of binding sites of 

dependent transcription factors. This thesis reports examples of such in silico TSS 

predictions for three genes (ctmp1, gap43 and ngfrap) expressed in mouse/rat brain, 

including laboratory validation.  

Finally, the Bayesian method for the detection of dependencies between positions in 

transcription factor binding sites can easily be converted into a method for estimating the 

quality of multiple sequence alignment s. That method is simple, with linear complexity, 

which is easy to implement and which performs better than other state-of-the-art methods 

which are more complex.  A web-based implementation of this method for the quality 

estimation of multiple sequence alignments is freely available from 

http://www.fmi.ch/groups/functional.genomics/tool.htm. It can be integrated into any tool 

that uses statistical estimates of sequence alignments or as a post-processing filter of the 

output from any tool that returns a number of ordered alignments. Possible applications 

include: motif finder algorithms; algorithms for profile-profile and sequence-profile 

alignment; and the analysis of protein domains and their families. This gives space for 

further work which can be based on the method proposed in this thesis. 

 

Computational analysis of promoter activity and DNA-protein interactions is useful for 

understanding many crucial cellular processes, including transcription, recombination and 

replication. Some of the techniques for the computational analysis of promoter and DNA-

protein interactions are predominantly useful for data-mining the huge amount of data 

produced in the laboratory. In that way, the computational analysis of promoters and 

DNA-protein interactions helps towards additional understanding and analysis of data 
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produced in the laboratory (describing the data, and determining some rules, associations  

and patterns ). On the other hand, computational methodology for the analysis of 

promoters and DNA-protein interactions can assist laboratory work before it has been 

performed. Different kinds of computational predictions and simulations can be 

beneficial for designing optimal and effective laboratory work. In this thesis, both aspects 

of the computational analysis of promoters and DNA-protein interactions are covered. In 

addition, computational approaches for analysing promoters and DNA-protein 

interactions will become more powerful as more and more complete genome sequences, 

3D structural data and different kinds of high-throughput data become available. Modern 

scientific research into promoters and DNA-protein interactions represents a high level of 

co-operation between computational and laboratorial methods. This union will be even 

stronger in future research. 

Research in bioinformatics and computational biology is important from the practical 

aspect (biological point of view) in order to simulate, explain, analyse and predict 

different cellular processes, but on the other hand it assists us in the development of 

methodologies and algorithms in mathematics and computer science. For some biological 

problems, computational methodologies have not yet been developed; for some of them 

there are computational tools which can be applied but which require additional 

adaptations and specifications of the given tool. In this thesis I have attempted to cover 

both the theoretical and practical questions by bridging the gap from theoretical 

methodological research to defined biological applications. 
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APPENDIX A 

 

PAPER II – Quality estimation of multiple 

sequence alignments by Bayesian hypothesis 

testing  

 
This chapter of the thesis reports how one statistical method for the analysis of 

transcription factor binding sites can be used for estimating the quality of multiple 

sequence alignments. In particular, the Bayesian method for the detection of 

dependencies between positions in transcription factor binding sites can easily be 

converted into a method for estimating the quality of multiple sequence alignments. That 

method is simple, of linear complexity, easy to implement and performs better than other 

state-of-the-art methods which are more complex. 

All supplementary materials from this paper are given in this chapter, and 

implementation of the method is freely available from 

http://www.fmi.ch/groups/functional.genomics/tool.htm 
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ABSTRACT

Summary: In this work we present a web-based tool for estimating

multiple alignment quality using Bayesian hypothesis testing. The

proposed method is very simple, easily implemented and not time

consuming with a linear complexity. We evaluated method against a

series of different alignments (a set of random and biologically

derived alignments) and compared the results with tools based on

classical statistical methods (such as sFFT and csFFT). Taking

correlation coefficient as an objective criterion of the true quality,

we found that Bayesian hypothesis testing performed better on

average than the classical methods we tested. This approach may

be used independently or as a component of any tool in

computational biology which is based on the statistical estimation

of alignment quality.

Availability: http://www.fmi.ch/groups/functional.genomics/tool.htm

Contact: edward.oakeley@fmi.ch

Supplementary information: Supplementary data are available

from http://www.fmi.ch/groups/functional.genomics/tool-Supp.htm

1 INTRODUCTION

Statistical estimation of the significance of proposed alignments

is one of the central challenges of evaluating the output of all
alignment tools. Local ungapped alignments play an important

role in the discovery and classification of both DNA and
protein sequences. To evaluate a proposed sequence alignment

we must know the likelihood of it occurring by chance rather
than, for example, deriving from a common ancestral sequence.

Statistically significant alignments have a higher chance of
being biologically relevant. The evaluation of ungapped local

alignment is usually made using its information content or
relative entropy (Hertz and Stormo, 1999; Nagarajan et al.,

2005):

Iseq ¼
XL

i¼1

XjAj

j¼1

nij
n
log

nij=n

bj
ð1Þ

where L is the length of the sequence from an alphabet A, nij
count of the j-th letter in the i-th column of alignment, n is the

number of sequences in the alignment and bj the background

frequency of the j-th letter. Using this scoring function (1) and a

null model, which assumes that each of the k columns has n

letters independently sampled according to the background

distribution we can estimate a P-value. The P-value for a given

scoring value s0 represents the probability of an entropy score

of s0 or better under the null model (Hertz and Stormo, 1999;

Nagarajan et al., 2005). When the information content (Iseq) is

small and the number of sequences (n) is large, the value 2nIseq
tends to be �2-distributed with k(|A|-1) degrees of freedom

(Wilks, 1938). But this approximation is very poor when we

have large scores and few sequences, which is a common

situation. Several methods have been developed to improve this

P-value estimation (Dembo et al., 1994; Hertz and Stormo,

1999; Karlin and Altschul, 1990; Keich, 2005; Nagarajan et al.,

2005). In this work, we present a web-based tool for estimating

sequence alignment significances without gaps using Bayesian

hypothesis testing. Bayesian methods have already been used in

algorithms for sequence alignment (Liu and Lawrence, 1999;

Liu et al., 1995; Lunter et al., 2005; Suchard and Redelings,

2006; Webb et al., 2002; Zhu et al., 1998), but in our

implementation we used a Bayesian approach to evaluate

multiple sequence alignments without gaps that had already

been generated. This approach can be used independently or as

a component of any tool in computational biology which uses

statistical alignment quality estimates.

2 METHOD

Quality estimation of multiple sequence alignments by Bayesian

hypothesis testing is based on the work (Minka, 1998; Liu and

Lawrence, 1999) which we have adapted for use with DNA and protein

sequence alignments. In the interest of simplicity, we will demonstrate

the utility of this method in the context of DNA sequence alignments,

but it can easily be applied to protein sequence alignments too.

Let us define an alignment X of n DNA sequences of length L:

X1
1 X

2
2 . . . X1

L

X2
1 X

2
2 . . . X2

L

. . .

Xn
1 X

n
2 . . . Xn

L

ð2Þ

Let Xi represent the vector frequencies for each letter (base) for column

i of a multiple alignment: Xi¼ [X(a,i), X(c,i), X(g,i), X(t,i)]. We also

define Y as a vector with the same length as Xi, Y¼ [Y(a), Y(c), Y(g),*To whom correspondence should be addressed.
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Y(t)]¼ [yan, ycn, ygn, ytn], where ya, yc, yg and yt represents the

background frequencies of each base, respectively a, c, g, and t.

Background frequencies of each base can be estimated based on input

data or user can specify it. To evaluate the alignment (2), first we will

test the following hypotheses:

H0: Y and Xi come from the same multinomial distribution

H1: Y and Xi come from different multinomial distributions

ð3Þ

This hypothesis testing can be evaluated directly [in a way similar to

that described by (Liu and Lawrence, 1999; Minka, 1998), or in the

form of a test for independence (Minka, 1998) which gives slightly

different results because of different priors. We have used second

approach and a detailed description as to how it is possible to convert

the hypothesis test (3) into an independence test is given in

Supplementary Material 1. For each column we calculated a Bayes

factor BFi(Ho; H1) and likelihoods Pi(Y,Xi|H0) and Pi(Y,Xi|H1).

Because of our assumption of independence between the columns,

after calculating BFi(Ho; H1) and Pi(Y,Xi|H0) and Pi(Y,Xi|H1) for each

i¼ 1, . . . ,L (for each column) we can calculate:

BF ¼
YL

i¼1

BFiðH0,H1Þ ð4Þ

PðH0jY,XÞ ¼

PðH0Þ
QL

i¼1

PiðY,XijH0Þ

PðH0Þ
QL

i¼1

PiðY,XijH0Þ þ PðH1Þ
QL

i¼1

PiðY,XijH1Þ

ð5Þ

These scores provide us with an estimate of the multiple sequence

alignment significance. It is more significant when BF is small (much

smaller than 1) and when the posterior probability of the null model

P(Ho| Y, X) is small (smaller probability of null model for the given

alignment, i.e. smaller probability that given alignment is random).

Jeffreys’ scale (Jeffreys, 1961) of evidence for Bayes factors is given in

Supplementary Material 1- Table 2. We used the posterior probability

of the random model (null hypothesis) as a final score of alignment

quality for the evaluation of our method (see the next section), because

it is a more precise score value than Bayes factor.

3 RESULTS AND DISCUSSION

In this section we report our evaluation of the presented

method and its comparison to other methods from classical

(orthodox) statistics. We took 107 alignments of transcription

factor binding sites, representing each factor in the JASPAR

database (Lenhard and Wasserman, 2002; Sandelin et al., 2004)

and calculated the BF (4) and posterior probability of the

null hypothesis (random model) (5). Detailed list for each

transcription factor and its corresponding posterior probability

and Bayes factor is given in Supplementary Material 2.

All alignments, but 10, were found to be significant with very

small posterior probabilities for the null hypothesis

(much smaller than 0.001). Next, we generated 100 random

alignments (available from http://www.fmi.ch/groups/

functional.genomics/RandomAlignments.zip) using the

RSA tool (van Helden, 2003). The random and JASPAR

alignments had approximately the same distribution in terms of

length and the number of sequences (Supplementary Material

3-Table 1). For each random alignment, we calculated BF (4)

and posterior probabilities of the null hypothesis (5)

(Supplementary Material 4). All alignments had posterior

probabilities higher than 0.99 and they are correctly identified

as not being statistically significant (true negatives). There

are several classical (orthodox) techniques for the statistical

evaluation of local ungapped alignments. Fast, but inaccurate,

techniques are used in motif discovery tools [e.g. MEME

(Bailey and Elkan, 1994), Consensus (Hertz et al., 1990; Hertz

and Stormo, 1999)]. In Supplementary Material 5 - Table 1,

we report some of the more accurate methods for the

statistical estimation of short ungapped alignments and their

running times. The time complexity for the calculation of

Bayes factor (4) and posterior probability (5) is linear O(L),

and this has advantages over these other methods. We

compared results (posterior probabilities of the random

model) obtained by Bayesian approach with the P-values

calculated by two classical methods csFFT (Nagarajan et al.,

2005) and sFFT (Keich, 2005) for a the transcription

factor binding site alignments of each factor in the JASPAR

database and 100 random alignments. In Table 1 we sum-

marize the results for 207 alignments based on the P-values

provided by the sFFT and csFFT methods, together with

the results from the Bayesian method. The calculation of

specificity and sensitivity was performed using the following

formula:

Specificity ¼
TN

TNþ FP
Sensitivity ¼

TP

TPþ FN
ð6Þ

Finally, Pearson product-moment correlation coefficients [also

called the ‘phi coefficient of correlation’ (Burset and Guigo,

1996; Tompa et al., 2005)] were calculated using:

Corr:Coef: ¼
TP*TN� FN*FPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðTPþ FNÞ*ðTNþ FPÞ*ðTPþ FPÞ*ðTNþ FNÞ
p

ð7Þ

Table 1. Summary of results from the estimation of 207 alignments (100 random and 107 JASPAR-derived) produced by three methods sFFT,

csFFT and Bayes method

Method True positive True negative False positive False negative Specificity Sensitivity Corr. coef.

sFFT 107 60 40 0 0.60 1 0.66

csFFT 107 60 40 0 0.60 1 0.66

Bayes method 97 100 0 10 1 0.91 0.91

Estimating multiple sequence alignment quality
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Correlation coefficients may take any value between -1
(indicating perfect anticorrleation) and 1 (indicating perfect
correlation).
We conclude, based on Table 1, that the Bayesian approach

is superior to the classical approaches.

4 CONCLUSIONS

The method for using Bayesian hypothesis tests to evaluate

alignment quality is simple, easy to implement and has a linear
time complexity. Our method shows very high sensitivity and
specificity in distinguishing biologically relevant from random

alignments. It performs much better than methods based on
classical statistics (Table 1). It can be integrated into any tool
that uses statistical estimates of sequence alignments or as a

post-processing filter of the output from any tool that returns a
number of ordered alignments. Possible applications include:
motif finder algorithms; algorithms for profile–profile and

sequence–profile alignment; and the analysis of protein
domains and their families. Our tool is available at http://
www.fmi.ch/groups/functional.genomics/tool.htm.
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Supplementary material 1 
 

for the paper “Quality estimation of multiple sequence alignments by Bayesian 

hypothesis testing” 

A. Tomovic and E. J. Oakeley 

 

The hypothesis test (3 in the paper) can also be converted into a test for independence in 

the following way. We introduce a random variable Qi which takes values {1, 2}. When 

Qi=1 it represents the distribution Xi and when Qi=2 it represents Y. A second variable Bi 

takes its values from the DNA sequence alphabet {a, c, g, t} as shown in Table 1. 

Table 1.  Relationships between random variables Bi and Qi 

      Bi   

Qi 

Bi=a Bi=c Bi=g Bi=t 

Qi=1 X(a,i) X(c,i) X(g,i) X(t,i) 

Qi=2 Y(a) Y(c) Y(g) Y(t) 

 

 

From this, we can test the following hypotheses (equivalent to (3)): 

 

H0: Qi and Bi are independent random variables 

H1: otherwise 

 

When Qi and Bi are independent, Xi and Y will not share the same distribution. For 

Bayesian hypothesis testing we can calculate the Bayes factor BFi(Ho; H1) as follows: 

 

 
( , | ) ( )0 0( ; )0 1 ( , | ) ( )1 1

=
P B Q H P Hi i i iBF H Hi
P B Q H P Hi i i i

 (1) 

Assuming tha t the a priori probabilities for the models (hypotheses) H0 and H1 are equal 

( ( ) ( ) 0.50 1= =P H P Hi i ), the Bayes factor will be:     
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( , | )0( ; )0 1 ( , | )1

=
P B Q Hi i iBF H Hi
P B Q Hi i i

 (2) 

Because Bi and Qi are independent under the null hypothesis, the Bayes factor will be:  

 
( | ) ( | )0 0( ; )0 1 ( , | )1

=
P B H P Q Hi i i iBF H Hi

P B Q Hi i i
 (3) 

The index i implies that this Bayes factor is calculated for column i. Then, we can use the 

fact that: 

 ( | ) ( , | )0 0= ∫P B H P B p Hi i ip
 (4) 

where p  is a vector of [P(a),P(c), P(g), P(t)]. 

A conjugate prior for p  is the Dirichlet distribution (5): 

 
( ) 1

( | ) ~ ( , , , ) ( )
( )

bb bP p Dir P ba c g t bbb

α α
α α α α α

α

∑Γ −
∏=

∏ Γ
 (5) 

where P(b)>0 and ( ) 1P b
b
∑ = . Given a Dirichlet prior, the joint distribution of Bi and p  is: 

 
( ) ( ) 1

( , | ) ( )
( )

∑Γ + −
∏=

∏ Γ

B bbb biP B p P bi bbb

α α
α

α
 (6) 

where ( ) ( , ) ( )= +B b X b i Y bi , i.e. the column sum.  

And the posterior is: 

 ( | , ) ~ ( ( ) )+P p B Dir B b bi iα α  (7) 

And finally we can calculate 

 
( ) ( ( ) )

( | ) ( , | )0 0
( ) ( )

∑Γ Γ +
∏= =∫

∑Γ + Γ

B bb bbP B H P B p H
bp s b bb

i
i i i

α α

α α
 (8) 

where [ ( , ) ( )] 2s X b i Y b n
b
∑= + = , i.e. the table sum. 

And likewise for ( | )0P Q Hi i : 

 
( ) ( ( ) )

( | ) ( , | )0 0 ( ) ( )

∑Γ Γ +
∏= =∫

∑Γ + Γ

q Q qq qiP Q H P Q p Hi i i qp s q qq

α α

α α
 (9) 

where Qi (q) is a row sum, i.e. ( ) ( , )i ∑=Q q X b i
b

 for q=1 and ( ) ( )∑=Q q Y bi b
 for q=2. 
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Then we need to calculate ( , | )1P B Q Hi i i , and this is: 

 ˆ( , | ) ( , , | )1 1ˆ
= ∫P B Q H P B Q p Hi i i i ip

 (10) 

where p̂ is a vector of (P(a,1),P(c,1),…P(t,2)). 

A conjugate prior for p̂  is the Dirichlet distribution: 

 
( ), 1, ,ˆ( | ) ~ ( , ,..., ) ( , ),1 ,1 ,2 ,( ),,

b qb q b q
P p Dir P b qa c t b qb qb q

α α
α α α α

α

∑Γ −
∏=

∏ Γ
 (11) 

where P(b,q)>0 and ( , ) 1
,

P b q
b q
∑ = . Given a Dirichle t prior, the joint distribution of Bi, Qi 

and p̂  is: 

 
( ), ( , ) 1, ,ˆ( , , | ) ( , )

,( ),,

∑Γ + −
∏=

∏ Γ

b q T b qb q b q
P B Q p P b qi i b q

b qb q

α α
α

α
 (12) 

where ( , ) ( , ) ( 1) ( ) ( 2)T b q X b i q Y b qδ δ= = + =  (δ  is Kronecker’s symbol). 

And the posterior is 

 ˆ( | , , ) ~ ( ( , ) ),+P p B Q Dir T b q b qi i α α  (13) 

And finally we can calculate: 

 
( ) ( ( , ) ),, ,

ˆ( , | ) ( , , | )1 1 ,ˆ ( ) ( ), ,,

∑Γ Γ +
∏= =∫

∑Γ + Γ

T b qb qb q b q
P B Q H P B Q p Hi i i i i b qp s b q b qb q

α α

α α
 (14) 

If we define ,b b qq
α α∑= , ,q b qb

α α∑=  we are left with: 

 

( ), ( ( ) ),
( ; ) *0 1 ( ) ( ),,

( )( ( ) ) ,
*

,( ) ( ( , ) ),

b q B bb q bBF H Hi bs b q bb q

Q q q b q

q b q T b qq b q

α α

α α

αα

α α

∑Γ Γ +
∏=

∑Γ + Γ

ΓΓ +
∏ ∏

Γ Γ +

 (15) 

  

After calculating BFi(Ho; H1) for each i=1,.L (for each column), because we assume 

independence between columns, we can calculate: 

 ( , )0 11

L
BF BF H Hii

∏=
=

 (16) 
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In addition, for the whole alignment in terms of B and Q (i.e. X and Y) we can calculate 

the posterior probability of the null model (hypothesis) in the following way: 

 

 
( , | ) ( )0 0( | , )0 ( , | ) ( ) ( , | ) ( )0 0 1 1

=
+

P B Q H P H
P H B Q

P B Q H P H P B Q H P H
 (17) 

Using ( ) ( ) 0.50 1P H P H= =  and the fact that B and Q are independent under the null 

hypothesis: 

 
( | ) ( | )0 0

( | , )0 ( | ) ( | ) ( , | )0 0 1

∏

=
∏ ∏+

P B H P Q Hi i i i
iP H B Q

P B H P Q H P B Q Hi i i i i i i
i i

 (18) 

 

Formula (18) can be calculated using (8), (9) and (14). 

We can define all priors: 0.5, =b qα  as the so-called Jeffreys’ prior (the other, more 

conservative, alternative would be uniform 1,b qα = . After comparing the results, we found 

that Jeffreys’ prior gave the best results when we evaluated the method against a series of 

different alignments (a set of random and biologically derived alignments) using the 

correlation coefficient as a parameter of success. 

 

The final scores (16) and (18) act as estimates of multiple sequence alignment 

significance. The alignment of multiple sequences is more significant when BF is small 

(much smaller then 1) and when P(Ho| B, Q) (i.e. P(Ho| X,Y)) is small (smaller than the 

probability of the null model for the alignment, i.e. a smaller probability than that the 

alignment is random). Jeffreys’ scale (Jeffreys, 1961) of evidence for Bayes factors is 

given in Table 2. 
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Table 2.  Jeffrey’s scale for the interpretation of Bayes factors (BF) (Jeffreys, 1961).  

Bayes Factor 

(BF) range 

Evidence 

BF=1 Null hypothesis (model)* is supported 

0.3=BF<1 Minimal evidence against null hypothesis (model)* 

0.1=BF<0.3 Substantial evidence against null hypothesis (model)* 

0.01=BF<0.1 Strong evidence against null hypothesis (model)* 

BF<0.01 Decisive evidence against null hypothesis (model)* 

* Null model/hypothesis: alignment is random (not biologically relevant). 

 

Background frequencies can be specified by the user or estimated from the input 

sequence as the observed frequencies of each letter. 

 

 

Supplementary material 2 
 

for the paper “Quality estimation of multiple sequence alignments by Bayesian 

hypothesis testing” 

A. Tomovic and E. J. Oakeley 

 

List of BF score values, p-values (sFFT, csFFT) for each alignment from the JASPAR 

database. 

Available from: http://www.fmi.ch/groups/functional.genomics/tool-Supp.htm 
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Supplementary material 3 
for the paper “Quality estimation of multiple sequence alignments by Bayesian 

hypothesis testing” 

A. Tomovic and E. J. Oakeley 

 

  Table 3.  Properties of random and JASPAR alignments 

Alignments  Average 

length 

Average number of 

sequences involved in 

the alignment 

Random alignments 11 32 

JASPAR alignments 10 30 

 

The 95% posterior interval for the differences between the mean number of sequences in 

two groups is [-3.4, 6.8] and the 95% posterior interval for the difference between the 

mean length of two groups is [-0.6, 1.7]. The posterior intervals were calculated using 

WinBUGS (Spiegelhalter et al., 2004). Both posterior intervals include 0, therefore there 

is no significant difference in the average length and the number of sequences within the 

two groups (random alignments and JASPAR alignments). 

 

WinBUGS code for the calculation of the 95% posterior interval for the difference 

between the means of the random and JASPAR alignments 

 

Model{ 

 

for (i in 1:N) 

{ 

  random[i]~dnorm(mu[1],tau[1]) 

} 
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for (i in 1:M) 

{ 

   jaspar[i]~dnorm(mu[2],tau[2])} 

 

for (i in 1:2) 

{ 

  mu[i]~dflat() 

  tau[i]~dgamma(1,1) 

 

} 

difference<-mu[1]-mu[2] 

} 

 

Input data: 

N- size of vector random (number of random sequences, N=100) 

M-size of vector jaspar (number of jaspar alignments,  M=107) 

random – vector of lengths (or number of sequences) for random alignments 

jaspar - vector of lengths (or number of sequences) for jaspar alignments 

 

 

Supplementary material 4 
for the paper “Quality estimation of multiple sequence alignments by Bayesian 

hypothesis testing” 

A. Tomovic and E. J. Oakeley 

 

List of BF score values, p-values (sFFT, csFFT) for each random alignment. 

Available from: http://www.fmi.ch/groups/functional.genomics/tool-Supp.htm 
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Supplementary material 5 
for the paper “Quality estimation of multiple sequence alignments by Bayesian 

hypothesis testing” 

A. Tomovic and E. J. Oakeley 

 

 

Table 1.  Methods for the statistical estimation of short ungapped alignments and their 

running time (L - length of alignment, M - size of the lattice). 
 

Method Running time  

NC–naïve method (Hertz and Stormo, 1999) O(L2M2) 

LD method (Hertz and Stormo, 1999) O(LMlog(LM)) 

sFFT (Keich, 2005) O(LMlog(LM)) 

csFFT (Nagarajan, et al., 2005) ( log( ))O LM LM  
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Supplementary material 6 
for the paper “Quality estimation of multiple sequence alignments by Bayesian 

hypothesis testing” 

A. Tomovic and E. J. Oakeley 

 

A web-based implementation of the proposed method is publically available from: 

http://www.fmi.ch/groups/functional.genomics/tool.htm. 
 

 

Figure 1. Web-based tool for the quality estimation of multiple sequence alignments by 

Bayesian hypothesis testing. 
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