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ABBREVIATIONS 

 
AC: adenylyl cyclase 

AKAP: A kinase anchoring protein 

AMPA: α-Amino-3-hydroxy-5-Methyl-4-isoxazolepropionique acid 

AMPAR: AMPA receptor 

aPKC: atypical protein kinase C 

BA: basal nucleus of the amygdala 

BLA: basolateral complex of the amygdala 

CA1: zone if the hippocampus 

CA3: zone of the hippocampus 

CaMKII: calcium/calmodulin-dependent protein kinase II 

cAMP: cyclic AMP 

CaN: calcineurin 

CAZ: cytomatrix at the active zone 

CE: central nuclei of the amygdala 

CG: central grey 

CNS: central nervous system 

cPKC: conventional protein kinase C 

CS: conditioned stimulus 

DAG: diacylglycerol 

DHPs: dihydropyridines 

Doc2 : double C2-domain protein 

DSI: Depolarization-induced suppression of inhibition 

EAAT: excitatory amino acid transporters 

E-LTP: early LTP 

EPSC: excitatory post-synaptic current 

EPSP: excitatory post-synaptic potential 

HVA: high voltage-activated channels 

iGluR: inotropic glutamate receptor 

ITC: intercalated cells of the amygdala 

KO: knockout 

LA: lateral nucleus of the amydala 

LH: lateral hypothalamus 

L-LTP: late LTP 



LVA: low voltage-activated channels 

MAPK: mitogen-activated protein kinase 

mEPSC: miniature EPSC 

mfLTP: Mossy fiber LTP 

mGluR: metabotropic glutamate receptor 

n and N: number of release sites 

NBQX: 2,3-dihydroxy-6-nitro-7-sulphamoyl-benzo(f)quinoxaline, AMPAR antagonist 

NMDA:  N-methyl-D-aspartatic acid 

NMDAR: NMDA receptor 

NO: nitric oxide 

nPKC: novel protein kinase C 

NT: neurotransmitter 

p and P: probability of release 

PDE: phosphodiesterases 

PKA: protein kinase A 

PKC: protein kinase C 

PPF: paired-pulse facilitation 

PSD: postsynaptic density 

PTP: post-tetanic potentiation 

PVN: paraventricular hypothalamus  

q and Q: quantum 

RIM: Rab3 Interacting Molecule 

RIM-BP: RIM binding proteins 

RRP: readily-releasable pool 

SH3: Src homology 3 domain 

STD: Short-Term Depression 

STDP: Spike-Timing Dependent Plasticity 

STP: Short-Term-Potentiation 

SV: synaptic vesicle 

synprint: synaptic protein interaction site, on the intracellular loop LII-III of VDCCs 

TBOA: D,L-threo-β-benzyloxyaspartate, glutamate uptake blocker 

US: unconditioned stimulus 

VDCC: voltage-dependent calcium channel 
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PREAMBLE 

 

In the amygdala, and more generally in the central nervous system (CNS), the 

excitatory and the inhibitory networks are intertwined and control each other. At the synapses 

between cortical and thalamic afferents and the principal neurons of the lateral amygdala, 

which are the synapses I am interested in, the excitatory neurotransmitter is glutamate. For 

that reason I will focus this manuscript on excitatory glutamatergic neurotransmission. 

The manuscript opens with a general introduction, containing a description of the 

amygdala and long-term plasticity. The following sections concern the results I obtained 

during my thesis on synaptic plasticity at the cortico-amygdala presynapse. For each chapter I 

wrote a small introduction to the concept(s) studied, the experimental results and the 

conclusions derived. A general discussion concludes the manuscript. 

To avoid many digressions in the general introduction, I provided insights on 

glutamatergic synapse and synaptic vesicle cycle in two sections placed at the end of the 

manuscript (see appendixes A and B). A third appendix covers two papers I contributed to at 

the beginning of my PhD studies. The first one concerns another form of Hebbian plasticity 

described in the lateral amygdala, at the cortico-lateral amygdala synapse as well. The long-

term potentiation (LTP) described is induced postsynaptically: The second paper is a study of 

synaptic organization in cerebellar organotypic slices cultures. 

 

 



 

 

 

 

 

 

 
 

 

Figure 1: Amygdala structure and connectivity. A, An example of the amygdala region 

(Nissl staining) B, The area of the amygdala is enlarged to show the four main subdivisions of 

the amygdala: LA (lateral nucleus), BA (basal nucleus), CE (central nucleus) and AB 

(accessory basal nucleus). The CS (conditioned stimulus) and US (unconditioned stimulus) 

converge on single cells in the LA. From LA stimuli signal conveyed to CE and BA. 

Reciprocal connections connect BA with LA, and BA with CE. (Adapted from (Medina et al., 

2002)) 

 

 Medina, J. F., Christopher Repa, J., Mauk, M. D. and LeDoux, J. E. (2002). 

Parallels between cerebellum- and amygdala-dependent conditioning. Nat Rev Neurosci 3, 

122-31. 

 

CS,US CS,US 
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I) GENERAL INTRODUCTION 

 

A) The amygdala 

1) Discovery of the amygdala’s role in emotional processes 

In 1937, James Papez discovered that several structures from the medial part of the 

brain were interconnected, and proposed that this circuit, also-termed “Papez circuit” is the 

anatomical site where emotions are processed (Papez, 1937). The amygdala was not included 

in this first circuit. At the same time, Klüver and Bucy described a phenomenon called 

“psychic blindeness” or Klüver-Bucy syndrome. After bilateral temporal lobectomy, monkeys 

are dulled, less fearful and unable to recognize familiar objets (Klüver and Bucy, 1937). 

Weiskrantz was the first to show that bilateral lesions of the amygdala is sufficient to induce 

the Klüver–Bucy syndrome (Weiskrantz, 1956). The removal of the amygdala also 

permanently disrupt the social behavior of monkeys, usually resulting in a fall in social 

standing (Rosvold and Delgado, 1956) whereas its electrical stimulation induces fearful 

reactions (Delgado et al., 1956). This line of research established the significant role of the 

amygdala in memory formation. 

 

2) Structure 

The amygdala receives sensory information from very diverse regions of the central 

nervous system. In particular, it is highly connected to structures related with memory 

systems, such as the hippocampus or the medial temporal lobe, and it receives inputs from 

structures which relay sensory informations, such as thalamus and sensory cortex. 

 

a) Position in the central nervous system 

The amygdala is a central brain structure, located deeply within the medial temporal 

lobe, medial to the hypothalamus and ventral to the hippocampus (Figure 1). It is a non-

layered structure, containing around 13 nuclei. These are further subdivided in subnuclei, 

which are distinguished on the basis of cytoarchitecture, histochemistry, and the connections 

they make (Krettek and Price, 1978; Pitkänen, 2000). 
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b) Internal structure 

Amygdala nuclei are divided into three groups (Figure 1):  

- the deep or basolateral complex (BLA), which is constituted of the lateral nucleus 

(LA), the basal nucleus (BA), and the accessory basal nucleus (AB) 

- the superficial or cortical-like group, which is the closest from the surface of the brain. 

It includes for example the cortical nuclei and the nucleus of the lateral olfactory tract 

- the centromedial group composed of the medial and central nuclei (CE). 

Finally, there is a separate set of nuclei that cannot easily be classified as belonging to any of 

these three groups and are listed separately. These include the intercalated cell masses and the 

amygdalohippocampal area. (Sah et al., 2003). 

 

c) Excitatory and inhibitory networks 

Several ways to classify neurons coexist and are overlapping. The three main criteria 

are the morphology, the electrophysiological properties and immunocytochemical content of 

the neurons. 

The morphology can be determined by Golgi-staining. Two main morphological types 

of neurons were described in the basolateral amygdala: spiny neurons, which possess 

dendrites covered by numerous spines (pyramidal neurons or class I); and small aspiny 

neurons (class II) (McDonald, 1982). Further detailed analysis revealed the existence of other 

aspiny neurons in the basolateral amygdala such as extended neurons, cone cells, chandelier 

cells and neurogliaform cells (for review, Sah et al., 2003). 

On the basis of their electrophysiological properties, two classes of neurons were 

initially described: pyramidal-like cells with broad action potentials which fire trains of action 

potentials showing spike frequency adaptation in response to a prolonged current injection 

(Faber et al., 2001); and a second cell type with faster action potentials and almost no spike 

frequency adaptation (Mahanty and Sah, 1998). This last category is thought to represent local 

GABAergic interneurons (McDonald and Augustine, 1993; Pare and Smith, 1993). However, 

neurons with intermediate features were also described in the amygdala (Lopez de Armentia 

and Sah, 2004; Martina et al., 1999; Rainnie et al., 1993; Schiess et al., 1993; Washburn and 

Moises, 1992). 

A third way to classify neurons is based on their immunocytochemical content of 

calcium-binding proteins (such as parvalbumin or calbindin) and neuropeptides (such as 

somatostatin or cholecystokinin) (Mascagni and McDonald, 2003; McDonald and Mascagni, 

2001; McDonald and Pearson, 1989). Recently, another classification method has been used 

in the amygdala, based on the method of cluster analysis, discriminating cell populations 
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through the compilation of electrophysiological and molecular parameters (Sosulina et al., 

2006). 

From those different studies, it appears that projection neurons (class I neurons) 

represent the largest population of neurons in the amygdala, from 75 to 93% (Mahanty and 

Sah, 1998; McDonald and Augustine, 1993). They are large spiny cells, with low firing rates, 

frequency adaptation and expression of the vesicular glutamate transporter (VGLUT1). Their 

dendrites cover a large part of the lateral amygdala. Two classes were distinguished on the 

basis of electrotonic properties and the presence (IB) or absence (IA) of vasointestinal peptide 

(VIP). 

Four classes of glutamate decarboxylase (GAD67) containing interneurons were also 

described. They displayed smaller somata and spine-sparse dendrites. Class III neurons 

reflected “classical” interneurons, generating fast spikes with no frequency adaptation. Class 

II neurons generated fast spikes with early frequency adaptation and differed from class III 

neurons by the presence of VIP and the relatively rare presence of neuropeptide Y (NPY) and 

somatostatin (SOM). Class IV and V were not clearly separated by molecular markers, but by 

membrane potential values and spike patterns (Sosulina et al., 2006). 

 

3) Connectivity 

a) Connections of the amygdala to other brain regions 

The BLA receives connections from cortical and thalamic areas. Cortical inputs 

provide information about highly processed visual, somatic sensory, visceral sensory, and 

auditory stimuli. Thalamic areas receive afferents from the spino-thalamic tract. Thus, the LA 

is the integration site for auditory and somatosensory inputs. This is confirmed by the fact that 

coupling auditory and nociceptive stimuli enhances the auditory evoked responses recorded in 

vivo in the LA (Quirk et al., 1997; Rogan et al., 1997; Rosenkranz and Grace, 2002). 

 The medial part of the LA is innervated by axons coming from structures related with 

memory systems, including the prefrontal and perirhinal cortical areas, and the hippocampal 

formation. The CE receives relatively unprocessed visceral sensory inputs directly from some 

thalamic nuclei, the olfactory bulb, and the nucleus of the solitary tract in the brainstem. CE 

neurons project to central grey (CG), lateral hypothalamus (LH) and paraventricular 

hypothalamus (PVN) (for review, Medina et al., 2002; Pitkänen et al., 1997; Purves et al., 

2001). Thus, at a very rough level of analysis, we can say that the amygdala links cortical 

regions which process sensory information with hypothalamic and brainstem effector 

systems. 
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b) Connections within the amygdala 

Projections from various brain areas to the amygdala terminate in different amygdala 

subnuclei. For example, projections from the entorhinal cortex terminate most heavily in the 

basal nucleus, but also sparsely in the central and lateral nuclei, and projections from the 

hypothalamus terminate in the central, medial, basal and accessory basal nuclei (for review, 

Pitkänen et al., 1997) Thus, intra-amygdala processing through internucleus connections is 

necessary to integrate the information. Tract tracing studies have revealed that amygdala 

nuclei have extensive intranuclear and internuclear connectivity (Krettek and Price, 1978; 

Pitkänen, 2000). 

Intra-amygdala axons originate mostly in the LA and project to the CE both directly and 

through the BA. The BA also sends direct projections to other amygdala nuclei such as the 

CE, which is the major output nucleus for amygdala axons projecting to the brainstem and 

hypothalamus. Interestingly, inputs from the different subnuclei are spatially segregated in the 

CE. However, intra-amygdala connections are not always descending (from LA to BA and 

CE), internuclei connections are often reciprocal. It allows thus a negative feed-back loop 

from downstream amygdala nuclei which could control LA inputs. As explained by Pitkänen 

(Pitkänen et al., 1997), “an alternative hypothesis is that reciprocal connections might be the 

way through which extra-amygdala regions providing afferents to these areas can influence 

the early stages of amygdala processing of sensory information at the level of the lateral 

nucleus, i.e. they might set the „strength of the filter‟ within the lateral nucleus.” 

 

c) Lateral amygdala connections 

The excitatory projections to the LA are spatially segregated: cortical and thalamic 

axons constitute respectively the external and internal capsules. Each LA principal neuron 

receive monosynaptic cortical and thalamic contacts. With the help of two-photon imaging, 

based on the detection of calcium flow through NMDAR, Yann Humeau from the lab 

demonstrated that cortical and thalamic spines are present on dendrites at the same average 

distance from the soma. They can even be found on the same dendritic portions, sometimes 

spaced by less than 5µm (Humeau et al., 2005). 

Electron-microscopical studies have shown that the axons coming from LA principal 

neurons form numerous contacts with dendritic spines belonging to other LA principal 

neurons (Smith and Pare, 1994). Unfortunately, the demonstration that these putative contacts 

are functional is very difficult because the connectivity rate for randomly chosen pairs of 

neurons is very low (Nicola Kamp, Guillaume Casassus and Philippe Gastrein personal 
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communications). This apparent low connectivity suggests a selective organization of the 

intra-amygdala connections, which is still to be determined. 

 

4) Role of the amygdala in emotional memory 

a) Classical fear conditioning as a simple Pavlovian learning 

paradigm 

Fear conditioning is a simple Pavlovian learning process in which a neutral stimulus 

(called conditioned stimulus or CS), such as a tone or a light, is coupled with an aversive 

stimulus (the unconditioned stimulus or US), typically a footshock. After several CS-US 

pairings, the CS itself becomes aversive and the animal expresses a high fear level in the 

presence of the CS alone. The conditioned fear response which is measured is usually a 

freezing reaction (a cessation of movement), it is also associated with sweating and changes in 

heart rate and blood pressure. This learned behavior is rapidly acquired and long lasting.  

 

b) Description of the neuronal circuit of fear learning  

A large body of evidence from lesion, pharmacological and neurophysiological studies 

placed the amygdala at the center of fear conditioning (Davis, 1997; Fendt and Fanselow, 

1999; Lavond et al., 1993; LeDoux, 1996). It is generally accepted that sensory information 

enters the amygdala through its basal and lateral nuclei (BLA) (Aggleton, 2000; LeDoux, 

1996; but for an alternative view see Pare et al., 2004) where CS–US association (or fear 

memory trace) formation is believed to take place. These nuclei are interconnected with the 

central nucleus (CeA), which is thought to be the main amygdala output structure sending 

projections to various regions involved in fear responses. (for review, Kim and Jung, 2006; 

LeDoux, 2000; Maren and Quirk, 2004). 

 

5) From fear learning to long-term potentiation 

a) In vivo long-term potentiation 

The idea that long-term potentiation (LTP) of synaptic strength is the brain mechanism 

supporting memory formation and maintenance exists since several decades. The first notion 

came from the publication in 1949 by Donald Hebb of his postulate indicating that the 

coincident and repetitive activation of two connected neurons will give rise to the 

reinforcement on a long-term basis of their synaptic contact. During the following years, the 

in vivo study of memory formation and the in vitro study of this new phenomenon called LTP 
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were done in parallel. Evidence implicating LTP in the amygdala in the acquisition of 

Pavlovian learning was described, as well as insights into the underlying molecular 

mechanism (for review, Maren, 1999). For example, infusion of NMDAR antagonists in the 

BLA, which blocks some forms of synaptic potentiation, also prevented fear memory 

formation. 

Another way to link LTP to fear memory formation was to perform ex vivo 

experiments, consisting of in vivo conditionings preceding the sacrifice of the animals and the 

in vitro study of neuronal properties. The authors could then compare those parameters with 

datas obtained during classical LTP experiments (McKernan and Shinnick-Gallagher, 1997; 

Rogan et al., 1997). Recently, Whitlock et al succeeded to draw a clear link between LTP and 

memory formation by inducing LTP in vivo, through stimulating electrodes implanted directly 

in the hippocampus. Another supporting piece of evidence is that in vivo LTP was occluded 

by a previous behavioral training (Pastalkova et al., 2006; Whitlock et al., 2006). 

 

b) NMDAR and fear learning  

NMDA receptors (NMDARs) are known to be necessary for LTP formation in the 

CA1 region of the hippocampus in vitro (for review, Bliss and Collingridge, 1993; Malenka 

and Nicoll, 1999). NMDAR are described since the middle of the 80‟s to be necessary as well 

for in vivo memory formation in the hippocampus: Morris et al were the first to demonstrate 

that the intra-ventricular infusion of D-APV, a blocker of NMDAR, impaired the subsequent 

hippocampus-dependent spatial learning, in the Morris water maze. Behavioral experiments 

testing the importance of NMDAR in hippocampal-related learning were extensively done 

(for review, Martin et al., 2000; Riedel et al., 2003).  

However, one disadvantage of spatial learning paradigms is the fact that stimulus 

control is difficult to achieve. It is not yet clear which clues actually guide the behavior and it 

is therefore impossible to switch them on or off at a defined time point. Better stimulus 

control is possible in fear conditioning. In the middle of the 90‟s, Miserendino et al directly 

applied D-APV in the BLA in vivo, prior to light-shock pairings. As a result, they observed 

one week later a complete block of conditioned fear-potentiated startle. However, the same 

injection done after the training procedure and before the startle testing had no effect, 

demonstrating first that the effect was due to the block of NMDAR and not to a damage to the 

amygdala, and second that the expression of the conditioned fear-potentiated startle does not 

depend on NMDAR activity (Miserendino et al., 1990). 

Similarly, NMDARs in the amygdala are involved in second-order fear conditioning. 

Second-order conditioning is a two-step training protocol involving 2 conditioned stimuli (or 
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CS): first, CS1 is paired with the unconditioned stimulus. Once this has been achieved, 

pairings of CS1 with CS2 will generate a transfer of informative state from CS1 to CS2, 

resulting in the fact that CS2 alone evokes an unconditioned response. Intra-amygdala 

infusion of APV during CS1/CS2 associations prevented second-order fear conditioning (for 

review, Riedel et al., 2003; Walker and Davis, 2002). Inhibitory and active avoidance, two 

conditioning procedures in which the animal learns to avoid a punishment by doing (active 

avoidance) or abstaining of doing a specific action (inhibitory avoidance) and both depending 

on the amygdala, are also dependent on NMDAR activity (Roesler et al., 2003; Savonenko et 

al., 2003). 

With respect to auditory fear conditioning, intra-amygdala infusion of APV blocked 

the acquisition, the expression and the extinction of conditioned fear. These finding confirmed 

the hypothesis that fear acquisition and extinction are two forms of learning which share at 

least partially the same mechanism (for review, Rodrigues et al., 2004; Walker and Davis, 

2002). 

 

c) GABAR and fear learning  

- GABAA receptors 

Principal cells in the LA receive a high inhibitory modulation in vivo (Pare et al., 

2004) as well as in vitro (Loretan et al., 2004). Even though the inhibitory circuit is composed 

by a small fraction of the overall neuron number, the in vivo and in vitro stimulation of 

afferent systems to the amygdala lead to predominance of the inhibitory responses in the 

recordings of synaptic activities (Bissiere et al., 2003; Lang and Pare, 1997). The strength of 

the inhibitory circuit is thus susceptible to prevent the induction of associative plasticity, as 

described by Hebb‟s rules, in the amygdala. Thus a possibility arises that endogenous 

modulations of the inhibitory system are triggered by the fear learning. Several lines of 

evidences argue in favor of such a possibility: the fear reaction of the animal is correlated 

with the GABAA receptor expression level in the amygdala (Caldji et al., 2004), and more 

specifically their decrease in the LA (Chhatwal et al., 2005). These changes cannot precisely 

control the induction level for associative plasticity in the amygdala, and are completed by the 

activation of numerous neuromodulators, which could potentially be fast modulators of the 

GABA system: 

- dopamine: behavioral and in vitro experiments demonstrated that dopaminergic 

fibers are activated in conditions similar to those leading to fear conditioning: dopamine is 

released in the amygdala during stress episodes (Inglis and Moghaddam, 1999), and a 

pharmacological blockade of dopaminergic receptors also blocks the acquisition of fear 
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conditioning (Guarraci et al., 2000; Guarraci et al., 1999). In vitro, dopamine binding to D2 

receptors reduces the induction of associative plasticity by suppressing the feedforward 

inhibition (Bissiere et al., 2003). 

- opiates: opiate receptors have multiple functions in the CNS, in the amygdala they 

are known to regulate stress, anxiety and nociception (Vaccarino et al., 1999). They are 

involved as well in the modulation of fear level (Good and Westbrook, 1995) and in the 

consolidation of aversive fear, probably by controlling the noradrenergic, cholinergic and 

GABAergic systems (McGaugh, 1989). In vitro, the application of the selective agonist of µ 

receptors DAMGO specifically decreases GABA release (Sugita and North, 1993). 

- norepinephrine: similarly to dopamine, norepinephrine suppresses GABAergic 

inhibition onto principal neurons and the subsequent decrease of the network activity allows 

LTP induction in the absence of GABAA receptor blockers (Tully et al., 2007). 

- endocannabinoids: depolarization-induced suppression of inhibition (DSI) is a very 

efficient way to quickly suppress GABA release. This retrograde control is triggered by 

postsynaptic depolarization which triggers dendritic release of endocannabinoids. The 

endocannabinoids diffuse in the synaptic cleft and activate presynaptic CB1 receptors, which 

decrease the probability of release of GABA vesicles (Wilson and Nicoll, 2001; for review, 

Diana and Marty, 2004; Lovinger, 2007). Such a depolarization of the principal neurons was 

recorded in vivo during fear conditioning experiments (Rosenkranz and Grace, 2003), and 

CB1 receptors are highly dense in the BLA (Katona et al., 2001), which is in favor of 

endocannabinoid modulation. Moreover, perturbing the endocannabinoid system decreases 

the extinction of fear conditioning and acquisition of associative plasticity in the amygdala 

(Azad et al., 2004; Marsicano et al., 2002).  

 

- GABAB receptors 

GABAB receptors are also present in the amygdala (Bischoff et al., 1999; McDonald et 

al., 2004) and can be activated by excitatory fiber stimulation in vivo (Lang and Pare, 1997; 

Sugita et al., 1992) and in vitro (personal observation). They are present and functionally 

important at the presynaptic level as well as at the postsynaptic side: Indeed tetanic 

stimulation (1.5s, 30Hz) of cortical fibers does not trigger long-term potentiation (LTP) in 

control conditions. However, using the same stimulation in presence of GABAB antagonists 

can induce a presynaptic form of homosynaptic LTP (Shaban et al., 2006). This experiment 

shows that GABAB receptors are essential in order to prevent the induction of homosynaptic 

LTP at cortical synapses. This mechanism seems to be crucial for amygdala function: mice 

lacking the GABAB(1A) subunit, a mouse model in which the induction of homosynaptic LTP 

was possible in vitro, also displayed no ability to discriminate between the tone paired with 
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the US (CS+) and a non-paired tone (CS-) and expressed a fear reaction in the presence of the 

two tones. Hence, it seems that GABAB receptors helps to prevent the generalization of fear 

conditioning (Shaban et al., 2006). 

 

 

B) Long-term plasticity 

The efficacy of synaptic transmission can be changed, sometimes over long periods of 

time. This notion is termed „synaptic plasticity‟. As early as in 1973, the concept that linked 

the LTP phenomenon to learning processes was set (Bliss and Lomo, 1973). The study of 

synaptic plasticity became an important issue. 

 

The concept of LTP can cover very different kinds of potentiation, depending whether 

experiments are performed in vivo or in vitro: an experiment is considered to be long-lasting if 

the potentiation last for more than 30 minutes for patch-clamp recording in vitro, and for 

several days in vivo. Even more, in vitro LTP induction can give rise to different forms of 

LTP, initially called early LTP (or E-LTP) and late LTP (or L-LTP), and now separated in 

three different mechanisms: LTP1, the equivalent to E-LTP, a rapidly decaying protein 

synthesis-independent mechanism; LTP2, an intermediate phase of L-LTP that requires 

protein synthesis but is independent of gene transcription; and LTP3, which represents the 

durable, translation- and transcription-dependent component of L-LTP (Abraham and Otani, 

1991). In this manuscript, I will exclusively talk about in vitro recordings of LTP1. 

 

1) Associative plasticity and spike-timing dependent plasticity 

Long-term potentiation (LTP) and depression (LTD) can involve different 

mechanisms, depending on the CNS area, the cell type, the developmental stage and the 

induction protocol used (for review, Bliss et al., 2003; Lynch, 2004; Malenka and Bear, 

2004). 

 

Donald Hebb postulated that memories are formed in the brain by synaptic 

modification that strengthens connections between two neurons when presynaptic activity 

correlates with postsynaptic firing (Hebb, 1949). However, „Hebbian‟ modification alone 

would not be sufficient, there must also exist a synaptic basis leading to the weakening of 

synaptic connections, otherwise brain circuits should reach at one point their maximal activity 

and should not be able to undergo any further potentiation. In agreement with this model, 

Stent proposed the idea that the strength of synaptic connections can weaken when 



 

 

 

 

 

 

 

 

 
 

Figure 2: Critical window for synaptic modifications. Long-term potentiation (LTP) or 

Long-term depression (LTD) were induced by correlated pre-and postsynaptic spiking at 

synapses between hippocampal glutamatergic neurons in culture. The percentage change in 

the excitatory postsynaptic current (EPSC) amplitude at 20-30 min after repetitive correlated 

spiking (pulses at 1 Hz) was plotted against spike timing, which is defined as the time interval 

(Δt) between the onset of the EPSP and the peak of the postsynaptic action potential during 

each pair of correlated spikingm as illustrated by the traces above. Scales 50mV and 10ms. 

(adapted from (Bi and Poo, 1998) 

 

 Bi, G. Q. and Poo, M. M. (1998). Synaptic modifications in cultured hippocampal 

neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J 

Neurosci 18, 10464-72. 
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presynaptic terminals are inactive at the same time that the postynaptic neuron is active (Stent, 

1973). According to this way of thinking, postsynaptic activity, driven by a set of well-

correlated inputs, initiates the physiological processes that lead to the potentiation of the 

active synapses and the depression of the inactive ones, giving rise to the concept of LTD. 

 

In 1983, Levy & Steward studied in more detail the temporal specificity in associative 

synaptic modifications. Stimulating a weak and a strong input from the entorhinal cortex to 

the dentate gyrus of hippocampus, led to LTP of the weak input. This associative induction is 

heterosynaptic, because it requests the activation of a second group of synapses in order to 

potentiate the response at the first input. Moreover, they discovered that associative induction 

of LTP does not require perfectly synchronous co-activation of the two pathways, but the 

temporal order of their activity is crucial. Indeed LTP of the weak input could be induced 

when the strong input was following the activation of the weak input by 0 to as much as 20 

ms (Levy and Steward, 1983). When the temporal order was reversed, LTD was induced 

instead of LTP. This, and other early studies (Gustafsson and Wigstrom, 1986; Kelso and 

Brown, 1986), revealed the existence of a temporal specificity in activity-induced synaptic 

modification. 

 

LTP can also be induced in the hippocampus and in different cortical areas by coupling low-

frequency stimulation with postsynaptic depolarization, as hypothesized by Hebb (Kelso et 

al., 1986; Malenka and Nicoll, 1999; Sastry et al., 1986; Wigstrom et al., 1986). This form of 

LTP is also called homosynaptic, because the potentiated synapses are the ones which receive 

the induction protocol. One of the possible mechanisms is that the postsynaptic depolarization 

triggers action potentials which can back-propagate as calcium spikes into the dendrites 

(Buzsaki et al., 1996; Hoffman et al., 1997; Stuart and Sakmann, 1994). This concept, called 

Spike-Timing Dependent Plasticity (STDP), lies on the relative timing between the arrival of 

back-propagating spikes and the onset of the EPSPs at a postsynaptic spine is the key element 

to trigger LTP or LTD at the studied synapse (Markram et al., 1997) (Figure 2). A critical 

window for plasticity has been described in cell culture (Bi and Poo, 1998), LTP and LTD can 

be induced if the EPSP occurs at maximum 40ms before or after the postsynaptic spike 

trigger, respectively.  

 

Presynaptic induction of LTP is also described, but more rarely. Until recently, it was 

thought to be a pure non-hebbian mechanism (i.e. non associative). However, Humeau et al 

(Humeau et al., 2003) discovered a presynaptic form of LTP that is heterosynaptic and 

associative. I will provide further details about it in section B4 from the chapter I. 
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2) Mechanisms underlying long-term depression 

Low frequency stimulation of glutamatergic fibers during several minutes generally 

give rise to LTD in the CNS. The induction mechanism implicates mGluR and NMDAR 

activation. Most of the time, the requirement for NMDA and mGluR activation is mutually 

exclusive (for review, Kemp and Bashir, 2001). 

- mGluRs: they have different roles in LTD induction depending on the brain area 

studied. At some synapses, as for example in the cerebellum at the parallel fiber to Purkinje 

cell synapse, mGluRs are activated postsynaptically. This leads to the activation of PKC, a 

central element for LTD induction at this synapse, release of calcium from intracellular stores 

and activation of NO intracellular pathway (for review, Anwyl, 1999). Presynaptic mGluRs 

can also trigger LTD. At mossy fiber to CA3 principal cell synapse in the hippocampus, their 

activation decreases cyclic AMP (cAMP) production and protein kinase A (PKA) activity 

(Tzounopoulos et al., 1998). An increase in calcium concentration is also required and 

activates CAMKII (Kobayashi et al., 1999). Various other mechanisms coupling activation of 

mGluRs to intracellular effectors exist, as for example the recruitment of phospholipase or 

other kinases (Kahn et al., 2001; Otani et al., 1999; Otani et al., 2002). 

- NMDAR: NMDAR-dependent induction of LTD was the first form of LTD studied. 

Since its initial description at the Schaffer collateral to CA1 principal neuron synapse in the 

hippocampus (Dudek and Bear, 1993; Fujii et al., 1991; Mulkey et al., 1994), postsynaptic 

NMDAR-induced LTD has been demonstrated in several other brain areas (for review, Kemp 

and Bashir, 2001). NMDAR opening gives rise to a massive and quick calcium influx and 

triggers LTP induction. It is interesting to note that LTP induction involves a calcium influx 

as well, which is of smaller amplitude but over a much longer periode of time (Yang et al., 

1999). Calcium-dependent phosphatase are then activated, which in turn allows the dis-

inhibition of the phosphatase PP1 (Mulkey et al., 1994). 

 

In several brain structures such as in basal ganglia, in the hippocampus or in the 

amygdala, LTD is also mediated by endocanabinoids (Gerdeman and Lovinger, 2003). 

Moreover, presynaptic NMDAR seem to be involved in an endocannabinoid-dependent LTD 

in layer 5 (Sjostrom et al., 2003). As endocannabinoid release is induced by postsynaptic 

activity, the convergence of NMDAR and endocannabinoid signals at the presynaptic terminal 

could be an efficient detector for synchronized pre- and postsynaptic activity, thus leading to 

LTD expression. 

 

The postsynaptic expression mechanisms of LTD involve regulations of AMPARs, 

either through dephosphorylations (Kameyama et al., 1998; Lee et al., 1998), endocytosis of 
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AMPAR (Man et al., 2000; Wang and Linden, 2000) or the expression of different AMPAR 

subtypes (Mameli et al., 2007). Presynaptic expression mechanisms of LTD are yet to be 

elucidated. In accumbens nucleus, presynaptic mGluRs seem to decrease glutamate release 

through an inhibition of VDCCs (Robbe et al., 2002). 

 

 

3) Mechanisms of long-term potentiation 

The notion of LTP exists since more that 30 years: it was first described at the end of 

the 60‟s (Bliss and Lomo, 1970; Lomo, 1966) and was confirmed by two papers few years 

after (Bliss and Gardner-Medwin, 1973; Bliss and Lomo, 1973). 

In order to celebrate the anniversary of this discover, a full issue of the Philosophical 

transactions of the Royal Society was dedicated to LTP (Morris, 2003). 

 

a) Postsynaptic mechanisms 

Most of the LTP studies concern postsynaptic LTP. It is induced by repetitive 

presynaptic stimulations at high frequency, pairing of two inputs, or pairing presynaptic 

stimulation with postsynaptic firing but with a very precise time window (see SDTP). 

The induction mechanism which is very often described involves the activation of 

postsynaptic NMDAR. This is the case, for example, at the synapse between by Schaffer 

collaterals and CA1 pyramidal neurons of the hippocampus. NMDAR activation leads to 

calcium influx, which in turn activates several kinases. The most important one is the 

calcium/calmodulin-dependent protein kinase II (CaMKII) (for review, Malenka and Nicoll, 

1999). Once activated, CAMKII phosphorylates the AMPA receptor subunit GluR1 (Benke et 

al., 1998) and/or leads to an increase in the number of postsynaptic AMPARs (Shi et al., 

1999). To a less extent, postsynaptic protein kinase C (PKC), A (PKA) or mitogen-activated 

protein kinase (MAPK) are also involved (for review, Malenka and Bear, 2004; Malenka and 

Nicoll, 1999). 

 

b) Presynaptic mechanisms 

Presynaptic induction of LTP also occurs in several brain areas. Mossy fiber LTP has 

been coined from the reference synapse, which is the synapse formed by mossy fibers to 

principal neurons in the CA3 area of the hippocampus. Mossy fiber LTP (mfLTP) was 

initially described by Higashima and Yamamoto (Higashima and Yamamoto, 1985). It is 

independent of NMDAR activation (Harris and Cotman, 1986; Nicoll and Malenka, 1995; 

Zalutsky and Nicoll, 1990) and its induction threshold is thought to be modulated by 
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presynaptic kainate GluR5 receptors (for review, Bortolotto et al., 2003, but see Castillo et al., 

1994). 

In addition, it was shown that mfLTP requires the presence of calcium, not in the 

postsynaptic cell but presynaptically (Castillo et al., 1994; Zalutsky and Nicoll, 1990). 

Moreover, changes in postsynaptic membrane potential were also demonstrated playing no 

role in mfLTP. In the mean time, a competiting group claimed that a postsynaptic calcium rise 

is necessary to get mfLTP (Jaffe and Johnston, 1990; Johnston et al., 1992; Yeckel et al., 

1999). The main reason for those differences was that concentration of postsynaptic BAPTA 

used by Johnston group was much higher than what is classically used in order to block a 

postsynaptic signal, therefore BAPTA could have an side effect which was not related to the 

block of a putative postsynaptic calcium entry in the spines. The initial postulate of a purely 

presynaptic LTP was confirmed over years by other groups for example (Katsuki et al., 1991; 

Langdon et al., 1995; Mellor and Nicoll, 2001).  

Calcium entry in the presynapse induces the activation of calcium-dependent adenylyl 

cyclase and a downstream recruitment of PKA (Nicoll and Malenka, 1995). The consequence 

of this is a large increase in the probability of release P proposed to be the expression 

mechanism for mfLTP (Weisskopf and Nicoll, 1995). Additionally, mfLTP can also involve 

an increase in the number of active release sites N, meaning it can activate some 

presynaptically silent synapses (Reid et al., 2004). 

Other forms of presynaptic LTP exist. One is present at the synapse formed in the 

cerebellum by parallel fibers on Purkinje cells and at cortico-thalamic synapses. Both are 

independent of NMDAR, and involve presynaptic calcium influx and ensuing PKA activation 

(Castro-Alamancos and Calcagnotto, 1999; Linden and Ahn, 1999; Salin et al., 1996). 

In order to understand induction mechanism of presynaptic LTP, one had to 

understand what protein is phosphorylated by PKA, leading to the enhancement of P and/or N 

at the studied synapses. The most studied synaptic proteins that are PKA substrates were the 

synapsins, however double knockout (KO) mice for synapsin I and II exhibit normal LTP 

(Spillane et al., 1995). On the reverse, The Rab3A GTPase, which is not phosphorylated by 

PKA, appears to be essential for presynaptic LTP (Castillo et al., 1997). This apparent 

paradoxe is resolved by the fact that several binding partners of Rab3A, such as Rabphilin or 

RIM1, harbour a consensus sequence motif for PKA (Sudhof, 2004). Mice lacking rabphilin 

exhibit normal mfLTP (Schluter et al., 1999). On the contrary, RIM1-deficient mice lack 

mfLTP and parallel-fiber-LTP in the cerebellum. This indicates that RIM1 is likeky a PKA 

substrate needed for expression of different forms of presynaptic LTP. The rescue of mfLTP 

by the transfection of a copy of RIM1 is possible provided the gene is not mutated on one of 
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Figure 3: Induction of LTPHA at cortical, but not at thalamic, afferent synapses. A, 

Time course of synaptic changes after simultaneous Poisson-train stimulation (arrow) of 

cortical (filled circles) and thalamic (open circles) afferents. Scale bars, 2mV and 50ms. B, 

Time course of synaptic changes occurring at cortical afferent synapses upon Poisson-train 

stimulation (arrow) of either cortical or thalamic afferents alone. (Humeau et al., 2003) 

 

 Humeau, Y., Shaban, H., Bissiere, S. and Luthi, A. (2003). Presynaptic induction of 

heterosynaptic associative plasticity in the mammalian brain. Nature 426, 841-5. 
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the two consensus sequences for PKA in RIM1 (Castillo et al., 2002; Lonart et al., 2003). 

The lack of LTP in Rab3A-deficient mice could imply that Rab3A is necessary to get RIM1 

in a ready-to-be-phosphorylated state. 

 

c) LTP integrating presynaptic and postsynaptic mechanisms 

LTP is not strictly following a unique rule: LTP can be induced postsynaptically and 

have a presynaptic expression, either by changing P or N. In this case, it requires a retrograde 

messenger, which might consists of NO or endocannabinoids. 

In the case of mfLTP, there are some debate on its site of induction (see paragraph 

above): indeed, recent studies suggest that concerted postsynaptic and presynaptic signaling is 

required for the induction and expression of mfLTP (Contractor et al., 2002). The authors 

demonstrate the presence of a retrograde signaling cascade, involving ephrins and their 

receptors, which links postsynaptic calcium influx with the increase in transmitter release by 

presynaptic mossy fiber boutons. 

 

4) Presynaptic LTP in the amygdala: heterosynaptic associative LTP 

The deciphering of LTP mechanisms in the LA has led to the identification of a new 

form of presynaptic LTP (Humeau et al., 2003). The authors showed that the simultaneous 

stimulation of thalamic and cortical afferents by randomly-distributed train stimuli at an 

average frequency of 30Hz induced LTP at cortical, but not thalamic, afferent synapses. LTP 

induction required the association of cortical and thalamic stimuli, a train of stimuli at one or 

the other pathway being not sufficient for inducing LTP (Figure 3). Classical associative LTP 

is homosynaptic, with its induction involving the coupling of presynaptic and postsynaptic 

activity. Here, this novel form of LTP was fully presynaptic and associative, thus the authors 

termed it heterosynaptic associative LTP (abbreviated as LTPHA). This heterosynaptic LTP is 

reminiscent of heterosynaptic facilitation (Kandel and Tauc, 1964). By applying the glutamate 

uptake blocker TBOA (D,L-threo--benzyloxyaspartate), Humeau et al were able to induce 

LTP at cortical afferents using a single cortical stimulus train. Thus the induction of 

homosynaptic LTP by cortical glutamate release was impossible to trigger because of rapid 

clearance of glutamate by uptake mechanisms, and thalamic costimulation should allow to 

overflow the glutamate uptake system. They showed that LTPHA is dependent on NMDAR 

activity but not on postsynaptic calcium influx. This led to two possibilities: either NMDARs 

were postsynaptic but involved in a calcium-independent way, or alternatively NMDAR were 

located on presynaptic cortical boutons. Using MK-801 in the patch pipette in order to 
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selectively block postsynaptic NMDARs, they were able to induce LTPHA. Bath application of 

BAPTA-AM, a membrane-permeant calcium chelator, prevented LTPHA, indicating that 

LTPHA was calcium-dependent. They hypothesized that the induction of this associative LTP 

was dependent on presynaptic NMDARs and presynaptic calcium influx. However the 

question whether the NMDAR involved were located on presynaptic cortical afferents or on 

other neurons in the LA remained open. To examine this question, the authors blocked 

network activity by the application of the AMPAR antagonist NBQX (2,3-dihydroxy-6-nitro-

7-sulphamoyl-benzo(f)quinoxaline). Even in the presence of NBQX they were still able to 

induce LTPHA (by recording NMDAR-mediated EPSCs), meaning that the required NMDAR 

are not located on other neurons from the network. Hence they confirmed their hypothesis that 

LTPHA was triggered by the activation of NMDARs on cortical presynaptic boutons. 

Several sets of data support the presynaptic nature of LTPHA. Indeed, it is associated 

with a persistent decrease in paired-pulse facilitation (PPF). Assuming that an increase in 

neurotransmitter release due to a rise in P is correlated with paired-pulse ratio (PPR) changes, 

the decrease in PPF is an indication of an increase in P as an expression mechanism. Analysis 

of the fluctuations in the postsynaptic response amplitude before and after LTP induction 

allows to determine the 1/(c.v.)
2
 (where c.v. is the coefficient of variation) plotted against the 

mean response amplitude. It indicated that LTPHA expression is presynaptic, probably 

involving an increase in P and not in N. Lack of changes in the amplitude of the quantal size 

Q was further confirmed by the determination of the unchanged amplitude of miniature 

EPSCs obtained from the asynchronously released quanta in the presence of strontium ions. 

Moreover, postsynaptic manipulations, such as voltage-clamping the postsynaptic 

neuron at -70 mV or perfusing the postsynaptic neuron with a Ca
2+

 chelator or an NMDA 

receptor antagonist, all manipulations that are well known to block the induction of 

postsynaptic, NMDA receptor-dependent forms of LTP, did not interfere with the induction of 

LTPHA (Humeau et al., 2003). Thus, expression of LTPHA is likely to be mediated by an 

overall increase in the probability of release P. 

In conclusion, this study first revealed the existence of a new form of LTP, which is 

dependent on the activation of presynaptic NMDAR, requires heterosynaptic stimulation and 

is induced and expressed presynaptically.  
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C) The aim of this study 

Several form of PKA-dependent presynaptic plasticity have been identified in the 

hippocampus and in the cerebellum. PKA was also pointed out in some studies in vivo as a 

molecule necessary for memory formation in several structures, including the amygdala. 

Another molecule which appears to be important for synaptic plasticity in the hippocampus 

and the cerebellum is RIM1. The molecular pathway involved in LTP was partially 

addressed in the amygdala as well, where the authors showed that a postsynaptically-induced 

LTP at the cortico-amygdala synapse is dependent on the recruitment of Rab3A (Huang et al., 

2005). However, the molecular cascade which is implicated in synaptic plasticity was never 

addressed in its entirety in the amygdala. Another point which seems important to address is 

the physiological role of RIM1 in presynaptic LTP, meaning by which mechanism can it 

affect neurotransmitter release on a long-term scale.  

 

This work tries to answer those questions in the context of the synaptic plasticity at the 

cortico-amygdala presynapse. More specifically, I will focus a part of this manuscript on the 

analysis of molecular mechanisms implicated in the formation and the maintenance of LTPHA 

downstream of NMDAR activation. 
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II) LTPHA AND PAIRED-PULSE RATIO 

 

My first goal was to reproduce LTPHA, by combining cortical and thalamic stimulus 

trains (Humeau et al., 2003). In order to confirm that the LTPHA was presynaptic, I studied the 

change in paired-pulse plasticity during LTPHA. 

 

A) Introduction on the paired-pulse plasticity 

Paired-pulse plasticity, one of the forms of short term plasticity, is generated by twin 

stimuli separated by a short time interval (from tens of millisecond to several seconds). 

Depending of the type of synapse and the physiological conditions, paired-pulse plasticity can 

be seen as paired-pulse facilitation (PPF) or paired-pulse depression (PPD). PPF/PPD 

represents an increase/decrease in the synaptic strength at the second stimulus. In its simplest 

view, PPF is believed to result from an increase in the probability of release during the second 

stimulus, arising from an accumulation of residual Ca
2+

 near release sites that occurs after the 

first stimulus (Katz and Miledi, 1968, for review, Zucker and Regehr, 2002). Concerning 

PPD, though several mechanisms have been proposed and are still debated (Bellingham and 

Walmsley, 1999; Chen et al., 2004; Hsu et al., 1996), is generally attributed to a depletion of 

the readily-releasable pool (RRP) (Singer and Diamond, 2006; Zucker and Regehr, 2002) that 

occurs after the first stimulus. Because both mechanisms underlying PPF and PPD coexist at 

the same synapse, the paired-pulse ratio (PPR) reflects a balance between an increase in the 

probability of release and a depletion of the RRP. Finally, based on the fact that the depletion 

of the RRP is controlled by the probability of release, paired-pulse experiments are usually 

performed to probe a change in presynaptic mechanisms and more precisely a change in the 

probability of release after a treatment that affect the functioning of the synapse. 

Nevertheless, it should be noted that postsynaptic mechanisms can also be involved in 

short-term plasticity. The first possibility is that neurotransmitters released during the first 

stimulation already saturate postsynaptic receptors. Thus the putative increase in 

neurotransmitter that may occur during the second stimulation would not be detected at the 

postsynaptic side. The inactivation of the postsynaptic receptors can also be a reason for PPD 

(for review, Jones and Westbrook, 1996). The receptors can turn into a non-responsive state 

that may last from few milliseconds to several minutes.  

 

 



 
 

Figure 4 Presynaptic LTP at cortico-LA synapses (LTPHA) is associated with a persistent 

decrease in the paired-pulse ratio (PPR). (A)  Placement of stimulating and recording 

electrodes. (B) Pathway-specific LTP induction. Simultaneous Poisson-train stimulation of 

the thalamo-LA and cortico-LA pathways induces specific potentiation of cortico-LA 

synapses (n = 14 for both pathways, p < 0.05 for cortical pathway; thalamic pathway: n.s.). 

Scale bars: 1 mV and 50 ms. (C) Cortico-LA LTP is associated with a persistent decrease in 

the paired-pulse ratio (PPR) (n = 11, p < 0.05). Scale bars: 50 pA and 10 ms. 
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B) Results 

1) Paired-pulse ratio 

Whole-cell current clamp recordings from projection neurons showing spike 

frequency adaptation upon depolarizing current injection were obtained in the dorsal 

subdivision of the LA (Bissiere et al., 2003; Weisskopf et al., 1999). Stimulation of afferent 

fibers from the internal capsule, containing thalamic afferents (Weisskopf et al., 1999), or 

from the external capsule, containing cortical afferents (Huang and Kandel, 1998)
 
(Figure 4A) 

elicited monosynaptic EPSPs of similar amplitudes and slopes at both inputs. As previously 

described (Humeau et al., 2003), simultaneous stimulation of cortical and thalamic afferents 

with a single Poisson-train (45 stimuli at an average frequency of 30 Hz) resulted in the 

pathway-specific induction of associative LTP at cortico-LA synapses called LTPHA (cortical: 

151 ± 9% of baseline, n = 14, p < 0.01; thalamic: 108 ± 4%, n = 14, n.s.)(Figure 4B). LTPHA 

was associated with a decrease in the paired-pulse ratio (PPR)(86 ± 3% of baseline, n = 11, p 

< 0.01)(Figure 4C) suggesting a presynaptic expression mechanism. 

A previous paper from the lab showed that LTPHA is likely to be mediated by an 

overall increase in the probability of release P (Humeau et al., 2003) (see p15 of this chapter). 

An increased P might be mediated by several mechanisms such as an increased number of 

release sites or releasable vesicles, or an increase in the probability of release of single 

synaptic vesicles.  

 

2) Multivesicular release 

An overall increase in P at a population of synapses could involve several mechanisms 

including an increased probability that the release of a single vesicle occurs at a given 

synapse, or an increased number of released vesicles per synapse (i.e. a change in multi-

vesicular release). Multivesicular release is the simultaneous or near-simultaneous exocytosis 

of multiple vesicles at the same active zone, which induce an increase of the glutamate 

concentration in the synaptic cleft. To examine possible changes in multi-vesicular release, I 

used the low-affinity AMPA receptor antagonist γ-D-glutamyl-glycine (γ-DGG), which can 

be used to probe for changes in synaptic glutamate (Christie and Jahr, 2006): when the 

glutamate concentration is low, γ-DGG binds AMPAR and efficiently blocks AMPA 

response; at a high glutamate concentration however, γ-DGG has a too low affinity to 

compete with glutamate binding, thus leading to a reduction in the AMPA block. Comparing 

the effect of γ-DGG application (2.5 mM) before and after LTP induction revealed no 

significant difference in the fractional block of AMPA EPSCs (baseline: 64 ± 7%, n = 8; LTP: 



 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5: Presynaptic LTP does not involve an increased probability of multi-vesicular 

release. (A) Time course of an example experiment illustrating γ-DGG-mediated inhibition of 

synaptic transmission before and after induction of LTP (pairing). Depicted traces were taken 

at the time points indicated by the numbers. Scale bars: 50 pA and 5 ms. (B) There was no 

difference in the fractional block of synaptic transmission induced by γ-DGG (2.5 mM) 

before and after LTP induction (n = 8, n.s.). 
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71 ± 5%, n = 8; n.s.) (Figure 5). This indicates that LTPHA does not involve changes in multi-

vesicular release, but is rather mediated by a modulation of the release process itself. 

 

 



 

 

 

 

 
 

Figure 6: LTPHA is mediated by a persistent increase in the probability of release. (A) 

Variance-mean analysis indicates that LTP at cortico-amygdala synapses involves an increase 

in P. Left, sample traces illustrating the EPSC variance recorded at different Ca
2+

 

concentrations and before and after LTP induction. Scale bars: 50 pA and 10 ms. Right, 

example time courses of EPSC amplitude variations recorded at different Ca
2+

 concentrations 

and before and after LTP induction. Scale bars: 50 pA and 10 ms. (B) Scaling EPSC variance 

and mean amplitude before and after LTP induction (red symbols, n = 7) to the variance-mean 

plot obtained using different Ca
2+

 concentrations (n = 9) reveals an almost exclusive increase 

in P after LTP. Green and blue lines indicate the expected increase in variance upon changes 

in N and Q, respectively.  Error bars, ± SEM. 
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III) QUANTAL PARAMETERS CHANGED BY LTPHA 

 

In electrophysiological experiments, synaptic transmission is measured 

postsynaptically, by recording the variations of the postsynaptic membrane potential or 

current induced by the release of neurotransmitter (NT) from synaptic vesicles (SV), the 

opening of the postsynaptic receptors and the ion fluxes induced. The current recorded is a 

function of the neurotransmitter release. Consistent with the quantal hypothesis of 

neurotransmitter release, evoked postsynaptic responses can be described as a stochastic, 

quantal process defined by three parameters: 

- Q, the amplitude of the quantal size 

- P, the output probability that a ready-to-release SV fuses with plasma membrane 

upon an increased calcium concentration in the presynaptic terminal. 

- N, the number of independent release sites 

 

A variation in PPR gives an indication for a change in P. However, changes in Q or N, 

which can be involved as well, are not detectable with this analysis method. In order to 

precisely determine which of the quantal parameter is affected by LTP induction, I used a 

method called fluctuation analysis, or variance-mean analysis, which is based on the fact that 

evoked transmitter release follows the rules of a binomial distribution. It consists on the 

analysis of the variance of the signal recorded at different probabilities of release, and allows 

a graphical distinction between changes in the different quantal parameters. 

 

A) Variance-mean analysis 

The variance-mean technique is a well-established method, which allows for 

distinguishing between changes in the quantal parameters (N, P or Q) by analysing the EPSC 

variance as a function of the mean amplitude under conditions of different release 

probabilities, or Var = f(Imean) (Clements, 2003; Foster and Regehr, 2004; Humeau et al., 

2001; Humeau et al., 2002; Reid and Clements, 1999; Scheuss et al., 2002; Silver, 2003; 

Silver et al., 1998) (for more informations, see the material and method part). 

When measured at increasing probabilities of release, EPSC variance plotted vs. the 

mean amplitude follows a parabolic function. I first estimated the baseline quantal parameters 

of synaptic transmission at cortico-LA synapses at different Ca
2+

 concentrations (P1 = 0.14 ± 

0.02, P2.5 = 0. 47 ± 0.08, P4 = 0. 80 ± 0.01, Q = –7.8 ± 0.9 pA, N = 33 ± 6, n = 9, Figure 

6A,B). In a second set of experiments the average baseline variance at 2 mM external Ca
2+

 



 

 

 

 

 
 

 

Figure 7: Intracellular perfusion with the use-dependent NMDA receptor antagonist 

MK-801 (1 mM) confirm an increase in Pr upon LTP induction. (A) After recording 

EPSCs at -70 mV, AMPA receptors were blocked by bath application of NBQX (20 M) and 

NMDA receptor-mediated EPSCs recorded at +30 mV. After 100 stimulations, MK-801-

induced a large decline of evoked NMDA receptor-mediated EPSCs. Scale bars: 20 pA and 

20 ms (left) and 10 pA and 20 ms (middle). (B,C) Average MK-801-induced decay of NMDA 

receptor-mediated EPSCs before and after LTP induction. After 7 stimulations at +30 mV 

neurons were re-polarized to -70 mV and LTP was induced by pairing thalamic and cortical 

afferent stimulation. Resuming stimulation at +30 mV revealed a significantly faster decay 

after pairing (B) Superimposed and (C) Scaled traces. Scale bar: 10 ms. (n = 5; p < 0.05). 
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was normalized to the parabola obtained from the control experiments (n = 7, Figure 6B). 

Subsequently LTP was induced and the change in variance measured after LTP induction was 

plotted against the increased mean EPSC amplitude. These experiments revealed that LTPHA 

can entirely be accounted for by an increase in P (Pbaseline = 0.38 ± 0.03; PLTP = 0.58 ± 0.05; n 

= 7; p < 0.05)(Figure 6B).  

 

B) Postsynaptic MK801 infusion 

To confirm the results involving an increase in the probability of release P, I used a 

third method. As LTPHA seems to be purely presynaptic, and LTPHA depends on presynaptic, 

but not postsynaptic, NMDA receptors (Humeau et al., 2003), I used the activity-dependent 

block of NMDARs by the open-channel blocker MK-801 as a more direct read-out of possible 

changes in the release probability (Rosenmund et al., 1993). MK-801 (1 mM) was applied to 

the postsynaptic neuron intracellularly via the patch-pipette (Humeau et al., 2003). The 

stimulation intensity was adjusted (while holding the cells at -70 mV) to evoke postsynaptic 

AMPA receptor-mediated EPSCs of similar amplitudes as in the control LTP experiments. 

Subsequently, the AMPA receptor antagonist NBQX (20 µM) was washed in, the cells were 

depolarized to +30 mV, and stimulation was resumed to monitor pharmacologically isolated 

NMDA receptor-mediated EPSCs.  

In control experiments, this resulted in a gradual decay of the amplitude of NMDA-EPSCs 

(Figure 7A,B). The time-course of the decay was biphasic and could be fitted with a bi-

exponential function (τfast = 2.3 ± 0.4 stimulations; τslow = 29.5 ± 8.1 stimulations; n = 

5)(Figure 7B) ) indicating that the total population of stimulated synapses could be divided in 

(at least) two sub-populations with different P. In a second set of experiments, stimulation 

was stopped after 7 stimuli, the cell was repolarized to -70 mV, in order to stay in the same 

induction conditions as for classical LTPHA induction, and the cortico-LA and thalamo-LA 

pathways were co-stimulated with the same protocol used for LTP induction. Subsequently, 

single-shock stimulation was resumed at +30 mV. Delivery of an LTP induction protocol 

resulted in the potentiation of the NMDA EPSC relative to the last stimulation before 

induction (158 ± 15%; n = 5; Figure 7B). Moreover, LTP induction was associated with the 

re-appearance of the fast-decaying component, which had entirely disappeared after the first 7 

stimulations (Figure 7B,C). While in the control group the decay of the NMDA EPSC 

amplitude from stimulation 8 on was following a mono-exponential time-course, the decay 

after LTP induction again followed a bi-exponential time-course (τfast = 2.1 ± 0.4 stimulations; 

τslow = 30.2 ± 4.3 stimulations; n = 5). The fast component in the LTP group was significantly 



 

 

 

 

 

 

 

 
 

 

Figure 8: LTPHA does not activate silent synapses. (A) Average MK-801-induced decay of 

NMDA receptor-mediated EPSCs before and after LTP induction. After 200 stimulations at 

+30 mV neurons were repolarized to -70 mV and LTP was induced by pairing thalamic and 

cortical afferent stimulation. Resuming stimulation at +30 mV revealed a significantly faster 

decay after pairing. Line: expected NMDA decay in case of an activation of silent synapses. 

(B) Same as in (A) at an enlarged scale. Resuming stimulation at +30 mV revealed no 

difference after pairing compared to control condition (control n = 8; LTP n = 7; p > 0.05). 
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different from the slow time-constant in the control group (n = 5; p < 0.05) and did not 

significantly differ from the initial fast component in the control group (n = 5). These 

experiments directly demonstrate that P at cortico-LA synapses is heterogeneous, and that 

induction of LTPHA induces a selective increase in P at a subset of synapses 

 

However, it is still possible that LTPHA induction protocol triggers the activation of 

previously silent synapses which have a high P. As shown in the control condition in the 

previous MK801 experiment (Figure 7B,C), the probability of release is not uniform among 

the cortico-LA synapses. One can postulate that some of the putative silent synapses could 

express a high probability of release, which would correspond to the fast component in the 

control experiment of the figure 7. Therefore a second set of MK801 experiments were 

performed, with a higher MK801 concentration (4 mM), and an increased stimulation 

intensity. After 200 stimulations at +30 mV, the cell was repolarized to -70 mV, in the 

presence of the absence of LTP induction. In order to avoid the short-term potentiation which 

is also triggered by the induction protocol, I waited for 5 minutes before resuming NMDA-

recordings at +30 mV (Figure 8). Due to the presence of AMPAR blockers in the bath and of 

NMDAR blockers in the patch-clamp pipette, LTPHA expression cannot be registered. 

However, a previous set of experiments allowed me to control that LTPHA is inducible more 

than 30 minutes after the opening of the cell. The NMDA EPSCs were not different between 

the two conditions (control: 26 ± 5 % of the initial NMDA EPSC, n = 8; LTP induction 24 ± 3 

%, n = 7, p > 0.05), leading to the conclusion that LTPHA induction recruited only synapses 

which were previously active and fully blocked by MK801. The component which reappears 

both in control and in LTP conditions probably reflects the recovery of the NMDA response 

by spontaneous removal of MK-801 from NMDARs and/or by lateral diffusion of unblocked 

NMDARs into the synapse. 

From all these experiments, we can conclude that cortico-amygdala LTP is exclusively 

due to an increase in the probability of release at already active synapses; with no change in N 

or the activation of silent synapses. 
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IV) KINASE INVOLVEMENT IN LTP INDUCTION  

 

A) Introduction 

Kinases are one of the most common classes of signaling molecules involved in 

synaptic plasticity. The intracellular pathways involving the protein kinase C (PKC) pathway, 

or the adenylyl cyclase/protein kinase A (AC/PKA) have been particularly well studied in 

synaptic plasticity. 

 

1) Protein kinase C 

a) Description 

Protein kinase C (PKC) is a calcium activated serine/threonine kinase. This family of 

kinases consists of ~10 isozymes, which  are splitted up into three subfamilies according to 

the second messenger associated with their regulatory region: conventional (or classical), 

novel, and atypical PKC: 

- Conventional (c) PKCs require calcium ions diacylglycerol (DAG), and a 

phospholipid such as phosphatidylcholine for activation. 

- Novel (n) PKCs require DAG, but do not require calcium ions for activation.  

- Atypical (a) PKCs (including protein kinase Mδ) require neither calcium nor DAG 

for activation.  

 

The structure of all PKCs consists of a regulatory domain and a catalytic domain 

tethered together by a hinge region. The catalytic region is highly conserved among the 

different isoforms. It consists of a bilobal structure with a β sheet comprising the N-terminal 

lobe and an α helix constituting the C-terminal lobe. The cleft formed by these two lobes 

contains the ATP- and substrate-binding sites, and it is also the place where the 

pseudosubstrate domain of the regulatory region binds. The pseudosubstrate region is a small 

sequence of amino acids mimicking the substrates. This domain keeps the enzyme inactive 

when it binds to the substrate-binding cavity in the catalytic domain. 

PKC catalytic sites are active only in the phosphorylated form. The conventional and 

novel PKCs have three phosphorylation sites, the atypical PKCs are phosphorylated only on 

two sites. The 3-phosphoinositide-dependent protein kinase-1 (PDK1) is the upstream kinase 
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responsible for initiating the process by phosphorylation of the activation loop (Balendran et 

al., 2000). 

The regulatory domain of the all PKCs contains a C1 domain that contains a binding 

site for DAG and phorbol esters (non-hydrolysable and non-physiological analogues of 

DAG). The C1 domain is only functional in c- and nPKCs. Those two subtypes also contain a 

C2 domain, which acts as a calcium sensor for cPKC but is not functional for nPKCs. The 

binding of DAG and calcium to C1 and C2 domains respectively induce the recruitment of 

PKC to the membrane. This leads to the release of the pseudosubstrate from the catalytic site 

and the activation of the enzyme. 

 

b) Role in synaptic plasticity 

In the 90‟s, several studies pointed out the importance of PKC, and notably of the 

atypical PKC isoenzyme PKM zeta, in LTP in the hippocampal CA1 area (Hrabetova and 

Sacktor, 1996; Ling et al., 2002). PKC activation was shown to be specifically enhanced in 

CA1 during the induction and maintenance phases of LTP (Klann et al., 1993; Sacktor et al., 

1993). PKC may act in LTP by enhancing a NMDA-evoked current via the activation of the 

non-receptor tyrosine kinase (Src) signaling cascade (Lu et al., 1999).  

An involvement of PKC in the induction of non-NMDAR-LTD was demonstrated in 

several brain areas. For example, it has been shown that postsynaptic injection of PKC 

inhibitory peptide or PKC inhibitors blocked synaptically stimulated LTD in CA1, dentate 

gyrus, cerebellum and ventral tegmental area. (for review, Anwyl, 2006). PKC can also act in 

LTD by phosphorylating AMPAR subunits. In the cerebellum the phosphorylation of the C-

terminal region of the AMPAR GluR2 subunit by PKC induces the dissociation of GluR2 

from GRIP, a postsynaptic density protein important for AMPAR clustering. This leads to 

clathrin-mediated endocytosis of AMPAR that finally underlies LTD (Chung et al., 2003; 

Matsuda et al., 2000). PKC has also been involved presynaptically by increasing the readily 

releasable pool or reducing the quantal size. PKC probably acts by phosphorylating several 

presynaptic proteins such as synaptotagmin, syntaxin or SNAP25 that are involved in synaptic 

vesicle release (for review, Barclay et al., 2005). 

 



 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 9: Structure of adenylyl cyclase (AC). ACs can be divided into 5 major domains: 

The N-terminus (Nt); the first transmembrane cluster (Tm1), the fisrt cytoplasmic loop (C1), 

the second Tm cluster (Tm2) and the second cytoplasmic loop (C2). The C2 and C2 regions 

are further subdivided into the highly conserved catalytic C1a and C2a regions, which 

dimerize to form the catalytic site, and the less conserved C1b and C2b domains (Cooper, 

2003). 

 

 

 

 

 Cooper, D. M. (2003). Regulation and organization of adenylyl cyclases and cAMP. 

Biochem J 375, 517-29. 
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2) The adenylyl cyclase / protein kinase A pathway 

a) The Adenylyl cyclase 

- Description 

Adenylyl cyclase (AC) catalyzes the conversion of ATP to pyrophosphate and cAMP, 

an important second messenger in eukaryotic cells. In mammals, there are ten known ACs. 

Their difference resides mainly in their regulation by calcium/calmodulin and G proteins. 

Tissue distribution of ACs is also isoform-specific. Except sAC which is soluble, all other 

ACs are transmembrane proteins, with 12 transmembrane domains. Their structure can be 

divided into five major domains (Figure 9) (Cooper, 2003):  

- the N-terminus, cytoplasmic 

- a first cluster of 6 transmembrane domains (Tm1) 

- a first cytoplasmic loop, C1, constituted by two catalytic domains C1a and C1b 

- the second cluster of 6 transmembrane domains (Tm2) 

- the second cytoplasmic loop, C2, formed as well by two catalytic domains C2a and 

C2b 

C1a and C2a dimerize to form the catalytic site of the enzyme. 

 

- regulations and clustering 

With the exception of AC9, all known isoforms of mammalian AC are stimulated by 

Forskolin. Other modulators, such as - and -subunits of G proteins, calcium/calmodulin, 

PKC and PKA, are specifically acting on certain AC isoforms, either by stimulating or 

inhibiting them (for review, Sunahara and Taussig, 2002). Based on their amino-acid 

sequences and their functional regulation, ACs can be divided into five distinct families. The 

first family that comprises AC1, AC3, and AC8 corresponds to calcium-calmodulin sensitive 

ACs. The second family constituted by AC2, AC4, and AC7 is stimulated by G. AC5 and 

AC6 that form the third family are distinguished by their inhibition by both calcium and Gi 

isoforms. Both AC9 and sAC form a separate family on their own.  

This specificity in the regulation raised the question of the subcellular distribution of 

AC subtypes in the cell. Isoforms AC3, AC5, AC6 and AC8 are found enriched in lipid raft 

fractions, where numerous ion channels (including Kv1.4, Kv1.5, Kv4.2, L-type calcium 

channel and voltage-gated sodium channel) are present (for review, Ostrom and Insel, 2004). 

Surprisingly, AC incorporation in lipid rafts is not due to their hydrophobic TM-domains, but 

rather involves their cytosolic domain, probably through protein-protein interactions 

(Crossthwaite et al., 2005). 
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In addition to the spatial clustering of AC, the very rapid activation of 

phosphodiesterases (PDE) can lead to transient and localized cAMP response. Targets of 

cAMP should be also present in close vicinity, as shown for AC in HEK-293 cells 

(Willoughby et al., 2005). Cyclic AMP that escapes degradation by PDE slowly accumulates 

in the cytosol. 

 

- Role in synaptic plasticity 

In the brain, only calcium-calmodulin sensitive forms of AC are expressed (i.e. AC1, 

AC3 and AC8). Calcium-inhibited form AC3 is present in the main olfactory epithelium and 

seems to be involved in the detection of odorants. Calcium-activated forms AC1 and AC8 are 

expressed in various parts of the brain and notably in the cortex, the hippocampus and the 

cerebellum. Interestingly, AC1 stimulation requires the simultaneous presence of - subunit 

of G-proteins and a high calcium concentration (Wayman et al., 1994). Therefore, AC1 

functions as a coincidence detector to integrate calcium and G-protein-coupled receptor 

activation. The second calcium-stimulated AC, AC8, is five times less sensitive to calcium 

than AC1 and not regulated by G-proteins. Thus AC8 is considered to be a strict low-affinity 

calcium detector (for review, Ferguson and Storm, 2004; Wang and Storm, 2003).  

In order to study their involvement in long-term memory, knockout (KO) mice for 

AC1 and /or AC8 were generated. AC1 and AC8 are not required for the survival of mice 

since all three homozygous KO mice were viable. AC1 KO mice showed a severe impairment 

in presynaptic LTP at mossy fiber to CA3 synapses in the hippocampus as well as at parallel 

fiber to Purkinje cell synapses in the cerebellum, two forms of LTP which are known to be 

dependent on PKA (Nicoll and Malenka, 1995; Salin et al., 1996). This deficit in PKA-

dependent LTP was rescued by forskolin application, indicating that AC acts upstream to 

PKA activation (Villacres et al., 1998). Moreover, AC1-AC8 double knockout mice exhibit 

deficits in the hippocampal NMDAR-dependent LTP expressed in the CA1 area (Wong et al., 

1999). In vivo, a lack of ACs induces a robust impairment in several forms of long-term 

memory such as passive-avoidance memory, which again can be rescued by forskolin 

injections in the hippocampus (Wong et al., 1999). Thus the hypothesis that a direct 

recruitment of neuronal ACs by calcium leads to PKA activation seems to be confirmed, at 

least in the hippocampus (for review, Ferguson and Storm, 2004; Wang and Storm, 2003). 
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b) Protein kinase A 

- Description 

Protein kinase A (PKA), also known as cAMP-dependent protein kinase or A kinase, 

is an enzyme which phosphorylates proteins at serine or threonine residues. PKA is a 

holoenzyme that requires the presence of a cofactor, cAMP, to be activated.  

PKA consists of two regulatory domains, containing cAMP binding sites, and two 

catalytic subunits. The regulatory domains contain an auto-inhibitory domain which acts as a 

pseudosubstrate for the catalytic subunit when the enzyme is inactive. Cyclic AMP binding 

leads to a conformational change that finally induces the release of the catalytic subunits. The 

activity of the catalytic subunits activity can be directly regulated by phosphorylation. The 

activity of PKA is also modulated by a group of proteins called protein kinase inhibitors. 

These molecules often act as pseudosubstrates for the catalytic subunit, competing with real 

phosphorylation targets. The mammalian PKA family is constituted by four regulatory 

subunits (RI, RI, RII, RII) and three catalytic subunits (C, C, C). Two major 

isozymes of PKA are called type I (with RIa and RIb dimers) and type II (with RIIa and RIIb 

dimers). 

 

- Regulations and spatial segregation 

PKA is capable to auto-regulate its activity; a sustained activity can be maintained by 

a selective degradation of regulatory subunits or by their phosphorylation by the catalytic 

subunits, which decreases their affinity to the catalytic subunits. The different regulatory 

subunits possess also different sensitivities to cAMP, leading to a modulation of the PKA 

activation profile (Nguyen and Woo, 2003). 

Protein kinase A often acts at very discrete domains within the cell. The subcellular 

localization of PKA results from the interaction of regulatory subunits with proteins called A 

kinase anchoring proteins (AKAPs). A large number of AKAPs have been identified and all 

target PKA to specific substrates including ion channels, cytoskeletal elements and 

centrosomes (for review, Tasken and Aandahl, 2004), but also to their activator, cAMP 

(Willoughby et al., 2005). 

 

- Role in synaptic plasticity 

The importance of PKA activity in memory formation was first discovered in Aplysia, 

where this enzyme plays a role in the molecular mechanisms underlying the gill-withdrawal 

reflex. Stimulation of the snails‟ siphon coupled with a noxious tail shock causes the animal 

to withdraw its gill. This form of conditioning leads to sensitization so that further siphon 



 

 

 

 

 

 

 
 

 

 

Figure 10 PKC pathway is partially involved in LTPHA expression mechanism. (A) PKC 

antagonist Bisindolylmaleimide II (BIM; 200 nM) partially reduces LTPHA expression (n = 6, 

p < 0.05) at cortico-amygdala synapses. Scale bars: 2 mV and 50 ms. (B) Application of 

Bisindolylmaleimide II does not change basal neurotransmission.  Scale bars: 20 pA and 10 

ms. (C) PDBu-potentiation of synaptic transmission is independent from PKC pathway 

(PDBu 1 μM ,n=4). Scale bars: 50 pA and 10 ms. 
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stimulation results in gill withdrawal. This memory can last for several days, and requires AC 

recruitment via the stimulation of serotonergic receptors as well as PKA activation through 

the increase in cAMP levels. The importance of cAMP signaling in learning and memory 

formation was also demonstrated in Drosophila (for review, Abel and Kandel, 1998). 

PKA involvement in mammalian plasticity was studied mainly in hippocampal LTP 

(see part B3b from the chapter I). Knockout mice for the PKA subunits C1 or RI showed a 

decreased mfLTP (Huang et al., 1995; Qi et al., 1996). However, total PKA activity was 

unchanged in whole-brain or hippocampal extracts derived from these mutant mouse lines, 

suggesting the existence of a compensatory mechanism: the defect in mfLTP could be due to 

the disruption of the balance in the activities of intracellular signalling pathways. Tetanization 

of Schaffer collaterals induced LTP which can occlude a form of potentiation induced by the 

application of exogenous cAMP (Sp-cAMPS) and potentially blocked by PKA inhibitors. 

However, this blockade is dependent of the paradigm of stimulation used to induce LTP: 

using different tetanic train stimulations, Woo et al (Woo et al., 2003) were able to elicit a 

form of LTP insensitive to PKA inhibitors. 

In the amygdala, several studies demonstrated that PKA signaling is essential for 

memory formation. In vivo, the injection of PKA inhibitors into the basal and lateral 

amygdala immediately after fear conditioning blocked the consolidation of fear memory 

(Schafe and LeDoux, 2000). PKA inhibitors altered as well long-term memory formation in a 

conditioned taste-aversion task, which is also dependent on the amygdala. Furthermore, KO 

mice for the regulatory subunit RIIb, which is highly expressed in the amygdala, showed 

deficits in long-term memory of a taste-aversion task. Therefore, several studies suggested 

that PKA activity is important for memory formation in the amygdala (for review, Arnsten et 

al., 2005). Moreover, in vitro experiments at cortico-LA synapses demonstrated that 

postsynaptically induced LTP is PKA-dependent (Huang and Kandel, 1998). 

 

 

B) Results 

1) PKC pathway 

I first tested the influence of PKC on LTPHA. The application of the PKC inhibitor 

Bisindolylmaleimide II (BIM, 200 nM) partially blocked the induction of LTPHA (control 155 

± 10% of baseline, n = 18, p < 0.05; BIM 125 ± 11%, n = 6, p < 0.05, Figure 10A) whereas it 

has no effect on basal neurotransmission (BIM 97 ± 3% of baseline, ns, Figure 10B). I then 

tried to stimulate PKC activity in order to study a putative occlusion with LTPHA. The 



 

 

 

 

 
 

Figure 11: Forskolin-LTP and LTPHA share a common pathway. (A) Forskolin (FSK; 50 

µM) enhances synaptic transmission (n = 5, p < 0.01) and decreases PPR (n = 5, p < 0.05) at 

cortico-amygdala synapses. Scale bars: 5 mV and 50 ms. (B) FSK-induced potentiation of 

synaptic transmission occludes the induction of LTPHA (n = 5, p < 0.01). Grey symbols 

represent FSK-potentiation of synaptic transmission in the absence of LTP induction (same 

data as in panel A). Averaged sample traces were taken at the time points indicated by the 

numbers. Scale bars: 5 mV and 10 ms. 
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methods currently used to chemically stimulate PKC activity involves the use of phorbol-ester 

called Phorbol 12.13-Dibutyrate (or PDBu). PDBu binds the C1 domain of the conventional 

and novel PKC regulatory subunit, allowing the activation of the catalytic subunit. However 

the presynaptic protein Munc13-1, importantly involved in synaptic vesicle priming, contains 

a C1 domain which can binds PDBu as well (Betz et al 1998, 2001). A preliminary 

experiment showed that PDBu-potentiation (1 μM) is not blocked by Bisindolylmaleimide II, 

signifying that at least a part of PDBu potentiation is not mediated by PKC, and could 

potentially be due to Munc13-1 activation (Figure 10C). 

 

 

2) AC/PKA pathway 

Given the well established role for cAMP/PKA signaling in presynaptic forms of LTP 

in other brain areas (Weisskopf and Nicoll, 1994; Salin et al., 1996), and the demonstration 

that postsynaptically induced LTP at cortico-LA synapses is also PKA-dependent (Huang and 

Kandel, 1998), we tested whether cAMP/PKA signaling would also be required for the 

presynaptic induction of LTPHA. We first applied the adenylate cyclase (AC) activator 

forskolin (FSK; 50 μM). FSK application increased excitatory synaptic transmission at 

cortical afferents (160 ± 8% of pre-drug baseline, n = 5, p < 0.05)(Figure 11A). Consistent 

with a FSK-induced increase in P, the increase in EPSP amplitude was associated with a 

decrease in PPR (69 ± 11% of pre-drug baseline, n = 5, p < 0.05)(Figure 11A). 

Forskolin-induced potentiation of synaptic transmission completely occluded any 

further induction of LTPHA by co-stimulation of thalamo- and cortico-LA afferents (95 ± 13% 

of baseline, n =5, Figure 11B), suggesting a rise in presynaptic cAMP during LTP induction. 

To directly test this idea, I applied the non-hydrolysable cAMP analog Rp-cAMPS 

(100 μM), which blocks the cAMP-dependent pathways. As Rp-cAMPS slowly pass cellular 

membrane, slices were pre-treated at least for 45 min. with Rp-cAMPS. This long incubation 

time prevented me to test the influence of Rp-cAMPS on basal release. However, baseline 

recordings in the presence of Rp-cAMPS were stable over more than 30 minutes (data not 

shown). In slices pretreated with Rp-cAMPS, LTPHA could not be induced (control: 160 ± 

15% of baseline, n = 18, p < 0.05; Rp-cAMPS: 101 ± 12% of baseline, n = 6, n.s., Figure 

12A). This indicates that a rise in presynaptic cAMP is both necessary and sufficient for LTP 

induction at cortico-LA synapses.  

 

To assess whether the Rp-cAMPS effect was due to the blockade of PKA I tested if 

the PKA inhibitor H-89 (20 μM) blocked forskolin-induced potentiation and LTPHA. In the 



 
 

Figure 12 : Activation of the cAMP/PKA pathway is necessary and sufficient for 

presynaptic LTP. (A) LTP induction is blocked by the non-hydrolyzable cAMP analog Rp-

cAMPS (100 µM)(control, n = 18; Rp-cAMPS, n = 6;  p < 0.05). Scale bars: 2 mV and 50 ms. 

(B) FSK-potentiation of synaptic transmission requires activation of PKA. Bath application of 

the PKA antagonist H-89 (20 µM) completely abolishes the effect of FSK on synaptic 

transmission (control: n = 5; H-89: n = 5; p < 0.05). Scale bars: 2 mV and 50 ms. (C) 

Induction of LTP at cortico-LA synapses is blocked by the PKA antagonist H-89 (20 

µM)(control: n = 18; H-89: n = 8, p < 0.05). Scale bars: 2 mV and 50 ms. (D) Variance-mean 

analysis shows that FSK-potentiation is associated with an increase in P. Top, single 

experiment illustrating FSK-induced increase in synaptic transmission and representative 

traces before and during FSK (50 µM) application. Scale bars: 2 mV and 10 ms. Bottom, 

scaling EPSC variance and mean amplitude before and after FSK application (red symbols, n 

= 19) to the variance-mean plot obtained using different Ca
2+

 concentrations (same data as in 

figure 11B) reveals an almost exclusive increase in P. Green and blue lines indicate the 

expected increase in variance upon changes in N and Q, respectively. 
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presence of H-89 both forskolin-induced potentiation (control: 162 ± 14% of baseline, n = 5, 

p < 0.05; H-89: 111 ± 29% of baseline, n = 5, n.s.)(Figure 12B) and LTPHA were completely 

abolished (control: 160 ± 15% of baseline, n = 18, p < 0.05; H-89: 103 ± 11% of baseline, n = 

8, n.s., Figure 12C). These results demonstrate that the increase in the probability of release 

during LTPHA requires the activation of presynaptic AC and PKA, and that cAMP/PKA 

signaling is necessary and sufficient for LTP induction. 

 

If electrically induced LTPHA and forskolin-induced potentiation of synaptic 

transmission are one and the same, then forskolin-potentiation, like LTP, should be mediated 

exclusively by an increase in P. Therefore, we used variance-mean analysis, to examine 

changes in the quantal parameters N, P and Q upon forskolin application. Very similar to the 

results obtained after LTP induction, we found that forskolin-potentiation almost exclusively 

involved an increase in P (Pinitial = 0.38 ± 0.05, PLTP = 0.63 ± 0.1) (Figure 12D). Taken 

together, these results indicate that forskolin-potentiation relies on the same induction 

machinery and involves the same expression mechanisms as LTP induced by co-stimulation 

of thalamo- and cortico-LA afferents.  

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 18: RIM1α structure and interacting partners RIM1α contains a single amino-

terminal zinc finger domain, a PDZ domain and two C2 domains. These domains share 

limited homology with the analogous domains in Piccolo/Aczonin. Adapted from (Garner et 

al., 2000) 
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of presynaptic active zones. Curr Opin Neurobiol 10, 321-7. 
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V) RIM1 ALPHA 

 

Next, I addressed the mechanisms and components of LTP expression downstream of 

PKA recruitment. Several proteins involved in the vesicular cycle are phosphorylated by 

PKA. Studies of KO mice showed that the presence of rabphilin, synapsin I and synapsin II 

that are all substrates of PKA is not necessary for mfLTP (Schluter et al., 1999; Spillane et al., 

1995). At the contrary, the presence of Rab3A, a monomeric G protein which is not 

phosphorylated by PKA, was shown to be necessary for the expression of mfLTP (Castillo et 

al., 1997). Therefore, to identify the target of PKA in mfLTP, the studies focused on binding 

partners of Rab3A which are PKA substrates. One candidate was RIM1α, a central component 

of the active zone. 

 

A) Introduction 

1) Description 

RIMs constitute a family of multidomain proteins that were initially discovered as 

putative effectors for the synaptic vesicle protein Rab3 (Wang et al., 1997). In vertebrates, 

RIMs are encoded by four different genes that generate several isoforms by alternative 

splicing (Wang and Sudhof, 2003). RIM1, the best studied isoform, is located at the active 

zone of presynaptic terminals and forms a scaffolding protein interacting with key molecules. 

 

- Structure of the protein 

RIM1 consists of a N-terminal zinc finger domain, a central PDZ, a short proline-rich 

motif and two C2 domains, a central C2A and a C-terminal C2B domain (Figure 13). 

The prolin-rich region is known to bind proteins containing a SH3 (Src homology 3 

domain) domain, which is a domain present in highly interacting proteins. The PDZ domain is 

a common structural domain of 80-90 amino acids found in signaling proteins. PDZ is an 

acronym combining the first letters of the three proteins which were first discovered to 

possess this domain: post synaptic density protein (PSD95), Drosophila disc large tumor 

suppressor (DlgA), and zonula occuldens-1 protein (zo-1). These domains help anchoring 

transmembrane proteins to the cytoskeleton and helding together signaling complexes. 

The zinc finger domain confers to RIM1 its ability to bind DNA. A zinc finger 

consists of about 30 amino acid residues creating two antiparallel β sheets, and an α helix. 

The zinc ion which holds the β sheets and the α helix together is crucial for the stability of this 
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domain. The binding specificity for 3 to 4 DNA base pairs is conferred by a short stretch of 

amino acid residues in the α-helix. 

A C2 domain is a calcium-dependent membrane-targeting module found in many 

cellular proteins involved in signal transduction or membrane trafficking. It is composed of 8 

β-sheets, forming a beta-sandwich motif and has a high affinity for calcium ions. The C2 

domain is thought to be involved in calcium-dependent phospholipid binding and in 

membrane targetting processes such as subcellular localization. The RIM1 C2 domain does 

not contain the consensus calcium binding sites that were defined in the synaptotagmin C2 

domains (Sudhof and Rizo, 1996) and are necessary for calcium-binding. Thus calcium 

binding to RIM1 is still questionable (Sudhof and Rizo, 1996; Wang et al., 1997). Thanks to 

those four domains, RIM1 can bind several proteins, all important for vesicular 

neurotransmitter release. 

 

- Interacting partners 

The first partner of RIM1 is the protein at the origin of its name, Rab3A. 

Surprisingly, RIM1 interacts with Rab3A via its zinc finger domain, which is in principle 

devoted to DNA-binding. This binding happens only when Rab3A is in the GTP-bound 

configuration (Wang et al., 1997) (Figure 13). 

The RIM1 zinc finger domain also binds Munc13-1, a protein involved in synaptic 

vesicle priming (Betz et al., 2001). These authors demonstrated that Munc13-1 and Rab3A 

bind the same amino-acid sequence, in a competitive and mutually exclusive manner. Based 

on their observations, Betz et al suggested that RIM1contributes to vesicle tethering via its 

binding to Rab3A and creates a physical link between the tethering and priming apparatus by 

interacting with Munc13-1. Another possibility is that RIM1 directly regulates the priming 

activity of Munc13-1. 

RIM1 PDZ domain interacts with the active zone proteins ERCs, ERCs being the 

acronym of the various names those proteins have in the literature (i.e. ELKS, Rab6-

interacting protein 2, and CAST) (Ohtsuka et al., 2002; Wang et al., 2002).  

Via their C-terminal C2B-domain, RIMs interact with α-liprins and in a calcium-

dependent manner with synaptotagmin 1 (Schoch et al., 2002). Furthermore, RIMs have been 

shown to bind in vitro to cAMP-GEFII (guanine nucleotide-exchange factor) (Ozaki et al., 

2000), SNAP-25 (25-kDa synaptosome-associated protein (Coppola et al., 2001), N-type 

calcium channels (Coppola et al., 2001), and 14-3-3 adaptor proteins (Simsek-Duran et al., 

2004; Sun et al., 2003). 
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Finally, RIM1 indirectly interacts with L-type calcium channels through RIM binding 

proteins (RIM-BP) through the proline-rich region located between the C2 domains (Hibino et 

al., 2002, for review, Dresbach et al., 2001; Li and Chin, 2003). 

 

In conclusion, thanks to its multiple binding partners, RIM1 occupies a central 

position in the presynapse and can participate to one or several steps of synaptic vesicle cycle, 

and coordinates the necessary proteins in time and space. 

 

2) Role in transmission 

- Presynaptic LTP 

As a putative target of PKA, RIM1α could be involved in the expression of mfLTP. 

Castillo et al (Castillo et al., 2002) showed that in RIM1α
-/-

 mice, mfLTP in completely absent 

in the CA3 area of the hippocampus and in the cerebellum. Moreover, they showed that 

forkolin-induced potentiation is also abolished at CA3 synapse. As the synaptic responses 

elicited in mutant synapses were comparable in amplitude to those obtained in wild-type 

synapses, they concluded that RIM1α effect is specific to presynaptic LTP mechanisms, and 

that RIM1α acts downstream of PKA activation. 

 

- Phosphorylation by PKA 

Because presynaptic LTP is dependent on PKA and RIM1α, determining whether 

RIM1α is directly phosphorylated by PKA was important. RIM1α contains two consensus 

sites for PKA phosphorylation which are highly conserved among vertebrate species, one 

between the N-terminal zinc finger and the central PDZ domain (residues 410 to 413) and the 

second at the C-terminus (residues 1545 to 1548). In a very interesting study, Lonart et al 

(Lonart et al., 2003) showed that in primary cultures of cerebellar neurons from RIM1α
-/-

 mice 

presynaptic LTP was rescued by transfecting neurons with a wildtype (WT) copy of the 

RIM1α gene. Moreover, they could induce an LTP-like phenomenon by directly stimulating 

PKA with a cAMP analog, thereby bypassing the initial steps of the induction, in WT and 

“rescued” slices but not in RIM1α
-/-

 slices. This confirmed the fact that RIM1α is downstream 

of the AC/PKA pathway in the molecular cascade triggered by LTP induction. In order to 

address the question of PKA phosphorylation, they performed the same recue experiments 

with copies of RIM1α gene containing substitutions in the putative phosphorylation sites. As a 

point mutation at the serine 413 (and not at the serine 1548) blocked the rescue phenomenon, 

the authors concluded that phosphorylation of RIM1α at a single site, serine 413, by PKA is 
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required for presynaptic LTP of neurotransmitter release at cerebellar parallel fiber synapses, 

and probably more generally for mfLTP. 

 

- Role in short-term changes 

Schoch et al (Schoch et al., 2002) were the first group to compare the effects of RIM1α 

knockout (KO), Rab3A homozygous and Munc13-1 heterozygous KO mice on short-term 

plasticity at the Schaffer collateral to CA1 principal neuron synapse. First, these authors 

confirmed that RIM1α KO did not induce any upregulation in RIM2α expression. The only 

change in expression levels concerned a decrease by about 60% in Munc13-1 expression, 

probably because Munc13-1 binds to RIM1α (Betz et al., 2001) and become destabilized in 

the absence of RIM1α. RIM1α
-/-

 and Rab3A
-/-

 mice presented a similar large increase in PPF at 

short interstimulus intervals (50ms) at excitatory synapses, while Munc13-1 heterozygous 

mice have no alterations in PPF. In contrast, in RIM1α
-/-

 inhibitory synapses (stratum radiatum 

to pyramidal neurons in CA1 area) the paired-pulse ratio was decreased, indicating that 

RIM1α might have different functions at excitatory and inhibitory synapses.  

Longer lasting forms of short-term synaptic plasticity were also altered at excitatory 

synapses in RIM1α
-/-

 mice. PTP was increased and there was less depression at moderate 

stimulation frequencies as compared to WT controls. This suggests that RIM1α acts as a 

regulator of P. These data are similar to those obtained in Rab3A
-/- 

mice, Munc13-1
+/-

 mice 

being similar to WT. These results confirmed that RIM1α is linked to Rab3A and mediates its 

effects on synaptic transmission.  

Calakos et al (Calakos et al., 2004) investigated the step of the synaptic vesicle cycle 

during which RIM1α is involved. To this aim, they recorded EPSCs in autaptic hippocampal 

neurons prepared from RIM1α
-/-

 and WT mice. They found a reduction in the EPSC charge 

for RIM1α
-/-

 neurons, associated with a 50% reduction in the RRP of synaptic vesicles 

measured upon stimulation with hypertonic solution. Interestingly, Calakos et al found a 

normal vesicular release probability, which means that primed vesicles in the remaining RRP 

undergo normal exocytosis. The remaining RRP is independent as well on RIM2α, absent in 

hippocampal cultures. Those findings revealed a role for RIM1α as an enhancer of 

neurotransmitter release through the potentiation of synaptic vesicle priming.  

After the arrival of an action potential at an excitatory synapse, neurotransmitter 

release displays two components (Goda and Stevens, 1994): a fast and synchronous 

component triggered by synaptotagmin I (Fernandez-Chacon et al., 2002), and a slow, 

asynchronous component which is also calcium-dependent but not well understood. Calakos 

et al showed finally that RIM1α participates to about 50% of the asynchronous calcium-



 

 
 

Figure 14 The PKA target RIM1α is necessary for the induction of presynaptic LTP. (A) 

Cortico-amygdala LTP is absent in RIM1α
–/–

- mice (wild-type littermates: n = 5; RIM1α
–/–

: n 

= 9; p < 0.01). Scale bars: 1 mV and 50 ms. (B) Heterosynaptic facilitation of cortico-LA 

synapses by tetanic stimulation of thalamic afferents is not altered in RIM1α
–/– 

mice. (Top) 

Stimulation protocol used to assess cortico-LA PPR before and after tetanic stimulation (45 

stim. at 30 Hz) of thalamo-LA afferents. (Bottom) Cumulative distribution of PPR values 

after tetanic stimulation of thalamo-LA afferents in RIM1α
–/– 

mice (n = 33) and wild-type 

littermates (n = 28). (Right) RIM1α
–/– 

mice and wild-type animals exhibited significant and 

equal heterosynaptic facilitation (p < 0.05 for both genotypes; wild-type vs. RIM1α
–/–

 : n.s.). 

*p < 0.05. (C) FSK-induced potentiation of synaptic transmission is completely abolished in 

RIM1α
–/– 

mice (50 µM FSK; wild-type littermates: n = 16; RIM1α
–/–

: n = 10; p < 0.05). Scale 

bars: 100 pA and 10 ms.(D) Expression of LTP at cortical afferents by pairing presynaptic 

stimulation with sustained postsynaptic depolarization, correlated with a decrease in PPR in 

wild-type mice (bottom), is partially reduced in RIM1α
–/– 

mice (n = 5, p < 0.05).  
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triggered release, which implicates RIM1α in a post-priming step related to calcium-triggered 

fusion. 

 

- Role in vivo  

The fact that RIM1α
-/-

 mice exhibit a deficit in short- and long-term synaptic plasticity 

in the hippocampus raises the question whether a deficit in RIM1α expression affects learning 

and memory in living mice. Powell et al performed a broad behavioral analysis in RIM1α 

deficient mice (Powell et al., 2004). They first tested emotional learning and memory, in a 

context-dependent fear conditioning paradigm, which requires both hippocampus and 

amygdala, and in a cue-dependent fear conditioning paradigm, which is strictly dependent on 

the amygdala. RIM1α
-/-

 mice were significantly impaired in both context- and cue-dependent 

fear conditioning. RIM1α
-/-

 mice also poorly performed in the Morris water maze, revealing a 

deficit in spatial learning, as well as in their locomotor response to novelty. On the other 

hand, RIM1α
-/-

 mice exhibited normal coordination and anxiety-like behaviors. Taken 

together, these results showed that the hippocampus, but not the cerebellum, is affected by the 

mutation. Surprisingly, the authors neglected the putative involvement of the amygdala in 

those results. 

 

B) Results 

To address the role of RIM1α in presynaptically induced and expressed LTPHA I 

compared LTP in RIM1α-deficient mice (RIM1α
–/–

) and wild-type littermate controls. LTP 

was completely absent in RIM1α
–/–

 mice (littermate controls: 143 ± 10%, n = 5, p < 0.05; 

RIM1α
–/–

: 102 ± 10%, n = 9, n.s., Figure 14A). The observed deficit in LTP in RIM1α
–/–

 mice 

could have been caused by a diminished glutamate release from thalamo-LA synapses, and 

therefore by a lack of NMDA receptor activation on cortico-LA terminals. To control for this 

I measured heterosynaptic interactions between thalamo- and cortico-LA synapses. Tetanic 

stimulation of thalamo-LA afferents leads to a heterosynaptic, NMDA receptor-dependent 

increase in the probability of release at cortico-LA synapses (Humeau et al., 2003). This 

heterosynaptic facilitation was not affected in RIM1α
–/–

 mice (wild-type: 120 ± 9% of EPSC 

ratio; RIM1α
–/–

: 121 ± 5 of EPSC ratio, Figure 14B). Therefore I can conclude that the 

absence of LTP in RIM1α
–/–

 mice was due to a failure of LTP induction and/or expression at 

cortico-LA synapses.  

In accordance with the lack of LTP, forskolin-potentiation was completely abolished 

in RIM1α
–/–

 mice (littermate controls: 155 ± 4%, n = 16, p < 0.05; RIM1α
–/–

: 104 ± 4%, n = 
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10, n.s.; measured 25-30 min after forskolin application)(Figure 14C). Thus, RIM1α is an 

essential component of the presynaptic machinery underlying LTP induction and/or 

expression at cortico-LA synapses. 

 

In order to check whether RIM1α
–/–

 mice exhibit a general deficit in LTP, or whether 

the deletion of RIM1α gene affects specifically presynaptic LTP, I decided to use a protocol 

which is known to trigger postsynaptic LTP: Classically, this kind of protocols consist in the 

pairing of presynaptic firing and postsynaptic depolarization, repeated several times. In the 

amygdala, pairing 15 bursts of 3 action potentials and 3 EPSPs at 30Hz induces STDP at 

thalamo-LA synapses, but no change of the synaptic strength at cortico-LA synapse. 

However, applying additional, sustained depolarization in between the APs during the bursts 

is sufficient to induce LTP at cortico-LA synapses. (Humeau et al., 2005) (see appendix C). 

The authors showed that this form of LTP was induced postsynaptically. 

With the protocol described by Humeau et al, wild-type animals expressed LTP at a 

comparable level to what was expected (158 ± 17% of baseline, n = 5, p < 0.05, Figure 14D). 

RIM1α
–/–

 mice exhibited a 50% lower LTP level (131 ± 13% of baseline, n = 5, p < 0.05). 

Moreover, sustained depolarization-induced LTP expression in WT mice was correlated with 

a trend to a decrease in PPR (82 ± 9% of baseline, ns), which is an indication for a presynaptic 

change. Thus pairing presynaptic firing to postsynaptic depolarization could involve some 

presynaptic mechanisms, which could explain why RIM1α
–/–

 mice exhibit a partial deficit in 

this form of LTP. 

 

 



 
 

Figure 15: RIM1α
–/– 

 mice exhibit impaired Ca
2+

-release coupling and altered short-term 

plasticity at cortico-LA synapses. (A-C) Variance-mean analysis reveals a significantly 

lower P at cortico-LA synapses in RIM1α
–/– 

mice. (A) Representative examples illustrating 

variance of evoked EPSCs at different Ca
2+

 concentrations in wild-type littermates (top) and 

RIM1α
–/– 

mice (bottom). (B) Averaged variance-mean plots for wild-type (n = 9) and RIM1α
–

/– 
mice (n = 8). Scaled parabolas reveal lower P in RIM1α

–/– 
mice as compared to wild-type 

littermates. The effect increases with higher external Ca
2+

 concentrations. (C) P in wild-type 

mice and RIM1α
–/– 

mice plotted as a function of external Ca
2+

 concentration. In RIM1α
–/– 

mice 

P is significantly reduced at 2.5 mM (p < 0.05) and 4 mM Ca
2+

 (p < 0.05). (D) Repetitive train 

stimulation at 20 Hz reveals altered short-term plasticity in RIM1α
–/– 

mice. Representative 

traces from wild-type littermates (top) and RIM1α
–/– 

mice (bottom) recorded at 4 mM Ca
2+

. 

Scale bars: 250 pA and 50 ms. (E) Averaged and normalized time course of EPSC depression 

during 20 Hz stimulation recorded at 4 mM Ca
2+

. RIM1α
–/– 

mice (n = 10) exhibited an initial 

facilitation followed by a significantly slower depression (n = 10, p < 0.05). Traces illustrate 

the first 6 EPSCs during 20 Hz train stimulation (same traces as in panel D). Scale bars: 50 

pA and 100 ms. (F) Recovery from depression was not different between RIM1α
–/– 

mice (n = 

10) and wild-type littermates (n = 10; n.s.). *p < 0.05. 
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VI) RIM1 AND CALCIUM IONS 

 

Although it seems that RIM1 C2 domains are not able to bind calcium ions (Wang et 

al., 1997), RIM1 has several binding partners which are able to bind calcium ions through 

their own C2 domains (for example, Munc13-1) or which are themselves permeable for 

calcium (N-type calcium channels, and indirectly to L-type calcium channels through RIM-

BP). The involvement of RIM1 in calcium-dependent processes is thus an important issue to 

test. 

 

Although deletion of RIM1α completely abolishes presynaptic LTP at a number of 

synapses, this does not correlate with changes in baseline release properties. For example, at 

hippocampal mossy fiber terminals, baseline release properties appear normal in RIM1α
–/–

 

mice, at least as judged by measuring PPR (Castillo et al., 2002). To address whether 

deficiency of RIM1α had an effect on baseline release properties of cortico-LA synapses we 

analyzed the probability of release at different Ca
2+

 concentrations using variance-mean 

analysis. Comparing the relation between EPSC variance and mean EPSC amplitude revealed 

a significantly lower baseline release probability in RIM1α
–/–

 mice (n = 9) as compared to 

littermate control animals (n = 8, Figure 15A-C). The difference in P between wild-type and 

RIM1α
–/–

 mice was increasing as a function of the extracellular Ca
2+

 concentration (Figure 

15B,C). While at 1 mM external Ca
2+

 there was no significant difference detectable (wild-

type: 0.12 ± 0.02, n = 9; RIM1α
–/–

: 0.10 ± 0.03, n = 8; n.s.), increasing external Ca
2+

 to 2.5 

mM or 4 mM revealed a significant deficit in P in RIM1α
–/–

 mice (2.5 mM: wild-type: 0.51 ± 

0.04, n = 9; RIM1α
–/–

: 0.32 ± 0.08, n = 8; p < 0.05; 4 mM: wild-type: 0.79 ± 0.04, n = 9; 

RIM1α
–/–

: 0.56 ± 0.08, n = 8; p < 0.05, Figure 15C). Thus, although P increases in RIM1α
–/–

 

mice with increasing external Ca
2+

 concentrations, the dependence of P on external Ca
2+

 is 

markedly less steep as compared wild-type controls. The normalization process introduces a 

loss of information concerning Q and N. Therefore, Q and N datas were collected from 

individual non-normalized parabolas and averaged. No significant difference was observed 

neither for Q (wild-type: 8.5 ± 0.7 pA; RIM1α
–/–

: 11,2 ± 1,3 pA, ns) nor for N (wild-type: 26.7 

± 4.1 sites; RIM1α
–/–

: 28.5 ± 8.5 sites, ns). 

 

The difference in the baseline probability of release and in the Ca
2+

-dependency of release in 

RIM1α
–/–

 animals predicts that short-term synaptic dynamics might be altered. Therefore I 

analyzed short-term plasticity of cortico-LA synapses during and after delivering trains of 

stimuli at 20 Hz. Given that the difference in baseline P was most prominent at high Ca
2+
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concentrations, these experiments were performed in the presence of 4 mM external Ca
2+

. 

Analysis of EPSCs during 20 Hz stimulation revealed that RIM1α
–/–

 mice exhibited increased 

short-term facilitation during the initial phase of the stimulation train (wild-type: n = 10; 

RIM1α
–/–

: n = 10; p < 0.05)(Figure 15D,E). During the later phase of 20 Hz stimulation (i.e. 

after 6-7 stimuli) synaptic transmission reached similar levels of steady-state depression in 

RIM1α
–/–

 and wild-type control mice (last 5 stimuli: wild-type: 30 ± 5% of first EPSC, n = 10; 

RIM1α
–/–

: 35 ± 4% of first EPSC, n = 10; n.s.)(Figure 15D). 

The level of steady-state depression during train stimulation depends on a number of factors 

including P, the rate of refilling of the readily releasable pool of synaptic vesicles, and the rate 

of vesicle recycling (Zucker and Regehr, 2002). Indeed, lowering P by reducing external Ca
2+

 

from 4 mM to 2 mM not only increased facilitation during the first few stimulations, but also 

reduced the level of steady-state depression (last 5 stimuli: 4 mM: 31 ± 4% of first EPSC, n = 

10; 2 mM: 61 ± 5% of first EPSC, n = 15; p < 0.01) (Figure S4). Given that the initial P is 

reduced in RIM1α
–/–

 mice, this suggests that during train stimulation either P or the rate of 

vesicle supply catches up to compensate for the reduced initial P. Since recovery of 

depression, reflecting the rate of refilling of the readily releasable pool of synaptic vesicles, 

was normal in RIM1α
–/–

 mice (n = 10; n.s.)(Figure 6E), the probability of vesicular fusion is 

most likely non-stationary during train stimulation in RIM1α
–/–

 mice (Calakos et al., 2004).  

Taking together the normal rate of refilling of the readily releasable pool and the fact that the 

difference in initial P is largely Ca
2+

-dependent, this suggests that the deficit in overall P in 

RIM1α
–/–

 mice is mediated by a reduced probability of vesicular fusion rather than by a deficit 

in vesicle priming associated with a smaller readily releasable pool. Finally, analysis of 

steady-state depression levels is consistent with the idea that RIM1α
–/– 

mice exhibit 

differential changes in P during train stimulation. Thus, RIM1α appears to play a central role 

in regulating the dynamics of Ca
2+

-release-coupling at cortico-LA synapses. 
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VII) RIM1 AND PRESYNAPTIC CALCIUM CHANNELS 

 

As RIM1α
–/–

 mice exhibit deficits in calcium-dependent release, it was important to 

examine the role of voltage-dependent calcium channels (VDCCs). RIM1α has been reported 

to directly or indirectly interact with different presynaptic VDCCs. 

 

A) Introduction to presynaptic voltage-dependent calcium 

channels 

1) General description 

a) Subunit composition 

VDCCs are complex proteins composed of four or five distinct subunits, which are 

encoded by multiple genes. An intracellular  subunit and a transmembrane, disulfide-linked 

2subunit complex are components of most types of VDCCs, sometimes associated with a  

subunit. The 1 subunit of 190 to 250 kDa is the largest subunit (Figure 16A). It forms the 

conduction pore, the voltage sensor and the gating apparatus. It is also the site of channel 

regulation by second messengers, drugs, and toxins. Although these auxiliary subunits 

modulate the properties of the channel complex, the key factor determining the 

pharmacological and electrophysiological diversity of VDCCs is the existence of multiple 

forms of 1 subunits (for review, Ertel et al., 2000). 

 

b) Families 

There are at least 6 functionally distinct voltage-dependent calcium channel (VDCC) 

subtypes described so far in the CNS: L-, N-, P-, Q-, R- and T-type (Catterall, 2000; Tsien et 

al., 1988).They can be regrouped in 3 families according to their sequence homology (for 

review, Elmslie, 2003) (Figure 16B): 

 CaV1 family: it is composed of L-type VDCCs. They are sensitive to dihydropyridines 

(DHPs). Neurons can express 3 members of this family, CaV1.2, CaV1.3 and CaV1.4. 

 CaV2 family: it includes P/Q-type (CaV2.1), N-type (CaV2.2) and R-type (CaV2.3). 

N-type VDCCs are blocked by -conotoxins, P/Q-type VDCCs are blocked by -

agatoxins. R-type VDCCs are defined by the impossibility to specifically block them, 
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as T-type VDCCs they are sensitive to nickel. However, a subtype of R-type VDCCs 

is selectively blocked by the toxin SNX-482. 

 CaV3 family: it consists of T-type VDCCs. All three members of this family are 

widely expressed in the CNS. They are non-specifically blocked by nickel and are 

characterized by a low threshold voltage for activation and a fast inactivation. 

 

c) Nomenclature 

Initially, VDCCs were separated into two groups. The first group regrouped the low 

voltage-activated channels (LVA) which are rapidly inactivated channels and are activated by 

a weak depolarization. The second group corresponded to high voltage-activated channels 

(HVA), which require a stronger depolarization, and exhibit variable inactivation patterns 

(Carbone and Lux, 1984). Three different nomenclature were then used simultaneously: a 

classification in function of the subunit composing the pore of the channel; a classification 

based on the current recorded (L-, P-…); and the separation in families based on structural 

homologies, the CaV nomenclature (Ertel et al., 2000). 

In the following parts, I will use the nomenclature based on the electrophysiological 

current recordings (Figure 16). 

 

2) Physiology of voltage-dependent calcium channels 

a) Activation 

The time necessary for VDCC activation is specific for each family of VDCCs, on 

average it requires approximatively 1 ms for L-, P/Q-, N- and R-type VDCCs. The order of 

activation is 1D>1C>1A>1B >1G (from faster to slower) (for review, Jones, 2003). 

The activation of VDCCs is regulated by the  subunits of G proteins, which can slow down 

the activation of N- and P/Q-type VDCCs as well as increasing the voltage requested for the 

opening of the channel (for review, Catterall, 2000).  

 

b) Selectivity 

Voltage-dependent calcium channels become nonselective for cations in the absence 

of Ca
2+

 ions. In presence of Ca
2+

 ions, the presence of a glutamate residue in the pore region 

lead to out all other cations. The glutamate residue is absent in sodium channels,and mutating 

the corresponding site in sodium channels transform them into a kind of channel sharing 

many of the features of calcium channels (Heinemann et al., 1992). 
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c) Inactivation 

In general, VDCCs can be inactivated either by calcium- or voltage-dependent 

mechanisms (Budde et al., 2002; Eckert and Chad, 1984; Hering et al., 2000; Stotz and 

Zamponi, 2001). Calcium-dependent inactivation is a calmodulin-dependent process, 

involving sites on the C-terminal domain of the channel (Peterson et al., 1999; Zuhlke et al., 

1999) whereas voltage-dependent inactivation depends on the type of VDCC. For example, T-

type VDCC tend to inactivate rapidly and almost completely (Perez-Reyes, 2003; Yunker and 

McEnery, 2003). VDCC activation state can also be modulated by their subunits, by 

phosphorylation and by G-protein binding (Zamponi and Snutch, 1998). The inactivation site 

is not clear, a candidate is the loop between domains I–II (Stotz and Zamponi, 2001).  

 

3) Role in neurotransmission 

At excitatory synapses, it is generally believed that the entry of Ca
2+

 ions that triggers 

neurotransmitter release is performed through N- and P/Q type VDCCs. In most systems, N-

type channels are responsible for the majority of excitatory transmitter release early in 

development, whereas P/Q-type VDCCs become more prominent during maturation. There 

are also evidence for very little coexpression of N-type and P/Q-type VDCCs (for review, 

Reid et al., 2003). If involvement of N and P/Q channels in transmitter release is the rule, it 

must be noted some exceptions. R-type VDCCs can contribute to baseline transmission at 

specific synapses (Gasparini et al., 2001; Iwasaki and Takahashi, 1998; Wu et al., 1998), but 

their major role concerns synaptic plasticity (Dietrich et al., 2003). L- and T-type VDCCs are 

usually considered to have no role in neurotransmitter release at the CNS (but see 

Heidelberger and Matthews, 1992; Jensen and Mody, 2001; Pan et al., 2001). 

 

4) Synaptic localization 

a) Spatial distribution 

The specific involvement of subtypes of VDCCs in neurotransmitter release can result 

from their differential localization at the presynaptic active zone. Several putative targeting 

motifs were identified. The C terminus of N-type VDCCs contains elements that interact with 

the scaffolding proteins Mint1 and CASK, which are required for both targeting and channel 

function (Maximov and Bezprozvanny, 2002). Another possible targeting motif is the 

synaptic protein interaction site, called synprint, found in the intracellular loop LII-III on the -
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subunit of both N-type and P/Q-type VDCCs (Mochida et al., 2003; Spafford and Zamponi, 

2003) (see Figure 16A). 

 

b) Synaptic protein binding 

At the presynaptic active zone, calcium channels are associated with SNARE proteins. 

The first proof came from colocalization experiments between high-density clusters of N- or 

P/Q-type VDCCs and the SNARE protein syntaxin (Westenbroek et al., 1995). More recently, 

binding experiments showed that the synprint of N- and P/Q-type VDCCs binds specifically 

to synaptotagmin and to the SNARE proteins SNAP-25 and syntaxin. This binding occurs in a 

Ca
2+

-dependent manner (Sheng et al., 1998; Walker and De Waard, 1998, for review, 

Zamponi, 2003). The specific interaction of VDCCs with SNARE proteins can be explained 

by the very important role of calcium in synaptic vesicle exocytosis. 

N-type VDCCs can also directly bind RIM1α C2B domains (Coppola et al., 2001). L-

type VDCCs can bind RIM binding proteins (RIM-BP), and thus indirectly interact with 

RIM1α (Hibino et al., 2002). 

 

B) Results 

Since some VDCCs play an important role in normal release processes and therefore 

might interfere with LTP induction indirectly by reducing the amount of glutamate released 

during tetanic stimulation, I first evaluated the effect of VDCC antagonists on forskolin-

potentiation, which depends on the same induction and expression mechanisms as LTP. 

Comparing antagonists against L-type (verapamil, 50 µM), N-ype (ω-conotoxin, 1 µM) and 

P/Q-type (ω-agatoxin, 0.5 µM) VDCCs revealed a specific role of L-VDCCs in forskolin-

potentiation (Figure 17A,B). While forskolin-potentiation was normal in the presence of N-

VDCC and P/Q-VDCC antagonists (control: 144 ± 13% of baseline, n = 17; ω-conotoxin: 146 

± 14% of baseline, n = 10, p < 0.05; ω-agatoxin: 145 ± 13% of baseline, n = 4, p < 0.05, 

Figure 17B), forskolin-potentiation was completely abolished by the L-VDCC antagonist 

verapamil (78 ± 13% of baseline, n = 6, n.s., Figure 17A,B). As a control, I applied 

sequentially the different calcium antagonists on basal transmission (n = 7, Figure 17C): N- 

and P/Q-type VDCCs were responsible for respectively 37 and 32% of the transmission, 

although they were not involved in LTPHA. L-type VDCC antagonist blocked 19% of the 

EPSC amplitude. As forskolin potentiated the EPSC amplitude by 50%, and this potentiation 

was completely reversed by verapamil, then verapamil effect on forskolin-potentiation could 

not be explained just by a decrease of basal transmission.  
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Since verapamil has been reported to interact with other channels in addition to L-

VDCCs (e.g. (Aicardi and Schwartzkroin, 1990; Ruschenschmidt et al., 2004), we confirmed 

the effect on forskolin-potentiation using another L-VDCC antagonist (nimodipine, 10 µM), 

which also completely blocked forskolin-potentiation (90 ± 15% of baseline, n = 8, n.s., 

Figure 17B). Since forskolin-potentiation and LTPHA utilize the same molecular machinery 

we next tested whether L-VDCCs were also necessary for electrically-induced LTP. LTPHA 

was completely blocked in the presence of verapamil (control: 146 ± 12%, n = 19, p < 0.05; 

verapamil: 95 ± 11%, n = 9, n.s.)(Figure 17D). These experiments show that LTPHA requires 

the activation of L-VDCCs, and that L-VDCCs, like RIM1α, are downstream of PKA in the 

molecular cascade. Thus, L-VDCCs might contribute to either the induction or expression of 

presynaptic LTPHA. 
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VIII) L-TYPE VOLTAGE-DEPENDENT CALCIUM 

CHANNELS 

 

A) Introduction 

1) L-VDCCs in muscles cells 

L-type VDCCs are mainly known to couple excitation to contraction in the skeletal, 

cardiac and smooth muscles. Their coupling to intracellular mechanisms is extremely 

different in each of those muscle types (for review, Wang et al., 2004). 

 

2) L-VDCCs in hair cells 

Presynaptic L-type VDCCs has been reported in hair cells of the auditory pathway. 

Hair cells are tonically releasing cells and L-type VDCCs are the only subtype required for 

the continuous transmitter release (Fuchs et al., 1990; Moser and Beutner, 2000; Platzer et al., 

2000; Roberts et al., 1990; Spassova et al., 2001). The mechanism underlying the coupling of 

L-type VDCCs with tonic release is still poorly understood. 

 

3) CNS neurons 

a) Basal neurotransmission 

Although the general dogma is that L-type calcium channels play no role in 

neurotransmitter release in the CNS, few works reported the presence of L-type VDCCs in 

various parts of the CNS, including hippocampus, striatum and thalamus, and their 

physiological role (Avery and Johnston, 1996; Vergara et al., 2003; Zhuravleva et al., 2001). 

Interestingly, the current recorded in those experiments showed characteristics of T-type 

VDCCs as they are activated at a low voltage. On the other hand those currents were partially 

reduced by the application of dihydropyridines, which is specific to L-VDCCs currents. The 

explanation of this paradox comes from a bias committed in L-type VDCC characterization 

studies: they concerned so far only CaV1.2 subtype, which are high-voltage-activated channels 

with a high sensitivity to dihydropyridines. On the contrary, CaV1.3 and CaV1.4 L-type 

VDCCs have a low-threshold activation and exhibit only a partial block by dihydropyridines. 
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This corresponds exactly to the observations by Avery and Johnston, Vergara et al and 

Zhuravleva et al (for review, Lipscombe et al., 2004). 

 

b) Synaptic plasticity 

L-type VDCCs are also involved in synaptic plasticity. Their importance was shown in 

postsynaptic NMDAR-dependent form of LTP in the CA1 area of the hippocampus (Udagawa 

et al., 2006; Zakharenko et al., 2001), the striatum (Vergara et al., 2003), the superior 

colliculus (Zhao et al., 2006) or the amygdala (Bauer et al., 2002). L-type VDCCs were also 

hypothesized to be the only trigger of LTP in the basolateral amygdala-dentate gyrus pathway 

(Niikura et al., 2004). 

Recently, a group showed that the activation of presynaptically silent synapses in the 

hippocampus is dependent on L-type VDCCs, PKA and actin polymerization (Yao et al., 

2006). These authors reported that the potentiation of miniature EPSC (mEPSC) amplitude, 

the presynaptic enhancement of mEPSC frequency and the FM staining was blocked by L-

type antagonists. Although they did not demonstrate whether L-type VDCCs are pre- or 

postsynaptic, they discovered of an unconventional presynaptic plasticity. 

 

c) Fear conditioning 

In spite of the relatively weak involvement of L-type VDCCs in neurotransmitter 

release, they seem to play a role in vivo, more specifically in fear memory formation. 

Shinnick-Gallagher et al studied their importance in vivo in the amygdala (Shinnick-Gallagher 

et al., 2003). L-type VDCCs antagonists blocked the expression of fear-potentiated startle in a 

dose-dependent manner. By comparing the physiology of brain slices coming from naïve and 

fear-conditioned animals in an ex vivo approach, the authors could observe a fear-induced and 

L-type dependent potentiation of the EPSCs, coupled to a decrease of PPF. This last point in 

particular is an indication that L-type VDCC involvement in learning and memory could be at 

least partially dependent on presynaptic mechanisms. 

 

 

B) Results 

To examine whether L-VDCCs contribute to LTP expression I first compared the 

effect of verapamil on synaptic transmission at naive synapses and at synapses where LTP 

had been induced. To avoid a possible confound due to a reduction in glutamate release from 
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thalamo-LA synapses during LTP induction, I used forskolin to potentiate synaptic 

transmission independent of thalamo-LA afferent stimulation. 

In naïve slices bath application of verapamil resulted in a small but significant 

reduction in synaptic transmission (16 ± 5% inhibition, n = 8, p < 0.05, Figure 18A). In 

contrast, when verapamil was applied after induction of forkolin-potentiation, the impact of 

verapamil, and thus the contribution of L-VDCCs to synaptic transmission, was markedly 

increased (38 ± 8% inhibition, n = 11, p < 0.05)(Figure 18B,C). In the absence of verapamil, 

LTPFSK remained stable for the duration of the experiment (Fig. 18B).This indicates that L-

VDCCs are necessary for the expression of LTPHA. 

To further address this point using an independent measure, I analyzed changes in 

short-term plasticity induced by forkolin and whether such changes could be reversed by an 

L-VDCC antagonist. Forkolin-potentiation was associated with a significant shift in short-

term synaptic plasticity during repetitive 20 Hz stimulation (Figure 19A). Consistent with the 

fact that forskolin induces an increase in P, forskolin application resulted in a more rapid 

depression of cortico-LA EPSCs during 20 Hz stimulation (n = 10, p < 0.05). Moreover, the 

steady-state level of depression was lower than in naïve slices (last 5 stimuli: control: 60 ± 5% 

of the first response amplitude, n = 10; FSK: 40 ± 3% of the first response amplitude, n=10, p 

< 0.05)(Figure 19A), indicating that LTP induction predominantly increases the probability of 

vesicular release, without any concomitant increase in the rate the readily releasable pool is 

refilled during repetitive stimulation. Application of the L-VDCC antagonist verapamil 

completely reversed the forskolin-induced changes in short-term synaptic plasticity (n = 

7)(Figure 19B). In the presence of verapamil, both the rate of depression, as well as the 

steady-state level of depression were not significantly different from control slices (last 5 

stimuli: control: 60 ± 5% of the first response amplitude, n = 10; FSK + verapamil: 60 ± 5% 

of the first response amplitude, n = 7, n.s., Figure 19B). Taken together, these data 

demonstrate that the expression of presynaptic LTPHA and forskolin-potentiation are almost 

entirely due to a change in L-VDCCs function. 

 

Since both L-VDCCs and RIM1α are required for LTPHA downstream of PKA 

activation, and because previous reports have demonstrated direct or indirect functional 

interactions between RIM1α and L-VDCCs in other systems, I next examined the contribution 

of L-VDCCs to synaptic transmission in RIM1α
–/–

 mice. In slices from wild-type and RIM1α
–

/–
 mice blockade of L-VDCCs (in 4 mM external Ca

2+
) resulted in similar levels of inhibition 

of synaptic transmission (wild-type: 75 ± 11% of baseline, n = 9; RIM1α
–/–

: 74 ± 10%, n = 9, 

p < 0.05, Figure 20A), indicating that L-VDCCs are present at similar levels in RIM1α
–/–

 mice 

and in control mice.. 
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To address a possible functional alteration in L-VDCC during short-term synaptic 

plasticity I examined the impact of verapamil on PPR in RIM1α
–/–

 mice and littermate 

controls. While L-VDCC blockade markedly increased PPR in wild-type mice (control: 1.00 

± 0.08, n = 16; verapamil: 1.79 ± 0.59, n = 6, p < 0.05), PPR was not significantly affected in 

RIM1α
–/–

 mice (control: 1.34 ± 0.12, n = 17; verapamil: 1.46 ± 0.17, n = 7, n.s., Figure 20B). 

Thus, while L-VDCCs equally contribute to synaptic release upon single-shock stimulation in 

wild-type and RIM1α
–/–

 mice, the temporal dynamics of L-VDCC contribution to short-term 

synaptic plasticity is altered in the absence of RIM1α. This indicates that RIM1α determines 

the functional coupling of presynaptic L-VDCCs to the release process. 
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IX) GENERAL DISCUSSION 

 

During my PhD studies, I investigated the molecular mechanism requested for the 

induction and the expression of LTPHA, a presynaptic LTP described in the lateral amygdala 

and dependent on cortical presynaptic NMDA receptor. I found that LTPHA is entirely 

mediated by an increase in the probability of vesicular release. Downstream of the 

cAMP/PKA pathway, LTP induction and expression depends on the active zone protein 

RIM1α and L-type voltage-dependent Ca
2+

 channels (L-VDCCs). RIM1α-deficient mice not 

only exhibited a lack of presynaptic LTP but also showed reduced Ca
2+

-sensitivity of evoked 

synaptic transmission and altered coupling of L-VDCCs to synaptic release.  

 

 

A) cAMP, adenylyl cyclase and PKA in LTPHA 

In this study, I have investigated the molecular mechanisms responsible for 

presynaptic LTP induction and expression in the LA. My results indicate minor PKC 

involvement (Figure 10). In addition, I have observed that blocking the AC/PKA pathway 

prevents the possibility to induce LTPHA (Figure 12); and stimulating this pathway occludes 

LTPHA (Figure 11). My findings implicate an increase in cAMP underlay LTPHA. This is 

consistent with a substantial
 
body of evidence implicating that cAMP activates cAMP-

dependent
 
protein kinase (PKA) and elicits a long-lasting increase

 
in transmitter release at 

many central synapses (Chavez-Noriega and Stevens, 1994; Colwell and Levine, 1995; Salin 

et al., 1996; Weisskopf et al., 1994). This effect is also believed
 
to underlie long-term 

potentiation of synaptic efficacy and
 
memory consolidation (Bailey et al., 1996).  

 

1) The adenylyl cyclase involved 

Almost all the isoforms of AC so far known are expressed in the brain. Five of them 

are calcium-sensitive: AC1, AC3, AC5, AC6 and AC8. Yann Humeau demonstrated that 

LTPHA is triggered by a calcium flow through NMDAR located at the presynaptic cortical 

terminal (Humeau et al., 2003). It is thus tempting to speculate that the calcium transients due 

to activation of presynaptic NMDARs mediate the AC recruitment necessary for LTPHA. The 

identity of the AC isoform(s) expressed in the LA and involved in LTPHA remains unknown, 

however some isoform are unlikely to be involved. For instance, the AC5 and AC6 isoforms 
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are inhibited by a calcium rise, thereby leading to decrease in the cAMP levels. Hence, by 

inference, their implication is unlikely. Among the three remaing calcium-calmodulin 

stimulated AC, two isoforms deserve special consideration: AC1 and AC8 knock-out studies 

showed that these two AC isoforms are involved in hippocampal-dependent synaptic 

plasticity and memory formation (for review, Ferguson and Storm, 2004; Wang and Storm, 

2003). Moreover, the anterior cingulate cortex expresses a form of LTP that depends mainly 

on AC1, and maybe on AC8, and requires calcium entry through NMDAR and L-type 

VDCCs. On the basis of this striking similarity with LTPHA (LTPHA implicates NMDAR 

(Humeau et al., 2003) and L-type VDCCs (my study)), it is tempting to speculate that 

calcium-calmodulin dependent AC1 and/or AC8 might be involved in LTPHA induction. 

Further experiments are needed to verify this possibility. 

 

2) Similarity of the forskolin LTP and LTPHA 

In this study, several pieces of evidence converged to the idea that LTPHA and 

forskolin-LTP are identical in their expression mechanism. First, forskolin-LTP occludes any 

further induction of LTPHA (Figure 11B). Second, they are both blocked by the application of 

H89 (Figure 12B). Last, LTPHA and Forskolin-LTP are both mediated by an increase in the 

probability of vesicular release. Taken together, these results indicate that LTPHA and 

forskolin-LTP share the same molecular pathway. As Forskolin-LTP directly activates the 

AC/PKA pathway, any mechanism blocking both forms of presynaptic LTP is necessarily 

downstream of PKA recruitment.  

 

3) Is PKA the only target of cAMP? 

In neurons and other secretory cells such as the pancreatic beta-cells, it has been 

established that protein kinase A (PKA) is not the only cAMP-binding
 
protein: cAMP can 

bind to Epac (Epac1 and Epac2), a guanine-nucleotide exchange factor for Rap, which is a 

small GTPase that has been implicated in long-term ultrastructural synaptic plasticity in 

hippocampal neurons (Fu et al., 2007). PKA-independent
 
actions of cAMP, likely to be 

mediated by Epac, enhance the release of transmitters and
 
hormones. For example, at the 

crayfish
 
neuromuscular junction, cAMP activates presynaptic exchange

 
proteins via the 

cAMP-Epac pathway and hyperpolarization and cyclic
 
nucleotide-activated (HCN) channels, 

thereby increasing transmitter
 
release (Beaumont and Zucker, 2000; Zhong and Zucker, 

2005).
 
At the calyx of Held, cAMP facilitates transmitter release via

 
activating the Epac 

pathway in the nerve terminal (Kaneko and Takahashi, 2004). In the pancreatic ß-cells Epac 
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couples cAMP production to the stimulation of fast calcium-dependent exocytosis and 

mediates the cAMP-dependent mobilization
 
of calcium from intracellular calcium stores, thus 

modulating the efficacy of secretion (Kwan et al., 2007). Similarly, cAMP Epac-dependent 

and protein kinase A-independent signaling cascade have been shown to control neuronal 

excitability, these effects involve the activation of Rap and p38 MAPK, which then mobilizes 

intracellular calcium stores (Ster et al., 2007). Moreover, PKA and Epac can share common 

downstream targets: for example in the ß-cells, Epac2 and RIM2 interact together (Ozaki et 

al., 2000) and bind to Munc13-1 (Kwan et al., 2007), which is a key actor in the priming of 

synaptic vesicles (Augustin et al., 2001).  

Despite the impressive list of evidence supporting a potential role of Epac in 

mediating increase in neurotransmitter release, we can rule out the possibility that Epac plays 

a role in the LTPHA mechanisms: it is now well established that H89 -the PKA inhibitor I used 

in my experiments- leaves Epac intact (Huang and Hsu, 2006; Kwan et al., 2007; Ster et al., 

2007), but similarly as Rp-cAMPs does, H89 blocks the induction of LTPHA. Moreover, H89 

blocks Forskolin-LTP, which confirms that Forskolin activates PKA via the stimulation of 

AC and cAMP production. All together, these findings clearly indicate that PKA is the only 

cAMP-binding target activated following the increase in cAMP levels. Thus, recruitment of 

the AC/PKA pathway is likely to mediate LTPHA (induction and/or expression) (Figures 16 

and 17).  

 

 

B) RIM1 in LTP  

1) RIM1α is the target of PKA during LTPHA 

Many possible targets of PKA are likely being involved in up-regulating 

neurotransmitter release. This comprises i) the calcium channels (for N-type VDCCs see 

Yokoyama et al., 1997, for L-type VDCCs, see below) and 2) several proteins of the 

exocytotic machinery. 

Indeed PKA has been reported to phosphorylate the SNARE protein SNAP-25 (Nagy 

et al., 2004), several proteins interacting with the SNAREs as Snapin and the cyst-string-

proteins (reviewed by Evans and Morgan, 2003), and other regulatory proteins of the 

exocytotic machinery thought to be involved in the priming mechanisms as the synapsins, and 

the two targets of Rab3-GTPAse: Rabphilin (Lonart and Sudhof, 1998) and RIM (including 

RIM1) (Lonart et al., 2003). Other essential proteins of the release machinery as Munc18 

and Munc13 are phophorylated by PKC.  
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Phosphorylation of SNAP-25 has been reported to regulate the RRP sizes in 

chromaffin cells following its phosphorylation (Nagy et al., 2004) but this mechanism has 

never been suspected to play a role in LTP. Synapsins have been found to be not necessary for 

the induction or expression of postsynaptic LTP at the Schaffer collateral-CA1 synapse,but 

also for presynaptic LTP at the mossy fiber (mf)-CA3 pyramidal cell synapse in the 

hippocampus. Furthermore, synapsins play no role in mediating the enhancement in 

transmitter release elicited by PKA activation (for review, Spillane et al., 1995). Recently, 

cAMP-dependent tyrosine phosphorylation of Rabphilin has been reported to occur during the 

late phase of long-lasting LTP in CA1 (Capron et al., 2007). Thus, with the exception of 

RIM1α, none of the mentioned proteins are candidates to be phosphorylated by PKA and to 

support expression of LTP.  

In line with above mentioned finding, I have reported that presence of RIM1 is 

required for LTPHA expression (Figure 14) or Forskolin-LTP. This is highly suggestive that a 

NMDAR-AC-PKA-RIM1 pathway is involved in LTPHA, reminiscent of the presynaptic 

AC-PKA-RIM1 pathway already demonstrated in the hippocampus at the mossy fiber to 

CA3 pyramidal neuron synapse, and in the cerebellum at the parallel fiber to purkinje cell 

synapse (Castillo et al., 2002; Castillo et al., 1994; Lonart et al., 2003; Nicoll and Malenka, 

1995; Zalutsky and Nicoll, 1990). Intringuingly, a similar NMDAR-AC-PKA-RIM1 

pathway has been reported to play a role in postsynaptic Late-LTP but not Early-LTP in the 

hippocampal Schaffer collaterals to CA1 synapse (Huang et al., 2005). Thus, implication of a 

NMDAR-AC-PKA-RIM1 can no longer be considered as pinpointing a presynaptic locus for 

expression of LTP. Postsynaptic implication of the pathway AC-PKA-RIM1 is consistent 

with the notion that the mechanisms involved in membrane insertion of AMPAR during LTP 

in CA1 is mediated by an exocytotic machinery very similar to the presynaptic one involved 

in neurotransmitter release (Lledo et al., 1998). 

In addition to the role of RIM1 in LTPHA expression, I found that RIM1was 

partially involved in another form of LTP at cortico-LA synapse, the sustained depolarization-

induced LTP (Figure 14D). This LTP, induced by pairing presynaptic firing with postsynaptic 

depolarizations, was considered to be postsynaptic (Humeau et al., 2005). Interestingly, 

Huang et al (2005) found as well a LTP depending from post- and presynaptic mechanisms at 

corticoamygdala pathway, and they observed a partial decrease in LTP expression for RIM1
-

/-
 mice. It implies two different possibilities: either RIM1has a postsynaptic role, or 

sustained depolarization-induced LTP requests some presynaptic mechanisms as well. If 

RIM1is present at the postsynaptic side, it could have an influence on LTPHA as well. 
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Several lines of evidence confirm LTPHA expression is purely presynaptic: 

- LTPHA is dependent on calcium, and blocking calcium signaling with BAPTA infusion 

in the postsynapse has no effect on LTP induction (Humeau et al., 2003) 

-  it is coupled to PPR decrease (Humeau et al., 2003) (Figure 4) 

- fluctuation analysis with mean current amplitude plotted against 1/(cv)
2
 (Humeau et 

al., 2003) or the variance of the signal (Figure 6) both showed that LTPHA induction is 

correlated with an increase in P, and no change in Q 

- the amplitude of stimulation-induced miniature EPSCs obtained in the presence of 

strontium is not affected by LTPHA induction; meaning that quantal amplitude Q was 

not changed by LTPHA (Humeau et al., 2003) 

- homosynaptic LTP induced by the suppression of GABAB inhibition on presynaptic 

cortical afferents is not blocked by postsynaptic infusion of a membrane-impermant 

form of RpcAMPs (unpublished datas from Hamdy Shaban). Homosynaptic LTP is 

dependent on AC/PKA pathway and fully occludes with LTPHA, thus demonstrating 

that these two LTP share the same presynaptic induction pathway. 

However, the deletion of a postsynaptic protein could have no influence in the 

expression of a presynaptic LTP. In wild-type animals, sustained depolarization-induced LTP 

is coupled with a decreased PPR, which is an indication for an increase in the probability of 

release. Thus it seems very likely that sustained depolarization-induced LTP is partially due to 

presynaptic mechanisms and RIM1is only presynaptic. Further experiments on sustained 

depolarization-induced LTP, such as fluctuation analysis, could be interesting to be performed 

in order to confirm this hypothesis. 

The two forms of presynaptic LTP in the hippocampus and the cerebellum in which 

the AC-PKA-RIM1 pathway has been implicated (for refs see above) are induced in a very 

different way from LTPHA. Indeed LTPHA needs the activation of NMDAR at the cortical-

amygdala presynapse, which is an unusual mechanism. Moreover, NMDAR activation is 

dependent on the co-stimulation of the cortical and the thalamic afferents. This heterosynaptic 

associative induction mechanism is unique in the CNS. This raises the question of the role of 

RIM1 in neurotransmitter release and synaptic plasticity, and whether the steps downstream 

from RIM are specific for LTPHA or shared with other forms of LTP. 

 

2) Does RIM1α play a role in the SV priming mechanisms?  

RIM1 is generally considered as a key molecule involved in the priming mechanism 

of synaptic vesicles. In C. elegans unc-10 mutants lacking RIM, normal levels of synaptic 

vesicles appearing morphologically docked at the release sites have been reported, suggesting 
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that RIM is not involved in the SV traffic or tethering at the release sites. Moreover NT 

release is reduced fivefold without change in calcium sensitivity of release events (Koushika 

et al., 2001). On this basis it has been first proposed that RIM1 acts during a step 

downstream from tethering of synaptic vesicles to the release site but before the fusion step. 

This is likely to correspond to priming, the ensemble of molecular events enabling synaptic 

vesicles to be ready-to-release. RIM1 is associated to plasma membrane and can form a 

tripartite complex with the SV-associated Rab3 GTPase and protein kinase Munc13 

(Dulubova et al., 2005). Indeed, RIM1 can recruit Munc13 isoforms at the active zone 

(Andrews-Zwilling et al., 2006; Betz et al., 2001) and disruption of the RIM/Munc13 

interaction leads to decrease in the size of the RRP in the calyx of Held synapse (Dulubova et 

al., 2005). Moreover, this complex may support expression of synaptic plasticity. For 

example, Munc13 can also form a complex with calmodulin, thereby mediating calcium-

dependent modulation of the RRP size in the hippocampus (Junge et al., 2004). However, at 

mice lacking RIM1, exocytosis still occurs suggesting it is not fully indispensable (or 

compensated) (Calakos et al., 2004; Schoch et al., 2002), thus RIM1 may boost the priming 

mechanisms.  

 

If these above deductions are right, the priming mechanisms should be slower in nerve 

terminals taken from mice lacking RIM1. When the stimulation frequency is increased, 

neurotransmitter release in RIM1
-/-

 synapses should be more susceptible to undergo high-

frequency depression because the priming mechanisms are too slow to refill on time the RRP. 

This should express as faster depletion kinetics, lower level for the plateau reach during 

depression and slower time constant for recovery of initial level of transmission when the 

high frequency stimulus is terminated. To my surprise, no significant change in depression 

and recovery kinetics or plateau level was detected at cortical (Figure 15) and thalamic (not 

shown) synapses onto the pyramidal cells in the LA taken from RIM1
-/-

 mice. This clearly 

argues against the possibility that RIM1 plays role in priming, but does not negate the 

possibility that it plays other roles. In this line, I propose (see discussion below) that RIM1α 

functionnally interacts with L-types VDCCs. A careful comparison with previously published 

results is needed: I observed that during the 20 Hz-induced depression (Figure 15), RIM1
-/-

 

slices showed an increase in PPR as compared to WT, pinpointing a decrease in release 

probability. This is fully consistent with the decreased release probability detected by the 

Variance to Mean plots (Figure 15). RIM1α
-/-

mice expressed an increased PPR compared to 

WT as well in hippocampal glutamatergic autapses (Calakos et al., 2004) and CA1 synapses 

(Schoch et al., 2002). Moreover, RIM1α
-/-

 has been reported better able to sustain responses 



 

55 

during high-frequency stimulation compared to WT (Calakos et al., 2004; Schoch et al., 

2002). This may be due to the decreased release probability: indeed, when the synaptic vesicle 

demand at each stimulus is reduced, less release sites needs to be refilled. Consistent with my 

data, Calakos et al (2004) observed that the kinetic of recovery from depression is unaltered, 

suggesting no change in the refilling kinetics. However, the authors observed that amplitude 

of hypertonic sucrose-elicited response, generally believed to be an index for the RRP size, is 

diminished. Note that no data clearly establish that the RRP and the synaptic vesicle pools 

recruited by hyper-sucrose are identical. Overall, the set of data presented by Calakos et al. 

(2004), Schoch et al. (2002) and my data are difficult to reconcile with the earliest proposal 

that RIM1 plays a role in the priming mechanisms. However, this difference could be 

explained by the fact that the synapses studied are very different one from each other. 

 

3) An altered Ca
2+

-release coupling in RIMα
-/-

 synapses 

Two previous studies (Calakos et al., 2004; Schoch et al., 2002) together with my 

observations clearly demonstrated a decrease in the release probability at the glutamatergic 

synapses taken from mice lacking RIM1. However, no alteration in Ca
2+

 responsiveness has 

been been detected in the initial studies performed using the C. elegans unc-10 mutant 

(Koushika et al., 2001), as well as in the Calakos et al (2004)‟s studies performed on 

hippocampal neuron autapses. Our findings indicate that the Ca
2+

-release coupling is 

diminished at synapses lacking RIM1 (Figure 15). 

A first possibility implicates RIM1 itself as a potential Ca
2+

-sensor and regulates 

fusion. Indeed RIM proteins have been suggested to bind the SNAREs proteins as SNAP-25 

and Syntaxin (Coppola et al., 2001). It also contains several C2 domains homologous to the 

C2 calcium and lipid binding domains of PKC and synaptotagmins. However, the C2 domains 

in RIM1 are degenerated (Wang et al., 1997) and lack the calcium-binding motif or „C2-

motif‟ defined in synaptotagmin (Sudhof and Rizo, 1996). Thus, RIM1 is unlikely to serve 

as a calcium-detector and we cannot explain the decrease in release probability by the loss of 

such a calcium sensor.  

 Alternative possibilities comprise the recruitment of a calcium-sensor by RIM1. In 

the synaptic complex at the active zone, several C2-containing molecules interact directly or 

indirectly with RIM1 Piccolo/Aczonin, Munc13-1 and synaptotagmin I are three RIM1 

partners possessing C2 domains and demonstrated to interact directly with RIM1. Piccolo 

C2-domain binds to calcium with low affinity and it triggers a large conformational change of 

the protein (Gerber et al., 2001). It can also bind to L-type VDCCs (Shibasaki et al., 2004). 
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However, the involvement of Piccolo in exocytosis and synaptic plasticity is far from being 

established. Munc13-1 possesses three C2 domains, one of them being essential for synaptic 

vesicle priming in the glutamatergic synapses (Rosenmund et al., 2002). The integral synaptic 

vesicle membrane protein Synaptotagmin has two C2 domains and is believed to be the main 

calcium-sensor mediating the coupling between calcium-influx and the triggering of 

exocytosis (for review, Chapman, 2002; Rizo et al., 2006). RIM1and Synaptotagmin have 

been reported to interact, albeit the identity of the domains of interaction remains 

controversial (Coppola et al., 2001; Schoch et al., 2002). Anyway, the loss of interaction 

between these two proteins has been speculated by Schoch et al (2002) as being responsible 

for a reduced probability that occurs after loss of RIM1. To this long list should be added the 

indirect interactions of RIM1with Rabphilin-3A and double C2-domain protein (Doc2) 

which both are synaptic vesicle-associated proteins (Orita et al., 1995; Shirataki et al., 1993) 

and interact respectively with Rab3 and Munc13, which are themselves RIM1 binding 

partners. Overall, no functional data supports any of the mentioned interactions may be 

involved in the decrease in Ca
2+

-release coupling that I observed at both the cortical and 

thalamic nerve glutamatergic terminals. 

Last but not the least, RIM proteins have been suggested to bind directly to the 1B 

(P/Q-type) and 1C (L-type) subunits of VDCCs in dendrites and cell bodies (Coppola et al., 

2001).However this direct interaction has been rejected by others (Hibino et al., 2002). 

RIM1 interacts with the RIM binding proteins (RIM-BP), which have been found to bind to 

the  subunit of several VDCCs, including the 1C but not 1D (both are L-types) (Hibino et 

al., 2002). During my thesis experimental work, I have explored this promising possibility. A 

set of evidence supports the idea that RIM1 may play role in a calcium-dependent step of 

neurotransmitter release and expression of LTP via the control of the presynaptic L-type 

VDCCs. Obviously, modulation of the activity of a VDCC should lead to a change in release 

probability, which is what I have observed. I discuss this important part of my thesis work in 

the next paragraphs. 

 

4) Functional linkage between L-type calcium channels, PKA and 

RIM1 

I have used a pharmacological approach to determine if a VDCC subtype is involved 

in expression of LTPHA. N- and P/Q-type calcium channels antagonists do not have significant 

effect on LTPHA expression: while they effect on baseline release, they do not modify LTPHA. 

I found a different situation with the L-type VDCCs blockers (verapamil and nimodipine), 
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which diminish basal release by 25% and completely abolished LTPHA. Moreover these L-

type blockers also prevented Forskolin-induced LTP (Figure 17). This latter experiment is 

important because it rules out the possibility that prevention of induction of LTPHA was due to 

decrease in glutamate release by the conditioning thalamic nerve endings. Moreover, this 

experiment clearly demonstrates that L-type VDCCs are involved in a step downstream from 

PKA activation.  

The L-type blockers also prevent the other forskolin-induced mechanisms that we 

observed at the studied synapses: the extent of synaptic depression (as determined at plateau) 

induced by 20 hertz stimulus train experiments is increased following forskolin application 

but this effect is prevented by verapamil application (Figure 19). This demonstrates that the 

functional linkage between PKA and L-type calcium channel is not specific to LTPHA but to 

the presynaptic transmitter release modulations involving the PKA-pathway.  

No LTPHA can be induced at the cortical-amygdala synapse after genetical ablation of 

RIM1 or pharmacological deletion of L-type VDCCs. Thus, both RIM1 and L-type VDCCs 

are needed for expression of LTPHA. These findings can be interpreted into two manners:  

1), they act at distinct unrelated steps; their respective inactivation being mutually 

occluding. In this first possibility, the pathway downstream from PKA may branch to activate 

separately RIM1 and L-type VDCCs.  

2) the NMDAR-AC-PKA-RIM pathway converges on the L-type VDCC, the activity 

of which is regulated by RIM1, possibly by the mean of the RIM Binding Proteins. In both 

cases this raises the question of the role that L-type VDCCs may play in neurotransmitter 

release, under basal condition or during expression of synaptic plasticity forms.   

 

C) The role of L-type channels in CNS synaptic transmission and 

plasticity  

1) L-type VDCCs in neurotransmitter release in the CNS 

Studies on the role in neurotransmitter release of the different types of VDCCs have 

revealed that the N- and P/Q-types are dominant in triggering transmitter release at most of 

the synapses. Overall they form a patchwork (reviewed by Reid et al., 2003): at few terminals 

only N-type contributes to release and in others only P/Q types contributes but in general both 

types are active in the same nerve endings. This, added with 1) a developmental switch during 

which predominant N-type VDCCs are replaced in large part by P/Q-, and sometime R-types 
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channels, and 2) differences in the spatial distribution of the N-, P/Q-, and R-types channels, 

enable a wide range of specific modulations of transmitter release. 

Contribution of L-type channels to neuronal release of transmitters is exceptional. 

Their involvement in presynaptic transmission release is revealed in neuromuscular junction 

only after BAPTA loading. A slower rise time in the L- versus the P/Q-type VDCC-mediated 

endplate potentials suggest that L-type VDCCs are located further from the active 

zone(Urbano and Uchitel 1999, Urbano et al 2001). L-type VDCCs are primarily responsible 

for the control of both spontaneous and sound-evoked transmitter release from inner hair cells 

(Robertson and Paki, 2002). 

By contrast with finding at most synapses of the CNS synapses, I have reported a 

noticeable contribution of the L-type VDCCs to the baseline evoked glutamate release at 

cortico-amygdala or thalamo-amygdala synapses. Indeed, inhibition of the L-type VDCCs 

leads to ~25% inhibition of the EPSC amplitude (Figure 17). 

 

2) L-type VDCCs activity tuning by PKA 

The activity of voltage gated L-type calcium channels is tuned by PKA. This has been 

widely studied in the heart because L-type VDCCs are prominent in the control of cardiac rate 

and muscle fibre contraction. A similar modulation has been described in neuron cells (Gray 

and Johnston, 1987). The α1-subunit (α1-C or α1-S) of L-type VDCC can be phosphorylated 

by PKA, for example on serine 1928 of the α1-subunit (for review, Catterall, 2000; Keef et 

al., 2001); phosphorylation may effect on the ß-subunit as well. Phosphorylation results in the 

enhancement of L-type current by increasing the opening probability of individual channels 

(Bean et al., 1984; Yue et al., 1990). Channel phosphorylation and de-phophorylation are 

facilitated by submembrane targeting of protein kinase A (PKA) -via its regulatory subunits- 

or calcium/calmodulin-activated phosphatase calcineurin (CaN) through association of L-type 

VDCC with an A-kinase anchoring protein (AKAP79/150 in neurons) (for example, see Gao 

et al., 1997; Oliveria et al., 2007). Cotargeting of PKA and CaN to AKAP79/150 confers 

bidirectional regulation of L-type current amplitude (Oliveria et al., 2007).  

 

We have established that expression of LTPHA is cAMP-PKA-dependent. As the L-

types blockers (verapamil, nimodipine) abolish LTPHA, this means that the supplement of 

glutamate release underlying LTPHA expression is contributed only by the L-types channels. 

Thus during the course of LTPHA the contribution of L-type channels should be responsible 

for ~50% of total glutamate release (25% baseline + 100% surplus). Is a direct 

phosphorylation of the L-type channels by PKA sufficient for explaining such an effect? This 
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is plausible because in the dendritic spines of CA1 pyramidal neurons, L-type current 

contributes for 10% of total spine Ca
2+

-current at rest but, upon stimulation of ß2 adrenergic 

receptors, PKA is activated and phosphorylates L-type channels leading to a 50% increase in 

spine calcium current (Hoogland and Saggau, 2004). In this example, the contribution of L-

type channels to total calcium current increases from 10% (rest) to 36% after stimulation of 

ß2 adrenergic receptors.  

However, the possibility that RIM1 mediates the increased contribution of the L-type 

current should be also considered. Indeed, as already mentioned above, L-type VDCCs binds 

to the RIM-binding proteins (Hibino et al., 2002). However, we have no idea of whether such 

an interaction modifies the opening probability, conductance, desensitization of L-type 

channels or regulates their recruitment to the release sites.   

Thus as mentioned above, we are facing two likely possibilities with a clear difficulty 

in determining which one is the most relevant, namely: 

 1) PKA phosphorylates and activates L-type VDCCs, with RIM1 playing a role that 

remains to be deciphered, 

 2) PKA activates RIM1 that, in turn tunes up L-type VDCCs.  

However, an additional set of data should be considered: at the RIM1
-/-

 synapses, the 

L-type blockers are able to depress by 25% basal release of glutamate, indicating that the 

absence of RIM1 at the synapses does not effect on the synaptic expression of L-type 

VDCCs. However, we also found that the change in PPR extent produced by the L-type 

blockers does not occur at synapses lacking RIM1. This clearly indicates that RIM1 

functionally interacts with the L-type channels and, albeit indirectly, supports the idea that 

RIM1 may act as a relay for PKA to tune up L-types channels. This hypothesis need further 

work to be demonstrated but this is beyond my thesis program.  

 

3) L-type VDCCs in pre- and postsynaptic long-term forms of 

synaptic plasticity in the CNS 

My experimental data clearly support the proposal that, following release of glutamate 

by thalamic afferents and presynaptic activation of presynaptic NMDAR in the cortical 

afferents (cf Humeau et al., 2003), there is an activation of the AC-cAMP-PKA + possibly 

RIM1 pathway, which induces a long-term increased in L-type calcium current. The latter 

effect results in long-term increased release probability detected as LTPHA. A large body of 

litterature reports postsynaptic implication of L-type VDCCs in postsynaptic forms of long-

term plasticity. This is fully consistent with their localization at many dendrite spines. For 
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example, the induction of LTD in hippocampal CA1 pyramidal neurons in neonatal rats is 

shown to depend on postsynaptic calcium ion entry through L-type voltage-gated calcium 

channels paired with the activation of metabotropic glutamate receptors (Bolshakov and 

Siegelbaum, 1994). LTP induced by the K+ channel blocker tetraethylammonium chloride 

(TEA) at synapses of hippocampal CA1 pyramidal neurons implicates both NMDAR and L-

type channels (Huber et al., 1995). Theta-burst stimulation (TBS) of Schaffer collaterals 

induced LTP in the CA1
 
region, which is reduced by L-type blockers (Evers et al., 2002).  

To my knowledge, few examples of presynaptic form of synaptic plasticity involving 

L-type channels and PKA have been yet reported. In cultured hippocampal CA1–CA3 

neurons from newborn rat pups, repetitive stimulations of presynaptically silent synapses 

allow their activation by converting silent release sites into active ones by a process that 

depends on both PKA and L-type VDCCs (Yao et al., 2006). Recently, by combining optical 

monitoring of exo-endocytosis (i.e. a presynaptic index) and postsynaptic recordings, the 

compound LTP that is induced postsynaptically at excitatory synapses between CA3 and CA1 

pyramidal neurons has been reanalyzed. This led to its dissociation into a fast postsynaptic 

component during which NMDAR play crucial role, from a slow presynaptic phase, which 

involves PKA and L-type VDCCs (Bayazitov et al., 2007). The authors proposed that the 

postsynaptic sources of calcium are the NMDARs (together with L-type VDCC0073; see 

Zakharenko et al., 2001) and the presynaptic sources are the L-type VDCCs. Presynaptic L-

type channels have been also implicated in presynaptic BDNF-induced-LTP (Zakharenko et 

al., 2003).  

In the here above mentioned presynaptic LTPs implicating the L-type channels, L-type 

VDCCs are proposed to be the source of calcium ions that plays a role in the induction 

mechanisms of LTP. In the case of the LTPHA that I have studied, the situation is different: L-

type VDCCs are the final targets of the NMDAR-AC-cAMP-PKA-RIM pathway and they act 

in the final stage of the expression mechanisms. A same situation is illustrated during the 

adrenergic post-synaptic modulation of L-type current in the dendritic spines of CA1 

pyramidal neurons: activation of G-coupled ß2 adrenergic receptors activates an AC-cAMP-

PKA pathway leading to phosphorylation of L-type VDCCs (Hoogland and Saggau, 2004).  

 

D) Conclusions 

During this work, I have assembled a set of data supporting the proposal that the 

induction and expression mechanisms of LTPHA are the following. Pairing of cortico-

amygdala activity with that of the thalamo-amygdala afferents leads to an activation of 
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presynaptic NMDAR located onto the cortical afferents (Humeau et al., 2003). Indeed, the 

thalamic afferent release of glutamate can exert its conditioning function provided 

simultaneous depolarization of the cortical nerve endings occurs. The incoming action 

potentials allow removal of the Mg-block exerted onto the presynaptic cortical NMDAR. 

Activation of NMDAR is likely to allow a calcium influx sufficient to activate calcium-

calmodulin forms of Adenylate Cyclase. These may comprise the AC1 or/and AC8 forms. As 

a result, an increase in cytosolic cAMP levels triggers activation of PKA. The next step is the 

phosphorylation of RIM1. Phospho-RIM1, by a mechanism that remains unclear, appears 

to tune up L-types VDCCs in a long-term manner. At this stage, I cannot exclude that PKA 

may phosphorylate directly the L-type channels. Thus, upon arrival of action potentials at the 

cortical afferents, the presynaptic calcium-influx is stronger than in control situation because, 

in addition to resident N- and P/Q-type VDCCs, a larger activable population of L-type 

channels is now available. More glutamate is released as manifested by enhanced release 

probability and expression of LTP. Thus LTPHA is the first example of a LTP which ultimate 

expression mechanisms consists in tuning up L-type VDCCs. 

 

 

 

. 
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X) MATERIALS AND METHODS 

 

A) Mouse brain Slice Preparation 

Brain coronal slices were prepared from four to six week old male mice. Mice were either 

from C57BL/6J background, or from heterozygotes mice for RIM1α gene coming from 

Thomas Südhof’s lab. 

Briefly, brains were dissected in ice-cold artificial cerebrospinal fluid (ACSF), mounted on an 

agar block and sliced with a vibratome at 4ºC. Slices were maintained for 45 min at 35ºC in 

an interface chamber containing ACSF equilibrated with 95% O2/5% CO2 and containing (in 

mM): 124 NaCl, 2.7 KCl, 2 CaCl2, 1.3 MgCl2, 26 NaHCO3, 0.4 NaH2PO4, 18 glucose, 2.25 

ascorbate, and then for at least 45 min. at room temperature before being transferred to a 

superfusing recording chamber.  

 

 

B) Electrophysiological recordings 

In this study whole-cell patch-clamp recordings were obtained from projection neurons in the 

dorsolateral portion of the LA at 30°C–32°C in a superfusing chamber with a constant 

renewing of the ACSF. For some recordings, the composition of the ACSF was modified for 

CaCl2 and MgCl2 concentrations (in mM): 

 CaCl2 MgCl2

ACSF modified 1 1 4 

ACSF modified 2 2.5 2.5 

ACSF modified 3 4 1 

 

Neurons were visually identified with infrared video microscopy using an upright microscope 

equipped with a x40 objective (Olympus). Patch electrodes (3-5MΩ) were pulled from 

borosilicate glass tubing and were filled with an intracellular solution consisting of (in mM): 

140 potassium-gluconate, 10 HEPES, 10 phosphocreatine, 4 Mg-ATP, 0.3 Na-GTP, 20 KCl 

(pH adjusted to 7.25 with KOH, 300mOsm). For voltage-clamp experiments requesting a 

depolarization of the postsynaptic cell, potassium-gluconate was replaced by equiosmolar 

cesium-gluconate, and the pH was adjusted with KOH. In current-clamp recordings, 

membrane potential was held manually at −70mV. Monosynaptic EPSPs were elicited by 
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stimulation of afferent fibers with a bipolar twisted platinum/10% iridium wire (25µm 

diameter). Bipolar stimulating electrodes were placed on afferent fibers from the internal 

capsule (containing thalamic afferents) or from the external capsule (containing cortical 

afferents). All recordings were performed in the presence of 100µM picrotoxin, a GABAA 

antagonist. 

 

 

C) LTP induction protocol 

To mimic the physiological activity of converging thalamic and cortical afferents during fear 

conditioning (Quirk et al., 1997; Rosenkranz and Grace, 2002), both afferents were stimulated 

simultaneously for 1.5s at an average frequency of 30 Hz using two different Poisson-

distributed stimulation protocols stimuli. 

 

 

D) Drugs 

Stock solutions of Rp-cAMPs, forskolin, bisindolylmaleimide II, H89, PDBu, γDGG, 

MK801, NBQX, nimodipine and verapamil were prepared with DMSO, and diluted in ACSF 

to 1‰ final DMSO concentration. Stock solutions of picrotoxin, ω-agatoxin IVA and ω-

conotoxin GVIA were prepared in double distilled water. 

Rp-cAMPs were applied to brain slices 1h30 prior to recording. 

Picrotoxin, PdBu, ω-agatoxin IVA and verapamil were from Sigma-Aldrich Chemie GmbH 

(Buchs, Switzerland); Forskolin, Rp-cAMPs, H89, γDGG, MK801, NBQX and nimodipine 

were from Tocris Bioscience (Bristol, United Kingdom); ω-conotoxin GVIA was from 

Alomone labs LTD (Jerusalem, Israel). 

 

 

E) MK801 experiments 

The cells were filled with cesium-based intracellular solution containing 1mM of MK801, the 

extracellular ACSF contained 20µM NBQX. The neurons were depolarized at +30mV to 

record NMDAR-mediated EPSC decay, then the cells were repolarized at -70mV for 5 

minutes and LTP was induced. Neurons are then clamped again at +30mV for the rest of the 
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experiment. For the experiments with the complete NMDAR blockade, the MK801 

concentration was 4mM. 

 

 

F) Data analysis 

Data were acquired and analyzed with pClamp9.0 (Axon Instruments, Union City, CA, USA). 

Poisson-trains stimuli were generated using custom software obtained from N. Buchs 

(University of Bern, Switzerland). Data were recorded with an Axopatch200B, filtered at 2 

kHz and digitized at 10 kHz. Series resistance was monitored throughout the experiments by 

applying a hyperpolarizing pulse. Any modification of the series resistance exceeding 20% 

was a cause of the exclusion of the data from the analysis. LTP was quantified for statistical 

comparisons by normalizing and averaging EPSP amplitudes or slopes during the five last 

minutes of the experiments relative to the 5 minutes of stable baseline recorded. All values are 

expressed as means ± s.e.m. Statistical comparisons were done with paired or unpaired 

Student's t-test as appropriate (two-tailed p < 0.05 was considered significant). 

 

 

G) Variance-mean analysis 

The variance-mean analysis allows easy graphical distinctions in the changes in N, P, Q 

(Foster and Regehr, 2004; Humeau et al., 2001; Humeau et al., 2002; Silver, 2003; Silver et 

al., 1998). The rationale for variance-mean analysis is the following. Consider a hypothetical 

synapse consisting of a single exocytotic site at which release of one SV with a given 

probability produces a postsynaptic response of fixed amplitude q. According to the binomial 

statistics, at a release site, the average postsynaptic response amplitude μ is: 

(1) µ = p*q 

with variance 

(2) Var = p*(1-p)*q2

Now, if we consider the N contacts between a presynaptic neuron and its postsynaptic target 

and assume that the release process at each site is independent of that at the other sites, and 

quanta sum up linearly. The mean amplitudes and variances at the N sites add linearly, and 

the mean amplitude of the compound response is: 

(3) Imean = Σi=1→Nµi  

This can be rearranged as: 
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(4) Imean = N*P*Q 

where P is the average release probability observed at the N sites and Q the average 

amplitude of the quantum of response at the N sites. The fluctuations of the responses around 

the mean have a variance of the form: 

(5) Var = N*P*(1-P)*Q2  

Indeed, this relationship can be re-expressed as a function of Imean: 

(6) Var = Q*Imean – (1/N) *Imean
2

which can be fitted by a simple parabola of equation: 

(7) Var = A*Imean-B*Imean
2

This allows determination of two parameters: A, the initial slope of the parabola, and B the 

extent factor of the parabola. Parameter A refers to Q. However quantal variability also 

contributes to Var. Therefore, A provides an overestimate of Q (Oleskevich et al., 2000; Reid 

and Clements, 1999; Scheuss and Neher, 2001; Silver et al., 1998). 

(8) A = Q*(1+CV2) 

Parameter B refers to 1/N. However, probability parameter P is heterogeneous between the 

releases sites at vertebrate synapses (Murthy et al., 1997; Rosenmund et al., 1993). Therefore, 

1/B underestimates N according to the equation: 

(9) 1/B = N / [(1 + CVp
2)*(1+βCVq

2)] 

in which, CVp is the average variation of P and βCVq the fraction of quantal variance due to 

intersite variability (Brown et al., 1976; Meyer et al., 2001; Scheuss and Neher, 2001; Silver 

et al., 1998). However, we want to understand what synaptic parameters are affected rather 

than measuring the absolute values for N, P or Q. Therefore, I did not take into account 

variability parameters. 

 

From equations 4 and 5, it can be deduced that when only P is modified, Var = f(Imean) has the 

form of a simple parabola of initial slope Q:  

 (10) Var = Q*Imean-Imean
2/N,  

whose initial slope and parabola extent allows determining Q and N. When only N is changed, 

Var = f(Imean) follows a linear function: 

 (11) Var = Q*(1-P) *Imean

When only Q is modified, Var = f(Imean) is a quadratic function of positive curvature: 

(12) Var = Imean
2 *(1-P)/N*P  

 

In order to construct the Var = f(Imean) representation, I artificially varied the probability of 

release by changing the calcium and magnesium concentrations in the ACSF. When the 
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amplitude of the response was stabilised, the amplitude and the variability of the response for 

each cell were averaged on a period of 10 minutes. 

By normalizing Var to Imean, this representation simplifies the pooling of data obtained from 

different experiments. Individual Var = f(Imean) plots were normalized to the maximum Var 

(Varmax) and corresponding Imean (Imean-to-Varmax) determined by fitting the Var = f(Imean) 

plot from each experiment by a quadratic function of the form y = y0+a*x+b*x2, with all 

parameters left free, using the non-linear regression procedure running under SigmaPlot 9 

(Systat Software Inc). Then, the normalized data from the n experiments were pooled and 

used to make the corresponding plots of normalized Var = f(normalized Imean) and normalized 

Var/Imean = f(normalized Imean). When Var = f(Imean) did not display a parabolic shape, datas 

were excluded from the analysis. 

Normalisation of Var, Imean and Var/Imean data introduced loss of information on the actual 

amplitude of the release parameters, but preserved the determination of their relative changes. 

Indeed, when the normalized Var = f(Imean)  is a parabola, Varmax is reached for P = 0.5 as in 

non-normalized plots, allowing determining a corresponding P (e.g., Imean = 0 →P = 0; Imean = 

Imax/4 →P = 0.25; Imean = Imax/2 →P = 0.5; …) at each point of the parabola. Initial slope and 

parabola extent do not allow the estimation of Q and N, respectively. Q and N data were then 

collected directly from the individual non-normalized parabolas and then averaged. 
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APPENDIX A: STRUCTURE OF A GLUTAMATERGIC 

SYNAPSE 

 

A) Presynapse, postsynapse and synaptic cleft 

Chemical synapses in the CNS are all constituted by a presynaptic terminal in a close 

apposition to a postsynaptic element, with a synaptic cleft in between (Figure 22). 

The presynaptic terminal, also called presynaptic bouton, is characterized by the presence of 

neurotransmitter vesicles. Some of the vesicles are adjacent to a specialized portion of the 

presynaptic membrane, the active zone, and are called docked vesicles. Vesicle exocytosis 

occurs at the active zone, in regard of which is the so called postsynaptic density (PSD) 

(Gundelfinger et al., 2003). The active zone is surrounded by the perisynaptic zone, in which 

some of the synaptic vesicles that have undergone fusion are retrieved by clathrin-mediated 

endocytosis (Wong and Wong, 2000; Ziv and Garner, 2001). The PSD can be directly present 

on the dendrite or it can be present on a highly specialized structure called dendritic spine.  

 

Synapses are formed after the encounter of two motile structures, an axonal growth cone 

and a dendritic filopodia (Murthy and De Camilli, 2003; Ziv and Garner, 2001). Presynaptic 

and postsynaptic elements are held in close vicinity thanks to several kinds of transmembrane 

adhesion molecules present at the edges of the active zone. Some of those molecules have 

cytosolic sequence motifs that bind PDZ domains present in scaffolding proteins. This leads 

for example to the formation of a complex molecular structure which in turn allows the 

recruitment and the aggregation of glutamate receptors at the PSD (for review, Dresbach et 

al., 2001). 

 

 

B) Cytoskeletal matrix at the presynapse 

The active zone is tightly associated with a cytoskeletal matrix, which is referred to as 

cytomatrix at the active zone (CAZ) or presynaptic grid (Bloom and Aghajanian, 1968; Gray, 

1975; Landis, 1988; Landis et al., 1988; Pfenninger et al., 1972; Phillips et al., 2001). The 

CAZ is a web-like pattern, formed by a regular array of electron-dense cone-shaped particles 

that extend approximately 50 nm into the cytoplasm (Akert et al., 1971). The 50-nm pyramid-
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shaped particles are interconnected by a meshwork of cytoskeletal filaments, and long 

filamentous strands extend deeply into the presynaptic bouton. 

Synaptic vesicles are nested at different levels within this network (Rizzoli and Betz, 

2005). Physiologically, they are separated in two groups. Until recently, it was assumed that 

these pools were anatomically segregated in different areas in presynaptic terminals: the 

recycling pool, formed by vesicles close enough to the active zone to be quickly released or 

engaged in the process of endoycytosis (5 to 20% of the vesicles); and the reserve pool, 

further away from the release area (80 to 95% of the vesicles) (Figure 23). From this 

difference resulted the selective recrutement of recycling vesicles in normal conditions, the 

reserve pool being recruited only in case of severe vesicle depletion. A specific set of vesicles 

can be even subselected out of the recycling pool, they are the vesicle already in a very close 

vicinity with the membrane and engaged in the release process. They are called the readily-

releasable pool (RRP, 0.1 to 2% of the total vesicles, about 5/10 vesicles per active zone). 

However, this anatomical segregation is brought into question since a few years, vesicles from 

recycling or reserve pools can be recruited in case of repetitive stimulation (for review, 

Borgdorff and Choquet, 2002; Choquet and Triller, 2003). 

The microfilaments comprised in the CAZ are the support for the vesicular traffic to 

the membrane. Some of the CAZ proteins interact as well with molecules essential for the 

binding and fusion processes at the membrane. Indeed, the CAZ bring together all the 

elements necessary for the vesicular cycle. 

 

 

C) Postsynaptic density, intrasynaptic and extrasynaptic receptors 

Postsynaptic glutamate receptor are either intrasynaptic, meaning they are concentrated 

in the PSD directly facing of the active zone, or extrasynaptic. Intrasynaptic receptors are 

generally thought to be responsible for signal propagation, whereas extrasynaptic receptors 

are rather considerated as a reserve pool of receptors, which allow a quick regulation of the 

synaptic receptor number. AMPA receptors (AMPAR) have been shown to diffuse easily in 

neuronal membrane and thus moving in and out of the PSD. On cultured neurons, tracking 

single AMPAR showed that the high mobility of extrasynaptic receptors is extremely reduced 

when they enter the synapse, they look being trapped (Tovar and Westbrook, 2002). Synaptic 

and extrasynaptic NMDA receptors (NMDAR) are rapidly exchanged through lateral 

diffusion in the plasma membrane as well (Hardingham and Bading, 2003). Extrasynaptic 

NMDARs are thought to play an important role in excitotoxicity, while synaptic NMDAR 
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activation appears neuroprotective (Nakanishi et al., 1997; Vogt and Nicoll, 1999). However, 

the relationship between synaptic and extrasynaptic receptors remains still unclear.  

On the other hand, receptors are also present at the presynaptic side and involved in 

presynaptic regulation. They include receptors for peptide neurohormone and nonpeptide 

neurotransmitters released by synaptic vesicles. They can be responsible for autocrine effects 

as well as heterosynaptic modulation (Conn and Pin, 1997; Kandel and Tauc, 1964). 

D) Glutamate receptors 

Glutamate receptors are splitted in 2 categories (Figure 24): 

- inotropic receptors (iGluR), which are responsible for the fast component of synaptic 

transmission 

- metabotropic receptors (mGluR), which are linked to intracellular second messenger cascade 

and are involved in the slow component of synaptic transmission.. 

 

1) Ionotropic receptors 

Ionotropic receptors are separated in three categories: NMDA (N-Methyl-D-

Aspartate), AMPA (-Amino-3-hydroxy-5-Methyl-4-isoxazolepropionique acid) and kaïnate 

receptors. Kaïnate receptor family is constituted by 5 genes coding the following subunits: 

GluR5, GluR6, GluR7, KA1 and KA2. The ionic channel is selective to cations, principally to 

sodium ions. Those receptors are present at the presynaptic as well as at the postsynaptic side. 

They are thought to be important for the regulation of the synaptic transmission and neuronal 

activity. 

NMDA receptors are present as well on both sides of the synapse. Seven genes are 

coding for the subunits NR1, NR2A, NR2B, NR2C, NR2D, NR3A, NR3B. NR1 subunit is 

necessary for the formation of a functional receptor. The ionic channel is selective for cations, 

including calcium ions. Those receptors are characterized as well by their voltage-dependent 

blockade of the channel by magnesium ions. The functional consequence is that NMDAR are 

not permeable at resting membrane potential, they request a depolarization in addition to 

glutamate binding in order to let ion flowing. NMDAR can be regulated by their interaction 

with numerous intracellular proteins. NMDAR are particularly studied for their involvement 

in long-term plasticity. 

AMPA receptors are only present at the postsynaptic side of the synapse. They are 

responsible for the main part of the fast glutamatergic conductance. There are four AMPA 
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subunits: GluR1, GluR2, GluR3 and GluR4. AMPAR containing GluR2 subunit are selective 

to sodium ions, AMPAR lacking GluR2 subunit are permeable to sodium and calcium ions. 

 

2) Metabotropic receptors 

Metabotropic receptors (mGluR) belong to the super family of seven-transmembrane 

domain receptors coupled to heterotrimeric G protein. Three groups of mGluR can be 

distinguished by the sequence homology, the pharmacology and the transduction pathways 

they are coupled with. Group I include mGluR1 and mGluR5 receptors, their activation 

stimulate the phospholipase C via recruitment of the G protein subtype Gq. Group II involves 

mGluR2 and mGluR3 receptors, and group III include mGluR4, mGluR6, mGluR7 and 

mGluR8 receptors. They are all negatively coupled to adenylyl cyclase through G protein 

subtype Gi/Go activation. Thanks to their coupling to intracellular transduction pathways, 

mGluR activation regulates the activity of numerous ionic channels and ionotropic glutamate 

receptors function (Danbolt, 2001). 

 

 

E) Glutamate uptake 

Regulator mechanisms of synaptic glutamate concentration allow to keep a good 

signal-to-noise ratio for synaptic transmission and to avoid the excitotoxicity induced by high 

concentrations of glutamate. Glutamate uptake is mainly done by five specific transporters 

called excitatory amino acid transporters (EAAT). Glutamate is cotransported with two to 

three sodium ions and a proton against the exit of a potassium ion. In addition, glutamate 

fixation to the transporter can induce a chloride permeability of the transporter (for review, 

Chaudhry et al., 1995). 

At the subcellular level, EAAT1 and EAAT2 are highly expressed at the plasma 

membrane from astrocytes associated to glutamatergic synaptic contacts (Dehnes et al., 1998; 

Rothstein et al., 1994). EAAT3 and EAAT4 are localized at the neuronal soma and dendrites 

(Arriza et al., 1997). EAAT5 seems to be specifically present in the retina (Michaelson et al., 

1983). 

 



 

71 

APPENDIX B: SYNAPTIC VESICLE CYCLE 

 

Neurotransmitter molecules are stored and concentrated in structures called synaptic 

vesicles in the presynapse, and the regulated release of neurotransmitter is mainly mediated 

by selective exocytosis of presynaptic vesicles at the active zone. 

Synaptic vesicles are small spherical organelles (50 to 60nm radius) specifically 

dedicated to uptake and release of neurotransmitters. Synaptic vesicles also contain various 

membrane proteins which can be divided in two categories: 

- transport proteins involved in neurotransmitter uptake 

- trafficking proteins participating in synaptic vesicle exo- and endocytosis and 

recycling. 

 

A) Vesicular release 

The vesicular cycle is divided in 4 main step called tethering or docking, priming, 

fusion and recycling (Figure 25). The recycling will not be addressed in this issue.  

 

1) Tethering/docking 

The mechanisms allowing the addressing and the recognition of the vesicles by the 

plasma membrane are not yet clearly identified. 

 

2) Priming 

This crucial step confers fusion competences to docked vesicles, enabling them to 

undergo rapid exocytosis upon calcium influx (Rothman, 1994). Once bound to the plasma 

membrane, synaptic vesicles will come in a closer apposition to it thanks to another 

multiprotein complex called SNAREs. These proteins ares characterized by a common coil-

coil domain called the SNARE motif. This complex was initially splitted in two groups, v-

SNAREs (or vesicular SNAREs), and t-SNAREs (for target SNAREs, at the plasma 

membrane) (Fasshauer et al., 1998). They were later classified as R-SNAREs and Q-SNAREs 

according to the central amino-acid of the SNARE motif (Poirier et al., 1998; Sutton et al., 

1998). 



 

72 

Synaptic vesicle exocytosis requires three SNAREs: one R-SNARE at the vesicle 

membrane, called vesicle-associated  membrane protein (VAMP2) or synaptobrevin; and two 

Q-SNAREs at the plasma membrane, syntaxin 1 and the 25 kDa synaptosomal-associated 

protein (SNAP-25). SNARE proteins associate into core complexes, at the ratio 1-1-1, in 

order to form a parallel four-helix bundle on assembly (coiled-coil) (Hanson et al., 1997; Lin 

and Scheller, 1997). The soluble SM proteins (Sec1/Munc18-like proteins) are often 

associated with syntaxin-like SNAREs and participate to the priming. 

The SNARE complex is first in a relaxed state, then it reassemble in a zipper-like 

fashion from the N-terminal end of the SNARE motifs towards the C-terminal membrane 

anchors. This is powerful enough to overcome the natural repulsion occurring between the 

two membranes and pulls them close together in a fusion-ready manner (Gerst, 1999). The 

complex thus formed is extremely stable and will be disassembled later in the vesicular cycle 

only with the help of the ATPase activity of NSF.  

SNAREs interact with a large number of other proteins (for review, Augustin et al., 

1999; Geppert et al., 1994; Richmond et al., 2001; Varoqueaux et al., 2002). Among them, 

Munc13/Unc13 seems to be essential for priming. Indeed, the deletion of Munc13-1 in mice 

leads to the complete abolition of glutamate exocytosis in the hippocampus, while the number 

of docked vesicles does not change. However, GABA release is not affected, which suggests 

that priming can be due to different molecules depending on the studied model (Basu et al., 

2005; Madison et al., 2005; Stevens et al., 2005). Recent studies with deletion constructs have 

now shown that the priming function is mediated by the ”Munc homology domains” (MHDs) 

located in the C-terminal end of Munc13 proteins (Madison et al., 2005; Stevens et al., 2005). 

Point mutations in the MHDs and the C-terminal C2 domain identified in yeast two-hybrid 

screens indicated that the binding of these regions to syntaxin is required for efficient priming 

(Betz et al., 2001). 

Munc13 interacts also with RIM1, and this interaction is critical for priming (Galli 

and Haucke, 2004). The authors demonstrated that Munc13-1 and Rab3A interact with the 

same zinc finger region of RIM1. Moreover, they showed that Munc13-1 and Rab3A 

binding to RIM1 is mutually exclusive, meaning that they compete for RIM1 binding site. 

Their hypothesis is that RIM1 may contribute to vesicle tethering by binding to Rab3A and 

creates a physical link between the tethering and the priming apparatus through interactions 

with Munc13-1. RIM1would allow spatial and temporal coordination of the first vesicle 

trafficking steps.  
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3) Fusion and recycling of the vesicles 

Two fusion processes were described: the first is a full collapse of the vesicle 

membrane with the plasma membrane. As a result, the recycling of vesicular constituents 

involve a clathrin-mediated endocytosis, a quite slow process occurring at the periphery of the 

active zone. The second hypothesis is a partial fusion with the opening and closing of a fusion 

pore. This mode, called kiss-and-run, should be much faster, the only limiting factor being the 

refilling of the vesicle (for review, Sudhof, 2004) (Figure 26). A last hypothesis is derived 

from the kiss and run hypothesis, the kiss-and-stay: the vesicle, once the fusion pore is closed, 

stay docked at the same site and would be eventually refilled on site. The consequence is that 

some steps of the vesicular cycle are bypassed, allowing even faster release (for review, Sun 

et al., 2002). The time constant of neuronal neurotransmitter release claim more in favor of 

the kiss-and-run or kiss-and-stay hypothesis, but clathrin-mediated endocytosis can be 

accelerated by specific proteins present in nerve terminals (for review, Jackson and Chapman, 

2006; Kavalali, 2007). It is very probable that those three forms of release coexist. 

The fusion pore is another mystery in the vesicular cycle: is this fusion pore 

constituted by lipids, proteins, or both? This question is still widely open, one of the main 

difficulties for the study of fusion pores is the study of very early steps of their formation 

(Marqueze et al., 2000; Mikoshiba et al., 1999). 

 

 

B) Calcium flow and release 

When an action potential reaches the presynaptic terminal, it induces the opening of 

voltage-dependent calcium channels (VDCCs) and the cytosolic calcium concentration 

increases. Several families of VDCCs exist (for more details see chapters VII and VIII). 

Calcium entry through a single channel forms a nanodomain, with a high calcium 

concentration (up to hundreds of micromolar) localized in a close vicinity around the calcium 

channel. However, considering that a synaptic vesicle is 50 to 60nm large, one vesicle is 

probably surrounded by several calcium channels. The calcium domain resulting from the 

simultaneous opening of several calcium channels is called microdomain. 
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C) Calcium sensors 

Several steps of the release machinery are dependent on a calcium signal. One of them 

is the SNARE zippering leading to the fusion of the vesicle with the plasma membrane. As 

SNARE protein are insensitive to calcium, people searched for a protein able to bind SNARE 

and Ca
2+

 ions. One good candidate is synaptotagmin. It can bind SNARE molecules, calcium 

channels and other proteins important for the exocytosis (for review, Nishizuka, 1988). 

Moreover, it contains two C2 domains, which are homolog domains to the Ca
2+

 binding site 

of the protein kinase PKC, and could lead to the binding of a protein to the membrane in a 

Ca
2+

-dependent manner (Fernandez-Chacon et al., 2002). 

Inhibition studies showed that the absence of synaptotamin I drastically reduced the 

Ca
2+

-dependent synchronous release (Chapman, 2002; for review Burgoyne and Morgan, 

1998). Synaptotagmins are considered to be a key element for the Ca
2+

-induced vesicular 

fusion, a kind of “calcium switch”. 

However, synaptotagmin is probably not the only protein allowing the coupling 

between Ca
2+

 entry and exocytosis machinery . Other protein with tandem C2 domains are 

present on the vesicle (for example, rabphilin) or at the active zone (for example, RIM1 and 

piccolo). In case of RIM1 C2 domains are degenerated and lack the amino-acid requested 

for Ca
2+

 binding (Wang et al., 1997). On the other hand, RIM1bind other protein containing 

functional C2 domains, as for example Munc13-1, thus it can be indirectly involved in 

calcium sensing. 

To summarize, several proteins should be important for a very tight tunning of all the 

exocytosis steps by calcium ions. 
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APPENDIX C: PAPERS 

 

 

Dendritic Spine Heterogeneity Determines 

Afferent-Specific Hebbian Plasticity 

in the Amygdala 

 

 

Synaptic organization of the mouse cerebellar cortex 

in organotypic slice cultures 

 

(Cooper, 2003; Danglot and Galli, 2007; Garner et al., 2000; Kennedy, 2000; Trisch et al., 

1999) 
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Projection neurons in the lateral nucleus of the amyg-
dala (LA) exhibit dendritic arbors largely lacking spatialFunctional compartmentalization of dendrites is thought
polarization (Paré et al., 1995; Faber et al., 2001) andto underlie afferent-specific integration of neural ac-
receive converging excitatory inputs from the thalamustivity in laminar brain structures. Here we show that
and from the cortex (Carlsen and Heimer, 1988; Farbin the lateral nucleus of the amygdala (LA), an area
and LeDoux, 1997, 1999; Smith et al., 2000). Activity-lacking apparent laminar organization, thalamic and
dependent Hebbian plasticity at cortical and/or thalamiccortical afferents converge on the same dendrites,
afferents to LA projection neurons is generally thoughtcontacting neighboring but morphologically and func-
to underlie, at least in part, classical Pavlovian fear con-tionally distinct spine types. Large spines contacted
ditioning (LeDoux, 2000; Maren, 2001; Tsvetkov et al.,by thalamic afferents exhibited larger Ca2� transients
2002). In other brain areas, Hebbian long-term potentia-during action potential backpropagation than did small
tion (LTP) or long-term depression (LTD) can be inducedspines contacted by cortical afferents. Accordingly,
depending on the relative timing of presynaptic inputinduction of Hebbian plasticity, dependent on postsyn-
and postsynaptic backpropagating action potentialsaptic spikes, was restricted to thalamic afferents. This
(BPAPs) (Markram et al., 1997; Magee and Johnston,synapse-specific effect involved activation of R-type
1997; Debanne et al., 1998; Bi and Poo, 1998, 2001).voltage-dependent Ca2� channels preferentially lo-
This so-called spike timing-dependent plasticity (STDP)cated at thalamic inputs. These results indicate that
requires postsynaptic Ca2� elevation (Mainen, 1999;afferent-specific mechanisms of postsynaptic, asso-
Sjöström and Nelson, 2002). Several sources of Ca2�,ciative Hebbian plasticity in LA projection neurons de-
such as N-methyl-D-aspartate (NMDA) receptors andpend on local, spine-specific morphological and mo-
voltage-dependent Ca2� channels (VDCCs), have beenlecular properties, rather than global differences
implicated in the induction of STDP (Magee, 1999;

between dendritic compartments.
Mainen, 1999; Sabatini and Svoboda, 2000; Yasuda et
al., 2003). BPAPs are particularly effective in activating

Introduction VDCCs in the dendritic arbor of hippocampal and corti-
cal pyramidal cells (Sabatini and Svoboda, 2000; Magee,

Neuronal network function relies on precise and input- 1999).
specific changes in synaptic strength. Induction of asso- To investigate afferent specific plasticity at identified
ciative, Hebbian synaptic plasticity at excitatory syn- thalamic and cortical synapses on dendrites of LA pro-
apses onto principal (projection) neurons is classically jection neurons, we have used a combination of two-
mediated by postsynaptic Ca2�-dependent mechanisms photon confocal imaging and whole-cell recording tech-
(Bliss and Collingridge, 1994; Bi and Poo, 2001). Input niques. We find that the morphologies of spines located
specificity of postsynaptic Ca2� signaling, and hence on the same dendritic branches are specifically matched
Hebbian plasticity, is thought to require compartmental- to different presynaptic inputs. This morphological di-
ization of local synaptic Ca2� transients in dendritic versity is correlated with distinct spine Ca2� dynamics
spines (Harris and Kater, 1994; Yuste et al., 2000; Nim- and different mechanisms of Hebbian plasticity: BPAPs
chinsky et al., 2002). elicited greater Ca2� transients in large, mushroom-

Projection neurons receive converging presynaptic shaped spines contacted by thalamic afferents than in
afferents originating from different brain areas, provid- small spines postsynaptic to cortical afferents. Consis-

tent with spine type-specific Ca2� dynamics, we found
that induction of STDP was restricted to thalamic affer-*Correspondence: andreas.luthi@fmi.ch
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ents. Both action potential-evoked Ca2� transients in tion by brief trains of backpropagating postsynaptic ac-
large spines and the induction of STDP at thalamic affer- tion potentials (APs) (Sabatini and Svoboda, 2000). When
ent synapses required activation of postsynaptic R-type compared to the amplitude of the [Ca2�] transients in the
voltage-dependent Ca2� channels (R-VDCCs). Pharma- parent dendrite, some spines showed larger and other
cological and immunohistochemical analysis of identi- spines smaller Ca2� responses (Figure 2). After sorting
fied synapses revealed that �-1E containing R-VDCCs the spines according to their morphological features
are preferentially located at and activated on thalamic as described above, we noticed a striking correlation
spines. This indicates that in projection neurons in a between functional and morphological spine properties:
nuclear brain structure, such as the LA, local and spine- stimulation with 5 APs at 30 Hz triggered significantly
specific morphological and molecular properties, rather greater [Ca2�] transients in large spines (types Ib, II) as
than global differences between distinct parts of the compared to small spines (types Ia, III) (large spines:
dendritic arbor, underlie distinct, afferent specific mech- 43.8% � 2.9% � G/R, n � 11; small spines: 29.5% �
anisms of functional synaptic plasticity. 2.5% � G/R, n � 18; p � 0.01) (Figure 2). � [Ca2�] was

quantified as a ratio of green (Ca2�-sensitive) over red
Results (Ca2�-insensitive) fluorescence to obtain Ca2� measure-

ments that are independent of spine volume (Oertner et
Dendritic Spines Contacted by Thalamic and al., 2002). These results suggest that dendritic spines
Cortical Afferents Exhibit Different Morphologies on LA projection neurons, although located on the same
To investigate dendritic location, structure, and function dendrites, generally fall into two categories (small and
of identified dendritic spines contacted by thalamic or large) associated with specific afferent input and differ-
cortical afferents, we imaged spines and dendrites of ential [Ca2�] dynamics.
projection neurons located in the dorsal subdivision of
the LA with a Ca2�-sensitive fluorophore while stimulat- Afferent-Specific Induction of STDP
ing afferent fibers from the internal capsule, containing Postsynaptic Ca2� signaling properties are key determi-
thalamic afferents (Weisskopf et al., 1999), or from the nants underlying the induction of Hebbian plasticity at
external capsule, containing cortical afferents (Figure many synapses in the brain (Mainen, 1999; Sjöström and
1A; see Experimental Procedures; Huang and Kandel, Nelson, 2002). Coincidence between excitatory post-
1998). Neurons in coronal slices prepared from 3- to synaptic potentials (EPSPs) and backpropagating APs
4-week-old male C57BL/6J mice were loaded with a leads to the induction of LTP or LTD, depending on the
Ca2�-sensitive green dye (Fluo-5F) and a Ca2�-insensi- relative timing of EPSPs and APs (Bi and Poo, 2001;
tive red dye (Alexa-594) (Yasuda et al., 2003). Spines Sjöström and Nelson, 2002). Since LA projection neu-
located on primary to quaternary dendrites exhibited a rons can be driven to fire APs by somatosensory stimula-
variety of morphologies including small stubby (type Ia; tion, such as foot-shocks used for fear conditioning (Ro-
spine head radius � 0.55 �m), large stubby (type manski et al., 1993; Rosenkranz and Grace, 2002; Blair
Ib; �0.55 �m), mushroom-shaped (type II; �0.55 �m), et al., 2003), we compared STDP at thalamic and corti-
and thin spines with a small head (type III; �0.55 �m) cal afferents.
(Figures 1B and 1C; Harris and Kater, 1994). Individual

Low-frequency baseline stimulation in the presence
spines contacted by thalamic or cortical afferents were

of the GABAA (	-aminobutyric acid) receptor antagonist
identified based on stimulation-induced NMDA (N-methyl-

picrotoxin (100 �M) elicited monosynaptic EPSPs ofD-aspartate) receptor-mediated changes in the concen-
similar amplitudes and slopes at both afferent inputstration of intracellular free Ca2� (� [Ca2�]) measured
(thalamic: 4.4 � 0.4 mV, 0.83 � 0.06 mV ms
1, n � 46;at �30 mV (Figures 1D and 1E). Spines postsynaptic to
cortical: 4.1 � 0.3 mV, 0.88 � 0.06 mV ms
1, n � 40).thalamic or cortical afferents were located at the same
Pairing short bursts of 3 EPSPs and 3 APs (EPSP-APaverage distance from the soma (thalamic: 76 � 8 �m;
delay �5 to �10 ms; intraburst frequency: 30 Hz; re-range, 27–122 �m; n � 17; cortical: 87 � 8 �m; range,
peated 15 times at 0.2 Hz; Figure 3A) resulted in the42–153 �m; n � 19) and on dendrites of the same aver-
induction of LTP at thalamic afferent synapses (132% �age branching order (thalamic: 3.37 � 0.26, n � 17;
12% of baseline; n � 10; p � 0.05; Figures 3B and 3D;cortical: 3.05 � 0.30, n � 19). In some cases, they were
Bissière et al., 2003), similar to findings at excitatoryon the same dendritic branch separated by less than
inputs to cortical and hippocampal pyramidal cells (Bi5 �m (Figure 1F). Notably, thalamic and cortical spines
and Poo, 2001). Presynaptic or postsynaptic stimulationexhibited different morphologies. Whereas cortical
alone did not result in LTP induction (EPSPs alone:spines generally belonged to the categories with small
101% � 11% of baseline, n � 5; APs alone: 102% �heads (0.51 � 0.02 �m, n � 19; type Ia and type III;
11% of baseline, n � 5; Figure 3C). In contrast to LTPreferred to as “small spines”), spines contacted by thala-
at cortical afferents (Tsvetkov et al., 2002; Humeau etmic afferents had significantly larger spine heads (0.68 �
al., 2003), STDP at thalamic afferents was not associated0.04 �m, n � 17; p � 0.001; type Ib and type II; referred
with a change in paired-pulse facilitation, indicating dis-to as “large spines”) (Figures 1G and 1H). There was no
tinct mechanisms of LTP expression (Figure 3E). Re-difference in the size of the parent dendrite for thalamic
versing the EPSP-AP sequence during pairing (
5 toand cortical spines (cortical: 0.60 � 0.03 �m, n � 19;

10 ms delay) led to the induction of LTD (74% � 8%thalamic: 0.59 � 0.03 �m, n � 17; p � 0.05) (Figure 1H).
of baseline, n � 10; p � 0.01; Figures 3B and 3D). Induc-
tion of LTP and LTD was blocked by the competitiveSpine Type-Specific Ca2� Signaling during AP
NMDA receptor antagonist CPP (20 �M; �10 ms:Backpropagation
106% � 8% of baseline, n � 8; 
10 ms: 108% � 10%To probe for functional differences between small and

large spine types, we assessed � [Ca2�] upon stimula- of baseline, n � 5; Figure 3C) and by postsynaptic perfu-
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Figure 1. Identification and Morphological Characterization of Dendritic Spines Contacted by Thalamic or Cortical Afferents

(A) Placement of stimulating and recording electrodes.
(B) Left: dye-filled LA projection neuron, scale bar equals 20 �m. Right: higher magnification of a tertiary dendrite illustrating different spine
types, scale bar equals 2 �m.
(C) Classification of spine types (n � 124 analyzed spines from 12 different neurons).
(D and E) Left: visualization of the spine (red fluorescence, Alexa-594). Middle: [Ca2�] transient after cortical or thalamic stimulation (green
fluorescence, Fluo-5F), scale bars equal 2 �m. Right: line scan across spine head and parent dendrite. White arrows indicate the time of
afferent stimulation. Scale bars equal 0.5 s.
(F) Thalamic and cortical spines are located on the same dendritic branches.
(G) Classification of identified spines contacted by thalamic (n � 17) or cortical (n � 18) afferents.
(H) Left: cumulative plot of spine head radius for thalamic and cortical spines. Right: averaged radius of thalamic (T) and cortical (C) spines
and the corresponding parent dendrites. Thalamic spines exhibit significantly larger spine heads (p � 0.001).

sion with the Ca2� chelator BAPTA (30 mM; �10 ms: cortical and thalamic afferents exhibited similar tempo-
ral summation of EPSPs elicited by three stimulations85% � 13% of baseline, n � 3; 
10 ms: 94% � 13%

of baseline, n � 6; Figure 3C). at 30 Hz (not shown), and similar miniature EPSC wave-
forms (evoked in the presence of Sr2�) (see Supplemen-In contrast to thalamic afferents, application of the

same pairing protocol to cortical afferent synapses did tal Figure S1), which is in agreement with our imaging
data showing that thalamic and cortical afferent syn-not result in the induction of spike timing-dependent

LTP or LTD at any of the tested EPSP-AP delays (�10 apses are located on the same dendrites. Thus, the
complete absence of STDP at cortical afferent synapsesms: 102% � 9% of baseline, n � 6; p � 0.05; 
10 ms:

93% � 11% of baseline, n � 5; p � 0.05; Figure 3F). cannot be explained by differences in NMDA or AMPA
receptor-mediated synaptic transmission or by a differ-Confirming earlier studies (Mahanty and Sah, 1999;

Tsvetkov et al., 2004; but see Weisskopf and LeDoux, ent synaptic location on the dendritic tree.
1999), we found no significant difference between the
two afferents in the voltage dependence of the NMDA Postsynaptic Induction of Synaptic Plasticity

at Cortical Afferentsor the AMPA (�-amino-3-hydroxy-5-methyl-4-isoxazole-
propionate) receptor-mediated components of the EPSC, In previous studies, tetanic stimulation (Huang and Kan-

del, 1998) or presynaptic stimulation paired with pro-or in the ratio between the AMPA and the NMDA compo-
nent (see Supplemental Figure S1 at http://www.neuron. longed postsynaptic depolarization (Tsvetkov et al.,

2002, 2004) was used to induce NMDA receptor-depen-org/cgi/content/full/45/1/119/DC1/). Furthermore,
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To assess whether there was a causal relationship be-
tween postsynaptic Ca2� dynamics and induction of
synaptic plasticity at cortical afferents, we applied the
smooth endoplasmic reticulum calcium ATPase (SERCA)
inhibitor cyclopiazonic acid (CPA; 15 �M). CPA slows
down [Ca2�] decay kinetics in spines and dendrites,
thereby increasing the integral of the [Ca2�] transients
during repetitive AP backpropagation (Holthoff et al.,
2002). Consistent with the hypothesis that the lack of
STDP at cortical afferents is caused by lower [Ca2�]
transients than at thalamic synapses, we found that in
the presence of CPA pairing, brief bursts of presynaptic
stimulation with postsynaptic APs induced LTD at corti-
cal afferents (72% � 19% of baseline, n � 4; p � 0.05;
Figure 4A). Since we did not observe any difference in
the mean decay time constant of [Ca2�] transients in
spines exhibiting large or small BPAP-induced � [Ca2�]
(corresponding to thalamic and cortical spine types, re-
spectively; see Figure 2) (�decay: large � [Ca2�] spines:
340 � 30 ms, n � 15; small � [Ca2�] spines: 297 � 31
ms, n � 15; p � 0.05), it is unlikely that SERCA-mediated
Ca2� extrusion is simply more efficient at cortical syn-
apses (Majewska et al., 2000). LTD induction occurred
at EPSP/AP delays of �10 or 
10 ms (but not at �20
or 
20 ms), indicating that CPA did not increase the
integral of the [Ca2�] transients sufficiently for induction
of LTP. Therefore, we applied additional, sustained de-
polarization to 
20 mV in between the APs during a
burst. As expected, pairing the same presynaptic stimu-
lation paradigm with sustained postsynaptic depolariza-
tion now resulted in LTP at cortical afferents (143% �

17% of baseline, n � 12; p � 0.05; Figure 4B). Like LTD,
LTP at cortical afferents was not affected by the relative
timing between the first EPSP and the first AP, indicating
that a general boosting of [Ca2�] transients can enable
induction of LTD or LTP but that temporal precision of
postsynaptic [Ca2�] transients might be insufficient for
induction of STDP under these conditions.

We were concerned that cortical afferent synapses
differed not only in terms of postsynaptic [Ca2�] tran-
sients but that LTP at these synapses was fundamentally

Figure 2. Spine Type-Specific Ca2� Signaling during AP Backpropa- different from LTP at thalamic synapses. We found, how-
gation ever, that LTP at cortical synapses, like LTP at thalamic
(A) Left: dendritic branch with analyzed spine. Dashed line indicates inputs, was completely blocked by the NMDA receptor
the position of the line scan. Right: red and green fluorescence antagonist CPP (102% � 12% of baseline, n � 5; p �
during the backpropagation of a short burst of action potentials (5

0.05; Figure 4B), by postsynaptic perfusion with BAPTAAPs, see inset). Time of stimulation is indicated by the white arrows,
(101% � 10% of baseline, n � 5; p � 0.05; Figure 4B),scale bar equals 0.8 s. Bottom: time course of fluorescence intensity
and by the CaMK-II antagonist KN62 (10 �M; cortical:in the green channel normalized to the red channel (�G/R), in the

spine and in the parent dendrite. 98% � 12% of baseline, n � 5; p � 0.05; thalamic:
(B) Fluorescence intensity (�G/R) changes in different spine types 101% � 18% of baseline, n � 5; p � 0.05; Figure 4C).
apposed to the same parent dendrite during AP backpropagation. Thus, synaptic plasticity can be induced at cortical affer-
Scale bars equal 20% �(G/R), 0.8 s.

ents and relies on similar mechanisms as at thalamic(C) Analysis of the [Ca2�] transient triggered by backpropagating
synapses, provided that postsynaptic [Ca2�] transientsAPs in different spine types (n � 8, 4, 7, and 11 for types Ia, Ib,

II, and III, respectively), compared to the [Ca2�] transient in the are sufficient.
corresponding parent dendrite. Type Ia and type III spines exhibited
significantly smaller [Ca2�] transients than their parent dendrites
(p � 0.01).

VDCCs and Synaptic Plasticity at Thalamic
and Cortical Afferents
We addressed the question of whether the differencesdent LTP at cortical afferents. Here, depolarization pro-
in spine [Ca2�] dynamics and the differences in synapticvided by the short trains of APs during the induction of
plasticity could be related to a single underlying mecha-STDP is very brief, and postsynaptic Ca2� levels may

not reach threshold for induction of synaptic plasticity. nism. Given the spine type-specific impact of backprop-
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Figure 3. Input-Specific Induction of Spike
Timing-Dependent Plasticity at Thalamic
Afferents

(A) Schematic illustrating the induction proto-
col consisting of 15 bursts of 3 APs and 3
EPSPs at 30 Hz.
(B) Time course of bidirectional changes in
EPSP slope at thalamic afferents induced by
EPSP-AP pairing at �5 to �10 ms (n � 10)
or 
5 to 
10 ms (n � 5). Scale bars equal
1.5 mV and 40 ms.
(C) Spike timing-dependent LTP is associa-
tive since it cannot be induced by EPSPs
alone (n � 5, p � 0.05) or APs alone (n � 5,
p � 0.05). It is blocked by the NMDA receptor
antagonist CPP (n � 8, p � 0.05) and by post-
synaptic perfusion with the Ca2� chelator
BAPTA (n � 3, p � 0.05). Spike timing-depen-
dent LTD requires NMDA receptor activation
(CPP; n � 5, p � 0.05) and postsynaptic Ca2�

elevation (BAPTA; n � 6, p � 0.05).
(D) Plot illustrating the time windows for the
induction of LTP and LTD at thalamic affer-
ents. EPSP-AP delays were binned into
ranges from �20 to �10 ms (n � 6); �10
to �6 ms (n � 5; p � 0.05); �6 to 0 ms (n �

12); 0 to 
6 ms (n � 4); 
6 to 
10 ms (n �

5; p � 0.05); and 
10 to 
25 ms (n � 9).
(E) Spike timing-dependent LTP at thalamic
afferents (filled circles) does not affect the
paired pulse ratio (gray circles; PPR; n � 5;
p � 0.05). Scale bars equal 4 mV and 100 ms.
(F) Plot illustrating the complete lack of STDP
at cortical afferents. EPSP-AP delays were
binned into ranges from �20 to �10 ms (n �

10); �10 to �6 ms (n � 6); �6 to 0 ms (n �

6); 0 to 
6 ms (n � 5); 
6 to 
10 ms (n � 5);
and 
10 to 
20 ms (n � 8).

agating APs on spine [Ca2�] transients, presumably re- tion. Consistent with an equal contribution of L-VDCCs
to Ca2� signaling at both inputs, we found that no signifi-flecting differential activation of VDCCs (Sabatini and

Svoboda, 2000), we assessed the contribution of spe- cant LTP was induced at cortical synapses in the pres-
ence of verapamil (109% � 19% of baseline, n � 5; p �cific VDCCs to STDP induction. L-type Ca2� channels

(L-VDCCs) have previously been reported to contribute 0.05; Figure 5C).
Based on previous studies demonstrating activationto LTP induction in the hippocampus (Morgan and

Teyler, 2001) and in the LA (Huang and Kandel, 1998; of dendritic R-VDCCs by BPAPs in cortical pyramidal
cells (Sabatini and Svoboda, 2000; Yasuda et al., 2003),Weisskopf et al., 1999; Bauer et al., 2002; Shinnick-

Gallagher et al., 2003). Indeed, we found that the L-VDCC we assessed the effect of R-type channel blockers on
STDP at thalamic afferents. A low concentration of Ni2�antagonist verapamil (50 �M) blocked spike timing-

dependent LTP at thalamic afferents (95% � 14% of (10 �M) specifically blocking R- and T-type Ca2� chan-
nels (Yasuda et al., 2003) completely abolished LTPbaseline, n � 5; Figure 5A). Verapamil did not affect

presynaptic release as assessed by three stimulations (86% � 14% of baseline, n � 8; p � 0.05; Figure 5A)
and LTD (100% � 4% of baseline, n � 5; p � 0.05;at 30 Hz (n � 4; p � 0.05; see Supplemental Figure S2).

In contrast to LTP, induction of LTD at thalamic afferents Figure 5B). There was no effect of Ni2� on presynaptic
release at thalamic or cortical afferents as indicated bydid not require activation of L-VDCCs (58% � 9% of

baseline, n � 4; p � 0.05; Figure 5B), indicating that a lack of effect on EPSP amplitude and on paired-pulse
ratio during repetitive stimulation (n � 5; p � 0.05; seedifferent Ca2� sources contribute to the induction of

spike timing-dependent LTP and LTD. To compare the Supplemental Figure S2). To identify the Ca2� channel
subtype affected by Ni2� application, we repeated therole of L-VDCCs during LTP induction at thalamic and

cortical afferents, we assessed the effect of verapamil experiments in the presence of the specific R-VDCC
blocker SNX482 (100 nM) (Newcomb et al., 1998; Wilsonon cortical LTP induced by presynaptic stimulation com-

bined with strong, sustained postsynaptic depolariza- et al., 2000). SNX482 completely blocked LTP (96% �
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14% of baseline, n � 5; Figure 5A) and LTD (93% � 8%
of baseline, n � 5; Figure 5B) without any effect on
baseline synaptic transmission (n � 4; p � 0.05; see
Supplemental Figure S2). In contrast to the equal block-
ade of LTP at thalamic and cortical afferent synapses
by the L-VDCC antagonist verapamil, we found that Ni2�

did not interfere with cortical LTP (141% � 13% of base-
line, n � 7; p � 0.05; Figure 5C), suggesting that a
preferential activation of R-VDCCs at thalamic synapses
might underlie input-specific induction of STDP.

To assess whether the brief depolarization induced
by somatic APs during induction of STDP would be
sufficient for the activation of somatic or dendritic
R-VDCCs, we measured the effect of SNX482 on mem-
brane depolarization during short bursts of APs at 30
Hz. SNX482 induced a significant decrease in the after-
depolarization following APs in a 30 Hz burst in 3 out
of 4 cells (see Supplemental Figure S2). Together, these
data indicate that R-VDCCs play an essential role during
EPSP/AP pairing at thalamic afferent synapses, sug-
gesting that R-VDCCs, in synergy with NMDA receptors,
might boost [Ca2�] transients and/or depolarization dur-
ing coincident pre- and postsynaptic spiking.

Spine Type-Specific Activation of R-VDCCs
by Backpropagating APs
Since large and small spine types exhibited differential
postsynaptic [Ca2�] dynamics upon stimulation with back-
propagating APs and because R-VDCCs are strongly
activated by backpropagating APs, we tested whether
R-VDCC activation in large spines could account for the
observed spine type specificity. Indeed, we found that
NiCl2 (10 �M) reduced � [Ca2�] in spines exhibiting large
[Ca2�] transients (S� spines; n � 8; p � 0.001), but not
in spines showing small [Ca2�] transients (S
 spines;
n � 8; p � 0.05) (Figures 6A and 6B). R-VDCC blockade
essentially transformed spines with large � [Ca2�] into
spines with small � [Ca2�] (Figure 6A). Application of Ni2�

slightly reduced [Ca2�] transients in parent dendrites
(Figure 6B). However, this effect was not significantly
different between dendrites close to S� or S
 spines
(Figure 6B). Nevertheless, this raises the question of
whether blockade of STDP at thalamic afferents (con-
tacting S� spines) by Ni2� was due to an effect on den-
dritic rather than on spine [Ca2�] transients. Therefore,
we tried to induce LTP at thalamic afferents 5 min after
the start of Ni2� application. At this time point, 10 �M
Ni2� significantly reduced � [Ca2�] in S� spines but did
not have any effect on parent dendrites (spine: 83% �
4% of baseline, n � 8; p � 0.01; dendrite: 96% � 4%

Figure 4. Postsynaptic Induction of Plasticity at Cortical Afferents of baseline, n � 8; p � 0.05; see Supplemental Figure
Requires Elevated Postsynaptic Ca2� Levels S3). However, even after 5 min of Ni2� application, LTP
(A) Induction of LTD at cortical afferents by pairing presynaptic at thalamic synapses was completely blocked (93% �
stimulation with postsynaptic APs (see inset) in the presence of 13% of baseline, n � 5; p � 0.05; see Supplemental
the CPA (black symbols; n � 4, p � 0.05) as compared to control Figure S3), indicating that a reduction in spine [Ca2�]
conditions (gray symbols; n � 6, p � 0.05). Scale bars equal 2 mV

underlies the blockade of LTP induction.and 20 ms.
Consistent with a role for L-VDCCs in dendritic [Ca2�](B) Top left and bottom: induction of LTP at cortical afferents by

pairing presynaptic stimulation with sustained postsynaptic de- dynamics, we found that the L-VDCC antagonist nimo-
polarization (black symbols; see inset; n � 12, p � 0.05) as compared
to the same protocol in the absence of sustained depolarization
(gray symbols; n � 6, p � 0.05). Top right: LTP at cortical afferents
is blocked by application of the NMDA receptor antagonist CPP (C) LTP at cortical and thalamic afferents is blocked by the CaMKII
(n � 5, p � 0.05) and by postsynaptic perfusion with the Ca2� antagonist KN62 (cortical: black symbols, n � 5, p � 0.05; thalamic:
chelator BAPTA (n � 5, p � 0.05). Scale bars equal 2 mV and 10 ms. white symbols; n � 5, p � 0.05). Scale bars equal 2 mV and 20 ms.
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tial [Ca2�] dynamics in different spine types and possibly
to afferent specificity of STDP.

R-VDCC Activation at Thalamic Spines
To directly show the specific activation of R-VDCCs at
thalamic afferent synapses, we assessed the effect of
R-VDCC blockade on BPAP-induced [Ca2�] transients at
identified cortical and thalamic synapses. We identified
single spines contacted by cortical or thalamic axons
using afferent stimulation-induced [Ca2�] transients and
subsequently imaged � [Ca2�] in response to brief bursts
of BPAPs (Figures 7A–7C). Consistent with the previous
results, we found that � [Ca2�] in thalamic spines was
significantly reduced by application of Ni2�, whereas
cortical spines and parent dendrites were not signifi-
cantly affected (thalamic: 67% � 8% of baseline, n �
7; p � 0.01; cortical: 89% � 15% of baseline, n � 6;
p � 0.05; parent dendrite: 88% � 9% of baseline, n �
13; p � 0.05) (Figure 7D). This indicates either that
R-VDCCs are located preferentially on dendritic spines
contacted by thalamic afferents or that there exist input-
specific mechanisms selectively coupling or uncoupling
homogeneously distributed R-VDCCs to/from Ca2�-
dependent signaling at thalamic or cortical inputs.

�-1E Containing R-VDCCs Are Preferentially
Located at Thalamic Afferent Synapses
To distinguish between these two scenarios, we per-
formed an immunohistochemical analysis using anti-
bodies against the R-VDCC-specific Ca2� channel sub-
unit �-1E (Newcomb et al., 1998; Wilson et al., 2000).
We found that �-1E immunoreactive puncta colocalized
with the postsynaptic density marker protein PSD-95
(Figure 8A). PSD-95/�-1E colocalization correlated with
the apparent size of the PSD-95 clusters. Whereas small
PSD-95 clusters did show low levels of colocalization,
larger PSD-95 clusters were mostly colocalized with
�-1E immunoreactivity (Figure 8A), suggesting that �-1E
containing R-VDCCs are postsynaptic to thalamic affer-
ents. Moreover, �-1E immunoreactivity was found juxta-
posed to punctate staining for the presynaptic marker
protein synaptophysin, indicating that postsynaptic
spines expressing �-1E-containing R-VDCCs are con-
tacted by presynaptic afferents (Figure 8B). To directly
compare postsynaptic �-1E expression at thalamic and
cortical afferents, we used in vivo injections of the an-Figure 5. Voltage-Dependent Ca2� Channels and Hebbian Plasticity
terograde tracer Phaseolus vulgaris-leucoagglutininat Thalamic and Cortical Afferents
(PHA-L) into the auditory thalamic nuclei (MGm/PIN) and(A) Thalamic spike timing-dependent LTP is completely blocked by

verapamil (n � 5), Ni2� (n � 8), and the specific R-VDCC antagonist into the auditory cortex (area Te3) projecting to the baso-
SNX482 (n � 5). Scale bars equal 4 mV and 20 ms. lateral amygdala (LeDoux, 2000). �-1E immunohisto-
(B) Thalamic spike timing-dependent LTD is verapamil insensitive chemistry on slices obtained from PHA-L-injected ani-
(n � 4) but is blocked by Ni2� (n � 5) and SNX-482 (n � 5). Scale

mals revealed that thalamic PHA-L-labeled fibers formedbars equal 4 mV and 20 ms.
putative presynaptic boutons that were significantly(C) Cortical LTP induced by sustained postsynaptic depolarization
more likely to be apposed to �-1E-immunoreactive pun-is abolished by the L-type Ca2� channel antagonist verapamil (n �

5, p � 0.05) and is Ni2� resistant (n � 7, p � 0.01). Scale bars equal cta as compared to cortical boutons (cortical: n � 101
4 mV and 20 ms. boutons from 8 slices; thalamic: n � 114 boutons from

8 slices; p � 0.05; Figures 8C and 8D). Even though the
population of cortical and thalamic afferents labeled by
in vivo PHA-L injections might not be completely identi-dipine (2 �M) affected � [Ca2�] more strongly in den-

drites than in spines and did not differentially affect cal to those afferents stimulated in the slice preparation,
this indicates that R-VDCCs are not only preferentiallydistinct spine types (Figures 6C and 6D). Together,

these findings indicate that a preferential activation of activated, but also asymmetrically located at thalamic
and cortical afferents to the LA.R-VDCCs on large spines contributes to the differen-
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Figure 6. Asymmetric Contribution of R-Type Ca2� Channels to [Ca2�] Transients Induced by Backpropagating Action Potentials in Small and
Large Spines

(A) Effect of inactivation of R-VDCCs on spine and dendrite [Ca2�] transients triggered by backpropagating APs. Left: analyzed spines (arrow)
and parent dendrites. Scale bars equal 2 �m. Right: [Ca2�] transients (�G/R) before (control) and after 10 min of Ni2� application in high
responsive (S�, top) and low responsive (S
, bottom) spines. Scale bars equal 20% �G/R, 1 s.
(B) Summary graphs of Ni2� effects on [Ca2�] transients in low- and high-responsive dendrites (D
, D�, left) showing no significant difference
in Ni2� sensitivity between D� and D
 dendrites. Middle and right: summary graphs of Ni2� effects on [Ca2�] transients in low (S
, n � 7) and
high (S�, n � 7; p � 0.001) responsive spines illustrating that Ni2� specifically reduces [Ca2�] transients in S� spines and that this effect
cannot be explained by a selective action on the parent dendrite.
(C and D) L-VDCC blockade preferentially reduces dendritic [Ca2�] transients and does not differentially affect S� and S
 spines. Time course
of dendritic and spine [Ca2�] transients (�G/R) upon blockade of L-VDCCs. Data presented as in (A) and (B). Scale bars equal 25% �G/R, 1 s.

Discussion by thalamic afferents. This is indicated by several lines
of evidence: first, we observed that [Ca2�] transients
induced by trains of BPAPs were larger in big spinesOur present results show that LA projection neurons

are equipped with two morphologically and functionally as compared to small spines and could be essentially
transformed into small [Ca2�] transients by R-VDCCdistinct types of dendritic spines that are contacted by

different presynaptic afferents. In particular, we found blockade. In contrast, [Ca2�] transients in small spines
did not involve R-VDCCs. Since spines contacted bythat spines postsynaptic to thalamic afferents exhibit

larger spine heads than cortical spines and that they thalamic afferents exhibit significantly larger spine
heads as compared to cortical spines, these experi-harbor different complements of VDCCs. Most impor-

tantly, the presence of R-type VDCCs endows thalamic ments indicate that R-VDCCs specifically contribute to
BPAP-induced [Ca2�] transients at thalamic spines. Sec-synapses with the capacity to express associative long-

term modifications of synaptic strength depending on ond, experiments in which we first identified the presyn-
aptic input by recording afferent stimulation-inducedthe precise timing of pre- and postsynaptic activity. Our

finding that R-VDCCs are preferentially contributing to synaptic, NMDA receptor-mediated [Ca2�] transients
clearly demonstrated that subsequent BPAP-inducedspine Ca2� transients in response to AP backpropaga-

tion is consistent with previous experiments in hippo- [Ca2�] transients were R-VDCC antagonist sensitive at
thalamic synapses, but not at cortical synapses. Third,campal CA1 pyramidal cells (Sabatini and Svoboda,

2000). by using an immunohistochemical approach, we could
show that R-VDCCs colocalize with the postsynaptic
density marker protein PSD-95. Consistent with our pre-Asymmetric Activation of R-VDCCs at Thalamic
vious experiments, we found a correlation between theand Cortical Afferents
apparent size of the PSD-95 clusters, presumably re-In LA projection neurons, R-VDCCs appear to be prefer-

entially located on and activated at spines contacted flecting spine head diameter and R-VDCC colocaliza-
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Figure 7. Asymmetric Activation of R-VDCCs on Thalamic and Cortical Spines

(A) Top left: identified thalamic spine, scale bar equals 2 �m. Identification was performed at �30 mV. The increase of intracellular [Ca2�] at
this potential is due to synaptic NMDA receptor activation induced by thalamic afferent stimulation (left) but not upon cortical afferent
stimulation (right).
(B) The same cell is subsequently repolarized to 
70 mV, and brief bursts of backpropagating APs were induced (see inset). The resulting
[Ca2�] transients were assessed at identified thalamic spines (S) and their parent dendrites (D) under control conditions (Control) and after
10 min of Ni2� application. Scale bars equal 0.7 s (line scan); 50% �G/R and 1 s.
(C) Same experiment for an identified cortical spine. Scale bars equal 0.5 s (line scan); 30% �G/R and 1 s.
(D) Averaged data illustrating the time course of � [Ca2�] during Ni2� application in dendrites (n � 13, p � 0.05), thalamic spines (n � 7, p �

0.05), and cortical spines (n � 6, p � 0.05).

tion. Fourth, by using in vivo injection of an anterograde Our results raise the question of whether differences
in spine morphology at thalamic and cortical synapsestracer into the auditory thalamic nuclei (MGm/PIN) and

into the auditory cortex (area Te3) projecting to the LA, might be reflected by functional differences in basal
synaptic transmission. Based on our recordings ofwe found that �-1E-containing R-VDCCs are signifi-

cantly more likely to be postsynaptic to putative thala- evoked EPSCs, we could not detect any differential con-
tribution of either AMPA or NMDA receptors to excit-mic boutons. Taken together, these experiments indi-

cate that the asymmetric activation and location of atory transmission at either input. Moreover, recordings
of spontaneous mEPSCs revealed similar amplitudesR-VDDCs at thalamic and cortical spines promote the

afferent-specific induction of STDP. Our results do not and kinetics for quantal events at thalamic and cortical
synapses. Considering their equidistance from theexclude the possibility, however, that additional spine

type-specific signaling pathways might also contribute. soma, this indicates that similar subunit combinations
contribute to AMPA receptor-mediated EPSCs at both
inputs. However, considering the most likely imperfectAfferent-Specific Spine Morphology

While our data clearly demonstrate an association be- voltage-clamp of dendritic spines, we cannot rule out
that additional voltage-dependent conductances spe-tween morphological and functional spine properties,

there remains the question of whether the morphological cifically located at thalamic or cortical spines might have
compensated for possible differences in mEPSC kinet-differences are causally linked to spine type-specific

Ca2� signaling. Recent studies are consistent with our ics (Tsay and Yuste, 2004). Future electron microscopi-
cal and imaging experiments will have to show whetherobservations suggesting that morphology is a crucial

determinant of Ca2� signaling in dendritic spines (Yuste specific spine morphologies are associated with struc-
tural and/or functional pre- and postsynaptic differ-et al., 2000). In the LA projection neurons studied here,

spine morphology and spine type-specific location of ences.
R-VDCCs may depend on extrinsic factors, such as thal-
amic afferent innervation or previous activity (Yasuda Synaptic Plasticity at Cortical Afferents

The present results indicate that cortical afferent syn-et al., 2003; Matsuzaki et al., 2004). Alternatively, cell-
autonomous mechanisms may underlie the precise apses, in contrast to thalamic afferents, are insensitive

to brief periods of coincident pre- and postsynapticmatching of pre- and postsynaptic functional and mor-
phological features. spiking. Previous experiments from our laboratory have



Neuron
128

Figure 8. Preferential Location of R-VDCCs at Thalamic Spines

(A) Immunohistochemical distribution of �-1E-containing R-VDCCs in the dorsolateral LA. Left: double-labeled sections for the R-VDCC subunit
�-1E (red) and the postsynaptic density marker PSD-95 (green). Middle: fluorescence intensity profiles along defined lines (between triangles)
obtained from single optical sections illustrate �-1E/PSD-95 colocalization in large PSD-95 clusters (thick arrow), but not in adjacent small
clusters (thin arrows). Scale bar equals 1 �m. Right: colocalization of PSD-95 and �-1E depends on the apparent size of the PSD-95 clusters.
(B) Left: double-labeled sections for the R-VDCC subunit �-1E (red) and the presynaptic marker synaptophysin (green) showing close apposition
of presynaptic structures with �-1E-immunoreactive puncta. Right: fluorescence intensity profiles along a defined line (between triangles)
obtained from single optical sections illustrate �-1E/synaptophysin apposition. Scale bar equals 1 �m.
(C) Left: double-labeled sections showing cortical afferents stained with the anterograde tracer PHA-L (green), and �-1E immunoreactive
clusters (red, thin arrow) not apposed to putative presynaptic cortical boutons (thick arrow). Right: intensity profiles along a defined line
(between triangles) were obtained from five projected optical sections separated by 1 �m in z. Scale bar equals 0.5 �m.
(D) Left: double-labeled sections showing thalamic afferents stained with the anterograde tracer PHA-L (green), and �-1E-immunoreactive
clusters (red, thin arrow) apposed to putative presynaptic thalamic boutons (thick arrow). Middle: intensity profiles along a defined line (between
triangles) were obtained from five projected optical sections separated by 1 �m in z. Scale bar equals 0.5 �m. Right: bar graph illustrating
that a larger proportion of thalamic than cortical boutons are apposed to �-1E-immunoreactive clusters (thalamic: n � 114 boutons from 8
slices; cortical: n � 101 boutons from 8 slices, see Experimental Procedures for quantification).

shown that LTP at cortical afferents can even occur study) and occludes with LTP induced via a presynaptic
mechanism, indicating, at least in part, a shared presyn-completely independent of postsynaptic activity (Hu-

meau et al., 2003). Nevertheless, experiments presented aptic mechanism of expression (Humeau et al., 2003).
In contrast to cortical LTP (Tsvetkov et al., 2002; Humeauhere and work by others suggests that LTD and LTP can

also be induced postsynaptically at cortical synapses et al., 2003), induction of STDP at thalamic afferents
was not associated with a change in PPR, which is(Huang and Kandel, 1998; Tsvetkov et al., 2002, 2004;

Humeau et al., 2003). Postsynaptic induction of plasticity generally taken as an index for alterations in the presyn-
aptic probability of neurotransmitter release. This indi-at cortical synapses appears to depend on the ampli-

tude and duration of postsynaptic depolarization and cates that, at least under our experimental conditions,
cortical and thalamic afferent synapses onto LA projec-Ca2� dynamics. Interestingly, postsynaptically induced

LTP at cortical afferents is R-VDCC independent (this tion neurons differ not only with respect to the locus of
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LTP induction, but also with respect to the expression of presynaptic input and dendritic spines enables LA
projection neurons to independently integrate thalamicmechanism.

Consistent with an important role for L-VDCCs during and cortical sensory input and to adjust synaptic effi-
cacy in an afferent-specific manner.fear conditioning (Bauer et al., 2002; Shinnick-Gallagher

et al., 2003; but see Cain et al., 2002), L-VDCC activation
Experimental Proceduresappeared to be required for the postsynaptic induction

LTP at thalamic and cortical afferents, irrespective of
Slice Preparation

whether it was induced by BPAPs or sustained postsyn- Standard procedures were used to prepare 350 �m thick coronal
aptic depolarization. At thalamic synapses, induction of slices from 3- to 4-week-old male C57BL/6J mice following a proto-

col approved by the Veterinary Department of the Canton of Basel-spike timing-dependent LTD differed from its counter-
Stadt (Humeau et al., 2003). Briefly, the brain was dissected in ice-part LTP in that it was L-VDCC independent. Apart from
cold artificial cerebrospinal fluid (ACSF), mounted on an agar block,L-VDCC activation, spike timing-dependent LTD and
and sliced with a Dosaka vibratome (Kyoto, Japan) at 4�C. SlicesLTP exhibited the same pharmacology, suggesting ad-
were maintained for 45 min at 35�C in an interface chamber con-

ditional LTD-specific routes of Ca2� entry, such as met- taining ACSF equilibrated with 95% O2/5% CO2 and containing (in
abotropic glutamate receptor-induced release from in- mM) 124 NaCl, 2.7 KCl, 2 CaCl2, 1.3 MgCl2, 26 NaHCO3, 0.4 NaH2PO4,

18 glucose, 4 ascorbate, and then for at least 45 min at room temper-tracellular Ca2� stores (Heinbockel and Pape, 2000;
ature before being transferred to a superfusing recording chamber.Normann et al., 2000).

Electrophysiology
Structural Basis and Functional Implications of Whole-cell recordings from LA projection neurons were performed
Afferent-Specific Plasticity in the Amygdala at 30�C–32�C in a superfusing chamber. Neurons were visually iden-

tified with infrared videomicroscopy using an upright microscopeWhat might be the physiological relevance for afferent-
equipped with a 40 objective (Olympus). Patch electrodes (3–5specific changes in synaptic efficacy in the LA? Recent
M�) were pulled from borosilicate glass tubing and normally filledevidence indicates that postsynaptic spiking of LA pro-
with a solution containing (in mM) 120 K-gluconate, 20 KCl, 10jection neurons is not necessary for fear learning to
HEPES, 10 phosphocreatine, 4 Mg-ATP, and 0.3 Na-GTP (pH ad-

occur but that postsynaptic spiking is associated with justed to 7.25 with KOH or CsOH, respectively, 295 mOsm). For
a more efficient acquisition of fear conditioning (Rosen- voltage-clamp experiments, K-gluconate was replaced by equimo-

lar Cs-gluconate. All experiments were performed in the presencekranz et al., 2003). In keeping with the notion that
of picrotoxin (100 �M). In current-clamp recordings, membrane po-R-VDCCs are most efficiently activated by backpropa-
tential was kept manually at 
70 mV. Data were recorded withgating APs (Sabatini and Svoboda, 2000), it has been
an Axopatch200B, filtered at 2 kHz, and digitized at 10 kHz. Inshown that mice deficient for the R-type-specific �-1E
all experiments, series resistance was monitored throughout the

subunit exhibit a delayed acquisition of cued auditory experiment by applying a hyperpolarizing current or voltage pulse,
fear conditioning (Kubota et al., 2001). This might indi- and if it changed by more than 15%, the data were not included in

the analysis. Data were acquired and analyzed with ClampEx8.0,cate that whereas cortical afferent synapses are able
ClampFit8.0 (Axon Instruments, CA), Mini Analysis Program (Synap-to sample surrounding patterns of activity of thalamic
tosoft, CA), and the LTP Program (W. Anderson, University of Bristol,afferents by means of presynaptic NMDA receptors (Hu-
UK). Monosynaptic EPSPs exhibiting constant 10%–90% rise timesmeau et al., 2003), a process that could possibly be
and latencies were elicited by stimulation of afferent fibers with a

involved in stimulus discrimination (Jarrell et al., 1987; bipolar twisted platinum/10% iridium wire (25 �m diameter). Al-
but see Armony et al., 1997), thalamic afferent synapses though we never observed any antidromic spikes, we cannot ex-

clude that some efferent fibers originating from LA projection neu-appear to be particularly suited to mediate rapid acquisi-
rons were stimulated. LTP was induced by pairing 3 monosynaptiction of conditioned fear during periods of strong sensory
EPSPs with 3 APs elicited by 0.5 nA, 5 ms current steps at 30 Hzexperience associated with postsynaptic AP firing in LA
(18). Pairing patterns were repeated 15 at 0.2 Hz. EPSP-AP delaysprojection neurons.
were determined from the onset of the EPSP to the peak of the AP.

Unlike other projection neurons, such as hippocampal LTP or LTD were quantified for statistical comparisons by normaliz-
or cortical pyramidal cells or cerebellar Purkinje cells, ing and averaging EPSP slopes during the last 5 min of experiments

relative to 5 min of baseline. Depicted traces show averaged EPSPswhere functionally distinct afferent inputs impinge on
for 2 min of baseline and 2 min of LTP/LTD (20–25 min after pairing).different dendritic compartments (Magee, 1999; Holthoff
All values are expressed as means � SEM. Statistical comparisonset al., 2002; Nimchinsky et al., 2002; Isomura et al., 2002;
were done with paired or unpaired Student’s t test as appropriateYuste and Bonhoeffer, 2004), cortical and thalamic
(two-tailed p � 0.05 was considered significant).

spines on LA projection neurons are intermingled on the
same dendritic branches. Moreover, in keeping with the Imaging

Cells were filled via a patch pipette with normal K� or Cs� basednuclear organization, LA projection neuron dendrites do
intracellular solution containing 40 �M Alexa-594 (Ca2�-insensitivenot exhibit any apparent polarization into basal and api-
dye, red fluorescence) and 200 �M Fluo-5F (medium-affinity Ca2�-cal dendrites, nor do they show tuft-like distal arboriza-
indicator, green fluorescence). After gaining access to the cell, dyestions that can form a functionally separate compartment
were allowed to equilibrate by diffusion for at least 15 min. For the

allowing sub- and suprathreshold integration of distal optical measurements, we used a custom-made two-photon laser
synaptic input (Larkum et al., 1999; Magee, 2000; Häus- scanning microscope based on a modified Fluoview (Olympus, Swit-

zerland) confocal microscope using a 60  0.9NA objective (LUM-ser et al., 2000; Wei et al., 2001; Williams and Stuart,
PlanFI, Olympus) coupled to an ultrafast Ti:sapphire laser (Mai-Tai,2003). Thus, consistent with recent physiological find-
Spectra-Physics, Germany) tuned to a � of 800 nm. Fluorescenceings (Humeau et al., 2003; Doyère et al., 2003; Tsvetkov
was detected as epifluorescence by 2 internal PMTs (Olympus).et al., 2004), our morphological data indicate that there
SDM570 and BA510IF and BA565IF barrier filters were placed in the

may be close functional interactions between cortical “green” and the “red” pathways, respectively, to eliminate transmit-
and thalamic sensory input, possibly at the level of indi- ted or reflected excitation light. Fluorescence intensities were ac-

quired and analyzed with Fluoview software (FV300, Olympus). Thevidual synapses. At the same time, the precise matching
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ratio G/R (Fluo5F/Alexa594) was used to avoid large errors due to the Received: August 16, 2004
Revised: October 12, 2004very low resting fluorescence of Fluo5F and to eliminate movement

artifacts (Yasuda et al., 2003). [Ca2�] changes were measured as Accepted: November 22, 2004
Published: January 5, 2005the difference between the ratios G/R before and after stimulation

and expressed as �(G/R) in % of baseline value.
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Abstract
The cellular and synaptic organization of new born mouse cerebellum maintained in organotypic slice cultures was
investigated using immunohistochemical and patch-clamp recording approaches. The histological organization of the
cultures shared many features with that observed in situ. Purkinje cells were generally arranged in a monolayer surrounded
by a molecular-like neuropil made of Purkinje cell dendritic arborizations. Purkinje cell axons ran between clusters of small
round cells identified as granule cells by Kv3.1b potassium channel immunolabelling. The terminal varicosities of the
Purkinje cells axons enwrapped presumptive neurons of the cerebellar nuclei whereas their recurrent collaterals were in
contact with Purkinje cells and other neurons. Granule cell axons established contacts with Purkinje cell somata and
dendrites. Parvalbumin and glutamine acid decarboxylase (GAD) immunohistochemistry revealed the presence of
presumptive interneurons throughout the culture. The endings of granule cell axons were observed to be in contact with
these interneurons. Similarly, interneurons endings were seen close to Purkinje cells and granule cells. Whole cell recordings
from Purkinje cell somata showed AMPA receptor-mediated spontaneous excitatory post-synaptic currents (sEPSCs) and
GABAA receptor-mediated spontaneous inhibitory post-synaptic currents (sIPSCs). Similar events were recorded from
granule cell somata except that in this neuronal type EPSPs have both a NMDA component and an AMPA component. In
addition, pharmacological experiments demonstrated a GABAergic control of granule cell activity and a glutamatergic
control of GABAergic neurons by granule cells. This study shows that a functional neuronal network is established in such
organotypic cultures even in the absence of the two normal excitatory afferents, the mossy fibers and the climbing fibers.

Key words: Cerebellum, neuronal network, organotypic cultures, excitatory synapses, inhibitory synapses

Introduction

Since Ramón y Cajal’s description of the cerebellum

more than a century ago (1), extensive immunohis-

tological and electrophysiological studies of this

structure have precisely determined the synaptic

relationships between cerebellar neurons, as well as

their neurotransmitters (2). In situ, Purkinje cells

receive excitatory inputs from glutamatergic granule

cells and olivary neurons via parallel and climbing

fibers respectively, and inhibitory inputs from several

types of GABAergic and glycinergic interneurons

(basket and stellate cells). Purkinje cells via their

axons exert GABAergic inhibition on neurons of the

deep nuclei. Granule cells receive excitatory inputs

via mossy fibers and inhibitory inputs mainly from

Golgi cell interneurons.

Studies of in vitro preparations such as acute slices

from guinea pig (3,4), rat (5) and mouse (6),

organotypic cultures from rat (7–11), mouse (12–

14) and kitten (15) and dissociated cell cultures

from rat (16–18) and mouse (19,20) have increased

our knowledge of cerebellar development, and

neuron-specific electrophysiology.

In addition, important insights into critical cellular

and molecular mechanisms governing neurogenesis

and cell survival have emerged from studies on mice

displaying natural mutations which affect the cere-

bellum (see 21 and 22 for reviews). Investigating the

role of critical proteins in cerebellar physiology and

pathology is now possible by using transgenic mice.

However, because of the ubiquitous functions of the

targeted proteins, normal development and survival

of transgenic animals could be impaired and conse-

quently specific studies of such proteins require

appropriate in vitro models. Here using electrophy-

siological and immunohistochemical approaches we

show that after several weeks in vitro, cerebellar slices
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originating from new born mice display the main

characteristics of mature cerebellum. We propose

that organotypic slice cultures of mouse cerebellar

cortex can be used to analyze the consequences of

mutations and pathologies on neuronal function and

survival.

Materials and methods

Cerebellar slice cultures

Organotypic cerebellar slice cultures were prepared

from mice using the roller tube technique as

described by Gähwiler (9). Briefly, the cerebellum

was removed under aseptic conditions from 0–1 day-

old-mice after decapitation. Parasagittal slices of

,400mm-thick were cut using a McIlwain tissue

chopper. Individual slices were attached to glass

coverslips in a film of clotted chicken plasma

(Cocalico, Reamstown, PA, USA) and placed in

culture tubes containing 750 ml of culture medium

made of 25% heat-inactivated horse serum, 50%

Eagle’s basal medium, 25% HBSS supplied with

33.3 mM D-glucose and 0.1 mM glutamine. The

tubes were put in a roller drum placed inside an

incubator at 36˚C. Uridine (Sigma), cytosine-b-D-

arabino-furanoside (Sigma) and 5-fluorodeoxyuri-

dine (Sigma) were used in combination (1027M

working solution) and added to the culture medium

for 24 h, 2–4 days after the culture was started

in order to retard the overgrowth of macrophages,

glial cells and fibroblasts. The cultures were fed

once a week by renewing the culture medium.

Electrophysiological recordings and immunohisto-

chemistry were performed after a period of at least

2–3 weeks.

Immunocytochemistry

Granule cells and neurons from cerebellar nuclei

were identified using an anti- Kv3.1b potassium

channel subunit antibody (rabbit polyclonal; Sigma;

1/300). A mouse monoclonal anti-calbindin D-28K

antibody (Sigma; 1/1500) was used as a specific

marker of Purkinje cells. A mouse monoclonal anti-

parvalbumin antibody (Sigma; 1/1500) and rabbit

polyclonal anti-Glutamic Acid Decarboxylase anti-

body (anti-GAD Chemicon; 1/1000) were used to

label both Purkinje cells and GABAergic interneur-

ons. In some instances, a mouse monoclonal anti-

synaptophysin antibody (Sigma; 1/500) was used to

detect presynaptic axonal sites.

The cultures were fixed in 4% paraformaldehyde

in phosphate-buffered saline (PBS) overnight at 4˚C
after a brief wash (PBS; pH 7.4). Then the cultures

were washed three times in PBS and immersed for

6 h in a PBS solution containing 0.1% Triton X-100

(PBST) to permeabilize cell membranes. They were

further incubated for 2 h in PBST containing 10%

normal goat serum (NGS) and 0.3% Bovine Serum

Albumin (BSA) to block non specific binding of the

antibodies. The cultures were then incubated for

24 h at 4˚C with the primary antibodies diluted in

the PBST containing 5% NGS and 0.3% BSA. After

three washes in this antibody dilution medium, the

cultures were incubated overnight at 4˚C with Alexa

488-conjugated anti-rabbit or anti-mouse antibodies

(1/4000; Molecular Probes) and /or with Cyanine3-

conjugated anti-mouse or anti-rabbit antibodies

(1/4000; Jackson ImmunoResearch). Finally the

cultures were washed 3 times in PBS and mounted

in Mowiol. Double labelling assays were performed

by incubating the cultures with mixed monoclonal

and polyclonal primary antibodies diluted as in

single labelling experiments. The co-localization for

Kv3.1b with GAD was analyzed by double immuno-

fluorescence. In this case, Kv3.1b immunofluores-

cence detection was performed first and the culture

was postfixed in 4% paraformaldehyde in PBS for

20 min. After an additional fixation in 70% ethanol

for 20 min, the culture was submitted to the GAD

immunodetection protocol. Negative controls were

made by omitting the primary antibody. The cultures

were analyzed with an inverted microscope equipped

for epi-fluorescence (Nikon DIAPHOT-TMD) and

a confocal microscope (Zeiss LSM 510, software

release 3.2). All confocal pictures illustrated in the

figures are single sections (pinhole: red channel

106 mm; green channel 98 mm). Evaluation of the

ratio of granule cells to Purkinje cells was carried

out by counting Kv31.b positive granule cell and

calbindin positive Purkinje cell number in seven

fields chosen on seven slice cultures that had

apparently well developed cortical lamination.

Electrophysiology

Cerebellar slice cultures were transferred to a

recording chamber fixed on the stage of a Nikon

Optiphot2 microscope. Patch-clamp recordings

were carried out under voltage or current clamp in

the whole-cell recording mode (WCR) using an

Axopatch 200 A amplifier (Axon Instruments,

Foster City, CA). Cells were visualized on a monitor

screen using an infra-red camera (T.I.L.L.

Photonics, Planegg, Germany). Purkinje cells and

granule cells were identified by their typical mor-

phology. Purkinje cells are large (15–20 mM) neu-

rons localized at the periphery of the cultures

displaying a well developed dendritic arborization

and a highly refringent nucleoli. Granule cells are

small (5–8 mm) spherical cells. Electrodes of 5 MV
(for Purkinje cell recordings) and of 10 MV (for

granule cell recordings) were pulled from borosili-

cate glass capillaries (Clark Electromedical

Instruments, Pangbourne, England) with a horizon-

tal micropipette puller (BB-CH-PC, Mecanex,

Geneva, Switzerland), and filled with a solution

244 J.-L. Dupont et al.



containing in mM: K+-gluconate 132, EGTA/KOH

1, MgCl2 2, NaCl 2, Hepes/KOH 10, MgATP 2,

and GTP 0.5. pH was adjusted to 7.2 with TrisOH.

The cultures were perfused at 20˚C with a bath

solution containing in mM: NaCl 130, KCl 2.7,

CaCl2 5, MgCl2 0.5, Hepes/Tris 10, glucose 5.6. pH

was adjusted to 7.4 with TrisOH. The current

and voltage traces were digitized using a digital

data recorder (VR-10B, Instrutech, Great Neck,

NY, USA) before storage on a Panasonic video

recorder (Matsushita Electric Industrial, Osaka,

Japan), for off-line analysis by using MiniAnalysis

(Synaptosoft) and Pclamp 8 (Axon Instruments)

softwares.

Bicuculline methiodide, (Sigma, St Louis, USA),

SR 95531 hydrobromide (Tocris, Ellisville, USA)

were prepared as 1022 M stock solution in distilled

water, and CNQX (Tocris Cookson, Bristol,

England) as 1022 M stock solution in DMSO. D(-)-

APV (Sigma, St Louis, USA) was extemporaneously

prepared in the perfusion medium (free Mg2+) at a

working dilution of 1025M.

Results

Immunohistology of the cerebellar slices

Mouse cerebellar slices cultured with the roller tube

method display a cytoarchitectural organization very

similar to that of the adult mouse cerebellum in situ.

Indeed, the cortical lamination is conserved despite

the fact that the culture procedure generally alters

cerebellar foliation. Anti-calbindin immunofluores-

cence disclosed Purkinje cell bodies often organized

in a single row (Figure 1A, 1B1, 1B3). Purkinje cells

generally displayed a well polarized morphology with

a single apical dendritic arborisation extending in a

molecular like-layer and both proximal and distal

branches forming the dendritic arborization were

decorated with spiny processes (Figure 1 A2).

Purkinje cells emitting two or three dendritic trees

were also seen (Figure 1F), but this feature was

mainly restricted to ectopic neurons that were most

often encountered in cultures that did not reach an

advanced state of cortical lamination. The Purkinje

cell bodies extend a thin varicose axon with a beaded

appearance through an internal granule cell like-

layer containing numerous small Kv3.1b-positive

granule cells (6 to 8 mm in diameter, Figure 1, B2,

B3) and through the core of the culture (Figure 1D).

Since granule cell precursors are located in the

external germinative layer at the time where the

cultures were made (postnatal days 0 and 1), this

indicates that granule cells in culture, are able to

migrate as in vivo, to form the internal granular layer

three to four weeks later. The axons of granule cells

extended into the Purkinje cell-containing area

(Figure 1, B2, B3). In some cultures when isolated

granule cells could be observed (Figure 1 A3), the

ascending axon emerging from the cell body often

split into a typical T-shape between two parallel

fibers. In slices where the cortical lamination was

resected counts of granule cells as a function of

Purkinje cell number gave ratios ranging between 42

and 98 (mean563.71¡6.6, n57, SEM). These

values are much lower than estimates about 235

granule cells per Purkinje cell reported for normal

and mutant adult mouse cerebella (23,24).

In the core of the culture, the Purkinje cell axons

reached large neurons (more than 15 mm in dia-

meter) confined in a nucleus-like formation

(Figure 1, C1–C3). These neurons were closely

surrounded by calbindin-positive Purkinje cell axon

varicosities and displayed an intense Kv3.1b immu-

nofluorescence. These neurons probably belong to

cerebellar nuclei. In many slices where these neurons

were lacking, the Purkinje cell axons ran back

throughout the Purkinje cell layer (not shown).

Medium-sized (10–15 mm) neurons exhibited

GAD, but not calbindin immunostaining through-

out the culture (Figure 1D). These neurons were

immunolabelled by antibodies raised against parval-

bumin (Figure 1E), a calcium-binding protein only

present in GABAergic neurons in the cerebellum.

These calbindin-negative neurons displayed mor-

phological features different from those of Purkinje

cells and were likely GABAergic interneurons.

Detailed examination of these neurons indicates

that in many cases they have established connections

similar to that described in situ. Purkinje cell bodies

and dendrites (Figure 2A) as well as parvalbumin-

labelled interneurons (Figure 1E) were closely

underlined by Kv3.1b-positive presynaptic endings

of presumptive granule cell axons. Calbindin-posi-

tive Purkinje cell axons were often observed running

back close to Purkinje cell soma (Figure 1A). Such

axons correspond to recurrent axon collaterals of

Purkinje cells. Whether some of these collaterals

made autapses on the originating neuron could not

be ascertained. In addition, Purkinje cell bodies were

surrounded by a dense network of GAD-positive,

calbindin-negative nerve endings (Figure 2B) indi-

cating that inhibitory interneurons innervated

Purkinje cells in the cultures. GAD positive varicos-

ities were also found close to small Kv3.1b immuno-

labelled neurons resembling granule cells

(Figure 2C). The assumption that the immuno-

labelled nerve endings described in this study

correspond to real presynaptic sites was supported

by their immunoreactivity for synaptophysin sug-

gesting that synaptic vesicles are present in these

structures (Figure 2 D1–D3).

Electrophysiological recordings of Purkinje cells

This first series of experiments was performed to

determine which type of spontaneous activity

Purkinje cells display in the cultures. Typically,
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Figure 1. General organization of the cerebellar slice cultures after 3 weeks in vitro. (A1) Purkinje cells labelled with the anti-calbindin

antibody. Note that Purkinje cells generally display a well polarized morphology and are organized in a single row to form a typical layer.

(A2) Confocal picture of calbindin immunopositive Purkinje cell main dendritic branches covered with numerous spine like processes

(arrows). (A3) Isolated granule cells labelled with an antibody raised against the Kv3.1b potassium channel subunit. Note that the axon

emerging from the cell body split in a T shape manner into two parallel fibers. (B1, B2 and B3) Same fields showing confocal pictures of

Purkinje cells labelled with the anti-calbindin antibody (B1), small round granule cells labelled with the anti-Kv3.1b potassium channel
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when Purkinje cell somata were voltage clamped in a

classical saline solution at a holding potential of

260 mV with a K-gluconate-filled patch pipette

(i.e., EK and ECl , 280 mV), spontaneous post-

synaptic transient inward currents will be referred to

as spontaneous postsynaptic excitatory currents

(sEPSCs) were recorded in all cases (Figure 3A,

n543). Such events appeared with a mean frequency

of 7.3¡1.5 Hz and a mean amplitude of 31¡4 pA.

The amplitude distribution of sEPSCs (Figure 3A,

lower panel) was skewed, with a main peak fitted

with a gaussian function at 14.5¡0.7 pA (n537). In

10 Purkinje cells (23%), spontaneous postsynaptic

outward currents (spontaneous inhibitory postsy-

naptic currents, sIPSCs) also occurred (Figure 3B)

with a mean frequency and amplitude of

2.5¡0.6 Hz and 28¡5 pA, respectively. The ampli-

tude distribution of sIPSCs revealed a main peak at

14¡2 pA (n510, Figure 3B, lower panel). The

sIPSCs were blocked by a bath application of

1025 M bicuculline (Figure 4, middle trace, n54).

Applications of 1025 M CNQX blocked the sEPSCs

whereas sIPSCs currents were still recorded

(Figure 4, right trace, n56). These pharmacological

data demonstrate that in our culture system,

Purkinje cell spontaneous synaptic activity mainly

r

antibody (B2) and the fusion of these two fields (B3) emphasizing the lamination of the structure. Purkinje cells stand in a layer localized at

the periphery of the slice with their axons that run downwards in the putative internal granular layer. (C1, C2 and C3) Confocal pictures of

the same field taken in the center of the same culture as in B. C1 shows the endings of Purkinje cell axons immunopositive to the calbindin

antibody; in C2, immunostaining with the anti-Kv3.1b potassium channel antibody revealed that positive macroneurons are confined in a

nucleus like structure; C3: the two immunostainings are merged and show Purkinje cell axon endings surrounding these macroneurons. (D)

Confocal picture showing Purkinje cell axons beaded of varicosities labelled with the anti-calbindin antibody (in red) and GABAergic

interneurons labelled with an antibody raised against GAD (in green). Note that Purkinje cell axons varicosities also contain GAD (arrows).

(E) Confocal picture of a cell showing a clear immunopositivity to parvalbumin (in red) and morphologically different from Purkinje cells

and so assumed to be an inhibitory interneuron. That neuron displayed many contacts with Kv3.1b positive endings (in green). (F) Like all

GABAergic neurons in the cerebellum, Purkinje cells are labelled with antibodies raised against Parvalbumin. Note that these neurons

exhibit several dendritic arborizations arising from a same cell body. Calibration bar: 40 mm except for A2: 5 mm.

Figure 2. Putative synaptic contacts between distinct cell populations: evidence in the slice culture after 3 weeks in vitro. (A) Confocal

image of a field showing Purkinje cells labelled with the anti-calbindin antibody (in red) exhibiting spots positive to the Kv3.1b potassium

channel antibody on their somata and dendrites (in green) corresponding to nerve endings, presumably granule cell axon endings, in contact

with the Purkinje cells. (B) Confocal image showing nerve endings immunopositive for GAD (in green) but negative for calbindin in contact

with the soma and dendrites of Purkinje cells immunostained with the anti-calbindin antibody (in red). (C) Confocal picture showing GAD

positive nerve endings (in red) in contact with Kv3.1b potassium channel positive granule cells (in green). (D1, D2 and D3) Same fields

showing in D1 neurons labelled with the antibody raised against GAD (in green, asterisks indicate soma of Purkinje cells) and in D2 the

presence of presynaptic sites as revealed by the use of an antibody raised against the vesicular protein synaptophysin (in red). In D3 the two

immunostainings are merged showing that GAD positive synaptic contacts take place on neurons including Purkinje cells. Calibration bar:

40 mm.
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consists of AMPA receptor-mediated sEPSCs, and

occasionally, GABAA receptor-mediated sIPSCs.

This indicates that Purkinje cells receive functional

excitatory inputs from presumptive granule cells and

inhibitory inputs from presumptive interneurons

and/or possibly Purkinje cell axon collaterals.

Furthermore, sEPSC/sIPSCs sequences were

detected (data not shown) indicating that granule

cells could activate simultaneously a Purkinje cell

and an inhibitory interneuron connected to the same

Purkinje cell. A tetrodotoxin (TTX) application

drastically reduced the frequency of both sIPSCs

and sEPSCs (data not shown) indicating that a large

proportion of synaptic events were action potential-

dependent.

Electrophysiological recordings of granule cells

In the slice culture system, the excitatory circuitry

mainly emanates from the numerous granule cells

present in the slice. Synaptic activities afferent to

these neurons have been recorded at 240 mV.

Spontaneous transient inward and outward synaptic

currents were recorded (Figure 5A) similarly as in

Purkinje cells. Inward current (sEPSCs) were

recorded in 100% of granule cells with a mean

frequency of 0.84¡0.29 Hz (n512) and a mean

amplitude of 27¡4 pA. The distribution of sEPSCs

amplitude (Figure 5B) was skewed, with a main

peak at 13¡1 pA (n512). The outward currents

(sIPSCs) were recorded in 9 out of 12 granule cells

with a mean frequency of 0.39¡0.13 Hz and mean

amplitude of 16¡2 pA. The distribution of sIPSCs

amplitude (Figure 5C) showed a main peak at

12¡1 pA (n55).

Recording spontaneous activities in granule cells

in the cultures model reveals functional granule cell-

granule cell excitatory interactions (that appear

specific to cerebellar cultures) as well as granule

cell-interneuron and/or granule cell-Purkinje cell

inhibitory interactions.

Contribution of NMDA receptors in EPSCs recorded in

granule cells and Purkinje cells

To determine the possible implication of NMDA

receptors in EPSCs in granule cells and Purkinje

cells the synaptic activity was recorded in both cell

types at 240 mV using a free Mg2+ external solution

supplemented with Ca2+. The characteristics of

EPSCs (decay kinetic and amplitude) were analysed

and compared before and after bath application of

APV (1025 M), a specific antagonist of NMDA

receptors (Figure 6).

After a fast activation, the EPSCs in granule cells

decayed with a fast component followed by a slow

tail exhibiting channel-like activities with an ampli-

tude of about 2 pA (Figure 6A upper part, control

Figure 3. Spontaneous synaptic activity in Purkinje cells. (A and B) Upper part: representative current traces of the spontaneous synaptic

activity recorded in control conditions at 260 mV: excitatory post synaptic currents in A (as shown with an expended time scale in the

middle part) and mainly inhibitory post synaptic currents in B (as shown with an expended time scale in the middle part) are depicted.

Lower panel: the amplitude histogram of sEPSCs in A and of sIPSCs in B. In both cases histograms display a main peak fitted by a gaussien

function (represented by lines).
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trace). Averaging a hundred isolated EPSCs

(Figure 6A, lower part, control trace) allowed us to

determine the mean amplitude (16¡4 pA, n56),

the time constant of the fast (2.2 ms¡0. 28, n56),

and slow (37¡13 ms, n56) components of these

granule cells EPSCs. After bath application of APV,

the slow tail of channel activities was almost

abolished (Figure 6A upper part, APV trace).

Averaging granule cell EPSCs in the presence of

APV (Figure 6A, lower part, APV trace in red)

revealed that the slow component was selectively

abolished in 3 cells and reduced by about 60% in the

3 remaining cells. In the presence of CNQX (n53)

only the channel like activity was recorded

(Figure 6A upper part, CNQX trace).

Single EPSCs recorded in Purkinje cells did not

display the slow tail (Figure 6B, upper part, control

trace, note the different time scale in A and B).

Averaging isolated events (Figure 6B, lower part,

control trace suppressed in black) gave rise to a

current of 38¡8 pA which decayed, following a

single exponential with a fast time constant of

3.7¡1.4 ms (n59). Single EPSCs were not affected

by bath application of the NMDA receptor antago-

nist (Figure 6B, upper part, APV trace) but were

abolished by CNQX (not shown). Averaging iso-

lated EPSCs recorded in the presence of APV

(Figure 6B, lower part, APV trace suppressed in

red) revealed that the fast component was not

affected by APV (time constant of 3.8¡1.6, n59).

Inhibitory inputs control excitatory transmission in

Purkinje cells and granule cells

Blocking GABAergic inhibitory circuitry with bicu-

culline produced a large increase of sEPSCs

frequency in all Purkinje cells (n517, Figure 7A).

Quantification of this bicuculline effect on the

frequency and mean amplitude of sEPSCs was

performed on 12 Purkinje cells (Figure 7A, lower

panel) and showed a mean frequency increase from

6.4¡1.7 Hz to 26.0¡5.0 Hz (Figure 7A, lower

panel, left histograms). In addition, the mean

amplitude of sEPSCs also increased from

21¡5 pA to 35¡7 pA after bicuculline application

(lower panel, right histograms). Furthermore, SR

95531 (1026 M), a very specific inhibitor of GABAA

receptors, reproduced the same effect on the

excitatory synaptic transmission as bicuculline

(Figure 7B, n56). The mean frequency of sEPSCs

increased from a mean of 4.7¡2.3 Hz to a mean of

27.4¡7.5 Hz (lower panel, left histograms) while

the mean amplitude shifted from 15.3¡1.4 pA to

20.5¡1.9 pA (lower panel, right histograms). These

observations suggest that the excitatory activities

afferent to Purkinje cells are, presumably via the

Figure 4. Pharmacological characterization of synaptic events depicted in Purkinje cells.Left traces are currents traces recorded in control

conditions at 260 mV where both sEPSCs and sIPSCs are present. Middle and right traces are current traces recorded in the same cell after

a bath application of bicuculline and CNQX respectively. Note that in the presence of bicuculline sIPSCs are blocked specifically whereas in

the presence of CNQX only sIPSCs are recorded.
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granule cells, under the control of inhibitory

GABAergic neurons.

In granule cells, applications of bicuculline

blocked sIPSCs (n54, not shown) and led to an

increase of the frequency of sEPSCs in 3 out of 7

granule cells.

Excitatory inputs control inhibitory synaptic transmission

in Purkinje cells

The next set of experiments was carried out to

determine if sIPSCs detected in Purkinje cell are

affected by blockade of AMPA receptors by CNQX.

Typically, as illustrated in Figure 8 (n56), whereas

the frequency of sIPSCs was not affected by CNQX

(2.6¡0.5 Hz in control and 3.1¡1.5 Hz after

CNQX) the mean amplitude of sIPSCs decreased

from 29.0¡7.7 pA in controls to 13.3¡4.7 after

CNQX applications. Comparison between sIPSCs

amplitude histograms in control and CNQX condi-

tions (Figure 8, lower panel) revealed that although

the main peak of sIPSCs amplitude was not affected

(12.7¡1.9 in control against 11.4 pA¡1.3 pA after

CNQX), large amplitude events were abolished.

These results indicate that activation of AMPA

receptors by excitatory inputs controls the activity of

GABAergic neurons innervating Purkinje cells.

Inhibitory inputs control the firing rate of Purkinje and

granule cells

Finally, modifications of the firing rate in Purkinje

cells and in granule cells were investigated following

a blockade of GABAergic transmission. Current

clamp recordings of Purkinje and granule cells at the

resting membrane potential were performed. In

Purkinje cells, bath applications of bicuculline

induced a 5–10 mV depolarization which was

associated with an increase of the synaptic noise

(n55). Together these effects contributed to

increase the firing rate of action potentials

(Figure 9A). In granule cells (Figure 9B), a similar

effect was observed but the depolarization was not

large enough to trigger a discharge of action

potentials in 2 out of the 4 neurons recorded.

Discussion

Investigation of central neurophysiology has been

greatly facilitated by in vitro methods. Mutant mice

now make it possible to study the neurophysiological

functions of an increasing number of critical proteins

linking phenotypes to specific cellular and mole-

cular defects. In this respect, the use of in vitro

preparations from mutant mice is an important

Figure 5. Spontaneous synaptic activity in granule cells. (A) Representative current traces of the spontaneous synaptic activity recorded in

control conditions at 240 mV: excitatory post synaptic currents (as shown with an expended time scale lower part) and inhibitory post

synaptic currents (as shown with an expended time scale in the lower ) are depicted. (B) The amplitude histogram of sEPSCs and (C) the

amplitude histogram of sIPSCs. In both cases histograms display a main peak fitted by a gaussien function (represented by lines).
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methodological advance. Studies on dissociated cell

cultures are unfortunately limited to single cell level

or to simple neuronal networks. Acute slices mainly

offer the interest of an intact cellular organization

and synaptic connectivity within the cerebral struc-

ture, but do not allow long lasting pharmacological

treatments. Furthermore, investigations cannot be

performed during the late postnatal period and

adulthood in acute slices when the mutation of

interest causes early postnatal death. As an alter-

native, organotypic cultures have been developed

using roller tubes (25,26), collagen coverslips in

Maximow chambers (27), or polycarbonate mem-

branes (28) and permit long term studies on

organized structures. However, development as well

as cellular organization of the neuronal circuits may

be modified in organotypic cultures. This is parti-

cularly true for the cultures that are obtained from

immature cerebellum of newborn animals. Before

analyzing the effects of a given mutation, character-

ization of the cellular and synaptic organization of

these organotypic cultures after several weeks in

culture is necessary. The organotypic cultures of

mouse cerebellum that we have developed in roller

tubes offer certain advantages as they permit an easy

electrophysiological approach to different cell types.

The aim of the present study was to provide an

overview on the general cellular and functional

organization of the mouse cerebellar organotypic

slice cultures (see Figure 10). The discussion will

firstly consider the general cellular organization and

morphology of the cerebellar organotypic culture

and secondly the synaptic relationships established

by the cerebellar neurons after 3–4 weeks in vitro.

Structural organization of the organotypic cerebellar

cultures

This study demonstrates that even in the absence of

external inputs (mossy and climbing fibers), the

general cytoarchitecture of the mouse cerebellum is

relatively preserved in the organotypic cultures as

shown by using antibodies directed against specific

markers of different types of cerebellar neurons.

Layers of Purkinje cells occupy the periphery of

the slice extending axons to presumptive central

nuclear neurons. Granule cells form a layer resem-

bling the internal granular layer. Numerous putative

GABAergic interneurons are differentiated within

the organotypic cultures, but no attempt was made

in this study to identify these interneurons.

Organotypic cultures from rat cerebellum displayed

similar structural organization independently of the

method used, i.e., roller tubes (10,26) or polycarbo-

nate membrane (29,30). The organization of mouse

cerebellar cortex is also relatively preserved after

Figure 6. NMDA receptors and EPSCs recorded in granule cells and Purkinje cells. (A) Upper part: single EPSCs recorded at 240mV in a

granule neuron in control conditions in a Mg-free saline (left trace) and after a bath application of APV at a concentration of 1025M

(middle trace), note that the channel like activity underlying a slow tail current is nearly abolished by APV. In the presence of CNQX

(1025M) only the channel like activity is recorded (right trace). Lower part: corresponds to an average of a hundred of EPSCs normalized to

the peak amplitude recorded in control conditions (lower trace) and in the presence of APV (upper trace). Note that the slow decaying

component of the averaged EPSC is affected by APV. (B) Upper part: illustrates single EPCS recorded in a Purkinje cell in control

conditions at 240mV in a Mg-free saline (left trace) and after a bath application of APV at a concentration of 1025M (right trace), note that

single EPSCs are fast decaying when compared to EPSCs recorded in granule cells (note the different time scale in A and B). (B) Lower part:

represents the average of a hundred of EPSCs normalized to the peak amplitude recorded in a Purkinje cell in control conditions (upper

trace) and in the presence of APV (lower trace). Note that the EPSC decay is not affected by APV.
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several weeks in vitro using Maximow chambers (see

31 and 32 for reviews). Furthermore, we showed

that Purkinje cells and interneurons were closely

surrounded by granule cell presynaptic-like term-

inals and that interneuron presynaptic-like terminals

surrounded Purkinje cell profiles and granule cell as

well. The large number of main Purkinje cell axons

running back within the Purkinje cell layer in

cultures devoid of nuclear neurons suggests that

Purkinje cells are extensively self-innervated in our

slice cultures. Whether such axons form functional

synapses between Purkinje cells will be interesting to

investigate using a paired recording approach.

In the organotypic cultures, the morphology of the

Purkinje cells looks similar to that observed in the

cerebellar cortex of adult mice with a 20–30 mm

large cell body, a well developed isoplanar dendritic

tree oriented towards the periphery of the culture.

However, Purkinje cells display abnormal morpho-

logical features such as multiple primary dendrites

some of which are oriented towards the core of the

culture. These dendritic patterns typically affected

isolated or ectopic Purkinje cells, i.e., cells that had

grown in an abnormal environment. The dendritic

arborizations of Purkinje cells exhibit a great variety

of shapes when these neurons develop in an almost

complete absence of granule cells in agreement with

previous reports (22 for a review).

In our study, Kv3.1b positive endings, presumably

granule cell axon endings, were shown to terminate

on proximal and distal branches on Purkinje cell

dendrites. According to this observation, numerous

spines-like processes are present on the main

dendritic branches of the Purkinje cells. Such

ectopic spines have already been described in vivo

as in vitro when Purkinje cells were devoid of their

climbing fiber innervation and were shown to be

mainly connected by parallel fibers (22 for a review).

The role of the cellular environment, in particular

the formation of granule cells and parallel fibers on

the modelling of the Purkinje cell dendritic arboriza-

tion has already been well documented (22 for a

review). In this study, the granule cell to Purkinje

cell ratio is about four times lower than in situ

Figure 7. GABAergic neurons control the excitatory synaptic transmission on Purkinje cells. (A) Effects of bicuculline on sEPSCs mean

frequency and mean amplitude. The upper traces are currents traces of sEPSCs recorded in control conditions (left) and after bicuculline

bath application at 1025 M (right). In the lower panel we compare the mean frequency (left) and the mean amplitude (right) of sEPSCs

recorded in control conditions (black bars) with the mean frequency of sEPSCs and the mean amplitude recorded in the same cells (n512)

after bath applications of bicuculline (gray bars). (B) Effects of SR 95531 on sEPSCs mean frequency and mean amplitude. The upper

traces are currents traces of sEPSCs recorded in control conditions (left) and after SR 95531 bath applications at 1025 M (right). In the

lower panel we compare the mean frequency (left) and the mean amplitude (right) of sEPSCs recorded in control conditions (black bars)

with the mean frequency of sEPSCs and the mean amplitude recorded in the same cells (n56) after bath applications of SR 95531 (gray

bars). Recordings were performed at 260 mV.
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estimates in the mouse (23,24). Such a difference

originates, at least in part, from the fact that DNA

synthesis inhibitors were added for 24 h to the

culture medium in order to prevent glial cell

proliferation 2–4 days after the start of the culture.

As most of the granule cell precursors during that

period are dividing neuroblasts in the external

germinal layer, the exposure to the antimitotic

agents could result in the elimination of many

granule cells. Thereafter, the surviving granule cell

precursors were able to migrate to form the internal

granular layer while Purkinje cells apparently differ-

entiated a developed dendritic arborization despite

the loss of numerous granule cells. Whether these

Purkinje cells give rise to a fully developed dendritic

tree in terms of extent and branching complexity like

in situ is probably not the case as these dendritic trees

appear short and immature. This point will be

interesting to investigate but a morphometric analy-

sis of the dendrites of these neurons will be a difficult

task using calbindin immunolabelled material

because of the overlaps of the dendritic arborisations

between neighbouring Purkinje cells. Numerous

recurrent collaterals of Purkinje cell axons were

observed running back into the Purkinje cell layer.

This has been previously described in organotypic

cultures of mouse (27) and rat (10), but also

represents a normal feature of Purkinje cell axons

in vivo (33). These Purkinje cell axon collaterals are

often seen to terminate close to dendrites of either

neighboring or distant Purkinje cells (see also 27)

although the establishment of autaptic contacts

could not be ruled out.

Electrophysiological recordings reveal the pre-

sence of two types of synaptic events in Purkinje

cells. Excitatory AMPA-dependent and inhibitory

GABAA-dependent currents indicated that excita-

tory neurons (mainly granule cells), and GABAergic

neurons have established functional synapses on

Purkinje cells. The presence of similar inputs on

Purkinje cells has been previously identified in rat

organotypic cultures (10,11) and in both mouse (34)

and rat (35) primary cultures. No NMDA depen-

dent component was detected in the synaptic

excitatory response recorded in Purkinje cells thus

confirming that the parallel fibers in this culture

system preferentially act on Purkinje cells via non-

NMDA receptors (36).

The Purkinje cell synaptic activity characterized in

these organotypic cultures displayed several differ-

ences when compared to Purkinje cells in acute

slices of adult rat (37,38) and mice (39) cerebellum.

Figure 8. Glutamatergic synaptic transmission control sIPSCs recorded in Purkinje cells. Upper part are current traces recorded at

260 mV in control conditions (left) where both sEPSCs and sIPSCs are depicted and current traces recorded after a bath application of

CNQX at 1025 M. Note that in the presence of CNQX, sEPSCs are abolished whereas sIPSCs of small amplitude are still present (shown

in the inset using an expanded time scale). The lower part represents the amplitude histogram for sIPSCs recorded in control conditions

(left) and the amplitude histogram for sIPSCs recorded in the presence of CNQX. Both histograms present a mean peak (values are given

on top of the histograms). Note that in the presence of CNQX, events with amplitude larger than 20 pA are abolished by CNQX.
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Firstly, almost all the spontaneous postsynaptic

currents recorded in Purkinje cells were mediated

by GABAA receptors in acute slices, whereas such

sIPSCs were recorded in only 23% of Purkinje cells

in organotypic cultures. Secondly, the frequency of

Purkinje cells sIPSCs was very low (2.5 Hz, in

5 mM Ca2+, 0,5 mM Mg 2+) in organotypic cultures

as compared with the Purkinje cells sIPSCs fre-

quency (18 Hz, in 2 mM Ca2+, 1 mM Mg2+) in

adult rat acute slices (40). This discrepancy suggests

that inhibitory interneurons have a lower sponta-

neous activity and/or that the inhibitory network is

not as developed as in acute slices from adult rat.

Indeed, the latter explanation is supported by the

very low frequency of Purkinje cells sIPSCs (1Hz)

recorded in acute slices from newborn rats (40).

As in vivo, we have demonstrated that the activity

of GABAergic interneurons innervating Purkinje

cells (probably stellate and basket cells) is controlled

by excitatory inputs arising from granule cells.

Indeed, whereas Kv3.1b-positive terminals were

observed close to interneurons immunolabeled for

parvalbumin, the large amplitude Purkinje cells

IPSCs could be abolished by CNQX and sEPSC/

sIPSC sequences could be observed.

In organotypic cultures, the spontaneous synaptic

activity recorded in granule cells was also composed

of two types of events: a composite AMPA/NMDA

receptor-mediated sEPSPs and GABAA receptor-

mediated sIPSCs. In mouse acute slices, composite

evoked responses were described at the mossy fiber–

granule cells synapse (41). In acute slices of rat

Figure 9. Blockade of GABAergic inhibition induces a depolarization and a discharge of action potentials in Purkinje cells and in granule

cells. (A) Current clamp recording of a Purkinje cell. (B) Current clamp recording of granule cell applications of bicuculline 1025 M are

indicated by the black bars.
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cerebellum, granule cell sIPSPs were shown to be

mediated by GABA released by Golgi interneurons

(42). The frequency (7 Hz) and mean amplitude

(116 pA) of sIPSPs recorded in granule cells in

acute slices (43) were significantly larger than in our

organotypic cultures (0.39 Hz and 16 pA) indicating

that the Golgi interneurons-granule cell synapses are

poorly active in the latter conditions.

Interestingly, GABAergic neurons, in spite of a

low frequency for granule cell sIPSPs, exerted a

powerful control on the excitatory input to Purkinje

cells. Indeed, the application of GABAA receptor

antagonists dramatically increased the frequency of

Purkinje cell sEPSPs. This increase was mediated by

granule cell depolarization that produced firing of

action potential. Different modes of granule cell

inhibition by Golgi cells have been previously

shown. The initial phasic mode is mediated by

synaptic release of GABA, and the tonic mode is

mediated by an action potential-independent non

vesicular release of GABA (44,45). This latter mode

of inhibition may contribute, to the spectacular

effect of bicuculline we observed on sEPSPs

frequency in our organotypic cultures, as it does in

acute slices.

The role of inhibitory interneurons in cerebellar

control of motor coordination is crucial. Indeed,

over-excitation of granule cells observed after the

specific destruction of their GABAergic inhibitory

inputs results in severe ataxia (46). Finally, we show

that desinhibition of granule cells increased the firing

rate of Purkinje cells by producing a depolarization

of the neuron and increasing the frequency of

excitatory events. This is the most likely explanation

for the increase in Purkinje cell firing rate observed

in the presence of bicuculline in agreement with

results obtained in rat organotypic cultures (47).

Conclusion

We have shown that after 3–4 weeks in vitro

organotypic cultures of mouse cerebellum display a

cellular organization exhibiting the main features of

the adult cerebellar cortex in situ. The main cell

types are present and form homologous functional

synaptic contacts (see Figure 10). We provide

evidence that inhibitory interneurons control excita-

tory inputs to Purkinje cells in organotypic cultures.

The modality of such a control (phasic versus tonic

release of GABA) remains to be investigated

pharmacologically. We propose that mouse cerebel-

lar organotypic cultures using roller tubes could be

used as a model to study alterations of synaptic

transmission in cerebellar mutant mice.
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L’amygdale est une structure centrale recevant des informations sensorielles issues de 

diverses régions du système nerveux central. Des axones corticaux et thalamiques convergent 

au niveau de l’amygdale latérale (LA), qui est considérée comme étant le principal site de la 

plasticité et de l’apprentissage associatif induits par la peur. Une nouvelle forme de 

potentiation à long-terme (LTP) a été identifiée il y a quelques années à la synapse cortico-

LA. Cette LTP hétérosynaptique et associative (LTPHA) est déclenchée par l’activation de 

récepteurs NMDA présents au niveau des terminaisons corticales présynaptiques, cette 

activation nécessitant l’activation des fibres thalamiques. Pourtant, le mécanisme moléculaire 

impliqué n’était jusqu’à présent pas connu. Au cours de mon travail de thèse, j’ai pu montrer 

que la LTPHA est médiée par une augmentation de la probabilité de libération vésiculaire. En 

aval de l’ouverture des récepteurs NMDA, l’activation de la voie adenylyl cyclase / protéine 

kinase A induit le recrutement de la protéine synaptique Rim1α. Les canaux calciques 

dépendents du voltage de type L (VDCCs de type L) sont également nécessaires à 

l’expression de la LTPHA. L’activation de la PKA et une interaction fonctionnelle entre 

Rim1α et les VDCCs de type L semblent essentiels à l’expression de la LTP présynaptique, et 

ils pourraient également intervenir dans la transmission synaptique basale de l’amygdale. 
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