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Abstract 
 
The reversible acetylation of histones has a critical role in transcriptional regulation. 

Likewise reversible acetylation of non-histones proteins is also important for other 

cellular processes. Acetylation and deacetylation of histones and other proteins are 

catalyzed by opposing histone acetyl transferases (HATs) and deacetylases (HDACs) 

respectively. Among three classes of histone deacetylases, HDAC6 is a very unique class 

II HDAC enzyme which possesses two independent deacetylase domains and a Zn-UBP 

ubiquitin binding domain at the C-terminus. HDAC6 has been shown to interact with 

nuclear proteins as well as cytoplasmic proteins such as tubulin and HSP90. However, the 

physiological function of HDAC6 is not fully understood yet. Therefore, to further define 

the cellular function of HDAC6, an identification of novel interacting proteins has been 

undertaken. 

The first section of this thesis describes the identification of one novel HDAC6 

interacting protein and the role of HDAC6 in stress granule (SG) formation in response to 

environmental stress. First of all, we identified new HDAC6 interacting proteins using 

proteomic affinity trap approach. Here, we focused that HDAC6 interacts and co-

localizes with a previously identified stress granule component, G3BP (RasGAP 

associated endoribonuclease) in vitro and in vivo.  We first discovered that HDAC6 is a 

stable and critical component of stress granules. Further experimental data suggested that 

HDAC6 can regulate the assembly of SGs via recruiting SG components to the 

microtubule system. Because of this HDAC6 may have an impact on various processes 

involoving RNA metabolism and we provide initial evidence that the miRNA pathway is 

indeed influenced by HDAC6 function.  

The second section of this thesis examines the role of HDAC6 in response to various 

stresses. The involvement of HDAC6, a multi-functional cytoplasmic deacetylase, in 

processes such as the clearance of cytotoxic aggregated misfolded proteins and the 

deacetylation of HSP90 chaperone, has prompted us to investigate a role for HDAC6 in 

cellular protection under stress condition. In hypoxia, HDAC6 regulated stability of HIF-

1α by controlling its deacetylation. Indeed, loss of HDAC6 rendered cells more sensitive 
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to programmed cell death. Moreover, depletion of HDAC6 affected the recovery of cells 

from stress as well as the direct stress response, suggesting a significant role of HDAC6 

as a cellular regulator of the stress response. 

In addition, a number of other putative HDAC6 interactors are presented, which were 

identified in the initial mass spectrometry screens. Several of these proteins encode 

cytoplasmic factors that have a role in RNA metabolism, protein translation or in 

cytoskeletal regulation. Therefore, it appears likely that at least some of these may turn 

out to be relevant partners contributing to HDAC6 function.  
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1.1. Epigenetics 

1.1.1. Concept of epigenetics and epigenetic regulation  

“Epigenetics” is defined as “the study of mitotically and/or meiotically heritable changes 

in gene function that cannot be explained by change in DNA sequence” (Shemer et al., 

1996). Epigenetic mechanisms are responsible for putting in place and maintaining the 

patterns of gene expression that specify the many different cell types required to make a 

higher eukaryote (Turner, 2007). Epigenetic mechanisms would include DNA 

methylation or histone modifications. At a molecular level, epigenetic mechanism needs 

co-operation of a variety of regulatory proteins including DNA methyltransferase, methyl 

CpG binding proteins, histone-modifying enzymes, chromatin remolding factors, 

transcriptional factors and chromosomal proteins. Moreover, chromosomes structures 

such as centromere, kinetochores, and telomeres enter into the category of epigentics 

even though they are or are not connected directly to gene function. Epigenetic 

phenomena have major economic and medical relevance, and several, such as imprinting 

and mutation, violate Mendelian principles. Epigenetic control of gene expression can be 

considered from the standpoint of normal development, which requires stable repression 

of genes not required in specific cell types. Dysregulation at the epigenetic states cause 

human disease phenotypes, especially developmental defects and tumorigenesis Many  

Figure 1. Histone 
modifications can 
generate both short-term 
and long-term outcomes 
Histone tail modifications 
are put in place by 
modifying and demodifying 
enzymes, whose activities 
can be modulated by 
environmental and intrinsic 
signals. Adapted from 
Turner, 2007. 
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epigenetic effects, however, are observed in unusual circumstances. Therefore, 

epigenetics will become a major target for emerging biological and medical discoveries 

(Nakao, 2001).  

1.1.2. Chromatin and Histone modification  

The nucleosome is the fundamental unit of eukaryotic chromosomes. It consists of a core 

of eight histone proteins (copies each of H2A, H2B, H3, and H4) around which 147 base 

pairs of DNA are wraped in 1.75 superhelical turn. Histones have a mass roughly equal to 

that of the DNA which they are associated with (Fig. 2). Each of the core histones 

exhibits a similar structural feature called the "histone fold," which consists of a long 

central α-helix flanked by shorter helices and loops that interact with DNA. Core histone 

octamer proteins are evolutionally conserved. They consist mainly of flexible N-terminal 

tails that protrude outward from the nucleosome and control the folding of nucleosomal 

arrays into higher order structure and of globular C-terminal domains that comprise the 

nucleosome scaffold mediating histone-histone interaction. Each nucleosome is separated 

by 10-60 bp of ‘linker’ DNA, and the resulting nucleosomal array constitutes a chromatin 

fiber of ~10 nm in diameter. This simple ‘beads-on-a-string’ arrangement is folded into 

more condensed ~30 nm thick fibers that are stabilized by binding of a linker histone to 

each nucleosome core. Such 30 nm fibers are then further condensed in vivo to form 100-

400 nm thick interphase fibers or the more highly compacted metaphase chromosome 

structures. These local or extended structural changes in chromatin play an essential role 

in the control of gene expression and are governed by complexes that remodel chromatin 

and by enzyme that posttranslationally modify histones (Peterson and Laniel, 2004).  

The amino-terminal tails of core histones are subject to various post-translational 

modifications modulating chromatin structure and function. Post-translational 

modifications of histones divide into two goups. First three are the small chemical groups, 

including acetylation of lysine residues, methylation of lysines and arginines, 

phosphorylation of serines and threonines. Second there are lager chemical modification 

including ubiquitination of lysine, sumoylation of lysines, and the poly-ADP-ribosylation 

of glutamic acid. Theae modifications decorate the nucleosome surface with an array of 

chemical information. Different combinations of histone posttranslational modifications 
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has been proposed to a “histone code” which is established and maintained in particular 

region of chromatin to specify unique downstream functions. The best understood histone 

modifying enzymes, histone acetylases (HATs) and histone deacetylases (HDACs) play 

important roles in physiological and aberrant gene regulation.  

Figure 2. Histone modifications 
on the nucleosome core particle 
The nucleosome core particle 
showing 6 of the 8 core histone 
N-terminal tail domains and 2 C-
terminal tails. Sites of 
posttranslational modification are 
indicated by colored symbols that 
are defined in the key (lower left). 
Sites marked by green arrows are 
susceptible to cutting by trypsin 
in intact nucleosomes. Adapted 
from Turner, 2002. 

 

Over the years, many different types of HDAC inhibitors (HDACi) have been 

developed, ranging from complicated structures of bacterial or fungal origin 

(trichostatinA (TSA), trapoxin) to the very simple butyrate. HDACi are capable of 

inhibiting HDACs with varying efficiency (at nanomolar to millimolar concentrations). 

Inhibition of HDACs can result in a general hyperacetylation of histones, which is 

followed by the transcriptional activation of certain genes through relaxation of the DNA 

conformation. Generally, HDACi are known to be able to induce growth arrest, 

differentiation or apoptosis of cancer cells in vitro and in vivo. DNA micro-arrays using 

malignant cell lines cultured in the presence of a HDACi indicated that a specific small 

number of genes (1±7%) showed altered expression. In addition, HDACi also leads 

repression of a number of genes. Thus the effect of HDACi on gene expression is 

believed not to be a universal one, but rather involves alteration of the transcription of a 

specific subset of genes (Dangond and Gullans, 1998).  
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1.1.2.1. Histone posttranslational modifications and histone code hypothesis  

Histone posttranslational modifications (HPTMs)  

Covalent posttranslational modifications of histones play key roles in controlling the 

capacity of the genome to store, release, and inherit biological information. Histone 

modifications may function in both short term, ongoing processes (such as transcription, 

DNA replication and repair) and in more long-term functions (as determinants of 

chromatin conformation, for example, heterochromatin formation, or as heritable markers 

that both predict and are necessary for future changes in transcription). Short-term 

modifications are transient and show rapid turn over in response to external stimulation. 

Long-term, heritable modifications need not necessarily be static (Turner, 2007). Histones 

modifications can be highly reversible, such as histone acetylation, and histone 

phosphorylation, histone ubiquitination and sumoylation, ribosylation, or more stable, 

such as histone methylation.  Recently it has been found that although methylation was 

considered a stable modification, recent several demethylations at aginine or lysine 

residue have been identified. Furthermore, each lysine residue and arginine residue can 

be either mono-, di-, or tri-methylated (Fig. 3). The majority of these post-translational 

marks occurs on the amino terminal and carboxy terminal histone tail domains, although 

more and more examples of modifications within the central domains of histones have 

been identified. A wide range of histone and chromatin-based regulatory options is 

available. These include rapid adjustments of gene expression in response to 

physiological and environmental stimuli as well as transmission of inheritable expression 

patterns to the next generation. Fundamental cellular mechanisms are manifested in the 

genetic and epigenetic regulatory circuits that control the post-translational modification 

of histone (Fischle et al., 2003).  

The histone code hypothesis 
 
Posttranslational modifications of histones constitute a code that allows specific 

interactions or reactions with chromatin-associated components to take place in a 

chromosomal context. This idea refers as the "histone code hypothesis". The code is 

generated by histone-modifying enzymes of defined specificity and read by nonhistone 

proteins in a modification-sensitive manner (Fig.4) (Strahl and Allis, 2000). The theory  
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Figure 3. Histones are subjected to a variety of post-translational modifications 

The modifications on human histones include acetylation (Ac, red), methylation (Me, 
blue), phosphorylation (P, green) and ubiquitination (Ub, brown). The enzymes 
responsible for methylation of mammalian histones are listed above or below their target 
sites. Note that there are several redundant enzymes specific for methylation of histone 
H3-K4 and H3-K9. Adapted from Margueron et al., 2005. 
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postulates that different combinations of post-translational histone modifications are 

established and maintained in particular regions of chromatin to specify unique 

downstream functions. Histone code would be a binary relationship between 

posttranslational histone modifications and either gene activation or repression, and 

distinct HPTMs for other precesses. The mechanism is likely to be also functioning in 

reactions other than transcription which are regulated by post-translational modification 

of histones, such as DNA replication, repair and recombination (Fig. 4) (Peterson and 

Laniel, 2004). 

The histone codes are decoded by proteins that interact with histones in 

modification-dependent manners (Fig. 4). One group, the bromodomain proteins of 

various proteins have been reported to interact with acetylated histones in a lysine-

specific manner in vitro and in vivo (Dhalluin et al., 1999). These bromodomain-

containing proteins are components of nucleosome-modulating complexes that also 

include ATPases and HATs. Acetylation at specific lysines is thought to stabilize these  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4. The histone code hypothesis 

Schematic of the histone code hypothesis. Histones are labeled with "codes" by histone 
modifying enzymes ("marking of histone" in the figure). These post-translational 
modifications are recognized by proteins that interact with histones in modification-
dependent manners ("reading of the code"). Recruitment of these histone-interacting 
proteins triggers subsequent reactions on chromatin ("chromatin states"), which cause 
various changes ("cellular events"). Adapted from Kimura et al., 2005. 

http://jb.oxfordjournals.org/cgi/content/full/138/6/647#FIG4#FIG4
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complexes through bromodomain interaction and to stimulate nucleosome remodeling, 

further acetylation, or the recruitment of TFIID. Initial recruitment of a HAT to chromatin 

may require nucleosome remodeling. In these cases, HAT is proposed to be required for 

the subsequent stable binding of the ATPase complex. But, the HAT may also be recruited 

to chromatin before the ATPase complex and recruit ATPases in some instances (Hassan 

et al., 2001).  

Sir3 and Tup1 are proposed to interact with hypoacetylated histones, and both 

repress gene expression in S. cerevisiae. Sir3 spreads along chromatin and contributes to 

gene repression over a range of several kilobases. Deacetylation of H4-K16 by an HDAC, 

Sir2, stimulates binding of Sir3 to chromatin and thus gene silencing, whereas acetylation 

of this lysine by a MYST-HAT, Sas2, prevents Sir3 from spreading on chromatin and 

contributes to anti-silencing (Suka et al., 2002). In contrast, Tup1 represses gene 

expression in a promoter-specific manner. The local recruitment of Tup1 is accomplished 

by sequence-specific DNA binding proteins such as α2/Mcm1, Mig1 and Sko1. Tup1 acts  

 
 

Figure 5. Reading histone codes 

(A) Depending on specific patterns established by various histone-modification enzymes, 
distinct proteins are recruited to chromatin, with specific results. (B) Schematic of 
"chromatin crosstalk." The efficiency of modification at particular residues depends on 
pre-existing histone modification patterns. Such interdependency might involve residues 
in the same histone-tail (‘cis tail’ regulation) or those in different histone tails (‘trans tail’ 
regulation). Adapted from Kimura et al., 2005. 
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in concert with a histone H2B/H3-specific HDAC, Hda1, to repress gene expression, 

possibly by binding to hypoacetylated histones (Wu et al., 2001). Other modifications of 

histones also regulate their interaction with proteins, and these alterations also function as 

codes. For example, methylation of H3-K9 is known to stimulate the binding of 

chromodomain-containing proteins such as HP1 and Swi6 to chromatin, leading to gene 

repression (Lachner et al., 2001).  

Cross-talk of DNA methylation and Lys methylation in Histone 
 
Modification of histones also influences other histone modifications, a phenomenon 

called cross talk. In cis-tail crosstalk, a given modification affects modification of 

neighboring residues by physically stabilizing or inhibiting interaction between enzymes 

and substrates. For example, phosphorylation of serine 10 of histone H3 (H3-S10) 

enhances acetylation of H3-K14 by Gcn5 (Clements et al., 2003). In trans-tail crosstalk, a 

given modification affects modifications on other histone tails too. For example, 

ubiquitination of H2B-K123 by Rad6/Ubc2 is required for methylation of H3-K4 and H3-

K79 (Fig. 5) (Sun and Allis, 2002). The interdependency of histone modifications 

proposes that histone modifications function as binary switches (Fischle et al., 2003).  

For many years, DNA methylation, namely the 5 methylcytosine (5mC) 

modification at CpG islands of the genome, has been the main focus of the epigenetic 

gene regulation field (Feinberg and Tycko, 2004; Jaenisch and Bird, 2003) The finding 

that histone modifications can regulate DNA methylation patterns suggest that histone 

modifications, particularly Lys methylation, are important regulatory mechanism of 

epigenetic phenomena such as X-chromosome inactivation, imprinting, and cancer. In 

Neurospora crassa, DIM5, a methyltransferase of histone H3 Lys9, mediates DNA 

methylation (Tamaru et al., 2003). In Arabidopsis thaliana, KRYPTONITE, another 

histone H3 Lys9 methyltransferase, also is required for DNA methylation mechanism 

(Jackson et al., 2002). These studies suggest a regulatory mechanism whereby DNA 

methylation is targeted by histone methylation.  

 While the above data support that histone methylation guides DNA methylation, 

other reports suggest that DNA methylation may regulate histone methylation as well. 
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For example, DNA hypomethylation causes defects in H3 Lys9 methylation in 

Arabidopsis thaliana (Soppe et al., 2002). Biochemical studies found that the methyl-

DNA binding protein (MeCP2) interacts with H3 Lys9 mehtyltransferase (Fuks et al., 

2003). These results suggest that there may be continous interplay between histone 

methylation and DNA methylation in certain biological systems. The possibility that 

DNA methylation may guide histone methylation is especially intriguing in the context of 

maintaining histone modification patterns following DNA replication.  

1.1.2.2. Overview of histone acetyltransferases (HATs) and histone deacetylases 

(HDACs) 

Histone acetylation was first discovered by Allfrey et al. in 1964 and proposed to regulate 

gene expression. This idea was supported by the observation that hyperacetylation of 

histones correlates with transcriptional activation. Turner et al. observed acetylation of 

distinct lysine residues in specific chromosomal regions in Drosophila melanogaster 

polytene nuclei. For example, histone H4 Lys 5 (H4-K5) or H4-K8 is frequently 

acetylated in euchromatic regions, where transcription is potentially active. In contrast, 

acetylation of H4-K12 is increased in heterochromatic regions, where transcription is 

potentially inactive. Acetylation of H4-K16 is found along the transcriptionally 

hyperactive male X chromosome (Turner et al., 1992). Furthermore, the first histone 

deacetylase (HDAC) enzyme was isolated via biochemical purification (Taunton et al., 

1996). In this case, the enzyme was purified from cell extracts using inhibitor, trapoxin, 

which physically bound to the catalytic site of the enzyme. These observations suggested 

that residue-specific acetylation, rather than bulk neutralization of electrostatic charge, is 

important in regulation of gene expression through histone modification. They further 

suggested that histone modifications mediate not only promoter-specific gene expression 

but also longer-range (and even chromosome-wide) gene expression.  

 All core histone proteins are reversibly and dynamically acetylated at multiple 

sites in their N-terminal tails. Hyperacetylated histones are generally found in 

transcriptionally active genes and hypoacetylated histones in transcriptionally silent 

regions, such as heterochromatin. The level of histone acetylation at a particular locus in 

chromatin reflects the competing activities of HATs and HDACs. The identification and 
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characterization of numerous transcriptional regulators recruiting HAT or HDAC has 

validated the prediction that histone acetylation plays a critical role in transcriptional 

regulatory mechanisms (Cheung et al., 2000). 

 In addition to histones, many nuclear and cytoplasmic proteins have recently been 

shown to be reversibly acetylated on lysine residues. Acetyl-lysine is now known to be 

present in at least 80 other proteins, including ~ 40 sequence-specific transcription factors, 

~10 transcriptional co-regulators, several viral proteins, p53, tubulin, Hsp90, and Ku70. 

Lysine acetylation is controlled by the opposing actions of HATs and HDACs, and 

regulates the functional activity of these proteins. In several cases, the level of acetylaion 

was shown to have a critical impact on actitivy of the protein. (Yang and Gregoire, 2005). 

Classification of HDACs 

HDACs are conserved from yeasts to mammals. Eighteen distinct human HDACs are 

grouped into three classes based on their primary homology to three Saccharomyces 

cerevisiae HDACs. Class I HDACs (HDAC1, -2, -3, -8 and -11) are homologous to 

yRPD3, share a compact structure and a conserved deacetylase domain (hdac); they  are 

predominantly nuclear proteins expressed in most tissues and cell lines (de Ruijter et al., 

2003; Fischle et al., 2001b). Class II HDACs are homologous to yHDA1 and are 

subdivided into two subclasses, IIa (HDAC4, -5, -7 and -9 and its splice variant MITR) 

and IIb (HDAC6 and HDAC10), based on sequence homology and domain organization. 

The class IIa HDACs, HDAC4, -5, -7 and -9, share an N-terminal domain of 450–600 

amino acids. Domains in this region mediate interactions with the transcriptional co-

repressor CtBP, the MEF2 family of transcription factors, and other proteins. HDAC6 

and HDAC10 are unique in having two catalytic sites. However, in HDAC10, one of two 

catalytic domains is not functional.  HDAC6 contains two independent HDAC domains, 

both of which are required for deacetylase activity. The expression pattern of class II 

HDACs is more restricted, suggesting that they might be involved in cellular 

differentiation and developmental processes. Whereas class I and II HDACs, all share 

some degree of homology in their catalytic domain, class III HDACs are homologous to 

ySIR2 and show no homology to class I and II proteins. Class I and II HDACs are Zn2+-  
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Figure 6. Schematic depiction of the different isoforms of histone deacetylase 
(HDAC) 

HDACs are grouped into three classes - I, II and III - on the basis of their homology with 
three structurally and biochemically distinct yeast HDACs, Rpd3p, Hda1p and Sir2, 
respectively. Class II HDACs are unique in that they are expressed in a tissue restricted 
manner (H, heart; B, brain; Ki, kidney; Skm, skeletal muscle; Th, thymus; Pl, placenta; 
Lu, lung; Sp, spleen; Pa, pancreas; NU, not fully understood; N. shuttling, 
Nucleocytoplasmic shuttling. Domains are indicated by colored boxes; light green, and 
orange, HDAC domain; pink, CtBP binding domain; purple, MEF2 binding domain; blue, 
NLS; brown, HP1 binding domain; red, NES; yellow, SE14 (SerGlu-containing 
tetradecapeptide repeats); green, Zn-UBP; Leucine-rich, sky blue.  
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dependent enzymes, whereas the deacetylase activity of class III members is NAD+ 

dependent. In agreement with this, class I deacetylases function as transcriptional 

corepressors while Sir2p-related proteins appear to be involved in gene silencing.  

HDAC11 is most recently described HDAC (Gao et al., 2002; Voelter-Mahlknecht et al., 

2005).  

Localization of HDACs  

To deacetylase histones, HDACs need to be in the nucleus, where their predominant 

substrate is found. The nuclear localization of HDACs occurs via a nuclear localization 

signal (NLS) or via colocalization together with other proteins/HDACs. Most HDACs 

contain a NLS, but some can be in the cytoplasm as well; this depends on other 

regulatory domains (de Ruijter et al., 2003). Class I HDACs are found almost in the 

nucleus. For example, the localization of HDAC1 and HDAC2 is exclusively nuclear, 

due to the lack of a nuclear export signal (NES) (Johnstone, 2002; Taplick, 2001). 

HDAC3 is largely localized in the nucleus even though it has both NLS and NES (Yang, 

2002). HDAC8 is exclusively nuclear (Johnstone, 2002; Van den Wyngaert et al., 2000).  

Class II HDACs are able to shuttle in and out of the nucleus in response to certain 

cellular signals. The predominant localization of HDAC6 is in the cytoplasm, although it 

can be partially found in the nucleus of osteobloasts and some cell lines (Bertos et al., 

2004; Hubbert et al., 2002; Verdel et al., 2000). HDAC11 resides in the nucleus; however, 

in activity assays, HDAC11 colocalize with HDA6 in the cytoplasm (Bertos et al., 2001; 

Gao et al., 2002). HDAC10 can be localized in both the nucleus and the cytoplasm, 

although the function of the localization in the two compartments has not been clarified 

(Fischle et al., 2002; Kao et al., 2002). The subcellular localization of HDAC9 can be 

cytosolic as well as nuclear, depending on the splice variant (Zhou et al., 2001). The 

shuttling of HDAC4, -5 and -7 between the cytosol and the nucleus has been studied 

extensively in differentiating muscle cells (Fischle et al., 2001a; Fischle et al., 2002; 

Pflum et al., 2001). Due to a (pre-) differentiation signal, HDAC4 is phosphorylated by 

Ca+2/calmodulin-dependent kinase (CaMK), resulting in the export of HDAC4 together 

with CRM1, a cellular export factor for proteins with a leucine-rich NES. 14-3-3 protein 

(a cytosolic anchor protein) binds the phosphorylated form of HDAC4 and thereby 
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retains HDAC4 in the cytosol. After fusion of muscle cells, terminal differentiation (post-

differentiation) occurs, and HDAC4 is released from 14-3-3 due to a decrease in its 

phosphorylation status, and will consequently shuttle back to the nucleus (Grozinger and 

Schreiber, 2000; Kao et al., 2001). The localization of HDAC5 is regulated by 

phosphorylation signal and NLS in a similar manner to HDAC4 but shuttling direction of 

HDAC5 is opposite. Even though there is a large degree of similarity in function and 

localization between HDAC5 and HDAC7, both enzymes are found in the same or 

different cellular compartment in cell line dependent manner. Though the reason is not 

very clear, the presence of the NES domain on HDACs might have a dominant role in 

determining the localization of HDAC4 (NES), HDAC5 (one NES), or HDAC7 (no NES) 

(Bertos et al., 2001; Dressel et al., 2001; Kao et al., 2001). 

Mechanism of action of HDACs 
 
The mechanism of action of the HDAC enzymes involves removing the acetyl group 

from the histones, which leads to a decreased space between the nucleosome and the 

DNA that is wrapped around it. Tighter wrapping of the DNA diminishes accessibility for 

transcription factors, leading to transcriptional repression (Strahl and Allis, 2000). The 

catalytic domain of HDAC is formed by a stretch of ~ 390 amino acids consisting of a set 

of conserved amino acids. The active site consists of a gently curved tubular pocket with 

a wider bottom (Finnin et al., 1999). Removal of an acetyl group occurs via a charge-

relay system consisting of two adjacent histidine residues, two aspartic residues (located 

 

Figure 7. The proposed catalytic mechanism for the deacetylation of acetylated 
lysine  

HDLP active-site residues and their proposed HDAC1 counterparts (in parenthesis) are 
labelled. Adapted from Grozinger et al, 2002. 
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approx. 30 amino acids from the histidines and separated by approx. 6 amino acids), and 

one tyrosine residue (located approx. 123 amino acids downstream from the aspartic 

residues (Buggy et al., 2000; Finnin et al., 1999). An essential component of the charge-

relay system is the presence of a Zn2+ ion. This atom is bound to the zinc binding site on 

the bottom of the pocket. However, other cofactors are required for HDAC activity: most 

recombinantly expressed enzymes are found to be inactive. HDACi function by 

displacing the zinc ion and thereby rendering the charge- relay system dysfunctional. 

TSA, with its hydroxamic acid group and its five-carbon atom linker to the phenyl group, 

has the optimal conformation to fit into the active site (de Ruijter et al., 2003; Finnin et 

al., 1999).    

1.1.2.3. Class I HDACs 

1.1.2.3.1. HDAC1 and HDAC2  

HDAC1 and HDAC2 are highly similar enzymes, with an entire sequence identity of 

approximately 82%. The catalytic domain on the N-terminus forms the major part of the 

protein (Cress and Seto, 2000; Kao et al., 2000; Li et al., 2002). HDAC1 gene is mapped 

to 1p34 and HDAC2 gene is mapped to 6q21 (NCBI SAGE database). HDAC1 and 

HADC2 are mainly localized in the nucleus and regulate general gene expression 

(Taplick, 2001). HDAC1 and HDAC2 are inactive when produced by recombinant 

techniques, implying that cofactors are necessary for HDAC activity. In vivo, HDAC1 

and HDAC2 only display activity within a complex of proteins. These complexes consist 

of proteins necessary for modulating their deacetylase activity and for binding DNA, 

together with proteins that mediate the recruitment of HDACs to the promoters of genes 

(Zhang et al., 1999). HDAC1 and HDAC2 are generally found in stable, multicomponent 

complexes of proteins: the Sin3, NuRD, (nucleosome remodelling and deacetylating) and 

CoREST complexes. Both the Sin3 complex and the NuRD complex consist of a core 

complex containing HDAC1, HDAC2, Rb-associated protein 48 (RbAp48) and RbAp46. 

The core complex alone does not possess maximal HDAC activity, and additional 

cofactors are needed (Brehm et al., 1998; Galasinski et al., 2002; Heinzel et al., 1997; 

Zhang et al., 1999). Moreover,  HDAC1 and HDAC2 can bind directly to DNA binding 
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proteins such as YY1, Rb binding protein-1 and Sp1 (Brehm et al., 1998; Magnaghi-

Jaulin et al., 1998; Yang et al., 1996; Yao et al., 2001; Yoshida et al., 1990).  

In addition to the regulation of HDAC1 and HDAC2 activity by co-repressors, 

they are also regulated by several post-translational modifications. Both enzymatic 

activity and complex formation are regulated by phosphorylation. HDAC1 (Ser421 and 

Ser423) and HDAC2 (Ser394, Ser411, and Ser424) are phosphorylated by protein kinase 

CK2 in vivo and in vitro (Cai et al., 2001; Sun et al., 2002). Hyperphosphorylation of 

HDAC1 and HDAC2 leads to a slight but significant increase in deacetylase activity, and 

at the same time to disruption of complex-formation. When hypophosphorylation of 

HDAC1 and HDAC2 occurs, the activity of HDAC1 and HDAC2 decreases, but complex 

formation is increased. Phosphorylation status of HDAC1 or 2 determines and maintains 

HDAC activity at a certain optimal level (Galasinski et al., 2002; Pflum et al., 2001). 

1.1.2.3.2. HDAC3  

HDAC3 is evolutionarily most closely related to HDAC8 (34% identity). The HDAC3 

protein is 50% identical in DNA sequence and 53% identical in protein sequence 

compared with HDAC1. Comparison of the HDAC3 and HDAC2 also yielded similar 

results, with 51% identity in DNA sequence and 52% identity in protein sequence (Yang, 

1997). HDAC3 gene is mapped to 5q31 (NCBI SAGE database). Surprisingly, the non-

conserved C-terminal region of HDAC3 is required for both deacetylase activity and 

transcriptional repression. HDAC3 has NLS as well as a NES (amino acids 180-313) but 

is nearly always in the nucleus. HDAC3 is ubiquitously expressed (Yang, 1997). HDAC3 

shares structural and functional features with other class I HDACs and forms oligomers 

with other HDACs in vivo and in vitro, but it exists in multisubunit complexes that are 

different from other known HDAC complexes(Yang, 2002). Endogenous HDAC3 mostly 

associates with itself, and only a small fraction of HDAC3 interacts with HDAC4. Both 

co-repressors, SMRT (silencing mediator for retinoic acid and thyroid hormone receptors) 

and N-CoR (nuclear receptor co-repressor) are activating cofactors for HDAC3 because 

they have a conserved deacetylase-activating domain for HDAC3 activation (Guenther et 

al., 2001). Recent evidence has shown that HDAC3 interacts with and deacetylates MEF2 

transcription factors via the MADS box in vivo and in vitro. In addition, HDAC3 
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stimulated by SMRT associated with the acetyltransferases p300 and PCAF to reverse 

autoacetylation. This result suggests that HDAC3 represses MEF2-dependent 

transcription and inhibites myogenesis (Gregoire et al., 2006).  

1.1.2.3.3. HDAC8  

HDAC8 consists largely of the catalytic domain with an NLS in the center (Buggy et al., 

2000) and its genes are mapped to Xq21.2-Xq21.3 and to Xq13. HDAC8 is considered to 

be ubiquitously expressed. Using immunohistochemistry, in normal human tissues, 

HDAC8 is exclusively expressed by cells showing smooth muscle differentiation, 

including visceral and vascular smooth muscle cells, myoepithelial cells, and 

myofibroblasts, and is mainly detected in their cytosol. HDAC8 associates with the 

smooth muscle actin cytoskeleton and may regulate the contractility smooth muscle cells 

(Waltregny et al., 2005).  

1.1.2.3.4. HDAC11 

HDAC11 is most closely related to HDAC3 and HDAC8, but the classification of 

HDAC11 has not yet been determined clearly. However, recently HDAC11 has been 

classified as class IV HDACs. The human HDAC11 gene is localized to chromosome 

3p25 (Gao et al., 2002; Voelter-Mahlknecht et al., 2005). HDAC11 contains a catalytic 

domain at the N-terminus. HDAC11 has not been found in any other known HDAC 

complexes, possibly implicating that HDAC11 might have distinct biological functions. 

AML blasts and cell lines, exposed to HDACis in culture, showed both histone 

hyperacetylation (H3 K4) and several inhibitors (valproic acid, butyrate, TSA, SAHA) 

caused strong induction of HDAC11 in all myeloid cells tested (Bradbury et al., 2005). 

1.1.2.4. Class II HDACs  

1.1.2.4.1. Class IIa HDACs: HDAC4, HDAC5, HDAC7 and HDAC9 

HDAC4, -5, -7 and -9  contain a highly conserved catalytic domain (~420 amino acids) 

which corresponds to the C-terminal half of the protein. The NLS of these HDACs is 

situated close to the N-terminus; HDAC4, amino acids 251-272 and HDAC5, amino 

acids 264-285 (Wang and Yang, 2001). HDAC9 catalytic domain is located in the N-
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terminus. There are three splice variants, HDAC9a, HDAC9b, and HDAC9c (Zhou et al., 

2001). Binding domains for C-terminal binding protein (CtBP), myocyte enhancer factor 

2 (MEF2) and 14-3-3 are conserved in all class IIa HDACs on the N-terminus (Bertos et 

al., 2001). HDAC4, -5, -7 are able to interact with SMRT/N-CoR, and the co-repressors 

BCoR (Bcl-6-interacting co-repressor) and CtBP. Also the N-termini of HDAC4, -5 and -

7 interact specifically with and repress the myogenic transcription factor MEF2. When 

MEF2 is associated with HDAC4, -5 or -7, the function of MEF2 as a transcription factor 

is inhibited, thereby preventing muscle cell differentiation. CaMK activity overcomes this 

inhibition by dissociating the MEF2 and HDAC complex due to phosphorylation of 

HDAC4/5/7 and causes to export of the HDAC out of the nucleus by CRM1 (Grozinger 

and Schreiber, 2000; Kao et al., 2001; McKinsey et al., 2000a; McKinsey et al., 2000b).  

HDAC9 also interacts with MEF2/CaMK/14-3-3, indicating that HDAC9 may also 

function in muscle differentiation as the three class IIa HDACs (Zhang et al., 2001). 

Interestingly, HDAC4, -5 and -7 associate with HDAC3 through the SMRT/N-CoR co-

repressors and become enzymatically active. This suggests that HDAC4, -5, and -7 

functionally link between DNA-binding recruiters and the HDAC3-containing HDAC 

complex (Fischle et al., 2002). HDAC5 resides in the nucleus during pre-differentiation 

and is relocalized to the cytoplasm during differentiation. HDAC5 may be transported by 

CaMK into cytoplasm as it has a NES domain (amino acids 1086-1099) like HDAC4 

(amino acid 1056-1069): however more research is needed to clarify this assumption. The 

subcellular localization of HDAC5 and HDAC7 differs from that of HDAC4 at the 

different stages of muscle cell differentiation, implicating that these HDACs might 

control the differential regulation of gene expression during the various stages of muscle 

cell differentiation. In cell types other than muscle cells, the regulation of the localization 

of HDAC5 and HDAC7 is less clear. Even though there is a large degree of similarity in 

function and localization between HDAC5 and HDAC7, both enzymes are found in the 

nucleus in some cell lines (CV-1, MCF7), whereas in other cell lines (HepG2) HDAC5 is 

located in the nucleus and HDAC7 is localized in the cytosol. The presence of the NES 

domain on HDAC5 might have an important role in determining the localization of 

HDAC5 in certain cell lines (Bertos et al., 2001; Dressel et al., 2001; Kao et al., 2001).  
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1.1.2.4.2. Class IIb HDACs: HDAC6 and HDAC10 

Class IIb HDACs are characterized by duplicated HDAC domains, although this 

duplication is partial in the case of HDAC10.  

HDAC6: HDAC6 structure  

Different from class IIa members, class IIb HDACs are characterized by duplicated 

HDAC domains. HDAC6 is the largest member of the HDAC family and a very unique 

enzyme within the classical family of HDACs in that it contains two functional catalytic 

domains. The domain organization of HDAC6 is conserved in orthologs identified in 

C.elegans and Drosophila. The amino acid sequence alignment of the two catalytic 

domains of HDAC6 indicates that there is 61% similarity and 46% identity (Bertos et al., 

2001) 

.  

 

 

Figure 8. Schematic representation of HDAC6 domains 

HDAC6 are unique class IIb HDAC, which possesses two catalytic domains and ZnF-
UBF domain. Domains are indicated by colored boxes; light green, HDAC domain; blue, 
NLS; red, NES; yellow, SE14 (SerGlu-containing tetradecapeptide repeats); green, ZnF-
UBP. 
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which is two arginine/lysine-rich clusters, residues 14-58. NES1 is highly conserved in 

mHDAC6 (m55-104). In contrast, NES2 is less conserved in mHDAC6. NES2 but not 

NES1, is conserved in dHDAC6, so this region corresponding to dHDAC6 may function 

as an NES; accordingly dHDAC6 is mainly cytoplasmic (Barlow et al., 2001). The NLS 

of hHDAC6 is well conserved in mHDAC6 but not dHDAC6, suggesting that putative 

NLS of h/mHDAC6 is unique to HDAC6 protein from higher organisms. Human 

HDAC6 possesses a unique SE14-repeat domain, which is not intact or present in mouse, 

rat, Drosophila, C.elegans and Arabidopsis thaliana homologs (Bertos et al., 2001). This 

domain contains eight consecutive tetradecapeptide repeats and is important for the stable 

cytoplasmic retention of human HDAC6 (Brush et al., 2004). HDAC6 gene maps to 

Xp11.23 (Grozinger et al., 1999). The gene on X-chromosome raises the interesting 

possibility that HDAC6 can harbor special, different functions. 

HDAC6 subcellular localization 

HDAC6 can shuttle in and out the nucleus. In the absence of a stimulus, HDAC6 is 

predominantly localized in the cytoplasm, but cell cycle arrest causes to partially 

translocate of the protein to the nucleus (Verdel et al., 2000). The subcellular localization 

of HDAC6 is dependent on NES in the N-ternimus of the protein (NES1) (Bertos et al., 

2001). mHDAC6 is actively shuttled between the nuclear and cytoplasmic compartments 

(Bertos et al., 2004; Bertos et al., 2001; Hubbert et al., 2002; Verdel et al., 2000). Even 

though HDAC6 is mainly cytosolic, expression and localization of this protein depends 

on tissue type. In differentiating osteoblasts, HDAC6 is localized in the nucleus where it 

interacts with Runx2 transcription factor (Westendorf et al., 2002). 

HDAC6 expression in normal tissue and cancer 

Class IIb HDACs show generally some degree of tissue-specific gene expression. 

HDAC6 is significantly expressed in testis, brain, and liver (Zhang et al., 2007). HDAC6 

expression depends on cellular differentiation, especially osteoblast differentiation. 

HDAC6 level fluctuated early in differentiation but stabilized during the mineralization 

stage. HDAC6 is expressed at significantly lower levels in preosteoblast and osteoblast 

precursor cell lines, MC-3T3-E1 and C2C12, respectively. But HDAC6 is higher 
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expressed in differentiating and mature osteoblast (Westendorf et al., 2002).  HDAC6 

mRNA is expressed at higher levels in breast cancer patients with small tumors (< 2 cm), 

with low histological grade, and in estrogen receptor α and progesterone receptor positive 

tumors even though they did not find any correlation between HDAC6 mRNA and 

protein expression (Zhang et al., 2004). Patients expressing high levels of HDAC6 

mRNA and protein have a better prognosis than those expressing low levels in disease-

free survival rates and overall survival rates. HDAC6 was also overexpressed relative to 

adult, but not neo-natal cells in acute myeloma leukemia (AML) like SIRT1 (Bradbury et 

al., 2005). In addition, it has recently been reported that HDAC6 inhibitors are considered 

as an antitumor agent in multiple myeloma cells in combination with proteosome 

inhibitor (Hideshima et al., 2005).  

HDAC6 functions  

HDAC6 regulate various processes in the cytoplasm. Cytoplasmic HDAC6 functions as a 

specific tubulin deacetylase (Lys 40) in vivo and purified HDAC6 deacetylates α-tubulin 

in assembled in vitro (Zhang et al., 2003). It has been argued that tubulin acetylation by 

HDAC6 regulate cell motility (Hubbert et al., 2002), but this is still controversial 

(Palazzo et al., 2003; Palazzo et al., 2004). HDAC6 overexpression promotes chemotatic 

cell movement dependent on microtubule network. A subset of acetylated microtubules is 

necessary for proper organization of the immune synapse, a specialized cell-cell junction 

formed by antigen-presenting cells and T lymphocytes (Serrador et al., 2004). In addition 

to its deacetylase domains, HDAC6 also has a ZnF-UBP domain. For mammalian 

HDAC6, this finger binds to ubiquitin and E3 ligase activity (p97/VCP and a 

phospholipase A2 activating protein). HDAC6-interacting protein, p97/VCP, dissociates 

the HDAC6-ubiquitin complexes and blocks to accumulate polyubiquitinated proteins by 

HDAC6 (Boyault et al., 2006; Seigneurin-Berny et al., 2001). HDAC6 therefore makes a  

bridge between the protein acetylation and ubiquitin signaling pathways. HDAC6 also 

directly regulates aggresome formation. Cells where HDAC6 expression is reduced by 

siRNA do not form proper aggresome because of failure to load polyubiquitinated 

misfolded protein onto dynein motor for transport to aggresomes. Thereby HDAC6 may 

involve in cell viability and control cellular management of misfolded proteins 
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(Kawaguchi et al., 2003). Importantly, HDAC6 is present in Lewy bodies associated with 

neurodegenerative disorders, such as Parkinson’s disease and dementia. Hsp90 chaperone 

activity is regulated by reversible acetylation and controlled by the deacetylase HDAC6. 

In HDAC6-deficient cells, HSP90-dependent maturation of the glucocorticoid receptor 

(GR) results in GR defective in ligand binding, nuclear translocation (Kovacs, 2005 

#299; Zhang et al., 2007). Other client proteins of HSP90 are also affected, such as Bcr-

Abl, c-Raf, and AKT (Murphy et al., 2005). 

HDAC10 
 
HDAC10 is one of the most recently discovered members of the class II HDACs. Two 

splice variants are observed for HDAC10, suggesting an additional level of regulation by 

RNA processing (Fischer et al., 2002). HDAC10 is most closely related to HDAC6 (37% 

overall similarity). HDAC10 has a catalytic domain and two putative NESs (1-349 and 

339-669) on its N-terminus, and a putative second catalytic domain on the C-terminus. 

However, the C-terminal catalytic domain lacks the enzymatic activity. However, it has 

not been established wheter these putative NESs of HDAC10 are functional as true 

export signals. HDAC10 is primarily localized in the cytoplasm and nucleus (Tong et al., 

2002). Also, two putative Rb binding domains have been found on HDAC10, suggesting 

a role in regulation of the cell cycle. HDAC10 is expressed in liver, spleen and kidney. 

Furthermore, HDAC10 is found to interact with HDAC1, -2 and -3 (and/or SMRT) and 

HDAC4, -5 and -7, but not with HDAC6. The fact that HDAC10 is able to associate with 

many other HDACs indicates that it might function as a recruiter rather than as a 

deacetylase. However, when expressed by recombination, HDAC10 alone does show 

deacetylating activity (Fischer et al., 2002; Kao et al., 2002; Tong et al., 2002).  

1.1.2.5. Acetylation and deacetylation of non-histone proteins 

Protein acetylation is a widespread phenomenon in eukaryotes. Acetylation and 

deacetylation likely have roles in cellular processes. Co-translational Nα-terminal 

acetylation is one of the most frequent protein modifications which occur on 

approximately 85% of eukaryotic proteins (Polevoda and Sherman, 2000).  To a lesser 

extent, lysines in protein are posttranslationally acetylated at є-amino group of. The 

addition of an acetyl group on lysines prevents positive charges from forming on the 
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amino group, and as a result, has a significant impact on the electrostatic properties of the 

protein. Although the exact number and variety of proteins that are posttranslationally 

lysine-acetylated in the cell is still unknown, it is clear that many proteins are modified 

by this mechanism. Dynamic acetylation of non-histone proteins has pleiotropic effects 

on cellular function. Early studies suggested that many lysine residues in histones are 

acetylated abundantly and that acetylated histones regulate gene transcription (Allfrey et 

al., 1964). HATs may have  particular histone substrate specificity, and different HATs are 

specific with regard to which histone amino acids they will acetylate. HATs also have a 

wide range of protein substrates other than histones. Unlike Nα-terminal acetylation, 

post-translational є-amino lysine acetylation of protein is highly reversible. Like HATs, 

HDACs may possess substrate specificity and can deacetylate non-histone proteins as 

well. However, the precise mechanism of non-histone deacetylation remains unclear. 

Specificity among different HDACs remains determined although the majority of non-

histone proteins are deacetylated by class I HDACs so far.  

Acetylation and deacetylation of transcription factors  

Recent investigations have revealed that an increasing number of cellular and viral 

proteins subjected to lysine acetylation. Transcription factors (e.g., RUNX, SREBP, p53) 

comprise the largest known group for protein acetylation and deacetylation. Acetylation 

of transcription factors regulates the DNA binding activity, transcriptional activity, 

protein-protein interaction, and protein stability. For example, the tumor suppressor and 

sequence-specific DNA binding transcription factor p53 was the first reported non-

histone target of HATs (Gu and Roeder, 1997). Acetylation of p53 by p300/CBP increases 

activation of its target genes (Espinosa and Emerson, 2001). p53 also interacts with 

HDAC1 through Sin3 or MTA2 proteins (Murphy et al., 1999). p53 acetylation serves to 

promote protein stability competing with ubiquitination at the same lysine residues and 

also enhanced its binding to DNA (Ito et al., 2002). YY1 is a protein with multiple 

biological roles, which has a dual function of transcription and required for co-activators 

and co-repressors to fully function (Thomas and Seto, 1999). YY1 interacts with HATs 

(CBP and p300) and with most class I HDACs (HDAC1, -2, and -3) in a phosphorylation 

dependent manner (Lee et al., 1995a; Yang et al., 1996). Acetylation of YY1 decreases 
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DNA binding affinity (Yao et al., 2001). CBP/p300 acetylates STAT3 on lysine 685 and 

HDAC3 deacetylates it. Acetylation enhances both DNA binding and transactivation 

(Yuan et al., 2005). Smad7 is acetylated by p300 and deacetylated by HDAC1 and -3. 

Acetylation causes an increased protein stability by preventing ubiquitination of 

overlapping lysines by the ubiquitin ligase Smurf1 (Gronroos et al., 2002). The c-MYC 

oncoprotein is acetylated by PCAF/GCN5 and TIP60 at three sites (lysines 149, 323, and 

417) (Patel et al., 2004). Acetylation of Lys 323 and 417 has no effect on either the 

nuclear localization or dimerization. Acetylation leads to c-Myc protein stability 

prevention of ubiquitination, similar to what is seen with p53, but not necessarily activity. 

So far  deacetylase for c-Myc remains unidentified. CBP acetylates and activates GATA1, 

which an important transcription factor in erythroid differentiation, at three sites: Lysine 

218,220, and 214. Acetylation of GATA1 increases its DNA binding affinity and is 

critical for erythroid differentiation (Boyes et al., 1998). GATA-1 interacts with HDAC3,  

 

 

 

 

 

 

 

 

 

Figure 9. A schematic view of the acetylome 

A partial list of biological processes that are regulated mechanistically by acetylation is 
sketched in a–j. Adpted from Minucci et al., 2006. 
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 -4, and -5 (Watamoto et al., 2003). PCAF and p300/CBP acetylate MyoD at three sites 

(Lys 92,102, and 104) in differentiated muscle cells (Polesskaya et al., 2000) thereby 

activating it. HDAC1 deacetylates MyoD in undifferentiated cells. Therefore, HDAC1 

can inhibit muscle cell conversion (Mal and Harter, 2003). Acetylation of NF-κB is 

complicated and controversial; p300/PCAF acetylates p65 subunit of NF-κB at lysine 218, 

221 and 310 and acetylated p65 weakly binds to IκB. In contrast, HDAC3 deacetylates 

NF-κB promoting interaction with IκB (Chen et al., 2001). One subunit of Hypoxia 

inducible factor, HIF-α is acetylated by ARD1 at Lys 532 facilitating its ubiquitination 

via binding with VHL and proteasome-mediated degradation (Jeong et al., 2002) and 

deacetylated by HDAC4 and HDAC6 (Qian et al., 2006). 

Acetylation and deacetylation of other cellular proteins 

In addition to transcription factors, other cellular proteins are regulated by dynamic 

acetylation and deacetylation. Protein stability is influenced by HATs and HDACs, as 

lysines are subject to both acetylation and ubiquitination. The best characterized 

cytoskeletal protein is tubulin. Although acetylation of tubulin was found in mammalian 

cells more than 20 years ago(L'Hernault and Rosenbaum, 1985), the acetyltransferase is 

still unidentified today and the deacetylases HDAC6 and possibly Sir2 only were 

identified recently (North et al., 2003; Zhang et al., 2003) Furthemore, the biological role 

of this modification in microtubule function is still unclear. Stable microtubules are 

largely hyperacetylated whereas dynamic microtubules are hypoacetylated. But this may 

only be a correlation whose functional significance has not been established. HDAC6 

might have impacts on cell motility and immune synapse reorganization by deacetylating 

tubulin (Serrador et al., 2004). Also HDAC6 binds and deacetylates Hsp90 and regulates 

molecular chaperone functions of Hsp90 including the maturation of glucocorticoid 

receptor (GR) or a subset of protein degradation. {Kovacs, 2005 #298; Kovacs, 2005 

#299; Murphy, 2005 #300; Zhang et al., 2007}. Acetylation promotes the interaction of 

Importin-α with importin-β (Bannister et al., 2000), which leads to transport of bound 

cargo (e.g., HuR protein) through the nuclear pore complex. Acetylation of DNA damage 

associated protein Ku70 affects the translocation of BAX to mitochondria. When Ku70 is 

acetylated (Lys 539 and 542), BAX is free to move to the mitochondria. SIRT1 
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deacetylates Ku70 permitting it to sequester Bax away from mitochodria (Cohen et al., 

2004).  

1.1.2.6. Substrate specificity of HDACis 

HDACis, which often inhibit most/all class I and II HDACs, usually relieve 

transcriptional repression and result in apoptosis or differentiation of cancer cells. 

Clinical studies on HDAC inhibitors as new anticancer agents are under way and show 

great promise. A relatively wild range of structures has been identified that inhibits the 

activity of class I and II HDACs nonspecifically. They derive from both natural source 

and from synthetic routes. With a few exception, they can all be divided into chemical 

classes including hydroxamic acid derivatives, carboxylates, benzamides, electrophilic 

ketones, and cyclic peptides (Minucci and Pelicci, 2006). Information on the subtype 

selectivity of available inhibitors is limited, and the consequences of such selectivity are 

unclear. No structural information on mammalian class I or II HDACs is available. 

However, the X-ray structure of a bacterial HDLP (from Aquifex aeolicus) has been 

resolved (Finnin et al., 1999) and used to construct a homology model of human HDAC1. 

In X-ray snapshot structure of human HDAC8 with TSA, a second molecule TSA is 

bound closely the active site and binding to an inhibitor to this second binding site alone 

might result in HDAC inhibition (Somoza et al., 2004). However, HDAC inhibitors 

would rather target class I and II HDACs nonspecifically. Although only a few molecules 

are emerging as preferential inhibitors of class I versus II HDACs, therapeutic potential 

of HDAC inhibitors is noteworthy. To date, the only known HDAC6-selective inhibitor is 

tubacin, which inhibits tubulin deacetylation. To find novel HDAC6 specific inhibitors, 

Miyata and colleagues designed inhibitors based on the structure of a small-molecular 

HDAC6-selective substrate. They have reported the first inhibitor that show significant 

HDAC6-selective inhibition in both western blot analysis with anti-acetylated H4 and 

anti-acetylated tubulin and enzyme assays.  They discovered that the presence of a bulky 

alkly group in thiolate HDAC inhibitors is important for HDAC6-selective inhibition 

(Suzuki et al., 2006). Although they did not show clinical data yet, it is a good starting 

point to develop novel, specific HDAC inhibitors. If we can identify substrate specificity 

of each HDAC, HDAC inhibitors will be one of the strongest anticancer agents.  
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1.1.2.7. Clinical implication of HDACs and HDACis 

Tumor cells can harbor abnormalities in histones as well as DNA. Now, with early 

clinical trials beginning to show promise, a whole new class of anticancer drugs, called 

HDACis have become the first to specifically target epigenetic abnormalities. New 

research is identifying a network of molecular interactions that link HDAC activity to 

diet, premalignant cell changes, aging, and development a variety of diseases, including 

cancer and autoimmunity. The first studies on the clinical use of HDACi have been 

published recently (Johnstone and Licht, 2003; Rosato and Grant, 2004). These studies 

are phase I/II trials. The most advanced of the HDAC inhibitors is a SAHA 

(suberoylaninide hydroxamic acid), which has completed phase II testing. While SAHA 

advances in clinical trials, investigators continue to explore HDAC inhibitor work. One 

question still to be determined is how and why the drugs preferentially target cancer cells 

instead of normal cells. It is interesting evident that the effect on histone and chromatin 

structure and in turn the alteration in transcription of specific genes is probably part of the 

anticancer effects of these agents but certainly no the whole story. It has been reported 

that relatively few genes are altered in their transcription by SAHA or TSA. SAGE (serial 

analysis of gene expression) data show that HDACs are generally expressed in almost all 

tissues investigated. Surprisingly, no major differences were observed between the 

expression pattern in normal and malignant tissues. HDAC inhibitors also appear to 

interfere with other proteins. For example, SAHA directly bind thioredoxin-binding 

protein (TBP2). This binding prevents TBP2 from detoxifying oxygen free radicals, 

which further facilitates cell death. This binding does not happen in normal cells, only in 

transformed cells. Even though we do not yet completely understand this phenomenon, 

acetylated histones in normal and cancer cells are accumulated, but the effect does not 

last in normal cells. Unfortunately, the relationship between the toxicity of HDACs and 

their phamacodynamic/pharmacokinetic properties is still largely unknown. We also do 

not know the key target(s) for HDACi action because genetic analysis of HDACs is still 

imcomplete.  Therefore, the next step in the evolution of HDAC inhibitors will be to 

increases their specificity and efficacy  as designing more specific inhibitors targeted to 

one particular HDAC (Hede, 2006). In addition, the combination of HDACi with other 

drugs acing on epigenetic mechanisms is being tested. DNA methylating agent in 
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combination with HDACi show potent responses in vitro and they are being tested in 

clinical trials (Cameron et al., 1999). HDACi might work synergistically with the HSP90 

inhibitor, geldanamycin, which has been already in clinical trials. In this case, HDACi 

would inhibit the activity of HSP90 chaperone to oncoproteins required for tumor cells 

(Paschen, 2003). 

 

1.2. Cellular stress response  

The cellular stress response is a phylogenetically conserved protection mechanism from 

prokaryotes to humans and a phenomenon of adaptation of organisms. When cells are 

exposed to different stresses, they can react in two opposite ways. One way, they can 

activate defense mechanism to adapt to stressful condition, to repair damage and to 

restore normal cellular functions. Alternatively, they can activate programmed cell death. 

The choice between these two responses is decided by many factors such as the intensity 

of stress, or cell intrinsic parameters (Del Razo et al., 2001; Mosser et al., 2004). Altered 

patterns of protein synthesis, including stress proteins (SPs), may serve to monitor the 

impact of exposure to natural and anthropogenic stressors. SPs are synthesized in cells of 

most organisms in response to diverse circumstances such as physiological conditions 

and environmental stressors such as heat, ultraviolet light, and several chemicals (e.g. 

arsenite). The induction of SP synthesis is highly tissue-specific and is related to the 

damage induced by stress to specific proteins and protein complexes. 

1.2.1. Effects of environmental stress on mRNA metabolism  

Exposure of cells to environmental stresses can disrupt essential intracellular processes, 

which are extremely sensitive to disturbance by stress. The production of mature, 

translatable mRNAs is most sensitive to stress owing to the inhibition of messenger RNA 

splicing and alterations in the export of mRNA from the nucleus. Changes in the 

cytoplasmic pools of mRNAs also occur following exposure to stress conditions. 

Cytoplasmic mRNAs, especially translationally repressed, gather in specific particles 

during many different cellular processes. Cytoplasmic RNA granules in germ cells (polar 

and germinal cell granules (GCGs)), somatic cells (Stress granules (SGs) and processing 
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bodies (PBs)), and neurons (neuronal granules) play a critical role in the 

posttranscriptional regulation of gene expression (Krichevsky and Kosik, 2001; 

Leatherman and Jongens, 2003; Schisa et al., 2001). These different classes of RNA 

granules share protein components and may use similar mechanisms to regulate mRNA 

translation and decay. All RNA granules contain translationally silenced mRNA. GCGs 

and neuronal granules harbor highly specific mRNA cargo, whereas SGs and PBs are less 

discriminating. (Anderson and Kedersha, 2006). SGs contain the majority of 

polyadenylated mRNAs by stress-induced translational arrest but selectively exclude 

some mRNA encoding heat shock proteins as well as some transcription factors under 

these conditions. It allows the cell to repair the stress-induced damage and to aid in 

cellular recovery while conserving anabolic energy. Stress proteins, such as Hsp70 and 

Hsp 90, have been shown to play a direct role in the repair of intracellular damage 

involved in RNA metabolism in cells exposed to stress through their biological activities 

as molecular chaperones. Therefore, stress proteins help cells return to homeostasis 

(Mosser et al., 2004). 

mRNA decay  

Gene expression is initiated in the cell nucleus, where transcripts are produced and 

processed to mRNA. Mature mRNAs traverse nuclear pores and are translated in the 

cytoplasm. The abundance of an mRNA is determined by the balace between 

transcription and decay. Therefore, one of the important steps for regulation of gene 

expression is the degradation of mRNA. mRNA half lives are subject to control by 

changing intra- and extracellular conditions. How long an mRNA lives depends on how 

efficiently the mRNA degradation machinery is recruited to that mRNP. In general, the 3’ 

poly(A) tail is removed by deadenylases, which comprise three main enzymes, 

(CCR4/CAF1, PAN2/3, and PARN), while the 5’ cap is removed by specific decapping 

enzymes (Dcp1p/Dcp2p). Thereby the transcript is exposed to degradation by the 5’ to 3’ 

exonuclease, Xrn1p (Hilleren and Parker, 1999). A second mechanism of cytoplasmic 

mRNA degradation involves in the 3’ to 5’ exonuclease complex, the cytoplasmic 

exosome. In a 3’ to 5’ pathway of mRNA destruction, poly (A) tail is shortened followed 

by removal of poly (A) binding protein (PABP), and the exosome degrades mRNA. 
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Finally an oligonucleotide cap is hydrolyzed by the scavenger decapping enzyme, Dcp8. 

These two pathways represent the primary pathways for mRNA degradation. However, a 

number of specialized mRNA degradation pathways have also been described. These 

include the nonsense mediated mRNA decay pathway, which degrades aberrant mRNAs 

containing stop codons (nonsense mRNA) within the ORF, and the initiation-mediated 

mRNA decay pathway (nonstop mRNA), which acts under conditions when translation 

initiation is slowed down (Heikkinen et al., 2003). Of course, endonucleolytic 

degradation mechanisms also exist, most notably sequence-specific mRNA cleavage by 

the RNA-induced silencing complex (RISC) in association with endogenous siRNA 

(Sontheimer, 2005). Their efficient elimination is thought to protect cells from the 

potentially deleterious consequences of inappropriately terminated proteins.  

1.2.2. Alterations in the cytoplasmic pools of mRNA in stressed cells: 

PBs and SGs in stressed cells 

Translating and nontranslating pools of mRNAs are spatially segregated in the cytoplasm 

between polysome, SGs, and PBs. Cytoplasmic mRNAs dramatically redistribute in cells 

exposed to certain stress conditions. Cytoplasmic mRNAs are mostly associated with 

polysomes; however, under conditions where mRNA translation initiation is inhibited, the 

cytoplasmic pool of mRNA is redirected to granular cytoplasmic foci.  These cytoplasmic 

foci function as the sorting place for sequestered mRNA: the mRNAs may be targeted for 

degradation or alternatively stored in a nontranslatable form until the stress is removed. 

Those mRNAs targeted for decay will be exported from the SG to sites of mRNA decay 

such as PBs (Kedersha et al., 2005). 

1.2.3. Processing bodies (P-bodies (PBs) or GW182 bodies)  

The discovery of P-bodies began about 10 years ago when researchers were studying a 

key step in mRNA degradation. In both yeast (Sheth and Parker, 2003) and mammalian 

cells (van Dijk et al., 2002), much of the mRNA decay machinery was found to be 

concentrated in discrete cytoplasmic foci termed processing bodies (PBs or GW182 

bodies), which contain aggregates of nontranslatable mRNPs (Teixeira et al., 2005). 

Mammalian PBs are similar to yeast PBs, suggesting that the movement of mRNAs from 
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Figure 10. Particulate purgatory for mRNAs  

In the yeast S. cerevisiae, the decapping protein Dhh1p (green) is localized together with 
mRNAs in P bodies. In the worm embryo, germinal granules (P granules) in the 
cytoplasm contain GLD-2, a poly(A) polymerase (green). Stress granules in the 
cytoplasm of cultured human cells contain the enzyme TIA-1/TIAR (green) and the 
translation initiation factor eIF3p116 (red), visualized as yellow spots due to 
colocalization of the proteins. Neuronal particles in cultured rat hippocampal neurons 
contain both Staufen1 protein and BC1 mRNA, which appear as small yellow spots in the 
thin neuronal processes. In chick fibroblasts, cytoskeletal actin mRNA (red) is contained 
in transport granules, and mRNA particles accumulate in the termini of lamellepodia 
(DNA is blue). Adapted from Wickens and Goldstrohm, 2003. 

 

PBs to polysomes seems to be a fundamental property of eukaryotic cells. PBs have been 

shown to contain the Dcp1p/Dcp2p decapping enzymes, the cytoplasmic DExD/H-box 

helicase, Dhh1p, which stimulates mRNA decapping, the Topoisomerase II-associated 

deadenylation-dependent mRNA-decapping factor, Pat1p, the 5’ to 3’ exonuclease Xrn1p, 

Sm-like proteins 1-7 (Lsm 1-7), which enhance assembly of the decapping complex, and 

GW182. The presence of these factors in PBs has supported the notion that PBs are sites 

of mRNA degradation. Teixeira et al. (2005) have shown that PBs increase in number and 

in size in cells under stress. This stress leads to a concomitant decrease in protein 

synthesis. The number and the size of PBs increase when 5’ to 3’ decay is inhibited or 

translation initiation is stopped. In contrast, PBs virtually disappear when translation 

elongation or transcription is blocked with drugs (Cougot et al., 2004; Teixeira et al., 

2005). Thus, it seems that PBs assembly requires mRNAs. Consistent with this result, 

RNase treatment results in dissociation of PBs (Teixeira et al., 2005). It has been reported 

that Argonaute (Ago) 1 and 2, which are key components of the RNAi machinery (RISC), 

interact with GW182 and concentrate in PBs, implicating the particles as a site of 

degradation. Consistent with this, nonsense-mediated decay and siRNA-mediated 

degradation of mRNA occur in PBs. miRNA mediated inhibition of translation can cause 
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mRNA accumulattion in PBs in a manner dependent on miRNA fuction (Pillai et al., 

2005). In this regard, it is interest to transport from PBs to SGs in mammmlian cells 

(Kedersha et al., 2005). However, this process may not occur in yeast, since SGs have not 

been found in yeast. Parker et al. suggests that mRNA sequestered in PBs can move out 

of them and move to the polysomes following restoration of translation, suggesting that 

PBs serve as storage sites for mRNAs during certain physiological conditions (Brengues 

et al., 2005). But in mammalin cells, this finding has not been demonstrated yet. PBs 

resemble the granules that store the maternal mRNAs that function in very early embryo 

development. In C. elegans, a worm development control genes encode a protein that 

localize to PBs and interacts with the same Argonaut molecules involved in regulation by 

miRNAs (Lin et al., 2006).  

 

 

 

 

Figure 11. P bodies control mRNAs 

 Active mRNAs are bound to ribosomes (purple) and to the translation initiation factors 
eIF4E, eIF4G, and poly(A) binding protein (Pab) (all in green). (Step 1) The mRNA 
makes a transition to an inactive state induced by deadenylation, which is catalyzed by 
Ccr4p and other enzymes. An inactive intermediate is generated; the proteins associated 
with this intermediate are not yet known. (Step 2) The intermediate moves to the P body 
(yellow). There it can be degraded by the Xrn1p exonucleases (orange). Repressors and 
activators of mRNAs not only regulate the change in state transition (Step 1), but may 
also move mRNAs into and out of P bodies (Step 2). Adapted from Wickens and 
Goldstrohm, 2003. 

 

Interestingly possible connections between PBs and disease are beginning to 

emerge. PBs or GW body was first visualized by using a patient-derived autoantisera 

reactive with GW182 (autoantigen), a 182-kD RNA-binding protein. GW bodies are 

prominent in actively growing unstressed cells (Eystathioy et al., 2002). Furthermore, it 
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has reported that primary biliary cirrhosis (PBC) is autoimmune disease and ~5% of  

PBC patients have antibodies directed against PBs (Bloch et al., 2005). Human PBs 

contain a protein called RCK that may help drive cancer development. Its concentration, 

along with the number of PBs, is increased in diverse cancers, including breast cancer 

(van Dijk et al., 2003). A disease link for PBs is necessary to more further works. 

1.2.4. Stress granules (SGs) 

1.2.4.1. Discovery 

Other cytoplasmic granular bodies have been identified in higher eukaryotes exposed to 

stress. Many years after discovery of germ cell granules, another RNA granules were 

found in the cytoplasm of tomato cells in response to heat shock. In particular, discrete 

cytoplasmic phase-dense particles, referred to as stress granules (SGs), are observed in 

both plant and animal cells exposed to heat, oxidative, hyperosmolarity and UV stress 

(Kedersha et al., 1999; Nover et al., 1983). SGs are repositories of mRNA pools: SGs 

contain in particular mRNAs encoding constitutively expressed ‘housekeeping’ proteins, 

whereas they selectively exclude mRNAs encoding Hsps. Thus, stress granules store 

nontranslating mRNAs, enabling a redirecting of the translational machineary to produce 

Hsps predominantly. Selective recruitment of specific mRNAs into SGs is thought to 

regulate their stability and translation. So far, SGs have not been observed in budding 

yeast. In S. cerevisiae, cytoplasmic mRNAs can be visualized in cytoplasmic foci in 

certain genetic backgrounds, in particular in cells mutant in proteins that interact with the 

NPC. It is currently not clear whether these foci are similar or different in composition to 

the SGs identified in mammalian cells. However, one may predict, based on the different 

rates of mRNA decay in mammalian and yeast cells, that different mechanism may 

prevail in these two systems. Because yeast mRNAs appear to have much shorter half-

lives compared with their mammalian counterparts, it may not be necessary to invoke 

SGs to sequester nontranslating but stable mRNAs in yeast cells. The turnover rate of 

mRNAs in yeast may simply be increased following stress by increasing the number of 

PBs in the cytoplasm.  
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1.2.4.2. Components  

Core components of SGs are abortive 48S preinitiation complexes including small but not 

large ribosomal subunits as well as the early translation initiation factors eIF2, eIF3, 

eIF4E, and eIF4G. Also SGs contain many RNA binding proteins which regulate mRNA 

structure, stability, and function, such as TIA-1/TIAR, HuR, Staufen, Smaug, 

tristetraprolin (TTP), Fragile X mental retardation protein (FXMR), the RasGAP-

associated endoribonuclease, G3BP, CPEB, and Survival motor neuron (SMN). 

Additionally, SGs possess PABP1, translational repressor p54/Rck helicase, the 5’-3’ 

exonuclease XRN1, and Agos. In contrast, PBs contain proteins associated with mRNA 

degradation.  SGs also include putative scaffold proteins such as Fas-activated 

serine/threonine phosphoprotein (FAST) and components with no obvious link to RNA 

metabolism such as TRAF2. According to the results of drug treatment (polysome 

stabilizer or destabilizer) and FRAP analysis, SGs are very dynamic structures. Although 

global translation arrest upon stress occurs, selective translation of heat shock proteins, as 

well as some transcription factors (e.g., GCN4 in yeast and ATF4 in mammals) allow the 

cell to recovery the stress-induced damage while conserving anabolic energy. When the 

stress is removed, SGs disassemble and the sequestered mRNAs either return to the 

translationally active pool or are targeted for degradation in PBs (Kedersha and Anderson, 

2002; Kedersha et al., 2005). Therefore, SGs can serve triage centers that sort, remodel, 

store, or export specific mRNA transcripts for reinitiation, decay, or storage.   

1.2.4.3. Assembly  

SGs assembly is regulated by one or more RNA-binding protein, including TIA/TIAR 

(Gilks et al., 2004). G3BP (Tourriere et al., 2003), FXMR, and TTP (Stoecklin et al., 

2004), Prion-like domains in TIA/TIAR are thought to self-oligomerize and promote SG 

assembly. In neurons, fragile X mental retardation protein promotes the assembly of 

neuronal granules that are structurally and functionally similar to SGs (Mazroui et al., 

2003; Mazroui et al., 2002; Wickens and Goldstrohm, 2003). Survival motor neuron 

(SMN) protein forms granule-like aggregates in the cytoplasm of human fetal muscle 

cells and rat motor neurons (Burlet et al., 1998; Pagliardini et al., 2000). Moreover, SMN 

protein facilitates assembly of SGs, indicating that SGs may be involved in the 

pathogenesis of spinal muscular atrophy (Hua and Zhou, 2004). 
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Proposed mechanism for SG formation 

In response to environmental stress, eukaryotic cells reprogram their translational 

machinery to allow the selective expression of proteins required for viability in the face 

of changing conditions. Both SG assembly (Kedersha et al., 1999) and translational arrest 

(Krichevsky and Kosik, 2001) are initiated by the phosphorylation of translation initiation 

factor eIF2α, which reduces the availability of the eIF2–GTP–tRNAMet ternary complex 

that is needed to initiate protein translation.  Several proteins act downstream of phos-

eIF2α. Self-aggregation of either TIA proteins or G3BP promotes SGs assembly. Stress-

induced aggregation of TIA is mediated by a glutamine-rich prion-like domain that is 

regulated by HSP70. ATP is required for either SG assembly or disassembly. Therefore,  

 

 

 

 

 

 

 

 

 

Figure 12. Proposed mechanism for the assembly of stress granules 
Adapted from Anderson et al., 2002. 
 
 
SG assembly/disassembly is regulated by many signaling pathways acting downstream of 

phos-eIF2α. Destabilizing elements such as TTP are proposed to direct selected stress 

granule mRNAs to sites of degradation, whereas stabilizing elements such as HuR are 

proposed to direct selected mRNAs to sites of storage and/or reinitiation. By this triage 
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process, the SG may monitor the structure and integrity of mRNP complexes and 

determine the fate of specific RNAs. 

eIF2α kinases and translation initiation inhibition 

Translation is normally initiated when the small ribosomal subunit and its associated 

initiation factors are recruited to a capped mRNA transcript to form a 48S complex. 

Hydrolysis of eIF2 bound GTP by eIF5 displaces the early initiation factors, allowing 

binding of the large ribosomal subunit. Repeated cycles of successful initiation convert an 

mRNA into a polysome. In stressed cells, activation of one or more eIF2α kinases (e.g. 

PKR, PERK/PEK, GCN2, HRI, see below) results in the phosphorylation of eIF2α 

(Williams, 2001), which consequently inhibits eIF2B, the GTP/GDP exchange factor that 

charges the eIF2 ternary complex. Depletion of eIF2-GTP-tRNAMet prevents productive 

translation initiation. TIA-1 and TIAR promote the assembly of an eIF2/eIF5-deficient 

preinitiation complex that is directed to SGs. Mutant MEFs expressing only the 

nonphosphorylatable form of eIF2α (S51A) do not assemble SGs in stress whereas 

expression of a phosphomimetic mutant of eIF2α (S51D) is sufficient to induce the 

assembly of SGs. Thus, phos-eIF2α is essential for SG assembly (McEwen et al., 2005). 

The eukaryotic translation factor eIF2 consists of three subunits, α, β, γ, 

specifically binds the initiator methionyl-tRNA in a GTP-dependent manner and delivers 

this essential component of translation initiation to the small ribosomal subunit. eIF2 is 

exquisitely sensitive to regulation by phosphorylation of its α subunit. The γ subunit of 

eIF2 is responsible for GTP binding. eIF2 cycles between its GTP-bound state and its 

GDP-bound state by the guanine nucleotide exchange factor, eIF2B. When as little as 

20% of eIF2α is phosphorylated on serine 51, protein translation initiation may be 

inhibited. Four mammalian eIF2α kinases has been identified, namely double-stranded 

RNA-dependent protein kinase (PKR), PKR-like endoplasmic reticulum kinase (PERK), 

heme-regulated kinase (HRI), and amino acid regulated kinase (GCN2). The conserved 

eIF2α kinase domain in these four proteins share approximately 22-37% amino acid 

sequence identity and they have distinct regulatory domains as well. PKR is member of a 

small family of evolutionarily conserved eIF2α kinases distinguished by the presence of a 

signature amino acid sequence that constitutes part of the eIF2α binding site. In human  
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Figure 13. Translationa in the 

absence or presence of stress 

(A) Normal: when eIF2-GTP 
transfers ribonucleic acid for 
methionine (tRNAMet) ternary 
complex is available, a canonical 48S 
preinitiation complex is assembled at 
the 5’ end of capped transcripts and 
scanning begins. Upon recognition of 
the initiation codon by the anticodon 
of tRNAMet, eIF5 promotes GTP 
hydrolysis, and early initiation 
factors are displaced by the 60S 
ribosomal subunit. (B) In stressed 
cells the phosphorylation of eIF2α 
prevents GDP-GTP exchange by 
eIF2B, which lowers the effective 
concentration of eIF2-GTP-tRNAMet. 
Under these conditions, TIA-1 is 
included in a noncanonical 
preinitiation complex. TIA-1 self-
aggregation then promotes the 
accumulation of these complexes at 
SGs. Adapted from Anderson et al., 
2002. 

 

PKR, two dsRNA-binding motifs (dsRBMs) located between residues 6-79 and 96-169 

precede the protein kinase domain (residues 258-551). Highly structured RNAs, 

including viral RNAs, viral dsRNA genomes, and mRNAs with extensive secondary 

structures, can bind to dsRBM of PKR and this binding cause a conformational change 

exposing Ser 51 of the kinase domain. Binding of two PKR molecules to the same 

molecule of dsRNA enable PKR dimerization and kianse activation. PERK (PKR-like ER 

kinase) is activated under ER stress conditions. However, in unstressed cells, PERK 

interacts with the ER chaperone BiP (GRP78) and GRP94. Upon ER stress, unfolded 

proteins accumulate in the ER and titrate the chaperones away from PERK, enabling 

kinase dimerization and activation (Bertolotti et al., 2000). The heme-regulated inhibitor 

(HRI) is the main kinase in erythroid cells where it is activated by autophosphorylation 
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under heme deprivation condition (Lu et al., 2001). HRI has two heme binding sites 

within and N-terminal to the kinase domain. In the presence of heme, ATP binding by 

HRI is decreased, inhibiting autophosphorylation and activation (Kaufman, 2004), and 

HRI is maintained in an OFF state. However, in the absence of heme, the heme 

dissociates from the kinase domain, the interdomain interactions as well as the 

intermolecular disulfide bonds are broken, and the kinase converts to its ON state (Yun et 

al., 2005). Yeast GCN2 regulates the translation of the transcriptional activator GCN4.  

 

Figure 14. Dipiction of the eIF2α kinases 

(A) Conserved kinase domain, sky blue; kinase insert, gray; Also shown are the dsRBMs 
in PKR; the signal peptide  (SP), green; IRE1 homology region, pink; transmembrane 
domain (TM) in PERK, yellow; the amino-terminal RWD domain, brown; pseudo-kinase 
domain (ΨKD), purple; histidyl-tRNA synthetase-related domain (HisRS), orange; the 
ribosme-binding (RB) and dimerization domain (DD) in the carboxy-terminal domain 
(CTD) of GCN2, light yellow; and the two heme, red.  
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GCN2-mediated phosphorylation of eIF2α in response to amino acid starvation results in 

the translation of GCN4. Activation of GCN2 occurs through an autophosphorylation 

reaction (Dong et al., 2000; Kaufman, 2004).  

1.2.4.4.  Function 

SGs also are found in tissues from stressed animals.  In chicken treated with gentamycin, 

SGs appear in cochlear cells several hours before onset of apoptosis. Whole-animal 

radiotheraphy induces SGs within the individual tumor cells. The radiation-induced 

translation of hyoxia-inducible factor-1α (HIF-1α) regulated transcripts is delayed 

pending SG disassembly during recovery, suggesting that the expression of these 

transcripts is inhibited by their retention in SGs (Moeller et al., 2004). Similar results 

have been described in animal model of stroke, in which SGs may regulate protein 

translation in neurons during ischemia. Furthermore, after initial priming of T cells, naïve 

T helper cells express cytokine mRNA but do not secrete effector cytokine proteins such 

as interleukin-4 (IL-4) or interferon-γ (IFN-γ) without additional T cell receptor (TCR) 

stimulation. Stefanie et al. explained phenomenon of this uncoupled production of 

cytokine mRNA and protein that primed T cells contain more phosphorylated eIF2α and 

accumulated SGs which store untranslated transcripts in stress, and only increased 

expression of stress-response genes. After re-stimulation of T help cells with TCR, these 

cells cause rapid dephosphorylation of eIF2α, mRNA translation reinitiation, and 

cytokine secretion (Scheu et al., 2006). This suggests that SGs might regulate a quality 

control of protein synthesis during T cell differentiation. These studies indicate that SGs 

are not in vitro artifacts but are an in vivo physiological part of the organism response to 

stress.  

1.2.5. Relationship between PBs and SGs   

PBs and SGs in mammalian cells are physically distinct and spatially separate. Anderson 

et al. have proposed that SGs are sites of mRNA triage in which individual transcripts are 

sorted for storage, reinitiation, or degradation. This model suggests that those mRNAs 

targeted for decay will be exported from the SG to sites of mRNA decay such as PBs. 
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The close juxtaposition between SGs and PBs may allow mRNA to move from the SG to 

the PB. Two lines of evidence suggest the direction of this process. First, arsenite induces 

the formation of juxtaposed SGs and PBs, and subsequent emetine treatment forces the 

disassembly of SGs before the disassembly of PBs. Second, heat shock induces SG 

formation before PB formation. Initially, eIF4E is concentrated at SGs in cells lacking 

PBs, but in the continued presence of heat, SGs are disassembled, and PBs containing 

eIF4E are concomitantly assembled. These results imply that eIF4E is first incorporated 

into SGs and later translocates into PBs. SGs and PBs share some proteins and mRNA 

components as well as some functional properties. Both structures are induced by stress, 

although PBs are continuously present in cells, but are regulated by distinct signaling 

pathways, and each can exist without the other. As eIF3, eIF4G, PABP-1, small ribosomal 

subunits, and G3BP are found in SGs but not in PBs, these proteins must be removed 

from mRNA before its export from the SG. Because eIF4G and PABP-1 are directly 

involved in mRNA circularization, it is probable that mRNAs exported from SGs into 

PBs are decircularized before translocation, which is concurrent with their deadenylation.. 

Finally, as eIF4E and TTP are components of both SGs and PBs, these RNA-binding 

proteins may remain with mRNA as it moves from the SG to the PB.(Kedersha et al., 

2005). Importanly, SGs and PBs are induced by different mechanism and are able to 

function independently. SGs need phosphorylation of eIF2α and contain small ribosome 

units while PBs do not. SGs possess translationally terminating and polyadenylated 

mRNA whereas PBs possess mRNAs subject to general-, nonsense-, adenine/uridine rich 

element-mediated decay as well as mRNAs targeted by miRNAs and siRNAs. PBs and 

SGs exhibit a high degree of motility when independent but appear less motile when they 

are tethered together, and their interaction is promoted by the mRNA destabilizing protein 

TTP. SGs induced by stress are likely to contain a mixture of transcripts, but SGs induced 

by the overexpression of different RNA-binding proteins (e.g., TIA, G3BP, TTP) are 

likely to differ in their mRNA composition. TTP seems to serve to deliver its mRNA to 

PBs by interacting with stable components of these particles because TTP itself is not 

likely to be a stable component (Lykke-Andersen and Wagner, 2005). FAST has the 

properties of a putative scaffold protein that might stabilize SG-PB interactions. It has a 

very slow exchange rate, lacks known RNA binding motif, nucleate both SGs and PBs 
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upon overexpression, and interacts with TIA-1. It is possible that TTP or TTP-associated 

proteins promote SG-PB fusion by interacting either directly or indirectly with FAST to 

remodel the SG-PB scaffold (Kedersha et al., 2005). 

 

 
 
Figure 15. Stress granules and processing bodies have a central role in controlling 

messenger RNA translation and stability 

(A)Stress granules components (B) Immunofluorescence micrograph of human HeLa 
cells that were subject to oxidative stress by treatment with arsenite. Fixed cells were 
stained in red with a polyclonal eIF4E antibody and in green with a human auto-
antiserum that recognizes GW182. Nuclei were stained in blue with Hoechst dye.Areas 
delineated by boxes show a stress granule (red) and a processing (P)-body (green,with 
partial yellow overlap). (C) P-bodies components. Adapted from Newbury et al., 2006. 

 

1.3. Ras-GTPase activating protein SH3 domain binding 

protein (G3BP) 

The first G3BP family member to be discovered, G3BP1, was isolated in a screen for 

proteins that bind the SH3 domain of Ras GTPase Activating Protein (RasGAP) (Parker 
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et al., 1996). In the year 2000, the Drosophila homologue of G3BP was reported and 

named Rasputin/Rin because of its genetic interactions with members of the Ras 

signalling pathway. The G3BP family of proteins is evolutionarily conserved throughout 

eukaryotes. Drosophila homologue of G3BP, Rin shares 40% amino acid identity and 

60% homology with human G3BP1 and G3BP2 over their entire lengths. The S. pombe 

protein is less closely related to the others (26% identity and 36% homology to Rin). 

Mammals have three G3BPs: G3BP1, 2a and 2b which are the products of two distinct 

genes (Kennedy et al., 2001). The proteins are relatively ubiquitously expressed and seem 

to play important roles in several biological processes, but their actual physiological 

functions still remain unclear.  

1.3.1.  G3BP structure 

G3BP1 and 2 are encoded by distinct genes on human chromosomes 5 and 4 (5q 14.2, 4q 

12-4q 24) and mouse chromosomes 11 and 5 respectively. G3BP2b is a splice isoform of 

G3BP2a, lacking 33 amino acids in the central region (Kennedy et al., 2001). There is 

65% identity and 74% similarity between G3BP1 and G3BP2a protein sequences across 

the mouse and human species. hG3BP1 shares 94.4% sequence identity with mG3BP1. 

hG3BP2 and mG3BP2 show 98.5% identity of protein sequence.  

G3BPs have four domains. First, the most highly conserved domain, both between 

species and within the mammalian G3BP family members, is the N-terminal Nuclear 

Transport Factor 2-like (NTF 2-like) domain. NTF2 is a small protein involved in 

RanGTP-dependent nuclear import of proteins through the nuclear pore complex 

(Ribbeck et al., 1998). As expected from the sequence homology, G3BPs might play a 

role in nuclear transport and, like NTF2, G3BPs may also bind Ran or other small 

GTPases. Second, G3BPs possess an acid-rich domain containing a serum dependent 

phosphorylation site at Ser 149. Third, G3BPs’ central regions consist of varying 

numbers of proline rich (PxxP) motifs. PxxP motifs represent the minimal consensus 

sequence for SH3 domain binding (Booker et al., 1993; Saksela et al., 1995). All three 

G3BPs have been shown to bind the SH3 domain of RasGAP (Kennedy et al., 2001; 

Parker et al., 1996). But, the NTF2-like domain of these proteins, rather than the PxxP 

motifs, was responsible for RasGAP binding based on in vitro binding assay (Kennedy et 
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al., 2001). Fourth, G3BP C-termini comprise two motifs traditionally associated with 

RNA binding. These are a canonical RNA Recognition Motif (RRM) and a loosely 

conserved RGG (arginine-glycine rich) box (Birney et al., 1993). The RRM-containing 

family of proteins is the largest family of RNA-binding proteins in mammals. The 

domain consists of two short, loosely conserved motifs, RNP1 and RNP2. RGG domains 

are often found in RNA-binding proteins and may confer cooperative binding to RRM 

motifs (Burd and Dreyfuss, 1994). RGG domains have also been shown to influence 

nuclear translocation.  

 

 

 

 

 

Figure 16. Schematic representation of human G3BPs domains 

The position of the alternative splicing which remove 33 amino acids from G3BP2a to 
generate G3BP2b, thereby creating an additional PxxP motif in G3BP2b is indicated. 
Green box indicates PxxP motif.    

 

1.3.2. G3BP subcellular localization 

G3BP1 and G3BP2a are primarily cytoplasmic proteins (Parker et al., 1996; Prigent et al., 

2000), but both proteins have been observed in the nucleus in several studies (Costa et al., 

1999; French et al., 2002; Tourriere et al., 2001). Tourriere et al. reported partially nuclear 

localisation of phosphorylated G3BP1 in quiescent mouse embryonic fibroblasts. 

Nuclearly localized G3BP1 has been shown a functional DNA and RNA helicase in HeLa 

cells (Costa et al., 1999). By contrast, Parker and colleagues did not detect G3BP1 in the 

nucleus of Epidermal Growth Factor (EGF)-transformed fibroblasts at any stage of the 

cell cycle (Parker et al., 1996). At least one G3BP2 isoform has also been shown to 

shuttle between the nucleus and the cytoplasm in a cell cycle dependent manner. In 
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contrast to G3BP1, G3BP2 is exclusively cytoplasmic in quiescent fibroblasts and  

rapidly enter the nucleus upon serum stimulation (French et al., 2002).  

1.3.3. G3BP expression in normal tissues and cancer  

Some tissues express abundant levels of G3BP1 and include lung, kidney, and colon. 

Heart, liver, and spleen also express lower levels of G3BP1. Some tissues are shown to 

express both isoforms of G3BP2 including lung, liver, kidney, stomach, and colon, 

pancreas, and testis and others such as spleen express only G3BP1. Other tissues are 

restricted to only expressing G3BP2a including brain, muscle, and heart. All G3BPs are 

expressed during development with G3BP1 and G3BP2b rapidly down-regulated at birth. 

However, histochemical data would suggest that G3BP1 is not expressed in mature 

neurons (Kennedy et al., 2001). 

Both G3BP1 and G3BP2 are dramatically overexpressed in human cancers such 

as breast, head, neck, colon and thyroid cancer. (Barnes et al., 2002; French et al., 2002; 

Guitard et al., 2001). Barnes and co-authors have reported that growth factor heregulin b1 

(HRG), induced expression (mRNA and protein), phosphorylation, ATPase activity, and 

nuclear localization of G3BP in parallel with HER2 overexpression in an estrogen-

independent manner, in eight human breast cancers and patients (Barnes et al., 2002). 

HER2 is also frequently overexpressed in breast cancer and this is associated with poor 

prognosis and malignancy (Yarden, 2001). Over-expression of G3BP2 has been 

demonstrated in 88% of 56 breast tumours, whilst G3BP2 expression was rarely 

detectable in surrounding normal tissue (French et al., 2002). It is not yet known whether 

G3BPs function in tumour progression and by what mechanism, or whether they are 

simply up-regulated as a consequence of cancer. However, French et al. have observed 

G3BP2 overexpression in early in situ ductal carcinomas, suggesting that the high 

expression of G3BP2 occurs in parallel with tumour progression rather than as a 

consequence of cancer formation (French et al., 2002). It is also noteworthy that reduced 

G3BP1 mRNA was found in metastatic human lung carcinoma (Liu et al., 2001b). 

Although this result is not consistent with G3BP overpression in cancer, it is noteworthy 

of the fact that G3BP may differently function in various pathways including Ras 

signalling (Malumbres and Pellicer, 1998), NFκB signalling (Chen and Li, 2002) and the 



 57

ubiquitin proteasome system (Gray et al., 1995). Growing evidence suggests that 

deregulated RNA processing is often associated with cell proliferation and cancer 

(Sonenberg et al., 1998; Sueoka et al., 1999). Pathological stabilisation of ARE mRNA is 

often seen in tumour cells and TTP which acts to destabilise ARE mRNA, has been 

shown to be a potent tumour suppressor (Stoecklin et al., 2003). The observation that 

G3BPs are specifically overexpressed in several cancers and involved in RNA 

metabolism and cell cycle, makes them potential candidate targets for anti-cancer 

therapeutics. 

1.3.4. G3BPs and invertebrate development 

Drosophila encodes only one G3BP: Rasputin (Rin). Pazman and colleagues studied the 

effects of Rin mutants on ommatidial polarisation during eye development in Drosophila 

(Pazman et al., 2000). They reported that Rin mutants are viable and display defects in 

photoreceptor recruitment and ommatidial polarity in the eye development, resembling 

phenotype of Ras1 and RhoA mutants as well as other polarity genes such as frizzled (fz) 

and dishevelled (dsh). Additional experiments using constructs driven by the sevenless 

promoter led them to conclude that the Rin mutation genetically interacts with RhoA.  

1.3.5. G3BPs and vertebrate development 

Recently evidence emerged that several downstream effectors of planar polarisation in 

Drosophila are involved in Convergence and Extension (CE) in vertebrates and that the 

processes are broadly similar (reviewed in Strutt, 2003). Zebrafish has three G3BP 

homologues (α, β, and γ). Knock down of G3BPβ with specific morpholinos showed a 

phenotype, which was defects in CE and/or cell tracking with no apparent changes in cell 

fate. Another aspect of polarisation is that asymmetric distribution of the core proteins, 

involved in downstream pathways, is common within cells (Strutt, 2003) and this was 

also shown for Rin (Pazman et al., 2000). It is interesting to note that an asymmetric 

distribution of G3BP1 was observed in breast cancer cells (French et al., 2002). The 

classification of G3BP1 as a cell-cycle regulated transcript peaking in mitosis would also 

seem to support a role for G3BP in morphological remodeling and adhesion (Whitfield et 

al., 2002). 
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1.3.6. G3BP functions 

1.3.6.1. G3BP and Ras signaling 

G3BP1 was first co-immunoprecipitated with the RasGAP SH3 domain from fibroblasts 

overexpressing the EGF Receptor and subsequently shown to bind to full length RasGAP 

(Parker et al., 1996). Interaction of RasGAP and G3BP occurred only in proliferating 

cells when Ras is in an active form (Gallouzi et al., 1998; Parker et al., 1996). Gallouzi 

and colleagues reported that G3BP1 was heavily serine phosphorylated in quiescent cells 

and this cell-cycle regulated phosphorylation of Ser149 is RasGAP dependent (Tourriere 

et al., 2001). Ser149 is in a consensus Casein Kinase II phosphorylation site2 and is 

conserved between G3BP1 and the G3BP2 isoforms. G3BP1 phosphorylation and Ras-

GTPdependent RasGAP association are consistent with the possibility that G3BP1 is 

regulated in response to external signals. Nevertheless, G3BP1 was able to interact with a 

purified RasGAP SH3 domain regardless of its phosphorylation status, implying that 

G3BP phosphorylation affects downstream functions rather than RasGAP interaction 

(Gallouzi et al., 1998). However, G3BP1 phosphorylation on Ser149 affects a number of 

functions, including RNase activity and stress granule recruitment/assembly (Tourriere et 

al., 2003; Tourriere et al., 2001). Also, G3BP1 overexpression in fibroblasts was found to 

increase S-phase entry and this was dependent on an intact RNA-binding domain 

(Guitard et al., 2001). G3BP1 may bind and regulate c-myc mRNA degradation. c-Myc is 

an important transcription factor in cell cycle progression (Dang, 1999; Dang et al., 1999). 

These data suggest that G3BP may be involved in regulation of cell cycle.  

1.3.6.2. G3BP2 and NFκB signalling 

IκB, in addition to its cytoplasmic role, also functions in the nucleus to dissociate NFκBs 

from DNA and re-export them. IκBα contains an N-terminal cytoplasmic retention 

sequence (CRS). G3BP2a was identified as a CRS-binding protein. G3BP2a interacted 

with both IκBα and IκBα/NFκB complexes by coimmunoprecipitation experiments and 

these interactions promote cytoplasmic retention of IκBα in HeLa cells. The IκBα 

interacting domain on G3BP2a was mapped and the central acid-rich domain of G3BP2a 

(aa 117-223) was sufficient to promote cytoplasmic retention (Prigent et al., 2000). This 

interaction provides a functional link between G3BP2a and NFκB signalling, implicating 
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that G3BP2a may play a role in regulating the nucleocytoplasmic NFκB/IκBα 

equilibrium and therefore NFκB activity. However, the suggestion that G3BP2a interacts 

with both IκBα and IκBα/NFκB omplexes is somewhat paradoxical. G3BP2a retention of 

IκBα positively influences on NFκB activation whereas G3BP2a-mediated cytoplasmic 

retention of IκBα/NFκB complex negatively affects on NFκB activation. Interestingly, 

IκBα Tyr 42 phosphorylation dramatically decreased CRS function (Prigent et al., 2000). 

These observations imply that signal induced modification of the IκBα CRS could affect 

the affinity of CRS-binding partners, such as G3BP2a, and therefore cytoplasmic 

retention of IκBα. Thus, it suggests that the real consequence of the interaction between 

IκBα and G3BP2a could well depend on the type of activating signal and post-translation 

modifications.  

1.3.6.3. G3BPs and ubiquitin-mediated activity 

Ubiquitin-mediated protein degradation is a fundamental process in cells to regulate 

protein turnover. Interestingly, in the first case an interaction between G3BP1 and 

Ubiquitin Specific Protease-10 (USP10) was discovered using a yeast-two-hybrid system 

and confirmed in human cells. G3BP1 did not appear to be a real substrate of USP10.  

Rather it inhibited USP10 de-ubiquitinating activity on a linear ubiquitin construct in 

vitro (Soncini et al., 2001). Soncini et al. suggested that G3BP1 might function in vivo to 

restrict de-ubiquitinating activity to appropriate substrates. With regard to the potential 

function/s of G3BP1 in the ubiquitin metabolism, it is noteworthy that several studies 

have demonstrated roles for ubiquitination and the proteasome in mRNA degradation. In 

one study, degradation of an ARE-containing reporter mRNA was regulated by the level 

of ubiquitin-conjugating activity in the cell and inhibition of a cytokine-inducible de-

ubiquitinating enzyme enhanced mRNA decay (Laroia et al., 2002). Whether G3BP1’s 

involvement in ubiquitin metabolism is linked to its involvement in mRNA metabolism, 

or other ubiquitin-mediated activities such as signal transduction, is unknown. G3BP1 

may interact with de-ubiquitinating enzymes other than USP10. USP10 may have 

substrates other than the vesicle transport proteins, or protein transport and mRNA 

metabolism could be mechanistically linked in a way that is not yet appreciated. 
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1.3.6.4. G3BPs and RNA metabolism  

The putative RNA-recognition and binding domains of G3BPs led to be speculation that 

these proteins are involved in signal-regulated mRNA metabolism. Although all G3BPs 

bind homopolymeric ribonucleic acid sequences in vitro and G3BP1 associated with a 

heterogenous pool of polyA mRNAs (Tourriere et al., 2001), c-myc is the only specific 

mRNA for a phosphorylation-dependent endoribonuclease activity of G3BP1 in vitro 

(Gallouzi et al., 1998; Tourriere et al., 2001). Also, G3BP2a and G3BP2b cleave c-myc in 

vitro, although with much lower efficiency than G3BP1 (reviewed in (Irvine et al., 2004). 

c-myc mRNA decay is delayed in RasGAP-/- fibroblasts which contain a 

phosphorylation-deficient form of G3BP1. Subsequent to the initial identification of 

G3BP1 as an RNase, Tourriere et al. showed specific cleavage of c-myc between CA di-

nucleotides, which was dependent on RNA-binding; and determined an affinity binding 

sequence for G3BP1 using the SELEX technique (Tourriere et al., 2001). But the 

biological significance of G3BP1-mediated c-myc decay is not clear. Recently it has 

reported that PKC phosphorylated G3BP1 was isolated with mRNP complex containing 

tau mRNA, HuD and insulin-like growth factor mRNA-binding protein IMP-1, which 

was formed during retinoic acid induced differentiation of P19 neuronal cells (Atlas et al., 

2004). The interactions within the mRNP were RNA-dependent and the complexes 

precipitated with polysomal proteins. This data not only shows that G3BP1 is a 

polysome-associated protein which plays a role in mRNA metabolism, but its presence in 

an mRNP containing tau mRNA raises the possibility that it is through association with 

specific mRNAs that G3BP may participate in cytoskeletal re-modelling. Also the G3BP2 

isoform binds an mRNP complex associated with actively translated mRNAs in neuronal 

synapses (Angenstein et al., 2002). Thereby, it suggests that G3BPs play important roles 

in RNA metabolism and mRNP complex. 

1.3.6.5. G3BP and Stress granules (SGs) 

One of particularly intriguing properties of G3BP1 is its assembly in SGs under stress 

conditions (Tourriere et al., 2003). SGs are translationally  incompetent mRNP complexes 

(Kedersha and Anderson, 2002). G3BP1 was recruited to stress granules after arsenite 

treatment in mammalian cells and over-expression of G3BP1 like TIA-1 was sufficient to 

induce SG formation. Dephosphorylation of G3BP1 (S149) result in SG recruitment and 
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assembly owing to facilitating self-aggregation after arsenite treatment (Tourriere et al., 

2003). G3BP at Ser 149 is phosphorylated and dephosphorylated by downstream of 

RasGAP (Gallouzi et al., 1998), thereby implicating Ras activation in stress granule 

formation for the first time. Thus, it has been suggested that G3BP1 might function to 

determine the fate of mRNAs during cellular stress. It has been reported that ARE 

mRNAs stabilized in stress and the evidence suggests that this may be mediated through 

changes in ubiquitination state, localization and interactions between diverse RBPs 

(Irvine et al., 2004). 
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2. Chapter 2: Materials and Method        
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2.1.  Materials 

2.1.1. Plasmids 

pcDNA3-FLAG-tagged hHDAC6 mutants that have point mutations in either or both of 

the hdac domains (H216A, H611A, and DM) were generated as previously described 

(Grozinger et al., 1999). HA-tagged full length mHDAC6 or mHDAC6 deletion mutants 

were generated as described (Zhang et al., 2006). Myc-tagged full length hG3BP or 

G3BP deletion fragments were generated by PCR, verified by sequencing, and inserted in 

pcDNA3 myc-tagged vector.   

2.1.2. Antibodies 

The following antibodies were used in this study: anti-cleaved Caspase-3 (1:1000; Cell 

signaling), anti-DCP1a (1:100 (IS), kindly provided by W. Filipowicz), anti-eIF2α (FL-

315) (1:500; Snata Cruz), anti-phos-eIF2α (1:1000; Cell signaling), anti-eIF3ή (N-20) 

(1:1000, 1:100 (IS); Santa Cruz), anti-FLAG M2 (1:2000; Sigma), anti-G3BP (1:1000, 

1:200 (IS); BD Transduction Laboratories), anti-HA (1:1000, Santa Cruz), anti-HDAC6 

(H-300) (1:1000, 1:100 (IS); Santa Cruz), anti-HIF-1α (1:1000; NOVUS biologicals), 

anti-HSP70 (1:1000; Stressgen), anti-HSP90 (1:500; Stressgen), anti-Ace-Lys (1:1000; 

Cell signaling), anti-c-myc (9E10), anti-cleaved PARP (1:1000; Upstate), anti-alpha 

tubulin (DM1A) (1:1000; Santa Cruz), anti-beta tubulin (TUB 2.1) (1:1000, 1:200 (IS); 

Santa Cruz), anti-gamma tubulin (GTU-88) (1:1000, 1:200 (IS); Santa Cruz), anti-Ace-

tubulin (TU6-1) (1:1000; Snata Cruz), anti-TIA-1/TIAR (H-120) (1:1000, 1:100 (IS); 

Santa Cruz), anti-Ubiquitin (1:100 (IS), Santa Cruz), or mHDAC-6 (Verdel et al., 

2000)(1:1000, 1:100 (IS)). IS indicates immunofluorescence. 

2.1.3. Reagents 

The following reagents were obtained from company respectively: Okadaic acid, Alexis; 

EHNA (Erhthro-9-[3-(hydroxynonyl)]adeninde), Biomol; Proteaosme inhibitor (Z-Leu-

Leu-Leu-CHO (MG132), Boston Biochemicals; Latrunculin B, Calbiochem; Sodium 

arsenite (NaAs2O3), Fluka; λ phosphatase, NEB; Cobalt chloride (CoCl2), Colchicine, 

Cytochalsin D, Nocodazole, Sodium butyrate, Sodium Vanadate, Trichostatin A (TSA), 
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Sigma. 

2.2. Methods 

2.2.1. Cell lines and Transfection 

All cells (HEK 293, HEK 293T, HeLa, NIH 3T3 cells) were obtained from the American 

Type Culture Collection and maintained in Dulbecco's Modified Eagle's Medium 

(DMEM) with 10% fetal bovine serum and antibiotics at 5% CO2. Transfections were 

performed with FuGENE6 (Roche) following the manufacturer’s protocol or by the 

calcium phosphate method.  HEK 293 overexpressing HDAC6 were made by transfection 

with a CMV-FLAG-hHDAC6 vector and selection for neomycin resistance.  

2.2.2. HDAC6 -/- cell line and rescue by HDAC6 wild type or mutants 

Mice with invalidated with HDAC6 gene were generated (Zhang et al., 2003), and mouse 

embryo fibroblasts were isolated from E13.5. Sex genotyping was used to select only 

male embryos. HDAC6 knockout and wild type lines were further identified by PCR 

genotyping and western blot. 3T3 cell lines were established following a standard 

protocol. The cells were plated at a density of 3x105 per 5 cm plate and split every 3 days 

for about 20 passages. Wild type and mutant HDAC6 cDNA were cloned into a 

pMSCV.EGFP vector. The retrovirus was made from Phoenix cells following standard 

protocol. The HDAC6-/- 3T3 cells were infected. The infected cells were kept in culture 

for 2 weeks and single GFP positive cells were sorted into 96 well plates. The positive 

cells were identified by western blot and PCR (Zhang et al., 2006).  

2.2.3. Preparation of Cell Extracts and Western Blotting Analysis 

Cells were rinsed twice with ice-cold PBS and were then extracted NP-40 lysis buffer 

(0.5% NP-40, 50 mM Tris-HCl pH 7.4, 120 mM NaCl, 25 mM NaF, 25 mM glycerol 

phosphate, 1 mM EDTA, 5 mM EGTA, and protease inhibitor cocktail tablet (Roche)). 

Cells were collected by pipetting, and centrifuged at 15,000 × g for 15 min at 4 °C. 

Protein concentration was measured by the method of BCA kit (Pierce) with bovine 

serum albumin as the standard. Aliquots of the supernatant were stored at 80 °C until 

use. Cell lysates containing 50 µg of total protein were subjected to SDS-PAGE on 8-
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12% slab gels, and proteins were transferred to nitrocellulose membranes. Membranes 

were blocked for 1 hour in PBS containing 0.1% Tween 20 and 10% (v/v) horse serum 

and incubated overnight with primary antibody. The membranes were then washed with 

0.1% Tween 20/PBS and incubated for 1 hour with an anti-rabbit secondary antibody or 

anti-mouse secondary antibody labelled to HRP, and bound antibodies were detected with 

ECL western blotting analysis system (Amersham bioscience).  

2.2.4. Co-immunoprecipitation assay 

For co-immunoprecipitation, 500 µg of extracts from either NIH-3T3 cells or HEK 

293T cells transfected by FuGENE6 (Roche) were incubated overnight with the primary 

antibody at 4°C with gentle agitation. After this, 25 µl of protein A–Sepharose slurry or 

protein G-agarose slurry were added and samples were incubated for 3 hours at 4°C with 

gentle agitation. Beads were washed three times with NP-40 lysis buffer and 

subsequently resuspended and boiled in 20 µl of loading buffer for SDS–PAGE.  

2.2.5. Translation in vitro and binding assay 

In vitro binding assay: GST and GST-G3BP were produced using standard methods. 

Briefly, protein expression was induced by addition of 0.1 mM IPTG to a bacteria culture 

at OD600 0.7. The bacteria were lysed after 4 hours of growth at 37°C, in 1% Triton in 

PBS plus 1 mM PMSF, 1 μg/ml aprotinin, 1 μg/ml leupeptin. After French pressure cell 

press and centrifugation, the supernatant was incubated with glutathione sepharose beads 

(Pharmacia) rotating for 1 h at 4°C. After three washes in ice-cold PBS, bound proteins 

were eluted with 10 mM glutathione in 50 mM Tris HCl pH 8.0. Full-length human 

HDAC6 was in vitro translated using the TNT T7 Coupled TNT reticulocyte lysate 

(Promega) following the instructions of the manufacturer. Binding reactions were 

performed in 600 μl of 20 mM HEPES pH 7.4, 150 mM NaCl, 0.05% NP40, 10% 

glycerol, 5 mM MgCl2, 0.5 mM EDTA, 1 mM DTT, 0.5 mM phenylmethylsulfonyl 

fluoride; for 3 hours at 4°C, using from 10 μg of GST fusion proteins and 10 μl of the in 

vitro translated product. 25 μl of glutathione sepharose slurry was added and the reactions 

continued for 1 hour with rotation. The beads were pelleted, washed three times in the 

binding buffer, resuspended in 4x Laemmli sample buffer and heated at 95°C for 5 min. 
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After separation on a SDS PAGE the gel was dried and exposed. Fluorography of 35S was 

performed to detect co-precipitated HDAC6. Generally, in lanes labeled ‘input’ 1/10 of 

the material used for the binding reaction was loaded. 

2.2.6. Mass Spectrometry 

Ten 10 cm dishes of the stable cell lines expressing FLAG-hHDAC6 proteins (S-HDAC6 

293) were harvested and lysed. Total extracts were analyzed by immunoprecipitation 

using anti-FLAG M2 agarose (Sigma), bound proteins were eluted from the beads using 

10 mM 3xFLAG peptide, and were separated on SDS-PAGE, and stained with coomassie 

blue staining. The HDAC6 interacting proteins were identified by LC-MS/MS 

spectrometry. 

2.2.7. Immunofluorescence and Micoroscopy 

Exponentially growing cells were plated on 8 chamber slide and incubated overnight. 

After drug treatment, cells were washed in PHEM buffer (60 mM PIPES pH6.9, 25 mM 

HEPES pH 7.5, 10 mM EGTA pH 7.5, 4 mM MgCl2 pH 6.9) and fixed with 4% 

formaldehyde/PBS for 15 min at room temperature or with methanol at –20°C for 10 min. 

Slides were then rinsed three times with 0.2% Triton X-100/PHEM buffer, and cells were 

permeabilized with 1% Triton X-100/PBS for 5 min at room temperature. Slides were 

then incubated in blocking solution (3% BSA/PBS) for 1 hour at room temperature for 

reducing non-specific binding of the antibody. Incubation with the primary antibodies 

was carried out for 3 hours at room temperature or at overnight at 4°C, and the slides 

were then washed three times with 0.2% Triton X-100/PHEM buffer. Alexa-Fluor anti-

mouse and Alexa-Fluor anti-rabbit immunoglobulin antibodies were used as secondary 

antibodies. After the slides had been washed three times with 0.2% Triton X-100/PHEM 

buffer and once with deionized water, they were observed under a confocal LSM 510 

meta microscope (Zeiss Axioplan 2). Pictures were deconvolved with the theoretical PSF 

calculated within the software Huygens (Scientific Volume Imaging, http://www.svi.nl).  

http://www.svi.nl
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2.2.8. Quantification of stress granules-containing cells and large stress 

granules  

For quantification, nine fields of each sample were randomly selected. The occurrence of 

SGs was estimated as the average number of SG-containing cells. For quantification of 

large SGs, 100 cells of each sample were randomly selected. The number of large SG was

 counted using confocal microscopy software (LSM viewer, Carl Zeiss).  

2.2.9. Proportional Distribution of HDAC6 in stress granules 

After obtaining a granule pellet by centrifugation of cytoplasm at 12.000 X g for 10 min, 

the pellet was lysed and aliquoted into two samples; one was saved as the “total granules” 

sample and the other was used for immunoprecipitation to collect stress granules. To 

quantify protein levels, nitrocellulose membranes were scanned by Odyssey infrared 

imaging system (LI-COR Bioscience) and relative optical densities were determined 

using Odyssey .For each lane, the backgraound-subtracted value for each band was the 

divided by the value of the background-correct tubulin band from the same lane to obtain 

a normalized value. Each protein samples was run in triplicate on three separate blots, 

and normalized values from each set of replications were averaged to obtain a final value 

for each sample. 

2.2.10. Polysome Analysis 

MEFs were plated and used within 24 hours of plating, at ~ 70% confluence. Briefly, 

cells were treated with 100 μg/ml of cycloheximide for 5 min, followed by washes with 

PBS and a hypotonic buffer (5 mM Tris-HCl, pH 7.5, 1.5 mM KCl, 2.5 mM MgCl2, 100 

μg/ml cycloheximide). Lysates were prepared by scrapping the cells in lysis buffer 

[hypotonic buffer containing 0.5% deoxycholate, 0.5% Triton X-100, 1 mM dithiothreitol, 

protease inhibitor cocktail tablet (Roche) and 120 U/ml of Rnasin (Promega)]. Lysates 

were centrifuged for 8 min at 3,000 x g at 4°C and supernatants were then layered onto 

10-50% sucrose gradients and spun in an SW40 rotor (Beckman) at 36,000 rpm for 2 

hours at 4°C. Gradients were eluted from the top by using a Brandel elution system 

(Brandel, Gaithersburg, MD). The eluate was continuously monitored at 260 nm using an 

ISCO UA5 UV monitor (ISCO, Lincoln, NE). Fractions were collected from the top of 
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the gradient. Aliquots of individual fractions were acetone precipitated to remove sucrose 

and to concentrate the samples, resuspended in SDS sample buffer, and processed for 

Western blot analysis. 

2.2.11. Construction of let-7 plasmids 

The RL and FL constructs bearing let-7 sites 

To obtain Renilla luciferase (RL) expression from a CMV promoter, the RL coding 

region was released from phRLTK (Promega) as a NheI-BamHI fragment and inserted 

into similar sites in the pCIneo vector (Promega) to get pRL-Con. Note that this RL gene 

contains optimized codon usage (humanized) for better expression in mammalian cells. 

To make RL reporters whose expression is controlled by endogenous let-7a RNA, we 

inserted annealed primers into the XbaI-NotI sites of pRL-Con to get constructs having 

one perfectly base-pairing  (ACTATACAACCTACTACCTCA; pRL-Perf), one bulged 

(GCACAGCCTATTGAACTACCTCA; pRL-1xBulge), three bulged 

(GGACAGCCTATTGAACTACCTCACTCGGAGCACA 

GCCTATTGAACTACCTCAGGCCTGCACAGCCTATTGAACTACCTCA; pRL-

3xBulge) and three mutated bulged 

(GCACAGCCTATTGAACTACCCCTCACTCGAGCACAGCCTATTGAACTACCCCT

CAGGCCTGCACAGCCTATTGAACTACCCCTCA: pRL-3xBulgeMut) let-7 sites in 

the 3’UTR. The mutated bulged binding sites have a 2-nt insertion (underlined) in the 

seeding region of the bulged let-7 complementary site. We verified that this mutation 

abolishes the repressive effect of endogenous let-7 RNA on translation of the RL reporter 

To obtain firefly luciferase (FL) constructs with let-7 complementary sequences, we 

initially modified the pGL3 Promoter plasmid (Promega) by insertion of a T7 RNA 

polymerase promoter into the HindIII site upstream of the FL ORF. The resulting plasmid 

was named pFL-Con. To obtain pFL-Perf and pFL-3xBulge, containing one perfect and 

three bulged let-7 sites, respectively, the corresponding XbaI-HpaI fragments were 

excised from the 3’UTR regions of pRL-Perf and pRL-3xBulge and inserted to 

corresponding sites of pFL-Con (Pillai et al., 2005). 
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2.2.12. Transient Transfection and Luciferase assay 

MEFs were seeded into 6 well plates and allowed to reach ~50% confluence. Cells were 

cotransfected with 1 μg of MTV-GRE-luciferase reporter and 50 ng of renilla vector as 

the control. Dexamethatsone (100 nM) was added to the culture medium for the last 4 

hours of transfection. After 48 hour transfection, the cells lysates were analyzed with a 

Dual Luciferase Reporter Assay kit activity (Promega). Relative luciferase activity was 

determined by the ratio of firefly to renilla.  

2.2.13. Cell Viability 

MEFs were seeded at 105 cells/well in 6-well plate. Cell viability was determined by Vi-

Cell (Beckman Coulter) at 0, 6, 12, 24, and 48 hours by trypan blue exclusion from each 

individual culture. 

2.2.14. Cell Death Assay 

Cells treated with 5 μM of MG132 or 1 mM of arsenite as stressor. Annexin V staining 

was performed exactly as described by the manufacturer (BD Bioscience), and samples 

were analyzed via flow cytometry. Apoptotic cells were detected by western blotting with 

an anti-cleaved PARP or anti-cleaved Caspase-3 antibody (apoptosis marker).  

2.2.15. DNA Fragmentation Assay 

The cells were rinsed with ice-cold PBS and harvested by trypsination. The cell pellets 

were resuspended and incubated in 100 mM Tris-HCl pH 8.0, 25 mM EDTA, 0.5% SDS, 

and 0.1 μg/ml proteinase K at 50°C overnight. The digested cells were extracted for DNA 

with phenol/chloroform (1:1) and chloroform/isoamylalcohol (1:24). The extracted DNA 

was precipitated and digested in 10 mM Tris-HCl (pH 5.0) containing 1 mM EDTA and 

10 μg/RNase for 1 hour at 37°C. Ten micrograms of DNA per sample was resolved by 

electrophoresis in a 1.8% agarose gel impregnated with ethidium bromide (0.5 μg/ml), 

and the DNA pattern was examined by ultraviolet transillumination. 
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3.1. The histone deactylase 6 (HDAC6) interacts with G3BP 

and regulates stress granule formation 

3.1.1. Abstract 

HDAC6 is a mostly cytoplasmic deacetylase that has been shown to interact with and 

deacetylate tubulin. HDAC6 also has a ZnF-UBP domain through which it interacts with 

high affinity with mono- or poly-ubiquitin and ubiquitinited proteins and facilitates the 

accumulation of ubiquitinated misfolded proteins in an aggresome. Here we have 

identified RasGAP associated endonuclease (G3BP), a component of stress granules, as a 

novel HDAC6 interacting protein. Stress granules (SGs) are formed in the cytoplasm in 

response to environmental stresses and play a critical role in the regulation of mRNA 

metabolism during stress. Phosphorylation of G3BP -which regulates its localization to 

stress granules- also modulates its capacity to interact with HDAC6. Pharmacological 

inhibition of HDAC6 activity in cultured cells leads to impaired SG assembly, and 

overexpression of HDAC6 facilitates the formation of SGs. Indeed, MEFs deficient in 

HDAC6 cannot form SGs properly, although they exhibit normal phosphorylation of 

eIF2α in response to stress; in agreement with this, HDAC6 was found to be a stable and 

critical component of stress granules. The deacetylase domains of HDAC6 were 

necessary and sufficient to target the protein to SGs. Intriguingly, the ubiquitin binding 

domain of HDAC6 appears to be particularly important and intact HDAC6 function is 

required for SG assembly. Furthermore, disruption of microtubule arrays with nocodazole 

treatment or impairment of motor proteins with a dynein inhibitor abolishes arsenite-

induced formation of SGs. Taken together, our results show that HDAC6 regulates the 

assembly of SGs. We propose that HDAC6 might facilitate SG formation by the motor-

protein driven movement of individual SG components along microtubules. 
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3.1.2. Introduction  

Reversible protein acetylation has emerged in recent years as one of the major forms of 

protein modifications. The importance of acetylation and deacetylation has been 

particularly well documented in the case of the N-terminal histone tails, and of a few 

transcription factors such as p53 and STAT3. Acetylation and deacetylation are catalyzed 

by (histone) acetylases (HATs) and (histone) deacetylases (HDACs). HDAC6 is a unique 

class II deacetylase that contains two catalytic domains and also a C-terminal domain 

binding with high affinity free ubiquitin as well as mono- and polyubiquitinated proteins 

(Boyault et al., 2006). Like other class II HDACs, HDAC6 can shuttle between nucleus 

and cytoplasm; however, owing to a nuclear export signal in the N-terminus of the 

protein, HDAC6 localizes predominantly to the cytoplasm, where it is found partly 

associated with the microtubule network (Hubbert et al., 2002; Matsuyama et al., 2002; 

Zhang et al., 2003). We and others have shown that HDAC6 can deacetylate tubulin as 

well as the microtubule network in vivo. HDAC6 also associates with the chaperone-like 

AAA ATPase p97/VCP, a protein that is critical for proteasomal degradation of misfolded 

proteins. Thereby, the ratio of HDAC6 and p97/VCP modulates the levels of 

polyubiquitinated aggregates (Boyault et al., 2006). HDAC6 also facilitates the clearance 

of misfolded ubiquitinated proteins, promoting their accumulation in an aggresome and 

protects cells from apoptosis following misfolded proteins stress (Kawaguchi et al., 2003). 

Furthermore, HDAC6 can deacetylate the chaperone Hsp90 and regulate its activity (Bali 

et al., 2005; Kovacs et al., 2005). Consequently, these different biochemical functions of 

HDAC6 impinge on diverse cellular processes. For example, HDAC6 function was found 

to be necessary for the formation of an immune synapse between antigen presenting cells 

and T lymphocytes (Serrador et al., 2004) and also for nuclear translocation and 

transcription activation by the glucocorticoid receptor (Kovacs et al., 2005). Mice lacking 

HDAC6 are viable and have greatly elevated tubulin acetylation in multiple organs; in 

addition, they exhibit a moderately impaired immune response and also show a slight 

phenotype in the bone (Zhang et al., 2007).  

One of the most immediate responses to cellular stress is a block of mRNA translation, 

triggered by phosphorylation of the translation initiation factor eIF2α under the action of 
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several stress sensing kinases (Bertolotti et al., 2000; Kaufman, 2004; Lu et al., 2001; 

Williams, 2001). Thereby, translationally stalled mRNAs are sequestered in dynamic 

cytoplasmic structures called stress granules (SGs). These granules represent a complex 

assembly of various initiation factors, such as eIF3 or, eIF4E proteins involved in 

translation control, such as TIA-1 or Fragile X mental retardation protein (FMRP) and 

proteins implicated in RNA remodelling or degradation, such as HuR, tristetraproline or 

Staufen as well as 40S ribosome subunits (reviewed in (Anderson and Kedersha, 2006; 

Newbury et al., 2006)). In addition, SGs also contain various polyadenylated mRNAs 

whose translation has been arrested.,It is thought that SGs are sites where triage takes 

place in order to direct RNAs to degradation in processing bodies or to recycle mRNAs 

for translation.. In addition, very recent evidence suggests that parts of the micro RNA 

pathway may also take place in SGs which contain Argonaute proteins and also miRNAs 

such as let-7  (Leung et al., 2006). 

Here, we report the identification of G3BP (RasGAP associated endoribonuclease), a 

stress granule component, as a novel protein interacting with HDAC6 in vivo and in vitro. 

This protein is conserved between species, and orthologues are found in Drosophila, 

humans, and mice. G3BP has been implicated in modulating Ras activity and the cell 

cycle, by binding to the RasGAP protein (Guitard et al., 2001; Kennedy et al., 2001; 

Pazman et al., 2000). The precise function of G3BP is not understood yet, but it appears 

to be an essential gene in the mouse: inactivation of the G3BP gene leads to embryonic 

lethality and growth retardation (Zekri et al., 2005). Furthermore, G3BP has attracted 

attention recently as it was found to have endoribonuclease activity and to localize to SGs 

(Tourriere et al., 2003). We show that HDAC6 is recruited to SGs and that 

pharmacological HDAC inhibition leads to impaired SG assembly, while overexpression 

of HDAC6 facilitates the formation of SGs. Indeed, HDAC6 deficient MEFs fail to form 

SGs, although they exhibit normal phosphorylation of eIF2α in response to stress. 

Furthermore, inactivating mutations in the catalytic domains or ubiquitin binding domain 

of HDAC6 significantly reduce SG assembly. Interestingly, the ubiquitin binding domain 

of HDAC6 seems to be particularly important for SG formation. Moreover, SG formation 

is abolished by disruption of microtubule arrays or by impairment of dynein motor 

proteins. Based on these results, we propose that HDAC6 is a central component of the 
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stress response, regulating SG formation and potentially contributing to the control of 

RNA metabolism and translation.  

3.1.3. Results 

HDAC6 interacts with G3BP (RasGAP-associated endoribonuclease) in vivo and in 

vitro 

We set out to identify novel proteins associating with HDAC6 and which might help 

explain the regulation and cellular role of this enzyme. To this end, we established stable 

cell lines expressing FLAG-tagged HDAC6 and used these for co-immunoprecipitation 

assays: cell extracts were analyzed by immunoprecipitation using anti-FLAG antibodies, 

bound proteins were eluted from the beads, separated by SDS-PAGE and analyzed by 

mass spectrometry. By this approach, we identified G3BP-1, Ras-GTPase activating 

protein SH3 domain binding protein 1, as a prominent HDAC6 interacting partner. To 

verify the interaction between G3BP and HDAC6 a variety of assays were established. 

HEK 293T cells were transiently cotransfected with constructs encoding epitope-tagged 

G3BP and HDAC6 proteins and a co-immunoprecipitation assay was performed. The 

precipitated material was separated on SDS–PAGE, and western blot analysis was done 

with specific antibodies. As shown in Figure 1A, immunoblot with the FLAG M2 

antibody verified HDAC6 precipitation and G3BP was found to efficiently co-precipitate. 

The experiment gave the same result when done in the reverse order, by first precipitating 

G3BP and testing the co-immunoprecipitation of HDAC6. Interaction between these two 

proteins could be demonstrated using an alternative in vitro binding assay. Bacterially 

expressed GST-G3BP fusion protein was used for pull-down assays with either extracts 

from HDAC6-transfected HEK 293T cells or in vitro translated HDAC6 protein. HDAC6 

also interacted with G3BP under either of these conditions (Fig. 1B and 1C). We next 

attempted to detect an interaction between the endogenous G3BP and HDAC6 proteins. 

As shown in Figure 1D, co-immunoprecipitation assays with HEK 293T cell extracts 

demonstrated a specific interaction between endogenous HDAC6 and G3BP, irrespective 

of the precipitation order. To determine whether G3BP interacts specifically with HDAC6, 

or more generally with deacetylases, we transfected FLAG-tagged class I or class II 

H D A C s  a n d  H A - t a g g e d  G 3 B P i n t o  H E K  2 9 3 T c e l l s  a n d  p e r f o r m e d  
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Figure 1. HDAC6 associates with G3BP 

(A) Co-immunoprecipitation assay. 293T cells were co-transfected with either mock or 
the FLAG-tagged HDAC6 and HA-tagged G3BP. Interaction was measured by 
immunoprecipitation with an anti-HA or anti-FLAG antibody, followed by 
immunoblotting with an antibody to detect G3BP or HDAC6, as indicated. 10% of total 
cell lysates used in immunoprecipitation are shown as input. (B) GST Pull down assay. 
Equal amounts of extract from 293T cell transiently transfected with expression vector 
for FLAG-HDAC6 were incubated with beads loaded with GST alone or GST-G3BP 
fusion protein. After washing, bound proteins were run on SDS-PAGE and retained 
HDAC6 was detected by western blotting using an anti-FLAG M2 antibody. (C) In vitro 
binding assay. Recombinant GST or GST-G3BP was incubated with in vitro translated 
35S-radiolabelled HDAC6 or luciferase and binding was allowed to proceed. The 
presence of HDAC6 protein was detected by fluorography. (D) Co-immunoprecipitation 
assay for endogenous proteins. HEK 293T cells extracts were immunoprecipitated with 
an anti-HDAC6 or anti-G3BP antibody, followed by mmunoblotting with antibodies as 
indicated. (E) HEK 293T extracts transfected with FLAG-tagged HDACs and GFP-
tagged G3BP were immunoprecipitated with an anti-FLAG antibody and immunoblotted 
for G3BP.  
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coimmunoprecipitation assays. As presented in Figure 1E, G3BP co-immunoprecipitated  

with HDAC6, but not with the class I enzyme HDAC1, or the class II HDAC4. Taken 

together, these results indicate that G3BP is a bona fide novel specific interaction partner 

of deacetylate HDAC6. 

 

Identification of the domain(s) required for interaction between HDAC6 and G3BP  

To define the domain(s) required for interaction between HDAC6 and G3BP, truncated 

proteins were expressed by transfection in 293T cells and interaction was tested by co-

immunoprecipitation assays. First, a series of HA-tagged HDAC6 deletion mutants were 

analyzed. As shown in Figure 2A and B, the full length protein as well as deletion 

mutants containing at least one HDAC domain co-immunoprecipitated efficiently with 

G3BP. The N-terminal region of HDAC6 bound weakly to G3BP, whereas the C-terminal 

did not bind appreciably to G3BP. These results demonstrate that the HDAC domain is 

both necessary and sufficient for G3BP binding. Next, a series of G3BP deletion 

constructs were tested in a similar manner. The results presented in Figure 2C show that 

the acidic-rich domain of G3BP (labelled B), containing the serum dependent 

phosphorylation site (see below), is required for binding to HDAC6, whereas the N-

terminal NTF2-like domains (labelled A) and the C-terminal half of the protein (labelled 

CD) are dispensable. In addition, we also tested HDAC6 proteins with point mutations in 

the catalytic site of either or both of the HDAC domains (Grozinger et al., 1999). Similar 

to what had been seen previously with tubulin (Zhang et al., 2003), both the single and 

double mutants could be co-precipitated with G3BP as efficiently as the wild type 

enzyme (Fig. 2D). This indicates that the interaction between HDAC6 and G3BP is 

mediated by the HDAC domain, but does not depend on integrity of its catalytic center.  

 

Dephosphorylation of G3BP at S149 enhances interaction between HDAC6 and 

G3BP 

G3BP can be phosphorylated at Ser149 and Ser232 (see Fig. 3A). Phosphorylation at 

Ser149 has been shown to dominantly inhibit stress granules formation (Tourriere et al., 

2003); furthermore, arsenite or heat-shock treatment of cells, as well as H-ras activation 

induce dephosphorylation of G3BP at S149, which can then assemble in SGs  
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Figure 2. HDAC-6 interacts with G3BP via its HDAC domains  

(A) Schematic representation of the N-terminally HA-tagged HDAC6 deletion constructs 
and C-terminally Myc-tagged G3BP truncated mutants used in this study. The two G3BP 
serine residues that can be phospshorylated are indicated. One representative experiment 
is presented (n=3-4). (B-D) Co-immunoprecipitation assay. (B) HDAC6 interacts with 
G3BP through the HDAC domains. 293T cells were co-transfected with the indicated 
HDAC6 expression vectors together with a G3BP full-length expression vector (lanes 2 
to 8), and cellular extracts were prepared. Expression of HDAC6 or G3BP was measured 
by western blot with an anti-HA or anti-G3BP antibody. Association with HDAC6 was 
measured by performing an immunoprecipitation with an anti-HA antibody, followed by 
analysis of the precipitate by western blotting with the anti-G3BP antibody. (C) G3BP 
interacts with HDAC6 through the acidic B domain. The domain in G3BP required to 
interact with HDAC6 was identified by testing extracts from cells transfected with full-
length HDAC6 and deletion mutants of G3BP. Analysis was done as in (B). (D) The 
catalytic domains of HDAC6 are not critical for interaction with G3BP. Extracts from 
293T cells co-transfected with HA-tagged G3BP and the indicated FLAG-tagged HDAC6 
point mutants were immunoprecipitated with an anti-HA antibody. In the HDAC6 
mutants proteins, the histidine at position 216 or 611 were mutated to alanine (H216A, 
H611A). DM., double mutant protein. 
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(Tourriere et al., 2003; Tourriere et al., 2001). To test whether phosphorylation of G3BP 

at Ser149 influences interaction with HDAC6, we transiently co-transfected constructs 

encoding wild type or phosphomutant GFP-G3BP fusions and FLAG-tagged HDACs into 

HEK 293T cells and performed co-immunoprecipitation assays. Both the WT and the 

S149A non-phosphorylatable G3BP mutant co-precipitated with HDAC6 efficiently, 

however the phosphorylation-defective mutant co-precipitated more effectively than the 

WT (Fig 3B). In contrast, the phosphomimetic G3BP S149E mutant completely failed to 

co-precipitate, although it was expressed at equivalent levels to the other proteins. 

Identical results were also obtained when the experiment was performed in the reverse 

order (data not shown). We next assessed whether treatments that affect phosphorylation 

of G3BP would influence its association with HDAC6. Dephosphorylation of G3BP, 

induced by treatment of cells with arsenite or incubation of extracts with λ phosphatase, 

led to increased interaction with HDAC6 (Fig. 3C, lanes 2 and 4; Fig. 3D, lane 5). In 

contrast, the interaction was weaker when phosphorylation of G3BP was increased by 

treatment of the cells with a phosphatase inhibitor such as okadaic acid or vanadate (Fig. 

3D, lanes 3 and 4). These results therefore indicate that the interaction of G3BP and 

HDAC6 is modulated by the phosphorylation status of G3BP. 

 

HDAC6 and G3BP co-localize and are recruited to stress granules 

The biochemical interaction between HDAC6 and G3BP prompted us to test whether 

these two proteins co-localize in the cell. For this, exponentially growing HeLa cells were 

fixed and G3BP as well as HDAC6 were visualized by immunostaining and confocal 

microscopy. In untreated cells, both proteins are diffusely distributed throughout the 

cytoplasm, as had been observed previously (Gallouzi et al., 1998; Parker et al., 1996; 

Zhang et al., 2003), and showed significant co-localization in the perinuclear region (Fig. 

4A). In mammalian cells, exposure to environmental stress results in the formation of 

transient cytoplasmic structures known as “stress granules” (SGs, (Kedersha et al., 2002; 

Kedersha et al., 1999)). SGs contain among other components: mRNA, translation 

initiation factors, mRNA binding proteins such as TIA-1 and TIAR, and 40s ribosome 

subunits (reviewed in Anderson and Kedersha, 2006; Newbury et al., 2006). It has been 

recently reported that G3BP is recruited to SGs in cells exposed to stress  
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Figure 3. Phosphorylation of G3BP modulates the/its interaction with HDAC6 

(A) Schematic representation of the subdomains within the G3BP protein. (B) G3BP 
phosphorylation at Ser149 modulates interaction with HDAC6. GFP fused wild type or 
GFP fused mutants G3BP and FLAG-tagged HDAC6 co-transfected into the HEK 293T 
cells. The lysates were immunoprecipitated with an antibody for FLAG, followed by 
immunoblotting with an anti-FLAG antibody and then reblotted for G3BP. 10% of total 
cell lysates used in immunoprecipitation are shown as input. (C) Arsenite-induced G3BP 
dephosphorylation promotes interaction with Hdac6. 293T cells were mock-transfected or 
transfected with HA-tagged G3BP and were treated with 1 mM arsenite for 1 hr prior to 
lysis (lanes 2 and 4); extracts were then used for co-immunoprecipitation with an anti-
G3BP antibody and analysis by immunoblotting, as indicated. (D) Phosphatase inhibition 
reduces the interaction between G3BP and HDAC6. 293T cells were co-transfected with 
HA-tagged G3BP and FLAG-tagged HDAC6 and treated with phosphatase inhibitors 
(lanes 3 and 4); alternatively, cell lysates were incubated in vitro with λ phosphatase. 
Subsequent analysis was carried out as in (B). Oka; Okadaic acid, Van; Orthovanadate, λ 
PPase; λ phosphatase.  
 

 



 80

(Tourriere et al., 2003). To test whether HDAC6 is also recruited to SGs, we examined 

the localization of endogenous HDAC6 or G3BP, following treatment of the cells with 

arsenite, an oxidative stress inducing agent. As shown in Figure 3, G3BP and HDAC6 

were both found in smallcytoplasmic foci and the merged picture shows good co-

localization of the two proteins. To confirm this result, arsenite-treated cells were also 

stained for TIA-1 (T cell internal antigen-1), another robust marker of SGs, and HDAC6. 

In this case as well, endogenous HDAC6 was concentrated at discrete cytoplasmic foci 

and co-localized with TIA-1. The perfect colocalization of HDAC6 and G3BP or TIA-1 

at SGs therefore indicates that HDAC6 is a novel component of SGs. Previous studies 

have shown that the components of SGs vary with the stimulus used to elicit their 

assembly; e.g., heat shocked-induced SGs contain HSP27, whereas arsenite-induced SGs 

do not (Kedersha et al., 1999) and SGs containing G3BP have been described as lacking 

TIA-1 (Tourriere et al., 2003). To address whether the recruitment of HDAC6 into SGs is 

restricted to a specific form of stress, HeLa cells were treated with different SG-inducing 

stimuli such as arsenite, UV irradiation, CCCP (mitochondrial stress), or heat shock, and 

were stained with antibodies against G3BP or HDAC6. As shown in Figure 4, G3BP 

localized to SGs under all conditions tested; remarkably, HDAC6 was also found in SGs 

irrespective of the induction stimulus. When the stress stimulus is removed and cells are 

returned to normal culture conditions, SGs disassemble rapidly (Anderson and Kedersha, 

2002). We therefore performed experiments to examine the kinetics of SGs assembly and 

disassembly, using G3BP and HDAC6 as markers. We found that both proteins behaved 

identically also under these conditions (Fig. 4C). These results altogether indicate that 

HDAC6 and G3BP are recruited to the same SGs in response to stress, with identical 

kinetics, and that HDAC6 is an integral (stable) component of SGs. Under the stress 

conditions, such as oxidative stress, TIA-1 and PABP-1 rapidily and continuously shuttle 

in and out of SGs (Kedersha and Anderson, 2002). However, in lysed cells, the 

conformational chamges which drive SG assembly in vivo may be altered as a result of 

decreased levels of chaperones such as HSP70. Interestingly, it has reported 

quantification analysis, using immunopurified SGs, of translocation of FMRP between 

polyribosomes and SGs after arsenite stress (Kim et al., 2006). We investigated whether 

chemical stress would cause HDAC6 to shift between cytoplasm and SGs. After induced  
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Figure 4.  HDAC6 localizes to stress granules  

(A) Exponentially growing HeLa cells were control-treated or stressed by exposure to 1 
mM arsenite for 1 hr, 100 mJ UV irradiation, 1 µM CCCP for 90 min, or heat (44°C) for 
1 hr. Subsequently cells were fixed and stained for G3BP, HDAC6 or TIA-1. Double 
immunofluorescence experiments were performed using anti-HDAC6 and anti-G3BP or 
anti-TIA-1/TIAR antibody and labelled secondary antibodies (Alexa Fluor 488, green) 
and (Alexa Fluor 594, red). Nuclei were counterstained using DAPI (blue). Localization 
of proteins was monitored by confocal microscopy. Yellow represents co-localization. (B) 
Proportional distribution of HDAC6 in stress granules. To quantify protein levels, 
nitrocellulose membranes were scanned by Odyssey infrared imaging system (LI-COR 
Bioscience) and relative optical densities were determined using Odyssey. (C) Assembly 
and disassembly of arsenite-induced SGs. HeLa cells were cultured in the absence 
(control) or presence of arsenite (1 mM) for 1 hr (Stress), washed and allowed to recover 
for from 1 hr to 3 hr (Recovery) before processing for two colour immunofluorescence 
microscopy. Enlargements of boxed regions are shown on the bottom. Scale bar = 10 μm 
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stress, HDAC6 levels in SGs and cytoplasm were measured on Western blots. Arsenite 

caused a rapid redistribution of HDAC6 into SGs and away from cytoplasm as shown in 

Figure 4B. HDAC6 distribution did not significantly change in control experiments 

without added arsenite. This result suggests that HDAC6 can move into subcellular 

compartments in response to stress. 

The deacetylase activity of HDAC6 can regulate SG formation 

To identify the domain(s) of HDAC6 that direct the protein to SGs, expression vectors 

encoding tagged HDAC6 deletion mutants and G3BP were transiently cotransfected into 

HeLa cells and the subcellular localization of these proteins was determined under 

control or oxidative stress conditions. The results are summarized in Figure 5A and 

representative photomicrographs are shown in Figure 5B. All of the HDAC6 deletion 

mutants were localized in the cytoplasm, in agreement with our earlier results. Consistent 

with the immunoprecipitation results defining the interaction with G3BP, the full length 

HDAC6 and deletion mutants containing at least one HDAC domain were recruited to 

SGs; in contrast, mutants containing only the N- or the C-terminal portion of HDAC6 

failed to localize to SGs. Thus, either of the two HDAC domains is necessary and 

sufficient to direct HDAC6 to SGs. To examine whether the deacetylase activity of 

HDAC6 is required for SG formation, we first treated HeLa cells with the HDAC 

inhibitor, TSA, which inhibits all known HDACs, or with butyrate, which inhibits 

HDACs with the exception of HDAC6 (Guardiola and Yao, 2002). As shown in Figure 

5C, cells treated with TSA and arsenite exhibited a hyperacetylated microtubules network 

and formed fewer or no HDAC6 positive SGs. In contrast, treatment of the cells with 

butyrate did not alter SG formation, suggesting that the deacetylase activity of HDAC6 

might be important for formation of these structures. 

 

HDAC6 KO MEFs exhibit impaired ability to form stress granules 

To examine the importance of HDAC6 in the regulation of SG assembly, we used wild-

type or HDAC6 KO MEFs to test their capacity to assemble SGs following stress. 

Whereas wild-type MEFs readily assembled SGs in response to arsenite treatment, 

HDAC6 KO MEFs failed to exhibit morphologically discrete SGs, as determined by 

using antibodies against two independent markers of SGs, TIA-1 and G3BP (Fig. 6A).  
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Figure 5. The deacetylase activity of HDAC6 is critical for assembly of stress 

granules  

(A and B) Subcellular localization of HDAC6 deletion mutants and their stress granule 
localization. The N-terminally HA-tagged HDAC6 deletion mutants and Myc-tagged 
G3BP construct were transiently co-transfected into HeLa cells. 24 hr after transfection, 
the cells were treated 1 mM arsenite for 1 hr and and fixed. The subcellular localization 
of HDAC6 truncated proteins and G3BP was analyzed by a confocal microscopy. Stress 
granule localization of constructs was classified into two categories: positive localization 
(+) and negative localization (-).The staining for Myc-G3BP represents a control for the 
formation of SGs. Scale bar = 5 μm.  (C) HDAC inhibition impairs formation of stress 
granules. HeLa cells were control-treated or treated with 500 nM TSA or 5 mM Butyrate 
(But) for 4 hr prior to treatment with arsenite for 1 hr and fixation. Double 
immunostaining experiments were carried out with anti-Ac-α-tubulin and anti-HDAC6 or 
anti-G3BP antibodies and analysis was done by confocal microscopy. Enlargements of 
boxed regions are shown on the bottom. Scale bar = 10 μm. 
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The same results were obtained using other stress forms such as heat shock, UV, or CCCP  

(Fig. 6E). We also quantified the percentage of cells forming SGs, as well as the kinetic 

of their assembly. As shown in Figure 6B, in wild-type MEFs up to ca. 80% of the cells  

were positive for SGs after 1 hr arsenite treatment, as in HeLa cells (not shown); in 

contrast, in HDAC6 deficient cells, no more than ca. 20-25% of the cells were positive. 

Furthermore, while wild-type cells exhibited SGs already after 5 to 10 min of arsenite 

treatment, and reached a plateau after 30 min, HDAC6 deficient cells showed a much 

delayed response (Fig. 6C). One of the earliest steps in the formation of SGs is the 

phosphorylation of eIF2α by various stress-activated kinases, such as PKR or PERK, 

which leads to inhibitionof translation initiation (Williams, 2001). To test whether loss of 

HDAC6 influences eIF2α phosphorylation in response to stress, wild-type or HDAC6-/- 

MEFs were treated with different concentrations of arsenite and protein extracts were 

analyzed by using a phospho-specific antibody. As presented in Fig. 6D, both wild type 

(lanes 2-4) and HDAC6 KO MEFs (lane 6-8) exhibited a similar increase in phospho-

eIF2α upon arsenite treatment. In agreement with the above observations, we also found 

that global translation was not altered in absence of HDAC6 as polysomal profiles were 

identical in wild-type or HDAC6-/- MEFs (see Fig. 11). Thus, the effect of HDAC6 on SG 

formation is clearly downstream of eIF2a phosphorylation and protein translation arrest. 

 

Intact HDAC6 function is required for SG formation 

To better define the role of HDAC6 in controlling SG formation, we made use of 

HDAC6-/- MEFs in which wild-type or mutant forms of HDAC6 have been re-expressed 

by retroviral transduction. As seen in Figure 7A, these cells all express wild type levels of 

HDAC6 and behave as expected with respect to tubulin acetylation: the cells expressing 

WT HDAC6 have a tubulin acetylation level similar to WT MEFs (lane 3), while the cells 

expressing a deacetylase mutant form of HDAC6 have hyperacetylated tubulin (lane 4), 

just like HDAC6-/- MEFs. In addition, cells expressing a non-ubiquitin binding mutant 

HDAC6 also have a WT level of tubulin acetylation (lane 5). These different cell lines, as 

well as wild-type control MEFs, were used to examine SG formation following stress 

induction. As shown in Figure 7B, expression of HDAC6 in HDAC6-/- MEFs largely 

restored SG formation; in contrast expression of a deacetylase mutant HDAC6 failed to  
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Figure 6. MEFs lacking HDAC6 exhibit impaired SG assembly  

(A) Absence of SGs in MEFs lacking HDAC6. Wild-type or HDAC6-/- were exposed to 
1 mM arsenite for 1 hr prior to fixation and immunostaining for G3BP (red) and HDAC6 
or TIA-1 (green). (B-C) Quantification of percentage of cells contains stress granules in 
WT and KO MEFs under stress. The average number of SG-containing cells with the 
indicated antibodies is indicated. For the time-course experiment presented in (C) MEFs 
were treated with arsenite for the indicated times and SGs were determined on the basis 
of G3BP staining. Error bars represent the standard deviation (SD) calculated from 200 
cells in 9 random fields. Student’s t test was used for statistical analysis; * indicates p < 
0.01 versus wild type control. (D) HDAC6 is required for SG assembly downstream of 
eIF2� phosphorylation. Wild-type or KO MEFs were control-treated (lanes 1 and 5) or 
treated for 1 hr with 0.25 mM (lanes 2 and 6), 0.5 mM (lanes 3 and 7), or 1 mM arsenite 
(lanes 4 and 8) and extracts were prepared. Blots were probed for phospho-eIF2α, eIF2α, 
TIA-1/TIAR, HDAC6, G3BP Ac-α-tubulin, and α-tubulin (as a loading control). (E) Wild 
type MEFs were exposed to different stress inducing stimuli and performed 
immunofluorescence staining. Scale bar = 10 μm. 
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Figure 7. SG formation requires both the deacetylase and the ubiquitin-binding 

activity of HDAC6 

(A) HDAC6-/- MEFs (lane 2) were used to establish cell lines expressing wild type 
HDAC6 (WT, lane 3), a catalytically dead (HDm , lane 4) or a non ubiquitin-binding 
mutant of HDAC6 (Ubm, lane 5). Extracts from these cells as well as from wild type 
MEFs (WT, lane 1) were used to monitor expression of HDAC6, Ac-α-tubulin and 
tubulin. (B) SGs formation requires intact HDAC6 function. The five cell lines described 
above were arsenite-treated for 1 hr and SG formation was assessed by immunostaining 
with an antibody against G3BP or TIA-1/TIAR, as indicated. (C) Quantification of the 
percentage of cells positive for SGs and number of large SGs per cell. Black labeling: 
percentage of cells containing SGs. Error bars represent the standard deviation (SD) 
calculated from 200 cells in 9 random fields. Student’s t test was used for statistical 
analysis; * indicates p < 0.01 versus wild type control. Red labeling: number of large 
(size >1 µm) SGs per cell. Twenty cells are presented and the median in indicated. The 
occurrence of SGs was determined on the basis of G3BP (or TIA-1) staining. 
Enlargements of boxed regions are shown on the bottom. Scale bar = 15 μm 
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do so. Moreover, cells expressing the non-ubiquiting binding HDAC6 mutant appeared to 

completely lack SGs. To further solidify these results, we quantified in the different cell 

lines both the percentage of cells positive for SGs, as well as the number of large (>1.0 

μm, see legend) SGs per cell. From the data presented in Figure 7C, it is clear that both 

the deacetylase activity as well as the ubiquitin binding activity of HDAC6 are required 

for promoting SG assembly. In fact, the cells expressing the non-ubiquitin binding mutant 

HDAC6 are more impaired than the HDAC6-/- MEFs, indicating that the mutant protein 

may act as a dominant negative. Because of this observation, we tested whether ubiquitin 

is present in SGs. As shown in Figure 21B, in non-treated HeLa cells, immunostaining 

for ubiquitin shows a diffuse pattern in the cytoplasm as well as in the nucleus. In 

contrast, arsenite treatment of the cells leads to the appearance of a punctate staining in 

the cytoplasm, that perfectly colocalizes with HDAC6 or other SG markers (data not 

shown). In addition, the same results have been obtained in MEFs; we therefore conclude 

that SGs contain ubiquitinated proteins and that staining for ubiquitin can be used to 

monitor the presence of these structures.  

 

 SG formation depends on the microtubules system and is mediated by motor 

protein function 

Formation of SGs is very rapid and within minutes microscopically visible 

structures assemble in WT cells (see Fig. 6). We have shown here that HDAC6 is a 

critical factor for SG assembly, yet it is not clear what other mechanisms are involved. 

We have therefore re-investigated of the role of the cytoskeleton in SG formation by 

testing the effect of drugs that alter the microtubules or the actin network. As shown in 

Figure 8A upper panel, we found that the microtubule network destabilizing drug 

Nocodazole prevented the appearance of SGs following induction by arsenite; similar to 

what was seen in HDAC6 knockout cells, when cells were treated with Nocodazole no 

more than ca. 20% of cells were ever positive and showed very small SGs. When cells 

were treated with the vehicle control, DMSO, SGs appeared normally. In addition, when 

another microtubule-disruptin drug was used, colchicine, SGs also did not appear (data 

not shown). In contrast, disruption of the actin network by latrunculin B did not impair 

SG formation though it was associated with significant contraction of the cell body  
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Figure 8. An intact microtubule network and dynein function are required for SG 
assembly  
(A) Hela cells were treated with 0.1% DMSO (control) for 4 hr, 6.6 μM Nocodazole 
(Noc) for 2 hr, 1 mM EHNA for 1 hr or 0.5 mM vanadate (Van) for 4 hr, prior to 
treatment for 30 min with arsenite, as indicated. Cells were fixed and immunostained for 
β-tubulin and HDAC6. The inset presents a higher magnification showing SG on the 
microtubule network. Scale bar = 10 μm (B) Quantification of the percentage of HeLa 
cells containing SGs under conditions of microtubule disruption or inhibition of dynein 
ATPase activity. The occurrence of SGs was estimated based on HDAC6 immunostaining. 
Error bars represent standard deviation (SD) calculated from 200 cells in 9 random fields. 
Student’s t test was used for statistical analysis; * indicates p < 0.01 versus wild type 
control.  Noc; Nocodazole, Col; Colchicine, EHNA; erythro-9-[3-(2-
Hydroxynonyl)]adenine, Van; Orthovanadate. 
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Figure 9. Effect of actin destroying drugs to stress granule formation 

HeLa cells were treated with latrunculin B or Cytochalasin D for 30 min and then 0.5 
mM of arsenite was added for 30 min (together with latrunculin B or Cytochalasin D). 
Double immunostaining was performed with anti-HDAC6 antibody and rhodamine-
phalloidin. Nuclei are counterstained using DAPI (blue).  Localization of proteins was 
monitored by a confocal microscopy. Scale bar =10 μm.  
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(Fig.9). Furthermore, stabilization of the microtubules network with taxol (Paclitaxel) 

also did not impair the formation of SGs. (data not shown). Thus, mictrotubules provide a 

necessary scaffold for the assembly of stress granules components.  

HDAC6 interacts with MTs and dynein, and thereby facilitates the formation of the 

aggresome (Hubbert et al., 2002; Kawaguchi et al., 2003; Zhang et al., 2003). The 

capacity to associate with both HDAC6 and microtubule provides hits to understand how 

HDAC6 regulates SG formation. We thus inveestigated whether motor proteins could of 

dynein ATPase function, EHNA or vanadate, in conjunction with arsenite. In both cases, 

the microtubule network remained intact, and the localization of HDAC6 was not 

impaired; however, cells that were arsenite-treated in the presence of these inhibitors did 

not exhibit SGs (Fig. 8A, lower panel and 8B). Thus, dynein motor proteins are required, 

in conjunction with HDAC6, to assemble stress granules along the microtubules.  

HDAC6 does not influence assembly of processing bodies 

It has recently been shown that processing bodies (PBs), site of  mRNA degradation and 

storage (Sheth and Parker, 2003; Teixeira et al., 2005; van Dijk et al., 2002), are 

dynamically linked to SGs (Kedersha et al., 2005) and found in close juxtaposition to 

SGs. We examined whether HDAC6 also localizes to PBs. As shown in Fig. 10A, PBs 

visualized with the antibody against decapping enzyme 1 (Dcp1a), a robust marker for 

PBs, are well visible in HeLa cells following stress induction with arsenite, and also in 

control-treated cells, in agreement with previous results (Kedersha et al., 2005; Teixeira 

et al., 2005). Furthermore, many PBs are indeed found next to SGs, that are evidenced 

here by HDAC6 staining, but the same results are obtained when SGs are detected by 

G3BP or TIA staining (data not shown). Remarkably, no colocalization of HDAC6 to the 

P bodies was observed. We next examined formation of PBs in wild type MEFs or in 

MEFs lacking HDAC6. As shown in Figure 10B, arsenite-treated wild type MEFs exhibit 

numerous PBs, many of which are adjacent to HDAC6- or G3BP-positive SGs. Strikingly, 

in HDAC6 knockout MEFs G3BP fails to form SGs, as shown above, but PBs are present 

in normal number and size. Thus, we conclude that HDAC6 is not required for the 

formation of PBs and that they can form independently of SGs.  
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Figure 10. HDAC6 is not required for processing bodies formation  

(A) HeLa cells and (B) MEFs (wild-type or HDAC6-/-) were control-treated or treated 
with 1 mM arsenite for 1 hr. Cells were then fixed, immunostained for HDAC6 or G3BP 
(red) and DCP1a (green) and analyzed by confocal microscopy. The squared inset 
presents a high magnification in the corner of the merged pictures. Scale bar = 5 μm. 
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Figure 11. HDAC6 does not influence on global translation 

(A) Polysome profiles of control and treated wild type or HDAC6 KO MEFs.  MEFs 
were untreated (A and C) or treated with 1 mM of arsenite for 30 min (B and D), resolved 
on 10-50% sucrose gradient, eluted from the top, and the elution profile at OD260 was 
recorded. Monosomes are found in fraction 2-5, and polysomes are found in fractions 7-
12. Fractions were collected.  
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Loss of HDAC6 results in translation derepression by let-7 miRNA 

TIA/TIAR have “prion-like” domains that seem to promote aggregation of nontranslating 

mRNAs under stress conditions (Gilks et al., 2004). In addition, TIA-1/TIAR facilites 

AU-rich element (ARE)-mediated translational silencing of tumor necrosis factor-α 

(TNF-α) mRNA in immune cells (Piecyk et al., 2000). Indeed, two other ARE-binding 

proteins, HuR, and TTP have also been localized to SGs (Kedersha et al., 2002; Stoecklin 

et al., 2004), suggesting that ARE-mediated effects on translation and mRNA turnover  

may be initiated in SGs. Recently it has been reported that Argonaute proteins localize 

quantitatively to SGs in addition to PBs and that miRNA-mediated repression takes place  

in SGs. miRNAs are required for the Argonaute protein localization to SGs but not PBs 

(Leung et al., 2006). These observations prompted us to test the hypothesis that HDAC6 

has a role in miRNA mediated repression.. To test this idea, we used a luciferase reporter 

assay. In this system, the luciferase gene is under the control of a CMV promoters and it 

contains in the 3’ untranslated region (UTR) binding sites for the endogenous let-7 

miRNA. Specifically, we used a Renilla luciferase reporters containing either a perfect 

let-7 site (Perfect), three copies of a let-7 site with a mismatched (3xBulge), or three 

copies of an imperfect let-7 site. This plasmids allow to score for translational  repression 

(imperfect match) as well as for slicing of the target mRNA (perfect match). In addition a 

firefly luciferase reporter lacking any miRNA binding site is co-transfected as an internal 

reference. Normalized luciferase activity is represented as Renilla/Firefly ratio with the 

ratio measured in transfections with pRL-Con set to one. In agreement with the results of 

Pillai et al., expression of RL-Perfect and RL-3xBulge was inhibited ca 50-60% in WT 

cells. This reflects inhibition of translation or cleavage of the mRNA, mediated by the 

endogenous let-7 miRNA. The same result was obtained in HDAC6 KO cells 

reexpressing WT HDAC6 or a ubiqutin binding mutant of HDAC6 (Ubm). In contrast, 

HDAC6 KO MEFs or MEFs expressing a deacetylase mutant form of HDAC6 both 

showed a strong derepression of the reporters carrying let-7 binding sites. These results 

indicate that HDAC6 impact on the miRNa pathway, either through its regulation of SG 

formation, or by another unidentified mechanism.  
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Figure 12. HDAC6 inhibits miRMA-mediated repression 

(A) Schematic representation of RL reporter mRNAs containing let-7 sites in the 3’UTR 
used for experiments (adapted from Pillai et al, 2005). (B) MEFs were cotransfected with 
indicated RL reporters and pFL-Con luciferase vector as the control. After 48 hr, dual 
luciferase activity was measured and the relative luciferase activity was represented as 
the ratio of RL/FL with the ratio measured in transfections with pRL-Con set to one. The 
mean and standard deviation based on three independent transfection are shown. 
3xBulgeMut: the mutated bulge binding sites have a 2-nt insertion in the seeding region 
of the bulged let-7 complementary site. 
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3.1.4. Discussion 

The cellular response to stress entails a very rapid reversible suppression of mRNA 

translation accompanied by relocalization of mRNPs into discrete cytoplasmic stress 

granules, where they are remodelled and protected from degradation (reviewed in 

(Anderson and Kedersha, 2006)). Here we show that the deacetylase HDAC6 is an 

essential factor for SG assembly. Our results demonstrate that HDAC6 regulates SG 

formation by integrating different cellular processes, all of which we show to be 

important: protein acetylation, ubiquitination, integrity of the microtubule network and 

function of motor proteins.  

 

G3BP is a novel interacting partner of HDAC6 in vivo 

In this report, we have identified Ras GTP activating protein (GAP)-binding protein as a 

novel protein interacting specifically with HDAC6. We found that the hdac domains of 

HDAC6 are necessary and sufficient for interaction with a central domain of G3BP rich 

in acidic residues. It had been demonstrated that phosphorylation of G3BP at Ser149 

plays a key role in regulating protein–protein interactions, subcellular localization, its 

endoribonuclease activity, and localization to stress granules (reviewed in Irvine et al., 

2004). Also, the arsenite-induced phosphorylation of TTP, a SG-associated RNA-

destablizing factor, promotes its rapid exit from SGs and concurrently inhibits its ability 

to promote ARE-mediated mRNA decay (Stoecklin et al., 2004). We found that 

phosphorylation of G3BP at Ser149 also regulates the interaction with HDAC6, as only 

non-phosphorylated G3BP can associate with HDAC6. Interestingly, HDAC6 has been 

shown to also bind to protein phosphatase 1 (PP1) and to be potentially recruited as a 

HDAC6-PP1 complex to microtubules (Brush et al., 2004). Thus, it is possible that under 

some conditions, an HDAC6-PP1 complex could also contribute to dephosphorylation of 

G3BP. Tubulin and HSP90 are established substrates of HDAC6, that can be deacetylated 

by this enzyme in vitro and in vivo. Whether HDAC6 could also deacetylate G3BP is not 

known yet. Analysis of the acetylation level of G3BP with acetyl-lysine specific 

antibodies revealed a very faint signal, which was however not influenced by the 

presence or absence of HDAC6 (data not shown).  
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HDAC6 is a novel integral component of stress granules, but not processing bodies 

G3BP is one of a few proteins that are used as robust markers for the identification of 

stress granules. Under normal conditions, and in agreement with previous reports, we 

observed by immunostaining that both HDAC6 and G3BP are predominantly cytoplasmic 

proteins. However, we found that under stress conditions the two proteins co-localize and 

that HDAC6 is a novel component of SGs. The presence of HDAC6 in SGs was 

confirmed in several cell lines (data not shown) as well as under different stress 

conditions. Remarkably, we found that HDAC6 is essential for the assembly of SGs: both 

pharmacological and genetic inactivation of HDAC6 dramatically impair the assembly of 

SGs, as can be monitored by different markers. For example, TIA-1 is an established 

marker for SGs, which under normal conditions is mostly in the nucleus and moves into 

the cytoplasmic SGs following stress: however, in cells lacking HDAC6, TIA-1 fails to 

relocalize under stress conditions and remains largely nuclear. Intact deacetylase activity 

of HDAC6 is necessary for facilitating SGs assembly, indicating that acetylation of some 

protein(s) needs to be maintained at a low level in order for the granules to form 

efficiently. Whether HSP90, which is deacetylated by HDAC6, may be implicated in this 

process remains to be tested. In addition, we demonstrated the importance of the 

microtubules network and motor proteins for SG formation (see below); it is therefore 

possible that the level of MT acetylation, controlled by HDAC6, is also important. 

Further experiments will be required to address this issue.  

Surprisingly, we found that also the ZnF-UBP domain of HDAC6, which binds 

ubiquitin, is critical. So far the role of ubiquitin or ubiquitinated proteins for SG 

formation is not known, but we discovered that SGs can be very efficiently detected by 

staining for ubiquitin (data not shown). Thus, stress granules also contain ubiquitinated 

proteins whose interaction with HDAC6 appears to be necessary for their formation. 

Furthermore, Roquin, a RING-type ubiquitin ligase required to repress follicular helper T 

cells and autoimmunity, also localizes to SGs (Vinuesa et al., 2005). It is possible that 

HDAC6 binds to specific ubiquitinated proteins and recruits to the SGs, in a manner 

analogous to the recruitment of ubiquitinated misfolded proteins into an aggresome.  

Unlike stress granules, processing bodies are not affected by the absence of 

HDAC6 or by the chemical inhibition of HDAC activity (data not shown). Although the 
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two structures are often found next to each other, and may in fact be in direct contact -

possibly exchanging mRNAs or RNPs-, PBs are present in normal numbers and shape in 

cells totally lacking HDAC6. This is also in line with the notion that PBs, where 

nonsense-mediated mRNA decay takes place, are constantly present in the cell, while 

SGs are only present (or visible) following stress. Furthermore, PBs are found in yeast, 

but SGs are not; in this context, it is interesting to note that there is no orthologue of 

HDAC6 in yeast. Absence of HDAC6 had no effect on global translation under control or 

stress conditions. In agreement with this finding, HDAC6 did not affect eIF2α 

phosphorylation which is the initial step of stress-induced translational arrest. These data 

demonstrate that HDAC6 controls SG formation downstream of eIF2α phosphorylation. 

A recent study has shown that inhibition of ribosome recruitment by eIF4A inhibitors 

(hippuristanol and pateamine) induces SG formation independently of eIF2α 

phosphorylation (Mazroui et al., 2006). We predict that also in this case HDAC6 is 

required for SG formation, but this remains to be tested. 

 

HDAC6 links the microtubule system and SG formation  

It is well known that cellular mRNPs can be transported along MTs by motor proteins. In 

Xenopus oocytes, the translocation of the veg-1 RNA to the vegetal axis requires intact 

microtubules (Yisraeli et al., 1990), and in Drosophila oocytes, plus-end-directed motor 

protein kinesin I is required for the posterior localization of oskar mRNA and Staufen 

protein (Micklem et al., 2000). Likewise, Staufen may mediate the recruitment of the 

motor proteins required for SG aggregation in neurons (Thomas et al., 2005). In somatic 

cells, mRNA anchors to actin filaments in fibroblasts (Bassell et al., 1994; Taneja et al., 

1992) and translocation of myelin mRNA is necessary for microtubules and kinesin in 

neurons (Carson et al., 1997). However, this active transport has been only poorly studied 

in fibroblasts. Also, it is not known whether SGs contain proteins associated with 

microtubules. Considering these previous reports, it is possibly that the participation of 

tubulin-dependent motors to gather the otherwise disperse RNPs quickly.  

We observed that microtubules integrity, as well as action of dynein motor 

proteins, are required for SG assembly. These data suggest that minus-end-directed 

transport on microtubules is a mechanism used by cells to enhance the efficiency and 
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selectivity of SGs assembly. Interestingly, it has been previously reported that HDAC6 

co-localizes with the p150glued-containing motor complex and controls microtubule 

motor-based cargo transport; in the case of ubiquitinated misfolded proteins this promotes 

their accumulation in an aggresome.  

The relationship that we observed between MTs and SG dynamics can be 

supported by additional observations. First, disruption of MT network causes to 

inhibition of SG formation in mammalian cells (Ivanov et al., 2003). Second, dDcp 1 of 

the oskar mRNP complex in Drosophila oocytes mislocates in mutants in which 

microtubule organization is abnormal (Lin et al., 2006). Third, the Agonaute 1 homolog 

from sea urchins, Seawi, has been identified as a microtubule-associated protein which 

localizes in cytoplasmic puncta (Rodriguez et al., 2005). It has very recently been 

demonstrated that Argonaute proteins and miRNAs quantitatively localize into SGs, 

suggesting that these structures may be relevant for pathways involving miRNA function. 

While a precise function of microtubules in PB formation in mammalian cells remains 

undetermined, these reports support our result that cytoplasmic mRNP granules, 

including SGs and possibly PBs, are influenced by the microtubule network in cells.  

Furthermore, some translation factors (e.g., eIF3, eEF1α and eEF2) can bind to 

the microtubule network and actin in mammalian cells (Liu et al., 2002; Shanina et al., 

2001; Shestakova et al., 2001). Together, our data suggest that HDAC6 may be at the 

center of an important node regulating cytoplasmic transactions and also point to an 

unexpected crosstalk between the microtubule network and the stress response.  
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Figure 13. Model for HDAC6-dependent SG formation  

Model summarizing the findings. Following cellular stress, eIF2α becomes 
phosphorylated and leads to stalled polysomes. HDAC6 then nucleates formation of SGs 
by interacting directly and indirectly with microtubules and motor proteins, G3BP and 
ubiquitinated proteins that are components of SGs. SGs and their precursors are depicted 
by red circles of various sizes, some of which are positive for ubiquitin (Ub). PBs are 
represented by green circles. The blue box in HDAC6 depicts the ZnF-UBP domain. See 
text for details. 
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3.2. HDAC6 functions as a stress regulator as well as a stress 

sensor 

3.2.1. Abstract  

The cellular stress response is a phylogenetically conserved protection mechanism from 

prokaryotes to humans and a phenomenon of adaptation of organisms. The cytoplasmic 

deacetylase HDAC6 has previously been showen to a key role in stress response to 

misfolded protein accumulation and also in translational arrest-induced stress granules. 

Here, we demonstrate that HDAC6 is also involved in hypoxic and oxidative stress 

response. Indeed, our data reveal that HDAC6 deacetylates HIF-1α, upregulates stability 

and subsequently activates its function in hypoxia. Intriguingly, both deacetylase and 

ubiquitin binding activities of HDAC6 contribute to stabilization of HIF-1α as 

independent functions: the deacetylase activity posttranslationally modifies HIF-1α, 

whereas the ubiquitin binding activity blocks polyubiquitination of HIF-1α and both 

activities increase stability of HIF-1α. Depletion of HDAC6 leads to hypersensitivity to 

cell death in oxidative stress and post-stress recovery. Therefore, HDAC6 can serve as a 

critical stress regulator in response to different stresses. 
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3.2.2. Introduction 

Cells have evolved a variety of stress response pathways to cope with exogenous stresses, 

including the heat shock response (HSR), the unfolded protein response (UPR), the 

integrated stress response (ISR), the interferon response, and the ER overloaded response. 

This group of stress response pathways is activated in response to damage of intracellular 

protein systems. A large variety of exogenous stresses cause cells to transiently suppress 

protein synthesis as a means of coping with the stress.  Reversible translation arrest is 

recognized as a general response of eukaryotic cells to exogenous stresses. Example of 

stresses that induce translation arrest are among others, hyperthermia (heat shock), heavy 

metal poisoning (e.g., arsenite), ER stresses (e.g., depleting ER Ca2+ stores, inhibiting 

ER-mediated post-translation modification), viral infection, nutrient (amino acid, 

glucose) deprivation, excessive free radial production, and ethanol intoxication (Degracia 

and Hu, 2006).   

 Generally stress responses include two major parallel pathways of activity. First, 

there is a transient suppression of protein synthesis. Second, there is activation of 

transcriptional inducers that will upregulate transcription of a subset of mRNAs (e.g., 

stress proteins, HSP70, ATF4, GADD34…). Transient translational arrest has a dual role. 

First, it prevents further damage to cellular proteins by shutting off accumulation of 

newly synthesized proteins that could potentially be damaged by the stress. Second, shut 

off of the translation of constitutive (of housekeeping) proteins allows the cell to only 

translate the mRNAs encoding the stress proteins. Selective synthesis of stress proteins 

therefore provides a mechanism for cells to buffer and repair stress-induced damage. The 

balance between the intensity of stress-induced damage and the activity of translated 

stress proteins set a decision point, determining whether the consequence is cell survival 

or cell death.  

 Hypoxia-inducible factor 1 (HIF-1) plays a key role in the cellular adaptive 

response to the lack of oxygen supply. HIF-1 is transcriptional regulator of angiogenesis, 

erythropoiesis, energy metabolism, and cell survival in mammals (Semenza, 2003). HIF-

1 is a heterodimer that consists of a constitutively expressed HIF-1β subunit and a HIF-

1α subunit, the expression of which is highly regulated. The activity of HIF-1 is 
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predominantly regulated via stability of its α-subunit.  HIF-1α is constitutively expressed 

and rapidly degraded by the ubiquitin-proteasome system at the same time under 

normoxia, thereby keeping the steady state level at an undetectable level. In contrast, 

HIF-1β is continually present. Under hypoxia conditions, the oxygen-dependent prolyl 

hydroxylase domains (PHD) of HIF-1α are inactive and not hydroxylated; this impairs its 

interaction with the E3 ubiquitin ligase VHL and consequently prevents its degradation. 

Stable HIF-1α translocates into nucleus, dimerizes with HIF-1β, and activates the 

transcription of target genes containing hypoxia response element (HRE).  

 It has been reported that HDACis inhibit HIF expression and activity in tumor 

cells through yet unidentified pathways (Kim et al., 2001; Kong et al., 2006; Zgouras et 

al., 2003). HDACis has anti-cancer and anti-angiogenic features thus they are in clinical 

trials for caner therapy (Johnstone and Licht, 2003). TSA, FK228, butyrate, and LAQ824 

were found to repress angiogenesis and expression of pro-angiogenic factors such as 

vascular endothelial growth factor (VEGF) which is a target of HIF-1α. TSA and FK228 

have been found to induce HIF-1α degradation in most tumor cell lines tested, including 

Caki, Hep3B, DU145, PC3, U87, BT20, MCF7 and VHL-/- cells such as RCC4 and C2. 

Also TSA repressed HIF-1α levels in HCT116 cells (p53+/+) and an isogenic p53-/- 

HCCT116-derived cells. These date suggest that HDACi-mediated destabilization of 

HIF-1α is independent of VHL and p53 function (Bunz et al., 1998; Kong et al., 2006). 

Moreover, inhibition of HSP90 function leads to VHL-independent destabilization of 

HIF-1α (Isaacs et al., 2002). HDACi-induced hyperacetylation of HSP90 repressess its 

chaperone function and allows its client proteins to be degraded by a ubiquitination-

independent proteasomal system. In agreement with this, HDACis affects the 

HSP70/HSP90 chaperone complex and its activity thereby controlling stability of HIF-1α. 

Also two groups identified HDAC6 as a regulator of HSP90. The acetyltransferase for 

HSP90 has not yet been identified (Bali et al., 2005; Kovacs et al., 2005).  

Intriguingly, recent studies showed that class II HDAC6 and HDAC4 are 

associated with HIF-1α and inhibition of both HDACs reduces HIF-1α protein level in 

cancer cell lines (Kong et al., 2006; Qian et al., 2006). One paper showed that HDAC6 

and HDAC4 interacts with HIF-1α directly and control acetylation level and degradation 
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of HIF-1α in a VHL-independent manner (VPA and LAQ824) (Qian et al., 2006). The 

other paper reported that HDAC6 controls HSP90 chaperone function and indirectly 

regulates HIF-1α stability in a VHL- and p53-independent manner (TSA and SAHA). 

Inhibition by TSA was equally effective with hypoxia as well as with the hypoxic mimics 

Cobalt chloride (CoCl2) (Kong et al., 2006). Therefore, These data suggest that HDAC6 

might manage HIF-1 expression and function.  

 In the current study, we investigated the posttranslational modifications, protein 

stability, and transcriptional activity of HIF-1α in WT, and HDAC6 knockout MEFs in 

hypoxia and reoxygenation. Also, we examined how HDAC6 manages cellular stress 

response during different stresses and after releasing stress.  
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3.2.3. Results  

HDAC6 deficient MEFs are defective in GR translocation and GR-mediated 

transcription activation  

Kovacs et al. showed by siRNA knockdown of HDAC6 that this deacetylation is 

important for the activity of the chaperone HSP90 (Kovacs et al. 2005). We therefore 

tested whether this could also be observed in cells that constitutively and completely lack 

HDAC6. For this, we used five MEF lines described in Figure 6. First, we have showed 

that HSP90 is hyperacetylated in MEFs lacking HDAC6 (Zhang et al., 2007). A GR-

dependent luciferase reporter was transiently transfected into the different cell lines, 

together with a reference plasmid. As shown in Figure 14A, upon hormone treatment 

wild type cells showed a ten fold activation of the reporter, while cells lacking HDAC6 

only exhibited ca. 3.5 fold activation; furthermore, cell reexpressing wild type HDAC6 

showed nearly the same activation as wild type cells. Remarkably, cells expressing a 

deacetylase defective or a non-ubiquiting binding HDAC6 were at least as much impaired 

in activation as the knockout cells. These results do not reflect altered GR levels in the 

different cell lines and the western blot presented in Figure 14B demonstrates that GR 

protein expression in not modulated by HDAC6. We therefore examined hormone-

induced nuclear translocation of the GR; as shown in Figure 14C, hormone addition leads 

to nuclear translocation of the GR in wild type, but not in HDAC6 deficient cells. 

Together, these data indicate that HSP90 deacetylation by HDAC6 is necessary for the 

activation of the GR and possibly other proteins.  

 
HDAC6 controls protein stability of HIF-1α 

It has been reported that HIF-1α is acetylated by ARD1 in mammalian cells. ARD1-

mediated acetylation enhances the interaction of HIF-1 with pVHL and increases the 

degradation of HIF-1α (Jeong et al., 2002). In contrast, two other groups found that 

ARD1 could not acetylate Lys532 in HIF-1α in vitro (Arnesen et al., 2005; Murray-Rust 

et al., 2006). Moreover, the ARD1 expression status was shown not to affect the 

expression of HIF-1α or HIF-regulated genes (Bilton et al., 2005; Fisher et al., 2005). To  
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Figure 14. HDAC-6 is required for GR translocation, and transcriptional activity 

(A) Wild type, HDAC-6 deficient MEFs or mutated HDAC-6 derivatives were transiently 
cotransfected with an MTV-GRE-luciferase reporter and Renilla vector as the control. 
Dual luciferase activity was measured after 4 hr treatment with dexamethasone and the 
ratio of firefly to Renilla was used as the relative luciferase activity. p <0.005. Data are 
the mean of experiments repeated in triplicate. (B) The protein levels of GR and HDAC-6 
are determined by immunoblotting with anti-GR and anti-HDAC6 antibodies, 
respectively. (C) Wild type and HDAC-6 deficient MEFs were cultured in hormone free 
media for 24 hr and then stimulated with dexamethasone for 30 min. The localization of 
GR was determined by immunostaining with an α-GR antibody.  
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examine whether HDAC6 influences the acetylation status and stability of HIF-1α, we 

studied the protein expression level of HIF-1α in WT MEFs and HDAC6 KO MEFs in 

hypoxia and hypoxic mimic, cobalt chloride (CoCl2). As shown in Figure 15 and 16, the 

protein levels of HIF-1α were decreased in HDAC6 KO cells compared to control WT 

cells. Upon CoCl2 treatment, HDAC6 deficient MEFs degraded more rapidly HIF-1α than 

WT MEFs (Fig. 16A). To determine which functional domain of HDAC6 affects HIF-1α 

stability, we examined its stability in different MEF cell lines which lack HDAC6 or 

express mutant forms of this enzyme. For this, cells were kept under hypoxia or hypoxia-

mimic condition and protein levels were determined by western blotting. WT cells and 

rescuant with WT HDAC6 had in higher hypoxic levels of HIF-1α than the KO cells or 

the cells expressing mutant HDAC6. Conversely, HDAC6 KO cells and catalytically 

dead mutant of HDAC6 showed inhibition of HIF-1α protein in response to hypoxia (Fig. 

15A and 15B). These results demonstrate that HDAC6 is involved in the stability of HIF-

1α by affecting its acetylation status in hypoxia. 

 Recently it has been reported that HDAC6 and HDAC4 interact with HIF-1α 

directly and control the acetylation level and degradation of HIF-1α in a VHL-

independent manner in cancer cells (Qian et al., 2006). To investigate whether HIF-1α is 

acetylated and deacetylated by HDAC6, we immunoprecipitated HIF-1α and blotted with 

an anti-acetylated Lysine antibody. HIF-1α acetylation was readily detected after its 

immunoprecipitation (shown in Figure 15). As expected, HIF-1α was found 

hyperacetylated in HDAC6 KO cells as well as in cells expressing the catalytically dead 

HDAC6 (HDm) (Fig. 15A and B, lane 2 and 4), even though hypoxic expression and 

immunoprecipitation level of HIF-1α were much lower. Interestingly, hypoxic expression 

level of HIF-1α was dramatically lower in non-ubiquitin binding HDAC6 mutant cells as 

well as HDAC6 KO cells and HDm compared with WT cells. Taken together, these data 

suggest that HDAC6 deacetylates HIF-1α and controls its stability through its acetylation 

and ubiqutination.  

Inactivation of HDAC6 gene inhibits transcriptional activation mediated by HIF-1 

To further show the functional consequence of HDAC6 loss on HIF-1, we transiently 
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Figure 15. HDAC6 deacetylates and regulates degradation of HIF-1α in hypoxia 

MEFs were incubated for 24 hr at 1% O2 (A) or for 6 hr with 500 μM of CoCl2 to mimic 
hypoxia (B). Whole cell lysates were immunoprecipitated with anti-HIF-1α antibody. 
Immunocomplexes were either probed for anti-HIF-1α or anti-acetylated lysine antibody. 
10 % of whole cell lysates was used as input control.  
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Figure 16.  HDAC6 regulates stability and transcriptional activity of HIF-1α  

(A) MEFs were incubated for 6, 12, or 24 hr with 500 μM of CoCl2 to mimic hypoxia. 
HIF-1α protein levels were examined by Western blot analysis. The same blot was probed 
with HDAC6 as confirming HDAC6 KO cell lines and with β-tubulin as equal loading 
control. (B) MEFs were cotransfected with HRE-firefly luciferase vector and renilla 
vector as the control. Transfected cells were incubated for 24 hr at 21% O2 and then 
incubated for an additional 6 hr with 500 μM of CoCl2 or at 1% O2. Dual luciferase 
activity was measured and the ratio of firefly to renilla was used as the relative luciferase 
activity. The mean and standard deviation based on three independent transfection are 
shown. Student’s t test was used for statistical analysis. Indicates *, p < 0.001 versus wild 
type control.  
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transfected with a hypoxic response element (HRE)-driven luciferase reporter gene 

whose expression is based on the availability of HIF-1α. As a transfection control, a 

renilla luciferase vector was cotransfected. 24 hours after transfection, CoCl2 was added 

to the culture medium for the last 6 hours of transfection and extracts were assayed for 

luciferase activity. Interestingly, activity of the HRE reporters was reduced ca. 2 fold in 

cells lacking HDAC6 or in cells expressing the HDm HDAC6 protein (Fig. 16B). 

Increased acetylation level of HIF-1α protein caused to reduction of transcriptional 

activity as well as induction of degradation of HIF-1α in HDAC6 KO cells and cells 

expressing the catalytically dead mutant of HDAC6. Thus, these results suggest that HIF-

1α acetylation also compromises its transcriptional activity.  

The interaction between HIF-1α and HSP70 is enhanced by inhibition of HIF-1α 

deacetylation 

HIF-1α protein stability can also be affected by the heat shock proteins HSP90 and HSP- 

70, because HDAC inhibitors have been reported to induce HSP90 acetylation and cause 

the disassociation of client proteins (Kovacs et al., 2005). Previously it has been observed 

that oxygen dependent degradation domain (ODD) of HIF-1α interacts with HSP70 

(Zhou et al., 2004) and HIF-1α needs the HSP70/90 chaperone complex to complete its 

maturation (Kong et al., 2006). These observations prompted us to study whether 

HDAC6 also affects the association of HIF-1α with HSP90 and HSP70 in hypoxia and 

hypoxic mimics. Immunoprecipitation studies showed that the interaction between HIF-

1α and HSP70 is enhanced in HDAC6 KO and catalytically dead mutant of HDAC6 

under hypoxia, even though expression level of HIF-1α was much lower in these cells. It 

has been reported that HDAC6 is involved in proteasomal degradation of several proteins 

by inducing hyperacetylation and inhibition of HSP90 chaperone. As HIF-1α is a client 

protein of HSP90, we investigated the effect of HDAC6 on the regulation of HIF-1α. 

Depletion of HDAC6 did not alter the HIF-1α/HSP90 association as indicated by 

coimmunoprecipitation experiments (Fig. 17). These results implicate that HDAC6 might 

directly affects the stability of HIF-1α or indirectly affects stability of HIF-1α by 

controlling the chaperone activity of HSP90. 
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Figure 17. Deacetylation of HIF-1α by HDAC6 weakens the interaction between 

HIF-1α and HSP70 

MEFs were incubated for 24 hr at 1% O2 (A) or for 6 hr with 500 μM of CoCl2 to mimic 
hypoxia (B). Whole cell lysates were immunoprecipitated with anti-HIF-1α antibody. The 
precipitate was immunoblotted with anti-HIF-1α, anti-HSP70 or anti-HSP90.  
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Loss of HDAC6 causes increased apoptosis in response to hypoxia  

HDAC6 senses misfolded ubiquitinated proteins and facilitates the transport of these 

toxic proteins to aggresome (Kawaguchi et al., 2003). In addition, we have shown here 

that HDAC6 regulates SG formation in various stresses. Therefore, HDAC6 can be 

considered as a stress sensor responding specifically to different stresses. It has been 

reported that SGs form in tumor cells after hypoxia and that the granules disappear upon 

reoxygenation (Moeller et al., 2004). We investigated how HDAC6 functions in response 

to hypoxia and reoxygenation.  Under hypoxic condition, HDAC6 KO MEFs showed 

hypersensitivity to apoptosis. HDm cells showed no significant effects on apoptosis as 

HDAC6 KO cells. Reoxygenation of hypoxic cells resulted in a complete recovery in WT 

MEFs. Conversely, HDAC6 KO cells and HDm, and to a lesser extent Ubm, cells did not 

properly recover following reoxygenation (Fig. 18). Ubm cells did not show significant 

defect in these conditions.  

Loss of HDAC6 leads to hypersensitivity to cellular stress 

Mammalian cells have evolved a variety of mechanisms to facilitate cellular recovery 

from environmental stresses. The failure to response stress results in cell death. Stress 

defense and apoptotic destruction tend to occur in a mutually exclusive manner. 

Interestingly, AIF (apoptosis-inducing factor) functions as a negative regulator of SGs 

(Cande et al., 2004). In addition to hypoxia, to generalize a role of HDAC6 for the 

cellular stress response under different stress conditions, we examined cell viability in the 

five cell lines described above in response to γ-irradiation and heat shock. As shown in 

Figure 19B and C, the absence of HDAC6 only has minor impact on the cell response to 

either γ-irradiation or heat shcok. 

 Next, to test for a role of HDAC6 in the oxidative stress response, we compared 

the recovery from stress of wild type cells with that of HDAC6 KO cells. To do this, we 

assessed the ability of the five cell lines described above to recover from oxidative stress. 

As shown in Figure 19B and C, viability assays and Annexin-V assays revealed that after 

recovery from oxidant exposure, HDAC6 -/- MEFs showed a significantly higher 

percentage (~40-50%) of apoptosis compared to control MEFs (~5%) over time. In 
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Figure 18. Loss of HDAC6 causes hypersensitivity to apoptosis in response to 

hypoxia  

MEFs were exposed to normoxia, hypoxia (1% O2, 24 hr) or reoxygenation (1% O2, 24 hr 
and 21% O2, 48 hr). The number of apoptotic cells in these cells was counted and 
graphed by Annexin-V assay. Error bars represent standard deviation (SD) calculated 
from 3 independent experiments.  
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Figure 19. MEFs lacking HDAC6 leads to be more sensitive to stress  

(A) Schematic representation of experiment. MEFs were exposed to heat shock at 44 oC 
for 30 min and recovered at the indicated times after stress (B) or to γ-irradiation (30 Gy) 
and recovered for 24 hr after stress (C). The number of apoptotic cells in these cells was 
counted and graphed Annexin-V assay.  
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contrast, even though knock out of HDAC6 had no measurable effect on viability of cells 

prior to the induction of stress, cells lacking HDAC6 recovered poorly after stress release. 

To convincingly demonstrate that this poor recovery was due to the lack of HDAC6, we 

used complemented MEFs that rescued of wild type, catalytically dead or non-ubiquitin 

binding mutant. Importantly, the hypersensitivity of HDAC6 KO cells to stress can be 

significantly alleviated by the reintroduction of wild type, but not catalytically inactive or 

ubiquitin binding-deficient, HDAC6. In agreement with this result, cleaved PARP and 

cleaved caspase-3 as well as DNA fragmentation were detected in only HDAC6 KO cells, 

HDm and Ubm cells (Fig. 20D and E). In the absence of deacetylase activity or ubiquitin 

binding activity of HDAC6, cells are dramatically impaired in their capacity to recover 

after stress. This result suggests that loss of HDAC6 render cells more sensitive to stress 

and post-stress recovery. However, in contrast to oxidative stress, we did not observe a 

clear role for HDAC6 in response to heat shock and γ-irradiation (Fig. 19). Therefore, we 

conclude that the role of HDAC6 in stress response is depended on the type of stress 

stimuli. It could be postulated that HDAC6 modulates the cell’s capacity to respond to 

environmental challenges and to adaptive response against stress.  

Stress granules and aggresome are distinct cytoplasmic structures mediated by 

HDAC6 in response to different stresses  

HDAC6 is a component of aggresomes and cells deficient in HDAC6 cannot form the 

aggresome properly, apparently because of a failure to load polyubiquitinated misfolded 

protein onto dynein motor for transport to aggresomes (Kawaguchi et al., 2003). We 

determined whether HDAC6 differently responds to different stresses and made a 

comparison of aggresomes and SGs. To do this, we performed double immunostaining 

with anti-γ-tubulin or anti-ubiquitin antibody, as markers of aggresome and anti-HDAC6 

antibody in misfolded protein-induced stress and oxidative stress. We treated cells with a 

proteasome inhibitor, MG132, to induce aggresomes or with arsenite to induce SGs. 

Aggresomes are formed around the microtubule organizing center (MTOC) and HDAC6 

colocalizes with γ-tubulin or ubiquitin to aggresome. However, γ-tubulin was not 

recruited to SGs after arsenite or proteasome inhibitor plus arsenite treatment (Fig. 21A).  

Cells treated with MG132 for 24 hours and then arsenite did not form SGs properly in 
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Figure 20. Loss of HDAC6 leads to hypersensitivity to stress 

(A) Schematic representation of experiment. MEFs were treated with 0.5 mM of arsenite 
for 30 min and recovered at the indicated times after stress. The number of apoptotic cells 
in these cells was counted and graphed by trypan blue staining (B) or Annexin-V assay 
(C). Error bars represent standard deviation (SD) calculated from 4 experiments. After 
treatment with arsenite and recovery for 48 hr, the cleaved PARP and Caspase-3 were 
examined by western blot analysis (D) and apoptotic DNA fragmentation was visualized 
by ethidium bromide staining (E). C, control group; ST, 500 μM staurosporine-treated 
group.  
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Figure 21.  SGs and an aggresome are discrete cytoplasmic structures from which 
distinctly respond in different stresses 

(A) HeLa cells were untreated; exposed to 5 μM of MG 132 for 24 hr and added 0.5 mM 
of arsenite for 30 min. Double immunofluorescence experiments were performed using 
anti-HDAC6 (green) and anti-γ-tubulin (red) antibodies or (B) HeLa cells were untreated; 
exposed to 5 μM of MG 132 for indicated times and added 0.5 mM of arsenite for 30 min. 
Double immunofluorescence experiments were performed using anti-HDAC6 (green) and 
anti-Ubiquitin (red)  antibodies and secondary antibodies against rabbit (Alexa Fluor 488, 
green) and mouse (Alexa Fluor 594, red). Nuclei are counterstained using DAPI (blue).  
Localization of proteins was monitored by a confocal microscopy. Yellow represents co-
localization. Scale bar = 7 μm (A), 10 μm (B). 
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HeLa cells (Fig. 21B). This data suggests that aggresome and SGs are discrete 

cytoplasmic structures with distinct pathways in response to different cellular stresses.  

 We showed that the ubiquitin binding domain of HDAC6 is important for SG 

formation because SG formation is very significantly impaired in the non-ubiquitin 

binding HDAC6 mutant cell line. Based on the biochemical interaction assays, this 

domain of HDAC6 does not interact with G3BP. This indicates that this domain might 

have a different function. This prompted us to investigate how HDAC6 through its 

ubiquitin binding activity can control SG assembly. To do this, we examined whether SGs 

can form in the accumulation of heavily ubiquitinated cellular proteins. We treated MEFs 

with the proteasome inhibitor, MG132 for 6 hours and then with arsenite for 30 min. 

Under these conditions polyubiquitinated protein accumulation, but no aggresome is 

visible yet. Ubiquitin was partially recruited to SGs responding oxidative stress as 

presented in Figure 22A. In this condition, cells formed SGs which are mostly large but 

an aggresome was not detected in WT MEFs. Until this intensity of stress, SG formation 

might facilitate to protect cells and HDAC6 quickly responds to SG formation. In 

contrast, we could see a small aggresome in catalytically dead HDAC6 mutant cells.  In 

HDAC6 KO MEFs and non-ubiquitin binding HDAC6 mutant cells, we could not 

observe either an aggresome or SGs. When cells were treated with proteasome inhibitor 

for 12 hours, Ubiquitin and eIF3 were recruited to SGs as well as aggresome in WT 

HDAC6 rescue and WT MEFs. But under this conditions SGs were smaller in size and 

less numerous than those observed in arsenite only treatment or arsenite and proteasome 

treatment for 6 hours (Fig. 22A and B). Also aggresome is smaller in the rescuant of WT 

MEFs and WT MEFs compared to HDm cells. We thought that HDAC6 protein moved 

more to aggresome and could participate to control misfolded protein stress at this 

intensity of stress. Up to 12 hours treatment with proteasome inhibitor, neither SGs nor 

aggresome formed in the HDAC6 KO cells and rescue of non-ubiquitin binding HDAC6 

mutant. Interestingly, aggresome formation seems facilitate in the rescue of catalytically 

inactive HDAC6 mutant (Fig. 22B). After 24 hours treatment with proteasome inhibitor, 

all of the cells formed aggresome and many aggregates accumulated in the intracellular 

membrane compartment, though HDAC6 KO cells and Ubm cells assembled clearly 

smaller aggresomes (Fig. 22C). In the absence of HDAC6 or ubiquitin binding activity,  
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Figure 22. Depletion of HDAC6 results in reduced cell viability after stress  

(A) MEFs were treated with 5 μM of MG 132 for 6 hr (A), 12 hr (B), or 24 hr (C) and 
added 1 mM of arsenite for 30 min. Double immunofluorescence experiments were 
performed using anti-Ubiquitin and anti-eIF3 antibodies and secondary antibodies against 
rabbit (Alexa Fluor 488, green) and mouse (Alexa Fluor 594, red). Nuclei are 
counterstained using DAPI (blue).  Localization of proteins was monitored by a confocal 
microscopy. Yellow represents co-localization. (D) MEFs were treated with 5 μM of MG 
132 for 24 hr and added 1 mM of arsenite for 30 min and analyzed apoptosis by Annexin 
V apoptosis assay. White arrow indicates aggresome. Scale bar = 10 μm.  
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aggresome formation delayed but was not prevented completely because HDAC6 KO 

MEFs can assemble aggresomes. We could not detect any SGs under these harsh stress 

conditions. To determine whether HDAC6 is critical for response to accumulation of 

misfolded protein-induced stress, we examined the viability of HDAC6 KO cells in 

response to misfolded protein stress induced by inhibition of proteasome activity. As 

shown in Fig. 22C and D, in HDAC6 KO MEFs MG132 treatment did not induce the 

aggresome properly and caused cells to undergo higher percentage of apoptosis than in 

wild type MEFs. The rescue with HDAC6 led to form aggresome and protected them 

from cell death. In contrast, deacetylase or ubiquitin-deficient HDAC6 cells had higher 

apoptosis. This result indicates that indeed HDAC6 is important for cell viability in 

response to misfolded protein stress. According to the literature, AIF inhibits SG 

formation (Cande et al., 2004). HDAC6 possesses the potential to protect cells against the 

environmental stress. We assume that apoptosis induced by heavily misfolded protein 

stress may prevent SG formation and lead to cell death. These results implicate that 

HDAC6 might act as an essential regulator of SGs in response to stress and link ubiquitin 

signaling pathway and cellular protection against different stresses.  
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3.2.4. Discussion 

Effects of histone deacetylase 6 (HDAC6) on HIF-1 

HDACi-induced hyperacetylation of HSP90 repress its chaperone function and allows its 

client proteins to be degraded by an ubiquitination-independent proteasomal system 

(UIPS) (Isaacs et al., 2002). It is not clear whether the UIPS pathway is specifically 

triggered or enhanced by HDACis, but it seems to be part of a quality control system of 

protein synthesis which protects the cell in response to misfolded proteins induced stress. 

Interestingly, HSP90 K294 is acetylated in its middle domain (Scroggins et al., 2007) and 

deacetylated by HDAC6 (Bali et al., 2005; Kovacs et al., 2005). Histone deacetylase 

inhibitors and konockout of HDAC6 induce HSP90 acetylation and inhibit its activity 

(Zhang et al 2007). HIF-1α is one of the HSP90 chaperone clients. We showed that 

HDAC6 deacetylates HIF-1α and promotes HIF-1α degradation in hypoxia and hypoxic 

mimic condition. Based on our data, we propose the putative model presented in Figure 

22. HDAC6 binds to and deacetylates HIF-1α, protects its ubiquitin binding sites and 

recuits deubiquitinating enzymes to these sites, thereby allowing HIF-1α stabilization in 

hypoxia (Fig. 22C). Intriguingly, the hypoxic expression level of HIF-1α was 

dramatically lower in non-ubiquitin binding HDAC6 mutant as well as HDAC6 KO cells 

and HDm compared with WT cells. Based on this data, we hypothesize that the Ubm 

HDAC6 still binds to and decactylates HIF-1α and a conformation change of the HDAC6 

mutant allows HIF-1α to expose its ubiquitin binding sites, to be ubiquitinated and 

degraded by the 26S proteasome in hypoxia (Fig. 22C). This result indicates that these 

phenomena are mediated by both the deacetylase and the ubiquitin binding activities of 

HDAC6. Taken together, these results support that HDAC6 plays a key role in quality 

control mechanism of HIF-1α in hypoxia. Interestingly, non-ubiquitin binding HDAC6 

mutant had an impact on HIF-1α stability but no impact on its transcriptional activity. It 

implys that HIF-1α is required for deacetylation to fully function in transcription. 

Furthermore, it suggests that a selective inhibitor of HDAC6 can specifically block HIF-

1α activity through either controlling HSP90 cheperon function or by directly affecting 

HIF-1α stability through its acetylation and degradation.  
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Figure 23. Schematic representation of mechanism of HIF-1α degradation by 
HDAC6  

(A) In the WT MEFs, newly synthesized HIF-1α molecules interact with HSP70 and 
HSP90 to complete its maturation. Under normoxic conditions (+O2), the mature protein 
is hydroxylated, ubiquitinated, and degraded by 26S proteasome. In contrast, under 
hypoxic conditions (-O2), HIF-1α recruits HDAC6. HDAC6 deacetylases HIF-1α, hides 
its ubiquitinating sites, thereby recruiting deubiquitinating enzymes (DUBs) and 
protecting HIF-1α.  Survivalal HIF-1α interacts with HIF-1β and binds hypoxia response 
element (HRE) sequences to initiate transcription. (B) In the HDAC6 KO and 
catalytically dead HDAC6 mutant (HDm), hyperacetylation of HIF-1α results in enhanced 
interaction with HSP70 and accumulation of immature HIF-1α/HSP70 complex, and 
subsequent degradation of HIF-1α by the 20S proteasome. (C)  In the non-ubiquitin 
binding HDAC6 mutant (Ubm), this mutant HDAC6 can still recruit to and deacetylate 
HIF-1α protein in hypoxia. However, comformation of this HDAC6 mutant allows HIF-
1α to be ubiquitinated by VHL and to be degraded by 26S proteasome.  
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Effects of histone deacetylase inhibitors on HIF-1 

Growing evidence supports that HDACis repress the function of HIF in tumor cells 

throug yet unidentified pathways (Kim et al., 2001; Mie Lee et al., 2003; Zgouras et al., 

2003). HDACis were a broad range of activities including anti-cancer (Johnstone and 

Licht, 2003). TSA, FK228, butyrate, and LAQ824 were found to repress angiogenesis 

and expression of pro-angiogenic factors such as vascular endothelial growth factor 

(VEGF). TSA and FK 228 were found to induce HIF-1α degradation in most tumor cell 

lines tested, including Caki, Hep3B, DU145, PC3, U87, BT20, MCF7 and VHL-/- cells 

such as RCC4 and C2. Also TSA repressed HIF-1α levels in HCT116 cells (p53+/+) and 

an isogenic p53-/- HCCT116-derived cells. These data indicate that HDACi-mediated 

destabilization of HIF-1α is independent of VHL and p53 function (Bunz et al., 1998; 

Kong et al., 2006). 

HIF-1α expression in human cancer and manipulating HIF-1 activity  

HIF-1α is overexpressed in many human cancers (Zhong et al., 1999). Significant 

association between HIF-1α overexpression and patient mortality has been shown in 

brain, breast, cervix, oropharynx, ovary and uterus cancers. Association between HIF-1α 

overexpression and apoptosis was correlated with increased patient survival in ovarian 

cancer. However, in ovarian cancers that overexpressed both HIF-1α and p53, apoptosis 

levels were low and were associated with significantly decreased overall patient survival 

(Birner et al., 2001). Therefore, the effect of HIF-1α overexpression is dependent on the 

cancer type and the presence or absence of genetic alterations that influence the balance 

between pro- and anti-apoptotic factors (Semenza, 2003).  

 Expression of VEGF, xenograft growth, and angiogenesis were remarkedly 

increased in HCT116 colon cancers that were transfected with an expression vector 

encoding HIF-1α (Ravi et al., 2000). HIF-1α overexpression in PCI-10 pancreatic cancer 

cells was also associated with an increased xenograft growth and survival rate under 

glucose and oxygen deprivation (Akakura et al., 2001). Two strategies have been used to 

inhibit HIF-1 activity. The first approach the expression of a HIF-1α form lacking the 

DNA binding and transactivation domain, which results in a dominant negative form of 
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HIF-1α that can bind to HIF-1β (Jiang et al., 1996). The second approach is a fusion 

protein that consists of GAL4 fused to TAD-C (Transactivation domain at C-terminus); 

this inhibits the interaction with other coactivators such as CBP/p300 and blocks HIF-1 

dependent transcription (Jiang et al., 1997). Based on these studies, we conclude that 

increased HIF-1α or HIF-2α expression is associated with increased tumor xenograft 

growth, while inhibition of HIF-1 activity impaires tumor growth. In pancreatic cancer 

cells, both gain- and loss-of-function experiments highlighted the role of HIF-1 activity 

in regulating glucose metabolism and cell survival (Akakura et al., 2001). However, in 

colon cancer cells HIF-1α expression, angiogenesis and tumor growth were correlated 

(Ravi et al., 2000). These results emphasize that the specific outcomes of increased HIF-1 

activity differ depending on cell type (Semenza, 2003).  

HIF-1 targeted therapies 

A subset of therapeutic agents were been identified that inhibit HIF-1 activity such as 

inhibitors of signal-transduction pathways, or small molecule inhibitors of HIF-1. 

Inhibitors of signal-transduction pathway have an anti-angiogenesis effect. It seems to be 

due to the fact at least partly that these inhibitors led to a decrease HIF-1α levels. At 

present screen for small molecule inhibitors are underway in different places. 

Topoisomerase inhibitors (Camptothecin, Topotecan) block HIF-1α expression via an 

unclear mechanism (Rapisarda et al., 2002). HIF-1α interacts with the chaperone HSP90, 

and the HSP90 inhibitor, 17-allyl-aminogeldanamycin (17-AAG) in clinical trials induces 

HIF-1α degradation in a VHL-independent manner (Isaacs et al., 2002). Disrupting agent 

of microtubule polymerization, 2-methoxyoestradiol (2ME2), has been shown to result in 

decreased HIF-1α levels, tumor growth and vascularization (Mabjeesh et al., 2003). 

These small molecule inhibitors share common properties, which are to decrease HIF-1α 

levels, to inhibit the expression of VEGF and other HIF-1 target genes, and to impair 

tumor growth and vascularization. But these drugs do not specifically target HIF-1, 

although these are potential anticancer agent. It would be useful to identify more selective 

HIF-1 inhibitors in the near future. In addition to discovery of drugs, we should be 

developed high techniques and biomarkers to monitor response of a drug target to therapy 

in patient. 
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HDAC6 serve as a stress protector of cellular stress response in stress condition 

Translational arrest is a subroutine of certain classes of endogenous cellular stress 

responses. Exogeous stresses induce damage to protein synthesis. Cellular damage-

detection mechanisms activate in response to accumulation of damaged cell components. 

This mechanism leads to either translation arrest or selective transcriptional activation of 

e.g. stress proteins. Translational arrest is initiated by phosphorylation of eIF2α, which is 

readily reversible (via kinases and phosphatase), maintained in SGs to elicit genetic 

repair; it is terminated after successful execution of the stress response by stress proteins 

and phosphatase activity of GADD34. Success to stress response leads to repair of cell 

damage and recovery of general protein synthesis. However, if cell damage overwhelms 

the capacity of the cell’s to cope with stress,, cell death mechanisms are triggered, and 

general protein synthesis never fully recovers (Degracia and Hu, 2006).  

 SG formation is now recognized as a general response that occurs during stress-

induced translational arrest. SGs form on stress induction and persist for the duration of 

the stress.. In reversible models of cellular stress, the SGs decrease in the cytoplasm as 

the stresses disappear. In cells treated with lethal stressors, SGs persist until the cells die 

(Anderson and Kedersha, 2006; Kedersha et al., 2002). Recently, aberrant protein 

synthesis or proteotoxicity have been demonstrated to play a causal role in irreversible 

translation inhibition. For example, the importance of protein misfolding or aggregation 

and proteotoxicity in ischemic vulnerable neuron is under investigation.. Ischemia and 

reperfusion (I/R) alter cellular protein synthesis system and cause delayed neuronal death 

(DND); neuron shows a persistent translation arrest until they die. Postischemic and 

reperfused neuron shows two features of stress-induced translation arrest: co-translational 

protein misfolding and aggregation and dysfunction of SGs. First, ischemia, as a stress 

stimulus, induces irreversible misfolding of protein and traps the protein synthesis 

machinery into functionally inactive protein aggregates.  Second, I/R causes to 

modification of SGs that sequester functionally inactive 48S preinitiation complexes to 

maintain translation arrest and later sequester SGs in protein aggregates. This situation 

has been well studied in neurons but not in other cell types. Interestingly, HDAC6 is 

highly expressed in brain and can control both aggresome and SGs in response to stress. 
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Also HDAC6 is present in Lewy body associated with neurodegenerative disorders, such 

as Parkinson’s disease and dementia.  HDAC6 deficient cells are severely impaired in 

cellular stress response such as aggresome or SGs and are hypersensitive to cell death. 

Translational protein aggregates and SGs are separate and different phenomena. The 

formation of co-translational protein aggregates is an irreversible process caused by 

misfolded proteins in which 40S, 60S ribosomal subunits, and ubiqutin proteins are 

present. In contrast, SGs are dynamic reversible process including 48S preinitiation 

complexes, and RNA binding proteins. In agreement with this finding, we showed that 

aggresome and SGs are discrete structures induced in different stresses at the different 

time point. However, we did not test whether the same stressor (e.g. ER stress) can 

induce both cytoplasmic structures simultaneously. However, it is not easy to test this 

idea as aggresomes and SGs display different kinetics; SG formation is faster event 

whereas aggresome formation is slower. Recently, intriguing paper has been published. In 

this case, as similar to the stroke animal model, SGs are formed for protein quality 

control of effector cytokines (e.g. IL4) during T cell differentiation as part of an ISR 

without exogenous stresses (Scheu et al., 2006). However, it has not been reported 

whether HDAC6 impact on T cell differentiation by affecting SG formation. Therefore, in 

the near future, we need to elucidate by what mechanism HDAC6 might control two 

separate cellular stress response programs distinctly. The knowledge of the relationship 

between HDAC6 and cellular stress response may offer new insight for the development 

of therapies in neurodegenerative disorders.  
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4. Chapter 4: DISCUSSION 
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4.1. Possible novel HDAC6 interacting proteins identified by  

proteomic approach 
 
In order to identify new HDAC6 interacting partners, we first established stable cell line 

expressing FLAG-tagged human HDAC6, performed coimmunoprecipitation assays, and 

analyzed bound protein by mass spectrometry. By these affinity trap approaches, we 

identified a number of new proteins associated with HDAC6 as well as recovered 

previously identified HDAC6 binding proteins, including tubulin, polyubiquitin, PLAP, 

HSP90, and dynein. Possibly the most interesting novel putative candidate is Ras-GTPase 

activating protein SH3 domain binding protein 1 (G3BP1) which we focused mainly in 

this study. Other potential candidates that were identified in proteomics analysis are 

described below in order of frequency of identification. Interestingly, most of the target 

proteins are involved in diverse cytoplasmic events as we expected; RNA metabolism 

(e.g., SGs, and translation machinery), cytoskeletal functions, ubiquitin proteasome 

pathway, and cytoplasmic stress response. None of the proteins described below has been 

validated by independent methods yet. Nevertheless, several/most of them appear 

promising, as they were identified in multipul independent mass spectrometry 

experiments following independent enrichment procedures (e.g., co-immunoprecipitation 

or GST pull down assays). 

Elongation factor-1α (EF-1α)  

Elongation factor-1α (EF-1α), also known as eukaryotic elongation factor 1A (eEF 1A), 

is a highly abundant, cytoplasmic, ubiquitous G-protein named for its role in protein 

translation. It directs aminoacyl-tRNA to the A-site of the ribosome. However, EF-1α is 

also a multifunctional protein (Durso and Cyr, 1994). In addition to numerous 

translationally-related functions, non-canonical functions of EF-1α have been described 

reportedly including oncogenic transformation, microtubule severing, actin filament 

bundling, and ubiquitin-dependent proteolysis of N-terminally-blocked proteins (Moore 

and Cyr, 2000; Moore et al., 1998; Shestakova et al., 2001; Yang and Boss, 1994). As a 

mediator of signal transduction, EF-1α activates phosphotidyl inositol kinase (PI 4-

kinase), interacts with the zinc finger protein, ZPR1, and is part of the Rho G-protein 
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signal pathway. As a cytoskeletal-associated protein, EF-1α binds and bundles actin in a 

pH-dependent manner and is also a microtubule-associated protein (MAP). Like many 

structural MAPs, EF-1α can bind, bundle, stabilize, and promote the assembly of 

microtubules in plant cells in vitro and in vivo. EF-1α’s association with other proteins is 

affected by a number of regulatory molecules, particularly calcium/calmodulin, 

phosphorylation, and pH. EF-1α has two microtubule-binding domains: one within 

domain I, which binds conditionally to microtubules in vivo, and the other in domain III, 

which is competent to bind microtubules under normal cellular condition (Moore and Cyr, 

2000; Moore et al., 1998). Interestingly, EF-1α aggregates are observed in microtubule 

organizing granules isolated from sea urchin eggs or plant culture cells (Kumagai et al., 

2003; Kuriyama et al., 1990). Furthermore, it has been reported that EF-1α indeed plays 

an important role in the apoptotic program.  Chen et al revealed that upregulation of EF-

1α protein level was an immediate early event during oxidative stress (H2O2)-induced 

apoptosis in cardiac myocytes and may be essential to the de novo protein synthesis 

needed for execution of apoptosis (Chen et al., 2000). 

EF-1α is a very interesting molecule that interacts with cytoskeletal proteins such 

as microtubule and actin. HDAC6 also associated with tubulin, microtubules and MT 

motor protein. Based on our proteomic research, HDAC6 may interact with actin as well. 

We do not know whether HDAC6 can indirectly bind to EF-1α through interaction with 

microtubules. It has been reported that EF-1α might be required for synthesis of new pro-

apoptotic proteins in the apoptosis process following oxidative stress. In the absence of 

HDAC6, cells are rendered more sensitive to cell death in stress. These data indicate that 

HDAC6 may negatively regulate translational function of EF-1α or facilitate movement 

of EF-1α from translational machinery to cytoskeleton, but this remains to be tested 

experimentally. 

Myosin 9 and 10 (Non-muscle myosin heavy chain type A and B) 

Myosin is a hexameric protein that consists of 2 heavy chain subunits (MHC), 2 alkali 

light chain subunits (MLC) and 2 regulatory light chain subunits (MLC-2). The rodlike 

tail sequence is highly repetitive, showing cycles of a 28-residue repeat pattern composed 



 133

of 4 heptapeptides, characteristic for alpha-helical coiled coils. It is specifically expressed 

in the kidney and leukocyte. Cellular myosin appears to play a role in cytokinesis, cell 

shape, and specialized functions such as secretion and capping. Defects in myosin 9 are 

the cause of May-Hegglin anomaly (MHA), Sebastian syndrome (SBS), and Fechtner 

syndrome (FTNS), which are an autosomal dominant macrothrombocytopenia 

characterized by thrombocytopenia, giant platelets and leukokyte inclusions. FTNS is 

distinguished by Alport-like clinical features of sensorineural deafness, cataracts and 

nephritis. Abnormality in myosin 9 lead to Alport syndrome with acrothrombocytopenia 

(APSM), and Epstein syndrome (EPS) which are an autosomal dominant disorder 

characterized by the association of ocular lesions, sensorineural hearing loss and nephritis 

(Alport syndrome) with platelet defects (Heath et al., 2001).   

Heat shock 70 kDa protein 1 (HSP70-1/HSP-1, HSP70.1) 

In higher eukaryotes, the stress signal leads to the elevated expression of heat shock 

genes; stress induced transcription requires activation of heat shock factors (HSFs) that 

bind to the heat shock promoter element. In unstressed cells, HSFs are maintained in an 

inactive non–DNA-binding state. Upon exposure of cells to stress conditions, HSFs 

become activated to a DNA-binding competent, transcriptionally active state, which 

results in preferential transcription of the heat shock genes. In stress conditions, Hsp70 

stably associates with the heat shock factor 1 (HSF1), and so it functions as a repressor of 

transcriptional activity of the heat shock genes (Shi et al., 1998). Heat-shock proteins 

(HSPs) are known to serve as protein chaperones and assist protein folding, assembly, 

degradation, and translocation in the cytosol as well as within organelles. Chaperones of 

HSP70 participate in all these processes through their ability to recognize nonnative 

conformations of other proteins. Hsp70-1 is the stress inducible member of the HSP70 

family which binds TCS2 (Nellist et al., 2005). HSP70 is for example upregulated in 

response to hypoxia and is involved in cell protection and survival. The 70 kDa family of 

HSPs, HSP70, is up-regulated in response to hypoxia and involved in cell protection and 

survival.  

The HSP70 family protein is one of the most interesting HDAC6 interactors we 



 134

have identified. HSP70 proteins may be one of the very essential molecules associated 

with HDAC6 in stress response. HSP90 protein is HDAC6’s substrate as well as HDAC6 

interacting partner. These results suggest that HDAC6 can regulate functions of other heat 

shock or stress proteins in stress condition.  

Probable ubiquitin carboxyl terminal hydrolase FAX (Deubiquitinating enzyme 

FAF-X, Ubiquitin-specific protease 9, X chromosome) 

Attachment of ubiquitin or polyubiquitination chain to proteins is a crucial step in many 

cellular regulatory mechanisms and contributes to numerous biological processes, 

including embryonic development, the cell cycle, growth control, and prevention of 

neurodegeneration. In these diverse regulatory settings, the most widespread mechanism 

of ubiquitin action is protein degradation by the proteasome. Deubiquitinating enzymes 

(DUBs) catalyze the removal of ubiquitin from ubiquitin-conjugated substrate proteins as 

well as from its precursor proteins. Selectivity of proteolysis depends on the combination 

of ubiquitinating and deubiquitinating enzymes. Deubiquitinating enzyme FAF-X may 

function as a ubiquitin-protein hydrolase. It may play an important role at the level of 

protein turnover by preventing degradation of proteins through the removal of conjugated 

ubiquitin. Inactivation of the USP9X gene may result in the gonadal degeneration 

observed in Turner syndrome where there is a failure of oocytes to proliferate and 

develop, leading to the degeneration of the developing ovary into a streak gonad (Noma 

et al., 2002). 

 Deubiquitinating enzyme FAF-X (USP9x) is one of the exciting HDAC6 

interacting proteins we identified. HDAC6 has Zn-UBP domain at the C-terminus which 

mediates the highest known affinity for ubiquitin monomer and the ability of HDAC6 to 

negatively control the turnover of cellular polyubiquitin chain (Boyault et al., 2006). 

Another HDAC6-interacting protein, p97/VCP, dissociates the HDAC6-ubiquitin 

complexes and blocks to accumulate polyubiquitinated proteins by HDAC6. Another 

study showed that HDAC6 may not itself be a DUB enzyme, but it associated with DUB 

enzymes independent of the HDAC6 ZnF-UBP (Hook et al., 2002). According to these 

results, selective ability of HDAC6 to finely tune ubiquitin turnover and protein 
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degradation might depend on competition between p97/VCP and deubiquitinating 

enzyme 9 (USP9x) and this will be the object of future studies. 

Elongation factor 2 (EF2) 

Eukaryotic elongation factor 2 (eEF-2) mediates the translocation step of elongation. 

eEF-2 has three posttranslational modifications that contribute to its function and 

regulation. First, a conserved histidine residue (H714) is modified to diphtalmide and this 

modification inhibits the activity of eEF2 (Jorgensen et al., 2006). Second, diphtalmide is 

a substrate for ADP ribosylation by diphtheria toxin and this explains the highly toxic 

effect of diphtheria toxin. Third, eEF-2 phosphorylated at Thr 56, this prevents its binding 

to ribosones and thus inactivates EF2. It has been reported that several components of the 

protein synthetic machinery such as EF-1α or EF-2 can also bind to actin microfilaments. 

EF-2 is colocalized with actin microfilament bundles in mouse embryo fibroblasts 

although EF-2 was not observed in cell edges or in actin microfilament junctions 

(Shestakova et al., 2001). EF-2 bound to F-actin. The interaction eEF-2 with F-actin 

appeared to be inhibited competitively by EF-1α and non-competitively by G-actin. Both 

G-actin and F-actin forms of actin appeared to be inhibitory on the action of eEF1 and 

eEF2 in polyphenyalanie synthesis (Bektas et al., 2004; Bektas et al., 1994). These data 

suggest a possible regulatory link between the protein translation machinery and the 

cytoskeleton.  

EF-2 is an interesting molecule that interacts with cytoskeletal protein, actin. 

According to our proteomic analysis, HDAC6 can also bind to actin. Therefore, HDAC6 

could indirectly bind to EF-2 through interaction with actin or vice versa. This 

information implicates that HDAC6 may bridge between translation machinery and 

cytoskeleton.  

Protein arginine N-methyltransferase-5 (PRMT5) 

Arginine is a positively charged amino acid and the nitrogens of arginine can be 

posttranslationally modified to contain methyl groups, a process termed arginine 

methylation. Protein arginine methylation results in addition of one or two methyl groups 
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to arginine residues in glycine and arginine-rich (GAR) motifs. Eight mammalian protein 

arginine methyltransferases (PRMT) have been identified. Six have been shown to 

catalyze the transfer of a methyl group from S-adenosylmethionine (AdoMet) to a 

guanidino nitrogen of arginine, resulting in S-adenosylhomocysteine and methylarginine. 

No activity has been demonstrated for PRMT2 and PRMT8. Arginine methyltransferases 

have been identified in yeast, Drosophila melanogaster, plants, C. elegans, and fish 

(Hung and Li, 2004). PRMTs are classified as either type I or type II enzyme. PRMTs are 

ubiquitously espressed. RNA binding proteins (RBPs) are major-substrate of PRMTs 

because most hnRNPs (A1, A2, K, R, and U) harbor GAR motifs in yeast and 

mammalian cells. PRMTs facilitate the nucleocytoplasmic shuttling of RBPs through 

their methylation. They impact interaction and recruitment of mRNA processing and 

export factor thereby globally affecting transcription. Methylated arginines have also 

been shown to block some interactions and to promote others in signal transduction 

pathway. PRMT5 is found in at least three different protein complexes - two nuclear and 

the third one cytoplasmic. In the cytoplasm, PRMT5 is found in the “methylosome,” 

where it is involved in the methylation of Sm proteins, thus implicating PRMT5 in 

snRNP biogenesis (Friesen et al., 2001). Nuclear PRMT5 associates with the regulator of 

transcriptional elongation, SPT4 and SPT5, and pICln, which is also a component of the 

methylosome. Nuclear PRMT5 also complexes associate with the hSWI/SNF chromatin 

remodelers BRG and BRM, this association enhances PRMT5 methyltransferase activity 

(Pal et al., 2004). Intriguingly, one component of the methylosome, pICln is one of the 

putative HDAC6 interacting proteins. PRMTs, which possess a duel role in transcription, 

are involved in a subset of diseases including breast and prostate cancer, cardiovascular 

disease, and viral infection, and spinal muscular atrophy (SMA). Small molecule 

inhibitors of PRMT were recently identified, (Cheng et al., 2004). AMIs (arginine 

methyltransferase inhibitors) selectively inhibite PRMTs, not lysine methyltransferases. 

However, the AMIs display no specificity for individual PRMTs, so further study are 

required to discover each PRMT-specific inhibitor. 

 PRMT5 is an intrigue candidate for an interacting with HDAC6. Interestingly, one 

component of the methylosome, pICln is one of the putative HDAC6 interacting proteins 

as well as a PRMT5’s substrate. Another interesting thing is that PRMT5 interacts with 
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Lsm4, one subunit of the decapping activators in RNA decay. Based on our initial result, 

we speculate that HDAC6 may play a role of miRNA-mediated translation repression and 

SGs. In this context, PRMT5 is a very interesting protein associated with HDAC6 and 

future analysis probably reveals unexpected findings. 

Polyadenyl-binding protein-1 (PABP-1) 

The poly(A) tail is a common control site during translational initiation. Changes in 

poly(A) tail length are a hallmark of translational regulation. Typically, long poly(A) tails 

are associated with increased translation, and short poly(A) tails are associated with 

decreased translation. These changes in poly(A) length are triggered in specific mRNAs 

by sequence specific 3’ UTR-binding proteins. The poly(A) tails also represent a critical 

cis-acting element for translation initiation. The trans-acting factors for poly (A) tail 

function are the poly(A) binding protein (PABPs). PABPs exist in cytoplasmic and 

nuclear forms, which resemble little each other. Human has four PABP genes: the 

ubiquitously expressed PABPC1 (also called PABP1), PABPC3, PABPC4, and PABPC5. 

The N-terminal region of all these PABPs contains four conserved RNA recognition 

motifs (RRMs) and PABPC1, -3, and -4 possess a conserved carboxyl- terminal domain 

(PABC). Several molecules of PABP can bind to poly(A) tails with a periodicity of about 

25 adenosine residues, although 12 adenosines are sufficient for binding. RRMs1 and 2 

bind to poly(A) with high affinity and specificity, whereas RRMs 3 and 4 exhibit more 

generic RNA-binding activity. eIF4E bounds to the cap structure and PABP bound to the 

poly(A) tail jointly recruit eIF4G and the 43S preinitiation complex to the mRNA. The 

poly(A) tail also stimulates the 60S joining step at the start codon. The PABC domain of 

PABP interacst with the translation termination factor 3 (eRF3) and this interaction 

terminates translation and mediates mRNA decay (Gorgoni and Gray, 2004).  

 HDAC6 can bind to PABP1 and small ribosomal subunits (S3, S18, and S24). 

Based on our proteomics research, interestingly also PABP1 and small ribosomal 

subunits are components of SGs. HDAC6 has several putative interacting partners 

involved in mRNA metabolism (EFs, PABP1, hnRNP H, ribosome proteins and splicing 

factor). Although HDAC6 is not known to play any role in protein synthesis yet, these 
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interactions might provide a hit about a potential role of HDAC6 in translation. 

Heterogeneous nuclear ribonucleoprotein H (hnRNP H) 

Heterogeneous nuclear ribonucleoprotein H (hnRNP H) protein is a component of the 

heterogeneous nuclear ribonucleoprotein (hnRNP) complexes which provide the substrate 

for the processing that pre-mRNAs undergo before becoming functional, translatable 

mRNAs in the cytoplasm. It contains 3 RRM domains. hnRNP H inhibits nuclear export 

of mRNA containing expanded CUG repeats and a distal branch point sequence. hnRNP 

H plays a suppressive role in visceral myogenesis. (Liu et al., 2001a) hnRNP H is a 

component of a splicing enhancer complex that activates a c-src alternative exon in 

neuronal cells. (Chou et al., 1999).  

Kinesin-like protein 11 (KIF-11) 

Kinesin-like protein 11 (KIF-11) belongs kinesin-like protein family and contains 

kinesin-motor domain. KIF-11 is a motor protein required for establishing a bipolar 

spindle (Blangy et al., 1995) Blocking of KIF11 prevents centrosome migration and 

arrest cells in mitosis with monoastral microtubule arrays. KIF-11 interacts with the 

thyroid hormone receptor in the presence of thyroid hormone (Lee et al., 1995b). It 

becomes phosphorylated exclusively on serine during S phase, but on both Ser and Thr-

926 during mitosis, so controlling the association of KIF11 with the spindle apparatus.   

 KIF-11 is also an interesting candidate. HDAC6 interacts with dynein motor 

complex, minus end directed MT motor complex, and facilitates cell motility. Recently, it 

has been reported that microtubule acetylation promotes kinesin-1 binding and transport 

(Reed et al., 2006). The ability of HDAC6 to bind to kinesin like protein suggests that 

HDAC6 can selectively interact with opposing retrograde motor protein and anterograde 

motor protein and modulate in protein transport based on microtubule network in certain 

condition.  

Splicing factor, proline-glutamine rich  

Splicing factor is DNA- and RNA binding protein, which is involved in several nuclear 

http://www.expasy.org/cgi-bin/get-similar?name=RRM%20(RNA%20recognition%20motif)%20domain
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processes. It is an essential pre-mRNA splicing factor required early in spliceosome 

formation and for splicing catalytic step II, probably as a heteromer with NONO. It binds 

to pre-mRNA in the spliceosome C complex, and specifically binds to intronic 

polypyrimidine tracts. It may be involved in a pre-mRNA coupled splicing and 

polyadenylation process as component of a snRNP-free complex with SNRPA/U1A. 

Transcriptional repression is probably mediated by an interaction of SFPQ with SIN3A 

and subsequent recruitment of HDACs.  

 

4.2. HDAC6 is a novel stress granule regulator  

4.2.1. G3BP is a new specific HDAC6 interacting protein 

Although a couple of HDAC6 interacting partners have been reported, little is known on 

the physiological functions of HDAC6. Therefore, to this end, we tried to identify new 

partners for HDAC6 using a proteomic approach. In this report, we have identified G3BP 

(Ras GTP activating protein (GAP)-binding protein) as a protein interacting specifically 

with HDAC6. The G3BP protein family modulates Ras activity and the cell cycle, by 

binding to the RasGAP protein (Guitard et al., 2001; Kennedy et al., 2001; Pazman et al., 

2000). G3BP-1 has been shown to have a phosphorylation dependent RNase activity 

(Tourriere et al., 2001), a regulatory activity of ubiquitin protease (USP10) (Soncini et al., 

2001), a transcriptional cofactor function during vaccine virus late replication 

(Katsafanas and Moss, 2004) and an endoribonuclease activity in stress granules 

(Tourriere et al., 2003). Furthermore, mice lacking G3BP led to embryonic lethality and 

growth retardation. Using indirect immunostaining method, we observed colocalization 

of HDAC6 and G3BP either to the cytoplasm in non-stressed cells or to the SGs in stress. 

Interestingly, posttranscriptional modification of G3BP impacted on interaction with 

HDAC6 through hdac domain.   

In addition to microtubule, HDAC6 has an enzymatic activity which is able to 

deacetylate other proteins as well as histones. As might be expected from the HDAC6 

localization, most of its substrates are found in the cytoplasm. Amidst them tubulin and 
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HSP90 are well-characterized as a HDAC6 substrate. G3BP could be likely candidate for 

HDAC6 substrate because it is largely localized in the cytoplasm. To address whether 

G3BP can be a substrate for deacetylase HDAC6, we examined acetylation level of G3BP 

using acetylated-lysine antibodies. We could detect acetylated G3BP protein but the 

acetylation signal was very weak (data not shown) and more work will be needed to fully 

examine this issue.   

4.2.2. HDAC6 is a pivotal SG regulator as well as a new component of 

SGs in response to stress 

Stress granules are considered as an essential cytoplasmic structure in sorting of 

individual transcripts for storage, reinitiation, or degradation in stressed cells (Kedersha 

and Anderson, 2002). Despite the importance of SGs in managing stress response, few 

protein factors critical for SG formation including RNA-binding proteins, translation 

initiation factors, and small ribosome subunits, has been identified. In addition, it remains 

unclear what proteins regulate SG assembly. Herein we reported the identification of 

HDAC6 as a stress regulator as well as a stable component of SGs. HDAC6 was 

observed in SGs responding to various environmental stresses. In contrast TIA-1 and 

G3BP, which induce SG formation upon overexpression, forced expression of HDAC6 

did not affect the rate of SG assembly. Importatnly, we showed that HDAC6 regulates SG 

assembly. For this, intact HDAC6 functions, which are deacetylase and ubiquitin binding 

activity, is necessary. 

 Cytoplasmic RNA granules contain motors responsible for translocating the RNA 

particle along microtubules or actin filaments in especially neuron. However, this active 

transport was poorly studied in fibroblast. Also, little is kwon that SGs contain proteins 

associated with microtubule and how SG constituents quickly congregate to local site 

within few minutes. In this study, we showed that SG formation depends on the HDAC6 

through dynein motor protein-driven MT system. MT could serve as a scaffold as well as 

a track bringing and transporting SG components together. It is feasible that HDAC6 has 

a role in chaperone and mediator for the rapid formation of SGs. Much remains to be 

determined about how individual mRNAs are specifically recognized and transported and 

how localization and translation are coordinately regulated. Although the exact 
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mechanism by which HDAC6 regulates SG formation remains to be established and the 

execution of cytoskeleton-dependent active transport and SG formation are mechanically 

unrelated, our findings suggest that HDAC6 can play an important role in the intersection 

of the two phenomena. Together, these data point to unexpected crosstalk between 

microtubule network and the stress response. But, our work with indirect immunostaining 

gives us a static view of the steady-state distribution of SG components, but does not 

describe the rate or path of movement of mRNA molecules or SG components. It is little 

known about the signaling pathways and molecular mechanisms governing formation and 

disassembly of SGs. Therefore, further efforts will be required to demonstrate the 

complete linkage between specifically localized RNA, RNA-binding proteins and a 

relevant motor. 

 In addition to SGs, other fascinating cytoplasmic aggregates are PBs, which are 

found in both yeast and mammals. SGs and PBs share some proteins but are to have 

distinct functions. SGs are considered as a sorting place of mRNP complexes, whereas 

PBs are considered as RNA place for degradation. Intriguingly, HDAC6 remained absent 

from PBs and had no effect on PB formation and global translation in both non-stress and 

stress conditions. In agreement with this finding, HDAC6 did not affect eIF2α 

phosphorylation which is initiation step for stress-induced translational arrest. Taken 

together, the identification of G3BP as a target for HDAC6 provides further support for 

broad functions of HDAC family members in important biological processes beyond 

histone and chromatin remodeling in general.  

4.2.3. eIF2α phosphorylation and SGs in cellular stress response and 

disease  

The phosphorylation of eIF2α and downstream signaling represent conserved adaptation 

to cell stress referred to as the integrated stress response (ISR). The ISR influences the 

balance of precursor and mature proteins in higher eukaryotes in regulating the protein–

folding environment in the ER. Signaling in the ER has biphasic and tissue-specific 

effects on cell survival under various stress conditions. The ISR is important for 

homeostasis and failure of this homeostasis in the ISR can cause to such common human 

diseases as diabetes mellitus, the metabolic syndrome, and osteoporosis, 
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neurodegeneration, and demyelination (Harding et al., 2001). A number of environments 

in which ISR activation induces correlated with cell death. PKR, an eIF2α kinase 

activated by viral infection, is critical to vertebrate innate immunity. Most animal cell 

viruses have evolved specific mechanisms for blocking eIF2α phosphorylation in their 

host cells. However, it appears that PKR provides its benefit to the organism by 

promoting cell death of virally infected cells (Srivastava et al., 1998). In this regards, 

translational repression synergizes with other signals to promote apoptosis. PERK -/- 

cells in mice and human have higher levels of ER stress and they develop a syndrome 

form of diabetes mellitus in infancy, exocrine pancreatic dysfunction, and a severe bone 

defects (Delepine et al., 2000; Harding et al., 2001; Zhang et al., 2002). It has been 

reported that impaired recovery of protein synthesis during the reperfusion phase of 

ischemic injury compromises neuronal survival (Paschen, 2003). A rare human genetic 

syndrome, childhood ataxia with cerebral hyomyelination (CACH), is a severe disorder 

of the white matter associated with abnormalities in the myelin-producing 

oligodendrocytes caused by mutation of eIF2B. The CACH-associated mutations mimic 

the consequences of eIF2α phosphorylation. It is possible that eIF2α phosphorylation 

contributes directly to the pathophysiology of the CACH syndrome (Kantor et al., 2005). 

The severe consequences of the CACH mutations point to the danger of ISR 

hyperactivation as these cells are hypersensitive to both mild defects in increasing an ISR 

and to excess in eIF2α phosphorylation (Southwood et al., 2002). Therefore, the ISR is a 

potential drug target for the treatment of a variety of common disorders.  

4.2.4. HDAC6 has a potential role of miRNA mediated mRNA decay in 

SGs 

TIA-1/TIAR promote aggregation of nontranslating mRNAs in stress (Gilks et al., 2004) 

and facilite AU-rich element (ARE)-mediated translational silencing of tumor necrosis 

factor-α (TNF-α) mRNA in immune cells (Piecyk et al., 2000). Indeed, two other ARE-

binding proteins, HuR, and TTP have also been localized to SGs (Kedersha and Anderson, 

2002; Stoecklin et al., 2004), suggesting that ARE-mediated effects on translation and 

mRNA turnover may be initiated in SGs. Recently it has been reported that Argonaute 

proteins quantitatively accumulate to SGs as well as PBs. The majority of Ago2 is found 
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diffused thoughout the cytoplasm, with only 1.3% localized to microscopically visible 

PBs. Under stress condition, Ago2 also accumulate in SGs. Interestingly, Argonaute 

proteins displayed distinct kinetics at different structures: exchange faster at SGs and 

much slower at PBs. Further, miRNAs are required for the Argonaute protein localization 

to SGs but not PBs. These data provide insights into miRNA-mediated repression process 

and suggest that part of it take place in SGs (Leung et al., 2006). Using the reporter 

system from Pillai and colleaque we showed that let-7 mediated translation repression 

(3xBulge) and miRNA cleavage (Perfect) are altered in HDAC6 KO MEFs and 

catalytically dead mutant. The fact suggests that HDAC6 has no effect at the level of the 

RISC complex or above. It is tempting to speculate that Ago proteins, or perhaps dicers, 

could be novel HDAC6 targets. Therefore, this result suggests that miRNA-mediated 

repression and degradation may occur in SGs and HDAC6 may play a role of miRNA 

mediated mRNA turnover in SGs but not PBs. 

  Active repression of protein synthesis protects cells against protein malfolding 

during endoplasmic reticulum stress, nutrient deprivation and oxidative stress. We 

hypothesized that HDAC6 plays a role in translation recovery. During stress, cells require 

translation repression except stress-induced proteins. Cells lacking HDAC6 showed 

derepression of let-7 mediated translation and did not recover properly from stress. In the 

absence of HDAC6, cells may correctly not perform translation recovery following stress 

release, resulting in cell death. It is not clear which translation step may be influenced by 

HDAC6 and by what mechanism cells undergo apoptosis in stress and stress recovery. 

Nevertheless, these data imply that HDAC6 may influence cell viability via controlling 

translation machinery and programmed cell death.  

4.2.5. HDAC6 may have a potential role of recruitment of ubiquitinated 

SG-associated proteins to SGs.  

Surprisingly, we found that ubiquitin or ubiquitinated proteins were very clearly detected 

in SGs. In agreement with this, non-ubiquitin binding HDAC6 mutant cells showed a 

drastically impaired SG formation. So far it is not known whether the ubiquitin 

proteasome system functions in SGs or has inter-relation with these structures. It is 

interesting to note that phosphorylation of SG-associated protein regulates their 
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recruitment to SGs. For example, the arsenite-induced phosphorylation of TTP, a SG-

associated RNA-destablizing factor, protmotes its rapid exit from SGs and concurrently 

inhibits its ability to promote ARE-mediated mRNA decay (Stoecklin et al., 2004). 

Similarly, the phosphorylation of serine 149 in G3BP, another SG-associated protein, 

prevents its targeting to SGs (Tourriere et al., 2003). Wherein, it suggests that 

posttranslational modification might control recruitment of SG’s components to SG. 

Particularly, HDAC6 interacts with mono- and polyubiquitinated proteins and transports 

them to aggresome via the MT system in misfolded protein stress. In this regard, HDAC6 

might bind to and recruit ubiquitinated SG-associated protein to SGs efficiently. 

Supporting this hypothesis, a RING-type ubiquitin ligase, Roquin localizes to SGs and is 

required to repress follicular helper T cells and autoimmunity (Vinuesa et al., 2005). 

Roquin mutation fails to repress diabetes-causing T cells and develop high titers of 

autoantibodies and pathology consistent with a lupus phenotype. Furthermore, G3BP1 

interacts with de-ubiquitinating enzymes, USP10 and inhibits the ability of USP10 to de-

ubiquitinate. HDAC6 might also interact with or recruit deubiquitinating enzymes (data 

not shown). Whether G3BP1’s and HDAC6’s involvement in ubiquitin metabolism is 

linked to its involvement in mRNA metabolism, is unknown. It has not yet been reported 

whether SG components are ubiquitinated and whether this modification is a prerequisite 

for recruitment to SGs. However, these data suggest that interaction between HDAC6 and 

G3BP may mediate ubiquitin proteasome system and RNA metabolism, especially SG 

formation. Therefore, our results are highly related and will open up novel research 

direction.      

4.3. HDAC6 plays a role in the cellular stress response 

4.3.1. HDAC6 deacetylates and regulates stability of HIF-1α by 

controlling of its acetylation and ubiquitination status  

Acetylation of the ε amino group of lysine residues has emerged as an important 

posttranslational modification regulating protein functions. The degree of acetylation of a 

given protein depends on the dynamic balance of the activity of specific acetylase and 

deacetylase enzymes. Although HDACs are mostly known to deacetylate histones, they 
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also interact with other proteins. In this regard, HDAC6 is one of the potential 

deacetylases that can specifically deacetylate cytoplasmic proteins. Knockdown of 

HDAC6 or HDACis result in increased acetylation levels and decreased protein level of 

HIF-1α (Kong et al., 2006; Qian et al., 2006). Indeed, HDAC6 deacetylated HIF-1α and 

promoted HIF-1α degradation in hypoxic condition, though its deacetylated lysine 

residues were not found precisely. WT cells and rescuant of WT HDAC6 resulted in 

higher hypoxic levels of HIF-1α. Conversely, HDAC6 KO cells and catalytically dead 

mutant of HDAC6 showed inhibition of HIF-1α protein in response to hypoxia. We 

showed that HIF-1α is a substrate of HDAC6. Unlike Kong et al. we found that HIF-1α 

interacted stronger with HSP70, a family member of the chaperone class of proteins; 

however, interaction between HIF-1α and HSP90 did not decrease in hypoxia. Knockout 

of HDAC6 might result in hyperacetylation of HSP90, accumulation of immature and 

acetylated HIF-1α protein/HSP70 complex, and degradation of HIF-1α by the 20S 

proteasome. Whereby, hyperacetylation of HIF-1α may reinforce the interaction with 

HSP70 and interfere with interaction with HSP90, thus promoting degradation in hypoxia. 

These results support that HDAC6 is involved in stability of HIF-1α by affecting its 

acetylation status in hypoxia. However, it is unclear whether direct acetylation of HSP70 

is involved in HIF-1α degradation. Interestingly, we identified HSP70-1 as one putative 

HDAC6 interacting protein. We need to investigate more detailed mechanism by which 

HDAC6 regulates HIF-1α stability through HSP70/ HSP90 chaperone system.  

 Hypoxia leads to activation of PERK, phosphorylation of eIF2α, and SG 

formation, a modification that was readily reversed upon reoxygenation (Koumenis et al., 

2002; Moeller et al., 2004). eIF2α was found to be phosphorylated in response to hypoxia 

in both HIF-1α +/+ and HIF-1 -/- MEFs, with similar kinetics. This result indicates that 

the signal for eIF2α phosphorylation under hypoxia is independent of HIF-1α 

accumulation and subsequent downstream events. In this respect, it is notable that the 

translation of the α-subunit of HIF1 and its target gene (VEGF) has been reported to be 

mediated by IRES element in response to hypoxia (Lang et al., 2002; Stein et al, 1998). 

Addtionally, depletion of HDAC6 did not have an effect on phosphorylation of eIF2α in 

stress. HDAC6 regulates SG formation downstream of eIF2α phosphorylation and affects 

HIF-1α transcriptional activity. It implicates that HDAC6 control downstream hypoxia 



 146

response of phosphorylation of eIF2α in hypoxia. 

4.3.2. HDAC6 acts as a modulator of cytoprotective response in stress 

The cellular stress response is a phylogenetically conserved protection mechanism from 

prokaryotes to humans. When cells are exposed to different stresses, cells can activate 

defense mechanisms to adapt to stressful conditions, to repair damage and to resume 

normal cellular functions or rather activate the apoptosis depending upon the intensity of 

physical or chemical stresses. One of the possible defense mechanisms responding to 

stress is the formation of cytoplasmic “Stress granules” that manipulate an arrest of 

mRNA translation. Although translation arrest upon stress is widespread, selective 

translation of heat shock proteins, as well as of some transcription factors, under these 

conditions allows the cell to repair the stress-induced damage while conserving anabolic 

energy. When stress is relieved, SGs disassemble and the stalled mRNAs either return to 

the active translation machinery or are targeted for degradation in PBs. The other possible 

defense mechanism in stress is the assembly of aggresome that eliminate the 

accumulation of toxic misfolded proteins. Cells can resist to cell death and activate stress 

defense mechanism to repair damage until certain stress threshold. But reaching apoptotic 

threshold, cells activate apoptosis. Depending on the type of stress stimulus, the multiple 

events associated with HDAC6 activation might be affected differently. HDAC6 can 

regulate SGs as well as aggresome upon stresses. Conversely, the same stress has 

different impacts on cellular responses. For example, thapsigargin, an ER-stress-inducing 

agent, cause aggresome and a prominent relocalization of HDAC6 (Kawaguchi et al., 

2003). Also, like arsenite, thapsigargin inhibites protein synthesis, enhances eIF2α 

phosphorylation, and promotes stress granules formation. Here, HDAC6 deficiency 

resulted in impaired stress responses (aggresome or SGs) triggered by different stresses 

and post-stress recovery. Strikingly, the hypersensitivity of HDAC6 KO MEFs to stress 

can be significantly alleviated by reintroduction of wild type, but not two functional 

domain mutants of HDAC6. The physiological significance of HDAC6 in the stress is 

underscored by the observation that cells lacking HDAC6 exhibit decreased viability 

rates, both during stress and following release from stress conditions. Therefore, HDAC6 

might play a critical role in regulating the cellular management of different stress 
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response.  

4.4. Closing remarks 

Since histone acetyltransferases have been identified, we have understood a role of HATs 

and HDACs. Mammal has 18 distinct histone deacetylases which possess discrete 

functions and regulate many proteins. Recently evidence has emerged that many non-

histone protein, also cytoplamic, are modulated by acetylation. HDAC6 is mostly 

cytoplasmic and has a distinct cellular function. HDAC6 is a specific cytoplasmic tubulin 

deacetylase and a regulator of polyubiquitinated protein turnover togegher with p97/VCP. 

Intriguingly, HDAC6 is recruited to SGs when cells are exposed to environmental 

stresses. HDAC6 mediates SG components to congregate and to transport together to SGs 

along microtubules through dynein motor complex, thereby facilitating SG formation. In 

addition, HDAC6 function as a stress regulator under stress conditions such as hypoxia, 

or oxidative stress. Indeed, a critical physiological role of HDAC6 emerges in stress 

condition. Depleting of HDAC6 causes to hypersensitivity cell death during stress and 

impaired stress recovery. To more clarify a role of HDAC6 in stress, we need to identify 

detailed mechanism by which HDAC6 regulates cellular stress response upon a subset of 

stress. Also, future studies are bound to elucidate the mechanism by which specific 

mRNAs or miRNAs are sorted into different cytoplasmic compartments such as SGs or 

PBs, which function in mRNA metabolism.  We also need to reveal the mechanism by 

which components of SGs congregates orderly in stress.  Furthermore, we investigate 

how the cell distinguished between transcripts destined for decay and those that are to be 

reinitiated translation machinery.  
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6.1 Possible other HDAC6 interacting proteins 
 Putative HDAC6 interacting proteins 

 Protein name & Description Gene name Acess 
Num Frequency

1 Elongation factor-1α-1 (eEF-1α-1/eEF1A-1) 
(EF-Tu) (Leukocyte receptor cluster member 7) 

EEF1A1, 
EF1A, LENG7 P04720 6 

2 Myosin 9 (nonmuscle myosin heavy chain type A) MYH9 P35579 5 
3 Myosin 10 (nonmuscle myosin heavy chain typeB) MYH10 P35580 5 

4 Heat shock 70 Kda protein 1 (HSP70-1/HSP70-2) 
(HSP70.1) 

HSPA1A, 
HSPA1B P08107 4 

5 Cofilin-1, non-muscle isoform 18 kDa phosphoprotein p18 CFN-1 P23528 4 

6 Dihydrolipoamide succinyltransferase component of, of 2-
oxoglutarate dehydrogenase complex, E2, E2K DLST 

 
P36957 
 

4 

7 Elongation factor-2 (EF2) EEF2 P13639 3 

8 40S ribosomal protein S3 RPS3 P23396 3 

9 40S ribosomal protein S18 (KE-3) (KE3) RPS18 P25232 3 

10 Actin, cytoplasmic 1 (Beta-actin) ACTB P02570 3 

11 G3BP (Ras-GTPase-activating protein binding protein 1) G3BP Q13283 3 

12 Nucleoin (Protein C23) NCL P19338 3 

13 Hetrogeneous nuclear rionucleoprotein H (hnRNP H) HNRNP 1 P31943 3 

14 
Probable ubiquitin carboxyl terminal hydrolase FAX  
(Deubiquitinating enzyme FAF-X,  
Ubiquitin-specific protease 9, X chromosome) 

USP9X 
 

Q93008 
 

3 

15 Kinesin-like protein KIF11 KIF11 P52732 2 

16 Polyadenyl-binding protein-1 (PABP1) PABPC1 P11940 2 

17 Splicing factor, proline-and glutamine-rich SFPQ P23246 2 

18 ADP/ATP translocase 2 (Adenine nucleotide translocator 2) 
ADP/ATP carrier protiein fibroblast isoform (ANT 2) SLC25A5 P05141 2 

19 ATP synthase alpha chain, mitochondrial precurso ATP5A1 P25705 2 

20 Calmodulin (CaM) CALM1, CAM, 
CALM,CAM1 P02593 2 

21 Filamin A (α-filamin, Filamin 1, Actin-binding protein 280) FLNA P21333 2 

22 Methylosome subunit pICln CLNS1A P54105 2 

23 Stress-70 protein, mitochondrial precursor, GRP 75 HSPA9B P38646 2 

24 Interleukin enhancer-binding factor 3  ILF3 Q12906 2 
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6.2 Effect of overexpressed HDAC6 and eIF2α phosphorylation in stress 
 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

Figure S1. HDAC6 regulates SG formation downstream of eIF2α phosphorylation  

Parental HEK 293 cells or a derivative cell line stably overexpressing HDAC6 (S-
HDAC6 293) were control-treated (lanes 1 and 5) or treated for 1 hr with increasing 
amounts of arsenite: 0.25 mM (lanes 2 and 6), 0.5 mM (lanes 3 and 7), or 1 mM (lanes 4 
and 8). Extracts were analyzed by western blotting and probed for phospho-eIF2α, eIF2α, 
TIA-1/TIAR, HDAC6, G3BP Ac-α-tubulin, and α-tubulin (as a loading control). 
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6.3 Effect of HDAC6 on microtubule stability 
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Figure S2. Polymerization and depolymerization of microtubules in MEFs.  
(A) Schematic representation of experimental procedures. Bars indicates the periods 
during which the cells were treated with drugs. Arrows indicates the time-points at which 
cells were taken for immunoblot analysis (B) and immunofluorescent microscopy (C-E). 
(B) Cellular acetylation levels of tubulin in the time-course experiments. The amount of 
acetylated and total tubulin in the cells treated with various drugs in the time-course 
experiments shown in (A) were determined by immunoblotting with anti-acetylated α-
tubulin and anti-α-tubulin antibodies. (C-E) Depolymerization of microtubule during 
demecolcin treatment and removal. Microtubules were immunostained with the anti-α-
tubulin antibody and observed under fluorescent microscope at the time-points indicated 
in (A).  
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