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1. INTRODUCTION 

 

Overview 

The functioning of the brain critically relies on its capacity to adapt and respond to its 

environment. The brain’s ability to change in response to experience is called plasticity 

and underlies principal brain functions, such as learning and memory.  

My thesis work investigated the ability of the brain to structurally remodel upon altered 

experiences, and changes that occur during normal aging. Furthermore, I addressed what 

might be the molecular mechanisms regulating such remodeling. 

 

I will therefore start by introducing the term of experience-dependent plasticity and 

exemplify the brain’s capacity to adapt to changes in experience and usage.  

I will then attempt to describe mechanisms of experience-dependent plasticity on the 

functional, molecular and structural level. Furthermore, I will discuss the impact of age 

and life-style on the brain’s capacity for plasticity.  

Finally, I will close the introduction by outlining the function and anatomy of the brain 

region that was the main subject of our investigations, namely the hippocampus, and 

specifically the mossy fiber pathway.  

 

1.1. EXPERIENCE-DEPENDENT PLASTICITY 

As we live, we experience consciously and unconsciously the world around and inside of 

us. Each piece of information reaching our brain will affect its future functioning and will 

influence our behavior. The capacity of the brain to change in response to experience is 

called plasticity. Such experience-dependent plasticity occurs throughout the brain and is 

essential for brain function.  

Plasticity within the neuronal network of the brain manifests in many different ways such 

as in structural, physiological and molecular changes (Gilbert, 1998).  

The ability of the brain to adapt becomes very obvious when external events robustly 

alter experience and force the brain to adjust in order to regain certain functionalities. 

Many studies of brain plasticity therefore use lesions as well as deprivation of sensory 

organs to study the adaptations of the brain to these modifications of experience. 
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Merzenich and colleagues in the early 1980s showed that peripheral nerve lesions in a 

monkey can lead to changes in the so-called cortical maps, for instance the topographic 

cortical representation of the skin of a hand. The cortex areas corresponding to the 

denervated skin were reoccupied by nerves serving the neighboring hand areas within a 

few months (Merzenich et al., 1983a, 1983b, 1984). A variety of studies demonstrated 

such changes in cortical mapping upon lesions of sensory organs or amputations of digits. 

Similarly, changes in the receptive field properties of sensory neurons, as well as 

structural rearrangements of axons and dendrites have been reported (Calford & 

Tweedale, 1991a, 1991b; Kalaska & Pomeranz, 1979; Kelahan & Doetsch, 1984; 

Rasmussen et al. 1982, 1986, 1988; Turnbull & Rasmussen, 1990, 1991, Darian-Smith & 

Gilbert, 1994). These modifications represent the attempts of the brain to recover 

functionality and demonstrate the immense capacity of the adult brain to adapt. 

 

Importantly, changes upon modified experience not only occur upon insults and large-

scale alterations of sensory input, but also underlie many physiological brain functions 

such as learning and memory. 

This idea has been well studied in the context of perceptual learning. The ability to 

discriminate between similar sensory stimuli can be trained and improved by repeated 

exposure. The paradigm of perceptual learning turned out to be very useful to study the 

cellular and molecular underpinnings of experience-dependent plasticity, as the places 

where to expect changes are very well understood and the gain in functionality can be 

easily measured. These facts facilitate the correlations between functionality and plastic 

changes in the nervous tissue.    

 Many studies using functional magnetic resonance imaging (fMRI) demonstrated that 

perceptual learning boosts specific activity in the involved brain regions (Furmanski et al., 

2004; Li et al., 2006). Alterations underlying such changes in broad network activity on 

the cellular level have been identified. They can consist of the specific potentiation of 

individual neurons involved in processing the trained stimulus (Schoups et al., 2001; 

Frenkel et al., 2006) or an increase in the number of neurons representing the trained 

input (Recanzone et al., 1992, 1993). Interestingly, significant changes in neuronal 

responses were not always detected in the classical receptive field for a given stimulus 
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but often involved neurons neighboring the representation of the trained stimulus through 

a phenomenon called contextual modulation (Crist & Gilbert, 2001; Li et al., 2004).    

 

How are these changes in network and cellular activities achieved? The answers are 

plentiful. They can be the result of changes in synaptic strength, adaptations of cellular 

input responsiveness, and structural changes including changes in absolute synapse 

numbers and remodeling of neuronal circuit connectivity. It is likely that many if not all 

of these mechanisms underlie experience-dependent plasticity in several systems and that 

they mutually influence and regulate each other. I will discuss these mechanisms in 

greater detail in the following sections of my introduction.  

 

1.1.1. Potentiation and depression of synaptic strength 

Most of the excitatory and many inhibitory synapses in the adult brain exhibit various 

forms of use- and activity-dependent synaptic plasticity. These are defined as changes in 

the amplitude of synaptic potentials in response to an otherwise unchanged input as a 

result of synapse modifications. Especially long-lasting forms of such synaptic plasticity 

are thought to be a cellular basis for the encoding of experience and storing of 

information in neuronal networks. 

 

There are several forms of long-term synaptic plasticity, affecting both excitatory and 

inhibitory synapses in the CNS. They usually occur after repetitive trains of synaptic 

activity or upon specific pairings of pre- and postsynaptic firings described below. 

Collectively they are called long-term potentiation (LTP) and long-term depression 

(LTD).  

The first to describe LTP were Bliss and his colleagues (Bliss & Gardner-Medwin, 1973; 

Bliss & Lomo, 1973) and since then LTP has been intensely studied because of its 

presumed role in learning and memory (Bliss & Collingridge 1993; Bennett, 2000; 

Malenka & Nicoll, 1999). LTP can be induced by a single high-frequency stimulus train 

as well as by short, repetitive trains, such as in theta burst stimulations, which are more 

reminiscent of activity patterns recorded in awake-behaving animals. LTD on the other 

hand can be induced by low frequency stimulation (Mulkey & Malenka, 1992; Dudek & 
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Bear, 1993; Goda & Stevens, 1996). In addition to the temporal proximity, the sequence 

of pre- and postsynaptic spiking also plays a key role in synaptic modifications. In spike 

timing-dependent plasticity (STDP), presynaptic spiking shortly before postsynaptic 

spiking leads to LTP, whereas the opposite order leads to LTD (Levy & Steward, 1983; 

Markram et al., 1997; Dan & Poo, 2004). The effects of STDP were already predicted by 

Donald Hebb in his famous postulate in the late 1940s that states (Hebb, 1949):   

 

“Let us assume that the persistence or repetition of a reverberatory activity (or "trace") 

tends to induce lasting cellular changes that add to its stability.… When an axon of cell A 

is near enough to excite a cell B and repeatedly or persistently takes part in firing it, 

some growth process or metabolic change takes place in one or both cells such that A's 

efficiency, as one of the cells firing B, is increased.” 

 

Evidence that mechanisms of this so called Hebbian plasticity play a crucial role in 

experience-dependent plasticity in vivo comes from studies in sensory cortices showing 

that correlated neuronal firing can induce receptive field and map plasticity (Clark et al., 

1988; Maffei & Galli-Resta, 1990; Schuett et al., 2001; Fu et al., 2002; Allen et al., 2003; 

Dan & Poo, 2006).   

 

1.1.2. Key molecular pathways involved in plasticity  

Changes in activity drive molecular mechanisms that alter synaptic properties and render 

them persistent. Activity-dependent signaling cascades have been subject of intense 

investigations and there is an enormous list of signal transduction molecules implicated in 

synaptic plasticity. It should be noted that long-term synaptic modifications like LTP or 

LTD are not unitary phenomena, but rather a family of processes that vary in their 

cellular and molecular mechanisms. Most consistently, synaptic plasticity involves the 

increase in pre- and/or postsynaptic calcium levels through NMDA receptors or voltage-

sensitive calcium channels (Malenka & Bear, 2004).  

This local calcium increase triggers calcium sensitive molecules to start signaling 

cascades that result in the potentiation of the synapse. Many of these signaling cascades 
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are regulated by the calcium binding protein calmodulin, which seems to be a key 

regulator of synaptic plasticity (Xia & Storm, 2005). 

 

The lists of  ”plasticity molecules” are long. Many of the earliest changes that occur 

during synaptic plasticity are mediated by kinases and phosphatases. Outstanding roles 

have been attributed especially to PKA (cyclic adenosine 3’, 5’-monophosphate (cAMP)-

dependent protein kinase A) and α-CamKII (alpha-calcium/calmodulin-dependent protein 

kinase II). For example, α-CamKII has been found essential in LTP induction and 

experience-dependent plasticity in vivo (Glazewski et al., 1996, 2000). Similarly, PKA 

regulates the calcium permeability of NMDA receptors, and thus is crucial for many 

different forms of LTP and LTD, and is required for plasticity, e.g. in the visual cortex 

(Fischer et al. 2004; Huang et al., 2005; Skerberdis et al., 2006). Other work also 

suggests crucial roles for PKC (protein kinase C), the tyrosine kinase Src, and MAPK 

(mitogen-activated protein kinase).  

Furthermore, gene expression analyses upon paradigms of plasticity induction revealed 

several common plasticity “pathways” involving MAPK, as well as other kinases and 

phosphatases (Ossipow et al., 2004; Majdan & Shatz, 2006). 

 

1.1.3. Structural plasticity  

In addition to changes in synaptic strength, structural alterations of cellular connectivities 

provide another or complementary mechanism to encode experience in the brain. 

Through the specific loss and gain of synapses or the remodeling of existing ones, 

alterations in connectivity and thus neuronal circuits change the properties of neuronal 

networks and their functional output.   

 

Interestingly, some of the principal molecular regulators of synaptic plasticity discussed 

above have also been implicated in regulating structural remodeling of synapses.  

In this way, dynamics of pre- and postsynaptic structures can be stimulated by 

neurotransmitters or changes in calcium concentrations (Korkotian & Segal, 1999; 

Bonhoeffer & Yuste, 2002; Tashiro et al., 2003; DePaola et al., 2003; Brunig et al., 2004; 

Segal, 2005). Synaptically released glutamate, for instance, was reported to result in spine 
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growth via NMDA receptors (Engert & Bonhoeffer, 1999) and several studies have 

demonstrated a clear correlation between alterations of synaptic strength and the turnover 

of dendritic spines (Yuste & Bonhoeffer, 2001, 2004). Likewise, electrical stimulations 

that induce LTP and LTD lead to dendritic spine formation and elimination, respectively 

(Toni et al., 1999; Nägerl et al., 2004). Notably, many forms of dendritic structural 

plasticity as well as LTP induction require NMDA receptor activation (Nägerl et al., 2004; 

Datwani et al., 2002; Sin et al., 2002). 

 

Evidence that such activity-dependent structural remodeling of synapses also plays a 

crucial role in experience-dependent plasticity is abundant. Many studies, using fixed 

tissue preparations, demonstrated that average spine densities and morphologies can be 

altered upon learning, age or other changes in experience, such as sensory stimulation, 

deprivation, stress or enriched environment (e.g. Globus & Scheibel, 1967; Globus et al. 

1973; Parnavelas et al., 1973; Moser et al., 1994; Stewart et al., 2005, Kozorovitskiy et al. 

2005, Tailby et al., 2005).  

 

More recently, in vivo imaging studies of identified dendrites and axons have provided 

additional evidence that dendritic spines as well as presynaptic boutons exhibit structural 

plasticity in the adult CNS (Trachtenberg et al., 2002; De Paola et al., 2006; Majewska et 

al., 2006; Stettler et al., 2006), and that spine growth and loss in vivo can be modified by 

experience (Holtmaat et al., 2006). Although the formation of a new spine does not 

automatically mean the formation of a functional synapse, recent evidence suggests that 

only about 4% of cortical spines do not bear synapses and another study shows that spine 

growth precedes synapse formation in vivo (Knott et al., 2006; Arellano et al., 2007). 

Therefore, the assumption that the formation of new spines equals the appearance of new 

synapses seems generally valid. 

 

Another means of exploring how experience affects synaptic dynamics is by mapping the 

distribution of pre- and postsynaptic markers. This was for instance done in an elegant in 

vivo study showing that the postsynaptic density (PSD) protein-95 readily redistributes 
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within neighboring spines and that the time of retention at individual PSDs was affected 

by their size, by animal’s age, as well as by sensory experience (Gray et al. 2006).   

 

1.1.4. Impact of age on neuronal plasticity  

Anybody who thinks about brain functions in the context of different ages must 

immediately realize that our brain does not work the same at all ages. Young babies are 

born lacking many abilities that become common during the next years such as walking, 

precise motor skills, language, acute sight and many more skills that are governed by the 

brain. On the other hand, children have an immense capacity to learn and adapt to their 

environment, and in this capacity they surpass adults by far. Although there is a 

considerable age-related decline in many cognitive functions, increasing experience and 

proficiency of routine tasks can make adults and also elderly people be advantaged in 

many all day situations and challenges.  

 

What are the physiological mechanisms that underlie those age-related differences of 

brain functioning? 

It has been long appreciated that during specific, early postnatal phases experience has a 

much bigger impact on behavior and brain function than at any other time in life. These 

phases were called critical (or sensitive) periods. Quickly it became clear that brain 

circuits subserving a given function are not only particularly sensitive to changes in 

experience related to this function during the critical period, but also need certain kinds 

of information as instructive signals for their continued normal development (Berardi et 

al. 2000; Hensch, 2005). In general one could say that critical periods are used to shape 

genetically inherited basic structures and functions of the brain and adapt them to the 

environmental and physical characteristics of the individual.  

 

Critical periods have been very well documented for sensory systems. Mechanisms that 

allow for heightened plasticity during critical periods but also mechanisms that restrict 

plasticity before and after these phases have been described in much detail (Hensch, 

2003). It may be important to note that there is not only one general critical period for the 

brain but rather one critical period with unique timing and duration for each functional 
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system. Common characteristics of all critical periods are that they have an onset and an 

end.  This timing and duration is not only a question of age but is usage dependent, as it 

can be delayed by a lack of appropriate experience (Mower, 1991) or it can be started 

earlier and last for longer when experience is rich (Cancedda et al. 2004, Brainard & 

Knudsen 1998).   

 

It is important to emphasize in this context that the ability to adapt to the environment is 

never lost throughout life. Although the extent and the readiness at which adaptations 

take place are reduced later on, similar adjustments as during critical periods can be 

induced in adults but seem to require either longer, repeated or incremental presentation 

of stimuli (Linkenhoker & Knudsen 2002, Sawtell et al. 2003, Hofer et al. 2006). 

Therefore, critical period research has led to important insights into adult experience-

dependent plasticity by the direct comparison of adult and juvenile reactions towards the 

same stimuli. 

 

It is still not clear whether adaptations in the adult are achieved through the same 

plasticity mechanisms as in the juvenile. However, studies on critical period plasticity 

have provided a detailed body of mechanisms that permit plasticity in the juvenile and 

restrict but also enable it later in life.  

 

It is generally believed that adult neurons are morphologically much more stable than 

during the critical period. Several recent in vivo imaging studies demonstrated that 

dendritic arbors and spines are much more constant in adults than in juveniles and that 

spine motilities decrease with age (Lendvai et al., 2000; Gan et al., 2003; Majewskaet al., 

2003; Konur & Yuste 2004).  

In agreement with these findings, many lines of evidence suggest that the extracellular 

matrix (ECM) in the adult CNS is much denser and less permissive for growth processes.  

Consequently, removal of certain ECM components allows for heightened functional and 

morphological plasticity in the adult (Pizzorusso et al., 2002, 2006; Berardi et al., 2004). 

Furthermore, extracellular proteolysis by tissue-type plasminogen activator (tPA) 

declines with age and increases upon plasticity induction during the critical period. 
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Disruption of tPA release prevents plasticity and its structural consequences on dendritic 

spines (Mataga et al., 2002, 2004).  

Also myelination seems to play an important role in reducing plasticity after the critical 

period. Blocking signaling of myelin-derived Nogo by knockout of the Nogo-66 receptor 

leads to a lifelong heightened plasticity and thus a never-ending critical period (McGee et 

al., 2005).  

 

In addition to the decreased structural plasticity in the adult compared to juveniles, 

several studies also revealed molecular mechanisms to be differently recruited in critical 

period and adult plasticity. These mechanisms for instance include differential epigenetic 

regulations, like histone acetylation and phosphorylation, and CREB regulated gene 

expression (Suzuki et al., 2004; Pham et al., 2004; Putignano et al., 2007). Interestingly, 

pharmacological stimulation of histone acetylation promoted plasticity in the adult 

(Putignano et al., 2007).        

 

In contrast to the particularities of brain function early in life, the effects of normal aging 

on brain function are much less understood. However, it has become obvious that 

changes at all levels of neuronal function occur continuously throughout life. For instance, 

changes in neuronal morphologies, such as in dendritic trees or spine densities (Turner & 

Deupree, 1991; Markham & Juraska, 2002), gene expression (Jiang et al. 2001; Lee et al., 

2000), electrophysiological properties (Barnes et al., 1983) as well as in network 

activities (Wilson et al., 2005) occur throughout life and may contribute to the differences 

in learning, memory and cognition at different ages.  

 

There is much evidence that many cognitive abilities as well as the ability to process 

sensory information decline with age (Burke & Barnes, 2006). At the same time, some 

studies report profound compensations and adaptations in aged subjects. For instance, it 

was shown that older adults have increased multisensory integration capabilities than 

younger adults and in this way by far overcome their disadvantage in unisensory 

perception (Laurienti et al. 2006).  
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In conclusion, it seems that the brain remains plastic and retains an immense potential for 

adaptation throughout the entire life even if the strategies to adapt might be distinct at 

different ages.   

 

1.1.5. The capacity to adapt is influenced by the life-style 

Interestingly, not only the age of an animal but also its life-style and -situation have 

important impacts on the plastic abilities of its nervous system.  

A large variety of life conditions have been implicated in influencing experience-

dependent plasticity. Amongst many other factors, the animal’s gender, hormone status, 

stress level, social behavior, hibernation, parental behavior, and rearing conditions have 

been reported to influence plasticity (Rollenhagen & Bischof, 1994; Silva-Gomez et al., 

2003; Kozorovitskiy et al., 2006; Vyas et al., 2006; von der Ohe, 2007).  

 

Likewise, housing animals in environments that are “enriched” in comparison to their 

regular housing conditions induces a large variety of cellular, molecular and behavioral 

changes (van Praag et al., 2000; Nithianantharajah & Hannan, 2006) .  

Although the enriched environment conditions vary from laboratory to laboratory, they 

most often consist of the possibility for social interaction, increased motor and 

exploratory activities as well as enrichment in sensory stimuli, such as objects of different 

colors, materials and odors. Even if the “enriched” environment of a laboratory cage is 

still very poor in comparison to the natural environment, the difference to the regular 

housing conditions is apparently already big enough to produce many consistent and 

robust effects on learning and memory performance and is thus a useful model to study 

experience-dependent plasticity.   

 

Early studies investigating the effects of differential housing showed that enrichment 

altered cortical weight and thickness (Bennett et al., 1969; Diamond et al., 1972, 1976). 

Subsequent and more detailed studies have shown that in some neuronal populations 

enrichment can increase dendritic branching, length and spine numbers, as well as 

synapse numbers and sizes (Greenough & Volkmar, 1973a, 1973b; Greenough et al., 

1985; Connor et al., 1982; Turner et al., 1985; Faherty et al., 2003; Leggio et al., 2005). 
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Consistent with enrichment-induced synaptogenesis, increases in levels of pre- and 

postsynaptic proteins, such as PSD-95 and synaptophysin, have been found (Frick & 

Fernandez, 2003; Nithianantharajah et al., 2004; Kozorovitskiy et al., 2005; Lambert et 

al., 2005).  

Furhermore, genes involved in synaptic function and cellular plasticity are altered upon 

enriched environment (Rampon et al., 2000). For instance, enrichment induces alterations 

in the expression of NMDA and AMPA receptor subunits. These findings go in line with 

evidence for increased synaptic strength, including specific forms of synaptic plasticity 

such as LTP, upon enriched environment (Foster et al., 1996, Foster & Dumas, 2001; 

Duffy et al., 2001; Artola et al., 2006).  

Enrichment can also increase levels of neurotrophins, such as brain-derived neurotrophic 

factor (BDNF) and nerve growth factor (NGF) (Torasdotter et al., 1998; Pham et al., 

1999; Ickes et al., 2000).  

 

At the behavioural level, enrichment enhances learning and memory (Moser et al., 1997; 

Schrijver et al., 2002; Lee et al., 2003), reduces memory decline in aged animals (Bennett 

et al., 2006), decreases anxiety and increases exploratory activity (Chappillon et al., 1999; 

Roy et al., 2001; Benaroya-Milshtein et al., 2004, Friske & Gammle, 2005). 

Interestingly, enriched environment leads to increased hippocampal neurogenesis and the 

newly born granule cells have been demonstrated to be integrated into functional circuits 

(Kempermann et al., 1997, 1998a, 1998b, 2002) Still, whether or not these newborn cells 

contribute and in which ways to the improved performance in learning and memory is 

still a matter of debate (Bruel-Jungerman et al., 2005; Meshi et al., 2006) 

 

1.2. HIPPOCAMPUS 

1.2.1. The hippocampus as a model system to study neuronal circuit plasticity 

We have chosen the hippocampus as a model system to study morphological, neuronal 

circuit plasticity because of its unique anatomy and roles in learning and memory. A rich 

amount of indispensable knowledge is available concerning hippocampal functioning, 
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anatomy and physiology and has been invaluable to put our findings into context. 

Furthermore, many imaging, electrophysiological and behavioral tools have been 

developed by others and exploited in our work to study the hippocampus’ plasticity in 

vitro and in vivo. The basic features of the hippocampus are described in the following 

paragraphs. 

 

1.2.2. Hippocampal functions 

Maybe the earliest recognized and most widely accepted role of the hippocampus is its 

role in memory (Eichenbaum 2000, Milner 1998). Damage to the hippocampus causes 

anterograde amnesia, the incapacity to store new memories, and defective declarative 

memory, e.g. the failure to recall everyday facts and events. Perceptual and cognitive 

abilities are usually unaffected, as are the capacities for working memory and retrieval of 

remote memories. In addition to the inability to convert new information into stable 

memories, patients with bilateral hippocampal damage also suffer from a temporally 

graded retrograde amnesia, with recent retrograde memory being impaired while remote 

memories remain intact (Zola-Morgan & Squire, 1990, Teng & Squire, 1999).  

 

This indicates that the hippocampal formation has a time-limited role in memory storage 

and is not necessary for storage or retrieval of remote memories. This temporal limitation 

of memory storage in the hippocampus was further investigated in animal studies and it 

was shown that the brain activity during memory performance was shifted with time from 

the hippocampus to cortical areas indicating that the memory ‘trace’ moves from a 

primary hippocampal to a later cortical location (Bontempi et al. 1999). 

 

The common observation of temporally graded retrograde amnesia has led to the 

prevalent hypothesis that memories undergo consolidation, an extended process through 

which memories become more permanent (Polster et al. 1991).  

 

There are several mechanisms thought to underlie consolidation and to make memories 

long-lasting. Modifications of synaptic efficacy, like long-term potentiation (LTP), 

structural changes of synapses (Dudai, 1996; McGaugh, 2000; Lamprecht & LeDoux, 
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2004), as well as interactions between different brain regions, such as between 

hippocampus and cortical areas, are believed to be essential for memory consolidation 

(Dudai, 2004, Frankland et al. 2004, Ross & Eichenbaum 2006).  

 

Another but closely related functional characteristic of the hippocampus is the occurrence 

of cells that fire in a location-specific manner, the so called place cells. The discovery of 

place cells led to the suggestion that the hippocampus is involved in generating a mental 

representation of the outside world and its spatial organization, known as the “cognitive 

map” (O’Keefe and Dostrovsky, 1971). This discovery led to the formulation of the 

‘cognitive map theory’ of memory formation (O’Keefe and Nadel, 1978). 

 

The cognitive map theory states that the hippocampus is essentially a spatial mapping 

system that is used to organize and remember the items and events of experience.  

In contrast to this idea, a second theory states that the hippocampus is a more general 

learning system important for encoding relationships between environmental stimuli and 

creating episodic memories independent of spatial context. This alternative theory is 

called the ‘relational learning’, ‘declarative memory’ or ‘episodic memory’ theory. 

 

Recent evidence suggests that these two theories may not be mutually exclusive as there 

are many examples of hippocampal cells encoding either spatial or nonspatial 

information. At the same time there are cells that code nonspatial information coupled to 

spatial correlates. Thus, for many experimental data both theories could hold true 

(O’Keefe & Nadel, 1978; Wood et al., 1999; Moita et al., 2003; Knierim, 2003). Since 

episodic memories, by definition, include information about the time and place where the 

episode occurred, contextual information is a necessary prerequisite for any episodic 

memory. Thus, place fields seem to contribute importantly to episodic memory as part of 

the needed context representations. (Smith & Mizumori, 2006) 

 

Interestingly, during sleep place cells have a tendency to fire in the same sequence as 

they did during the actual movement in an earlier awake state (Skaggs & McNaughton, 

1996; Qin et al. 1997) and it has been suggested that sleep plays an important role in 
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memory consolidation (Stickgold, 2005). According to the ‘trace reactivation’ theory, 

memory traces stored during the wake state are reactivated during slow-wave sleep and 

thus consolidated and bound to other traces (Hoffman & McNaughton, 2002).  

 

Thus, although it is widely accepted that the hippocampus plays a critical role in learning 

and memory, there are contrasting views and many ideas of how the hippocampus 

achieves these functionalities.  

 

Interestingly, the hippocampus displays two characteristic and mutually exclusive brain-

wave activities that may be associated with learning and memory. During exploration the 

hippocampus exhibits theta activity and is thought to acquire new representations of its 

environment, whereas during quiet wakefulness and slow-wave sleep, it displays sharp 

wave activities that are thought to facilitate the consolidation of the information (Buzsaki, 

2002; Sutherland & McNaughton 2000).  

 

Taken together, an immense richness of information has become available about 

hippocampal features and function. Still, it remains a major and challenging task to 

combine knowledge about activities of cells and networks with functionalities achieved 

by the hippocampus, such as the encoding of memories.       

 

1.2.3. Anatomy of the hippocampus  

The hippocampus is located in the temporal lobe of each brain hemisphere. From outside 

it appears as an elongated, banana-shaped structure with its long axis extending in a “C”-

shaped fashion throughout the temporal lobe. The long-axis of each hippocampus is 

referred to as the septotemporal axis; the orthogonal axis is referred to as the transverse 

axis.    

 

The hippocampus is one part in a group of structures within the limbic system usually 

called the hippocampal formation comprising the dentate gyrus, hippocampus, subiculum, 

pre- and parasubiculum, and the entorhinal cortex.  
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When cut transversely, the hippocampus has a very distinctive and readily identifiable 

structure due to its clear lamination: both the neuronal cell bodies and the zones of 

connectivity are arranged in orderly layers. The hippocampus proper constists of two 

crescent-like regions, the Ammon’s horn or “CA” region (short for “Cornu Ammonis” 

due to its resemblance to the ram’s horn carried by the Egyptian god Ammon), and the 

dentate gyrus (DG). The CA region can be further subdivided into three subregions called 

CA1, CA2 and CA3 that are distinct with respect to their connectivity and to the size of 

their pyramidal cell bodies. CA3 and CA2 pyramidal cell bodies are larger than those of 

CA1. CA3 is the only region receiving input from the dentate gyrus. 

Together the hippocampus resembles in shape that of a seahorse which led to its name 

(from the Greek words for horse “hippo” and “kampos” meaning sea monster).  

 
 

Figure 1. Three dimensional representation of the rat hippocampus (modified from Amaral & Whitter, 1995) 
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1.2.4. Basic hippocampal circuits 

The basic circuitry of the hippocampus is often simplified as a unidirectional excitatory 

pathway linking consecutively the main hippocampal regions in a closed circuit. It is 

important to note that this is a simplistic view of a much more complex circuitry leaving 

out numerous important recurrent, associative as well as commissural and interneuronal 

components.  

 

For simplicity, the entorhinal cortex is considered to be the starting point giving rise to 

the perforant path that projects through or “perforates” the subiculum and terminates both 

in the dentate gyrus and in the CA3 field of the hippocampus. Entorhinal cortex also 

connects directly to CA1, generating a shorter loop that synapses DG and CA3. The next 

step in the circuitry is the dentate gyrus giving rise to the mossy fibers that terminate in 

the stratum lucidum on the proximal dendrites of the CA3 pyramidal neurons. The CA3 

pyramidal cells, in turn, project heavily to other levels of CA3 by associational 

connections, as well as to CA1, as the so called Schaffer collaterals. Schaffer collaterals 

innervate both, the apical and basal dendrites of CA1 pyramidal cells. CA1 in contrast to 

CA3 pyramidal cells do not give rise to a major set of collaterals and has very few 

associational connections, instead it projects to the subiculum and to the deep layers of 

the entorhinal cortex. The subiculum itself also originates a projection to the deep layers 

of the entorhinal cortex. Finally, the deep layers of the entorhinal cortex, project to many 

of the same cortical areas that originally projected to the entorhinal cortex. Thus, 

information entering the entorhinal cortex from a particular cortical area can traverse the 

entire hippocampal circuit and ultimately be returned to the cortical area from which it 

originated (Amaral & Witter, 1989; Johnston & Amaral, 2004). 

 

1.2.5. The dentate gyrus and the mossy fiber pathway 

The dentate gyrus consists of three layers: the principle or granule cell layer; the largely 

acellular molecular layer, above the granule cell layer; and the hilus, or polymorphic cell 

layer, located below the granule cell layer. The granule cells have small (about 10 µm in 

diameter) cell bodies arranged in a densely packed cell layer shaped like a “U” or “V” 

surrounding the hilus.   
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The dentate gyrus granule cells are monopolar neurons; their dendrites emerge only from 

one side of the neuron and extend perpendicularly to the cell layer into the overlaying 

molecular layer where they receive their synaptic inputs. The unmyelinated axons of the 

granule cells are called mossy fibers and originate from the opposite site of the cell body. 

They extend towards the hilus where they establish several collaterals. Through 

numerous small and fewer big varicosities these collaterals contact hilar interneurons that 

can be excitatory and inhibitory. A particular excitatory interneuron type of the hilus 

contacted by the mossy fibers is the mossy cell. Mossy cells are innervated by granule 

cells of the same septotemporal level but themselves project to distant levels located both 

septally and temporally from the level of their cell bodies as well as to the dentate gyrus 

of the other hemisphere. Their projections occupy almost exclusively the inner third of 

the molecular layer of the dentate gyrus and are called ipsilateral associational-

commissural projections. In addition to contacting granule cells, these projections also 

synapse onto GABAergic interneurons of the dentate gyrus and thus provide feedforward 

excitatory as well as inhibitory pathway to distant septotemporal levels. At the same time, 

mossy fiber collaterals also contact GABAergic, inhibitory interneurons that are more 

locally limited in their projections and thus inhibit granule cell activity at the same 

septotemporal levels. 

 

The mossy fibers next exit the hilus as a coalesced bundle of fibers and enter the stratum 

lucidum of CA3 where they synapse onto CA3 pyramidal neurons.  

Once the mossy fibers leave the hilus they have very few collaterals and establish very 

large and characteristic presynaptic terminals, the so-called large mossy fiber terminals 

(LMTs). Each mossy fiber establishes about 10-15 LMTs at 80-150 µm intervals 

contacting very large and complex dendritic spines, the thorny excrescences of 

postsynaptic CA3 pyramidal neurons. The great majority of mossy fibers contact the 

proximal part of the apical dendrite of CA pyramidal cells in the stratum lucidum. Only 

in the part of CA3 located closest to the dentate gyrus (CA3c), some mossy fibers extend 

deep to the pyramidal cell layer in what has been called the infrapyramidal bundle. Only 

in this region, the mossy fibers innervate both, the apical and basal dendrites of pyramidal 
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cells. Interestingly, the extent of the infrapyramidal projection varies across species and 

even across strains within species and seems to correlate with behavioral performance in 

spatial tasks (Schwegler & Crusio, 1995).  

 

Each CA3 pyramidal neuron has been estimated to be contacted by 30-50 LMTs (Henze 

et al. 2000). A single LMT contains many active zones and thus establishes many 

synaptic contacts with a single CA3 pyramidal neuron. The LMT is an exceptionally 

strong synapse, also described as a “detonator synapse” because of its ability to elicit as a 

single synaptic connection action potentials in postsynaptic pyramidal cells (Reid et al. 

2001, Henze et al. 2002). In addition to these powerful excitatory connections, mossy 

fibers establish synapses with inhibitory interneurons through en-passant varicosities and 

LMT filopodia. These connections provide effective feed-forward inhibition, especially 

at low-frequency firing (Acsady et al., 1998).   

 

For most of its course through area CA3, the mossy fiber pathway can be considered the 

only true lamellar fiber system of the hippocampal formation as it shows only a very 

limited degree of septotemporal divergence. However, near the CA3-CA2 border the 

mossy fibers make an abrupt turn temporally and project in a significant way (1-2 mm) 

longitudinally towards the temporal pole of the hippocampus (Amaral & Witter, 1998).   

 

This lamellar organization together with the stereotyped and sparse excitatory 

connectivity makes the mossy fiber and its LMTs an ideal system to study circuit 

rearrangements.    
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2.1.1. SUMMARY 

We investigated rearrangements of connectivity between hippocampal mossy fibers and 

CA3 pyramidal neurons. We find that mossy fibers establish 10-15 local terminal 

arborization complexes (LMT-Cs) in CA3 exhibiting major differences in size and 

divergence in adult mice. LMT-Cs exhibited two types of long-term rearrangements in 

connectivity in the adult: progressive expansion of LMT-C subsets along individual 

dendrites throughout life, and pronounced increases in LMT-C complexities in response 

to enriched environment. In organotypic slice cultures, subsets of LMT-Cs also 

rearranged extensively and grew over weeks and months, altering the strength of 

preexisting connectivity, and establishing or dismantling connections with pyramidal 

neurons. Differences in LMT-C plasticity reflected properties of individual LMT-Cs, not 

mossy fibers. LMT-C maintenance and growth were regulated by spiking activity, 

mGluR2-sensitive transmitter release from LMTs, and PKC. Thus, subsets of terminal 

arborization complexes by mossy fibers rearrange their local connectivities in response to 

experience and age throughout life. 

 

 

2.1.2. INTRODUCTION 

Sustained rearrangements of synaptic connections can provide mechanisms to alter 

connectivity in neuronal circuits, and encode experience in the brain (Lichtman and 

Colman, 2000; Poirazi and Mel, 2001; Chklovskii et al., 2004). It is well established that 

local rearrangements of circuitry driven by experience play prominent roles in the fine-

tuning of neuronal circuits during postnatal development (Lichtman and Colman, 2000; 

Linkenhoker and Knudsen, 2002; Gan et al., 2003; Linkenhoker and Knudsen, 2005). In 

contrast, although there is abundant evidence for pronounced physiological plasticity in 

the adult, evidence that structural rearrangements of circuitry also take place in the adult 

has been scarce (but see Knott et al., 2002). Recent in vivo time-lapse imaging studies in 

neocortex have reported appearance and disappearance of postsynaptic dendritic spine 

subpopulations, and shown that the frequency of these events can be influenced by 

sensory experience (Lendvai et al., 2000; Trachtenberg et al., 2002; Holtmaat et al., 

2005). These remodeling events were more frequent in younger mice, but turnover was 
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also detected in older adults (Holtmaat et al., 2005; Lee et al., 2006; but see Zuo et al., 

2005). In addition, a study using long-term organotypic hippocampal slice cultures 

showed that subsets of presynaptic terminals can undergo comparable balanced turnover, 

and that the extent of this turnover is again enhanced by synaptic activity (De Paola et al., 

2003). Finally, recent studies of adult mouse barrel and visual cortex have provided 

evidence for such structural plasticity of presynaptic terminals in vivo (De Paola et al., 

2006; Stettler et al., 2006). However, these studies imaged groups of either pre- or 

postsynaptic elements within small regions of neuropil, and could thus not assign 

complete sets of synapses by individual identified presynaptic neurons to their 

postsynaptic targets. Consequently, it has remained unclear to what extent synapse 

rearrangement processes in the adult produce net alterations in the numbers of synaptic 

connections between identified synaptic partners. For the same reasons, it has also 

remained unclear whether, and under what circumstances, repeated rearrangement 

processes can lead to incremental shifts of connectivity in the adult. To address these 

questions, we looked for simple and well-characterized circuitry that had been implicated 

in experience-related anatomical plasticity, and which was accessible to large-scale 

repeated imaging during long periods of time. 

 

The mossy fiber projection by dentate gyrus granule cells onto hippocampal pyramidal 

neurons in CA3 (Johnston and Amaral, 1998; Henze et al., 2000) is an attractive system 

to investigate patterns of synaptic connection rearrangements on a comprehensive scale. 

First, most of the mossy fiber projection in CA3 is lamellar with respect to the 

hippocampal long axis, and exhibits stereotype and simple relationships with respect to 

the number of its postsynaptic partners. Each mossy fiber establishes 10-15 large mossy 

fiber terminals (LMTs) at 80-150 µm intervals along its projection in CA3 that can be 

unambiguously identified anatomically (Johnston and Amaral, 1998). The average 

number of distinct mossy fiber inputs per pyramidal neuron in CA3 has been estimated at 

about 30-45 (Henze et al., 2000), suggesting that the probability for random pairs of 

mossy fibers to synapse onto the same pyramidal neuron is very low. These low synapse 

numbers stand in sharp contrast to the very high degree of connectivity among pyramidal 

neurons in CA3, and from CA3 to CA1. Second, mossy fibers in stratum lucidum 
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establish well-characterized and powerful excitatory synaptic connections with pyramidal 

cells through LMTs, and with inhibitory interneurons through en-passant varicosities and 

LMT filopodia (Acsady et al., 1998; Geiger and Jonas, 2000; Reid et al., 2001; Henze et 

al., 2002; Engel and Jonas, 2005; Nicoll and Schmitz, 2005). The latter provide efficient 

feed-forward inhibition, and mediate the predominant outcome of mossy fiber activation 

when these spike at low frequencies (Lawrence and McBain, 2003; Mori et al., 2004). In 

contrast, mossy fibers elicit increasing excitation of CA3 pyramidal neurons when firing 

at higher frequencies (Geiger and Jonas, 2000; Henze et al., 2002; Mori et al., 2004). As a 

consequence, and probably depending on spiking frequency, one or a small number of 

converging LMTs can be sufficient to elicit action potentials in a postsynaptic pyramidal 

cell, assigning a major instructional role to this synapse in triggering network activity in 

the hippocampus (Henze et al., 2002). In addition, postsynaptic spiking induced by LMTs 

also serves as a powerful trigger to induce LTP at co-active weaker associational 

synapses onto the distal sections of the same pyramidal neuron dendrites (Kobayashi and 

Poo, 2004). A third key feature is that individual mossy fibers only fire rarely during 

hippocampal recruitment (sparse code), suggesting that small ensembles of co-active 

granule cells as such convey information to the hippocampal network, and that the 

precise outcome of the firing for each of these cells might be functionally important 

(Johnston and Amaral, 1998; Henze et al., 2002).  

 

Several lines of evidence have implicated the mossy fiber projection in anatomical 

plasticity related to experience. Neuroanatomical analyses using Timm staining in mice 

and rats have suggested that mossy fiber projection sizes are correlated to performance in 

hippocampal-dependent tasks (e.g. Schopke et al., 1991; Pleskacheva et al., 2000), and 

that experience can lead to significant alterations in the size of the mossy fiber projection 

(Schwegler et al., 1991; Ramirez-Amaya et al., 2001). Furthermore, long-term stress can 

lead to reductions in spatial learning performance and in the average density of mossy 

fiber synapses as determined by electron microscopy, and these impairments can be 

reversed through training for spatial tasks (McEwen, 1999; Sandi et al., 2003). Finally, 

independent studies have revealed that the dendrites and dendritic spines of CA3 

pyramidal neurons are particularly sensitive to stress-inducing treatments and stress-
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related hormones (e.g. McEwen, 1999), suggesting that both the pre- and postsynaptic 

elements of mossy fiber synapses are subject to experience-related anatomical plasticity 

in the adult. Taken together, these findings from distinct species and experimental 

approaches support the notion that the mossy fiber projection and its LMT synapses in 

CA3 provide a promising system to investigate persistent rearrangements of synaptic 

circuitry influenced by experience in the adult brain. 

 

Here we exploited transgenic mice expressing membrane-targeted GFP in only few 

neurons (Thy1-mGFPs) (De Paola et al., 2003), and high-resolution imaging to 

investigate the connectivity of LMTs in fixed mouse tissue and organotypic slice cultures. 

We find that LMTs are highly heterogeneous in vivo and in slice cultures, and that many 

of them are connected through 10-200 µm processes to “satellite LMTs” that can contact 

distinct pyramidal neurons in CA3. LMTs are thus components of local presynaptic 

terminal arborization complexes (LMT-Cs) by mossy fibers, exhibiting varying degrees 

of divergence with respect to their local targets in CA3. We then show that LMT-Cs 

exhibit pronounced long-term rearrangements in the adult. We provide evidence for two 

distinct types of rearrangements: 1) a life-long gradual growth of the largest LMT-Cs 

along pyramidal cell dendrites; 2) a dramatic increase in the complexity of many LMT-

Cs in mice housed in an enriched environment. We finally show that subsets of LMT-Cs 

exhibit comparable rearrangements and growth over weeks and months in slice cultures, 

that these anatomical rearrangements reflect functional rearrangements in the local 

connectivity of LMT-Cs with pyramidal neurons, that heterogeneities in plasticity and 

growth reflect local properties of individual LMT-Cs, and that LMT-C maintenance and 

growth are regulated by synaptic activity, mGluR2-sensitive transmitter release from 

LMTs, and PKC. Taken together, these results demonstrate the existence of sustained 

local rearrangements of connectivity by defined terminal arborization structures regulated 

by activity in the adult.  
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2.1.3. RESULTS 

 

Divergence and convergence of LMT complex connectivities onto pyramidal 

neurons 

As a prerequisite to investigate the anatomical plasticity of LMTs, we analyzed their 

morphologies and connectivities, using Thy1-mGFPs transgenic mouse lines expressing 

membrane-targeted GFP in only few neurons (De Paola et al., 2003), high-resolution 

light microscopy of perfused brain tissue, and 3D image processing. The degree of 

anatomical resolution conferred by the mGFP marker allowed us to provide views of 

hippocampal LMTs at a very high level of overall organization and resolution (Fig. 1). 

We found that in addition to core terminal regions with filopodia adjacent to the main 

axon, which had been described in previous studies, LMTs frequently exhibited processes 

of 10-200 µm in length, which emerged from the core LMT and terminated at “satellite 

LMTs” (Fig. 1A, Suppl. Fig. 1; range of 0-5 satellites per LMT; depending on age, 38% 

(2.5 months), 58% (6 months), and 70% (16 months) of all LMTs exhibited satellites; see 

Fig. 3C). Like core LMTs, satellites were larger than 2.5 µm in diameter, exhibited 

filopodia, and contacted pyramidal neurons (see below). To rule out the possibility that 

some of the structures might be due to the mGFP marker itself, we also acquired images 

from mice expressing cytosolic YFP (Thy1-cYFPs) (Feng et al., 2000). Although the 

resolution was substantially inferior, the cytosolic marker revealed the same types of 

subcomponents and arrangements, including core regions and satellites, as detected with 

the mGFP marker (Suppl. Fig. 1B). For the sake of clarity, we therefore introduce the 

term “LMT complex” (LMT-C) to designate a local presynaptic terminal arborization 

structure consisting of a core LMT, its filopodia, its satellite LMTs, and their filopodia. 

Accordingly, mossy fibers establish 10-15 LMT-Cs in CA3, and some of these LMT-Cs 

exhibit satellites. 

 

A comparison among large sets of LMT-Cs within small regions of hippocampus 

revealed pronounced variations among these presynaptic terminal complexes, which 

ranged from small core terminal regions to very large and highly complex structures 

consisting of LMTs with multiple subunits, and of several satellites (Fig. 1; see also Figs. 
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2A, 2C, 3C). Reconstruction of three LMTs from serial EM sections of non-transgenic 

hippocampi provided independent evidence that individual LMTs can consist of multiple 

interconnected subunits (Suppl. Fig. 2). The very large sizes of some LMT-Cs, and the 

presence of satellites at many of them suggested that many of these terminal structures 

might establish synaptic contacts with more than one postsynaptic CA3 pyramidal neuron. 

Indeed, a detailed analysis provided clear evidence of individual LMT-Cs in contact with 

more than one CA3 pyramidal neuron (Fig. 1A, Suppl. Videos 1, 2). This was not only 

true for the different LMTs belonging to an LMT-C, but also for large individual LMTs 

(Fig. 1A). In addition to this unexpected local divergence of the outputs by one LMT-C 

onto distinct pyramidal neurons, we also found clear evidence for extensive convergence 

of distinct LMT-C inputs onto individual thorny excrescence clusters (Fig. 1B).  

We conclude that LMT-Cs are local terminal arborization structures of mossy fibers 

exhibiting dramatic differences in their sizes, complexities, and divergence onto CA3 

pyramidal neurons in adult mice.  
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Figure 1. Divergence and convergence of LMT-C connectivity onto pyramidal neurons in CA3.  
A: Complexity and divergence of LMT-Cs. Individual mossy fibers and pyramidal neurons in CA3a/b (6-months Thy1-
mGFPs mouse); Imaris volume projections (high-intensity mode acquisition). Upper panel, left: cream arrows: LMTs, 
red arrows: one LMT covering a long segment of pyramidal neuron dendrite. Upper panel right: lower magnification 
image of field shown on the left. Green arrows: two examples of thorny excrescence clusters. The inset shows the same 
field, but seen from behind (mirror image to facilitate orientation); proximal sections were excluded to reveal the 
dendrite-facing surface of the elongated LMT (red arrow). Lower panel left: camera lucida drawing of CA3 field shown 
above. LMTs belonging to the same complex (3D-analysis) are in the same color. Lower panels center and right: 
Examples of LMT-Cs (cream arrows) each contacting two distinct pyramidal neurons (green arrows); right: LMT and 
one satellite (to the right). 
B: Convergence of LMT-Cs belonging to distinct mossy fibers at the same thorny excrescence cluster of a pyramidal 
neuron dendrite in CA3 stratum lucidum (2.5-months Thy1-mGFPs mouse). Left: single confocal section (green arrows 
delineate the outline of the thorny excrescence cluster); center: camera lucida drawing, including LMTs from 5 distinct 
mossy fibers converging onto the thorny excrescence cluster; right: MIP of stacks including the cluster and its mGFP-
positive LMT inputs. The LMT-Cs belonging to the dark blue and green mossy fibers both include satellites, and 
converge on a second dendrite on the left. Bars: 5 μm.  
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Supplementary Figure 1. Comparison of LMT-Cs in vivo, as visualized using Thy1-mGFPs or Thy1-cYFPs mice.  
Image settings (MIP of raw data) comparable to those shown in Fig. 2A for LMT-Cs in slice 
cultures. Arrows: original LMT (green; next to mossy fiber), satellites (red), beady subunits 
(yellow). A: Examples of LMT-Cs in 15 Mo, Thy1-mGFPs mice. Note how the LMT 
structures are comparable to those detected in slice cultures. 
B: Examples of LMT-Cs in 4 Mo, Thy1-cGFPs mice. Note how complex arrangements, 
including beaded subunits and satellites are also visualized with cytosolic YFP. Bar: 5 μm. 
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Supplementary Figure 2. Ultrastructural analysis of complex LMTs.  
Electron micrographs of CA3a LMTs in 3 months wild-type mice. Blue arrows: regions where connection between 
subunits is included in the section. A: A complex LMT consisting of multiple interconnected subunits (cream outlines; 
verified 
by consecutive sections). Note arrangement of many thorny excrescences (red outlines) around the edge of LMT 
subunits. B: Serial sections of one complex LMT. Outlines: interconnected subunits (cream), base of dendrite (violet, 
left panel) and examples of postsynaptic thorns interconnecting LMT subunits (red); for orientation, a myelinated 
axonal profile is filled in blue. C: Partial reconstruction of LMT complex shown in (B). The schematic is based on 65 
consecutive sections, and outlines the main topographic relationships included in the sections (axonal elements in blue, 
dendritic elements in yellow); it indicates the arrangement of thorny excrescence main branches (three of them), and 
their secondary branches extending around the edges of LMT subunits, but does not include tertiary side-branches into 
LMT subunits and their synaptic complexes. LMT subunits were interconnected along thorn main branches. Bars: 2 μm. 
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Life-long expansion of hippocampal LMT subsets along pyramidal dendrites 

We next wondered whether the dramatic complexities and differences among LMT-Cs 

are present to a similar extent throughout life, or whether LMT-Cs might undergo 

systematic alterations with maturation and during adulthood. A comparison of LMTs 

from the same regions of hippocampal CA3, but from mice of different ages, revealed 

clear differences in the size distributions of these presynaptic terminal structures, and a 

selective shift to larger sizes with increasing age (Fig. 2A-C). The mGFP construct 

labeled mossy fibers and LMT-Cs with remarkable and comparable homogeneity 

throughout life (Suppl. Fig. 3), arguing against the possibility that these LMT size shifts 

might reflect systematic distortions of the imaging data set. Interestingly, the shifts in 

LMT sizes did not affect all LMT size groups equally: while a large fraction (50-80%, 

depending on the age) of LMTs was relatively small (volumes equivalent to 1-3 subunits 

of 3 µm diameter) at any age, the remaining LMTs shifted to larger sizes, and the average 

sizes of the largest 5-10% among them grew dramatically with age (Fig. 2B). 

Remarkably, this gradual age-related growth of larger LMTs was not confined to any 

particular period of life, but instead continued throughout life, including old age (Fig. 2B). 

This was not accompanied by a corresponding decrease in the average density of LMTs 

(average densities of LMTs per (92 x 92 x 7.5 µm) volumes of CA3a, normalized per 

mGFP-positive granule cell on the same section were: 1.14 + 0.12 (3 months), 1.18 + 

0.20 (6 months), 1.37 + 0.15 (16 months), 1.34 + 0.18 (22 months); N=8 sections, 16 

volumes, from 2 mice each; range of 21-42 LMTs per volume), arguing against the 

possibility that the higher contribution of the larger LMTs to the total volume of LMTs 

with increasing age was due to a corresponding loss of smaller LMTs.   

 

A detailed comparison of larger LMTs at different ages revealed that the predominant 

contributions to their increase in size were longitudinal extensions, which were oriented 

transversal to the mossy fiber projection (Fig. 2C). This was reflected in a gradual 

increase in LMT long-to-short axis ratio values with increasing age (Fig. 2C). High-

resolution analysis suggested that this reflected an expansion of the stretch of CA3 

pyramidal neuron dendrite occupied by individual larger LMTs (Fig. 2C). Taken 

together, these results provide evidence that, in the mouse, there is a continuous net 
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growth of the largest subpopulations of LMTs throughout life, and that this growth 

mainly involves the expansion of LMT subsets along pyramidal neuron dendrites in CA3. 

This relationship between age and LMT size distributions was detected consistently 

among BalbC x C57/Bl6 mice grown under standard housing conditions, suggesting that 

it reflects the impact of a life-long developmental mechanism in the hippocampus. 
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Figure 2. Life-long expansion of hippocampal LMT subsets along pyramidal dendrites. 
A: Overview of LMT distributions in CA3a in male mice of different ages. Note higher incidence of large and very 
large LMTs in older mice. B: Quantitative analysis of LMT size distributions as a function of age (CA3a). Left: Overall 
contributions of LMTs grouped by volume to the total volume of LMTs in the sample. Note gradually increasing 
contribution of the larger LMTs (150-300, and > 300 μm3) with increasing age. N= 9 cubes (from 3 male mice per age). 
One-way ANOVA: p<0.001 (15-60 μm3), p=0.45 (60-150 μm3), p<0.05 (150-300 μm3), p<0.001 (>300 μm3). Right: 
Relative prevalences of LMTs of different sizes as a function of age. N= 9 cubes (from 3 male mice per age). Post-hoc 
Student’s t-test (left and right): p<0.05 (*), p<0.01 (**), p<0.001 (***). A Tukey HSD post-hoc test confirmed these 
significance relationships. C: LMT arrangements in CA3a as a function of age. Note longitudinal expansions of larger 
LMTs parallel to pyramidal neuron dendrites. Cream arrows delineate the longitudinal extension of some of the largest 
LMTs in each panel (3 Mo: 2 LMTs; 6 and 16 Mo: 3 LMTs each). Quantitative analysis: N= 80 LMTs, 3 mice per age; 
bars: median values; short axis perpendicular to longest axis; one-way ANOVA: p<0.01 (ratio long/short).  Scale bars: 
25 μm.  
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Supplementary Figure 3. Homogeneity of axonal and LMT labeling by mGFP construct.  
Upper six panels: examples of confocal images and corresponding signal intensity plots for the membrane stretches 
indicated 
by the red lines (6 months mouse). The following positions are indicated along the line, and again along the intensity 
plot: beginning of the trace (asterisk), beginning of LMT (green arrow), end of LMT (blue arrow). Lower nine 
histograms: more examples of membrane stretch intensities (mice: 6 months (first three), 16 months, and 22 months 
(last three)). Note that the signal intensity fluctuations do not change in amplitude or frequency along the membrane of 
axons or within LMTs. LMTs of different sizes, either from the same or distinct mice, and at different ages exhibited 
comparable intensity fluctuations, suggesting that mGFP did not accumulate selectively at LMT subsets. The variations 
in signal intensity appeared on a scale that was substantially smaller than the size of LMTs. Furthermore, changing 
thresholds in the volume rendering software, altered the sizes of individual objects to a comparable extent, without 
modifying the relative size differences of LMTs. Occasional areas of higher signal intensities within LMTs reflect 
highly convoluted membrane formations, which can be revealed by non-saturating imaging conditions (see Fig2A 
lower panels), and were also detected in the electron micrographs. Small areas of high membrane density and high 
signal intensity were detected at comparable frequencies at LMTs of different sizes, and from mice of different ages. 
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Experience-related increase of LMT-C complexities in adult mice 

To investigate the possibility that experience might influence LMT-C size distributions 

and/or complexities, we analyzed LMTs of mice housed under enriched environment (EE) 

conditions known to promote brain and hippocampal plasticity (van Praag et al., 2000), 

and compared them to those of littermates kept under standard housing (Ctrl) conditions 

(see Experimental procedures). We carried out three types of EE experiments: 1) in the 

main set of experiments, mice were kept in EE from P40 to P80, and analyzed at P80 

(EE-P40/P80); 2) in a second set of experiments aimed at comparing the effects of age 

and EE on LMT morphologies, mice were kept in EE from 4 months to 15 months, and 

analyzed at 15 months (EE-4Mo/15Mo); 3) the third set of experiments was aimed at 

determining whether changes due to EE (from 1 month to 4.5 months) might be 

maintained when mice were returned to standard conditions (from 4.5 months to 6 

months; EE-1Mo/4.5Mo-Ctrl6Mo). As shown in Fig. 3A, all three experimental 

conditions produced a significant shift in the prevalence of larger LMT sizes compared to 

controls. At first approximation, EE thus appeared to accelerate the effects of age on 

LMT size distributions. However, a more detailed analysis revealed that the effects of EE 

and age on LMT-C morphologies were qualitatively different. Thus, EE conditions did 

not produce a corresponding net elongation of LMTs (Fig. 3B), and specifically induced 

a pronounced increase in the complexity of LMT-Cs, as revealed by the higher incidence 

of LMT-Cs with satellites, and the higher numbers of satellites per LMT-C (Fig. 3C). 

This specific increase in LMT size and satellite numbers was accompanied by a specific 

increase in the length and complexity of postsynaptic thorny excrescences upon EE (Fig. 

3D). Significantly, increasing age did not lead to a comparable increase in postsynaptic 

thorn lengths (Fig. 3D), and LMTs of EE-4Mo/15Mo mice exhibited more satellites and 

complex outlines than those of corresponding Ctrl mice (not shown). Taken together, 

these results provide strong evidence for the existence of experience-related 

rearrangements of LMT-C connectivity in vivo, and suggest that EE conditions and age 

exert distinct influences on LMT-C rearrangement processes. 
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Figure 3. Experience-related increase in the complexity of LMT-Cs. 
A: Quantitative analysis of LMT size distributions in the different EE protocols. Overall contributions of LMTs 
grouped by volume to the total volume of LMTs in the sample. Note how all EE experiments led to size distribution 
shifts resembling those induced by increasing age (compare to Fig. 2B, left). N=6 cubes (from 4 female mice each). 
Post hoc Student’s t-test: p<0.05 (*), p<0.01 (**). 
B: Quantitative analysis of long/short axis ratios in EE-P40/P80 versus control P80 mice. N=80 LMTs, 3 mice per 
condition; bars: median values; one-way ANOVA: non significant (ratio long/short). 
C: Specific increase in the complexity of LMT-Cs induced by EE in vivo. Left: Camera lucida drawings of 
representative LMT-Cs (CA3a) from P80 mice, kept under EE (left) or Ctrl (center) conditions, and comparison to 
LMT-Cs from 6 months control mice. Note higher frequencies of satellites upon EE conditions. Right: Relative 
prevalences of LMT-Cs without and with satellites as a function of enriched environment and age. N=120 LMTs, from 
3 female mice each. 
D: Specific increase in thorny excrescence lengths and complexities upon EE conditions (CA3a). Left: High-
magnification examples of thorny excrescences (mGFP signal; arrows point to some of the thorns). Right: Quantitative 
analysis of dendrite diameters excluding or including thorny excrescences (at clusters) as a function of EE and age. 
N=40 dendrites, from 2 female mice each. Bars: 15 (B), and 2 (C) μm. 
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Long-term rearrangements and growth of LMT-C subsets in slice cultures 

To investigate LMT-C rearrangements and their regulation in a more experimentally 

accessible system, we analyzed organotypic slice cultures from Thy1-mGFPs mice, where 

LMT-Cs can be imaged and treated in situ. The slices also allowed us to analyze entire 

sets of LMTs belonging to individual axons. In these cultures, LMT-Cs exhibited 

subcomponent arrangements, satellites and diversities comparable to those detected in 

vivo (Fig. 4A-C). Since we found that neurogenesis was extremely rare under our culture 

conditions (a total of 2 BrdU/calretinin double-positive cells out of 8 slices; BrdU 

labeling at day in vitro (DIV) 6, analysis at DIV9 or DIV16), age differences among 

individual granule cells could not account for the dramatic differences in LMT-C 

morphologies. Furthermore, comparable LMT-C diversities, including satellites were also 

detected when non-transgenic slice cultures were transfected with a cytosolic RFP 

construct (cRFP, see Fig. 6A), ruling out the possibility that the LMT-C morphologies 

were a property of transgene positive granule cells in Thy1-mGFPs mice, or due to the 

activity of the Thy1 promoter in granule cells.  

 

In order to capture any type of morphological plasticity by mossy fibers, we acquired 

high-resolution images of entire mossy fiber projections in CA3a-c (Fig. 4A) during 

periods ranging from a few days to several  (up to 5) months. We found that when viewed 

at intervals of 3-5 days and more, many LMT-Cs exhibited dramatic alterations in their 

morphology (Fig. 4B, C). In contrast, even when mossy fibers were imaged for up to 3-4 

months, we did not detect new process outgrowths from the mossy fiber axon itself. 

Instead, axonal dynamics was confined to remodeling and outgrowth events from LMT-

Cs (the only exceptions were occasional short filopodial outgrowths from en-passant 

varicosities (De Paola et al., 2003), which are presynaptic terminals by mossy fibers onto 

inhibitory interneurons). In addition to changes in the shape and size of individual LMTs, 

we noticed that a fraction of LMT-Cs exhibited dramatic large-scale structural plasticity 

(Fig. 4B); this plasticity included process outgrowth or retraction events of up to more 

than 120 µm per day, and the rapid formation or loss of satellite LMTs (Fig. 4B). These 

satellite rearrangements frequently led to the establishment or dismantling of contacts 
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with distinct CA3 pyramidal neurons (Suppl. Fig. 4; in 5/5 investigated cases, the new 

contacts exhibited Bassoon-positive clusters (not shown, but see Fig. 5D)).   

 

To determine whether LMT-C remodeling might lead to sustained changes in the 

arrangement and/or sizes of LMT-Cs in CA3 as a function of time, we repeatedly imaged 

the same mossy fibers and their identified individual LMT-Cs at 20 days intervals for 

periods of up to 4 months. We found that disappearance or appearance events, in which 

an entire LMT-C could either not be detected anymore at two subsequent imaging 

sessions, or appeared after DIV20, were not frequent (disappearances: 76/1500; 

appearances: 58/1500 LMT-Cs). Instead, many preexisting LMT-Cs grew in size during 

many months in slice cultures (Fig. 4C, D). To analyze the growth properties of LMT-Cs, 

we computed size differences for large sets of individual LMT-Cs as a function of time. 

Only LMT-Cs detectable throughout the entire experimental period were included in the 

analysis. Grouping of the results according to the absolute sizes of LMT-Cs at the first 

observation time revealed a net and sustained increase in the average sizes of persisting 

LMT-C over time in the slices, which was much more pronounced for larger LMT-Cs 

(Fig. 4D). A regression analysis revealed that the absolute magnitudes of LMT-C growth 

were strongly correlated to the initial sizes of individual LMT-Cs, but not to the actual 

sizes of LMT-Cs at successive imaging sessions (Fig. 4D). In a way strikingly 

reminiscent to the shifts of LMT sizes in vivo, LMT-C rearrangements in slices led to a 

gradual increase in the contribution by the largest LMT-Cs to total LMT-C volume (Fig. 

4E). In further analogy to LMTs in vivo, LMT growth in slices mainly involved 

elongation, leading to a significant increase in the long-to-short axis ratio of LMTs with 

time in vitro (Fig. 4F). The fastest growing LMT-Cs also remodeled on a larger scale 

than the smaller LMT-Cs (not shown), suggesting that they exhibited stronger anatomical 

plasticity properties. LMT-C growth was not a consequence of the live imaging 

procedure, since slice cultures imaged for the first time at ages ranging from 20 days to 4 

months in vitro exhibited average LMT-C sizes that were comparable to those that had 

been determined when following identified LMT-Cs longitudinally for a corresponding 

period of time in vitro (not shown). In addition to this presynaptic growth, and consistent 

with a net increase in active zone numbers (see Fig. 5D, E), we also detected remodeling, 
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growth and increased complexity of individual thorny excrescences (see Suppl. Fig. 5 for 

an example). We conclude that subsets of LMT-Cs rearrange extensively in organotypic 

slice cultures, altering the sets of pyramidal neurons with which they establish contacts 

through satellites, and consistently growing in size over many months. The arrangements 

and heterogeneities of LMT-Cs in slice cultures thus closely resemble those in vivo, and 

their remodeling and expansion properties exhibit features consistent with those inferred 

from comparing mice of different ages or housing conditions.   
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Figure 4. Rearrangements and growth of LMT-C subsets in organotypic slice cultures.  
A: Left: Overview of an entire mossy fiber projection at DIV20 and DIV40. The dentate gyrus is to the left. Note growth of several 
LMTs. Right: Complexity and diversity of LMT-Cs in slice cultures. The images are maximum intensity projections (MIP), or raw 
data. The two LMTs in the lower left panel (DIV60, arrows) belong to the same complex. B: Large-scale anatomical plasticity at one 
LMT-C in CA3a (cream arrow). Note outgrowth of a long process within one day (DIV52 to DIV53; thin cream arrow), and formation 
of satellite LMTs (red arrows). C: Rearrangements and growth of a large LMT-C (cream arrow) from DIV56 to DIV132. D:  
Quantitative analysis of LMT-C growth in slice cultures. Left, and middle panel: Sizes of individual identified LMT-Cs that persisted 
throughout the analysis were compared at the indicated times, and LMT-Cs were then grouped into small (< 30 μm2), medium (< 60 
μm2) and large (> 60 μm2), according to their sizes at DIV20. N=50 identified LMT-Cs each, from 5 slice cultures. Right: Linear 
regression analysis of identified LMT-C sizes between DIV60 and DIV140. Linear correlation values (R2): 0.95 (DIV80), 0.95 
(DIV100), 0.92 (DIV120), 0.88 (DIV140).E: LMT-C volume distribution as a function of age. Contribution of LMT-C size groups to 
the total volume of LMT-Cs in slice cultures (comparable to the data of Fig. 2B). N=5 cubes, from 5 slices. One-way ANOVA (orange 
asterisk): p<0.05 (*), p<0.01 (**). Post-hoc t-test (blue): p<0.05 (*).F: Quantitative analysis of long/short LMT axis as a function of 
age in vitro. N=20 LMTs, from 5 slices; bars: median values; one-way ANOVA: p<0.001 (ratio long/short).    
Bars: 100 (A, left), 5 (A, right), and 10 μm (B, C). 
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Supplementary Figure 4. Examples of LMT-C outgrowths establishing satellites on distinct pyramidal neurons 
in CA3a stratum lucidum.  
Green arrows: main LMT; red arrows: mGFP-positive pyramidal neuron dendrite. Physical contacts were analyzed 
using Imaris (3D) software. A: Example of new contact. This LMT-C did not contact the mGFP positive dendrite at 
DIV37. A contact was detectable at DIV44 (cream arrow), and a distinct LMT subunit (cream arrows) was maintained 
beyond DIV52. This LMT-C is linked to its mossy fiber (short segment just visible at upper left corner, DIV52 panel) 
through a ca. 35 ⎧m side-branch.B: Example of contact loss. The LMT-C contacts the mGFP positive dendrite at two 
positions (cream arrows) through satellites at DIV50. One of the contacts has been lost at DIV54, and the second one is 
lost between DIV67 and DIV70. Bar: 15 µm. 
 

 
 
 
 

 
 
Supplementary Figure 5. Elongation and increased complexity of a large thorny excrescence in slice culture  
(mGFP signal). Note how the thorny excrescence has elongated at DIV46 and DIV66 (arrows). Shorter thorny 
excrescences along this pyramidal neurons dendrite in CA3 exhibit smaller changes. Bar: 10 μm. 
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Larger LMTs produce a stronger excitation of postsynaptic pyramidal neurons 

Do LMT-C rearrangements and growth lead to changes in the functional connectivity of 

individual LMT-Cs? To determine whether larger LMTs might differ from smaller LMTs 

with respect to the strength of their output onto pyramidal neurons in CA3, we carried out 

intracellular pair recording experiments in slice cultures (DIV20-30). One mGFP-positive 

granule cell was recorded and stimulated under current-clamp mode and a second 

electrode filled with sulforhodamine or Lucifer-yellow was used to label CA3 pyramidal 

cell dendrites present in the close vicinity of one of its core LMTs (either its largest core 

LMT, or a smaller core LMT; see Experimental procedures). These CA3 neurons were 

then recorded under voltage clamp, and tested for monosynaptic connectivity to the 

mGFP-positive granule cell. In this way, we achieved intracellular pair-recordings among 

synaptically connected granule cells and pyramidal neurons in about 10% of the attempts 

(Fig. 5A; see Methods). We found that DCG-IV-sensitive (Ishida et al., 1993) excitatory 

postsynaptic responses evoked by granule cell stimulation were substantially stronger at 

larger LMTs than at the smaller LMTs (Fig. 5A). Significantly, the paired-pulse 

facilitation and frequency-dependent facilitation properties of large and small LMTs were 

not detectably different (Fig. 5B, C), suggesting that smaller (weaker) and larger 

(stronger) LMTs exhibit proportional short-term presynaptic plasticity, and that the 

greater synaptic strength might reflect a larger number of active zones in larger LMTs.  

To determine whether and how differences in the sizes of LMTs might reflect differences 

in numbers of synaptic release sites, we analyzed Bassoon-positive active zones (tom 

Dieck et al., 1998) in individual LMTs (Fig. 5D, E). We found that all elements of LMTs 

contained numerous active zones (Fig. 5D, see also Suppl. Fig. 2), and that LMT sizes 

and active zone numbers were closely correlated independent of time in culture (Fig. 5E). 

We found comparable correlations between LMT volumes and active zone numbers for 

LMTs and their satellites in vivo (N.G. and P.C., unpublished results). We conclude that 

the large variations among LMT sizes reflect corresponding variations in active zone 

numbers, that the expansion of LMT-Cs over time reflects an increase in the number of 

release sites at those LMT-Cs, and that the establishment of satellites reflects the addition 

of release sites by the LMT-C onto the same or new postsynaptic pyramidal neurons in 

CA3. Taken together, the results thus suggest that the profound anatomical 
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rearrangements of individual LMT-Cs in slice cultures reflect corresponding 

rearrangements of their local connectivities onto pyramidal neurons in CA3.  

 

 
Figure 5. Larger LMTs elicit stronger postsynaptic responses in pyramidal neurons and have more active zones.  
A: Monosynaptic CNQX-sensitive responses recorded in CA3 pyramidal neurons upon intracellular stimulation of mGFP-positive 
granule cells in DIV20-30 slice cultures. Top: ten superimposed recordings for small and large LMTs. Bottom: Amplitude distribution 
histogram (left) and cumulative plot of evoked amplitudes for the same set of data. Holding potential: -70mV; Bicuculine 10 μM, D-
AP5 80 μM. Small LMTs: 8-25 μm2; large LMTs: 80-150 μm2. Total of evoked currents: 1264 (small LMTs) and 923 (larger LMTs). 
B: Paired-pulse facilitation does not differ when recorded in large or small LMTs. N=5, p>0.1. C: Frequency-dependent facilitation 
does not differ in small and large LMTs. Data normalized to 0.1Hz values. Averages of 15 traces each; N=5, p>0.1. D: Distribution of 
active zones within an LMT-C with a satellite (DIV80); Bassoon immunocytochemistry red; mGFP green. Left: MIP; Bassoon 
labeling outside the LMT was cropped out. Right panels: single confocal planes (33 planes total; plane distance 0.3 μm). Note 
presence of active zones throughout the LMT and in its satellite. Bar: 5 μm. E: Contents of Bassoon-positive structures (active zones) 
as a function LMT volume and age in vitro. Left: regression analysis; the lines are polynomial fits. Note comparable, and near to 
linear relationships between LMT volume and active zone contents at DIV20, 40 and 90. Right: Active zone number/LMT volume 
ratios; bars: median values; N=80 LMTs per condition. One-way ANOVA: p=0.76 (i.e. no differences as a function of age).   
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Different LMT-Cs belonging to the same mossy fiber exhibit distinct plasticity 

properties 

What underlies the dramatic differences in LMT-C arrangements, sizes and anatomical 

plasticity in slice cultures? One possibility was that differences in LMT sizes might 

reflect differences among granule cells and their mossy fibers. Alternatively, LMT-Cs 

belonging to the same mossy fiber might differ among each other. To address this issue, 

we first analyzed a large set of individual mossy fibers, focusing on the relative sizes of 

their LMT-Cs, and on whether or not they established satellites. To our surprise, we 

found that for the majority of mossy fibers (34/40) one LMT-C was at least three times as 

large as any of the remaining LMT-Cs along the same mossy fiber, which tended to 

exhibit more comparable sizes (Fig. 6A-C). These size relationships among the LMT-Cs 

of a given mossy fiber were detectable for slice cultures of any age beyond 5DIV (not 

shown), and were not restricted to granule cells exhibiting Thy1-driven mGFP expression 

(Fig. 6A). 

 

We next reasoned that mossy fibers might exhibit some larger LMT-Cs at any given time, 

but that their position might change with time, in parallel with LMT-C remodeling and 

growth; alternatively, individual “plastic LMT-Cs” might maintain their growth 

properties and augment their relative sizes over time. We therefore carried out 

longitudinal studies, in which we followed all individual LMT-Cs of identified mossy 

fibers over months in slice cultures. We found that individual “plastic LMT-Cs” 

maintained this distinguishing property over months in culture, when they kept growing 

more than the smaller LMT-Cs (Fig. 6B, C). This led to a gradual shift of the total 

presynaptic volume of individual axons towards the largest LMT-C (Fig. 6E). Since 

“plastic LMT-Cs” also recovered more effectively from treatments that reversed LMT-C 

growth (see below; Fig. 6D), we concluded that the large differences in the plasticity and 

growth of LMT-Cs reflect local properties of individual LMT-Cs. 
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Figure 6. Plasticity and growth are specific properties of individual LMT-Cs, not mossy fibers.  
A: Top: Example of mossy fiber from non-transgenic DIV30 slice expressing cRFP (gene-gun transfection); Middle and bottom: 
examples of DIV70 (two of them) and DIV130 (one) slice cultures, each with one well-labeled mGFP-positive granule cell. Cell 
bodies and dendrites are to the left; asterisk: position of the largest LMT-C. The cRFP expressing mossy fiber exhibits its largest 
LMT-C within the infrapyramidal projection; as expected, the largest LMT-C at DIV30 is smaller than those at DIV70, which are 
smaller than that at DIV130. B-C: Growth of individual LMTs between DIV20 and DIV60 (b), or DIV60 and DIV120 (c). Each graph 
represents one mossy fiber and its individual LMTs (CA3c to the left). D: Larger LMTs maintain this distinction when recovering 
from shrinkage induced by TTX, Experimental conditions as described for Fig. 7. E: Redistribution of total LMT volume as a function 
of age in vitro between largest LMT-C, and remaining LMT-Cs belonging to the same axon. Median values from 3 individual axons. 
Bar: 140 μm. 
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Local, activity-dependent regulation of LMT-C maintenance and growth 

To investigate the mechanisms regulating LMT-C remodeling and growth, we carried out 

pharmacological experiments in slice cultures. Experimental conditions consisted of 

acquiring one set of images at DIV20 (control conditions), of including pharmacological 

agents to the culture medium during the next 20 days, of a second imaging session at 

40DIV, followed by returning slices to control medium conditions. Further imaging at 

60DIV and 80DIV was carried out to verify that any drug effect was reversible. In 

additional experiments aiming at excluding effects restricted to comparatively young 

slice cultures, we also carried out treatment experiments starting at 60DIV.  

 

Under control conditions, current-clamp recordings of granule cells in slice cultures 

showed a level of background firing activity in the range of 3-3.5 Hz with occasional 

bursts of action potentials very much consistent with the firing properties reported in vivo 

(e.g. Penttonen et al., 1997). We found that the inclusion of a TTX dose sufficient to 

completely and reversibly block spiking activity in the slices (not shown) not only 

blocked LMT-C growth, but led to a substantial reduction in LMT-C average sizes in 

both, young (DIV20) and more mature (DIV60) slices (Fig. 7A, B). This reduction 

affected both the sizes of individual LMTs and the number of satellites by LMT-Cs (not 

shown). It was accompanied by a corresponding reduction in the number of active zones 

per LMT (i.e. average numbers of active zones per LMT volume were not affected by 

TTX; Fig. 7C), indicating that it reflected a net decrease in the number of release sites in 

the slices. The inhibitory neurotransmitter GABA also induced LMT-C shrinkage (Fig. 

7B). The absolute extent of LMT-C shrinkage in the presence of TTX or GABA (or 

DCG-IV, see below) was closely correlated to LMT-C size (Fig. 7B), suggesting that 

both growth and maintenance of “plastic LMT-Cs” depend on spiking activity. Shrinkage 

of LMT-Cs in the presence of TTX was reversible (Fig. 7B). Significantly, larger LMT-

Cs resumed growth at higher rates than smaller LMT-Cs when recovering from the TTX 

treatment, and this again applied to both populations of identified LMT-Cs (Fig. 7B), and 

the individual LMT-Cs of identified mossy fibers (Fig. 6D).  
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To determine whether transmitter release from LMTs is required to sustain LMT-C 

growth, we carried out experiments in the presence of the mGluR2 agonist DCG-IV 

(Ishida et al., 1993), which produces a specific and complete blockade of evoked 

transmitter release from LMTs in hippocampal slices (Kamiya et al., 1996). We found 

that DCG-IV was as effective as TTX in reversibly suppressing LMT-C growth and 

inducing LMT shrinkage (Fig. 7A, B). Interestingly, and unlike TTX, DCG-IV produced 

an over-proportional decrease in the number of active zones per LMT (Fig. 7C). We 

conclude that LMT-C growth and maintenance depend on spiking activity in the slices, 

and on the local release of transmitter from LMTs. 

Long-term potentiation at mossy fiber to pyramidal neuron synapses in CA3 is NMDA 

receptor independent, PKC dependent, and predominantly controlled presynaptically. To 

determine whether signaling pathways related to the induction of LTP at these synapses 

might influence LMT growth and maintenance in slices, we carried out experiments in 

the presence of the specific inhibitor of PKC Chelerythrine. We found that the PKC 

inhibitor augmented growth at small LMTs, but caused shrinkage at large LMTs (Fig. 

7D). At closer inspection, the growth of small LMTs was not distributed equally among 

many small LMTs, but instead led to the emergence of 1-2 larger LMTs, concomitant 

with shrinkage of the original large LMTs (not shown). In contrast, and in keeping with 

its lack of effect on synaptic plasticity at mossy fiber to pyramidal neuron synapses, the 

NMDA receptor antagonist APV did not significantly affect LMT growth (Fig. 7D). We 

conclude that differences among the growth properties of individual LMT-Cs are 

maintained across conditions allowing or preventing growth at all LMTs, suggesting that 

the relative extent of LMT growth is regulated locally at individual LMTs. However, this 

maintenance of LMT asymmetry depends on PKC activity, suggesting that whether a 

particular LMT grows over-proportionally might be affected by conditions influencing 

functional plasticity at these synapses.  
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Figure 7. Regulation of LMT-Cs maintenance and growth by spiking activity, mGluR2 and PKC.  
A: Reversible shrinkage of LMT-Cs in the presence of either TTX, or the mGluR2 agonist DCG-IV. Drugs were added to the slice 
medium just after the first imaging session at DIV20 (arrows pointing down), and washed out just after the second session at DIV40 
(arrows pointing up). CON: medium change without added drugs. B: Quantitative analysis of LMT growth in the presence or absence 
of TTX, DCG-IV or GABA. Upper row: Shrinkage of LMT-Cs in the presence of drugs. Left and middle: Experimental conditions as 
in (A). Left: grouping of identified LMT-Cs according to sizes as described for Fig. 4. Middle: regression analysis of LMT-C growth 
versus LMT size at DIV20. Linear regression correlations (R2): 0.85 (control), 0.81 (TTX), 0.86 (DCG-IV). Right: Drug-induced 
shrinkage of LMT-Cs in 2-months cultures. TTX or DCG-IV were added at DIV60, and their effects were analyzed at DIV70. 
Grouping of identified LMT-Cs as described for Fig. 4. Lower row: Recovery of LMT-C growth upon washout of TTX. Left and 
middle panel as described above. Linear regression correlations (R2): 0.80 (DIV40, TTX), 0.78 (recovery TTX, DIV60), 0.78 (control 
DIV60). Growth values for control conditions are included for comparison (dark bars). N=50 LMT-Cs per size group, from 5 slice 
cultures. C: Active zone contents of LMTs in the presence of TTX or DCG-IV, as a function of LMT volume and age in vitro. Values 
are for 20 days (DIV40) or 10 days (DIV70) in the presence of drug. Left: regression analysis of LMT volume versus active zone 
numbers for different experimental conditions. The curves are polynomial fits. Right: distribution of active zone per LMT volume 
values. Note how DCG-IV induces an over-proportional reduction in the numbers of active zones per LMT volume. N=50 LMT-Cs 
per size group, from 5 slice cultures. One-way ANOVA for TTX versus DCG-IV: p<0.01.D: Effect of PKC inhibitor Chelerythrine 
and NMDA receptor antagonist APV on LMT maintenance and growth. Experimental conditions and grouping of data as described in 
(B, upper row, left). N=50 LMT-Cs per size group, from 5 slice cultures. The effects of the PKC inhibitor (see text) were significant 
for all LMT size categories: p<0.01 (small), p<0.05 (medium), p<0.001 (large); Student’s t-test. Bar: 10 μm. 
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2.1.4. DISCUSSION        

In this study we provide evidence that functionally important presynaptic complexes in 

the hippocampus rearrange their local connectivities throughout life, and that these 

rearrangements are influenced by experience and age. We first show how LMT-Cs are 

local presynaptic terminal arborizations of mossy fibers, exhibiting large differences in 

the magnitude and divergence of their local connectivities with pyramidal neurons in 

CA3. We then provide two independent lines of evidence that LMT-Cs rearrange their 

connectivities in the adult: we show that subsets of LMT-Cs expand along CA3 dendrites 

throughout life, and that the complexities of LMT-Cs are dramatically enhanced by 

housing mice in an enriched environment. We then analyze identified LMT-Cs 

longitudinally in organotypic slice cultures, and show that: 1) the arrangements and 

heterogeneities of LMT-Cs in slice cultures resemble closely those in vivo; 2) subsets of 

LMT-Cs rearrange their connectivities, and grow over weeks and months in slice cultures 

in patterns resembling those detected in vivo; 3) the anatomical rearrangements reflect 

corresponding rearrangements in functional connectivity; 4) the marked differences with 

respect to plasticity and growth reflect local properties of individual LMT-Cs, not their 

mossy fibers; 5) LMT-C growth and maintenance require spiking activity in the slices, 

and mGluR2-sensitive transmitter release from LMTs; 6) the stable maintenance of 

LMT-C size heterogeneities involves PKC activity. Below, we discuss the implications of 

these findings and their relationship to those from previous studies, focusing on the 

rearrangements of LMT-C connectivity, the regulation of these processes by synaptic 

activity and experience, and their possible impact on hippocampal network activity. 

 

Rearrangements of LMT-C connectivity in the adult 

Our results provide novel insights into the organization of mossy fiber terminals in CA3. 

While the complexity of LMTs had been documented by previous studies (Chicurel and 

Harris, 1992; Danzer and McNamara, 2004; Gonzales et al., 2001), imaging using Thy1-

mGFPs mice has revealed unsuspected further features, including the existence of 

satellite LMTs, a great diversity of sizes and morphologies, and the massive sizes of 

some of these terminals. It does not seem surprising that the satellites have been missed 

by previous studies, as they would have been very difficult to detect using electron 
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microscopy or traditional fill methods. Furthermore, most previous studies have focused 

on LMTs from young animals (ca. 3 weeks), when diversity and complexity are less 

pronounced. In a further departure from the results of previous studies, we provide 

evidence that individual LMT-Cs can contact several distinct pyramidal cells in CA3. 

Based on these results, we propose that instead of terminal boutons, LMTs should be 

considered as local terminal arborization complexes of mossy fibers (LMT-Cs), 

exhibiting great diversity in their sizes, and in their degrees of divergence onto pyramidal 

neurons in CA3. Although the satellites can clearly contact distinct pyramidal neurons, do 

exhibit numerous Bassoon-positive active zones, and are highly enriched in Synapsin I 

and synaptic vesicle markers (not shown), their functional status remains to be 

investigated. The recent demonstration that LMT membranes contain voltage-gated Na-

channels and amplify action potentials (Engel and Jonas, 2005) is certainly consistent 

with the notion that the interconnected compartments of LMT-Cs can be efficiently 

triggered to release transmitter. Detailed functional investigations of these compartments 

should yield valuable novel insights into the function of these complex terminal 

structures. 

 

We provide evidence that subsets of hippocampal LMT-Cs are sites of considerable 

anatomical plasticity in adult mice. This is consistent with results from recent studies, 

which have provided evidence for structural plasticity of presynaptic terminals in 

hippocampal slice cultures (De Paola et al., 2003), and in adult mouse barrel and visual 

cortex in vivo (De Paola et al., 2006; Stettler et al., 2006). A critical advance over 

previous studies is, however, that the structural plasticity of LMT-Cs leads to long-term 

rearrangements of local connectivity, suggesting that it might be an important aspect of 

hippocampal circuit plasticity in the adult. The rearrangements affected LMT-C 

connectivity in two distinct ways: 1) expansions along dendrites from the same pyramidal 

neuron added transmitter release sites, presumably altering the functional impact of 

mossy fiber spiking onto that particular postsynaptic pyramidal neuron in CA3; 2) the 

establishment of satellite LMTs onto distinct pyramidal neurons added and/or removed 

postsynaptic targets to individual LMT-Cs, altering the extent and quality of local 

divergence of pyramidal neuron innervation by individual LMT-Cs (Fig. 8).  
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Figure 8. Schematic of how local anatomical rearrangements can lead to changes in the functional connectivity 
between mossy fiber LMT-Cs and CA3 pyramidal neurons in the adult.  
Grey box: pyramidal neuron dendrite in stratum lucidum; blue and green ovals: individual LMT-Cs. The two blue 
LMT-Cs belong to distinct granule cells that are sometimes active at the same time (blue pattern of activation); green 
and blue are not recruited at the same time. The blue and green traces to the right indicate the postsynaptic excitatory 
responses of this dendrite at equal mossy fiber firing frequencies. Left: blue and green activation patterns elicit 
comparably weak postsynaptic responses. Right, upper part: lower blue LMT-C has expanded along the pyramidal 
dendrite (higher number of active zones), leading to potentiation of the blue postsynaptic response (e.g. age-related 
growth). Right, lower part: both blue LMT-Cs have established satellites onto the pyramidal dendrite (higher 
convergence of active zones), leading to potentiation of the blue postsynaptic response (e.g. enriched environment).   
 

Regulation of LMT-C rearrangements 

Having uncovered evidence for long-term rearrangements of hippocampal LMT-C 

connectivity influenced by experience in adult mice, we turned to organotypic slice 

cultures to investigate mechanisms controlling LMT-C remodeling. As outlined above, 

LMT-Cs in slices exhibited arrangements, heterogeneities, and remodeling properties 

consistent with the notion that regulation of their anatomical plasticity underlies 

principles comparable to those in vivo. Since the functional properties of hippocampal 

slice cultures and resemble those of acute slices (e.g. Gahwiler et al., 1997), it seems 

unlikely that principles underlying LMT-C rearrangements in vivo would be 

fundamentally different from those in slice cultures. On the other hand, slices cultures do 

lack inputs from entorhinal cortex and neuromodulatory systems, suggesting that 

important aspects of connectivity and network activity in slices might be significantly 

different from in vivo. Investigations in slice cultures thus provide valuable insights into 

mechanisms controlling LMT-C rearrangements, but the actual impact of these principles 

for hippocampal plasticity and their age-related properties will eventually need to be 

verified in vivo.                 
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This study provides evidence that anatomical plasticity and rearrangements of 

connectivity by LMT-Cs in slice cultures are controlled by local factors. The results 

suggest that “plastic LMT-Cs” differ stably from less plastic ones with respect to some 

property affecting anatomical growth, either intrinsically, or in response to graded signals 

from their local environment. Interestingly, maintenance of the original set of “plastic 

LMT-Cs” depended on PKC activity, suggesting that synaptic plasticity might have a 

significant impact on the outcome of LMT-C rearrangements. That in the presence of the 

PKC inhibitor new growth and shrinkage of LMT-Cs appeared to be balanced suggest 

that in addition to local factors, LMT-C rearrangements might also be influenced by the 

allocation of synaptic resources within individual axons. The finding that conditions 

affecting synaptic plasticity influenced synaptic turnover is reminiscent of several recent 

studies relating LTP and LTD to spine density and growth (e.g. Muller et al., 2000; 

Nagerl et al., 2004; Zhou et al., 2004). We find that larger LMT-Cs can be detected at all 

positions along individual mossy fibers in slices, and along the mossy fiber projection in 

CA3 in vivo. It is well established, that there is topography with respect to connectivity in 

the hippocampus, and that pyramidal neurons at distinct positions along CA3 project to 

different regions along CA1 (Johnston and Amaral, 1998). Our results thus raise the 

possibility that individual mossy fibers might exhibit topographical preferences with 

respect to the anatomical plasticity and strength of their outputs along CA3 in the adult; 

such preferences might contribute to topography in the flow of information from the 

dentate gyrus to CA1. 

 

In addition to uncovering a requirement for synaptic activity in LMT-C maintenance and 

growth, the pharmacological experiments in slice cultures have provided insights into 

how LMT-C plasticity might be regulated locally. The finding that LMT-C growth was 

reversed by an mGluR2 agonist known to specifically block transmitter release from 

LMTs suggests that local release is important to promote growth. Released transmitter 

might act on presynaptic receptors (Nicoll and Schmitz, 2005), to promote growth. In 

addition, several studies have provided evidence that the thorny excrescences of 

pyramidal cell dendrites in CA3 are particularly sensitive to experience, and can expand 
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or shrink in response to learning, stress and hormones (e.g. McEwen 1999; Kavalali et 

al., 1999; Sandi et al., 2003). A second, non-exclusive possibility is thus that synaptic 

activity might influence LMT growth indirectly, by regulating thorny excrescence 

growth. This might involve activation of AMPA receptors, since their blockade 

counteracts growth by individual LMTs in slices (I.G. and P.C., unpublished results). The 

high affinity of mGluR2 for glutamate, and the peripheral presynaptic distribution of 

mGluR2 at LMT synapses (Nicoll and Schmitz, 2005) suggest a further mechanism 

through which stronger LMTs could destabilize neighboring weaker LMTs via ambient 

glutamate. Such a mechanism might mediate competitive interactions between LMTs 

converging within thorny excrescence clusters in a way reminiscent of the role of activity 

in synapse elimination processes (Lichtman and Colman, 2000). It had long been 

appreciated that in addition to stretches of pyramidal cell dendrite in stratum lucidum 

exhibiting thorny excrescences distributed in a scattered manner, thorny excrescences can 

be clustered locally, and many of these clusters can extend for very long distances (>20-

30 µm) along pyramidal neuron dendrites in CA3 (Gonzales et al., 2001; Qin et al., 2001; 

Kavalali et al., 1999). We find that LMTs from several distinct mossy fibers can 

converge at such clusters (Fig. 1B), and that postsynaptic territories at the clusters expand 

upon enriched environment through elongation and increased complexity of thorny 

excrescences. We further find a great degree of heterogeneity in the density and 

distribution of thorny excrescences among pyramidal neuron dendrites in stratum 

lucidum. The clusters might thus reflect specialized postsynaptic territory sites for 

competitive interactions among convergent LMTs regulated by experience.  

 

Functional significance of LMT-C rearrangements in the adult 

What could be the functional significance of the long-term rearrangements of LMT-C 

connectivity in the adult? Both, the rearrangements related to age and those induced by 

EE conditions led to a net growth in size by the fraction of larger LMTs, and thus to a net 

local increase in the numbers of active zones onto pyramidal neurons in CA3 by “plastic 

LMT-Cs”. Since larger LMTs with higher numbers of active zones elicit stronger 

excitatory responses in postsynaptic pyramidal neurons (Fig. 5), the growth of individual 

LMTs would lead to a greater frequency-dependent impact of their activation onto their 
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postsynaptic pyramidal neurons in CA3. This might, for example, lead to supra-threshold 

activation of pyramidal neurons by individual LMT-Cs at lower spiking frequencies, 

and/or to more effective synergisms by small numbers of synchronously active 

converging LMTs (Fig. 8). Accordingly, the expansion and activity-regulated divergence 

of LMT-C subsets along pyramidal cell dendrites in CA3 throughout life might result in 

an increasing focusing of information flow from individual spiking mossy fibers, 

selectively to a local segment of the associative network in CA3. This focusing might 

mediate the emergence of microcircuits of preferentially interconnected neurons 

(Chklovskii et al., 2004; Ikegawa et al., 2004; Yoshimura et al., 2005; Song et al., 2005). 

In addition to its effects on LMT size distributions, EE specifically increased the 

frequency of satellites by LMT-Cs, and the lengths and complexities of thorny 

excrescences. Since LMTs from several distinct mossy fibers intermingle at thorny 

excrescence clusters (Fig. 1B), the larger and more complex thorns at individual 

pyramidal neuron dendrites likely accommodate terminals and satellites from a larger 

number of distinct mossy fibers under EE conditions, reflecting an increase in local 

divergence and convergence driven by experience. The outcome of LMT rearrangements 

at thorny excrescence clusters might then involve activity-dependent growth, mGluR2-

dependent inhibition of growth, and PKC-mediated competition among LMT-Cs. In this 

way, the increased complexity of LMT-Cs and thorns under enriched environment 

conditions might support hippocampal learning by providing more opportunities for local 

convergence of co-active terminals onto pyramidal neurons in CA3. 
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2.1.6. EXPERIMENTAL PROCEDURES 

 

Mice and reagents 

Transgenic mice expressing membrane-targeted GFP in only few (Thy1-mGFPs, L21 and 

L15) or most neurons (Thy1-mGFPmu, L17) were as described (De Paola et al., 2003). 

Transgenic males were crossed over more than 10 generations with non-transgenic F1 

offsprings from C57Bl6 x BalbC crosses, so that the genetic background of the mice was 

50% each of C57Bl6 and BalbC. For enriched environment experiments, sets of female 

littermates (3-4 mice each) were either kept in normal-sized cages without additional 

objects (1 mouse per cage; Ctrl conditions), or in large (rat) cages with running wheels 

and several objects for exploration (3-4 mice per cage; EE conditions). Transgenic mice 

expressing cytosolic YFP in few neurons (Thy1-cYFP) (Feng et al., 2000) were obtained 

from Jackson Laboratories. Drugs and their final concentrations in the culture medium 

were as follows: TTX (Latoxan, 1 �M, stock in acetate buffer), DCG-IV (Tocris, Bristol, 

1�M), GABA (Fluka Biochemica, 100 �M), Chelerythrine (Sigma, 1 �M), APV 

(Sigma, 100 �M). Antibodies: Bassoon (monoclonal IgG2a, Stressgen, 2 �g/ml), anti-

mouse Alexa-Fluor-546 (Molecular Probes). 

 

Slice cultures 

The slice cultures were established according to the procedure described by Stoppini and 

colleagues (Stoppini et al., 1991). Brains of P6-P9 transgenic mice were dissected in 

MEM (GIBCO)-based ice-chilled medium, and hippocampal coronal sections of about 

400 �m were produced with a tissue chopper (McIlwain). Slices were selected, placed on 

Millicell (Millipore, PICM03050) und cultured in 6-well dishes at 35oC and 5% CO2 in 

the presence of 1ml of medium. The entire slice isolation procedure took about 30 min. 

The culture medium was exchanged every third day, and drugs were added in fresh 

culture medium. For drug wash-out, individual slices were placed in 35 mm Petri dishes, 

washed twice with 1 ml of Tyroid’s buffer, returned to 6-well dishes, and washed again 

twice with 1 ml culture medium during the next 10 min. For all drug treatments, control 

slices were treated in the same way, except for the absence of the drug.  
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For some experiments, DIV10-15 slice cultures from non-transgenic mice were 

transfected with cRFP cDNA under the control of the hSynapsin1 promoter (pMH4-

pSYN-tdimer RFP, generous gift from Thomas Oertner (FMI, Basel)). Gene gun 

transfection was performed according to the instructions of the manufacturer (Bio-Rad, 

Hercules, CA), except for a 100 µm nylon mesh which was inserted as a pressure-

deflecting screen. Slices were imaged 10-15 days after transfection. 

 

Imaging 

For time-lapse imaging, slices were placed in 2 ml of physiological Tyrode solution at 

37oC, and imaged under controlled temperature conditions (either incubation chamber (in 

most cases), or heating plate). For routine imaging of the entire mossy fiber projection 

and its LMTs, we used an Olympus set-up consisting of a Bx61 LSM Fluoview confocal 

microscope, a 40X/0.75W water immersion objective, and the following settings: PMT 

653, Gain 2.4, pinhole 105 μm, 0.62 μm/stack in the z-dimension, 512x512 pixels, and 

fast scan rate at 9% laser intensity. High-resolution imaging was carried out using a Zeiss 

set-up consisting of an Axioplan2 LSM 510 Meta Zeiss confocal microscope. In either 

case, all focal planes within the slice were acquired and analyzed. All slices and 

structures included in the analysis were examined 5, 10 and 20 days after the last imaging 

session to verify that no signs of phototoxicity could be detected (e.g. swelling and 

beading of axons, blurring of the fluorescence signal due to membrane damage). We 

found that in most cases (more than 98% of the slices), if cell bodies were only imaged at 

the first session, slices could be imaged repeatedly for at least 8 times without any sign of 

phototoxicity. For imaging of LMTs from mice of different ages, male transgenic mice 

were perfused transcardially with 100 ml ice-chilled 4% paraformaldehyde in PBS, and 

brains were kept in fixation solution over-night at 4oC. Vibratome coronal sections (60 

μm) were then cut using a LEICAVT 100S vibratome (Leica), and mounted in Airvol for 

fluorescence imaging. Highresolution images were acquired on an upright Zeiss 

Axioplan2 LSM510 Meta confocal microscope, using a Plan-Neofluar 40x/1.3 oil 

immersion objective (pinhole size of 65 μm), or a 100x/1.4 oil immersion objective 

(pinhole sizes between 100-150 μm). Images were opened and processed using Imaris 4.2 

(Bitplane AG) and Image Access (IMAGIC) softwares. Deconvolution was performed 
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with Huygens Deconvolution Software from Scientific Volume Imaging SVI (Hilversum, 

Netherlands). The interative Maximum Likelihood Estimation (MLE) algorithm was used 

with the computed Point Spread Function (PSF). For 3D analysis of LMT-Cs, images 

were opened in Imaris 4.2, smoothened by the Gaussian filter and Background 

subtraction tools of the software, cropped in 3D to reveal the regions of interest; 300 

frames movies were then produced in the animation mode. 

 

Immunocytochemistry and histology 

Slice cultures were fixed for 10 min in ice-chilled 20% methanol in PBS, rinsed 3 times 

with PBS, and post-fixed for 10 min at 4oC in 4% paraformaldehyde, PBS. Tissues were 

then washed in PBS, solubilized in 0.4% triton X-100, PBS (over-night at 4oC), blocked 

in the presence of PBS and 20% BSA (4h, RT), and incubated with primary, and then 

secondary antibody (over-night at 4oC, each). 

For electron microscopy, mice were perfused with buffered 2.5% glutaraldehyde, 

followed by fixation in buffered 2.5% glutaraldehyde (2h), post-fixation in buffered 2% 

Osmium tetroxide (2h), and dehydration through alcohol, followed by propylene oxide. 

Fixed brain material (hippocampal CA3a) was embedded in Docupon, stained with 

uranyl acetate and lead hydroxide, and sectioned with a diamond knife. Complete serial 

sections (75-85 nm each; total of 8-10 μm) were deposited on slot grids with formvar. 

Sections were recorded on Kodak electron image plates using a Zizze EM900 at 100 kV. 

 

Analysis of imaging data 

We defined LMTs as mossy fiber terminal regions of > 2.5 μm diameter in CA3a-c, 

which were arranged either en-passant, or as side structures connected to the mossy fiber 

projection by short (in most cases less than 10 μm) side-branches. As expected, 

individual LMTs exhibited highly complex morphologies (Chicurel and Harris, 1992; 

Danzer and McNamara, 2004). We found that they could be further subdivided into three 

subcomponents: 1) core terminal regions consisting of flattened domains of greatly 

varying sizes, and of beaded subunits of 2.5-3.5 μm diameter, arranged in grape-like 

arrays (range of 0-25 bead subunits per LMT), 2) filopodia tipped by swellings of 1-2 μm 

diameter (range of 2-10 filopodia per LMT; lengths of 5-15 μm), 3) processes of 10-200 
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μm length, emanating from LMTs and terminating in “satellite LMTs” (range of 0-5 

satellites per LMT) (Fig. 1a; Suppl. Fig. 1). 

For the quantification of LMT sizes in slice cultures, images were all acquired using 

the same settings, and processed using Imaris 4.2 and Image Access software. 

Acquisition settings (see above) were selected to minimize phototoxicity, but at the same 

time allow visualization of the thin axonal processes connecting LMTs to their satellites. 

The latter were defined as terminal structures of more than 2.5 μm in diameter, which 

were unambiguously connected to the main LMT as confirmed by a 3D analysis using 

Imaris software. Mossy fibers running deep in the slices exhibited thinner axons, and 

some of them were lost when cultures were kept for more than 4-5 weeks, possibly due to 

suboptimal access to oxygen. These deeper fibers could also be recognized by their 

weaker GFP signals, and were excluded from the analysis. LMT areas were derived from 

z-projections using ImageJ software. When LMT complexes unambiguously included 

satellites (about 10-20% of all LMTs), their terminal areas were included in the total size 

of the LMT complex. Sizes of individual identified LMTs were compared at the indicated 

times, and LMTs were subsequently grouped and analyzed according to their sizes at 

DIV20 (small < 30 μm2; medium < 60 μm2; large > 60 μm2).For the quantification of 

LMT volumes at different ages, at least three confocal 3D stacks (total volume of 230 μm 

x 230 μm x 40 μm) were acquired in CA3a for each preparation (three mice per age), and 

analyzed using Imaris 4.2 software. Individual LMT volumes contained in these cubes 

were measured using the Surpass/ Isosurface function of the software. Non-saturating 

imaging conditions were chosen for all size analyses. An intensity threshold of 300 was 

chosen to selectively analyze LMTs (excluding axons and other smaller objects). All 

identified objects were verified by eye inspection. Generally, the settings for the analysis 

were identical for all samples of all ages, but in some cases we verified the settings 

through internal calibration using the diameters and signal intensities of axons. After 

these measurements, LMTs were grouped according to their volumes. The volumes of all 

LMTs in one group were added up, and expressed as percentage of the total volume of all 

LMTs measured per cube. For the quantification of LMT subunit compositions as a 

function of age, samples were processed as described above (230 μm x 230 μm x 40 μm). 

Image settings were then chosen to emphasize the beaded subunit compositions of 
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individual LMTs. To analyze labeling homogeneities by the mGFP construct, 3D images 

(voxel sizes of 0.09 x 0.09 x 0.49 μm) were acquired using LSM510 Meta (100x/1.4 oil 

objective, 150 μm pinhole size), and opened in Zeiss LSM 510 Image examiner software. 

Membrane outlines of axons and LMTs included in one confocal plane were followed 

manually, and light intensities were plotted against distance.To determine numbers of 

Bassoon-positive structures per individual LMTs, 3D images of Bassoon stained slice 

cultures were acquired (LSM 510 Meta, 100x/1.4 oil, voxel sizes: 0.09 x 0.09 x 0.28 μm, 

150 μm pinhole size for both channels), and LMT volumes were derived as described 

above. Bassoon-positive structures were defined as single spots of 0.2 - 0.3 μm in 

diameter. Double counting of active zones was avoided by comparing adjacent confocal 

planes. 

 

Electrophysiology 

Slice cultures (DIV20-30) were transferred to a submerged recording chamber mounted 

on an upright microscope (BX50WI, Olympus, Germany), and continuously perfused (2-

2.5 ml/min) using a solution containing (in mM): NaCl 142, KCl 1.6, CaCl2 2.5, MgCl2 

1.5, NaHCO3 24, KH2PO4 1.2, bicuculline methochloride 0.02, D-AP5 0.08, NBQX 

0.0003, glucose 10, ascorbic acid 2; saturated with 95% O2 and 5% CO2 (pH 7.4; 

temperature 34°C). To establish pair recordings, a pipette supplemented with 

sulforhodamine (1%) or Lucifer Yellow (1%) was closely approached to a small (8-25 

μm2) or large LMT (80-150 μm2) and gentle, positive pressure applied in order to stain 

juxtaposed CA3 pyramidal neuron dendrites. As soon as dendrites adjacent to the LMT 

were visible, the pipette was moved along the dendrites to the soma, and the cell was 

recorded under whole cell patch conditions. Granular cells were recorded under current-

clamp mode with pipettes (3-5 MΩ) filled with a solution containing (in mM): K-

gluconate 135, HEPES 10, EGTA 0.4, MgCl2 10, phosphocreatine 14, Mg-ATP 2, Na2-

GTP 0.2 (pH 7.2-7.3; osmolarity 295-310 mosm). CA3 pyramidal cells were recorded 

under voltage-clamp mode with pipettes filled with a solution containing (in mM): 

Cs-methanesulfonate 130, HEPES 10, EGTA 10, MgCl2 5, phosphocreatine 14, QX-314 

5, picrotoxin 1, Na2-ATP 2 and Na2-GTP 0.2 (pH 7.2-7.3 adjusted with CsOH; 

osmolarity: 295- 310 mosm). Current and voltage recordings were obtained using an 
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Axoclamp-2A and an Axopatch 200B amplifier respectively (Axon Instruments, Union 

City, CA., USA). Membrane potentials were corrected for liquid junction potentials. 

Series resistance was compensated up to 50-80 % in order to avoid unstable recordings. 

Series and input resistances of voltage-clamp recordings were monitored throughout 

experiments, and data were discarded if they varied by more than 20%. Presynaptic 

action potentials were evoked by injecting depolarizing current pulses (1-1.5 nA for 2 

ms) at 0.5 Hz unless otherwise stated. Signals were filtered at 2 kHz, digitized at 5-10 

kHz and stored on hard disk. Data acquisition and analysis were performed using 

homemade A/D converter and software. The standard deviation of the latencies was used 

to calculate the jitter. Average values are expressed as mean ± S.E.M. Statistical 

differences were assessed by Student’s t-test. 
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3. SUPPLEMENTARY RESULTS 
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3.1.1. SUMMARY 

Previously, we reported that subsets of hippocampal mossy fiber terminal complexes 

rearrange their local connectivities with CA3 pyramidal neurons in response to 

experience throughout life. Here we addressed the question whether such experience-

related rearrangements of connectivity are a more general phenomenon and do also occur 

in other parts of the adult brain. We investigated structural rearrangements of two 

different axon types and their presynaptic terminals upon environmental enrichment (EE) 

in the cerebellar cortex. We found that parallel fiber boutons (PFBs) as well as mossy 

fiber terminals (MFTs) grow in size upon EE in cerebellar lobule V. Differences in 

average sizes of MFT were specific to small subregions of this lobule. Tracing of 

individual axon segments revealed that branching and terminal densities were increased 

on mossy fibers, while parallel fibers exhibited a higher frequency of complex PFBs upon 

EE. Our data indicate that the cerebellar cortex displays anatomical plasticity and 

rearrangements of neuronal connectivity at multiple sites and in various forms upon EE 

experience.  

 

 

3.1.2. INTRODUCTION 

Dynamic changes in axonal arbors and their presynaptic terminals lead to altered 

connectivity in neuronal circuits and underlie several forms of experience-dependent 

plasticity. For example, experience-dependent, functional changes in receptive fields of 

cortical neurons are often accompanied by structural remodeling of axonal arbors 

(Darian-Smith & Gilbert, 1994, Antonini & Stryker, 1993; Antonini et al., 1999; 

Trachtenberg & Stryker, 2001). Furthermore, we have previously shown that EE 

experience and age robustly alter hippocampal mossy fiber connectivity throughout life 

(Galimberti et al., 2006).  

Thus, it is well established that altered experience can induce changes in neuronal circuit 

connectivity. In contrast, it remains unknown how specific experience-related alterations 

in connectivity are.  

For instance, does general experience affect all or just some functional circuits 

specifically? Do structural modifications occur at several or even at all sites along a given 
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circuit? Are all neurons of a given type equally affected? And do different axon types 

display different plasticity responses to the same stimulus?  

To address these questions we looked for a relatively simple neuronal circuitry, with 

well-characterized topographic and functional organization, that had been implicated in 

functional and anatomical plasticity.  

 

The cerebellum exhibits a rather simple anatomy with stereotyped connectivity between 

few, readily identifiable neurons and therefore allows the investigation of synaptic 

connectivity rearrangements on a comprehensive scale.   

The cerebellar cortex contains four major neuron types: the granule and Purkinje cells, as 

well as the GABAergic, Golgi and stellate/basket interneurons. The cortex receives two 

major inputs, the mossy and the climbing fibers and sends one single output via the 

Purkinje cell axon. One of the two major afferents, the mossy fibers, arise from different 

sources in the brainstem and the spinal cord. They enter the cerebellum rostrally; many of 

them cross the midline in the cerebellar commissure and distribute bilaterally. Mossy 

fibers terminate in lobule-specific patterns of discontinuous patches or zones in the 

granule cell layer. Their presynaptic terminals, the ‘rosettes’ or mossy-fiber terminals 

(MFTs), contact the short, claw-like dendrites of several granule cells in complex synapse 

arrangements, called glomeruli (Voogd & Glickstein 1998). The granule cells are small, 

densely packed and extremely numerous glutamatergic neurons. Each granule cell gives 

rise to a single, unmyelinated axon that ascends within the plane of a Purkinje cell 

towards the surface of the molecular layer. Here, the axon bifurcates into two parallel 

fibers running perpendicularly to the ascending branch and in parallel to the cerebellar 

surface. Due to the orthogonal relationship between the parallel fibers and the dendritic 

structures of the Purkinje cells, each parallel fiber can synaptically contact hundreds of 

Purkinje cells (Ito, 1984). A single parallel fiber, however, can contact a given Purkinje 

cell only once or twice (Napper & Harvey, 1988a-c). Most parallel fiber presynaptic 

terminals or boutons (PFBs) innervate the Purkinje cells (~94%), and only very few 

contact interneurons (Palkovitz et al., 1971; Napper & Harvey 1991). Most often one 

PFB contacts one postsynaptic spine but rarely multi-spine boutons, with one bouton 

contacting two spines, can be observed (Pichitpornchai et al., 1994). Purkinje cells are 
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large, GABAergic neurons located in a single row at the border of the granular and the 

molecular layer. Their myelinated axons, the sole output of the cerebellar cortex, 

terminate on neurons of cerebellar- and brainstem-nuclei. Their dendritic trees are 

flattened and oriented perpendicular to the parallel fibers. The proximal parts of the 

dendritic tree are relatively smooth and innervated by multiple synapses from a single 

climbing fiber; the distal parts are closely covered with spines that get contacted by PFBs. 

 

The cerebellar cortex is organized in a mosaic-like ‘fractured somatotopy”, with multiple 

representations of the same receptive fields in which the topography is preserved in 

patches but not in a continuous manner. Those patches display synchronized activity 

upon mossy fiber stimulation throughout all cortical layers, from the granular- over the 

Purkinje- to the molecular layer (Cohen & Yarom, 1998), suggesting a columnar or 

modular functional organization of the cerebellar cortex (Bower & Woolston, 1983). 

Such repetitive and fragmented representation may allow the cerebellum to integrate the 

complex combinations of incoming sensory information obtained by different body parts 

and different sensory organs.   

 

Several lines of evidence have implicated the cerebellar cortex in anatomical plasticity. 

For instance, it has been shown that climbing fiber and parallel fiber axons, both 

innervating the Purkinje cell dendritic tree, rapidly remodel if one of the two inputs is 

absent or changes its activity. This activity-dependent axonal remodeling also induces 

rearrangements of the dendritic spines on the Purkinje cell (Cesa et al., 2005, 2007; Cesa 

& Strata, 2005; Morando et al., 2005). Furthermore, upon motor skill acquisition, 

synaptogenesis and changes in dendritic trees of interneurons have been observed (Black 

et al., 1990; Kleim et al., 1997). Moreover, the fraction of presynaptic terminals 

associated with the ascending branch of the granule cell axon increases upon age (Huang 

et al., 2006). Interestingly, studies in human beings indicate that certain forms of life-long 

sensory-motor exercise, such as for instance playing an instrument, can specifically 

increase the volume of the cerebellum. In these studies, the intensity of training 

correlated with the cerebellar volume increase, indicating that the long-term motor 
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training coupled to auditory perception is sufficient to increase cortical volume of the 

cerebellum (Hutchinson et al., 2003).  

Taken together, these findings from different species and experimental approaches 

support the notion that the cerebellar cortex provides a promising system to study the 

specificity and localization of experience-related synaptic circuit rearrangements. 

 

Here we used the paradigm of EE combined with high-resolution imaging in transgenic 

mice, expressing membrane-targeted GFP in only a few neurons, in order to investigate 

sustained rearrangements of neuronal circuit connectivity influenced by experience in the 

cerebellar cortex of adult mice. We find that experience-related rearrangements of 

neuronal circuit connectivity in the cerebellar cortex of adult mice occur at several 

synpases along the same neuronal circuit and affect distinct neuron types in different 

ways. Furthermore, we demonstrate that anatomical reorganizations are subregion 

specific, reminiscent of the functional mosaic-like organization of the cerebellar cortex.  

 

 

3.1.3. RESULTS  

 

Heterogeneity of cerebellar mossy fiber terminal and granule cell morphologies  

In order to investigate anatomical plasticity in the cerebellar cortex, we first analyzed 

patterns and distribution of neuronal labeling in the cerebella of different Thy1-mGFPs 

mouse lines expressing membrane-targeted GFP in only a few neurons (De Paola et al., 

2003) as well as the morphologies of the labeled structures.  

We found that in the mouse lines used, GFP was expressed almost exclusively in small 

subsets of mossy fibers and granule cells. Occasionally Bergman glia and very rarely 

single Purkinje cells were labeled (see Figures 1A and 1B).  

Labeling was detected in all cerebellar lobules, but showed a clear anterior to posterior 

gradient with higher expression in the anterior cerebellum, especially in front of the 

primary fissure (lobules I-V), and a gradual decrease of labeled structures towards lobule 

X, which contained only very few labeled mossy fibers and granule cells (Figures 1A and 

1B). Often, labeled mossy fibers and granule cells lay next to each others in the same 
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fields of view (Figure 1C). Rarely, labeled granule cell dendrites were contacted by 

labeled mossy fibers, or granule cell claws belonging to distinct cells innervated the same 

glomerulus (not shown).  

Interestingly, labeled mossy fibers followed very distinct axonal trajectories within the 

same lobule, displayed different axonal calibers, as well as distinct presynaptic terminal 

sizes and morphologies (Figures 1B and 1D). Most probably, many of these differences 

were due to the different origins of mossy fibers, arising from different brainstem or 

spinal cord related nuclei. However, even MFTs belonging to the same axon frequently 

exhibited substantial differences in morphology and size (Figure 1C; see also Figure 4B). 

Differences in morphology between different MFTs consisted of diversity of their 

surfaces, ranging from smooth to very convoluted, and their coverage with filopodia. 

Some terminals exhibited many filopodia giving them a “hairy” appearance while others 

bore just a few or no filopodia. The filopodia length was found to vary substantially. A 

subset of MFTs exhibited very long filopodia-like processes that terminated at satellite 

MFTs.       

Similarly, granule cells showed substantial heterogeneities in the length and number of 

their dendrites as well as in the size and complexity of their dendritic claws. Again, 

dendrites of the same granule cell often displayed large differences amongst each others, 

with respect to their length and claw complexity (Figure 1E). Interestingly, the size and 

complexity of dendritic claws seemed to increase with age (not further investigated yet). 

Also the granule cell axons, the parallel fibers, showed substantial differences with 

respect to the presynaptic terminals they established. Marked heterogeneities existed in 

the spacing as well as in the sizes and shapes of individual PFBs. Differences in all 

parameters were frequently found amongst PFBs belonging to the same parallel fiber 

(Figure 1F; see also Figure 2A). 

We conclude that pre- as well as postsynaptic structures of the same kind within the same 

region of the cerebellar cortex exhibit marked morphological differences amongst each 

others.  
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Figure1. Morphological heterogeneity of cerebellar mossy fibers and granule cells 
Labeling of small subsets of cerebellar granule cells and mossy fibers reveals their morphological heterogeneity and 
allows for detailed anatomical analysis of pre- and postsynaptic arrangements in the cerebellar cortex. (A) GFP 
expression in single neurons in the cerebellar cortex. Sagital section of the cerebellum near the midline of a 1 year old, 
Thy1-mGFP mouse. Note the decreasing expression intensities from anterior to posterior (A  P). (B) Higher 
magnification of lobules III-VI in a sagital midline section. Note the regional heterogeneity of MFT sizes. (C) Zoom 
into a coronal section revealing the arrangements of granule cells and MFTs in the granular cell layer, and parallel 
fibers in the molecular layer. Purkinje cells are not labeled in this transgenic line. (D) Heterogeneity of MFT in a one 
year old mouse. Note the different MFT sizes and morphologies, from “hairy” (many filopodia) over “glomeruli” 
(convoluted outline) to “smooth” shapes. (E) Complexity and heterogeneity of granule cell dendrites and dendritic 
claws. Granule cells from animals of different ages (1-20 months). Note the complexity and size of claws especially at 
older ages. (F) Heterogeneity of PFB distribution and size on individual PF.  
Scale bars: 100 µm (A) and (B); 10 µm (C-F). 
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Experience-related increase in PFB complexity and size in adult mice 

In order to investigate the possibility that experience might affect synaptic arrangements 

and structure in the cerebellar cortex, we first analyzed presynaptic terminal distribution 

on individually traced parallel fiber segments in lobule V of mice housed under EE or 

standard (CTRL) conditions (see Experimental Procedures). As shown in Figure 2A, 

PFBs in both conditions were very heterogeneously distributed along the axons. 

Additionally, their sizes varied substantially (Figure 2A; see also Figure 1F). A 

quantitative analysis revealed that the average PFB sizes increased significantly upon EE 

in general and on individual axons (Figure 2B), while the average density on individual 

stretches did not change between the two conditions (Figure 2C). 

Interestingly, a small subset of PFBs in both conditions displayed a complex morphology 

consisting of a core bouton on the axon and an enlargement building a second bouton 

connected to the core by a small process (see Figure 2A, red arrowheads). Remarkably, 

the frequency of such complex PFBs was more than twice as high under EE than under 

CTRL conditions (Figure 2D).  

Taken together these results provide evidence that parallel fibers exhibit experience-

related alterations of their presynaptic terminals.   
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Figure 2. Experience-related increase in PFB sizes and complexities  
(A) Parallel fibers in lobuleV of control (left) and enriched (right) mice. A subset of PFBs displays a complex 
morphology consisting of a core bouton on the axon and an enlargement building a second bouton connected to the 
core by a small process (red arrowheads). Scale bar: 4 µm (B) Quantitative analysis of average PFB sizes in control and 
enriched mice. (Left) Overall average PFB sizes (N= 750 PFBs). Note the significant increase in PFB sizes upon EE. 
Post-hoc student’s t test: ***p<0.0001. (Right) Average PFB sizes on individual axons (N=60). Note the shift of 
average PFB sizes on individual axons towards larger sizes upon EE. Post-hoc student’s t test: **p<0.001.   
(C) Quantitative analysis of PFB densities on average in the whole population (left) and on individual axons (right). 
N=60 axons from three animals for each condition. Post-hoc student’s t test: non significant for both analysis (D) 
Relative prevalence of complex PFBs in control and enriched mice.2,61 ± 0.76 % of control and 6.16 ± 1.148 % of 
enriched PFBs exhibit a complex morphology. n=750 PFB on 60 axons from three animals for each condition. Post-hoc 
student’s t test *p=0.02 
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Experience-related and subregion-specific growth of MFTs 

We next examined whether MFTs exhibited similar experience-related anatomical 

plasticity as parallel fibers. In order to quantify and compare MFT sizes, we analyzed 

small subregions (“3D crops”) randomly distributed in lobule V and determined the 

volumes of individual MFTs included in these subregions. This analysis revealed that the 

housing under EE conditions produced a significant shift in the prevalence of larger MFT 

sizes compared to controls (Figures 3A and 3B). At first approximation, EE thus 

appeared to increase MFT sizes homogeneously. However, a more detailed analysis 

revealed that the effects of EE were not equally distributed in all analyzed subregions. A 

detailed analysis of the individual crops demonstrated that only about half of all EE 

subregions contained terminals that were on average larger than the largest averages 

found in CTRL regions (Figure 3C). In addition, the EE regions contained MFT of more 

heterogeneous sizes as indicated by the error bars (Figure 3C). These results indicate that 

not all MFT and not all subregions of the cerebellar cortex respond equally to EE. 
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Figure 3. Experience-dependent and region-specific growth of MFT subsets in the adult in vivo.  
(A) Examples of MFT volume calculation in Imaris from CTRL (left) and EE (right) mice. Images show a zoom into a 
subregion crop. Isosurfaces were build over the MFT in a dimensional Imaris volume projection These isosurfaces are 
used for the volume calculation of each MFT. Scale bars: 10 µm. (B) (Left) Overall contributions of LMTs grouped by 
volume to the total volume of LMTs in the sample. EE leads to significant in size distributions contributing to the three 
largest size groups. Post hoc student’s t test for all three largest size groups *p<0.03. (Right) Quantification of average 
MFT sizes in lobule V in control versus enriched animals. Post-hoc student’s t test: ***p=0.0006. Average sizes of 
LMTs were 239.3 ± 19.97 µm3 for control and 347.9 ± 24.26 µm3 for enriched animals. (C) Effect of enriched 
environment on MFT size is subregion-specific within lobule V. Displayed are average MFT sizes ± SEM for each 
individual 3D crop analyzed.24 crops were analyzed for the CTRL and 25 for the EE condition. 3D crops were 
randomly distributed all over the granule cell layer of lobule V. Only in a subset of the analyzed regions MFTs are 
larger in EE than in CTRL animals. 100% (24/24) of the control crops contain MFTs that are in average smaller than 
600 µm3 (indicated as a dashed line). 44% (11/25) of the crops from enriched animals contain on average larger MFTs, 
while 56% (14/25) show similar averages as in the control (<600 µm3).  
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Experience induces rearrangements of mossy fiber terminal connectivity in the 

adult  

We next wondered whether environmental enrichment in addition to the presumable 

strengthening of a subset of synapses would also induce substantial rearrangements of 

neuronal connectivity similar to those observed in the hippocampal mossy fiber pathway 

(see previous chapter).  

In order to address this question we traced stretches of individual mossy fiber axonal 

arbors innervating lobule V and compared their branching patterns as well as the density 

of MFT on these individual axons (Figures 4A and 4B). This analysis revealed that 

mossy fiber axons of EE mice exhibited a higher branch point- and MFT- frequency than 

those of CTRL animals (Figures 4C and 4D). Interestingly, the increase in branching and 

MFT densities appeared to occur at specific, concentrated sites and not homogenously 

throughout the length of the traced stretch (Figure 4C). These sites of enhanced plasticity 

tended to be found at granule cell layer “shoulders”. These findings provide strong 

evidence that mossy fiber to granule cell connectivity is considerably rearranged upon EE 

and that it occurs in ‘preferred regions’.  
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Figure 4 A. Experience induces rearrangements of mossy fiber connectivity in the adult. Overviews of lobule V of one 
enriched (bottom) and one control (top) animal. The whole lobule was stitched together from several MIPs of 
individual three dimensional stacks. Scale bar: 100µm. 
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Figure 4 B-D. Experience induces rearrangements of mossy fiber connectivity in the adult. Tracing of individual mossy fiber 
axons in lobule V of enriched and control animals. (B) Top panels: Mossy fibers traced and drawn on the MIPs. Bottom 
panels: Drawings of the mossy fibers without the real image. Scale bar: 100 µm (C) Quantitative analysis of the 
distance of MFT on individual axons from control and enriched mossy fibers. Post-hoc student’s t test: **p=0.0081. In 
control animals MFT were in average spaced by 143.1 ± 19.1 µm (n=47 axon stretches), in enriched animals by 92.02 
± 8.3 µm (n=65 axon stretches). (D) Quantitative analysis of the distance of branch points on individual axons from 
control and enriched mossy fibers. Post-hoc student’s t test: **p=0.0014. In control animals branch points were in 
average spaced by 257.7 ± 26.3 µm (n=47 axon stretches), in enriched animals by 168.5 ± 13.35 µm (n=65 axon 
stretches). 
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Figure 4 E. Experience induces rearrangements of mossy fiber connectivity in the adult. Detailed overview of the individual 
mossy fiber drawings of control (top) and enriched (bottom) mice. Scale bar: 100 µm 
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3.1.4. DISCUSSION 

In this study we provide evidence that experience-related rearrangements of neuronal 

circuits manifest at different sites in the cerebellar cortex.  

We first show that experience increases average PFB sizes and the incidence of complex 

PFBs on parallel fiber axons. We then provide evidence that subsets of MFTs grow in a 

region-specific manner. Finally, we demonstrate that mossy fibers exhibit marked 

rearrangements of their axonal arbors by increased branching and addition of presynpatic 

terminals. Taken together these findings suggest that both mossy fiber to granule cell as 

well as parallel fiber to Purkinje cell connectivities are altered upon EE.  

Below, I will discuss the possible implications of these findings and suggest possible 

future directions. 

 

Increased sizes and complexities of PFBs upon EE     

Our results provide evidence that many PFBs grow upon EE. This result is reminiscent of 

previous studies of structural plasticity upon EE indicating that synapses are strengthened 

and newly formed resulting in an overall increase of synaptic densities (Turner et al., 

1985; Faherty et al., 2003; Leggio et al., 2005). In addition, we found that a subset of 

PFBs displays a complex morphology consisting of a core bouton on the axon and an 

enlargement building a second bouton connected to the core by a small process and that 

this conformation was by far more abundant under EE conditions. This finding suggests 

the specific strengthening of some individual synapses and is likely to result in shifts of 

the overall output of a given parallel fiber. This in turn would lead to rearrangements of 

the relative weights of synaptic connectivity between granule and Purkinje cells. 

In order to further investigate the possible impact of these rearrangements it would be 

crucial to reconstruct entire granule cell axons and compare the distribution and 

morphology of PFBs on entire axonal arbors.  

Additionally, it would be interesting to compare structural plasticity of parallel fibers 

with the underlying mossy fiber terminals and granule cells, as several lines of evidence 

suggest a modular functioning of the cerebellar cortex with co-active synapses that lie in 

vertical columns or patches (see also discussion of microzones below). 
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Experience-related, subregion-specific growth of MFTs and rearrangements of 

mossy fiber terminal connectivities in the adult cerebellar cortex 

In this study we demonstrate that EE induces region-specific growth of MFT subsets. 

This result is interesting with respect to the functional organization of the cerebellar 

cortex in co-active patches or ‘microzones’ (Oscarsson, 1976). Microzones are defined as 

functional units of the cerebellar cortex that combine with a small set of subcortical 

structures to form a cortico-nuclear microcomplex, which is a unitary neuronal complex 

devoted to a specific function (Ito, 2001, see also Figure 5). For instance, the human 

cerebellum was estimated to contain approximately 5000 microcomplexes, each of which 

is thought to play a specific role via its connections with functional systems in the spinal 

cord, brainstem, and cerebral cortex (Ito, 1984). Several microcomplexes have been 

associated unequivocally with specific reflexes in mice (see e.g. Tan et al., 1995a, 1995b; 

Graf et al., 2002) and have been determined to be as small as 50-150 µm wide. Purkinje 

cells and inhibitory interneurons in each microzone receive climbing fiber inputs from the 

same receptive field and determine the firing of a small set of Purkinje cells, and thus the 

output of the zone.   

  
 
Figure 5. Wiring diagram for a cerebellar corticonuclear microcomplex.  
The abbreviations stand for: BC, basket cell; CC, cerebellar cortical microzone; CF, climbing fiber; CN, cerebellar 
nucleus; GR, granule cell; GL, glomeruli; GO, Golgi cell; IO, inferior olive; LC, Lugaro cell; MF, mossy fiber; N-C, 
nucleocortical mossy fiber projection; N-O, nucleo-olivary inhibitory projection; PC, Purkinje cell; PCN, precerebellar 
neuron; PF, parallel fiber; pRN, parvicellular red nucleus; R-O, rubro-olivary excitatory projection; SC, stellate cell; 
SR, serotonergic fiber; UB, unipolar brush cell; VN, vestibular nucleus (adapted from Ito, 2006). 
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The concept of a cortical microzone is very appealing with respect to our findings of 

subregion specific effects of EE on MFT growth. The analyzed crops in our study were 

not much larger than 1-2 microzones. It is tempting to speculate that EE specifically 

recruits some microzones that react with an increase in MFT sizes, while other 

microzones do not show alterations. In order to test this hypothesis, one could utilize one 

of the well-studied reflexes and study the MFT and perhaps also parallel fiber plasticity 

within the microzone characterized to underlie this given reflex.  

Likewise, it would be important in further analysis of our data, to investigate whether 

parallel fibers as well as underlying mossy fiber patches display correlated structural 

rearrangements.   

 

The idea of microzones is also interesting with respect to the increases in branching and 

MFT densities upon EE on single axonal arbors traced in lobule V. Increased branching 

and MFT densities seemed to occur at “hot spots” or in clusters along the projection. 

Such “spots” could reflect the innervation of a specific microzone and could thus reveal 

the identity of zones implicated in EE experiences. Again, it would be helpful to repeat 

similar experiments in animals trained for a well-studied reflex and investigate possible 

structural rearrangements in a zone known to be implicated in a certain trained task. 

 

Such an experiment would at the same time address another interesting question, namely 

whether specific learning induces rearrangements of connectivity in implicated neuronal 

circuits in the adult.  

So far we have provided strong evidences that rearrangements of neuronal circuit 

connectivity occur upon a complex paradigm including many factors, such as increased 

motor-, social and sensory- activities, that have been previously involved in inducing 

changes of several kinds, such as hormonal, metabolic, neuro-modulatory. Thus, it is not 

clear whether the observed changes are a direct effect of the training and learning 

occurring during EE, or whether they reflect general changes induced by the above 

mentioned systemic influences. A marked alteration of experience, such as provided by 

environmental enrichment, could lead to an overall increase in trophic factors or 

stimulate molecular mechanisms that generally increase synaptic strength and result in 
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global effects on all neuronal  circuits. Alternatively, the induced changes could be 

usage-specific and involve only actively recruited neuronal circuits. Our data indicate so 

far that although many brain regions and synapses are affected by EE, we always 

observed region- and cell-specific differences, arguing for a predominant usage-

dependent and against a systemic effect of EE. However, future studies would be 

necessary to narrow down the effects of EE by investigating which parts within the 

complex environment lead to changes in which circuits. Maybe more straightforward 

would be the already above mentioned exploitation of a well-studied learning paradigm, 

such as the vestibule-ocular reflex (VOR) or the eye-blink conditioning paradigms. The 

neuronal circuits and plasticity mechanisms underlying these two learning paradigms 

have been characterized in detail and would thus allow a focused analysis of potential 

structural rearrangements correlated to a specific learning event. 

 

In summary, we have provided evidence for experience-related rearrangements of 

neuronal circuit connectivities in the adult cerebellar cortex. The rearrangements were 

observed at consecutive steps within a neuronal pathway and affected only subsets of the 

observed neurons and structures. Future studies would be useful to reveal the correlations 

between the observed changes and the behavioral changes that induced them. For this it 

would be necessary to reduce the complexity of the experience used to stimulate the 

plasticity response and to identify the neurons involved in the used task. The cerebellum 

seems an attractive candidate to make such correlations possible, due to the well-

characterized anatomy and the implication of the cerebellum in simple associative 

learning tasks. Furthermore, due to its superficial localization, the cerebellar cortex is an 

attractive system to perform in vivo imaging upon specific learning, such as classical eye-

blink conditioning. Therefore, the results presented here are a first step towards future 

studies to investigate the potential correlation between learning and structural changes in 

neuronal connectivity in vivo. 

 

3.1.5. MATERIALS & METHODS  

The experimental procedures used in this part were the same as those described in the 

previous chapter. Age of mice in EE: 2 month + 1 month in EE. 
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3.2.1. SUMMARY 

Wnt signaling has important roles in structural remodeling of neurons and the 

establishment of neuronal circuit connectivity during development. Recently, a role for 

Wnt signaling in activity-dependent synaptic plasticity has been suggested.  

Here we investigated the role of Wnt signaling in experience-related rearrangements of 

hippocampal mossy fiber terminal connectivity in the adult in vivo. We found that Wnt7b 

is expressed in the adult hippocampus in vivo, as well as in mature hippocampal slice 

cultures. Wnt7b expression was strongly upregulated in CA3 pyramidal neurons upon 

enriched environment (EE) experience. Inhibition of Wnt signaling by the secreted 

Frizzled related protein 1 (sFRP-1) resulted in marked remodeling of hippocampal large 

mossy fiber terminals (LMTs) in the adult in vivo and in mature slices, and prevented the 

effects of EE on mossy fiber terminal connectivity.  

 

3.2.2. INTRODUCTION 

Wnts are a family of secreted glyocoproteins that regulate many cell behaviors including 

proliferation, differentiation, survival, polarity and movement. Wnts play essential roles 

in embryonic and postnatal development in various systems, including the nervous 

system. In addition, they have a critical role in the development and progression of many 

types of cancer (Nusse, 2005). Wnts can act locally, in an auto- or paracrine manner, or at 

distance, by generating gradients across tissues. Importantly, Wnt signaling plays a key 

role in diverse aspects of the establishment of neuronal circuit connectivity by regulating 

axon guidance, dendritic development, axon remodeling and synapse formation (Ciani & 

Salinas, 2005; Fradkin et al., 2005). 

Wnts are, as a prerequisite to their proper functioning, post-translationally palmitoylated. 

Their binding to seven-pass transmembrane receptors of the Frizzled (Fz) family, leads to 

activation of disheveled (Dvl), a cytoplasmatic scaffolding protein, and the start of 

diverse and complex signaling cascades (Cadigan and Liu, 2006). 

Downstream of Dvl, the Wnt pathway diverges into at least three branches: the canonical 

or Wnt/β-catenin pathway; the planar cell polarity pathway and the Wnt/calcium pathway. 

Additionally, all these pathways might still bifurcate further (Ciani et al. 2004).  
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Activation of the the canonical/ β-catenin pathway results in inhibition of glycogen 

synthase kinase 3 β (GSK3β), which leads to an increase in the levels of β-catenin in the 

cytoplasm, its translocation to the nucleus, and the formation of β-catenin-T-cell specific 

transcription factor (TCF) complex that activates the transcription of target genes (Logan 

& Nusse 2004). For instance, Wnt signaling has been shown to regulate the cytoskeleton 

through a branch of the canonical pathway that diverges downstream of GSK3β. Dvl 

binds to microtubules and, through inhibition of GSK3β, changes the organization of 

microtubules and increases their stability. Dvl signals locally to regulate the 

phosphorylation of GSK3β targets, such as microtubule-associated protein 1B (MAP1B), 

a protein that regulates microtubule dynamics (Ciani et al., 2004).  

In an alternative pathway, the planar cell polarity pathway, activated Fz signals to Dvl, 

which in turn, activates the small GTPases Rho and c-Jun amino (N)-terminal kinase 

(JNK), indicating that both the actin cytoskeleton and microtubules are likely to be 

affected. It is important to note that this pathway, despite its name, might affect several 

cellular behaviors without affecting cell polarity.  

Finally, in the Wnt/calcium pathway, binding of specific Wnts to Fz receptors and 

activation of Dvl leads to calcium influx, and activation of protein kinase C (PKC) and 

calcium/calmodulin dependent protein kinase II (CamKII) (Logan & Nusse, 2004; Ciani 

& Salinas, 2005). 

Which Wnt signaling pathway will be engaged is determined by the combination of Wnt 

ligands and Fz receptors. There are many Wnts and Fz receptors in the genome of many 

species. In the mouse genome, for instance, 19 Wnt and 9 Fz genes have been identified. 

One Fz can bind many Wnts, and one Wnt can bind several Fz receptors. Additionally, 

their signaling often involves co-receptors, e.g. low density lipoprotein-receptor related 

proteins (LRPs), and is modified by agonist and antagonists of Wnt signaling, such as 

Dickkopf (Dkk), secreted Frizzled related proteins (sFRPs) or Dally. In this way, the 

same Wnt can signal through several pathways, depending on the cellular environment 

and developmental stage, e.g. different Fz receptors are expressed by the same cells at 

different developmental stages.  

In conclusion, the Wnt signaling system is highly regulated and particularly sophisticated 

(Gordon & Nusse 2006). 



 86

It is well established that Wnt signaling is crucial for the proper development of the 

nervous system. Critical roles for Wnts have been identified in neural patterning, axon 

guidance and remodeling, dendrite morphogenesis, as well as synaptogenesis and 

synaptic maturation. 

Likewise, during development, Wnt signaling is essential for the proper formation of 

many brain structures. For instance, the canonical Wnt pathway, starting with Wnt3a, has 

been demonstrated to regulate hippocampus formation, and Wnt3a knockout mice lack 

the hippocampal region (Lee at al., 2000). Interestingly, Wnt signaling continues to play 

an important role in the adult hippocampus as it is required for proper adult neurogenesis 

(Lie et al., 2005).  

Wnts have also been described as repulsive and attractive signals during axon guidance in 

Drosophila and in vertebrates (Yoshikawa et al., 2003; Fradkin et al., 2004, 2005; 

Lyuksyutova et al., 2003), and studies in the cerebellum and spinal cord have revealed a 

role for Wnt proteins as target-derived signals that regulate the terminal arborization of 

axons (Hall et al., 2000; Krylova, 2002). Interestingly, Wnts were shown to induce axon 

remodeling by changing the organization and dynamics of the cytoskeleton, especially 

microtubules (Ciani et al. 2004, Ciani & Salinas, 2005).  

Furthermore, Wnt/β-catenin signaling was identified as a critical mediator of dendritic 

morphogenesis in hippocampal neurons. During dendritogenesis, Wnt7b has been shown 

to signal via Dvl, Rac and JNK, through a non-canonical pathway, which does not require 

Wnt/ β-catenin-dependent transcription, but increased Wnt release. Inhibition of the Wnt 

pathway by sFRP-1 decreases Rac activation and blocks the effect of Wnt7b on dendrite 

development. Conversely, pharmacological activation of JNK enhances dendrite 

development (Yu & Malenka 2003, Rosso et al. 2005).  

Moreover, studies on the cerebellar mossy fiber to granule cell synapse have revealed a 

role for the canonical Wnt pathway in synaptogenesis. Wnt7a is expressed in granule 

cells during synapse formation with mossy fibers, where it increases synapsin I clustering. 

Consistent with these findings, Wnt7a knockout mice have defects in mossy fiber 

remodeling and in synpasin I and Bassoon clustering (Lucas & Salinas, 1997; Hall et al. 

2000, Ahmad-Annuar, 2006). Similarly, at the NMJ, Dvl regulates agrin-mediated AChR 
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clustering and was identified in a yeast two-hybrid screen to directly interact with MUSK 

(Luo et al. 2002). 

Taken together, these findings provide evidence that Wnt signaling plays multiple and 

important roles in the development of the nervous system, including the establishment of 

neuronal circuit connectivity.  

At developing central synapses, Wnt proteins function as retrograde signals to regulate 

axonal and synaptic remodeling as well as maturation. 

Interestingly, recent evidences suggest that Wnt proteins might play crucial roles beyond 

development by affecting synaptic plasticity in the adult. It was shown in acute mouse 

hippocampal slices (3-4 wks old) that tetanic stimulation of the perforant path induces 

NMDA receptor dependent Wnt3a release and nuclear β-catenin accumulations in 

postsynaptic dentate granule cells. Importantly, suppression of this activity-dependent 

synaptic Wnt release impaired LTP (Chen et al., 2006) demonstrating a role for Wnt 

signaling in activity-dependent synaptic plasticity in the adult.  

Consequently, Wnt signaling is an attractive candidate mechanism to regulate 

experience-dependent rearrangements of neuronal circuits in the adult brain.  

Previously, we have shown that subsets of hippocampal large mossy fiber terminal 

complexes (LMT-Cs) rearrange their local connectivities with CA3 pyramidal neurons in 

response to experience and age throughout life (Galimberti et al., 2006).  

Here we investigate the possibility that Wnt signaling might mediate mossy fiber 

connectivity remodeling in response to experience.  
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3.2.3. RESULTS 

 

Wnt7b expression in the adult hippocampus is regulated by experience 

As a prerequisite to study the role of Wnt signaling in anatomical plasticity in the adult 

hippocampus, we analyzed the expression patterns of Wnt protein expression in this 

region in vivo. We found that Wnt7b protein is expressed in dentate gyrus granule cells as 

well as in CA3 pyramidal neurons in the hippocampus of adult mice (Figures 1A and 1B). 

Importantly, despite the presence of Wnt7b in granule cell bodies, mossy fibers did not 

contain detectable amounts of Wnt7b.  

In order to address a potential role for Wnt proteins in experience-related plasticity in the 

hippocampus we investigated whether Wnt protein expression was influenced by housing 

mice under EE conditions. Comparison of Wnt7b staining intensities in mice housed 

under EE and control (CTRL) conditions revealed a substantial increase in Wnt7b protein 

in CA3 pyramidal neuron cell bodies, and specifically in their apical dendrites. The 

dendritic staining was particularly increased in large puncta forming lines in direction of 

the apical pyramidal dendrites within stratum lucidum suggesting that Wnt7b might 

accumulate in thorny excrescences upon EE (Figure 1C).         
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Figure 1. Wnt7b expression in the adult hippocampus is regulated by experience 
(A) Expression of Wnt7b and Thy1-mGFP in the dentate gyrus and CA3 region of the hippocampus of a 3 month old 
CTRL mouse. Wnt7b is mostly expressed in the cell bodies of principal cells, but not in axons or dendrites (B) Higher 
magnifications of the CA3a, CA3b and dentate gyrus (DG) regions. (C) Experience-related increase in Wnt7b protein 
levels in the CA3 region of mice housed under EE (right) compared to CTRL (left) conditions. Note the marked 
increase in the levels of Wnt7b in the cell bodies of pyramidal cells, but also in dotted lines in the statum lucidum (right 
from cell body layer). The Wnt7b positive puncta in stratum lucidum most likely represent Wnt accumulations in 
thorny excrescences.   
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In vivo inhibition of Wnt signaling by sFRP-1 remodels hippocampal large mossy 

fiber terminals (LMTs) in the adult 

We next addressed the question whether the sustained Wnt7b expression in adult CA3 

pyramidal neurons influenced LMT morphologies. During development, Wnt proteins 

function as retrograde signals to regulate presynaptic assembly and maturation as well as 

terminal arborization of axons (Hall et al., 2000). We have demonstrated previously that 

LMTs undergo life-long systematic alterations in their morphologies, expanding 

continuously along CA3 pyramidal dendrites (Galimberti et al., 2006). We therefore 

wondered, whether Wnt signaling might play a role in synapse maintenance and 

remodeling in the adult hippocampus.  

We blocked Wnt signaling by in vivo injections of the endogenous Wnt inhibitor sFRP-1 

into the hippocampal CA3 region of adult mice (Figure 2A; see also Experimental 

procedures). We found that two weeks of chronic Wnt inhibition were sufficient to 

substantially remodel LMT morphologies throughout the CA3 region (Figures 2B-E). At 

first glance, the LMTs in the sFRP-1 treated hippocampi appeared larger than in the 

CTRLs and displayed elongated shapes along the direction of CA3 pyramidal dendrites, 

transversally to the mossy fiber projection. Interestingly, large changes in LMT 

morphologies seemed to involve groups of LMTs arranged in clusters, which were 

surrounded by less- or unaffected LMTs (Figures 2B-D). A detailed three-dimensional 

analysis at higher magnification revealed that Wnt inhibition leads to substantially 

elongated and flattened shapes of subsets of LMTs. These shapes were strikingly 

reminiscent of the shapes observed in aged animals (Galimberti et al., 2006; see also the 

following discussion). 

Taken together, these results suggest that Wnt signaling is still active in the adult 

hippocampus, and that it regulates LMT maintenance and/or remodeling.    
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Figure 2A-B. In vivo inhibition of Wnt signaling by sFRP-1 produces a remodeling of hippocampal large mossy 
fiber terminals (LMTs) in the adult 
(A) Injection sites (see also Experimental Procedures) in two randomly chosen animals injected with PBS (left) and 
sFRP-1 (right). (B) The entire mossy fiber projection within CA3 of one CTRL (PBS injected) and one sFRP-1 injected 
mouse (both 3 months old). Scale bar: 100 µm 
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Figure 2C-D. In vivo inhibition of Wnt signaling by sFRP-1 remodels hippocampal large mossy fiber terminals 
(LMTs) in the adult 
(C) Higher magnification of CA3b region of a CTRL and a sFRP-1 treated hippocampus. Note the longitudinal 
expansion of many LMTs transversally to the mossy fiber axons and along the CA3 pyramidal dendrites (not stained). 
(D)  Higher magnification of CA3a region of a CTRL and a sFRP-1 treated hippocampus. Note the clusters of highly 
affected LMTs in the sFRP-1 treated CA3a region (top and bottom of right image) in comparison to less affected 
terminals in the middle of the image. 
Scale bars: 50 µm.  
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Figure 2E. In vivo inhibition of Wnt signaling by sFRP-1 remodels hippocampal large mossy fiber terminals 
(LMTs) in the adult 
(E) High magnification images of two CTRL and two sFRP-1 treated crops within CA3b. Note flattened (grey) and 
longitudinally expanded shapes of sFRP-1 treated LMTs in comparison to the small and round shapes of CTRL LMTs. 
Scale bar: 10 µm. 
 
All images in this panel are maximum intensity projections of 3D confocal stacks that were analysed in 3D.   
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Inhibition of Wnt signaling by sFRP-1 suppresses experience-related 

rearrangements of mossy fiber terminal connectivity in the adult in vivo   

We have shown previously that environmental enrichment leads to the rearrangement of 

mossy fiber terminal connectivity in the adult in vivo by inducing a pronounced increase 

in the complexity of LMT-Cs (Galimberti et al., 2006).  

We now found that the inhibition of Wnt signaling throughout the phase of enrichment in 

a standard EE experiment (1month of enrichment, 3 month old mice, see Experimental 

Procedures for further details) led to a suppression of the effects of EE on LMT-C 

connectivity. sFRP-1 treatment led to changes in LMT morphologies comparable to those 

observed under CTRL conditions, namely an expansion of LMT subsets along pyramidal 

neuron dendrites, and a flattening of LMTs (Figures 3A and 3B). On the other hand, no 

signs of typical EE effects were detected in a first analysis, i.e. LMTs did not grow 

substantially in all dimensions, but rather elongated and flattened, reminiscent of the 

changes observed upon aging and similar to the changes induced by sFRP-1 injected 

animals of the same age housed under CTRL conditions. Moreover, while EE in 

untreated animals leads to an increase in the number of satellite LMTs per LMT-C, here, 

in a first analysis we could not detect a similar change upon EE in sFRP-1 treated animals 

(Figures 3A and 3B). A detailed analysis involving the tracing of single axons and LMT-

Cs, as well as the quantitative analysis of LMT sizes will, however, be necessary in order 

to determine the qualitative and quantitative extent of the inhibiting effects of sFRP-1 on 

EE-mediated LMT rearrangements (see Discussion).  
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Figure 3A. Inhibition of Wnt signaling by sFRP-1 suppresses experience-related rearrangements of mossy fiber 
terminal connectivity in the adult in vivo   
(A) Mossy fiber projection in CA3b. Note the increase in size and complexity of LMTs (increase in number of LMTs is 
likely due to satellite addition) in PBS injected animal housed under EE conditions compared to CTRLs. LMTs treated 
from sFRP-1 treated animals display elongated shapes under both, EE and CTRL housing conditions, but no specific 
increases in complexity related to the EE condition.   
Scale bar: 50 µm. 
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Figure 3B. Inhibition of Wnt signaling by sFRP-1 suppresses experience-related rearrangements of mossy fiber 
terminal connectivity in the adult in vivo   
(B) High resolution images of randomly chosen crops in CA3b. EE induces the previously decribed increase in size and 
the addition of satellites (often many objects around a central one) in PBS injected animals. EE fails to exhibit similar 
increase in complexity and size when sFRP-1 is injected simultaneously. However, sFRP-1 treatment results in 
elongated and flattened shapes of LMTs under both, EE and CTRL, conditions.   
Scale bar: 10 µm. 
 

Wnt7b expression in the adult hippocampus is regulated by experience and positive 

feedback.  

We next wondered whether and how expression of Wnt7b protein was influenced by 

inhibition of Wnt signaling. Comparison of Wnt7b staining intensities upon sFRP-1 

treatment under EE and CTRL conditions revealed, that inhibition of Wnt signaling in 

animals housed under CTRL conditions led to a marked decrease in staining intensity 

compared to PBS injected animals housed under the same conditions. This decrease was 

almost totally rescued in sFRP-1 injected animals exposed to EE, as they exhibited 

similar staining intensities as the PBS injected EE group (Figure 3C). These results 

suggest that Wnt7b expression is dynamically regulated in the adult hippocampus. 

Experience, as well as Wnt signaling itself, seems to provide positive feedback loops that 
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boost Wnt7b expression, while decreased Wnt signaling leads to a marked decrease in 

levels of Wnt7b.     

 
Figure 3C. Inhibition of Wnt signaling by sFRP-1 suppresses experience-related rearrangements of mossy fiber 
terminal connectivity in the adult in vivo   
(C) Wnt7b staining in mice housed under CTRL and EE conditions, with and without sFRP-1 treatment. Note the 
marked decrease of staining intensity upon sFRP-1 treatment and the almost complete rescue of this depression by EE. 
Scale bar: 20 µm. 
 

Wnt7b is expressed in mature hippocampal slice cultures 

We next determined whether long-term hippocampal slice cultures could be a valuable 

tool to investigate how Wnt signaling affects LMT-C rearrangements in an 

experimentally accessible system. As a prerequisite we investigated whether Wnt7b 

protein was expressed in mature hippocampal slice cultures. Staining of mature slices 

revealed that Wnt7b protein was present in granule and CA3 pyramidal cells in 

comparable patterns as in vivo. Remarkably, we observed similar Wnt7b positive lines of 

puncta in stratum lucidum as in vivo. In the slice, some of these Wnt7b accumulations 

colocalized with a small subset of GFP labeled LMTs, indicating that they might stain 

thorny excrescences that enwrap the LMTs. Interestingly, only a small subset of labeled 
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LMTs colocalized with Wnt7b accumulations, while the majority did not (Figure 4). 

Finally, and consistent with our observations in vivo, mossy fibers did not contain 

detectable amounts of Wnt7b although granule cells expressed Wnt7b (Figure 4).       

 

 
 
Figure 4. Wnt7b is expressed in mature hippocampal slice cultures. 
Example of Wnt7b staining (Wnt7b = middle panels) of a mature (40DIV) hippocampal slice culture made from a 
Thy1-mGFP (GFP signal = top panels) transgenic mouse. 
(A) Entire slice culture with labeled GFP positice granule cells in te dentate gyrus projecting their mossy fibers through 
the hilus into the CA3 region (top). Wnt7b is expressed weakly in granule cells and more strongly in CA3 pyramidal 
neurons (middle panel and overlay on the bottom). 
(B) High magnification images in CA3b revealing the presence of Wnt7b accumulations or puncta in stratum lucidum, 
where thes colocalize with a small subset of LMTs.  
All images shown in this panel are MIPs. Colocalizations were confirmed in 3D analysis (not shown).   
Scale bars 20 µm.  
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Wnt signaling affects LMT sizes in slice culture 

In order to investigate the time course and the evolution of the effect of Wnt inhibition on 

LMT-C rearrangements observed in vivo, we treated slice cultures with the Wnt inhibitor 

sFRP-1 and with an activator of Wnt signaling, BIO,  which specifically inhibits GSK3β 

and thus leads to activation of the canonical Wnt pathway similarly to Lithium.  

We found that while 5 days of Wnt inhibition via sFRP-1 led to a general shrinkage of all 

LMTs, activation of the canonical Wnt pathway for the same time via BIO led to 

substantial growth of almost all LMTs (Figure 5). These results indicate that at short-term, 

Wnt signaling via the canonical pathway regulates LMT growth and maintenance.    
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Figure 5. Wnt signaling affects LMT sizes at short time scales 
Short term treatments affecting Wnt signaling in mature hippocampal slice cultures (DIV20-25).  
(A) 5 days of Wnt inhibition via sFRP-1 result in a general decrease of LMT sizes. 
(B) 5 days of activation of the canonical Wnt signaling pathway via the GSK3β inhibitor ‘BIO’ leads to marked 
increase in LMT sizes in mture hippocampal slice cultures.  
Scale bars: 10 µm.  
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Long-term Wnt inhibition in slice culture leads to remodeling of LMT shapes  

We next investigated the effects of long-term Wnt signaling inhibition in mature slices. 

We found that 20 days of sFRP-1 treatment yielded similar rearrangements of LMT 

shapes and mossy fiber terminal connectivity as decribed previously in vivo. LMTs 

adopted elongated and flat shapes. Notably, as in vivo, subsets of LMTs that were most 

affected laid in clusters together surrounded by less- or non-affected LMTs (Figure 6). 

Taken together, these results in slice cultures suggest that Wnt signaling exhibits a 

dynamic, at least 2-phasic role in regulating LMT remodeling.    
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Figure 6. Long-term Wnt inhibition in slice culture leads to remodeling of LMT shapes  

 (A) Two examples of entire mossy fiber projections in slice culture treated for 20 days with sFRP-1. DIV20 slice 
culture before (T0, upper panels) and after 20 days of sFRP-1 treatment (T20, lower panels). (Left panels: Note the 
increase in elongated shapes of LMTs upon sFRP-1 treatment and the redistribution of large LMTs. The previously 
more homogeneously distributed LMTs grow bigger in some regions and shrink or remain the same size at other places 
leading to a “clustered” distribution of large, elongated LMTs. Right panels: A mossy fiber projection with less labeled 
axons to illustrate the reorganization of the mossy fiber projection by sFRP-1 treatment. While LMTs at the end of the 
projection remain largely unaffected, LMTs at the beginning of the projection, in CA3b, elongate and grow, shifting 
occurrence of the largest LMTs from the end (CA3a) of the projection before treatment to the beginning (CA3b) of the 
projection after the treatment. 
(B) High magnification images of subregion of the upper left mossy fiber projection. Note the marked elongation of 
LMTs.    
Scale bars: 20 µm.  
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3.2.4. DISCUSSION 

In this study we provide evidence that Wnt signaling plays important roles in the adult 

hippocampus in synapse maintenance and remodeling and in mediating experience-

related rearrangements of neuronal circuit connectivity.  

We show that Wnt7b is expressed in the adult hippocampus in vivo, as well as in mature 

hippocampal slice cultures and that inhibition of Wnt signaling by the secreted Frizzled 

related protein 1 (sFRP-1) results in marked remodeling of hippocampal large mossy 

fiber terminals (LMTs) in the adult in vivo and in mature slices. 

We demonstrate that Wnt7b expression is substantially upregulated in CA3 pyramidal 

neurons upon enriched environment (EE) experience and that inhibition of Wnt signaling 

in vivo prevents the previously described effects of EE on mossy fiber terminal 

connectivity. The impact of these findings as well as important future directions will be 

subjects of the following discussion.   

 

Role for Wnt signaling in neuronal circuit plasticity in the adult 

Our results provide new insights into the regulation of synapse maintenance and 

remodeling in vivo and implicate Wnt signaling in experience-dependent structural 

plasticity in the adult. While the function of Wnt signaling in the establishment and 

remodeling of neuronal connectivity during development had been established in 

previous studies (Ciani & Salinas, 2005; Fradkin et al., 2005), we here revealed a novel 

and dynamically regulated role for Wnt signaling in controlling the rearrangements of 

neuronal connectivity occurring in the hippocampal mossy fiber pathway upon EE 

experience in the adult.    

 

Inhibition of Wnt signaling via sFRP-1 in the hippocampi of three month old mice results 

in substantial remodeling of LMT shapes, resulting in elongation and flattening as well as 

an increase in the size heterogeneities of these presynaptic terminals. These shapes and 

arrangements of LMTs as well as the large heterogeneity in the LMT population are very 

similar to the changes that we described in relation to normal aging (Galimberti et al., 

2006). Wnt inhibition for only two weeks results in rearrangements of the mossy fiber 

projection reminiscent of those observed in the oldest age group investigated previously, 
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namely 22 month. In our previous study, we observed that these changes in LMTs were 

accompanied by elongation of postsynaptic, thorny excrescence clusters on CA3 

pyramidal dendrites, but not the elongation of individual thorns. Interestingly, it has been 

shown previously by others that, during development, Wnt signaling positively influences 

dendritogenesis of cultured hippocampal neurons via a pathway involving Dvl, Rac and 

JNK, an effect blocked by sFRP-1 (Yu & Malenka 2003, Rosso et al. 2005). It will 

therefore be interesting to analyze our data in more detail, to determine what impact 

sFRP-1 treatment has on the distribution and sizes of postsynaptic thorns on pyramidal 

cell dendrites.    

 

We also show that upon sFRP-1 injections, Wnt7b protein levels are markedly decreased 

in CA3 pyramidal cell bodies and apical dendrites, the postsynaptic partners of LMTs. 

This finding is likely due to the interruption of a positive feedback mechanism by which 

Wnt signaling stimulates its own expression. This suggests that the effects of sFRP-1 

might result from two cooperative mechanisms: the absence of Wnt signaling likely 

effects LMT growth and maintenance (see also short-term slice culture treatment), and at 

the same time inhibits or fails to stimulate further Wnt production. These two effects 

might act together and augment the effects of Wnt inhibition on LMT remodeling.  

It will be interesting to determine whether Wnt7b protein levels in CA3 display age-

related changes, and could thus be implicated in the rearrangements of mossy fiber 

terminal connectivity upon ageing. One possibility is that Wnt7b expression decreases 

slowly with age, and that this is why we observe an “old” age phenotype of the mossy 

fiber projection in young animals treated with sFRP-1.  

 

Earlier studies using dissociated cultured neurons have shown that manipulations that 

increase synaptic activity stimulate Wnt release (Yu & Malenka, 2003; Chen et al., 2006). 

Our results provide evidence, that EE, an in vivo- manipulation that involves increased 

motor, sensory as well as social activity, results in a marked increase in Wnt protein 

levels in hippocampal CA3 neurons and the specific accumulation of Wnt7b in subsets of 

dendritic thorns. We speculate that this specifically located Wnt7b might be released 

upon activity, and that it could thus lead to increased Wnt signaling at specific sites 
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within the mossy fiber to CA3 projection. This interpretation is consistent with studies in 

the developing CNS, which have provided strong evidence for Wnt proteins to function 

as retrograde signals to regulate axonal and presynaptic remodeling as well as presynaptic 

strengthening (Lucas & Salinas, 1997; Hall et al. 2000, Ahmad-Annuar, 2006). Taken 

together with the specific localization of Wnt7b in a subset of thorny excrescences, these 

results could indicate that Wnt signaling might provide a means to induce growth and 

strengthening of specific subsets of synapses within the mossy fiber pathway upon altered 

experience. Such a specific shift of a subset of LMTs towards larger sizes and higher 

Basson contents per LMT have been described by us previously to occur in slice culture 

(Galimberti et al., 2006) and upon EE in vivo (my own unpublished results, not shown). 

Interestingly, in mature slice cultures we observed a small subset of LMTs colocalizing 

with Wnt7b positive puncta. Time-lapse imaging of slice cultures has previously revealed 

that only 1-2 LMTs per axon are highly dynamic and grow substantially over time 

(Galimberti et al., 2006). It would be interesting to reveal by staining at the end of such 

time-lapse experiments whether Wnt7b localizations in thorny excrescences correlate to 

especially large and plastic or rather to stabilized LMTs.  

In order to reveal the precise impact of Wnt inhibition on mossy fiber terminal 

arrangements in vivo, it will be essential to reconstruct single axonal arbors and LMT-Cs 

upon sFRP-1 treatment, in mice housed under CTRL and EE conditions.  

 

One limitation of our in vivo study is that sFRP-1 inhibits most Wnt signaling pathways. 

Despite the good correlation with our Wnt7b data, we can not exclude that the sFRP-1 

effects are partly or entirely due to the inhibition of other Wnt pathways involving 

different Wnt proteins. In order to address this question, we could make use of our slice 

culture system. Mature hippocampal slice cultures could be treated with conditioned 

medium obtained from Wnt7b expressing cells (as used by Rosso et al., 2005) and the 

possibly induced rearrangements of mossy fiber terminal connectivity could be monitored 

at high temporal resolution and include the tracing of entire and individual axonal arbors. 

If Wnt7b treatment would be affective in slices, it could provide a convenient model 

system to investigate EE-like effects on synaptic connectivity in vitro. 

 



 106

The general effects of sFRP-1 could also lead to a reduction of granule cell neurogenesis, 

as neurogenesis was reported to be regulated by Wnt3a signaling (Lie et al., 2005) and is 

especially increased upon EE (Kempermann et al., 1997, 1998a, 1998b, 2002). Two lines 

of evidence argue that our results are likely not to be affected by a potential influence of 

sFRP-1 on dentate gyrus neurogenesis. First, we observe very similar results in vivo and 

in vitro with respect to LMT remodeling upon sFRP-1 treatment. We have previously 

observed that neurogenesis does not occur in our slice culture system (unpublished data). 

Secondly, our injection site is far away from the dentate gyrus above CA3a. Observations 

of surrounding hippocampal tissue in the septo-temporal extension of the hippocampus 

revealed that the characteristic effects of sFRP-1 on LMT shapes were not obseverved at 

marked distances from the injection site and thus argue for a local action of sFRP-1 

restricted to a small region around the injection site, most likely not attaining the dentate 

gyrus. Therefore, our observations are unlikely to result from secondary effects caused by 

affecting granule cell neurogenesis.    

 

Hippocampal slice cultures are an attractive system to unravel the molecular mechanisms 

of Wnt7b signaling in the adult hippocampus. We found that at short term, activation of 

the canonical Wnt pathway via the specific GSK3β inhibitor, BIO, results in a size 

increase of most LMTs within the mossy fiber projection, while sFRP-1 treatment for the 

same time, had opposite effects. These results are interesting with respect to the 

previously reported roles for Dvl and inhibited GSK3β in microtubule stabilization. Dvl 

has been reported to be localized to active zones and to signal locally to regulate the 

phosphorylation of GSK3β targets, such as microtubule-associated protein 1B (MAP1B), 

a protein that regulates microtubule dynamics and by this stabilizes microtubules (Ciani 

et al., 2004). It would be interesting to see whether and to what extent LMTs contain 

microtubules. Microtubules as well as their regulation could make up substantial 

differences between differently plastic LMTs, a hypothesis that could be tested 

experimentally.   

Finally, it would be interesting to determine whether sFRP-1 injections in vivo during EE, 

in parallel to preventing mossy fiber connectivity rearrangements, might also prevent the 

well-characterized functional effects of EE, i.e. the improvements in learning and 
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memory capacities (Moser et al., 1997; Schrijver et al., 2002; Lee et al., 2003; see also 

the General Introduction). This could provide an opportunity to correlate experience-

related changes in neuronal circuit connectivity to well characterized experience-related 

functional and behavioral alterations.   

 

3.2.5. MATERIALS & METHODS 

We used the same mice and experimental procedures as described in a previous study 

(Galimberti et al. 2006). Methods specifically used in this study are briefly outlined 

below. 

Imaging  

High resolution imaging of fixed sections was performed on a VISITRON spinning disc 

microscope, using an 100x oil immersion objective 

sFRP-1 treatments  

In vivo: Mature recombinant sFRP-1 (R&D systems - cat-no. 1384-SF) was dissolved in 

PBS / 0.1% BSA (C = 50ug/ml) and 300nl of this sFRP-1 solution or vehicle (PBS / 0.1% 

BSA) alone were injected. In brief: canulas were implanted unilaterally into the left 

hemisphere above  the CA3a-b region, using the following coordinates: (implantation 0.5 

mm above injection site as the needle surpasses canula by 0.5 mm) Anterio-posterior 

(from Bregma): -2.06 mm, lateral 2.5 mm, dorso-ventral -1.4 mm. All mice were Thy-1 – 

mGFP transgenics (see previous chapters); mice used for individual experiments were 

littermates and the age at death was 3-4 months. Mice were injected repeatedly every 3-4 

days for 14 days up to 1 month. For EE experiments, mice were injected during the entire 

month of the EE experience.  

In vitro: see previous chapter for details, we used sFRP-1 at 1µg/ml, and BIO 

(Calbiochem, San Diego, CA) at 2µM.  

Antibodies 

Bassoon as before, Wnt7b antibody (R&D – cat-no. AF-3460).  
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3.3. LACK OF RAB3A AFFECTS MOSSY FIBER TERMINAL MORPHOLOGY  
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3.3.1. SUMMARY 

We previously showed that hippocampal mossy fiber terminal connectivities are 

substantially rearranged in response to age and experience throughout life.  

Here we explored whether mossy fiber long-term potentiation (mfLTP) is necessary for 

experience related rearrangements of neuronal circuit connectivity in the adult. We 

investigated mossy fiber terminal arrangements in Rab3a knockout (KO) mice that lack 

mfLTP. We found that Rab3a-KO mice housed under CTRL conditions exhibited 

pronounced alterations in mossy fiber terminal morphologies and decreased active zone 

densities. Environmental enrichment in Rab3a-KO mice induced marked rearrangements 

of mossy fiber terminal connectivity and rescued the active zone phenotype.   

 

3.3.2. INTRODUCTION 

Long-term potentiation (LTP) is a broadly accepted model for the cellular basis of 

memory formation. Interestingly, it has been reported previously by others that LTP can 

lead to structural alterations, e.g. electrical stimulations that induce LTP and LTD in 

brain slices result in dendritic spine formation and elimination, respectively (Toni et al., 

1999; Nägerl et al., 2004).  

While most forms of LTP are postsynaptic and depend on NMDA receptors, mossy fiber 

(mf) LTP is NMDA receptor independent and presynaptic (Harris & Cotman, 1986; 

Nicoll & Malenka, 1995). In contrast to the postsynaptic forms, mfLTP has been shown 

to depend on the presynaptic proteins Rim1α and Rab3a, which are involved in the 

control of synaptic vesicle release (Castillo et al., 1997, 2002). Rim1α and Rab3a knock-

out (KO) mice specifically lack presynaptic LTP at mossy fibers in the hippocampus and 

at parallel fibers in the cerebellum (Castillo et al., 1997, 2002). Mossy fiber LTP is an 

attractive candidate mechanism to mediate experience-related rearrangements of neuronal 

circuit connectivity in the adult hippocampus. To explore this possibility we analyzed 

LMT arrangements in mice lacking Rab3a.      

Rab proteins are a family of small GTPases involved in intracellular trafficking. Rab3a is 

the most abundant family member in the brain, and the only detectable isoform of Rab3 

in mossy fiber terminals (Geppert et al., 1994, 1997; Castillo et al., 1997).  
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It has been shown that Rab3a is not essential for synaptic vesicle fusion, but that calcium-

dependent neurotransmitter release, e.g. upon repetitive stimulation critically depends on 

the presence of Rab3a (Geppert et al., 1994). Accordingly, Rab3a-KO mice specifically 

lack mfLTP (Castillo et al., 1997).  

Interestingly, Rab3a-KO mice show impaired spatial reversal learning and increased 

explorative activity (D’Adamo et al., 2004) and it has been suggested that Rab3a-

dependent plasticity might play a specific role in reactivity to novel stimuli (Geppert et 

al., 1994).  

Here we report that Rab3a-KO mice exhibit substantially smaller LMTs, consisting of 

few subunits and displaying atypical circular and symmetrical shapes. We further found 

that active zone densities were reduced in KO mice, and that EE rescued this phenotype. 

The characteristic increase in LMT sizes upon EE observed in WT animals did not occur 

in Rab3a-KO mice. Instead, we observed a marked increase in LMT numbers. Time-

lapse imaging of long-term slice cultures suggested that Rab3a-KO mossy fibers have 

smaller and less stable LMTs, which lack satellites.  

Taken together these results provide strong evidence that mfLTP has a critical role in 

inducing and maintaining LMT growth. These results further suggest that EE induces 

mossy fiber terminal rearrangements through mfLTP-independent mechanisms and that 

mfLTP is specifically required to promote the growth new terminals not their increased 

complexity.   
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3.3.3. RESULTS  

 

Rab3a-knockout mice exhibit smaller and less complex LMTs than wildtype mice 

In order to investigate whether the ability to express mfLTP might influence the 

morphology of LMTs, we imaged LMTs of adult mice lacking Rab3a. As a prerequisite 

to allow the analysis of LMT morphologies at high resolution, we crossed Rab3a-KO and 

-WT mice with Thy1-mGFP transgenic mice, expressing mGFP in only a few neurons 

(De Paola et al., 2003).  

We found that LMTs in three months old Rab3a-KO mice were strikingly small, and 

exhibited circular and smooth outlines that stood in sharp contrast to the irregular and 

asymmetrical LMT shapes observed in WT animals (Figures 1A and 1C). Additionally, 

WT LMTs were composed of several subunits, while Rab3a-KO LMTs showed much 

simpler compositions, mostly consisting of only a single and rarely of two subunits 

(Figure 1C). A quantitative analysis of LMT volumes revealed that LMTs in Rab3a-KO 

animals are on average significantly smaller, and that the overall size distributions are 

shifted towards smaller sizes in the entire LMT population (Figure 1B).  
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Figure 1. Rab3a-knockout mice exhibit smaller and less complex LMTs than wildtype mice. 
(A) Entire mossy fiber projections of Rab3a-wildtype (upper panel) and -knockout (lower panel) Thy1-mGFP 
transgenic mice. Note that Rab3a KO mice exhibit substantially smaller LMTs throughout the entire CA3 region. (B) 
Quantitative analysis of LMT sizes in Rab3a-KO mice. Note that LMTs in Rab3a-KO are on average significantly 
smaller than in WT mice. Post-hoc student’s t test: *p<0.05 (upper panel). A cumulative plot analysis showed that the 
size distribution curve is homogeneously shifted and that thus LMTs of all sizes are smaller in Rab3a-KO mice (lower 
panel). (C) High magnification images of Rab3a-KO and WT LMTs. Note the much larger and irregular shapes of WT 
LMTs (upper panels) compared to the small and circular outlines of Rab3a-KO LMTs. WT animals are composed of 
several subunits, while KO terminals are composed of only 1-2 subunits.    
Scale bars: 100µm (A); 10µm (C).  
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Experience-related increase in LMT numbers but not sizes in Rab3a KO mice  

In order to determine whether mfLTP is required for the experience-related 

rearrangements of mossy fiber terminal connectivity in the adult (Galimberti et al., 2006), 

we performed EE experiments with Rab3a-KO mice. Interestingly, although we did not 

observe a size shift towards larger LMTs under EE conditions, we found a pronounced 

increase in LMT numbers and especially an apparent increase in the number of very 

small LMTs upon EE (Figures 2A and 2B). Remarkably, also upon EE the Rab3a-KO 

LMTs conserved their small, circular and symmetrical shapes and did not adopt irregular, 

convoluted shapes as under control conditions.  

 

 

EE rescues lower active zone densities in stratum lucidum of Rab3a KO mice 

We next wondered whether the marked increase in LMT numbers upon EE in Rab3a-KO 

mice was correlated to an increase in active zone numbers. We found that Rab3-KO mice 

housed under CTRL conditions exhibited dramatically reduced active zone densities in 

stratum lucidum compared to WT mice, as revealed by Bassoon immunostainings. 

Interestingly, EE markedly increased active zone densities in Rab3a-KO mice to levels 

comparable to those observed in WT mice, indicating that it rescued the Rab3a-KO 

phenotype with respect to active zone densities (Figure 2C).         

 

 

EE rescues Wnt7b expression levels in CA3 pyramid cells of Rab3a-KO mice 

Having determined that Wnt signaling has a critical role for experience-dependent mossy 

fiber terminal rearrangements (see previous chapter), we wondered whether EE resulted 

in an increase of Wnt7b expression in Rab3a-KO comparable to that observed in WT 

mice. We found that Rab3a-KO mice housed under CTRL conditions exhibited 

dramatically reduced levels of Wnt7b protein in CA3 pyramidal neurons, and that EE 

rescued this phenotype by increasing the protein levels of Wnt7b to levels comparable to 

those in WT mice (Figure 2D).   
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Figure 2. Experience-related increase in LMT numbers but not sizes rescues lower active zone densities in 
stratum lucidum of Rab3a KO mice (A) Images taken in CA3a of Rab3a WT and KO mice housed under EE 
conditions and KO mice housed under CTRL conditions. Note the marked increase in LMT numbers and especially of 
small LMTs in Rab3a KO mice housed in EE. While EE in WT mice causes increases in size and shape asymmetry of 
LMTs, in KO mice no change in shape or size of LMTs is detectable. (B) Higher magnifications of LMTs of KO and 
WT animals housed under CTRL or EE conditions. Note the circular and small shapes of LMTs in KO mice before and 
after EE; the increase in LMT numbers of especially small LMTs upon EE in KO, standing in sharp contrast to the 
irregular shapes of LMTs in WTs and the marked increase in size and complexities of WT LMTs upon EE. (C) 
Bassoon staining in KO and WT animals housed under CTRL or EE conditions. Note the markedly lower Bassoon 
densities in KO animals upon CTRL housing and the increase of densities upon EE. (D) Wnt7b staining in KO and WT 
animals housed under CTRL or EE conditions. Note the markedly lower Wnt7b levels in KO animals upon CTRL 
housing and the pronounced increase of intensity upon EE. Scale bars: 10µm (A, B, C); 20µm (D).  
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LMTs in hippocampal slice cultures made from Rab3a-KO mice exhibit 

substantially reduced sizes and stability 

In order to investigate the Rab3a-KO phenotype on LMT morphologies and their 

arrangements on mossy fibers in an experimentally more accessible system, we 

performed time-lapse imaging experiments in mature organotypic hippocampal slice 

cultures, made from a Rab3a-KO and WT mice crossed into Thy1-mGFP transgenic 

background. Analysis of single axons at different days in vitro (DIV) revealed that 

Rab3a-KO mossy fibers bore LMTs of substantially smaller sizes than WT axons 

(compare Figures 3A and 3B). The KO terminals exhibited circular shapes and were 

almost undistinguishable from the usually much smaller en passant varicosities. Slightly 

larger LMTs were only found at the very end of the mossy fiber in CA3a.  

Interestingly, we also found that Rab3a-KO LMTs were less stable than those of WT 

mice (compare Figures 3A and 3B).We observed that within 20 days, a subset of 

terminals disappeared (Figure 3A, red star) while a few new ones appeared (Figure 3A, 

green star) whereas terminals in wild-type slices were predominantly stable (e.g. Figure 

3B). Despite their instability, reduced size and atypical shapes, we found that LMTs in 

Rab3a-KO slices could still grow, and that one LMT seemed to be the largest and to grow 

the most, an observation we had previously made in WT slices (Galimberti et al., 2006).           

The numbers of LMTs per axon observed in Rab3a-KO mice seemed to be comparable to 

WT slices but KO LMTs did not bear satellites.  
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Figure 3. LMTs in hippocampal slice cultures made from Rab3a-KO mice exhibit substantially reduced sizes and stability. 
Examples of time-lapse images of mature organotypic hippocampal slice cultures, made from Rab3a-KO and WT/Thy1-mGFP 
transgenic mice, exhibiting one well labeled mossy fiber at DIV20 and DIV40 each. (A) Example from a Rab3a-KO mouse. Upper 
panel: Note that at DIV20 the LMTs (arrowheads) are largely reduced in size, most of them are undistinguishable from en passant 
varicosities. At the very end of the projection apparently larger LMTs can be seen (larger arrowhead, see text), as well as an axonal 
branch not bearing any LMTs (unfilled arrowhead). Lower panel: The same slice after 20 more days in culture (DIV40). Note that two 
LMTs grew over the period of 20 days (red arrowheads). All other LMTs remained unchanged or disappeared (red star). Occasionally, 
new, very small LMTs appeared at different places (green star). The axonal branch disappeared and another large axonal process was 
added at a different place (unfilled arrowhead). (B) Example from a Rab3a-WT mouse. Upper panel: Note that already at DIV20 the 
WT mossy fiber exhibits eight large LMTs (arrowheads) clearly distinguishable from the en passant varicosities (as big as the 
assumed LMTs in Rab3a KO). Lower panel: Note that after 20 more days in culture, many LMT grew or maintained their sizes and 
positions. The position and number of LMTs does not change between DIV20 and 40. The axonal branch seen in DIV20 (unfilled 
arrowhead) remained its position and grew.    
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3.3.4. DISCUSSION   

In this study, we provide evidence that the absence of Rab3a, a presynpatic protein 

essential for mfLTP, leads to marked alterations in LMT morphologies and stability. We 

further provide evidence that environmental enrichment rescues the decreased densities 

of active zones in the absence of Rab3a, presumably through the addition of new LMTs.     

The possible significance of these findings, remaining open questions, and possible 

directions for future work will be subjects of the following discussion.   

 

Rab3a-knockout mice exhibit smaller and less asymmetric LMTs than wildtype 

mice 

Our results provide novel insights into mechanisms governing LMT sizes and shapes. We 

demonstrate that in the absence of Rab3a and mfLTP, LMTs are smaller, less 

asymmetrical and composed of only very few subunits. These results are in agreement 

with our previous observations that inhibition of PKC, which inhibits mfLTP, leads to 

specific shrinkage especially of the larger LMTs, and to more equal size distributions of 

LMTs on single axons (Galimberti et al., 2006). Our results suggest that mfLTP has a 

critical role for LMT growth.  

We show that active zone densities are markedly decreased in Rab3a-KO mice. This 

finding could result from two alternative scenarios. First, mossy fibers might establish 

less LMTs, resulting in less synaptic contacts and less active zones. Secondly, mossy 

fibers might establish equal numbers of LMTs as WT axons, but the Rab3a-KO LMTs 

might contain less active zones per terminal, and our own findings argue against the 

possibility that Rab3a-KO mice have less granule cells. Our slice culture data suggest that 

mossy fibers bear comparable numbers of LMTs per axon, but preliminary observations 

of single axons in vivo seem to hint at larger spacing of LMTs on single mossy fibers. 

One possible explanation for this discrepancy could be that some of the terminals counted 

in vitro as LMTs were in reality en passant varicosities. Thus, it remains unsolved 

whether Rab3a-KO mossy fibers bear less LMTs, LMTs bear less active zones or 

whether both is true. In order to address these questions it will be essential to trace 

individual axons in vivo and to follow single axons over longer times in vitro. 

Furthermore, Bassoon stainings and active zone quantifications per LMT could reveal the 
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relationship between LMT volume and active zone contents. In addition, electron 

microscopy could help to determine whether LMTs bear less or smaller active zones and 

whether the smaller LMT shapes are reflected by smaller postsynaptic thorny 

excrescences.     

 

Moreover, it would be important to address in future studies whether Rab3a-KO LMTs 

lack the ability to grow. Our slice culture data seem to indicate that at least a subset of 

LMTs grew over 20 days in vitro. However the observed growth was very weak. Thus, it 

would be interesting to see how LMTs of Rab3a-KO mice evolve over longer time scales 

in vivo. We have previously shown that in WT animals, LMTs expand gradually along 

CA3 pyramidal dendrites and adopt more and more elongated shapes in the course of 

normal aging. The oldest animals we have looked at so far were four month old. No signs 

of asymmetrical, longer LMTs have been observed. However, this does not rule out that 

LMTs bear the capacity to grow at later ages.     

 

Experience-related increase in LMT numbers but not sizes in Rab3a KO mice 

Having uncovered the marked impact of Rab3a and presumably mfLTP on LMT sizes, 

we investigated the impact of EE experience on mossy fiber terminal rearrangements in 

Rab3a-KO mice. Upon EE, we observed a marked increase specifically in the number of 

small LMTs and a concomitant increase in active zone densities. These results suggest 

that the active zone increase is due to the addition of new LMTs.  

It will be particularly interesting to determine whether the newly formed LMTs upon EE 

are added on the main axon, or whether they are satellite LMTs. The formation of 

satellite LMTs would be consistent with our findings in WT animals that EE experience 

produces an increase in satellite numbers per core LMT-C (Galimberti et al., 2006). In 

addition, increased satellite numbers would provide additional evidence that mfLTP is 

not required for the increase in LMT-C complexity observed in our earlier study.  

Finally, having observed partial anatomical rescue of the Rab3a-KO phenotype in LMTs 

of mice that experienced EE, it would be interesting to investigate whether EE might also 

be sufficient to rescue the behavioral deficits observed in Rab3a-KO mice (D’Adamo et 

al., 2004).   
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LMTs in hippocampal slice cultures made from Rab3a-KO mice exhibit 

substantially reduced sizes and stabilities 

As already observed in our previous studies, organotypic hippocampal slice cultures 

revealed remarkable consistency with results obtained from in vivo preparations, and thus 

provide an invaluable tool to study structural plasticity in an easy accessible system. Our 

results using slice cultures indicate that LMTs in Rab3a-KO mice are smaller and more 

symmetrical, grow much less and are less stable than WT LMTs in vitro. Additionally, 

they do not exhibit satellite LMTs. It will be interesting to determine in slice cultures, 

whether satellites or additional LMTs on the main axons will eventually appear with time 

or under conditions of enhanced activity, and whether these conditions would lead to 

LMT growth. Moreover, it would be most interesting to determine whether Wnt7b 

conditioned medium can lead to the addition of LMTs in the Rab3a-KO slice cultures 

(see previous Chapter). 

Our in vivo data suggest that EE leads to an increase in LMT numbers but not sizes and to 

an increase in active zone numbers. The slice culture could help to determine by which 

mechanisms EE exerts these functions.  

  

EE rescues lower Wnt7b expression in CA3 pyramid cells of Rab3a-KO mice 

Interestingly, our results reveal that CA3 pyramidal neurons of Rab3a-KO mice contain 

reduced levels of Wnt7b protein, a phenotype that is rescued by housing Rab3a-KO mice 

in EE. It is tempting to speculate that the increased levels of Wnt7b protein, that might be 

a result of increased activity in the hippocampus upon EE, lead to the observed increase 

in LMT numbers in Rab3a-KO mice. We show in a parallel study (see previous chapter) 

that inhibition of Wnt signaling largely prevents the effects of EE on mossy fiber terminal 

rearrangements. The observed upregulation of Wnt7b protein in CA3 pyramidal neurons 

together with the addition of LMTs upon EE in Rab3a-KO mice, could provide a further 

strong argument for the crucial role of Wnt signaling in mediating the effects of EE on 

mossy fiber connectivity in the adult, namely the increase of divergence through the 

addition of satellite LMTs, or possibly core LMTs in the case of Rab3a-KO mice.  
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In order to test this hypothesis it might be useful to treat hippocampal slice cultures made 

from Rab3a-KO mice with drugs that affect Wnt signaling. We have previously shown 

that BIO, an activator of canonical Wnt signaling, induces LMT growth in slice cultures 

upon short-term treatment. If the effects of EE on mossy fiber terminal connectivity are 

indeed largely mediated by Wnt signaling, we would predict that BIO treatment in 

Rab3a-KO slices might mimic the EE effects observed in Rab3a-KO mice in vivo, 

leading to the addition of many small LMTs. Similarly, one could address whether 

inhibition of Wnt signaling via sFRP-1 has any further effects in Rab3a-KO slices. 

Finally, it would be essential to investigate whether the addition of small LMTs upon EE 

in Rab3a-KO mice could be blocked by sFRP-1 application in vivo. 

 

Our results in Rab3a-KO mice, combined with the evidence for a crucial role of Wnt 

signaling in experience-related connectivity rearrangements in the hippocampal mossy 

fiber pathway, may provide a means to disentangle the relative contributions of the 

factors that influence long-term rearrangements of mossy fiber connectivity in the 

hippocampus upon age and experience, leading to both, LMT growth, and an increase in 

LMT-C complexity. 

Our results suggest that several factors contribute to mossy fiber rearrangements in vivo, 

and that among them Wnt signaling and mfLTP play distinct roles in mediating this 

plasticity.   

 

 

3.3.5. MATERIALS & METHODS 

Rab3a KO mice were from Jackson laboratories (B6;129S-Rab3atm1Sud/J) and were 
crossed into Thy1-mGFP lines (DePaola, 2003) as described. All other methods used as 
described in the previous sections. 
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4. GENERAL DISCUSSION 

 

Overview 

The results presented in this work provide novel insights into structural rearrangements of 

neuronal circuit connectivity in the adult central nervous system with specific emphasis 

on the impact of experience and age upon these plasticity processes.  

 

In brief, we provide evidence that: (1) Hippocampal mossy fiber terminals substantially 

rearrange their connectivity to CA3 pyramidal neurons in response to age and experience 

throughout life; (2) This form of experience-related neuronal circuit rearrangements is 

not specific to the hippocampal mossy fiber pathway, but does also occur at two different 

synaptic sites in the cerebellar cortex of adult mice; (3) Wnt signaling regulates 

experience-related rearrangements of hippocampal mossy fiber terminal connectivity in 

the adult; (4) Lack of Rab3a and mossy fiber LTP affect large mossy fiber terminal 

morphologies and sizes, but do not prevent experience-related increase in divergence of 

mossy fiber to CA3 connectivity. 

These results have been presented in the previous four chapters and their relevance as 

well as critical points and future directions have been discussed in detail in the preceding 

sections.    

 

Here, I would like to attempt to put our results into a shared general context, discuss 

possible implications as well as limitations of our findings and propose possible future 

directions of investigation to pursue the presented lines of research. 

 

4.1. Rewiring of neuronal circuits in the adult CNS 

In the presented studies we provide evidence that neuronal circuits remodel their 

connectivities throughout life and in response to experience in different functional 

systems of the adult brain. The changes observed were found to be differently weighed 

and concerned some connections more than others. In addition, the changes related to 
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aging were qualitatively different from those observed upon changes in life style. These 

findings raise numerous questions pointing towards novel lines of research.   

 

4.1.1. Learning versus life-style 

One very important and yet unsolved question is whether general experience-dependent 

changes of neuronal connectivity are similar to those that might potentially occur upon a 

specific learning task. Several lines of research have indicated that both paradigms may 

induce structural changes in synapses (see Introduction). However, evidences that 

learning is laid down in a specific anatomical trace have not been reported in the adult yet. 

On the other hand, studies in the barn owl have shown the formation of an anatomical 

trace representing an adaptive and learned topographic map of the outside world during 

the critical period that persists in to adulthood (Linkenhoker et al. 2005). At the same 

time, similar learning and adaptation can still occur in the adult (Linkenhoker & Knudsen, 

2002), but the potential underlying anatomical modifications have not been investigated. 

One important direction for future studies would thus be the attempt to disentangle the 

effects of a specific learning paradigm and those that occur upon changes in life-style or 

age. The cerebellum would be one very attractive candidate for studies of this kind due to 

its well-characterized anatomy and functional compartmentalization (see also Discussion 

in the Cerebellum Chapter) and would in addition offer the possibility to conduct such 

research in the living animals as the cerebellar cortex can be imaged by novel imaging 

techniques in vivo.   

The results of similar studies on learning-induced anatomical circuit plasticity would 

certainly add to a better understanding of how memories and skills, as well as behaviors 

are laid down in the adult CNS.  

 

4.1.2. Aging versus experience 

Another interesting and yet poorly understood outcome of our studies is the life-long 

rearrangement of mossy fiber connectivity. Although it is generally accepted that old age 

results in cognitive decline and alterations of brain functions, our results provide 

evidence for a life-long modification of prominent circuit properties, such as divergence 

as well as the distribution of the mossy fiber output. Our interpretation of our own data is 
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that age leads to an increased focusing of the mossy fiber output, leading to fewer but 

more precise and stronger microcircuits, that might be preferentially recruited upon 

granule cell firing (see also Chklovskii et al., 2004; Ikegaya, 2004; and Discussion of the 

Mossy fiber Chapter). This might lead to changes in behavior that have not yet been 

investigated in very much detail. Thus, it would be interesting to see whether a precise 

analysis of the performance of differentially aged animals in behavioral tasks well-known 

to involve the hippocampus, e.g. the radial-arm maze or water maze test, would reveal 

gradual and age-related modifications. Furthermore, one could involve our findings on 

the regulation of mossy fiber rearrangements in such tests. For instance, inhibition of Wnt 

signaling in vivo resulted in obvious changes in mossy fiber terminal morphologies 

reminiscent to those observed in aged animals. It would be interesting to see whether 

sFRP-1 injected animals might behave different from control animals in the above 

mentioned or similar behavioral tests. It is tempting to speculate that the observed 

structural changes in the mossy fiber pathway could result in corresponding behavior, 

such as, e.g. a behavior typical for old animals in young, sFRP-1 injected mice. Similar 

studies could be conducted with animals that lack mossy fiber LTP.  

 

In contrast to aging, experience-related changes of the mossy fiber projection resulted in 

increased divergence and concomitantly in the strengthening of connectivity (growth of 

LMTs). Interestingly, our data on single reconstructed cerebellar mossy fibers provide 

similar evidences, namely an increase in mossy fiber branching and MFT densities upon 

EE and thus argue that this might be a common effect of EE on brain circuitry.  

Remarkably, inhibition of Wnt signaling concomitant to EE seemed to block this increase 

in divergence (data still to be quantified). Thus, it would be interesting to see whether the 

beneficial roles of EE on learning and memory performance (see Introduction) might be 

prevented by Wnt inhibition in vivo.     

 

4.1.3. Roles for Rab3a and Wnt in structural plasticity in the adult CNS 

Interestingly, both molecular mechanisms examined in the present work and found to 

affect hippocampal synaptic structure, are also effective in the cerebellar cortex. It would 

thus be interesting in future studies to investigate the roles of Rab3a, involved in parallel 
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fiber LTP, and Wnt7a, involved in formation of MFTs, in experience- and age-related 

structural plasticity of the cerebellar cortex. These studies could provide a means to 

generalize some of our findings in the hippocampus.  

 

Conclusion  

In the present work we have demonstrated the occurrence and analyzed the characteristics 

of neuronal circuit rearrangements in the adult CNS upon age and experience in two 

independent functional systems of the brain. Furthermore, we started to unravel the 

molecular mechanisms underlying the observed circuit plasticities. Our data provide 

several starting points for future studies that may reveal the anatomical modifications that 

underlie learning and memory.       
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ABSTRACT 

This protocol details a method to establish organotypic slice cultures from mouse 

hippocampus, which can be maintained for several months. The cultures are based on the 

interface method, which does not require special equipment, is easy to execute and yields 

slice cultures that can be imaged repeatedly – from when they are isolated at postnatal 

day 6–9, and up to 6 months in vitro. The preserved tissue architecture facilitates the 

analysis of defined hippocampal synapses, cells and entire projections. Monitoring of 

defined cellular and molecular components in the slices can be achieved by preparing 

slices from transgenic mice or by introducing transgenes through transfection or viral 

vectors. This protocol can be completed in 3 h. 

 

INTRODUCTION 

Recent advances in gene delivery and live imaging technology have had a marked impact 

on the range of experimental tools that are available to life scientists1, 2. For research in 

neuroscience, these developments have meant that studying the structure and function of 

biologically relevant neuronal circuits can now be approached in a non-invasive way and 

with unprecedented analytical power. To fully exploit these technological developments, 

adequate biological preparations to investigate neuronal circuits have to be established in 

parallel. Fortunately, preparations that were developed by physiologists more than a 

decade ago3, 4, 5 could be readily adapted for live imaging studies of defined neuronal 

circuits6, 7. 

Advantages of the method 

Key features of the hippocampal organotypic slice cultures4 include: well-defined cellular 

architecture of the hippocampal circuit, which preserves the organization in vivo, and 

allows the identification and manipulation of defined neurons and synapses3, 4, 5, 6, 7; 

presence of axonal projections (mossy fiber axons extending from dentate gyrus granule 

cells to the distal end of CA3), which can largely be recovered in the slices in their 
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original state (that is, without lesioning) and which establish stereotype numbers of 

readily identifiable presynaptic terminals onto excitatory and inhibitory neurons in the 

hilus and in CA36–9; a long-term thickness of 100–150 µm, preserving three-dimensional 

organizations of connectivity4, 5; maturation of the slice cultures, closely reflecting the 

corresponding schedule in vivo8, 9; option to prepare the slices from mice of any genetic 

background, including those of poor postnatal viability. 

Critical aspects 

The main critical issues relate to the extent to which organotypic slice cultures reproduce 

the properties of hippocampal circuits in vivo5. This information is important for deciding 

whether the approach is appropriate for addressing the particular experimental issues that 

might be in mind. These issues have been investigated in much detail by physiologists, 

who have demonstrated extensive similarities, but also a few discrepancies, to properties 

of the corresponding circuits in the adult brain5. With respect to development, the slice 

cultures exhibit a temporal profile of excitatory and inhibitory miniature synaptic events, 

which closely match, qualitatively and quantitatively, the corresponding times in vivo8. 

This indicates that features that are critical to hippocampal circuit development and 

maturation are well established at 1 week postnatally, and are stable under organotypic 

culture conditions. A further critical issue involves the unavoidable separation of the 

hippocampal slices from their natural inputs, outputs and neuromodulatory systems. It 

turns out that most neuronal excitability and network properties are well preserved, in 

spite of the fact that the actual activity in the slices must be significantly different from 

the in vivo situation5. Predictably, synaptic connectivity in the slice cultures is initially 

greatly reduced due to the isolation procedure but, during the first 2–3 weeks in vitro, 

synapse numbers recover to a level comparable to that in vivo5, and the cultures are stable 

with respect to total synapse numbers from about 3 weeks in vitro6. As a result, the 

degree of connectivity between some of the individual neurons that are present in the 

slices (e.g., pyramidal neurons in CA3) is higher than in vivo, a fact that facilitates the 

analysis of synaptically connected neurons5. With the exception of the molecular layer of 

the dentate gyrus, in which the occasional recurrent mossy fiber collaterals can produce 

an excitation level that is higher than that of normal granule cells, this higher connectivity 
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does not seem to produce aberrant patterns of activity5. The slices can, however, be 

electrically labile, and gentle handling is important to avoid epileptic-like discharges. 

One way to avoid higher excitability in granule cells is to prepare slices from P20-30 

mice when the circuits are more stable10. Finally, attempts to investigate adult 

neurogenesis in hippocampal slice cultures have suggested that the phenomenon is much 

less frequent than in vivo. This might be influenced by the culture medium, but the issue 

requires further investigation. 

Possible results and outlook 

Organotypic slice cultures from ~1-week-old mouse hippocampus appear to reproduce 

most anatomical and functional properties of the corresponding hippocampal circuits in 

vivo for at least 6 months in vitro due to the intrinsic properties of their neurons. 

Accordingly, limitations to their applications might be confined to studies of 

hippocampal input–output relationships. This leaves an exciting range of possibilities for 

the exploration of mechanisms that control the assembly and function of neuronal circuits. 

Some of these include: time-lapse imaging from the sub-second to the months range, and 

from individual molecules to entire neuronal projections and circuits; imaging of 

neuronal6, 7, 11, 12 and glial13 subtypes; molecular manipulation using transfection14, 15 or 

viral approaches16, 17 to knock down or overexpress genes, silence or activate neurons, 

render neurons responsive to light or selective drugs and to highlight sub-circuits; 

combined physiology-imaging methods; manipulations to investigate lesion-induced 

plasticity and pathways of neurodegeneration and repair (e.g., amyloid- or epilepsy-

related); following the insertion of new neurons, the development of axons and their 

connections, or the insertion of exogenously added stem cells; post-hoc analysis using, 

for example, tracers, electron microscopy and single-cell genomic methods. 
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MATERIALS 

Reagents 

• Animals: 6–9-day-old mouse pups. You can prepare slices from six pups within 

one session, but for the beginner it may be preferable to start with two or three 

pups  

! CAUTION All animal experiments must comply with national regulations.  

• Hand sterilizing solution, e.g., Sterilium (Bode) or equivalent  

• Penicillin/streptomycin (Invitrogen, cat. no. 16050-122)  

• HEPES  

• Hank's balanced salt solution (HBSS; Invitrogen, cat. no. 24020-083)  

• Horse serum  

• 2 MEM (liquid Eagle's with Hank's Salts and 25 mM HEPES; Gibco, cat. no. 

04195120M)  

• Tris-(hydroxymethyl)aminomethane 

Equipment 

• Dissection microscope (e.g., ZEISS Stemi 2000-C binocular with 10 23 

objectives, but any 5–10 magnifying dissection microscope is suitable)  

• McIlwain tissue chopper (The Mickle Laboratory Engineering Co. Ltd.)  

• Sterile dissection hood  

• Razor blades that can be fixed in the McIlwain tissue chopper  

• Filter paper (e.g., Schleicher & Schuell, cat. no. 300009, or Whatman paper)  

• Small (35 mm 10 mm) and large (100 mm 20 mm) cell culture dishes (Corning, 

cat. no. 430165 and 430293, respectively)  

• 6-well culture plates (Corning, cat. no. 3516)  
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• Culture plate inserts: 0.4 µm Millicell membrane, 30 mm diameter (Millipore, cat. 

no. PICM03050)  

• Vacuum filter sterilizer for medium (e.g., Vacuum-driven disposable filtration 

system, 0.22 µm pore width; Millipore, cat. no. SCGPU02RE)  

• Cell culture incubator at 35 °C, 95% air, 5% CO2 

Equipment Setup 

• Dissection tools Scalpel, two round-ended spatulas, small scissors, large scissors, 

one pair of fine straight forceps, two pairs of curved fine forceps and two glass 

Pasteur pipettes that have to be custom designed as follows: one pipette is fire-

polished at the tip so that it adapts a round shape, has no sharp edges, but still has 

a small opening; the second pipette is cut at the intersection of the fine and thick 

tube using a canula opener (glass cutter), and the resulting large opening of this 

pipette is fire-polished to smooth the edges. 

Reagent Setup 

• Penicillin/streptomycin solution Dissolve 1.6 g penicillin G (100 U ml-1) and 2.5 

g streptomycin (0.1 mg ml-1) in 200 ml H2O, filter-sterilize and store at -20 °C in 

2-ml aliquots. Note that penicillin can reduce GABAergic neurotransmission in 

slices18. Signs of epileptic activity have, however, not been detected under these 

culture conditions.  

• Horse serum Heat-inactivate the complement system of the horse serum at 56 °C 

for 30 min; aliquots can be stored at -20 °C for at least 1 year. 

?Troubleshooting 

• Dissecting medium 50 ml MEM 2x, 1 ml penicillin/streptomycin solution, 120 

mg Tris (hydroxymethyl)aminomethane (final concentration: 10 mM); add up to 

100 ml with ddH2O. 

▲ CRITICAL Prepare within 24 h of the experiment, filter-sterilize through a 

0.22 µm membrane and keep it at 4 °C until dissection.  
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• Culture medium 50 ml MEM 2x, 1 ml penicillin/streptomycin solution, 120 mg 

Tris (hydroxymethyl)aminomethane (final concentration: 10 mM), 910 µl of a 

7.5% NaHCO3 aqueous solution, 50 ml heat-inactivated horse serum, 50 ml 1x 

HBSS; add up to 200 ml with ddH2O. 

▲ CRITICAL Filter-sterilize through a 0.22 µm membrane and keep at 4 °C. 

Pre-heat only the medium that is needed for a medium change on the same day. 

Culture medium can be stored at 4 °C for at least 1 month. 

Overview 

• Step 1 - 4 Preparation of membrane inserts and culture medium  

• Step 5 - 9 Preparation of dissection medium and chambers  

• Step 10 - 13 Preparation of dissection material  

• Step 14 - 17 Hippocampus dissection and cutting of coronal sections  

• Step 18 - 47 Dissection  

• Step 48 Cold incubation  

• Step 49 - 59 Selection and incubation of hippocampal slices 

 

PROCEDURE 

Preparation of membrane inserts and culture medium • TIMING 10-30 min 

1. Prepare the culture medium and filter-sterilize it.  

2. Add 1 ml culture medium per well of a 6-well plate; prepare 3–4 wells for 

each pup to be dissected (one pup should yield 6–8 usable hippocampal slices 

and about two slices are cultured on one membrane).  

3. Add one culture plate insert into each prepared well, so that the insert 

membranes touch the medium, but are not covered by it.  
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4. To warm up the medium, put the prepared 6-well plates into the cell culture 

incubator.  

Preparation of dissection medium and chambers • TIMING 10-20 min preparation 

+ 15 min sterilization 

5. Prepare the dissection medium, filter-sterilize and keep it at 4 °C.  

6. Cut a small triangle (about 4 x4 x4 cm) out of the filter paper, take the cover 

of a 100-mm cell culture dish and place the filter paper triangle into it. Prepare 

1 cover + filter paper for each pup to be dissected.  

7. Sterilize the covers containing the filter papers under ultraviolet light in the 

culture hood for 15 min.  

8. Add 1 ml of cold dissection medium on top of each filter paper and cover with 

the bottom of the cell culture dish under sterile conditions.  

9. Keep these 'dissection chambers' at 4 °C until dissection.  

Preparation of dissection material • TIMING 5-15 min 

10. Clean all dissection tools with 70% ethanol, fire-sterilize them inside the 

dissection hood and keep them there. Clean a fresh razor blade with a 

chloroform:isoamylalcohol (49:1) solution, followed by 100% ethanol and 

70% ethanol and fix it in the McIlwain tissue chopper placed inside the 

dissection hood.  

! CAUTION Chloroform is toxic; avoid inhalation, ingestion or contact with skin, eyes 

or mucous membranes. 

11. Fix the plastic platform on the McIlwain tissue chopper and clean it with 70% 

ethanol; switch the chopper on and adjust the cutting thickness to 400 µm.  

12. Keep the dissection medium on ice inside the dissection hood.  

13. Put one 35-mm cell culture dish per pup to be dissected under the dissection 

hood.  
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Hippocampus dissection and cutting of coronal sections • TIMING 15-30 min/pup 

14. Place one of the prepared, cold 'dissection chambers' under the dissection 

microscope and remove the top plate so that the filter paper covered with cold 

dissection medium is exposed. 

▲ CRITICAL STEP Steps 14–38 are carried out under sterile conditions 

inside a dissection hood unless otherwise mentioned.  

15. Decapitate one pup outside the dissection hood using large scissors. Note that 

anesthesia of pups is notoriously difficult (dry ice is one possibility), and that 

decapitation as described above is usually advised. Nevertheless, make sure 

that the procedure complies with local regulations.  

16. Flush the head with 70% ethanol and transfer it into the hood. 

▲ CRITICAL STEP The fur of the pup is a potential contamination 

source. ?Troubleshooting  

17. Sterilize your gloves with Sterilium or 70% ethanol before you proceed. 

▲ CRITICAL STEP Proceed carefully for Steps 18–24. The delicate 

nervous tissue of the brain is easily damaged by the sharp dissection tools or 

the edges of the cut skull. ?Troubleshooting 
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Dissection

 

Figure 1. Workflow diagram. Slices from pups 1 to 6 are prepared sequentially: dissection, cold incubation and 

slice selection are performed in a staggered way.  
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Figure 2. Illustration of hippocampal slice preparation protocol (Steps 18-53). (a) Steps 18-22; (b) Steps 28-30; (c) 
Steps 31-32; (d) Step 33; (e) Step 34; (f) Steps 35-36; (g) Step 38; (h) Steps 39-43; (i) Steps 44-46; (j) Steps 50-53. * 
Back of the head (neck).   
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Dissection 

18. Make an incision into the skin along the midline of the head, starting at the 

neck up to between the eyes using the small scissors (see Figs. 1-3). 

19. To hold the head more easily and to expose the skull, flip the skin around the 

head and pull it to the lower side, where you pinch it between your fingers.  

20. Use the small scissors and the fine straight forceps to remove neck muscles 

and the first vertebrae.  

21. Insert the lower part of the small scissors carefully into the foramen magnum 

and cut the skull along the midline from the foramen magnum to the front 

until you reach between the eyes.  

22. Make two lateral cuts starting from the midline towards the sides.  

23. Peel away the skull using the fine straight forceps.  

24. Hold the head upside down above the prepared filter paper, which should be 

covered with cold dissection medium.  

25. Introduce the spatula carefully between the brain and the skull and remove the 

brain from the skull, cut the cranial nerves and, if necessary, the olfactory 

bulbs with the spatulas.  

26. Let the brain drop gently onto the filter paper covered with dissection medium.  

27. Immediately put a few drops of cold dissection medium onto the exposed 

brain.  

28. Put the brain upside up with the ventral side lying on the filter paper.  

29. Use the scalpel to cut off the forebrain and the cerebellum by coronal cuts.  

30. Using the scalpel, separate the two hemispheres cutting along the inter-

hemispheric fissure.  

31. Place one brain hemisphere on the frontal or caudal cutting surfaces; the 

intersection between cortex, midbrain and brainstem becomes visible.  

32. Separate the cortex with the underlying hippocampus from the brainstem, 

midbrain and striatum using the two spatulas. 

▲ CRITICAL STEP Do not touch the hippocampus with the 

spatulas. ?Troubleshooting 
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33. Place the cortex upside down, so that the hippocampus is exposed.  

34. Use the curved forceps to cut the connections of the hippocampus to the 

ventral side (fimbria); leave it connected to the cortex by the subiculum.  

35. Flip the hippocampus over and out.  

36. Using the scalpel, cut the connection of the hippocampus to the enthorinal 

cortex (subiculum).  

37. Flush the dissected hippocampus with ice-cold dissection medium.  

38. Prepare the second hippocampus of the opposite hemisphere in the same way 

(see Fig. 2).  

39. Use the wide-bore, custom-made Pasteur pipette to suck one hippocampus 

into the pipette along with some dissection medium and transfer it to the 

plastic platform on the McIlwain tissue chopper.  

40. Repeat the same for the second hippocampus.  

41. Using the narrow-bore pipette, align the two hippocampi perpendicularly to 

the chopper blade. 

▲ CRITICAL STEP Avoid touching the slices; instead, use medium to push 

and pull them into the right position. ?Troubleshooting 

42. Remove all dissection medium around the hippocampi.  

43. Chop rapidly into 400 m thick transverse sections.  

44. Float the freshly cut sections immediately with cold dissection medium.  

45. Use the wide-bore pipette to transfer the sections into a 35-mm cell culture 

dish.  

46. Separate the sections by shaking the dish gently. If the sections stick together, 

remove all dissection medium and shake harshly but not for too long; 

alternatively, use the narrow-bore pipette and try to separate the sections by 

the flow of some dissection medium. 

▲ CRITICAL STEP Use great care as the sections are very easily damaged!  

47. After separation, fill the 35-mm dish with cold dissection medium so that all 

sections are covered; push floating sections down to the bottom of the dish by 

dropping medium onto their tops.  
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Cold incubation • TIMING 30 min-1.5 h/pup 

48. Cover the 35-mm cell culture dish with its cover and label it with the number 

of the pup and the exact time. Incubate the separated slices for a minimum of 

30 min at 4 °C (up to 1.5 h). Repeat Steps 14–48 for all pups (see Fig. 1). 

▲ CRITICAL STEP After incubation of each pup, clean and fire-sterilize all 

dissection tools and the chopper platform; take a fresh and cold 'dissection 

chamber'; change and sterilize your gloves! ?Troubleshooting 

Selection and incubation of hippocampal slices • TIMING 10-20 min /pup 

49. After completing the dissection of the last pup, start the selection of slices 

from the first dissected pup (see label) and proceed with the selection in the 

same sequence as in the dissection (see Fig. 1). 

▲ CRITICAL STEP Make sure that slices from each pup were cold 

incubated for at least 30 min (check the time on the label). Place the first 35-

mm dish (slices of the first pup) under the dissection microscope in the 

dissection hood.  

50. Remove the lid of the 35-mm dish and select the best slices for culturing 

according to the following criteria (see Fig. 3) Slices should have smooth 

margins and be clearly visible, have uniform and well-defined cell layers in 

the dentate gyrus and in CA1-3; the dentate gyrus should be tightly connected 

to the rest of the slice, and the fimbria should be intact. ?Troubleshooting  

51. Collect one pre-heated 6-well plate containing culture medium and a cell 

culture insert from the 35 °C incubator.  

52. Using the wide-bore pipette, transfer the selected slices individually onto the 

membranes along with some dissection medium. Alternatively, some labs use 

thin spatulas for the transfer, but we have no direct experience with this 

alternative method.  

53. Using the narrow-bore pipette, orientate the slices to the middle of the 

membrane by pushing and pulling them with the stream of dissection medium.  
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54. You can place up to four slices on one membrane but the number of slices on 

one membrane has to be adapted to the planned experiments. 

▲ CRITICAL STEP For live imaging, you should only place one or two 

slices on each membrane. Place the slices as close to the center as possible, so 

that the plastic edge of the membrane insert will not hinder the microscope's 

access to the top of the slices. Adapt the slice number that you put on one 

membrane to the estimated time required for later imaging of all slices on one 

culture plate insert. The time you can keep one culture plate insert outside the 

incubator during imaging is restricted to a maximum of 30 min (see also 

Imaging Protocol19). Keep a minimal distance of 2 mm between the slices to 

avoid fusion when flattening out during the culture period.  

55. Using the narrow-bore pipette, remove all dissection medium around the 

slices. 

▲ CRITICAL STEP This is critical because any remaining dissection 

medium covering the slices hinders oxygen exchange.  

56. To avoid cooling, put the 6-well culture plate back into the incubator 

immediately after having placed the slices.  

57. After 3–4 d, remove all culture medium below the insert and replace it with 1 

ml of fresh, 35 °C-warmed culture medium.  

58. Replace the culture medium every 3–4 d.  

59. The slice cultures can be maintained for several months. Criteria to verify 

viability: the slices must be transparent, firmly attached to the membrane and 

the dentate gyrus must be visible to the naked eye. In addition, if neurons are 

labeled with fluorescent markers, microscopic examination should reveal an 

absence of axonal and dendritic beading. If necessary, cell death in the slices 

can be assayed with propidium iodide6. 
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Figure 3. Selection of slices for culturing. (a) Optimal slice with nice cell layers in the dentate gyrus 
and CA1-3 and smooth margins (b) slice in which the CA1 region was lesioned during preparation 
(arrow); (c) slice in which the dentate gyrus was lesioned (arrow); (d) slice in which the dentate gyrus 
detached from the rest of the section (arrow). Only the slice in a should be selected for culturing.  
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? Troubleshooting 

Problem Possible Reason Solution 

Slices become 
contaminated soon after 
preparation 

Contamination by the fur 
or blood of the pups 

Use 70% ethanol to repeatedly flush the head 
after decapitation 

    Change and sterilize the gloves after having 
touched the pups' fur and blood 

Slices detach from the 
membrane of the cell 
culture plate insert soon 
after preparation 

Check for the correct 
composition and pH of the 
culture medium 

Always adjust the pH of the culture medium to 
7.2 

  Change the horse serum 

Inactivate the horse serum carefully and note the 
batch number, if possible; keep using a batch 
that has worked as long as possible (make many 
aliquots) 

Slices die prematurely 
during the culturing 
period 

Slices can become 
epileptic if treated too 
harshly 

Always move slices slowly and smoothly 

    Avoid strong vibrations 
Axons and/or dendrites 
assume a beaded 
appearance 

Wrong medium 
composition 

Strictly follow the indications in the protocol 
concerning media and times during preparations 
and handling 

  Wrong pH of culture 
medium   

  Treatment during 
preparation too harsh   

  Slice preparation took too 
long   

  Media were not at the right 
temperature   

  Incubator at wrong 
temperature or atmosphere   

Aberrant axonal 
projections 

The slices that were 
selected for culturing did 
not show the right 
morphology or were 
injured 

Select only slices in which the cell layers can be 
clearly seen and have the expected shape 

    Make sure that you do not touch the slices with 
any sharp tools 

  
The cutting angle was not 
perpendicular to the long 
axis of the hippocampus 

Make sure that you cut and then select slices 
that were cut perpendicularly to the long axis of 
the hippocampus 

 



 142

• TIMING 

Steps 1–4:  10–15 min (For trained experts);   20–30 min (For beginners). 
Steps 5–9:  10 + 15 min (For trained experts);   20 min (For beginners). 
Steps 10–13:  5–10 min (For trained experts);   15 min (For beginners). 
Steps 14–47:  15 min per pup (For trained experts);  30 min per pup (For beginners). 
Step 48:  30–90 min (For trained experts);   30–90 min (For beginners). 
Steps 49–56:  10 min per pup (For trained experts);  20 min per pup (For beginners). 

 

Anticipated results 

Critical factors to reproducibly achieve good yields and quality of slice cultures are speed, 

avoiding physical damage of the hippocampus and avoiding contaminations during the 

preparation (see Figs. 1- 3). These requirements mainly depend on training and 

concentration. We therefore recommend that beginners practice repeatedly during the 

first 2–4 weeks, in order to become confident and to acquire good experimental skills. A 

trained user should produce 6–8 good quality slices per pup, which can be maintained 

and imaged for at least 6–10 weeks. 
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5.2. Long-term live imaging of neuronal circuits in organotypic hippocampal 

slice cultures 
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ABSTRACT 

This protocol details a method for imaging organotypic slice cultures from the mouse 

hippocampus. The cultures are based on the interface method, which does not require 

special equipment, is easy to execute, and yields slice cultures that can be imaged 

repeatedly after they are isolated on postnatal day 6–9 and for up to 6 months in vitro. 

The preserved tissue architecture facilitates the analysis of defined hippocampal synapses, 

cells and entire projections. Time-lapse imaging is based on transgenes expressed in the 

mice, or on constructs introduced through transfection or viral vectors; it can reveal 

processes that develop over time periods ranging from seconds to months. Imaging can 

be repeated at least eight times without detectable morphological damage to neurons. 

Subsequent to imaging, the slices can be processed for immunocytochemistry or electron 

microscopy, to collect further information about the structures that have been imaged. 

This protocol can be completed in 35 min. 

INTRODUCTION 

Recent advances in live-imaging technology have had a dramatic impact on the range of 

experimental tools available to life scientists1, 2. These include the following: 

microscopes with greatly improved sensitivity, temporal/spatial resolution and spectral 

versatility; powerful image-acquisition and image-processing software; and an ever 

growing repertoire of fluorescent reagents to monitor second messengers, and to identify 

macromolecules and their physiological modifications as well as subcellular structures in 

situ. For research in neuroscience, these developments have meant that studying the 

structure and function of biologically relevant neuronal circuits can now be approached in 

a noninvasive way, and with unprecedented analytical power. In order to fully exploit 

these technological developments, adequate biological preparations have to be 

established in parallel to investigate neuronal circuits. Fortunately, preparations 

developed by physiologists more than a decade ago3, 4, 5 can be readily adapted for live-

imaging studies of defined neuronal circuits6, 7. Labeling subsets of neurons and their 

subcellular structures can be achieved using transgenic mice and a mouse Thy1-promoter 

cassette8, 9. While cytosolic fluorescent proteins work well9, expression of membrane-
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targeted GFP constructs provides optimal visualization of neuronal outlines6, 7. Further 

constructs available for Thy1-transgenic mice include, for example, synaptopHluorin10. 

Alternatively, transgenes can be introduced directly into slice cultures using transfection 

methods11, 12 or viruses13, 14. 

Advantages of the method 

Key features of the organotypic hippocampal slice cultures4 include the following: (i) 

well-defined cellular architecture of the hippocampal circuit, which preserves the 

organization in vivo, and allows the identification and manipulation of defined neurons 

and synapses3, 4, 5, 6, 7; (ii) the presence of axonal projections (mossy fiber axons extending 

from dentate gyrus granule cells to the distal end of CA3), which can largely be 

recovered in the slices in their original state (i.e., without lesioning), and establish 

stereotypical numbers of readily identifiable presynaptic terminals onto excitatory and 

inhibitory neurons in the hilus and CA36, 7, 15; (iii) a long-term thickness of 100–150 µm, 

preserving the 3D organizations of connectivity4, 5; (iv) maturation of the slice cultures 

closely reflecting the corresponding schedule in vivo16; and (v) the option to prepare the 

slices from mice of any genetic background, including those with poor postnatal viability. 

Critical aspects 

One set of critical issues relates to the extent to which organotypic slice cultures 

reproduce the properties of hippocampal circuits in vivo5. This information is important 

for deciding whether the approach is appropriate to address the particular experimental 

issues of interest. These issues have been investigated in detail by physiologists, who 

have demonstrated extensive similarities, but also a few discrepancies, with respect to the 

properties of the corresponding circuits in the adult brain5, 16. Further critical issues relate 

to the manipulations involved in the imaging procedures. The slices can be electrically 

labile, and gentle handling is important in order to avoid epileptic-like discharges5. In 

addition, it is essential to minimize the times during which the slices are kept outside of 

the tissue-culture incubator, and to allow sufficient recovery times between single 

imaging sessions (see PROCEDURE). These factors must be balanced against the 
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requirements of the experimental questions. We recommend always optimizing and 

standardizing the particular experimental protocols, taking into account reproducibility 

and negative side-effects. By contrast, contaminations and phototoxicity can largely be 

avoided through appropriate precautions. 

Possible results and outlook 

Organotypic hippocampal slice cultures from mice aged 1 wk appear to reproduce most 

anatomical and functional properties of the corresponding hippocampal circuits in vivo 

for at least 6 months in vitro, due to the intrinsic properties of their neurons. Accordingly, 

the slices provide an exciting range of possibilities for the exploration of mechanisms 

controlling the assembly and function of neuronal circuits. These include the following: 

(i) time-lapse imaging over periods ranging from sub-seconds to months, and of objects 

in the slices ranging from individual molecules to entire neuronal projections and circuits; 

(ii) imaging of neuronal6, 7, 9 and glial12 subtypes; (iii) molecular manipulation using 

transfection or viral approaches to knock down or overexpress genes, silence or activate 

neurons, render neurons responsive to light or selective drugs, and highlight sub-circuits; 

(iv) combined physiology and imaging methods; (v) manipulations to investigate lesion-

induced plasticity, and pathways of neurodegeneration and repair (e.g., amyloid-related 

or epilepsy-related pathways); (vi) following the insertion of new neurons, the 

development of axons and their connections, or the insertion of exogenously added stem 

cells; and (vii) post-hoc analysis using, for example, tracers, electron microscopy and 

single-cell genomic methods. 
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MATERIALS 

Reagents 

• Mouse organotypic hippocampal slice cultures (see Reagent setup)  

• Fungizone antimycotic, liquid (Gibco, cat. no. 15290-018)  

• Tyrode salt solution (see Reagent setup) 

Equipment 

• Single-point scanner upright confocal microscope with spectral detection (e.g., 

Olympus Bx61 LSM Fluoview or Zeiss LSM 510) equipped with a 40 /0.75W 

water-immersion objective  

• 35-mm Petri dishes (Corning, cat. no. 430165) 

Reagent Setup 

• Mouse organotypic hippocampal slice cultures Prepared from mice aged 6–9 d 

(see PROCEDURE). We have imaged slices at times ranging from 5 d to 6 

months in vitro. ! CAUTION All procedures must adhere to local laws regulating 

handling of experimental animals.  

• Tyrode salt solution 2.7 mM KCl, 0.5 mM MgCl2, 136.9 mM NaCl, 0.36 mM 

NaH2PO4, 1.4 mM Na2HPO4, 5.5 mM glucose, 1.8 mM CaCl2 (pH 7.26) 

▲ CRITICAL Filter-sterilize through a 0.22-µm membrane. 
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PROCEDURE 

Overview 

• Step 1  Set up of the confocal microscope  

• Step 2 - 6  Imaging session 

Set up of the confocal microscope • TIMING 10 min 

1. Optimal acquisition settings are adapted to the intensity of the labeled cells based 

on the following criteria: use the smallest laser intensity possible, and enhance the 

intensity by increasing the gain and photo-multiplier (PMT) strength and/or 

opening the pinhole; also, use the largest step size possible (adapted to the size of 

the imaged objects). We obtained the best results for mossy fiber terminals using 

a step size of 0.62 m. In order to allow fast acquisition (and, thus, cause minimal 

damage to the slice cultures), use a low-resolution mode, avoid using averaging 

functions (e.g., Kalman) and apply the fastest scanning rate available to the 

microscope. We imaged mossy fiber terminals at 512 512 pixels.

 !Troubleshooting 

Imaging session  • TIMING 30 min maximum 

2. Working in the cell-culture hood, place the cell-culture insert into a 35-mm Petri 

dish and add 2 ml pre-warmed Tyrode salt solution at 37 °C (1 ml above and 1 ml 

below the membrane).  

3. Move to the confocal microscope. Use the 40 /0.75W water-immersion objective 

and the mercury lamp to look for labeled cells. 

4. ▲ CRITICAL STEP To avoid contaminations originating during the imaging 
sessions, we clean the objective with 70% (vol/vol) ethanol in water before 
imaging individual slices. By taking this simple precaution, and using Fungizone 
and antibiotics in the culture media (see slice-preparation protocol, Gogolla et al. 
(2006) Nat. Prot. 1, 1165-1171) we rarely experience contaminations upon 
imaging sessions.  
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5. In order to include all labeled structures in the 3D region of interest (ROI), set the 

start point of the z-stack slightly below the first labeled structure, and the stop 

point slightly above the last labeled structure. For example, acquisition of the 

entire mossy fiber projection required four or five 3D stacks of 40–60 confocal 

planes in 10–15 min. 

▲ CRITICAL STEP The slices should not stay in the Tyrode salt solution and 

outside the incubator for more than 30 min.  

6. After imaging, remove the Tyrode salt solution, return the culture-plate insert into 

the six-well plate and place it back in the incubator. 

▲ CRITICAL STEP From now on, to avoid contaminations, the slices should be 

kept in culture medium supplemented with Fungizone (0.25 µg ml-1).  

7. Repeat Steps 2–5 for the next imaging session, keeping the same settings. In most 

cases, slices can be imaged repeatedly at least eight times, although some 

precautions should be taken (see below). 

▲ CRITICAL STEP Generally, we have observed that when the experiments 

require more than two or three imaging sessions, good results depend on allowing 

long recovery time intervals between individual imaging sessions (e.g., 10–20 d), and 

keeping slices outside of the incubator for no longer than 20 min during imaging 

sessions. Our observations suggest that, provided one adheres to the principles 

outlined above (also see TROUBLESHOOTING), phototoxicity is not the major 

limiting factor. Instead, most damage to the slices associated with the imaging 

sessions is due to the changes of medium, and the times when the slices are kept 

outside of the incubator. It is important to note that our protocol was optimized for 

imaging granule cells and their mossy fibers. We have noticed that pyramidal neurons 

in CA3 appear to be more vulnerable to repeated handling, and recommend that 

repeated imaging protocols should be initially tested and optimized. Characteristic 

signs of selective damage include major reductions in the intensity of the GFP signal 
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(Thy1-driven expression of membrane-targeted GFP), thinning of neuronal processes 

and losses of spines. !Troubleshooting 

!Troubleshooting for imaging organotypic slice cultures.  

Problem Possible 
reason Solution 

Phototoxicity Possible signs include 
the following: abrupt weakening of 
fluorescence intensity; swellings and 
breakdowns of axons and dendrites 
into beaded chains; blurred GFP 
signal around membranes; formation 
of large blebs on cell bodies, dendrites 
or presynaptic terminals; loss of 
dendritic spines. 

Too high 
and/or long 
exposure to 
UV light. 

Use appropriate filters to reduce the intensity of 
the UV light when inspecting the fluorescent 
signal; reduce the exposure time to UV light to 
a minimum; search the ROI wherever possible 
using the live-scanning mode of the microscope 
avoiding using UV light; use fast and precise 
shutters. 
 

  
Too high 
laser 
intensity. 

Adapt imaging settings to use the lowest laser 
intensity possible; optimize the imaging settings 
outside  
the ROI; acquire the images using the 16-bit 
mode, in order to be able to use low laser 
intensities; select the appropriate emission 
filter, in order to maximize signal intensity 
without increasing laser strength. 
 

  

Too long 
exposure to 
laser 
energy. 

Use the fastest scan mode and the smallest 
amount of confocal images that still allow 
proper analysis; avoid time consuming 
averaging options during acquisition; instead, 
optimize image quality after acquisition (e.g., 
by applying deconvolution). 
 

  

Too high 
light energy 
(UV and/or 
laser). 

Use the smallest magnification objective 
possible to resolve the structures of interest; 
choose a high numerical aperture objective; 
choose an objective lens that is optimized for 
your emission wavelength. 
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Anticipated results 

Critical factors for a successful imaging experiment are careful handling of the slices and 

rapid image acquisition. We strongly recommend always using the same confocal settings 

for comparable imaging sessions, and practicing the rapid identification of the orientation 

of labeled slices when first looking at a new type. It is also important to be able to rapidly 

re-identify the ROI within a given slice. This can be helped by making a schematic 

drawing, with landmarks of the particular slice, and using it for rapid orientation during 

the next imaging session (Fig.1). 

 

 

 

 

 



 154

 

Figure1. The five images were acquired with a 40 objective and then tiled. The 
schematic on the right indicates the orientation of the hippocampus (dentate gyrus on the 
right). The axons are labeled by a membrane-targeted GFP construct, as described in the 
text. 
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5.3. Staining protocol for organotypic hippocampal slice cultures 
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ABSTRACT 

This protocol details a method to immunostain organotypic slice cultures from mouse 

hippocampus. The cultures are based on the interface method, which does not require 

special equipment, is easy to execute and yields slice cultures that can be imaged 

repeatedly, from the time of isolation at postnatal day 6–9 up to 6 months in vitro. The 

preserved tissue architecture facilitates the analysis of defined hippocampal synapses, 

cells and entire projections. Time-lapse imaging is based on transgenes expressed in the 

mice or on constructs introduced through transfection or viral vectors; it can reveal 

processes that develop over periods ranging from seconds to months. Subsequent to 

imaging, the slices can be processed for immunocytochemistry to collect further 

information about the imaged structures. This protocol can be completed in 3 d. 

INTRODUCTION 

Recent advances in live imaging and transgenic technology have had a substantial impact 

on the range of experimental tools available to life scientists1, 2. These include 

microscopes with greatly improved sensitivity, temporal and spatial resolution and 

spectral versatility; powerful image acquisition and processing software; and an ever-

growing repertoire of fluorescent reagents to monitor second messengers, identify 

macromolecules and their physiological modifications, and examine subcellular 

structures in situ. In the field of neuroscience, these developments have allowed studies 

of the structure and function of biologically relevant neuronal circuits to be approached in 

a noninvasive way and with unprecedented analytical power. To fully exploit these 

technological developments, adequate biological preparations must be adapted for live-

imaging studies of defined neuronal circuits3, 4, 5, 6, 7. Subsequent immunostaining of the 

preparations allows retrospective definition of the cellular and molecular identity of the 

imaged structures and their local surroundings, as well as molecular correlation of the 

dynamic processes. 
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Advantages of the method 

Key features of the hippocampal organotypic slice cultures4 from mice include (i) well-

defined cellular architecture of the hippocampal circuit, which preserves the organization 

in vivo and allows for the identification and manipulation of defined neurons and 

synapses3, 4, 5, 6, 7; (ii) presence of axonal projections (mossy fiber axons extending from 

dentate gyrus granule cells to the distal end of CA3) that can largely be recovered in the 

slices in their original state (that is, without lesioning) and that establish stereotype 

numbers of readily identifiable presynaptic terminals onto excitatory and 

inhibitoryneurons in the hilus and CA3 (refs. 6, 7, 8); (iii) a long-term thickness of 100–

150µm, preserving three-dimensional organizations of connectivity4, 5; (iv) maturation of 

the slice cultures closely reflecting the corresponding schedule in vivo9; (v) the option to 

prepare the slices from mice of any genetic background, including those expressing 

fluorescent transgenes in selected neurons6, 7, 10, 11 and those of poor postnatal viability. 

Imaging coupled to retrospective immunocytochemistry allows the acquisition of 

information about unlabeled structures in the areas surrounding the imaged (fluorescent) 

structures, and the investigation of molecular mechanisms at the level of local identified 

structures within neuronal circuits. 

Critical aspects 

The main critical issues relate to the extent to which organotypic slice cultures reproduce 

the properties of hippocampal circuits in vivo5. This information is important in deciding 

whether the approach is appropriate to address the particular experimental issues one has 

in mind. These issues have been investigated in much detail by physiologists, who have 

demonstrated extensive similarities, but also a few discrepancies, between properties of 

the corresponding circuits in the neonatal and adult mouse brains5, 9. Critical limitations 

of the immunocytochemistry protocol mainly involve issues of antibody penetration and 

antigen accessibility. Some of these problems can be solved by varying the fixation and 

permeabilization protocols or by cutting sections of the slices. 



 159

Possible results and outlook 

Organotypic slice cultures from approximately 1-week-old mouse hippocampus seem to 

reproduce most anatomical and functional properties of the corresponding hippocampal 

circuits in vivo for at least 6 months in vitro as a result of the intrinsic properties of their 

neurons. Imaging of the slices coupled to post hoc immunocytochemistry thus provides 

an exciting range of possibilities for the exploration of mechanisms controlling the 

assembly and function of neuronal circuits. Some of these possibilities include (i) time-

lapse imaging and molecular analysis over periods ranging from sub-seconds to months, 

and from individual molecules to entire neuronal projections and circuits; (ii) imaging 

and analysis of neuronal6, 7, 10, 11 and glial12 subtypes; (iii) molecular manipulation using 

transfection12, 13 or viral approaches14, 15 to knock down or overexpress genes, silence or 

activate neurons, render neurons responsive to light or selective drugs, and highlight 

subcircuits; (iv) protocols that combine physiology, imaging and immunocytochemistry; 

(v) manipulations to investigate lesion-induced plasticity and pathways of 

neurodegeneration and repair (such as amyloid- or epilepsy-related pathways); (vi) the 

potential to follow and characterize the insertion of new neurons, the development of 

axons and their connections, or the insertion of exogenously added stem cells; and (vii) 

additional post hoc analysis using methods involving tracers, electron microscopy and 

single-cell genomics. 
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MATERIALS 

Reagents 

• Organotypic hippocampal slices  

• Paraformaldehyde (PFA; Merck, cat. no. 1.04005.1000)  

• Methanol (MeOH; Merck, cat. no. 1.06009.1000)  

• Triton X-100 (Fluka Chemika, cat. no. 93420)  

• BSA (Sigma, cat. no. A3912-100G)  

• PBS (with or without magnesium and/or calcium)  

• Primary and secondary antibodies suitable for immunohistochemistry  

• 4% PFA in PBS (cooled to 4 °C) 

! CAUTION PFA is toxic. Avoid inhalation, ingestion or contact with skin, eyes 

or mucous membranes.  

• 20% MeOH in PBS (cooled to 4 °C)  

• Permeabilization solution: 0.5% Triton X-100 in PBS 

? TROUBLESHOOTING  

• Blocking solution: 20% BSA in PBS  

• Antibody solutions: 5% BSA in PBS + antibodies at specific dilution  

• First washing solution: 5% BSA in PBS  

• Second washing solution: PBS 

Equipment 

• Scalpel or razor blade  

• Fine straight forceps  

• Microscope slides (e.g., 76 x 26 mm; Menzel-Gläser)  

• Thin cover glasses (e.g., 40 x 24 mm, 170 nm thick; Assistant)  

• Mounting medium (e.g., ProLong Gold antifade reagent, Invitrogen, cat. no. 

P36934)  

• 12- or 24-well plates (Corning, cat. no. 3513) 
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PROCEDURE 

Overview 

• Step 1 - 8 Fixation of slice cultures (day 1)  

• Step 9 - 10 Permeabilization of slice tissue (day 1)  

• Step 11 - 12 Blocking (day 2)  

• Step 13 - 15 Cutting slices off membrane of culture plate inserts (day 2)  

• Step 16 - 19 Incubation with primary antibody (day 2)  

• Step 20 - 23 Washing off primary antibody (day 3)  

• Step 24 - 26 Incubation with secondary antibody (day 3)  

• Step 27 Washing off secondary antibody  

• Step 28 - 32 Mounting of stained slice cultures (day 3) 

Fixation of slice cultures (day 1) • TIMING 15 min 

1. Remove the culture medium beneath the membrane by suction.  

2. Add 1 ml of cold 4% PFA solution above and 1 ml beneath the membrane insert. 

! CAUTION Use gloves to handle PFA, and wear a mask.  

3. Wait 5 minutes. ? TROUBLESHOOTING 

4. Remove the PFA solution completely.  

5. Wash once briefly by adding 1 ml of cold PBS above and 1 ml beneath the insert 

and then removing by suction.  

6. Add 1 ml of cooled 20% MeOH/PBS solution above and 1 ml beneath the insert.  

7. Wait 5 minutes. ? TROUBLESHOOTING 

8. Wash once briefly with PBS as in Step 5.  

Permeabilization of slice tissue (day1) • TIMING Minimum 12 h 

9. Add 1 ml of permeabilization solution (0.5% Triton X-100 in PBS) above and 1 

ml beneath the insert.  
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10. Incubate overnight, or for at least 12 h, at 4 °C. 

■ PAUSE POINT Slices can be kept in the permeabilization solution for up to 18 h. 

 ?TROUBLESHOOTING 

Blocking (day 2) • TIMING Minimum 4 h 

11. Remove permeabilization solution.  

12. Add blocking solution (20% BSA in PBS). 

■ PAUSE POINT Can be left for 4 h at room temperature (22–24 °C) or overnight at 

4 °C. Sections can be kept in the blocking solution at 4 °C for at least 2–3 d. 

Cutting slices off membrane of culture plate inserts (day 2) • TIMING 5 min 

13. To reduce the volume of antibody solutions needed, the slices are cut off the 

membranes of the culture plate inserts. Place the culture plate insert on a plastic 

cover (preferably a transparent plastic cover lying on a dark background to make 

the tissue easily visible).  

14. Use forceps and scalpel to carefully cut the membrane piece together with the 

hippocampal slice out of the surrounding membrane. Keep 1–2 mm of distance to 

the tissue to avoid damage. (Optional: the slices can already be cut off just after 

the fixation to further limit the amounts of permeabilization and blocking 

solutions required).  

▲ CRITICAL STEP Always keep the top side of the membrane facing up, and do 

not flip it around.  

15. Place the cut-off membrane pieces (top sides facing up) onto the lid of a culture 

plate. 

▲ CRITICAL STEP To avoid drying, always keep a droplet of 5% BSA/PBS 

solution on top of each slice.  
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Incubation with primary antibody (day 2) • TIMING Minimum 4 h or overnight 

16. To avoid drying of the slices during the antibody incubations, build a 'wet 

chamber' by putting wet paper tissues into a box that can be tightly closed and is 

large enough to hold the culture dish covers of Step 15.  

17. Prepare the primary antibody solutions in 5% BSA/PBS (50 µl per slice).  

18. Drop 50 µl of the antibody solution onto each slice.  

19. Carefully place the lid holding the slices into the wet chamber and close it. 

■ PAUSE POINT The primary antibody can be incubated overnight at 4 °C or for 3–

4 h at room temperature.  

Washing off primary antibody (day 3) • TIMING 30 min 

20. Fill the wells of a 12- or 24- well plate with 5% BSA/PBS (fill three times as 

many wells as you have slices to stain).  

21. Put each stained slice into one well containing the 5% BSA/PBS washing solution. 

▲ CRITICAL STEP Always keep the top side of the slice facing up.  

22. To wash off excess antibody, put the plate onto a horizontal shaker for 5–10 min 

at moderate speed (be careful that the fluid movement does not cause the slice to 

flip over).  

23. Transfer the slices to the next unused wells and repeat this washing twice more. 

Incubation with secondary antibody (day 3) • TIMING Minimum 3 h  

24. Prepare the secondary antibody solution (50 µl per slice). 

▲ CRITICAL STEP If you use fluorescent secondary antibodies, perform the 

following steps whenever possible in the dark, and keep the antibody-containing 

solutions away from light.  
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25. Put the slices back onto a fresh plate lid (as in Step 15).  

26. Proceed as for primary antibody (Steps 16–19). 

■ PAUSE POINT The secondary antibody can be incubated for 3–4 h at room 

temperature or overnight at 4 °C.  

Washing off secondary antibody • TIMING 30 min  

27. Wash off the secondary antibody as for the primary antibody (Steps 20–23) but 

using simple PBS solution (no BSA required).  

Mounting of stained slice cultures (day 3) • TIMING 30 min 

28. Put the washed slices, top sides facing up, onto a glass microscope slide.  

29. Put a droplet of mounting medium directly on the slice. 

▲ CRITICAL STEP Avoid drying out the slices.  

30. Cover the slice immediately with a thin cover glass.  

31. Seal the cover glass with nail polish. 

■ PAUSE POINT   

32. Store at 4 °C in the dark. The labeled slices can be kept for several months. 

• TIMING  

Day 1: fixation, 5 min PFA + 5 min MeOH; permeabilization, minimum 12 h (overnight). 

Day 2: blocking, minimum 3 h; incubation with primary antibody, minimum 4 h or 
overnight. 

Day 3: washing off primary antibody, 30 min; incubation with secondary antibody, 
minimum 3 h; washing off secondary antibody, 30 min; mounting sections, 5 min; 
sealing cover glasses, 5 min. 
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?TROUBLESHOOTING 

Table 1 Troubleshooting advice. 

Problem Possible reason Solution 
Transgenic GFP 
signal is beaded or 
very weak 

Fixation can destroy GFP signal 
(Steps 3 and 7) 

Reduce fixation times (e.g., 3 min each for 
PFA and MeOH) 

    Methanol fixation may not be required for 
each antibody. Try omitting methanol 

    Use anti-GFP antibody to enhance the 
signal 

Antibody does not 
penetrate deeply 
into the tissue 

Permeabilization too weak (Step 
10; especially in young slices, 
which are more dense) 

Increase Triton X-100 concentration 
during the permeabilization step to 1–2% 
and/or prolong the incubation 

 

ANTICIPATED RESULTS 

Critical factors are the fixation of the slices and penetration of antibodies and reagents. 
Penetration of reagents can be enhanced by double fixation followed by permeabilization 
overnight. Unfortunately, fixations are not entirely predictable, even when using the same 
protocol, so one should plan on processing several copies of crucial data. Suboptimal 
fixation can lead to a blurred appearance of small structures such as active zones. 
Optimization of protocols for special needs is recommended. 

This protocol should produce good-resolution labeling of cellular and subcellular 
structures (Fig. 1) and unambiguous identification of regions of interest, such as those 
that had been followed with live imaging before fixation. 
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Figure 1.A slice from a Thy1-mGFP single-transgenic mouse shows mossy fiber projection expressing 
membrane-targeted GFP. After imaging, the slice was fixed and stained for Bassoon (active zone marker) and 
phospho-GluR1 (pyramidal neuron dendrite marker). Live imaging was done on in vitro day 80 (DIV80) and DIV91; 
fixation and staining were done on DIV93. (a) Low-magnification view of mossy fiber projection and regions of 
interest (mossy fiber terminal complexes; ROI1–3). (b) Maximum-intensity projection of the GFP signal in ROI1 after 
fixation. (c) Same as b, but with superimposed Bassoon (blue) and phospho-GluR1 (red) signals. (d) Single confocal 
plane of ROI2. Note process grown from the mossy fiber terminal between DIV91 and DIV93 (arrow), which exhibits 
a terminal bouton and contacts the same dendrite (phospho-GluR1) as its mossy fiber terminal of origin. (e,f) Live 
imaging of ROI3 (maximum-intensity projection). (g) Single confocal plane of ROI3 after fixation and staining (green, 
GFP; red, phospho-GluR1). Note process that grew from the mossy fiber terminal between DIV80 and DIV91 (arrows 
in f and g), extending along a phospho-GluR1–positive dendrite. Scale bars, 25 µm. 
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