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Summary

The spin of electrons in a semiconductor environment couples not only to
magnetic fields, but also to the orbital motion of the electron. As a conse-
quence, transport in semiconductors includes a class of phenomena in which
electrically induced charge motion influences the electron spin. The intricate
interplay of spin and charge makes this type of effects a diverse research field
of fundamental interest, but is also of practical relevance: Spin-orbit interac-
tion (SOI) provides a mechanism to control the spin with electric fields. Being
available in tailored materials, that are routinely used in microelectronics, SOI
has therefore attracted intense interest for its potential in applications to use
the electron spin alternatively to the charge in new types of electronic devices.

In this thesis we investigate the interplay of spin and charge transport in
disordered electron systems, where random impurities not only determine the
electrical resistance but also the spin dynamics through spin-orbit interac-
tion. A focus of this work is electric-dipole-induced spin resonance (EDSR), a
versatile scheme of spin control using electric fields. Similar to standard para-
magnetic resonance where a combination of static and ac magnetic fields drive
spin rotations, in EDSR ac electric fields couple resonantly to the spin. Ap-
propriately chosen pulses of these electric fields, which can be generated easier
on-chip than ac magnetic fields, allow to achieve arbitrary spin rotations. In
a diagrammatic analysis we find that the presence of disorder broadens the
line-shape of EDSR and determines the maximal achievable polarization. We
identify random internal magnetic fields as the origin of this line-broadening,
which limits the efficiency of EDSR, and show that these limitations can be
overcome in an optimal geometry where the internal fields are suppressed by
the interference of different spin-orbit mechanisms. This leads to a substantial
enhancement of the spin polarization at resonance. We moreover link these
findings to spin currents giving rise to the spin-Hall effect. We interpret these
spin currents in terms of spin polarization components.

The behavior of the spin depends sensitively on whether the orbital motion
is diffusive or phase coherent. Indeed, qualitatively different – mesoscopic –
effects occur in the spin when electrons flow through phase-coherent systems.
Whereas in charge transport such mesoscopic effects are well known, for the
spin they have attracted interest only more recently in the context of spintron-
ics. We find that the spin polarization, that arises due to dc transport and
SOI, shows large mesoscopic fluctuations that exceed the polarization in inco-
herent samples with self-averaging. Since this average polarization has been
successfully measured we expect this mesoscopic fluctuations to be within ex-
perimental reach as well.
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1
Introduction

1.1 Introduction

A conceptually simple picture for charge transport in disordered semiconduc-
tors is the Drude model [Drude00]. Electrons scattering randomly from static
impurities in the semiconductor can be described simply by classical diffusive
drift; a large-scale analogy is the motion of beads falling through a nail bed
(also known as Galton box). The electron spin, on the other hand, typically
evolves coherently for a duration of many scattering times during this motion.
The different behaviour and the robustness of magnetic degrees of freedom has
inspired a new paradigm in information technology and solid state physics,
termed spintronics [Awschalom02, Awschalom07], which aims at utilizing the
electron spin instead of the charge to encode and process information.

A landmark effect attributed to spintronics is the giant magnetoresistance
effect (GMR) [Grünberg86,Baibich88,Binasch89] which was awarded the No-
bel prize in 2007. Few years after its discovery, GMR turned into a mass
production technology applied in reading data from hard drives and also in
non-volatile magnetic RAM. Theoretical models and applications of the GMR
are based on a two-channel picture of spin transport (with carrier types spin-
up and spin-down), but do not focus on superpositions of the two, i. e. on
spin coherence.

In addition to such incoherent spintronics devices, intense interest was trig-
gered in spintronics in semiconductors by the long spin coherence times in these
materials [Kikkawa97]. Semiconductors provide a unique environment for spin-
tronics with tailored material properties such as the confinement energy, scat-
tering time (mobility), electron g-factor, and effective mass. The availability of
optical measurements [Meier84, Baumberg94,Kikkawa98, Kato04a], moreover,
allows for time- and spatially resolved measurements of the spin polarization
in these systems which has enabled the observation of coherent spin phenom-
ena, e.g. the precession in crystal magnetic fields [Kato04a] and the spin-Hall
effect [D’yakonov71,Sinova04,Hirsch99,Kato04c,Wunderlich05,Sih05].
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CHAPTER 1. INTRODUCTION

With magnetic elements being absent in semiconductors1 the control and
the generation of non-equilibrium spin polarization without magnetic fields
becomes a central issue of semiconductor spintronics. This task is enabled
by the strong spin-orbit interaction (SOI) [cf. Sec. 1.2] in these materials
giving rise to zero-field, momentum-dependent spin splittings. These split-
tings lead to effects involving the interaction between the orbital transport
processes and the spin dynamics which will be a central topic of this thesis
and have received a strong interest for their applicability in schemes to con-
trol and generate spin with electric fields. An illustrative example for such
spin-orbit related effects is the magnetoelectric effect (MEE) [Levitov85,Edel-
stein90, Kato05, Meier07]. Analogous to Pauli paramagnetism where a mag-
netic field causes an energy difference between aligned and anti-aligned spin
leading to an imbalance between spin populations in thermal equilibrium, in
the MEE internal fields generated by SOI and transport give rise to a spin-
polarized steady-state. Of fundamental interest is, moreover, the spin-Hall
effect(SHE) [D’yakonov71, Sinova04, Hirsch99, Kato04c, Wunderlich05, Sih05]
which is similar to the classical Hall effect, where charges of different sign are
deflected in opposite directions as they flow through a conductor immersed
in a magnetic field. In the spin Hall effect spin-up and spin-down electrons
transported through a semiconductor separate due to spin-orbit coupling and
accumulate non-equilibrium spin polarization at the edges of the sample. For
the SHE one generally distinguishes two types, the intrinsic and extrinsic SHE.
The origin of the extrinsic SHE [D’yakonov71,Engel05,Engel06] is attributed to
spin currents arising from spin-selective scattering from impurities. These spin
currents are not directly observable, but manifest as spin polarization at the
sample edges transverse to an electric current (and without magnetic fields).
Edge spin accumulation due to the extrinsic SHE has first been observed in
bulk semiconductors [Kato04c, Wunderlich05, Sih06], later in metals [Valen-
zuela06] and at room-temperature [Stern06]. The intrinsic SHE shows similar
boundary spin accumulation [Sih05], but a more intricate polarization profile
with additional spatial oscillations resulting from the intrinsic SOI. 2

While the MEE and the SHE might be applied in schemes to generate spin
polarization without magnetic fields, interest also focusses on the manipulation
of an existing, non-equilibrium polarization. A set of devices proposed for
this purpose rely on alternative gating mechanisms. For instance, the Datta-

1Intense efforts focus on the fabrication and characterization of magnetic semiconductors
such as GaMnAs. See for a review [Ohno98,Dietl02].

2Theoretical descriptions of the intrinsic SHE are based on spin diffusion equations for
which appropriate boundary conditions have to be posed. The solution to such equa-
tions depends sensitively on these boundary conditions making their correct deriva-
tion an important theoretical problem [Maslov93, Mal’shukov05, Bleibaum06, Galit-
ski06,Tserkovnyak07,Zyuzin07].
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1.1. INTRODUCTION

Das transistor [Datta90] and a more advanced proposal [Schliemann03] utilize
the modulation of the SO-induced-spin splitting [Nitta97] by electric gates.
Appropriate switching of such gates allows one to tune the precession frequency
of spins in internal fields such that an initial polarized spin can be rotated in
the ’on-state’ and is left unchanged in the ’off-state’ of the transistor.

Full coherent control of the spin is typically achieved by paramagnetic elec-
tron spin resonance(ESR) [Abragam61,Bloch57]. In ESR high-frequency mag-
netic fields are tuned to resonance with the precession frequency of the spin
in a static magnetic field. With suitably chosen pulses of such high-frequency
fields arbitrary spin rotations can be obtained. Similar to ESR, electric-dipole-
induced spin resonance (EDSR) [Bell62,Dobrowolska84] is a technique to con-
trol the spin but utilizes electric instead of magnetic driving fields. EDSR
therefore allows for fully coherent spin control, has the advantage, however,
that it can be integrated in electrically contacted nanostructures, avoiding
magnetic rf coils.

The orbital transport processes involved in the MEE, EDSR and the spin-
Hall effect are affected by the presence of imperfections -impurities or defects-
in the crystal lattice of the conduction channel of the semiconductor and in the
surrounding substrate and doping layers. These impurities give rise to a static
and random potential from which the electrons moving through the semicon-
ductor scatter and which determines the electrical resistance of the system. In
large systems these transport processes are sufficiently described as diffusive,
i. e., by assuming that the disorder potential leads to a near-to-complete ran-
domization of the electron motion after a single scattering from an impurity.
In systems with SOI diffusive drift which is generated by electric fields and
diffusive random motion give rise to effective magnetic fields [cf. Sec. 1.2] and
fluctuations of them, respectively. Qualitatively different phenomena occur
when the orbital transport processes are phase coherent; since scattering from
impurities is static, it leads only to a randomization of the momentum but
not of the quantum mechanical phase of the electron. An important example
of such coherence effects are mesoscopic fluctuations revealing a dependence
of macroscopic sample properties, e.g. its conductivity, on microscopic differ-
ences in the spatial distribution of the impurities. These fluctuations can be
traced back to phase correlations and are well known in charge transport [Alt-
shuler85, Altshuler91, Lee87, Zumbühl05, Aleiner01, Miller03]. In the presence
of SOI, such fluctuations can also be found in the spin. The MEE, for instance,
shows mesoscopic fluctuations in the spin polarization that is induced by an
electric field.

These effects concern the coherent manipulation of ensembles of spins. On
the other hand, the Loss-DiVincenzo proposal [Loss98] puts particular empha-
sis on the coherence and the entanglement of single spins. These spins serve
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CHAPTER 1. INTRODUCTION

as qubits, the basic building blocks of a solid-state based quantum computer.
The quantum mechanical entanglement between a higher number of spins al-
lows to implement algorithms [Nielsen00, Mermin07] with higher parallelism.
For some tasks such algorithms would therefore outperform the best algorithms
that are available on a classical computer for the same task. Registers of qubits
and qubit gates can moreover serve to simulate general quantum systems in
a controllable environment. The implementation of the quantum computer
requires the fulfillment of a number of criteria [DiVincenzo00] concerning the
controlled operation, readout, and initialization of spin states towards which
the last decade has witnessed enormous progress [Coish07,Hanson07].

1.2 Spin and Spin-orbit interaction

The spin- 1
2

of the electron is the most elementary quantum mechanical system.
Due to the algebraic properties required by the Dirac equation of relativis-
tic quantum mechanics the spin, Ŝ, can be described as an internal angular
momentum of the electron. This ”spin” is associated with a magnetic mo-
ment µ = 2gµBŜ/~ where g is the g-factor (g ≈ 2 for free electrons) and
µB = e~/2m = 5.8 × 10−5eVT−1 is the Bohr magneton. Measurement of µ
along a quantization axis (defined by a magnetic field) yields either of two
discrete outcomes, ±gµB/2 corresponding to the spin up- and the spin down-
state. The spin is therefore referred to as a two-level system which is described
by a superposition of the up and the down state. These two states may serve
to encode a classical bit of information by defining spin-up (spin-down) as the
logical ”1” (”0”). Exploiting, moreover, the coherence property of the spin,
quantum mechanical superpositions of these states can be encoded forming
a quantum-bit (qubit). The prospect of using the electron spin as a carrier
of classical or quantum information has triggered intense research efforts in
spintronics and solid-state based quantum computing.

Developing robust schemes to coherently control non-equilibrium spin po-
larization is therefore a central objective of spintronics. For this purpose elec-
trical instead of magnetic control is desirable since electric fields allow for
easier on-chip generation and time-dependent switching by local gates. The
spin of free, non-relativistic electrons, however, reacts only weakly to elec-
tric fields such that direct electric operation of the spin is not possible. In
semiconductor environments, however, the relativistic effects responsible for
the coupling between spin and orbital motion can be strongly enhanced with
zinc-blend III-V semiconductors showing a particularly strong spin-orbit in-
teraction (SOI). Such enhanced SOI provides the pivotal mechanism enabling
(indirect) electrical control of the spin: Indeed, in addition to shaping the
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1.2. SPIN AND SPIN-ORBIT INTERACTION

band structure, effective mass, and g-factor, SOI has important consequences
for the one-electron energy levels leading to momentum-dependent spin split-
tings in the absence of magnetic fields. The momentum-dependence of such
SO-splittings whose strengths can be varied over a wide range [Nitta97, Pa-
padakis99, Koga06] enables electrical spin operation via the electrical control
of the momentum [Kato04a,Mishchenko04,Rashba03b,Duckheim06].

A complete description of the electron and its spin in the non-relativistic
limit is given by the the Pauli equation [Schwabl05] including a term describing
SOI, known as Thomas term,

HSO = λSOσ · p×∇(V0 + Ṽ ) (1.1)

where p is the momentum operator and σ = (σ1, σ2, σ3) denote the Pauli
matrices. V0 is the lattice-periodic potential of the crystal and Ṽ the potential
due to impurities, confinement, external fields, etc. Setting V0 = 0 Eq. (1.1)
describes SOI of electrons in vacuum (subject to a potential Ṽ ) with ~λSO =

−~2/4m2
0c

2 = −3.7× 10−6Å
2

where c is the velocity of light and m0 the free
electron mass. In direct-gap semiconductors such as GaAs, a description of the
conduction band electrons by an effective-mass Hamiltonian that includes SOI
is obtained in the framework of k ·p-theory [Winkler03]. The SOI mechanisms
obtained can be (roughly) classified in two categories. The first is the extrinsic
SOI present in the proximity of impurities only, which leads to spin-dependent
scattering including Mott-skew scattering [Mott65]. The second type, the
intrinsic SOI is an inherent band-structure effect present also in a perfect
crystal, i. e. remote from impurities, which leads to (spatially uniform) spin-
splittings in the single-electron energy levels.

In GaAs a SOI of the form [Eq. (1.1)] (with V0 → 0 absorbed in the band
structure, Ṽ being the impurity potential) arises due to the coupling of s-
type conduction band and p-type valence band wave functions. Within the
framework of k · p-theory the prefactor is found [Winkler03, Engel06] to be

~λSO = +5.3Å
2
, and, therefore, drastically enhanced with respect to its vac-

uum counterpart. Extrinsic SOI has been identified [D’yakonov72,Engel05,En-
gel06] as the mechanism for the spin-Hall effect in bulk semiconductors.

For structures with a particular symmetry group, e.g. Td for bulk zinc-
blend crystals, specific intrinsic SO-mechanisms can be described [Dressel-
haus55, Rashba60, deAndradaeSilva94, Winkler03]. For instance, in a het-
erostructure of Zinc-blend materials two SO-mechanisms, the Rashba and
the Dresselhaus SOI due to structure inversion asymmetry and bulk inversion
asymmetry, respectively, exist. Here, we focus on semiconductor heterostruc-
tures forming a two-dimensional electron gas (2DEG). The Rashba SOI for
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CHAPTER 1. INTRODUCTION

such a 2DEG is described by the Hamiltonian

HR = α(σ × p) · ez = ΩR(p) · σ (1.2)

where ez is the confinement axis and p = (p1, p2, 0) is the in-plane momen-
tum. The strength of the Rashba coefficient α is given [Winkler03, deAn-
dradaeSilva94] in terms of the band gap Eg, effective mass m, valence band
spin-orbit splitting ∆, and the confinement potential Ṽ (z) as

α =
~2

2m

∆

Eg

2Eg + ∆

(Eg + ∆)(3Eg + 2∆)
e∇Ṽ (z) . (1.3)

The Dresselhaus term [Winkler03] for a bulk zinc-blend crystal is of the form
β3px(p2

y − p2
z)σ

1 and cyclic permutations of it3.
When the electrons are confined in a 2DEG the expectation value 〈.〉z of

the momenta in the confinement direction (here, always assumed along the
z-direction.) should be taken. While, in this case, the first moment 〈pz〉 = 0
vanishes, the terms 〈p2

z〉z ≡ β/β3 are finite4. The dominant Dresselhaus SOI
contribution in a 2DEG (grown in the [001] direction) is therefore

HD = β[pxσ
1 − pyσ2] = ΩD(p) · σ

HD,3 = β3[p2
xpyσ

2 − p2
ypxσ

1]. (1.4)

While the Dresselhaus SOI is essentially a material property the strength of
the Rashba SOI depends on the asymmetry of the confinement potential in
the structure. By an appropriate change of the design parameters of the
structure and the confinement potential the Rashba SOI can therefore be tuned
while keeping the Fermi energy constant [Papadakis99]. Tab. A.1 gives some
typical values for the SO coupling constants α and β which were found by
measurement of Shubnikov-de-Haas oscillations [Nitta97], weak localization
[Miller03] and and Faraday rotation measurements [Meier07].

Intrinsic spin-orbit interaction and effective magnetic fields

The presence of SOI leads to a combined coherent evolution of the spin and the
orbital motion. In general, this interplay of spin and momentum is rather in-
tricate and leads to a number of effects such as zitterbewegung [Schliemann05],

3In the presence of a magnetic field the symmetrized form of the kinetic momenta must
be used.

4A qualitative argument predicts that in strictly 2d systems the cubic terms in Eq. (1.4)
often play a minor role: With an effective width δz of the quantum well the ratio of
cubic to linear Dresselhaus can be estimated to be on the order of (δz/λF )2 � 1, where
λF = h/pF is the Fermi wavelength in the 2DEG.

6



1.3. ELECTRIC-DIPOLE-INDUCED SPIN RESONANCE

Exp. α[10−12eVm] β[10−12eVm]

Nitta et al. [Nitta97] (GaInAs-QW) 6 . . . 10 n.n.

Miller et al. [Miller03] −0.4± 0.1 0.5± 0.1

Meier et al. [Meier07] −0.15 0.12

Table 1.1: Numerical values for the SOI strengths.

the spin-Hall effect [Sih05], spin relaxation in quantum dots [Elzerman04,
Kroutvar04, Golovach04] and extended structures [D’yakonov72, Averkiev02],
current-induced spin polarization [Edelstein90,Silov04,Kato05], and weak anti-
localization [Hikami80, Bergmann84, Miller03], of which many have attracted
significant interest in the field of spintronics. In systems with weak SOI, how-
ever, it is instructive (and an appropriate description for many SO-related
effects) to assume that the orbital motion depends only weakly on the state
of the spin, i. e. that there is no back action of the spin on the orbital motion
which is then governed by external electric fields, scattering, etc. only. This
assumption is equivalent to approximating the SO-induced spin splitting Ω(p)
by an effective field Ωeff ≡ 〈Ω(p)〉 obtained by averaging Ω(p) over the mo-
mentum distribution: Indeed, consider an electron subject to a time-dependent
electric field in a disordered conductor. Under the assumption of weak SOI
the electron acquires a finite average momentum 〈p〉(t) which is determined
(entirely) by E(t) and momentum scattering. As a consequence, the spin dy-
namics are equal to those of an electron in a time-dependent magnetic field
Ω(〈p〉(t)), which the internal field generated by SOI and the momentum. The
interpretation of Eqs. (1.2-1.4) in terms of effective magnetic fields illustrates
the principle of electrical spin control and enables an easy understanding of SO-
related effects such as current induced spin polarization [Edelstein90,Kato05],
EDSR and spin relaxation [cf. Sec. 2.2] due to the D’yakonov-Perel mecha-
nism [D’yakonov72, Averkiev02]. Effective fields, however, fail to account for
effects based on the full coherent coupling of spin and momentum such as
Zitterbewegung [Schliemann05], oscillations of a non-equilibrium out-of-plane
polarization [Stich07] and mesoscopic spin fluctuations [Duckheim08].

1.3 Electric-dipole-induced spin resonance

Electric-dipole-induced spin resonance [Bell62, Dobrowolska84, Kato04a] is an
efficient scheme to control the electron spin with electric fields [Rashba03b,
Schulte05,Wilamowski07,Duckheim06,Duckheim07,Meier07]. Similar to para-
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CHAPTER 1. INTRODUCTION

Figure 1.1: Geometry of the magnetic fields in paramagnetic electron spin res-
onance(ESR) which requires a time dependent magnetic field B1(t) ∝ cosωt
perpendicular to a static magnetic field B0. With ESR pulses chosen accord-
ingly arbitrary spin rotations can be achieved. In EDSR the external field
B1(t) is replaced by an internal field generated by SOI and ac. orbital trans-
port.

magnetic electron spin resonance (ESR) [Abragam61,Edelstein93] EDSR uses
a combination of a static and an oscillating field to drive spin rotations. To il-
lustrate the principle of EDSR we briefly discuss ESR [Abragam61,Slichter96,
Edelstein93] which occurs when a spin in a constant magnetic field B0 is sub-
ject to an additional oscillating magnetic field whose frequency ω matches the
Larmor frequency ωL = gµBB0/~ of B0. The time dependence of the spin
Si(t) = 〈σi〉(t) ; i = 1, 2, 3 (brackets denote expectation values) due to ESR is
described by Bloch [Bloch57] equations

d

dt
S = 2[b0 + b1(t)]× S− Γ[S− Seq], (1.5)

where b0 = gµBB0/2 is the static magnetic field (chosen along the y-axis,
see Fig. 1.1) and b1(t) = b1 cos(ωt) is the oscillating field with frequency ω
and amplitude b1 which is perpendicular to b0. In the first term both fields
b0 and b1(1) couple to the spin leading to precession and Rabi oscillations,
respectively, while the second term describes relaxation (Γ being the relax-
ation tensor) towards an equilibrium polarization Seq. Eq. (1.5) can be solved
approximately by transformation to the rotating frame [see e.g. [Slichter96]]
in the regime |Γ|, |ΓSeq| � b1 � b0 and ω ≈ ωL. The resulting solutions
S(t) are Rabi oscillations of the spin between the states of parallel and an-
tiparallel alignment with b0 with frequency ωR = 2b1. These oscillations are
superimposed by the precession about b0 and relaxation towards Seq. Fig. 1.2
shows 3 snapshots of this motion (with negligible relaxation). After the driving
field b1(t) is applied for a time t = π/ωR the spin is switched from its initial
’up-state’ along the y-axis to the ’down-state’ [see Fig. 1.2 c]. Moreover, if
relaxation is small compared to the driving, arbitrary azimuthal angles of the

8



1.3. ELECTRIC-DIPOLE-INDUCED SPIN RESONANCE

Figure 1.2: Rabi oscillations and precession due to ESR. The images show the
time-dependence of the spin S(t) (dark arrow) which initially (at t = 0) points
along the y-axis. The black line is the orbit of the tip of S(t). a) Spin at time
ωRt & 0, b) ωRt = π/2, and c) ωRt = π.

spin can be achieved by applying pulses b1(t) with appropriate duration.

Unlike in paramagnetic ESR, the driving fields in EDSR are electric, cou-
pling to the spin via ac orbital transport and spin-orbit interaction. These
electric fields allow thus for easy on-chip generation by applying ac voltages
to local electrical contacts or gates. Similar to ESR, in EDSR suitably chosen
pulses achieve arbitrary spin rotations. With the orbital motion coupling to
the spin, however, scattering from impurities leads to a randomization of the
electron momentum and, through SOI, of the electron spin. To leading order
in 1/pF l� 1 where pF is the Fermi wave length and l the mean free path [cf.
Sec. 1.5] the orbital motion can be described by sequences of piecewise (free)
linear motion with typical length l interrupted by scattering from impurities
(cf. Fig. 1.3) into random directions. Although the scattering along these
so-called Boltzmannian paths can be assumed spin independent5 the random
component in momentum gives rise to fluctuating internal magnetic fields due
to the intrinsic SOI. These fields cause spin relaxation due to the D’yakonov-
Perel mechanism [D’yakonov72,Dyakonov84] and lead to a finite line-width Γ
in EDSR. The spin polarization Sres that can be achieved at resonance is lim-
ited by this line-width like Sres ∝ 1/Γ. In Chaps. 2- 3 we study the broadening
and suppression of the resonance using a microscopic model of disorder and
intrinsic SOI. There, we find that the suppression of Sres results from inter-

5Extrinsic effects, i. e., spin-dependent scattering leads to rich physics in charge transport
[Feng89, Bergmann84, Akkermans07] and in the spin-Hall effect [Engel06, Engel05] in
bulk structures. In strictly 2D systems, however, models based on intrinsic (band-
structure dependent) SOI [Aleiner01,Cremers03] explain transport measurements, that
are sensitive to the breaking of spin-symmetries [Zumbühl05,Miller03], rather well, and
will be the focus of this work.
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CHAPTER 1. INTRODUCTION

Figure 1.3: Sketch of a Boltzmannian path. Due to scattering from impurities
the electron (dark sphere) undergoes a random sequence of free linear motions
(solid lines) and scattering events [cf. Sec. 1.5 and Fig. 1.5]. This leads to
a random component in the internal spin-orbit field (small arrows) acting on
the spin and gives rise to a finite line-width of EDSR.

nal field fluctuations in different directions with respect to B0 which can be
reduced by an optimal field configuration exploiting the interference between
Rashba and Dresselhaus SOI.

1.4 Mesoscopic effects

A fascinating aspect of quantum mechanics is the manifestation of coher-
ence effects on mesoscopic scales such as conductance corrections [Ander-
son79,Gorkov79,Bergmann84,Chakravarty86,Loss93] and conductance fluctu-
ations [Altshuler85, Larkin86, Skocpol86, Lee85, Lee87, Altshuler91, Maslov93]
in small nano- to micrometer sized devices.

In the following we give a brief introduction to mesoscopic fluctuations and
their relation to quantum mechanical phase coherence. First, we note that
the macroscopic properties of a system such as electric and thermal conduc-
tivity, magnetic susceptibility etc., are a function of the (random) microscopic
structure of the system. As a consequence, these macroscopic properties are
random variables as well. A meaningful description of systems by averages of
these macroscopic properties is therefore based on the assumption that these
properties are very narrowly distributed around their averages. This is the case
when the system can be viewed as consisting of statistically independent sub-
systems. By the law of large numbers, the individual microscopic differences
of these subsystems average out and yield well-defined macroscopic properties.
The conductivity of a semiconductor sample, for instance, is rendered finite
due to scattering from impurities [Drude00, Akkermans07]. These impurities
are distributed randomly in each individual sample and differ in detail, e.g., in
position or its electrostatic potential. Despite these differences two samples can

10
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have equal conductivities if on average their impurity configurations have the
same impurity distance and strength. These samples are called self-averaging,
i.e., their measured conductivity coincides with a probability very close to 1
with each other and with the value of any other impurity configuration with
the same average strength and distance. In other words, in a self-averaging
system the conductivity, given as a random variable of the precise impurity
positions, has vanishing variance.

The transition to the mesoscopic regime is marked by the absence of self-
averaging occurring at the length scale Lφ [Anderson79] over which electrons
maintain quantum mechanical phase coherence. For systems of linear dimen-
sion L ≈ Lφ the statistical assumption of independent subsystems breaks down
since quantum mechanical correlations extend over the full sample length,
which for low temperatures may reach up to orders of 1...10µm [Beenakker91].
As a consequence, the conductivity of mesoscopic devices shows sample-to-
sample fluctuations, which, since their discovery, have triggered intense the-
oretical efforts [Altshuler85, Larkin86, Lee85, Lee87, Altshuler91, Loss93] and
proven an important experimental tool to study coherence effects in transport
processes [Skocpol86,Benoit87,Webb88,Schäfer96,Zumbühl05].

Mesoscopic fluctuations result from the interference of the many scattering
trajectories the electrons can take through a disordered conductor. This can
be made plausible by a qualitative argument: In the semiclassical approxima-
tion, the conductivity can be expressed in terms of the square of two Feynman
[Feynman65,Chakravarty86] propagators G ≈ KK∗ ≈

P
γγ′ AγAγ′e

i(Sγ−Sγ′ ),
where the sum runs over the set of classical paths γ in the given sample and
S and A are the classical action and the fluctuation determinant of the path
γ, respectively. First, we consider the average conductivity G. A change in
the impurity configuration leads to a change in the possible classical trajec-
tories γ and, thus, in the associated action Sγ . Therefore, upon averaging,
the phase factors ei(Sγ−Sγ′ ) become randomized and vanish except for the di-
agonal terms6 with γ = γ′. These diagonal contributions to G are captured
by the Diffuson approximation which describes classical diffusion (cf. [Akker-

mans07]). Next we consider the variance varG ≈ |K|2|K|2 − |K|2
2
. Here, the

phase factor in |K|2|K|2 is exp{i(Sγ1 − Sγ′1 + Sγ2 − Sγ′2)} where γ1, γ
′
1 belong

to the first Factor |K|2 and γ2, γ
′
2 to the second one. Again, upon averaging

only terms with pairwise equal paths survive. Out of these pairs the ones with

γ1 = γ′1, γ2 = γ′2 get subtracted by the second term |K|2
2
. The terms with

γ1 = γ′2, γ2 = γ′1, however, give rise to a finite variance. On the other hand,
for paths longer than Lφ, in the phase difference Sγ1 −Sγ′2 each term becomes

6Also the contribution γ′ = γ∗, where γ∗ is the time-reversed path, give rise to the weak
localization contribution [Gorkov79].
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random individually such that the phase factor averages to zero. Therefore,
large (incoherent) samples have vanishing variance whereas phase coherence
leads to fluctuations in mesoscopic samples. The interfering trajectories, re-
sponsible for these fluctuations, are also sensitive to changes in the magnetic
field or the chemical potential, which alter the phases acquired by propagation
through the sample with a given disorder configuration. An ergodic hypoth-
esis [Altshuler85, Lee85] states that the variance of the fluctuations due to
changes in the impurity configuration and due to changes in the magnetic
field or the Fermi energy are equal7. This hypothesis links the experimental
observation [Umbach84, Skocpol86, Benoit87, Webb88, Schäfer96, Zumbühl05]
of non-periodic, reproducible fluctuations as a function of external parameters
to the theoretical predictions obtained from ensemble impurity averaging.

Conductance fluctuations are moreover sensitive to the coupling to other
degrees of freedom which introduce additional phases. In the presence of
strong SOI, for instance, conductance fluctuation are suppressed by a factor of
1/4 [Feng89,Chandrasekhar90,Beenakker97] while a magnetic field leads to a
factor of 1/2. These suppression factors are well described by the fundamental
symmetry classes in random matrix theory [Imry86, Macedo92, Beenakker97]
but have also been described [Feng89,Chandrasekhar90] in diagrammatic ap-
proaches.

In mesoscopic samples with SOI not only the conductance but also the spin
shows qualitatively different behavior than in macroscopic samples. The spin
polarization due to transport through a disordered conductor with spin-orbit
scattering, for instance, is zero in an incoherent sample, but is predicted to
fluctuate locally [Zyuzin90, Nazarov90] due to extrinsic spin-orbit scattering
and orbital phase coherence. Similar coherence effects are found for spin-
spin correlations [Jagannathan88, Zyuzin92, Lerner93], the fluctuations of the
density of states in quantum corrals [Walls07] and the spin-Hall conductiv-
ity in general nano-structures [Bardarson07,Nazarov07] and chaotic quantum
dots [Bardarson07, Krich08]. In Chap. 4 we investigate mesoscopic fluctua-
tions of the spin polarization in a 2DEG with intrinsic Rashba SOI. We find
that such fluctuations exist for all spin components -including the out-of-plane
component perpendicular to the 2DEG which is zero in self-averaging samples.
These spin fluctuations exceed in magnitude the polarization due to the MEE
in self-averaging samples, and since the latter has been observed in Faraday
rotation measurements [Kato04b,Kato05], are also within experimental reach.

7This hypothesis is based on the assumption that changing interference patterns by chang-
ing impurity positions and e.g. the magnetic field is statistically equivalent which is
true for sampling sufficiently large magnetic field ranges. If the range over which the
field is sweeped is not sufficiently large, non-universal, sample-specific corrections to
the ergodicity hypothesis occur [Tsyplyatyev03,Mohanty02]
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1.5 Diagrammatic description of disordered transport

Spin- and charge transport in systems with disorder can conveniently be de-
scribed by diagrammatic techniques. In this section we give a short intro-
duction to the relevant diagrams, Feynman rules and definitions which are
used in these techniques. Comprehensive treatments are found in the relevant
textbooks [Akkermans07,Rammer98].

Green functions are a calculational tool to treat a perturbation V (for in-
stance a disorder potential) to the diagonalizable part of a system described by
a Hamiltonian H. The bare and full retarded Green function GR0 and GR solve
equations of the form [i(~)∂/∂t−H + (V )]GR(x, t,x′, t′) = δ(x− x′)δ(t− t′)
for t > t′ and GR = 0 for t < t′. Equivalently, GR(0) can be defined in terms of

the time evolution operator U(t) of H by GR(0)(x, t,x
′, t′) = −iθ(t−t′)〈x|U(t−

t′)|x′〉.
The associated Feynman diagrams for GR/A in the position/time and, for

a time-independent and spatially homogeneous system, in the momentum-
frequency representation, respectively, are denoted by solid lines

GRαα′(x, t,x
′, t′) = (1.6)

GAαα′(x, t,x
′, t′) =

GRαα′(p, E) = (1.7)

GAαα′(p, E) = ,

where α, α′ = ±1 denote spin indices, p and E momentum and energy, and
x,x′ and t, t′ position and time, respectively.

When charge is transported through a disordered semiconductor the charge
carriers scatter from a large number (N) of impurities which are randomly
distributed in the sample at positions xi, i = 1, . . . , N . The scattering renders
the conductivity finite by randomizing the carrier motion and determines other
system properties such as the spin-electric susceptibility. The potential gener-
ated by the impurities is described by V (x) =

PN
i=1 u(x−xi) in a model first

introduced by Edwards [Edwards58] where the individual impurity potential
u is assumed to be the same at all xi which are random and homogeneously
distributed in over the sample8[cf. Fig. 1.4].

8Other models of disorder allow for more general potentials with a probability density
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Figure 1.4: Disordered sample. Impurity positions xi are randomly and ho-
mogeneously distributed over the sample with average distance l.

Observables such as the conductivity or spin-electric susceptibility are there-
fore random variables of the N positions xi. In self-averaging systems (cf.
Sec.1.4) these observables are then given as an average over the distribution
of the impurities which is obtained in two steps. First, the observable is ex-
pressed, e.g. by a Kubo formula, in terms of the full Green functions. Treating
the disorder potential V perturbatively the full Green functions are given by
the Dyson series G = G(0) + G(0)V G(0) + G(0)V G(0)V G(0) + . . . . Note that
in these expression G is still a random variable of the impurity positions xi.
In the second step, the averaged susceptibility is obtained by homogeneously
averaging over the positions xi of the impurities. This procedure is referred to
as the impurity average or disorder average and can be quite intricate since the
perturbation expansion of G contains infinitely many factors of the random
potential V . Therefore exact analytical expressions for the impurity averaged
observables are usually not available. Instead a class of diagrams is typically
identified that yields the leading order contribution to this average in the small
parameter 1/pF l where l is the mean distance between impurities and pF is
the Fermi momentum.

In the following we introduce the impurity correlator, the self-energy, and
the Diffuson of which disorder averages of susceptibilities and variances are
composed and define their Feynman rules.

P [V ] given in terms of a functional P of V , but do not explicitly include the micro-
scopic impurity potential. Averages with respect to P are denoted by overbars . . .,

e.g. correlation functions of the form V (r1)V (r2) . . .. A simplified assumption is used

in Gaussian disorder models where only the correlation function V (r)V (r′) 6= 0 is as-
sumed to be finite. The Edwards model and the Gaussian model become equivalent for
short-ranged impurities.
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The impurity correlator is given by

V2(p1,p
′
1,p2,p

′
2) = = niδ(p1 + p2 − (p′1 + p′2))|u(p1 − p′1)|2δαα′δββ′ ,

(1.8)

where u(p) is the Fourier transform of u(x) and ni = N/V the impurity
density (with V standing for the volume/area of the sample). In the case of
short-ranged impurities, which will be assumed in the following, the potential
u(p) = u0 in Eq. (1.8) becomes constant and the impurity correlator simplifies
to V2 = (mτ)−1δ(p1 + p2 − (p′1 + p′2))δαα′δββ′ where τ is the average time
between scatterings. This is equivalent to

V (x)V (x′) = δ(x− x′)
1

mτ
. (1.9)

An important quantity to partially sum sub-diagrams within larger dia-
grams is the full Green function G averaged over the impurity positions. The
full averaged Green function is given by a Dyson equation G = G(0) +G(0)�G
and is calculated by identifying the leading order irreducible diagrams [Akker-
mans07, Rammer98] contributing to the self-energy �. In the self-consistent
Born approximation and for 1/pF l � 1 the imaginary part of the self-energy
is given by

Im�
R/A

α,α′(p, EF ) = Im = (1.10)

= Im ni

Z
d2p′

(2π)2
|u(p− p′)|2GR/Aαα′ (p′, EF ) = ∓ 1

2τ
δαα′ ,

where the last equality is true for a potential due to short-ranged scatter-
ers with the property Eq. (1.9)9. The averaged Green function G(x,x′) =

G(0)(x,x
′)e−|x−x′|/2l describes the transition amplitude for a collisionless prop-

agation from x to x′ and therefore decays exponentially as a function of the
spatial variable on the scale of the mean free path l.

9Eq. (1.10) remains valid in the presence of other terms in H than the kinetic energy
p2/2m such as SOI, magnetic fields, etc., as long as the typical energy scales of these
terms evaluated at the Fermi momentum are much smaller than the Fermi energy EF .

15



CHAPTER 1. INTRODUCTION

Figure 1.5: Relation of the Diffuson to classical diffusion. Upper panel: Term
in the infinite series of ladder diagrams in the Diffuson. The diagram describes
the probability to reach x1 from x5 after a sequence of free linear motions
and scattering from impurities at the intermediate positions x4 . . .x2. The
upper Green function between two rungs of the ladder corresponds to a factor
GR(xi, ti,xi+1, ti+1, ) which (for ti > ti+1) equals the quantum mechanical
amplitude −i〈xi|U(ti− ti+1)|xi+1〉 for propagation from xi+1 to xi. Similarly,
the lower segment yields the complex conjugate of this amplitude. Therefore,
one segment of the ladder between two rungs corresponds to the classical
probability for free motion from xi+1 to xi. Summation over the number of
segments and integration over all intermediate points describes therefore a
classical diffusion process. Lower panel: Real-time trajectory as described by
the ladder diagram.

In the remainder of this text we identify GR/A = G
R/A

if no confusion
is possible implying partial summation of all impurity correlators connecting
only to one single Green function.

More complex diagrams, e.g. the spin susceptibility in Eq. (1.18) (see be-
low) contain a larger number of Green functions which become correlated in
the procedure of averaging over impurity positions. The impurity average of
a product of two Green functions, for instance, is not equal to the product of
the individually averaged Green functions. To understand the origin of this in-
equality we consider the modulus square P (x, t|x′, t′) of the quantum mechan-
ical transition amplitude 〈x|U(t− t′)|x′〉 for a particle in a disordered system.
For times t > t′ this quantity is given by the impurity average P (x, t|x′, t′) =
GR(x, t,x′, t′)GA(x′, t′,x, t) of two Green functions. P can thus be understood
as the conditional probability to find the particle at x at time t given that it
was at x′ at time t′. To leading order in 1/pF l the average P (x, t|x′, t′) is

given by two terms. The first term G
R

(x, t,x′, t′)G
A

(x′, t′,x, t) ∝ e−|x−x′|/l

is the classical probability for a collisionless propagation from x to x′. The
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second term is the Diffuson D(x, t,x′, t′) which is the summed probability to
reach x from x′ after a sequence of scattering events. The Diffuson D(x,x′) is,
therefore, interpreted as the classical probability for diffusion from x′ to x [cf.
Fig. 1.5 for this interpretation]10. Moreover, a sub-leading contribution to P ,
relevant at x ≈ x′, exists, which contains the Cooperon C [Akkermans07,Ram-
mer98] and can be linked to quantum mechanical interference processes [Akker-
mans07,Rammer98] between clockwise and anticlockwise propagation through
closed diffusive loops.

Here we give the Diffuson in the position representation to further familiarize
the Feynman rules and to motivate the Hikami notation used in Chap. 4. The
Diffuson is determined by the diagrammatic equation

= + (1.11)

which when reiterated becomes an infinite sum of diagrams with non-crossing
impurity lines between the upper and the lower Green functions, so-called
ladder diagrams. Using the Feynman rules in Eq. (1.6) and Eq. (1.8) for the
impurity correlator and the Green functions, respectively, the analytical form
of the Diffuson (Eq. (1.11)) is found as

Dαα′

ββ′ (x1,x
′
1,x2,x

′
2|E,ω) =

1

mτ
δ(x1 − x′1)δ(x2 − x′2)δ(x1 − x′2)δαα′δββ′

+
1

mτ

Z
d2y′1d

2y2δαγ1δβ′γ′2

×GRγ1,γ′1(y1,y
′
1, E + ω)GAγ2,γ′2(y2,y

′
2, E)D

γ′1α
′

β,γ2
(y′1,x

′
1,x2,y2).

(1.12)

The equation can be simplified by the ansatz

Dαα′
ββ′ (x1,x

′
1,x2,x

′
2) = Dµν(x1,x

′
1)δ(x1 − x′2)δ(x1 − x′2)σµαβ′σ

ν
βα′ . (1.13)

10Indeed, for free spin-less particles in a disordered conductor the Diffuson has the same
functional form as the Wiener measure describing Brownian motion [Chaichian01,Ram-
mer98]. In Appendix C a partial differential equation, Eq. (C.6) for the spin density
ρ(r) is derived starting from the expression Eq. (1.14) for the Diffuson. This equation
has the form [iω−D∆]ρ(r) = rhs of a diffusion or heat flow equation where rhs stands
for additional precession terms due to SOI.
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where σi, i = 1, 2, 3 are the Pauli matrices (σ0 = 12) and summation over
µ, ν = 0, 1, 2, 3 is implied. Inserting Eq. (1.13) into Eq. (1.11) yields

Dµν(x,x′) =
1

2mτ
δµνδ(x− x′) +

Z
d2yXµρ(x,y)Dρν(y,x′) (1.14)

which is a 4× 4 matrix and where the integral kernel Xµρ(x,y) is given by

Xµρ(x,y) =
1

2mτ
trS
n
σµGR(x,y)σρGA(y,x)

o
. (1.15)

and trS is the trace over spin. The definition of D in Eq. (1.13) is represented
by a new diagram

Dµν(x,x′) = (1.16)

which makes explicit the dependence of D on two spatial arguments only.
Due to the property V (x)V (x′) ∝ δ(x − x′) of the impurity correlator the
upper and lower position arguments on the left and on the right side can be
set equal. An interpretation of the Diffuson in the position representation is
given in Fig. 1.5. In view of the short range of the averaged Green functions
GR,A(x,x′) ∝ e−|x−x′|/2l, one would expect the Diffuson to vanish if its argu-
ments are separated by more than a mean free path. However, concatenating
infinitely many GR/As , D(x,x′) remains finite for |x − x′| > l. This long
range is a property of diffusion with multiple scatterings and is represented by
the long wavy line in Eq. (1.16). The diagrammatic notation of Eq. (1.16) is
due to [Hikami81].

In Sec. C a diffusion equation for the spin density is derived using Eq. (1.14)
as a starting point.

1.6 Kubo formula

Experiments in condensed matter physics often probe the response of observ-
ables of a physical system such as current or magnetization to a weak perturba-
tion. This procedure is mapped on a theoretical description in the framework
of linear response theory.

The response si(ω) = 〈σi〉(ω) of the spin σi to a (spatially constant) electric
field E(ω) = −iωA(ω)/c with frequency ω is given by

si(ω) = −i
Z
dE

2π

Z
d2p

(2π)2
trS{σiG<(p, E,p, E + ω)} (1.17)
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in terms of the lesser Green function G< = [GK − (GR−GA)]/2. Here, GK is
the Keldysh Green function [Rammer86] and GR and GA denote the retarded
and advanced Green function, respectively, and the the trace trS is over spin
states. Expanding the G< to linear order in the electric field yields the Kubo
formula

χij(ω) =
−e
2πω

Z
dE[f(E + ω)− f(E)]

Z
d2p

(2π)2
trS
n
σiGRE+ω(p)vjG

A
E(p)

o
+ f(E)

Z
d2p

(2π)2
trS
n
σiGRE+ω(p)vjG

R
E(p)

o
− f(E)

Z
d2p

(2π)2
trS
n
σiGAE(p)vjG

A
E−ω(p)

o
, (1.18)

where vj is the velocity operator and f the Fermi distribution function. Eq. (1.18)
is the starting point11 for the diagrammatic calculation of the disorder aver-
age of the spin polarization si = χijEj , i = 1, 2, 3 given in terms of a linear
susceptibility χij , and its variance (δχij)2, where δχij = χij − χij and the
overbar denotes impurity averaging.

1.7 Outline

In Chap. 2 we investigate EDSR in disordered semiconductors using a dia-
grammatic approach. We use a microscopic model of linear Rashba SOI and
δ-correlated impurities to demonstrate the viability of EDSR in such a system
and show that the resonance acquires a line-shape determined by disorder and
SOI. In Sec. 2.2 we show that the spin dynamics due to EDSR are captured
by a phenomenological model to the lowest order in the SOI strength. This
model, however, fails to describe the generation of spin currents due to EDSR
which we infer from the diagrammatic approach in higher order in the SOI
strength in Sec. 2.3.

The presence of disorder limits the amount of spin polarization that can be
achieved by EDSR. In Chap. 3 we show that such limitations can be overcome
by exploiting the interference of linear Rashba and Dresselhaus SOI. Using the
equation of motion for the spin we relate spin polarization and spin current
and give a geometric interpretation of the spin current in terms polarization
components [cf. Sec. 3.3].

While the orbital motion in EDSR is well described by classical diffusion, in
in Chap. 4 we consider effects of orbital phase coherence on the spin dynamics

11The two last terms in Eq. (1.18) contribute negligibly to si if averaged over impurities,
but are retained here, since their contribution to the fluctuations has to be discussed
later, see footnote to Eq. (4.2).
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and investigate mesoscopic fluctuations of the spin polarization generated by
the magneto-electric effect. We thereby focus on the spin-electric suscepti-
bility which characterizes the polarization due to the MEE and calculate its
variance averaged over disorder as a function of SOI strength, magnetic field
and difference in gate voltages.
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2
Electric dipole-induced spin resonance

in disordered semiconductors

In this chapter, we present a theoretical study of EDSR for a two-dimensional
electron gas in the presence of disorder where random impurities not only
determine the electric resistance but also the spin dynamics via the Rashba
SOI. Considering a specific geometry with the electric and magnetic fields
parallel and in-plane, we show that the magnetization develops an out-of -
plane component at resonance which survives the presence of disorder. These
results are derived in a diagrammatic approach with the dominant effects
coming from the spin vertex correction, and the optimal parameter regime for
observation is identified.

2.1 Electric-dipole induced spin resonance

The field of spintronics [Awschalom02, Zutic04] focusses on the interplay be-
tween spin and charge degrees of freedom of the electron. The relativistic
effects responsible for the coupling between spin and orbital motion can be
strongly enhanced in solids due to band structure effects, with zinc-blend III-
V semiconductors showing a particularly strong spin-orbit interaction (SOI)
resulting in zero-field spin splittings. For instance, the bulk inversion asym-
metry gives rise to Dresselhaus SOI [Dresselhaus55], while structural inversion
asymmetry occurring in heterostructures gives rise to Rashba SOI [Rashba60].
The strength of such SOIs can be varied over a wide range which offers the
advantage to control the magnetic moments with electric fields. A well-known
and particularly powerful way of manipulating spins in such structures is elec-
tric dipole induced spin resonance (EDSR) [Bell62, Dobrowolska84, Kato04a,
Rashba03b,Schulte05,Wilamowski07,Duckheim06,Duckheim07,Meier07] where
the radiofrequency (rf) fields coherently driving the spins are electric, and
not magnetic like in standard paramagnetic resonance. The advent of mate-
rials with tailored SOI [Awschalom02] has sparked intense interest in a va-
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riety of spin orbit effects such as the spin-Hall effect [D’yakonov71, Sinova04,
Hirsch99,Kato04c,Wunderlich05,Sih05,Valenzuela06,Stern06], zitterbewegung
[Schliemann05], spin-based quantum information processing [Awschalom02,
Loss98], and, in particular, EDSR [Bell62,Dobrowolska84,Kato04a,Rashba03b,
Schulte05,Wilamowski07,Duckheim06,Duckheim07,Meier07], which is the fo-
cus of this work.

Experimental indication for electric dipole transitions was earliest reported
for conduction band and donor bound electron spins in cavity resonance exper-
iments with InSb [Bell62] and Cd1−xMnxSe [Dobrowolska84], respectively. In
these experiments the resonance signal increased upon positioning the sample
in the cavity away from the maximum of the magnetic field (node of the electric
field), thus demonstrating electrical instead of magnetic coupling to the spin.
More recently, EDSR was detected optically [Kato04a,Meier07] and in cavity
experiments [Schulte05,Wilamowski07] for conduction band electrons in semi-
conductors. EDSR was also described theoretically for 2DEGs [Rashba03b],
2D hole gases [Bulaev07] and for single electrons in quantum dots [Golovach06]
where it was recently measured using spin blockade in a double quantum
dot [Nowack07].

We consider a semiconductor heterostructure forming a two-dimensional
electron gas (2DEG). Inversion asymmetry of the structure, due to an asym-
metric confinement potential, gives rise [Rashba60,Bychkov84] to the Rashba
SOI which is linear in momentum and provides an effective internal magnetic
field about which the spin precesses. In realistic 2DEGs, moreover, disor-
der leads to momentum scattering which is responsible not only for the finite
electric resistance but also for spin relaxation due the randomization of the
internal field [D’yakonov72, Dyakonov84]. The interplay of SOI and the or-
bital motion can be quite subtle as it has been appreciated for instance in the
context of the spin-Hall effect where universal spin currents predicted in clean
systems [Sinova04] were found to be cancelled in the presence of disorder [In-
oue04,Mishchenko04,Chalaev05,Dimitrova05], which, technically speaking, re-
sults from an unusual cancellation of vertex corrections. Spin currents in these
systems are dominated by other (extrinsic) effects [D’yakonov71,Engel06,En-
gel05]. Similar concerns, for instance, apply to conclusions reached for EDSR
in clean systems [Rashba03b]. Therefore the role of disorder in EDSR needs
to be examined carefully. In doing so in this chapter, we show that EDSR
survives impurity scattering but acquires a line shape that is determined by
disorder and SOI.

We consider a geometry as shown in Fig. 2.1, where the electric rf field
and the static external magnetic field are parallel and both in the plane of
the 2DEG. At resonance, the magnetization acquires a non-zero out-of-plane
component. This we show first for a clean 2DEG by deriving an effective Bloch
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equation. Turning then to 2DEGs with disorder we treat the electric rf field
in linear response and obtain for the magnetization a Lorentzian resonance
whose width is given by a generalized D’yakonov-Perel spin relaxation rate.
In addition, we find a shift of the resonance due to disorder and SOI which
gives rise to an effective g-factor that depends on the magnetic field. Using
a standard diagrammatic approach to treat SOI and disorder systematically,
we find that it is the spin vertex correction (coming from disorder) that leads
to the resonance, in stark contrast to zero frequencies where the spin vertex
vanishes [Edelstein90]. Assuming realistic system parameters we identify the
most promising regime for the experimental observation of EDSR. The 2DEG
consists of non-interacting electrons of mass m and charge e which are subject
to a random impurity potential V . In addition, we allow for a general SOI
Ω(p) ·σ = Ωijpjσ

i linear in momentum p and a static external magnetic field
B0 applied in-plane, as well as a time-dependent electric field E(t) applied as
a bias along B0, see Fig. 2.1. The Hamiltonian for this system reads

H =
1

2m

“
p− e

c
A
”2

+ Ω(p) · σ + (b0 + b1(t)) · σ + V, (2.1)

where b1(t) = − e
c
Ω (A(t)) is the rf part of the internal ’magnetic’ field induced

by the electric field via SOI, and A(t) = −c
R t
dt′E(t′) is the associated vector

potential, c being the speed of light. The Zeeman term contains b0 = gµBB0/2
and the Pauli matrices σi, i = 1, 2, 3 (σ0 = 1), while Ω(p) is the ’zero-field
spin splitting’ due to the internal SOI field.

We show now that for the described setup the dynamics of the electron
spin exhibits resonant behavior (EDSR) generated by the electric rf field E(t).
Starting with the simple case of no disorder (V = 0), we derive a Bloch
equation for the spin dynamics (for weak SOI), from which the EDSR property
immediately follows.

We begin by noting that the density matrix ρ(t) is diagonal in momen-
tum space, and its elements can be expanded in the spin basis as ρ(p, t) =P3
ν=0 s

ν(p, t)σν , where σ0 = 1. The expectation value of the spin is then
〈σi(t)〉 =

R
d2p si(p, t)/(2π)2 ≡ Si(t), where

R
s0d2p/(2π)2 = 1 due to nor-

malization. In momentum space the symmetry is broken by the small SOI term
such that the coefficients decompose into an isotropic and a small anisotropic
part, si(p, t) = si(p, t) + ∆si(p, t). Averaging the von Neumann equation for
ρ(p, t) over directions of p we obtain

˙̄s(p, t) =
2

~
(b0 + b1(t))× s̄(p, t), (2.2)

where we have dropped the angular average of Ω(p)× (s(p, t)+∆s(p, t)) since
it is higher order in the SOI. Eq. (2.2) is now recognized as a Bloch equation
describing spin resonance.
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Vbias(ω)
∼

b0||E(ω)b1

Figure 2.1: Geometry of the setup with the disordered 2DEG in the xy-plane.
An oscillating bias Vbias(ω) generates an electric field (E(ω)) parallel to the
magnetic field b0 = gµBB0/2 along the y-axis. At resonance an out-of-plane
magnetization S3(ω) is generated.

Indeed, specifying henceforth to Rashba SOI Ω(p) = ΩR(p) = αp × ez,
where ez is a unit vector along the confinement axis, and taking E in the plane
along b0||ey results in the standard resonance setup [Cohen-Tannoudji77] with
an oscillating internal field b1(t) ∝ E × ez ⊥ B0. Tuning E(ω) to resonance,
i. e. ω = ωL, with ωL = gµBB0 being the Larmor frequency, the spin starts
to precess around the x-axis (in the yz-plane) with a Rabi frequency given by
ωR = b1/~ = eEα/~ωL (see Appendix A.4 for an estimate).

Having established the existence of EDSR for the clean system we turn now
to the realistic case of a disordered 2DEG. For this we assume a dilute random
distribution of short- ranged scatterers with the disorder average V (x)V (x′) =
(mτ)−1δ(x − x′) taken to be δ - correlated and proportional to the mean
free time τ between elastic scattering events. For A = 0 and V = 0 the
eigenenergies of H become Es(p) = p2/2m + s beff(p), with s = ±1 and the
effective magnetic field beff(p) = ΩR(p) + b0. In the corresponding retarded
(advanced) Green functions

GR/A(p, E) =
1

2

X
s=±1

1 + sb̂eff(p) · σ
E − Es(p)± i/2τ , (2.3)

where b̂eff = beff/beff , the disorder manifests itself as a finite self-energy term
i/2τ generated by the disorder average 1.

We turn now to the explicit calculation of the magnetization Si(ω) (per
unit area) at frequency ω, induced by E(ω). Working in the linear response

1In the self-consistent Born approximation τ is independent of momentum due to the
short range nature of V . We have also checked that a renormalization of the Zeeman
splitting, i. e. matrix valued corrections, are of order b0/EF and can be neglected
as the Fermi energy EF is taken to be the largest energy scale. Thus, the averaged
Green function is given by (2.3) with the standard isotropic and spin independent term
i/2τ [Rammer98].
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2.1. ELECTRIC-DIPOLE INDUCED SPIN RESONANCE

regime we start from the Kubo formula for Si(ω) averaged over disorder and
evaluate it using standard diagrammatic techniques. In Ref. [Edelstein90] such
a calculation was performed for the static (ω = 0) and zero field (B0 = 0)
case, where, as a simplifying feature, the spin vertex correction turned out to
vanish. For finite frequencies, however, this is no longer the case, and, as we
shall sketch now, it is this vertex correction which leads to a finite out-of-plane
magnetization Sz(ω) at resonance ω = ωL. To be specific, for ~ω � EF Si(ω)
becomes

Si(ω) =
−eEj(ω)

2π
Tr
n
GA(q, EF ) Σi(ω)GR(q, EF + ω) vj

o
, (2.4)

where summation over repeated indices is implied. Here, the velocity operator
vj = i/~[H,xj ] = pj/m + Ωkjσ

k contains a spin-dependent term, and Tr →R
d2q/(2π)2 tr denotes momentum integration and tracing over spin states. In

Eq.(2.4) we introduced the impurity renormalized spin vertex Σ(ω) determined
by the diagrammatic equation Fig. 2.2, where the cross denotes the insertion

Figure 2.2: Renormalized spin vertex

of a factor 1/mτ . Analytically this can be written as

Σiαα′(ω) = σiαα′ +
1

mτ

Z
d2p

(2π)2
δαγG

A
γβ(p)Σiββ′(ω)GRβ′γ′(p)δγ′α′ . (2.5)

The class of diagrams included in Σ corresponds to the ladder approximation,
the leading order contribution in 1/pF l. Thus, weak localization corrections
[Edelstein95,Chalaev05], being higher order in 1/pF l, are not considered here.

For further evaluation of Eq. (2.4) we introduce the spin-spin (Xµν) and
the spin-momentum (Y µj) terms, µ, ν = 0, 1, 2, 3 resulting from the spin and
the normal part of vj , respectively,

Xµν(ω) =
1

2mτ

Z
d2p

(2π)2
tr
n
GA(p, EF ) σµ GR(p, EF + ~ω) σν

o
Y µj(ω) =

1

2mτ

Z
d2p

(2π)2
tr
n
GA(p, EF ) σµ GR(p, EF + ~ω)

pj
m

o
.(2.6)
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The renormalized spin vertex is expanded in terms of Pauli matrices, Σi(ω) =

Σiν(ω)σν . Using the identity δαα
′
δββ
′

= 1/2
P3
µ=0 σ

µ
αβσ

µ
β′α′ the diagrammatic

equation in Fig. 2.2 factorizes to

Σµν(ω) = δµν + Σµρ(ω)Xρν(ω) (2.7)

and can be solved. The matrix elements of the vertex correction are obtained
in the form Σ(ω) = (1−X(ω))−1. With this result we then obtain from Eq.
(2.4) for the magnetization

Si(ω) =
−eEj(ω)mτ

π~2
Σiµ(ω)

“
αXµν(ω)ενj3 + Y µj(ω)

”
, (2.8)

where εijk is the Levy-Civita tensor. Thus, Si(ω) is expressed in terms of the
4 × 4-matrices Y , X, and Σ, which we proceed to evaluate for two limiting
cases, first for b0 = 0, and then for b0 � αpF .

First we consider the simpler case without magnetic field, i.e. B0 = 0.
Performing the integrals in Eq. (2.6) we find X00(ω) = 1/λ and X33(ω) =
λ/(λ2 + x2), while the in-plane components are equal, X11 = X22 = (X00 +
X33)/22. Here, we introduced λ(ω) = 1−iωτ , and the dimensionless parameter
x = 2pFατ/~ which is a measures of the precession angle around the internal
field 2pFα/gµB between scatterings. The off-diagonal components Xµν vanish
so that the spin vertex follows simply as Σµµ = (1 − Xµµ)−1. The spin-
momentum matrix is found as Y µj = −αεµj3/λ. Hence, the magnetization
becomes

Si(ω) =
eEj(ω)mτα

π~2
εµj3

»
δiµ − Σiµ(ω)

„
1− 1

λ

«–
. (2.9)

Thus, since the spin vertex is diagonal for B0 = 0, we see that S(ω) lies
in-plane and perpendicular to E(ω), i.e. S3(ω) vanishes identically for all ω
in this case. Further, for ω → 0 the factor 1 − 1/λ vanishes and thus the
spin vertex Σiµ(0) drops out from Eq. (2.9) and the result of [Edelstein90] is
recovered. [Below we will see that Eq. (2.9) remains valid also for finite B0

but with a different Σiµ(ω) which is then no longer diagonal (see Eq. (2.10)
below).]

Next we consider the opposite case of a magnetic field B0 that is large
compared to the internal SOI field. We characterize this regime by the small
expansion parameter a = αpF /2b0 = x/2ωLτ � 1, being the ratio of preces-
sion angles around the internal and external magnetic fields, resp., between

2These results have already been obtained in [Chalaev05] in the evaluation of the spin
Hall conductivity.
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Figure 2.3: Reduced magnetization M3 = x(1−1/λ)Σ31 (cf. Eqs.(2.9), (2.12))
plotted as a function of the Larmor frequency ωL = gµBB0, with resonance
peak at ωL = ω of width Γ given in Eq. (2.13). Modulus (full line), real
(dashed) and imaginary part (dotted) are shown for ωτ = 1 and x = 0.15.
Inset: Peak height of M3 at resonance as function of ωτ for x = 0.2 and
x = 0.1.

scatterings. The field B0 leads to an equilibrium in-plane polarization3, which,
as we shall see, is dynamically modulated by the electric rf field E(ω), giving
eventually rise to an EDSR response.

With both, the internal and external magnetic fields present, the dispersion
relation Es(p) is no longer isotropic as beff depends on the direction of p. This
complicates the momentum integrations considerably, and as a further compli-
cation, the matrices X, Y , and Σ become off-diagonal through the additional
spin terms in X and Y . Fortunately, for a � 1 analytical progress is still
possible, and Σ(ω) can be evaluated explicitly as we outline in Sec. A.1.

3Note that in the Kubo formula the equilibrium polarization due to B0 is only indirectly
accounted for since Eq.(2.4) characterizes the deviation from equilibrium in response
to the electric bias.
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As a result, we obtain for the spin vertex correction

Σ(ω) =

0BBBBBB@

λ
λ−1

0 0 0

0 λ2+(ωLτ)2−λ
τ2(ω2

L
−ω2)+x2γ

0 ωLτ

τ2(ω2
L
−ω2)+x2γ

0 0 λ
λ−1+x2γ22

0

0 −ωLτ
τ2(ω2

L
−ω2)+x2γ

0 λ2+(ωLτ)2−λ
τ2(ω2

L
−ω2)+x2γ

1CCCCCCA , (2.10)

where γ22 = 1/2λ(λ2 + y2) and we have neglected terms of order O(x2) in the
numerators of Σµν . The imaginary part of the complex function

γ(ω) =
3(λ− 1)λ3 − (ωLτ)2λ(6λ− 1)− (ωLτ)4

2λ(λ2 + (ωLτ)2)2
(2.11)

characterizes the line-width induced by the impurity scattering via the SOI,
as described below. The spin-momentum term keeps the same form as for
B0 = 0, i.e. Y µj = −αεµj3/λ. The magnetization Si(ω) is then again given
by Eq. (2.9) but now with above spin vertex (2.10). Accordingly, the out-
of-plane component S3 is proportional to the reduced magnetization M3 ≡
xΣ31(1−1/λ) which is plotted in Fig. 2.3 as function of the Larmor frequency
ωL, exhibiting a pronounced peak at the resonance ωL = ω (up to a small
shift, see below). This clearly shows that the EDSR resonance found in the
clean case survives weak disorder, and, technically speaking, stems from the
spin vertex correction.

Let us now analyze the line-shape of the peaks close to the two resonances
±ωL in more detail, i.e. for |ωL ± ω| � |ωL ∓ ω|. In this case and to order x2

Eq. (2.9) can be rewritten as a sum of two Lorentzians, with the transverse
components (i = 1, 3) becoming

Si(ω) =
eEy(ω)mα

2π~2

ωiτ

1− iωτ

×
„

1

ωL − ω + δω − iΓ +
1

ωL + ω − δω + iΓ

«
, (2.12)

where ω1 = ωL and ω3 = iω, resp. Eq. (2.12) is the main result of this
work. Here, Γ is the line-width of the resonance peak and is explicitly given
by the imaginary part of the damping function (2.11) evaluated at the (bare)
resonance,

Γ =
x2

2ωLτ2
Im γ(ω = ωL) =

x2

2τ

„
1 +

1

2[1 + (ωLτ)2]

«
. (2.13)
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Here, the prefactor x2/2τ is the familiar D’yakonov-Perel spin relaxation
rate [D’yakonov72, Dyakonov84] coming from internal random fields induced
by disorder and we find that two terms contribute to the width in Eq. (2.13).
By comparison to a phenomenological model(cf. Sec. 2.2) we will see that the
first term in Eq. (2.13) comes from disorder-induced fluctuations of the internal
field parallel to b0 while the second term is due to fluctuations perpendicular
to b0 and gets suppressed with increasing ωLτ . Remarkably, the resonance
polarization4 Sres ∝ α/Γ due to EDSR with Γ given by Eq. (2.13) is propor-
tional to α−1. This results from the simultaneous dependence of the driving
and the relaxation mechanism on the SOI such that, for instance, doubling α
doubles the driving field while the width increases by a factor 4.

Next, the bare location ωL of the resonance gets renormalized by the disorder
leading to a small shift δω � ωL, determined by the real part of (2.11),

δω =
x2

2ωLτ2
Re γ(ω = ωL) =

ωLx
2/4

1 + (ωLτ)2
. (2.14)

We note that for ωLτ ∼ 1 we get Γ ∼ 5δω. Also, the shift δω depends non-
monotonically on the magnetic field (ωL), giving rise to an effective g-factor,
geff = g(1 + x2/4(1 + (ωLτ)2)), which is B-field dependent. Experimental
Observation of this effect would provide useful additional evidence for EDSR.

Finally, the longitudinal component (i.e. along B0) of the magnetization
vanishes identically, i.e., S2(ω) = 0. This is not quite unexpected in linear
response approximation, since it is known from conventional paramagnetic
resonance [Cohen-Tannoudji77] that changes in the occupation probability are
nonlinear in the driving field.

Let us now give some numbers to illustrate the EDSR effects discussed here
(for details see Sec. A.4). To quantify the amount of spins resonantly excited,
we introduce the polarization P = (N↑−N↓)/(N↑+N↓) given by the ratio of S3

and the electron sheet density. Here N↑ and N↓ denote the average number of
spins pointing up and down along the z−axis, resp. Choosing now parameter
values typical for a GaAs 2DEG sample of a few hundred micrometers in lateral
size, a magnetic field of one Tesla, and an ac bias of 0.1 Volt and 8 GHz we get
P = 10−4 at resonance. This corresponds to N↑−N↓ = 200 excess spins in the
laser spot of a typical optical measurement scheme [Sih05], and although being
small, this is within reach of detection. Further we note that the polarization
P increases at resonance with increasing frequency ω (cf. inset in Fig. 2.3 and
Eqs. (2.13) and (2.12)). Thus, the higher the resonance frequency (and the
magnetic field) the larger the EDSR signal.

4However, Sres does not diverge for α → 0 since the next-to-leading order relaxation
mechanism, e.g. due to spin-orbit scattering from impurities, keeps Γ finite while the
amplitude of the driving field vanishes.
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2.2 Phenomenological description

The spin polarization Eq. (2.12) can be interpreted in terms of an internal
driving field b1(ω) and spin relaxation due to fluctuating internal fields. To
illustrate this interpretation we show that the spin dynamics due to EDSR
in can be described in a simplified model which does not involve the orbital
degree of freedom. This model is described by the Hamiltonian

H = [b0 + b1(t)] · σ + h(t) · σ. (2.15)

where, the effective driving field

b1(t) = α
eE0τ

1 + (ω0τ)2
[cos(ω0t)− ω0τ sin(ω0t)] . (2.16)

is given as the Fourier transform of the internal field b1(ω) = Ω(〈p〉Drude(ω))
due to the ac Drude drift momentum 〈p〉Drude(ω) = eEτ/(1 − iωτ). Note
that in the ballistic limit ωτ � 1 the Rabi frequency ωR found in Eq. (2.2) is
recovered.

Scattering from impurities leads to a fluctuating component of the momen-
tum δp(t) which varies on the time scale of the mean free scattering time τ .
In the phenomenological approach of this section we take δp to be an external
stochastic process with vanishing average 〈δpi(t)〉 = 0 where 〈〉 denotes expec-
tation values of the process. We also assume the correlation function to be
〈pi(t)pj(t′)〉 = 1

2
δijp

2
F e
−|t−t′|/τ . The obvious choice for the fluctuations in the

field h, which are generated by the momentum fluctuations and SOI, is then 5

〈h(t)〉 = Ωij〈δpj(t)〉 = 0 (2.17)

〈hi(t)hj(t′)〉 = ΩikΩjl〈δpk(t)δpl(t
′)〉 =

1

2
p2
F e
−|t−t′|/τΩikΩjk ≡ χij(t− t′).

(2.18)

Starting from the statistical properties of Eqs. (2.17) we find an effective Bloch
equation for the spin polarization S(t) in Bloch-Redfield theory [Bloch57,
Slichter96] given by

Ṡ = 2[b0 + b1(t)]× S− Γ[S− Seq], (2.19)

where Seq||b0 is the equilibrium polarization due to the magnetic field and the
spin relaxation tensor is given by

Γµν = −4

Z ∞
0

dt̄χκρ(t̄)Rjρ(t̄)[δjµδνκ − δjκδµν ], (2.20)

5A similar analysis was made in Ref. [Tahan05] for relaxation rates in paramagnetic spin
resonance.
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where R(t) is a rotation around b0 with frequency ωL = 2b0/~. Specifying to
Rashba SOI and choosing the magnetic field along the y-direction Γ we find
the components

Γ11 = 2Re[χ33(ωL) + χ22(0)] = ΓDP

Γ22 = 2Re[χ11(ωL) + χ33(ωL)] = ΓDP

»
1

1 + (ωLτ)2

–
Γ33 = 2Re[χ11(ωL) + χ22(0)] = ΓDP

»
1 +

1

1 + (ωLτ)2

–
, (2.21)

where χ(ω) =
R
dteiωtχ(t), in particular χ33 = 0 since internal fields are

in-plane, and ΓDP = x2/2τ . Here, we subtracted the antisymmetric part
of Γ and interpreted it as a renormalization of the magnetic field given by
δω = ΓDP y/(2(1 + y2)) which agrees with Eq. (2.14).

We solve the Fourier transform of Eq. (2.19) to linear order(cf. Chap.13,
[Cohen-Tannoudji77]) in the driving field b1 for S(ω) =

R∞
−∞ dte

iωtS(t)/2π.

Explicitly, we find S2 = Seq for the longitudinal component and0@ S1(ω)

S3
(1)(ω)

1A = Seqb1
1

2
[δ(ω − ω0) + δ(ω + ω0)]

0@ 1

−iω
ωL

1A
×
„

1

ωL − ω + δω − iΓ +
1

ωL + ω − δω + iΓ

«
. (2.22)

for the transverse components. In agreement with Eq. (2.13), the width is
found to be Γ = (Γ11 + Γ33)/2 = ΓDP

`
1 + 1/2[1 + (ωLτ)2]

´
= Reχ11(ωL) +

2χ22(0). The latter identity allows us to distinguish two contributions to the
width Γ coming from internal field fluctuations along the magnetic field b0

(χ22(0)) and perpendicular (χ11(ωL)).

2.3 Spin-Hall current

We finally turn to a brief discussion of the associated spin Hall current for a
homogeneous infinite 2DEG (for details see Sec. A.5). Using the Heisenberg
equation of motion we can express the spin Hall current, defined as I3

x =
{σ3, vx}/2 [Sinova04], in terms of the magnetization components S1 and S3,
see Eq. (19) in SI. This relation allows one to access the spin current via a
measurement of the magnetization. From the ratio ~I3

x/2Ey the associated
ac spin Hall conductivity follows, which, at resonance, is explicitly given by
(see Sec. A.5) σ3,res

xy = eω2
Lτ/4πΓ(1 − iωLτ). Thus, for ωLτ ∼ 1 we see that

|σ3,res
xy | � e/4π (since ωL � Γ), which indicates a sizable spin Hall current.
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2.4 Conclusion

We have investigated the magnetization of a 2DEG in the presence of spin-
orbit interaction and disorder. We have shown that carrier spins in a specific
field configuration with an electric rf field give rise to EDSR with a line-width
coming from spin relaxation due to disorder and spin orbit interaction. Our re-
sults emphasize the importance of tunable SOI for coherent spin manipulation
by electric means in semiconductors.
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3
Resonant spin polarization and spin

current

In this chapter we study the spin polarization and its associated spin-Hall
current due to electric-dipole-induced spin resonance in a disordered two-
dimensional electron system with Rashba- and Dresselhaus spin-orbit inter-
action. We show that the disorder induced damping of the spin polarization
at resonance can be strongly reduced by an optimal field configuration that
exploits the interference between Rashba and Dresselhaus spin-orbit interac-
tion. This leads to a striking enhancement of the spin susceptibility while the
spin-Hall current vanishes at the same time. We give an interpretation of the
spin current in geometrical terms which are associated with the trajectories
the polarization describes in spin space.

3.1 Resonant spin polarization and spin current

In a two-dimensional electron gas (2DEG) with pure Rashba SOI the amount
of spin polarization which can be achieved by EDSR is limited by disorder
(cf. Chap. 2 and [Duckheim06]) . Similar limitations are found for pure Dres-
selhaus SOI. However, if both Dresselhaus and Rashba SOI are present in-
terference between the two SOI mechanisms can occur and qualitatively new
behavior emerges, such as anisotropy in spin relaxation [Averkiev02, Golo-
vach04, Li06] and transport [Schliemann04, Ganichev04, Trushin07]. For spin
relaxation this anisotropy is most pronounced if both SOIs have equal strength.
In this case, the spin along the [11̄0] direction [see Fig. 3.1] is conserved [Schlie-
mann03,Averkiev02], and the associated spin relaxation rates vanish, whereas
they become maximal along the perpendicular direction [110]. For the driven
system considered here we show that similar interference effects occur and that
not only the internal rf field but also the EDSR line-width becomes dependent
on the direction of the magnetic field. In a microscopic approach we show
then that due to this dependence an optimal configuration exists where the
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Figure 3.1: Momentum dependent magnetic fields induced by Rashba- (black
arrows) and Dresselhaus SOI (red arrows) ΩR(p) = α(py,−px) and ΩD(p) =
β(px,−py), respectively. Inset: The sum ΩR + ΩD for equal strength of the
SOI (α = β) is shown. The interference of the two types of SOI leads to a
suppression or enhancement of the spin splitting in certain crystallographic
directions.

line-width and the internal field simultaneously become minimal and maxi-
mal, resp., and that, as a consequence, the spin susceptibility gets enhanced.
In other words, this optimal configuration allows one to obtain a high spin
polarization with relatively small electric fields and thus making the power
consumption for spin polarization minimal.

Due to spin-orbit interaction angular momentum can be transferred be-
tween spin and orbital degrees of freedom. This fact leads, in particular, to
a dynamical coupling between spin and spin current described by the Heisen-
berg equation of motion [Erlingsson05b, Chalaev05, Duckheim06]. Exploiting
this coupling we show that the spin current can be interpreted in geometrical
terms: the spin dynamics generated by the rf fields describes an elliptical tra-
jectory. The spin-Hall conductivity can then be expressed entirely in terms of
the semi-minor and semi-major axis and the tilt angle of this ellipse. Since
the spin dynamics (trajectories) is experimentally accessible, for instance with
optical methods [Kato04c, Sih05], this opens up the possibility for a direct
measurement of the spin-Hall current. Finally, we find that for the optimal
configuration the spin current vanishes, in contrast to the spin polarization
which, as mentioned, becomes maximal.

We consider a non-interacting 2DEG consisting of electrons with mass m
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Figure 3.2: Polar plot of the resonance susceptibility χ̄res (in arbitrary units)
as a function of θ for β = α/2 (left panel), β = α (right panel), and ωLτ = 1
(black curve), ωLτ = 2(red), and ωLτ = 3(blue). The configuration of the
external magnetic and electric field B0 and E0 is shown. For B0||E0||[110]
both SOI contributions add constructively in the direction perpendicular to
B0 leading to an enlarged Rabi field.

and charge e which are subject to a random impurity potential V . We take into
account linear SOI

P
ij Ωijpjσ

i of the Rashba - and Dresselhaus type where

σi, i = 1, 2, 3, are the Pauli matrices and p is the canonical momentum. Taking
the coordinate axes along the [100], [010], [001] crystallographic directions, the
internal magnetic field Ω is then given by (cf. Fig.3.1) Ω(p) = α(py,−px, 0)+
β(px,−py, 0) where α and β is the strength of the Rashba and Dresselhaus
SOI, respectively. Additionally, the external static magnetic field is given by
B0 = B0e|| with e|| = (− sin θ, cos θ, 0), and the external electric rf field by
E(t) = E(t)(− sin θ′, cos θ′, 0), where θ, θ′ are the angles enclosed with the
[010] direction. The system is described by the Hamiltonian

H =
1

2m
(p− eA)2 + (Ω (p− eA) + b0) · σ + V, (3.1)

where A(t) = −
R t
dt′E(t′) is the vector potential associated with E and b0 =

gµBB0/2 with g the electron g-factor and µB the Bohr magneton.
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3.2 Spin polarization.

We turn now to the calculation of the spin polarization (magnetization/µB)
per unit area, S(ω) =

R∞
−∞ dte

iωt〈σ(t)〉/2π, evaluated in linear response to an
applied electric field E(ω) = E0[δ(ω−ω0)+δ(ω+ω0)]/2 and in the presence of
both Rashba and Dresselhaus SOI. Due to the interference between these two
SOI mechanisms we need to extend the calculations of Chap. 2 , which were
carried out for the simpler Rashba model only, to this new situation. We will
then be able to identify a configuration that allows one to obtain a maximum
degree of spin polarization due to this interference.

Working in the linear response regime, Si(ω) is obtained from a Kubo for-
mula averaged over the random distribution of impurities in the 2DEG. We
evaluate this average with standard diagrammatic techniques assuming the
impurities to be short-ranged, isotropic and uniformly distributed. In this
case, the impurity average V (x)V (x′) ≡ (mτ)−1δ(x−x′) is δ - correlated and
proportional to the momentum relaxation time τ . We further take the Fermi
energy EF = p2

F /2m to be the largest energy scale in the problem. Then,
to leading order in 1/pF l with l = pF /mτ the mean free path, the averaged
spin polarization is given by the the diffuson diagram, giving rise [Akker-
mans07, Rammer98] to a correction σi → Σi ≡ Σijσj of the spin vertex
(cf. Sec. 2.1) in the Kubo formula. Thus, the spin susceptibility defined
by Si(ω) = χij(ω)Ej(ω) is given by

χij(ω) =

k=3X
k=1

2eντ

"
δik −

„
1− 1

λ

«
Σik
#

Ωkj , (3.2)

where ν = m/2π~2 is the two-dimensional density of states and λ(ω) = 1−iωτ .
We evaluate the vertex correction Σ of Eq.(3.2) for the case of a magnetic

field B0 that is large compared to the internal fields induced by SOI. This
regime is characterized by aR ≡ αpF /2b0 � 1 and aD ≡ βpF /2b0 � 1. The
components Σij with i, j = 1, 2, 3 of the vertex correction are then found to
be given by

Σ =
1

(ω2
L − ω2)τ2 + q

(3.3)

×

0@ y2 λ−cos2(θ)
λ−1 + λ(λ − 1) + q11

−y2
2(λ−1) sin(2θ) + q12 y cos(θ) + q13

−y2
2(λ−1) sin(2θ) + q12 y2 λ−sin2(θ)

λ−1 + λ(λ − 1) + q22 y sin(θ) + q23

−y cos(θ) − q13 −y sin(θ) − q23 y2 + λ(λ − 1) + q33

1A ,

where y = 2b0τ/~ = ωLτ . Here, the functions qij and q are second order in
aR and aD, and depend on the frequency ω, the Larmor frequency ωL, and
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the angle θ1.

We discuss now the different components of χ –which we derive from Eq. (3.3)–
along and transverse to B0. In the 2DEG the constant field gives rise to a
constant equilibrium polarization due to Pauli paramagnetism. This polariza-
tion is given by Seq = ν~ωLe|| along B0 and is independent of the electric
field. The polarization dynamically generated by E(ω), however, depends on
the amplitude of the oscillating internal field perpendicular to B0. It is thus in-
structive to consider the longitudinal (along B0||e||) and the transverse (along
e⊥ ≡ e|| × e3 and e3) polarization components given by S′2 = e|| · S and
S′1 = e⊥ · S, S′3 = S3, resp.

As a result, we find the polarization S′i(ω) = χ̄i(ω, θ′)E(ω) in terms of the
transformed susceptibility χ̄. To lowest order in aR, aD only the transverse
components (i = 1, 3) are finite. They are given by

χ̄i(ω, θ′) = Seq l(ω)
ˆ
α cos(θ′ − θ)− β sin(θ′ + θ)

˜
× wi

„
1

ωL − ω + δω − iΓ +
1

ωL + ω − δω + iΓ

«
, (3.4)

where w1 = 1 for the in-plane (i = 1) and w3 = −iω/ωL for the out-of-plane
component (i = 3), and l(ω) = eτ/~(1 − iωτ) is proportional to the Drude
conductivity2.

Close to resonance the scattering from disorder leads to a renormalization
of the magnetic field dependence. The resonance is shifted by a term

δω = Re q(ω = ωL)/2ωLτ
2 (3.5)

=
p2
F τ

~2
[α2 + β2 − 2βα sin(2θ)]

ωLτ

1 + (ωLτ)2
,

corresponding to an effective g-factor which depends both on the amplitude
and the orientation of the magnetic field. The line-width Γ of the resonance

1The qij and q are given in Sec. A.2. In the following, only Im q, Re q and the linear

combination
√

2(q13 − q23)y + (q11 − 2q12 + q22)(λ − 1) − 2λq are relevant for the
line-width and the spin-Hall conductivity, resp., which are explicitly given below in
Eqs. (3.6) and (3.9).

2 From Eq.(3.4) we can identify the component of the internal rf field b1(ω) (which
effectively drives the spin dynamics) in terms of the electrically induced momentum
drift 〈p〉(ω) = ~l(ω)E(ω). We find it to be given by the projection of the internal rf field
(induced by 〈p〉(ω)) on the transverse direction e⊥ in the form b1(ω) = e⊥ ·Ω(〈p〉(ω)).
Due to disorder scattering the Fourier transform 〈p〉(t) and b1(t) are phase-lagged with
respect to E(t).
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peak is given by

Γ = −Im q(ω = ωL)/2ωLτ
2 = 2p2

F τ/~2 (3.6)

×
»`
α2 + β2 + 2αβ sin(2θ)

´
+

(α2 + β2)− 2αβ sin(2θ)

2[1 + (ωLτ)2]

–
.

Note that in Γ the Rashba and Dresselhaus SOI do not simply add up but can
interfere with each other, enabling a strong enhancement of the susceptibility
as we will see next. In Fig. 3.2 we plot the spin susceptibility at resonance,
χ̄res ∝ [cos(θ′ − θ)− sin(θ′ + θ)ρ] /Γ for the case ρ = β/α = 0.5 measured
in [Ganichev04]. The angle θ′ has been tuned to maximize χ̄res which displays
a pronounced dependence on the magnetic field direction. In Eq. (3.6) we
note that Γ scales with the mean square fluctuations of the internal magnetic
fields 〈(e|| ·Ω(pF n̂))2〉n̂ and 〈(e⊥ ·Ω(pF n̂))2〉n̂, where 〈.〉n̂ denotes a uniform
average over all (in-plane) directions n̂. Comparison with a simple model
[Bloch57, Tahan05] of spin relaxation (Bloch equation) shows that the first
term in Eq. (3.6) comes from pure dephasing, i.e. from disorder induced
fluctuations of the internal fields along B0, while the second term is due to
fluctuations along e⊥. Choosing a configuration with θ = θ′ = −π/4 and
tuning the SOI strengths to α = β the first term vanishes while the second is
subject to narrowing due to the magnetic field. The width becomes ΓDP/[1 +
(ωτ)2] where ΓDP = 2(αpF )2τ/~2 is the D’yakonov - Perel spin relaxation
rate for Rashba SOI. Increasing the frequency such that (at resonance) ωLτ =
ωτ � 1 will lead to an increase of the inverse width Γ−1 and, hence, of the
susceptibility at resonance, given by

|χ̄res
α=β | = Seq

eατ

~ΓDP

p
1 + (ωLτ)2. (3.7)

For comparison, we find the ratio to the resonance susceptibility χ̄res
β=0 in the

pure Rashba case as |χ̄res
α=β/χ̄

res
β=0| = (1+y2)[1+1/(2(1+y2))] growing quadrat-

ically with y = ωLτ . Thus, the spin polarization can be substantially enhanced
by tuning the SOIs to equal strengths and by increasing the magnetic field.
Finally, the range of validity for the linear response regime can be estimated
as follows. Assuming full polarization (|S′3,res

α=β |/Seq ≈ 1) and parameters
for a GaAs 2DEG [Sih05] with spin-orbit splitting ∆SO = αpF = 60µeV,
Fermi wavelength λF = 180 nm and ωLτ = 10, we find from Eq. (3.7)
that the linear response is valid for electric fields with amplitudes up to
E0 = 2π∆SO/λFωLτ ≈ 200 eVm−1.
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3.3. POLARIZATION AND SPIN CURRENT.

3.3 Polarization and Spin current.

We consider the spin current defined by I3 = 〈{σ3,v}〉/2. Using the Heisen-
berg equation of motion the spin current components I3

x′ and I3
y′ along e⊥ and

e|| can be expressed in terms of the polarization at frequency ω as0@ I3
x′

I3
y′

1A =
~

2m(α2 − β2)
(3.8)

×

0@ [α− β sin(2θ)](iωS′1 + ωLS
′3)− iωβ cos(2θ)S′2

(α+ β sin(2θ))iωS′2 − β cos(2θ)(iωS′1 + ωLS
′3)

1A .

We consider the configuration θ = θ′ = −π/4 such that the SOI induced
internal rf field is perpendicular to B0 and the longitudinal component S′2(t) =
Seq is not altered in linear response in E. Note that in this case Eq.(3.8)
simplifies such that I3

x′ = ~(iωS′1 + ωLS
′3)/(2m(α− β)). This relation differs

from the naive model of an average spin-orbit field equating the internal field
Ω(p(t)) with its average Ω(〈p〉(t)). Contrary to Eq.(3.8), we then find iωS′1 +
ωLS

′3 = Γ1S′1 where Γ1 is a phenomenological transverse relaxation rate.
Discrepancies to the model of an averaged spin-orbit field occur similarly for
other effects such as the generation of an out-of plane polarization [Engel06]
and Zitterbewegung [Schliemann05].

We proceed by evaluating the spin-Hall current I3
x′ in terms of the vertex

correction Eq.(3.3) which was obtained in the diagrammatic approach and is
valid up to second order in aR, aD. The linear combination iωS′1 + ωLS

′3

cancels in lowest order (cf. Eq.(3.4)) such that I3
x′ is given by the second order

terms qij , q. From Eq.(3.2) and Eq.(3.8) we find the spin-Hall conductivity,
defined as σ3,res

x′y′ = ~I3
x′/2E(ω), to be given by

σ3,res
x′y′ =

e

4π

iωLτ(α2 − β2)

(3α2 − 2αβ + 3β2)− i2ωLτ(α− β)2
. (3.9)

Remarkably, for high frequencies ωLτ(α− β)2 � (α+ β)2 and α 6= β Eq.(3.9)
reaches the universal limit σ3,res

x′y′ = |e|(α + β)/8π(α − β) (independent of the
absolute SOI strengths and disorder details) which was also obtained in the
clean limit in [Mishchenko04]. Indeed, for the condition ωLτ � 1 (ωL = ω),
many cycles of the electric rf field pass through between subsequent scattering
events such that the system effectively behaves as ballistic. This regime can
be exploited to achieve high spin polarizations as described above. Moreover,
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the singularity in Eq.(3.8) for α = β is removed in Eq.(3.9) up to the accu-
racy O(a2

R, a
2
D, aDaR) considered here and we find that σ3,res

x′y′ vanishes in the

configuration where χ̄ is maximal, i.e. for α = β and θ = θ′ = −π/4.
We turn now to a geometrical interpretation of the spin Hall current relating

it to the trajectories S = {(S′1(t), S′3(t))|t ∈ R} followed by the tip of the
polarization vector. For an applied electric field E(ω) = E0e||[δ(ω − ω0) +
δ(ω+ω0)]/2 with frequency ω0 this trajectory is given by the polarization (as
a function of time) 0@ S′1(t)

S′3(t)

1A = Λ(ω0)

0@ cosω0t

sinω0t

1A (3.10)

with the matrix

Λ(ω0) = E0

0@ Reχ̄1(ω0) −Imχ̄1(ω0)

Reχ̄3(ω0) −Imχ̄3(ω0)

1A (3.11)

containing the Fourier components χ̄1,3(ω) of the susceptibility evaluated at
ω = ω0. Eq. (3.10) constitutes a quadratic form for the trajectory given
by S = {(S′1, S′3)|S′t · Λ2S

′ = 1} with real, positive eigenvalues λ1,2 (say
λ1 < λ2) of the defining matrix Λ2 = (Λ−1)tΛ−1. Thus, S is of elliptic shape
with semi-major and semi-minor axis a = 1/

√
λ1 and b = 1/

√
λ2, resp. We

can further determine the angle δ enclosed by the semi-major axis of S and
the S′1 direction since the matrix Λ2 is diagonalized by a rotation δ around
S′2. The polarization of Eq. (3.10) can thus be written as0@ S′1(t)

S′3(t)

1A =

0@ cos δ − sin δ

sin δ cos δ

1A0@ a cos(ω0t+ ϕ)

b sin(ω0t+ ϕ)

1A . (3.12)

Here, ϕ is a phase shift between the electric field and the polarization. From
Eqs. (3.10) and (3.12), we can relate the real and imaginary part of the
susceptibilities χ̄1 and χ̄3 to the parameters a, b, ϕ, and δ. In particular, we
obtain the spin Hall current (Eq.(3.8)) at resonance (ωL = ω) as

I3
x′(ω) =

~E(ω)ei(ϕ−δ)

2m(α− β)E0
iωL(a− b) . (3.13)

Eq. (3.13) provides a remarkable interpretation of the spin Hall current in
terms of the geometric properties of the orbit S. The component I3

x′ is given by
a complex phase depending on the rotation angle δ and the difference between
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the semi-minor and semi-major axis a− b. In the linear response regime, the
spin Hall current characterizes the deviation from a circular orbit with a = b
to an elliptic shape (with a 6= b). Therefore, I3

x′ becomes accessible in terms of
simple geometric properties of S in experiments capable of resolving individual
polarization components.

3.4 Conclusion

We predict a substantially enhanced spin polarization due to interference ef-
fects of Rashba and Dresselhaus SOI. The spin Hall current associated with
this polarization can be interpreted in terms of the trajectory in spin space
and vanishes if the polarization is maximal.
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4
Mesoscopic fluctuations in the

spin-electric susceptibility due to
Rashba spin-orbit interaction

We investigate mesoscopic fluctuations in the spin polarization generated by
a static electric field and by Rashba spin-orbit interaction in a disordered 2D
electron gas. In a diagrammatic approach we find that the out-of-plane polar-
ization – while being zero for self-averaging systems – exhibits large sample-
to-sample fluctuations which are shown to be well within experimental reach.
We evaluate the disorder-averaged variance of the susceptibility and find its
dependence on magnetic field, spin-orbit interaction, dephasing, and chemical
potential difference.

4.1 Mesoscopic fluctuations in the spin-electric susceptibility

A primary goal in semiconductor spin physics is the control of magnetic mo-
ments by electric fields [Awschalom02,Awschalom07]. One way to achieve this
is to make use of the magnetoelectric effect (MEE) [Levitov85,Edelstein90], a
spin polarized steady state which emerges from intrinsic ’magnetic’ fields gen-
erated by spin-orbit interactions (SOI) and transport. While this MEE has
been observed e.g. in n-InGaAs epilayers [Kato04b,Kato04a,Kato05] and hole
gases [Silov04], the resulting net polarization is below percent for electron sys-
tems [Kato04b,Kato05], and thus much smaller than what has been achieved
by optical pumping [Kato04a,Stich07,Meier07]. Moreover, in a standard two-
dimensional electron gas (2DEG), with typical Rashba SOI [Bychkov84], the
MEE generates only in-plane spin polarization but no out-of-plane compo-
nents [Edelstein90, Engel07, Milletar̀ı08]. The latter would be desirable, also
since they can be detected more easily e.g. by optical means.

However, these observations apply only to disordered phase-incoherent sys-
tems with self-averaging [Akkermans07]. On the other hand, it is well-known
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Figure 4.1: Disordered two-dimensional electron gas with spin-orbit interac-
tion and electric contacts at x = 0 and x = L. Mesoscopic fluctuations of the
magnetoelectrical spin susceptibility χ31 allow for a finite out-of-plane polar-
ization S3 in response to an in-plane electric field E.

that phase-coherence in mesoscopic systems leads to new quantum effects such
as conductance fluctuations or weak antilocalization, especially due to intrinsic
SOI [Altshuler85,Altshuler91,Lee87,Zumbühl05,Aleiner01,Miller03].

Similarly, mesoscopic spin effects emerge for the MEE when the system
becomes phase-coherent. Indeed, focussing on 2DEGs with Rashba SOI, we
will show here that the spin-electric susceptibility is subject to strong sample-
to-sample fluctuations, and thus individual mesoscopic samples with phase
coherence can exhibit a large net spin polarization. Quite remarkably, these
strong fluctuations show up not only in the in-plane but also in the out-of-
plane spin components. We find that these fluctuations considerably exceed
the polarization obtained in self-averaging samples, and since the latter has
been successfully measured by optical means [Kato04b,Kato05], the spin fluc-
tuations predicted here should be well within experimental reach. We will see
that this strong enhancement is special for Rashba (or Dresselhaus 1) SOI,
and, diagrammatically, it results from a spin vertex renormalization typical
for such intrinsic SOI [Edelstein90,Chalaev05,Duckheim06].

Related effects studied before are local spin fluctuations in metallic con-
ductors due to the extrinsic spin-orbit effect [Zyuzin90] (as opposed to the
intrinsic Rashba SOI [Engel06]), density of states fluctuations of quantum cor-
rals [Walls07], and fluctuations of spin currents in general nanostructures [Bar-
darson07] and chaotic quantum dots [Bardarson07, Krich08]. While thermal
spin fluctuations have been observed [Oestreich05], we are not aware of studies
of mesoscopic spin fluctuations due to the MEE as described here.

We consider a disordered mesoscopic square-shaped 2DEG of size L2 (cf.
Fig. 4.1) containing non-interacting electrons of mass m and charge e and

1We note that Dresselhaus and Rashba SOI give the same results since the corresponding
Hamiltonians are unitarily related [Chalaev05].
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Figure 4.2: Dominant diagrams (for 1/pF l � 1) leading to the variance
δχijδχkm given in Eq. (4.3), see also Fig. 4.3. The upper diagrams a and
b contain the Hikami boxes (HB) VLa, VRa(with solid arrows) and two Dif-
fusons (D) and VLb, VRb (with dashed arrows) and two Cooperons (C), resp.
The lower diagram contains the HBs VLc, VRc (solid arrows, two Diffusons)
and VLd, VRd (dashed arrows, two Cooperons).

described by the Hamiltonian

H =
p2

2m
+ α(p1σ

2 − p2σ
1) + b · σ + V. (4.1)

Here, p = (p1, p2, 0) is the in-plane momentum, α the Rashba SOI constant
[Bychkov84], 2b = gµBB(cosϕB , sinϕB , 0) an external in-plane magnetic field,
and σ = (σ1, σ2, σ3) the Pauli matrices (and σ0 = 1). The disorder potential V
is due to static, short-ranged and randomly distributed impurities2 leading to
a mean free path l = τpF /m, where τ is the scattering time and pF the Fermi

2We want to note that randomness in other microscopic properties, e.g., the SOI strength
[Melnikov72,Glazov05] might lead to mesoscopic effects as well, but is beyond the scope
of the present work.

45



CHAPTER 4. MESOSCOPIC SPIN FLUCTUATIONS

momentum. We, moreover, define the parameter x = 2αpF τ characterizing
the interplay of disorder and SOI and the D’yakonov-Perel [D’yakonov72] spin
relaxation rate τ−1

DP = x2/2τ .
The spin polarization due to the MEE is given in linear response by 〈σi〉 =

χijEj , i = 1, 2, 3, where Ej is a static electric field applied along the j-direction
and χij the (zero-frequency) spin-electric susceptibility (per unit area). Here,
we focus on the mesoscopic fluctuations of χij due to disorder, described by
the variance (δχij)2, where δχij = χij − χij and where the overbar denotes
disorder averaging. We start from the Kubo formula for χij expressed in
terms of retarded/advanced Green functions G

R/A
EF

at the Fermi energy EF
[Duckheim06]

χij(EF ) =
e

4π
Trσi(GREF −G

A
EF )vj(G

R
EF −G

A
EF ) , (4.2)

where Tr →
R
d2p/(2π)2trS denotes momentum integration and spin trace,

and vj = i[H,xj ]/~ is the SOI-dependent velocity operator. In Eq. (4.2) we
have used time reversal invariance 3 to make the symmetry χij = χji explicit4.

The variance (δχij)2 is obtained as the impurity average over the product of
two susceptibilities given in Eq. (4.2). Extending the diagrammatic approach
of [Altshuler91,Edelstein90,Akkermans07] to include SOI and spin vertices, we
obtain the diagrams shown in Fig. 4.2 which give the dominant contribution
to the variance for 1/pF l� 1. Explicitly, we find

δχij(EF + ∆E)δχkm(EF ) =
“ e

2πL

”2
Z

d2q

(2π)2

h
V µρLa V

νκ
RaD

µν
−q(∆E)Dρκ

q (−∆E)

+ V µρLb V
νκ
Rb C

νµ
q (∆E)Cρκq (−∆E)

+ V µρLc V
νκ
Rc

˘
Dµν
q (∆E)Dκρ

q (∆E) +Dµν
q (−∆E)Dκρ

q (−∆E)
¯

+ V µρLd V
νκ
Rd

˘
Cνµq (∆E)Cρκ(q,∆E) + Cνµq (−∆E)Cρκq (−∆E)

¯i
, (4.3)

where ∆E is the difference in chemical potentials of χij and χkm, Dq and Cq
are the Diffuson and Cooperon matrices, respectively, and

R
d2q stands for the

summation over Diffuson/Cooperon modes (see Sec.B.1.2).
The VLa’s (VRa’s) are Hikami boxes (HBs) shown in Fig. 4.3 and on the

left (right) in Fig. 4.2. Since χij = χji (see Eq. (4.2)), each product V µρL V κνR
in Eq. (4.3) turns into a sum with 4 terms. These terms are obtained by

3The B-field breaks time-reversal invariance and leads to additional terms in Eq. (4.2).

However, their contribution to (δχij)2 is negligible for the small B-fields b ≈px2/ττφ
relevant for C, see Eq. (4.7).

4Note that GRGR (GAGA) drops out in Eq. (4.2) due to the identity G
R/A
E vjG

R/A
E =

−i[xj , GR/AE ]/~.
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exchanging spin and velocity vertices in the V ′s such as e.g. V µρLa V
κν
Ra ≡

V µρLa [σk, σi]V κνRa [vj , vm] + (σk ↔ vm) + (σi ↔ vj) + (σk ↔ vm, σ
i ↔ vj).

Additionally, the vertices have to be dressed with non-crossing impurity lines
( [Duckheim06, Chalaev05]). In contrast to conductance fluctuations [Alt-
shuler91, Akkermans07], such vertex corrections are crucial here as they give
the dominant dependence on the SOI (see below).

Let us now evaluate Eq. (4.3) by calculating first VL/R, given in Fig. 4.2,
and then C/D5. From now on, we restrict ourselves to the diffusive regime
l/L � x = 2αpF τ � 1, which allows us to neglect the q-dependence in VL/R
and to expand in x. Additionally, we may neglect b and ∆E in VL/R. Indeed,
we first note that Vb 6=0/Vb=0 ∝ bτ and V∆E 6=0/V∆E=0 ∝ ∆Eτ for small b and
∆E, and second, that the suppression of C/D with increasing b and ∆E sets in
on a much smaller scale b ≈

p
x2/ττφ and ∆E ≈ 1/τφ (dephasing, see below).

As a result, we can unify the calculation of the 2 × 4 × 4 HBs in Fig. 4.2 by
relating them to the general HB V = V(a) + V(b) + V(c) in Fig. 4.3.

Next, we evaluate the Diffuson D and Cooperon C in Eq. (4.3), given by
Dq = (1/2mτ)(1 − X+)−1 and Cq = (1/2mτ)k(1 − X−)−1k, where kµl =
tr{σ2σµσl}/2. Expanding Xµν

± = Tr{σµGREF ,b(p)σνGAEF ,±b(p − q)}/2mτ in
q̄ = ql � 1, 2bτ � 1, and x we find D/C by matrix inversion. To account
for orbital dephasing we introduce a corresponding dephasing time τφ in D
and C by the standard replacement (see e.g. Eq.(3.15) in [Bergmann84] and
[Altshuler81]) ∆E → ∆E + i/τφ. This defines the length scale Lφ = l

p
τφ/2τ

describing the transition from the mesoscopic to the macroscopic regime.

Although generalized to include spin vertices, the method presented so far
involves the calculation of similar diagrams as for the conductance fluctuations
[Altshuler85,Akkermans07]. An important difference, however, is the inclusion

5For a more detailed description see Appendix B
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of the vertex corrections for spin and spin-dependent velocity which we discuss
now. For the velocity vertex this leads to vj → pj/m, i.e. the spin part of the
velocity is cancelled in the dc limit [Chalaev05]. For the spin vertex this leads
to the replacement σi → Σiµσµ where Σ is diagonal given by Σ = (1−X+)−1

at q̄ = 0, with the relevant entries Σ11 = Σ22 = 2/x2 and Σ33 = 1/x2.
These expressions are valid in the regime l/L � x and will be used here.
For general x, L, the finite size form of the vertex correction has to be taken
into account, giving e.g. Σ22 = (2/x2)(1− tanh (xL/2l)/(xL/2l)), which then
renders Eq. (4.6) given below finite for x→ 0.

As a result, in the regime D/L2, τ−1
φ � τ−1

DP considered here (D = v2
F τ/2

being the diffusion constant), we find for the in-plane (i = 1, 2) and out-of-
plane (i = 3) components of the variance

(δχij)2 =

„
eδq̄2

8π3vF

«2 ∞X
nx=1,ny=0

sij(q̄nx , q̄ny ) , (4.4)

where vF = pF /m is the Fermi velocity, δq̄ = πl/L, and the sum over the
q̄n ≡ δq̄n satisfies the mixed boundary conditions for the Diffuson [Akker-
mans07] in a finite sample of square size L with two opposite sides attached
to the leads. Here, sij in Eq. (4.4) are rational functions in q̄nx , q̄ny depend-
ing parametrically on x = 2αpF τ , b, ∆E, and the orbital dephasing rate
τ/τφ = l2/2L2

φ.
Evaluating sij for D/L2, τ−1

φ � τ−1
DP first for b = ∆E = 0, and choosing the

E-field along x (i.e. j = 1) we find that the singlet component D00, and C22

are dominant, and thus

si1 =
ai
`
4xΣii

´2“
q̄2 + 2 τ

τφ

”2 , (4.5)

where a1 = a2 = 1 and a3 = 2. From Eqs. (4.4), (4.5) we then obtain (δχi1)2 =
(exΣii/2π3vF )2c2ai, where c2 =

P
nx,ny

1/[(n2
x +n2

y) + (L/πLφ)2]2. To assess

the magnitude of this result we compare it to the average of the in-plane
susceptibility χ21 = ex/2πvF [Edelstein90]. For the out-of-plane component
of the spin fluctuations this yields

(δχ31)2

(χ21)2
=

2c2
π4x4

=
c2

2π4

τ2
DP

τ2
, (4.6)

and similarly for the in-plane components. Thus, we see that the relative
fluctuations grow with increasing τDP .
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Figure 4.4: Example of a path along which an initially y-polarized spin rotates
exclusively into the positive out-of-plane direction (circled dots). The spin
directions are denoted by small arrows at the left of each path segment and
result from precession about the Rashba spin-orbit field BR that is generated
by the propagation along the path. The length of the horizontal segment
is chosen half the spin-orbit length λSO/2 = 1/4mα so that the spin rotates
about BR by an angle π. An interfering path is shown (dashed line) generating
the same spin rotations.

The suppression of χ2 in a macroscopic sample (L � Lφ) is described by
c2 ≈ (Lφ/L)2, whereas for negligible dephasing, i.e. Lφ � L, one obtains
c2 ≈ 1.51, and the spin fluctuations (δχij)2 become independent of the sample
size. Taking typical GaAs parameters, (~)α = 2 . . . 20×10−13eVm, l = 250nm,
and L = 2Lφ = 40l, we get x = 0.1 . . . 1, and, thus, from Eq. (4.6) large relative

fluctuations,

q
(δχij)2/χ21 ≈ 20 . . . 0.2. To obtain an estimate for the out-of-

plane polarization P⊥ = (N↑ −N↓)/(N↑ +N↓), where N↑ (N↓) is the number
of up- (down-) spins, we choose the electric field E = 1mV/µm. This yields
rms(P⊥) = 0.1% which in absolute numbers becomes rms(P⊥)nL2 = rms(N↑−
N↓) = 274 . . . 27 and P‖nL

2 = 16 . . . 160 for a sheet density n = 4× 1015m−2.

Since the average in-plane polarization P‖ has been measured [Kato04b] and

since rms(P⊥) ≈ 20 . . . 0.2P‖, we can expect the out-of-plane fluctuations to
be within experimental reach as well.

To gain physical insight into this result, we consider an electron with spin
initially pointing along the y-axis, see Fig. 4.4. While the electron propagates
coherently through the sample, its spin precesses about the intrinsic Rashba
SOI field BR which is in-plane and perpendicular to the propagation direc-
tion. Averaged over impurity configurations its motion is diffusive and follows
different random paths such that no spin polarization is found out-of-plane.
However, in a mesoscopic sample (Lφ & L) with a given impurity configura-
tion the electron propagates along paths that are preferred by constructive
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Figure 4.5: The relative variance of the out-of-plane spin susceptibility

(δχ31)2/δχ21
2

is shown as a function of the in-plane magnetic field 2bτ for
x = 0.1, Lφ = 100l, and sample sizes L = 100πl (solid line) and L = 200πl
(dashed line), resp. The low field approximation, Eq. (4.7), (curved dotted
line) and half of the b = 0-value (straight dotted line) are shown for L = πl100.
Inset: Variance as a function of ∆E for x = 0.1, Lφ = 100l, and L = 100πl
(solid line) and L = 200πl (dashed line). The suppression of δχ31 with in-
creasing b and ∆E is described by Eqs. (4.7) and (4.8).

interference. Fig. 4.4 shows a particular example of such a path and the as-
sociated spin directions 6. Along this entire path the spin can only point up
(+z-direction), but never down. Now, if initially the electrons were unpolar-
ized, the net out-of-plane polarization in this case would be cancelled by spins
that are initially pointing along the negative y-direction. However, due to
the (in-plane) MEE, which itself is subject to strong fluctuations, e.g. due to
conductance fluctuations, there is a finite in-plane polarization to begin with.
The cancellation is therefore incomplete. These considerations make plausi-
ble that disorder configurations exist that give rise to strong out-of-plane spin
polarizations.

6Note that along each segment the electron undergoes many scatterings for x = l/λSO �
1.
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4.2. CONCLUSION

4.1.1 Dependence on gate voltage and magnetic field

We next consider the effect of an in-plane magnetic field 7. For b = 0 we see
that the diagrams a) and b) in Eq. (4.3) contribute equally to the variance.
However, for b 6= 0 the main contribution from the Cooperon is cut off, leading
to a suppression of δχ2 (see Fig. 4.5), and we can approximate Eq. (4.4) by
making use of

sijb ≈ s
ij
b=0

1

2

241 + 1
.0@1 +

32(bτ)2“
q̄2 + 2 τ

τφ

”
x2

1A35 , (4.7)

where the first term in Eq. (4.7) results from the Diffuson contribution (dia-
gram a) in Fig. 4.2) which is not affected by (moderate) magnetic fields.

Unlike the magnetic field, a difference in energies ∆E (e.g. induced by gate
voltages) leads to a suppression of all terms contributing to δχ2 (see Fig. 4.5).
This is described by

sij∆E ≈ s
ij
∆E=0

.0B@1 +
4(∆Eτ)2“
q̄2 + 2 τ

τφ

”2

1CA , (4.8)

which gives rise to a correlation scale for susceptibilities at different gate volt-
ages. Indeed, according to Eq. (4.8), we can regard χ(EF ) and χ(EF + ∆E)
as uncorrelated for ∆E ≥ max{1/τφ, (πl/L)2/τ}.

4.2 Conclusion

From a diagrammatic calculation we find strong mesoscopic fluctuations of the
spin-electric susceptibility in a disordered 2DEG due to Rashba SOI, manifest-
ing as large out-of-plane polarizations in individual mesoscopic samples. The
predicted values and dependences on the SOI strength, B-field, dephasing rate,
and Fermi energy are well within experimental reach. Such spin-dependent co-
herence effects, besides being of fundamental interest, might prove useful in
spintronics applications aiming at the electrical control of spin polarization.

7Here, we consider isotropic scattering. For anisotropic scattering even an average out-
of-plane polarization can result for b 6= 0 [Engel07,Milletar̀ı08].
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A
Calculation of the spin polarization due

to EDSR

A.1 Calculation of the spin vertex correction

In this appendix we describe the calculation of the magnetization Si(ω) due to
EDSR, Eq. (2.8), in terms of the spin-spin and the spin-momentum terms, X,
Y , respectively, and the spin vertex correction Σ. The simultaneous presence
of the internal and external fields, Ω(p) · σ and b0, respectively, breaks the
symmetry in orbital space such that no analytical expression1 for the integrals
in Eq. (2.6) can be obtained.

However, in the typical regime for EDSR the amplitude of the internal (driv-
ing) field is much smaller than the (perpendicular) static external magnetic
field. This is analogous to standard paramagnetic resonance. Thus, without
any essential restriction we can concentrate on the regime with the SOI being
small compared to b0, i.e. a = αpF /2b0 = x/2ωLτ � 1. First, upon inspec-
tion of Eq. (2.6) we note that the contribution of Y to the magnetization is due
to the momentum-part of the velocity and thus must vanish in the absence of
SOI. Thus, the leading order term in Eq. (2.8) coming from Y is at least linear
in a. More precisely, with a calculation similar to the one outlined below for
X, we obtain for the spin-momentum diagram

Y µj = −εµj3
α

λ(ω)
(A.1)

i.e. the same result as before for b0 = 0. Thus, the expression Eq. (2.9) has an
overall prefactor linear in the SOI α. In order to obtain Si(ω) to the lowest
non-vanishing order in α ∝ a it is therefore sufficient to calculate the spin-spin
diagram with setting α to zero and retaining only the b0 dependence. However,
this way, the spin vertex correction Σ(ω) becomes singular at resonance, i.e.

1An exact result for Xµν is available [Pletyukhov07] in the simpler Rashba model.
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[010],py[010],py

[100],px[100],px

~B0

θ

~E
θ′

Figure A.1: Geometry of Ω(p) and b0 = b0(− sin θ, cos θ, 0) and the elec-
tric field E. The x-axis is chosen along the [100] axis. The internal fields
ΩR(p)(black) and ΩD(p)(red arrows) are shown.

when ω = ωL (Larmor frequency). This shows that at resonance the next-to-
leading order contributions of the spin-spin diagram X = X(0)+a

2X(2) become
relevant2 in Σ(ω) = (1 −X(0)(ω) − a2X(2)(ω))−1 and must be kept. Indeed,
they represent the dominant contribution if the determinant of the first term
1−X(0) vanishes. Obviously, at resonance the dominant a dependence becomes
1/a. Hence, we concentrate on the evaluation of the spin-spin diagram up to
order of a2, with X(2) characterizing the behavior of the magnetization around
the resonance where the present analysis is valid.

A.1.1 Calculation of the spin-spin diagram

We calculate now the spin-spin diagram Xµν in the presence of linear Rashba-
and Dresselhaus SOI Ω(p) = ΩR(p) + ΩD(p) and an in-plane external mag-
netic field b0 = b0(− sin θ, cos θ, 0) enclosing an angle θ with the y-axis(cf.
Fig. A.1). In this case, the effective magnetic field in the Green functions
Eq. (2.3) is given by

B̄(P) =
beff(P pF )

EF
= B̄0 + 2aRB̄0Ω̄R(P) + 2aDB̄0Ω̄D(P) , (A.2)

with the expansion parameters aR = αpF /2b0 � 1 and aD = βpF /2b0 � 1
and where we introduced the dimensionless internal fields Ω̄R/D defined by

2For linear SOI the first order in a vanishes due to the symmetry in the angular inte-
gration. Indeed, we note that the angular dependence (in the integrals in Eq. (2.6))
comes from the magnetic field Ω(p(cosϕ, sinϕ)) where ϕ always occurs in terms of a
trigonometric function simultaneously with a factor a. Expanded in a the linear terms
thus vanish upon angular integration.
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Ω̄R/D(P) = ΩR/D(pFP)/EF . To order O(a2
R, a

2
D) the modulus B̄ = |B̄| and

the unit vector B̂ = B/B of the effective field are then given by

B̄(P) = B̄0

ˆ
1− 2Pa1(ϕ) + 2P 2a2(ϕ)

˜
B̂(P) = B̂0 + 2P [a(ϕ) + a1B̂0] + 2P 2[2a1a + B̂0(2a2

1 − a2)] (A.3)

in terms of the auxiliary quantities

a1(ϕ) = aR cos(ϕ− θ) + aD sin(ϕ+ θ)

a2(ϕ) = a2
D + a2

R + aDaR sin(ϕ)− (aR cos(ϕ− θ) + aD sin(ϕ+ θ))2

a = aRΩ̂R(P̂) + aDΩ̂D(P̂) . (A.4)

where ϕ is the polar angle of the momentum P. After insertion of Eqs. (A.2,
A.3) into the Green functions (Eq. (2.3)) in the spin-spin diagram (Eq. (2.6))
is found as

Xµν =
r

4

X
s,s′=±1

DZ +∞

0

dP P

2π

Tµνs,s′(P )

(P −Q1) . . . (P −Q4)cϕ

E
ϕ
, (A.5)

where 〈...〉ϕ denotes integration over the ϕ (normalized by 2π), cϕ ≈ 1 and
the poles Qi are given by

Q1 = +1 + k1 + i
r

2
, k1 = B̄0s(a1 − a2) +

1

2
(w − sB̄0)

Q2 = −1 + k2 − i
r

2
, k2 = B̄0s(a1 + a2)− 1

2
(w − sB̄0)

Q3 = +1 + k3 − i
r

2
, k3 = B̄0s

′(a1 − a2)− s′B̄0

2

Q4 = −1 + k4 + i
r

2
, k4 = B̄0s

′(a1 + a2) +
s′B̄0

2
ϕ . (A.6)

in terms of the dimensionless frequency w = ~ω/EF , scattering rate r =
~/EF τ , and momentum P = p/pF .

Trace. In Eq. (A.5) we introduced the trace over spin states

Tµνs,s′(P) = tr{σµ(1 + s B̂(P) · σ)σν(1 + s′ B̂(P) · σ)}

= 4 δµν [δµ0δs,s′ + δµ6=0δs,−s′ ]

+ 4 [δµ6=0δν0B̂µ(P) + δµ0δν 6=0B̂ν(P)]sδs,s′

+ 4 (−i)εµνkB̂k(P)δµ6=0δν 6=0sδs,−s′

+ 4 s s′B̂µ(P)B̂ν(P)δµ 6=0δν 6=0 , (A.7)
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Figure A.2: View of the poles Qi of the retarded and advanced Green functions
in the complex plane (cf. Eq. (A.6) ). The contour C1 of the momentum
integral (Eq. (A.5)) running from 0 to +∞ is shown.

where δµ6=0 = 1 − δµ0 etc., and where summation over repeated indices is
implied. The trace Tµνs,s′(P) and the direction of B̂0 ≡ B0/B0 determine
which components of Xµν are nonzero.

Momentum integration. The poles in Eq. (A.6) have been approximated
to second order in aR,D and to linear order in w, r, B̄0 � 1. They are approx-
imately located at Qi ≈ ±1 with small corrections ki and imaginary part
±r/2 = ±~/2EF τ(cf. Fig. A.2). Integration over P is straightforward3 but
lengthy since the various terms in Eq. (A.5) contain products of B̂0 whose P -
dependence has to be taken into account. The subsequent angular integrations
become simple when expanding in the small parameter aR, aD.

3Note that the P -dependence of 1/B(P ) in Tµν
s,s′ for a 6= 0 generates additional singular-

ities at Q5/6 = exp (±iϕ)/2a when analytically continued into the complex plane away
from the real axis. The application of complex contour integration is thus non-trivial.
A direct calculation, however, shows that these poles do not contribute to X within
the accuracy O(w,B0, r).
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This way we obtain

Rz(−θ)XRz(θ) =

0BBBBBB@
1
λ

0 0 0

0 λ
y2+λ2 0 y

y2+λ2

0 0 1
λ

0

0 −y
y2+λ2 0 λ

y2+λ2

1CCCCCCA (A.8)

+ x2

0BBBB@
0 0 0 0

0 y4+4λ2y2−λ4

2λ(y2+λ2)3
0 −2yλ2

(y2+λ2)3

0 0 −1
2λ(λ2+2y2)

0

0 2yλ2

(y2+λ2)3
0

(y2−λ2)λ

(y2+λ2)3

1CCCCA

+ gx2

0BBBBB@
0 0 0 0

0
g
“
y4+4λ2y2−λ4

”
−2
“
y2−λ2

”2
sin(2θ)

2λ(y2+λ2)3
(y2−λ2) cos(2θ)

λ(y2+λ2)2
2y
“
(y2−λ2) sin(2θ)−gλ2

”
(y2+λ2)3

0
(y2−λ2) cos(2θ)

λ(y2+λ2)2
−g+2 sin(2θ)
2λ3+2y2λ

− 2y cos(2θ)

(y2+λ2)2

0
2y
“
gλ2+

“
λ2−y2

”
sin(2θ)

”
(y2+λ2)3

2y cos(2θ)

(y2+λ2)2
λ
“
4 sin(2θ)y2+g(y2−λ2)

”
(y2+λ2)3

1CCCCCA ,

where g = β/α is the ratio of Rashba and Dresselhaus SOI-strength,y =
2b0τ = ωLτ , and Rz(θ) is a rotation around the 3-axis by an angle θ keeping
X00 constant. In the case y = 2b0τ = 0 (no magnetic field) this turns into

Rz
“−π

4

”
XRz

“π
4

”
=

0BBB@
1
λ 0 0 0

0 1
λ − (g+1)2x2

2λ3 0 0

0 0 1
λ − (g−1)2x2

2λ3 0

0 0 0 1
λ −

“
g2+1

”
x2

λ3

1CCCA
(A.9)

This way, we obtain the componentsXµν and via the matrix inversion Σ = (1−
X)−1 the spin vertex correction in Eq. (2.10). The frequency dependence and
resonance behavior of the magnetization for g = 0 are discussed in chapter 2.
The geometry and the spin current in the simultaneous presence of Rashba and
Dresselhaus SOI can be inferred from Eq. (A.8) and are discussed in chapter 3.
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A.2 Second order damping functions

In this section we give the relevant functions q and qij in Eq. (3.3). For
θ = −π/4 and ω = ωL the functions q and qij are given by

q11 =
−2a2

R(λ− 1)2λ

(1− 2λ)2

ˆ
1 + 6λ2(ρ− 1)2 + (ρ− 8)ρ− 4λ(1 + (ρ− 5)ρ)

˜
(A.10)

q12 =
−2a2

R(λ− 1)2

(1− 2λ)2

ˆ
2λ3(ρ− 1)2 + 4λ2ρ+ (1 + ρ)2 − λ(3 + ρ(4 + 3ρ))

˜
(A.11)

q13 =
i
√

2a2
R(λ− 1)2

(1− 2λ)2

ˆ
1 + 4λ3(ρ− 1)2 + ρ(6 + ρ) (A.12)

− 4λ2(1 + (ρ− 4)ρ)− 2λ(1 + ρ(8 + ρ))
˜

q33 =
−2a2

R(λ− 1)2

λ(1− 2λ)2

ˆ
4λ4(ρ− 1)2 − 12λ2ρ− (1 + ρ)2 (A.13)

+ 3λ(1 + ρ)2 − 4λ3(1 + (ρ− 4)ρ)
˜

and q22 = q11 and q23 = q13.

A.3 Regime of validity

We now give a summary of the parameters controlling the regime of validity
of the present theory.

A first constraint ensures the validity of the linear response approach. For
this, we give a heuristic argument based on the analogy to conventional ESR
[Cohen-Tannoudji77] expressed by Eq. (2.2) of the paper. For this case, we
consider the Bloch equations Eq. (2.19) in Sec. 2.2 where, for simplicity, we
assume the relaxation tensor Γ diagonal with two equal transverse rates Γ11 =
Γ33 ≡ T−1

2 and the longitudinal rate Γ22 = T−1
1 .

The familiar steady state solutions in the rotating frame for the longitudinal
component S2 and the transverse components Su and Sv, respectively are

S2 = Seq
1 + ∆ω2T 2

2

1 + ∆ω2T 2
2 + T1T2ω2

1

Su = Seq
∆ωω1T

2
2

1 + ∆ω2T 2
2 + T1T2ω2

1

Sv = Seq
ω1T2

1 + ∆ω2T 2
2 + T1T2ω2

1

, (A.14)
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where ω1 = γB1, ωL = γB0, and ∆ω = ωL − ω.
The resulting transverse polarization close to resonance is, thus, propor-

tional to ω1/[(ω − ωL)2 + ω2
1(T1/T2) + 1/T 2

2 ] with the phenomenological re-
laxation rate 1/T2. Thus, two relaxation terms are present, viz. the ’external’
damping given by 1/T 2

2 and an intrinsic term ω2
1(T1/T2) given by the driving

rf field itself.
Similarly, the same intrinsic mechanism should be expected if the driving

field B1 is generated by a SOI-mediated bias like in the case considered in the
paper. We thus anticipate a total spin relaxation rate of the form4

p
ω2
R + Γ2

with Rabi frequency ωR = eE0α/~ωL derived at resonance from Eq. (2.2).
Here, E0 denotes the amplitude of the electric field E(t) = E0ey cos(ωt) and
Γ is given by Eq. (2.13). However, the Rabi frequency occurring in the ratep
ω2
R + Γ2, being E-field dependent, must be negligible for a polarization Si

which is calculated in linear response with respect to E(t). This imposes the
self-consistent condition

ωR � Γ ⇔ ~eE0

pFωLτ
� 2αpF

„
1 +

1

2[1 + (ωLτ)2]

«
(A.15)

for the validity of the linear response approach. A more systematic approach
for estimating the validity of the linear response regime requires an explicit
evaluation of the non-linear response, which, however, is beyond the scope of
the present work.

Secondly, in order to carry out the momentum integrals in Eq. (2.6) we
introduced a condition limiting the SOI strength

a =
αpF
~ωL

� 1. (A.16)

This constraint not only simplified our analysis but also defines the most in-
teresting regime for EDSR. Indeed, in order to have a pronounced resonance,
the width of the resonance peak needs to be smaller than the resonance fre-
quency, i.e. Γ� ωL, which is equivalent to αpFx� ~ωL (see Eq. (2.13)). For
self-consistency we need to assume x ≤ 1 (see the text before Eq. (2.12)), and
thus we see that a� 1 ensures Γ� ωL.

In this context we note the somewhat counterintuitive fact that the height
of the resonance decreases with increasing SOI, see Eqs. (2.12,2.13). Indeed,
on one hand the polarization is proportional to α via the driving rf field,
and thus increases with increasing SOI. On the other hand, at resonance the
polarization becomes proportional to 1/Γ (due to disorder) which gives then
rise to a suppression factor 1/α2. Thus, in total the polarization decrease as
1/α with increasing SOI at resonance.

4assuming T1 = T2 for simplicity
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Our last constraints
b0
EF

,
~ω
EF

,
~

EF τ
� 1 (A.17)

correspond to the physically relevant situation where the Fermi energy EF is
the largest energy in the system. Further, the condition x = 2αpF τ/~ � 1
does not restrict the validity of Eqs. (2.10) and (2.11) but permits us to
represent Eq. (2.12) in terms of two Lorentzians. In the case ωτ ≈ 1, however,
it becomes equivalent to the inequality (A.16).

A.4 Numerical estimates

To illustrate the predicted effects we now evaluate the polarization explicitly
using typical GaAs parameters (cf. table A.1), thereby making sure that we
stay within the range of validity of our approximations. With a typical sheet
density n2 = p2

F /2π~2 = 4 × 1015 m−2, effective mass m∗ = 0.067me and a
high mobility scattering time τ = 2×10−11 s taken from [Beenakker91] we can
estimate the maximum polarization P as the ratio of the peak polarization per
unit area and the sheet density

P =
S3
max

n2
=

eEm∗

(2π~n2)22ατ

ωτ√
1 + ω2τ2

„
1 +

1

2(1 + ω2τ2)

«−1

. (A.18)

In order to stay within the condition (3.11) we choose a small Rashba - pa-
rameter α = 10−14 eVm and find x = 0.1. Assuming a realistic microwave
frequency ω = 50 × 109 s−1 corresponding to ωτ = 1 and a voltage amplitude
of V = 0.1 V over a sample length of l = 600 µm we find an electric field
E0 = 166 Vm−1 and a polarization of P = 10−4. Note that the size of the
chosen E−field satisfies the linear response condition (A.15) (and poses no
severe limitation for a real experiment).

The corresponding number of excess spins N↑ − N↓ in a laser spot of size
5µm × 5µm is 200. This number is measurable with state-of-the-art optical
detection techniques such as Faraday rotation [Kato04a,Sih05,Sih05].

We can further quantify the peak width Γ and the frequency shift δω. Mak-
ing use of Eqs. (2.13) and (2.14) we find

Γ = 0.3× 109 s−1

δω = 0.06× 109 s−1. (A.19)

As a further characterization of the resonance we estimate the Rabi frequency
ωR, given by the amplitude of b1(t) in Eq. (2.2) and (2.16). Assuming a bias
E(t) = E0ey cos(ωt) we find

ωR =
eE0α

~ω
= 0.08× 109 s−1, (A.20)
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evaluated at resonance5 ωL = ω with the parameters given above. A summary
of the above calculation and a check of the constraints Eqs. (3.11,A.15) is given
in table A.1.

A.5 Spin current and magnetization

We show now that the obtained magnetization Si can be related to the spin
current (defined below) via an exact relation. More generally, we consider the
density associated with the spin

ρi(x) =
1

2
{σi, δ(x− x̂)} (A.21)

whose homogenous limit Si =
R
d2xρi(x) equals the magnetization. The spin

density is defined as the (symmetrized) product of the spin with the particle
density operator δ(x−x̂) where x̂ is the quantum mechanical position operator.
The spin current associated with ρi is defined in the usual way [Sinova04,
Schliemann04, Inoue04,Mishchenko04,Dimitrova05,Erlingsson05b,Chalaev05]

jik(x, t) =
1

2
{σi, jk(x)} (A.22)

in terms of the current operator jk(x, t) = 1
2
{δ(x− x̂), vk} where, in contrast

to the linear response treatment of the paper, the velocity operator vk =
i/~[H,xk] = (pk − (e/c)Ak)/m + α(σ × ez)k contains the kinetic momentum
including the (homogenous) vector potential A.

The two operators ρi and jik are related via the Heisenberg equation of
motion

d

dt
ρη(x, t) =

i

~
[H, ρη] (A.23)

given by the Hamiltonian Eq. (2.1). Analogous to [Erlingsson05b] where the
Rashba- and Dresselhaus SOI has been considered it forms an exact operator
identity

d

dt
ρ1(x, t) +∇ · j1(x, t) = −2αm

~
j3
x(x, t)− 2

~
ˆ
ρ2(x, t)b0,z − ρ3(x, t)b0,y

˜
(A.24)

d

dt
ρ2(x, t) +∇ · j2(x, t) = −2αm

~
j3
y(x, t)− 2

~
ˆ
ρ3(x, t)b0,x − ρ1(x, t)b0,z

˜
d

dt
ρ3(x, t) +∇ · j3(x, t) = +

2αm

~
ˆ
j1
x(x, t) + j2

y(x, t)
˜

− 2

~
ˆ
ρ1(x, t)b0,y − ρ2(x, t)b0,x

˜
,

5corresponding to a magnetic field B ≈ 1 T for |g| = 0.44
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for the case of an additional static magnetic field with components b0,i; i =
x, y, z which holds independently of the impurity potential as ρi commutes
with the position operator.

In deriving Eq. (A.24) the definition of jik arises naturally as a divergence
term of a current associated with the spin density. Together with the time
derivative ρ̇i it forms the left-hand side of a continuity equation. The right
hand side, however, is nonzero and describes the dynamics of the spin due to
the external magnetic field b0 and the internal SOI field. The definition of
Eq.(A.22) as a ’spin current’ is thus ambiguous [Rashba03a,Engel05] and it is
not clear to what extent the quantity Eq. (A.22) can be identified with actual
spin transport, i.e. with spin polarized currents which are experimnetally
accessible [Erlingsson05a].

In spite of the above concerns we note that the present theory accesses the
spin current as the time derivative of the magnetization. Namely, going over
to the homogenous limit Iik =

R
d2xjik(x) such that the gradient in Eq.(A.24)

vanishes we find the transverse spin current

I3
x(ω) =

~
2αm

iωS1(ω) +
b0,y
αm

S3(ω). (A.25)

Since S3 vanishes for ω = 0 it is obvious from Eq. (A.25) that there is no
spin current in the long time limit ω → 0 for a homogenous infinite sam-
ple [Inoue04, Erlingsson05b, Chalaev05]. This means a generalization of the
argument given in [Erlingsson05b,Chalaev05] to the case of a finite magnetic
field. For finite frequencies, however, Eq. (A.25) predicts a non-vanishing
oscillating spin current expressed in terms of the magnetization components
perpendicular to the applied electric rf field. With the results for Si inserted
we find the ac spin Hall conductivity

σ3
xy(ω) ≡ I3

x~/2
Ey

=
e

4π

iω ωLτ

1− iωτ

„
1

ωL − ω + δω − iΓ +
1

ωL + ω − δω + iΓ

«
.

(A.26)
We emphasize that this relation provides a direct link between the exper-
imentally accessible magnetization and the spin current. Evaluated at the
resonance ω = ωL + δω we get

σ3,res
xy =

e

4π

ωLτ

1− iωLτ
ωL
Γ
, (A.27)

where we neglected δω against ωL. Thus, we see that for ωLτ ≈ 1 the modulus
of the ac spin Hall conductivity becomes much larger than e/4π since ωL � Γ.
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Description Parameter Value

sheet density n2 4× 1011 cm−2

effective mass m∗ 0.067me

scattering time τ 2× 10−11 s

frequency f = ω/2π 8 GHz

Larmor frequency f = fL = ωL/2π 8 GHz

Rashba Parameter α 10−12 eV cm

electric field E 1.66 V cm−1

polarization P 10−4

SOI vs. scattering x 0.1

spin relaxation rate Γ/2π 0.05 GHz

resonance shift δω/2π 0.01 GHz

Rabi frequency ωR/2π 0.012 GHz

validity conditions

linear response ωR/Γ 0.27

relative SOI strength a = αpF /~ωL 0.05

Table A.1: Numerical estimates
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B
Calculation of the spin susceptibility

fluctuations

B.1 Calculation of the spin susceptibility fluctuations

In this appendix we describe how to calculate the spin-electric susceptibility
in Eq. (4.3). A list of symbols is given at the end (Sec. B.2). The analysis
consists of two main steps: the calculation of the Diffuson and Cooperon D
and C, respectively, and the calculation of the Hikami boxes VL and VR.

The variance (δχij)2 is obtained as the impurity average over the product of
two susceptibilities given in Eq. (4.2) (in Sec. 4.1. The calculation of this aver-
age is similar to the diagrammatic approach of [Altshuler85,Altshuler91,Akker-
mans07], which is generalized here to include both spin and spin-dependent
velocity vertices. An important difference, however, is the vertex correction of
the spin which is absent for the momentum vertices in conductance fluctua-
tions. The dominant contributions to the variance for 1/pF l� 1 are given by
Eq. (4.3) and the diagrams shown in Figs. 4.2 and B.1. Let us now evaluate
Eq. (4.3) by calculating first VL/R, occurring in Fig. B.1 (see Eqs. (B.1-B.5)
below), and then C/D in the diffusive regime l/L� x = 2αpF τ � 1.
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(a) (b)

(c) (d)

Figure B.1: Dominant diagrams a - d (for 1/pF l � 1) for the variance
δχijδχkm (cf. Eq. (4.3)). The left and right Hikami boxes VL and RR, re-
spectively, are given in Eq. (B.1- B.5).

B.1.1 Calculation of the Hikami boxes

The 2× 4× 4× 3 Hikami boxes in Fig. B.1 are given by

V µρLa(a)[σ
k, σi] =

Z
d2p

(2π)2
tr
n
σµGA(p)σkGR(p)σρGA(p− q)σiGR(p− q)

o
(B.1)

V νκRa(a)[vj , vm] =

Z
d2p′

(2π)2
tr
n
σκGR(p′)vmG

A(p′)σνGR(p′ − q)vjGA(p′ − q)
o

(B.2)

V µρLb(a)[σ
k, vj ] =

Z
d2p

(2π)2
tr
n
σµGR(p)vjG

A(p)[GA(q − p)σkGR(q − p)σρ]t
o

(B.3)

V νκRb(a)[σ
i, vm] =

Z
d2p′

(2π)2
tr
n
σκGR(p′)vmG

A(p′)[GA(q − p′)σiGR(q − p′)σν ]t
o

(B.4)
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V µρLc(a)[σ
k, vm] =

Z
d2p

(2π)2
tr
n
σµGA(p)σkGR(p)vmG

A(p)σρGR(p+ q)
o

(B.5)

V νκRc(a)[σ
i, vj ] =

Z
d2p′

(2π)2
tr
n
σκGA(p′ − q)σνGR(p′)vjG

A(p′)σiGR(p′)
o

(B.6)

V µρLd(a)[σ
k, vm] =

Z
d2p

(2π)2
tr
n
σµGR(q − p)σρ[GA(p)σkGR(p)vmG

A(p)]t
o
(B.7)

V νκRd(a)[vj , σ
i] =

Z
d2p′

(2π)2
tr
n
σκGR(p′)vjG

A(p′)σiGR(p′)σν [GA(q − p′)]t
o

(B.8)

and the associated HBs VLa(b), VRa(b), . . . , VRd(b) and VLa(c), VRa(c), . . . , VRd(c)
generated by the insertion of a single impurity line(cf. Eqs. (B.9-B.11) below).
We, moreover, have to take into account the HBs generated by exchange of
vertices in Eqs. (B.1-B.5) as described below Eq. (4.3).

The condition l/L� x = 2αpF τ � 1 allows us to neglect the q-dependence
in VL/R and to expand to second order in x. Additionally, we neglect b and
∆E in VL/R since first Vb 6=0/Vb=0 ∝ bτ and V∆E 6=0/V∆E=0 ∝ ∆Eτ for small
b and ∆E, and second the suppression of C/D with increasing b and ∆E sets
in on a much smaller scale bτ ≈

p
φx2 and ∆Eτ ≈ φ = τ/τφ (dephasing, see

Sec. 4.1).
As a result, we can unify the evaluation of Eqs. (B.1- B.5). Indeed, these

HBs can be expressed by a linear relation in terms of a general HB V =
V(a) +V(b) +V(c) given in Fig. 3 of the main paper, defined by the ’empty’ box

V(a)[κ
1, κ2, κ3, κ4] =

Z
d2p

(2π)2
tr
n
GAκ1GRκ2GAκ3GRκ4

o
(B.9)

and the associated HBs

V(b)[κ
1, κ2,κ3, κ4] =

1

2mτ

Z
d2p

(2π)2
tr
n
GAκ1GRκ2GAσδ

o
×
Z

d2p′

(2π)2
tr
n
GAκ3GRκ4GAσδ

o
(B.10)

and

V(c)[κ
1, κ2,κ3, κ4] =

1

2mτ

Z
d2p

(2π)2
tr
n
GRκ2GAκ3GRσδ

o
×
Z

d2p′

(2π)2
tr
n
GRκ4GAκ1GRσδ

o
(B.11)
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with a single impurity line. Here, κi ∈ {σµ, v1, v2} comprise all possible spin
and velocity vertices occurring in the HBs in Fig. B.1 and in Eq. (4.3), and

G
R/A
EF ,b

(p) is the impurity averaged Green function

GR/A(p, E) =
1

2

X
s=±1

1 + sbeff (p)
beff (p)

· σ
E − Es(p)± i/2τ (B.12)

which depends on B-field and SOI by beff(p) = αp×ez+b and where E±(p) =
p2/2m± beff(p). Eventually, by use of the property

G
R/A
b (p) = σ2G

R/A
−b (−p)σ2 (B.13)

we find,

V µρLa [σk, σi] = V [σk, σρ, σi, σµ] (B.14)

V νκRa [vj , vm] = V [σκ, vm, σ
ν , vj ] (B.15)

V µρLb [σk, vj ] = kρl(dkt)µr(dkkt)knV [σl, vj , σ
r, σn] (B.16)

V νκRb [σi, vm] = (dkt)νl(d̄kkt)inkκrV [σl, σn, σr, vm] (B.17)

V µρLc [σk, vm] = V [σk, vm, σ
ρ, σµ] (B.18)

V νκRc [σi, vj ] = V [σi, σκ, σν , vj ] (B.19)

V µρLd [σk, vm] = (dkt)ρl(dk)µrV [σk, vm, σ
l, σr] (B.20)

V νκRd [vj , σ
i] = kκl(kt)νrV [σl, vj , σ

i, σr] (B.21)

where the matrices k and d are defined by kµl = tr{σ2σµσl}/2 and d(d̄) =
diag(1,−1,−1,−1,+1(−1),+1(−1)). Eqs. (B.14-B.21) reduce the task of cal-
culating a large number of similar HBs to the calculation of Eqs. (B.9-B.11).
The calculation is performed by expanding Eqs. (B.9-B.11) up to second or-
der in the SOI strength α. Note that HBs containing one momentum vertex
pj with j = 1, 2 vanish in zeroth order in α due to the integration over the
angle of pj . Therefore, taking into account both the momentum and the spin-
dependent part of the velocity operator v̂j = p̂j/m + Ωkjσ

k is required to
consistently calculate V . In the dc.-limit, however, the spin-dependent part of
v̂ is cancelled by the vertex correction (see Sec. 4.1 and Ref. [Chalaev05]).

B.1.2 Calculation of the Cooperon and Diffuson

Next, we evaluate the Diffuson D and Cooperon C in Eq. (4.3) and discuss
the appropriate boundary conditions in a mesoscopic sample. In a mesoscopic
sample, D and C are given in coordinate representation by integral equations
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of the form Eqs. (1.14, 1.15, 1.16). In the regime x, 1/pF l � 1 Eq. (C.2) can
be approximated by a differential equation Lµρ(∇x)Dρν(x,x′) = δ(x−x′)δµν

where L is a second order differential operator (cf. Sec. C). Since L is of
block diagonal form, i.e. L0,i = Li,0 = 0 with i = 1, 2, 3 the charge-charge
component D00 is decoupled from other components. Therefore,D0,0 fulfills
the well-known Dirichlet-von-Neumann boundary conditions [Akkermans07]
used to describe charge diffusion in a sample with electric contacts at x =
(0, x2) and x = (L, x2) and reflecting boundaries at x = (x1, 0) and x = (x1, L)

D0,0(x = (0, x2),x′) = D0,0(x = (L, x2),x′) = 0

∂D0,0

∂x2
(x = (x1, 0),x′) =

∂D0,0

∂x2
(x = (x1, L),x′) = 0. (B.22)

Finding the appropriate boundary conditions for the spin components Di,j

i, j = 1, 2, 3 is more intricate and subject to a theoretical debate in the con-
text of the spin-Hall effect [Galitski06,Bleibaum06,Rashba06,Tserkovnyak07].
However, in the regime l/L � x � 1 the main contribution to the fluctua-
tions comes from D0,0 such that the result Eq. (4.4) in the main Sec. 4.1 is
not sensitive to the specific boundary conditions for the other components.

The finite size of the sample is then accounted for by a discretization of the
Diffuson/Cooperon modes (qnx , qny ) = (nx, ny)π/L where ny = 0, 1, 2, . . . and
where the zero mode is excluded in nx = 1, 2, 3, . . . due to vanishing boundary
conditions at the contacts Eq. (B.22). This way, C and D can be calculated
in momentum space [cf. Sec. B.1.4] and, thus, are given by the two relations

Dq =
1

2mτ
(1−X+(q))−1 (B.23)

Cq =
1

2mτ
k(1−X−(q))−1k (B.24)

the latter of which can be obtained by use of Eq. (B.13), where again kµl =
tr{σ2σµσl}/2. Expanding the matrix kernel

Xµν
± =

1

2mτ

Z
d2p

(2π)2
tr{σµGREF ,b(p)σνGAEF ,±b(p− q)} (B.25)

in Eqs. (B.23, B.24) in the small quantities q̄ = ql � 1, β = 2bτ � 1, and x,
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we find

Xε =

0BBBBBB@
1
λ
− q̄2

2
0 0 0

0 1
λ
− q̄2

2
0

0 0 1
λ
− q̄2

2
0

0 0 0 1
λ
− q̄2

2

1CCCCCCA (B.26)

+

0BBBBBB@
−β2δε,−1 −iβδε,−1 0 0

−iβδε,−1 −x
2

2
− β2δε,−1 0 ixq̄ cosϕ

0 0 −x
2

2
− β2δε,+1 −βδε,+1 + ixq̄ sinϕ

0 −ixq̄ cosϕ βδε,+1 − ixq̄ sinϕ −x2 − β2δε,+1

1CCCCCCA ,

where ϕ is the polar angle of the momentum q̄, λ = 1−i∆Eτ , and the magnetic
field has been taken along x(ϕb = 0) 1. The matrix inversion in Eqs. (B.23)-
(B.24) of 1−X± yields expressions for the components Dµν , Cµν . The singlet
component D0,0 (and C2,2 for b = 0) has a particularly simple form given
by D0,0 = 1/2mτ(−iωτ + q̄2/2). In the regime l/Lφ, l/L � x = 2αpF τ � 1
these components D0,0 and C2,2 (for b = 0) yield the dominant contributions
to Eq. (4.4) in the main Sec. 4.1.

B.1.3 Vertex correction

Figure B.2: Diagrammatic equation for the correction of the spin vertex σi.

We turn now to the calculation of the spin vertex correction Σi ≡ Σiµσµ

defined as the solution to the diagrammatic equation in Fig. B.2. Analytically,
this can be written as

Σiµ = δiµ +Xiρ
+ (q = 0)Σρµ. (B.27)

1No strong dependence of δχ2 on the direction of b has been found.
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yielding the constant solution Σ11 = Σ22 = 2/x2 and Σ33 = 1/x2. This is
valid in the regime considered in the paper l/L� x = 2αpF τ , or equivalently
λSO = 1/2mα� L. On the other hand, when L ≈ λSO boundary effects start
to matter and the matrix elements 〈x|Σ|x′〉 = Σ(x, x′) are no longer constant.
This situation is out of the scope of the paper and we comment on it briefly:
For L ≈ λSO the diagrammatic equation in Fig. B.2 turns into an integral
equation in place of Eq. (B.27), which can be evaluated in the diffusive limit.
The boundary effects lead to a cut-off of the 1/x2 divergence of Σ for small
spin-orbit interaction (small x). Therefore, with Σ remaining finite in the limit
x → 0, also the fluctuations (Eqs. (4.5) (4.6) of Sec. 4.1) are convergent and
vanish for x→ 0.

Eventually, we obtain the main result Eq. (4.4) by inserting the HBs, the
Cooperon and the Diffuson, and the renormalized vertex Σ into Eq. (4.3).

B.1.4 Cooperon and Diffuson

In this section we derive equations for the Cooperon and the Diffuson with
SOI starting from the initial diagrammatic expressions.

Diffuson

Figure B.3: Diagrammatic equation for the Diffuson.

The Diffuson is given by the diagrammatic equation in Fig. B.1.4. The
analytical expression is

Dαα′

ββ′ (p1,p
′
1,p2,p

′
2|E,ω) =

1

mτ
δ(p1 − p′1 = −(p2 − p′2))δαα′δββ′

+
1

mτ

Z
d2p̃1d

2p̃2δ(p1 − p̃1 = −(p̃2 − p′2))δαγ1δβ′γ′2

×GRγ1,γ′1(p̃1, E + ω)GAγ2,γ′2(p̃2, E)D
γ′1α
′

β,γ2
(p̃1,p

′
1,p2, p̃2)

(B.28)
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Since, for a spatially homogeneous system the Green functions GR/A depend
only on one momentum argument, we make the ansatz that D depends only
on the difference of the left momenta p1 − p′2 in the form

Dαα′

ββ′ (p1,p
′
1,p2,p

′
2|E,ω) = δ(p1 − p′1 = −(p2 − p′2))Dµν(p1 − p′2|E,ω)σµαβ′σ

ν
βα′

(B.29)

where σµ, µ = 0, 1, 2, 3 are the Pauli matrices (σ0 = 12) and Dµν(p1 − p′2) is
a 4 × 4 matrix. Using the identity δαα′δββ′ = 1/2

P3
µ=0 σ

µ
αβσ

µ
β′α′ Eq. (B.28)

factorizes in the momentum and spin arguments and we obtain the equation
for the Diffuson

Dµν(q) =
1

2mτ
δµν +Xµρ

D (q)Dρν(q) (B.30)

where the matrix insertion XD is given by

Xµν
D (q, ω) =

1

2mτ

Z
d2p

(2π)2
tr
n
σµ GR(p, EF + ~ω) σνGA(p− q, EF )

o
.

(B.31)

which is calculated in Chaps. 2, 3 to describe EDSR and in Chap. 4 to describe
mesoscopic fluctuations of the spin susceptibility.

Cooperon

Figure B.4: Diagrammatic equation for the Cooperon.

The Cooperon is given by the diagrammatic equation in Fig. B.1.4. Similar
to the previous section we make an ansatz

Cαα
′

ββ′ (p1,p
′
1,p2,p

′
2|E,ω) = δ(p1 − p′1 = −(p2 − p′2))Cµν(p1 + p2|E,ω)σµαβσ

ν
β′α′

(B.32)
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where C depends only on the sum of the outgoing momenta p1,p2. We obtain
for Cµν the equation

Cµν(q) = Xµρ
C

»
1

2mτ
δρν +Xρρ′

C (q)Cρ
′ν(q)

–
(B.33)

where

Xµν
C (q, ω) =

1

2mτ

Z
d2p

(2π)2
tr
n
σµ GR(p, EF + ~ω) σν [GA(q− p, EF )]t

o
.

(B.34)

Eq. (B.33) is used to calculate the Cooperon contribution to the spin suscep-
tibility fluctuations in Chap. 4.

B.2 List of symbols

σi, i = 1, 2, 3 Pauli matrices
σ0 2× 2 identity matrix
pF Fermi momentum
vF = pF

m
Fermi velocity

τ scattering time
l = vF τ mean free path
α strength of the Rashba

spin-orbit interaction
λSO = 1

2mα
spin-orbit length

x = 2αpF τ relative strength of the spin-orbit
= l/λSO interaction, spin precession angle

between impurity scatterings
τ−1
DP = x2/2τ D’yakonov-Perel spin relaxation rate
τφ dephasing rate

Lφ = l
p
τφ/2τ dephasing length

φ = τ/τφ dephasing rate measured in units of τ
V Hikami boxes
V(a) empty Hikami box
V(b) (V(c)) Hikami box with single impurity line

connecting the two advanced(retarded)
Green functions

D/C Diffuson/Cooperon
q momentum of D/C
∆E difference in gate voltages
b external in-plane magnetic field
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χij (incoherent) impurity average of the
spin-electric susceptibility

(δχij)2 variance of χij

L system size
Σi = Σiµσµ vertex correction of the spin vertex σi
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C
Diffusion equation for the spin

polarization

To illustrate the relation of spin diffusion and the ladder-type diagrams shown
in Fig. 1.5 we derive a partial differential equation for the spin polarization
density ρi(r) = σiδ(r− x̂). We start from the Kubo formula Eq. (1.18) for the
spin density ρi(r) in linear response to the electric field E. To leading order in
O(1/pF l) the impurity average of ρi(r) is given by the ladder-type diagrams
in Eqs. (1.11), (1.14) and, thus, can be written as

ρi(r) =
e

2π
(2mτ)

Z
d2x

Z
d2y d2y′ Diν(r,x) (C.1)

× tr
n
σνGR(x,y)〈y|v̂j |y′〉GA(y,x)

o
Ej

where v̂j =
pj
m

+ Ωkjσ
k is the velocity operator and Dµν(r,x) is the Diffuson

defined by the integral equation

Dµν(r,x) =
δµνδ(r− x)

2mτ
+

Z
d2x′Xµρ(r,x′)Dρν(x′,x) (C.2)

withXµν(r,x′) = 1
2mτ

tr
˘
σµGREF+ω(r,x′)σνGAEF (x′, r)

¯
. In the regime 1/pF l�

1, the impurity-averaged Green functions and, hence, the Kernel X(r,x′) ≈
e−|r−x′|/l in Eq. (C.2) are short-ranged on the scale of the mean free path l.
The Diffuson on the other hand, which is a concatenation of infinitely many
X, is long-ranged and varies slowly on the scale of the mean free path. We
therefore expand D(x′,x) ≈ D(r,x) + (x′ − r) · ∇rD(r,x) + . . . around r to
second order. This way, a differential equation

L(∇r)D(r,x) =
1

2mτ
δ(r− x)14 (C.3)

L(∇r) = 14 −X(q) + i
∂X(q)

∂qk

∂

∂rk
+
∂2X(q)

∂qk∂ql

1

2

∂2

∂rk∂rl

˛̨̨
q=0

, (C.4)
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for D(r,x) is obtained from Eq. (C.2) where Xµν(q) is given in Eq. (B.25)
and (B.31), which has been calculated in Eq. (B.26) where the bulk Green
functions Eq. (2.3) of an infinite sample were used. Applying now the differ-
ential operator L to Eq. (C.1) and by use of Eq. (C.3) we obtain a differential
equation for the spin density

L(∇)[ρ(r)− Sb] =

„
1

λ
− 1

«
Sb (C.5)

where Sb = −2νΩ(eEτ) is the bulk, in-plane polarization due to a dc electric
field in the magnetoelectric effect [Edelstein90]. To first order in ωτ , we find

[−iω + Γ−D∇2](ρ− Sb) + 2[b + pFΩ(l∇)]× (ρ− Sb) = iωSb , (C.6)

whereD = vF l/2 is the diffusion constant and Γij = [tr{(ΩΩt)}δij−(ΩΩt)ij ]2p
2
F /τ

describes spin relaxation due to the D’yakonov-Perel mechanism [D’yakonov72].
Eq. (C.6) describes the spatially and frequency resolved spin density in a sys-
tem with SOI.

The individual terms in Eq. (C.6) (from left to right) can be interpreted
as spin relaxation towards the equilibrium polarization, diffusion of the spin
carrying particles, and precession in the magnetic and spin-orbit induced field.
Apart from the latter precession term Eq. (C.6) has the form of a diffusion
equation [−iω −D∆]ρ = 0. The precession term describes a coupling of gra-
dients in the spin density to the internal field Ω. Eq. (C.6) can, alternatively,
be derived from a quantum kinetic equation [Mishchenko04] 1 and can be ap-
plied in a theoretical description of the out-of-plane polarization generated at
sample boundaries [Sih05] in the spin-Hall effect.

1The approach therein identically yields Eq. (C.6) if generalized to generic SOI, linearized
in the electric field, and, as done there, if the charge density is approximated to be
independent of spin density.
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