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Summary 

 

 

 Tumor-associated lymphangiogenesis contributes to tumor progression by 

regulating interstitial fluid pressure, transporting immune cells to the tumor site and 

providing a route for metastatic dissemination. Metastasis to regional lymph nodes via 

lymphatic vessels represents the first step of tumor dissemination in many human 

cancers. Therefore, understanding how tumor-associated lymphatic vessels develop may 

set the stage for the design of novel anti-metastatic therapy. 

 Thus far, two mechanisms have been described to drive the formation of new 

lymphatic vessels. While it is widely accepted that newly formed lymphatic vessels arise 

by sprouting from pre-existing vessels, the recently described context-dependent 

integration and thus contribution of bone marrow-derived cells to growing lymphatic 

vessels is rather controversial.  

 Here, using bone marrow transplantation and lineage-tracing experiments in two 

tumor mouse models presenting ongoing lymphangiogenesis, we demonstrate that 

myeloid cells can trans-differentiate into lymphatic endothelial cells and thus contribute to 

tumor lymphangiogenesis. These data significantly strengthen previous studies on the 

controversial role of haematopoietic cells in lymphatic vessel formation and provide new 

insights into the development of tumor-associated lymphangiogenesis. 

The molecular mechanism underlying the trans-differentiation process remain 

unknown. In order to further understand the process, we developed two in vitro assays. 

One assay recapitulates the in vivo phenotypical conversion of myeloid cells toward 

lymphatic endothelial cells, while the other assay mimicks the in vivo integration of 

myeloid cells into lymphatic vessels. The comparison of the transcriptional profiles of 

cells at different time points of the in vitro trans-differentiation process revealed time-

specific upregulation of genes representing potential candidates implicated in the 

different steps of the process. Both in vitro assays were then used as a tool to assess the 

role of selected genes first in the in vitro and then in the in vivo trans-differentiation 

process. 

 



Résumé 

 La lymphangiogenèse tumorale contribue à la progression tumorale en régulant la 

pression interstitielle, en transportant des cellules immunitaires jusqu’au 

microenvironnement tumoral ainsi qu’en ouvrant une voie à la dissémination 

métastatique. Le système lymphatique est en effet considéré dans de nombreux cancers 

comme la voie primaire de la diffusion des métastases. Pour cette raison, mieux 

comprendre le développement des vaisseaux lymphatiques associés aux tumeurs 

constitue un prérequit à la mise en place de nouvelles stratégies thérapeutiques.  

  Jusqu’à présent, deux mécanismes ont été décrit comme étant impliqués dans la 

formation de novo de vaisseaux lymphatiques. Alors qu’il est largement accepté que les 

nouveaux vaisseaux lymphatiques proviennent de la division de cellules lymphatiques et 

du bourgeonnement de celles-ci à partir de vaisseaux lymphatiques préexistants, un 

nouveau concept, impliquant l’intégration et ainsi la contribution de cellules 

hématopoïétiques à la formation de nouveaux vaisseaux lymphatiques, est fortement 

débattu.  

 Combinant des expériences de transplantations de moelle osseuse et de 

marquages de lignées cellulaires dans deux modèles de souris présentant une 

lymphangiogenèse tumorale active, cette étude démontre que les cellules issues de la 

lignée myéloïde peuvent se différencier en cellules endothéliales lymphatiques et ainsi 

contribuer à la lymphangiogenèse tumorale. Ces résultats renforcent et élargissent 

considérablement les données d’études antérieures décrivant le rôle des cellules 

hématopoïétiques dans la formation de nouveaux vaisseaux lymphatiques. 

 A ce jour, le mécanisme moléculaire de trans-différenciation cellulaire n’est pas 

connu. Afin de mieux comprendre ce processus, nous avons développé deux systèmes 

in vitro. Le premier reproduit la transformation phénotypique de cellules myéloïdes en 

cellules endothéliales lymphatiques observée in vivo et le second simule l’intégration de 

cellules myéloïdes dans les vaisseaux lymphatiques. La comparaison du transcriptome 

des cellules à différentes étapes de trans-différenciation in vitro a permis l’identification et 

la classification de gènes potentiellement impliqués dans les différentes phases du 

processus. Les deux systèmes in vitro ont alors été utilisés en guise d’outil pour évaluer 



l’implication des gènes sélectionnés dans le processus de trans-différenciation, d’abord 

in vitro puis in vivo.  
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1. Introduction 

 

1.1 Tumor development 
 

1.1.1. The hallmarks of cancer 

Cancer is a leading cause of death worldwide. According to the World Health 

Organization, it accounted for 7.4 million deaths in 2004 (which represents 13% of all 

deaths), a number which is predicted to rise and reach 12 million deaths in 2030. The 

main cancer types leading to overall cancer mortality each year are: lung, stomach, 

colorectal, liver and breast.  

The development of a tumor is a multistep process in which a succession of 

genetic and epigenetic changes leads to the progressive conversion of normal cells into 

cancer cells, each change conferring one or another type of growth advantage. In 2000, 

Douglas Hanahan and Robert A. Weinberg suggested that most cancers acquire the 

same set of functional capabilities during their development and have thus defined six 

essential alterations in cell physiology that collectively dictate malignant growth [1]. 

These six capabilities acquired during tumorigenesis are depicted in Figure.1 and 

summarized in the following paragraphs.  

 

Self-sufficiency in growth signals 

 Normal cells require mitogenic growth signals to proliferate. In contrast, tumor cells 

show a greatly reduced dependence on exogenous growth stimulation, as they develop 

their own proliferative strategies. First, cancer cells can synthesize growth factors acting 

in an autocrine loop or instruct their normal neighboring cells to produce such factors. 

Second, they can overexpress growth factor receptors, increasing their responsiveness 

to growth factors or eliciting ligand-independent signaling. This last feature can also be 

acquired by structural receptor alterations. Moreover, tumor cells can switch the type of 

integrins expressed, favoring links to the extracellular matrix that transmit proliferative 

signals. Both receptor and pro-growth integrin stimulation can activate the proliferative 

SOS-Ras-Raf-MAP kinase pathway. And third, downstream cytoplasmic circuits that 
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transmit the proliferative signals can be directly activated in tumor cells. For example, 

about 50% of colon carcinomas bear a mutant ras oncogene.  

 

Self-sufficiency in 
  growth signals

Evading apoptosis

  Sustained 
angiogenesis

Limitless replicative potential

   Insensitivity to 
anti-growth signals

Tissue invasion
and metastasis

 

 

Figure.1: The hallmarks of cancer. Schematic representation of the 6 main molecular, biochemical and 
cellular traits shared by most types of human cancer. 

 

Insensitivity to anti-growth signals 

 In normal tissues, tissue homeostasis is maintained by anti-proliferative signals, 

leading to cell cycle arrest in the quiescent G0 phase or to entry into post-mitotic 

differentiated states. Most anti-proliferative signals pass trough the retinoblastoma 

protein (pRb), which controls the entry in the S phase of the cell cycle. pRb, in its 

hypophosphorylated state, sequesters the transcription factors E2Fs that control the 

expression of genes necessary to progress from the G1 to the S phase. Phosphorylation 

of pRb results in the release of E2Fs and on the concomitant entry in the S phase. In 

cancer cells, loss of function mutations in the pRb gene can lead to inactivation of this 

tumor suppressor gene and so to deregulated cell cycle control. Alternatively, in 
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papillomavirus-induced cervical carcinogenesis, pRb function is abrogated through its 

sequestration by the oncogenic protein E7. In addition, cancer cells can turn off the 

expression of cell adhesion molecules sending anti-growth signals and turn on the 

expression of those delivering pro-growth signals. 

In order to avoid terminal differentiation, i.e. the entry into an irreversible post-

mitotic state, cancer cells have developed various strategies. For example, the 

overexpression of the c-myc oncogene impairs cellular differentiation and promotes 

cancer cell proliferation by shifting the balance toward the formation of proliferation-

specific Myc-Max transcription factor complexes over differentiation-specific Mad-Max 

complexes. Similarly, inactivation of the APC/β-catenin pathway in colon carcinogenesis, 

blocks the differentiation of colonic crypt enterocytes.  

 

Evading apoptosis 

 Programmed cell death massively takes place in rapidly growing tumor cells, 

constituting a major barrier to tumor progression that has to be circumvented. Tumor cells 

have thus developed various resistance strategies to apoptosis. The most common one 

consists in mutation-ensued loss of function of the tumor suppressor gene p53, which is 

observed in more than 50% of human cancers. In response to DNA damage, p53 elicits 

either cell cycle arrest to allow DNA repair to take place or apoptosis if the damage is 

excessive. Abrogating death receptor signaling represents another anti-apoptotic strategy 

generated by tumor cells. For example, lung and colon cancer cells have been reported 

to produce a non-signaling decoy receptor for the FAS ligand, impairing thus FAS 

receptor activation and subsequent death signaling. Additionally, the PI3 kinase-

AKT/PKB pathway, transmitting anti-apoptotic survival signals, is involved in overcoming 

apoptosis. This pathway can be activated by extracellular factors like IGF-1/2, by 

intracellular signals originating from Ras activation or by loss of the phospholipid 

phosphatase PTEN. 

 

Limitless replicative potential 

 Normal cells carry an intrinsic program that limits their multiplication, allowing 60-70 

doublings before entering senescence. The inactivation of tumor suppressor genes like 



    INTRODUCTION 

 4 

p53 or pRb enables additional multiplication till the entry into a crisis state characterized 

by end-to-end fusion of chromosomes and concomitant massive cell death. This 

karyotypic disarray is associated with the appearance of unprotected chromosomal ends 

arising through telomere shortening upon cellular division, a process attributed to the 

inability of DNA polymerases to completely replicate the 3’ ends of chromosomal DNA 

during DNA replication. Tumors cells, mainly by upregulating telomerase expression, 

maintain telomere length above a critical threshold, which permits unlimited 

multiplication. Thus, when carcinogens are applied to tumor prone mice deficient for the 

cell cycle inhibitor p16INK4A and also lacking telomerase, tumor incidence is reduced in 

comparison to mice harboring telomerase activity. This reduction in tumor burden is 

concomitant with telomere shortening and genomic instability.  

 

Sustained angiogenesis 

The early stages of tumor formation arise from cumulated genetic and epigenetic 

alterations that activate oncogenes and/or inhibit tumor suppressor genes. Consequently, 

cell proliferation is increased and apoptosis is decreased, concomitant processes 

resulting in early hyperplastic growth. However, once the tumor mass has reached the 

critical size at which tumor cells located in the center become necrotic due to a lack of 

oxygen and nutrients, further growth is impaired. In order to overcome this growth 

inhibition, tumor cells recruit blood vessels, an event known as tumor angiogenesis. This 

well-characterized multistep process contributes to tumor progression from primary tumor 

growth to metastasis formation. The newly formed blood vessels provide oxygen and 

nutrients to hypoxic tumor cells and offer a route for tumor cell dissemination to distant 

organs. The transition from a quiescent pre-vascular to a growing vascularized tumor is 

called the angiogenic switch and this time-restricted step in the tumor angiogenesis 

process as well as anti-angiogenic therapies and concomitant development of resistance 

mechanisms will be discuss in details in chapter “1.1.2. Tumor angiogenesis”.  

 

Tissue invasion and metastasis 

Metastasis constitutes the cause of 90% of human cancer death. Tumor cell 

invasion through surrounding tissue constitutes the first step to metastasis formation. It 

can occur either by the dissemination of single tumor cells having acquired migratory 
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capacities or by the movement of large tumor cell sheets, a process referred to as 

collective cell migration. The mechanism by which collective cell migration occurs is still 

elusive. In contrast, for single cell migration, activation of extracellular proteases and 

changes in the physical coupling of cells to their microenvironment have been reported to 

be central in the acquisition of invasiveness and metastatic features. Tumor cells 

upregulate proteases, downregulate protease inhibitors and convert inactive zymogen 

forms into active enzymes. Besides their direct matrix-degrading role, these active 

proteases also contribute to tumor angiogenesis and growth signaling, contributing in turn 

to the invasive/metastatic capability. The most widely observed alteration of cell-

environment interactions involves the homotypic cell-cell adhesion molecule E-cadherin. 

In a majority of epithelial tumors, E-cadherin function is lost by mechanisms including 

mutational inactivation of the E-cadherin gene, transcriptional repression or proteolysis of 

the extracellular cadherin domain. Changes in expression of cell-cell adhesion molecules 

as well as integrin switch are also involve in the process of single cell invasion/migration. 

For example, in various cancers, it has been reported that N-CAM expression changes 

from a highly adhesive isoform to poorly adhesive ones and that shifts in the spectrum of 

integrin α or β subunits occur in order to enable the migrating cells to interact with their 

novel environmental matrix components. Migrating tumor cells can disseminate to distant 

organs through the blood vessels or, at least in a first step, to regional lymph nodes 

through lymphatic vessels. Tumor angiogenesis and lymphangiogenesis are discussed in 

more details in the following chapters (1.1.2. and 1.1.3.).  

 

1.1.2. Tumor angiogenesis 

 The following review focuses on the molecular and cellular players implicated in the 

onset of angiogenesis as well as on the anti-angiogenic therapeutic strategies and the 

concomitant development of resistance mechanisms studied in mouse models of cancer. 

 

Baeriswyl and Christofori: “The angiogenic switch in carcinogenesis”                      

Seminars in Cancer Biology, 2009, in press. 
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Abstract 

 Coined in the late eighties, the term “angiogenic switch” refers to a time-restricted 

event during tumor progression where the balance between pro- and anti-angiogenic 

factors tilts towards a pro-angiogenic outcome, resulting in the transition from dormant 

avascularized hyperplasia to outgrowing vascularized tumor and eventually to malignant 

tumor progression. The molecular players and mechanisms underlying the angiogenic 

switch have been intensely investigated. In particular, a large number of pro-angiogenic 

factors and angiogenic inhibitors activated and repressed, respectively, in their activities 

during the angiogenic switch have been identified and characterized. Part of this 

research has lead to the development of various pro- and anti-angiogenic therapies that 

are currently tested in clinical trials or are already in clinical use. More recently, 

transgenic mouse models of cancer have been instrumental in revealing that 

inflammatory responses within the tumor microenvironment are critically contributing to 

the onset of tumor angiogenesis. These mouse models closely recapitulate multistage 

carcinogenesis in cancer patients and represent reliable tools to study the molecular and 

cellular players implicated in the onset and maintenance of tumor angiogenesis. 

Furthermore, they also offer the opportunity to assess the efficacy of novel anti-

angiogenic cancer therapies and the nature of developing resistance mechanisms. These 

experiments have provided first important concepts to improve anti-angiogenic therapy 

and thus directly contribute to their translation to the clinical setting.  

Keywords: angiogenesis, cancer, drug resistance, therapy, transgenic mice 

Abbreviations: BMDC, bone marrow-derived cells; CAF, cancer-associated fibroblasts; 

EPC, endothelial progenitor cells; HPV, human papilloma virus; HSPC, haematopoietic 

stem/progenitor cells; LV, lentiviral vector; MMP, matrix metalloproteinase; RCC, renal 

cell cancer; SCC, squamous cell carcinoma; TAM, tumor-associated macrophages; TEM, 

Tie-2-expressing macrophages 

 

Introduction 

 The early stages of tumor formation are based on a combination of genetic and 

epigenetic alterations that activate oncogenes and/or inhibit tumor suppressor genes. 

Consequently, the rate of cell proliferation is increased while apoptosis is diminished, 
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concomitant processes resulting in early hyperplastic growth. However, once the tumor 

mass has reached a critical size, tumor cells located in a distance to blood vessels lack 

an appropriate supply of oxygen and nutrients and thus undergo apoptosis or necrosis, 

and further tumor growth is impaired. Unfortunately, tumor cells can overcome this 

growth inhibition by inducing the formation of new blood vessels from pre-existing blood 

vessels, a process known as tumor angiogenesis. This well-characterized multistep 

process contributes to tumor progression not only by providing oxygen and nutrients for 

tumor outgrowth but also by offering a route for tumor cells to disseminate via the blood 

stream to distant organs and to form metastases.  

 The transition from pre-vascular hyperplasia to highly vascularized and 

progressively outgrowing tumors is referred to as the “angiogenic switch”. Discovered 

approximately 30 years ago, many molecular aspects of the angiogenic switch have been 

summarized by excellent recent review articles (see for example references [2,3]). In this 

review, we specifically focus on recent exciting discoveries on the molecular mechanisms 

underlying the angiogenic switch, as revealed by elegant experimentation in transgenic 

mouse models of cancer, and the implications of these findings on patient treatment. As 

the angiogenic switch is controlled by changes in the fine-tuned balance between pro- 

and anti-angiogenic factors secreted either by tumor cells or by cells of the tumor 

microenvironment, we discuss both the functional contribution to the angiogenic switch of 

the various angiogenic factors on one side and the different cells of the tumor 

microenvironment on the other side. Moreover, we summarize recent findings on the 

nature of developing resistance against anti-angiogenic therapy in experimental systems 

and in cancer patients and discuss their clinical relevance. 

 

Pro- and anti-angiogenic factors 

 Observations on the growth of explanted experimental tumors lead the late Judah 

Folkman to formulate the hypothesis that tumor progression depends on the active 

recruitment of blood vessels to the tumor bed in response to the secretion of specific 

angiogenic factors. It was Judah Folkman himself who spearheaded the discovery of the 

first angiogenic factors and who first experimentally demonstrated the occurrence of the 

induction of angiogenesis by secreted factors, the angiogenic switch (see below; 

reviewed in reference [4]). The angiogenic switch is a discrete component of multistage 
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tumor development, usually initiated by an alteration in the balance between pro- and 

anti-angiogenic factors. While an equilibrium between pro- and anti-angiogenic activities 

or a prevalence of anti-angiogenic factors prevents tumor outgrowth, a status also 

referred to as tumor dormancy, tilting the balance towards pro-angiogenic activities 

results in increased tumor angiogenesis and thus tumor growth.  

 In the past decades, a plethora of angiogenic factors have been identified that 

directly or indirectly induce proliferation and differentiation of endothelial cells. Of the 

polypeptide factors, Vascular Endothelial Growth Factor-A (VEGF-A) is a prototypic pro-

angiogenic factor and a major regulator of physiological and pathological angiogenesis. 

VEGF-A is a member of a gene family that includes placental growth factor (PlGF), 

VEGF-B, VEGF-C, VEGF-D and VEGF-E, all of which bind with varying specificities and 

affinities to their bona fide tyrosine-kinase receptors, VEGFR-1, 2 and 3 [5]. While VEGF-

A, by binding to VEGFR-2 on blood vessel endothelial cells, promotes blood vessel 

angiogenesis, VEGF-C and D preferentially bind to VEGFR-3 expressed predominantly 

on lymphatic endothelial cells and thus induce lymphangigenesis [6]. However, VEGF-C 

and D have also been shown to contribute to tumor angiogenesis by binding to VEGFR-2 

and 3, with VEGFR-3 being expressed in the tip cells of growing tumor blood vessels 

[7,8]. Based on alternative splicing of the mRNA, there are five main isoforms of VEGF-A 

which bind with high affinity to VEGFR-1 and 2. VEGF-A145, 165, 189 and 206 are 

heparin-binding and require an enzymatic release from the cell surface and the 

extracellular matrix to achieve their angiogenic activities, whereas VEGF-A121 is freely 

diffusible and thus does not necessitate any further activation [9-11]. Fibroblast growth 

factor (FGF)-1 and 2 [12] and platelet-derived growth factor (PDGF)-B and C [13,14] are 

also important positive regulators of angiogenesis. They induce endothelial cell 

proliferation and migration by their direct interaction with their specific receptors 

expressed on endothelial cells. Angiopoietins contribute to angiogenesis by cooperating 

with other angiogenic factors in modulating the activation status of endothelial cells by 

binding to the Tie-2 tyrosine kinase receptor expressed by endothelial cells [15]. 

Angiopoietin-1 (Ang-1) induces the final maturation of blood vessels and thus counteracts 

angiogenesis, whereas Angiopoietin-2 (Ang-2) antagonizes Ang-1 activity and keeps the 

growing vasculature responsive to additional angiogenic factor stimulation. In addition, 

there is a plethora of polypeptide factors, hormones and metabolites that have been 

reported to directly or indirectly stimulate physiological and pathological angiogenesis. 
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 Opposing the activities of angiogenic factors, a large number of endogenous anti-

angiogenic factors have been functionally characterized. One class comprises 

components and proteolytic fragments of the extra-cellular matrix (ECM) or the basement 

membrane. For example, thrombospondin-1 (TSP1), a large ECM glycoprotein, and 

proteolytic fragments thereof have been identified as potent inhibitors of angiogenesis 

[16]. Other matrix-derived anti-angiogenic factors are endostatin, a proteolytic cleavage 

product of collagen XVIII [17], and canstatin and tumstatin, two proteolytic fragments of 

collagen IV [18,19]. A second class of endogenous angiogenesis inhibitors includes 

soluble factors like interferon-α and β (IFN-α and β) and angiostatin, a cleavage product 

of plasmin [20,21]. 

 Like many pro-angiogenic factors, the activities of the various anti-angiogenic 

factors are regulated at the level of gene expression, secretion, and proteolytic activation. 

The expression of pro-angiogenic factors can be induced by environmental stress, such 

as hypoxia, glucose deprivation, formation of reactive oxygen species (ROS), cellular 

acidosis or iron deficiency, or by the activation of oncogenes or the loss of the function of 

tumor suppressor genes [22-26]. As will be discussed below, pro- and anti-angiogenic 

factors can be derived from both tumor cells themselves and from tumor-infiltrating 

inflammatory cells. Thus, the angiogenic switch, as a change in the balance between pro- 

and anti-angiogenic factors, is an intrinsic event of multistage tumorigenesis. Thereby, 

genetic and epigenetic events within tumor cells cooperate with inflammatory responses 

and cells of the tumor stroma to define the ultimate cocktail of pro- and anti-angiogenic 

factors and thus directly or indirectly shift the balance in favor of an onset of tumor 

angiogenesis.  

 

Angiogenic factors in mouse models of cancer 

 Many transgenic mouse models of cancer represent reliable experimental systems 

to investigate the process of angiogenesis during multistage tumorigenesis. First insights 

into the angiogenic switch came from a study in the Rip1Tag2 mouse model of 

pancreatic β-cell carcinogenesis, where Judah Folkman, Doug Hanahan and co-workers 

elegantly demonstrated the occurrence of the angiogenic switch during the progression 

from hyperplasia to hypervascularized neoplasia [27]. Rip1Tag2 mice express the Simian 

Virus 40 large T antigen oncoprotein under the control of the rat insulin promoter, 
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resulting in the specific expression of the oncogene in the β-cells of the islets of 

Langerhans and the subsequent development of β-cell tumors [28]. Distinct stages of 

tumorigenesis are identifiable: normal islets, hyperplastic islets, differentiated adenoma 

and invasive carcinoma. Notably, co-culturing hyperplastic islets of Langerhans together 

with endothelial cells in a three-dimensional collagen matrix revealed two subsets of 

hyperplastic islets. While some did not elicit any response by the endothelial cells, so-

called angiogenic hyperplastic islets provoked endothelial cell proliferation, migration and 

tube formation, all hallmarks of angiogenesis [27]. These experiments also indicated that 

diffusible angiogenic factors are secreted by the angiogenic tumor stages. VEGF-A is the 

primarily pro-angiogenic factor implicated in the angiogenic switch in the Rip1Tag2 

model. Crossing these mice with transgenic mice expressing human VEGF-A165 in 

pancreatic β-cells resulted in earlier onset of tumor angiogenesis [29]. Conversely, 

inhibiting the function of VEGF-A either by the use of a chemical inhibitor of VEGFR 

signaling [30-32], by adenoviral delivery of a soluble form of VEGFR-1 or 2 [33,34], or by 

genetically depleting VEGF-A in β-cells [35] all resulted in an impaired angiogenic switch 

and thus in impaired tumor growth. However, VEGF-A is expressed in normal islets, and 

its expression is only slightly increased in later stages of tumorigenesis [36]. Treating 

Rip1Tag2 mice with a chemical inhibitor of matrix metalloproteinase-9 (MMP9) or 

crossing them with mice lacking MMP9 prevented the angiogenic switch, revealing a 

critical function for MMP9 in the proteolytic release of matrix-bound VEGF-A [37]. 

Comparably, blocking heparanase function with a small molecule inhibitor mimicking its 

physiological ligand also resulted in an impaired onset of angiogenesis, indicating an 

additional mechanism of VEGF-A release from the ECM for its activation [38]. Two 

members of the cystein protease family, cathepsin-B and S, also appear to play an 

important role in the angiogenic switch, as crossing cathepsin-B or S-deficient mice with 

Rip1Tag2 mice resulted in a decreased number of angiogenic islets [39]. Together, these 

reports clearly demonstrate that it is the bioavailability of pro-angiogenic factors which 

constitutes the determining element in the onset of angiogenesis (Figure.2).  

 Members of the FGF family, together with VEGF-A, have also been shown to 

contribute to tumor angiogenesis in Rip1Tag2 mice. Adenoviral delivery of a soluble FGF 

receptor construct (FGF-trap) reduced tumor angiogenesis to the same extent as a VEGF 

trap [34]. Notably, inhibition of VEGF function resulted in hypoxia-mediated up-regulation 

of FGFs and to unbowed angiogenesis and re-growth of tumors. Only concomitant 
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blockade of VEGF and FGF signaling impeded such anti-VEGF therapy-resistant 

angiogenesis [33,34].  

 In a second transgenic mouse model of β-cell carcinogenesis, caused by the 

inducible expression of the oncogene c-Myc, the onset of tumor angiogenesis is triggered 

by the secretion of the pro-inflammatory cytokine interleukin-1β (IL-1β). This cytokine 

activity is necessary and sufficient to induce the release of pre-existing sequestered 

VEGF-A from the ECM, which then initiates the rapid and synchronous onset of 

endothelial cell proliferation after c-Myc activation [40]. 

 Another spontaneous tumor model where the angiogenic switch has been 

intensively investigated is the K14-HPV16 transgenic mouse model of squamous cell 

carcinoma (SCC). In these transgenic mice, the human papilloma virus type 16 (HPV) 

early region, in particular the E6 and E7 oncogenes, are expressed under the control of 

the keratin 14 promoter in the basal cells of the epidermis to induce multistage 

development of SCC. First, keratinocyte hyperplasia occurs accompanied by a mild 

increase in microvascular density, progressing to dysplasia with abundant 

neovascularization, and finally leading to highly angiogenic carcinomas [41]. Chronic 

exposure of these mice to estrogen (termed then K14-HPV/E2 mice) specifically induces 

neoplastic progression in the squamous epithelium of the cervix and vagina [42]. Similar 

to the Rip1Tag2 model, VEGF and FGF signaling have been implicated in the onset of 

angiogenesis, as VEGF-A and FGF-1 were up-regulated during the early stages of 

carcinogenesis [43,44]. Crossing MMP9-deficient mice with K14-HPV16 or K14-HPV/E2 

mice also demonstrated the requirement of MMP9 activity for tumor progression [45,46]. 

Moreover, PDGF exerts an indirect pro-angiogenic effect in this model [47]. Experiments 

with pharmacological or antibody-mediated blockade of PDGF receptors revealed that 

PDGF produced by transformed epithelial cells stimulated cancer-associated fibroblasts 

(CAF) to express FGF-2, which then exerts its pro-angiogenic action on endothelial cells. 

Similarly, forced expression of PDGF-C in transplanted B16 melanoma cells stimulated 

CAF to secrete FGF-2 and also osteopontin [48], a soluble extracellular matrix protein 

known to act in concert with FGF-2 to promote tumor angiogenesis and metastasis [49]. 

 In a transgenic mouse model expressing the bovine papillomavirus genome 

(BPV.16), dermal fibrosarcomas develop in three stages: mild fibromatosis, aggressive 

fibromatosis, and fibrosarcoma. Evidence of new blood vessel growth and thus an 
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angiogenic switch becomes apparent at the stage of aggressive fibromatosis and 

correlates with altered FGF-2 localization, i.e. a switch from cell-associated to secreted 

FGF-2 [50]. This observation is intriguing, since FGF-2, as well as the other potent 

angiogenic FGF, FGF-1, lack a signal sequence for secretion. In fact, β-tumor cells of 

Rip1Tag2 mice have also been shown to secrete FGF-1 by a non-conventional secretion 

pathway, the details of which remains to be elucidated [51]. These results suggested that 

the angiogenic switch may, at least in part, rely on a switch in FGF secretion. 

 In the MMTV-PyMT mouse model of breast cancer, in which expression of the 

polyoma virus middle T antigen (PyMT) is expressed under the control of the mouse 

mammary tumor virus LTR enhancer (MMTV), mammary lesions progress through four 

tumor stages, including benign hyperplasia, adenoma/mammary intraepithelial neoplasia 

(MIN), and early (EC) and late (LC) carcinoma stages [52]. The angiogenic switch takes 

place during the transition from the premalignant to the malignant EC stage and has 

been shown to depend on VEGF-A. Temporal expression of VEGF-A in the mammary 

epithelium restored tumor angiogenesis in MMTV-PyMT mice in which stromal cell 

delivery of VEGF-A was abolished [53]. In a similar manner, expression of pleiotrophin in 

tumors of MMTV-PyMT mice resulted in increased intra-tumoral microvascular density, 

demonstrating a functional role of this secretory cytokine, expressed in many human 

breast cancers, in tumor angiogenesis [54].  

 Taken together, spontaneous tumor mouse models have been instrumental in 

revealing the functional role of various angiogenic factors in the angiogenic switch, 

among which VEGF-A is certainly the most prominent one (Figure.2). 
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Figure.2: Simplified scheme of the molecular players of the angiogenic switch in tumor mouse models. The 
angiogenic switch takes place when the balance between pro- and anti-angiogenic factors swaps in favor 
of the pro-angiogenic factors, resulting in the transition from a dormant avascularized to a growing 
vascularized tumor. Here are emphasized the pro-angiogenic factors and proteases secreted by the tumor 
cells themselves (green box) or by the recruited-immune cells (pink box), as well as the factors secreted by 
the tumor cells to recruit immune cells (blue box) . 

 

Clinical implications: therapy targeting angiogenic factors 

 Clinical evidence for the existence of an angiogenic switch in cancer patients came 

first from immunohistological detection of endothelial cell markers in preneoplastic 

lesions associated with cancers of the mammary duct and the uterine cervix [55,56]. 

Side-by-side comparison of endothelial specific-immunostainings of human and 

transgenic mouse tumor biopsies before and after the occurrence of the angiogenic 

switch revealed remarkably similar patterns in the changes in microvessel density 

between pre-angiogenic and angiogenic lesions [57].  

 Thanks to their close recapitulation of the multistep process of carcinogenesis in 

patients, transgenic mouse models offer the testing and optimization of therapeutic 
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approaches targeting the various stages of tumor progression, including the angiogenic 

switch. Indeed, a study testing inhibitors of angiogenic factor signaling and matrix 

metalloproteases at different stages of pancreatic islet carcinogenesis in Rip1Tag2 

transgenic mice demonstrated that their inhibitory effects can be limited to a certain stage 

of tumorigenesis. BB-94, a broad-spectrum inhibitor of matrix metalloproteinases and 

endostatin specifically reduced the incidence of angiogenic switching in a prevention trial. 

BB94, endostatin, AGM-1470, a small molecule inhibitor of endothelial cell proliferation 

and angiostatin repressed tumor growth in intervention trials, while only AGM1470 

showed efficacy in regression trials [32].  

 The identification of the VEGF-A/VEGFR-2 axis as a key regulator in the onset of 

tumor angiogenesis has led to the development of several agents targeting VEGF-A-

mediated signal transduction of which a few are in routine clinical use and over 20 are in 

clinical trials [58]. These therapeutic candidates include neutralizing antibodies to VEGF-

A or VEGFR-2 and a variety of small chemical tyrosine kinase inhibitors (TKI) with high 

but not exclusive selectivity to all three VEGFR. Bevacizumab (Avastin), a humanized 

monoclonal antibody against VEGF-A, is currently used in combination with 

chemotherapy for treating patients with late-stage colon cancer, non-small-cell lung 

cancer, breast cancer and others [59]. Sunitinib and sorafenib, two TKI mainly targeting 

VEGFR-2 have been approved for the treatment of renal carcinoma, gastrointestinal 

stromal tumors and hepatocellular carcinomas [60]. Depending on cancer type, these 

anti-angiogenic treatments can lead to a 3-6 months increase in progression-free 

survival, but fail to provide enduring clinical responses, with transitory improvements 

being followed by a relapse phase in tumor angiogenesis and subsequent tumor growth.  

 This adaptive resistance to anti-angiogenic therapy has also been observed and 

studied in spontaneous tumor models. Treatment of Rip1Tag2 mice with DC101, a 

monoclonal antibody blocking VEGFR-2 signaling, in a first phase resulted into reduced 

microvessel density, followed by a second phase of re-initiation of tumor angiogenesis 

and tumor growth [33]. The relapsing tumors exhibited increased levels of other pro-

angiogenic factors, including FGFs, in response to the treatment-induced hypoxia, and 

blocking FGF signaling with an FGF-trap overcame the resistance against the inhibition 

of VEGFR signaling. A phase II clinical trial with a pan-VEGFR tyrosine kinase inhibitor 

pointed to an analogous FGF-dependent resistance in glioblastoma [61]. The patients 

who experienced tumor progression while on VEGFR blockade presented an increase in 
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plasma levels of FGF-2 and SDF-1, seemingly correlating with the re-initiation of tumor 

angiogenesis. Recently, another caveat to the inhibition of VEGF-driven angiogenesis 

has been raised [62,63]. Treatment of Rip1Tag2 mice or syngeneic and xenograft tumor 

transplantation models with the VEGF signaling inhibitors DC101 or sunitinib led to an 

increase in local invasiveness and metastasis formation. Notably, treatment of the mice 

before tumor implantation also promoted metastasis, raising important concerns about 

anti-angiogenic therapies currently used in the clinics.  

 In cancer patients treated with VEGFR blockade or radio-immunotherapy plasma 

levels of PlGF, a VEGF-family member also involved in the regulation of the angiogenic 

switch in pathological conditions, has been reported to be elevated, suggesting a role for 

PlGF in the angiogenic compensation process [64,65]. This hypothesis was tested by 

employing VEGF-trap therapy in combination with neutralizing antibodies against PlGF in 

a number of syngeneic tumor models [66]. Besides its direct anti-angiogenic effect on 

endothelial cells, anti-PlGF therapy also acted through the inhibition of macrophage 

recruitment to the tumor site, a facet of tumor-driven pro-angiogenic strategies that will be 

discussed in detail below. Notably, in contrast to VEGF blockade, PlGF blockade did not 

lead to the development of resistance and efficiently repressed tumor angiogenesis over 

extended time periods. While these results highlight anti-PlGF therapy as a promising 

approach, its applicability in patients needs to be assessed. 

 Recently, elegant experiments showed that fibroblasts isolated from tumors with 

developed resistance against VEGF signaling blockade had up-regulated PDGF-C 

expression in comparison to fibroblasts isolated from tumors still sensitive to anti-VEGF-A 

therapy [67]. Here, a neutralizing antibody against PDGF-C reduced tumor angiogenesis 

and growth of resistant tumors and exerted additive effects to anti-VEGF-A therapy.  

 An obvious possibility to prevent the development of resistance against anti-

angiogenic therapy is interfering with alternative angiogenic circuits that may be induced 

as compensatory resistance mechanisms. Therefore, it will be interesting to see the final 

results of clinical trials with drugs simultaneously targeting a number of angiogenic 

signals [68,69].  

 As already mentioned above, some angiogenic factors require proteolytic cleavage 

for their full activity, raising the attractive idea of indirectly interfering with angiogenic 

factors by targeting their activating proteases. Unfortunately, clinical trials of MMP 
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inhibitors have been thus far rather unsuccessful, mainly due to poor efficacy and to 

toxicity [70]. In contrast, treatment of Rip1Tag2 mice in a prevention trial with the broad-

spectrum cathepsin inhibitor JPM-OEt, resulted in 50% reduction in the number of 

angiogenic islets in comparison to mock-treated animals. Furthermore, cathepsin 

inhibition lead to decreased tumor growth in a late stage regression trial. This effect was 

even more pronounced upon combination with chemotherapy [71,72]. These results, 

together with the lack of apparent toxicity, reveal cathepsins as new exciting target 

candidates. But how can these promising results been conciliated with the disappointing 

results obtained with MMP inhibitors in clinical trials? First, most MMP inhibitors tested in 

the clinics were broad-spectrum inhibitors acting on a very large family of proteases, 

which not only contained pro-tumorigenic MMP but also so-called anti-targets, such as 

proteases displaying essential roles in normal cells or in anti-tumor defense mechanisms. 

Second, despite preclinical results showing the crucial role of MMP in the onset of 

angiogenesis, a rather early event in tumor progression, the clinical trials tested MMP 

inhibitors in patients with advanced disease, possibly explaining their inefficiency in these 

trials [70]. Along these lines, crossing isoform-specific cathepsin-null mice with Rip1Tag2 

mice revealed that cathepsin B and S were active at early stages of carcinogenesis, 

while cathepsin L was important to sustain later stages of tumor progression. These 

isoform-specific functions of cathepsins may explain why in this case a broad-spectrum 

inhibitor was effective also in late stage intervention/regression trials [39].  

 

Cellular players in the angiogenic switch 

 It is now well appreciated that stromal cells of the tumor microenvironment exert an 

important role during the angiogenic switch. In addition to tumor cells, pro-angiogenic 

factors are also secreted by pericytes [73], cancer-associated fibroblasts (CAF) [74], and 

cells of the immune system [75,76]. Notably, the tumor-driven recruitment of cells of the 

innate immune system to secrete pro-angiogenic factors and to trans-differentiate into 

endothelial cells and to integrate into tumor blood vessels appear to critically contribute to 

tumor angiogenesis (Figure.3).  
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Figure.3: Cellular players and related pro-angiogenic factors implicated in the angiogenic switch in the 
different tumor mouse models.  

 

 Tumor associated-macrophages (TAM) play a pivotal role in modulating tumor 

angiogenesis, and also tumor progression, in a paracrine manner [77]. They are recruited 

from the bone marrow through chemoattractants secreted by tumor cells, including pro-

angiogenic factors (VEGF-A and PlGF), chemokines (CC-chemokine ligand 2, CCL2), 

cytokines (granulocyte macrophage/macrophage colony-stimulating factor, GM/M-CSF), 

and interleukins (IL3, IL6). Depending on the cytokine/chemokine composition of the 

tumor microenvironment, TAM can either fulfill their primary immuno-stimulatory functions 

in an anti-tumor defense (referred to as M1 state of macrophages) or, conversely, they 

can be polarized into a so-called M2 state, thereby exerting immuno-suppressive 

functions and supporting tumor progression by the secretion of pro-angiogenic cytokines 

and proteases like VEGF-A, FGF-2 and MMP9. Consistent with this notion, clinical 

studies have shown that a high extent of leukocyte infiltration in solid tumors correlates 

with poor prognosis [78]. Within the TAM population, a subpopulation of pro-angiogenic 

macrophages expressing the angiopoietin receptor Tie-2 has been identified [79]. 

Interestingly, these Tie2-expressing macrophages (TEM) were exclusively present inside 
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the tumor bed and not detectable in non-neoplastic tissues in mouse models of cancer 

and in cancer patients [80]. Similar to TAM and TEM, neutrophils and mast cells have 

also been reported to induce and sustain tumor angiogenesis by the paracrine secretion 

of pro-angiogenic factors [81,82].  

 During tumor angiogenesis, in addition to the formation of new blood vessels from 

preexisting vessels, it has been proposed that endothelial progenitor cells (EPC), residing 

in the adult bone marrow, are recruited by tumor-secreted factors to sites of 

neovascularization where they incorporate into growing blood vessels. However, the 

actual contribution of EPC to tumor angiogenesis remains controversial, since the extent 

of their incorporation into the growing tumor vasculature varies remarkably between 

different experimental settings. Moreover, a consensus on the actual identity of EPC is 

still to be found [83]. Besides the contribution of progenitor cells distinct from the 

haematopoietic lineage, myeloid cells have been reported to be able to trans-differentiate 

into endothelial cells. For example, myeloid progenitors have been found integrated into 

the portal veins of bone marrow-transplanted or parabiotic mice [84]. Moreover, 

dependent on pleiotrophin function in a tumorigenic environment, monocytes are able to 

trans-differentiate into blood endothelial cells [85]. Thus far, the MMTV-PyMT mouse 

model of breast cancer appears to be the only experimental system where incorporation 

of bone marrow-derived cells into growing blood vessels are required for tumor 

neovascularization [86].  

 Such myeloid-endothelial cell plasticity, i.e. the trans-differentiation of cells of 

myeloid origin into endothelial cells, has also been reported in the context of 

inflammation-driven lymphatic vessel growth [88,89]. However, the functional contribution 

of myeloid-endothelial trans-differentiation to tumor blood vessel angiogenesis and 

lymphangiogenesis remains to be elucidated.  

 

Cellular players in mouse models of tumor angiogenesis 

 A number of studies have addressed the functional contribution of tumor-infiltrating 

cells of the immune system to tumor angiogenesis, for example by investigating the 

cellular composition of the tumor microenvironment and by genetic or pharmacological 

ablation of cells of the immune system (Figure.4). For example, following the discovery 
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that MMP9 critically contributes to the onset of angiogenesis in the Rip1Tag2 transgenic 

mouse model of multistage pancreatic β-cell tumorigenesis by releasing matrix-

sequestered VEGF-A [37], CD11b+Gr-1+ neutrophils were identified to express MMP9 

inside angiogenic tumor stages, and transient depletion of these cells repressed the 

onset of tumor angiogenesis, supporting the hypothesis that myeloid cells are required 

for the angiogenic switch by providing pro-angiogenic MMP9 [81]. CD11b+Gr-1+ myeloid 

cells also confer refractoriness to anti-angiogenic treatment. Inhibition of VEGF-A 

function results in the recruitment of these cells to the tumor site, where they produce 

several angiogenic factors, including Bv8, also known as prokineticin-2, a regulator of 

myeloid cell mobilization and mitogen for endothelial cells [90,91]. Early treatment of 

tumor-transplanted mice and Rip1Tag2 transgenic mice with anti-Bv8 antibodies resulted 

in an impaired angiogenic switch and concomitant inhibition of neutrophil mobilization 

[92]. The expression of Bv8 appears to be regulated by increased levels of G-CSF, and 

G-CSF and Bv8 correlate with refractoriness to anti-VEGF treatment, revealing the role of 

G-CSF and Bv8 in the recruitment of pro-angiogenic neutrophils to the tumor site and in 

overcoming anti-VEGF treatment [93]. 

 MMP9-expressing neutrophils have also been reported to sustain tumor 

angiogenesis in the K14-HPV/E2 mouse model of cervical carcinogenesis [94]. However, 

significant neutrophil contribution to the tumor microenvironment was only observed, 

when the recruitment of macrophages was impaired by genetic ablation of the expression 

of CC-chemokine receptor-2 (CCR2), the receptor for the monocyte chemoattractant 

protein-1 (MCP-1 = CCL2). Actually, in this model, TAM constituted the primary source of 

MMP9 required for the onset of angiogenesis [46]. When present at the tumor site, they 

repressed neutrophil recruitment by the secretion of still undefined soluble factors. 

However, when TAM were suppressed, recruited neutrophils replaced TAM by providing 

an alternative paracrine support for tumor angiogenesis [94]. In the K14-HPV16 mouse 

model of SCC of the skin, bone marrow transplantation of MMP9+/+ bone marrow cells 

into lethally irradiated MMP9-deficient K14-HPV16 mice restored tumor angiogenesis and 

tumor growth, demonstrating that also in this model, bone marrow-derived cells constitute 

an important source of proteolytic activity [45]. Furthermore, in this mouse model, 

recruitment of mast cells and neutrophils was dependent on oncogene-specific, B cell-

derived immunoglobulin deposits in the neoplastic tissue, revealing a crosstalk between 

the adaptive and the innate immune system in promoting tumor angiogenesis [95]. 
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  Critical functions of TAM in tumor angiogenesis and tumor progression have also 

been revealed by genetic experiments in the MMTV-PyMT mouse model of breast 

carcinogenesis [96]. Crossing MMTV-PyMT mice with macrophage-deficient CSF1op/op 

mice resulted in a delayed angiogenic switch and impaired tumor progression. This delay 

could be recovered, concomitant with the recruitment of macrophages, by tumor-specific 

expression of CSF-1, revealing the crucial pro-angiogenic role of TAM in this mouse 

model of breast cancer. Moreover, the temporary expression of VEGF-A in the mammary 

epithelium of CSF1op/op/MMTV-PyMT composite mice restored the angiogenic switch, 

revealing TAM as a source of this pro-angiogenic factor [53]. Interestingly, when VEGF-A 

expression was exclusively ablated in myeloid cells, tumor blood vessel density was 

reduced, yet the otherwise highly leaky and barely functional blood vessels of the tumors 

were normalized to optimal perfusion, resulting in an acceleration and not an impairment 

of tumor progression [97]. The different outcomes can be explained by the fact that the 

complete elimination of macrophages affects all and not only one of the many functions 

of macrophages in tumor progression. 

 Mast cells may also contribute to tumor angiogenesis. Pharmacological inhibition of 

their function in a mouse model of c-Myc-induced pancreatic β-cell tumorigenesis 

resulted in a block of tumor angiogenesis [82]. These experiments revealed that mast 

cells acted in addition and distinct from the initial oncogene-induced, IL1β-dependent 

angiogenic switch described in this model [40], however, their paracrine role remains to 

be elucidated. 

  Even if the experimental studies described above have lead to the identification of 

cellular players critical for the onset of tumor angiogenesis, the complexity of the tumor 

microenvironment and its cancer type-dependent variability pose a major problem for the 

development of efficient anti-angiogenic therapies. Notably, the fact that ablation of one 

angiogenic factor or cells secreting them leads to a compensation of the angiogenic 

activities by other infiltrating cells of the immune system indicates an urgent need for 

further investigations.  
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Figure.4: Targeting of the molecular and cellular players to inhibit the angiogenic switch in the different 
tumor mouse models and consecutive resistance mechanisms. 

 

Cellular players as therapeutic targets 

 The discovery of the importance of the cells of the inflammatory tumor stroma in 

promoting tumor angiogenesis raised the attractive possibility of therapeutically targeting 

the cellular players instead of their secreted pro-angiogenic factors (Figure.4). The effect 

of pharmacologically targeting TAM, either by the inhibition of their pro-angiogenic 

function or by their complete removal, has been assessed in a number of tumor models 

and clinical studies. Zoledronic acid (ZA) is a nitrogen-containing (amino-) 

bisphosphonate that is approved by the FDA to reduce skeletal complications of bone 

metastasis [98]. Treating K14-HPV/E2 mice with ZA inhibited MMP9 activity and 

expression by TAM, resulting in reduced VEGF-A mobilization and subsequent 

impairment of angiogenesis and cervical carcinogenesis [46]. Consistent with these data, 
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clinical studies demonstrated that ZA administrated either as a single dose or weekly at 

low dosage effectively reduced circulating levels of VEGF-A in patients with advanced 

solid tumors [99-101]. Liposome-encapsulated clodronate (Clodrolip), a non-amino-

bisphosphonate, has been used to systematically deplete macrophages in syngeneic 

tumor transplantation models resulting into significantly impaired tumor angiogenesis and 

tumor growth [102]. However, this approach has not been tested in cancer patients yet, 

and potential toxic side effects are not clear. Also, targeting other cell types that have 

been demonstrated to be functional in the angiogenic switch in pre-clinical models, such 

as neutrophils or mast cells, have not yet been adapted for clinical use [81,82]. 

 Another way to interfere with the activities of pro-angiogenic tumor-infiltrating cells 

of the immune system involves blockade of their recruitment to the tumor site. PlGF, by 

its interaction with VEGFR-1, is a critical factor in inducing monocyte chemotaxis [103]. 

PlGF is frequently found at high levels in cancer patients and in tumor-bearing mice, and 

inhibiting PlGF activity with a neutralizing antibody against PlGF significantly reduced 

intra-tumoral macrophage recruitment and repressed tumor angiogenesis and tumor 

growth in various transgenic and tumor transplantation mouse models of cancer [66].  

 Other approaches to design innovative therapies aimed to interfere with the 

angiogenic switch involve thwarting the plasticity of the tumor-promoting inflammatory 

environment, which allows adaptive resistance against anti-angiogenic therapy to occur. 

As mentioned above, impairment of macrophage recruitment in a mouse model of 

cervical carcinogenesis lead to a compensatory neutrophil response, indicating that 

interfering with the recruitment of a particular inflammatory cell type may be 

compensated for by the pro-angiogenic action of another cell type [94]. However, the 

nature and variability of such compensatory responses in cancer patients are unknown. 

Hence, targeting the inflammatory context in its entirety instead of focusing on the 

particular cellular players may offer an alternative route to the problem. For example, 

Cyclooxygenase-2 (COX-2) expression is found to be upregulated in most cancer types, 

and COX-2 inhibitors have been reported to present tumor type-dependent effects on 

tumor progression. COX-2 is an enzyme involved in the production of inflammatory 

mediators, such as prostaglandins and leukotrienes. Whereas in colorectal cancers, 

COX-2 inhibition significantly reduced tumor growth, it did not show any benefit in 

combination with conventional chemotherapy in pancreatic and cervical cancer [104,105]. 

Similarly, Lenalidomide, an FDA-approved immunomodulatory drug for 5q-
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myelodysplasia and multiple myeloma [106], has also been documented to bear anti-

angiogenic properties by directly inhibiting endothelial cell function [107]. Its efficacy on 

renal cell cancer (RCC) has been assessed in phase II clinical trials showing response 

criteria to treatment comparable to other targeted therapies for RCC, including anti-

VEGF-A therapy with bevacizumab [108-110]. 

 Recently, the brilliant idea has been proposed to employ cells of the immune 

system that are being recruited to the tumor site as vehicles for the delivery of 

therapeutic agents [111]. Exploiting the tumor-homing specificity of TEM, IFN-α delivery 

to the tumor microenvironment was accomplished by forcing the expression of IFN-α in 

TEM through the transduction of haematopoietic stem/progenitor cells (HSPC) with a 

lentiviral vector (LV) encoding IFN-α under the control of the Tie-2 promoter, a promoter 

specifically active in TEM and also in activated endothelial cells. IFN-α, at the appropriate 

dosis, is known to exert anti-proliferative, angiostatic and immune cell-activating functions 

and, in fact, bone marrow reconstitution of irradiated MMTV-PyMT mice with Tie2-IFN 

LV-transduced HSPC resulted in a significant inhibition of tumor growth. These results 

are encouraging, yet for clinical application, refined LV with time-specific transgene 

expression or tightly regulated expression of a suicide gene to eliminate the modified 

cells will be required.  

 The recent breakthroughs described above underscore the need for a more detailed 

characterization of the inflammatory components of the tumor stroma in order to identify, 

based on cellular markers, the various cell populations recruited to the tumor 

microenvironment. Understanding their nature and their function will then allow the 

development of more specific approaches to either deplete these pro-tumorigenic cell 

subsets or to employ them as vehicles for anti-cancer drug delivery at a time, when the 

angiogenic switch is occuring.  

 

Conclusions 

 Since twenty-five years, transgenic mouse models of spontaneous carcinogenesis 

are employed as reliable tools to study stage-specific events, such as the angiogenic 

switch as the initiator of tumor angiogenesis. Importantly, these mouse models are not 

only amenable to molecular and biochemical analysis of the processes underlying the 
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angiogenic switch, they also allow the assessment of potential anti-angiogenic therapy 

under defined and reproducible conditions. However, despite encouraging results in 

preclinical studies, only few anti-angiogenic drugs are currently in use in the clinics. The 

low success rate of the translation from bench to bedside may be explained by a 

combination of different factors. First, in preclinical models, tumor growth is rather fast 

and accompanied by the rapid formation of new blood vessels. Thus, the tumor 

vasculature in mouse models tends to be more responsive to anti-angiogenic therapy 

than the human tumor vasculature [112]. Second, the combination of pro-angiogenic 

factors and cellular players involved in the onset of tumor angiogenesis might be cancer 

type-dependent. Hence, to target a broader range of molecular pathways, the use of 

tyrosine kinase inhibitors may be advantageous over specific monoclonal antibody 

therapies, as they usually target multiple tyrosine kinases which, in addition to their 

angiogenic functions, are also directly involved in cancer cell proliferation and survival 

[113]. Third, experimental drugs that in preclinical early stage prevention or intervention 

trials have been proven to efficiently impair the onset of tumor angiogenesis may not 

exert any anti-angiogenic activity when tested in late stage intervention or regression 

trials, as usually performed in the clinics. Avascular tumors are rather small and usually 

not detected before undergoing the angiogenic switch, and blocking the angiogenic 

switch per se in a prevention treatment may be rather irrelevant in a clinical setting. 

Hence, one way to improve anti-angiogenic therapy may be based on a better 

understanding of the factors and processes underlying the onset vs. the maintenance of 

tumor angiogenesis. Moreover, research on the tumor microenvironment in its entirety 

should be intensified to obtain a complete understanding of its complexity, thus paving 

the way for the design of new anti-angiogenic strategies. 

 One of the initial arguments in favor of targeting tumor-associated endothelial cells 

to impair tumor progression was based on the assumption that endothelial cells are 

genetically stable and, in contrast to transformed cancer cells, would not easily develop 

resistance to therapy. However, the clinical and pre-clinical experience of the past few 

years has taught us that interfering with VEGF-A as the main angiogenic factor or with 

particular stromal cells producing angiogenic factors leads to adaptive resistance and 

compensatory mechanisms. These observations have raised a number of new questions 

important for overcoming these unexpected hurdles. Again, we need to know whether 

there are different factors involved in the onset versus the maintenance of tumor 



    INTRODUCTION 

 25 

angiogenesis, their nature and functions, and their regulation to develop multi-targeting of 

parallel pro-angiogenic signaling circuits, however, with keeping in mind the potential 

accumulation of side effects.  

 Finally, reliable surrogate markers allowing, in a non-invasive manner, the accurate 

determination of the different stages of tumor angiogenesis and concomitant progression, 

are urgently needed [113]. After all, being able to effectively interfere with the angiogenic 

switch may keep primary tumors and metastasis in a dormancy state.  

 

1.1.3. Tumor lymphangiogenesis 

Lymphatic development 

 The lymphatic system is composed of a vascular network of thin-walled collecting 

vessels that drain lymph from extracellular spaces within most organs into larger thicker-

walled collecting trunks which return the lymph back to the blood circulation through the 

thoracic and the right lymphatic ducts. Initial lymphatic capillaries are composed of a 

single cell layer of overlapping endothelial cells attached on the sides by specialized 

button-like junctions. Through these junction opening fluid enters, driven by hydrostatic 

and colloidal osmotic pressure gradients [114]. Anchoring filaments connect the vessels 

to the ECM. Larger collecting vessels contain in addition a continuous muscular layer, an 

adventitial layer, a basement membrane and valves to prevent retrograde flow. They 

present continuous zipper-like junctions which, as button-like junctions, are composed of 

vascular endothelial cadherin and tight junction-associated proteins like occludin, claudin-

5, ZO-1, JAM-A and endothelial cell-selective adhesion molecule [114]. Besides returning 

extravasated tissue fluid back to the blood circulation, the lymphatic system also plays a 

role in immune cell transport and in the absorption of lipids from the intestine.  

 The development of the mammalian lymphatic vasculature has been proposed to 

take place in four stages: lymphatic endothelial cell (LEC) competence, LEC bias, LEC 

specification and finally lymphatic vessel differentiation and maturation (Figure.5)  [115]. 

Accordingly, one of the first events taking place during embryonic lymphatic development 

is that venous endothelial cells become competent to respond to a still unknown initial 

lymphatic-inducing signal. The expression of the lymphatic vessel endothelial hyaluronan 

receptor-1 (LYVE-1) by some of the endothelial cells lining the anterior cardinal vein at 
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E9.0-9.5 is one of the first morphological indication of this competence [116]. In a second 

step, polarized expression of the homeobox protein Prox-1 becomes detectable in a 

subpopulation of competent LYVE-1-expressing cells. Progressively, the number of Prox-

1-expressing cells increases and endothelial cells positive for this lymphatic-specific 

transcription factor begin to be visible in more caudally located embryonic veins. Around 

E11.5-12.5, during the third stage of lymphatic development, in response to a VEGF-C 

signal in the surrounding mesenchyme  [117], VEGFR-3/Prox-1 double-positive LEC 

migrate from the veins to form the primitive lymph sacs which are scattered along the 

anteroposterior embryonic axis.  The fact that Prox-1 expression by venous endothelial 

cells is considered as the first indication that a LEC phenotype is specified comes from 

the observation that in Prox-1-null embryos, blood endothelial cells (BEC) fail to acquire a 

lymphatic-specific profile [118]. Furthermore, forced expression of Prox-1 in cultured BEC 

is sufficient to upregulate LEC markers and concomitantly downregulate BEC markers 

[119]. Thus, prox-1 may be a master control gene of LEC differentiation, acting by turning 

off the BEC program while turning on the LEC program. Correspondingly, during the 

process of LEC specification and migration, the expression of other lymphatic markers, 

such as neuropilin-2, Podoplanin and secondary lymphoid chemokine (SLC), can be 

detected in the budding Prox-1 expressing LEC  [118,120,121]. In a final step, 

concomitant with lymph sac formation and lymphovenous separation, LEC sprout from 

the sacs to give rise to the entire lymphatic network. The signaling molecules Slp-76, Syk 

and PLCγ2 are key players in lymphovascular separation, as functional inactivation of 

any of these genes in mice results in the appearance of blood-filled lymphatic vessels 

[122,123]. During later stages of embryonic and postnatal lymphangiogenesis, the 

expression of additional lymphatic markers can be detected in the forming lymphatics. 

For example, ephrinB2 and its typrosine kinase receptor EphB4 have been reported to be 

expressed on LEC. The Ephrin-Eph system can function bidirectionally, the ligand 

binding inducing a so-called “forward” signaling as well as a “reverse” signaling. The 

“forward” signaling acts through receptor phosphotyrosine-mediated pathways and the 

“reverse” signaling through either phosphorylation of the ligand’s cytoplasmic tail, 

providing docking sites for intracellular signaling molecules, or through the ligand C-

terminal motif for the binding of PDZ-domain containing proteins. EphrinB2-mutant mice, 

lacking the C-terminal PDZ interaction site, fail to remodel their primary lymphatic 

capillary plexus into a hierarchical vessel network, revealing the ephrin system as an 
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essential regulator of lymphatic development  [124]. The forkhead transcription factor 

Foxc2 has also been described to be expressed in LEC. Loss of Foxc2 leads to defects 

in lymphatic remodeling, failure to form lymphatic valves and increased pericyte coverage 

[125]. Recently, Foxc2 has been reported to exert its effect on lymphatic collecting vessel 

formation and maturation through its cooperation with the transcription factor NFATc1, a 

member of the nuclear factor of activated T cell family [126]. Additionally, the joint action 

of Foxc2 and Foxc1 has been shown to be required for lymphatic sprouting during 

vascular development [127]. Ang-2 is also involved in postnatal lymphatic remodeling and 

maturation as revealed by studies on Ang-2-null mice, an effect which can be substituted 

by Ang-1 expression [128]. Finally, desmoplakin and β-chemokine receptor D6 have been 

reported to be expressed in final stages of lymphatic differentiation and maturation 

[129,130].  

 

Figure.5: A proposed four-step model of lymphatic vasculature formation. First LEC competence is 
acquired, followed by LEC bias and LEC specification and finally lymphatic vessel differentiation and 
maturation. (Modified From [115]). 
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Tumor-associated lymphatic vessels 

 In adult organisms, lymphangiogenesis takes only place under pathological 

conditions, such as tissue repair, inflammation and tumor growth. VEGF-C and its 

structurally closely related family member VEGF-D are the main lymphangiogenic growth 

factors which, predominantly through binding to VEGFR-3, promote growth, migration 

and survival of LEC [131]. Notably, after proteolytic cleavage, these growth factors can 

also bind to VEGFR-2 [132,133]. A lymphangiogenic potential for its ligand VEGF-A has 

also been revealed in in vitro and in vivo studies [134]. Thus, transgenic overexpression 

of VEGF-A in the mouse skin promoted at wound healing sites the formation of new 

lymphatic vessels strongly expressing VEGFR-2. Systemic blockade of VEGFR-2 

prevented VEGF-A-induced lymphangiogenesis, showing that VEGF-A promotes 

lymphatic vasculature formation via its direct interaction with VEGFR-2 present on newly 

formed lymphatic vessels [135]. Additionally, it has been proposed that VEGF-A may also 

act indirectly by attracting VEGF-C/-D producing inflammatory cells  [136]. In order to 

dissect VEGFR-3 independent mechanisms of lymphangiogenesis, signaling through this 

receptor was blocked in postnatal and adult mice using a ligand trap (a VEGFR-3-Ig 

fusion protein). Inhibition of the VEGF-C/-D/VEGFR-3 axis revealed that this signaling 

pathway is only required for the maintenance of small lymphatic vessels during the first 

weeks of life, as thereafter, lymphatic vessels were able to regenerate despite constant 

VEGFR-3 inhibition  [137]. Consistent with the idea that the VEGF-C/-D/VEGFR-3 axis 

plays a specific time/condition-restricted role in adult lymphangiogenesis, antibody-

mediated VEGFR-3 blockade completely prevented VEGF-C-enhanced 

lymphangiogenesis in the adult mouse but had no effect on the survival or function of 

existing lymphatic vessels  [138]. Taken together, these studies indicate that other 

molecular factors may be implicated in the growth and maintenance of lymphatic vessels 

during adult life. Indeed, other growth factors able to promote lymphangiogenesis have 

been identified, including Ang-1  [139], hepatocyte growth factor (HGF)  [140], fibroblast 

growth factor-2 (FGF-2)  [141], insulin-like growth factor-1 and 2 (IGF-1/2)  [142], platelet 

derived growth factor (PDGF) [143] as well as recently described, growth hormone (GH) 

[144] and adrenomedullin (AM) [145] (Figure.6).  
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Figure.6: Molecular control of lymphangiogenesis. Schematic representation of the major currently 
identified lymphangiogenic factors and their receptors on lymphatic endothelium. 

 

 Metastasis to regional lymph nodes via lymphatic vessels represents the first step of 

tumor dissemination in many human cancers and is an important prognostic indicator for 

disease progression. It has been initially assumed that lymph node metastasis arise from 

a passive dislocation of tumor cells into pre-existing lymphatic vessels present in their 

vicinity, along with interstitial fluid. As established by several studies in animal tumor 

models, it is now clear that tumors can actively induce tumor-associated 

lymphangiogenesis either by the direct secretion of lymphangiogenic factors, like VEGF-

C  [146], VEGF-D [147]  and VEGF-A  [148], or by the recruitment of lymphatic growth 

factor-secreting immune cells  [149]. Increased lymphatic vessel density promotes the 

spread of tumor cells to regional lymph nodes. In human cancers, a strong correlation 

between expression levels of VEGF-C and lymph node metastasis has been found in 

more than thirty retrospective studies [150]. Moreover, VEGF-C and VEGF-A have been 

reported to induce expansion of the lymphatic network in the sentinel lymph nodes, even 

before the arrival of the metastatic cancer cells. Once having reached the sentinel lymph 

nodes, metastatic tumor cells continue to induce local lymphatic vessel growth, resulting 

in increased drainage of growth factors and lymphatic expansion in distant lymph nodes 

[148,151]. Another mechanism developed by tumor cells to actively disseminate to lymph 

nodes implicates the CCL21/CCR7 axis. In vitro and in vivo studies have reported that 
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LEC attract CCR7-expressing cancer cells, by the expression of the CCR7 receptor 

ligand CCL21, a chemokine also shown to be involved in the trafficking of immune cells 

to lymph nodes [152,153]. Moreover, CCR7 expression has been correlated with lymph 

node metastasis of several types of carcinomas [154-156]. Recently, autologous 

secretion of CCR7 ligands has been shown to be used by CCR7-expressing tumor cells 

as an “interstitial flow sensing” mechanism to home to lymphatic vessels. Under the 

influence of the flow, the CCR7 ligand pericellular distributions are biased in its direction, 

causing downstream gradients that then guide tumor cells to the draining lymphatic 

vessel  [157]. Additionally, a synergistic activity between VEGF-C and CCR7 expression 

in promoting invasion toward lymphatics has been proposed. VEGF-C would then 

enhance tumor cell chemo-invasion by inducing LEC to increase their CCL21 secretion, 

so resulting in increased paracrine signaling by lymphatic vessels to CCR7-expressing 

tumor cells [158].  

 As tumor-associated lymphangiogenesis correlates with lymph node metastasis, its 

inhibition might be of therapeutic interest. Indeed, blocking the VEGF-C/-D/VEGFR-3 

axis, either by the use of neutralizing antibodies or ligand traps  [159,160], or by small 

interfering RNA-mediated vegf-c gene silencing  [161], resulted in reduced tumor 

lymphangiogenesis and in concomitant reduction of lymph node metastasis. As VEGFR-

3 is expressed on tumor blood vessels, anti-VEGFR-3 therapy may represent an 

additional beneficial effect by concomitantly inhibiting tumor angiogenesis  [162]. Finally, 

because VEGF-C/-D can activate VEGFR-2 and VEGF-A promotes tumor 

lymphangiogenesis, anti-VEGFR-2 and anti-VEGFR-3 antibodies in combination have 

been shown to decrease lymph node and lung metastasis more efficiently than either 

antibody alone [159].  

 

1.2. Cell plasticity 
 

1.2.1. Concept, hopes and controversies 

It has first been thought that cells arising from the segregation into germ layers 

(ectoderm, mesoderm, endoderm) during embryogenesis irreversibly maintain their 

tissue lineage specification into and throughout adulthood. Furthermore, homeostatic cell 

replacement and tissue regeneration in the adult have been considered to maintain such 



    INTRODUCTION 

 31 

tissue specificity, so that rare tissue-resident stem cells would only be able to generate 

mature cell types corresponding to their tissue of origin, and not cell types of different 

lineages. However, over the past decade, experiments have challenged this notion of 

lineage commitment by suggesting that, under certain circumstances, cells may “trans-

differentiate” and, in doing so, contribute to a much wider spectrum of differentiated 

progeny than previously anticipated. This suggestion has given rise to the concept of 

stem cell plasticity, which holds that the lineage determination of an adult stem cell may 

not be rigidly defined but instead flexible, allowing these cells to respond to a variety of 

microenvironmental regenerative cues  [163]. The term trans-differentiation is not 

restrictively used in the context of stem cell plasticity, but similarly describes the 

conversion of one differentiated cell type into another, supporting a more general concept 

of cell plasticity (Figure.7).  

That adult cells may have the ability to switch fates from one cell type to another, 

has recently sparked the idea to experimentally reprogram adult mammalian cells and 

with it has raised new hopes for designing therapeutic approaches for tissue 

regeneration. The primary goal of regenerative medicine is to produce new cells for the 

repair or replacement of diseased and damaged tissues. The conversion of abundant 

adult cells into medically important cells would go toward this goal. Up to now, two 

different approaches have been used to reprogram cells. In the first one, adult cells were 

converted to pluripotent stem cells, which were then differentiated in the cell type of 

interest. In the second approach, the intermediate pluripotent state is skipped and adult 

cells are directly converted into other progenitor or mature cells.  

Reprogramming differentiated cells back to a pluripotent stage has been initiated 

by pioneering experiments on somatic nuclear transfer (SNT) in amphibians in the 1960s 

[164]. Transplanting the nucleus of an adult cell into the cytoplasm of an unfertilized egg 

in order to reverse its differentiation process and reach a pluripotent state has since then 

been accomplished in many mammalian species [165]. Recently, a burst of enthusiasm 

is born following the discovery by Yamanaka and colleagues that adult skin fibroblasts 

can be converted into pluripotent cells (named induced pluripotent cells or iPS) by the 

expression of a small set of transcription factors [166]. The use of retroviral or lentiviral 

vectors, which integrate into the genome and thus may create mutations, to deliver the 

reprogramming factors into the differentiated cells constituted on of the main concern 

regarding the use of iPS for clinical applications. To circumvent this limitation, vector 
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integration-free mouse iPS have been derived from liver cells using adenoviral vectors 

[167], as well as from embryonic fibroblasts using repeated plasmid transfections [168]. 

Although promising, the low frequencies of iPS obtained raised the concern that these 

approaches may not be suitable for human cells as they require longer exposure to the 

reprogramming factors [166,169]. Three alternative approaches have been described to 

remove transgenes from mouse and human iPS. First, Cre/LoxP recombination was 

successfully used to excise integrated transgenes but, as with the application of this 

method residual vector sequences remain, insertional mutations cannot be excluded 

[170]. Second, seamless excision of piggyBac transposons achieved efficient production 

of vector and transgene-free mouse iPS [171], however this approach has not yet been 

tested on human iPS. And third, Yu et al. reported that human iPS free of vector and 

transgene sequenes can be derived from fibroblasts by a single transfection with 

oriP/EBNA1 (Epstein-Barr nuclear antigen-1)- based episomal vectors [172]. Other 

limitations for iPS clinical application are the use of oncogenic transcription factors to 

achieve reprogramming as well as the low efficiency of the process. For these reasons, 

together with the concern that the use of viral vectors integrating in the host genome 

should be avoided, the interest in finding small molecules which would compensate for 

viral transduction of critical factors and facilitate reprogramming is currently raising. Shi et 

al. reported that a combination of BlX-01294, a G9a histone methyltransferase inhibitor, 

with Bayk8644, a L-channel calcium agonist, could compensate for the lack of the 

transcription factor Sox2, usually necessary for inducing pluripotency [173]. Along those 

lines, Huangfu et al. showed that valproic acid, a histone deacetylase inhibitor, enables 

reprogramming of human fibroblasts without the need for oncogenic transcription factors 

[174]. Furthermore, BlX-01294, valproic acid as well as 5’azacytidine enhanced the 

reprogramming efficiency [175-177]. Encouraged by these results, the quest to ultimately 

find a chemical cocktail that would allow reprogramming of somatic cells into pluripotent 

cells is actively ongoing. Moreover, identifying these small molecules might lead to the 

identification of general pathways involved in the reprogramming process. 

As mentioned above, a secondary approach to convert one cell into another 

consists in skipping the intermediate pluripotent step and in directly converting an adult 

cell into another mature or progenitor cell. This approach is referred to as lineage 

reprogramming in distinction to pluripotent reprogramming (Figure.7). The fact that tissue 

regeneration is preceded by reactivation of embryonic genes normally functioning during 
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organ development raised the hypothesis that expression of embryonic genes would be 

important for lineage reprogramming. With this idea in mind, Zhou et al. performed a 

genome-wide analysis to identify transcription factors with specific expression in 

precursor cells of the β-cell lineage [178]. Combining this approach with results from 

knock-down studies, they could identify three transcription factors required for β-cell fate 

specification. Mature exocrine cells of the adult pancreas were chosen as target cells for 

reprogramming. The transcription factors were delivered into the murine pancreas in 

adenoviral vectors, as it has been shown that adenovirus preferentially infects pancreatic 

exocrine cells but not islet cells [179]. By re-expressing these key developmental 

regulators in vivo, differentiated exocrine cells gave rise to β-cells, which were 

indistinguishable from endogenous islet β-cells regarding their size, shape and 

ultrastructure. Furthermore they expressed genes essential for β-cell function and could 

ameliorate hyperglycemia by remodeling local vasculature and secreting insulin [180]. 

Based on the same principle, other studies have shown that lineage reprogramming can 

be achieved using factors being well-studied developmental regulators. For example, 

MyoD, a transcription factor critical for the specification of the skeletal muscle lineage, 

can convert cultured embryonic fibroblasts, chondroblasts, and retinal epithelial cells into 

contracting muscle cells [181]. Furthermore, B cells can be converted to macrophages by 

the transcription factor CEBP [182] and inner ear support cells are reprogrammed to hair 

cells by Math1 [183]. This last report together with the report of Zhou et al., where 

reprogramming takes place directly in the native tissue environment, suggest the 

optimistic prediction, that it will once be possible to rescue motor neuron deficiencies or 

acute heart injuries by converting central nervous system glial cells into motor neurons or 

by using cardiomyocytes reprogrammed from skeletal muscle or skin fibroblasts, 

respectively. Finally, it is interesting to note that current examples of lineage 

reprogramming mostly occur between closely related cell types. The fact that cells 

closely related share much of their developmental history and therefore much of their 

epigenetic marks should make the interconversion easier, as only a small portion of their 

epigenomes would have to be rearranged [184]. Similarly, as terminal differentiation 

involves epigenetic changes “locking in” the differentiated program, it may be more 

difficult to reprogram mature than immature cells [185].  

Taken together these reports underline the remarkable plasticity of cells, even 

terminally differentiated, and raise the question: besides experimental manipulated 
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cellular reprogrammation, can trans-differentiation also be observed in vivo? The most 

commonly accepted examples of “spontaneous” trans-differentiation are limb 

regeneration in the amphibian [186] and the conversion of iris pigmented epithelial cells 

into lens cells after injury [187]. In these instances, differentiated cells de-differentiate to 

a progenitor stage prior to their metamorphosis into other differentiated cell phenotypes. 

Moreover, it is well established that cellular reprogramming may be central to certain 

types of pathological metaplasia, a term referring to the transformation of one tissue type 

into another. Metaplasias arise in tissues that have been subjected to chronic injury, 

infection or abnormal hormonal stimulation, hence undergoing continuous regeneration. 

For example, bronchi of smokers, which are normally lined only with columnar epithelium, 

often present patches of squamous metaplasia [188]. The basics of the metaplasia 

theory have been formulated for the first time in the 1980s by Jonathan M.W. Slack [189], 

and evidence supporting his theory has gradually accumulated over the past years. The 

main principle says that tissue type changes are due to changes in the combination of 

expressed regulatory genes. More precisely, under regenerative conditions, tissue-

resident stem or progenitor cells may express a different set of genes encoding 

transcription factors determining tissue identity, giving rise to a focus of metaplasia [190]. 

Besides these trans-differentiation cases recognized as such by the majority of the 

scientific community, an important number of other studies, claiming that adult cells can 

switch fates from one cell type to another have been looked at with pronounced 

skepticism. Bone marrow cell contributions to non-blood cells as well as non-

haematopoietic cell contributions to haematopoiesis have been reported. But after a first 

wave of great excitement, concerns about the possibility that cell contamination or cell 

fusion could account for the results as well as failures to reproduce these results and the 

low frequency at which trans-differentiation events occurred led to questioning whether 

the observed processes were really trans-differentiation. For example, Gussoni et al. 

described that skeletal muscle stem cells could produce blood cells when injected 

intravenously into lethally irradiated recipient mice [191]. When the blood-forming cells 

derived from muscle cells were better characterized, they turned out to be 

haematopoietic in origin [192]. As circulating haematopoietic stem cells (HSC) 

contaminate many non-haematopoietic tissues, the observed haematopoietic activity of 

muscle cells was in fact due to a contamination of itinerant HSC present in the injected 

fraction. Furthermore, cell-cell fusion constitutes a major concern regarding HSC 

plasticity as it has been reported that bone marrow-derived cells can fuse with Purkinje 
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neurons, cardiomyoctes and hepatocytes [193]. By transplanting lethally irradiated mice 

bearing a fatal genetic liver disease caused by a mutation in the fumaryl-acetoacetate 

hydrolase (FAH) gene, with male HSC carrying a reporter gene, Lagasse et al. were able 

to generate donor-derived hepatocytes which rescued the liver deficiency. Some years 

later, southern blotting and cytogenetic analyses revealed that what had been interpreted 

as HSC trans-differentiation into hepatocytes [194], was the result of cell fusion [195]. 

These misinterpretations have emphasized the urgent need of strict criteria to 

demonstrate trans-differentiation [196], such as ensuring that the starting cell population 

is not contaminated by any progenitor cell which could give rise to the potential trans-

differentiated cells and that no cell fusion events occurred. Although important 

controversies raise important questions on the existence of trans-differentiation, recent 

well-conducted studies demonstrate that the conversion of on cell type into another can 

be observed under certain conditions, although at low frequency (Figure.7). In the 

following chapter reports considering haematopoietic/endothelial cell plasticity will be 

discussed in more details. 
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Figure.7: Cell plasticity. Experimental versus naturally occurring reprogramming of one cell type into 
another. 
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1.2.2. Haematopoietic/endothelial cell plasticity 

The hemangioblast concept 

 The existence of a common precursor cell, called the hemangioblast, giving rise to 

both haematopoietic and endothelial cells as been proposed about hundred years ago. 

Evidence for this concept was first obtained by experiments in the chick yolk sac, where it 

has been observed that a mesoderm-derived cell could produce red blood cells as well 

as endothelial cells. However, the real proof of the existence of a common precursor cell 

for both lineage came at the end of the 1990s from a study by Gordon Keller’s group. 

They developed an in vitro assay allowing single-cell analysis of so-called blast colony-

forming cells (BL-CFC), which are derived from differentiating mouse embryonic stem 

cells. Upon specific culture conditions, blast colonies generated both haematopoietic 

cells and adherent cells displaying typical characteristics of the endothelial lineage. 

Mixing studies then demonstrated that the haematopoietic and endothelial precursors 

within the blast colonies developed from the same cell, the BL-CFC. This observation 

together with insights into the molecular regulation of the development and differentiation 

of colonies that emerge from a BL-CFC provided strong evidence that the BL-CFC 

represents the long-hypothesized hemangioblast [197].  

 Recently, dissecting the cellular events happening during the generation of blood 

cells from BL-CFC revealed that HSC are formed from a subset of early endothelial cells, 

constituting the so-called hemogenic endothelium. The fact that in many species, during 

embryonic development, HSC appear as clusters attached to the endothelium that lines 

the ventral wall of the abdominal aorta, further supports the implication of the 

endothelium as the source of developing blood cells. Using time-lapse microscopy, two 

distinct stages in the formation of mature blast colonies could be observed: cells formed 

first tightly adherent clusters on the top of which then round, non-adherent cells appeared 

[198]. Among the adherent cell clusters, a transient cell population expressing various 

endothelial markers from which blood cell colonies were formed, could be detected. This 

transient cell population corresponds to the hemogenic endothelial intermediate through 

which HSC arise from hemangioblasts. Tracking the fates of all cells present in mature 

blast colonies revealed that one or more endothelial cells per colony directly gave rise to 

non-adherent haematopoietic cells. These findings did not reflect an in vitro-restricted 

phenomenon as the existence of hemogenic endothelial cells in vivo could be 
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demonstrated by the direct isolation of primary endothelial cells with hemogenic potential 

from early mouse embryos [199]. Furthermore, the expression of the transcription factor 

Runx1 within the endothelium, from embryonic day 8.25 to embryonic day 11.5, has been 

shown to be required for the formation of HSC  [200]. Not only embryonic HSC but also 

most fetal liver cells and adult bone marrow cells have been reported to originate from 

the hemogenic endothelium [200,201]. Taken together, these recent findings convincingly 

show that cells of the endothelial lineage can give rise to cells of the haematopoietic 

lineage. Would it then be possible, under specific conditions, to observe the reverse 

situation: haematopoietic cells giving rise to endothelial cells? 

 

Myeloid/endothelial cell plasticity 

 Indeed, yes. Evidence that HSC can give rise to both blood and vascular endothelial 

cells in vivo has been demonstrated by transplantation of single HSC carrying reporter 

genes into lethally irradiated recipient mice. Thus donor-derived cells have been shown 

to contribute to retinal neovascularization [202], to tumor vasculature [203] as well as to 

the vasculature of the liver, the lung, the heart, the skeletal muscle and the intestine 

[204]. All these studies were well conducted. Reconstitution at the clonal level ensured 

that HSC and not bone marrow derived-EPC gave rise to endothelial cells, and fusion 

events were carefully excluded. Let’s have a closer look at the study of Bailey et al.. As 

mentioned above, single GFP+ HSC were able to contribute to the vasculature of several 

tissues. 3-4% of endothelial cells were HSC-derived. To assess potential fusion events, 

trans-differentiated cells were FACS sorted from tissues of sex-mismatched transplanted 

mice based on their GFP+/CD31+/CD45- (haematopoietic marker) pattern, and DNA 

content as well as X/Y chromosome composition were examined by FACS and FISH 

respectively. No significant number of cells with 4N DNA content or more than 2 sex 

chromosomes could be detected. Furthermore, the integrated cells not only expressed 

endothelial cell markers like CD31 or von Willebrand factor but were also uniformly 

CD45- and presented the ability to take up low-density lipoprotein, reflecting thus a 

functional trans-differentiation of HSC into endothelial cells.  

 These findings raised the question whether the HSC-derived endothelial cell 

progenitors reside in an established haematopoietic lineage or represent a novel 
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progenitor population. About two years after the publication of their first study, Bailey et 

al. assessed this question by transplanting irradiated mice with FACS-sorted fractions of 

tagged-bone marrow [84]. The expression of the progenitor marker c-kit was revealed to 

be necessary for the contribution of bone marrow-derived cells to the liver endothelium; 

however, cells expressing mature haematopoietic lineage markers (Lin+) were also able 

to give rise to donor-derived endothelial cells. This, in combination with the failure to 

generate endothelial cells from lymphoid progenitors, suggested that endothelial cell 

progenitors might arise from myeloid lineage progenitors. Subsequently, tagged common 

myeloid progenitors (CMP) as well as granulocyte/macrophage progenitors (GMP) were 

transplanted into irradiated recipients. GMP constitute a further differentiated progeny of 

CMP. About 1% of portal vein cross-sections contained donor-derived endothelial cells, 

showing that endothelial cells can arise from well-defined populations of myeloid lineage-

restricted bone marrow progenitors and that the endothelial potential persists at least 

until the GMP stage of myeloid differentiation. Similar results were obtained by parabiosis 

experiments, demonstrating that acute radiation injury was not a prerequisite for the 

trans-differentiation process to occur. In the first study, despite the lack of detection of 

increased DNA content or number of sexual chromosomes, rare cell fusion events which 

would be followed by a reduction division yielding to diploid cells, could not be excluded. 

In contrast, in the second study, fusion events were completely ruled out by genetic 

tracing experiments. HSC isolated from tagged Cre recombinase transgenic mice were 

transplanted into mice harboring a β–galactosidase (β–gal) gene inactivated by a floxed 

stop codon, so that only host cells that fuse with donor cells would undergo DNA 

recombination and express β–gal. None of the donor-derived cells expressed the β–gal 

reporter gene, consistent with direct differentiation of the transplanted cells. Taken 

together, their results reveal that endothelial cells represent a previously unrecognized 

differentiation potential of the myeloid lineage. Recently, the role of the tumor-secreted 

angiogenic factor pleiotrophin (PTN) in the conversion of myeloid to endothelial cells has 

been reported [85]. When co-injected with human multiple myeloma into severe 

combined immunodeficient mice, tagged-human monocytes were found incorporated into 

tumor blood vessels and expressed vascular markers, a process blocked by the use of 

anti-PTN antibodies. Thus, tumor production of PTN seems to orchestrate the trans-

differentiation process, at least in the case of human multiple myeloma.  
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Such evidence that haematopoietic cells can give rise to vascular endothelial cells 

brought up the hypothesis that these cells may also be able to give rise to lymphatic 

endothelial cells. To assess this presumption, similar experimental procedures were 

used. Transplantation of GFP+ HSC into irradiated recipient mice or parabiosis-induced 

chimerism revealed the presence of donor-derived lymphatic endothelial cells, defined as 

GFP+ LYVE-1+ CD45- and F4/80- (macrophage marker) cells, into the lymphatic 

endothelium of the liver, kidney, stomach and intestine  [205]. Under these steady state 

conditions, HSC-derived LEC contributed to 3-4% of lymphatic vessels. In contrast to the 

reported differentiation potential of myeloid cells towards blood endothelial cells, no 

donor-derived LEC could be detected post CMP or GMP transplantations, suggesting 

that the lymphatic endothelium, at least under physiological conditions, does not arise 

from haematopoietic cells comprised within the myeloid lineage. A study on human 

samples confirms as well as partially contradicts the previous results [87]. Analysis of 

biopsies of human normal skin and intestine derived from individuals with gender-

mismatched bone marrow transplants, did not reveal any contribution of donor-derived 

cells to the lymphatic endothelium. However, following rejection of sex-mismatch human 

kidney transplants, host-derived LEC could be observed within the lymphatic vessels 

present in the rejected organs, confirming the existence of lymphatic progenitor cells in 

the presence of an inflammatory context. About 4.5% of renal explants lymphatic 

endothelial cells were derived from lymphatic progenitor cells and no fusion events could 

be detected by FISH analysis of more than 7000 lymphatic endothelial cell nuclei. 

Moreover, under inflammatory conditions, myeloid cells have been reported to be able to 

contribute to de novo lymphangiogenesis. First, following cornea suture placement, 

CD11b+ (myeloid marker) cells were found integrated into newly formed inflammation-

induced lymphatic vessels. Systemic depletion of macrophages using clodronate 

liposomes consequently suppressed corneal lymphangiogenesis [88]. And second, it has 

been reported that lymphatic vessels that form during the acute phases of excisional 

wounds are comprised largely of cells co-staining for the macrophage marker F4/80 and 

the lymphatic markers LYVE-1 and Podoplanin [89]. Interestingly, double-positive cells 

were not detected in the pre-existing lymphatics in the non-injured tissue at the wound 

edge. Actually, F4/80/LYVE-1 double-positive cells only persisted 10 to 14 days after 

wounding, though in lower numbers, and lymphatic structures that remained in the 

granulation tissue stained for LYVE-1 only. These results suggest that the new lymphatic 

vessels were formed from F4/80+ cells and so underline the specific inflammation-
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induced contribution of macrophages to the lymphatic endothelium. In support to these in 

vivo data, several studies have recapitulated in vitro the ability of myeloid cells to give 

rise to lymphatic endothelium. For examples, under specific culture conditions, human 

VEGFR3+ monocytes could be stimulated to express LYVE-1 and Podoplanin [87] and 

mouse thioglycollate-stimulated CD11b+ cells showed the ability to form LYVE-

1/Podoplanin double positive tube-like structures [88]. 

In the inflammatory context of tumors, are there also specific subsets of bone 

marrow-derived cells contributing to lymphatic vessels? Depending on the tumor models 

and the analytic methods used to assess this question, divergent answers have been 

given. Investigation of human biopsies of two rare carcinomas with low rates of lymphatic 

endothelial proliferation derived from gender-mismatched bone marrow transplanted 

individuals, did not show any incorporation of donor-derived cells into tumor-associated 

lymphatic vessels  [87]. Similarly, subcutaneous injection of B16-F1 or LLC tumor cells 

into syngeneic GFP-tagged bone marrow-transplanted mice did not reveal any 

contribution of GFP+ cells to tumor lymphatics  [206]. However, the study of such rare 

events requests intense analysis as well as appropriate tumor models presenting 

consistent tumor-associated lymphangiogenesis. Thus, 3-dimensional analysis of 

confocal Z-stacks of tumors sections of GFP-tagged bone marrow-transplanted mice 

subcutaneously injected with T241 fibrosarcoma cells, demonstrated the presence of 

bone marrow-derived cells into peritumoral lymphatic vessels  [207]. Furthermore, the 

transplantation of FACS-sorted tagged HSC into ApcMin/+ mice, an endogenous mouse 

model of multiple intestinal neoplasia, resulted in the incorporation of donor-derived LEC 

into the lymphatic vessels of spontaneously arising intestinal tumors, showing that bone 

marrow-derived cell contribution to the tumor lymphatic vasculature is not restricted to 

transplantation tumor models  [205]. Even if these two last studies show that bone 

marrow-derived cells can give rise to tumor lymphatic endothelium, they do not determine 

which cell population within the different bone marrow cell populations contributes to 

tumor lymphatic vessels. Moreover, confirmative studies are needed to assess if this 

process is a general mechanism of tumor lymphatic development or if it is restricted to 

certain tumor types.   
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2. Aim of the study 

 

 As mentioned above, the physical contribution of bone marrow-derived cells to the 

tumor lymphatic endothelium is rather controversial. Moreover, the studies reporting the 

existence of bone marrow-derived tumor lymphatic endothelial cells are purely 

descriptive and no mechanistic insights into how this trans-differentiation process occurs 

have been provided. Since tumor lymphatic vessels promote tumor progression by 

regulating interstitial fluid pressure, transporting immune cells to the tumor 

microenvironment and finally providing a route for metastatic dissemination, assessing 

the existence of bone marrow-derived tumor lymphatic endothelial cells in different tumor 

mouse models as well as understanding their functional role is warranted. 

 

Along these lines, the principal aims of this study have been the following: 

 

a) To assess the potential physical contribution of bone marrow-derived cells to the 

tumor lymphatic vasculature in transgenic and syngeneic tumor transplantation 

mouse models. The goal being to determine if the conversion of bone marrow cells 

toward tumor lymphatic endothelial cells represents a general process contributing to 

tumor lymphatic growth. 

 

b) To characterize the bone marrow-derived cells integrating into tumor lymphatics by 

determining if these cells reside within a specific bone marrow cell population. 

 

c) To get insights into the mechanism by which bone marrow cells could give rise to 

lymphatic endothelium.  
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3. Experimental design 

 

 The potential physical contribution of cells derived from the bone marrow to tumor 

lymphatic endothelium as well as the characterization of these cells were assessed by 

transplantation of lethally irradiated tumor-bearing mice presenting ongoing tumor 

lymphangiogenesis with GFP-labeled bone marrow or bone marrow fractions and 

subsequent tumor lymphatic confocal microscopy and FACS analysis. Two tumor mouse 

models were used, a transgenic tumor model, the Rip1Tag2; Rip1VEGF-C (RT2;VC) 

mice as well as a syngeneic tumor transplantation model, the s.c. injection of prostate 

adenocarcinoma cells (TRAMP-C1 cells) into C57Bl/6 mice. The Rip1Tag2 mice (RT2) 

express the Simian Virus 40 large T antigen oncoprotein under the control of the rat 

insulin promoter, resulting in the specific expression of the oncogene in the β-cells of the 

islets of Langerhans and the subsequent development of β-cell tumors [28]. When 

crossed to Rip1VEGF-C (VC) mice, double-transgenic RT2;VC mice develop tumors with 

high peritumoral lymphangiogenesis and lymph node metastasis [146] (Figure.8). 

TRAMP-C1 is a murine prostate adenocarcinoma cell line which has been shown to 

induce intratumoral lymphangiogenesis upon transplantation into syngeneic C57Bl/6 

mice [208,209] (Figure.8). 

 The phenotypical conversion of bone marrow cells into lymphatic endothelial cells 

was recapitulated in an in vitro assay, offering a useful tool to study the trans-

differentiation mechanism. More precisely, trancriptome comparison of cells at different 

time points in the trans-differentiation process revealed time-specific upregulated genes 

representing potential important players at different steps of this process. Some of these 

potential candidates were then assessed for their role first in the in vitro and then in the in 

vivo trans-differentiation process by knock down and blocking experiments. 
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Figure.8: Schematic representation of the two tumor mouse models presenting ongoing 
lymphangiogenesis used to assess the existence of bone marrow-derived tumor lymphatic endothelial 
cells. RT2;VC mice develop insulinomas surrounded by lymphatic vessels as C57BL/6 mice transplanted 
with TRAMP-C1 cells develop subcutaneous tumors presenting intra-tumoral lymphatic vessels. 
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4.1.1. Abstract 

 The formation of new blood vessels (angiogenesis) and lymphatic vessels 

(lymphangiogenesis) promotes tumor outgrowth and metastasis. Previously, it has been 

demonstrated that bone marrow-derived cells (BMDC) can contribute to tumor 

angiogenesis. However, the role of BMDC in lymphangiogenesis has largely remained 

elusive. Here, we demonstrate by bone marrow transplantation/reconstitution and genetic 

lineage-tracing experiments that BMDC integrate into tumor-associated lymphatic 

vessels in the Rip1Tag2 mouse model of insulinoma and in the TRAMP-C1 prostate 

cancer transplantation model, and that the integrated BMDC originate from the 

myelomonocytic lineage. Conversely, pharmacological depletion of tumor-associated 

macrophages reduces lymphangiogenesis. No cell fusion events are detected by genetic 

tracing experiments. Rather, the phenotypical conversion of myeloid cells into lymphatic 

endothelial cells and their integration into lymphatic structures is recapitulated in two in 

vitro tube formation assays and is dependent on fibroblast growth factor-mediated 

signaling. Together, the results reveal that myeloid cells can contribute to tumor-

associated lymphatic vessels, thus extending the findings on the previously reported role 

of haematopoietic cells in lymphatic vessel formation. 

 

4.1.2. Introduction 

 In the adult, the vascular network is usually expanded and remodeled by sprouting 

and proliferation of endothelial cells from pre-existing blood and lymphatic vessels, 

processes called angiogenesis and lymphangiogenesis, respectively. In addition to tissue 

resident cell types, several studies have demonstrated that BMDC are recruited to 

angiogenic sites to support the establishment of new vessels [79,210,211]. BMDC are 

typically sub-classified into haematopoietic progenitor cells (HPC) and endothelial 

progenitors cells (EPC). In various tumor models, HPC have been shown to contribute to 

blood vessel angiogenesis by secreting angiogenic factors and proteases required for the 

activation of latent forms of angiogenic factors [45,136]. HPC have also been implicated 

in the preparation of a pre-metastatic niche in organs that are colonized by disseminating 

cancer cells [212]. EPC on the other hand have been shown to directly integrate into 

growing blood vessel walls, however, to varying extents, ranging from 0 to 50% and thus 

raising questions about their functional contribution to blood vessel angiogenesis in 
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various physiological and pathological conditions [79,213]. Recently, it has been reported 

that also cells of the myeloid lineage are able to differentiate into bona fide blood 

endothelial cells [84]. 

 Only few studies have addressed the role of BMDC in lymphangiogenesis. 

Haematopoietic stem cells (HSC) and BMDC have recently been shown to contribute to 

lymphatic endothelium in various organs and during embryonic development 

[123,205,214]. BMDC contribution to lymphatic vessels has also been reported under 

inflammatory conditions. For example, experiments employing a cornea angiogenesis 

model have revealed incorporation of BMDC in newly formed lymphatic vessels [207]. 

Furthermore, following rejection of human kidney transplants, lymphatic vessels within 

the rejected organs have been described to contain host-derived lymphatic endothelial 

cells, supporting the existence of bone marrow-derived lymphatic endothelial progenitor 

cells [87]. More specifically, myeloid cells present in the murine inflamed conjunctiva 

were found to express the lymphatic endothelial specific marker VEGFR-3 and to 

integrate into lymphatic structures that develop in mouse cornea transplants [88,215]. In 

addition, macrophage depletion appeared to cause reduced lymphangiogenesis and 

impaired wound healing in diabetic mice [89].  

 The contribution of BMDC to tumor lymphangiogenesis is rather controversial. While 

two independent studies report a BMDC contribution to tumor lymphatics [205,207], 

transplantation of Lewis Lung Carcinoma or B16-F1 melanoma cells in syngeneic mice 

has not revealed any integration of BMDC into newly formed lymphatic vessels [206]. 

Here, we have employed the Rip1Tag2 transgenic mouse model of pancreatic β-cell 

carcinogenesis as well as subcutaneous transplantation of TRAMP-C1 murine prostate 

cancer cells in syngeneic C57Bl/6 mice to demonstrate that cells derived from the 

myeloid lineage can contribute to tumor lymphangiogenesis by integrating into tumor-

associated lymphatic vessels. Moreover, in vitro culture assays reveal that macrophages 

can convert into lymphatic endothelial cells and integrate into cord-like structures formed 

by lymphatic endothelial cells. These data support and extend previous findings on the 

controversial role of haematopoietic cells in newly formed lymphatic vessels. 
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4.1.3. Results 

BMDC integrate into tumor lymphatics 

 We have used the Rip1Tag2 (RT2) mouse model of multistage pancreatic β-cell 

carcinogenesis to investigate the contribution of BMDC to tumor angiogenesis and 

lymphangiogenesis [28]. RT2 transgenic mice recapitulate hallmarks of tumor 

progression, including the regulated onset of tumor angiogenesis, the functional 

contribution of tumor-infiltrating immune cells to a pro-angiogenic tumor 

microenvironment, and the transition from adenoma to carcinoma  [37,81,216]. When 

crossed to Rip1VEGF-C (VC) mice, double-transgenic RT2;VC mice develop tumors with 

high peritumoral lymphangiogenesis and lymph node metastasis [146].  

 To investigate whether BMDC integrate into tumor blood and lymphatic vasculature 

in the RT2 model, lethally irradiated single transgenic RT2 and double-transgenic 

RT2;VC mice were transplanted with bone marrow isolated from actin-GFP transgenic 

mice (Figure.9A). FACS analysis of peripheral blood (PB) showed efficient 

haematopoietic reconstitution with more than 90% chimerism (data not shown). 

Immunofluorescence analysis of tumor sections revealed that the proportion of GFP+ 

tumor-infiltrating BMDC was invariant in the range of 3.5% of total cellularity, independent 

of the transplantation of single transgenic RT2 mice or double-transgenic mice 

expressing VEGF-C (Figure.10). From the GFP+ BMDC within the tumors, approximately 

80% were F4/80+ macrophages (Figure.10). Immunofluorescence co-staining for F4/80 

and the hyualuronan receptor LYVE-1 identified LYVE-1+ macrophages in the tumor 

periphery with relatively large size compared to intra-tumoral macrophages (data not 

shown) [217,218]. In contrast, Podoplanin or Prox-1 were not expressed by these tumor-

associated macrophages (TAM). These observations instructed us to carefully 

differentiate between tumor lymphatic endothelium, defined as a continuous LYVE-1+ 

vessel lining, and isolated, peritumoral LYVE-1+ TAM. 
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Figure.9: Bone marrow transplantation strategies. (A) For total bone marrow transplantations, 5 x 106 T 
cell-depleted total bone marrow cells from donor mice were injected i.v. into lethally irradiated (2 x 550 cGy) 
mice, as indicated. Semi-lethally irradiated (450 cGy) mice were injected with FACS-sorted 4 x 105 CD11b+ 
myeloid cells, 4 x 105 CD19b+ B-cells or 4 x 104 common myeloid progenitors (CMP) cells. 4 x 105 CD11b+ 
myeloid cells were also transferred into non-irradiated mice. After 3-8 weeks mice were sacrificed, 
engraftment of transplanted bone marrow was evaluated by FACS and pancreata were analyzed by 
histology for the presence of bone marrow-derived cells at the tumor site. (B) Schematic illustration of 
syngeneic TRAMP-C1 tumor experiments. 5x105 TRAMP-C1 cells were injected into the flank of either 
C57BL/6 previously reconstituted with bone marrow of beta-actin-GFP transgenic mice or bone marrow of 
double-transgenic CD11b-Cre;Z/EG mice, and tumors were allowed to grow for 3 to 4 weeks. FACS 
analysis was used to assess bone marrow reconstitution or Cre recombinase-mediated GFP expression, 
respectively. Histological sections from TRAMP-C1 tumors were analyzed by immunofluorescence for the 
presence of GFP+ cells. (C-E) Flow cytometry-based strategy for cell sorting. (C) Within a scatter gate 
excluding lymphocytes, CD11bhigh/ GFPhigh cells were isolated by FACS. (D) CD19+ was used as marker for 
the isolation of B lymphocytes. (E) CMP cells were sorted as lin-/ Sca-1-/ IL7Ra-/ cKit+ as described in 
Methods. 
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 The potential contribution of BMDC to intra-tumoral blood vessels was analyzed by 

confocal microscopy and subsequent 3D reconstitution on pancreatic sections of 

transplanted RT2 and RT2;VC mice stained for the endothelial marker CD31 and for 

GFP. Bone marrow-derived, GFP+ cells were mainly found in close proximity of tumor 

blood vessels, yet a significant direct incorporation of BMDC into the blood vasculature 

was not detectable (data not shown).  

 In contrast, BMDC had incorporated into lymphatic vessels surrounding VEGF-C 

expressing β-cell tumors of transplanted RT2;VC mice. Pancreatic sections from these 

mice were stained for the three lymphatic markers Podoplanin, Prox-1 and LYVE-1 and 

for GFP. Confocal imaging revealed that 3% of Podoplanin+ tumor lymphatic endothelial 

cells (TLEC) as well as 3.5% of Prox-1+ or LYVE-1+ TLEC co-expressed GFP, indicating 

that approximately 3% of tumor-surrounding lymphatic endothelial cells are derived from 

the bone marrow (Figure.11A). Routine 3D reconstitution analysis by compiling the Z-

stacks of the confocal images enabled us to distinguish integrated GFP+ BMDC cells 

from cells located in the close vicinity of lymphatic vessels or transmigrating through the 

lymphatic endothelial barrier, as shown in Supplemental Videos 1 and 2. Furthermore, 

VE-cadherin, an endothelial-specific adherens junction molecule reported to connect 

lymphatic endothelial cells in lymphatic vessels [114], was expressed on host as well as 

on bone marrow-derived TLEC, further demonstrating a functional integration of BMDC 

into tumor lymphatic vasculature (Figure.12). Note that in contrast to blood endothelial 

cells, where VE-cadherin principally clusters at cell-cell junctions (Figure.12, arrows), VE-

cadherin staining on lymphatic endothelium was more homogenously distributed 

throughout the membrane. 
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Figure.11: BMDC integrate into tumor-associated lymphatic vessels. (A) Lethally irradiated RT2;VC mice 
(5 mice) were reconstituted with GFP-labeled bone marrow. 20 µm histological pancreatic sections were 
stained for the lymphatic markers Podoplanin, Prox-1, LYVE-1 and for GFP as indicated and analyzed by 
confocal microscopy and subsequent 3D reconstitution. Representative tumor sections per lymphatic 
marker are shown. 3% of Podoplanin+ TLEC (7 Podoplanin+/GFP+ cells out of 227 Podoplanin+ cells) as 
well as 3.5% of Prox-1+ or LYVE-1+ TLEC (14 Prox-1+/GFP+ cells out of 400 Prox-1+ cells and 17 LYVE-
1+/GFP+ cells out of 485 LYVE-1+ cells) are bone marrow-derived. TRAMP-C1 tumors were 
subcutaneously implanted in C57BL/6 mice (4 mice) previously reconstituted with GFP-labeled bone 
marrow. 7 - 20 µm histological tumor sections were stained as described above. 4.1% of Podoplanin+ 
TLEC (14 Podoplanin+/GFP+ cells out of 334 Podoplanin+ cells) as well as about 2.8% of LYVE-1+ TLEC 
(11 LYVE-1+/GFP+ cells out of 395 LYVE-1+ cells) are bone marrow-derived. Arrows indicate double-
positive cells and arrowheads indicate double-positive cells shown in inset magnifications. Insets show 
merged and individual channels. DAPI stains nuclei (blue). Scale bars: 40 µm. (B) Tumors of GFP-labeled 
bone marrow-transplanted RT2;VC mice or TRAMP-C1 tumors grown in GFP-labeled bone marrow-
transplanted C57BL/6 mice were enzymatically digested (3 mice each). Single cell suspensions were 
stained for the pan-endothelial marker CD31 and the lymphatic endothelial marker Podoplanin and 
analyzed by FACS (left panels). 9.4 +/- 4.1% (RT2;VC) and 10 +/- 4.6% (TRAMP-C1) of CD31+/ 
Podoplanin+ TLEC were GFP+, indicating their bone marrow origin (middle left panels). As control, the anti-
Podoplanin antibody was omitted resulting in no separation between TLEC and TBEC (middle right 
panels). Furthermore, similar analysis of tumors grown in non-transplanted mice showed no GFP+ cells 
within TLECs (right panels). 
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 To assess the general significance of the findings in the RT2 insulinoma model as 

well as to test whether the observed integration of BMDC occurred also in the absence of 

transgenic expression of VEGF-C, we employed the TRAMP-C1 murine prostate 

adenocarcinoma cell line previously shown to induce robust tumor lymphangiogenesis 

upon transplantation into syngeneic C57Bl/6 mice [208,209]. TRAMP-C1 cells were 

injected s.c. into one flank of C57Bl/6 mice that had been previously transplanted with 

GFP-labeled bone marrow (Figure.9B). In the resulting tumors, the number and 

morphology of BMDC that had integrated into tumor lymphatic vessels were comparable 

to the results obtained with RT2;VC mice. GFP+ cells were detected in lymphatic vessels 

staining for LYVE-1 and Podoplanin (Figure.11A) and constituted 2.8% of LYVE-1+ and 

4.1% of Podoplanin+ cells within lymphatic vessel structures. GFP expression was also 

detected in Prox-1+ TLEC (Figure.11A), however to a lower extent as compared to LYVE-

1 or Podoplanin. This might be explained by the fact that overall only a subset of LYVE-

1+ TLEC express Prox-1 (data not shown).  

 To corroborate the simultaneous expression of lymphatic markers and GFP in 

individual cells, single cell suspensions from tumors of GFP+ bone marrow-transplanted 

or control non-transplanted mice were analyzed by FACS (Figure.11B). TLEC were 

identified by co-expression of CD31 and Podoplanin (Figure.11B, left panels; note that 
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similar to blood vessel endothelial cells TLEC express CD31, albeit at slightly reduced 

levels). In tumors derived from RT2;VC and TRAMP-C1 mice, 9.4 +/- 4.1%  and 10 +/- 

4.6% of TLEC, respectively, were GFP+, confirming the immunofluorescence data. As 

expected, GFP+ TLEC could not be observed in non-transplanted mice (Figure.11B, right 

panels). In order to avoid detecting false positives by cell duplets containing GFP+ BMDC 

and TLEC that would appear as CD31+/Podoplanin+/GFP+ triple-positive, such events 

were rigidly excluded by forward scatter pulse width (data not shown). 

 We next investigated whether BMDC integration into newly formed lymphatic 

structures occurred only in a tumor microenvironment by transplanting non tumor-

bearing, single-transgenic VC mice with GFP-labeled bone marrow. Notably, no GFP+ 

cells were found incorporated into the lymphatic vessels surrounding normal islets of 

Langerhans in these mice [146] (Figure.13). These results demonstrate that BMDC only 

incorporate into β-cell associated-growing lymphatic vessel in a tumor context.  

 

 

 

Integrated BMDC are of myeloid origin 

 Myeloid cells have been reported to give rise to blood endothelium and, under 

inflammatory conditions, to lymphatic endothelium [84,88,89]. To investigate whether 

BMDC contributing to tumor lymphangiogenesis express macrophage markers, 

pancreatic sections of transplanted RT2;VC mice were stained by immunofluorescence 

for the lymphatic marker LYVE-1, the macrophage marker F4/80 and GFP (Figure.14A). 

Triple-positive GFP+/LYVE-1+/F4/80+ cells were readily observed within the lymphatic 

vessel lining surrounding the tumors. Interestingly, not all BMDC that had integrated into 

the lymphatic vasculature expressed F4/80, suggesting that macrophages physically 
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contributed to tumor lymphatics but eventually lost their macrophage features upon 

integration, as previously reported [89]. 

 Next, we performed various independent lineage-tracing experiments to assess 

whether cells of the myeloid lineage were indeed able to incorporate into tumor lymphatic 

vessels. First, lethally irradiated RT2;VC mice were transplanted with bone marrow 

isolated from either CX3CR1+/GFP mice or CD11b-Cre;Z/EG mice (Figure.9A). In 

CX3CR1+/GFP mice, the coding region for EGFP had been inserted in the CX3CR1 gene, 

a receptor expressed mainly by monocytes and to a minor extent by a subset of 

lymphocytes, resulting in monocyte-specific GFP expression [219] (Figure.15A). The 

Z/EG transgene contains, under the control of an ubiquitous promoter, a lacZ gene/stop 

cassette flanked by loxP recombination sites and followed by EGFP [220]. When crossed 

to CD11b-Cre mice, expressing Cre recombinase under the control of the myeloid 

specific CD11b promoter, Cre-mediated excision of the lacZ gene/stop cassette induced 

permanent GFP expression exclusively in cells having passed through a CD11b-positive, 

myeloid stage [221]. Pancreatic sections of transplanted RT2;VC were stained for the 

lymphatic markers Podoplanin or LYVE-1 and for GFP, and double-positive cells were 

scored. In both transplantation settings, GFP+ cells were found integrated into the tumor 

lymphatic vasculature, demonstrating that cells of the myeloid lineage physically 

contributed to tumor lymphangiogenesis (Figure.14B, upper panels). 

 We also tested whether CD11b+ cells integrated into tumor lymphatics without prior 

bone marrow transplantation by transplanting TRAMP-C1 cells into CD11b-Cre;Z/EG 

mice (Figure.9B). Specific Cre-mediated recombination within the myeloid lineage of 

these mice was confirmed by FACS analysis of PB cells (Figure.15B). In the resulting 

tumors, GFP+ cells were found incorporated into LYVE-1+ and Podoplanin+ lymphatic 

vessel lining (data not shown). Triple-staining for LYVE-1, Prox-1 and GFP further 

showed that formerly myeloid cells express two lymphatic markers simultaneously 

(Figure.14C, arrowhead), indicating a significant differentiation towards a lymphatic 

endothelial phenotype. Thus, integration occurred independently of prior irradiation, 

which had been previously reported to increase macrophage infiltration in human cancer 

[222]. 
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 In a second series of lineage-tracing experiments, FACS-sorted CD11b+/GFP+ cells 

were i.v. injected into semi-lethally or non-irradiated RT2;VC mice (Figure.9A and C). 3 

weeks after injection, adoptively transferred GFP+ cells were observed integrated into 

tumor lymphatics, identified by LYVE-1 or Prox-1 expression (Figure.14B, lower panels). 

The fact that the adoptive transfer of CD11b+/GFP+ cells into non-irradiated RT2;VC mice 

resulted into an integration of the injected cells into tumor lymphatics indicates that a full 
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reconstitution of the haematopoietic system by stem cells is not a prerequisite for BMDC 

contribution to tumor lymphangiogenesis.  

 

 

 To assess whether common myeloid progenitor cells (CMP) [223] provide the cells 

that incorporate into tumor lymphatics, FACS-sorted CMP cells (lin-/Sca-1-/IL7Rα-

/cKit+/GFP+; Figure.9E) were adoptively transferred into semi-lethally irradiated RT2;VC 

mice. FACS analysis of PB cells 3 weeks post-injection revealed that transplanted CMP 

contributed to the generation of CD11b+/F4/80+ monocytes and CD11b+/F4/80- 

granulocytes but not to CD19+ B lymphocytes or CD3+ T lymphocytes (Figure.15C). Also 

here, GFP+ cells were found integrated into tumor-associated lymphatic endothelium, 

detected by LYVE-1 or Podoplanin expression (Figure.16). In contrast, adoptive transfer 

of FACS-sorted CD19+/GFP+ B cells (Figure.9A and D) did not result in any incorporation 

of these cells into tumor lymphatic vessels (Figure.17), underscoring the exclusive ability 

of myeloid cells to contribute to tumor lymphangiogenesis and excluding the possibility 
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that minor contaminations of haematopoietic stem cells in the FACS-sorted fractions may 

have contributed to the GFP+ cells that incorporated into tumor lymphatics. Finally, FACS 

analysis of tumors from non-transplanted RT2;VC mice revealed that some bona fide 

CD31+/LYVE-1+ TLEC express the myeloid marker CD11b (Figure.18), indicating that the 

integration of cells of the myeloid lineage into tumor lymphatics and their simultaneous 

expression of lymphatic endothelial cell markers occurs also in the absence of any bone 

marrow transplantation. 
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 In order to assess potential fusion events between bone marrow-derived cells and 

pre-existing lymphatic endothelial cells, lethally irradiated triple-transgenic RT2;VC;Z/EG 

mice were transplanted with bone marrow isolated from CD11b-Cre mice (Figure.9A). 

Fusion of CD11b+-BMDC, expressing the Cre recombinase, with host (tumor lymphatic 

endothelial) cells would result in GFP expression from the recombined Z/EG locus. 

Seven weeks after transplantation, no GFP+ cells were detected in or around 

lymphangiogenic insulinomas, indicating that Cre-expressing, bone marrow-derived 

myeloid cells had not fused with RT2;VC;Z/EG lymphatic endothelial cells or any other 

host cell (data not shown).  

 These results demonstrate that cells found integrated into growing tumor lymphatic 

vessels can have a myeloid origin and that bone marrow-derived lymphatic progenitor 

cells are at least in part derived from the already myeloid committed haematopoietic 

lineage. 

 

Depletion of macrophages  

 To investigate the functional contribution of macrophages to tumor 

lymphangiogenesis, RT2;VC mice were treated with liposome-encapsulated Clodronate 

(ClodroLip) or PBS as vehicle-control for 4 weeks to ablate TAM [224,225]. Successful 

macrophage depletion was achieved as shown by reduced F4/80 immuno-reactivity in 

ClodroLip treated mice (Figure.19A). Peri-tumoral lymphatic vessel density (LVD) was 

significantly decreased in ClodroLip vs. PBS treated mice (Figure.19B; treated: median 

70%, mean: 61% vs. control: median 90%, mean 74.9%; P < 0.01). Notably, the 

formation of lymph node metastasis was not affected by the significant but rather 

moderate reduction of tumor lymphangiogenesis (data not shown). In contrast to a recent 

study where ClodroLip reduced tumor growth of xenotransplants in immuno-

compromised mice [102], average tumor volume, tumor incidence and blood vessel 

density were not significantly reduced in our experiments (Figure.20). To evaluate the 

amount of VEGF-C, VEGF-D, FGF-1 and FGF-2 provided by TAM, CD11b+ cells were 

FACS-isolated from RT2;VC tumors and mRNA levels were assessed by quantitative RT-

PCR and compared to levels in total tumors and FACS-isolated tumor cells. The 

expression of endogenous murine VEGF-C, VEGF-D and FGF-1 in total tumors and 

tumor cells (not considering the high levels of transgenic human VEGF-C expression in 
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RT2;VC mice) was higher than in TAM (Figure.19C). FGF-2 was not found expressed at 

significant levels in any of the samples. From these results we conclude that 

macrophages contribute to tumor lymphangiogenesis in RT2;VC mice by processes other 

than the secretion of the main lymphangiogenic factors.  

 

 

Figure.19: Depletion of macrophages reduces peritumoral lymphatic vessel density. (A) RT2;VC mice were 
treated with liposome-encapsulated Clodronate (ClodroLip). Pancreatic sections representing a total of 5 
PBS vehicle control-treated mice (97 tumors) and 6 ClodroLip-treated (132 tumors) mice were analyzed. 
Successful depletion of intra- and extra-tumoral macrophages in ClodroLip-treated mice is illustrated by the 
reduction of F4/80 immunoreactivity (red). Co-staining with the lymphatic endothelial marker LYVE-1 
(green) reveals a reduced coverage of tumors by lymphatic vessels in ClodroLip-treated mice vs. in PBS-
treated mice. DAPI was used for nuclear counterstaining (blue). T: tumor. Scale bar: 50 µm. (B) Tumors of 
ClodroLip and control-treated mice were analyzed by immunofluorescence staining with antibodies against 
LYVE-1 for the extent of lymphatic vasculature surrounding the perimeter of the tumors. Tumors of control-
treated mice were surrounded by 90% or more with lymphatic vessels (median 90%, mean 74.9%), 
whereas tumors of ClodroLip-treated mice had significantly lower coverage (median 70%, mean 61.1%; P 
< 0.01, Mann-Whitney test). (C) Tumor-associated CD11b+ macrophages (TAM) and tumor cells were 
isolated from tumors of RT2;VC mice by flow cytometry, and mRNA levels for murine VEGF-C, VEGF-D, 
FGF-1 and FGF-2 were determined using quantitative RT-PCR and compared to levels in total tumors. 
Shown is the result of three independent cell isolations. ΔCT represents the normalized to internal control 
(RPL19) CT value. Note that low ΔCT values represent high mRNA levels. 
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Figure.20: Macrophage depletion does not affect tumor growth. RT2;VC mice were treated for 4 weeks 
either with PBS (vehicle control) or with ClodroLip as described in Methods in order to deplete intra- and 
peritumoral macrophages. Tumor volume has been determined as the total volume of tumors per mouse 
(A), tumor incidence is the number of tumors larger than 1mm per mouse (B), and blood vessel density is 
the % area fraction of CD31 staining (C), as determined using ImageJ image analysis Software. None of 
these parameters was significantly altered between ClodroLip and control-treated mice. 

 

Macrophages form and contribute to lymphatic-like structures in vitro  

 We next investigated whether bone marrow-derived-macrophages had an intrinsic 

capability to form lymphatic vessel-like structures. Bone marrow cells were cultured for 7 

days in 30% M-CSF containing-medium to induce the specific differentiation of progenitor 

cells into non-activated macrophages [226]. Flow cytometric analysis confirmed the 

macrophage identity (CD11b+/ F4/80+) of these cells (Figure.21A). The bone marrow-

derived-macrophages were then activated with LPS and seeded on Matrigel to monitor 

differentiation and tube formation. After two days in endothelium-specific medium 

supplemented with defined growth factors, macrophages associated in clumps, before 

forming tube-like structures with increasing connections between days 3 and 15 

(Figure.21A). Confocal immunofluorescence microscopy analysis at day 12 revealed that 

only macrophages that had formed tube-like structures and not single isolated cells 

expressed the lymphatic marker Podoplanin (Figure.21B). Furthermore, quantitative RT-

PCR analysis of mRNA from macrophages isolated either before or after the tube 

formation process revealed a marked up-regulation of the lymphatic markers LYVE-1, 

Prox-1, VEGFR-3, FoxC2 and FoxC1 as well as a down-regulation of the 

haematopoietic/monocytic markers CD45 and CX3CR1 during tube formation 

(Figure.21B). Exclusion of individual growth factors revealed the requirement of FGF-2 

for tube formation (Figure.21C), whereas the other supplemental growth factors (VEGF-

A, IGF-1, EGF, hydrocortisone) were dispensable. Accordingly, mRNA levels of FGF 

receptor-1 and 2 were up-regulated during tube formation, as revealed by quantitative 

RT-PCR analysis (Figure.21C). 
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Figure.21: Bone marrow-derived-macrophages form and contribute to lymphatic-like structures in vitro. (A) 
In vitro generated macrophages showed a specific marker expression profile (CD11b+/ F4/80+) (upper left 
panel). Tube formation on Matrigel was monitored by phase-contrast microscopy. At day 2, macrophages 
formed clusters. Between days 3 and 15, they developed into tube-like structures with numbers of 
branches increasing over time. Scale bar: 100 µm. (B) Immunofluorescence staining against Podoplanin 
(Pdpn) revealed that macrophages having formed tube like structures express Podoplanin whereas single 
cells do not. Staining of the tubular structures in the absence of any primary antibody was used as a control 
(2ºAb). DAPI stains nuclei (blue). Scale bar: 100 µm. Quantitative RT-PCR analysis revealed that upon 
tube formation, macrophages up-regulate lymphatic markers (LYVE-1, Prox-1, VEGFR-3, Foxc2, Foxc1) 
and down-regulate haematopoietic/myeloid marker (CD45, CX3CR1). ΔΔCT corresponds to the difference 
between the normalized CT values of macrophages forming tubes (day 8) and macrophages not having yet 
formed tubes (day 1). (C) FGF-2 is required for the formation of cord-like structures by macrophage, as its 
specific exclusion from culture medium abrogated this process (left panel). Furthermore, analysis of mRNA 
levels revealed up-regulation of FGF receptors -1 and 2 during tube formation. (D) Immortalized 
Podoplanin+ murine lymphatic endothelial cells (SV-LEC) (i), GFP-labeled bone marrow-derived-
macrophages (ii), and mixed cultures of macrophages and SV-LEC (iii-vi) were seeded in Matrigel. At day 
5, cells were stained for Podoplanin (red) and analyzed by confocal microscopy. Mixed cultures 
demonstrate that bone marrow-derived macrophages contribute to SV-LEC-mediated tube formation: GFP+ 
cells (green) are found integrated into Podoplanin+ tube-like structures (iii-vi). Note the preferential 
integration of bone marrow-derived macrophages at the tips and branch points of sprouting tube-like 
structures formed by SV-LEC (magnified in panel vi). DAPI stains nuclei (blue). Scale bars: 100 mm (i-ii) 
and 50 mm (iii-vi). 
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 In order to explore the capacity of myeloid cells to integrate into lymphatic structures 

in vitro, GFP-labeled macrophages were generated as described above from bone 

marrow of actin-GFP transgenic mice and subsequently cultured on Matrigel alone or in 

combination with SV40 T antigen-immortalized murine lymphatic endothelial cells (SV-

LEC) [227]. Five days later, the cultures were stained for Podoplanin. Cultured SV-LEC 

formed tube-like structures positive for Podoplanin expression (Figure.21D/i), and 

cultured in vitro activated macrophages were positive for GFP (Figure.21D/ii). In mixed 

cultures, bone marrow-derived macrophages lined up with SV-LEC, incorporating into 

tube-like structures and expressed Podoplanin (Figure.21D/iii-vi). Interestingly, GFP+ 

macrophages were predominantly located at the tips and at branch points of growing 

tube-like structures (Figure.21D/iii-vi) and seemed to guide SV-LEC to form a new sprout 

as observed by time-lapse video microscopy (Figure.22, Supplemental Video 3). The live 

visualization of GFP+ macrophages guiding LEC together with the observation that 

macrophages located at the tip of the lymphatic sprout exhibit filopodia-like structures 

(Figure Figure.21D/iii-vi) strongly suggest that instead of capping the exposed ends, they 

actively instigate the new sprout. 

 

 

 

 These results demonstrate that bone marrow-derived macrophages have the ability 

to form lymphatic-like structures in vitro, a process requiring FGF signaling. Their 

preferred incorporation at tips and branchpoints of pre-existing lymphatic cord-like 

structures suggests a role of macrophages in lymphatic endothelial cell sprouting. 
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4.1.4. Discussion 

 Research on BMDC in patho-physiological processes, such as atherosclerosis, 

limb/heart ischemia and cancer, has in the past mainly focused on the importance of 

haematopoietic cells in promoting or attenuating inflammation, in clearing cancer cells, or 

in inducing immunological tolerance to neoplastic lesions. However, recent findings 

indicate that the bone marrow is also a rich source of progenitor cells with mesenchymal 

and endothelial potential [83,228]. In the case of endothelial progenitor cells, the lineage 

relationship to the haematopoietic system is not clear. While some experiments have 

recently revealed that during development haematopoietic cells arise from a specialized 

endothelium named the haemogenic endothelium  [198-200], other reports provide 

evidence that the reverse direction of cellular conversion is also possible, i.e. that 

myeloid cells can contribute to the formation of blood endothelial cells [84,229].  

 Here, we have used bone marrow transplantation experiments in two different 

mouse models of carcinogenesis to demonstrate that BMDC significantly contribute to 

tumor lymphangiogenesis, but rarely integrate into tumor blood vessels. About 3% of 

lymphatic endothelial cells in lymphangiogenic tumors are of bone marrow origin, a 

contribution comparable to findings with lymphatics in rejected human kidney transplants 

[87] and in normal liver, stomach and intestine of HSC-transplanted mice [205]. We have 

performed lineage-tracing experiments to obtain insights into the ontogeny of bone 

marrow-derived TLEC. First, transplantations of FACS-sorted bone marrow fractions 

representing different haematopoietic lineages or of total bone marrow expressing GFP 

under a myeloid specific promoter indicate that integrated BMDC are derived from the 

myeloid lineage. Second, genetic tagging of myeloid cells with GFP confirms this notion; 

cells that have passed through the myeloid lineage are found integrated into the 

lymphatic vasculature surrounding tumors. Third, depletion of tissue macrophages using 

ClodroLip significantly reduces peritumoral lymphatic vessel density, demonstrating a 

functional role of macrophages in tumor lymphangiogenesis. Fourth, the intrinsic ability of 

myeloid cells to give rise and incorporate into lymphatic-like structures is recapitulated in 

two in vitro assays. Taken together, in vitro and in vivo experimentation strongly suggest 

that cells of the myeloid lineage physically contribute to tumor lymphangiogenesis.  

 The statement that BMDC can also contribute to lymphangiogenesis in a paracrine-

independent manner is highly debated. As with any controversial scientific discussion, 
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well-controlled studies conducted in different laboratories and leading to similar 

conclusions constitute the basis to overcome skepticism. Along these lines, the present 

study is consistent with previously described observations that haematopoietic cells can 

contribute to lymphatic endothelium, in normal organs, during embryonic development, in 

inflammatory conditions, and in a tumor microenvironment [87-89,123,205,207,214,215]. 

The experimental results presented here extend these findings by identifying that cells of 

the myeloid lineage can contribute to lymphatic endothelial cells in a tumorigenic context.  

 The existence of specific lymphatic progenitor cells (LPC), distinct from 

haematopoietic as well as blood endothelial progenitor cells, has not been established. 

Based on a number of control experiments, such as the transplantation of FACS-sorted 

CD19+ B-cells or the adoptive transfer of CD11b+ myeloid cells into non-irradiated 

recipients, we exclude the possibility that FACS-sorted cell fractions may have contained 

haematopoietic stem cells that also reconstitute potential LPC. Rather, our data indicate 

a myeloid origin of cells that integrate into tumor-associated lymphatic endothelial cells, 

thus supporting the notion that LPC reside at least partially within an already committed 

haematopoietic lineage. It is interesting to note that the myeloid contribution to lymphatic 

vessels has thus far only been described to occur under inflammatory conditions, such as 

corneal transplantation and wound healing [88,89]. In contrast, the existence of LPC 

within the haematopoietic stem cell population, but distinct from the myeloid lineage, has 

been reported to play a role in steady state lymphangiogenesis [205]. The contribution of 

haematopoietic cells to lymphangiogenesis has been also shown during embryonic 

development. Mice lacking the haematopoietic signaling molecules SLP-76, Syk and 

PLCγ2 fail to separate emerging lymphatic vessels from blood vessels [122,123]. Notably, 

this phenotype depends on the expression of these signaling molecules in 

haematopoietic progenitor cells that give rise to circulating endothelial progenitor cells, 

thus demonstrating a cell-autonomous contribution of haematopoietic cells to vascular 

development [123,214]. 

 The low frequency of bone marrow-derived lymphatic endothelial cells is a recurrent 

observation among the different studies, raising questions towards the functional 

contribution of these cells to lymphangiogenesis. However, the pharmacological 

depletion of tumor-associated macrophages results in a decrease in de novo 

lymphangiogenesis [88] (Figure.19). Moreover, our results indicate that macrophages are 

not the main source of lymphangiogenic factors in the RT2 tumor model, leading us to 
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conclude that macrophages contribute to tumor lymphangiogenesis, at least in this 

model, by processes other than the paracrine secretion of lymphangiogenic factors. 

Rather, when co-cultured in vitro with lymphatic endothelial cells, bone marrow-derived 

macrophages incorporate predominantly at the tips and branch points of growing tube-

like structures. In vitro time-lapse video microscopy confirms this notion and shows that 

macrophages, after being recruited to lymphatic endothelial cells, are able to instigate 

lymphatic sprouts. These observations suggest that myeloid-derived lymphatic 

endothelial cells may exert a specific functional role, which may explain the need of only 

a low number of these cells for the complete process of lymphangiogenesis. 

 In summary, we demonstrate here that in the context of tumor growth, cells of the 

myeloid lineage contribute to the formation of tumor-associated lymphatic endothelium. 

Since tumor lymphatic vessels provide a route for metastatic dissemination, 

understanding the functional role of bone marrow-derived tumor lymphatic endothelial 

cells seems warranted. 
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4.2. Molecular players of the trans-differentiation process 

 

4.2.1. Transcriptional changes upon in vitro trans-differentiation 

 In order to get insights into the mechanism by which myeloid cells can give rise to 

lymphatic endothelium, the transcriptome of macrophages (Mφ) was determined at 

different stages of the in vitro trans-differentiation process.  

 For this purpose, LPS-activated bone marrow-derived macrophages were cultured 

on Matrigel in complete endothelium-specific medium (EGM2-MV) for 1 (E1), 3 (E3), 6 

(E6) and 8 (E8) days and for 1 (D1) day in complete DMEM medium. After 1 day in 

endothelium-specific medium, macrophages associate in clusters, but do not yet form 

tube-like structures. After 3 days tube-like structure formation is initiated and after 6-8 

days, most of the macrophages give rise to tubular structures. In contrast, when 

macrophages are cultured in complete DMEM medium, no tube formation is observed. 

Therefore macrophages cultured for 1 day in complete DMEM medium were used as 

reference. Total RNA was extracted at each time point and mRNA was amplified and 

hybridized as cDNA to its specific DNA oligonucleotides present on the microarray 

(Figure.23). The experiment was performed in biological duplicates, i.e. two independent 

experiments of in vitro macrophage differentiation from haematopoietic progenitor cells 

followed by two independent time-course cultures.  

 

 

Figure.23: Transcriptome comparison of macrophages at different stages of the in vitro trans-differentiation 
process. The experiment setting is summarized on the left panel and on the right panel light microscopy 
pictures of the time-course cultures are shown.  
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 Pearson’s correlation signals indicate how similar the data between samples are. 

Squares depicted in red represent high correlation between two samples, while squares 

depicted in blue represent low correlation between samples. As shown on Figure.24, 

Pearson’s correlation signals revealed a satisfactory similarity between duplicates as well 

as important changes in gene expression upon tube-like structure formation. Only few 

changes between the last time points, E6 and E8, could be observed. 

Similarities/disparities observed here corresponded to similarities/disparities observable 

in cell morphology. 

 

Figure.24: Pearson’s correlation signals. a and b represent duplicates. Red corresponds to high similarity, 
blue corresponds to poor similarity between samples. 
 

 The data were then analyzed for statistical significance using GeneSpring GX 9.0. 

One-way analysis of variance (ANOVA) revealed that more than 2’600 genes were 

significantly differently expressed (cut-off: 1.5X) upon tube-like structure formation when 

the p value was set at p<0.01. At least 2X and/or 4X and 10X differently expressed genes 

between two specific time points were listed (all lists of upregulated genes are available 

on the attached CD): 
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In concordance with the Pearson’s correlation only few genes were differently expressed 

between E6 and E8. This result was expected as no significant change in macrophage 

morphology could be observed between these two time points. Potential candidate genes 

implicated in the in vitro trans-differentiation process were selected among the genes 

significantly upregulated between E1 and E6, the time window between the initiation and 

the end of the process. Genes differently expressed between D1 and E1 were taken into 

consideration during the selection of candidate genes in order to subtract the effect of the 

culture medium on gene expression.  

 The phenotypical conversion of myeloid cells toward lymphatic endothelial cells was 

confirmed by the upregulation of genes implicated in lymphatic vessel formation and the 

concomitant downregulation of genes implicated in typical macrophage functions. More 

precisely, between E1 and E6, genes described to be expressed or required for 

lymphatic vessel development [129,141-144,230], genes recently identified in our lab to 

be lymphatic-specific markers (Paralemmin-1 and insulin growth factor binding protein-5, 

unpublished observation from Imke Albrecht), as well as guidance molecules described 

to be implicated in vascular remodeling and vessel navigation  [231], and proteases 

needed for tube formation were upregulated (listed below). In contrast, 

haematopoietic/macrophage markers as well as genes implicated in fundamental 

macrophages functions like antigen presentation, pattern recognition, phagocytosis and 

chemokine/cytokine response and expression [232] were downregulated upon tube-like 

structure formation (listed below). 
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 As initial analysis, the top 50 upregulated genes, corresponding to at least 15X 

upregulation between E1 and E6 were listed (see below). An enrichment for extracellular 

matrix (ECM) proteins as well as proteases degrading the ECM could be observed. 

Some genes implicated in lymphatic vessel formation and mentioned above were also 

part of this highly upregulated gene list. Three soluble modulators of the Wnt signaling, 

secreted frizzled-related protein (SFRP)-1, 2 and 4 were as well present, among which 

SFRP-1 and 4 have been recently reported to play a role in neovessel formation by 

inducing endothelial cell spreading through actin cytoskeleton reorganization  [233]. 

Finally, leukocyte chemoattracting cytokines appeared as interesting candidates, as they 

may potentially regulate the coordinate movement of cells necessary for tube-like 

structure formation. 
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 More detailed analysis performed on the microarray data using the gene ontology 

tool of GeneSpring GX 9.0 and Ingenuity Pathway Analysis Software revealed that an 

important number of molecules being part of different signaling pathways are implicated 

in in vitro trans-differentiation. However this analysis did not indicate the specific 

implication of any particular pathway. Thus, to better sort out the important quantity of 

data obtained, differentially expressed genes were classified by their specific 

upregulation at different stages in the tube-like structure formation process. Two lists 

were then generated: one regrouping the genes specifically upregulated during the 

initiation phase and the other one regrouping the genes specifically upregulated during 

the elongation phase. The initiation phase corresponds to the time window between E1 

and E3, when clustered macrophages initiate tube-like structure formation. The 

elongation phase corresponds to the time window between E3 and E6, when initial 

sprouts elongate to give rise to “mature” tube-like structures. Genes classified in the 

initiation process list were at least upregulated 2X between E1 and E3, were not changed 

more than 2X between D1 and E1 and were not upregulated more than 2X between E3 

and E6 and between E6 and E8. Genes classified in the elongation process list were at 

least upregulated 2X between E3 and E6, were not changed more than 2X between D1 

and E1 and between D1 and E3 and were not upregulated more than 2X between E6 

and E8. Thus, 144 genes demonstrated a specific role in the beginning of the in vitro 

trans-differentiation process as 394 genes showed specific implication in the second part 

of the process. The typical gene expression profiles presented by genes classified in both 

lists (available on attached CD) as well as the criteria to fulfill to enter in one of the two 

lists are depicted on Figure.25.  
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Figure.25: Typical gene expression profile of genes specifically implicated either in the initiation or in the 
elongation phase of the in vitro trans-differentiation process. 144 genes and 394 genes presented a typical 
“initiation” and “elongation” profile, respectively. 

 

Step-specific upregulated genes were classified in these two lists with the idea to identify 

among the initiation process list, transcription factors which would represent potential 

master switches of in vitro trans-differentiation. The six transcription factors listed below 

were specifically upregulated at the initiation of the process and thus represent potential 

master switches: 
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Foxc2 is highly expressed and required during lymphatic vessel development [125,234]. 

It has been described to cooperate with its closely related family member Foxc1 in the 

regulation of early lymphatic vascular development [127]. Indeed, Foxc1 and Foxc2 are 

required for lymphatic sprouting as compound Foxc1+/-; Foxc2-/- embryos show reduced 

lymphatic vascular density in the areas of initial spouting of LEC from the primary lymph 

sacs. Interestingly, while Foxc2 is specifically upregulated during the initiation step of the 

trans-differentiation process, Foxc1 is highly upregulated (15X) during the second part of 

the process (Figure.26). 

 

 

Figure.26: Foxc2 and Foxc1 upregulation upon in vitro trans-differentiation. As revealed by microarray 
analysis and confirmed by qRT-PCR, Foxc2 was specifically upregulated at the initiation of the process as 
Foxc1 was highly upregulated in the second part of the process. ΔΔCT represents the ΔCT value (CT value 
normalized against RPL19) of each time point subtracted from the ΔCT value of E1. 

 

For all these reasons Foxc2 is of particular interest as a potential master switch of the 

trans-differentiation process.  

 

4.2.2. Candidate gene selection and microarray data validation 

 Two candidate genes upregulated upon in vitro trans-differentiation were selected 

for further analysis: 

- Fibroblast growth factor receptor (FGFR)-1 and 2 (4.6 and 3.7X up respectively) 

- Stromal cell-derived factor-1 (SDF-1) (24X up). 

 In addition to their marked upregulation upon tube-like structure formation, FGFR-1 

and 2 were selected as potential candidate genes as when FGF-2, which is a ligand for 

these receptors, was depleted from the complete endothelium-specific culture medium, in 
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vitro trans-differentiation was impaired (Figure.21C); thus strongly suggesting the 

implication of FGF signaling in this process. SDF-1 was chosen as second to be tested 

for its potential role in in vitro trans-differentiation. First, because SDF-1 was among the 

top 50 upregulated gene list, presenting an upregulation of 24X between E1 and E6. And 

second, because it has been reported that SDF-1 promotes endothelial cell clustering 

and movements of these clustered cells in order to form a network [235]. The microarray 

data were first validated by qRT-PCR (Figure.27). Then the requirement of FGF and 

SDF-1 signaling for the trans-differentiation process was assess, first in vitro and then in 

vivo (for FGF signaling only). 

 

 

 

Figure.27: qRT-PCR validation of the microarray data. ΔΔCT represents the ΔCT value (CT value 
normalized against RPL19) of each time point subtracted from the ΔCT value of E1. 
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4.2.3. FGF signaling requirement 

 

In vitro trans-differentiation 

 To assess whether FGF signaling is implicated in the in vitro phenotypical transition 

of myeloid cells toward lymphatic endothelial cells, macrophages were knocked-down for 

FGFR-1 and/or 2 using shRNAs and tube-like structure formation was monitored. 

Macrophages are particularly refractory to transfection/transduction. To overcome this 

obstacle, bone marrow progenitor cells were transduced with lentiviral vectors encoding 

shRNAs against FGFR-1 and/or 2 and then in vitro differentiated into macrophages. The 

experimental setting used is summarized in Figure.28 and briefly described here. 

C57BL/6 mice were treated with 5-Fluorouracil (5-FU) in order to increase their bone 

marrow in progenitor cells. Six days post 5-FU injection, progenitor-enriched bone 

marrow cells were collected and cultured over night in transplant medium (TM). On two 

consecutive days the cells were infected with lentiviral vectors encoding either an shRNA 

control (LVshctr) or shRNAs against FGFR-1 (LVshFGFR1) and/or 2 (LVshFGFR2). All 

lentiviral vectors used encoded a puromycine selection cassette. One day post the last 

infection, transduced bone marrow cells were selected with puromycine for two days prior 

to nine day culture in 30% M-CSF containing-medium to induce the specific 

differentiation of progenitor cells into macrophages. Knocked-down or control 

macrophages were then seeded on Matrigel in complete endothelium-specific medium 

and tube-like structures formation was monitored for six days.  

 

Figure.28: Experimental setting used to assess the effect of downregulating FGFR-1 and/or 2 on the in 
vitro trans-differentiation process. 
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The knockdown efficiency was tested by qRT-PCR pre- and post-Matrigel culture. No 

difference could be observed between the two different time points. In the case of an 

infection with a single lentiviral vector (LVshFGFR1 or LVshFGFR2), the knockdown 

efficiency for FGFR-1 was 75% on average (ranging from 60-90% between 3 

independent experiments), and for FGFR-2 it was 88% on average (ranging from 80-95% 

between 2 independent experiments). In the case of an infection with two lentiviral 

vectors (LVshFGFR1 and LVshFGFR2), the knockdown efficiency for FGFR-1 was 60% 

on average (ranging from 40-80% between 2 independent experiments) and for FGFR-2 

77% on average (ranging from 75-80% between 2 independent experiments). The 

average knockdown efficiency was lower in the case of an infection with two lentiviral 

vectors. This can be explained by the fact that, as both lentiviral vectors encode the 

same selection cassette, a double infection does not automatically result in a double 

transduction.  

 When cultured for six days on Matrigel and complete endothelium-specific medium, 

knocked-down macrophages presented a significant impairment in tube-like structure 

formation in comparison to control macrophages (Figure.29). 

 

 

 

Figure.29: FGF signaling is required for an efficient in vitro trans-differentiation. Macrophages knocked-
down for either FGFR-1 or FGFR-2 or for both receptors were only rarely able to give rise to tube-like 
structures. 
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Out of three independent experiments, 80-100% of the clusters formed by macrophages 

transduced with the lentiviral vector encoding the shRNA control (Mφshctr) gave rise to 

tube-like structures. In contrast, for macrophages knocked-down for FGFR-1 

(MφshFGFR1), out of three independent experiments, two did not give rise to any tube-

like structure and in one only 10% of the clusters presented such structures. Similarly, for 

macrophages knocked-down for FGFR-2 (MφshFGFR2), out of two independent 

experiments, one did not give rise to any tube-like structure as in the other only 10% of 

the clusters presented such structures. And finally, for double-knocked-down 

macrophages (MφshFGFR1+2), out of two independent experiments, one did not give 

rise to any tube-like structure as in the other only 15% of the clusters presented such 

structures. Taken together these results demonstrate that FGF signaling is required for 

an efficient in vitro trans-differentiation process. 

  

In vivo trans-differentiation 

 FGF signaling is clearly implicated in in vitro trans-differentiation but does this 

signaling pathway also play a role in in vivo trans-differentiation? 

 To assess this question, RT2;VC mice were transplanted with GFP-labeled bone 

marrow knocked-down for FGFR-1 and 2 (to avoid a potential redundancy of the 

receptors) and BMDC contribution to tumor lymphatic vessels was assessed by FACS on 

the reconstituted mice. The experimental setting used is summarized in Figure.30 and 

briefly described here. 5-FU treated bone marrow cells collected from β-actin-GFP mice 

were incubated overnight in TM and infected on two consecutive days with either LVshctr 

or with both LVshFGFR1 and LVshFGFR2. One day post the last infection, transduced 

bone marrow cells were selected with puromycine for two days and dead cells were 

removed using a Ficoll gradient prior to bone marrow transplantation. 
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Figure.30: Experimental setting used to assess the effect of knocking-down FGFR-1 and 2 on the in vivo 
trans-differentiation process. 

 

Two mice were transplanted with bone marrow cells infected with LVshctr (shctr mice) 

and three mice with double knocked-down bone marrow cells (shFGFR1+2 mice). The 

knockdown efficiency prior bone marrow transplantation was assessed by qRT-PCR. It 

reached 70% for FGFR-1 but could not be determined for FGFR-2 as this receptor is 

expressed at too low levels in bone marrow progenitor cells. Mice were sacrificed 6-7 

weeks post bone marrow transplantation. To assess if knocking-down FGFR-1 and 2 did 

not affect haematopoietic reconstitution post bone marrow transplantation, the proportion 

of myeloid, T and B cells in bone marrow and peripheral blood of shFGFR1+2 mice was 

compared to that of control mice. Control mice include shctr mice as well as mice 

transplanted with non-infected cells and non-transplanted mice. As depicted in Figure.31, 

shFGFR1+2 mice presented a normal haematopoietic composition both in the bone 

marrow and in the periphery. Moreover, efficient bone marrow reconstitution by the 

transplanted GFP-labeled cells was confirmed by a chimerism of more than 80%. 
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Figure.31: FACS analysis of bone marrow and peripheral blood mononuclear cells revealed efficient 
haematopoietic reconstitution in shFGFR1+2 mice with more than 80% chimerism and normal 
haematopoiesis in both haematopoietic comportments in comparison to control mice. 

 

 

After having checked that the mice were correctly reconstituted, BMDC contribution to 

tumor lymphatic vessels was assessed by FACS. Tumor single cell suspensions were 

stained for CD31 and Podoplanin and the percentage of GFP positive TLEC 

(CD31+Podoplanin+ cells) was compared between shFGFR1+2 mice and shctr mice. No 

significant change in the bone marrow-derived TLEC (BMDTLEC) population could be 

observed (Figure.32A). Consistently with these results, tumor lymphatic vessel coverage 

(TLVC) was neither affected upon FGFR-1 and 2 knockdown (Figure.32B).  
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Figure.32: Knocking-down FGFR-1 and 2 does neither affect BMDC contribution to tumor lymphatic 
vessels nor tumor lymphatic vessel coverage. (A) Single-cell suspensions of tumors isolated from either 
shctr mice (N=2) or shFGFR1+2 mice (N=3) were stained for CD31 and Podoplanin and the proportion of 
BMDTLEC was assessed by FACS. (B) Tumors of non-transplanted mice (non-BMT, N=2), of mice 
transplanted with non-infected bone marrow cells (non-inf, N=3), of shctr mice (N=2) and of shFGFR1+2 
mice (N=3) were analyzed by immunofluorescence staining with antibodies against LYVE-1 for the extent 
of lymphatic vasculature surrounding the perimeter of the tumors (TLVC).  

 

As the shRNAs against FGFR-1 and 2 were delivered by lentiviral vectors, thus insuring 

a stable integration in the host genome, the knockdowns observed pre-bone marrow 

transplantation should remain stable. However, to confirm that the lack of visible effect on 

the proportion of BMDTLEC upon FGFR-1 and 2 knockdown was not due to a rather 

unlikely silencing of the shRNAs, knockdown efficiency was re-assessed by qRT-PCR 

post-bone marrow transplantation in macrophages in vitro differentiated from isolated 

bone marrow cells at the day of sacrifice. The knockdown remained stable upon bone 

marrow transplantation/reconstitution as the knockdown efficiency for FGFR-1 and 2 was 

on average 60% and 70%, respectively. 

 Taken together these data demonstrate that, even if FGF signaling is clearly 

implicated in the in vitro trans-differentiation process, it does not seem to play a critical 

role in the in vivo trans-differentiation process.  

 

 

 



    RESULTS 

 80 

4.2.4. SDF-1 signaling requirement 

 A potential SDF-1 signaling requirement for trans-differentiation was assessed in 

vitro by first chemically inhibiting its receptor, CXCR4, on macrophages and monitoring 

tube-like structure formation. Macrophages were pre-incubated with a chemical inhibitor 

against CXCR4 (ICXCR4) at concentrations ranging from 0.3 to 5µM and then seeded on 

Matrigel in complete endothelium-specific medium in the presence or in the absence of 

the inhibitor at the same concentration used for the pre-incubation. Blocking SDF-

1/CXCR4 signaling resulted in a dose-dependent decrease in tube-like structure 

formation (Figure.33).  

 

 

Figure.33: Blocking SDF-1/CXCR4 impairs tube-like structure formation in a dose-dependent manner. 
Macrophages were pre-incubated and cultured in the presence or absence of CXCR4 inhibitor, at 
concentrations varying from 0.3 to 5µM. 

 

More precisely, macrophage clustering as well as the percentage of clusters giving rise to 

tube-like structures were reduced upon inhibitory conditions, in a dose-dependent 

manner (Figure.34 and Figure.35). A cluster is defined as a tight circular agglomerate of 

cells. 
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Figure.34: Inhibiting CXCR4 resulted in reduced macrophage clustering, in a dose-dependent manner. 
Here are shown the results of two independent experiments done in duplicates. 

 

 
Figure.35: The percentage of clusters giving rise to tube-like structures was reduced in the presence of the 
inhibitor. Here are shown the results of two independent experiments done in duplicates. 

 

To exclude the eventuality that impaired tube-like structure formation upon SDF-

1/CXCR4 signaling inhibition would be due to cell death induced by a potential toxic 

effect of the inhibitor, macrophages were cultured for eight days in the presence or in the 

absence of the inhibitor and cell viability was assessed by FACS using propidium iodide 

(PI staining). Independently of the different culture conditions, 80% of the cells were PI 

negative, demonstrating no cytotoxic effect of the inhibitor.  

 SDF-1 has been reported to be implicated in the recruitment of endothelial 

progenitor cells to site of neovascularization [236,237]. Considering that myeloid cells 

can be context-dependent lymphatic endothelial progenitor cells, the role of SDF-

1/CXCR4 signaling in the recruitment of macrophages to lymphatic endothelial cells was 

assessed in vitro. SV40 T antigen-immortalized murine lymphatic endothelial cells (SV-
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LEC) were co-cultured with macrophages, pre-incubated or not with ICXCR4 (0, 5 or 

10µM), on Matrigel in complete endothelium-specific medium in the presence or in the 

absence of the inhibitor at the same concentration used for the pre-incubation. Eight 

hours post seeding, in the absence of the inhibitor, SV-LEC clustered together and 

attracted macrophages to them (Figure.36, left panel). In contrast, when SDF-1/CXCR4 

signaling was blocked using an inhibitor concentration of at least 5µM, macrophages 

recruitment to LEC was impaired (Figure.36, middle and right panels).  

 

 

 

Figure.36: Blocking SDF-1/CXCR4 impairs macrophages recruitment to lymphatic endothelial cells in a 
dose-dependent manner. Macrophages were pre-incubated and co-cultured with SV-LEC in the presence 
or absence of CXCR4 inhibitor (5 or 10µM). The number of macrophages, which were not recruited to SV-
LEC, was quantified (by semi-optical field, N= 4-8).  

 

Taken together, these results show that SDF-1 signaling is implicated in the in vitro trans-

differentiation process and in the recruitment of macrophages to lymphatic endothelial 

cells. Therefore, interfering with SDF-1 signaling in myeloid cells may negatively affect 

the in vivo trans-differentiation process by directly acting on the capacity of the cells to 
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undergo trans-differentiation but also by preventing their recruitment to actively growing 

tumor lymphatic vessels. This hypothesis would need to be assessed in reconstituted 

GFP-labeled bone marrow-transplanted RT2;VC treated with ICXCR4. 
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5. Material and methods 
 

Mouse strains 

Generation and phenotypic characterization of Rip1Tag2, Rip1VEGF-A and Rip1VEGF-C 

mice have been described previously [28,29,146]. C57BL/6-Tg(ACTB-EGFP)mice [238] 

and Z/EG mice [220] were provided by K. Hafen  (University of Basel). CD11b-Cre mice 

[221] and CX3CR1+/GFP mice [219] were obtained from J. Vacher (University of Montreal) 

and C. Ruegg (CePO Lausanne), respectively. All experiments involving mice were 

performed in accordance with the guidelines of the Swiss Federal Veterinary Office 

(SFVO) and the regulations of the Cantonal Veterinary Office of Basel-Stadt.  

 

Total bone marrow transplantations 

Bone marrow cells were extracted under sterile conditions from femurs and tibiae from 

donor mice indicated in Figure 1. After T cell depletion [239], 5 x 106 cells were injected in 

the tail vein of lethally irradiated (2 x 550 cGy) 6 week old mice which were sacrificed for 

further analysis 5 to 7 weeks after transplantation. 

 

TRAMP-C1 subcutaneous tumor model 

5x105 TRAMP-C1 cells [240] (provided by N. Greenberg, FHCRC, Seattle) were injected 

into the flank of either GFP-labeled bone marrow transplanted C57BL/6 mice (4 weeks 

after transplantation) or CD11b-Cre;Z/EG mice and grown for 3 to 4 weeks.  

 

Flow cytometric analysis 

Cells were washed in PBS supplemented with 5% FBS, Fc-blocked with a monoclonal 

antibody against mouse CD16/CD32 (Clone 2.4G2, Pharmingen), and stained with 

directly-labeled monoclonal antibodies against mouse CD19 (Clone MB19-1, 

eBioscience), CD3 (Clone 145-2C11, eBioscience), CD11b (Clone M1/70.15, CALTAG), 

F4/80 (Clone CI:A3-1, Serotec), LYVE-1 (Clone ALY7, CliniSciences), CD31 (Clone 390, 

eBioscience). Podoplanin expression was revealed by hamster anti-mouse Podoplanin 

(Clone 8.1.1), followed by biotinylated anti-hamster-IgG antibody and streptavidin-PE 

(eBioscience). Stained cells were analyzed on a FACSCanto II using DIVA Software 

(Becton Dickinson). Dead cells were excluded by a combination of light scatter and PI 

fluorescence. Cell duplets were excluded by forward scatter pulse width. Peripheral blood 
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mononuclear cells were isolated by Ficoll–Histopaque (SIGMA) density-gradient 

centrifugation. Bone marrow cells were extracted from mouse femurs and tibiae by 

flushing. Tumor single cell suspensions were obtained by digestion for 45 minutes at 37° 

C using the following digestion buffers: TRAMP-C1: HEPES buffered saline, 0.1mg/ml 

DNaseI (Roche), 1mg/ml collagenase I (SIGMA); RT2: DMEM, 5% NU serum (Becton 

Dickinson), 0.2mg/ml DNaseI, 1.2U/ml DispaseII (Roche Applied Science). 

 

CD11b+ and CMP cell sorting and adoptive transfer  

Bone marrow cells were extracted from femurs and tibiae of female C57BL/6-Tg(ACTB-

EGFP) mice, washed in PBS/ 2% BSA, Fc blocked and stained with a phycoerythrin 

(PE)-conjugated monoclonal antibody against mouse CD11b (CALTAG) or, for CMP 

isolation, lineage markers, CD3, CD4 (Clone GK1.5), CD8 (Clone 53-6.7), Ter119 (Clone 

TER-119), B220 (Clone RA3-6B2), CD19, Gr-1 (Clone RB6-8C5), Sca-1 (Clone D7), 

IL7Ra (Clone A7R34) and Allophycocyanin-labeled anti-cKit (Clone 2B8) (all from 

eBioscience). CD11b+ GFP+ or CMP (lineage-/ Sca-1-/ IL7Ra-/ cKit+) cells were sorted on 

a FACSAria (Becton Dickinson) with a purity > 98%. 4 x 105 CD11b+ or 4 x 104 CMP were 

injected in the tail vein of semi-lethally (450 cGy) or non irradiated 9 week old RT2;VC 

mice, which were sacrificed 3 weeks after transplantation. 

 

Histological analysis  

7 or 20 µm cryosections from pancreata or TRAMP-C1 tumors were prepared and 

stained as described [84]. Briefly, harvested tissues were fixed in 4% paraformaldehyde 

for 2 hours at 4°C, incubated in 30% sucrose overnight and then cryopreserved in OCT 

medium. Tissue sections were incubated at RT for 30 minutes with blocking buffer (5% 

goat serum in PBS) prior to overnight incubation at 4°C with the primary antibodies. 

When required, PBS/0.2% Triton-X-100 was used for permeabilization. The following 

primary antibodies were used at the dilutions specified in brackets:  rat anti-mouse LYVE-

1 (1:200) (Clone ALY-7, MBL, Japan), rabbit anti-mouse LYVE-1 (1:200) (Reliatech, 

Germany), rabbit anti-mouse Prox-1 (1:100) (K. Alitalo, University of Helsinki), goat anti-

human Prox-1 (1:100) (R&D Systems), rabbit anti-Podoplanin (1:100) (D. Kerjaschki, 

Medical University Vienna), hamster anti-mouse Podoplanin hybridoma supernatant 

(1:20) (Clone 8.1.1), rat anti-mouse VE-Cadherin hybridoma supernatant (1:50) (Clone 

B14, E. Dejana, University of Milano), rat anti-mouse F4/80 (1:200) (Clone CI:A3-1, 

Serotec), rat anti-mouse CD11b (1:100) (Clone M1/70.15, Serotec) and rat anti-mouse 
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CD31 (1:50) (Clone MEC 13.3, Pharmingen). Alexa Fluor 488-, 568- and 633-labeled 

secondary antibodies (Molecular Probes) were used (1:400). Alexa Fluor 488-conjugated 

rabbit anti-GFP antibody (1:500) (Molecular Probes) was employed for the detection of 

GFP. DAPI (SIGMA) was used for nuclear counterstaining. Sections were analyzed on a 

Nikon Diaphot 300 immunofluorescence microscope (Nikon) using Openlab 3.1.7. 

Software (Improvision) or with a LSM 510 Meta confocal microscope using LSM Software  

for 2D and 3D analysis (Zeiss). Videos were created using Imaris 6.1.1 Software 

(Bitplane Scientific Solutions, Zurich, Switzerland). 

 

ClodroLip-mediated macrophage depletion.  

Eight week old RT2;VC mice were injected i.p. every 4 days for 4 weeks with 80mg/kg 

body weight (first injection) or 40mg/kg body weight  (following injections) ClodroLip or 

with an equal volume of PBS as control. 2 days after the last injection, mice were 

sacrificed, pancreata were embedded in OCT and snap frozen in liquid nitrogen. Tumor 

macrophage depletion and tumor lymphatic vessel coverage were determined by 

immunofluorescence stainings with anti-F4/80 antibodies and anti-LYVE-1 antibodies, 

respectively, and ImageJ Software (http://rsb.info.nih.gov/ij/). Statistical analysis and 

graphs were performed with GraphPad Prism Software (GraphPad Software Inc.). Non-

parametric Mann-Whitney tests were used to compare tumor lymphatic vessel coverage 

of treated versus control mice. 

 

Isolation of tumor-associated macrophages (TAM) and tumor cells  

Single cell suspensions of tumors from 13-14 week old RT2;VC mice were obtained as 

described above, washed in FACS buffer (PBS/ 2% BSA/ 5mM EDTA) and stained with 

anti-CD11b-PE and anti-CD31-APC. 20’000 – 50’000 CD11b+ cells (TAM) or CD11b- 

CD31- cells (tumor cells) were sorted on a FACSAria directly into TRIZOL reagent 

(Invitrogen). 

 

Quantitative RT–PCR  

Total RNA was prepared using TRIZOL (in the case of RNA isolation from Matrigel 

cultures, two consecutive rounds of TRIZOL purification were performed), and reverse 

transcribed with random hexamer primers using M-MLV reverse transcriptase (SIGMA). 

cDNA was quantified on a ABI Prism 7000 Taqman (Applied Biosystems) using SYBR 

green PCR MasterMix (Fermentas) using the following primers: mVEGFC: fwd: 5’-
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AGCAGCCACAAACACCTTCTT-3’, rev: 5’-TCAAACAACGTCTTGCTGAGG-3’; 

mVEGFD: fwd: 5’-GCACCTCCTACATCTCCAAACAG-3’, rev: 5’-

GGCAAGCACTTACAACCCGTAT-3’; mFGF1: fwd: 5’-CCGAAGGGCTTTTATACGG-3’, 

rev: 5’-TCTTGGAGGTGTAAGTGTTATAATGG-3’; mFGF2: fwd: 5’-

CGGCTCTACTGCAAGAACG-3’, rev: 5’-TGCTTGGAGTTGTAGTTTGACG-3’; mFGFR1: 

fwd: 5’-TGTTTGACCGGATCTACACACA-3’, rev: 5’-CTCCCACAAGAGCACTCCAA-3’; 

mFGFR2: fwd: 5’-TCGCATTGGAGGCTATAAGG-3’, rev: 5’-

CGGGACCACACTTTCCATAA-3’; mLYVE-1: fwd: 5’-GGTGTCCTGATTTGGAATGC-3’, 

rev: 5’- AGGAGTTAACCCAGGTGTCG -3’; mProx-1: fwd: 5’-

AAGAGAGAGAGAAAGAGAGAGAGTGG-3’, rev: 5’-TGGGCACAGCTCAAGAATC-3’; 

mVEGF-R3: fwd: 5’-CGTGTGTGAAGTGCAGGATAGG-3’, rev: 5’-

TCACTCACGTTCACCAGGAGGT-3’; mFoxC1: fwd: 5’-GCTTTCCTGCTCATTCGTCTT-

3’, rev: 5’-AAATATCTTACAGGTGAGAGGCAAG-3’; mFoxC2: fwd: 5’-

GACCCTAGCTCGCTGACG-3’, rev: 5’-CACCAGCCCTTCCGAGT-3’; mCD45: fwd: 5’-

CAAAAGCAGATCGTCCGGA-3’, rev: 5’-TGTCGGCCGGGAGGTT-3’; mCX3CR1: fwd: 

5’-AAGTTCCCTTCCCATCTGCT-3’, rev: 5’-CAAAATTCTCTAGATCCAGTTCAGG-3’; 

mSDF-1: fwd: 5’-CTGTGCCCTTCAGATTGTTG-3’, rev: 5’-

TAATTTCGGGTCAATGCACA-3’; mRPL19: fwd: 5’-ATCCGCAAGCCTGTGACTGT-3’, 

rev: 5’-TCGGGCCAGGGTGTTTTT-3’. Ct values were normalized against ribosomal 

protein L19 (RPL19).  

 
Tube formation assay using bone marrow-derived-macrophages  

Bone marrow cells were extracted from femurs and tibiae of C57BL/6 or C57BL/6-

Tg(ACTB-EGFP) mice and cultured on Teflon plates for 7 days in DMEM supplemented 

with 10% FBS, 2 mM glutamine, 100 units/ml penicillin and 30% L929 cell conditioned 

media containing M-CSF. Bone marrow-derived-macrophages were collected with PBS/ 

1 mM EDTA. Matrigel (Becton Dickinson) was mixed 1:1 with endothelial cell medium 

(EGM-2 MV, Cambrex) and allowed to solidify for 1 hour at 37°C in 8-chamber slides. 2-3 

x 105 bone marrow-derived macrophages or immortalized lymphatic endothelial cells 

(SV-LEC) or a mixture of each 1.5 x 105 cells each in EGM-2 MV supplemented with 1 

µg/ml LPS were seeded on the polymerized Matrigel and tube formation was monitored 

up to 20 days. For inhibitory studies, macrophages were pre-incubated for 30 minutes at 

37°C with a chemical inhibitor against CXCR4 (Novartis, Basel) at concentrations ranging 
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from 0.3 to 10µM and then seeded in the presence or in the absence of the same 

concentration of inhibitor used for the pre-incubation. Immunofluorescence staining of 

tube-like structures was performed as described [241]. For time-lapse video microscopy, 

Hoechst labeled SV-LEC and GFP+ macrophages were co-cultured as described above 

and pictures were taken every 10 minutes for a period of 12 hours using a Zeiss Axiovert 

35M microscope (Zeiss), Princeton Instruments CCD camera and Metamorph Imaging 

Software (Universal Imaging Corporation). 

 

Microarray processing and data analysis  

Total RNA was isolated from Matrigel cultures 1, 3, 6 and 8 days post seeding using two 

consecutive rounds of TRIZOL purification. RNA quality and quantity was evaluated 

using an Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA). All RNA 

samples used for analysis presented a RNA integrity number (RIN) higher than 6.5 and 

were comparable between samples, showing appropriate quality. The manufacturer’s 

protocols for the GeneChip platform by Affymetrix (Santa Clara, CA) were used. Methods 

included synthesis of first- and second-strand cDNAs, synthesis of cRNA by in vitro 

transcription, subsequent synthesis of single-stranded cDNA, biotin-labeling and 

fragmentation of this cDNA and subsequent hybridization to the microarray slide 

(GeneChip® Mouse Gene 1.0 ST array), posthybridization washings, and detection of the 

hybridized cDNAs using a streptavidin-coupled fluorescent dye. Hybridized Affymetrix 

arrays were scanned with an Affymetrix GeneChip 3000 scanner. Image generation and 

feature extraction were performed using Affymetrix GCOS Software and quality control 

was performed using Affymetrix Expression Console Software. Raw microarray data 

were normalized with Robust Multi-Array (RMA) and analyzed using Gene Spring GX 9.0 

Software. One-way analysis of variance (ANOVA) and asymptotic analysis were used to 

identify significantly differentially expressed genes, with a Benjamini-Hochberg false 

discovery rate corrected-p value set at p<0.01. The gene ontology (GO) tool from Gene 

Spring GX 9.0 Software as well as the Ingenuity Pathway Analysis Software 

(http://www.ingenuity.com) were used for further data analysis.  

 

Knockdown studies  

Lentiviral vectors encoding shRNAs against FGFR-1 and 2 were kindly provided by 

N.Hynes  (FMI, Basel). The lentiviral vector encoding the shRNA control was purchased 

at SIGMA (Mission® pLKO.1-puro Control Vector). All vectors encode a puromycine 
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selection cassette. rmSDF-1 was purchased at PeproTech (London) while IL-3 and IL-6 

were kindly provided by T.Rolink (University of Basel).  

Progenitor-enriched bone marrow cells were extracted from femurs and tibiae of C57BL/6 

or C57BL/6-Tg(ACTB-EGFP) mice injected i.p. with 5-Fluorouracil (150mg/kg) 6 days 

before cell collection. After one night in transplant media (RPMI supplemented with 10% 

FBS, 2 mM glutamine, 100 units/ml penicillin, 125ng/ml SCF-1, 75ng/ml IL-3 and 

125ng/ml IL-6), 4 x 106 cells/condition were infected with lentivirus particules produced as 

described [242]. More precisely, collected cells were seeded in 6 well plates (4 x 106 

cells/well). 4µg/ml polybrene, 7.5mM Hepes buffer (SIGMA) and the supernatant of 

producing 293T cells cultured in 6 well plates were added to the bone marrow-derived 

cells (the supernatant of 1 well of producing cells was added to 1 well of bone marrow-

derived cells) and plates were centrifuged at 30°C, 2’500 rpm for 90 minutes. Cells were 

incubated for 3 hours post-centrifugation at 37°C before replacement of the medium by 

fresh transplant medium. The infection procedure was repeated a second time on the 

next day. 24 hours post the last infection, transduced cells were selected using 3µg/ml 

puromycine (SIGMA) for 2 days.  

For in vitro assays, transduced cells were cultured on Teflon plates for 9 days in DMEM 

supplemented with 10% FBS, 2 mM glutamine, 100 units/ml penicillin and 30% L929 cell 

conditioned media containing M-CSF. The ability of in vitro produced macrophages to 

form tube-like structures was then assessed using the tube formation assay described 

above. For in vivo assays, living transduced cells were isolated by Ficoll–Histopaque 

(SIGMA) density-gradient centrifugation and 5 x 105- 1 x 106 cells were transplanted in 

lethally irradiated 7 week old RT2;VC mice sacrificed for further analysis 7 weeks after 

transplantation. 
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6. Discussion 
 

 Using tagged-bone marrow transplantations into two different tumor mouse models 

presenting ongoing lymphangiogenesis, we could demonstrate that bone marrow-derived 

cells (BMDC) can trans-differentiate into lymphatic endothelial cells and thus contribute to 

tumor lymphangiogenesis. Importantly, these data support previous findings on the role 

of haematopoietic cells in lymphatic vessel formation, showing that tumor-induced 

haematopoietic cell plasticity toward lymphatic endothelium is a general component of 

tumor-associated lymphatic vessel development. Moreover, lineage-tracing experiments 

revealed that bone marrow-derived tumor lymphatic progenitor cells reside, at least 

partially, within the myeloid lineage. Finally, the phenotypical conversion of myeloid cells 

toward lymphatic endothelial cells was recapitulated in two in vitro assays, offering the 

opportunity to assess the trans-differentiation mechanism. 

 The fact that haematopoietic cells are able to give rise to lymphatic endothelium is 

not a completely unexpected discovery. Indeed, the generation of haematopoietic cells 

from a so-called hemogenic endothelium has recently been well characterized [198-200]. 

It is therefore conceivable that if endothelial cells can give rise to haematopoietic cells, 

plasticity in the reverse direction is also possible. Moreover, as these two cell types share 

their developmental history and in consequence may share epigenetic marks, the 

interconversion between endothelial and haematopoietic cells may be facilitated as only 

a small part of their epigenomes would have to be rearranged in contrast to unrelated cell 

types  [180]. However, while HSC are able to contribute to lymphatic vessel formation 

under steady state conditions [205], myeloid lineage committed cells require an 

inflammatory context to achieve such plasticity (Figure.14) [88,89]. Thus the conversion 

of myeloid cells toward lymphatic endothelium seems to be dependent on local signals 

provided by the microenvironment, which in this study could be supplied by tumor cells, 

tumor lymphatic endothelial cells (TLEC) or educated tumor-associated stromal cells. 

Pleiotrophin (PTN) is thus far the only factor reported to play a role in myeloid to 

endothelial cell plasticity. Culturing monocytes in the presence of PTN resulted in tube-

like structure formation and expression of vascular endothelial cell markers, while co-

injecting tagged-monocytes and multiple myeloma cells into severe combined 

immunodeficient (SCID) mice led to the incorporation of monocytes into tumor blood 
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vessels. These trans-differentiation processes were abrogated by the use of anti-PTN 

neutralizing antibodies [85]. Interestingly, this secreted factor was also significantly 

upregulated (1.5X) upon in vitro phenotypical conversion of myeloid cells toward 

lymphatic endothelium in my experiments. As PTN expression is very limited in healthy 

adult tissues, treating bone marrow-transplanted RT2;VC mice with anti-PTN antibodies 

might reveal the potential implication of this factor in myeloid cell contribution to tumor 

lymphatic vessels.  

 Recapitulating the in vivo trans-differentiation process in vitro and assessing gene 

expression changes upon phenotypical conversion allowed the identification of an 

important number of candidate genes potentially implicated in this process. The role of 

selected candidate genes could be further evaluated by setting up specific in vitro and in 

vivo experimental protocols. FGFR-1/2 and SDF-1 were shown to be clearly required for 

the in vitro trans-differentiation process. However, in vivo, the requirement of FGFR-1 

and 2 could not be confirmed. This may be explained by the fact that, in vitro, the FGFR 

ligand FGF2 is added to the culture medium, possibly artificially rendering the in vitro 

trans-differentiation process dependent on this signaling pathway. The well-defined in 

vitro growth conditions may not reflect the in vivo situation, where the ablation of FGF 

signaling may be compensated for by other factors present in the tumor 

microenvironment. Furthermore, as the bone marrow-derived tumor lymphatic endothelial 

cells (BMDTLEC) only represent a small percentage of tumor-associated lymphatic 

endothelial cells, variations in this population cannot be easily detected by our current 

analytic methods. The complete abrogation of the trans-differentiation process would be 

necessary to be clearly visualized in vivo and therefore, the contribution of FGF signaling 

in collaboration with other signaling pathways cannot be excluded. Along these lines, it is 

also important to consider that the in vivo knockdown efficiency for FGFR-1 and 2 of 

around 65% represents the downregulation efficiency of a pool of cells. Depending on 

where and in how many copies the shRNA construct integration took place, cells may 

present important variations in their knockdown efficiency, rendering individual cells more 

or less able to undergo trans-differentiation. Supporting this hypothesis, clusters of 

knocked-down macrophages for which some tube-like structures could be observed in 

vitro always correlated with a downregulation efficiency located in the lower range. Taken 

together, these considerations outline the fact that an efficient interference with the in 

vitro trans-differentiation process will not necessarily clearly affect the in vivo trans-
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differentiation process. Therefore, for the experimental reasons mentioned above, the 

use of knockdown studies in BMDC to impair trans-differentiation must be considered 

carefully. Alternatively, blocking SDF-1 signaling by the use of a chemical inhibitor 

against its receptor CXCR4 may, based on the in vitro studies, allow the detection of a 

clear impairment of the in vivo trans-differentiation process. However, it is important to 

keep in mind that pharmacological inhibition might be less specific than knockdown 

studies directly targeting BMDC. Another approach to obtain insights into the myeloid to 

lymphatic endothelial cell plasticity consisted in comparing the transcriptomes of 

BMDTLEC, host TLEC, and BMDC present at the tumor site but not integrated into 

TLEC. Unfortunately, it has not been possible to obtain a sufficient number of cells to 

perform these experiments. Thus, despite these limitations, the in vitro trans-

differentiation assay remains a very interesting and unique tool to identify genes required 

for the different steps of myeloid cell conversion into lymphatic endothelium.  

 Depletion of tumor-associated macrophages resulted in a 14% reduction of tumor 

lymphatic vessel coverage, demonstrating a functional implication of myeloid cells in 

tumor-associated lymphatic vessel formation. It was, however, surprising to see that the 

depletion of BMDTLEC, which constitute only a small proportion of TLEC, could 

significantly affect overall tumor lymphangiogenesis. Our results show that myeloid cells 

do not contribute to tumor lymphangiogenesis through paracrine secretion of the main 

lymphangiogenic factors but rather suggest that BMDTLEC may fulfill a tip cell-like 

function by instigating lymphatic sprouts. Depleting these specialized cells would thus 

substantially affect tumor lymphangiogenesis. Specialization of cells to confer a critical 

function to a biological process is not without precedence. It has been reported that 

carcinoma-associated fibroblasts (CAF) promote squamous cell carcinoma (SCC) cell 

collective invasion by remodeling the matrix and thus making a path that SCC cells can 

use to invade  [243]. Normal dermal fibroblasts are in contrast unable to promote SCC 

invasion, underlying the necessity of fibroblasts to be converted into specialized cells to 

fulfil their leader function. In addition to the activation of quiescent fibroblasts and bone 

marrow recruitment, trans-differentiation has been shown to constitute a source of CAF 

[244]. Drawing a parallel to these studies, it is tempting to hypothesize that, in order to be 

able to interact with pre-existing TLEC as lymphatic tip cell-like cells, tumor-associated 

myeloid cells have to acquire lymphatic characteristics. Macrophages are phagocytic 

cells able to produce degradative enzymes. Upon in vitro tube-like structure formation, 
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diverse matrix metalloproteinases (MMP-2/11, Adamts-1/5) are highly upregulated, 

suggesting that BMDTLEC may go through an intermediate trans-differentiation state. In 

such a state, their newly acquired lymphatic features would allow them to interact with 

pre-existing TLEC, while their remaining and enhanced macrophage-specific properties 

would enable them to generate tracks for instigating sprouting. Terminal trans-

differentiation would then be achieved once sprouting is completed. The in vitro trans-

differentiation assays may be used as a tool for verifying these hypotheses. For example, 

by first identifying chemokines or adhesion molecules upregulated upon tube-like 

structure formation and which could theoretically play a role in the coordinated movement 

of BMDTLEC-induced lymphatic sprouting. And then by interfering with these molecules 

in an in vitro co-culture assay. Interestingly, Unc5b, a well-characterized endothelial tip 

cell marker as well as an important number of guidance molecules implicated in vascular 

navigation were upregulated upon in vitro trans-differentiation. 

 In conclusion, this study demonstrates that myeloid cells can give rise to tumor 

lymphatic endothelium. As tumor lymphangiogenesis promotes metastatic dissemination, 

understanding the signaling pathways which orchestrate this trans-differentiation process 

seems to be warranted. A quest which is facilitated by the transcriptional characterization 

of an in vitro lymphatic-like tube formation assay as well as by the development of an in 

vitro co-culture assay mimicking the in vivo trans-differentiation process. 
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