
Individual Service Composition in the Web-age

Inauguraldissertation

zur Erlangung der Würde eines Doktors der
Philosophie vorgelegt der

Philosophisch-Naturwissenschaftlichen Fakultät
der Universität Basel

von

Sven Rizzotti aus Basel

Basel, 2008

Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät auf
Antrag von

Herrn Prof. Dr. Helmar Burkhart, Universität Basel
und
Herrn Prof. Dr. Gustavo Alonso, ETH Zürich, Korreferent.

Basel, den 11.12.2007 Prof. Dr. Hans-Peter Hauri, Dekan

To my parents, Heide and Fritz Rizzotti and my brother Jörg.

On the Internet, nobody knows you’re a dog.

Peter Steiner cartoon in The New Yorker
(5 July 1993) page 61

Abstract

Nowadays, for a web site to reach peak popularity it must present the
latest information, combined from various sources, to give an interactive,
customizable impression. Embedded content and functionality from a
range of specialist fields has led to a significant improvement in web
site quality. However, until now the capacity of a web site has been
defined at the time of creation; extension of this capacity has only been
possible with considerable additional effort. The aim of this thesis is to
present a software architecture that allows users to personalize a web
site themselves, with capabilities taken from the immense resources of
the World Wide Web.

Recent web sites are analyzed and categorized according to their
customization potential. The results of this analysis are then related
to patterns in the field of software engineering and from these results,
a general conclusion is drawn about the requirements of an application
architecture to support these patterns. A theoretical concept of such an
architecture is proposed and described in detail.

The empirical part of the study includes an implementation of the
proposal and a demonstration of the assembly of capabilities found in
the World Wide Web. This implementation is based on established
technologies but applies them to a new, specially-designed structure. It
allows users to add selected facilities to arbitrary web sites simply by
calling a specific web address. This gives the user the potential to adapt
the appearance and function of web sites to his or her personal needs.

An in-depth analysis of the challenges and restrictions of the soft-
ware design completes the proposed architecture. Practical examples of
behavior patterns show possible implementations in a range of fields.

Finally, a vision developed from the results presented in this thesis is
outlined and subjects for future research are examined.

Keywords: collaborative software, mashup, rich internet applications,
semantic web, service-oriented architecture, web services, web 2.0, web
3.0

iii

Acknowledgements

I would like to express my gratitude to people involved in my research
process. Firstly my supervisors deserve my acknowledgements. I would
like to thank Professor Helmar Burkhart and Professor Gustavo Alonso
for encouraging me to commence the dissertation research process and
also for making it possible financially. Professor Helmar Burkhart has
provided me with invaluable guidance during the research and I am very
grateful for all his efforts and for the time he has given me.

I would like to thank all the co-workers at the Department of Computer
Science and Pharmacy, with whom I have discussed the various aspects
of conducting research for dissertation. The discussions with Christina
Weber, Alexander Vögtli, Martin Guggisberg, and Tibor Gyalog have
particularly influenced the progress of my research and I would like to
thank them for patiently listening to my torrent of words from time to
time. I would also like to express my warmest thanks to Robert Frank,
Beat Ernst, Pascal Betz and Adrian Ensner, with whom I have had many
fruitful discussions. I am also very grateful to Andrew Brown, Stefanie
Mahrer and Eric Fischer for their valuable time reading and discussing
my writings.

The support provided by my family and closest friends has been truly
indispensable throughout the project. Urs and Vera Schlittler made the
writing process a delightful experience by hosting me in the wonderful
Swiss alps and especially Ruth Schlittler deserves my warmest thanks
for her endless support and understanding.

Financial support for the printing of this thesis was provided by the
dissertation fund of the University of Basel.

Basel, June 10, 2008

v

Table of Contents

Abstract iii

Introduction 1

I Fundamentals 7

1 Evolution in Usage of the Web 9

1.1 Before the World Wide Web 9
1.2 From information silos to rich interfaces 10
1.3 Rich web applications . 11
1.4 Web applications vs. desktop applications 11
1.5 Summary . 13

2 Distinguishing Elements in the Web Environment 15

2.1 Overview . 15
2.2 Monolithic software architecture 15
2.3 Service-oriented architectures 16

2.3.1 Approach to service-oriented architecture 17
2.3.2 Approach to service-oriented architecture 18

2.4 Web-based services . 19
2.4.1 Business models 19
2.4.2 Summary: The community effect 22
2.4.3 Web 2.0 . 22
2.4.4 Mashups . 23

2.5 Browser technologies . 26
2.5.1 Browser extensions 26

vii

viii Table of Contents

2.5.2 Plugins . 26
2.5.3 Themes . 27

3 Web Technologies 29

3.1 Overview . 29
3.2 Server-side . 29

3.2.1 Server-side scripts 29
3.2.2 Server pages . 30

3.3 Client-side . 32
3.3.1 JavaScript . 32
3.3.2 Flash . 33
3.3.3 Laszlo, OpenLaszlo, DHTML 34
3.3.4 Java Applets . 34

3.4 Communication . 35
3.4.1 AJAX . 35
3.4.2 SOAP and related standards 36
3.4.3 REST . 39
3.4.4 Alternatives to SOAP and REST 40

4 Problem Description 41

4.1 Categories of individualization 42
4.2 Software architecture to support category-based personal-

ization . 43
4.3 Challenge of this work . 44

5 Related Projects and Assessment 47

5.1 Projects based on Firefox Extensions 47
5.2 Proxy-based projects . 51
5.3 Other related projects . 52
5.4 Summary of evaluated projects 53

II Syndicate Framework 55

Table of Contents ix

6 Concepts and Terminology 57

6.1 Pattern-based individualization 57
6.1.1 Content pattern 58
6.1.2 Presentation pattern 58
6.1.3 Integration pattern 59

6.2 Manifold – The subsequent intention 60
6.2.1 Advantages . 62
6.2.2 Requirements on the applications 63

6.3 Use cases and basic architecture 63
6.4 Terminology . 64
6.5 Involved servers . 66
6.6 Architecture principles . 66
6.7 Summary . 69

7 Syndicate Units 71

7.1 Syndicate components . 71
7.1.1 Syndicator and page states 72
7.1.2 Syndicate server . 72
7.1.3 Mission . 75
7.1.4 Mission Patterns 75
7.1.5 Mission triggers . 76
7.1.6 Properties . 77

7.2 Service unit . 78
7.2.1 Service . 78
7.2.2 Server detour . 78

7.3 Transformer unit . 80
7.3.1 Adapter . 80
7.3.2 Transformer . 80

7.4 Exploration unit . 80
7.4.1 Scout . 80

7.5 Data access unit . 81
7.5.1 Source selector . 81
7.5.2 Connector . 82

x Table of Contents

7.6 Controlling unit . 82
7.7 Output viewer . 83

7.7.1 Renderer . 83
7.7.2 Injector . 83
7.7.3 DOM . 83
7.7.4 External programs 84

8 Syndicate Control Flow 85

8.1 Syndication of a page . 86
8.2 Mission triggering . 87
8.3 Mission activation . 88

8.3.1 Local Consigliere 88
8.3.2 Remote Consigliere via server detour 89
8.3.3 Information gathering with the Scout 89
8.3.4 Transformation and Rendering 89
8.3.5 Injection . 90

III Syndicate as seen by the User 91

9 Mission Publisher 93

9.1 Mission components . 93
9.1.1 Summary . 93
9.1.2 Implementation . 94
9.1.3 Mission Properties 95

9.2 Mission Unpublishing . 97
9.3 Publishing workflow . 98

10 Mission Subscriber 99

10.1 Mission subscription . 99
10.2 Mission selection . 99
10.3 Mission unsubscription . 100

11 Examples 101

Table of Contents xi

11.1 Presentation Mission examples 103
11.1.1 AdRemover . 103
11.1.2 TextFieldSize . 104
11.1.3 TableSorter . 105
11.1.4 FileExtension . 105
11.1.5 iTunes . 105
11.1.6 Stocks . 106

11.2 Content Mission examples 106
11.2.1 Questions . 106
11.2.2 Acronyms . 106
11.2.3 BookFinder . 107
11.2.4 Distance . 108
11.2.5 Dictionary . 108
11.2.6 Weather . 109

11.3 Integration Mission examples 109
11.3.1 TextSpeaker . 109
11.3.2 Translator . 109
11.3.3 PhoneCall . 112
11.3.4 AskSmart . 113
11.3.5 DiscMission . 113

11.4 Examples of distinguished components 113
11.4.1 Triggers . 114
11.4.2 Scout . 114
11.4.3 Properties . 115
11.4.4 Adapter . 115
11.4.5 Transformer . 116
11.4.6 Source selector . 116
11.4.7 Renderer . 116
11.4.8 Injector . 117

12 Workflow Example 119

12.1 Involved servers . 119
12.2 Workflow steps . 120

xii Table of Contents

12.2.1 Mission creation 121
12.2.2 Mission publishing 122
12.2.3 Mission localization 122
12.2.4 Mission subscription 122
12.2.5 Mission individualization 122
12.2.6 Mission usage . 123
12.2.7 Unsubscribe of the Mission 123

IV Syndicate Implementation 125

13 Technical Challenges 127

13.1 Browser scripting . 129
13.1.1 Cross browser scripting 130
13.1.2 Cross site scripting (XSS) 131
13.1.3 Callback functions 131
13.1.4 Browser extensions 132
13.1.5 Bookmarklets . 133
13.1.6 Signed Scripts . 134

13.2 Microformats . 135
13.3 Scraping techniques . 136
13.4 Loose coupling . 137
13.5 Visual feedback of selected page structures 137
13.6 Dynamic configuration . 138

13.6.1 Configurations in the web browser 138
13.6.2 Configurations at the Syndicate Server 138

14 Implementation Architecture 141

14.1 Data . 141
14.1.1 Missions . 141
14.1.2 Mission properties 142
14.1.3 Communication data 142

14.2 Processes . 143
14.2.1 Syndication . 143

Table of Contents xiii

14.2.2 Mission loading . 144
14.2.3 Mission triggering 144
14.2.4 Mission activation 145

V Future – Perspectives of Syndication 149

15 Syndicate Risk Management 151

15.1 Security . 151
15.2 Service guarantee . 153
15.3 Performance . 153
15.4 Legal issues . 154

16 Conclusion and Outlook 157

16.1 Summary of the research 157
16.2 Conceptual framework and conclusion 158
16.3 Contributions . 160
16.4 Limitations of the study 160
16.5 Avenues for future research 160

16.5.1 Community aspects 161
16.5.2 Security enhancements 162
16.5.3 Reliability . 163
16.5.4 Usability . 163

16.6 Vision for the future of the web 165

References 178

Glossary – Web 2.0 and Beyond 179

List of Figures

1 Dissertation Structure . 4

1.1 Traditional web application 12
1.2 Event-driven web application 13

2.1 Service-oriented architecture 17
2.2 A Site that Highlights Restaurant Locations 25

5.1 Filling out a form with Chickenscratch 48

6.1 Yahoo! Live Traffic . 59
6.2 Syndicate use case diagram 67
6.3 Syndicate basic architecture 68
6.4 Involved servers . 68

7.1 Syndicate components . 71
7.2 States of a web page . 73
7.3 Syndicate Client/Server 74
7.4 Relation of Mission patterns 76
7.5 Trigger Event . 77

8.1 Input and output resources 85
8.2 Page syndication . 86
8.3 Initializing of a Mission 87
8.4 Mission activation . 88
8.5 Consigliere Selection . 88
8.6 Invocation of the Scout 89
8.7 Injection . 90

xv

xvi List of Figures

9.1 Mission parts . 93
9.2 Mission summary . 94

11.1 A syndicated page . 103
11.2 Resizable text fields . 104
11.3 List of acronyms . 107
11.4 Components for Acronyms 108
11.5 Components for language dedection 110
11.6 Components for Translator 111
11.7 Web page with telephone numbers 112

12.1 Workflow example . 119
12.2 Involved servers for the Distance Mission 120

13.1 Synchronous message queuing 132
13.2 Asynchronous message queuing 133

14.1 Mission loading . 144
14.2 Syndicate architecture . 146

15.1 Chain of trust in Syndicate 151

List of Tables

3.1 SOAP implementations 38

5.1 Functionalities of related projects. 53

6.1 Individualization on the web compared to the MVC paradigm 60
6.2 Properties of a manifold system 62
6.3 User roles . 64

8.1 Handlers for mission output 90

9.1 Trigger settings . 95
9.2 Source Selector settings 96
9.3 Scout strategies . 97
9.4 Injector locations . 98

10.1 Mission selection criteria 100

11.1 Syndicate examples . 102

13.1 Technical challenges in relation to manifold principles . . 128
13.2 Included plugins for JQuery 130
13.3 Number of allowed characters in Bookmarklets 134

14.1 Communication partners and methods 142

xvii

Introduction

Purpose of the study

In just 17 years, the World Wide Web has grown from an experimental
research project into a technological cornerstone of the modern world.
The web, originally developed to easily publish and link information,
today offers a platform which can compete with desktop applications and
has become a preferred platform to access many kind of applications and
services. An enormous variety of often freely available software provides
support and benefits for a whole range of needs in a digital life.

The rapid development in the field of web sites can reveal several trends.
As regards content, increasingly more up to date data is presented. While
in the formation phase of the World Wide Web mainly static pages of
facts were accessible, content is nowadays continuously renewed, which
offers real time behavior. According to a press release presented in 2006,
85% of the top twenty most visited web sites focus on live data [1].

In the beginning, web site representations were only text-based but
have, in the meantime, been extended to multimedia publications. At the
same time, handling and interaction opportunities have improved in such
a way that differences compared to conventional desktop applications
are no longer evident [2].

Another trend is on the linking of various content providers in the World
Wide Web. In addition to the integration of information from different
data origins, the functionality of external sources is embedded [3].

These advances are a quality improvement in a number of aspects:
The latest data from various sources are presented in a multimedia way
to the user. Interactive interventions let the user set up an individual
view. Cross-connection and the use of multiple data sources allow spe-
cialization of the integrated areas. In comparison to earlier sites, today’s
offer more up-to-date information, enriched with related information or
functionalities on a more individual level.

As a vision, I see further increase of development in these directions
which will additionally be affected by the use of new devices and infras-
tructure. With the existence and prevalence of new display devices, the

1

2 Introduction

World Wide Web will get new opportunities to establish itself. If these
predictions become true, investigations of general character along these
trends offer interesting research fields.

The advances of personal customization and integration of content and
functionalities from external sites have one major drawback: They are
all dictated by the developers of the particular web site. Functionalities,
personal setting possibilities or connections to other data sources that
are not implemented at the time of creation can only be supplemented
at extra cost, if at all. Future breakthroughs in software friendliness
may well depend on the potential to compose existing resources into new
constellations. Though the wish for customizable applications that can
be enriched after they have been installed is not new and solutions exist,
they all demand additional effort.

The challenge of finding a way to allow users to include content and
functionalities in existing web sites led to the research objective as stated
below.

How to design an application architecture to enable an
individual composition of existing capabilities found in the
World Wide Web?

To verify the theoretical model, a practical implementation shall prove
the correctness of the solution. The realized application addresses the crit-
ical challenges and allows a closer examination in reality. The experiences
and outcome of the usage will be discussed and analyzed.

The solution to the research problem described is generated through
finding answers to the following, more focused research questions:

Question 1: How can existing web sites be categorized, and what are
the resulting requirements of a software architecture which allows
individual composition of these categories?

Question 2: How does an application architecture have to be designed
in order to accomplish the stated requirements?

Question 3: How can the architecture be realized in practice and what
are the experiences when applied to different fields?

This thesis describes Syndicate, a software architecture which proposes
to answer these questions.

Introduction 3

Strategies and sources used to answer the
research questions

The phenomenon under study in this research belongs to a category of
applications which would profit from a combination with other applica-
tions. In part one the existing literature and products on the research
topic are discussed, and a positioning of the study in relation to these
resources is presented.

Existing knowledge and positioning of the study

Based on the objective of this research, a closer description of the software
category addressed is necessary. This research focuses on applications in
which the combination of capabilities from disparate systems offers new
functionalities and benefits the individual. Real-time or reactive systems
are not part of the study. However, whenever the livelihood of a business
depends on the ability to adjust quickly to changes in the marketplace or
respond immediately to competitive threats, it is included in this study.

To an application developer this sounds very familiar as Service-
oriented architecture (SOA) has become a de facto standard for developing
component-based applications which can be accessed over a network [4].
SOA is an organized approach for applying a combination of service-
orientation and distributed object computing to application architecture.
SOA will be discussed in section 2.3.

This research focuses on an architecture that supports the user in
composing existing services but also shows the consequences on the
development side. Whenever possible, existing products or frameworks
will be used to simplify the development cycle. Chapter 5 contains a
survey of related projects and a comparison to requirements for Syndicate.

Dissertation structure

This thesis is divided into five parts starting from the generic and moving
to more specific information. The structure follows the objectives of this
study and the chosen research strategy. The content and composition of
the thesis is illustrated in figure 1.

The first part provides an introduction to the research. It begins
with a discussion of the emerging software solutions and the challenges
they pose for service-oriented applications. After the general topic, the

4 Introduction

Part I Fundamentals

Chapter 1: Evolution in computer usage

Chapter 2: Distinguishing elements in the
Web environment

Chapter 3: Web technologies

Chapter 4: Problem description

Chapter 5: Related projects

Part II Syndicate Framework

Chapter 6: Basic concepts

Chapter 7: Syndicate Units

Part III Syndicate as seen by the user

Chapter 9: Mission publisher

Chapter 10: Mission subscriber

Chapter 11: Examples

Part IV Syndicate implementation

Chapter 13: Technical challenges

Chapter 14: Implementation architecture

Part V Future – perspectives of syndication

Chapter 15: Investigation

Introduction Chapter 8: Control flow

Chapter 12: Workflow example

Chapter 16: Conclusions and outlook

Figure 1: Dissertation Structure

Introduction 5

study goes on to describe technologies and distinguishing elements that
influence the research phenomenon. The subsequent chapter defines
the research phenomenon in detail and states the research questions. A
research of related projects and practical impacts on this work conclude
the analysis.

In the second part the elaboration of the theoretical architecture is
presented and completed with a discussion of various aspects challenging
the suggested concept.

The third part focuses on the user’s view. It shows strategies for
combining existing facilities and provides information on how to create
new implementations and access to other potentials on the web. Practical
examples complete this section.

In the fourth part concrete challenges and an implementation of the
generic considerations from the second part are outlined as a result of
the research.

In the last part, perspectives of the future, developed on the results
presented in this thesis, are drawn and possible areas for further research
are presented.

Part I

Fundamentals

7

1 Evolution in Usage of the Web

This chapter gives a historical overview of the evolution of the World
Wide Web usage. It is not intended to cover every variation of capabilities
that has arisen in the past, but rather to outline fundamental changes
that led to this thesis.

The most radical shifts in computer usage appeared before the internet
started to exist. Quite a few concepts that have successfully evolved over
time are now being transferred into the area of world wide connected
computers without substantially changing the original purpose [5].

1.1 Before the World Wide Web

With the step from central, batch-oriented computing with simple in-
put/output based terminals to personal computers, decentralized pro-
cessing became a reality. New applications appeared along with the
introduction of personal computers and brought more productivity to
a wider public. But important characteristics found in centralized com-
puting systems such as reliability, low maintenance, security, and the
possibility for everyone to share information and applications easily, were
still missing.

As a consequence, the concept was created to combine the strength of
both system types. The central idea was cooperative processing where
information is viewed and manipulated on personal computers and stored
and processed with other data on large mainframe systems.

Inventions during that period were essentially driven by hardware
advancements. Computer systems themselves have always been the
center of interest but networking is a core part of today’s computer
system. In 1984, John Gage, Vice president of Sun Microsystem, coined
the phrase “the network is the computer” to describe the emerging world
of distributed computing [6]. But it took more than two decades until
this vision finally happened.

This vision, coming to life in the area of the World Wide Web, brought
another evolution of software applications with it. The following sections

9

10 1 Evolution in Usage of the Web

outline web usage starting from its beginning in 1990 from the user’s
and developer’s point of view. The main advancements closely mirror
the innovations in computer history.

1.2 From information silos to rich interfaces

The first web sites that appeared on the internet were based on static
information. Without interaction possibilities other than hyperlinks, data
was made available as a series of interlinked pages. Web sites, acting as
information silos, are still in place today and offer their content in the
sense of reference books. Web sites following this principle of information
silos are basically an electronic version of books where references within
the book or across to other books can be resolved by selecting the
reference text.

From a user’s point of view the next step in interactivity came with the
appearance of web-based formulae. Text fields or clickable option buttons
offered the user simple ways to enter data and allowed the server to
select specific data for a requesting user. In the early days the submitted
information was not yet used to start processes other than selecting web
pages.

Convenient interaction possibilities familiar from desktop applications
were for a long time out of reach for internet sites. Both users and
developers learned to get around limitations found with formula-based
access. But it actually meant that users accustomed to using the mouse
have been thrown back in to the area of central computing where simple
input/output from a terminal was state of the art.

Different approaches tried to impose more convenient ways of interac-
tion, mostly by distributing behavioral information that was played back
by a program stored on the user’s computer. In that sense, web sites
were not perceived as applications but still behaved as data providers
using the internet as a distribution channel. Programs on the client
side needed to be installed and maintained in addition to the universal
program of the web browser.

Another approach came with the recognition and acceptance of pre-
existing technologies by major web browsers. With further developments
in standards supporting interaction possibilities and concepts of designing
web applications, a new generation of rich interfaces became reality. This
circumstance made rich web applications possible.

1.3. Rich web applications 11

1.3 Rich web applications

The same principles used to display server-based applications on client
desktops allows applications to be displayed across the internet. Security
barriers have to be overcome but as long as a client can connect to a server,
applications can be displayed. The type of connection is not important
and LAN, WAN, Internet, and dial-up connections are possible.

With the growth of internet usage and broadband connections, the
web browser became more and more important. With browser-based
execution it is now possible to start an application by clicking on a
hyperlink on a web page. Software distribution and maintenance costs
could be cut dramatically because the situation is likewise to central
computing.

The combination of user-friendly interfaces and the rediscovery of pos-
sibilities of browser-based executions changed the way web applications
were built. Figure 1.1 compares a shopping store built as a traditional
web application with a event-driven way of building web applications in
figure 1.2. A single page was the unit of work in traditional web appli-
cations while nowadays an application splits into components. Current
applications are based on a true client/server model while early web
application reduced the client part to validation issues of entered data.

1.4 Web applications vs. desktop applications

Web technologies of today can offer a rich experience to the user and
are an alternative to desktop applications. Nowadays there is a strong
trend towards web applications for several reasons: Supporting multiple
operating systems on the desktop implies added costs to developers and
administrators. End-users that lack technical skills to deal with upgrades
and operating system complications require continued maintenance. Ad-
ditionally the growing demand of mobile workers who want to have access
to their applications has to be satisfied. Web applications address these
issues; the advantages are summarized in the following list [5] [2] [7].

Installation-free: Web applications do not require installation, they are
accessed by the web browser as a generic program.

Development: Reduced development costs due to operating system in-
dependent frameworks.

12 1 Evolution in Usage of the Web

Error Page

Error Page

Action
Validation

Persistence

Action
Validation

Persistence

Action
Validation

Persistence

Review
shopping

basket
Submit

Enter
shipping

data
Submit

Choose
Item and
add to

shopping
basket

Enter billing
Submit

Figure 1.1: Traditional web application

Maintenance: Lower maintenance costs because of central administra-
tion. Upgrades without interrupting business.

Reliability: User problems do not require a technician to visit the desktop.
Simple procedure to replace the accessing device in case of a failure.

Universal access: Accessibility from any device that connects to the
internet. Collaborations with other users are possible.

Bandwidth savings: Caching strategies on the user-side and on dis-
tributed servers allow bandwidth savings.

Scalability: Easier scalable because distribution of applications have
been eliminated.

Security: Possibilities to increase security because web applications only
save content in a user’s cache and leave the computer untouched.

1.5. Summary 13

Order Entry

Shopping item List

Shopping basket

Shipping form

Billing form

Error View

Shopping item List
Component

Shopping basket
Component

Shipping
Component

Billing
Component

Events
Validation

Persistence
Event Handlers

Figure 1.2: Event-driven web application

Applications and data are maintained centrally. All user activities
can be monitored remotely.

The debate of web applications that will eventually replace desktop
originals did not just start with the appearance of web applications.
The concept of personal computers that make use of central servers for
processing activities, and mainly focus on interaction with the user and
the remote server, has been around for quite a while. Unix, with its
X-Windowing system, brought up similar discussions in 1970 and since
then it has always been a controversial subject.

1.5 Summary

In just 17 years, the World Wide Web has grown from an experimental
research project into a technological cornerstone of the modern world.
The web, originally developed to easily publish and link information,
today offers a platform which can compete with desktop applications.

Important characteristics already found in centralized computing sys-
tems such as reliability, low maintenance costs, security, and the ability
for everyone to share information and applications paired with a rich user

14 1 Evolution in Usage of the Web

experience, make the World Wide Web the ideal platform for modern,
information centric applications.

However, it is remarkable that the key technologies of the web such
as the communication protocol have not substantially changed since its
introduction.

2 Distinguishing Elements in the Web
Environment

2.1 Overview

This chapter covers concepts, architectures, and technologies that are
essential in the area of web applications and are frequently referred to
during the introduction of the proposed solution to the research questions.
Section 2.2 starts with a review on monolithic software architectures and
continues with the foundation of service-oriented architectures, a design
philosophy used in order to achieve independence of involved software
components. The following section deals with web services and different
business models that were made possible by using the new technologies.
The section continues with a closer analysis of the terms web 2.0 and
Mashups since they provide central concepts. Browser technologies are
finally outlined which built a starting point for later discussions.

2.2 Monolithic software architecture

One aspect of the majority of existing applications are their monolithic
structure. According to a prediction of Gartner in 2003, by the end of
2008 the 40-year domination of monolithic software architectures will be
relieved [8].

The design principle of monolithic architectures has different conse-
quences and has thoroughly been studied in the context of computer
kernel development [9] [10]. Monolithic systems do have their operation
field, for example when processing speed and seamless integration is a
core issue.

On the other hand monolithic systems try to pack as many tasks
as possible into its environment. This leads inevitably to a strong
binding to the chosen platform and makes it impossible to select other
alternatives. With the choice of advantages from one specific system, all

15

16 2 Distinguishing Elements in the Web Environment

the disadvantages or unwanted features in other areas are automatically
selected as well.

Already learned from analyzing monolithic kernel structures, several
drawbacks occur. They are very likely to recur in software applications,
designed to the same architecture model [11] [12]. It has been shown
that extensibility, portability, maintainability and reusability are critical
properties in monolithic systems.

2.3 Service-oriented architectures

Service-oriented architectures (SOA) is a natural evolution from other
software modularization programming techniques and has been around
in the industry for 30 years. This standard-based technology differs from
other architectures in the sense that the hardware and network have
matured enough to support it. In the meantime SOA has reached a level
where platform vendors, analysts, consultants and developers all say that
the entire industry is adopting SOA. IBM Global Service Vice President
Michael Liebow answered a question after his keynote presentation with:
“SOA is the only architectural style we need to know about” [13].

Service-oriented architecture is a design philosophy with the idea of
achieving Loose coupling among interacting software agents [8]. Ob-
taining business to business interaction among different partners with
heterogeneous infrastructures is not a simple task. In the past, this has
been accomplished either by time-consuming, delicate manual operations,
or through hard-coded actions that are difficult to maintain. service-
orientation is an approach to modularizing and organizing distributed
resources with loose coupling. Applications based on this architecture
principle enable great flexibility in orchestration of business processes
among different companies and the automation of manual tasks.

Service-orientation uses standardized protocols and interfaces to access
the underlying business logic. The offering of services through contracts
allows the individual service providers to change their underlying im-
plementation with no impact on the service consumer. Service-oriented
architecture simplifies the development process, makes it easier to main-
tain, and manages complex distributed resources. This results in faster
response to business needs and therefore saves costs.

Figure 2.1 shows a diagram of a service-oriented architecture. The
characteristics which typify service-oriented architecture are summarized

2.3. Service-oriented architectures 17

in the following list [14]:

Loose coupling: Loose coupling is an architectural principle to build
applications that promote loose coupling among components. Loose
coupling can mean independence in terms of time or format.

Access through interfaces: Software components called services publish
their interfaces in a platform-, language-, and operating system-
independent way.

Service registry: Consumers must be able to find and discover services
dynamically.

Communication through messages: Services are interoperable and com-
municate through messages.

Service
Consumer

Service
Directory

Serviceinvoke

registerdiscover

Figure 2.1: Service-oriented architecture

2.3.1 Approach to service-oriented architecture

Service-orientation is about an integration of different resources. That
includes business data, legacy systems, applications, and connections
to other partners. These resources are generally autonomous and can

18 2 Distinguishing Elements in the Web Environment

be stored on different operating systems and are accessed via different
technologies and communication protocols.

Once the decision to implement an SOA architecture has been made,
a careful investigation of the business needs is the first step. SOA is
more than a development paradigm. It proclaims an optimization of the
alignment of business needs and information technology. Nevertheless
the business goals have to be the main focus, not SOA.

The next step is partitioning of the functionality into small pieces.
This guarantees an efficient response to changing business needs. Time-
to-value is a critical criterion and to continually demonstrate alignment
with use-cases from business needs, small steps are preferable.

SOA is gradually replacing monolithic architecture as the premier design
principle for new business applications. This process is driven partly
by the inherent benefits of SOA for new application projects. Reuse
of application business logic is a requirement of an increasing number
of projects. Personalized client/server, web-based and portal-style user
interfaces demand such reuse as a central part of economically developed
applications.

Different users need access in different situations using different devices
to the same set of application functionalities. Such user categories can
include administrators, operators, customers, managers, and employees.
Devices might include laptop computers, personal digital assistants or
phones; and situations cover offices, transport possibilities, hotels or
public places.

In all possible combinations, unrestricted access to the back-end busi-
ness functions is essential. Loosely coupled SOA, provides a natural way
to achieve that business-driven demand.

2.3.2 Approach to service-oriented architecture

As shown in the next section, SOA is not the same as web-based services.
SOA is a design philosophy and web-based services are an implementation
methodology which uses specific standards and language protocols to
expose system functionality. But web services are definitely a good way
to execute an SOA solution.

2.4. Web-based services 19

2.4 Web-based services

In recent years business models have changed dramatically in electronic
commerce. New technologies and greater bandwidth have made new
marketplaces possible. In this section an overview of driving technolo-
gies and resulting business models is given. Examples of revolutionary
applications endorse the acceptance of the different categories.

The upcoming new business models have not only influenced and
changed the way producers and consumers interact with each other, but
have also made a cultural shift in business behavior possible. Along with
new areas of consumer involvement, additional third party services have
arrived and tried to profit from successful concepts.

All business models described here are based on electronic commerce,
a marketplace on the internet. Electronic commerce is a term to describe
distributing, selling, buying and marketing of goods or services over
electronic media such as the Internet or similar networks. The first
implementation of electronic commerce started in 1993 with the first
banner advertisement, placed on a web site of Global Network Navigator
(GNN) by O’Reilly & Associates, Inc. [15].

Electronic commerce merges the standards, simplicity, and connectivity
of the internet with the core processes that are the foundation of business.
The new dominant applications are interactive, transaction-intensive,
and let people do business in more meaningful ways [16].

2.4.1 Business models

Although any electronic commerce solution is unique, it is generally
possible to categorize them. Depending on the participating partners
the solutions can be grouped into business to consumer (B2C), business
to business (B2B), consumer to consumer (C2C) or consumer to business
(C2B) oriented implementations.

Business to consumer (B2C)

Business to consumer electronic commerce (B2C) is a form of commu-
nication or trade relation in electronic commerce between a producer
and a consumer. In this traditional model a firm or company acts as a
producer and sells goods or services to a consumer.

An online bookstore is an example where goods typically can be
ordered through formula based web applications. Access has limited

20 2 Distinguishing Elements in the Web Environment

interactivity and some information such as a shopping basket is stored on
the company side. Frequently other services are involved as well. Credit
card or shipping information can often be accessed through the same
portal.

Companies providing mapped driving directions or information about
public transport timetables are examples of service providers. Map-
ping data are nowadays often presented in an interactive manner with
instantaneous adaption as the user modifies its visible area.

B2C electronic commerce has several advantages to retail stores:

Up to date Information: Information is accurate and can change instan-
taneously.

Instantaneous Communication: Shopping can be faster and more con-
venient.

Global access: Products and services can be addressed globally.

Greater availability: Limitations like opening hours vanish. Products
and services are available 24 hours a day, 365 days a year.

Customization: Product selection can be adapted to customers.

Reaching a larger audience: With different advertising possibilities, a
larger audience can be reached.

Direct access: Without intermediaries, faster and cheaper trades are
possible.

The missing possibility of goods inspection is the main disadvantage of
B2C electronic commerce. In electronic commerce, it is not possible to
physically inspect the goods. The buyers have to rely on the information
provided.

Business to business (B2B)

Business to business categorizes a commerce model where transactions
occur between different companies or businesses. The idea is to fully
automate the necessary interaction between companies without manual
interaction.

Major advantages of business to business solutions include:

2.4. Web-based services 21

Cost saving: Electronic exchanges are more cost effective than paper-
based ones, because many of the overheads of manual interactions
can be avoided.

Speed: Processing can start immediately after receiving instructions.

Robustness: Electronic exchange can be better controlled than manual
operations and is less likely to fail.

Monitoring: Electronic interactions can better be logged and used for
analysis purposes than paper-based ones.

Several standards exist for Business to Business interactions, often
competing each with other. Examples of already established standards are
the Electronic Data Interchange (EDI), used in manufacturing, SWIFT,
used in the financial world, or RosettaNet supporting trading relationships
between IT supply chain partners.

Consumer to consumer (C2C)

A relationship where consumers interact directly with each other. This
constellation can be initiated or supported by a platform where consumers
meet. Examples of such platforms are online auctions or data interchange
platforms. These community oriented platforms bring customers together
and act as intermediate gateways among participating users. Depending
on the role a user is playing, he can appear as a supplier or as a customer.

Consumer to consumer solutions have the following advantages:

Potentiality: Without the provided platform it is very unlikely that users
would find each other to start trading.

Variety: The more users participate, the greater the variety which exists.

Consumer to business (C2B)

Consumer to Business is a variant of the Consumer to Consumer sit-
uation where the focus lies on providing products rather than trading
or exchanging goods. Examples are photographic repositories, where
users provide private photographs to sell via Internet channels. Other
examples are providers that collect reviews where users contribute their
ratings for the community.

22 2 Distinguishing Elements in the Web Environment

This business model has the same advantages as in the C2C model,
especially because it allows everyone to start a business, leaving out high
administrative overheads.

2.4.2 Summary: The community effect

To summarize, what all business models have in common is that they
get more effective the more users benefit from them and the more users
contribute to the system. This community influence is one of the key
factors of successful businesses and applies not only on the web. The
community effect is not only relevant to consumers or producers but also
to developers contributing to open interfaces of web-based services [17]
[18].

2.4.3 Web 2.0

The term Web 2.0 describes technologies for a next-generation internet
and can be seen as enabling technologies for the business models described
in section 2.4.1. It represents an important shift in the way digital
information is created, shared, stored, distributed, and manipulated.
There is no precise definition but Tim O’Reilly provided a compact
description of web 2.0 in a blog in 2006:

Web 2.0 is the business revolution in the computer industry
caused by the move to the internet as platform, and an
attempt to understand the rules for success on that new
platform. Chief among those rules is this: Build applications
that harness network effects to get better the more people
use them.” [19]

Web 2.0 is more a philosophy than a list of features and the term
has evolved over time. Tim O’Reilly formulated a set of web 2.0 design
patterns that describe the core of the web 2.0 [20] [21]:

The Long Tail: The majority of the content on the internet is produced
by small sites.

Data is the Next Intel Inside: Applications are increasingly data-driven.

Users Add Value: In order to compete with internet applications, user
must add their own data.

2.4. Web-based services 23

Network Effects by Default: The use of an application should have the
aggregation of data as a side-effect.

Some Rights Reserved: Applications should focus on licenses with as
few restrictions as possible.

The Perpetual Beta: Users are engaged as real-time testers with an
ongoing update.

Cooperate, Don’t Control: Cooperation is a central idea in web 2.0 ap-
plications and re-use of data and services are a general requirement.

Software Above the Level of a Single Device: Internet applications have
to be designed to be used by multiple devices.

Tim O’Reilly further compares a platform built upon the stated design
patterns with conventional applications and concludes: “A Platform
beats an application every time” [21].

2.4.4 Mashups

The term Mashup [22] [23] [24] [25] originates from the music business
and means the mixing of different songs together. Now almost all creative
combinations of media such as photographs, videos or audio data are
considered to fall into the category of mashups.

In the area of the Web 2.0, mashups signify the product of combinations
of applications or content found on the web. The fundamental idea is
based on the fact that content is of greater importance than applications
and providers of web sites making public access to functionality and
content possible. The following definition of mashup can be found in
Wikipedia [26]:

“A mashup is a web site or application that combines content
from more than one source into an integrated experience.
Content used in mashups is typically sourced from a third
party via a public interface or application programming inter-
face (API).”

In combining existing products into new ones lies the real power of
mashups. While the participating products themselves may not be of
great interest, the combination of them might offer real value to other
users.

24 2 Distinguishing Elements in the Web Environment

With the appearance of web interfaces, a new remix culture became
possible. These circumstances form a do-it-yourself community where
users play a central role as described in section 2.4.3. When everything
can be mixed together, this offers a playground for creativity and led
Vint Cerf, Vice President of Google to comment:

“We know we don’t have a corner on creativity. There are
creative people all around the world, hundreds of millions of
them, and they are going to think of things to do with our
basic platform that we didn’t think of. So the Mashup stuff
is a wonderful way of allowing people to find new ways of
applying the basic infrastructures we’re propagating.” [27]

In order to make the publication of mashups possible, a few compo-
nents have to be guaranteed: content, data-streams, and application
functionality must be accessible. Ideally providers would offer an API
and allow the public to make use of the application functionality.

Beside these technical requirements, legal restrictions have to be con-
sidered as well, allthough nowadays a growing number of web users
offer their content freely or based on a purchase contract to interested
users. ProgrammableWeb [28] and MashupFeeds [29] provide an overview
of available programming interfaces and mashups. Huge communities
grew around interesting web services and that is where providers gain
advantage with cost-free marketing.

Mashup types

Mashups can be built client- and server-side. Client-side mashups can
allow interactive user experiences and integration with the client. Script-
ing languages that are executed by the users browser are a possibility to
build client-side mashups.

Server-side mashups are composed of several already exposed web
services or data sources merged into a single service. Server-side mashups
may also only transfer an existing service into one with other functionality
or they might simply implement the client-side mashup logic.

Besides more control, flexibility, and a richer environment on the
server-side there are also fewer security issues to build mashups. Security
restrictions on the client-side can usually be overcome on the server-side.
For example integrating more than one external source at the same time
is generally not possible on the client-side.

2.4. Web-based services 25

Another reason for server-side placement of a mashup is the indepen-
dence of a scripting language the user’s browser must understand. A
user’s web browser might have disabled script execution or other client
devices such as mobile phones may not understand the scripting language
at all.

Examples

The first groundbreaking application of Web 2.0 Mashups was Google
Maps [30]. In 2005 Google allowed access to and manipulation of its li-
censed satellite maps with a simple programming interface. Housingmaps
[31] combined the advertisements of available apartments and houses with
city maps of Google maps. Other examples are local.alkemis.com [32]
which provides a map of Webcams and traffic control cameras from New
York city and Chicagocrime [33] with a map of crime locations found in
the database of the Chicago police. These two examples were two of the
first accessable mashups and meanwhile, more than 40% of mashups are
based on Google maps. Figure 2.2 shows another example of a web site
where restaurant locations are highlighted.

Figure 2.2: A Site that Highlights Restaurant Locations

Mashups are not limited to the use of mapping. A growing number of
mashups involve multimedia content from sites providing photographs,

26 2 Distinguishing Elements in the Web Environment

video streams, or include services from commercial shopping sites.

Responses of mashup servers can come in a variety of different formats,
but no common accepted standard has evolved so far.

2.5 Browser technologies

All modern browsers allow the installation of additional functionality
and come in “skimmed” versions to minimize software bugs and allow
the user to enhance the browser as they wish. Depending on the web
browser, the names for such extensions change but the general meanings
are equivalent. All variants have in common that they need installation
by the user in advance and all extensions are browser specific.

2.5.1 Browser extensions

Browser extensions are a way to enhance the existing functionality of
a web browser with additional features. Firefox uses the term “add-
ons” which is subdivided into plugins, extensions, themes, and search
engines. Examples of extensions can be grouped into tools that support
other protocols, additions that allow configuration changes, and other
functionality. Protocol extensions may include RSS readers, or access
to FTP servers. Configuration tools can be proxy server switching
extensions, bookmark organizers or toolbars that add specific features.
E-mail clients and debugging tools may be examples of the third group.

Browser extensions are the preferred way to bring new functionality
to the client-side. Since extensions can take full advantage of the client-
side environment without access restrictions, they allow every possible
improvement. At the same time installing an extension means opening
up all personal data stored within a web browser’s reach.

2.5.2 Plugins

One typical application of plugins is the extension of the web browser to
recognize and display other media formats of images, video streams or
runtime environments.

While plugins may offer great advantages, they can at the same time
open up security and allow others to run malicious code within the user’s
execution environment. The plugin API allows plugin content to interact
with scripts on a page (or create their own), without restriction.

2.5. Browser technologies 27

The installation of a plugin does not guarantee trouble-free integration.
For example Java Applet execution is not possible without the installation
of the Java runtime environment. While a runtime environment does
exist for the major web browsers, it does have implementation differences
among them, even if Java has been designed with the idea to avoid this
problem.

The browser itself does not handle the execution of Java Applets, it
only recognizes applets as an object within an HTML page and passes
the responsibility over to the Java virtual machine. Only the detection
of Java Applets and the configuration of runtime specific environment
settings such as caching strategies are usually done with the help of a
plugin.

2.5.3 Themes

Theme add-ons are a possibility to change the way a web browser presents
itself to the user by modifying the graphical user interface. Themes
are a packed version of color settings, button and window styles and
background images. A change in themes results in a modification of
the browser appearance but does not change the content of a web page
nor does it increase the possibilities to support other data formats or
protocols.

3 Web Technologies

3.1 Overview

Web technologies can be separated into server- and client-side components
and communication elements connecting both sides. While XML has
generally been accepted as a standard base for transport protocols to
exchange data, different technologies at the server- and client-side are
in place. This section gives a brief overview of major languages and
technologies to build web applications and serves as a basis for later
descriptions.

3.2 Server-side

Server-side programming describes any software that is executed by a
web server. These applications reside on the server and can therefore
interface with other server-side resources such as databases and e-mail.
Server-side programming is based on two types: Server-side scripts and
Server pages. The generated content is commonly HTML, but may be
other data such as XML.

3.2.1 Server-side scripts

Server-side scripts are programs that build dynamic web pages. Such
scripts interact with the web environment and execute when a hyperlink
points to the code file. Typical uses of server-side programming include
personalized page content or interfaces to a database with the web
browser.

CGI (Common Gateway Interface) is a simple scripting mechanism
supported by most web servers. In the early days those scripts were writ-
ten in C, Perl or shell scripts and were executed by the operating system.
Since those scripts were running in separate processes, performance was
very poor. As of today these and server pages scripting languages such
as ASP and PHP are executed directly by the web server itself or by

29

30 3 Web Technologies

extension modules to the web server. This allows scripting execution
within the same process context and is a lot faster.

Java Servlets are another technology used to build dynamic content on
a web server using the Java platform. Servlets can maintain state across
many server transactions by using HTTP cookies, session variables or
URL rewriting. Java Servlets have an enormous performance advantage
over CGI.

3.2.2 Server pages

Server pages describe technology for embedding scripts into a web page
that can interact with the web environment. Server pages are mostly
standard web pages with added instructions and are therefore easier to
maintain by a web designer. As with server-side scripts the output is
mostly HTML but other formats are also possible. The following list
summarizes common scripting languages.

ASP (Active Server Page): Solution from Microsoft which allows the
usage of various languages but generally VBscript is used. [34]

ColdFusion: An application server and software development framework
originally developed by Allaire Corporation in 1995, and which
now belongs to Adobe Systems. ColdFusion includes services such
as GUI widgets, platform-independent database querying, cache
management and XML parsing, querying and validation. [35]

JSP (Java Server Page): JSP is a Java technology that allows software
developers to dynamically generate HTML, XML or other types
of documents in response to a web client request. JSP enables
rapid development of web based applications that are server- and
platform-independent. The technology allows Java code and certain
pre-defined actions to be embedded into static content. JSP code
is compiled into Java Servlets by a JSP compiler and runs very fast
as the final byte code is similar to hand-written Java code. The
usage of the Model-View-Controller pattern is greatly supported
by JSP. [36]

Lasso: Lasso is an interpreted middleware programming language and
server for developing internet applications developed by LassoSoft,
LLC [37]. Lasso’s language, Lasso Dynamic Markup Language

3.2. Server-side 31

(LDML), can be written with procedural or object oriented tech-
niques and structures. Lasso is an extendable language and cur-
rently includes image manipulation tools and broad support for
industry standards such as XML, SOAP, WSDL, JSON, Java EE,
and Java beans.

PHP (Personal Home Page Tools): With its latest release 5, PHP [38]
has basic object-oriented programming functionality, database ac-
cess, integrated SOAP support and exception handling. PHP has
good performance because most web servers can run PHP scripts
directly in the server process. Over 20 million internet domains
are currently hosted on servers with PHP installed. [39]

Server-side Javascript: JavaScript was originally limited to the client-
side but today different products allow programming the same
language at the server-side. SpiderMonkey [40], Caucho Resin [41],
Rhino [42], and JScript [43] are JavaScript engines running on
different server platforms.

SMX (Server Macro Expansion): SMX is a Lisp-like opensource lan-
guage designed to be embedded into an HTML page. Since SMX
is a block-oriented language it is uniquely well-suited for doing
block-rendering and template generation. [44]

SSI (Server-side includes): SSI is an easy server-side scripting language
primarily used to include the contents of one or more files into
another. Today, SSI has largely been replaced by more complex
programming languages such as PHP, PERL, ASP and JSP. [45]

Ruby on Rails: Ruby is an open source project written in the Ruby
programming language. It aims to increase the speed and ease with
which database-driven web sites can be created. Applications using
the Rail framework are developed using the Model-View-Controller
design pattern. The two fundamental principles of Ruby on Rails
include “Don’t repeat yourself” and “Convention over Configu-
ration” where a developer only needs to specify unconventional
aspects of their application. [46]

32 3 Web Technologies

3.3 Client-side

Computer programming at the client-side refers to the class on the
web known as client-side scripting that are executed by the user’s web
browser, instead of server-side on the web server. Client-side scripting is
the fundamental part of Dynamic HTML (DHTML) that allows changing
content depending on user input, environmental conditions or other
variables.

3.3.1 JavaScript

JavaScript [47] [48] is a scripting language most often used for client-side
web development. JavaScript is the implementation of the ECMAScript
standard from Netscape Communications Corporation, now Mozilla
Foundation and is a registered trademark of Sun Microsystems.

JavaScript instructions are often embedded within an HTML document,
but they may also be requested from the web server at the time of
referencing it by the document. JavaScript programs are interpreted
by the web browser and therefore need a browser that supports the
JavaScript language. Fortunately all major web browsers today have
a JavaScript interpreter built in. While the language itself has been
standardized and with the current version 1.7 a commonly accepted
environment exists, the interface for document modifications is browser
dependent. Cross browser techniques are used to overcome the situation
of the platform variety but the behavior of scripts need to be reviewed
on desired web browsers and operating systems.

Because JavaScript runs on the client-side and has greater access to
information and functions available on the user’s computer, the user has
the possibility to protect the web browser from the execution of such
scripts. But if the execution has been enabled, JavaScript offers a poten-
tial security problem with its access to information stored while the user
browses through different web pages. This information includes cookies,
stored passwords, history of visited web pages and other authorization
data stored together with visited URL’s.

JavaScript can make calls to web servers after a web page has loaded
and can obtain new information which can merge with the existing loaded
document. This is the basis of Ajax programming as described in section
3.4.1.

Nowadays JavaScript programming is very popular because the inter-
preter is included in the web browser and enabled by default. Most

3.3. Client-side 33

interactive web sites make use of some sort of JavaScript and encourage
the user to have JavaScript enabled. The lack of installation together
with fancy possibilities in web site programming are the main reasons
for increasing interest in JavaScript programming [48].

JavaScript has a long and inglorious history of atrocious security
holes. Beside implementation errors there are numerous ways where the
execution of JavaScript can raise security problems without violating any
security policy [49].

Security compared to Java

Despite its name JavaScript is not related to the Java programming
language. Especially when it comes to security issues, protection must
be handled separately in JavaScript. Java is able to protect classes and
methods by signing them and has different levels of access mechanism.
With the protected, private or final attribute of a class an extension of
a method is not possible. JavaScript on the other hand has no concept
of method protection and all methods can be changed and properties of
objects can be modified at runtime. Therefore a protection at runtime
is necessary, which happens with the signing script security model as
explained in section 13.1.6.

3.3.2 Flash

Flash from Macromedia, now running under Adobe Systems, was orig-
inally designed to bring animations to the client as Flash movies. Ac-
tionScript is the scripting language of Flash and a way to communicate
with a program. ActionScripts allow interactive movies by controlling
the flow of a movie and handling user events such as mouse gestures or
key strokes. ActionScript follows the ECMA-262 standard which is the
same standard as used in JavaScript.

Flash movies are not simply limited to animations. With the possibility
to retrieve and send data from or to a remote server-side script, complex
applications can be implemented as Flash movies. In addition, server-
side scripts can request information from a database and relay it to a
Flash movie. Such scripts can be written in many different languages as
mentioned in section 3.2.1.

To make use of the possibilities of Flash, a Flash player has to be
installed for each web browser on the client-side. Because Flash is a
proprietary format and the Flash players are written by the same company

34 3 Web Technologies

that writes the development tools, an implementation problem does not
exist. Flash drawings are based on vector graphics and the graphical user
interface follows the vector graphic standard. Flash applications usually
load and run very fast because of the lightweight program description.

Since the Flash player is installed as a plugin on the client side, it can
at the same time open up security and allow others to run malicious
code (see 2.5.2).

3.3.3 Laszlo, OpenLaszlo, DHTML

OpenLaszlo [50] [51] is an alternative to the commercial Flash environ-
ment. OpenLaszlo is an open source platform for the development and
delivery of rich Internet applications. Programs are written in a combi-
nation of XML and JavaScript and transparently compiled to Flash or
DHTML. OpenLaszlo claims the “write once, run everywhere” paradigm
similar to Java Applets. The OpenLaszlo architecture takes program
code written in their LZX format and translates it to an intermediate
language based on ECMAScript Release 4. Multiple back-ends continue
the processing and produce an appropriate format for the destination
runtime such as SWF byte code for Flash or compressed JavaScript for
DHTML.

3.3.4 Java Applets

Java Applets, invented by Sun Microsystems in the late 90s are an attempt
to overcome the security issues found with other client-side programming.
Applets are programmed within the Java language and are compiled and
stored as Java byte codes on the server-side. Whenever a user visits a
web page with an embedded Java Applet, the byte codes are transfered
to the client and are interpreted by the Java run-time environment. The
interpretation guarantees a secure execution of the code because all access
to information found on the user’s side is prevented.

Nevertheless, the concept of Java Applets includes a possibility to
integrate the access to user data but involves the configuration of a
trusted communication agreement in advance. This situation almost
compares to an installation of a program on the client-side and decreases
the flexibility of the original click and run idea.

In order to make use of Java Applets, the Java run-time environment
needs to be installed on the client’s computer. Together with the Java
interpreter, a set of libraries for communication, graphical user interface

3.4. Communication 35

programming and other commonly used functions are installed and made
available. Additional functionality may be loaded from the server at
run-time but often requires the download of multiple libraries each time
an applet has been started. With the latest revision of the Java program-
ming language, version SE 6 (JDK 1.6), it is possible to read, interpret
and execute JavaScript at run-time. This allows the manipulations of
running applications together with document modifications based on
user interactions.

The initial enthusiasm for Java Applet programming has decreased
dramatically. Missing support in web browsers, namely the Internet
Explorer from Microsoft and differences in implementations made appli-
cation programming difficult and unattractive.

Adobe Flash, Laszlo or DHTML programming offer alternative ways
of client-side code execution without the burden found with Java Ap-
plets. Especially DHTML development has lately obtained significant
importance with upcoming frameworks and support for state of the art
AJAX support.

3.4 Communication

With modern application architectures, heavily based on the client/server
paradigm, communication is becoming more and more important. The
emerging Ajax design pattern that combines asynchronous JavaScript
and XML to develop highly interactive web applications has been growing
in popularity. SOAP, REST and other alternatives are protocols used
in the wold of rich application models running on the web. SOAP and
REST deserve a more detailed description since they are found most
often in the world of web applications.

Data formats that are being transfered include XML, JavaScript Object
Notation (JSON), HTML, plain text, and RSS/ATOM. The structure
depends on the usage, but no common accepted standard has evolved so
far.

3.4.1 AJAX

The communication layer with the server is the foundation that makes
AJAX [52] possible. The most complete option for performing this com-
munication is the JavaScript XMLHttpRequest object. There are other

36 3 Web Technologies

alternatives such as hidden IFrames and cookies, but the XMLHttpRe-
quest object is used most often. The reason for the popularity of the
XMLHttpRequest objects comes from two unique features. First it pro-
vides the ability to load new content without that content being changed
in any way. This makes it extremely easy to fit AJAX into the normal
development patterns. Second, it allows JavaScript to make synchronous
calls. This is usually not a frequently used option, but it can be very
useful in cases when a request must be completed before further actions
are taken [53].

Originally, Microsoft designed XMLHttpRequest to allow Internet
Explorer (IE) to load XML documents from JavaScript. Even though
it has XML in its name, XMLHttpRequest is really a generic HTTP
client for JavaScript. The XMLHttpRequest object offers only a few
methods and properties, but the implementation is different between
browsers. Since these differences affect only object instantiation and
event handling, they aren’t hard to work around. Section 13.1.1 covers
the topic of cross browser scripting in more detail.

While Ajax brings a lot of advantages in terms of a richer user experi-
ence in application usage, it also challenges developers with its security
restrictions. Ajax transactions allow asynchronous data communication
between client and server. The user’s web browser security sandbox is
responsible for keeping personal information secure. To protect against
possible maliciousness, most browsers allow communication only with
the computer system that hosts the web site, from which the page was
loaded. If an application requires a service on a site that differs from the
origin of the web site, it is disallowed by default. This restriction adds
security but makes the creation of applications more difficult.

3.4.2 SOAP and related standards

The step from Enterprise Application Integration (EAI) to the usage of
web services automatically requires negotiating with standardization
challenges. The syntax to be used, interaction mechanism, service de-
scriptions and naming and service lookup must be solved somehow to
deal with EAI problems that occur when different operating systems are
involved. These systems generally have different interfaces, use different
data formats, have different security requirements and use different proto-
cols. But these problems have already been solved with message brokers
such as EAI middleware when the interacting systems are connected

3.4. Communication 37

through a local area network (LAN). The transition from systems on
the LAN to the internet required a new protocol and other infrastruc-
ture because of the existence of firewalls that act as barriers against
unwanted network traffic. Firewalls block many communication channels
and make the application of conventional protocols such as RPC, RMI, or
GIOP/IIOP impossible. One approach to the basic web services needed is
a combination of XML, SOAP, Web Service Description Language (WSDL)
and Universal Description, Discovery and Integration (UDDI) as described
in this section.

SOAP [54] originally came from Simple Object Access Protocol but is
not used anymore as an acronym because it not only handles access to
objects and because it is also not simple. SOAP’s original intent was a
definition of how to send transient XML documents to trigger operations
or responses on a remote host.

It is a protocol on top of HTTP or SMTP and its data is encoded
in XML for one-way communication. Since the SOAP communication
protocol is also stateless, it is created by design to support Loose coupling
applications that interact by exchanging one-way asynchronous messages
with each other [55].

Beside its main advantage of being a standard to handle complex data
transactions, SOAP also has some criticism. The RPC-style mechanism
of sending messages is not loosely coupled because they are not asyn-
chronous.When performance is an issue, SOAP is definitely a bad choice
as its XML messages are about 25 times larger when sending and about
100 times larger when receiving a message. This is not only a problem
with bandwidth of the network, but also the generation and analysis of
messages can use too much processing power compared to other RPC
protocols.

SOAP implementations

SOAP implementations exists for a variety of different languages. Ta-
ble 3.1 shows freely available SOAP packages:

WSDL

The WSDL was originally submitted as a W3C note by Ariba, IBM and
Microsoft in March, 2001 merging three previous proposals. WSDL is an
XML document used to describe web services and specifies the location
of the service and the operations or methods the service exposes. The

38 3 Web Technologies

Language Implementation

Java/C Apache AXIS (1 & 2) [56]

JAX-RPC [57]

JavaScript JavaScript SOAP Client [58]

Mozilla SOAP API [59] [60]

IBM ws.js [61]

PHP PHP-Soap [62]

COM/C++ PocketSOAP [63]

Perl SOAP::Lite [64]

Table 3.1: SOAP implementations

role and purpose is similar to that of IDLs in conventional middleware
platforms [55]. The difference lies in the possibility to use different
protocols for each web service while the access mechanisms were identical
among all middleware platforms.

UDDI

The UDDI protocol is a specification that dates back to September 2000.
As of today, more than 300 companies combine their efforts to improve
the specification. The control of the UDDI project is now in the hands
of the OASIS organization [65]. The UDDI V3.0.2 specification states
the purpose of UDDI as:

“A UDDI registry, either for use in the public domain or
behind the firewall, offers a standard mechanism to clas-
sify, catalog and manage web services, so that they can be
discovered and consumed.”

The basic goal of UDDI is a framework for describing and discovering
services and service providers, which is essentially a sophisticated naming
and directory service. It supports the lookup of services based on a
general keyword. The registry itself can be accessed as a web service.

3.4. Communication 39

3.4.3 REST

REST [66] is an acronym standing for Representational State Transfer
and describes an architectural style of networked systems. The term
resource is a central element in its definition and application states
and functionalities are divided into resources. Resources are uniquely
addressable using a universal syntax for use in hypermedia links and
share a uniform interface for the transfer of states between client and
resource. A client/server protocol, that is stateless, cacheable and layered
is also part of its principles. Improved response times and lower costs
due to the fact that less software needs to be written are some of the key
benefits of REST.

REST architecture

REST is an architectural style, not a standard. However, the REST
definition describes how to apply standards and is based on the idea of
the web itself, seen as the world’s largest implementation of a distributed
application. The architecture is based on constraints that guide the
behavior of components in order to obtain a uniform interface.

REST is defined by four interface constraints: identification of re-
sources; manipulation of resources through representations; self-descriptive
messages; and,hypermedia as the engine of application state.

Web services that implement REST concepts make use of four basic
functions, namely create, read, update and delete (CRUD operations)
and all other methods are implemented with these operations. Generally,
the realization of a RESTful web service is based on three steps:

1. Group application into resources and groups of resources.

2. Identify an address scheme.

3. Map existing functions onto the generic CRUD operations.

This simplicity is based on a principle, known as the principle of
parsimony [67] and is a key argument for choosing REST.

SOAP vs. REST

SOAP and REST are both trying to solve interoperability with a com-
munication protocol for web services. The approach of SOAP is based

40 3 Web Technologies

on an attempt to bring in a new standardized specification while REST
tries to use existing structures.

The introduction of SOAP and its cooperating protocols WSDL and
UDDI led to a complex specification based on XML. On the other hand
RESTful web services are based on a few simple constraints and this
simplicity is what many SOAP adherents criticize. Systems are complex
and therefore would require complex solutions. But it has already
been shown that simple components can be sufficient to build complex
systems [68] and simple standards tend to be accepted much more easily
than complex ones. Code examples as well as an analysis of contract
based protocols provide more reasons to establish communication through
the REST architectural style [69].

Almost all currently developed service interfaces are based on REST.
Simplicity and performance are the major reasons why REST has been
chosen as a commonly accepted interface to web services [70].

3.4.4 Alternatives to SOAP and REST

SOAP and REST are not the only way to implement remote procedure
calls. Several other protocols offer similar functionality and try to address
the drawbacks of SOAP. Other protocol implementations include BEEP,
CRISPY, GXA, Hessian, JSON-RPC, XINS, or XML-RPC.

4 Problem Description

This chapter narrows the subject under investigation down to a particular
set of applications and analyzes possible areas of intervention possibilities.
The aim of this chapter is to describe web individualization categories
which allow a processing of smaller entities. Further, a list of requirements
of a software architecture supporting these categories shall be formalized.

The majority of web sites offer a predefined, fixed view onto selected
content, similar to paper based productions. Within web pages, simple
interaction possibilities enable the user to exchange the content as the
user desires. Hyperlinks, selection buttons or text-based search fields
are mechanisms to communicate amendments. These possibilities have
existed since the first introduction of the World Wide Web in the 1990.

In order to facilitate a more individual access to web content, web
sites can allow personalization. To cope with this demand a registration
process is necessary prior to visiting sites which support personalization.
This enrollment can happen transparently by filling out a formula or can
be hidden from the user by storing information to the user’s web browser.
Either way, the main purpose is to identify users and possibly prepare
customized web pages for them. As a consequence, individual settings
can change the web sites appearance. Such settings include presentation,
functionality, color definitions or page style changes. Including additional
information blocks or language settings are examples of functionality
customisation.

The stated interaction possibilities for content selection or site person-
alization will further be addressed by the term personal services. Briefly,
these include interaction mechanisms to individually select the content to
be displayed, to change the way the content is presented and to modify
the functionality of the site. These personalized services naturally depend
on the content provider and usually do not conform to each other. The
ways to select content, how it is presented and which sources contribute
to the content usually change from web site to web site.

Nowadays, more and more web site developers realize what advantages
can be delivered to the user by integrating different content providers.
Therefore the number of useful services which are of general interest

41

42 4 Problem Description

is growing rapidly and developers have a hard time keeping up with
facilities available in the World Wide Web. For example, it has become
very popular to add interactive maps to address locations which occur
on a page and developers are now adapting their web sites to answer
these expectations. This is only one example of many other conveniences
which make web users more productive. Other facilities which seem to
be becoming a general standard are translations into different languages,
possibilities to download a spoken version of a site’s content or making
annotations to a web site which are visible to other users.

If a required feature is missing, it is possible to add it manually. As
an example, address information can be copied into another web site
where the equivalent map is looked up. This additional effort also has
its advantage, in the sense that the user can select their favorite content
provider which issues a desired functionality. This justifies itself for two
reasons: First, the user comes across familiar interfaces and does not
have to learn another way of handling interactive components. Second,
the user can select content providers based on the quality of the data
provided. Quality criteria can be how up to date the data is, amount of
data, response time or any other benchmark which brings the most useful
information to the user. As such, the quality criteria is an individual
rating.

While the transfer of information from one site to another to achieve
a specific task seems reasonable if it is nonrecurring, it can require a
disproportionate effort if the strain repeats itself. It can become almost
impossible if an assignment requires the combination of several web sites:
only the most accommodating users are likely to accept the undertaking
of several intermediate steps to complete more complex tasks.

4.1 Categories of individualization

As outlined in the last section, personalizable web sites offer different
areas of individualization to the user. These areas have been summarized
by the term personal services and include content selection mechanisms,
appearance modifications and customizable functionalities. These cate-
gories form different dimensions of individualization and are independent
of each other. Transforming a web sites appearance does not affect
a reorganization of the site’s content or a mutation of its functional
behavior.

4.2. Software architecture to support category-based personalization43

4.2 Software architecture to support
category-based personalization

In order to allow web sites to be personalized according to the stated
categories, a suitable software architecture is necessary. The aim of
this section is the analysis of software architectures which support a
component-based design. A division into components is a consequence
of the demand of the stated independent categories.

Software architectures of information portals have passed several stages
in recent years and have become increasingly large. From batch-oriented
processing to client/server computing and multi-tier applications, more
and more layers were added to the application architecture. But the
general structures are still very monolithic. Once an application has been
developed and installed it is generally limited to individual needs which
were not taken into account at development time.

Extensions of an application or replacing functionality with more
sophisticated ones has always been a challenging task. Technical solutions
exist but they still have drawbacks. Especially when it comes to the
integration of functionality from independent contributers, a satisfactory
generic concept without having access to the source code and the need
for programming is hard to achieve.

Service-oriented web applications are replacing desktop applications
as outlined in section 1.4. With the shift from application development
for the desktop, to applications running on the World Wide Web, new
capabilities became possible.

In this chapter universal requirements are analyzed which allow soft-
ware applications to be extended by individual components and concrete
demands are stated. The main goal is to facilitate dynamically composed,
interoperable heterogeneous applications which integrate capabilities
from different providers.

Service-oriented architectures are the preferred way of integrating
different resources into a composite application (see section 2.3). Exten-
sibility, portability, maintainability, reusability, and substitutability are
the key elements when transferring a monolithic system into a component
based architecture (see 2.2). The resulting demands are essential in any
modular system and are summarized in the following list of operators [71]:

Augmenting: New components can be added to create new solutions.

44 4 Problem Description

Porting: Components can be applied to different contexts.

Splitting: Components can be made independent.

Substituting: Components can be substituted and interchanged.

Inverting: The hierarchical dependencies between components can be
rearranged.

Excluding: Existing components can be removed to build a usable solu-
tion.

These operators are of a general nature and inherent in any component-
based design. The operators are actions which transform existing struc-
ture into new structures in well-defined ways.

The entire internet works at this level. New functionalities and content
appear every day. The only problem is that they generally do not
work together. Some information found at one place usually cannot be
used directly in another place. Adaptation is made by the user who
copy/pastes information from one site into another. The user may also
have to change the data format at the same time. In the example of a
simple web formula appearing on two different web pages, a user typically
copy/pastes information form one formula into another. At the same time
it might also be necessary to adapt the data format to suit a particular
structure required by the target web page.

4.3 Challenge of this work

A service-oriented architecture is seen as a general concept which ad-
dresses the stated requirements of a component-based design. Component
independence especially is achieved with the Loose coupling concept found
in service-oriented architectures. Although the entire industry is adapting
to this architectural design, not all problems have been solved yet. As of
today, a universal solution where distributed, heterogenous components
can dynamically be found, integrated and used without programming
or installing has not been achieved. This research focuses on concepts
and a framework to accomplish an individual composition of components
into a unified application. A concrete implementation in the area of
the World Wide Web should allow a detailed analysis and serve as a
proof of concept with practical examples. The stated requirements of a

4.3. Challenge of this work 45

component-based system serve as a leveling rule and are being used to
evaluate related projects.

5 Related Projects and Assessment

This chapter provides an overview about products which address the
issue of web automation and personalization. The solutions found are
tested for compliance with the stated demands for a component-based
system and the value of usage are estimated. The key requirements are
an independence of the components and a possibility to integrate new
components without installing or the need of programming.

Several systems have addressed specific tasks in web automation and
modifications such as changing the presentation or the content of web
pages. Essentially all analyzed products fall into two categories, the
first one groups systems which work at the client side and are installed
as extensions for a specific browser. The second category containing
systems which work as proxy servers acting as mediator between the
browser and contacted web sites.

A summary at the end of the chapter highlights functionalities of the
analyzed products and possible impacts.

5.1 Projects based on Firefox Extensions

All projects within this group share the way they are installed. With
one exception all products depend on the FireFox web browser and
need to be installed as a FireFox extension (see section 2.5.1). As
products which have to be installed locally they do not comply with the
demand of installation-free usage. Nevertheless the analyzed projects
offer interesting functionalities which have to be taken into account in
further solution strategies.

Chickenfoot

Chickenfoot [72] offers a programming environment in the Firefox web
browser for writing scripts to manipulate web pages and automate web
browsing. Chickenscratch is the programming language used and is a
superset of JavaScript including special functions specific to web tasks.

47

48 5 Related Projects and Assessment

The primary goal of Chickenfoot is a platform where the user can
define automating interactions with the web. Secondly it allows the end
user to automate and customize web sites based on the web site’s user
interface. The example in figure 5.1 shows a formula where the user is
attempted to enter login data and the equivalent code in Chickenscratch
to automate the form entry.

enter("username", "sven")

enter("password", "secret")

check("remember")

click("sign in")

Figure 5.1: Filling out a form with Chickenscratch

Since Chickenfoot is a development environment for an end user it
does not fulfill the requirement of a programming free environment.
Nevertheless due to its simplicity which allows programming statements
based on a users web interface, it offers great functionality which could
be implemented internally.

Greasemonkey, Creammonkey

Greasemonkey [73] [74] allows users to load and install scripts which
make on-the-fly changes to specific web pages. Greasemonkey scripts
are persistent and changes made to the web pages are executed every
time the page is opened, making them effectively permanent for the user
running the script.

Installed scripts allow adding new functionality in a way as requested
but require the local installation of such scripts. Configuration of script
specific parameters happens through the locally installed Firefox exten-

5.1. Projects based on Firefox Extensions 49

sion. Pages where the scripts can run on are defined at development time
of the script. This violates the requested principle of programming-free
usage because changes would involve analyzing the code of the script.

Writing Greasemonkey scripts requires deep technical understanding
of JavaScript and the source code of the page being scripted. This project
offers the closest of the requested functionalities, but the usage philosophy
differs. Greasemonkey puts a web page in the center of interest and allows
permanent modifications of that page. With the proposed approach in
this thesis, functionality builds the core of attention and a user should
be allowed to call certain selected functions on every loaded page.

Several web sites [75] [76] maintain a collection of user written scripts.
As of the time being it is time consuming to find scripts for a particular
task. Scripts are stored in the order of the time when added to the
collection and can be retrieved by simple text search. Most of the scripts
treat with very specific assignments.

Nevertheless by the time of the creation of this document, Greasemon-
key offered the largest collection of scripts on the net. Greasemonkey is
further used as a reference while describing other products and provided
functionality need to come up with the ones from Greasemonkey.

The functionality of Greasemonkey is limited to FireFox, but Cream-
monkey [77] and PithHelmet [78] are similar tools for the Safari browser.
Creammonkey [77] claims to use compatible scripts with Greasemonkey
but small differences do exist.

PithHelmet [78] is a plugin for the Safari web browser to give the user
more control how web sites are shown. The basic purpose of the plugin is
to block advertisements, movies or audio data from web pages. Blocking
rules can be defined based on filters build from regular expressions. These
rules can be exported into a file and shared with others.

Beside removing unwanted content, an advanced mode allows the
execution of JavaScript code, called Machete Scripts.

iMacros

iMacros allows the user to record and replay so called ”Internet Macros”
for web automation, data extraction or web testing. Web automation in-
cludes filling out forms even if stretched over several pages or downloading
of files and page content.

The opposite of form filling is data extraction which is also implemented
in iMacros. With data extraction parts of a web page can be read and

50 5 Related Projects and Assessment

stored to a text file. Web testing is a possibility to measure response
times of web applications.

The facility to measure the performance of web applications is an
important part of a component-based system with components coming
from different web sites. Elements of iMacros could be helpful to support
the demand of selecting a suitable partner if alternative choices are
available.

Koala

Koala [79] is a system which enables users to capture, share, automate,
and personalize business processes on the web. It offers a collaborative
programming based on demonstration. User interactions can be recorded,
edited and played back and are stored in a user- and machine readable
format. A typical example is the recording of step by step instructions
to fulfill a certain task such as filling out different formulas on the web.

With its user interface Koala offers a way to define and control interac-
tions with web applications such as formula based processing. Although
Koala offers a comfortable way of programming it still requires program-
ming skills which is not intended by the demand of programming-free
usage.

Marmite

Marmite [80] is an end-user programming tool which can be used to
create Mashups. Marmite supports a data flow architecture, where data
is processed by a series of operators in a manner similar to Unix pipes.
Marmite works by displaying a linked data flow / spreadsheet view,
letting people see the program as well as the data simultaneously.

The Marmite tool offers a comfortable way for building new mashups
but its target audience are users willing to create new constellations
rather than users who focus on using existing functionalities.

Stylish

Stylish [81] allows client-side manipulation of web page content through
Cascading Style Sheets. Stylish focus on the appearance of web pages
which is an implementation of the presentation pattern.

5.2. Proxy-based projects 51

5.2 Proxy-based projects

Monkeygrease

Monkeygrease [82] is a Java Servlet which can be used to alter the
output of a closed-source Java web application before its output is sent
to the client. The Servlet acts as a filter and allows the injection of
JavaScript, CSS and other elements to the page. The general behavior of
Monkeygrease fulfills the demand on programming-free usage but it is
limited to an access through this proxy server.

MouseHole

MouseHole [83] is a client side proxy server which allows manipulation
of web page content using the Ruby language. The advantage over the
other projects within this category lies in the simplicity of Ruby.

Privoxy

Privoxy [84] is an open source, client side proxy server which allows
manipulation of page content. The capabilities include cookie manage-
ment, access control and different filters to remove pop-ups, banners or
advertisements.

Privoxy provides most desired functionalities but needs a proxy server
and does not allow arbitrary interconnections among different services.

Proximodo

Proximodo is an open-source customizable web filtering proxy server
inspired by- and interoperable with Proxomitron. It allows manipulation
of page content acting as a mediator between the browser and the web
site. The project comes with a set of predefined filters to block banners,
pop-ups and allow the configuration of the browser’s cache. It is also
possible to write own filters but the scripting language is quite complex.
The project is still in early development stage and the web page has not
been updated regulary.

Proxomitron

Proxomitron allows filtering possibilities at the server-side and is generally
used to block pop-ups and banners and remove embedded sound or

52 5 Related Projects and Assessment

animations from web pages. A graphical user interface allows editing and
modification of filter configurations. The configuration uses a language
similar to the standard regular expressions used in text editing.

The first public release of Proxomitron appeared in 1999 but develop-
ment has been stopped in 2003 and the project is now closed. Proximodo,
as described above, carried on and cloned the software of Proxomitron
continuing the work.

5.3 Other related projects

Yahoo! Pipes

Yahoo! Pipes is a web application from Yahoo! which provides a graphical
user interface for building applications which aggregate web feeds and
other services. These applications can combine various sources with a
piping mechanism and are being published after additional filter rules
have been defined.

An example is the remix of a news feed with a web-based image
database. In this example tagged photos from a photo library on the
web are appended to matching keywords found in the feed. Published
Pipes can be accessed by other users through a shared URL.

Yahoo! Pipes follows the requirements of a component-based system
with its offered pipe concept to concatenate data streams. The Yahoo!
application concentrates on user friendliness through its drag and drop
interface but is limited to the usage of feeds.

Since Yahoo! Pipes offers a possibility to access it via URL, the output
could be included in other architectures. This could allow to make use of
the comfort of the user interface without limiting the usage to Yahoo!.

Bookmarklets

Bookmarklets are another technology which can be used to execute
arbitrary JavaScript code on any page, but they require a user to click
them, rather than running automatically. Bookmarklets are not available
as a specific product but allow similar functionality as other projects
described in this chapter. The Bookmarklet technology fulfills most of
the stated demands on a component-based system but the technology
has certain limits (see: 13.1.5).

5.4. Summary of evaluated projects 53

5.4 Summary of evaluated projects

Several of the presented projects provide functionalities of a component-
based system as requested. But this thesis has its focus more on the
application user rather than on the developer-side which is common in all
presented projects. Nevertheless, existing solutions could contribute to an
upcoming approach. Table 5.1 lists facilities of related projects that are
of general interest in finding an approach to the desired component-based
system.

Project Competences

Bookmarklets The Bookmarklet technology offers flexibility in
adding individual functionality to a loaded web
page.

Chickenfoot A programming language to assist a component-
based development of web facilities which includes
functions specific to web tasks.

Koala A visual editor which enables programming by
demonstration.

Marmite A spreadsheet-based programming tool for creating
web-based mashups.

Yahoo! Pipes A composition tool to aggregate, manipulate and
combine RSS feeds which can be accessed by a web
address when being published.

Table 5.1: Functionalities of related projects.

Part II

Syndicate Framework

55

6 Concepts and Terminology

Loose coupling has been identified as a key challenge to support individual
service composition in the web. Service-oriented architecture (SOA) has
become a de facto standard for developing component-based applications
which can be accessed over a network using standard interfaces.

This chapter introduces additional requirements of a service-oriented
architecture which enables pattern-based composition of existing facilities
in the area of the World Wide Web. Based on these requirements a
new terminology and approach for a software architecture is proclaimed.
The focus lies on a component-based description and the interactions
among them. An analysis and a concrete implementation accompanied
by practical examples follow.

6.1 Pattern-based individualization

It has been outlined in chapter 4 that personalizable web sites offer
different areas of individualization to the user. These areas have been
summarized by the term personal services and include content selection
mechanisms, appearance modifications and customizable functionali-
ties. In this section the presented categories will be related to concepts
originating from software engineering.

This separation of content and functionality together with a detached
mutation of the outlook can be seen as an instance of the model-view-
controller paradigm (MVC) [85] [86] [87]. I suggest a segmentation of the
individualization areas into components, proposed by the model-view-
controller paradigm.

With this division, the selection of content plays the role of the model,
the altering of a web site’s appearance corresponds to the view part and
the integration of several information providers relates to the controller
part. These individualization categories are described in more detail
in the following sections and are illustrated with practical examples. I
propose three distinguishing patterns for these individualization areas:
the content pattern, the presentation pattern and the integration pattern,
associated with the model, view and controller of the MVC paradigm

57

58 6 Concepts and Terminology

[88] [89] [90]. The proposed patterns will enlarge the components of the
MVC paradigm with related functionality.

6.1.1 Content pattern

Individualization areas belonging to the content pattern are related to
the model of the MVC paradigm. The MVC paradigm defines the model
as a representation of application data and the business rules that govern
access to and updates of this data. In the field of the World Wide Web,
data can come from local databases or can be retrieved from external sites.
The model is an abstraction of these data resources and encapsulates
data access.

Advertisers which contribute small information blocks to be included
in web pages are an example of the content pattern. Such a web page
consists of independent data portions which appear on the same page
but are not connected to each other otherwise. I suggest that the content
pattern additionally includes strategies to decide on and discover the
origin of the content.

6.1.2 Presentation pattern

In the case of the MVC paradigm the view renders the contents of a model.
It accesses application data through the model and specifies how that data
should be presented. The view is responsible for maintaining consistency
in its presentation when the model changes. If a system follows this
paradigm a strict separation of the content and the presentation holds
and multiple simultaneous views of the same model are possible.

If a web site allows customization of its appearance, it already follows
the principle of exchangeable view components. While the content of the
page remains the same, the outlook can entirely change. An example of
such changes in the visual representation can include modifications of
font or color settings or the shielding of entire portions of a web page.

On top of changes of the visual presentation I also propose additional
characteristics being added to the presentation pattern. I suggest that
functionalities which change the behavior of visual components are also
counted in this group. Such functionalities can include direct modifi-
cation of the appearance or the enabling of additional possibilities of
such modifications to the user. In any situation, customization within
the presentation pattern is restricted to visual representations without
modifying the content or the origin of the content in any way.

6.1. Pattern-based individualization 59

6.1.3 Integration pattern

The integration pattern relates to the controller of the MVC paradigm. A
controller as defined in the MVC paradigm is an intermediate component
negotiating between the model and the view. Its main purpose is to solve
the problem of decoupling of the data access and business logic from the
data presentation.

Figure 6.1: Yahoo! Live Traffic

I propose that the integration pattern be used as a structure which
includes communication and integration of other models from different
sites. Individualization in this area deals with the desired connections to
other content providers acting as supplementary models.

A practical example is Yahoo’s live traffic and driving direction map [91]
that offers local traffic conditions in the United States as shown in
figure 6.1. Yahoo! enhanced its existing map service to allow customers
to plot a route from one local destination to another, and overlay traffic
data such as road speeds and potential delays.

In this example Yahoo! combines the latest information from several
different sites. Digital mapping data is provided by two competitors
which offer variable qualities depending on the location and richness of
detail. Real-time traffic conditions are from metropolitan transportation

60 6 Concepts and Terminology

departments and private providers, including embedded road sensors,
traffic cameras, police scanners, and traffic helicopters.

The integration pattern is closely related to Mashups (see: 2.4.4 on
page 23). From a functional point of view the integration pattern is
simply another way of describing the behavior of mashups. But mashups
are concrete web applications which combine data from more than one
source into a single integrated tool while the integration pattern only
specifies the behavior of the application, keeping the implementation
open.

Table 6.1 shows a summary of the described patterns and the relation
to the components of the MVC paradigm.

Pattern Related MVC Component

Content
pattern

The model represents application data and the business
rules that govern access to and updates of this data.
The content pattern additionally contains strategies to
decide and discover the origin of the model.

Presentation
pattern

The view renders the content of a model.
The presentation pattern includes the view and func-
tionalities changing the behavior of visual components.

Integration
pattern

The controller translates interactions with the view
into actions to be performed by the model. These ac-
tions result in business process activations and changes
of the state of the model and selecting an appropriate
view.
The integration pattern contains controlling of other
pattern-based components and integration of supple-
mental models which contribute to the application.

Table 6.1: Individualization on the web compared to the MVC paradigm

6.2 Manifold – The subsequent intention

The aim of this section is the formulation of requirements of a soft-
ware architecture which enables individual pattern-based composition of
distributed facilities. This is a further granulation of the demands on
a generic component-based architecture which were previously stated

6.2. Manifold – The subsequent intention 61

(see 4.2). In order to define such requirements the intent is to find
and transfer established principles. The accumulated principles will be
accumulated in the notion of a manifold system in contrast to monolithic
systems (see 2.2).

At the class library level reusable components are common and fre-
quently used but not to the same extent when it comes to interacting,
heterogeneous and distributed applications. Building blocks from differ-
ent providers usually do not automatically fit together.

The subsequent intention is a manifold system with a possibility to
compose an application by integrating services from components. Com-
ponents could come from different partners and should be integrable
without programming. Necessary data transformations, protocol imple-
mentations and routing decisions should all happen automatically. The
connected components should be independent of each other and without
tight relation in between. These principles are known as Plug and Play,
Adaptation, and Loose coupling and are used in connecting hardware de-
vices. Especially the term “loose coupling” has gained greater popularity
in combination with software architectures (see: 2.3).

Another requirement of a manifold system is the possibility to add new
components which do not relate to each other directly but allow interac-
tion among them. This concept is known from peer-to-peer networks in
which users and their nodes appear anonymously.

If several equivalent components are available, they should be substi-
tutable. An ideal implementation should also take advantage of the best
available components without compelling interactions. If new alternative
components become available, they should be discovered automatically.
Auto discovering is also a principle from hardware device interfaces such
as the universal serial bus (USB) [92]. The term to identify a selection of
a favorite component is named Best of breed according to stock selection
strategies found in portfolio theories.

Communication paths among services should be kept as short as
possible. Direct communication paths should always be favorized. This
principle can also be found in the field of hardware interfaces such as
USB. Table 6.2 summarizes these stated requirements on a manifold
system and associates a particular concept with them.

62 6 Concepts and Terminology

Principle Explanation

Plug and Play Component integration without specific knowl-
edge about the component interface.

Adaptation Automatically adjust to required formats and
standards.

Loose coupling Group components together without affecting
each other.

Anonymity Connect components which are not related to
each other.

Auto discovering Automatically discover available components.

Best of breed Strategy to select one component out of alter-
natives.

On the go Allow the direct interconnection among compo-
nents.

Table 6.2: Properties of a manifold system

6.2.1 Advantages

Applications enhanced by following the proposed principles will benefit
in several ways. Generally, it allows those involved to reduce costs and
improve flexibility. Users, developers, administrators and managers are
all actors who are playing a specific role along the process from creation
to use of an application.

An end user should not notice any circumstances and interacting
with the user interface should be habitual. But the user has the ability
to adjust the behavior of each component or exchange it entirely if
it is supposed to do so. Not only the user themselves could replace
components, but also the manifold system could do so. Ideally, the user
would automatically profit from components which best fit the user’s
personal needs. If a new component is made available and the quality
is more suitable, the system would replace or add it without further
interactions.

Developers can concentrate on integrating already existing components
and do not have to program anything from scratch. Abstraction between
interfaces and implementation minimizes dependencies. As a consequence
new types of clients are more easily supported because the controller

6.3. Use cases and basic architecture 63

logic is kept independently.
Administrators will get autonomous blocks which can be managed and

monitored separately and failing components can be replaced. Managers
may decide on using particular implementations on a component based
basis.

6.2.2 Requirements on the applications

To make use of the advantages of the proposed principles, applications
need to fulfill a certain profile. Presentation oriented information-centric
applications which would benefit when combined with information com-
ing from other resources will profit the most. On the other hand, these
principles might not be the right guideline when processing speed or
cpu-intensive calculations are a central point. Also, if security is criti-
cal, a distributed component based architecture naturally decreases a
scrupulosity use compared to a monolithic system.

The following list summarizes properties which promotes the usage of
an architecture following the described principles:

Diversification: Information from different resources.

Reusability: Integration of reusable components.

Substitutability: Components can be exchanged with alternatives.

Behavior centric: Components are defined by behavior.

Autonomous: Components are autonomous.

Integration over speed: Integration of several resources is more impor-
tant than processing speed.

6.3 Use cases and basic architecture

A user participating in the Syndicate system can be assigned to a specific
role. A role determines a set of connected rights and obligations.

Figure 6.2 shows primary actors and processes participating in the
Syndicate system.

A conceptual overview of the upcoming architecture is drawn in fig-
ure 6.3. The architecture is based on a classical input-processing-output

64 6 Concepts and Terminology

Role Rights Obligations

Service
Developer

Not restricted by the Syn-
dicate system.

Guarantees a consistent, reli-
able delivering of content or
functionality.

Mission
Developer

Can create and add new
Missions on the Syndicate
server. Defines which set-
tings can be modified by
a user.

Has to guarantee that inte-
grated services are of no risk
to use.

Mission
Publisher

Can publish Missions to
be used by other users
and restrict modifications
of Mission properties.

Has to guarantee that Mis-
sions and integrated services
do no harm a potential user.

User/
Subscriber

Can subscribe to pub-
lished Missions.

Table 6.3: User roles

structure. This simplified version is subdivided into concrete components
and described in the following sections. The fragmentation of the building
blocks is shown in figure 7.1 on page 71.

The arrangement of the units includes two feedback loops. One loop
integrates information from the user viewer which is modified by the
controlling block. The user viewer is used as the primary output channel
but at the same allows inspections by the controller.

The second loop redirects transformed input data back to the data
access block. This information chain allows stacked processing.

6.4 Terminology

The description in the following list gives an overview of the terminology
of the Syndicate components used in this chapter. Each component will
further be described in more detail in this chapter and is later illustrated
with practical examples (see chapter 11).

Syndicate – Name of the project and the state of a loaded page re-
spectively. If a page has been syndicated, it is responsive

6.4. Terminology 65

to Mission triggers.

Syndicator – Element that enables syndication of a web page.

Syndicate
Server

– External site used to manage, configure and store Mis-
sions.

Mission – A task that changes the appearance, the content or the
behavior of a web page.

Mission
Patterns

– Categories that group Mission operating ranges.

Trigger – Event which releases the invocation of a Mission.

Mission
properties

– Environmental settings which control Mission specific
parameters.

Service – A web-based service or a web site which acts as informa-
tion provider.

Server
detour

– Calling of an external service via Syndicate server.

Adapter – Channel adapters can receive messages and invoke func-
tionality inside the application.

Transformer – Transforms and links gathered information together.

Scout – Component, responsible for information gathering.

Selector – Unit which implements a service address selection strat-
egy.

Connector – Component which supports connections to external ser-
vices.

Consigliere – Controlling unit where the application logic is imple-
mented.

Renderer – A component responsible for the presentation of the
outcome of a Mission.

Injector – A component which manipulates the current loaded web
page.

66 6 Concepts and Terminology

DOM – Document object model, an interface to the content,
structure and style of web documents.

External – External program running outside a web browser.

6.5 Involved servers

In a complete workflow several servers can be involved. The Syndicate
server acts as a turntable between the user’s web browser and various
service providers. In this situation all communications run through the
Syndicate server. However, there are other scenarios with fewer servers
involved and particular situations exist which only use a Syndicate server
to fulfill a task.

The configuration shown in figure 6.4 uses three different external
service providers. The number of contacted external domains depend on
the operation to be completed.

6.6 Architecture principles

The design of the architecture is a direct consequence of the requirements
for a manifold system as previously described in chapter 4. The principle
of Loose coupling in terms of time and location demands for a place
where requests are buffered and participants addresses are resolved. The
existence of the Syndicate server has among other issues loose coupling
as its primary goal.

Loose coupling in terms of type and versions of service providers is
addressed through the detachment of the Scout. The Scout offers different
techniques to accept certain changes in the documents published by
service providers and is resilient to variations.

Integrated services must be interchangeable or have alternatives to
offer greater reliability. This expectation is resolved by the Selector
component, responsible for choosing suitable participants.

Missions must have the ability to change the appearance, the content
or the behavior of a syndicated page separately. A component based
architecture and a decoupling of the render process from the controlling
and data collecting task supports this independence.

The purpose of an anonymous usage of Missions is served with stateless
service consumption.

6.6. Architecture principles 67

User

Mission
Developer

Mission
Publisher

Service
Developer

Service Provider

Provide
Web Service

<extends>

Syndicate Server

Add new
Mission

Subscribe to
a Mission

Publish
Mission

<uses>

<uses>

Web site Provider

Provide
Web page

Web browser

Visit Web
page

Syndicate
Web page

<uses>

<uses>

Figure 6.2: Syndicate use case diagram

68 6 Concepts and Terminology

Data
Access

External domain

Service

Trigger

Analyzer

Transformer

User domain

Controlling

O
ut

pu
t

In
pu

t

Pr
oc

es
sin

g

Viewer

Figure 6.3: Syndicate basic architecture

User Domain

Syndicator

Loaded Web page

 Syndicate server
system

Syndicate server

Mission
Repository

Mission
User
Properties

Service provider

Service Interface

Service provider

Service Interface

Service provider

Service Interface

Figure 6.4: Involved servers

6.7. Summary 69

In order to allow an individual Mission composition, the subscription
pattern is used to make use of personalized services. To address the issue
of rapid development of new Missions and make use of a community, a
publishing mechanism is used to widen the range of Missions.

Reusability of existing Missions at a component based level is achieved
through a pipe concept copied from the Unix environment.

The following chapter describes the architectural approach to achieve
these expectations. The interaction of the components and the sequence
of control is given in chapter 8.

6.7 Summary

Individualization possibilities in the area of the World Wide Web have
been summarized by the term of personal services which includes content,
presentation and functionality interventions. These personal services
have further been linked to the Model-View-Controller paradigm from
object oriented programming. As a result, three patterns were described
which categorize the individualization areas, namely the content, the
presentation and the integration pattern.

Supplementary principles of a manifold system have been described
which are required to allow individualization of pattern-based components
emerging in the area of the World Wide Web.

7 Syndicate Units

7.1 Syndicate components

User domain

External domain

DOM

external pages

DOM
DOM

Transformer

RendererInjector

External

SCOUT

Aggregator

CONSIGLIERE

Controller

DOM

current page

Connector

Strategy

Adapter

WebService

Trigger

Pipe

Output
Selector

Source
Selector

Figure 7.1: Syndicate components

The Oxford dictionary describes the term Syndicate as: “A group
of individuals or organizations combined to promote some common
interests” [93]. In this context the term is used for two purposes: First, it

71

72 7 Syndicate Units

is the name of the project and covers the generic principle of several small
tasks working together to address a common goal. Second, when used as
an adverb, it describes the state of a loaded web page which becomes
responsive to Mission triggers as soon as the page has been syndicated.

7.1.1 Syndicator and page states

A Syndicator acts as an enabler and is a term used for an element that
allows to syndicate a page. Once a syndicator has been activated the
state of a loaded web page changes from unknown to syndicated as shown
in figure 7.2. In order to use a syndicator there is no need of software
installations or browser plugins to be loaded.

Once a page has been syndicated the page becomes reactive and
Mission triggers are activated and static Missions executed. Core is the
central state after static Missions are completed. If the static Missions
have not been altered, a web page always appears in the same way
after syndication at this stage. From that point on the appearance and
behavior of a web page depends on user selected Missions.

7.1.2 Syndicate server

A Syndicate server is an external site used as Mission storage with possi-
bilities to manipulate Mission properties. Personalized access allows an
individual selection and configuration of Missions. Selected Missions are
loaded from the Syndicate server as soon as a page has been syndicated.
Once Missions have been loaded onto the user’s side, further usage of the
Syndicate server depends on the Missions itself. It is possible to continue
with syndicated pages without involving the Syndicate server anymore.

Figure 7.3 shows the weaving of a web browser, the syndicate server
and connections to the web, seen as a global service-oriented architecture
(SOA). Certain services on the web are directly contacted during the visit
of a web site while others use a server detour for that purpose. The dotted
components and connections become available with the syndication of a
page.

Missions, published to the servers repository can make use of services
found on the web. It is up to the user to make a selection out of the
available Missions. Once a Mission has been loaded and activated, other
services may get consulted in order to fulfill a certain task.

The selection and basic configuration of Mission properties happens at
the syndicate server while the actual Mission activation is started at the

7.1. Syndicate components 73

unknown

syndicated

core

Mission
running

Mission
ready

External
Mission
running

Syndicator

Static
Mission
Trigger

Dynamic
Mission
Trigger

Mission
completed

External
Mission
TriggerDynamic

Mission
Trigger

tampered

De-Syndicator

Figure 7.2: States of a web page

74 7 Syndicate Units

The Web as global SOA

Enterprise

Web Browser

syndicate

Request
Forwarder

Web
Services

Message
Oriented

Middleware

Firewall

Syndicate Server

Mission
Repository

Mission
Properties

Web
Services

Web
Sites Feeds

ContactsCalendarsGeo
Data

Figure 7.3: Syndicate Client/Server

7.1. Syndicate components 75

client’s web browser.

7.1.3 Mission

A Mission is a term used to describe a specific task. A task can be a
simple modification of the current loaded page or can be composed from
invocations of several services before altering the actual page. Missions
differ from services in the way that Missions can make use of services
but provide additional functionality beside the simple invocation of a
service. Missions are not limited to the web browser but can also hand
over part of the job to other applications and invoke external programs.

Authorized users create, store and publish Missions on a Syndicate
server. It is then up to the user to make an individual selection from the
published Missions. Once a Mission has been loaded onto the users side,
a trigger activates the execution of the Mission.

According to the behavior of a Mission, a Mission is categorized by
one of three patterns: Presentation Missions, Content Missions, and
Integrating Missions. Each pattern specifies the major operating range
of the Mission. The distinction of the patterns is closely related to the
number of the involved external sites. The relation between the Mission
patterns is shown in figure 7.4 and patterns located in the outer boxes
can always include patterns from the inner ones. At the same time
complexity of the Mission increases starting from the innermost ones.

7.1.4 Mission Patterns

Presentation Mission

Presentation Missions are used to change a web site’s appearance. Rear-
ranging web content, changing element sizes, fonts or colors or introducing
new functionality to enhance the possibilities of a web site are examples
of this kind. Enhancements in this pattern only include changes to the
visual component of a web site without consulting other web services.
Such enhancements can extend interaction components such as formulas
or static elements such as images, hyperlinks or table structured data
for example.

Content Mission

This pattern describes Missions that make use of external services or
information providers to add additional functionality to a web site.

76 7 Syndicate Units

Integrating Pattern

Content Pattern

Presentation Pattern

Local
Page

External
Site

External
PageExternal

Page
External

Site

Figure 7.4: Relation of Mission patterns

Missions that implement this pattern make use of mechanisms to contact
external sites which are or are not aware of being used as an information
provider. Missions implementing this pattern combine data from the
current loaded web page with data coming from an external service.

Integrating Mission

The main point of Missions belonging to this group is the fact, that they
integrate and combine more than one external site in order to fulfill their
task. The focus of these Missions lies on the integration and controlling
of the information providers. Since integrating Missions can also include
Mission from the other two patterns, their complexity outweighs the one
of the other patterns.

7.1.5 Mission triggers

A Mission trigger is an event that starts the invocation of a Mission. This
can be a static, periodical, or user-generated event. An event is said to
be static if it depends only on the completion of web page loading but
not on user interaction. Periodical events are triggered by an internal
timer and user-generated events can come from mouse movements or
keystrokes.

7.1. Syndicate components 77

Trigger
Logic

SCOUT

Timer

Keyboard
Events

Mouse
Events

Trigger

Figure 7.5: Trigger Event

A trigger could also combine user events with scraping information
coming from the Scout in a way that an action is only initiated when a
user generates an event while the mouse pointer is at a specific position.

7.1.6 Properties

GlsplMissionProperty are environmental settings affecting a specific
Mission. Properties are divided in user- and global wide values which
depend on the Mission, and properties changing the behavior of Syndicate
in general.

Mission specific properties

Each Mission has specific settings. Global values control the general
functionality of the Mission. Service addresses, data formats and autho-
rization information are defined globally and are essential for a Mission
to work properly. The Source Selector is also configured at a global basis
and defines the strategy on how service providers are selected to fulfill a
Mission.

User properties allow variations of Mission behavior and can be set
once a page has been syndicated. These properties are Mission specific
and control the way a Mission is working. Settings can change the process
of information gathering with the Scout, the transformation task and
the way data is injected into the current page.

78 7 Syndicate Units

Syndicate properties

Properties at this level affect the way syndicate is working. Syndicate can
be configured to store the user properties and reload the settings the next
time a Mission is activated. Syndicate can also be setup in a way that the
syndication of a page happens automatically once a hyperlink referring
to another page has been clicked. Once a page has been syndicated, all
follow-up pages will be syndicated as well in this mode.

7.2 Service unit

7.2.1 Service

In the context of Syndicate the term service embraces all resources
available through the internet which offer any form of information. This
includes web services with public available access as well as other external
web sites or web pages without defined access mechanisms. If a web
site does not offer a programming interface to access its information,
particular technologies are in place to extract relevant data. Often, a
server detour is necessary to gain access to sites that do not offer a public
access to the desired data.

The usage of the term service in this context differs from web services
as described in the architecture description of the W3C [94] in the way,
that services are not limited to a particular message protocol as proposed
by the working group.

7.2.2 Server detour

A server detour indicates an additional roundtrip of a communication
path starting at the user’s web browser. This effort of contacting a server
on the way to the destination information provider justifies itself because
of several reasons:

Security: The server does not necessary need to be located at an external
site but can provide an additional layer of security because of central
management by experienced administrators.

Authentication to other servers or accessing several other services
to fulfill a Mission is made easier on the server-side.

Scalability: The server can distribute the load to several other servers,
each server serving its own application area. Beside distribution

7.2. Service unit 79

the server can also offload the server by caching content or using
compression techniques.

Performance buffer: The Syndicate server can serve as a buffer between
the client and other web sites and can provide default or cached
information to the client. The server may also decide to break
down large amount of data and send only portion of the data back
to the client.

If requests often arrive in set of bursts, the Syndicate server can
smooth out the bursts by using a buffer to reduce transaction load.

Intranet publishing: If the server is located within the intranet, access
to an organization’s internal data could also be provided without
offering the material to the rest of the world.

Richer development environment: Server-side development simplifies
the access to other web servers. Different libraries support the
processing of requests.

Support client-side development: It is generally easier to transform
different data formats into a format more desirable by the client
such as JSON instead of SOAP.

Reliability buffer: In choosing alternative sites if a desired server is
unreachable, the Syndicate server can offer more reliability.

Quality buffer: The source selector allows the selection of services based
on quality priority.

Better information: The server can respond with different status- or
error codes and provide more information about performance, reli-
ability, quality or failure about Missions.

Adaption: Requested Services usually do not respond with a data for-
mat or functionality that is exactly in the desired format. By
using adaptors at the server-side, content can be brought into the
necessary format.

80 7 Syndicate Units

7.3 Transformer unit

7.3.1 Adapter

The channel adapter can change the data format coming from the Scout
to an appropriate format for the transformer. The purpose of the adapter
is to hide heterogeneity and provide a uniform view of the extracted data.
The adapter depends on the transformer which is Mission specific.

7.3.2 Transformer

Transformers are the main area where the functionality and the business
logic of a Mission is kept. The transformer can use information from
various sources and produces an output which can further be processed.
Transformers usually enrich or combine the input data with other in-
formation and produce an output with additional functionality. It is
the responsibility of the Scout to deliver such information to be used as
input data. But it is also possible that the transformer changes already
processed information without further invocation of the Scout.

The number of involved information suppliers is directly related to
the pattern of a Mission. A Mission based on the presentation pattern
uses a transformer that does not make use of information coming from
external services. The Content and the Integration pattern do require
additional data resources.

The output of the Transformer can consist of a modification of the
original web page or can be a complete replacement. It is also possible
to hand the output and controlling over to external programs running
outside of the web browser.

7.4 Exploration unit

7.4.1 Scout

The information Scout is responsible for the aggregation of input data.
The source of the input data depends on property values globally set by
the Mission or on user-specific setting.

The aggregation of input data is based on one of two strategies: Se-
mantic and structural scraping. Both strategies depend on an analysis
of text based input.

7.5. Data access unit 81

Semantic scraping

Semantic scraping covers the area where information has to be processed
with knowledge about the content of the input data. The output of
the processing can be a subset of the input data, where only relevant
information is kept. But the output can also be a new description about
the analyzed data without direct structural relation to the input.

In order to come up with a semantic description of the input data,
external services can be consulted. Methods such as statistic evaluations
can improve the quality of the description, but at the same time a
consistent output cannot be guaranteed.

Structural scraping

Structural scraping defines the analysis of the composition of a web
page. In contrary to semantic scraping, this information aggregation
process does not depend on knowledge about meaningful content. But
as within semantic scraping, assumptions and restrictions limit the use
to a particular type of web pages. In particular web pages which do not
use html as the basis for their content need another processing schema.

The output of the structural scraping process is an eventually rear-
ranged subset of the input data. User actions such as a text selection
can influence the functioning of the scraping process.

7.5 Data access unit

7.5.1 Source selector

Source selection for the Scout is based on a strategy pattern. The input
source is selected or chosen by priority depending on different criteria.
Such criteria include the origin of the resource based on quality, speed
or liability. Input sources can also be weighted and put into a priority
queue depending on a particular criteria. The use of an input source is
transparent in the process flow.

Enabling criteria

Whether a loaded web page allows to be altered by a Mission depends
on the enabling criteria. This criteria is a list of web addresses or wild
cards of web addresses that specify which web pages are permitted. This

82 7 Syndicate Units

criteria is used to restrict Missions that only make sense on particular
web pages to the ones that are built for that purpose.

Quality criteria

Resources can be weighted by a quality criteria. Response time is an
example of an objective criteria where sites with faster response times
are favored against slower ones. Information quality is a user defined
criteria which cannot be measured directly and requires a graduation by
the user.

Best of breed criteria

Best of breed is a strategy where external ratings are used to built a
priority list of otherwise equivalent service providers. In order to access
ratings it can be necessary to make use of a Mission where the only
purpose is to lookup ratings.

Additional functionality

By the use of a Source selector, input sources are decoupled from the
rest of the application. This approach leads to greater flexibility in
choosing alternative input resources. Decoupling at the same time allows
to change physical protocols used for communication or insert logging
functionality at the communication channel.

7.5.2 Connector

Unit that provides methods to connect to external services. External
services can make use of different mechanisms and require individual
access. The Connector gives a unified view onto these service interfaces.

The Connector is linked to the Scout which processes the content
of the received data. The Connector itself is only responsible for the
connection but not for the analyzation of the content.

7.6 Controlling unit

The Consigliere is the nerve centre of the Syndicate system and acts
as controlling unit between the single components. All actions of the
Syndicate system are coordinated by the Consigliere and are running at

7.7. Output viewer 83

the client side. The processing sequence of the Consigliere is immutable
but the behavior of Missions are modifiable via Mission properties. A
local Consigliere runs at the user’s web browser and a remote Consigliere
can run at the Syndicate server if contacted.

7.7 Output viewer

7.7.1 Renderer

The renderer addresses the presentation of the outcome of a Mission.
The behavior of the renderer is given with default implementations but
can be changed depending on a specific Mission. The renderer works
independently of the other components and relies on capabilities of the
output device.

7.7.2 Injector

A component, that manipulates the current loaded web page. This
includes opening a new page, appending content to the current page or
replacing parts or everything of the current content. The Injector can
also manipulate the current page in a way that new content appears only
based on user actions such as selecting a particular component or moving
the mouse over a specific part of the page.

The injector works independent of the other components but often a
logical connection holds.

The necessary information for the Injector are based on the Scout and
the result coming from the Transformer. The Scout provides pointers to
locations where data parts have been found and the Transformer offers
the data to be injected.

7.7.3 DOM

The Document Object Model (DOM) describes a standard object model
for representing HTML, XML or related formats. The World Wide Web
Consortium (W3C) developed the DOM in response to the development
of various proprietary models for HTML, particularly those used in web
browsers. The DOM specification is platform- and language independent
and constantly being revised by the W3C, with browsers at the same
time constantly trying to support the latest recommended version of the
DOM.

84 7 Syndicate Units

7.7.4 External programs

Syndication is not limited to the web browser. Beside modifications of
the loaded web page, launching of external programs is also possible.
Information from the Scout can be used to control the program while
startup or affect the way the program is initialized. Once the control has
been handed to an external program it is out of reach of the syndication
environment.

8 Syndicate Control Flow

Figure 7.1 on page 71 shows the connections between the different com-
ponents of syndicate. The group of elements emphasized in figure 8.1
represent input and output resources of the syndication process.

Figure 8.1: Input and output resources

The grouped elements have a logical connection since they are all
resources used for input and output of Missions. But they are physically
separated and generally live on different machines. The current page is
the starting point of the syndication process and other resources such
as external pages or web-based services are contacted while a Mission is

85

86 8 Syndicate Control Flow

running.
If an external component from the user’s domain is started up, Syndicate

looses control and only initial parameters are passed to the external
component.

8.1 Syndication of a page

The action diagram shown in figure 8.2 describes the control flow starting
with loading of a web page.

Start

WebPage
loaded

start WebPage
load Page

syndicated

Missions
loaded

activate
Triggers

Triggers
activated

Missions
selected

select Missions
contact Syndicate
server and load
missions

syndicate page

Figure 8.2: Page syndication

Syndicate starts its activities after a web page has been loaded and
a Syndicator transformed the web page into a syndicated page. During
the syndication process, the Syndicate server will be contacted and
subscribed Missions are loaded into the current web page. The activation
of the Syndicator is initiated by the user and requires a connection to a
Syndicate server. Up to this point the loaded page has not been altered
but all necessary Mission components have been loaded onto the user’s

8.2. Mission triggering 87

side. If the Syndicate server is furthermore contacted depends on the
functionality and activation of the loaded Missions.

8.2 Mission triggering

Whenever a Mission trigger event has been received, the correspondent
Mission starts up. A trigger event can origin from a user activity such
as a key stroke or mouse gesture or can be established by a system
event. A system event includes periodic triggers which occur at regular
intervals and static events which are produced when a page has been
loaded completely. With the activation of a Trigger the preparation of a
Mission begins as shown in figure 8.3

Triggers
activated

TriggerEvent
received

trigger

MissionKey
= [help]

Active
Missons
shown

Mission
selected

[need Info]

Information
Gathering

[currentPage]

[external]
External

Info
received

WebPage
observed

Pipe
observed

[Pipe]

Choose
Properties

Input
resources
collected

prepare for
Mission

Ready for
Mission

Figure 8.3: Initializing of a Mission

If the Mission needs additional information, it is the responsibility of
the Scout to gather necessary data.

88 8 Syndicate Control Flow

8.3 Mission activation

Presentation
Mission

Content
Mission

Controlling
Mission

[Mission
Pattern]

Mission
activation

[external]

External
Mission
called

Code Injection

Consigliere
Selection

Consigliere
Selection

Figure 8.4: Mission activation

When a Mission has been activated the collected input sources are
processed further either by the local Consigliere or by the Consigliere
at the Syndicate server. The decision about the addressed component
depends on the Mission pattern and complexity. If the server is involved,
the process is named a server detour.

The invocation of the remote Consigliere includes a service selection
process where service partners are selected based on different strategies
as described in 7.5.1 and shown in figure 8.5. Whether the remote
Consigliere has been involved or not, after the interaction with a remote
service the Scout is in charge of further processing.

[local
Consigliere]

Local
Consigliere

invoked

Remote
Consigliere

invoked

[Remote
Consigliere]

Scout

Partner
selected

call service
choose service

Selection Strategy Service
response
received

Consigliere
Selection

call service Service
response
received

Figure 8.5: Consigliere Selection

8.3.1 Local Consigliere

The local Consigliere is directly consulted for presentation Missions or
simple content Missions which do not need complex transformations of
resource data. If the control has been handed to the remote Consigliere

8.3. Mission activation 89

to complete a Mission’s task, the final processing is still covered by the
local Consigliere. This processing consists of the coordination of the
Scout and the render and injection action.

8.3.2 Remote Consigliere via server detour

The contacted remote Consigliere selects its service source by the Source
Selector based on a specific strategy as explained in section 7.5.1. Once
the response has received and eventually adapted for further handling,
the Scout takes care of information gathering.

8.3.3 Information gathering with the Scout

[Pipe]

[External]

[Internal]

Stored in
Pipe

External
called

Code
Injection

Scout

call Transformer

Mission
rendered

Input data
collected

Input data
transformed

call Renderer

Semantic scraping

Structural scraping

Figure 8.6: Invocation of the Scout

The Scout is responsible for information gathering. Data can be
extracted from the current loaded page, from external web pages or from
the output of web-based services or from other Missions. Semantic or
structural scraping techniques as described in section 13.3 are used to
find the desired information.

8.3.4 Transformation and Rendering

The main goal of a Mission is the transformation of one or more input
resources into a new structure. The transformed data is rendered by the

90 8 Syndicate Control Flow

Mission renderer and passed to one of three possible output sections as
shown in table 8.1.

Mission output Handler

A pipe can be used as information storage if further
processing by other Missions is requested.

Consigliere

An interface for calling external programs offers
the possibility to hand the responsibility over to
another application.

External Ap-
plication

Code injection allows transformed data to be placed
into the current loaded web page.

Injector

Table 8.1: Handlers for mission output

8.3.5 Injection

The injector takes rendered, transformed Mission data and puts them into
the current loaded page. The data can either be appended to the page
or be used as a replacement for an area marked during the processing
of the Scout. With the finishing of the Injector a Missions activity is
completed.

Code
Injection

[Replace]

[Append]

Marked area
replaced

Mission
Result
appended

Figure 8.7: Injection

Part III

Syndicate as seen by the User

91

9 Mission Publisher

This chapter describes tools and interfaces from a user perspective de-
pending on the role the user takes on. Examples of a workflow from
creation, accessing, using, editing and removing are given at the end of
this part.

9.1 Mission components

Publishing of new Missions is restricted to authorized Users (see 6.3). A
Mission to be published consists of a Mission description, the Mission
implementation, Property settings, and Resource addresses.

Mission

Description Properties

Implemen-
tation

Resource
Adresses

Figure 9.1: Mission parts

9.1.1 Summary

In order to gain information about a Mission’s purpose a summary has to
be included with each Mission. A summary consists of a Mission pattern

93

94 9 Mission Publisher

(1), a category (2), an image (3), a textual description (4), and the
Missions function (5). Beside these explicitly defined elements, Mission
property settings are also contributing to the Mission’s summary.

Mission Description

Renderer

ScoutTriggerMission
Pattern

Mission
category Injector

Source-
Selector CollectorMission

function

Mission
Image

Textual
Description

[1] [3]

[2] [4]

[5]

Figure 9.2: Mission summary

The Mission patterns (1) is one keyword out of ’Presentation’, ’Content’
and ’Integration’ and is used to categorize the Mission’s purpose but
has only descriptive character. The category (2) of the Mission is a
tag list of keywords further describing the Mission’s purpose. The
image (3) is a visual representation of the Mission and together with
the textual description (4) serves to select a suitable Mission. Finally,
the Mission function (5) explains what it actually does, for example
modifying particular elements on the page.

9.1.2 Implementation

The implementation part of a Mission consists of JavaScript code that
executes on Mission triggering. This code includes specific activities of
the Scout, the Mission’s actions and integration code that eventually

9.1. Mission components 95

combines output from other Missions.

9.1.3 Mission Properties

Mission properties are a set of environmental settings and are initiated
with predefined values. The Mission publisher can decide if a subscribed
user is allowed to change a particular value.

Trigger properties

An example of a setting that is very likely to be changed is the Mission
trigger. The Mission trigger is responsible for the activation of a Mission
and can individually be defined by a Mission subscriber. The Mission
publisher chooses possible choices for Mission triggers settings, sets up
a default environment and defines which setting can be changed by a
Mission subscriber.

Trigger settings can be chosen from the list presented in table 9.1.
Some of the settings require additional values which can be replaced by
a Mission subscriber.

Trigger Explanation

static Static triggers fire as soon as the page has been
loaded.

periodical A trigger that periodically invokes the Mission.
This trigger requires the setting of an internal timer
between each invocation.

user-generated A trigger that starts firing dependent on user key
strokes or mouse movements. This trigger requires
the setting of a key combination or a selection of a
mouse gesture.

Table 9.1: Trigger settings

Triggers can use scraping information coming from the Scout to decide
if a trigger fires or not. For example a trigger can be defined to fire
whenever the mouse pointer is located on a table structured text and a
specific key has been pressed and released.

Conflicts with Mission trigger settings from other Missions are rec-
ognized by the Syndicate server and a change is requested in case of a

96 9 Mission Publisher

conflict. Trigger settings can always be altered by subscribing user and
the Mission publisher cannot disallow a change.

Source Selector

The Source Selector is responsible for choosing an appropriate resource
for a specific Mission. Settings for the Source Selector include a sorted
list of resource addresses and a selection strategy. The selection strategy
is a choice of the two possibilities shown in table 9.2 together with a
weighting definition.

Criteria Explanation

Enabling criteria The enabling criteria consist of a list of possi-
ble web addresses used to decide if a loaded
web page is allowed to be altered by a spe-
cific Mission.

Quality criteria Response Time is a predefined possibility
where equivalent resources are compared to
each other depending on the time needed
to process a request. Information quality is
another criteria where the Mission publisher
can rate resource addresses by rearranging
the address list.

Best of breed criteria This strategy uses external ratings to se-
lect a resource. Such policies allow complex
configurations and have to be configured
specifically for each Mission.

Table 9.2: Source Selector settings

In order to increase the chance of a successful Mission completion, test
cases need to be defined where failing resources can be eliminated in
advance to a Mission activation. Due to the nature of anonymous service
integration a 100% guarantee cannot be given but test cases increase
prospering.

9.2. Mission Unpublishing 97

Collector

Collector settings comprehend of environments necessary to complete
requests to the defined resources. Such an environment consist of autho-
rization information, protocol specific definitions and parameters used to
involve external services.

Scout

Properties for the Scout depend on the selected Scout strategy as shown in
table 9.3. Properties for both strategies are given as a set of instructions
to extract the desired information out of a given input.

Strategy Explanation

Semantic scraping Semantic scraping requires the specification
of a selection method. Such a method often
includes textural search patterns such as the
definition of a specific number format.

Structural scraping This scraping mechanism uses simpler defi-
nitions and is based on items used to build
a web site.

Table 9.3: Scout strategies

Renderer

The settings for the Renderer can be altered by changing style definitions
used to specify the presentation of a Missions outcome.

Injector

Injector properties decide where the outcome of a Mission goes to. Ta-
ble 9.4 shows possible locations for a Missions result and lists correspond-
ing property values.

9.2 Mission Unpublishing

If a Mission has to be unpublished, the Syndicate server controls user
subscriptions and requires additional confirmation of the unpublishing

98 9 Mission Publisher

Location Explanation

Separate A new window opens with the result of a Mission.

Append The output of the Mission is appended to the cur-
rent loaded web page. A Scout definition might be
necessary in order to define the exact location if
the data is to be inserted within the page rather
than appended to the end of the page.

Replace This selection requires a Scout definition of the area
where the resulting data replaces existing informa-
tion.

Table 9.4: Injector locations

process in case of an active Mission. Unpublishing removes the entire
specifications of a Mission as well as all user settings that belong to the
Mission.

9.3 Publishing workflow

A Mission developer sets up the environment in order to allow a Mission
to function properly. The Mission publisher has the ability to alter those
definition and specify which properties are allowed to be changed by
subscribing users. Once a Mission has been published to the Syndicate
server it is up to the users to choose, alter and invoke specific Missions.
The Mission publisher must guarantee a successful setup but it cannot
be responsible for altered settings that do not work acceptable.

10 Mission Subscriber

10.1 Mission subscription

Missions are stored on a Syndicate server and can be subscribed by users.
Once a Mission has been selected, Mission properties need to be defined.
If a specific property is allowed to be altered depends on the settings
given by the Mission publisher as described in section 9.1.3. User defined
settings are stored at the Syndicate server and are removed when a user
unsubscribes from a Mission or the Mission has been unpublished by a
Mission publisher.

A required property is the selection of a Mission trigger used for
invocation of the Mission. This setting can eventually be forced by
the Syndicate server if the default setup conflicts with other Missions.
Other properties such as resource selection or render configurations
depend on the Mission and can eventually be altered. The Syndicate
server can assist user settings such as resource addresses and verify the
existence of remote sites, but it cannot prevent constellations that prevent
functional Missions.

If a Mission has been subscribed it is only marked to be included but
is still stored at the server side and loaded whenever a page has been
syndicated. The actual processing of the Mission relies on the firing of
the Mission trigger.

10.2 Mission selection

In order to chose a Mission, different search criteria can support the
decision process. Some Missions are only built for a small set of web
sites while other Missions work generally. Table 10.1 gives an overview
about useful selection criteria. The criteria are additively used to narrow
the presented Missions to an interested subset.

99

100 10 Mission Subscriber

Mission category – A list of keywords that are used to demarcate
Missions by operating area.

Mission behavior – A list of keywords that separate Missions accord-
ing to their behavior.

Mission pattern – The list of Missions can be limited to a given
Mission pattern.

Mission description – A textual search in the Mission descriptions can
be used to isolate interesting Missions.

Web address – This criteria filters Missions that work for a given
web address.

Included services – Another search criteria to localize Missions that
include selective service addresses.

Trigger settings – By choosing trigger settings, Missions can be
filtered out that only respond to given activities.

Table 10.1: Mission selection criteria

10.3 Mission unsubscription

If a previously subscribed Mission is deselected at the Syndicate server,
it will not be included in further page syndication. Individual settings
for Mission properties will be removed and locked trigger combinations
are released for other Missions. The definitions of other Missions are not
affected.

11 Examples

This chapter provides illustrations from the user point of view and shows
possibilities of Syndicate. The stated examples are grouped into three
categories according to the proposed Mission patterns, namely content
pattern, presentation and integration pattern (see: 6.1) and increase in
complexity in terms of the number of involved components.

Table 11.1 on page 102 gives an overview of the presented examples
and their participating components. One example in each category is
explained in detail while the other descriptions are limited to a functional
explanation.

101

102 11 Examples

Trigger Scout Source
Selector

Communication Injector

Example S
ta

ti
c

U
se

r

S
em

a
n
ti

c
S
cr

a
p
in

g

S
tr

u
ct

u
ra

l
S
cr

a
p
in

g

P
ro

x
y

A
lt

er
n
a
ti

v
es

R
E

S
T

S
O

A
P

J
S
O

N
-R

P
C

X
M

L
-R

P
C

E
x
t.

A
p
p
en

d

R
ep

la
ce

P
re

se
n

ta
ti

o
n

AdRemover • • – – – – – – •
TextFieldSize • • – – – – – – •
TableSort • • – – – – – – •
FileExtension • • – – – – – – •
iTunes • • – – – – – – •
Stocks • • – – – – – – •

C
o

n
te

n
t

Question • • • •
AcronymList • • • • • •
BookFinder • • • • • •
Distance • • • • •
Dictionary • • • • •
Weather • • • • •

In
te

g
ra

ti
o

n

TextSpeaker • • • • • •
Translator • • • • • •
PhoneCall • • • • • •
AskSmart • • • • • •
DiscMission • • • • • •

Table 11.1: Syndicate examples

11.1. Presentation Mission examples 103

Figure 11.1: A syndicated page

All Examples provided in this chapter are not restricted to certain web
sites. The presented web sites have been chose because certain aspects
could be demonstrated effectively but all Missions should work on any
other site as well. If a web site has been syndicated, a small icon appears
on the top of the page as shown in figure 11.1.

11.1 Presentation Mission examples

Mission examples of the Presentation pattern change the appearance or
behavior of a syndicated page. These Missions do not use other services
or external information for their task. But in order to activate a Mission,
some of the examples do make use of user actions to trigger a Mission.

11.1.1 AdRemover

Functional description

This Mission removes advertisements and pop-up’s from a syndicated
page by making corresponding blocks invisible. The Mission does its
job without any user interaction and automatically starts removing
advertisement blocks with the syndication of a page. This Mission profits
from an ongoing update to recognize new advertisement blocks. This is
a good example why it does make sense to reload the Mission with each
page load.

104 11 Examples

11.1.2 TextFieldSize

Functional description

This Mission starts as soon as a page has been syndicated and modifies
all text input fields found on the page. Every text field becomes resizable
by the addition of a resizable icon in the lower right corner of the text
field. Single text fields can be expanded or shrunk to the side and text
areas can be resized in their widths and heights. When the user moves

Figure 11.2: Resizable text fields

the mouse pointer close to the resize icon, the mouse courser changes
from the standard image to a resize pointer. After clicking and dragging
the resize icon, the text field instantly changes its size. Resizing a text
field can affect the page layout especially when a web page has been
poorly designed and uses absolute numbers to define its layout.

Component based description

After a page has been syndicated the static trigger starts the TextFieldSize
Mission. The Consigliere, responsible for the coordination of the Mission
flow, activates the Scout. In this example the Scout uses structural
scraping to find all relevant user interface components and collects them
in a list. Since this Mission does not make use of external services, the
Source Selector is not involved and the Consigliere directly calls the
Renderer for each user interface component from the list. The Renderer
creates a modified version of the text field and installs an event handler
that takes care of applicable mouse gestures. Finally the Injector replaces
the existing text fields with the freshly created ones.

Whenever the user moves the mouse pointer on top of the resize icon,
the event handler becomes active and modifies the text field size as soon
as the user presses the mouse button and drags the icon around. This
example is based on a user script for GreaseMonkey [95] and serves as
an example on how to make use of related projects.

11.1. Presentation Mission examples 105

11.1.3 TableSorter

Functional description

The TableSorter allows to sort table content by clicking on a text in the
table header row. The user has to select a table manually and initiate
the sorting possibility with a keystroke. From that point on the table
content can be sorted by clicking on the hyperlinked text in the header
row. Subsequent clicks toggle the order direction and are marked with a
small arrow to the right. The sorting algorithm recognizes simple date
formats, decimal numbers and US dollar currencies.

This Mission is a modification of a user script, available for Grease-
Monkey [96].

11.1.4 FileExtension

Functional description

After syndication of a page, all hyperlinks that appear on the page are
analyzed and extended with a small icon showing the file type to be
downloaded. For example Microsoft Word documents have a small icon
showing the logo of a Word document. It is also possible to exclude links
from the list. Hyper links to zipped files for example, could be removed
because of security reasons.

This Mission is an example of a modification from a related project as
found in Chickenfoot [72].

11.1.5 iTunes

The next two examples differ from the ones before that an external
program is launched. As soon as the Mission has been activated, control
is taken over by the external application and the Mission is completed.

Functional description

This Mission starts a lookup for music albums containing the current
selected text in their album name in the iTunes music database. The
external program iTunes is started for that purpose and a connection to
the music store is made which handles the control from the web browser
to the iTunes application.

106 11 Examples

11.1.6 Stocks

Functional description

The currently selected text is used as a search string for stock values.
This Mission launches the Sherlock application to look up quotes and
provides charts and stock values. Chart selection and modifications are
all made in the external application. The Mission completes as soon as
the application has been started.

11.2 Content Mission examples

The following examples make use of external information providers with or
without published web interfaces. Different communication technologies
are in place, mostly following the REST architectural style as described
in section 3.4.

11.2.1 Questions

Functional description

If this Mission has been activated a question will show up with the
syndication of a page. The question is randomly selected from a question
database and can be answered independently of the rest of the page.

11.2.2 Acronyms

Functional description

This Mission selects acronyms from the current page and appends a list
of descriptions for them to the end of the page. Figure 11.3 shows an
example with acronyms found on a page from New York Times. This
Missions makes use of alternative service providers and shows descriptions
from sites according to the user’s preference.

Component based description

After page syndication, a static Mission trigger starts analyzing all text
on the current loaded page. This activity is done by the Scout which uses
semantic scraping to select potential acronyms words. The Consigliere
takes the extracted words, sorts them, removes duplicates and puts the

11.2. Content Mission examples 107

Figure 11.3: List of acronyms

result into a list for further processing. The Source Selector picks service
providers according to the user’s preference and keeps a reference of
each one. The Connector then contacts the selected providers and asks
for a description of each possible acronym. The resulting descriptions
are passed to the Renderer which builds a visual representation of all
the words for which a description could be found. The Injector finally
adds the created summary to the end of the page. Figure 11.4 shows
the components involved in this Mission. This sketch is a cut out of the
concept presented in section 7.1.

11.2.3 BookFinder

Functional description

BookFinder is a Mission where a text selection is used to lookup book titles
containing the selected word. External web sites such as Amazon [97]
are used to find matching products. A segment of the first books are
then concatenated to the end of the page. The Mission is started by a
keystroke after the desired text has been selected.

108 11 Examples

User domain

External domain

DOM

external pages

DOM
DOM

Transformer

RendererInjector

SCOUT

Aggregator

CONSIGLIERE

Controller

DOM

current page

Connector

Strategy

Adapter

WebService

Trigger

Output
Selector

Source
Selector

Figure 11.4: Components for Acronyms

11.2.4 Distance

Functional description

This Mission calculates distances from a predefined starting point to a
selected address and shows this information in a tooltip window. The
starting point is defined once at the Syndicate server and the destination
address is chosen by selecting a text area.

11.2.5 Dictionary

Functional description

Dictionary is similar to the BookFinder example but in this Mission a
selected word is looked up in a dictionary. The consulted description
then appears in a small window as long as the user has its mouse pointer
positioned on top of the selected word.

11.3. Integration Mission examples 109

11.2.6 Weather

Functional description

If the current text selection contains a name of a city, a region or a
country, the latest weather forecast appears in a small window when the
Mission is triggered with a keystroke.

11.3 Integration Mission examples

This category contains examples of Missions which use more than one
cycle to complete a certain task. The piping mechanism for staggered
Missions is also explained.

11.3.1 TextSpeaker

Functional description

This Mission provides the ability to start a synthetic speech for a text
selection. The text is chosen either by selecting a text range with the
mouse or otherwise the text block which is under the mouse cursor is
used. The language of the web page is automatically chosen to use the
correct speaking service. Alternative service providers can be defined
which are consulted according to the user’s priority definition.

11.3.2 Translator

Functional description

A text area under the mouse cursor or a selected text range is translated
into a target language defined by the user. The input language is
automatically chosen by this Mission. Alternative translation services
can be defined where one service is picked based on a priority strategy.

Component based description

After page syndication a static Mission trigger launches a language
guessing Mission which tries to figure out in which language the current
page has been written. This Mission consults the Scout which starts
semantic scraping in order to find this information. The outcome of the
Missions is a language string such as “en” for English or “fr” for French.

110 11 Examples

The outcome data is placed into a pipe for further processing. If the
Mission cannot come up with a solution an input field is presented to
the user, asking the user for a manual selection of the language for the
current page. Figure 11.5 shows the involved components.

User domain

Transformer

SCOUT

Aggregator

CONSIGLIERE

Controller

DOM

current page

Adapter

Trigger

Pipe

Output
Selector

Figure 11.5: Components for language dedection

The user choses a text block by either selecting a text range with the
mouse or by positioning the mouse pointer over the desired text area.
The Translation Mission is started with a keystroke which triggers the
Consigliere. The Consigliere communicates with the Source Selector and
chooses a service provider out of the list of alternatives. The choice is
made based on a priority strategy where each language pair can have a
corresponding service provider.

At the same time the Scout analyzes the user selection or the text
area at the position of the mouse cursor if no text has been selected. If
the mouse position is used to locate a text portion, the affected text
area depends on the page structure at that location. The text selection
algorithm tries to limit the text area to the surrounding layout structure.
The chosen text is then stored in the pipe for further processing.

Next, the Consigliere takes the language information from the pipe
and reads the user property about the desired target language. Based
on this language pair the source selector selects an appropriate service
provider and invokes the Connector. The connector requests a translation
for the text stored in the pipe and receives the transformed data. The
translated result is passed to the Renderer which directly invokes the

11.3. Integration Mission examples 111

User domain

External domain

Transformer

RendererInjector

SCOUT

Aggregator

CONSIGLIERE

Controller

DOM

current page

Connector

Strategy

Adapter

WebService

Trigger

Pipe

Output
Selector

Source
Selector

Figure 11.6: Components for Translator

112 11 Examples

Injector. Finally the Injector replaces the input text with the translated
text. Figure 11.6 shows the remaining part of the Translator Mission.

11.3.3 PhoneCall

Functional description

This Mission analyzes a syndicated page and tries to extract telephone
numbers. Each telephone number is supplemented with a telephone
button as shown in figure 11.7.

When the user presses the button a telephone call is initiated either
by starting a VOIP connection or by playing a series of dial tones which
can be used to place a call with an ordinary telephone.

Figure 11.7: Web page with telephone numbers

11.4. Examples of distinguished components 113

11.3.4 AskSmart

The following two examples have not been implemented yet, but serve
as a good example of the integration pattern.

Functional description

The aim of the AskSmart Mission is to embed knowledge questions to a
loaded page. These questions can be used as self assessments about the
topic of the current page. Standardized databases serve as resource to
discover and load predefined questions.

Component based description

At first a Tag Mission analyzes the current page and returns a list of key-
words that describe the possible content. The output of the Tag Mission
is used to lookup questions from a set of databases. These databases make
use of the IMS Question and Test Interoperability specification (IMS QTI)
as proposed by the IMS Global Learning Consortium [98]. The retrieved
questions are rendered by an external web-based service [99] [100] and are
embedded by the AskSmart Mission to the bottom of the current page.
These questions are being used as self assessments and are corrected by
an external correction service keeping the interaction anonymously [101].

11.3.5 DiscMission

Functional description

The purpose of this Mission is to discover new Missions that might be of
interest to the user. Missions are looked up based on two conditions. The
first condition is defined by the user who specifies categories or behaviors
he is interested in. The second condition is given by another Mission that
makes a semantic analysis of the loaded page and tries to find Missions
specifically built for this page. If a new Mission has been discovered and
has not already been denied by the user, then the Missions description
is shown together with a possibility to subscribe.

11.4 Examples of distinguished components

This section uses examples described in this chapter to explain distin-
guished components with concrete implementations. The purpose of

114 11 Examples

these descriptions is a better understanding of the operating range of the
components.

11.4.1 Triggers

Example: Static trigger

An example of a static Mission triggering is the acronym list as described
in section 11.2.2. As soon as the web page has been loaded the Scout is
triggered to observe the current page for possible acronyms.

Example: Periodical trigger

An example for periodical updates is the integration of weather data
appended to city names found on the current page. Temperatures or the
strength of the wind could be other useful information.

Another example would be stock values appended to company names
appearing on the current page. Or information about current train
schedules for city names contained on a page.

Example: User-generated events

Often a text selection with the mouse combined together with a keystroke
can be useful to start a Mission. The BookFinder Mission for example
lists available books which contain a selected word or phrase when a
specific key has been pressed.

Another example is the TextSpeaker Mission which starts a synthetic
speech of a text selected by the mouse.

11.4.2 Scout

Semantic scraping

An example of semantic scraping, where a subset of the input data is
chosen, is the task of extracting telephone numbers found on the current
loaded web page. The scraping process can be influenced with different
number schemas for different countries. The resulting output is a list of
telephone numbers together with position information about the location
where the number has been found on the page.

Another example without structural relation to the input is the attempt
to discover the language of the current loaded web page. Resulting output

11.4. Examples of distinguished components 115

is a textural character description out of a predefined set of known
languages. Criteria can be a weighted analysis of the meta description
of the page, the origin of the page, the character set encoding, a lookup
in the domain name server or a comparison of words found in a specific
dictionary.

Both variants depend on the problem to be solved and assumptions
about the web page under investigation. For example a textural repre-
sentation of telephone numbers is a prerequisite to make the analysis
possible. If the telephone numbers where shown as images it would need
another strategy.

Structural scraping

A possible output of this task could be a list of all hyperlinks or text field
areas found on the current page as a simple example. The TextFieldSize
Mission makes use of the list of text fields.

A more complicated example of a possible output is the header line of
the first table-structured data found on a page.

Scraping information generally depend heavily on the page structure
and are very fragile to changes of the content. This tentativeness espe-
cially holds when external services are being used for scraping.

11.4.3 Properties

Synthetic speech as an example allows the specification of different
translation service addresses where ASCII text will be transformed into
audio data. These global settings are necessary to make the Mission
running. Speech quality can dramatically differ for certain languages.
One service provider may offer excellent quality for one language, but
another language can come out quite poorly.

On the user-level modifications such as speaking speed or speaking
pitch are possible. These configurations may not be available for all
defined services addresses and are simply ignored in that case.

11.4.4 Adapter

An example of an Adapter is the transformation of characters into a
standard format such as UTF-8. The Translator Mission makes use of
such an Adapter that extracts textural parts from the current page and
changes the encoding of the characters to UTF-8. The adapter should be

116 11 Examples

as general as possible and in this example be able to change any textual
input to one standard output format.

11.4.5 Transformer

In the PhoneCall Mission the transformer implements a mechanism to
change the input list of telephone numbers in such a way, that each
number allows a direct call via voice over ip (see figure 11.7 on page 112).

An example of a modification of the PhoneCall Transformer could be
a Mission where additional information is presented. Such information
could include the location found in a global dictionary or calling rates
coming from a list of carrier providers.

11.4.6 Source selector

Quality criteria

Synthetic speech is an example where a lot of quality variances exists. A
service with a good speech quality in one language does not necessary
provide the same quality for other languages or might also not exist at
all for a specific language. A priority queue based on speech quality for
different languages could contain information of several services. If a
service is not available, the next service provider found in the priority
queue could be contacted.

Best of breed criteria

As an example, a Mission where product prices for a selected item could
be looked up might depend on a rating page. The price of the selected
item could be checked with several price finder services and then be
compared with a list of user ratings for the supplier companies.

11.4.7 Renderer

For example, telephone numbers could be colored differently depending
on the type of a number such as mobile phone numbers, local numbers,
and foreign countries. But the telephone numbers could also show
that additional information by the use of small icons appended to it
for example. The behavior of the Mission does not change, only the
presentation appears differently.

11.4. Examples of distinguished components 117

11.4.8 Injector

Figure 11.7 on page 112 shows a web page where telephone numbers are
replaced by a hyperlink together with a small image.

The Acronym Mission in section 11.2.2 is an example where the outcome
of a Mission is appended at the end of the page.

12 Workflow Example

This chapter deals with the necessary steps to introduce a new Mission,
locate the Mission based on different criteria, subscribe to the Mission
and finally invoke the Mission for different web pages. These steps
include different actors chained together as shown in figure 12.1 which is
a different view from figure 6.2 presented on page 67.

UserMission
Developer

Mission
Publisher

Service
Developers

Figure 12.1: Workflow example

The Mission which serves as subject under investigation is the Distance
example explained in section 11.2.4. In this example a web site without
published interface is used as a service provider.

12.1 Involved servers

Three servers are included in the Distance example as shown in figure 12.2:
The Syndicate server, an interface provider and the distance service
provider. The distance service provider is the location where the main
work is accomplished. This server offers a service where a distance
between two addresses can be calculated. But the server does not offer a
public available programming interface to access its service without the
use of a web formula.

The interface provider fills this gap of the missing programming in-
terface and acts as a gateway between the Syndicate server and the
distance service provider. The interface provider transforms structured
data coming from the Syndicate server to formula based data accepted
by the distance server.

119

120 12 Workflow Example

User Domain

Syndicator

Loaded Web page

 Syndicate server
system

Syndicate server

Mission
Repository

Mission
User
Properties

Interface Provider

Service Interface

Distance Service

Web-site without
interface

Figure 12.2: Involved servers for the Distance Mission

The Syndicate server acts as a turntable between the user’s web browser
and the distance service provider. Configuration data and access infor-
mation are stored at the Syndicate server.

12.2 Workflow steps

The service of distance calculation is already available on the web but
the service cannot be reached without the use of a web-based formula.
This circumstance requires a way to transform structured data coming
from the Syndicate server into a format accepted by the distance service

12.2. Workflow steps 121

provider. In this example an interface gateway is used to make the
distance service available for the Syndicate server.

12.2.1 Mission creation

In the situation of the Distance Mission the creation of the Mission
consists of two parts: First, the Mission itself has to be created with the
assumption that a calculation service exists that accepts structured data.
Second, because a distance calculation service will be used that does not
accept structured data, an interface gateway has to be set up to fulfill
this demand.

Interface gateway configuration

In the Distance Mission example, Dapper [102] is used as an interface
gateway. The Dapper site offers the possibility to use a formula based
web site and generates a programming interface where structured data
is accepted and transformed into the desired formula. As long as the
distance service provider does not essentially change its formula and
issued data format, the interface gateway can do its job. But it is good
practice to define certain input values and their expected calculated
result in order to control the interface behavior.

Mission setup

A Mission developer creates a new Mission by providing methods to
complete a desired task as described in the implementation chapter 14. A
Mission description, Mission properties and default values have to be set
up by the Mission developer and if a test case can be provided additional
function guarantee can be given.

The Distance Mission makes use of the Content pattern and is catego-
rized with the following keywords: distance, map, address. The following
text is used as a description for this Mission:

Calculates the distance between a predefined departure ad-
dress and a selected text area serving as target address. The
distance calculation can be setup to be calculated in Miles or
Kilometers.

The default trigger for this Mission is set to the key combination ctrl-d
and a selected text area. The Mission is not restricted to certain web

122 12 Workflow Example

sites and can always be activated. The outcome of the Mission is defined
as a tooltip window floating at the position where the mouse pointer is
located and shows the calculated distance between the departure address
and the selected address.

Once a Mission has entirely been defined and packed into a Mission
package, it can be uploaded onto a Syndicate server which makes the
Mission available for the Mission publisher, but not yet for the Mission
users.

12.2.2 Mission publishing

The next step is provided by the Mission publisher as described in
chapter 9. The Mission publisher is responsible for the correctness
of available Missions and has to examine a Mission closely to detect
malicious code. It is very important to mention that Missions have an
enormous power when they have been loaded by the user. The Mission
publisher is the last instance that can prevent the distribution of Missions
if the processing is suspicious.

12.2.3 Mission localization

Potential Mission users connect to a Syndicate server and select Missions
based on different criteria as explained in chapter 10. In this example a
search for keywords map, distance limit the available Missions and the
Distance Mission appears in the resulting list.

12.2.4 Mission subscription

Once a Mission has been located, the user subscribes to the Mission
by selecting it and altering Mission properties as explained in the next
section. Subscribing to the Mission only marks the Mission to be loaded
with the next syndication of a page but in this example it does not
automatically activates the Mission.

12.2.5 Mission individualization

The degree of individualization depends on the Mission itself and on
the possibilities the Mission publisher permits. In the Distance Mission
example the user can define a departure address and can choose the
unit of the resulting calculation between Miles and Kilometers. If the

12.2. Workflow steps 123

Mission trigger does not conflict with other Missions the user has also the
possibility to change the

12.2.6 Mission usage

After syndication of a page the subscribed Missions are loaded from the
Syndicate server and installed at the user’s side. The loaded Missions
are responsive to the Mission trigger if the Mission is allowed to alter
the current loaded page which is always the case in this example. The
user selects an address with the mouse and presses the key combination
ctrl-d that triggers the Distance Mission. The Syndicate component at
the client side contacts the interface gateway provider with the departure
and target address. The interface gateway translates the arguments into
formula accepted values and communicates with the distance calculation
provider. The returned distance is translated back into structured data
and sent to the client. The client renders the resulting value into a tooltip
window and shows the information as long as the user keeps the mouse
pointer at the location of the selected address.

12.2.7 Unsubscribe of the Mission

The User connects to the Syndicate server and unsubscribes from the
Distance Mission by deselecting the Mission from the list. The Syndicate
server then removes user property settings. The next time the user
syndicates a page, the Distance Mission is excluded from the list of
loaded Missions.

Part IV

Syndicate Implementation

125

13 Technical Challenges

A manifold system builds the basis for a pattern-based composition of
distributed facilities. The requirements of a manifold system combined
with the claims by the Syndicate concepts lead to technical challenges
and force to use particular technologies. The following list summarizes
the resulting aspects as a more concrete version of the generic demands
on a manifold system:

Installation-free syndication: In order to syndicate a web page, it should
not be necessary to install software (On the go).

Mission composition of different web sites: Data from different web
sites can be combined into a single Mission (Loose coupling).

Browser independence: Syndicate is not limited to one web browser
(Adaption).

No site restrictions: Missions can access content origin from different
sites (Loose coupling).

Service substitutability: Missions can depend on a set of alternative
service providers which are dynamically selected (Best of breed).

Semantic data structures: Structured data can be integrated in a mean-
ingful way (Adaption).

Access to sites without API: Functionalities from sites that do not offer
public API’s can be integrated (Plug and Play, Anonymity, Auto
discovering).

Interaction with page structure: Missions can be triggered by selecting
specific parts of a web page (Adaption).

Dynamic runtime configuration: It is possible to control the behavior
of Missions while the application is running (Plug and Play).

127

128 13 Technical Challenges

Technical challenge Manifold principle

Installation-free syndication On the go.

Mission composition of different web sites Loose coupling.

Browser independence Adaption.

No site restrictions Loose coupling.

Service substitutability Best of breed.

Semantic data structures Adaption.

Access to sites without API Plug and Play,
Anonymity,
Auto discovering.

Interaction with page structure Adaption.

Dynamic runtime configuration Plug and Play.

Table 13.1: Technical challenges in relation to manifold principles

In order to come up with these points Syndicate combines particular
technical solutions. Syndicate uses the following sequence of events: To
start up the user selects a set of desired Missions on the Syndicate server.
From that point on the user can syndicate any page that has been loaded
by the web browser. As soon as a web page has been syndicated all static
Missions are executed and the browser continues listening to Mission
triggers. The control flow shown in figure 8.2 on page 86 outlines the
sequence of events to syndicate a page.

To allow any page to be syndicated there are essentially three different
possibilities. The first one uses the existence of a proxy-server which can
modify all traffic going on between the client web browser and another
target web site. There are several other projects related to Syndicate
which make use of this technology (see 5.2).

The second option uses a flavor of certain browsers which allow the
extension of the browser application. This variant allows a complete
modification of loaded web pages and a few projects implement such a
strategy as shown in section 5.1.

The third alternative which Syndicate is based on uses simple hyperlinks
to inject code into the current loaded page.

If a hyperlink is enough to change the behavior of an already loaded
web page, it must be possible to execute a program code without reloading

13.1. Browser scripting 129

the page. The execution of a JavaScript code within a loaded page is
possible with the use of Bookmarklets.

But as later described in section 13.1.5, Bookmarklets cannot directly
be used to run Missions. They require another technology to inject code
into the current page. This is known as cross-site scripting (XSS). Cross-
site scripting has advantages when it comes to possible modifications
but at the same time weakens security. Security issues are later covered
in section 15.1. Beside cross-side scripting some browsers also allow the
implementation of signed scripts (see 13.1.6).

The restricted possibility of connecting several sites together is also
known as ‘same origin policy’ and comes from the Netscape Navigator
2.0. Cross-site scripting includes a way to get around this limitation.

To make sure the application is not restricted to one particular browser
and eventually achieve browser independence, cross browser scripting
strategies have to be implemented. The following section contains details
as well as the preferred solution as implemented in Syndicate.

Service substitutability requires connections to other systems that can
be exchanged. This demands Loose coupling service partners as explained
in section 13.4.

Whenever structured data occur in the process of interfacing a service
on the web, the advantage of a clear description should be taken into
account.

To access functionalities of sites that do not support a public interface,
a way of taking advantage of the potential is needed. One strategy to
get to the desired information is the use of scraping techniques.

One Mission trigger variant is based on the selection of specific parts
of a page structure. Visual feedback has to be setup to let the user be
notified of the selected part.

Runtime configuration is a comfortable way to control the behavior of
an application. Within Syndicate it is used to select desired Missions and
specify their individual environment settings, named Mission properties
in this context.

13.1 Browser scripting

While browser scripting is a general term without fixation on a specific
language, it will be cut down to the usage of JavaScript as the preferred

130 13 Technical Challenges

scripting language. Executing JavaScript in a browser assumes that
the user did not prevent such an execution due to security or other
reasons. The usage of browsers or devices that are not capable of running
JavaScript needs to be handled with special care as well.

13.1.1 Cross browser scripting

As described in section 3.3.1 JavaScript is a standardized language. But
writing scripts that make use of the DOM interface – which is usually the
case when running a browser – lack of standardization among various
browsers. The implemented DOM interfaces don’t always match the
W3C DOM standards. The availability of functions and properties must
be tested during execution and handled differently for each browser.
Especially in connection with AJAX programming as mentioned in sec-
tion 3.4.1, differences exist and make development more complicated.

Functionality Plugin

Modal dialogs jqModal

Tool tips Tooltip

Additional interface compo-
nents

interface

Support for audio data jQuery Media

Table 13.2: Included plugins for JQuery

Meanwhile object oriented programming libraries exist that completely
hide browser differences and support AJAX programming and DHTML
effects. DHTML is a shortcut for dynamic HTML programming which
includes manipulation of the DOM interface with JavaScript and is often
used for visual effects of extended interaction possibilities. Prototype [103]
[104], JQuery [105], Dojo [106] and Script.aculo.us [107] offer comfortable
methods and a rich function library. All of these libraries can be extended
by third parties offering even more functionality. The amount of available
extensions makes the main difference among these products. It is not
necessary to make use of a library, but it simplifies the development and
cuts down the number of lines of code. Syndicate uses JQuery together
with a set of extensions. Extensions are called plugins within JQuery
and are loaded at runtime. Table 13.2 lists plugins originally included in
Syndicate.

13.1. Browser scripting 131

Syndicate is not limited to JQuery and the used plugins. Missions can
be implemented together with any JavaScript library or even no library
at all. But JQuery offers a convenient way to modify the loaded page
and make use of AJAX functions.

13.1.2 Cross site scripting (XSS)

XSS is originally a type of vulnerability in computer security. Malicious
web users try to put code on web pages viewed by other users to let the
code be executed within their web browser. This code can pass access
controls and restrictions originally given by the user’s browser.

Three distinct types of cross site scripting vulnerabilities are known
[108]. These types all deal with possibilities to insert malicious code into
the user’s web browser with a vulnerable web site. Syndicated pages
make use of the cross site scripting technology because of the reason
explained next, but they do not allow users to insert arbitrary code.

Cross site scripting can also be used to get around a browser restriction
known as the same origin policy. The same origin policy prevents
documents or scripts loaded from one origin from getting or changing
properties of a document of a different origin. Two web pages are said
to have the same origin if they use the same protocol, the same port
number and the same hostname in their URL. For example the following
two URL’s would pass the origin comparison:

http://syndicate.unibas.ch/Missions/MissionList.html
http://syndicate.unibas.ch/Properties/PropertyList.html

But another comparison to

http://www.serviceprovider.ch/service/store.html

would result in a failure. With this restriction in place it would not be
possible to contact the Syndicate server and communicate with other
service providers at the same time.

13.1.3 Callback functions

Callback functions are a method of reaching asynchronous communication.
The basic principle is also known as the “Hollywood Principle”, or “Don’t
call us, we’ll call you”. Sending a message is usually a non-blocking
operation and objects can continue processing after sending a message

132 13 Technical Challenges

without waiting for a response [109]. But receiving a message on the
other hand is more difficult because receiving objects have to wait and
listen to the communication channel if the response has already arrived.
With callback functions and a message queue, the message queue handler
invokes such a function whenever a new message has been received. This
modality naturally offers an asynchronous behavior of the communication
system. Syndicated pages make intensive use of callback functions with
Missions calling external services.

Buyer Clerk 1

select product 1

delivering product 1

Clerk 2

select product 2

delivering product 2

Figure 13.1: Synchronous message queuing

An example of the distinctive behavior in real life is shopping in a
shopping center and buying two goods as shown in figure 13.1. Figure 13.2
shows the shopping process with the usage of electronic ordering where
the two orders can be submitted without waiting for the delivering of
the first product.

13.1.4 Browser extensions

Syndicate claims to allow any page to be syndicated and run missions
within that page. In order to fulfill this goal it must be possible to
run certain code within a page without being able to change the page
beforehand.

13.1. Browser scripting 133

Buyer Clerk 1

select product 1

delivering product 1

Clerk 2

select product 2

delivering product 2

Figure 13.2: Asynchronous message queuing

The most common solution is the installation of a program on the client
side that allows changes of the current loaded page. Firefox extensions
as explained in section 2.5.1 are frequently used to solve the problem
of running code inside arbitrary pages. Chickenfood, Greasemonkey,
iMacros for Firefox and Stylish as described in chapter 5 typical examples
of this family. As already mentioned, are these products all have the
drawback that a program needs to be installed first, and they all depend
on a specific web browser, mostly Firefox.

13.1.5 Bookmarklets

Another possibility are Bookmarklets [110], also known as Favelet. The
term itself is a combination of a bookmark and an applet in the sense of
a small application. It does not relate to Java Applets as described in
section 3.3.4.

Bookmarklets are a way to run JavaScript programs for the current
page. A Bookmarklet is a small JavaScript program stored as a URL
within a bookmark, or stored within a hyperlink on a web page. The
JavaScript program is restricted to one line of code but can otherwise
make use of any function available at the client side. The major web
browsers do support the usage of Bookmarklets.

Bookmarklets offer interesting possibilities of a web page within the
browser. The following list shows examples what is possible with Book-
marklets:

• Extract data from a web page.

134 13 Technical Challenges

• Modify the appearance of a web page.

• Use the current page or a selected text on the page as a parameter
and request another web page.

Syndicate uses Bookmarklets in combination with cross site scripting
as shown in the last section to syndicate an arbitrary page. Therefore
the user only needs a stored bookmark to syndicate a page, without
installing software in advance. The Bookmarklet injects a small piece of
JavaScript into the current page which loads additional code from the
Syndicate server. From the point of the JavaScript injection the control
has been handed over to the Syndicate server. This offers functionality
but at the same time weakens security. An analysis of security issues are
given in section 15.1.

A direct modification of the web page by the Bookmarklet is not
practicable since all the running code must fit into one line of code and
the number of characters are limited browser specific (see table 13.3).

Browser Number of allowed characters

Netscape more than 2000

Firefox more than 2000

Opera more than 2000

IE 4 2084

IE 5 2084

IE 6 508

IE 6 SP 2 488

IE 7 beta 2 2084

Table 13.3: Number of allowed characters in Bookmarklets

13.1.6 Signed Scripts

Signed scripts are a technology used in Mozilla web browsers to access
expanded privileges in JavaScript applications. The JavaScript security
model for signed scripts is based upon the Java security model for signed
objects from Communicator 4.x. In order to use signed scripts a digital
signature has to be generated and assigned to the JavaScript it uses. A

13.2. Microformats 135

certification authority such as VeriSign [111] proves the identity of the
owner of the script and that the script hasn’t been modified by someone
else. A signed script can request expanded privileges and allow access
control at a detailed level. When the user access a document containing
a signed script he may allow or deny the execution of the script. If the
user denies the execution of the script, an exception is thrown which can
be handled programmatically.

The security philosophy behind this policy is based on trust. When
the user has proof of the author’s identity, and the guarantee that the
script has not been modified since its original content, it is up to the
user to allow or disallow the execution. If the user trusts the author and
grants permission, the script may perform sensitive actions. Such actions
can include accessing the browser’s preferences, or reading or writing
from or to a file on the user’s hard disk.

Because all of the JavaScript code on a HTML page runs in the same
process, a distinction of different signatures should be possible to protect
the scripts from each other. But Mozilla does not currently support
multiple signatures.

Although restrictions exist, signed scripts allow secure environments at
a fine-grain level and are a way to ensure scripts haven’t been affected by
a malicious code. Nevertheless signing scripts is combined with additional
effort and – as it can be seen by browsing through the web – the majority
of web pages does not make use of this technology.

13.2 Microformats

The easiest way to make use of data formats happens whenever a se-
mantic description of structured data exists. One approach of semantic
descriptions includes the existence of a standardization committee such
as W3C. But this often leads to a time consuming process ending up in
new, complex structures which are complex to use. The gap between
SOAP and REST as a way to access web-based services is such an example
and is described in section 3.4.3.

Another approach is based on a pragmatic way where already existing
technologies aid to solve a particular task. In the case of semantic infor-
mation, cascading style sheets (CSS) are currently being used to describe
structure and meaning of data. The microformats-wiki community have
led to de-facto-standards such as the semantic description of calendar
entries (hCalendar), address information (hCard), reviews (hReview) or

136 13 Technical Challenges

human relationships in social networks (XFN). This bottom-up approach
will eventually lead to an implementation of the semantic web [112].

As soon as a description of structured data exists, technologies such
as xml schema description and dependent programming libraries, for
example XmlBeans [113] are of great assistance.

13.3 Scraping techniques

If a web site does not offer a programming interface to access its published
information or if the data structure has no semantic definition, scraping
techniques are a way to extract required information.

Scraping means the analysis of a web site and finding the location of
the data part on the page in order to be able to pull it out. Analyzation
of a page means parsing its HTML source code and XPath expressions
are a great way to support this task. Beside implementing the parser
by hand, libraries or web-based services can assist in this process. For
example Dapper [102] offers a way to train its integrated browser to find
desired information on a page. Once the information has been found,
it can be exported into different data formats and processed further.
HTML, JSON, RSS, and XML are possible outcomes and especially the
latter three are all favorite formats. Dapper offers a comfortable web
interface to simplify the creation process.

JScrape is a Java library that supports the extraction of information
from a web site without service interface. JScrape uses the XQuery
language to do most of the hard work and makes finding information
on the web page much simpler and contained to a single query. Several
existing third party libraries have been included in the JScrape package
in order to be able to analyze a web page with its DOM structure. The
combination of commonly used software improves the overall stability of
JScrape which is still in an alpha state by the time of writing. A similar
product is available for the Ruby language with scRUBYt! [114].

Chickenscratch, a language based on the appearance of the user inter-
face in web sites could be another possibility to access data from a site.
Section 5.1 explains this related project in more detail.

Syndicate can make use of any scraping technique. The Mission where
distances are calculated uses Dapper for example.

All scraping techniques depend heavily on the source code of a web
page and make development and usage very fragile.

13.4. Loose coupling 137

13.4 Loose coupling

Since loose coupling is a design goal and not a specific problem to be
solved it cannot be reached with a choice of a product. As mentioned
in section 2.3 and section 6.6 loose coupling can mean independence in
terms of time, data formats or information knowledge.

Time independence means asynchronous communication; and AJAX,
or method callbacks to be more specific, is a great way to achieve it.
Syndicate uses callback methods with dynamically injected code based on
cross site scripting technologies to enable asynchronous communication
among service providers (see 13.1.3).

Loose coupling among service partners can be enhanced when a flexible
data format is used for message transmission. XML, JSON, and RSS are
formats that allow message recipients to publish definitions on how they
extract information. XPath expressions or XML schema could be used
for example in order to show how a data format is to be expected.

Loose coupling of services can generally be improved by keeping mes-
sage transmission at a minimum level and reduce information to key
elements. This technique comes from the information hiding principle
known from object oriented programming.

13.5 Visual feedback of selected page
structures

One type of Mission trigger is based on a selection of particular parts
of a web page. It is very helpful to have a visual feedback of the
current selection and be able to expand or narrow the selection to the
neighborhood of the chosen element. The DOM structure of a page is
used as an indicator for possible picks.

Firebug [115] is a Firefox extension and an excellent example where
visual feedback is used to inspect the structure of a loaded web page.
Firebug offers a wealth of web development tools to edit, debug, and
monitor a loaded web page. Since Firebug is an application, it can only
serve as an example.

A similar product, although with less functionality is Aardvark [116]
which is a Firefox extension to clean up unwanted advertisement banners
and examine a loaded page. Syndicate uses and extends code from
Aardvark.

138 13 Technical Challenges

13.6 Dynamic configuration

The topic of dynamic configuration is twofold. Dynamic interaction
should be possible at the level of the user’s browser on a syndicated
page and at the syndicate server where Missions can be configured and
subscribed.

13.6.1 Configurations in the web browser

Once a page has been syndicated and Missions have been loaded from
the Syndicate server, interaction mechanisms must be in place in order to
control and trigger the loaded Missions. These interactions are initiated
by triggers coming from a user activity or from other trigger variants as
introduced in section 7.1.5.

In order to respond to user activities such as mouse gestures or
keystrokes, it must be possible to attach event handlers to elements
of a loaded page. JQuery greatly supports event handlers and is used for
taking care of user interactions (see 13.1.1). Configuration support at
the client-side is currently limited to Mission activation.

13.6.2 Configurations at the Syndicate Server

Dynamic configuration of Missions requires two distinct functionalities.
First it demands a personalized controlling mechanism of Missions and
second, it needs a way to store such information if settings should be
kept permanent.

If a Mission is currently running, JavaScript methods must be locally
available in order to change the Mission’s behavior. If the Mission makes
use of the Syndicate server in proxy style, then a web-based service should
provide an interface where settings can be changed. This means at the
same time that the access to the Syndicate server must be personalized,
and access control mechanisms should be in place. Several variants exist
at different security levels. At the moment Syndicate does not implement
an authorization possibility.

Storing of user settings can be done at the client- or at the server-side.
Client-side settings would result in saving data to the user’s filesystem,
which are considered to be a security risk, or in the use of cookies. Cookies
have the advantage that users do not need a personalized access to the
server, and cookies can be controlled by the user’s browser settings.

13.6. Dynamic configuration 139

Server-side storage requires the implementation of a database where
information is kept user specifically and therefore needs a way to authorize
at the server-side.

Currently server-side settings are not stored permanently in Syndicate
and therefore a personalized user access at the server-side is not required.

14 Implementation Architecture

The previous chapter describes all necessary techniques that are used to
build the Syndicate system. This chapter introduces distinguished parts
of the implementation but leaves out programming details at code level.
The explanations given should glue the loosely described components
together and provide an insight into the hidden mechanisms.

14.1 Data

Syndicate makes use of two different types of data: Structured data, being
used whenever possible as communication and configuration storage and
JavaScript containing behavior of components. The following sections
introduce important implementations of the two variants.

14.1.1 Missions

From the implementation point of view a Mission consists of descriptive
data stored as Mission properties and behavior specifications. Both
characteristics are specific to a particular Mission. Properties contain
static information relevant to run a Mission and are covered in the next
section. Behavior of a Mission is kept in JavaScript functions and stored
as a single script containing all necessary methods. If a Mission makes
use of a server detour another code portion is stored at the Syndicate
server. This code can be implemented in any server language but Java
servlets are favored.

The code for Mission trigger recognition and handling of a loaded
page is common to all Missions and stored separately. Page handling
includes detections of page structures and visible feedback of such. The
general functionality of the Scout and the Transformer are also kept in a
commonly used file.

The syndication process and the transfer of the Mission behavior part
to the client is outlined in section 14.2.2.

141

142 14 Implementation Architecture

14.1.2 Mission properties

Mission properties contain static information needed by Missions to resolve
provider addresses and configuration options. Properties are stored as
JSON structured data and are divided into system and user properties.
The distinction only lies in the way the properties are treated and allowed
to be changed by the user. System properties are stored together with the
Mission’s behavior definition and user properties are stored individually
to each user.

14.1.3 Communication data

Various communication channels are used within the Syndicate system.
The following table 14.1 gives an overview about the different com-
munication partners and their common data format used to exchange
information.

Communication Partners Communication method

User interface -
Client Consigliere

JavaScript and JavaScript callback
functions.

Client Consigliere -
Syndicate Server Consigliere

Cross site scripting, JavaScript call-
back functions

Client Consigliere -
Syndicate Server Mission

AJAX

Client Consigliere -
External service provider

REST, SOAP, XML-RPC,
JavaScript callback functions

Client Consigliere -
External interface provider

REST

Syndicate Server Mission -
External service provider

AJAX, REST, SOAP, XML-RPC

Table 14.1: Communication partners and methods

Figure 14.2 on page 146 shows an overview about participating compo-
nents. The connection between the client’s web browser and an external
interface provider that connects to an external web server without public
available programming interface is omitted. All communications are kept
asynchronous whenever possible. Access to external service providers

14.2. Processes 143

can take place synchronously if an asynchronous access is not available.

Communication between components make use of self contained docu-
ments or other techniques to achieve context bound interactions which is
a requirement for asynchronous messaging. Another prerequisite is the
usage of message queues to guarantee that sending components do not
exceed the capacity of recipients. The communication layer that makes
AJAX possible already includes message queuing with its XMLHttpRe-
quest object.

14.2 Processes

All processes appearing in the Syndicate system are event driven. Event
driven processes are a premise for a Loose coupling system which is one
of the key requirements of the Syndicate system. Processes are running
at several locations, namely at the client’s web browser, at the Syndicate
server and at external sites such as service and interface providers.

This sections explains major activities appearing during the usage of
the Syndicate system. The cooperation of the code at the client side and
the corresponding objects at the Syndicate server side makes out the
most complex part.

14.2.1 Syndication

The Syndicator is responsible for the syndication of a loaded web page
and acts as the kick-off of the whole Syndicate system. The Syndicator
is implemented as a single line of code that makes use of Bookmarklets
and cross side scripting technology. (see 13.1.5 and 13.1.2).

After activation of the Bookmarklet by the user, a JavaScript method
pulls more JavaScript code from the Syndicate server and installs the
received code into the current web page. The received code contains all
Mission specific elements in order to trigger, activate and run them. The
next section describes the mechanism of Mission loading.

Once the code has been integrated into the loaded web page, the
control lies at the client side and Syndicate server has completed its
job for now. The client continues with Mission trigger installations as
described in section 14.2.3.

144 14 Implementation Architecture

14.2.2 Mission loading

Mission loading is a pull mechanism initiated by the user at the client
side. The JavaScript code activated by the user contacts the Syndicate
server to receive more code from a specific address. The address does not
host just a simple file but is actually a Java Servlet that gets activated.
The servlet provides the functionality of configuring an individualized
JavaScript code that contains all Mission specific definitions and property
settings. This compiled code is then sent back to the calling client and
inserted into the script section of the current loaded page.

 Syndicate server
system

Syndicate web server

Mission
Repository

Web browser

Web page

Syndicator
➊ HTTP Request

➋

➌ HTTP Response

Compiled
Mission code

Figure 14.1: Mission loading

1. The user activates the Syndicator which contacts the Syndicate server
to load JavaScript code.

2. The Syndicate server consults its Mission repository and compiles an
individualized code portion for the requesting client.

3. The server sends the compiled code back to the client who includes
the data into the code section of the current loaded page.

14.2.3 Mission triggering

The Mission triggering process consists of two parts: Static and dynamic
Mission triggers. In the first part, static Missions are immediately acti-

14.2. Processes 145

vated as soon as all Mission definitions have been loaded. This is achieved
through calling a local JavaScript method, that invokes all statically
defined Missions.

In the second part, dynamic Mission triggers are installed with the
registration of event handlers. The event handlers are already defined,
only Mission specific definitions are added to the predefined ones. This
includes inscribing of additional keystrokes or installing periodic interval
timers.

14.2.4 Mission activation

When a Mission has been activated by a Mission trigger the corresponding
JavaScript method of the Mission is invoked at the client’s web browser.
Figure 7.1 shows the interactions between the different components that
take place at this stage. Missions that are based on the Content or
Integration pattern will contact external service providers to fulfill their
task. Figure 14.2 shows an overview about the interactions between the
different components.

The following description state the chronological steps taking place
from the syndication of a web page to the invocation of static Missions
up to the time when the user triggers another Mission.

1. The user syndicates a web page which starts a request to the Syndicate
server.

2. The Syndicate server consults its Mission database and selects the
users Mission setup. The server responds with JavaScript code
that makes an activation of the Missions possible.

3. Static Missions are activated, resulting in an analysis of the loaded
web page. Depending on the Mission further actions such as a
direct connection to another web server or to the Syndicate server
are taking place.

4. A service provider at another web server is called. This is called a
server detour.

5. The service provider delivers the processed request back to the Syndi-
cate server.

6. The server Scout analyzes the service response and extracts needed
information. The Transformer combines different input sources

146 14 Implementation Architecture

Service provider via
Proxy

Service Interface

Page
Updates
➐

Service provider

Service Interface

[➌] HTTP
Request

[➍] HTTP
Response

Web browser

Client-side Consigliere
JavaScript

Client Scout

Injector

User interface

➑ JavaScript
call

 Syndicate server
system

Web server

Syndicate web server

Server Scout
Transformer

Renderer

Co
ns

ig
lie

re

Data
repository

Mission
Repository

➍ HTTP
Request

➎ HTTP
Response

➊ HTTP Request

➋ HTTP Response

➏ HTTP Response

➌ HTTP Request

➐ DOM
updates

Figure 14.2: Syndicate architecture

14.2. Processes 147

and produces the result of the Mission. The Renderer creates the
Mission specific presentation format. The Consigliere finally makes
a call to the Injector at the client’s web browser.

7. The Injector modifies the current web page.

8. Mission triggers are activated. The user can start another processing
which results in a new control flow shown in figure 8.3.

Figure 14.2 shows two possible invocations of service providers. The
first possibility is a direct call from the client’s web browser to another
web server that offers a web service. This option is the preferred variant
when a service provider allows a direct connection to its web service
and makes its services available with a public available programming
interface.

The server detour as second option uses the Syndicate server in a proxy
style manner to call another web service. While this version at first
seems to use an unnecessary round trip at the syndicate server it has
several advantages as stated in section 7.2.2.

Part V

Future – Perspectives of
Syndication

149

15 Syndicate Risk Management

The intention of this chapter is to identify potential risks and analyze
strategies to manage a controlled environment where the capabilities
of Syndicate can unscrupulously be used. Mitigation of risks include
technological and organizational aspects.

15.1 Security

Syndicate Missions are dynamically picked up components from a Mission
repository that can modify visited web pages. These components are
stored on a remote Syndicate server and can contain programs to be
executed within a user’s web browser.

Enabling Syndicate Missions to be executed within a user’s domain
poses questions about security aspects as soon as the origin of the Mission
is dubious. When Missions are initialized from a Syndicate server, it
therefore hands responsibility for security policy to those who have
installed the Missions. This leads to a chain of trust of all involved
entities as shown in figure 15.1. A Mission developer can include other

UserMission
Developer

Mission
Publisher

Service
Developers

Figure 15.1: Chain of trust in Syndicate

available services and for that reason service developers conducive to the
participants.

In general Syndicate Missions have full access to a loaded web page on
the client side and personal user data stored locally. Sensitive information
on a web site like account numbers or personal data is visible to Syndicate.
The dependence on JavaScript which has control of features like event

151

152 15 Syndicate Risk Management

handlers can enable syndicated pages to snoop on anything the user is
doing within a page, such as capturing user input in a password field for
example. Additionally, malicious Missions can attempt to trick the visitor
into providing information, or performing an action that will enable an
attacker to gain more privilege. Without constraints, Syndicate can
potentially allow JavaScript code written by other people to be executed
within the user’s web browser. If one of those scripts is malicious, the
local system could be at risk. It is therefore indispensable to establish a
security policy.

The alignment of involved contributers shifts all the power in the chain
of trust towards the Mission publisher. This focus on a specific actor is
an advantage against comparable products. For example Greasemonkey,
a browser extension that can be installed locally, allows the execution of
installed programs, but requires the user to take responsibility. Currently
Greasemonkey is in the list of the top ten Firefox extensions to avoid
exactly because of this reason [117] [118]. Greasemonkey is a handy
extension to use, as long as a user knows what he is doing with it. But it
does not offer a possibility for people concerned about security to limit
the usage to certain scripts. The only way to prevent such usage is by
completely disallowing the installation of the Greasemonkey extension.

In a first approach of security policy, suspicious parts in the partici-
pating elements of a Mission can be neglected by the Mission publisher.
Mission developers may build new features to be used in syndicated
pages and maybe integrate web services from third parties to complete
its job. These web services may already contain unreliable or undesirable
components. But it is up to the Mission publisher to allow or deny
Missions on a Syndicate server.

To accomplish code execution downloaded from untrusted sources
across a network and at the same time offer protection of the user, the
concept of a sandbox security model is a possible solution [119]. A
sandbox restricts code from taking any actions that could possibly harm
a user’s system. The advantage of using a sandbox is the independence
of the decision what code can be trusted and what cannot be trusted. In
order to make full usage of a sandbox within Syndicate, it needs to be
implemented on the Syndicate server [120] [121].

The described security aspects are of a general nature and apply to
any system exposed to the public. Installing a downloaded plugin into
a user’s web browser or opening a document received from suspicious

15.2. Service guarantee 153

origin already gives up privacy. Security concerns have to be addressed
at a more global level and I propose a web of trust, built upon a trusted
peer to peer community. Such a network would connect trusted Syndicate
servers and contributing users with each other. A peer structure does not
require the existence of a complex public key infrastructure [122] [123].

15.2 Service guarantee

At the moment there are no standard ways to guarantee the quality
of a service (QoS). The Web services flow language (WSFL) [124] might
include a way to describe how well a service should perform. But until
today the industry has not agreed on such a workflow standard.

Syndicate depends heavily on other information providers without let-
ting them know that they are being used. This is a weakness of Syndicate
nevertheless it offers great flexibility and simplifies the connection to
other services. The reliability of Syndicate depends on different supposi-
tions which can be grouped into the following areas of a Mission: Mission
patterns, resource access methods, and resource gathering methods.

Missions based on the presentation pattern are less likely to fail and
Missions based on the integration pattern are the most unsteady ones.
This is due to the fact that the number of external services involved
increases with the content pattern and the integration pattern. However
it does not necessary mean that it is unreliable to use integration pattern
based Missions. Especially when several alternative service providers are
registered, the chance to prosper increases.

Resource gathering methods of the Scout are another tentative area.
The more assumptions the Scout makes about the structure of a page,
the more likely that a change in that structure will lead to an unexpected
result. But technologies exist that support the analysis of a page and
are robust enough to resist page changes (see section 13.3).

Automatization techniques to control Mission availability and success
are planned.

15.3 Performance

The way the Syndicate system is designed, it allows the making of several
round trips and connections to different sites in order to fulfill a certain
task. This can lead to a performance problem if several connections have

154 15 Syndicate Risk Management

to be made before a Mission has been completed. Nevertheless, server
detours allow the Syndicate server to make use of caching or compression
techniques. In case of a performance issue, scalability can be reached by
distributing the workload to several other servers, each server serving its
own application area.

Most functionality is executed on the client side. Scraping, rendering
or injecting of the transfered information uses the local power available on
the client side. This narrows performance problems to communication.

15.4 Legal issues

The remixing possibilities of content from different sites in Syndicate
pose the question of legal restrictions. This question has already been
addressed in the context of web 2.0 and mashups (see section 2.4.4)
but needs to be considered, since Syndicate has another target audience.
Mashups are web sites or applications that combine content from one or
more sources and publish the created remix on the web. For example,
Cellreception.com combines Google Maps with a database of 124,000 cell
phone tower locations to help users determine where mobile coverage
is strong and where it isn’t. Information from two different companies,
namely Google and Cellreception appear on the same site and must be
free of copyright issues in order to be presented on a public available web
site. Since the application comes from Cellreception itself and Google
offers its mapping data under the Google terms of service which allows
personal, non-commercial use only, it does not call for legal issue. But if
a third company would remix the output of Cellreception with another
data source – the carrier costs of phone companies for example – it
becomes an issue.

A growing number of internet users allow the usage of their data on
a freely basis or after a cost free registration. Creative Commons is a
non-profit organization devoted to expand the range of creative work
available to others to legally build upon and share. Several copyright
licenses known as Creative Commons licenses exist that permit certain
rights of the work. The intention is to avoid problems with current
copyright laws for the sharing of information [125].

The situation in Syndicate is different since functionality and not
content is being published. Missions can combine content of certain web
sites but the remix is not directly visible on a public web page. The
remix itself happens on the user’s web browser and therefore avoids the

15.4. Legal issues 155

license problem of public available mashups.
The power of Syndicate does not prevent the user from paying attention

when he continues with the outcome of a Mission. Due to the mixing
facilities of several sources the origin of the data may vanish. While this
is not a problem for personal usage, it becomes a copyright issue when
the combined data is published again on the web.

16 Conclusion and Outlook

A summary of the main points of this thesis will be presented. Secondly,
the conclusion of this study is shown by recapitulating the answers to
each of the research questions. In the last section of the chapter I will
discuss the limitations of the research and finally, I will also present
suggestions for future research on this theme and present my personal
vision for the future of the web.

16.1 Summary of the research

The motivation of this research has been the desire of more flexibility
and customization of web applications. Areas that allow personalization
have been analyzed and categorized.

An investigation of requirements for individualized applications re-
sulted in the usage of a service-oriented architecture. As a subsequent
intention, universal principles of a manifold system were described and
conditions of applications that are in the focus of manifold systems were
stated, related projects were summarized and evaluated against these
conditions.

In the second part the indicated categories were compared to the
Model-View-Controller paradigm of object oriented programming. This
has led to three patterns that were identified as the content pattern, the
presentation and the integration pattern. Subsequently, a new terminol-
ogy was introduced and concepts were presented serving as a theoretical
background for a software architecture which enables pattern-based
individualization.

The third part covered a concrete implementation in the form of the
Syndicate framework of the suggested concepts and several examples were
illustrated, both from the user and developer point of view. Implementa-
tion issues and technical challenges were addressed in part four, which
led to a detailed description of data and processes.

The practical implementation allowed investigation of the effectiveness
of the proposed concepts. It could be demonstrated that Syndicate is a

157

158 16 Conclusion and Outlook

useful and compelling way of individualized service compositions in the
area of the World Wide Web.

16.2 Conceptual framework and conclusion

Syndicate is an architecture designed to allow individual service composi-
tion on the web. Without the need for software installation, Syndicate
empowers users to change their web experience based on their needs.
With its possibility of social software contribution on the Syndicate server,
the system can take advantage whenever users publish new functionalities.
Syndicate focuses on ease of use for end-users to apply customizations to
visited web pages, but at the same time offers developers the possibility
to create new tasks without restricting them to a specific browser or
development environment.

Many organizations have realized what possibilities are offered by the
web and use the web as the preferred platform for application development.
The shift from applications that were conventionally developed for the
desktop to applications that are now being migrated to the web, offers
interesting possibilities in conjunction with Syndicate. Applications, when
used on a desktop, allow customization possibilities that were previously
planned by the programmers. With the existence of web versions, the
applications suddenly become an open playground that can be extended
and altered according to the user’s need.

In the following sections I will present the main findings of this study.
The conclusion is discussed by answering each of the preluded questions
stated in the introduction.

Categories of individualization on the web

The first research question was defined as ‘How can existing web sites
be categorized, and what are the resulting requirements of a software
architecture allowing individual composition of these categories?’ This
research question was further defined through two sub-questions: ‘How
can personal services be categorized?’ and ‘What are general require-
ments of a software architecture enabling individual composition of these
categories?’. Thus, the first research question dealt with the essence of
personalization areas, both in terms of web pages and web applications.
This question was answered by supplying a pattern based categorization,
borrowed from object oriented programming technologies. The second

16.2. Conceptual framework and conclusion 159

question was posed as a result of a closer analysis of service-oriented ar-
chitectures. A set of principles, describing the requirements of a manifold
system useful in the context of personal services, concluded the analysis.
Thus, as a first conclusion, the following outcomes were formulated:

Three patterns, namely presentation, content, and integration
patterns categorize individualization areas in the context of
web pages and web applications.

Principles required of a software architecture which supports
individual composition of the stated patterns are summarized
by the term of a manifold system.

Architectural design for individual service composition

The second research question was defined as ‘How does an application
architecture have to be designed in order to accomplish the stated
requirements of a manifold system?’ This question relates to the categories
and requirements concluded from the first question. The answer to this
question was sought by introducing a new terminology and describing
concepts that support the stated principles of a manifold system. Thus I
present the following conclusion:

The Syndicate framework includes concepts that comply with
the demands on a manifold system that allows individual
service composition in the area of the World Wide Web.

Practical implementation of the Syndicate framework

The third research question focused on a practical implementation in order
to give use of a prove of concept. The question has been posed as ‘How
can the architecture be realized in practice and what are the experiences
when applied to different fields?’ It has been demonstrated that the
proposed concepts can be realized in practice with the use of standard
technologies. The Syndicate framework has been implemented and is
accompanied by several examples supporting the different categories
which were formulated as a result of the first question. Thus I can make
the following conclusion:

160 16 Conclusion and Outlook

The Syndicate framework proved to be an effective way to
make use of individual composition of existing services and
applications on the World Wide Web.

16.3 Contributions

I have introduced an architecture that allows end-users to change or
extend loaded web pages into customized versions. Concrete requirements
have been defined that would offer a convinient way of finding, selecting
and using individualized services on arbitrary web pages.

A new terminology was introduced and a theoretical concept was
formalized based on the previously defined requirements. Abstract data
structures and processes were described to serve the stated purpose.

Related projects were investigated and demarcated. Whenever possible,
beneficial elements were taken into the proposed concepts.

The theoretical concepts have been implemented as a prototype in the
form of the Syndicate framework. Standard available technologies were
used and several examples have been realized in order to give a proof of
concept. Examples of related projects have successfully been transferred
into the Syndicate system.

16.4 Limitations of the study

This work does not claim to provide a complete error-proven, robust
environment that is resistant to security attacks or other inconveniences.
But it allows the studying of a new range of possibilities and gives
pragmatic examples of customized application on the web. The opening
of the system to social contributions has the potential of growing and
expanding into new areas which have not yet been fully comprehended
or foreseen.

16.5 Avenues for future research

The core of Syndicate has been implemented as a prototype. Besides
necessary enhancements to guarantee robust, secure performance in daily
usage, there are other possible extensions to the system. This section
lists fields where further research could improve the overall usability.

16.5. Avenues for future research 161

16.5.1 Community aspects

Service composition

Missions based on the integration pattern, by definition, make use of
several web services. Due to the lack of web service middleware, a
combination of such services currently needs to be programmed man-
ually. Service composition models and their accompanying languages
are an approach to standardizing and supporting the creation of service
composites. Although the area of service composition languages is still
rather immature, the Business Protocol Execution Language for web ser-
vices (BPEL) seems to be becoming the leading standard in describing
services at a higher level [126] [127] [128] [129]. Such service composition
languages allow the description of workflow systems that define the order
and conditions of operations to reach a desired goal.

In an ideal world it is imaginable that web service compositions could
be defined on an abstract level, which is known as an orchestration
model. With standards in place it would be possible to graphically create
complex Missions without the need for programming. An investigation
in that area could be worthwhile [130].

Network of Syndicate servers

The Syndicate server could be extended to a network of servers. These
servers could work by mirroring their published Missions, but they could
also exchange information about available Missions. If these servers
act independently this could lead to a situation where a user connects
simultaneously to several Syndicate servers. Security considerations are
necessary, especially when additional servers could be added dynamically.

Integration of service patterns

Missions that are based on the content pattern or on the integration
pattern make use of external services. Such services often work on similar
principles and could be categorized by service patterns.

A standard example is the use of a formula where a user enters re-
quested values and after submitting, receives a corresponding result. This
behavior of entering data, submitting and receiving could be generalized
and addressed with a service pattern.

Another example is the use of only a portion of a regular web site.
For example web sites with constantly changing content such as weather

162 16 Conclusion and Outlook

information, could be taken apart and only the area of interest, such as
the weather image, could be kept for further processing.

These patterns could lead to an environment where developers could
elide code programming but use interactive facilities to create new Mis-
sions.

Programming by demonstration

A more generalized version of the suggestion above is programming by
example [79]. Repetitive operations such as clicking through a set of
pages or formulae in order to receive the desired result could be recorded
and a Mission could be generated automatically with that information.
Or, in a more sophisticated version, a Mission could be provided that
could play back such a recording of activities when the Mission has been
activated. This could greatly assist the development of other devices
such as mobile phones or personal digital assistants and condense a large
number of Missions that act in a similar way.

A carefully designed “Playback Mission” and “Action Recorder Mission”
would allow users to create and store their personal Missions with little
effort.

16.5.2 Security enhancements

Syndicate is implemented as a prototype and security is implemented on
a elementary level. More meticulous security policies can be realized in
future work. The following suggestions introduce technical prospects.

Web of trust

An authorization environment is definitely necessary to control who
is submitting new Missions and to supervise the quality of handed in
code. Encrypted checksums could guarantee that a Mission has not been
tampered with, which is essential when Syndicate is to be used in the
public internet.

An implementation of a trusted peer to peer community between
Syndicate servers and users contributing to the Syndicate community
could enhance security. With a peer to peer implementation it would
be possible to omit central administration of security information. In
areas where security is critical, it would be possible to limit the usage of
Syndicate to a local environment.

16.5. Avenues for future research 163

Syndicate sandbox

A Syndicate Sandbox could protect users from potential malicious code.
The sandbox could tightly control the set of resources which Missions
can have access to. This allows Missions from untrusted users to be run
safely [131].

16.5.3 Reliability

Automatic test cases

The specification of an interface for test cases could lead to automatic
integrations of system tests. These could include Mission behavior and
performance tests as well as strategies for choosing alternatives when
contacting external service providers. Automatized testing at regular
intervals would considerably improve the overall quality of the system.

Logging

In order to realize where the Syndicate system can take advantage of
improvements, a fine grain logging mechanism could provide detailed
information on a service level basis. Such a logging mechanism could serve
performance and usage information which can be essential to register
statistics about implemented Missions. Statistics could influence service
selection strategies and most popular Missions could be noted at the
community page and attract other users.

Caching strategies

The implementation of caching strategies on the Syndicate server could
improve performance, especially when several users make use of the same
Mission.

16.5.4 Usability

Support for other devices

Other devices such as mobile phones or personal digital assistants could
be better supported. Due to the small screens it would be a great
enhancement if Missions could be run seamlessly on such devices. Users
of mobile devices usually do not browse the web, but they want instant
access to information such as timetables, schedule calendars, product

164 16 Conclusion and Outlook

or address information and so on. This desire is often tied to repetitive
operations until the final output is delivered.

A Mission that executes several necessary steps at once would be a
great relief and make mobile devices much more productive.

Semantic web

The Semantic Web targets for a more meaningful web, with the intention
to make it easier for programs to process information. The result should
be a web which is more useful and approachable.

The semantic web and semantic web services themselves are arriving
but a meaningful description of the web is still far from being used
globally. Nevertheless, it could be very interesting to take advantage of
standardized metadata and generate more automation in the development
and usage of new Missions [132] [133] [134].

For example, Missions that make use of external web services could
profit from automatically tracked down alternative service providers. A
recurring process on the Syndicate server could constantly update the list
of service providers and store additional information such as response
time. This operational behavior would be invisible to Mission users but
they would profit from better service quality.

If the scope of the semantic web is taken a step further and if data
and processes could be described in a more natural, standardized way,
it would open up new windows of opportunities. Not only could the
process of finding decentralized Missions for a particular purpose be
simplified, but the creation of Missions could also be brought into another
sphere. Missions that integrate other web services could be composed by
describing what purposes should be included and in which way they are
weaved together.

Ongoing Syndication

Syndication of a web page currently only holds for the page which the
Syndicator has been activated for. As soon as the web browser loads
another page, for example through clicking on a hyperlink, the freshly
loaded page has to be syndicated again to make use of Missions. The
Syndicator could be changed in such a way that with the first loading of
a page all hyperlinks on the page were replaced. The replacement would
include another activation of the Syndicator again after a new page has

16.6. Vision for the future of the web 165

been loaded. This behavior could also be realized through a static loaded
Mission.

A feasibility study has already successfully been implemented, but
it needs further refinements to work properly with all variations of
hyperlinks.

Mission notifier

Users should not have to be concerned with constantly checking if new
Missions are available on the Syndicate server. A Mission could be imple-
mented that notifies the user when new Missions have been published to
the Syndicate server. The Mission could be personalized in order to limit
the notification to Missions based on a specific type of interest.

16.6 Vision for the future of the web

The World Wide Web has changed significantly since its formation in
1990. Latest developments show that the semantic web has aroused
public interest and might occupy a central position in the foreseeing
future. The technical foundation has already been laid, as Tim Berners-
Lee commented in 2001: “The Semantic Web is not a separate Web
but an extension of the current one, in which information is given
well-defined meaning, better enabling computers and people to work in
cooperation.” [135]

Beside the undoubted continuation towards a more meaningful version
of the current web, my personal vision is twofold: First, I see a trend
towards three-dimensional structures, and existing virtual worlds already
point out the possibilities. The web, in its three-dimensional version
could be shaped constantly by participating users.

Secondary, I see the future of the web in conjunction with new devices
and infrastructures much in the sense as the mobile phone has captured
the modern world. The web will be everywhere and permanent access
to the web will be guaranteed. Along with the extension of the web, a
distinct location of applications and data will vanish. This would give
everyone the opportunity to use ones personal environment independent
of device and location.

I will finish with a quote from Google CEO Eric Schmidt, participant
at the Seoul Digital Forum 2007, where he was asked to define web 3.0
by an audience member:

166 16 Conclusion and Outlook

“My prediction would be that Web 3.0 would ultimately be
seen as applications that are pieced together [and that share]
a number of characteristics: the applications are relatively
small; the data is in the cloud; the applications can run
on any device — PC or mobile phone; the applications are
very fast and they’re very customizable; and furthermore
the applications are distributed essentially virally, literally
by social networks, by email. You won’t go to the store and
purchase them. That’s a very different application model than
we’ve ever seen in computing . . . and likely to be very, very
large.” [136]

Bibliography

[1] Hitwise Intelligence, “Myspace moves into first position for all
internet sites,” Hitwise, 300 Park Avenue South, New York, Tech.
Rep., July, 11 2006.

[2] R. Gonda, “Web 2.0: Web applications vs. desktop applications,”
AjaxWorld, January, 26 2006.

[3] A. Kadiyala, “Are You Ready for Mashups? Their real value is in
the enterprise,” SOA World magazine, June 2007.

[4] H. Adams, A. Arsanjani, G. Booch, S. Bose, D. F. Ferguson,
D. K. Jackson, C. Lawrence, C. Lau, A. R. Szakal, D. Wolfson,
and B. Woolf, “Why and when should you choose SOA?”
Insight and outlook, November 2005. [Online]. Available:
http://www-128.ibm.com/developerworks/library/ar-itio1/. cited
22.10.2007

[5] S. Greenberg, What is Thin Client Computing?, 3801 Schuylkill
Road, Spring City, PA 19475-1529, July 2000.

[6] T. S. Perry, “John Gage: He IS The network,” IEEE, Spectrum
Cateers, May 2004.

[7] Web services: beyond the hype, vol. 35, 2002.

[8] Y. V. Natis, “Service-oriented architecture scenario,” Gartner, 56
Top Gallant Road, Stamford, CT 06902-7700, U.S.A, Tech. Rep.
AV-19-6751, April 2003.

[9] B. Roch, “Monolithic kernel vs. microkernel,” TU Wien, Tech.
Rep., 2004.

[10] A. S. Tanenbaum and A. S. Woodhull, Operating Systems Design
and Implementation, 3rd ed. Prentice Hall, January 2006.

[11] Y. V. Natis and M. Pezzini, “Predicts 2003: SOA to stir up
application server market,” Gartner, Tech. Rep. SPA-18-8377,

167

http://www-128.ibm.com/developerworks/library/ar-itio1/

168 Bibliography

December 2002. [Online]. Available: http://www.gartner.
com/DisplayDocument?doc cd=111837&ref=g fromdoc. cited
22.10.2007

[12] J. Childers, “Monolithic software decimates it budgets,” September
2003. [Online]. Available: http://business.newsforge.com/article.
pl?sid=03/09/19/032238&tid=33&tid=3&tid=31. cited 22.10.2007

[13] M. Liebow, “Service oriented architectures conference.” The Open
Group, October 2005.

[14] R. W. Schulte and Y. V. Natis, “‘Service Oriented’ Architectures,”
Gartner, Tech. Rep. 1, April 1996.

[15] C. Lapham, “The cutting edge,” Computer-Mediated Communica-
tion Magazine, vol. 2, no. 7, p. 4, July 1995.

[16] R. Kalakota and A. B. Whinston, Electronic commerce: a man-
ager’s guide. Boston, MA, USA: Addison-Wesley Longman Pub-
lishing Co., Inc., 1997.

[17] B. Acohido, “Amazon moves to front line of shaping ’web services’,”
USA Today, September, 30th 2003.

[18] S. Haag, M. Cummings, and D. J. McCubbrey, Management Infor-
mation Systems for the Information Age, 4th ed., ser. 0072819472.
McGraw-Hill Companies, 2003.

[19] T. O’Reilly, “Web2.0 compact definition.” [Online]. Available: http:
//radar.oreilly.com/archives/2006/12/web 20 compact.html.” cited
20.6.2007

[20] D. Nickull, D. Hinchcliffe, and J. Governor, Web 2.0 Design Pat-
terns: What entrepreneurs and information architects need to know.
Adobe Dev Library, 2007.

[21] T. O’Reilly, “What is web 2.0. design patterns and business models
for the next generation of software.” [Online]. Available: http:
//www.oreillynet.com/lpt/a/6228#mememap.” cited 20.6.2007

[22] F. Westphal, “Mashups: Remix me!” OBJEKTspektrum, vol. 2,
2007.

http://www.gartner.com/DisplayDocument?doc_cd=111837&ref=g_fromdoc
http://www.gartner.com/DisplayDocument?doc_cd=111837&ref=g_fromdoc
http://business.newsforge.com/article.pl?sid=03/09/19/032238&tid=33&tid=3&tid=31
http://business.newsforge.com/article.pl?sid=03/09/19/032238&tid=33&tid=3&tid=31
http://radar.oreilly.com/archives/2006/12/web_20_compact.html
http://radar.oreilly.com/archives/2006/12/web_20_compact.html
http://www.oreillynet.com/lpt/a/6228#mememap
http://www.oreillynet.com/lpt/a/6228#mememap

Bibliography 169

[23] E. Ort, S. Brydon, and M. Basler, “Mashup styles, part 1:
Server-side mashups,” Sun Developer Network, May 2007. [Online].
Available: http://java.sun.com/developer/technicalArticles/J2EE/
mashup 1/. cited 22.10.2007

[24] D. Hinchcliffe, “Making the Most of the Web: Creating
Great Mashups.” [Online]. Available: http://web2.wsj2.com/
making the most of the web creating great mashups.htm.” cited
22.10.2007

[25] D. Merrill, “Mashups: The new breed of web app,” IBM, Tech.
Rep., August 2006.

[26] Wikipedia, “Mashup (web application hybrid).” [Online]. Avail-
able: http://en.wikipedia.org/wiki/Mashup (web application
hybrid).” cited 18.7.2007

[27] J. C. Perez, “Vint Cerf on google’s challenges, aspirations,” Com-
puterworld, November 2005.

[28] “Mashups, apis and the web as platform.” [Online]. Available:
http://www.programmableweb.com/.” cited 18.8.2007

[29] P. Web, “List of new mashups.” [Online]. Available: http:
//www.mashupFeed.com/.” cited 28.9.2007

[30] “Google maps.” [Online]. Available: http://maps.google.com/.”
cited 17.8.2007

[31] “Housingmaps.” [Online]. Available: http://www.housingmaps.
com/.” cited 18.7.2007

[32] “Traffic map of new york city.” [Online]. Available: http:
//local.alkemis.com.” cited 17.8.2007

[33] “Chicago crime map.” [Online]. Available: http://www.
chicagocrime.org/map/.” cited 17.8.2007

[34] Microsoft, “Active server pages.” [Online]. Available: http:
//www.asp.net/.” cited 18.7.2007

[35] A. Systems, “Coldfusion.” [Online]. Available: http://www.adobe.
com/products/coldfusion/.” cited 18.7.2007

http://java.sun.com/developer/technicalArticles/J2EE/mashup_1/
http://java.sun.com/developer/technicalArticles/J2EE/mashup_1/
http://web2.wsj2.com/making_the_most_of_the_web_creating_great_mashups.htm
http://web2.wsj2.com/making_the_most_of_the_web_creating_great_mashups.htm
http://en.wikipedia.org/wiki/Mashup_(web_application_hybrid)
http://en.wikipedia.org/wiki/Mashup_(web_application_hybrid)
http://www.programmableweb.com/
http://www.mashupFeed.com/
http://www.mashupFeed.com/
http://maps.google.com/
http://www.housingmaps.com/
http://www.housingmaps.com/
http://local.alkemis.com
http://local.alkemis.com
http://www.chicagocrime.org/map/
http://www.chicagocrime.org/map/
http://www.asp.net/
http://www.asp.net/
http://www.adobe.com/products/coldfusion/
http://www.adobe.com/products/coldfusion/

170 Bibliography

[36] Sun, “Javaserver pages technology.” [Online]. Available: http:
//java.sun.com/products/jsp/.” cited 18.7.2007

[37] L. LassoSoft, “Middleware and application server.” [Online].
Available: http://www.lassosoft.com/.” cited 22.10.2007

[38] “Php, free software for producing dynbamic web pages.” [Online].
Available: http://php.net/.” cited 18.7.2007

[39] “Php usage statistics.” [Online]. Available: http://php.net/usage.
php.” cited 18.7.2007

[40] Mozilla, “Spidermonkey javascript-c engine.” [Online]. Available:
http://www.mozilla.org/js/spidermonkey/.” cited 18.7.2007

[41] Caucho, “Java/php application server.” [Online]. Available:
http://caucho.com/.” cited 18.7.2007

[42] Mozilla, “Rhino: Javascript for java.” [Online]. Available:
http://www.mozilla.org/rhino/.” cited 18.7.2007

[43] Microsoft, “Jscript .net.” [Online]. Available: http://
msdn2.microsoft.com/en-us/library/72bd815a(vs.71).aspx.” cited
18.7.2007

[44] “Smx: Server macro expansion.” [Online]. Available: http:
//www.smxlang.org/.” cited 18.7.2007

[45] Apache, “Server-side includes.” [Online]. Available: http:
//httpd.apache.org/docs/1.3/howto/ssi.html.” cited 18.7.2007

[46] D. Thomas, D. Hansson, L. Breedt, M. Clark, T. Fuchs, and
A. Schwarz, Agile Web Development with Rails, 2nd ed. Pragmatic
Bookshelf, December 2006.

[47] D. Flanagan, JavaScript: The Definitive Guide, 5th ed. O’Reilly
& Associates.

[48] D. Goodman and B. Eich, JavaScript Bible, 3rd ed. Wiley, John
& Sons, March 1998.

[49] T. Powell and F. Schneider, JavaScript: The Complete Reference,
2nd ed. McGraw-Hill Osborne Media, 2004.

http://java.sun.com/products/jsp/
http://java.sun.com/products/jsp/
http://www.lassosoft.com/
http://php.net/
http://php.net/usage.php
http://php.net/usage.php
http://www.mozilla.org/js/spidermonkey/
http://caucho.com/
http://www.mozilla.org/rhino/
http://msdn2.microsoft.com/en-us/library/72bd815a(vs.71).aspx
http://msdn2.microsoft.com/en-us/library/72bd815a(vs.71).aspx
http://www.smxlang.org/
http://www.smxlang.org/
http://httpd.apache.org/docs/1.3/howto/ssi.html
http://httpd.apache.org/docs/1.3/howto/ssi.html

Bibliography 171

[50] LaszloSystems, “Openlaszlo – the premier open-source platform
for rich internet applications.” [Online]. Available: http:
//www.openlaszlo.org/.” cited 22.10.2007

[51] N. Klein, M. Carlson, and G. MacEwen, Laszlo in Action. Manning
Publications, 2007.

[52] J. J. Garrett, “Ajax: A New Approach to Web Applications.”
[Online]. Available: http://www.adaptivepath.com/publications/
essays/archives/000385print.php.” cited 12.8.2007

[53] J. Eichorn, Understanding Ajax: Using JavaScript to Create Rich
Internet Applications, 1st ed. Prentice Hall PTR;, August 2006,
ch. 2, pp. 15–40.

[54] J. Snell, D. Tidwell, and P. Kulchenko, Programming Web Services
with SOAP, 1st ed. O’Reilly & Associates, December 2001.

[55] G. Alonso, F. Casati, H. Kuno, and V. Machiraju, Web Services.
Concepts, Architectures and Applications. Berlin Heidelberg New
York: Springer, 2004, ch. 6, pp. 156–189.

[56] T. Frotscher, M. Teufel, and D. Wang, Java Web Services mit
Apache Axis2, 1st ed. entwickler.press, April 2007.

[57] Sun Microsystems, “JAX-RPC.” [Online]. Available: https:
//jax-rpc.dev.java.net/.” cited 22.10.2007

[58] M. Casati, “Javascript SOAP client.” [Online]. Available: http:
//www.codeproject.com/Ajax/JavaScriptSOAPClient.asp.” cited
18.7.2007

[59] S. A. LePera, “Using the mozilla SOAP API.” [Online].
Available: http://www.oreillynet.com/pub/a/javascript/synd/
2002/08/30/mozillasoapapi.html?page=1.” cited 18.7.2008

[60] R. Whitmer, “SOAP scripts in mozilla.” [Online].
Available: http://lxr.mozilla.org/mozilla/source/extensions/
webservices/docs/Soap Scripts in Mozilla.html.” cited 18.7.2007

[61] J. Snell, “Call SOAP web services with ajax.” [Online].
Available: http://www.ibm.com/developerworks/webservices/
library/ws-wsajax/.” cited 18.7.2007

http://www.openlaszlo.org/
http://www.openlaszlo.org/
http://www.adaptivepath.com/publications/essays/archives/000385print.php
http://www.adaptivepath.com/publications/essays/archives/000385print.php
https://jax-rpc.dev.java.net/
https://jax-rpc.dev.java.net/
http://www.codeproject.com/Ajax/JavaScriptSOAPClient.asp
http://www.codeproject.com/Ajax/JavaScriptSOAPClient.asp
http://www.oreillynet.com/pub/a/javascript/synd/2002/08/30/mozillasoapapi.html?page=1
http://www.oreillynet.com/pub/a/javascript/synd/2002/08/30/mozillasoapapi.html?page=1
http://lxr.mozilla.org/mozilla/source/extensions/webservices/docs/Soap_Scripts_in_Mozilla.html
http://lxr.mozilla.org/mozilla/source/extensions/webservices/docs/Soap_Scripts_in_Mozilla.html
http://www.ibm.com/developerworks/webservices/library/ws-wsajax/
http://www.ibm.com/developerworks/webservices/library/ws-wsajax/

172 Bibliography

[62] “PHP soap.” [Online]. Available: http://sourceforge.net/projects/
phpsoaptoolkit/.” cited 22.10.2007

[63] “Pocket SOAP – web services on the move.” [Online]. Available:
http://www.pocketsoap.com/.” cited 22.10.2007

[64] “Soap::lite for perl.” [Online]. Available: http://soaplite.com/.”
cited 22.10.2007

[65] B. Sleeper, “The Evolution of UDDI,” The Stencil Group, Inc.,
San Francisco, CA, Tech. Rep., July, 19 2002.

[66] R. T. Fielding, “Architectural styles and the design of network-
based software architectures,” Ph.D. dissertation, University of
California, Irvine, 2000.

[67] S. P. Otto and T. Day, A Biologist’s Guide to Mathematical Mod-
eling in Ecology and Evolution. Princeton University Press, 2007.

[68] Bringing speech acts into UMM. Department of Computer and
Systems Sciences, Stockholm University and Royal Institute of
Technology. Forum 100, SE-164 40 Kista. Stockholm, Sweden:
REA Technology Workshop, April 2004.

[69] K. Jucyte, K. Kevelaitis, and S. W. Park, “Web service imple-
mentation with soap and rest,” Roskilde University, Tech. Rep.,
January 2006.

[70] G. Alonso and J. Koehler, “Introduction to the special theme
“service-oriented computing”,” ERCIM News, no. 70, pp. 14–15,
July 2007.

[71] C. Y. Baldwin and K. B. Clark, Design Rules: The Power of
Modularity. The MIT Press, March 2000, vol. 1.

[72] M. Bolin, M. Webber, P. Rha, T. Wilson, and R. C. Miller, “Au-
tomation and customization of rendered web pages,” in UIST ’05:
Proceedings of the 18th annual ACM symposium on User interface
software and technology. New York, NY, USA: ACM Press, 2005,
pp. 163–172.

[73] A. Boodman. [Online]. Available: http://www.greasespot.net/.
cited 12.8.2007

http://sourceforge.net/projects/phpsoaptoolkit/
http://sourceforge.net/projects/phpsoaptoolkit/
http://www.pocketsoap.com/
http://soaplite.com/
http://www.greasespot.net/

Bibliography 173

[74] M. Pilgrim, Greasemonkey Hacks, 1st ed. O’Reilly & Associates,
November 2005.

[75] “userscripts.org.” [Online]. Available: http://userscripts.org/.”
cited 12.8.2007

[76] “Greasemonkeyuserscripts.” [Online]. Available: http://dunck.us/
collab/GreaseMonkeyUserScripts.” cited 12.8.2007

[77] K. Kazuyoshi, “Creammonkey – user scripting for safari.” [Online].
Available: http://creammonkey.sourceforge.net/.” cited 12.8.2007

[78] M. Solomon, “Pithhelmet – an ad-blocker for safari.” [On-
line]. Available: http://www.culater.net/software/PithHelmet/
PithHelmet.php.” cited 28.8.2007

[79] G. Little, T. A. Lau, A. Cypher, J. Lin, E. M. Haber, and E. Kan-
dogan, “Koala: Capture, share, automate, personalize business
processes on the web,” in Proceedings of ACM CHI 2007 Confer-
ence on Human Factors in Computing Systems. ACM Press, April
2007, pp. 943–946.

[80] J. Wong and J. I. Hong, “Making mashups with marmite: towards
end-user programming for the web,” in CHI ’07: Proceedings of
the SIGCHI conference on Human factors in computing systems.
New York, NY, USA: ACM, 2007, pp. 1435–1444.

[81] J. Barnabe, “Stylish.” [Online]. Available: http://userstyles.org/
stylish/.” cited 28.8.2007

[82] “Monkeygrease – the server-side greasemonkey.” [Online]. Available:
http://monkeygrease.org/.” cited 12.8.2007

[83] “Mousehole, the scriptable proxy.” [Online]. Available: http:
//code.whytheluckystiff.net/mouseHole.” cited 22.10.2007

[84] “Privoxy web proxy.” [Online]. Available: http://www.privoxy.
org/.” cited 12.8.2007

[85] T. Reenskaug, “The original MVC reports,” Dept. of Informatics,
University of Oslo, Blindern NO-0317 Oslo Blindern , NO-0317
Oslo, Norway, Tech. Rep., December 1979.

http://userscripts.org/
http://dunck.us/collab/GreaseMonkeyUserScripts
http://dunck.us/collab/GreaseMonkeyUserScripts
http://creammonkey.sourceforge.net/
http://www.culater.net/software/PithHelmet/PithHelmet.php
http://www.culater.net/software/PithHelmet/PithHelmet.php
http://userstyles.org/stylish/
http://userstyles.org/stylish/
http://monkeygrease.org/
http://code.whytheluckystiff.net/mouseHole
http://code.whytheluckystiff.net/mouseHole
http://www.privoxy.org/
http://www.privoxy.org/

174 Bibliography

[86] G. E. Krasner and S. T. Pope, “A cookbook for using the model-
view controller user interface paradigm in smalltalk-80,” ject Ori-
ented Program., vol. 1, no. 3, pp. 26–49, 1988.

[87] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Pat-
terns: Elements of Reusable Object-Oriented Software, 1st ed., ser.
Addison-Wesley Professional Computing Series. Addison Wesley,
1994.

[88] R. M. Frank Buschmann (Author), H. Rohnert, P. Sommerlad, and
M. Stal, A System of Patterns. Baffins Lane, Chichester, West
Sussex PO19 1UD, England: Wiley, John & Sons, April 1999.

[89] W. Pree, Design Patterns for Object-Oriented Software Develop-
ment. ACM, 1515 Brodway, New York: Addison Wesley, 1995.

[90] G. Hohpe and B. Woolf, Enterprise Integration Patterns: Designing,
Building, and Deploying Messaging Solutions. Addison Wesley
Signatur Series, 2004.

[91] Yahoo!, “Yahoo! Maps, Diving Directions, and Traffic.” [Online].
Available: http://maps.yahoo.com.” cited 26.10.2007

[92] “On-The-Go Supplement to the USB 2.0 Specification,” USB Im-
plementers Forum, Tech. Rep. 1.3, December 2006.

[93] C. Soanes and S. Hawker, Eds., Compact Oxford English Dictionary
of Current English, 3rd ed. Oxford University Press, 2005.

[94] W3C, “Web services architecture.” [Online]. Available: http:
//www.w3.org/TR/ws-arch/.” cited 2.10.2007

[95] F. Jared, “Greasemonkey script.” [Online]. Available: http:
//userscripts.org/scripts/show/9176.” cited 16.8.2007

[96] L‘OcuS, “Table sort.” [Online]. Available: http://userscripts.org/
scripts/show/2118.” cited 18.7.2007

[97] “Amazon.com: Online shopping.” [Online]. Available: http:
//www.amazon.com/.” cited 22.10.2007

[98] IMS Global Learning Consortium, Inc., “Open specifications
for interoperable learning technology.” [Online]. Available:
http://www.imsproject.org/.” cited 22.10.2007

http://maps.yahoo.com
http://www.w3.org/TR/ws-arch/
http://www.w3.org/TR/ws-arch/
http://userscripts.org/scripts/show/9176
http://userscripts.org/scripts/show/9176
http://userscripts.org/scripts/show/2118
http://userscripts.org/scripts/show/2118
http://www.amazon.com/
http://www.amazon.com/
http://www.imsproject.org/

Bibliography 175

[99] S. Rizzotti and H. Burkhart, “Web-based Test and Assessment
System: Design Principles and Case study,” in Web-Based Educa-
tion, V.Uskov, Ed., IASTED. CA, USA: ACTA Press Anaheim,
January 2006, pp. 37–42.

[100] ——, “(208-0887) WEB-BASED TEST AND ASSESSMENT SYS-
TEM: DESIGN PRINCIPLES AND CASE STUDY,” Advanced
Technology for Learning, vol. 3, 2006.

[101] ——, “528-098 There is More than One Correct Solution: From
Simple Questions to Explorative Simulations with Progress Maps,”
in Computers and Advanced Technology in Education, V.Uskov,
Ed., IASTED. ACTA Press Anaheim, October 2006.

[102] “Dapper: The data mapper.” [Online]. Available: http:
//www.dapper.net/.” cited 12.8.2007

[103] S. Stephenson, “Javascript framework.” [Online]. Available:
http://www.prototypejs.org/.” cited 12.8.2007

[104] B. Perry, “Prototype: Easing ajax’s pain.” [On-
line]. Available: http://www.xml.com/pub/a/2006/04/05/
prototype-javascript-ajax.html.” cited 12.8.2007

[105] J. Resig, “jQuery: The Write Less, Do More, JavaScript Library.”
[Online]. Available: http://jquery.com/.” cited 12.8.2007

[106] “Dojo – the javascript toolkit.” [Online]. Available: http:
//dojotoolkit.org/.” cited 12.8.2007

[107] “script.aculo.us – web 2.0 javascript.” [Online]. Available:
http://script.aculo.us/.” cited 12.8.2007

[108] D. Stuttard and M. Pinto, The Web Application Hacker’s Handbook:
Discovering and Exploiting Security Flaws. Wiley, October 2007.

[109] G. Alonso, F. Casati, H. Kuno, and V. Machiraju, Web Services.
Concepts, Architectures and Applications. Berlin Heidelberg New
York: Springer, 2004, ch. 2, pp. 63–64.

[110] T. Calishain, “Bookmarklets boost web surfing,” PC Magazine,
vol. 23, no. 2, February 2004.

http://www.dapper.net/
http://www.dapper.net/
http://www.prototypejs.org/
http://www.xml.com/pub/a/2006/04/05/prototype-javascript-ajax.html
http://www.xml.com/pub/a/2006/04/05/prototype-javascript-ajax.html
http://jquery.com/
http://dojotoolkit.org/
http://dojotoolkit.org/
http://script.aculo.us/

176 Bibliography

[111] “VeriSign, Inc. – SSL Certificates.” [Online]. Available: http:
//www.verisign.com.” cited 12.8.2007

[112] J. Allsopp, Microformats: Empowering Your Markup for Web 2.0.
friends of ED, March, 26 2007.

[113] Apache, “Xmlbeans.” [Online]. Available: http://xmlbeans.apache.
org/.” cited 12.8.2007.

[114] P. Szinek, “Web extraction framework written in Ruby.” [Online].
Available: http://scrubyt.org/.” cited 11.11.2007

[115] Parakey, “Firebug – web development evolved.” [Online]. Available:
http://www.getfirebug.com/.” cited 15.8.2007

[116] R. Brown, “Aardvark firefox extension.” [Online]. Available:
http://karmatics.com/aardvark/.” cited 22.10.2007

[117] P. Smith, “Top 10 firefox extensions to avoid. just because an
extension is popular doesn’t mean it belongs in your web browser,”
Computerworld, April 207.

[118] M. Pilgrim, “Avoid common pitfalls in greasemonkey.” [On-
line]. Available: http://www.oreillynet.com/pub/a/network/2005/
11/01/avoid-common-greasemonkey-pitfalls.html?page=1.” cited
29.10.2007

[119] L. Gong, M. Mueller, H. Prafullchandra, and R. Schemers, “Going
beyond the sandbox: an overview of the new security architecture
in the javatm development kit 1.2,” in USITS’97: Proceedings of
the USENIX Symposium on Internet Technologies and Systems.
Berkeley, CA, USA: USENIX Association, 1997, pp. 103–112.

[120] O. Hallaraker and G. Vigna, “Detecting malicious javascript code
in mozilla,” in 10th IEEE International Conference on Engineering
of Complex Computer Systems (ICECCS’05). Los Alamitos, CA,
USA: IEEE, 2005, pp. 85–94.

[121] V. Anupam and A. Mayer, “Secure web scripting,” IEEE Internet
Computing, vol. 02, no. 6, pp. 46–55, 1998.

[122] A. Oram, “From p2p to web services: Trust,” O’Reilly xml.com,
April 2004.

http://www.verisign.com
http://www.verisign.com
http://xmlbeans.apache.org/
http://xmlbeans.apache.org/
http://scrubyt.org/
http://www.getfirebug.com/
http://karmatics.com/aardvark/
http://www.oreillynet.com/pub/a/network/2005/11/01/avoid-common-greasemonkey-pitfalls.html?page=1
http://www.oreillynet.com/pub/a/network/2005/11/01/avoid-common-greasemonkey-pitfalls.html?page=1

Bibliography 177

[123] W. Jonker and M. Petkovic, Eds., PeerTrust: Automated Trust
Negotiation for Peers on the Semantic Web, vol. 3178, VLDB.
Heidelberg: Springer, August 2004.

[124] F. Leymann, Web Services Flow Language (WSFL 1.0). IBM
Software Group, May 2001.

[125] “Creative commons.” [Online]. Available: http://creativecommons.
org/.” cited 10.11.2007

[126] T. Winterberg, “BPEL wird erwachsen...” Javamagazin, vol. 7, pp.
22–29, July 2007.

[127] F. Leymann, D. Roller, and S. Thatte, “Goals of the BPEL4WS
specification,” CoverPages, August 2003.

[128] OASIS, “Web Services Business Process Execution Lan-
guage version 2.0.” [Online]. Available: http://www.oasis-open.
org/committees/download.php/23665/wsbpel-v2.0-OS.htm.” cited
12.7.2007

[129] Eclipse, “Eclipse-based BPEL 2.0 Designer.” [Online]. Available:
http://www.eclipse.org/bpel.” cited 10.7.2007

[130] C. Pautasso, T. Heinis, and G. Alonso, “Jopera: Autonomic service
orchestration,” IEEE Data Eng. Bull., vol. 29, no. 3, pp. 32–39,
2006.

[131] R. S. Cox, J. G. Hansen, S. D. Gribble, and H. M. Levy, “A
safety-oriented platform for web applications.” Oakland, CA:
Proceedings of the 2006 IEEE Symposium on Security and Privacy,
May 2006.

[132] N. Chase, “The ultimate mashup – Web services and the
semantic Web, part 1: Use and combine Web services.”
[Online]. Available: http://www-128.ibm.com/developerworks/
edu/x-dw-x-ultimashup1.html.” cited 22.10.2007

[133] T. B. Passin, Explorer’s Guide to the Semantic Web. Manning
Publications, March 2004.

[134] D. McGuinness and F. van Harmelen, “W3c working draft: Feature
synopsis for owl lite and owl.” W3C, Tech. Rep., July 2002.

http://creativecommons.org/
http://creativecommons.org/
http://www.oasis-open.org/committees/download.php/23665/wsbpel-v2.0-OS.htm
http://www.oasis-open.org/committees/download.php/23665/wsbpel-v2.0-OS.htm
http://www.eclipse.org/bpel
http://www-128.ibm.com/developerworks/edu/x-dw-x-ultimashup1.html
http://www-128.ibm.com/developerworks/edu/x-dw-x-ultimashup1.html

178 Bibliography

[135] T. Berners-Lee, “The semantic web,” Scientific American, May
2001.

[136] E. Schmidt, “Web 2.0 vs. web 3.0,” Seoul Digital Forum,
Korea, Tech. Rep., May 2007. [Online]. Available: http:
//www.youtube.com/watch?v=T0QJmmdw3b0. cited 21.11.2007

[137] C. Fallon and S. Brown, Eds., E-Learning Standards: A Guide
to Purchasing, Developing and Deploying Standards-Conformant
E-Learning. St. Lucie Press, 2002.

http://www.youtube.com/watch?v=T0QJmmdw3b0
http://www.youtube.com/watch?v=T0QJmmdw3b0

Glossary – Web 2.0 and Beyond

AJAX
(Asynchronous JavaScript and XML). Ajax is a cross-platform
web development technique used for creating interactive web ap-
plications. The intent of Ajax is to make web applications more
responsive by exchanging data asynchronously in the background.
35, 35, 130, 131, 137, 142, 143

API
An application programming interface (API) is the specific method
prescribed by an application program by which a programmer can
make requests of another application. 23, 24, 26, 127

ATOM
The Atom format is a standardized XML language used for web
feeds. 35

B2B
B2B is a term used to describe electronic commerce transactions
between businesses. 19

B2C
B2C describes activities of electronic commerce serving end con-
sumers with products and/or services. 19

BEEP
A framework for creating network application protocols including
mechanisms such as: asynchronous communications, transport layer
security, peer authentication, channel multiplexing on the same
connection, message framing, channel bandwidth management, and
other network features. 40

Bookmarklet
A bookmarklet is a small JavaScript program stored within a
bookmark in a web browser, or stored within a hyperlink on a web
page. [110]. 52, 129, 133, 135, 143

179

180 Glossary – Web 2.0 and Beyond

BPEL
Business Protocol Execution Language for web services (BPEL)
is an XML-based business process modeling language that is exe-
cutable. 161

C2B
C2B describes electronic commerce in which consumers offer prod-
ucts and services to companies. This business model is a reversal
of traditional business model where companies offer goods and
services to consumers (B2C). 19

C2C
C2C describes electronic commerce where transactions between
consumers run through a third party. 19

Consigliere
Controlling unit where the application logic is implemented. 82,
88, 89, 110

CRISPY
Communication per Remote Invocation for different kinds of Ser-
vices via ProxYs . Provides a single point of entry for remote
invocation for a wide number of transports: eg. RMI, EJB, JAX-
RPC or XML-RPC. 40

DHTML
DHTML is a combination of technologies used to create dynamic
and interactive web sites. It consists of a static markup language,
a client-side scripting language, a presentation language, and the
Document Object Model. 32, 34

DOM
The Document Object Model (DOM) is a platform- and language-
independent standard object model for representing HTML or XML
and related formats. 83, 130, 137, 138

EAI
Enterprise Application Integration is the process of integrating
multiple applications that were independently developed, may
use incompatible technology, and remain independently managed.
Syndicate can bee senn as a dynamic EAI. 36

Glossary – Web 2.0 and Beyond 181

Favelet
see Bookmarklet. 133

Global XML Web Services Architecture
Extension of SOAP with security and routing mechanisms. 40

Hessian Binary Web Service Protocol
Binary protocol. 40

IMS Question and Test Interoperability specification (IMS QTI)
An open standard that describes a data model for the representation
of question and assessment data and their corresponding results
[137] [98]. 113

Injector
The injector is responsible for the manipulation of the current
loaded web page. 65, 83, 97, 104

JavaScript
JavaScript is a scripting language most often used for client-side
web development. It is a dynamic, weakly typed, prototype-based
language with first-class functions [47]. 31, 32, 32, 47, 49, 51, 52,
94, 129, 130, 141, 143, 144, 151

JavaScript security
JavaScript has a long and inglorious history of atrocious security
holes. Beside implementation errors there are numerous ways in
which scripts can affect the user’s execution environment without
violating any security policies [49]. 135

JSON
JavaScript Object Notation (JSON) is a lightweight data-interchange
format with the purpose to be easy to read and write for humans
and easy to parse and generate for machines. 35, 79

JSON-RPC
Lightweight remote procedure call protocol which handles only a few
data types and commands and allows bidirectional communication
between the service and the client. 40

182 Glossary – Web 2.0 and Beyond

Loose coupling
Loose coupling is an architectural principle to build applications
that promote loose coupling among components. Loose coupling
can mean independence in terms of time or format. 16, 17, 37, 44,
66, 130, 143

Manifold
Manifolds are known as abstract mathematical spaces. In this
context a manifold, in contrast to a monolithic system, signifies
a further specification of a service-oriented software architecture
whith additional restrictions on participating components. 61, 61,
62, 66, 69, 127, 157, 159

Mashup
A web application that combines data from more than one source
into a single integrated tool [22]. 23, 24, 25, 50, 60

Microformat
A microformat (uF) is a data markup language to semantically
annotate existing HTML or XML data. This approach is intended
to allow automated extraction and processing of data portions
stored within web pages (see also: RDF). Microformats are defined
for particular subjects [112]. 136

Mission
A task that changes the appearance, the content or the behavior
of a web page. 65, 72, 75, 93, 103, 141

Mission patterns
A mission patterns is either a presentation, content, or integration
pattern. 58, 65, 75, 94, 101

Mission properties
Environmental settings which control Mission specific parameters.
64, 65, 72, 83, 94, 95, 99, 100, 121, 130, 141, 142

Mission trigger
Event, which initiates the invocation of a Mission. Triggers can be
static, periodical, or user-generated. 65, 72, 76, 95, 99, 106, 114,
123, 128, 138, 141, 144, 147

Glossary – Web 2.0 and Beyond 183

Monolithic system
The term derives from an architectural style meaning a construction
out of a single piece of material. In this context, a monolithic system
or monolithic architectures signifies that all processing and data
reside on the same system. 15, 18, 43, 61, 63

MVC
The MVC paradigm is a way of breaking an application, or even
just a piece of an application’s interface, into three parts: the
model, the view, and the controller [85] [86] [87]. 57

REST
Representational State Transfer. An architecture style of networked
systems based on the idea to see Web applications as a virtual
state-machine [66]. 35, 39, 39, 40, 106, 136, 142

RSS
(Really Simple Syndication) is an XML-based document format for
the propagation of web content so that it can be republished on
other sites or downloaded periodically. News headlines, weblogs,
and the exchange of other timely information such as software
release notes are usage examples. 26, 35, 53, 137, 138

Sandbox
A sandbox signifies a security mechanism for a shielded environment
where programs can safely be executed. It is mainly used to execute
untested or untrusted code. 163

Scout
The Scout is responsible for information gathering and can make
use of semantic or structural scraping techniques. 65, 77, 80, 95,
97, 104, 141, 145

Semantic Web
The Semantic Web approach develops languages for expressing
information in a machine processable form. Semantic Web tech-
nologies include RDF, OWL, SWRL, SPARQL, GRDDL. 164, 165

Server detour
A server detour signifies an additional roundtrip of a communication
vi the Syndicate server. 65, 72, 78, 141, 145

184 Glossary – Web 2.0 and Beyond

Service-oriented architecture (SOA)
A design philosophy to achieve loose coupling among interacting
software agents [14]. 3, 16, 18, 57, 72

Signed script
Technology used in Mozilla Web browsers to access expanded
privileges in JavaScript applications. 135

SOAP
Simple Object Access Protocol, also known as the service-oriented
architecture protocol. An XML-based messaging framework that
allows messages being exchanged over a variety of underlying pro-
tocols [54]. 35, 37, 37, 39, 40, 79, 136, 142

Syndicate
Syndicate is first, the name of the thesis and covers the generic
principle of several small tasks working together to address a
common aim. Second, when used as an adverb, it describes the
state of a loaded web page. 2, 71

Syndicator
The Syndicator is responsible for the syndication of a loaded web
page and acts as the kick-off of the whole Syndicate system. 65, 72,
143, 144, 164

UDDI
Universal Description, Discovery and Integration protocol. The
basic goal of UDDI is a framework for describing and discovering
services and service providers. 37, 38, 40

VoIP
Voice over Internet Protocol, also called VoIP is the routing of
voice conversations over the Internet or through any other IP-based
network. 116

Web-based service
Web-based service, or web service is a software system designed
to support interoperable machine to machine interaction over a
network. 19, 65, 85, 89, 113, 136, 137, 139

Glossary – Web 2.0 and Beyond 185

Web 2.0
A term created by Tim O’Reilly describing the ways software
developers and users use the web. Web 2.0 does not describes any
technical specifications but refers to services instead of packaged
software, participation architectures, and remixable data sources
[21]. 22, 23, 25

WSDL
Web Service Description Language (WSDL). WSDL is an XML
document used to describe web services and specifies the location
of the service and the operations or methods the service exposes.
37

WSFL
Web services flow language. An XML language for the description
of web services compositions [124]. 153

XINS
Open-source Web Services technology, supporting SOAP, XML-
RPC and REST that includes a Java-based implementation frame-
work. 40

XML-RPC
Specification and a set of implementations that allow software
running on disparate operating systems, running in different envi-
ronments to make procedure calls over the Internet. 40

XPath
(XML Path Language) is an expression language for addressing
portions of an XML structured document, or for computing values
based on the content of an XML document. 137, 138

XSS
Cross-site scripting (XSS) is technology which allows code injection
into the web pages. Examples of such code include HTML code
and client-side scripts. 129, 131

	Abstract
	Introduction
	Fundamentals
	Evolution in Usage of the Web
	Before the World Wide Web
	From information silos to rich interfaces
	Rich web applications
	Web applications vs. desktop applications
	Summary

	Distinguishing Elements in the Web Environment
	Overview
	Monolithic software architecture
	Service-oriented architectures
	Approach to service-oriented architecture
	Approach to service-oriented architecture

	Web-based services
	Business models
	Summary: The community effect
	Web 2.0
	Mashups

	Browser technologies
	Browser extensions
	Plugins
	Themes

	Web Technologies
	Overview
	Server-side
	Server-side scripts
	Server pages

	Client-side
	JavaScript
	Flash
	Laszlo, OpenLaszlo, DHTML
	Java Applets

	Communication
	AJAX
	SOAP and related standards
	REST
	Alternatives to SOAP and REST

	Problem Description
	Categories of individualization
	Software architecture to support category-based personalization
	Challenge of this work

	Related Projects and Assessment
	Projects based on Firefox Extensions
	Proxy-based projects
	Other related projects
	Summary of evaluated projects

	Syndicate Framework
	Concepts and Terminology
	Pattern-based individualization
	Content pattern
	Presentation pattern
	Integration pattern

	Manifold -- The subsequent intention
	Advantages
	Requirements on the applications

	Use cases and basic architecture
	Terminology
	Involved servers
	Architecture principles
	Summary

	Syndicate Units
	Syndicate components
	Syndicator and page states
	Syndicate server
	Mission
	Mission Patterns
	Mission triggers
	Properties

	Service unit
	Service
	Server detour

	Transformer unit
	Adapter
	Transformer

	Exploration unit
	Scout

	Data access unit
	Source selector
	Connector

	Controlling unit
	Output viewer
	Renderer
	Injector
	DOM
	External programs

	Syndicate Control Flow
	Syndication of a page
	Mission triggering
	Mission activation
	Local Consigliere
	Remote Consigliere via server detour
	Information gathering with the Scout
	Transformation and Rendering
	Injection

	Syndicate as seen by the User
	Mission Publisher
	Mission components
	Summary
	Implementation
	Mission Properties

	Mission Unpublishing
	Publishing workflow

	Mission Subscriber
	Mission subscription
	Mission selection
	Mission unsubscription

	Examples
	Presentation Mission examples
	AdRemover
	TextFieldSize
	TableSorter
	FileExtension
	iTunes
	Stocks

	Content Mission examples
	Questions
	Acronyms
	BookFinder
	Distance
	Dictionary
	Weather

	Integration Mission examples
	TextSpeaker
	Translator
	PhoneCall
	AskSmart
	DiscMission

	Examples of distinguished components
	Triggers
	Scout
	Properties
	Adapter
	Transformer
	Source selector
	Renderer
	Injector

	Workflow Example
	Involved servers
	Workflow steps
	Mission creation
	Mission publishing
	Mission localization
	Mission subscription
	Mission individualization
	Mission usage
	Unsubscribe of the Mission

	Syndicate Implementation
	Technical Challenges
	Browser scripting
	Cross browser scripting
	Cross site scripting (XSS)
	Callback functions
	Browser extensions
	Bookmarklets
	Signed Scripts

	Microformats
	Scraping techniques
	Loose coupling
	Visual feedback of selected page structures
	Dynamic configuration
	Configurations in the web browser
	Configurations at the Syndicate Server

	Implementation Architecture
	Data
	Missions
	Mission properties
	Communication data

	Processes
	Syndication
	Mission loading
	Mission triggering
	Mission activation

	Future -- Perspectives of Syndication
	Syndicate Risk Management
	Security
	Service guarantee
	Performance
	Legal issues

	Conclusion and Outlook
	Summary of the research
	Conceptual framework and conclusion
	Contributions
	Limitations of the study
	Avenues for future research
	Community aspects
	Security enhancements
	Reliability
	Usability

	Vision for the future of the web

	References
	Glossary -- Web 2.0 and Beyond

