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Abstract 
 

We propose a new approach for face and facial feature detection combined with 
the advantages of the Morphable Model.  

The presented method reduces the runtime complexity of a Support Vector 
Machine classifier and the new training algorithm is fast and simple. This is 
achieved by an Over-Complete Wavelet Transform that finds optimally sparse 
approximations of the Support Set Vectors. The wavelet-based approach 
provides an upper bound on the distance between the decision function of the 
Support Vector Machine and our classifier. The obtained classifier is fast since 
the used Haar wavelet approximations of the Support Set Vectors allow efficient 
Integral Image-based kernel evaluations. This provides a set of double-cascaded 
classifiers of increasing accuracy for an early rejection. The algorithm yields an 
excellent runtime performance that is achieved by hierarchically discriminating 
with respect to the number and approximation accuracy of incorporated Reduced 
Set Vectors.  

The proposed algorithm is applied to the problem of face and facial feature 
detection, but it can also be used for other image-based classifications. The 
algorithm presented, provides a 530-fold speed-up over the Support Vector 
Machine, enabling face detection at more than 25 fps on a standard PC. 

Summarizing, we propose very fast and efficient to train classifiers that improve 
the detection performance by involving the advantages of the Morphable Model. 
On one hand to improve the fitting algorithm of the Morphable Model by 
automatic anchor point detection and on the other hand to use the Morphable 
Model for improving the training by synthetic data sets and to reduced the False 
Acceptance Rate.  

Keywords 

Over Complete Wavelet Transform, Haar-like Feature, Integral Images, Reduced 
Support Vector Machine, Coarse-to-Fine Classifier, Cascaded Evaluation, Real-
Time Face Detection, Facial Feature Localisation, Tracking, 3D Morphable 
Model, Machine Learning, Computer Vision, HCI, CHIL 
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Notations and Abbreviations 
 
a  Vectors are denoted by lowercase bold letters 

ia   i -element of the vector a  

A  Matrices are denoted by uppercase bold letters 

M N  ×A  Matrix with M  rows and N  columns 

'A   Transpose of the matrix A  

+A   Pseudo-inverse of matrix A  

,i jA  ( ),i j -element of the matrix A ; this is a scalar 

., jA   Column vector formed by the j -th column of the matrix A  

I  Identity matrix whose dimension depends on the context 

M N×1   M N×  matrix for which all elements are equal to one 

( )vec A  Vectorisation of the matrix A . If A  is a M N×  matrix, ( )vec  A is a 1MN ×  
column vector 

( )sgn x  Signum function ( sgn( )x = -1 if 0x < , 0 if 0x = , 1 if 0x > )  

( )Ma   If a  is a 1R ×  column vector, ( )Ma  is a /M R M×  matrix. It is assumed that 
/R M  is an integer value 

,a b   Scalar product of vectors a  and b  

×a b  Cross vector product of vectors a  and b  

SVMΨ  Support Vector Machine (SVM)  

ix  Support Set Vector (SSV) with 1, , xi N= …  from a SVM 

RVMΨ  Reduced Support Vector Machine (RVM) 

iz  Reduced Set Vector (RSV) with 1, , zi N= …  from a RVM 
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W RVM−Ψ  Wavelet Approximated Reduced Vector Machine (W-RVM). 

l
iu  Wavelet Approximated Reduced Set Vector (W-RSV) with approximation level 

1, ,l L= …  and number of incorporated vectors 1, , ( )zi N l= …  

Φ  Mapping function into the higher dimensional feature space, : FΦ →X , 
( )Φx x6  

FRR  False Rejection Rate 

FAR  False Acceptance Rate 

DR Detection Rate (DR=1-FRR) 

R.O.C.  Receiver Operating Characteristic (ratio of DR and FAR)  

Sμ  Soft-shrinkage operator with threshold parameter μ  

-1,  W W  Wavelet transform and inverse wavelet transform operator  

zλ , uλ  Corresponding wavelet coefficients = ,zλ λψ〈 〉z , = ,uλ λψ〈 〉u  of the RSV's and 
W-RSV's to the wavelet basis { }λ λψ ∈Λ , where Λ  is the index set over all possible 
locations, scalings and wavelet species 

PDF Probability density function 

( )|p x y  Likelihood of x with respect to y, e.g. ( )|fd fdp t x  probability density of the 
W-RVM output fdt w.r.t. fdx  (likelihood that the W-RVM classifier for faces pro-
duces the output t, given x is an image position of a face). 

RBF Radial Basis Function kernel, ( )2 2( , ) = exp || || /(2 )j i j ik σ− −x x x x  

PSM Prior Shape Model 

HCI Human Computer Interaction 

CHIL Computers in the Human Interaction Loop 

ROI Region of interest 

FOI Field of interest 

ML Maximum likelihood 

3D MM Three-dimensional Morphable Model  
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Chapter 1 
 
Introduction 

Das wird nächstens schon besser 
gehen, Wenn Ihr lernt alles redu-
zieren. Und gehörig klassifizieren. 

[Mephistopheles in Faust, First 
Part of the Tragedy, Johann Wolf-
gang Goethe] 

General Background and Contribution of the Thesis 

One of the main fields in image analysis is the extraction of meaningful information. This 
purpose can be achieved by different means, e.g. pattern recognition, morphological filtering, 
or deconvolution. In this thesis, the focus is on pattern recognition. In particular, we aim to 
locate and analyse faces or facial features in given images. In general, there exist two 
philosophies: One principle is to apply a complex face model to a given image and extract the 
desired information within the model space (top-down principle). Another way is to act 
directly in image space and to extract the information by correlation principles (bottom-up 
principle). Both philosophies clearly have advantages and disadvantages. For the purpose of 
face analysis, it turned out that the application of neither the first nor the second principle 
alone is optimally suited. Within this thesis, we suggest an improvement by combining the 
two approaches. In particular, we propose to overcome the disadvantage (model initialisation) 
of the top-down principle by a correlation/classification principle. The development of a very 
efficient classification principle is the main contribution of the thesis.  

The 3D Morphable Model for Complex Face Modelling 

Our purpose is to improve the 3D Morphable Model (MM, [101], [5], [6], [7]) by combining 
it with a image-based classifier. The Morphable Model is an example-based three-
dimensional face model, derived by transforming the shape and texture of the examples into a 
vector space representation. New faces and expressions can be modelled by forming linear 
combinations of the prototypes. Shape and texture constraints derived from the statistics of 
our example faces are used to guide manual modelling or automated matching algorithms. In 
this framework, it is easy to control complex facial attributes, such as gender, attractiveness, 
body weight, or facial expressions. Attributes are automatically learned from a set of faces 
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rated by the user, and can then be applied to classify and manipulate new faces. Given a 
single photograph of a face, we can estimate its 3D shape, its orientation in space and the 
illumination conditions in the scene. Starting with manually labelled landmark points, our 
algorithm roughly estimates the size, orientation and illumination, and optimises the model 
parameters along with the face's internal shape and surface colour to find the best match to the 
input image. The face model extracted from the image can be rotated and manipulated in 3D. 
The MM can be used for an interactive modeller tool where a wide range of relevant attributes 
of faces can be controlled and for the synthesis of many representations of variations within 
the class of human faces. One of the main disadvantages of the MM is the manual initialisa-
tion. 

Combining the 3D Morphable Model with an Efficient Classifier 

The aim of this thesis is to invent a fast discriminating and efficient to train 2D image-based 
classifier. The classifier (bottom-up approach) shall be unified with the 3D MM (top-down 
approach) to improve the image-analysis performance of both approaches. On one hand, the 
2D classifier will improve the fitting algorithm of the Morphable Model by automatic anchor-
point detection and on the other hand, the Morphable Model will be used for improving the 
training and the detection rate of the image-based approach.  

  
Figure 1-1: Images analysis by unifying a 2D image-based classifier and a 3D face model 

The loops of unification of the 2D image-based classifier (W-RVM, left) and the 3D face model 
(Morphable Model, right) form the general background of this thesis. The main contribution is the invention 
of an adequate classifier for face and facial feature detection. 

This unification can be realised by the iterative loop schematised in Figure 1-1: Firstly, the 3D 
MM is used to generate synthetic 2D data sets with ground truth in arbitrary size and 
diversity. Then, with classifiers trained on these synthetic data sets, the 2D locations for the 
anchor points can be detected. The local image representation of facial features – e.g. corner 
of the mouth or bridge of the nose – is ambiguous within the image. Hence, lists of possible 
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candidates are detected. To find the most likely final feature assortment among all combina-
tory possible candidate sets, the correlation between the feature points must be exploited (e.g. 
the true detection of the nose tip should be located between the centre of the eyes; all other 
candidates can be rejected). The 3D model is used for this correlation classifier on the second 
unification loop. Taking advantage of the 3D MM, the False Acceptance Rate (FAR) of the 
classifier can be reduced by rejecting false candidates. The remaining 2D feature assortment 
can now be used as anchor points to initialise the first fitting stage of the Morphable Model. 
At the next loop of unification, the first rough 3D shape estimation of the Morphable Model 
can be used to enrich the 2D feature point extraction. The estimated pose can help to eliminate 
those feature points that are not visible within the 2D view of the face to be analysed. For the 
so obtained set of feature points, the corresponding search area is typically of smaller 
dimensions. Therefore, more-complex 2D classifiers can be applied without any extra 
computational cost.  

We will show some applications taking advantage of the further unification of the 3D 
Morphable Model and the 2D classifier, e.g. pose estimation, tracking of facial feature points, 
or HCI applications like head- and eye-tracking by an avatar or exchanging faces of subjects 
in video streams. As future work, we plan to take advantage of further unification loops. For 
instance, automatic labelling of the landmarks for more-refined fitting stages of the 
Morphable Model, reducing the number of the training stages of the W-RVM classifier, and 
adjustment of the whole approach for Support Vector Regression issues.   

Summary of the Motivation 

The loops of unification of the 2D image-based classifier and the 3D Morphable Model form 
the general background of this thesis. The essential ingredient, before exposing the unification 
loops, is the invention of an adequate classifier for face and facial feature detection. This will 
be the main contribution of this thesis. Additionally, we present the first attempt to integrate 
the developed classifier within further loops of unification. This is illustrated by a number of 
possible applications in the field of face analysis and synthesis.  

Efficient 2D Image-based Classifier and Hyperspace Approximation 

Now we want to introduce how to develop the fast-discriminating and efficient to train 
2D image-based classifier for the unification loops with the 3D MM. 

Image-based classification tasks are time consuming. For instance, detecting a specific object 
in an image, such as a face or a facial feature point like the nose tip, is computationally 
expensive, as all the pixels of the image are potential object centres. Hence, all the pixels 
must be classified. Therefore, numerical accelerations are required. We propose to use a 
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wavelet frame accelerated Reduced Support Vector Machine for a sparse hyper-plane 
representation. 

Relation to Recent Research  

Recently, methods that are more efficient have emerged based on a cascaded evaluation of 
hierarchical filters: image patches that are easy to discriminate are classified by a simple and 
fast filter, while patches that resemble the object of interest are classified by more-involved 
and slower filters. In the area of face detection [79], cascaded-based classification algorithms 
were introduced by Keren et al. [49], by Romdhani et al. [73], and by Viola and Jones [102]. 
To apply the detector, proposed by Keren et al. [49], the negative examples need to be 
Boltzmann distributed and smooth. This strong assumption often leads in the presence of a 
cluttered background to an increased FAR. Romdhani et al. [73] use a Cascaded Reduced Set 
Vectors (RSV) expansion of a Support Vector Machine [100]. The bottleneck of [73] is that at 
least one convolution of a 20 20× filter has to be carried out on the full image, resulting in a 
computationally expensive evaluation of the kernel with an image patch. Kienzle et al. [50] 
present an improvement of this method, where the first (and only the first) RSV is approxi-
mated by a separable filter. Viola & Jones [102] use Haar-like oriented edge filters with a 
block-like structure, enabling a very fast evaluation by the use of an Integral Image. These 
filters are weak, in the sense that their discrimination capability is poor. Among this finite set 
of filters, an AdaBoost algorithm is applied to choose the one with optimal discrimination 
power. A drawback of their approach is that it is not clear that the cascade achieves optimal 
generalisation performances. Practically, the training proceeds by trial and error, and often, 
the number of filters per stage must be manually selected, so that the FAR decreases 
smoothly. Another drawback of the method is that the set of available filters is limited and has 
to be selected manually. The training for the classifier is of ”the order of weeks” ([102], 
Section 5.2), as every filter (about 105) is evaluated on the whole set of training examples and 
this is done every time a filter is added to a stage of the cascade. 

Key Ideas of Wavelet Frame Accelerated Reduced Support Vector Machines 

Considering the above-mentioned problems, we developed a novel classification algorithm. 
The optimal approximation of the hyper-plane for an efficient classifier is the central point of 
interest of this thesis.  

The following features make the algorithm accurate and efficient: 

1) Support Vector Machine: Use of an SVM classifier [100] that is known to have optimal 
generalisation capabilities in a wide range of tasks [86], [64], including object detection, 
recognition and face detection [41], [58], [59]. 
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2) Reduced Support Vector Machine: The RVM uses a reduced set of Support  
Vectors [87], [73]. 

3) Double Cascade: For non-symmetric data (i.e. only a few positives to many negatives) we 
achieve an early rejection of easy to discriminate vectors. It is obtained by the two follow-
ing cascaded evaluations over coarse-to-fine Wavelet Approximated Reduced Set Vectors 
(W-RSV’s): 

a) Cascade over the number of used W-RSV’s 
b) Cascade over the resolution levels of each W-RSV 

4) The Double Cascade constitutes one of the major novelties of our approach. The  
trade-off between accuracy and speed is essentially reduced. 

5) Integral Images: As the RSV’s are approximated by a Haar wavelet transform, the Integral 
Image method (Section 2.3.1) is used for the evaluation of the decision function, similarly 
to [102]. 

6) Wavelet Frame: We use an over-complete wavelet system to find the best representation 
of the RSV’s. 

The learning stage of our proposed Wavelet Approximated Reduced Vector Machine 
(W-RVM) is fast, straightforward, automatic, and does not require the manual selection of ad-
hoc parameters. For example, the training time (Section 2.6) is two hours, which is a vast 
improvement over former detectors.  

The paradigm of our classification method is that, instead starting by a poor classifier and 
getting more complex by heuristic knowledge, we first build a classifier that is proven to have 
optimal generalisation capabilities. The focus then becomes runtime efficiency while 
maintaining the classifier’s optimal accuracy. To avoid complex search over the parameter 
space, we do not start with the full parameter space, but with the proved optimal performance 
of an SVM. Then we reduce the complexity by a Reduced Vector Set and the Over-complete 
Wavelet Approximation. Hence, our approach is straightforward. 

In order to obtain a sparse block-like structure of the image patch we apply in our approach an 
Over-Complete Wavelet Transform (OCWT) to the Reduced Support Vector Machine, and do 
not transform the input space as a pre-processing like [48], [35].  

This thesis presents the coherent and complete framework of our approach (still published in 
[70], [68], [71]). The improvement of [68] compared to [70] are the features 3. a) and 5. (see 
above): The Simulated Annealing optimisation using morphological filters was replaced by a 
sparse wavelet frame representation of the RSV’s. Simulated Annealing does not provide the 
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global optimum of the RVM approximation in all cases and it is difficult to adjust the 
resolution level.  

In this thesis, we take advantage of recent progress in wavelet analysis. In particular, we apply 
a soft-shrinkage threshold operation in order to obtain an optimal sparse signal approximation 
(rectangular structure) in wavelet space. Applying the proposed recursive refinement of the 
wavelet frame representation of the RSV’s, we obtain the double-cascade structure of the 
learning and detection process. 

Relevance to Research and Praxis 

The developed classifier is applied to the problem of face and facial feature detection. We 
compare the number of operations needed to approximate the decision hyper-plane or needed 
to reject image areas without objects of interest. Therewith we show the improvement by a 
drastic decrease of needed operations from a theoretical and practical point of view. In our 
experiments we validate our face detector on the well-known FERET database [61], so that 
our results can be compared by other researchers. In addition, we show the improvement in 
detection and training compared to state-of-the-art detectors, like [102], [79], and [85]. 

We published the new approach [70], [68], [71] and worked on this thesis to verify the 
relevance of the methods in theory and experiments. Alongside this we proved the efficiency, 
accuracy and robustness of the classifier already in real-life environments. For example we 
developed webcam applications for live presentations; plug-ins, e.g. for Adobe [33]; and 
common API interfaces for several HCI and CHIL projects. Ideas of our approach are adapted 
and the API's integrated for practical use by firms and institutes, like the Cognitec GmbH, the 
partners of the joint-project I-Search [54], the Konrad-Zuse-Institute Berlin (ZIB), the 
University of Applied Sciences Neubrandenburg [99], the University of Applied Sciences 
Northwestern Switzerland [13], the Academy of Art and Design Basel [57], and others.  

The applicableness of the invented approach is also verified within bachelor, diploma, and 
master theses using the API's of the detectors or the classifiers. Additionally we show in this 
thesis that our invented approach is not only usable for detection, but also adaptable to other 
fields of research and applications, like condensation tracking or other function approxima-
tions, like the approximation of regression functions.  

Dissertation Structure 

The thesis is organised as follows: After motivating in this chapter the general background 
and the main contribution of this thesis we introduce in Chapter 2 the developed 2D classifier. 
Most of the theoretical work of the proposed thesis is concentrated in this chapter. We show 
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in Section 2.4 that the wavelet frame approach provides an upper bound of the hyper-plane 
approximation error. Exploring this characteristic, the training of the W-RVM works without 
heuristics and is fast. We also detail in Section 2.4 the relation between the hyper-plane 
approximation error of the decision functions and a training parameter to control the trade-off 
between sparsity and approximation. As demonstrated in Section 2.8 the parameter for setting 
the approximation accuracy does not play a decisive role, as opposed to former methods, 
using only one resolution level. Finally, we summarise the training (Section 2.6) and detection 
algorithm (Section 2.7) of our novel approach. In Chapter 3, we apply the novel classifier for 
face and facial feature detection and take first advantage of the unification of the 3D MM and 
the W-RVM. It is shown in Chapter 3 that the new expansion yields a comparable accuracy to 
the SVM while providing a significant speed-up. In addition to the first publications of the 
approach, we carried out experiments on well-known databases, like FERET [61] in order to 
provide comparability to other approaches.  

In Chapter 4, we demonstrate the practical relevance of the W-RVM approach within several 
applications using the new face and facial feature detection method. In Chapter 5, after 
introducing the Morphable Model (Section 5.1.1), we show the integration of the W-RVM 
into the unification with the 3D MM and we give a guideline on how to continue the 
unification of the Morphable Model and the W-RVM by further iterative loops. Also in 
Chapter 5, we show how to take advantage of the W-RVM hyper-plane approximation for 
other fields of function approximations like Support Vector Regression and show opportuni-
ties to improve the approach, e.g. a further simplification of the training by a single-stage 
approximation. This proves the theoretical relevance and opportunities of the research results 
propose in this thesis.  
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Chapter 2 
 
Wavelet Approximated Reduced 
Vector Machine 

2.1. Support Vector Machine and Reduced Set Expansion 

Before we introduce the new approach we briefly recall Support Vector Machines (SVM) 
[100] used as classifier, and outline the usage of an approximation of SVM's called Reduced 
Support Vector Machines (RVM) [87]. RVM provide a hierarchy of classifiers of increasing 
complexity. Their use for fast face detection is demonstrated in [73] and [75].  

Suppose that we have a labelled training set consisting of a series of 20 20× image patches 

i ∈x X  (arranged in a 400 dimensional vector) along with their class label { }iy 1∈ ± . Support 
Vector classifier implicitly map the data ix  into a dot product space F via a (usually 
nonlinear) map : , ( )FΦ → Φx x6X . Often, F is referred to as the feature space. Although 
F can be high dimensional, it is usually not necessary to explicitly work in that space [10]. By 
Mercer's theorem, it is shown that it exists a class of kernels ( , ')k x x  to compute the dot 
products in associated feature spaces, i.e. ( , ') ( ), ( ')k = Φ Φx x x x . The training of an SVM 
provides a classifier with the largest margin [100], i.e. with the best generalisation perform-
ances for given training data and a given kernel. Thus, the classification of an image patch x  
by an SVM classification function, with xN  support vectors ix with non-vanishing coeffi-
cients iα  and with a threshold b , is expressed as follows: 

 
1

( ) = sgn ( , )
Nx

i i
i

y k bα
=

⎛ ⎞
⋅ +⎜ ⎟⎜ ⎟

⎝ ⎠
∑x x x  (2.1) 

For our purpose, the common Gaussian Radial Basis Function Kernel (RBF) is used: 

 
2

2

|| ||( , ) = exp
(2 )

i
ik

σ
⎛ ⎞−
−⎜ ⎟
⎝ ⎠

x xx x  (2.2) 
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We performed experiments with linear, polynomial and RBF kernels and it turned out that 
RBF performed best for our specific classification problem. We also focus in this paper on 
Gaussian kernel, because we can show in Section 2.4 in an analytically way the necessary 
approximation bounds. The advantage of polynomial kernels is that the Reduced Set Vectors 
can be derived explicitly, even for non homogenous kernels [9], [96]. However, for good 
performance with polynomial kernels a feature-space normalisation is necessary. The focus of 
the thesis is the space representation of the decision hyper-plane not a feature-space 
transformation of the data. 

The Support Set Vectors (SSV) form a subset of the training vectors. The classification of one 

patch by an SVM is slow because there are many support vectors. The SVM can be 

approximated by a Reduced Set Vector (RVM) expansion [87], [88]. We denote by 

SVM FΨ ∈ , the vector normal to the separating hyper-plane of the SVM, and by RVM FΨ ∈ the 

vector  normal  to  the  RVM  with  zN  vectors: 
=1

= ( )Nx
SVM i ii

αΨ Φ∑ x , 
=1

= ( )Nz
RVM i ii

βΨ Φ∑ z ,  

with z xN N� . The iz  are the Reduced Set Vectors and are found by minimising 
2

SVM RVMΨ −Ψ  with respect to iz  and to iβ  [87]. They have the particularity that they can 

take any values; they are not limited to be one of the training vectors, like for the support 

vectors. Hence, much less Reduced Set Vectors might be enough to approximate the SVM. 

For instance, an SVM with more than 8000 Support Vectors can be accurately approximated 

by an RVM with 100 Reduced Set Vectors.  

The second advantage of RVM is that they provide a hierarchy of classifiers. It was shown in 
[73] that the first Reduced Set Vector is the one that discriminates the data at most; and the 
second Reduced Set Vector is the one that discriminates most of the data that were misclassi-
fied by the first Reduced Set Vector, etc. Figure 2-1 demonstrates the effects on the 
classification boundary of sequential reduced set vector evaluation.  

Figure 2-1: Toy example demonstrating the sequential RVM 
The result of the sequential application of RSV’s (stars) to a 2D classification problem, showing (left to 
right) the original SVM and the result of using 1, 2, 3 and 9 RSV’s. Darker regions indicate strong support 
for the classification. With only 9 RSV's instead of 31 SSV's the RVM gains the same error rate as the 
SVM. Using only the first RSV's yields high error rates, but data points (with a large negative distance to 
the classification boundary) can be early rejected as negative points, without further evaluation cost. 

41.7 % error,  
1 Reduced Vector 

36.7 % error,  
2 Reduced Vectors 

21.7 % error,  
3 Reduced Vectors 

0 % error,  
9 Reduced Vectors 

0 % training error, 
31 Support Vectors 

RVM: SVM: 
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This hierarchy of classifiers is obtained by first found 1β  and 1z  that minimises 
2

1 1( )SVM βΨ − Φ z . Then the Reduced Set Vector kz  is obtained by minimising the norm 
2( )k k kβΨ − Φ z , where 1

1
( )k

k SVM i ii
β−

=
Ψ = Ψ − Φ∑ z . The optimal , , 1, ,k i i kβ = …  are jointly 

computed [87]. 

Romdhani et al. used in [73] a cascaded evaluation based on an early-rejection principle, to 
that the number of Reduced Set Vectors necessary to classify a patch is, on average, much 
less than the number of Reduced Set Vectors, zN . Therefore, the classification of a patch x  
by an RVM with j  Reduced Set Vector is: 

 ,
1

( ) = sgn ( , )
j

j j i i j
i

y k bβ
=

⎛ ⎞
+⎜ ⎟

⎝ ⎠
∑x x z  (2.3) 

2.2. Outline of the W-RVM approach  

Before we introduce in the following sections the novelties of the developed efficient 
classification algorithm, we give an outline of the core ideas of the new approach: 

Support Vector Machine: Use of an SVM classifier that is known to have optimal 
generalisation capabilities.  

SVM: 
=1

= ( )Nx
i iiSVM

αΨ Φ∑ x , ix  are the support vectors 

Decision function: ( )=1
( ) = sgn ( , )Nx

i ii
y k bα +∑x x x  with kernel function ( , )k ⋅ ⋅ , e.g. 

Gaussian kernel 2 2( , ) = exp( || || /(2 ))i ik σ− −x z x z  

Reduced Support Vector Machine: The RVM uses a reduced set of Support Vectors 
( z xN N� ).  

RVM: 
=1

= ( )Nz
i iiRVM

βΨ Φ∑ z , iz are the Reduced Set Vectors (RSV’s) 

Decision function: ( )=1
( ) = sgn ( , )Nz

i i ii
y k bβ +∑x x z   

Double Cascade: For non-symmetric data (i.e. only few positives to many negatives) we 
achieve an early rejection of easy to discriminate vectors. It is obtained by the two 
following cascaded evaluations over coarse-to-fine Wavelet Approximated Re-
duced Set Vectors (W-RSV's): 

Cascade over the number of used W-RSV's and 

Cascade over the resolution levels of each W-RSV.  

The Double Cascade constitutes one of the major novelties of the W-RVM ap-
proach. The trade-off between accuracy and speed is very continuous.  
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Integral Images: As the RSV's are approximated by a Haar wavelet transform, the Inte-
gral Image method is used for their evaluation. 

Wavelet Frame: We use an over-complete wavelet system to find the best representation 
of the RSV's. The learning stage of our proposed Wavelet Approximated Reduced 
Vector Machine (W-RVM) is fast, straightforward, automatic and does not require 
the manual selection of ad-hoc parameters. For example, the training time is two 
hours, which is a vast improvement over former detectors. The Over-Complete 
Wavelet Transform (OCWT) is applied at the W-RVM training. That is opposite to 
several other approaches using a wavelet input space transformation as a pre-
processing at detection time. 

2.3. Approximation of the W-RSV’s 

We first build an SVM classifier that is proven to have optimal generalisation capabilities. 
However, using an SVM for detecting a specific object in an image, such as a facial feature 
point like the nose tip or a face, is computationally expensive. Using a brute-force approach 
as seen in Figure 2-2 all pixels of the image are potential object centres. Therefore, numerical 
accelerations are required, while maintaining the classifier’s high accuracy.  

         

Figure 2-2: Object detection as an example for complex classification tasks 
Detection using a brute-force approach is computationally expensive. Utilising a sliding observation win-
dow a patch is cut out and classified at each column and each row of the image. To detect larger objects 
an image pyramid is used by down-sampling the image several times. For a VGA image, about 106 
patches must be classified, if the classification for one patch takes only 1ms the detection takes several 
minutes for the full image. 

In order to improve the runtime performance, we approximate the SVM by a Reduced SVM 
(RVM) in combination with a cascaded evaluation as proposed in [73], [102]. The RVM aims 
to approximate the SVM by a smaller set of new Reduced Set Vectors (RSV’s), instead of the 
Support Vectors (see Section 2.1). The RVM approach provides a significant speed-up over 
the SVM, but is still not fast enough, as the image has to be convolved in steps of full 
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convolutions, e.g. by 20 20×  RSV’s. The algorithm presented in this thesis improves this 
method since it does not require this convolution to be performed explicitly. Instead, it 
approximates the RSV’s by Haar-like vectors and computes the evaluation of a patch using an 
Integral Image of the input image. They can be used to compute very efficiently the dot (or 
inner) product of an image patch with an image that has a block-like structure, i.e. rectangles 
of constant values.  

2.3.1. Integral Images for Efficient Kernel Evaluations 

Definition of Integral Images  

We use Summed Area Tables [19], a.k.a. Integral Images [102] to reduce the computational 
cost of the convolution of a patch with one Reduced Set Vector. The value of the Integral 
Image, ii, at point ( ),x y  (Figure 2-3) is the sum of all the pixels, in the input image i, above 
and to the left of ( ),x y : 
 ( ) ( )

,

, ,
a x b y

ii x y i a b
≤ ≤

= ∑  (2.4) 

The advantage of Integral Images is that they can compute the sum of the pixel’s values of the 
input image in a rectangle, in constant time, by only four additions (see Figure 2-3): 

 ( ) ( ) ( ) ( ) ( )
1 4
1 4

4 4 2 2 3 3 1 1
,

, , , , ,
x a x
y b y

i a b ii x y ii x y ii x y ii x y
< ≤
< ≤

= − − +∑  (2.5) 

      

Figure 2-3: Definition and advantage of Integral Images 
The value of the Integral Image (left), ii(x,y), at a point is the sum of all the pixels above and to the left. 
The sum of the pixel’s values of the input image in a rectangle, is computed in constant time, by only 
four additions (right, D = ii(4) - ii(2) - ii(3) + ii(1)). 

Additionally, an integral image can be computed in one pass over the original image, using 
the following recursive formulae: 

 
( ) ( ) ( )
( ) ( ) ( )

, , 1 ,
, 1, , ,

s x y s x y i x y
ii x y ii x y s x y

= − +
= − +

 (2.6) 

where ( ),s x y is the cumulative sum. 
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Using Integral Images for Efficient Kernel Evaluations 

During an RVM evaluation, most of the time is spent for kernel evaluations. In the case of the 
Gaussian kernel, 2 2( , ) = exp( || || /(2 ))i ik σ− −x z x z  (chosen here) the computational cost is 
spent in evaluating the norm of the difference between a patch and a RSV. This norm can be 
expanded as follows:  
 

2 ' 2 ' 'k k k k− = − +x z x x x z z z  (2.7) 

As iz  is independent of the input image, it can be pre-computed. The sum of squares of the 
pixels of a patch of the input image, 'x x  is efficiently computed using the Integral Image 
([19], [102]) of the squared pixel values of the input image. As a result, the computational 
load of this expression is determined by the term 2 ' ix z . 

The novelty of our approach is to approximate iz  in 2 ' ix z  (which is the classical scalar 
product) so that it can be computed very fast with the integral image approach as well. We 
approximate the RSV's, iz , by optimally wavelet frame approximated Reduced Set Vectors 
(W-RSV's), iu  which have a block-like structure. Optimally approximated means here, the 
usage of an optimally shifted wavelet basis, which represents the image as sparse as possible. 
Then the term 2 ' ix u  can be evaluated very efficiently using the Integral Image. The term can 
be re-sorted by  

 , ,
1 1 1

2 ' 2 2
i rR DD

i k i k i r j
k r j

x u v x
= = =

= =∑ ∑ ∑x u  (2.8) 

where D is the dimension of the vectors (e.g. 400 pixels by a patch size 20 20× as in 
Figure 2-4), Ri is the number of rectangles of iu , ,i rv the grey values of the rectangle r and  

, 1, ,j rx j D= …  all pixel-values of x  within the r-th rectangle. Because 
1

rD
jj

x
=∑ can be  

computed by adding three pixels of the Integral Image of the input image [19], the scalar 
product is evaluated in constant time by four additions per rectangle and one multiplication 
per grey value.  

 

         

 
    

Figure 2-4: Use of Integral Images for fast kernel evaluation 
If we approximated a RSV (left) by rectangles of constant values (middle: value 1 for black and 0 for 
white areas) only the sums over the black rectangles have to be considered. All other terms (grey value 0) 
in (2.8) become to zero. Naturally more values between 0 and 1 are necessary (as seen right) for a suit-
able approximation. By re-sorting the terms by their grey values, only one multiplication per grey value 
and four additions per rectangle have to be evaluated. 
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2.3.2. Haar-like Approximations of Reduced Set Vectors 
To obtain a Haar-like structure of the Reduced Set Vectors we introduce and compare three 
methods. The morphological filter and wavelet frame approximation turned out to achieve the 
best results, concerning sparsity. The advantage of the morphological filter is that this method 
is simple to implement, but the wavelet frame approximation is more straightforward and 
faster than the Simulated Annealing optimisation. Thus, we use mostly this approximation 
technique at the further work. 

Polynomial Approximation  

We approximate z by ρ=p M , with ( ) ( )1 1,..., ', ,...,h hρ ρ ρ= =M m m , m1=1, m2=x, m3=y, 

m4=x2, m5= xy, m6=y2, h=6 by order 2.  

           

Figure 2-5: Templates corresponding to algebraic moments 

It is shown in [89] Equation (8) that 1 , with 'zρ −= =B U B M M  and 'z =U M z  to minimise 
2zp − and so z is approximated by zUMBp 1−= .  

For the term kzx' in (2.7) we obtain zxk UBUpx 1' −= , because MxU 'x = . U denotes a vector 
of centralised moments μpq which can represent by algebraic moments mpq ([89] eq. (5) and 
Figure 2-5). The algebraic moments, and hence the centralised moments, can be computed by 
Integral Images. We thus arrive that we can compute the term kpx'  with Integral Images by 
the polynomial approximation of z with p.  

In Figure 2-6 the polynomial approximations (middle column) for two Reduced Set Vectors 
(left column) are shown. As it can be seen on the difference vectors (right column) the low-
frequency information of the vectors are well represented, but the high-frequency parts, like 
the eyes or the mouth cannot be represented by the moments.  

For the optimisation, we used Monte Carlo methods and the Simulated Annealing Method 
(ASA), to handle the high number of extremes (see Figure 2-7 top row). The distance of the 
approximated decision hyper-plane to the original SVM descries by incorporating more 
approximated vectors. 
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Figure 2-6: Examples for polynomial approximation of Reduced Set Vectors 
Left: Reduced Set Vectors, middle: polynomial approximations; right: differences. 

However, the discrepancy becomes early asymptotical (greater than 90% of the initial 
distance) compared with the RVM (see Figure 2-7 bottom right). It would be interesting to 
experiment with a piecewise polynomial approximation and to compare the efficiency with 
the other Haar-like approximations. 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 2-7: Polynomial approximation of the RVM 
Top: Optimisation of the hyper-plane distance with many local minima (blue circle is the global ex-
treme); bottom: Hyper-plane distance of the RVM (left) and the polynomial approximation (right). 
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Approximation using Morphological Filters 

We want to introduce a second approach to obtain the Haar-like structure. A posterisation is 
used as quantisation and morphological filter to achieve the block-like structure. 

The block-like Reduced Set Vectors must (i) be a good approximation of the SVM by 
minimising RVM H RVM−Ψ −Ψ , and (ii) have a few rectangles with constant value to provide a 
fast evaluation. Hence, to obtain the k-th Reduced Set Vector instead of minimising  

2( )k k kβΨ − Φ z , where 1

1
( )k

k SVM i ii
β−

=
Ψ = Ψ − Φ∑ z  as detailed in Section 2.1 and [73], we  

minimise the following energy with respect to βk and to zk: 

 2   ( )   (4#[ ]  ),  k k k k kE w vβ= Ψ − Φ + +z z  (2.9) 

where #[ ] kz is the number of piecewise constant rectangles, v the number of grey values of zk 
and w is a weight that trades off the accuracy of the approximation with the runtime efficiency 
of the evaluation of zk with an input patch. To minimise the energy Ek, we use Simulated 
Annealing, which is a global optimisation method. The starting value of this optimisation is 
the result of the minimisation of 2( )k k kβΨ − Φ z , i.e. the Reduced Vector as computed in 
[73]. To obtain a block-like structure the following two operations are performed, as shown in 
Figure 2-9: 

1st Quantisation: The grey values of zk are quantised into v bins, applying a posterisation.  
The threshold values of this quantisation are the 1/v percentiles of the grey values of zk. For 
instance if v = 2, then zk will be approximated by 2 grey levels, and the 50% percentile is 
used as a threshold: the pixels of zk for which the grey values are lower than the threshold 
are set to the mean of these pixels. The result of this quantisation on two Reduced Set 
Vectors is shown in the second column of 
Figure 2-9. 

2nd Block structure generation: The quan-
tisation reduces the number of grey level 
values used to approximate a Reduced Set 
Vector zk, but it does not produce a block 
structure. To obtain a block structure two 
types of morphological operations [2] seen 
in Figure 2-8 are used (third column of 
Figure 2-9): opening (a dilatation followed 
by an erosion) or closing (an erosion 
followed by a dilatation) similar to [67], 
[66]. The parameter which must be opti-

Figure 2-8: Morphological operations 
a) Closing, b) Opening (B is the  
structuring elements). 
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mised are the type of morphological operations applied is denoted by A = {opening, 
closing}, and the size of the structuring elements is denoted by B. The coordinates of the 
rectangles are obtained by looking for the maximum width and height of disjoined rectangu-
lar areas at the same grey level (fourth column). 

         

Figure 2-9: Stages of the Haar-like approximation using morphological filter 
Approximation of a face (top row) and an anti-face (bottom row) Reduced Set Vector (1st column),  
quantisation using posterisation (2nd column), morphological filter to obtain the Haar-like structure  
(3rd column) and H-RSV’s with red marked rectangle coordinates (4th column). 

Simulated Annealing is used to obtain a minimum of the energy Ek by selecting the 
parameters v, A and B that minimises Ek. As these new Reduced Set Vectors have a Haar-like 
structure, we call them Haar-Reduced Set Vectors (H-RVM). 

Wavelet Frame Approximation 

The Haar-like RVM approximation at the previous section using Simulated Annealing 
optimisation does not provide the global optimum of the approximation in all cases and it is 
difficult to adjust the optimal resolution level. Hence, we introduce a third method using a 
sparse wavelet frame representation of the RSV’s to obtain a Haar-like structure of the RSV's.  

We apply the wavelet transform to find the best representation of the RSV's to the Reduced 
Support Vector Machine itself, and not of the input space as a pre-processing at working time, 
like [48] or [35]. For more details about wavelets, we would refer the reader to Mallat [56], 
Teolis [94], or Burrus et al. [8] and for a compact introduction Stollnitz et al. [91], [92]. Using 
the wavelet transformation instead of a heuristic optimisation, like used in [102] enables the 
fast and automatic learning stage of our proposed Wavelet Approximated Reduced SVM. The 
training is straightforward, and does not require the manual selection of ad-hoc parameters. 
For example, the training time is two hours, which is a vast improvement over previous 
detectors.  
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The wavelet approximation is the superior method to obtain a Haar-like structure of the RSV's 
and is used in the training of our W-RVM classifier applied to face, facial feature detection 
and further applications (see Chapter 3-5). How to generate the Wavelet Approximated RSV's 
is detailed in the next sections and summarised in Section 2.6.  

In this thesis, we take advantage of recent progress in wavelet analysis. In the next two 
sections we detail how we apply a soft-shrinkage operation and an over-complete wavelet 
system in order to obtain an optimal sparse signal approximation in wavelet space. 

Let us first briefly recall smoothness characterisation properties of wavelets and Besov norms 
(see [98], [83], [15]) we want to use it in the next section. One can determine the membership 
of a function in many different smoothness functional spaces by examining the decay 
properties of its wavelets coefficients. For a comprehensive introduction and overview on this 
topic we would refer the reader to the abundant literature, see e.g. Daubechies [21], [22], 
Cohen et al. [15], Dahmen [20], DeVore et al. [27], [26], Frazier et al. [32], Triebel [98]. For 
readers interested more in the gist of the theory than in a more elaborate, mathematically 
precise description, it suffices to know that:  

• Wavelet expansions provide successive approximations at increasingly finer scales. If a 
function f is given, and f(J) is its approximation at scale 2−J , then the next finer approxi-
mation f(J+1) can be written as  

 ( 1) ( ) , ,
,

  , , i i
J J J J

i

f f f ψ ψ+ = +∑ k k
k

�  (2.10) 

where , 1 1 2 2( )  2 (2 - ,2 - )i j i j j
J x k x kψ ψ=k x  are the wavelets used in the expansion, and  

,
i
Jψ k�  a corresponding dual family. The index i indicates that in dimensions larger than 1, 

one typically uses several wavelet templates. In 2 dimensions, there are usually 3 differ-
ent wavelets, and i takes the values 1,2,3 (Note that the details of the approximation 
scheme that computes f(J) from f depend on the wavelet family under consideration.). If  

sCψ ∈  (i.e.  ψ  has ‘differentiability’ of order s, where s need not to be integer), then f 
has differentiability of order r < s if and only if  

  - ( )
,, 2 .i j r s

Jf Cψ +≤k�  (2.11) 

For the sake of convenience, we shall often ‘bundle’ i, j, k into one indexλ , and write, 
,f λψ�  simply as fλ . In this case λ  stands for j. In this notation, the requirement 

(2.11) becomes - ( )2 r sf C λ
λ

+≤ .  

• One can characterise the smoothness of f in detail by using several parameters to 
describe it, such as e.g. in Besov spaces. For smoothness r < 1, for instance, we define  

 
1

| |
( ; ) sup ( ) - ( )

pp
l p

t
f t f f dω

≤

⎡ ⎤= +⎣ ⎦∫
h

x h x x  (2.12) 



Matthias Rätsch; Thesis; 2008  CHAPTER 2.  W-RVM CLASSIFIER 

 32

(this is an ‘Lp-measured modulus of continuity’ for f), and  

 r

1

-
( ( ))

0

| |  ( ( ; ) )
q p

p

r q
pB L

f t f t dt tω
∞

Ω

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∫  (2.13) 

(Basically, this measures, in a fine ‘q-gained scale’, whether ( ; ) pf tω decays at least as 
fast as tr when 0t → .). For instance, if we consider, on 2(0,  1]Ω = the function 

1 2 1 2( ) -   f x x x x= + +⎢ ⎥⎣ ⎦x , where max{ ; < }x n n x= ∈⎢ ⎥⎣ ⎦ ] , which has a discontinuity 
along the diagonal x1 + x2 = 1 in the square, then we find  

 1( ; ) | |  as | | 0f t C t tω →∼  

and  one  easily checks,  1
1 1 ( ( ))

| |
B L

f ε− Ω
< ∞   for  all 0ε > . In  fact, one has 1

1 1( ( ))B L Ω  (i.e.  

with r = 1) as well, but to verify this we need a fancier ‘L1-measured modulus of conti-
nuity’. One important link of wavelets to these detailed smoothness spaces is that they 
provide a good estimate of Besov norms. In particular, in 2 dimensions,  

 1
1 1( ( )) 2  < ;ssf B L fλ

λ
λ

+∈ Ω ⇔ ∞∑  (2.14) 

for s = 0 this shows that 1
1 1( ( ))f B L∈ Ω  if and only if its coefficients are in 1A .  

2.3.3. Soft-Shrinkage to Build Rectangular Structured W-RSV's  
In order to exploit the Integral Image method a block-like approximation of the Reduced Set 
Vectors must be used, i.e. they must have a rectangular (Haar--like) structure with piecewise 
constant grey values. Therefore, we use Haar wavelets and not wavelets with more vanishing 
moments (e.g. Daubechies wavelets of higher order), even if they would in general result in a 
more sparse approximation. 

We are searching for an approximation of a given image z  by a piecewise block structured 
image u , which is as sparse as possible. This optimisation problem can be casted in the 
following variational form  

 { }1
1 1

2
( )2ˆ

ˆ ˆmin  2 | | ,L B L
μ− +

u
z u u  (2.15) 

where 1
1 1( )B L  denotes a particular Besov semi-norm. It is known that the Besov (semi) norm 

of a given function can be expressed by means of its wavelet coefficients. In two spatial 
dimensions the Besov penalty is nothing else than a 1A  constraint on the wavelet coefficients 
(promoting sparsity as required). See Section 2.3.2 for an introduction and for more details we 
refer the reader to [98], [83] and for a comprehensive discussion of the problem to [15]. 
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The minimisation of (2.15) is easily obtained: Let { }λ λψ ∈Λ  be the underlying wavelet basis, 
where Λ  is the index set over all possible locations, scalings and wavelet species. Then we 
may express z  and û  as follows: ˆ ˆ=  , = ,z uλ λ λ λλ λ

ψ ψ
∈Λ ∈Λ∑ ∑z u  where = ,zλ λψ〈 〉z  and  

ˆ ˆ= ,uλ λψ〈 〉u . Thus, we may completely rewrite (2.15) in sequence space  

 { }2

ˆ
ˆ ˆ = arg min ( ) 2 | | .z u uλ λ λ

λ

μ
∈Λ

− +∑u
u  (2.16) 

Minimising summand-wise, we obtain the following explicit expression for the optimum uλ , 

see, e.g. [23],  

 = ( ) = sgn( ) max{| | ,0} ,u S z z zλ μ λ λ λ μ−  (2.17) 

where Sμ  is the soft-shrinkage operation with threshold μ . Consequently, the optimum u  is 
simply obtained by soft-shrinking the wavelet coefficients of z , i.e.  

  1= ( ) = ( ),S z W S Wμ λ λ μ
λ

ψ −

∈Λ
∑u z  (2.18) 

where W stands for the wavelet transform operator. 

2.3.4. Over-Complete Wavelet Transform 
We propose an optimal match by Over-Complete Wavelet Transform [94], [1], [36] using 
translated wavelet bases optimisation to overcome the windowing effect. Typically, 
orthogonal or so-called non-redundant representations and filtering very often creates 
artefacts in terms of undesirable oscillations or non-optimally represented details, which 
manifest themselves as ringing and edge blurring (also called Gibbs or windowing effect). For 
our purpose, it is essential to pick a representation that optimally meets the local image 
structure (see Figure 2-10). The most promising method for adequately solving the window-
ing problem has its origin in translation invariance (the method of cycle spinning, see e.g. 
[16]), i.e. representing the image by all possible shifted versions of the underlying (Haar) 
wavelet basis. But contrary to the idea of introducing redundancy by averaging over all 
possible representations of z , we aim to pick only that one that optimally meets the given 
image structure.  
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Figure 2-10: Examples for Haar-like approximations 

RSV (left) approximated using morphological filter (H-RSV, middle) and using an OCWT (W-RSV, 
right). The OCWT representation meets optimally1 the local image structure. Hence the ratio of the de-
creasing of the hyper-plane distance to the used operations is more efficient for the W-RSV (here e.g. 
0.73) than for the H-RSV (0.51). 

In order to give a rough sketch of this technique, assume that we are given an RSV z  with 
2 2M M×  pixel. Following the cycle-spinning approach, see again [16], we have to compute 

02( 1 )2 M j+ −  different representations of z  with respect to the 02( 1 )2 M j+ −  translates s  of the 
underlying wavelet basis. The scale 0j  denotes the coarsest resolution level of z . The family 
{ }s

sz  generated this way serves now as our reservoir of possible wavelet representations of 
one single z . The best shift *s  is that one for which we have a minimal discrepancy to the 
SVM hyper-plane per operations for the kernel-evaluation. We evaluate all possible local 
shifts (in our case 64), hence the global optimum shift is guaranteed. 

2.4. Hyper-plane Approximation  

We use a two-stage hyper-plane approximation from the original SVM to the Reduced SVM 
(RVM) and from the RVM to the Wavelet Approximated Reduced Vector Machine 
(W-RVM). The first reduction step was computing the RVM by minimising the hyper-plane 
distance FSVM RVM

Ψ −Ψ  in the feature space F  [70] and [73] (see Section 2.1).  

This yields 
=1

= ( )Nz
i iiRVM

βΨ Φ∑ z , with the mapping function : , ( )FΦ → Φx x6X  as used  

for the SVM.  

As outlined above, an essential improvement can be achieved by accelerating the numerical 

integration. To this end, we have suggested the use of Haar-like sparse approximations iu  of 

iz  that generates rectangular representations of the images and fits thus well with the concept 

of  Integral  Images. Replacing iz  by iu  amounts  to 
=1

( )Nz
i ii

β Φ∑ u . The  change  of  the  sup- 

                                                 

1 Optimally approximated means here, the usage of an optimally shifted wavelet basis that represents the image 

as sparse as possible. 
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porting vectors might likely require a slight adjustment of the iβ 's which is done iteratively 

(see below), i.e. the second hyper-plane approximation we are proposing finally  

reads as  

  
=1

= ( ).
Nz

i iW RVM
i

γ
−

Ψ Φ∑ u  (2.19) 

The natural question that arises is how well approximates the reduced and Haar-like designed 

W RVM−
Ψ (2.19) the original SVM 

SVM
Ψ , i.e. we have to consider the quantity  

  ,F F FSVM W RVM SVM RVM RVM W RVM− −
Ψ −Ψ ≤ Ψ −Ψ + Ψ −Ψ  (2.20) 

where the first misfit term on the right-hand side is minimised trough the iterative method in 
[70] and [73]. It remains to analyse the second discrepancy between 

RVM
Ψ and 

W RVM−
Ψ . 

By making use of kernel-based evaluations of the inner products (and using ( , ) = 1i ik z z ) and 
Cauchy-Schwarz we obtain   

 
{ }

2

2

=1

2
1 1 1 1

2

=1

2 2

=1

2

=1 =1

( ) ( )

= ,( ( ) ( ) , ,| ( ) ( ) )x1

( ) ( )

= 2 ( , )

= ( ) 2 (1 ( ,

Nz

F i i i i FRVM W RVM
i

F N N N N FN z z z zz
Nz

z i i i i F
i
Nz

z i i i i i i
i

N Nz z

z i i i i i
i i

u

I

N

N k

N k

β γ

β γ β γ

β γ

β γ γ β

β γ γ β

−

⎛ ⎞
Ψ −Ψ ≤ Φ − Φ⎜ ⎟⎜ ⎟

⎝ ⎠
〈 Φ − Φ Φ − Φ 〉

≤ Φ − Φ

+ −

− + −

∑

∑

∑

∑ ∑

z

z u z u

z u

z u

z u

…

2

=1

))

= 2 (1 ( , )) .

i

Nz

z i i i i
i

N kβ γ γ β

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭
⎧ ⎫⎪ ⎪− + −⎨ ⎬
⎪ ⎪⎩ ⎭

∑ z u

 (2.21) 

Now, when choosing the Gaussian kernel with kernel parameter, σ (optimised by the SVM 
training [100]) we may approximate (1 ( , )i ik− z u  in (2.21) as follows  

 ( )
2 2

4
2 21 ( , ) 1 exp .

2 2
i i i i

i ik O
σ σ

⎛ ⎞− − −
− = − = + ⋅⎜ ⎟

⎝ ⎠

z u z uz u  (2.22) 

Thus the data misfit discrepancy is directly controlled by the 2A  distance of the sparse 
approximation iu  of iz  (which is minimised under sparsity constraints) and the distance 

β γ− . Thus, up to higher-order terms, we achieve  

 2 2 2 2

=1

{ },
Nz

F z i i i iRVM W RVM
i

N β γ σ γ β−

−
Ψ −Ψ − + −∑ z u  (2.23) 
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where the relation between the error of the Wavelet Approximated Reduced Set Vectors and 
the threshold parameter μ  needs to be made. This is important to control the trade-off 
between sparsity (i.e. computational cost) and the approximation (classification) preciseness 
per approximated vector. 

At first, we consider the difference of the Reduced and Wavelet Approximated Reduced Set 
Vectors and express them by means of the corresponding wavelet coefficients, i.e. 

  ( )22
, ,= ( )  .i i i iz S zλ μ λ

λ∈Λ

− −∑z u  (2.24) 

Assuming further that z  consists of  2 2M M×  pixel and 2
, ,( ( ))i iz S zλ μ λ μ− ≤  using (2.17), we 

have  

  
2 2

2

21 ( , ) 1 exp .
2

M

i ik μ
σ

⎛ ⎞−
− ≤ − ⎜ ⎟

⎝ ⎠
z u  (2.25) 

Applying this to (2.21) an upper bound E  for the worst-case error is then given by  

  

2 2
2 2

2
=1

2{ 2 1 exp }
2

=: ( ).

NM z

F z i iRVM W RVM
i

N

E

μβ γ β γ
σ

μ

−

⎛ ⎞⎛ ⎞−
Ψ −Ψ ≤ − + −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑  (2.26) 

Neglecting higher-order terms of the exp  series, we may write  

  2 2 2 2

=1

( ) 2 .
Nz

M
z i i

i

E Nμ σ μ β γ β γ−⎛ ⎞
+ −⎜ ⎟⎜ ⎟

⎝ ⎠
∑  (2.27) 

From the last formula we see that the influence of μ is of quadratic nature which assures a 
rapid error decay of the left-hand summand. The quantity 2β γ−  will be studied below 
when we have exploited a rule for deriving the vector γ . In the limit case, 0μ → , we then 
achieve 0 ( ) = 0lim Eμ μ→ , which shows that the proposed scheme acts in the limit case as the 

RVM. For the case in which we really achieve complexity reduction by sparsity and thus a 
significant gain in computational time and cost, we refer to Section 3.2. 

2.5. Hierarchical Evaluation via Resolution Levels 

The early rejection of easy to discriminate vectors is achieved by a Double Cascade. The 
inner cascade is a hierarchy over the number = 1, , zi N…  of incorporated W-RSV's, l

iu . After 

incorporating a certain number of W-RSV's with a constant resolution level l  it is more 
efficient to improve the approximation accuracy of the first (already incorporated) vectors. 
Hence, we train = 0, ,l L…  sets of W-RSV's for the outer cascade of coarse-to-fine resolution 

levels. To use the cascade over the resolution levels as inner loop and over the W-RSV's as 
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outer loop should result in similar performance. To keep the method simple, we only propose 
one realisation of the Double Cascade. The trade-off between the two cascades is determined 
in Section 2.8. To exploit these cascades is the superior way to reject most image points by 
only a few operations. Moreover, this novel method is robust since the adjustment of only one 
optimal resolution level is sensitive. The proposed evaluation selects the most efficient 
approximation accuracy automatically at detection time based on the image patch to be 
classified. In contrast to former methods, the trade-off between accuracy and speed is smooth, 
so that image points are rejected earlier. Therefore, the approach is robust, not sensitive to the 
parameter choice at training time, simple to use and fast. 

2.6. Algorithm to Generate Hierarchically Refined W-RSV's 

The algorithm is based on residual Haar wavelet approximations of the RSV's iz , which are 
pre-computed by minimising 2

FSVM RVM
Ψ −Ψ  via the algorithm suggested in [73]. 

Before presenting the algorithm, we introduce the basic quantities. To find the optimal match 
(see OCWT in Section 2.3.4) we use a translated wavelet bases with an offset up to 2 2J J× . 
To avoid the ringing effect 2log (2 / 4)MJ =  (i.e. about a quarter of the dimensions of z) is 
sufficient. Starting with computing 22 J  different initial Haar-like approximations 0,s

ir  by 

(2.18), where 2{1, ,2 }Js∈ …  is the shift of the underlying Haar wavelet basis, we recursively 
define for = 0, ,l L…  and = 1, , zi N…   

  

( )( )

*,

=0

1, 1

= ,

= ( ) ,

l
l j s
i i

j

l s s s l
i i iW S Wμ
+ − −

∑u r

r z u
 (2.28) 

where the shift *s  denotes the best shift (selected by an optimally criterion introduced below) 
of the residual at resolution level l , see Figure 2-11. Note that *s  may differ for each ,l s

ir . 
Within this setting each Reduced Set Vector iz  is then approximated at level l  by l

iu . The 
benefit of the residual structure is that (i) l

iu  converge to iz , if l →∞ , (ii) we can store all the 
residuals and thus they do not need to be recomputed in the cascade step when tuning the 
resolution (i.e. the accuracy of the W-RSV representation) from coarse to fine, and (iii) the 
evaluation of the kernel at runtime is more efficient (detailed later at (2.38) in Section 2.7).  

To incorporate the next optimal W-RSV we have to evaluate the computational cost and the 
discrepancy of the cascaded W-RVM to the original SVM. Such a discrepancy depends on the 
resolution level l and the number i of incorporated W-RSV’s. Only ,l s

ir changes for the 
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optimisation steps over all offsets s. Therefore using the expanded form (2.28) in (2.19) the 
discrepancy of the hyper-planes becomes,     

  ( ) ( ) ( )
1

, , 1 , , 1 2

=1 = 1

( ) = ,
Ni z

l l i l l i l l s l i l
i k k i i i k k FSVM

k k i

sδ γ γ γ
−

− −

+

Ψ − Φ − Φ + − Φ∑ ∑u u r u  (2.29) 

where we set 1 = 0i
−u . The cascade structure is thus achieved when adding residuals 1i i→ +  

and then, after reaching = zi N , passing to the next level 1l l→ + , i.e. subsequently adding 
,l s

ir . Note that for each added residual ,l s
ir  we have to compute a new vector 

, , ,
1= ( , , )l i l i l i

Nz
γ γ γ ′… . Since we are searching for the best shift s  for ,l s

ir a and the optimal ,l iγ ,  

we have to minimise ( )l
i sδ . The optimal vector ,l iγ  can be computed explicitly. Introducing 

the x zN N×  matrix  

 

1 1 1

1 1 1

, ,
, 1 1

1 1 1

1 1
1

( ), ( ) ( ), ( )

( ), ( ) ( ), ( )

=
( ), ( ) ( ), ( )

( ), ( ) ( ), ( )

l l
Nx

l l
i N ix

s
l i s

l l
i N ix

l l
N N Nz x z

v
− −

− −
+ +

− −

⎛ ⎞〈Φ Φ 〉 〈Φ Φ 〉
⎜ ⎟
⎜ ⎟
⎜ ⎟〈Φ Φ 〉 〈Φ Φ 〉⎜ ⎟
⎜ ⎟
⎜ ⎟Φ
〈Φ Φ 〉 〈Φ Φ 〉⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟〈Φ Φ 〉 〈Φ Φ 〉⎜ ⎟
⎜ ⎟
⎝ ⎠

x u

x u x u

x u x u

x u x u

x u x u

…

# % #
…

…

# % #
…

 

with the i -th row  

  1 , 1 ,
1= ( ( ), ( )  ,  , ( ), ( ) )s l l s l l s

i i N i ix
v − −〈Φ Φ + 〉 〈Φ Φ + 〉x u r x u r…  

and the same way the z zN N×  matrix , ,
,

l i sΦu u  with entries ( ), ( )l l
i i

′
′〈Φ Φ 〉u u  but where the i th 

row is replaced with 

1 , 1 , 1 , 1 ,
1

1= ( ( ), ( )  ,  , ( ), ( )  ,  , ( ), ( ) )s l l l s l l s l l s l l s
i i i i i i N i iz

lw − − − −−〈Φ Φ + 〉 〈Φ + Φ + 〉 〈Φ Φ + 〉u u r u r u r u u r… …

and i -th column with ( )sw ′ , we recast the discrepancy ( )l
i sδ  as follows,  

  2 , , , , , , ,
, ,( ) = 2( ) ( ) ,l l i l i s l i l i s l i

i FSVM
sδ γ α γ γ′ ′Ψ − Φ + Φx u u u  (2.30) 

where α  is the vector of the non-vanishing coefficients of the SVM hyper-plane 

=1
= ( )Nx

i iiSVM
αΨ Φ∑ x . Evaluating the derivative of the discrepancy (2.30) and setting it to 0,  

the optimal ,l iγ  is then obtained by  

 , , , 1 , ,
, ,( ) = ( )  l i l i s l i ssγ α−Φ Φu u x u  (2.31) 

and depends thus on s . With the explicit expression (2.31), the discrepancy (2.30) becomes  

  ( )2 , , , , 1 , ,
, , ,S

( ) = ( )   .l l i s l i s l i s
i FVM

sδ α α−′Ψ − Φ Φ Φx u u u x u  (2.32) 
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This of course requires the existence of , , 1
,( )l i s −Φu u  what clearly means then linear independency 

of all involved ( )Φ ⋅ 's. If this cannot be assured, we have to consider a regularised version of 
( )l

i sδ , namely  

  2 , , , , , , ,
, ,S

( ) = 2( ) ( ) ( )  .l l i l i s l i l i s l i
i FVM

sδ γ α γ ρ γ′ ′Ψ − Φ + Φ +x u u u  

This yields  

 , , , 1 , ,
, ,( ) = ( )  l i l i s l i ssγ ρ α−Φ + Φu u x u  (2.33) 

and thus  

  ( )2 , , , , 1 , ,
, , ,S

( ) = ( )   .l l i s l i s l i s
i FVM

sδ α ρ α−′Ψ − Φ Φ + Φx u u u x u  (2.34) 

With the matrix notation, the double-cascade structure now becomes more visible: beside the 
residual cascade with respect to l  in the approximation of each iz  by l

iu , there is for each l  a 

matrix cascade structure with respect to i  that allows to store the entries up to the i-th row in 
, ,
,

l i sΦx u  and up to i-th row and i-th column in , ,
,

l i sΦu u . The remaining entries , ,
, ,( )l i s

n mΦx u  for >m i  

and , ,
, ,( )l i s

n mΦu u  for , >n m i  can be taken from the previous level 1l − . 

We summarise our findings and design the algorithm for the learning stage of the W-RVM 
(see Table 2-1). An example of the approximation of an RSV with the proposed approach is 
shown in Figure 2-11.  
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Table 2-1: Summary of the Training of the W-RVM classifier 

Learning stage of the W-RVM classifier: 
 

Input:  SVM with , , = 1, , ,i i xi Nα x …   
RVM with , , = 1, ,i i zi Nβ z …  

Output:  W-RVM with the rectangle structures of l
ir and the coefficient 

vectors ,ˆ , 1, , ( ), 0, ,l i
zi N l l Lγ = =… …  

1. Set 
=1

= ( )Nx
i iiSVM

αΨ Φ∑ x , 1 = 0i
−u  and set = 0l  

2. Start with = 1i  

3. Compute for 2{1, ,2 }Js∈ … , 2log (2 / 4)MJ =  

 
1

1 , *

=0

=
l

l j s
i i

j

r
−

− ∑u  

                       , 1 1= ( ) ( ( ))l s s s l
i i ir W S Wμ

− −−z u , 

where *s  denotes the best shift, Sμ is the shrinkage function (2.17) 
with the sparsity parameter μ  discussed in Section 2.8 and W is  
the wavelet transform operator 

4. Compute 2{1, ,2 }Js∀ ∈ …  the decrement of the discrepancy (2.34) 

 

2 0
1S

*
1

*
1

if  = 1, = 0 : ( ) = ( )

1if  = 1, > 0 : ( ) = ( ) ( )

else : ( ) = ( ) ( )

l
i FVM

l l
i Nz

l l l
i i i

i l s s

li l s s s

s s s

δ

δ

δ

δ

δ δ

δ δ−

Δ Ψ −

−Δ −

Δ −

 

and the number of operations  
 , ,( ) = 4 #[ ] ( ),l l s l s

i i is r v rωΔ +  

where ,#[ ]l s
ir  is the number of piecewise constant rectangles  

and ,( )l s
iv r  the number of grey values of ,l s

ir  

5. Select the best shift *s  out of { }2
1,2, ,2J…  by  

 * ( )= arg max
( )

l
i
ls
i

ss
s

δ

ω

Δ
Δ

 

6. Save the rectangle structure of 
*,l s

ir  and the coefficient vector  
 , , * , , * 1 , , *

, ,ˆ = ( ) = ( )  l i l i l i s l i ssγ γ α−Φ Φu u x u  

7. If < ( )zi N l , increment i  and proceed to step 3.  
If = ( )zi N l  and <l L , increment l  and proceed to step 2 ( ( )zN l  
                   and L  are obtained using (2.39),(2.40) );  
else, stop.  



Matthias Rätsch; Thesis; 2008  CHAPTER 2.  W-RVM CLASSIFIER 

 41

 
Figure 2-11: Example of cascaded approximating a RSV 

Left: a RSV; right, bottom row: W-RSV's at different resolution levels (left to right: level: 0,1,9,18); top 
row: related wavelet approximated residuals (left to right: level: 0,1,9,18).  

Finally, as a by-product of this section and as a contribution to Section 2.4, we are now able 
to quantify β γ− . Assume, the SVM is given by xN  Support Vectors ix  and the RVM by 

zN  Reduced Set Vectors iz , then with , ,( ) = ( ), ( )i j i jΦ 〈Φ Φ 〉z z z z  and , ,( ) =i jΦx z  

( ), ( )i j〈Φ Φ 〉x z  it is common that 1
, ,=β α−Φ Φz z z x , see [73]. Consequently,  

  
* *, 1 , , 1 , ,

, , , ,ˆ ( )   l i l i s l i sβ γ α− −− ≤ Φ Φ − Φ Φz z x z u u x u  (2.35) 

and since we have ,
l
i i lCμ− ≤u z , by perturbation arguments we also have an entry-wise 

perturbation estimate for the full matrices which in turn yield an estimate for ,ˆ l iβ γ−  in 
dependence on μ  and l  (we omit a detailed examination here). Moreover, as the approxima-
tions l

iu  at resolution level l  tend to iz  as μ  tends to 0 , we have an entry-wise convergence  

  
* *, , , ,

, , , , ,  l i s l i sΦ →Φ Φ →Φu u z z x u x z  (2.36) 

and hence  

  
0* *1 , , 1 , ,

, , , ,( ) 0l i s l i s
μ→

− −Φ Φ − Φ Φ →z z x z u u x u  (2.37) 

2.7. Detection Process 

The classification function of the W-RVM, denoted by ( )l
iy x  of the input patch x , using zN  

W-RSV's at the levels 0, , 1l −…  and i  W-RSV's at the level l  is as follows: 

 

, , 1

=1 = 1

'
2

ˆ ˆ( ) = sgn( ( , ) ( , ) )

1( , ) = exp ( 2 ) ,
2

Ni z
l l i l l i l l
i k k k k i

k k i

l ' ' l l l
i i i i

y k k b

k

γ γ

σ

−

+

+ +

⎛ ⎞− − +⎜ ⎟
⎝ ⎠

∑ ∑x x u x u

x u x x x u u u
 (2.38) 
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where the kernel k  is efficiently evaluated using Integral Images (Section 2.3.1). For the term 
*1 ,2 = 2 2' l ' l ' l s

i i i
− +x u x u x r  only 

*,2 ' l s
ix r  has to be computed, since 12 ' l

i
−x u  can be stored at the 

previous level. The thresholds l
ib  are obtained automatically from an R.O.C. (Receiver 

Operating Characteristic) for a given accuracy. These thresholds are set to yield a given False 
Rejection Rate (FRR) so that the accuracy of the W-RVM can be same as the one of the full 
SVM (see [70] for details). The given False Rejection Rate also controls the trade-off between 
computational cost and detection performance and depends on the requirements of the 
application. If only few false rejections are acceptable (yields higher computational cost and 
more false alarms), a smaller FRR should be adjusted. This ratio between FRR and FAR is the 
only parameter of our algorithm to be set by the user. This ensures a simple to adjust detection 
approach. 

Realising our Double Cascade algorithm (Section 2.5) the detection process goes as see in 
Table 2-2. 

 

 
Table 2-2: Summary of the working stages of the W-RVM classifier 

Working stage of the W-RVM classifier: 
 

1. Start at the first resolution level = 0l . 
 

2. Start with the first W-RSV, 1
lu  at the level l . 

 
3. Evaluate ( )l

iy x  for the input patch x  using (2.38). 
 

4. If < 0l
iy  then the patch is classified as not being the object of 

interest, the evaluation stops. 
 

5. If < ( )zi N l , i  is incremented and the algorithm proceeds to step 3; 
else if <l L , l  is incremented and the algorithm proceeds to step 2; 
otherwise the full SVM is used to classify the patch. 
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2.8. Adjustment of Resolution Levels and Number of 
W-RSV's per Level 

When computing an approximation of an SVM, it is not clear how many approximation 
vectors zN  should be computed (see [73]). This number of vectors may vary depending on 
the level l  of the approximation. To this end, it may be useful to let zN  depend on l . The 
reason is that at a certain point of the evaluation algorithm it is more efficient to increment l  
(and reset i ), rather than to increment i . The best value of ( )zN l  is computed in an offline 
process using a validation dataset: ( )zN l  is set to the smallest i  for which empirically  

 
1

1 1
1

1 1

Nops( ) Nops( ) ,
Nrecs( ) Nrecs( )

l l
i
l l
i

y y
y y

+
+

+
+

>  (2.39) 

where Nops stands for the number of operations and Nrecs stands for the number of rejections 
of the negative examples.  

By a similar evaluation the last used resolution level L  can be achieved. The optimal L  is the 
smallest l that fulfils 

 
1

1

Nops( ) Nops( ) ,
Nrecs( ) Nrecs( )

l
i
l
i

y y
y y

+

+ >  (2.40) 

where y  denotes the decision function of the full SVM (2.1). For this L it is more efficient to 
classify the last few remaining patches by the SVM, instead of incrementing l . L depends 
also on the threshold parameter μ . The smaller μ , the closer is l

iu  to iz  and the fewer 
resolution levels are required. However, the number of levels does not play a decisive role as 
the higher L , the sooner the evaluation process selects the next level, i.e. the less ( )zN l . 
Therefore our proposed approach is not very sensitive to the parameter for setting the 
approximation accuracy (e.g. for μ  in (2.17) a constant 0.8max(abs( ))zλμ =  can be used). 
Opposite to former methods, using only one resolution level, the approach is simple and not 
sensitive to the parameter choice. The evaluation selects the most efficient approximation 
accuracy automatically at detection time. 
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Chapter 3 
 
Face and Facial Feature Detection based 
on the W-RVM 

In this chapter, we develop a real-time face detection system by applying the invented 
classifier from Chapter 2. We show that the novel Wavelet Approximated Reduced Vector 
Machine approach (W-RVM) yields a comparable accuracy to the SVM while providing a 
significant speed-up. We carried out experiments on well-known databases, like FERET [61] 
to provide the comparability to other approaches. In Section 3.3, we want to apply the 
W-RVM and the developed detector principles for a facial feature detection system. We will 
take advantage of a first unification of the 3D Morphable Model and the W-RVM. The 3D 
MM is used to generate synthetic training and validation data. Appling the W-RVM 
classifiers trained on this data we generate detection candidates for all feature points as input 
for the 3D model again. The 3D Prior Shape Model function uses the 3D MM to find the final 
feature assortment within all combinatory possible sets of the candidates for the feature 
points.  

3.1. Data Sets for Training and Validation 

Large and accurate labelled data sets are needed to train and validate classifier. In the case of 
faces there are databases available, like the MIT-CMU database [93] used for face and facial 
feature detection e.g. in [84], [79], [73], the Face Recognition Technology (FERET) program 
database [61] used e.g. in [14], [47], [80], the Biometric Experimentation Environment (BEE) 
for the Face Recognition Vendor Tests (FRVT) and Face Recognition Grand Challenge 
(FRGC) [62] used e.g. in [103], the CMU Pose, Illumination, and Expression (PIE) Database 
[90] used e.g. in [42], or the BioID Face Database [34] used for face detection e.g. in [39], 
[51].  
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We used mainly two databases for the training and validation of the face classifier: The first 
set was crawled from the WWW (WebCrawled face set) by the research group of Hans 
Burkhardt of the University of Freiburg and contains 18,213 faces and 93,630 non-faces. We 
chose this dataset because is has large variations in lighting, pose and expression. As second 
face database, we used the greyscale version of FERET [61]. We chose this well-known 
dataset to provide the comparability to other approaches. In the experiments, we used 
particularly face images sets from our previous projects [73] and from MIT-CMU and BEE. 

If we want to train other objects like arbitrary facial feature points there are no datasets 
available or labels are missing. Moreover, it is important to cover all variations of lighting, 
pose or image noise conditions. Therefore, we use the 3D Morphable Model to generate 
images as training and validation data sets. With the Morphable Model fitting function, 3D 
face representations can be generated from 2D images. Faces can be rendered under varying 
pose and illumination conditions to build a large set of natural and synthetic images.  

The advantage of synthetic data sets is that the illumination, the pose, the noise, etc. can be 
controlled. The size of the training set can be reduced, because specific characteristics can be 
trained and the known range of the parameters (e.g. the pose) can be used to optimise the 
training and detection process. 

3.1.1. Generation of Training Sets using the 3D MM 
On a random face generated by the Morphable Model Toolbox [77] as seen in Figure 3-1, we 
mark points of interest once, e.g. with a vertex picker the red dots as seen left in Figure 3-3. 
These points correspond to vertex numbers within the 3D face space.  

         

Figure 3-1: Random face and corresponding vertex numbers 

The fitting function of the 3D MM generates from a single 2D photograph a 3D face shape 
from a person. Each vertex of this shape is registered to the corresponded point at the 2D 
image (see Section 5.1.1 for an introduction to the MM and the registration). Therefore, 
taking advantage of the 3D MM registration, we know the 2D location for each of the once-
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selected points within each fitted image, e.g. the corner of the mouth, the eyes or the nose tip. 
Now we define the facial feature areas around the defined points. For example as seen in 
Figure 3-2 the feature area of the left eye is defined as the area centred at the average point 
(white cross in image top left) of the left and right corners of the eye (white points, these are 
the corresponding vertex positions of the fitting). The height of the feature is defined equal to 
the distance between the eye corners, and the width is defined as the double of the eye corner 
distance. The once defined area (white corners) can now cut out (middle left image) and 
zoomed to the defined patch size (top left image) for all fitted images (bottom right image). 

      

Figure 3-2: Definition of the facial feature areas  
Using the once pointed vertexes the facial feature areas can be defined in a script, i.e. the location, the 
size within the face, the aspect ratio and the resolution (top right). Then they can be automatically cut out 
(middle left) in all registered images (bottom right) and zoomed to the defined patch size (top left). 

In Figure 3-3 the process is shown from picking the vertex positions (left), defining once the 
areas (middle) and cutting the patches (right) for example for the training set for the left and 
right eye, the nose tip, and the left and right mouth corner.  

  
Figure 3-3: Generation of training sets from the FERET database 

Selecting once points at a random model face, we can select them on all 3D MM registered faces and cut 
out automatically training patches from large sets of images. 
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3.1.2. Generation of Synthetic Training Sets 
In the previous section, we described how to generate training patches from images fitted by 
the 3D MM. The advantage using the MM is that we do not have to label manually the full 
database. In this thesis, we used 1920 fittings from FERET [61]. If we want to use larger 
training sets or specific variations, we can take advantage of the 3D Morphable Model, by 
altering the images within the face space and render new synthetic 2D images. We will 
generate synthetic images at different stages. The first class is taken from the original images 
without any modifications; in the second stage, we alter the environment parameter like the 
pose and the background; in the third, we alter also the texture and at the last stage we use 
additional a synthetic shape. The last class is full synthetic; that means no fitting result of a 
real existing person is used. All classes have advantage and disadvantage which we will 
discus in the following.  

Generation of Training Sets with Natural Environment, Texture and Shape 

If we automatically generate training examples as described in Section 3.1.1, we obtain parts 
of original images without any modifications of the subjects or the environment. The 
advantage of this image class is that the environment, like the lighting, background, image 
noise, the pose and the in-plane rotation and also the shape and texture of the persons are 
natural or natural distributed and so most comparable to image we want to classify with the 
trained W-RVM's. The disadvantage is that the size of the training sets is limited to the size of 
images fitted from the database, also that the variability of the subjects is restricted to the 
available fittings. We used here mostly the FERET database [61]. In that database, for 
example all images have almost no in-plane rotation, so we could not train rotated faces or 
facial features. In addition, we have to consider that the fitting results are flawed. We 
manually excluded not correctly fitted images, but all fittings have a small registration error 
within the range up to 10% of the inter-eye distance, so in the case of the FERET images up 
to five pixels. Therefore, our training and validation sets have in that image class a labelling 
error correlated to the fitting accuracy.   

Generation of Training Sets with Synthetic Environment 

To overcome the limitations using only the original images we want to take advantage of the 
Morphable Model by altering the environment parameter at the 3D space and render faces 
with for example different roll, yaw and pitch angle. The face with the new pose does not fit 
into the original background. In the case of FERET, the original background is anyhow 
unfavourable, because all images have the same homogeneous background with about the 
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same greyscale value. Therefore we generate a synthetic background with Gaussian distribute 
noise, contrast and brightness. The MM uses the phong lighting model. We alter the 3D 
position and intensity of the single light source and the intensity of the ambient light. Also we 
add Gaussian noise to the rendered face area to simulate the different quality of image 
sources. Variations of example images from one fitting of an FERET image are seen in 
Figure 3-4. Because the once selected vertex locations are moved simultaneous within the 3D 
space, we can cut faces or various facial feature areas the same way than for the first image 
class.    

The advantage of this image class is that the subjects are natural, and we can cover all 
variations of the environment parameters as pose, illumination or background. The disadvan-
tage is that we are limited to the number of subjects contained in the fitted set and have to 
handle the fitting inaccuracy.   

 

Figure 3-4: Generation of training sets with synthetic environment 
Changing the environment like the background, lighting, or pose. 

Generation of Training Sets with Synthetic Texture 

In that image class we do not use the original extracted texture, but the by the MM estimated 
model texture, as seen in Figure 3-5 for one subject. All the variations of the environment 
parameter are the same as by the previous class. The advantage is that the accuracy of the 
labels is higher and changing the illumination of the faces has fewer artefacts. The disadvan-
tage is that beards, glasses and other details not represented in the face model are not present 
in these synthetic images. In this class there are also limitations concerning open-mouth 
examples and the gaze direction of the eyes. 
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Figure 3-5: Generation of training sets with synthetic texture 

Generation of Training Sets with full Synthetic Subjects 

Examples were no fitting of a subject is used are shown in Figure 3-6. The texture and the 
shape parameter of the 3D MM are randomly chosen. This class can be used for the synthesis 
of many variations within the class of human faces, because each data point in the model 
space is again a face. The advantage is that an unlimited number of faces can be generated 
and the labels are absolutely correct, because no fitting is used. The disadvantage is that, like 
in the previous class, only characteristics represented in the model can be rendered.   

Taking in account that all classes have advantages and disadvantages we use a mixture of 
examples from these four classes. We could show that the accuracy of the classifiers 
improved using different classes of synthetic images. We worked out specific experiments 
using the introduced synthetic images classes within the W-RVM Regression project (see 
Section 5.2.3). 

 

Figure 3-6: Synthetic texture and shape of not existing individuals 
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3.1.3. Generation of Negative Training Sets 
In addition, a wide range of negative examples is needed to train the classifier. In most 
approaches, images where no faces are present for sure are used to generate negative 
examples. However, in our approach we want to use the facial feature detectors only within 
the before detected face areas (see Section 3.5). Therefore, the negative examples should be 
mostly taken from these images areas to obtain best results, but we have to ensure that no 
positive examples are included. The 3D MM can be exploited again.  

Comparable to the definition of facial feature areas in Section 3.1.1, we select points of 
interest in a random model face (e.g. red crosses in Figure 3-7, top left). Now we can use the 
selected vertex positions in all registered images, fitted by the MM. We define once a face 
area we want to exclude for this feature point. In Figure 3-7, top left, this area is visualised for 
the left eye as bright area. The excluded area is in that case defined by the distance between 
the left and right corner of the eye around the eye corners (so that the overlap of a negative 
patch with the nearest positive examples is less then a quarter).  

Now we can randomly select patches from the image and add them to the negative training or 
validation set if their centre lay not within the excluded area. For example in Figure 3-7, top 
right the bright patch is not cut out, zoomed to the defined patch size and added. We also 
compute the variance within the image and threshold areas with a small value as seen in 
Figure 3-7, top middle as white areas. Only few negative examples should be located at the 
background or homogeneous parts of the images. If this limited number per image is reached 
(visualised as black patches in Figure 3-7, top right), then only patches with a higher variance, 
i.e. not located in the white parts of the top middle image, are added (visualised as white 
patches in Figure 3-7, top right).  

At the working process of the detectors, different zooming levels of the images are used to 
detect facial feature points with different size. Therefore, also the negative examples should 
cover images areas with different resolution. This is realised using the same procedure above 
on different zooming levels of the example images as demonstrated in Figure 3-7, bottom 
row.  

The four classes of synthetic images are used the same way as defined for the positive 
examples. Images are synthesised with many variations within the class of human faces and 
variations of the appearance, such as pose or illumination. To improve the accuracy of the 
classifier bootstrapping can also be used. That means after a first training of a classifier the 
negative training set is enlarged by false positive patches obtained by this classifier. Then, a 
new improved classifier can be trained on the larger training set. 
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Figure 3-7: Generation of Negative Training Sets 

3.2. Applying the W-RVM for Face Detection 

First, we applied our novel Wavelet Approximated Reduced Vector Machine to the task of 
face detection. In Section 3.1, we introduced the FERET and WebCrawled face database we 
used for training and validation.  

The training set includes 3500, 20 20× , face patches and 20000 non-face patches from the 
WebCrawled dataset. The SVM computed on the training set yielded about 8000 Support 
Vectors that we approximated by 90zN =  W-RSV’s at L = 5 resolution levels by the method 
detailed in the previous chapter (e.g. L using (2.40)). For the OCWT (Section 2.3.4) we used 
the classical mirroring for adequately continuing the image beyond the boundaries. 

As first validation set (set I) we used 1000 face patches, and 100,000 non-face patches 
randomly chosen also from the WebCrawled dataset images, but disjoint from the training 
examples. The first graph on Figure 3-8 plots the residual distance of the RVM (dashed line) 
and of the W-RVM (plain line) to the SVM (in terms of the distance -  SVM RVMΨ Ψ and 

-  -  SVM W RVMΨ Ψ ) as a function of the number of vectors used. It can be seen that for a given 
accuracy more Wavelet Approximated Set Vectors are needed to approximate the SVM than 
for the RVM. However, as shown on the second plot, for a given computational load, the 
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W-RVM rejects much more non-face patches from the validation set I than the RVM. This 
explains the improved runtime performances of the W-RVM. Additionally, it can be seen that 
the curve is smoother for the W-RVM, hence a better trade-off between accuracy and speed 
can be obtained by the W-RVM.  

 
Figure 3-8: Distance of the hyper-planes and rejections over number of operations 

Left: Hyper-plane discrepancy as function of the number of vectors for the RVM (dashed line), and the 
W-RVM (solid line). Right: Percentage of rejected non-face patches as a function of the number of opera-
tions required. 

The improved runtime performances of the W-RVM compared to the RVM is convincingly 
evidenced in Figure 3-9. Here we compare the percentage of rejected non-faces of the 
W-RVM (plain lines) and RVM (dashed lines) over number of operations required only for 
the patches left at each set vector.  

       
Figure 3-9: Percentage of rejection over number of operations 

Percentage of rejected non-face patches as a function of the number of operations required only for the 
patches left at each set vector. 

Using higher thresholds for the RVM, jb in (2.3) and the W-RVM, l
ib in (2.7) we obtain a 

higher rejection rate but also more false rejections (see Section 2.7 for the adjustment of the 
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trade-off between the False Acceptance and False Rejection Rate). Hence, we have to 
compare the rejection rate by the same FRR for the W-RVM and RVM (see dash-dotted 
lines). We plotted the rejection rate for three different threshold sets (green, blue and pink 
lines) for the RVM and W-RVM. For a comparable FFR the W-RVM needs for the same 
percentage of rejections 10 to 20 times fewer operations compared to the RVM approach. 
This drastic decrease of operations yields a very efficient detection method by an early 
rejection of large parts of the images as seen by the detections experiments or on the example 
in Figure 3-11. 

Figure 3-10 shows the R.O.C.’s, computed on the validation set I for the SVM (dotted line), 
the RVM (dashed line) and the W-RVM (plan line). It can be seen that the accuracies of the 
three classifiers are similar without (left plot) and almost equal with the final SVM classifica-
tion stage (see step 5. of the evaluation algorithm in Table 2-2) for the remaining patches 
(right plot). 

 

Figure 3-10: R.O.C.’s for the SVM, the RVM and the W-RVM 
R.O.C.’s for the SVM, the RVM and the W-RVM (left) without and (right) with the final SVM classifi-
cation for the remaining patches. The FAR is related to the number of non-face patches. 

Table 3-1 compares the accuracy and the average time required to evaluate the patches of the 
validation set I. The speed-up over the former approach [70] is about a factor 2.5 (3.85μs). 
The novel W-RVM algorithms provides a significant speed-up (530-fold over the SVM and 
more than 15-fold over the RVM), for no substantial loss of accuracy. 

 

  
Table 3-1: Comparison of the efficiency of the approaches 

Comparison of accuracy and speed improvement of the W-RVM to the RVM and SVM. 
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Figure 3-11  shows an example for applying the trained W-RVM classifier for face detection. 
The algorithm summarised in Table 2-2 is applied on each pixel location of the image using a 
sliding-window method on the image pyramid (Figure 2-2). The example demonstrates the 
fast rejection of large image areas. By increasing the stages of the cascade fewer and fewer 
patches have to be evaluated. After the last W-RSV, only five image locations have to be 
classified using the full SVM. For large areas of the image, the evaluation already stops after 
incorporation of only a few W-RSV's. 

           
Figure 3-11: Example demonstrating fast rejection of large image areas 

From top-left to bottom-right: Input image from MIT-CMU database [93] followed by images showing 
the amount of rejected locations at the 1st, 3rd and 50th stages of the cascade. The white pixels are re-
jected patch centre and the blue-to-red colour gradient of a pixel is proportional to the output of the 
W-RVM evaluation. The penultimate image shows a box around the pixels alive at the end of the W-
RVM cascade and the last image, after the full SVM is applied. 

The validation set II contains 500 frontal and half profile images from the FERET database 
[61]. We compared our approach with the Viola & Jones method [102] implemented in 
OpenCV (version b5a). The Viola & Jones detector yields on set II a detection rate of 90.9% 
by 0.32 false acceptances (FA) and 0.29 sec per image (on a Pentium M Centrino 1600 CPU). 
Compared to the results given in [102] the processing time is slower since the image size of 
the FERET images is larger. The results on FERET are more accurate because of the higher 
quality of the images. With the W-RVM we obtained on the same PC and set II a detection 
rate of 90.1% by 0.25 FA and 0.15 sec processing time per image.  

example for  
face detection 

after 1st W-RSV:  
10.3% 

3rd W-RSV:  
6.6% 

50th W-RSV: 
0.5% 

after -W-RVM 
cascade 

after final SVM 
stage 
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Our proposed classifier is more efficient at detection, but mainly at training time than the 
AdaBoost method [102] and classifies about 25 times faster than the Rowley-Baluja-Kanade 
detector [79] and about 1000 times faster than the Schneiderman-Kanade detector [85]. 

We also proved the performance and detection accuracy under real-life conditions, e.g. during 
the I-Search project [54] and in several other applications (see Chapter 4). With the webcam 
application FaFaDe (see Section 4.1.2) we obtained accurate face detection at real time by 25 
fps (on a Intel Pentium M Centrino 1600 CPU, at a resolution of 320 240× , step size 1 pixel, 
5 scales). 

3.3. Applying W-RVM for Facial Feature Classifiers 

Now we want to apply the W-RVM and the developed detector principles for a facial feature 
detection system. First, we want discuss which facial points we want to choose on a catalogue 
of criteria. Then we will train the W-RVM classifiers on the variety of synthetic training and 
validation sets.  

3.3.1. Multi Criteria Evaluation of Optimal Facial Features 
We want to choose facial feature points, which can be detected with a high detection rate. The 
results should be comparable with other approaches, common in computer vision and 
medicine so that they can be used by many applications. The feature points should also allow 
an automatic fitting of the 3D MM. These are only some of the criteria we want to consider, 
but already they are partly contradictory.  

To find a multi criteria optimal set of feature points we start by two for computer vision and 
computer science common sets (Figure 3-12). The first set is the MPEG-4 standard [72], 
defined in the norms "ISO/IEC 19794-5:2005 for Face Image Data" and "ISO/IEC 14496-
2:2001(E) for Coding of Audio-visual Objects in Annex C" from the International Organiza-
tion for Standardization (ISO) and the International Electrotechnical Commission (IEC). The 
MPEG-4 standard is also used by the US face image standard ANSI/INCITS 386-2004. The 
MPEG-4 standard is important because it is used by many applications to store or transfer 
facial data, or to animate facial expressions of characters. The second set are the Anthropol-
ogy Landmarks, also know as Farkas points [28] obtained from anthropologists and forensic 
medical experts. 
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Figure 3-12: Standard facial features in computer vision and medicine 
The MPEG-4 ISO norm (left) [72], and Anthropology landmarks (right) from Farkas [28]. 

In medicine, some points are used as references, because they are invariant and can reference 
facial points by the Canonical Anthropometric Coordinate System (“Frankfurter Horizontal” 
(FH)).  In the Canonical Anthropometric coordinates the point of origin O coincides with the 
pronasale (prn) anthropometric landmark, which is merely the nose endpoint. Z-axis is formed 
by the intersection of the Frankfurt Horizon (FH) and the vertical symmetry plane and is 
oriented in the direction of the face sight. Y-axis is the normal of FH going through prn 
oriented upwards. X-is oriented in a way to form a standard orthogonal Cartesian coordinate 
system OXYZ with the other two axes [28]. In the comparative anatomy often used to 
reference facial points or to measure the "facial angle" are the Camper plane2 and the 
Occlusion plane (Figure 3-13). 

                        

Figure 3-13: Medical criteria for the evaluation of optimal facial features 

                                                 

2 Peter Camper is known for his theory of the "facial angle" in connection with intelligence. This "facial angle" 

was abused by scientific racism theories, by claming that antique Greco-Roman statues presented an angle of 

90°, Europeans of 80°, Black people of 70° and the orangutan of 58° [97]. 
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Our goal is to use the facial feature points for automatic anchor-point detection used to 
initialise the 3D MM fitting (see Section 5.1.2). In Figure 3-14 we show anchor-points which 
turned out for best-fitting results. For contour points the W-RVM detector will not be the 
appropriate method, because template-based approaches i) cannot detect feature, where large 
parts of the area are unknown background and ii) the position on the contour is not fix 
defined, hence contour-based methods are better suitable. We did experiments to rank the 
Anthropology landmarks concerning the fitting criteria. The feature points should be useful 
for other applications, like for pose estimation and accurate with respect to manual labelling. 

            

Figure 3-14: Anchor-points optimal as initialisation for the 3D MM fitting 

Criteria for the facial feature points are also a high reliability of finding the points, they 
feature should have high saliency in a certain neighbourhood, so that they are not confound 
with other features, and have a high estimability, by using locations of other feature points. 
Feature points taking in account above criteria should yield a high detection rate. Heisele et 
al. proposed an automatic strategy to find optimal components by learning relevant features 
from sets generated by the 3D MM. It starts with a set of small seed regions. These regions 
are translated and grown by minimising a bound on the expected error probability of an SVM 
(see e.g. in Figure 3-15). The advantage is that no manual interaction is required for choosing 
and extracting the components [41], [42], [43].  

         

Figure 3-15: Optimisation of the position and size of facial features by Heisele et al. 
For instance, as seen in the left image, the dimensions of the feature "centre of mouth" are adjusted to a 
maximal recognition rate. This yields a set of optimal features, used for component-based face detection 
(right). 
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Important for the selection of the facial features is also invariance of the feature positions 
w.r.t. expression and aging and of the areas used to detect the feature point, w.r.t. scale, pose, 
and illumination, e.g. if the features are visible on a large range of pose variations. Here we 
take advantage again from Heisele et al. (see Table 3-2); he shows a ranking of the features in 
assumption with Farkas landmarks according to the standard deviation of the recognition rate 
across pose and according to the standard deviation across identity. 

Comp  CVRate  Comp  σPose Comp  σID  
1, 2 (p) 0.925 6 (prn) 0.009 14 (pg) 0.018 
14 (pg) 0.915 11, 12 (sci) 0.025 4, 5 (ch) 0.021 
11, 12 (sci)3  0.905 7, 8 (al)  0.028 11, 12 (sci) 0.021 
4, 5 (ch) 0.892 3 (sto) 0.031 13 (g) 0.023 
3 (sto) 0.888 14 (pg) 0.032 9, 10 (?) 0.023 
9, 10 (?)4 0.877 1, 2 (p)  0.033 1, 2 (p)  0.027 
13 (g) 0.864 13 (g) 0.035 7, 8 (al)  0.030 
7, 8 (al) 0.846 4, 5 (ch, ch) 0.047 3 (sto) 0.042 
6 (prn) 0.796 9, 10 (?) 0.061 6 (prn) 0.075 

Table 3-2: Optimal features in the scenes of recognition rate and invariance  
The table left shows the recognition rate via cross validation (CVRate) of the optimal components (right) in 
assumption with Farkas landmarks and invariance w.r.t. pose and subjects [44]. 

From all above discussed criteria we build a multi-criteria catalogue (see Table 3-3) and 
estimated a ranking (see e.g. Table 3-4 and complete ranking in Table C-4) of the set of 
features defined by Farkas landmarks and the MPEG-4 standard (see Figure 3-16). 

      

Table 3-3: Criteria for evaluation of optimal facial features 

 

                                                 

3 no Farkas anagoges, for MPEG4 4.5, 4.6, sci nearest Farkas landmark 
4 no Farkas anagoges, for MPEG4 5.3, 5.4 

Criteria for evaluation of optimal facial features: 
a) Invariance of position w.r.t. expression and aging 
b) Invariance of the area used to detect the feature point, w.r.t. scale, 

pose, and illumination 
c) Visibility 
d) Reliability of finding the point  
e) Saliency (in a certain neighbourhood) 
f) Estimability (using locations of other feature points) 
g) ISO compatibility  
h) Accuracy of manual labelling 
i) Usefulness for pose estimation 
j) Usefulness for the MM fitting 
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Figure 3-16: Definition of MPEG-4 and Anthropology landmarks 

Definition of the MPEG-4 ISO norm [72] and Anthropology landmarks from Farkas [28] as used in the 
first and second column in Table 3-4, 3-5, and C-4. 
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p  3.5 3.6  Center point of 
pupil  

5 4 4 5 5 5 4 5 4 4 4,5 1 label 
available! 

Is determined when the head is in the rest position and the eye is 
looking straight forward  

prn  9.3  Pronasale  2 5 5 2 3 5 4 2 5 5 3,8 1 label 
available! 

The most protruded point of the apex nasi  

ch  8.3 8.4  Cheilion  2 2 3 4 5 4 4 5 4 5 3,8 1 label 
available! 

The point located at each labial commissure  

ex  3.7 
3.12  

Exocanthion (or 
ectocanthion)  

4 4 4 4 4 4 4 5 5 5 4,3 2 label 
available! 

The point at the outer commissure of the eye fissure  

Is  8.1  Labiale (or 
labrale) superius  

3 4 4 4 4 5 4 5 4 5 4,2 2  The midpoint of the upper vermillion line  

sbal   Subalare  4 4 3 4 3 4 2 5 3 5 3,7 2  The point at the lower limit of each alar base, where the alar base 
disappears into the skin of the upper lip  

Table 3-4: Part of the evaluation table for evaluation of optimal facial features 
The complete evaluation is seen in Table C-4. Even if prn and ch have smaller average values, they have 
got the highest rank, because for these feature points are ground truth as labels available, moreover prn is 
essential for pose estimation and ch for the initialisation of the MM-fitting. 

As resume, we evaluated an average of all criteria and made a ranking over the catalogue, 
evaluating which facial features we want to train first, see Table 3-5. The first five features 
are le, re, nt, lm, and rm. It turned out by the training of the facial feature detection system 

                                                 

5 see: Heisele et al. [44], [41], [42], [43] 

6 1: first, 2: second,… 5: last 
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(Section 3.5) that more facial features are needed. We chose the features lx, rx, ls, lb, and rb 
using the ranking of our multi-criteria catalogue. Taking advantage from a further unification 
of the W-RVM detectors and 3D MM we want to apply detectors also e.g. for sci, g, li, en, 
and sba. However, the detection can be applied in areas with reduced size using rather small 
uncertainty areas obtained by the PSM (see Section 3.6 and uncertainty areas in Figure 3-35). 
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p  
(centre point 
of pupil)7 

3.5  4,5 1 left eye le red 'x' Is determined when the head is 
in the rest position and the eye is 
looking straight forward 

ditto 3.6 4,5 1 right eye re blue '+' ditto 

prn  
(pronasale) 

9.3 4.0 1 nose tip nt green '\/' The most protruded point of the 
apex nose 

ch  
(cheilion) 

8.3 3.8 1 left mouth 
corner 

lm yellow '<' The point located at each labial 
commissure 

ditto 8.4 3.8 1 right mouth 
corner 

rm magenta '>' ditto 

ex 
(exocanthion) 

3.12 4.3 2 left eye 
corner 

lx orange '┤' The point at the outer 
commissure of the eye fissure 

ditto 3.7 4.3 2 right eye 
corner 

rx cyan '├' ditto 

ls 
(labiale 
superius) 

8.1 4.2 2 upper lip 
point 

ls beige '┬' The midpoint of the upper 
vermillion line 

sbal 
(subalare) 

- 3.7 2 left nose 
corner 

lb  brown '/\' The point at the lower limit of 
each alar base, where the alar 
base disappears into the skin of 
the upper lip 

ditto - 3.7 2 right nose 
corner 

rb lemon '⊥' ditto 

Table 3-5: Facial feature points chosen for the thesis 
As result of the multi-criteria evaluation, we chose first the top five and later additional the bottom five 
points as facial features. 

3.3.2. Training of the W-RVM's for Facial Features 
After choosing the optimal facial features in the previous section we trained the first three 
W-RVM classifiers (one for the left and right eye (le, re), one for the nose tip (nt), and one for 
the left and right mouth corner (lm, rm)). Later we added W-RVM classifiers for the eye 
corners (lx, rx), the upper lip point (ls), and nose corners (lb, rb). 

                                                 

7 We choose the average point of the left and right eye corners, what is similar to p if the eye is looking straight 

forward, as described for "how to point" p. 
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Because of the symmetry of some features, we can train only one of the classifiers and 
generate the second classifier by mirroring the W-RSV's (and SSV's for the final SVM stage). 
For instance, it is sufficient to train the left eye classifier and to use the mirrored version for 
the right eye.  

We implemented an application for a full automatic training of the classifiers. For the 
generated training and validation sets, the training of the SVM, the RVM, and the W-RVM is 
processed. To verify the accuracy and efficiency of the W-RVM training the decrease of the 
distance to the SVM hyper-plane over number of operations is plotted in comparison to the 
RVM approach. Also the adjustment of the trade-off between FAR and FRR, controlled by 
the thresholds for the W-RSV's is automatically generated. For the validation of the accuracy 
of the trained classifiers, the R.O.C.'s are generated automatically for the SVM, RVM, and 
W-RVM stages. Additional the evaluation of the percentage of rejections over the number of 
used operations to validate the efficiency of W-RVM's are generated. The application is 
detailed in Appendix B, C, and in the online help of the software packed). 

For the training of the W-RVM's for the facial features, we used the identical approach as for 
the face classifier. The training algorithm in Table 2-1 and detailed in Section 2.6 is used. 
Therefore, we will concentrate here on describing the results of the training and validation.  

Training of the SVM's for all Facial Features 

We generated for all classifiers the training and validation set as described in Section 3.1 by 
using a mixture of original images and different classes of synthetic images. For pairwise 
existing features we can use the mirrored training and validation sets, e.g. for the right eye 
generated patches to train the left eye classifier. For a detailed description of the sets see 
Table B-1 in Appendix B. 

For the training of the Support Vector Machines, we used a recursive grid search to optimise 
the kernel parameter and bound C. We used the open library libSVM as implementation. 

We trained for all features two classifiers, one small classifier for first tests and one large 
classifier for real applications. A detailed description of the resulting SVM's, e.g. the number 
pos./neg. number of SSV's, the optimal kernel parameter and bound C, etc. can be seen in 
Table C-3. 

The trained R.O.C.'s for all facial features are compared in Figure 3-17. The facial features 
are more ambiguous as the full face (black line), therefore the accuracy of the face classifier is 
the highest. Within the working range of 1e-2 to 1e-1 (1% to 10%) FAR the feature "nose 
corners" (lb) performs best. The most difficult to train feature is the nose tip (nt), because this 
feature depends much on pose and lighting conditions. 
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Figure 3-17: Trained Support Vector Machines for all features. 

The trained R.O.C.'s for all facial features are compared. The facial features are more ambiguous than the 
full face (black line), therefore the accuracy of the face classifier is the highest. Within the working range 
of 10-2 to 10-1 (1 to 10%) FAR nose corners (lb) perform best. The most difficult to train feature is the 
nose tip (nt), because this feature depends much on pose and lighting conditions. 

Training of the W-RVM's for all Facial Features 

After the training of the SVM's we generate the RVM's and the application is preceding the 
training of the W-RVM's as detailed in Table 2-1 and described in Section 2.6 

To verify the accuracy and efficiency of the W-RVM training the decrease of the distance to 
the SVM hyper-plane ( 2-  SVM W RVM−Ψ Ψ / 2

SVMΨ ) over number of operations is plotted in 
comparison to the RVM approach ( 2-  SVM RVMΨ Ψ / 2

SVMΨ ). 

As example, we show in Figure 3-18 for the facial feature "upper lip point" (ls) the decrease 
of the distance to the SVM decision hyper-plane over number of used operations during the 
training process. The W-RVM (green) uses significant fewer operations as the RVM (blue) 
for the same decrease of the distance to the SVM hyper-plane. Most rejections are done by the 
first approximation level (label L1). Up until this approximation level, the W-RVM needs 10-
fold fewer operations as the RVM. That means we gain a speed-up factor about one 
magnitude for efficiency by the approximation the SVM decision hyper-plane. This 
theoretical improvement must be verified for the classification on validation sets. 

W-RVM's Stages for all Facial Features 

As result of the W-RVM training, we obtain the W-RSV's and weights of the vectors (see 
Output of the W-RVM learning stage Table 2-1). Because of the Double Cascade, non-feature 
patches are rejected after incorporating each W-RSV's. The therefore used set of thresholds is 
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set for a given FRR using the R.O.C.'s to guaranty not to lose more features patches as 
adjusted. An array of threshold sets is automatically adjusted for given FRR's (see Section 2.7 
and 2.8). So the trade-off between FAR and FRR can be calibrated by the user of front-end 
applications.  

     
Figure 3-18: Decrease of the hyper-planes distance over number of used operations 

These curves demonstrate on the example of the facial feature "upper lip point" (ls) that the W-RVM 
(green) uses significant fewer operations as the RVM (blue) for the same decrease of the distance to the 
SVM hyper-plane. Most rejections are done by the first approximation level (label L1). Up until this ap-
proximation level, the W-RVM needs 10-fold fewer operations as the RVM. 

All trained W-RVM's at this thesis are detailed in Appendix C, Table C-1, e.g. which training 
and validation set was used, which SVM and RVM, and all training parameters.  

Each W-RVM classifier contains the fast W-RVM stage and a final complex SVM for the 
remaining patches after applying the Double Cascade (see Table 2-2). In Figure 3-19, we 
show on the example of the mouth corner (lm, magenta lines) the R.O.C.'s of the trained W-
RVM stages. The R.O.C.'s of the SVM's of the facial features (e.g. the magenta plan line for 
the SVMlm) are not as good as from the SVM of the face classifier (black plan line). One 
reason is that the facial features are more ambiguous regarding the local image representation 
and the other reason is that we used for the training and validation of the features more 
complex data by taking advantage of generating synthetic sets with a large verity concerning 
pose, lighting, noise, etc. conditions. Therefore, the hypothesis space to be learned by the 
SVM is more complex. 

For the same detection rate (respectively same FRR) the FAR of the first W-RVM stage for 
the features (e.g. dotted line in Figure 3-19) is higher than the FAR of the single SVM (plan 
magenta line). However, this stage rejects many non-feature points by few operations. With 
the final full SVM stage, the W-RVM (dashed line) gains the same classification accuracy as 
the single SVM within the working range of 1e-2 to 1e-1 (1% to 10%) FAR.  
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Figure 3-19: Training stages of the W-RVM for the mouth corner 

The R.O.C.’s for the trained W-RVM stages for the mouth corner (lm, magenta) are shown. For the same 
detection rate (respectively same FRR) the FAR of the first W-RVM stage (dotted magenta line) is higher 
than the FAR of the single SVM (plan magenta). However, this stage rejects many non-feature points by 
few operations and with the final full SVM stage the W-RVM (dashed line) gains the same classification 
accuracy as the single SVM within the working range of 10-2 to 10-1 (1 to 10%) FAR. 

Verifying the Accuracy and Efficiency of the W-RVM's  

The R.O.C.’s of the SVM's of the facial features (e.g. the magenta plan line for the SVMlm in 
Figure 3-19) are not as good as of the SVM of the face classifier (black plan line) as discussed 
above. For the same reason also the R.O.C.’s of the final W-RVM's in Figure 3-20, dashed 
lines cannot achieve the performance of the face classifier (plan line).  

            
Figure 3-20: Trained W-RVM's for all facial features 

The trained R.O.C.'s of the W-RVM's for all facial features are compared. The facial features are more 
ambiguous than the full face (black line), therefore the accuracy of the face W-RVM classifier is the 
highest. Within the working range of 10-2 to 10-1 (1 to 10%) FAR the nose corners (lb) perform best. The 
most difficult to train feature is the nose tip (nt), because this feature depends much on pose and lighting 
conditions. 

In Section 3.5, we introduce a cascaded detection framework to overcome the higher FAR of 
the facial feature classifiers. The FAR is reduced by a correlation classifier applied in 
Section 3.6.  
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The R.O.C.'s of the final trained W-RVM's for all facial features are compared in Figure 3-20. 
Within the working range of 1e-2 to 1e-1 (1% to 10%) FAR the nose corners (lb) perform 
best. The most difficult to train feature is the nose tip (nt), because this feature depends much 
on pose and lighting conditions. Hence, the to-be-learned hypothesis space of the nose tip is 
more complex. 

The improved runtime performances of the W-RVM's compared to the RVM's is convinc-
ingly evidenced for the upper lip feature in Figure 3-21. Here we compare the percentage of 
rejected non-features of the W-RVM (plain lines) and the RVM (dashed lines) over the 
number of operations required for the patches left at each step of the cascade. We compare the 
rejection rate (RR, lines with marker '•') for two threshold sets (red plots have a lower FRR as 
the green plots). To compare the RR a similar FRR (lines with marker '+') for the W-RVM 
(dotted lines) and RVM (dash-dotted) have to be used. The W-RVMls needs for the same 
rejection rate (plan lines) factor 10 to 20 fewer operations as the RVMls (dashed lines). The 
speed-up over the original Support Vector Machine approach is about the factor 500.  

 
Figure 3-21: Rejection rate of the W-RVMls and RVMls over number of used operations 

The Percentage of rejected non-features as a function of the number of operations is shown for two 
threshold sets (red with lower FRR as green lines). Only the operations required for the patches left at 
each set vector are considered. The W-RVMls needs for the same rejection rate (RR, plan lines, marker 
'•') factor 10 to 20 fewer operations as the RVMls (dashed lines, marker '•') by a comparable FAR's (dot-
ted and dash-dotted lines, marker '+'). This yields a speed-up compared to the original SVM approach by 
a factor about 500. 
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3.4. Probabilistic W-RVM Classifier 

The evaluation function of an SVM and a W-RVM computes for a data point the distance to 
the decision hyper-plane. The classification is obtained by applying the signum function on 
the distance (e.g. (2.1) for the SVM). The distance to the hyper-plane can be used as certainty 
for the classification (a high absolute value indicates a certain decision). However, for post-
processing and several applications it is more suitable to use a probability instead of a not 
calibrated distance measure. For instance, probabilistic output is required to compare the 
output of different classifiers, by the PSM in Section 3.6 to find the final facial feature 
assortment, or for the Condensation tracking in Section 4.3.1 and 5.2.4. Standard SVM's and 
our W-RVM from Chapter 2 do not provide such probabilities. We introduce some techniques 
to obtain a posterior probability output and obtain best results for our Probabilistic W-RVM 
by a Sigmoid Fitting function.  

We compute the a-posteriori probability ( )W-RVM W-RVM|
ffp ffpffpp tx  (or shorter ( | )ffp ffp ffpp tx ) of 

the W-RVM outputs of the feature detectors, where ( | )ffp ffp ffpp tx  is the probability that the 
image position ffpx  is a valid feature point ffp given the output ffpt of detector W-RVM ffp  of  

feature ffp . We compute ( | )ffp ffp ffpp tx  by 

 ( ) ( ) ( )
( ) ( ) ( ) ( )

|
|

| |~ ~
ffp ffp ffp

ffp ffp ffp
ffp ffp ffp ffp ffp ffp

p t p
p t

p t p p t p
=

+

x x
x

x x x x
 (3.1) 

where ( )ffpp x  is the prior that the position is a correct ( ( )~ ffpp x  not correct) detection for 
the feature ffp  (i.e. the distance to a label is smaller (larger) as a given threshold, or the ratio 
of the number of positive (negative) to the number of all examples in a validation set).  

3.4.1. Variants of Non-parametric Techniques for PDF Estimation 
For  the  likelihood  ( )|ffp ffp ffpp t x   of the W-RVM output  ffpt  w.r.t. ffpx  (likelihood  that  the  

classifier W-RVM for the facial feature point ffp produces the output t, given x is an image 
position of the feature point ffp), we estimate the density function (PDF) by different non-
parametric techniques and discuss the results. First, we used histogram methods as seen in 
Figure 3-22. 
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The improvement of the selection of the final feature assortments using histogram methods 
for the PDF of the W-RVM outputs was not significant. The PDF estimation by non-
parametric histogram methods was not sufficiently accurate. 

To improve the PDF estimation for the likelihood ( )|ffp ffp ffpp t x  of the W-RVM output 

ffpt w.r.t. ffpx  we tested then a parzen windows method. 

 ( )
1

1| i
N

ffp ffp
ffp ffp ffp

i

t t
p t x K

Nh h=

−⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ , (3.2) 

where N  is the number of examples in a validation set. As kernel function we tried a smooth 
kernel ( )2( ) 1 2 exp 1 2K z zπ= − . 

           
Figure 3-22: PDF estimation by non-parametric histogram method 

On the example of the nose tip feature, nt the histogram of the classifier output for the negative examples 
(red), the positive (blue), and the estimated PDF (green) is shown. 

However, similar to the size of the bins (used be by the histogram technique), the parzen-
window method is sensitive to the size of h (see Figure 3-23). 

 
Figure 3-23: Histogram method is sensitive to the size of the bins 

On the example of the nose-tip feature, it is seen that the size of the bins is sensitive. Using 18 bins (mid-
dle) is suitable, but e.g. 15 bins are too few (left) and 25 too many (right). 

The choice of the bandwidth h is still critical, since we tested also k-NN estimation, where the 
PDF is estimated from N  training samples by centring an interval ( )ffpd t  around ffpt and let 
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it grow until it captures k examples. So we evaluate the prior by ( ) /( ( ))ffp ffpp t k Nd t= , the 
density with ( | ) / ( ( ))

ffp ffpffp ffp ffpp t k n d t= x xx  and the evidence with ( ) /
ffpffpp n N= xx , where 

ffp
kx is the number of samples in k with correct position ffpx for the feature ffp  (and 

respective ~ ffp
k x the number of not correct position, so that ~ffp ffp

k k k= +x x ) and 
ffp

nx is the 

number of positive and ~ ffp
n x the number of negative samples in N for ffp  ( ~ffp ffp

N n n= +x x ). 

Now we can evaluate the a-posteriori probability (3.1) with ( )| /
ffpffp ffp ffpp t k k= xx , since 

( ) ( )
( ) ( )

( )
( ) ( )

( )
( ) ( )

~ ~ ~ ~ ~ ~

~ ~

/ / /
|

/ / / / / /

/
/ /

ffp ffp ffp ffp ffp ffp

ffp ffp ffp ffp ffp ffp ffp ffp ffp ffp ffp ffp

ffp ffp ffp

ffp ffp ffp ffp

ffp ffp ffp

k n d n N k n n dN
p t

k n d n N k n d n N k n n dN k n n dN

k dN k k
k dN k dN k k k

= =
+ +

= = =
+ +

x x x x x x

x x x x x x x x x x x x

x x x

x x x x

x
 

or shorter using ( ) ( ) ( )( ) ( )| | /ffp ffp ffp ffp ffp ffp ffpp t p t p p t=x x x  

 ( ) ( )( )
( )( )

( )
( )

/ /
|

/
ffp ffp ffp ffp ffp ffp

ffp

ffp ffp
ffp ffp ffp

ffpffp

k n d t n N k n Nd t k
p t

kn d t Nkk Nd t
= = =

x x x x x x

x

x  (3.3) 

The choice of k is also critical and comparable to the bandwidth h by the parzen-window 
method, but simpler to compute and the results improved as seen in Figure 3-24. 

  

Figure 3-24: PDF estimation by non-parametric k-NN estimation 
The k-NN method is also sensitive to the size of k in (3.3). Using k=100 (left) is suitable, but e.g. 50 is 
too small (right top) and 200 too large (right bottom). 
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3.4.2. Probabilistic W-RVM using Sigmoid Fitting 
The estimation of the PDF (class-conditional probability) using histogram, parzen-window, or 
k-NN methods is not stable enough. The best results we obtain using fitting a sigmoid 
function for the posterior probability.  

The sigmoid function fitting [63] is a model-trust algorithm, based on the Levenberg-
Marquardt algorithm [65]. The method for extracts probabilities from SVM outputs, which is 
useful for classification post-processing. The method adds a trainable post-processing step 
which is trained with regularised binomial maximum likelihood. A two-parameter sigmoid is 
chosen as the post-processing, since it matches the posterior that is empirically observed.  

 ( ) ( )
1|  

1  expffp ffp ffp
ffp

p t
A t B

=
+ +

x  (3.4) 

The sigmoid fitting trains iterative the parameters A and B of the sigmoid function to map the 
W-RVM output into probabilities. In Figure 3-25, the iterative Fitting of the sigmoid function 
(blue lines) are visualised and can be compared with the histogram (green) and k-NN (red) 
techniques. 

 
Figure 3-25: Probabilistic W-RVM using sigmoid function fitting 

On the example of the nose-tip feature, nt the estimation of the PDF is shown, using the histogram 
method (green thin lines phst(t|nt)8 and phst(t|~nt)), and using the k-NN technique (red thin lines pknn(t|nt) 
and pknn(t|~nt)). The thick green curve, phst(nt|t) shows the obtained probabilistic W-RVM outputs for the 
histogram method and the thick red curve, pknn(nt|t) for k-NN. For the sigmoid function the fitting itera-
tions are shown (dot-dashed blue lines psig(nt|t)) and the final probabilistic W-RVM output, obtained by 
the sigmoid fitting (thick blue line). 

                                                 
8 nt is used as abbreviation for xnt 
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In [63] it is shown that the SVM+sigmoid combination is comparably to a raw SVM and a 
kernel method entirely trained with regularised maximum likelihood. The SVM+sigmoid 
combination preserves the sparseness of the SVM while producing probabilities that are of 
comparable quality to the regularised likelihood kernel methods.  

Using the sigmoid fitting, we find a method to obtain a calibrated posterior probability output 
of our classifier to enable post-processing. Standard SVM's and our W-RVM do not provide 
such probabilities without the sigmoid fitting.  

Compared to non-parametric methods introduced above the training of probabilistic W-RVM 
output using sigmoid fitting is stable and sensitive to the parameters. We trained and 
compared the probabilistic W-RVM output estimation using the iterative fitting of the 
sigmoid function (blue lines in Figure 3-26) with the histogram (green) and k-NN (red) 
techniques for all trained features. As examples, the methods are visualised in Figure 3-26 for 
the left eye (le) and left mouth corner (lm). The Probabilistic W-RVM can be used to find the 
final feature assortment and for the advanced PSM in the following sections. 

 
Figure 3-26: Stable Probabilistic W-RVM for all facial features 

We trained and compared the estimation of Probabilistic W-RVM’s, using an iterative fitting of the sig-
moid function (blue lines), with histogram (green), and k-NN (red) techniques for all trained features. As 
examples, the results for the left eye (le) and left mouth corner (lm) are visualised (see Figure 3-25 for the 
legend).  
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3.5. Cascaded Framework for Facial Feature Detection 

3.5.1. Single W-RVM Detector 
The in the previous sections trained W-RVM classifiers can now be applied for detection. 
Identical to the face detector we use a sliding-window method. That means an observation 
window of the size of the feature is slid over each column and row of the pyramid image. The 
image pyramid is used to detect objects with different sizes by not changing the dimensions of 
the observation window (Figure 2-2). At each pixel location, the classifier (Table 2-2) is 
executed on the patch under the observation window. A cluster of detections is obtained for 
each object, because the classifiers are slightly translation invariant. Hence, we use an 
overlap-elimination after incorporating the last W-RSV and after the SVM as final classifier. 
The overlap-elimination reduces the clusters to the locations with the best detection 
certainties. The outputs of the four stages of the W-RVM detector are seen in Figure 3-27 for 
the left eye feature on an example image. The stages of the single W-RVM detector are 
summarised in Table 3-6.  

 

Table 3-6: Stages of a single W-RVM detector 

Single W-RVM detector:  

1. Fast W-RVM classifier stage (see Chapter 2) at each location of the 
observation window sliding over each pixel of the pyramid image. This 
stage rejects efficient large image areas as non-objects, 

2. Overlap-elimination for the clusters of the detections, this extracts a 
set of best detections per cluster, 

3. Full SVM using all Support Vectors for the remaining locations,  

4. The final overlap-elimination extracts only the detection of each clus-
ter with the highest certainty. 
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Figure 3-27: Example for detection process of the left eye for one image 
We use four stages (from left to right) for each detector. Red coloured Pixels indicate locations of the 
centres of patches with a high and blue with a low detection certainty. The boxes within the right image 
show the detection candidates on the full image. The left eye is best detected. The certainty at the right 
eye is also high (because the eyes are similar). The certainty of the four False Acceptances is low.  

In Figure 3-28, we visualise some examples of the output of the W-RVM detector for the left 
mouth corner. Facial features are ambiguous within a face at a local view. For example, false 
candidates are also detected near the eye corners on the right image.  

        

Figure 3-28: Examples for detection results of the left mouth corner 
Red coloured boxes show detection candidates with high and blue with low certainties. All mouth corners 
are detected, but facial features are ambiguous within a face at a local view. For example in the right im-
age, we get false candidates also near the eye corners.  

3.5.2. W-RVM Facial Feature Set Detector 
The goal is to build a multi feature detector for the in Section 3.3.1 (see Table 3-5) chosen 
facial feature points. To reduce the problem that the features are ambiguous and to speed up 
the detection process over all features we first run the face detector on an image. Relative to 
the detected face we define a field of interest (FOI) containing the regions where to apply the 
facial feature detectors. The FOI for the detectors is defined empirically. As discussed in 
Section 5.1.3 the Prior Shape Model using the Morphable Model can be used for an automatic 

W-RVM    1st Overlap-Elimination  full SVM 2nd Overlap-Elimination  
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and more precise adjustment of the ROI’s. If the face cannot be detected (e.g. if the face is 
partly occluded) the ROI's are defined over the full image. 

Comparing the left and middle images in Figure 3-29 it can be seen that the FAR is reduced 
using this cascaded algorithm. Although we get after running all single detectors for each 
feature a list of candidates and have to find the final feature assortment.  

   

Figure 3-29: Reducing FRR by a cascaded framework and use of a FOI 
The left image shows the detection result of the W-RVM face detector (red box) and the results of the 
first W-RVM stage for five features (left (red) and right (blue) eye, nose tip (green), left (yellow) and 
right (magenta) corner of the mouth; bright colours indicate high, dark low certainties). Applying the de-
tectors in the FOI (brightened boxes) reduces the FAR of the first W-RVM stage in the middle image. 
The right image shows the remaining detections after the last W-RVM detectors stage. The final feature 
assortment with the highest certainty per feature is encircled. 

If 2
, ffpffp i ∈x \ with 1,...,ffp ffpi N=  are the 2D locations of the ffpN  detection candidates, e.g. of 

one of the in Table 3-5 chosen feature { }, , , , , , , , ,ffp le re nt lm rm lx rx ls lb rb∈ , so the simplest 

idea is to choose for each feature the index of the candidate with the maxima detection 
certainty  
 ,

ˆ arg max ( ),
ffp

ffp
ffp ffp ffp ii

i cert= x  (3.5) 

where ,( )
ffpffp ffp icert x  is the certainty of the ffpi -th detection by the W-RVM detector for the 

facial feature ffp. The final feature assortment for e.g. the first five facial features from Table 
3-5 is defined as 
 ˆ ˆ ˆ ˆ ˆ ˆ( , , , , ).le re nt lm rmi i i i i=h  (3.6) 

All other detections can be rejected as non-feature points.  

In Figure 3-30 the W-RVM stages and the selection of the final feature assortment based on 
(3.5) and (3.6) are demonstrated for all ten features chosen in Table 3-5.  
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Figure 3-30: Stages of the W-RVM with ten facial features 

The face detector result (red box) and the four stages are shown for ten facial features (the colours and 
the markers are defined in Table 3-5; light colours indicate high and dark colours low detection certain-
ties). The left top image shows the result after the first fast filter stage of the W-RVM, left bottom the re-
sults after the 1st overlap-elimination, right top after applying the full SVM for the remaining patches and 
right bottom the final result after the 2nd overlap-elimination. The middle image shows the face detail 
where the detections with the highest certainty per feature are circled. 

This simple maximum measure finds for several examples the best assortment as seen in 
Figure 3-31. However, the detection rate if not satisfying using only the 2D appearance model 
(Figure 3-32), because the 2D information are too ambiguous at this only local view. Hence, 
we want to use a 3D Prior Shape Model function taking advantage of the 3D MM to find the 
final feature assortment within all combinatory possible candidate sets for the feature points. 
This correlation classifier will be detailed in the next section and is used as last stage of the 
W-RVM facial feature set detector. We summarise the cascaded framework in Table 3-7.  

    
Figure 3-31: Good examples for final feature assortments by maximum rule 

The final feature assortments (encircled marks) are shown for five features (Table 3-5) based on the 
maximum detection certainty per feature (see (3.6) and (3.5)).  
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Figure 3-32: Not satisfying examples for the final feature assortments  

The final feature assortments (encircled marks) are obtained as in the previous figure. In several exam-
ples the true assortment is found (precious figure) but the error rate is too high (examples here), espe-
cially if the features are difficult to detect, e.g. because of occlusions like at the right image. 

 

Table 3-7: Stages of the W-RVM facial feature set detector 

3.6. Evaluation of the Final Feature Assortment by PSM 

For evaluating the final feature assortment from all combinatory possible hypotheses, we tried 
different approaches. The simplest was based on a maximum rule of the detection certainties 
(see Section and Figure 3-33).  

W-RVM facial feature set detector:  

1. Apply the single W-RVM detector (Table 3-6) for faces on the full im-
age,  

2. Define a FOI for the facial features relative to the detected faces by 
the first stage (Section 3.5.2). Apply the single W-RVM detectors (Ta-
ble 3-6) for all features within their regions of interest, 

3. Apply a correlation classifier, e.g. the PSM (Section 3.6) for the list of 
candidates of all features to find the final feature assortment. 
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Figure 3-33: Final feature assortment using solely the 2D appearance model 
The W-RVM output of the first (left) and last (right) detector stage are visualised. The optimal final fea-
ture assortment (encircled marks right) is not found using the maximum detection certainty per feature 
(see (3.5) and  (3.6)). 

But because of poor image quality, like in Figure 3-33 or that the local image representation 
of facial features are ambiguous within the image, like in Figure 3-28 a model-based 
correlation classifier should be exploit. As face model, our 3D MM can be used to take 
advantage of the correlations between the detection candidates. That means to find the best 
feature assortment we unify the 2D appearance model using the W-RVM detectors and the 3D 
Prior Shape Model taking advantage from the Morphable Model as schematised in Fig-
ure 3-34. 

              

Figure 3-34: Unifying 3D Prior Shape Model and W-RVM as 2D appearance model 
The final feature assortment is found by unifying the certainty obtained from 2D appearance model (W-
RVM detectors) and the probability of the Prior Shape Model, taking advantage from the 3D Morphable 
Model. 
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In our research, it turned out that a PSM restricted to only five facial features and using only 
the average face of the 3D MM is not sufficient for the correlation classifier. In addition, 
applications on the found feature points, like the estimation of the pose of the face, were not 
stable by only five facial points. For this reason, we chose more facial features in Section 
3.3.1 based on the multi-criteria evaluation. In Section 3.3.2 and the training and validation of 
the W-RVM detectors is described and in Section 3.4, we fit a sigmoid function to obtain a 
probabilistic output of the classifier.  

Now we want to introduce an advanced Prior Shape Model able to use more facial feature 
points and taking more advantage of the MM by using the first principle components of the 
model. Moreover, the method uses an occlusion probability. Here we want to summarise and 
adapt the by Romdhani et al. [74], [78] introduced approach for our intention. For more 
background on probabilistic feature point detection Fergus et al. [30] and Felzenszwalb et al. 
[29], [18] can be considered. The main difference to [78] is that we will use the W-RVM 
detectors instead of the SIFT key point detection. The SIFT algorithm delivers a general set of 
key points, they have to be rated to the different appearance models of facial feature points. In 
our case the candidates for the detection points are already related to specific feature points, 
hence we do not use a set of key points, but list of candidates per features. Romdhani et al. 
use a probabilistic model based on scale and orientation estimation of the key points. For the 
present, we have to adapt the approach not using this feature. However, we started a project 
for regression function estimation to be able to take advantage of the scale and orientation 
likelihood (see Section 5.2.3).  

We want to estimate the probability of the position of a set of Np feature points for a class of 
objects, independently of the viewpoint. 

 ˆ ˆ ˆ( | )   ( | ) ( | ) ( | ) ,r rp Object p p pθ θ θ≈ =X X X X  (3.7) 

where X (a 2 × Np matrix) are the 2D locations in the image of the feature points, rX  the Nr 
reference feature points (a 2 × Nr matrix), rX  the non-reference feature points (a 2 × Np − Nr 
matrix), and θ̂  the maximum likelihood (ML) shape model parameters, estimated from the 
reference feature points.  

The idea is i) to make a 3D model for the class of objects, then ii) to estimate the model 
parameters from a small set of Nr reference points by: 

 ˆ  arg max ( | ),rp
θ

θ θ= X  (3.8) 

and iii) to derive the probability of the ML parameters using the full set of reference and non 
reference points, by assuming that their position is independent given the maximum likelihood 
of the model parameters: 
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 ˆ ˆ( | ) ( | ).
pN

i
i

p pθ θ=∏X x  (3.9) 

The 2D positions in the image of the feature points X are obtained by multiplying the 2×4 
weak-perspective matrix P with the shape matrices as follows: 

 0

1
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= +∑X PS PS  (3.10) 
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S0, Sj are the mean and principal components, arranged as 4 × Np matrices (the 4th row of S0 is 
1 and the ones of Sj are 0), and jα are the shape parameters. In Equation (3.11) is f  the focal 
length, γ  is the image plane rotation (roll angle), ζ  is the elevation rotation (pitch angle), φ  
is the azimuth rotation (yaw angle) and t2d is a 2D translation. 

In this framework, the model parameter, θ , is composed of the shape coefficients, jα , the 
projection parameters: f, γ , ζ , φ , and the translation t2d. The mean and the covariance 
matrix of the projection parameters and of the shape parameters are obtained by solving the 
following problem: 
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where M is the number of shape parameters that are estimated ( 2 rM N≤ ) and 2
d
rX

σ is the vari- 

ance of the detection noise of the reference points, assuming a Gaussian distribution.  

The mean and covariance of the model parameters can be estimated from (3.12). For clarity of 

the presentation, we do not provide detail of the following functions f(.), but they are provided 

in [78] (see there Equation (7), (10)): 
 2

ˆ ˆ  ( ),    ( )d
r

r X
µ f f σ= Σ =P PX  and 2

ˆ ˆ ( ),    ( )d
r

r X
µ f fα α σ= Σ =X  (3.13) 

The projection matrix must agree to the following constraints. This leads to an early rejection 
rule and makes the algorithm efficient. 

 
2 2

1,1:3 2,1:3 1,1:3 2,1:3
ˆ ˆ ˆ ˆ- = 0, and = 0'P P P P  (3.14) 

We can now proceed to the estimation of ˆ ˆˆ( |  ) = ( | ,  ),i ip pθ αx x P  where xi denotes the i-th 
column vector of the matrix X (the position of the i-th feature). According to our model, it is 
shown in [78] (12), (14) that we can evaluate the mean and the covariance matrix  
using (3.13) by: 
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 ˆ ˆˆ ˆ ( , ),    ( , , non-estimated shape PC),
i i

µ f µ µ fα α= Σ = Σ Σx xP P  (3.15) 

and so the probability of ˆˆ( | ,  )ip αx P  can be computed using a Gaussian model. 

Using this ML we can show in Figure 3-35 the contour containing 99% of the probability of 
the estimation of the position of the mouth corner given four reference points (respectively 12 
at the right-hand side face). A Gaussian noise with a STD of 3 pixels (respectively 10 pixels 
in fourth face from left-hand side) was added to all reference points. Note that the ellipses 
change as the reference points vary with the pose of the face, the number of reference points 
or the noise. As it can be seen, the uncertainty area is rather small.  

The small uncertainty shows that the proposed shape model cannot only be used for detection 
applications, but also as a general view invariant probabilistic shape model, which could 
supersede other shape models such as the Active Shape Model [17], for instance.  

 

Figure 3-35: Probability of a facial feature point given model parameters 
The first three synthetic faces (from left to right) show the contour (ellipse) containing 99% of the prob-
ability of the estimation of the position of the mouth corner given four reference points and a STD of 3 
pixels (pink crosses). The size of the uncertainty area depends on the (unknown) pose (size 18.72, 18.62 
and 17.92 pixel square), the noise (4th face 2

d
rX

σ =10) and number of reference points (last face Nr=12). 

Now the above introduced viewpoint invariant probabilistic shape model is applied as 
correlation classifier. The task of finding the final feature assortment is to find correspon-
dence between the set of Np model feature points and an assortment of points from the Nffp 
detection candidates. The 2D image positions 2

, ffpffp i ∈x \  with 1,...,ffp ffpi N=  are the ffpN  de- 

tection candidates, of one of the feature { }, , , , , , , , ,ffp le re nt lm rm lx rx ls lb rb∈ , e.g. chosen in 

Table 3-5. A set of correspondences is represented by an Np dimensional hypothesis vector, h, 

whose element hi is the index iffp of the candidate point in correspondence with feature point 

ffp. If no such corresponding point exists, then the value of hi is set to zero, hence, 0  ≤  hi  ≤  

Nffp. The size of the ensemble H of values that h can take, is 
1

pN
ffpffp

N
=

=∏H , e.g. by 

10ffp ffpN∀ =  detection candidates for Np=10 facial features, then we have to consider 1e10  

combinations as hypothesises. 
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The final feature assortment of all hypothesises at the configuration space H is found by: 

 ˆ ˆ ˆˆ arg max ( | , ) ( | , ) ( | ) / ,b

appearance shape occlusions

p p p pθ θ θ
∈

=
h H

h a h x h h��	�
��	�
��	�
  (3.16) 

where a is the appearance of the detection candidates, x are the 2D positions of the candidate 
points, and pb is the background likelihood. For the appearance probability, we use the output 
of the Probabilistic W-RVM classifiers at the detection locations as introduced in Section 3.4. 
All other detection candidates not included within the index vector ĥ  are rejected as non-
feature points. 

Using a brute force approach is very slow, because of the dimensionality of the set of all 
correspondences H. For efficiency, we take advantage of the Bellman principle (also known 
as a dynamic programming equation, [4]). Only all combinations of reference point positions 
have to be considered. The non-reference points are optimised independently to each other, so 
(3.9) can be re-written as  

 ˆ ˆ ˆ ˆ( | ) ( | ) ( | ) ( | ).
pN

i r i
i i r

p p p pθ θ θ θ
∈

= =∏ ∏X x X x  (3.17) 

This reduces the complexity from Na
Np to Na

Nr+1, if we use e.g. a constant number of 

ffp ffp aN N∀ =  candidates per feature, so  we have 1e5 instead of  1e10  combinations  to  eva- 

luate. 

The second opportunity for efficiency is to use the projection constrains (3.14) for the 
projection matrix P. As a pre-stage all combinations of reference points leading to invalid 
projection matrices, i.e. one term on the left-hand side larger than a defined threshold, are 
rejected.  

In Figure 3-36, we show the improvement on an example image. The left image shows the 
final feature assortment encircled using the maximum rule from Section 3.5.2. Using a 
correlation classifier based on only five facial features does not find the true assortment 
(middle). But unifying the 2D appearance model based on the Probabilistic W-RVM detectors 
and the advanced PSM for ten features and incorporating more the 3D MM we gain the true 
facial feature point assortment (right). 
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Figure 3-36: Estimation of the final feature assortment using the PSM 
The left image shows the final feature assortment encircled using the maximum rule from Section 3.5.2. 
Using only five facial features for the PSM does not find the true assortment (middle). But unifying the 
2D appearance model based on the Probabilistic W-RVM detectors and the advanced PSM for ten fea-
tures we gain the true facial feature point assortment (right). 

To validate the correlation classifier we tested on a set of FERET images disjoint to the 
training sets. We used for all correlation classifier experiments the same detection results. 
Therefore, the face detection results and the detected candidates per facial feature and so the 
configuration space H of all hypothesises and the appearance certainties of the candidates 
were constant. The best (nearest to by hand-labelled points) final feature assortments * ∈h H  
was labelled and used as ground truth. We tested the introduced methods in Section 3.4 to 
evaluate the appearance likelihood, a in (3.16). We obtained best results using the Probabilis-
tic W-RVM, gained by fitting a sigmoid function (Section 3.4.2). The Relative Maximal 
Feature Error dffp is used as measure. It is defined for the pairwise used facial feature 
classifiers (like the eye corners, eye centre, mouth corners, and nose corners) by: 

 
( )max ,

r r l lffp ffp ffp ffp
ffp

le re

d
− −

=
−

e a e a

a a
 (3.18) 

where   ,i iffp ffpe a  are the estimated and annotated facial feature points for i  in { },l r  (left, right  

facial point) and le re−a a  is the inter-eye distance. For a single feature, like the nose tip or 
the upper lip point, the measure is defined as /ffp ffp ffp le red = − −e a a a . 

In Figure 3-37, we show the cumulative histogram of dffp in percentage for all feature sets, 
where at least one candidate per features was detected. It turned out at the experiments that 
using ten instead only five facial features improved the localisation accuracy. Further 
experiments with larger data sets are planned. For our goals, it is interesting to see if the 
found facial features can be used as initialisation for the fitting of the 3D MM (automatic 
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landmark point detection). This evaluation will be done by working on the further unification 
of the 2D appearance model and 3D MM; see Section 5.1.2. 

           
Figure 3-37: Facial feature set localisation accuracy 

The curves show the cumulative histogram of dffp (3.18) in percentage for all features (see Table 3-5 for 
the definition of the features) and dall is the average over all features. 
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Chapter 4 
 
Applications 
In the previous chapters, we developed an efficient classifier and applied it to face and facial 
feature detection. For a first unification of the 3D Morphable Model (top-down approach) and 
the 2D image-based Wavelet Approximated Reduced Vector Machine (bottom-up approach), 
the 3D MM is used for the training of the W-RVM classifiers and to reduce the FAR. This 
unification will be developed further in Chapter 5. However, while developing the W-RVM, 
we applied the first unification stage for applications taking advantage of face and facial 
feature detection or the trained classifiers.  

           

Figure 4-1: Applications taking advantage of the unification of the 3D and 2D model 
The loops of unification of the 2D image-based classifier (W-RVM, centre left) and the 3D face model 
(Morphable Model, centre right) form the general background of this thesis. While developing the first uni-
fication stage, we applied the system to applications using face or facial feature detection (outer circle). 
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4.1. Applications Demonstrating the W-RVM 

4.1.1. Application for W-RVM's – FD_FFpDetectApp 
FD_FFpDetectApp is a command-line application and can be used to detected faces or other 
single features, but also for the detection of a set of facial features. The application uses the 
FD_Detect library, which realises the W-RVM facial feature detection approach proposed in 
the earlier chapters. The W-RVM approach and the performance of the classifiers and 
detectors are detailed there. In the configuration file, the size and content of the feature set, 
the classifiers, and threshold sets can be controlled. A command-line help for starting the 
application and a detailed description is available at the source documentation (see also 
Appendix A). Key features of the implementation are: 

• Fully configurable via configuration files; to change from one to another project 
environment only the main configuration file needs to be replaced, without re-
compilation. The parameter of the W-RVM approach can be optimised in the configu-
ration file. 

• Portable for Linux and Windows platforms, 

• The application can be used in a batch mode on a list of images, 

• For labelled data a statistic is automatically produced showing the FAR, FRR and 
runtime performance, 

• A visualisation of the results of the W-RVM stages can be saved into debug images. 
The amount of saved images and what to visualise can be controlled in the configura-
tion files, 

• The amount of debug output at the console is adjustable. 

4.1.2. Fast Face Detection – FaFaDe 
FaFaDe (Fast Face Detection) is an application using a standard webcam and is implemented 
to demonstrate the efficient and accurate face detection algorithm. Accurate face detection is 
obtained in real time by 25 fps (on a Intel Pentium M Centrino 1600 CPU, at a resolution of 
320 240× , step size 1 pixel, 5 scales). Using three resolution scales FaFaDe achieves more 
than 50 fps. 

The GUI can be used for presentations but also to optimise the parameters online and to learn 
their influence, e.g. concerning the trade-off between accuracy and runtime performance. 
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Figure 4-2 shows the display of the application, visualising the detected face by a blue (high), 
or red box (uncertain) detection probability.  

                      

Figure 4-2: W-RVM face detection integrated into FaFaDe 
FaFaDe (Fast Face Detection) is an application using a standard webcam and demonstrates the efficient and 
accurate face detection algorithm. FaFaDe can be used to optimise the parameters of the W-RVM (right) 
and to demonstrate the improved run-time performance in comparison to the standard Reduced Support 
Vector Machine (RVM, middle) and to the Support Vector Machine (SVM, left). 

In Figure 4-2, right is a classifier used, which was trained on face patches with fixed eye 
coordinates. The fixed coordinates are marked by red crosses. What they can naturally not 
handle is in-plane rotation and the inter-eye distance is only as accurate as the resolution of 
the pyramid images enables it. In our experiments, it turned out, that the localisation accuracy 
of the face is higher by using fixed eye coordinates. In addition to the final detection result, all 
pre-stages of the detector can be visualised.  

A detailed description and the usage of FaFaDe can be seen in the source documentation (see 
Appendix A for a documentation of FaFaDe and Appendix C for the trained classifiers). 

4.1.3. Fast Facial Feature Detection – FaFaFeDe 
The Fast Facial Feature Detector (FaFaFeDe) application is built to expose the Wavelet 
Approximated Reduced Vector Machine (W-RVM). The live video application is based on 
FaFaDe for detecting a single feature or for face detection. FaFaFeDe can run several facial 
feature detectors. Only detection is used; that means no information is used from the past 
frames to speed up the detection by tracking methods. The first W-RVM classifier is used to 
detect faces. In Figure 4-3 the found face is visualised by a surrounding box like by FaFaDe. 
Then an FOI is defined relative to the detected face, and the W-RVM stages of the detectors 
of the features are applied (top row of Figure 4-3, the FOI can be seen in the top-middle 
image by bright boxes). The results of the detectors (bottom left) are classified by a 3D 
model-based correlation classifier using the Prior Shape Model (bottom middle; here the PSM 
for five facial feature points is used; the new PSM function is not yet integrated to 
FaFaFeDe). By combining the 3D shape likelihood and the 2D appearance certainty, the final 



Matthias Rätsch; Thesis; 2008  CHAPTER 4.  APPLICATIONS 

 88

feature assortment is found (bottom right). All other detection candidates are rejected. The 
application marks the most-likely feature assortment at the last three stages by circles. 

A detailed documentation of the theoretical background of the approach, pseudo code how to 
train, and how the W-RVM detector works, is given in Chapter 2, 3 and in [70], [68], [71]. 
There is also the accuracy and runtime performance verified. The FaFaFeDe application is 
detailed at the software packed by a HTLM documentation. In Appendix A the usage of 
FaFaFeDe is documented, e.g. how to start the application and the command-line parameters. 
It is explained which detection results are visualized, the used colours and markers for the 
features, or how the frame rate can be controlled. The stages of the realised detection are 
detailed and a guide is given on how to obtain optimal detection results and the best runtime 
performance. In addition, the parameters from the configuration files are explained showing 
how to adjust them in the configuration files and live at detection.  

 

 
Figure 4-3: Facial feature set detection integrated into FaFaFeDe 

The stages of the W-RVM feature set detection in combination with the PSM for five facial feature points 
are shown. 



Matthias Rätsch; Thesis; 2008  CHAPTER 4.  APPLICATIONS 

 89

4.1.4. Pose Estimation integrated to FaFaFeDe 
The W-RVM features set detection delivers an estimation of facial feature points. This set of 
facial points can be used to estimate the pose of the face. This could be achieved by training a 
Support Vector Machine [46]. However, a pose estimation is already integrated into the first 
fitting stages of the 3D MM. Moreover, by taking advantage of the MM as a three-
dimensional model, we can estimate the pose without much effort. As detailed in Section 3.6, 
we use the 3D MM to build a correlation classifier. The 2D positions in the image of the 
feature point candidates are obtained by multiplying the projection matrix P with the 3D 
shape matrices of the MM as seen in (3.10). The by the PSM function used projection matrix 
P (3.11) is exploit for a pre-selection stage. All combinations of detection candidates are 
rejected if their projection matrix P is not valid with respect to the constraints (3.14). From 
the projection matrices computed here, the three angles (roll, yaw and pitch; see (3.11)) can 
be used as pose estimation. First, we selected the projection from the combination of feature 
candidates with the highest shape likelihood. However, the best results were obtained using 
the angles computed from the projection matrix from the final feature assortment, which 
combines the shape and appearance likelihoods. Therefore, we could improve the pose 
estimation, but more than five facial features are needed, since the estimation is too sensitive 
for the detection of the nose tip. To evaluate pose estimation for more facial feature points is 
one of the next goals. 

For visualisation purposes, we integrated the pose estimation to FaFaFeDe. In Figure 4-4 the 
three angles roll, yaw, and pitch are shown within the status bar of the application for the live 
video stream.  

                  

Figure 4-4: Pose Estimation integrated in FaFaFeDe 
For visualisation purposes, we integrated the pose estimation to the FaFaFeDe live application. The three 
angles p: (<roll>,<yaw>,<pitch>) are shown within the status bar of the application. 
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4.1.5. Fd_camFFDViewer 
We implemented a new portable application for FFD, which is not limited to Windows like 
FaFaDe and FaFaFeDe because of the usage of the MFC. This application has fewer features 
but is a starting point for further extensions of the face and facial features detection approach. 
The Fd_camFFDViewer is limited to face detection or one facial feature but uses the identical 
classes as the facial feature set detection, only the GUI has to be expanded and the interface 
adapted.  

This application takes advantage of the libraries of our research group, developed in the last 
few years, like librabbit, librender, or libcam. It uses the new standard interface for cameras 
and for GUI applications. As seen in Figure 4-5, is applies the standard display window, the 
window controller, and option dialogs. Therefore, it has a good opportunity to be used by 
related bachelor and master theses. The Fd_camFFDViewer could already be adapted for new 
applications. For instance, the projects “Face and Facial Feature Point Tracking” in 
Section 4.3.1, “Avatar Following with Eye and Head Motion” in Section 4.3.2, and the 
“Tracking of Higher Feature Parameters” in Section 5.2.4 took advantage of 
Fd_camFFDViewer as a starting point. 

          

Figure 4-5: Face detection integrated into Fd_camFFDViewer 

4.2. I-Search project 

We also proved the performance and detection accuracy under real-life conditions at the 
”Institut für Techno- und Wirtschaftsmathematik” (ITWM) in Kaiserslautern.   
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Figure 4-6:  The I-Search project 

The I-Search project [54] was a joint project by the following partners (Figure 4-6, left): 

• Image processing: Graphics and Vision Research Group, University of Basel, Depart-
ment computer science [37], 

• Image processing: Albert-Ludwigs-Universität Freiburg, Institut für Informatik, 
Lehrstuhl für Mustererkennung u. Bildverarbeitung, 

• Cluster optimisation and hardware installation: Fraunhofer Institut für Techno- und 
Wirtschaftsmathematik (ITWM), 

• Data base applications: tecmath AG, GB Content Management Systems, 
• Camera hardware: Mobotix AG. 

 

 

Figure 4-7:  Example ITWM video sequence with results of the face detection 

I-Search was the first project using an API of our face detector applying the W-RVM 
classifier introduced in Chapter 2. One intension of the project was to use a web crawler to 
search through the WWW for faces. A cluster architecture as seen in Figure 4-6, right was set 
up and the computational last optimised for each cluster.  

The second intention was to build up a live detection system, as seen in Figure 4-7. One of the 
applications for this setting was our face detection approach. The API was applied by a web-
service application. 
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At the final presentation, we could show that our W-RVM face detector was able to detect all 
of the persons, who passed by the installation in the demonstration.  

A further documentation of the project and detailed descriptions of the results are given in our 
final report [69]. 

4.3. HCI, CHIL Applications using W-RVM 

One of our intentions at the research group GraVis [37], is to apply the Morphable Model to 
face recognition and real-time facial feature or expression tracking, so that it can be used for 
Avatar Technology, Human in Computer Interaction and Computer in Human Interaction 
Loops (HCI, CHIL, see Figure 4-8). To be able to build up an interaction between the 
computer (e.g. using an avatar) and the person in front of it, the machine must be able to 
localise the person and track the emotion of its “conversation partner” in real time. To come 
closer to this intention, we can apply of the efficient W-RVM classifier and the introduced 
face and facial feature detection. Some applications following this intention by applying first 
HCI and CHIL aspects will be introduced in the next sections. 

                         

Figure 4-8: Schemata for Human in Computer Interaction (HCI, [37])  

4.3.1. Face and Facial Feature Point Tracking 

Yet image-based detection tasks are time consuming. For instance, detecting a specific object 
in an image, such as a face, is computationally expensive, as all the pixels of the image are 
potential object centres. Hence, all the pixels must be classified for all possible object sizes. 

Affective Interface 

Computer 

Human Display 
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Up to this point, only detection algorithms are mentioned in this thesis. Detection uses a 
sliding observation window strategy. In a brute-force search for each column and each row of 
the entered image, patches are cut out and classified. To detect larger objects an image 
pyramid is used by down-sampling the image several times (see Figure 2-2). In Chapter 3 we 
obtain real time performance on VGA video streams using detection and the W-RVM as 
classifier. However, for video streams with high-resolution cameras or if we want to detect 
more objects at the same time (e.g. up to ten facial features) the sliding observation window 
strategy quickly becomes intractable. 

It is obvious that the object’s position and size vary only slightly from one video frame to the 
next. It is therefore possible to use information from the last step to speed up the search in the 
next frame. The process of seeking and following objects is called tracking. A method that is 
capable of using information of the previous iterations is the Condensation algorithm. This 
was proposed by Isard and Blake [53]. Condensation is even able to track objects in a highly 
cluttered background. The tracking method is a good alternative to the Kalman Filter [95]: 

•  Condensation can estimate the unknown a-posteriori probability function and does not 
need the assumption of a Gaussian distribution, 

•  The estimated function is multi-modal, i.e. it can have several maxima, 
•  System and measurement dynamics can be nonlinear, 
•  They are suited for parallelisation. 

Condensation is a very stable and high-performance procedure that makes use of stochastic 
techniques. A probability distribution of possible image locations is represented by a 
randomly generated set of particles (also called samples). The idea is to estimate the 
probability function densely for areas of the images with a high a-priory likelihood and only 
roughly for the background. The prior obtained from the last frame is used to control the 
density of the samples over the model space at the current frame. Regarding this probability 
distribution (coded as size of the radii in Figure 4-9, left), new samples are chosen. It follows 
a prediction step by applying a translation of the samples as drift and stochastic noise as 
diffusion. The prediction is verified by a measurement function. The obtained probability of 
the samples is used for the new probability distribution, and the procedure starts again as 
schematised in Figure 4-9, left. 
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Figure 4-9: Condensation for face and facial feature tracking 
The Condensation tracking (schematised left) is applied for tracking the left eye feature (right). The den-
sity distribution is high for samples (red points) near the eye. Samples are wide distributed over the im-
age if the have obtained a low probability (e.g. from the Probabilistic W-RVM classifier (Section 3.4)). 

The original Condensation approach [53] is used to track contours of objects. This makes it 
difficult to implement features like the recognition of individual objects or the determination 
of orientation. Chappuis and Blanc [13] enhanced the Condensation algorithm. The goal of 
this cooperation with FHNW Basel (Department computer science, Prof. Hudritsch) was to 
build up a facial motion tracking system using a stereo webcam installation. Facial feature 
points should be tracked to expand the former project [12] using coloured markers. To track 
several markers at the same time and additionally the eyes without markers was not possible 
in real time using standard methods. Taking advantage of the efficient W-RVM classifier 
introduced in Chapter 2 and using a tracking approach (instead of the detection used in 
Chapter 3) enables to use more features. Figure 4-10 shows the installation tracking two times 
eleven features in real time based on Condensation tracking. 

          

Figure 4-10: Facial motion tracking using a stereo camera installation 
Using Condensation instead of detection (sliding observation window strategy)  
enables tracking of two times eleven features parallel on one standard PC in real time. 
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4.3.2. Avatar Following with Eye and Head Motion 
Tracking of emotions as discussed in the previous section is an important aspect to start to 
tackle HCI and CHIL aspects. In the future, an interaction between humans and computers 
should be as natural as a conversation between humans. Before the avatar can get in contact to 
its “conversation partner”, it must be able to localise the person in front of it. Eye contact is an 
important aspect of conversations in the field of perception psychology. Starting with this 
intention, we can apply the real-time W-RVM classifier and the proposed face and facial 
feature detection. 

In the project 'I can see you', C. Horisberger [45] developed a 3D animated avatar reacting to 
head movement of a person in front of the computer using a face detector. In addition, the 
avatar should react to the position and distance by moving the eyes.  

The project explores the various steps needed to create an animated 3D model, acting in this 
HCI framework. A video camera constantly captures images of the viewer, sitting in front of 
the monitor and the W-RVM face detection algorithm introduced in Chapter 3 and summa-
rised in Table 3-6, is used to locate the viewer's face. The coordinates of the detected face on 
the camera picture allow the calculation of the viewer's three-dimensional position in relation 
to the camera. Using a sequence of geometric transformations, the viewer position is 
evaluated in relation to the virtual space, where a direction vector is calculated from the avatar 
to the viewer's position. The direction vector defines the required head and eyes rotation to 
align the gaze of the avatar directly to the viewer. This will create the impression of the 
avatar's gaze following the viewer.  

          

Figure 4-11: Avatar following with eye and head motion 
A person is sitting in front of the monitor (left image). A video camera below the monitor constantly cap-
tures images of the viewer and the W-RVM face detector locates the person (top) in real time. An ani-
mated 3D model of a human head (avatar right) follows with the eyes and head automatically the face of 
the human viewer. The human viewer has the impression to be “watched”. 
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Figure 4-11 shows the framework of our first project that achieves a basic inaction loop. The 
human viewer moves in front of a camera, which is placed below the display, and the monitor 
shows the 3D modelled avatar face. The computer extracts information from the human. The 
avatar is reacting to the face of the person by moving the head and eyes and the human “reacts 
back” by the impression of being “watched”.   

The 3D face model of the avatar is created taking advantage of the 3D MM and uses the 
W-RVM on the 2D images to locate the human viewer. Therefore, this project demonstrates 
how to create applications taking advantage of the unification of a 3D face model and a 2D 
appearance model, as described at the beginning of this chapter (Figure 4-1). 

4.3.3. Switching Faces – a Perception Psychological Installation 

InFaFeDe – Interactive Fast Face Detection 

We implemented a Free Frame interface for our W-RVM detector. Free Frame [33] is an 
open-source cross-platform for real-time video effects. With Free Frame, we use a plug-in 
system, which is a common interface for visual programming languages, e.g. Free Frame 
interfaces can be used for Adobe plug-ins.  

The Free Frame interface was implemented for the graphical programming language VVVV. 
The intention of the cooperation with J. Diessl and B. Groß was to realise a media installation 
(proposed at the next section and [25]). 

The Interactive Fast Face Detection application 
(InFaFeDe) uses the Free Frame interface of the 
W-RVM detector and VVVV as programming 
language. As seen in Figure 4-12, VVVV can be 
used for graphical or experimental programming 
or rapid prototyping (http://www.vvvv.org). The 
face detection interface can be used as a graphical 
node and can be joined with other function nodes, 
e.g. In/Output nodes to control the parameter of 
the face detection function, to colour the face by 
the detection certainty (blue rectangle), or to 
display the number of current detected faces (box 
with “1”). VVVV is convenient for real-time 
video applications: camera inputs or displays are 
simple nodes and thus easy to use (Figure 4-12, 

Figure 4-12: IaFaFeDe - Interactive  
Fast Face Detection
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bottom left). The parameters for each function can be comfortably controlled by the inspector 
view (bottom right). 

The advantage of the interactive interface is that it is applicable, as in this installation, for 
projects not in the field of computer science. For VVVV no imperative programming 
knowledge is needed. In addition, the interface can be used for experimental programming or 
rapid prototyping. The parameters of the W-RVM approach can be demonstrated: For 
instance, non-experts can optimise the detection with respect to the trade-off between 
accuracy and runtime performance for specific environments. 

Switching Faces – HCI Application in the Field or Perception Psychology 

The Free Frame interface of the W-RVM face detector, used in InFaFeDe, could further be 
used for an installation, demonstrating aspects in the field of HCI and Perception Psychology. 

The project was developed in cooperation with the Academy of Art and Design Basel, 
University of Applied Sciences Northwestern Switzerland [57], [38]. It was first demonstrated 
at the opening of the Eikones Building in Basel, Switzerland as part of the NCCR project: 
"Iconic Criticism – The Power and Meaning of Images". In the century of “the digital 
revolution” which has created a “new, image-based society”, the NCCR project tries to 
answer: “How do images create meaning – in science, in everyday life or in the arts? How are 
they influenced by them and how, conversely, do they influence them? What is their inherent 
vital power?” For these intentions, our face detection installation tried to demonstrate that 
vision is not only an optical process, but also rather a perception process, realised in the 
human brain. The relatively simple installation demonstrates this aspect in a paradoxical or 
even perplexing way. This perception part of the human brain is taken over by the computer, 
to confuse or even manipulate this process. If a viewer steps into the observation area of the 
camera, he is recognised as having a human face and caught by zooming into the face on a 
large screen, e.g. beamed on a wall. He is tackled by the mechanism as long, as he does not 
leave the area or a second person is coming in. The installation relieves the single person, but 
is now isolating the faces and switching them between all human viewers within the 
observation area. By placing a photograph in the camera view, the faces are also switched 
between viewers and photographs. Thus, the viewer can feel its “identity” switched to a well-
known person or take over their appearance.  

We presented the installation in public, e.g. at the Berlin Long Night of Science at the Konrad 
Zuse Institute and at the Open Day at the University of Basel, Department Computer Science, 
incorporated with the informatica08 (Year of Informatics, http://www.informatica08.ch). The 
popularity of the installation, the responses of enjoyment, and the reactions, which are 
sometimes perplexing or even reflective, are surprising.  
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Some snapshots are shown in Figure 4-13. The viewers enjoy switching into a “new identity” 
or going on a “time travel”, if e.g. a father gets a younger face like that of his son, and the son 
gets an idea of how he could look in the future (top right). The left bottom image shows the 
developers of this project. This example demonstrates that it is confusing to point to the 
person who is the expert for perception psychology, who for VVVV, and who for machine 
learning. The question appears: What determinates an individual, the face or the body? 
“Where” or “what” is the identity of a person?  

If a person comes too close or wants to touch the installation hardware, its face is replaced by 
the “Laughing Man” mask. This is an aphorism from the classic piece of science fiction 
“Ghost in the Shell”9. A criminal, called “Laughing Man”, hacks the perception of the eye 
implants of all humans and androids. He always digitally replaces his face with the mask, so 
that the mask becomes his only known appearance. Questions are discussed like, is manipu-
lating perception or an identity allowed?  

     

Figure 4-13: Switching Faces – HCI application in the field of perception psychology 
The installation shows how faces can be detected in real time, tracked and randomly switched. At the 
same time, this HCI installation demonstrates playful and irritating aspects from the field of perception 
psychology. 

The interesting question from the field of computer sciences is, how to detect faces at real 
time. This can be realised by our proposed face detection system. However, this installation 
demonstrates playful and irritating aspects at the same time from the field of perception 
psychology and brings up interesting questions. Maybe that is the reason why it catches 
attention at presentations. 

 

                                                 

9 see e.g. http://en.wikipedia.org/wiki/Laughing_Man_(Ghost_in_the_Shell) 



 

  

Chapter 5 
 
Perspective and Conclusion 

5.1. Further Unification of W-RVM and 3D MM 

 

Figure 5-1: Further unification of the W-RVM and the 3D MM-Fitting 
The loops of unification of the 2D image-based classifier (W-RVM, centre left) and the 3D face model 
(3D MM, centre right) form the general background of this thesis. This process will be continued by im-
proving the automatic 3D MM fitting (bottom right); improving the W-RVM, e.g. by a Single-Stage ap-
proximation (top left), or adapting the W-RVM approach to Support Vector Regression (bottom left); or by 
tracking and real-time learning of model parameters (top left). 

5.1.1. Morphable Model 
In Chapter 2 we proposed the W-RVM; before we describe the unification we will briefly 
introduce the Morphable Model. The 3D Morphable Model [101], [5], [6], [7] is the core 



Matthias Rätsch; Thesis; 2008  CHAPTER 5.  PERSPECTIVE AND CONCLUSION 

 100

competence of the Graphics and Vision Research Group (GraVis, University of Basel, [37]). 
We used in this thesis the Morphable Model Toolbox (MMT) from Romdhani et al. [76], [77]. 

     

Figure 5-2:  Morphable Model face database 

The construction of a 3D Morphable Model requires a set of example 3D faces (e.g., laser 
scans see Figure 5-2). The Morphable Model used for this thesis was constructed with 200 
laser scans acquired by a Cyberware 3030PS laser scanner. The construction is performed in 
three steps: First, the laser scans are pre-processed. This semi-automatic step aims to remove 
the scanning artefacts and to select the part of the head that is to be modelled (from one ear to 
the other and from the neck to the forehead). In the second step, the correspondences are 
computed between one scan chosen as the reference scan, and each of the other scans. Then a 
principal components analysis is performed to estimate the statistics of the 3D shape and 
texture of the faces.  

The correspondences enable the formulation of a face space. The face space is constructed by 
putting a set of M example 3D laser scans into correspondence with a reference laser scan. 
This introduces a consistent labelling of all Nν  3D vertices across all the scans. The shape 
and texture surfaces are parameterised in the (u, v) reference frame, where one pixel 
corresponds to one 3D vertex (Figure 5-3). The 3D position in Cartesian coordinates of the 
Nν  vertices of a face scan are arranged in a shape matrix, S; and their colour in a  
texture matrix, T.  
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Having constructed a linear face space, we can make linear combinations of the shapes, iS , 
and the textures, iT  of M example individuals to produce faces of new individuals. 

 
1 1

,
M M

i i i i
i i

α β
= =

= ⋅ = ⋅∑ ∑S S T T  (5.2) 

The knowledge about the appearance of faces is represented by our Morphable Model, and 
can be used to modify novel image about which no information of the 3D structure of the face 
is available. 

 

Figure 5-3:  Morphable Model – Learning from examples 

Let us assume we are able to reconstruct a face in an image through our Morphable Model. 
That means we find the coefficients in our Morphable Model on the right side of Figure 5-3 in 
that way that the generated face looks identically to the novel face on the left. Then we can 
map all the valid face variations learned from our example faces onto the novel image.  

This automated matching procedure is an optimisation problem. In order to reconstruct the 
face we not only have to find the model coefficients ,α β  we also need to estimate all the 
rendering parameters, Rρ . The rendering parameters model the head orientation, the 
projection into the image plane, and the illumination conditions. 

To solve this optimisation task we use a stochastic gradient decent algorithm. To stabilise the 
optimisation we not only minimise the difference between reconstruction (right-hand side of 
Figure 5-3) and the target image (left-hand side), in parallel we also maximise the posterior 
probability of the model coefficients.  

To evaluate the linear combination of face examples we could just simply add the texture and 
radius values point by point. Depending on the location of the features in the scans, we would 
end up with two mouths and four eyebrows, see Figure 5-4. However, if we always add 3D 
coordinates and texture values of points that belong together, such as the corner of the mouth, 
we obtain a proper human face as a 3D morph of other faces. 

How can we find corresponding points in a pair of face scans? The simplest way is that a user 
manually clicks on a number of points, and the correspondence in between is found by 
interpolating. The Morphable Model dense correspondence is found automatically, but prior 
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to this thesis, a user had to manually click on a number of landmark points to initialise the 
fitting procedure. 

     

Figure 5-4:  Registration 

Many changes in the appearance, such as pose or illumination, require some kind of depth 
information of the scene. The Morphable Model represents faces explicitly in 3D, using 
textured 3D models in high resolution. In most applications a 3D scan of the person is not 
available, so a crucial element of the Morphable Model algorithm is automatically to estimate 
3D shape from a single image. 

     

Figure 5-5:  Analyse by Synthesis 

The Morphable Model can be used for an interactive modeller tool where a wide range of 
relevant attributes of faces can be controlled, given nothing more than a photograph or a video 
frame. This model can be used for synthesis of many representations of variations within the 
class of human faces or to change the appearance, such as pose or illumination. The 
renderings can be used as an example set for the training of a 2D appearance model, like the 
W-RVM introduced in Chapter 2. On the other hand, the W-RVM can be used to overcome 
the manual labelling of the landmark points. How this unification can be obtained is detailed 
in the following sections.  
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5.1.2. Automatic Anchor Point Detection for the MM-Fitting 
The fitting function of the MM is fully automatic except the manual labelling of the anchor 
points. If we were able with help of facial feature detection to find landmarks usable as anchor 
points, it would be a significant improvement. The detection can be used to enrich the fitting 
algorithm of the Morphable Model by providing the locations of facial features, like top of the 
nose, mouth corners, eyes, bridge of the nose. This could be applied to automate the fitting 
algorithm and to improve the starting-point approximation. That would facilitate to use larger 
non-labelled database, where the manual labelling would take too much effort. The manual 
initialisation also needs in some degree expert knowledge about the MM fitting. 

The framework of the MM fitting has at the moment three steps: The first is the interactive 
anchor point setting with the help of a GUI, then the fitting function is called and at the end, 
some renderings of the fitting result are done for verifying the fitting [77]. This framework 
will not change significantly. Only the step of the manual anchor point clicking is exchanged 
by the facial feature set detection based on the W-RVM detectors and the PSM for finding the 
final feature assortment. The framework for the facial feature set detection approach has three 
stages. In the first stage, the W-RVM face detector is applied for the full image (Table 3-6). In 
the second stage, we define within the detected face areas a FOI for the facial features 
(Section 3.5.2) and apply all single facial feature detectors (Table 3-6) within their regions of 
interest. Figure 5-6 shows the stages of the feature detectors. In difference to Chapter 2 and 3, 
we use lower threshold sets for the first classifier stages to provide more candidates for the 
PSM function. Therefore, the clusters (Figure 5-6, first and second image, from left to right) 
are larger and a higher FAR is obtained for the last detector stage (right). 

     

Figure 5-6: Second stage of the W-RVM facial feature set detector for ten features 
The face detector result (red box) and the four stages are shown for ten facial features (The ten features, 
their colours, and marker are defined in Table 3-5). The 1st (from left to right) image shows the result af-
ter the first fast filter stage of the W-RVM’s, the 2nd the results after the 1st overlap-elimination, the 3rd 
after applying the full SVM for the remaining patches and the 4th the final result after the 2nd overlap-
elimination. The detections with the highest certainty per feature are circled (notice, that we use lower 
threshold sets for the first classifier stages to obtain more candidates for the PSM function). 
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In the third stage of the facial feature set detection, we apply as correlation classifier the PSM 
function (Section 3.6). The function takes as input the lists of coordinates and probabilities of 
the candidates of all features and the learned model obtained from the 3D MM. As input, the 
last stage of the facial feature detectors is used as seen in Figure 5-6, right and zoomed in 
Figure 5-7, left. After applying the PSM, we obtain as output new probabilities. The output of 
the PSM function is seen in Figure 5-7, middle and the maximum of the probabilities (circled) 
is used as final feature assortment of the W-RVM facial feature set detection (Figure 5-7, 
right image; see Section 3.5 for details and Table 3-7 for a survey of the approach).  

   

Figure 5-7: Third stage of the W-RVM facial feature set detector using the PSM 
The list of candidates of all features from the last stage of the W-RVM feature detectors (left image) are the 
inputs of PSM. The correlation classifier is the last stage of the W-RVM facial feature set detection. After 
applying the PSM, we obtain as output new probabilities taking advantage of the 3D MM. The maximum 
of the probabilities (middle image, encircled points) is used as final feature assortment of the W-RVM fa-
cial feature set detection (right). These points can be used as anchor points for the MM-fitting. 

The final feature assortment found by the feature set detection can be used as anchor points 
for the MM-fitting. In Figure 5-8, top row, we show the first results on the example image and 
compare the fitting results with a MM-fitting based on interactively set anchor points (middle 
row). We take advantage here of the Morphable Model Toolbox (MMT) from Romdhani et al. 
[77] and the Multiple Feature Fitting (MFF) proposed there. The first column shows the 
anchor points found by the W-RVM facial feature set detector (top) and the manual-set 
anchor points (bottom). A difference is visible for the labels of the eyes: these points are the 
average points of the left and right eye corners, and not the middle point of the eye area, or of 
the centre of the pupil. For that reason, they are difficult to set. In the following columns, the 
five MMF stages can be compared. The bottom row shows renderings the automatic and 
interactive fitting. Already after the second fitting stage (edge fitting), the results are similar.   

The application of the proposed facial feature detection for automatic anchor point detection 
is not yet finished. Some optimisation issues are not integrated and a suitable statistic 
validation has to be processed. For instance, the runtime of the PSM function can be 
improved by using a cascade of the reference sets (see Section 3.6). Furthermore, the usage of 
the occlusion likelihood is not finished. 
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Figure 5-8: Comparison of the MM-fittings stages 
The top row shows the MM-fitting stages on anchor points set by the W-RVM facial feature set detection 
and the middle row the on manually clicked landmarks. The bottom row shows the input image (left) and 
renderings of estimated texture blended into the input image. We demonstrate the automatic fitting results 
on W-RVM landmarks and results based on manual initialisation with the estimated illumination (2nd and 
3rd images from left to right) and with a normalized illumination for the estimated texture (4th and 5th).  
Comparing the five MM-fitting stages and the renderings shows that the automatic and interactive fitting 
have similar results already after the second fitting stage (edge fitting). 

However, the examples in Figure 5-8 and 5-9 show that the fitting results are robust to small 
displacements. This is expected, because the anchor points are mainly used at the first fitting 
stages.  

Labelling the anchor points manually will always be the most accurate method. However, a 
statistic would be interesting for the fitting of a large dataset using an automatic W-RVM 
anchor point detection in comparison to fitting results based on manual labelling. In 
Figure 5-10 first results on example images taken from the FERET database [61] are shown. 
Each column shows an example of MM-fittings performed on anchor points found by the 
W-RVM facial feature set detection using the PSM (Figure 5-10 a)-c)) and manually clicked 
landmarks (Figure 5-10, d)-f)).  

The first example (from left to right) has small differences for the lighting estimation. The 
lighting estimation is also done in the first fitting stages. Hence, differences at the anchor 
points have more influence in this phase. The second and fourth example show problems to fit 
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the ears, because of occlusions (hair style). This problem is not influenced by the anchor 
points, but can be solved using contour points or an outlier mask. In Section 3.3.1 we chose a 
set of facial features for the training using a multi-criteria catalogue. One criterion was if the 
features are suitable for MM-fitting. However, as discussed there the W-RVM facial feature 
detector will not be the appropriate method for contour points. The first experiments show as 
expected, that they are important for good fitting results. Hence, contour-based methods, 
which are more suitable for contour points, should be applied to use not only anchor points at 
the face. Another opportunity is to optimise the edge fitting at the first fitting stages, because 
there is already an edge- and model-based search included. The problem to find the contour of 
the face for the initialisation of the fitting could also be solved by the advanced skin 
segmentation by Pierrard et al. [60].   

  

   

Figure 5-9: Comparison of the renderings from the obtained fittings 
The top row shows the renderings from the fitting based on anchor points set by the W-RVM facial feature 
set detection and the bottom row the fitting results based on manually clicked landmarks. The 1st (from left 
to right) column shows the fitted 3D shape, the 2nd to 4th columns renderings using the extracted textures 
with different poses. The anchor points are visualised on the 3D shape with the colours and markers de-
fined in Table 3-5. Only very small differences can be seen on the shape between the fitting based on auto-
matic found and manual clicked landmarks. The landmarks are mainly used at the first fitting stages. 
Hence, the 3D MM-fitting is robust to small displacements of the landmarks. 

In Figure 5-10, fourth example face, the left eye point (le) is not detected accurately. 
However, the MM-fitting is robust to small displacements of the anchor points. Even if one 
anchor point is missing (like the right nose point (rb) at the third example), the fitting result is 
stable. In our experiments, we figured out that if at least seven anchor points are given, 
comparable fitting accuracy is obtained to manually set anchor points. 



Matthias Rätsch; Thesis; 2008  CHAPTER 5.  PERSPECTIVE AND CONCLUSION 

 107

a)  W-RVM  
anchor 
points 
facial 
feature 
detection  
using PSM 

 
b)  Fitting 

results on 
W-RVM 
anchor points 
with 
estimated 
texture 

  
c)  Render-

ings with 
pose on  
W-RVM 
anchor points 
with extracted 
texture 

  
d)  Manual 

anchor 
points 

 
e)  Fitting 

results on 
manual 
anchor points 
with 
estimated 
texture 

 
f)   Render-

ings with 
pose on 
manual 
anchor points 
with extracted 
texture 

  
Figure 5-10: Comparison of MM-fittings using anchor points set by W-RVM and manually 

Each column shows an example for MM-fittings performed on anchor points found by the W-RVM facial 
feature set detection using the PSM (a)-c)) and manual clicked (d)-f)). The 1st example (from left to right) 
has small differences for the light estimation. The 2nd and 4th ex. show fitting problems because of occlu-
sions, this problem is not influenced by these anchor points, and can be solved using contour points or an 
outlier mask. In the 3rd ex. the right nose point (rb) and in the 4th ex. the left eye (le) are not detected accu-
rately; however the fitting is robust. For the first set of images, we obtained a comparable fitting accuracy.  
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5.1.3. Further Unification W-RVM and 3D MM 
The PSM function is applied in Section 3.6 as correlation classifier. The input parameter of 
the function are the image likelihood given by the 2D appearance model (W-RVM), the shape 
likelihood based on the 3D MM, and the occlusion likelihood (see Equation (3.16)). 
Furthermore, in [78] an orientation and size likelihood is provided by the introduced PSM, 
which are estimated from the output of the SIFT key point detector. As expected, to use the 
size and orientation of the features improves the recognition rate of the optimal features 
assortment within all combinations. If, for example, two eye features within one combination 
have different sizes or opposite orientations, than this is not a likely feature assortment. From 
experiments by Romdhani et al. an improvement about five percent of the recognition rate of 
the final assortment can be expected. 

For this reason, we started a project applying the W-RVM approach for the approximation of 
regression functions (see Section 5.2.3). For the estimation of the orientation of the eyes (in-
plane rotation angle) we gained promising results. These regression functions have to be very 
efficient, because the regression must be applied for the size and the orientation of about ten 
features (for all candidates per feature included in at least one combination with a valid 
projection matrix). Therefore, standard Support Vector Regression would not be sufficient.  In 
Section 5.2.3 it is shown that using the W-RVM approach efficient regression is gained. 
Taking advantage of the 2D appearance model the 3D model function (PSM) can be improved 
as a further loop of unification of the 2D W-RVM and 3D MM-based approach. 

Another opportunity to take advantage of further unification of the two models was 
mentioned in Section 3.5. The FOI for the feature detectors is defined empirically. The idea is 
first to transform the area of the detected face to the 3D face space. Then to evaluate the 
probability, with the help of the 3D MM, that a feature could be located at each of the points 
within that area. After projecting back the probability map for the detected face area to the 2D 
coordinates, we can define for a given probability limit a more precise ROI for each feature. 
This would optimise the efficiency and improve the accuracy by reducing the FAR.  

Several opportunities appear if we use the 2D appearance and 3D model in more than one 
loop. With at least four points of the face, we can evaluate areas where missing facial feature 
points can be expected. For instance, features not detected at the first loop because of poor 
image quality or lighting conditions. A more complex detection can be applied in rather small 
uncertainty areas with reduced size (see Section 3.6 and uncertainty areas in Figure 3-35).  

In an improved framework, the features could be detected in loops. After, e.g., the first ten 
features are found using the introduced FOI, uncertainty areas with reduced size can be 
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obtained by the PSM. Then the next set of features like sci, g, li, en, and sba (see Table C-4 
and Section 3.3.1) can be detected more efficiently or more-complex classifiers can be used 
for these more problematically or more ambiguously to detect features. 

However, not only the search areas can be reduced: If the pose or the light is estimated after 
detecting the first feature points and using the first fitting stages of the MM, a normalisation 
could be applied at the image before searching for the next portion of features. For instance, 
after the focus length is estimated (based on the projection matrix by the PSM), not all scales 
of the pyramid image have to be considered for the next features. Additionally, if the in-plane 
rotation angle is estimated or the light source then the image can be normalised by the 
orientation or the illumination. The advantage is that the feature classifiers can be trained on 
normalised data, and therefore smaller training sets. The reduction of the hypothesis space, 
e.g. concerning the in-plane rotation angle or the variety of light conditions, improves 
significantly the complexity and generalisation performance of the classifiers.  

On the other hand, with a higher number of facial features or more precise facial anchor 
points the fitting of the MM can be improved. Already the initialisation of the fitting or the 
first fitting stage is more accurate, yielding better fitting results. Alternatively, for the PSM 
more PC for the specific subject can be estimated (see M in Equation (11) in [78]), which 
improves the finding of the assortment of the final features points, again.   

These are some opportunities of the ongoing process of the unification of the two models 
symbolised by circled arrows in Figure 5-1. 

5.2. Relevance of the W-RVM Hyper-plane Approximation 

5.2.1. Single-Stage W-RVM 
This is a project in cooperation with Gerd Teschke at Konrad Zuse Institute Berlin, Germany, 
Numerical Analysis and Modelling Department and University of Applied Sciences Neubran-
denburg, Germany, Department for Signal and Image Processing, Ill-posed and Inverse 
Problems, Geomathematics.  

In Chapter 2, we introduced the W-RVM as a two-stage approach. The machine is trained by 
a hyper-plane approximation from the original SVM to the Reduced SVM (RVM) and from 
the RVM to the Wavelet Approximated Reduced Vector Machine (W-RVM). The first 
reduction step reduces the number of vectors and the second the complexity of the vectors. 
The idea is now a single-stage computation of the Wavelet Approximated Reduced Vectors 
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(W-RSV’s) as a complexity reduction of Support Vector Machines based on a simultaneous 
sparse approximation of hyper-plane and set vectors. 

The core idea is described in the following: The W-RVM approach is concerned with Support 
Vector Machines (SVM) and its minimal and sparse approximation. Such a sparse approxima-
tion may accelerate the classification process impressively. The algorithm allows a simultane-
ous computation of both a sparse version of the underlying set vectors and an associated 
minimal approximation of the hyper-plane (which induces the classification). We proved that 
this algorithm will always converge in norm to one optimal reduced SVM.  

In accordance with the goal above, we aim to minimise the following cost functional  
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where iWy  denotes the wavelet expansion of  iy . The subsequent analysis is applicable for 

arbitrary one homogeneous and convex penalty terms. But typically sparsity is achieved when 
2p  < . The case 1p  <  amounts to non-convex penalties. The resulting non-uniqueness does 

not cause problems, but when dealing with iterative methods, convergence is an open 
problem. To this end, we limit the analysis to the case 1p  = . In the field of image patches, 

this makes sense since it allows the use of very fast image integrators (as long as we search 
for sparse rectangular, Haar-like representations of the patches). Since the minimisation is 
also with respect to the set vectors iy , the data misfit term is non-convex (since Ψ  acts 

nonlinear on y ). This requires the application of minimisation techniques for nonlinear 

operator equations. Here we adapt a scheme, quite recently developed in the habilitation 
(postdoctoral lecture qualification thesis) of Gerd Teschke that fits into our framework with 
sparsity constraints. 

The general idea goes as follows: construct a sequence of surrogate functionals from which 
we know that they provide unique solutions that are relatively easy to compute (assuming 
twice Frechét differentiability on Ψ , the surrogate functionals are even strictly convex). 
Moreover, it is shown that under certain assumptions on the operator :  N NX FΨ × →\ and 
properly chosen iteration parameters, the sequence of minimisers converges at least to one 
critical point, i.e. it converges towards one optimal Reduced Support Vector Machine.  

The iterative method is constructed by defining the surrogate functional 
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The sequence of iterates tending to one optimal/minimal Support Vector Machine is then 
created by 



Matthias Rätsch; Thesis; 2008  CHAPTER 5.  PERSPECTIVE AND CONCLUSION 

 111

 ( )1 1

( ; )
;   arg min ( , ;  ;  ) n n s n nJ

β
β β β+ + =

y
y y y  (5.5) 

The goal is to improve the performance of SVM classifiers. Computational speed is for 
example in the field of face detection in image movies required. At first experiments, we 
reduced a small SVM trained on faces. In Figure 5-11 we show some examples of the fix-
point iterations of the first four W-RSV’s. The algorithm converges to a reduced SVM, where 
the W-RSV’s are not longer a subset of the Support Set Vectors. 

 

Figure 5-11: Fix point iteration for Single-Stage W-RVM 

5.2.2. Multi-feature and Multi-invariant W-RVM 
One of the principles of the W-RVM is the early rejection of easy-to-discriminate vectors. It 
is obtained by double-cascaded evaluations over coarse-to-fine Wavelet Approximated 
Reduced Set Vectors (W-RSV’s). The used cascade for an early rejection of non-objects is a 
specific, maximal deep tree. However, a well-balanced tree would be much more efficient. 
The idea is to use general and more invariant W-RSV’s in upper notes of the tree and more 
specific for deeper nodes.  

For example, we want to apply a classifier tree for the left and right mouth corners as seen in 
Figure 5-12, left. It is achievable to train W-RSV's, able to discriminate left and right mouth 
corners from vectors not located at these feature points. To build a tree of classifiers is 
proposed, e.g. in [81]. The improvement would be to generate the classifier tree automati-
cally. One strategy is to compute W-RSV's (using Table 2-2) for an upper node as long as the 
number of operations per rejection of non-feature vectors is lower than the number of 
operations per rejection needed by the more specific deeper nodes; otherwise, the generalisa-
tion of the upper node is finished. This bottom-up strategy is finished when no upper node 
(with at least one W-RSV) can be extracted anymore. Instead of the rejection rate, also the 
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decrement of the hyper-plane distance per operation can be used. Figure 5-12 shows how 
W-RSV's of the upper node would look like for this example.  

The generalisation performance of an SVM is correlated to the size of the hypothesis space. 
For instance to classify all (right and left) mouth corners by only one SVM is not achievable. 
This is handled in praxis by applying different classifiers sequential. However, training a tree 
of classifiers (one for the left, one for the right and one for both) is more efficient and enables 
to build a multi-class classifier.  

                                          
Figure 5-12: Multi-feature and multi-invariant W-RVM  

Using W-RVM’s for each feature sequentially is not efficient. We can evaluate Reduced Set Vectors for 
some features jointly, e.g. for both corners of the mouth (left), before the specific classifiers are used. The 
same strategy can be used for multi-invariant classifier, e.g. for a large range of in-plane rotation, right. 

We can use the same approach for multi-class or multi-invariant classifier. For instance in 
Figure 5-12 right, if the range of the in-plane rotation angle of the feature is too large for one 
classifier, different classifiers are trained to handle this classification problem. Again, an 
upper more general classifier node can be extracted. This way more-invariant classifier for 
different poses, rotations, or scales can be build, working efficiently by starting with more 
invariant classifier nodes.  

At our experiments, we tried to train such more general classifiers as seen in Figure 5-12 and 
discussed the results. The approach used for a multi-invariant classifier is implemented by one 
of our cooperation partners using one general classifier before three classifiers with different 
ranges of in-plane rotation. This improved the runtime performance significantly, because the 
upper node is rejecting 94% of the non-feature vectors and only 6% have to be evaluated by 
the deeper nodes.  

5.2.3. Wavelet Approximated Vector Regression – W-RVR 
Support Vector Regression [88], [86] can be used to estimate functions. For example, we 
want to train a regression function for the in-plane rotation (roll) angle of the eyes within a 
face. In Section 3.6, it is figured out that the detection rate for the correlation classifier could 
be improved using additional an orientation and size likelihood for the PSM. Therefore, we 
want to estimate the orientation and size of the facial features and use as further input 
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parameters of the PSM. The evaluation function for regression (5.7) is similar to the decision 
function of the SVM 
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Identically we have to compute the kernel function for the current patch x and all Support Set 
Vectors xi ((5.6) or (2.1) in Section 2.1) or respective with all Support Regression Vectors ix� . 
With the same theoretical background, an approximation of the hyper-plane function for 
regression can be used as introduced in Chapter 2. That means we substitute the Support 
Regression Vectors (SRV's) by Wavelet Approximated Reduced Regression Vectors (W-
RRV's). For regression, we cannot use an early rejection rule as for the W-RVM. Neverthe-
less, for the training stage we can use the same residual approach by stepwise reducing the 
hyper-plane distance. The only difference is that in the working stage we always use the full 
set of approximated vectors. The learning stage will be without changes and it can be used 
identically as in Section 2.6. 

Performing the training, Frank et al. [31] was able to take advantage again from the 3D MM 
by generating synthetic training and validation data. This was substantial because labelled 
data would not be available for this issue. In addition, we improved the generation of 
synthetic data and scrutinised the difference between the classes of synthetic data (see 
Section 3.1). 

We trained the Support Vector Regression (SVR) function for the roll angle, then evaluated 
for these vectors a reduced set of vectors by the RVM approach by Schölkopf et al. [87] and 
approximated these vectors by the W-RVM method summarised in Table 2-2. 

In the experiments, Frank et al. was able to prove the accuracy and efficiency of the novel 
Wavelet Approximated Reduced Vector Regression (W-RVR) algorithm, applying the 
W-RVM approach. In Figure 5-13 results of the roll angle estimation are seen. An error 
between the estimation of the roll angle (red lines) and the ground truth (white) lower than 
one degree cannot be recognised manually. For an error less than three degree, it is not trivial 
to decide if the label or the estimation is more realistic. Thus, we defined five degree as an 
error bound for a valid estimation. 
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Figure 5-13: Accurate W-RVR results estimating the roll angle of eyes  

The top row shows examples where the error of the Wavelet Reduced Vector Regression estimation of 
the roll angle (red line) and the ground truth (white) is less than 1°. In the middle row are examples with 
an estimation error less than 3°, obtained even for closed eyes or examples where the pupil is not centred. 
For an error less than 3°, it is not trivial to decide if the label or the estimation is more realistic. The bot-
tom row shows examples with an estimation error of 5°. Most of these errors came from too large yaw 
angles (first three examples from left) or imprecise ground truths (two examples right).  

In Figure 5-14, it is shown that we can approximate the SVR function for no significant loss 
of accuracy by a 11- to 28-fold speed-up. To achieve the error bound of 5° for at least 95% of 
the estimated roll angles Wavelet Approximated Vector Regression based on the W-RVM 
approach provides a 75-fold speed-up over Support Vector Regression. 

    
Figure 5-14: Wavelet Appr. Vector Regression is 11- to 75-fold more efficient as SVR 

Left: To gain for 99% of the features an estimation error less than 5° the W-RVR needs only 89 Wavelet 
Appr. Regression Vectors (W-RRV's: left, plan blue curve, 1.4e5 operations) instead of 2,499 Support 
Regression Vectors (SRV's: thick red curve, 3.8e6 opr.). To estimate 95% of the roll angles with less than 
5° error only 33 W-RRV's (blue curve, dot marker, 5e4 opr.) are used. 
Right: If we reduce the SRV’s (by adjusting the generalisation parameter), the SVR needs 300 vectors to 
gain for 95% of the eyes an error less than 5° (SVR: red curve right, 4.6e5 opr.). The W-RVR uses only 
27 vectors to gain the same accuracy (W-RVR: blue curve, 4.2e4 opr.). The W-RVR achieves a speed-up 
by a factor of 11 to 28 compared to the SVR. 

Our objective was to train efficient regression functions to improve the PSM function used in 
Section 3.6. Our experiments above for the orientation estimation for the eyes are promising. 
We can improve the PSM and therefore the detection rate of the facial feature set by training 
the W-RVR estimation for the orientation and scale parameters. Even using the regression 
functions several times (on all candidates for all features) can be done in real time by applying 
the W-RVM approach to Support Vector Regression. 



Matthias Rätsch; Thesis; 2008  CHAPTER 5.  PERSPECTIVE AND CONCLUSION 

 115

Another interesting application is to use the Wavelet Approximated Vector Regression 
approach to learn an aging function based on the regression method proposed in [82]. 

Adapting the W-RVM approach to regression shows impressive the relevance of the W-RVM 
for hyper-plane approximations. This gives the thesis an interesting novel theoretical 
background not limited to the field of Support Vector Machines and classification problems. 

5.2.4. Tracking of Higher Feature Parameters 
In Section 4.3.1 we introduced face tracking and tracking of a facial feature using the 
W-RVM approach for the measurement function of the Condensation [55], [52], [53] 
algorithm. This project was realised in cooperation with the FHNW Basel, Computer Science 
Department, Prof. Hudritsch [13] and based on "Face Motion Tracking with web cams" [12].  

At the end of this project, we could track a feature vector including the x and y coordinates 
(translation of the object). In addition, the size (or respective the distance to the camera), the 
rotation angels, or even higher feature like a lightning estimation or parameter describing 
roughly the subject could be tracked in real time. Therefore, we realise the 3D tracking 
project. Julian Batliner [3] re-implemented the Condensation with an open architecture. To 
ensure extensibility and adaptation of the framework, the classes for Prediction and 
Measurement were designed as open interfaces. Therefore, the tracking is unproblematically 
applied for other objects, prediction, or new selection policy. As an example, we used as a 
measurement function the W-RVM for faces and for eyes. In addition, the feature vector can 
be extended. Currently, the three-dimensional vector of the x and y coordinates, and the 
distance of the object to the camera are tracked.  

As a novelty to the Condensation approach, we found new strategies for the prediction stage 
through a dynamical and adaptive evaluation of the prediction. We realised the constant 
diffusion matrix as described in [53], and a novel dynamic diffusion matrix computed from 
the covariance matrix of the sample feature vectors each frame new. In addition our prediction 
is adaptive, because it diffuses samples with a high object probability (obtained by the W-
RVM classifier) less than samples with a low probability. Comparing the approaches, we 
obtained a more stable tracking.  

Tracking a higher-dimensional feature vector speeds up the tracking. We obtained a speed-up 
to a detection method up to factor ten. In addition, the localisation accuracy improved, 
because the density near the object is higher, so more effort for accuracy is spent there. 
Therefore the core idea is the same as for the W-RVM approach to spend high computational 
complexity only for difficult-to-discriminate areas of the hypothesis space. This idea can be 
continued by adding new features to the tracking procedure, e.g. the in-plane rotation, or the 
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pose of the head. It would be also possible to track abstract algorithm parameters (like the 
order of the used W-RSV’s or parameter of the MM fitting) and end up with a real-time 
learning system (see next section). 

Here we demonstrate an expansion to the tracked feature vector for a third dimension, which 
is an improvement to standard methods tracking only object translations. A histogram over 
distance (respective the samples per scale of the used image pyramid, see [79] or Figure 2-2) 
visualises in Figure 4-14 the distribution of the samples on the third dimension. 
 

      

Figure 4-14: Tracking of higher feature parameters 
Tracking of faces with a three-dimensional vector is demonstrated. The x and y coordinates and the dis-
tance to the camera are tracked. Blue circles (left) visualise face-centre locations for samples with a high 
and green (right) with a small distance to the camera. The distribution of the samples on the third dimen-
sion is also shown with a histogram of the samples over the distance. The red box shows the object used 
to compute the drift. 

Open issues are multi-object tracking (track more than one object of the same object class, 
e.g. more persons within the image area, or two eyes within a face) and multi-class tracking 
(tracking of different objects, like the facial features of the face). A new project tackling these 
open issues has already started and is ongoing. This project uses a dual-camera system able to 
track a larger area of interaction in front of the camera using a Pan/Tilt/Zoom camera. Thus, a 
high resolution for the object of interest is obtained. 

5.2.5. W-RVM Real-time Learning 
As discussed in the previous sections one core idea of this thesis is to spend less computa-
tional effort in easy-to-discriminate feature space areas and only a high complexity for areas 
where the objects of interest are supposed to be located with a higher probability.  

The Wavelet Approximated Reduced Vector Machine uses more resolution levels (cascade 
over approximation levels for the vectors to describe the decision hyper-plane) for patches 
close to the decision hyper-plane. The second cascade of the W-RVM contracts the number of 
these incorporated vectors (cascade over number of used W-RSV’s). This optimises the 
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computational complexity per pixel location. The tracking contracts the density of the 
probability distribution to pixel areas near the observed object. This is an improvement to 
detection methods, where the probability is evaluated on a grid with constant resolution. 
Additionally, the 3D tracking contracts the distribution on scales close to the observed object. 
At the next abstraction level, we worked on the requirement to use several classifiers 
sequentially, if more than one object class is searched in images (or respectively if more than 
one classifier must be used, because of the limited invariance, e.g. a too-large range of in-
plane rotation). To contract the computational effort near the objects of interest over a set of 
classifiers, we introduced multi-class and multi-invariant classification trees (Section 5.2.2). 
As mentioned in the previous section a multi-dimensional feature tracking tackles the same 
problem. The density distribution estimation is contracted, e.g. on in-plane rotation angles 
similar to the observed object. 

The introduced tracking and the multi-feature tracking approaches already start to learn from 
the previous frames where to spend more computation cost and where less effort is sufficient. 
However, the used classifier do not work dynamically and still search, e.g., for the full range 
of faces under all conditions. Real-time learning in this sense would mean to contract the 
computation of the hyper-plane on locations of interest, learned from the history. That means 
to reduce dynamically the number of incorporated W-RSV’s and their resolution levels using 
the last frames.  

Our purpose is not only a speed-up of the algorithms, but to concentrate computational power, 
where complex decisions are required. This makes the algorithms faster for easy to discrimi-
nate areas of the hypothesis space, but at the same time more accurate at sensitive areas. 

For a reduced hypothesis space, the classifier does not have to tackle so much invariance and 
is thus faster or more accurate by real-time learning methods. The hypothesis space can be 
reduced, e.g. by tracking additional the orientation of the face, the lighting condition, or other 
environment conditions, and further by learning individual parameters of the observed 
subjects. Model parameters obtained by first fitting stages of the 3D MM fitting can be used 
to concentrate on W-RSV’s correlated to that subclass. Alternatively, the cascade of used 
W-RSV’s could be reordered taking in account the learned relevance from the history.  

To apply real-time learning strategies is inspired by the project in cooperation with the 
FHNW Basel [13]. To speed up their tracking algorithm they implemented in the former 
project [12] a simple L2-nom classifier. The robustness of that simple but dynamic measure is 
demonstrated in the left image at Figure 4-15. For a drawing application only a black round 
marker stuck on the fingernail is used. Clicking once at the image a template is cut out 
(Toolbox "Set Capture"). A Condensation tracking is applied using as simple measurement 
function the L2-norm of the particles (red dots) and the template. The maximal response 
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(green box around the fingertip) is used as coordinates for the virtual red pen on the drawing 
image (top left). The right image shows the real-time learning for tracking a round marker 
stuck on a face. If the response of the L2-nom is higher as a threshold the template is updated 
by the current underlying image area, the last two dynamic templates are shown at the left 
bottom corner of the display.    

   

Figure 4-15:Adaptive real-time learning using Condensation and L2-norm 
The left image demonstrates the real-time learning for a drawing application using only a black round 
marker stuck on the fingernail. Clicking once at the image a template is cut out (Toolbox "Set Capture").  
Condensation tracking is applied using as simple measurement the L2-norm of the particles (red dots) and 
the template. The maximal response (green box around the fingertip) is used as coordinates for the virtual 
red pen on the drawing image (top left). The right image shows the real-time learning for tracking a round 
marker, stuck on a face. If the response of the L2-nom is higher as a threshold, the template is updated by 
the current underlying image area. The last two adaptive templates are shown at the left-bottom corner of 
the display.    

To use only one template and only the L2-norm is not suitable for features that are more 
complex or in case of cluttered background. We would apply a FIFO stack of templates 
(verified by a complex classifier) and a dynamic learned W-RVM from these templates. Thus, 
we could realise the above-proposed contraction of the evaluation of the hyper-plane near the 
observed subject. The learning of small W-RVM classifiers on only a few training vectors is 
achievable in real time. We can take advantage of the automatic and straightforward learning 
stage of the W-RVM approach, in opposite to classifiers based on an optimisation of weak 
features, like [102]. 

5.2.6. Adaptive and Invariant Kernel 
Up to now, we have always used RBF kernels (see discussion in Section 2.1). The question 
arises, of whether we could reduce the hypothesis space by altering the kernel function. 

When we train a classifier like for faces or features, such as the nose tip, we enrich the 
training set by adding the mirrored positive examples, because if a face is within the positive 
class so is the mirrored face as well. For the pairwise used classifiers, such as the left and 
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right eyes or mouth corners, we train only one classifier. For instance, to train the left eye 
classifier we add the mirrored positive examples from the right eyes to the training set (and 
use for the detection of right eyes the (back) mirrored W-RSV’s). Both strategies exploit the 
symmetric characteristic of the features; on the other hand they enlarge the training sets, and 
so the hypothesis space and computational complexity of the classifiers.  

The question arises, as to whether we can enrich the kernel function, so that we only need to 
use one of the mirrored examples, without losing classification performance. In cooperation 
with B. Haasdonk, University of Freiburg [40] we discussed different kinds of invariant 
kernels. Most promising are reflection invariant kernels like: 

1. IDS-Kern:  
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where s(x) is the reflection of x. In experiments, we have to prove if the more expensive 
kernels reduce the hypothesis space adequately. That means if the kernels reduce the 
complexity of the classifiers so that we end up with fewer operations for a comparable 
classification performance. 

Another idea to exploit directly the symmetry of the pairwise trained classifier, for example 
for the left and right mouth corner, is to use this characteristic for the correlation classifier. 
The correlation classifier finds the final feature assortment within all combinatory possible 
combinations of detection candidates per facial feature point (Section 3.6). The classifier 
could be improved by the following strategy. A combination of feature points, where the 
difference of the patches of the mirrored left feature (e.g. the left mouth corner) and the right-
side feature (right mouth corner) is high, gets a smaller correlation likelihood. To handle in-
plane rotations the features could also be mirrored horizontally, and the minimum of 
differences would be used. This symmetry likelihood could be added as a term to the PSM 
function (3.16) introduced in Section 3.6. 

In the previous section, we discussed that the core idea of this thesis is to spend less 
computation effort in easy-to-discriminate feature space areas and only a high complexity for 
areas where the objects of interest are supposed to be located. Following this strategy, we 
attempted to alter the kernel function in this section. But up to now, we have always used a 
identical kernel, optimised for all W-RSV’s. For RBF kernels, used in our case, that means all 
kernels use the same “radius”, regardless if this part of the hyper-plane is smooth or rather 
“winding”. To put it differentially, we use the identical kernel parameters σ  in (2.2), 
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regardless if the hyper-plane has to be described in more detail or can be evaluated more 
roughly for the area around the W-RSV. To tackle this issue we want to use adaptive kernels. 
They use instead of constant kernel parameters, adapted parameters per Support Set Vector. 
Our intention is to combine the theory of adaptive kernels with our W-RVM approach. 

5.2.7. Further Optimisation of the W-RVM 
Optimisations directly correlated to the learning stage of the W-RVM classier were figured 
out in one of the cooperations with our partners; some of the ideas are listed in the following:  

• Integral Image Representation: Instead of using the coordinates of the rectangle 
structure of the W-RSV’s, it is more efficient to use a sparse matrix per W-RSV 
counting the number of used Integral Images pixels per location. This will reduce the 
computational cost between 30 and 50 percent. 

• Soft-Shrinkage is the superior way to reduce the wavelet coefficient. In some cases, 
the hard-shrinkage is closer to the RSV’s. Therefore, an optimisation considering both 
is optimal. In addition, we can test if the shrinkage for the average wavelet coefficients 
improves the efficiency. 

• Optimisation of the evaluation strategy for the W-RSV’s 
o Using an optimal number of W-RSV’s per approximation level and an optimal 

number of levels per vector, or even an open order of the W-RSV’s. 
o Using a constant number of wavelets coefficients, instead of a percentage of 

the highest coefficient per filter.   
o We could apply the rejections, instead of the decrement of the distance of the 

hyper-plane per operations in the cost function. 
• Bundle W-RSV’s into sets instead of rejecting patches after each W-RSV (needs 

fewer operations by unifying residuals using the Integral Image Representation)  
• We could scale the size of the W-RSV’s (observation window size), instead of the 

input image. The pyramid image does not have to be computed anymore. 
• Zero mean and unit variance normalisation of the feature space with a pre-stage: Up to 

now, we have used no normalisation of the feature space, because this was not the fo-
cus of the thesis (see Chapter 1). A zero mean and unit variance normalisation would 
reduce the hypothesis space, and therefore the complexity of the classifier. We derived 
a method to compute the transformation by taking advantage of the Integral Image 
method with less than twenty operations per image patch. The contrast and the mean 
of an image patch are on the other hand a criterion for rejecting image areas. As a pre-
stage, a threshold could be trained to reject image location where the contrast (vari-
ance) is too small, e.g. homogeny background in the image. 
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5.3. Conclusion 

The research of the proposed thesis is based on the optimal generalisation capabilities of 
Support Vector Machines [100] and the sequential evaluation of Reduced Set Expansions 
introduced by Schölkopf et al. [87] and applied for face detection by Romdhani et al. [73]. 
We also use the Integral Image approach by Viola and Jones [102]; used there for an 
AdaBoost learning algorithm. 

The novelty of our approach proposed in this thesis is to combine the Reduced Set method 
with the Integral Image method. We adapted the Integral Image method to Support Vector 
Machine based learning. As major novelties of our approach, we invented a Double Cascade 
for an optimal trade-off between accuracy and speed. It is obtained by the cascaded 
evaluations over the number of incorporated Wavelet Approximated Reduced Set Vectors and 
additionally by a coarse-to-fine cascade of resolution levels for each of these vectors. As 
opposed to the RVM, the sparseness of operations required for classification is not only 
controlled by the number of Reduced Set Vectors but also by the number of wavelet basis 
functions used to approximate a Reduced Set Vector. Hence, negative examples can be 
rejected with a much less number of operations, making the runtime of the algorithm very 
efficient.  

A novelty of this thesis is also the approximation of the Reduced Set Vectors by a Haar 
wavelet transform. Thus, a block structure is obtained and the Integral Image method can be 
used for their extremely efficient evaluation. The wavelet frame approach provides an upper 
bound of the hyper-plane approximation error. Exploring this characteristic, the training of the 
Wavelet Approximated Reduced Vector Machine works without heuristics and is fast. We 
also detail the relation between the hyper-plane approximation error of the decision functions 
and a training parameter to control the trade-off between sparsity and approximation. 

Additionally we expanded the wavelet transform in our approach by an over-complete 
wavelet system to find the best representation of the Reduced Set Vectors. 

The optimal approximation of the classification hyper-plane yields a very-fast-working 
classifier. The invention of an easy-to-train and fast-working classifier was the main goal of 
this thesis.  

Taking advantage of the above-mentioned novelties the learning stage of our proposed 
Wavelet Approximated Reduced Vector Machine is fast, straightforward, automatic, and does 
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not require the manual selection of ad-hoc parameters and is therefore simple. This is the 
main advantage of this algorithm compared to other approaches.  

The approach is straightforward because of our paradigm to avoid a complex search over the 
parameter space, by starting with the proved optimal performance of an SVM. Then we 
reduce the complexity by a Reduced Vector Set and the Over-complete Wavelet Approxima-
tion. The W-RVM is simple to re-implement. In Section 2.6, we propose a detailed pseudo 
code and the only input is the SVM and RVM. The used matrix notation makes the double-
cascaded structure visible, supports vectorised code and reduces the update rule. This speeds 
up the training significantly. The parameter are adjusted automatically by the algorithm, e.g. 
for the number of resolution levels and the number of approximated vectors per level 
(Section 2.8). Also the thresholds b in (2.38) are obtained automatically. These thresholds are 
set to yield a given False Rejection Rate (FRR). The trade-off between FRR and FAR is the 
only parameter of our algorithm to be set by the user, because it depends on the requirements 
of the application (Section 2.7). All other parameters are automatically adjusted. The learning 
stage is fast, because the training of the W-RVM takes about two hours instead of weeks. 

The performance of the classifier was first demonstrated on the task of face detection. Then 
the identical training algorithm was used for several facial features. This enables an automatic 
training of new objects and is an advantage over other techniques using a specific method for 
each feature [11].  

For advanced post-processing we extended our classifier to a Probabilistic W-RVM. We 
introduced and compared different non-parametric techniques to evaluate the PDF. The best 
results we obtained by a Sigmoid Functions Fitting in Section 3.4. 

Facial features are ambiguous, so we use a cascaded approach to apply the facial feature 
detectors in a FOI within the detected face area and a correlation classifier to find the final 
feature assortment within all combinatory possible configurations of detection candidates. We 
adapted two methods and got the best results using the advanced Prior Shape Model function 
using ten facial feature points.  

For the problem of face and facial feature classification, we demonstrated that the decision 
hyper-plane of an SVM can be approximated by a much smaller number of vectors. 
Moreover, we show that the number of operations to evaluate the distance to the decision 
hyper-plane is drastically decreased. Together with the double-cascaded strategy, we gained 
that large parts of the images can be rejected with only few operations.  

This theoretical improvement could be verified in the experiments. We used for the validation 
the common FERET database and compared the results to other state-of-the-art detection 
methods. On the validation sets, we compared the accuracy and the average time required to 



Matthias Rätsch; Thesis; 2008  CHAPTER 5.  PERSPECTIVE AND CONCLUSION 

 123

evaluate the patches. The novel W-RVM algorithm provides a 530-fold speed-up over the 
Support Vector Machine and more than a 15-fold over the Reduced Support Vector Machine, 
for no substantial loss of accuracy. 

Our proposed classifier is more efficient for detection than the most common state-of-the-art 
AdaBoost method [4]. The main advantage to [4] is the significantly improved training time 
by the paradigm to start with an SVM with proved classification performance instead with a 
complex search over weak classifiers. The W-RVM classifies about 25 times faster than the 
Rowley-Baluja-Kanade detector [1] and about 1000 times faster than the Schneiderman-
Kanade detector [19]. To demonstrate the efficiency and accuracy of the detection algorithm, 
we implemented an application using a standard webcam. Accurate face detection is obtained 
in real time by 25 fps on a standard PC.  

The essential ingredient was the development of an adequate classifier for face and facial 
feature detection. This is the main contribution of this thesis.  

The performance of the facial features detection system was obtained exploring the 3D 
Morphable Model in first unifications loops with the proposed 2D image-based classifier. We 
took advantage of the 3D Morphable Model by generating synthetic training and validation 
data with a large variability concerning lighting, noise, pose, texture, and shape. We discussed 
the advantage of different classes of synthetic data. The use of synthetic data was indispensa-
ble, because labelled databases for arbitrary facial features were not accessible. The 
availability of such diverse data is an enormous improvement. Training now the W-RVM on 
these diverse data sets, yield classifiers that detect candidates for all feature points, which we 
then use as input for the 3D MM model again. The 3D Prior Shape Model function uses the 
3D MM to find the final feature assortment within all combinations of the candidates for the 
feature points. At the resulting unification loop, the facial feature assortment can be used as 
initialisation for an automatic fitting of the 3D Morphable Model.  

The loops of unification of the 2D image-based classification and the 3D Morphable Model 
form the general background of this thesis. This will be continued as discussed in Sec-
tion 5.1.3. The practical use of unification is illustrated by a number of possible applications 
in the field of face analysis and synthesis. 

Beside the publication of the new approach [70], [68], [71], a plug-in for the I-Search project 
[54], webcam applications for live presentations and an API for several HCI and CHIL 
projects were provided. While working on the thesis the new method is used in praxis and in 
cooperation with companies and institutes, for example the Cognitec GmbH, the Konrad-
Zuse-Institute Berlin (ZIB), the University of Applied Sciences Neubrandenburg [99], or in a 
tracking application in cooperation with the FHNW Basel [13]. For the face detector a Free 
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Frame plug-in is available and can be used as common interface for visual programming 
languages, e.g. as Adobe plug-in [33]. We used it as interface for the visual programming 
languages VVVV [25] in cooperation with the HGK Basel in the field of perception 
psychology [57], [38]. This amount of projects verifies the efficiency and robustness in real-
life environments. The applicability of the invented approach is also shown within bachelor, 
diploma, and master theses using the detection algorithm, the classifiers, or adapting the 
approach for other functional approximations like the approximation of regression functions.  



 

  

Appendix A 
 
UML Documentation 
The following section gives a summary of the components of the developed software and 
some introductions how to use it. For a comprehensive documentation and implementation 
details, see the HTML documentation at the software. 
 

W-RVM  Project Report 
 

Root Package 

Component Diagrams 
diagram FFDTraining 
diagram FFDWorking 

Component Diagrams 

 Component Diagram FFDTraining 

Std_Libraries

<<library>>
Std_Matrix

<<library>>
Std_String

<<library>>
Std_IntImg

<<library>>
Std_Image

MatLab

<<library>>
libtiff

<<library>>
libjpeg

Configuration

<<library>>
at_AfdLib

saves the classifiers,
thresholds and
detector configuration

mat_Interface

afd_interface

<<application>>
hk_train

trains an SVM
and RVM

<<file>>
calWRVM

approximates
the RVM

<<application>>
hk_roc

compute ROC's
without and with
using a thres file

<<file>>
CompPDF_FitSgm
probabilistic Outpu

<<file>>
roc.m

comp. thres files
from ROC's and a
given FRR

<<executable>>
Generate W-RVM

Trains  face and facial
feature detection

 
Figure A-1: UML diagram of the W-RVM Training 

Component UML view for all modules for the training of a W-RVM. 
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Component Detail 

 Component Generate W-RVM 
Stereotype: MatLab script  

author: 
Matthias Raetsch 

explanation: 
Trains face and facial feature classifiers 

The MatLab script for automatic training, adjusting, and validating of all facial feature 
classifiers and the face classifier has following stages: 

0. INI for all facial features and for the face classifier  

1. TRAIN SVM (see hk_train) 

2. TRAIN RVM (see hk_train) 

3. TRAIN W-RVM (see calWRVM) 

4. VALIDATE on test set (see hk_roc) 

 R.O.C. on test set of the single SVM 

 R.O.C.'s for each W-RSV filter separately  

 R.O.C. of the last W-RSV filter (not cascaded W-RVM)  

5. COMPUTE the PDF using histogram, knn and sigmoid function fitting to obtain a 
calibrated posterior probability to enable post-processing (see CompPDF_FitSg.m) 

6. ADJUST the thresholds for each W-RSV for a set of given FRR’s (see roc.m) 

7. VALIDATE on test set with a set of threshold sets (see hk_roc) 

 R.O.C. of the W-RVM only the final SVM stage, cascaded 

 PLOT Rejections over number of used operations and number of vectors 

 R.O.C. of the cascaded W-RVM + final SVM stage  

Dependency Links 
to Subsystem Configuration 

to Component MatLab 

to Component hk_train 

to Component calWRVM 

to Component hk_roc 

to Component CompPDF_FitSg.m 

to Component roc.m 

 Component hk_roc 
Stereotype: application 
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author: 
Matthias Raetsch 

explanation: 
Application for computing R.O.C.'s without and with using a threshold file to validate a 
trained classifier 

Dependency Links 
to Subsystem Std_Libraries 

to Subsystem Configuration 

 Component hk_train 
Stereotype: application 

author: 
Matthias Raetsch 

explanation: 
Application for the training of an SVM and RVM on a set of patches 

Dependency Links 
to Subsystem Std_Libraries 

to Subsystem Configuration 

 Component roc.m 
Stereotype: MatLab script 

author: 
Matthias Raetsch 

explanation: 
Script for computing threshold files from an R.O.C. and a given FRR 

Dependency Links 
to Component MatLab 

to Subsystem Configuration 

 Component calWRVM 
Stereotype: MatLab script 

author: 
Matthias Raetsch 

explanation: 
Script for the approximation of an RVM (see Chapter 2, Table 2-1) 

Dependency Links 
to Component MatLab 
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to Subsystem Configuration 

 Component CompPDF_FitSg.m 
Stereotype: MatLab script 

author: 
Matthias Raetsch 

explanation: 
Script for the training of a Probabilistic W-RVM 

The PDF is computed using histogram, knn and sigmoid function fitting to obtain a 
calibrated posterior probability to enable post-processing.  

Sigmoid function: p(ffp|t) = 1 / (1 + exp(A t +B)) 

Dependency Links 
to Component MatLab 

to Subsystem Configuration 

 Component MatLab 
Stereotype: library 

explanation: 
The standard libraries are used to handle MatLab data files 

 Component libjpeg 
Stereotype: library 

explanation: 
The standard library is used for jpeg images 

 Component libtiff 
Stereotype: library 

explanation: 
The standard library is used for tiff images 

 

Subsystem Detail 

 Subsystem Configuration 
Dependency Links 

to Component MatLab 

Contained Elements 

 Component at_AfdLib 
Stereotype: library 
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explanation: 
The library is used for the handling of the classifiers, thresholds and detector configu-
ration files 

"Supports" links 
to Interface mat_Interface 

to Interface afd_interface 

 Interface afd_interface 
Stereotype: interface 

explanation: 
This intern interface realisation is used to handle configuration files, if MatLab is not 
available 

 Interface mat_Interface 
Stereotype: interface 

explanation: 
This interface realisation is used to handle configuration files in MatLab format 

 Subsystem Std_Libraries 
Contained Elements 

 Component Std_Image 
Stereotype: library 

author: 
Matthias Raetsch 

explanation: 
The Library contains the handling of images 

Dependency Links 
to Component libjpeg 

to Component libtiff 

 Component Std_IntImg 
Stereotype: library 

author: 
Matthias Raetsch 

explanation: 
The Library contains the handling of Integral Images 

 Component Std_Matrix 
Stereotype: library 
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author: 
Matthias Raetsch 

explanation: 
The Library contains the handling of matrices  

 Component Std_String 
Stereotype: library 

author: 
Matthias Raetsch 

explanation: 
The Library contains handling of stings  
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 Component Diagram FFDWorking 

<<library>>
Fd_Detect

Realizies face and
facial feature detection

FD Aplications GraVis

<<application>>
camFDViewer

<<application>>
ISeeYou

Std_Libraries
<<library>>
Std_Matrix

<<library>>
Std_String

<<library>>
Std_Image

<<library>>
Std_IntImg

Configuration

<<library>>
at_AfdLib mat_Interface

afd_interface

MatLab

MatLab
engine

<<library>>
libtiff

<<library>>
libjpeg

FDetection

MFC Applications

<<application>>
FaFaDe

<<application>>
FaFaFeDe

I-Search

<<application>>
Web_FrontEnd

<<library>>
ClusterManager

<<library>>
LibGravis

tFDedection

V4_FD

<<application>>
DetectObject

<<library>>
FeatureDetection

Cmd  Applications

<<application>>
FD_DetectOneImage

<<application>>
FD_HRVM_DetectApp

<<application>>
FD_HRVM_PredictApp

<<application>>
FD_FfpDetectApp

<<library>>
LibCam

<<library>>
LibRabbit

 

Figure A-2: UML diagram of the W-RVM Detection 
Component UML view of all modules for the detection using a W-RVM. 

Subsystem Detail 

 Subsystem Configuration 

author: 
Matthias Raetsch 
explanation: 
System for the handling of the configuration of all components, see FFDTraining for 
more details 

 Subsystem Std_Libraries 

author: 
Matthias Raetsch 
explanation: 
System for the handling of images, Integral Images, matrices, and strings, see 
FFDTraining for more details 

 Subsystem Cmd  Applications 
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Dependency Links 
to Interface FDetection 

to Subsystem Configuration 

Contained Elements 

 Component FD_DetectOneImage 
Stereotype: application 

author: 
Matthias Raetsch 
explanation: 
The application runs face detection method for one image 
 usage: FD_DetectOneImage [<cfg_file.afd>] [<image_list.lst>] 
    <cfg_file.afd>: Configfile, default: "..\config\fd_config_fd.mat" 
    <image.tif>: Image, default: ".\tst.tif" 

 example: FD_DetectOneImage ..\config\fd_config_fd.mat .\tst.tif 

 Component FD_FfpDetectApp 
Stereotype: cmdlinie application 

author: 
Matthias Raetsch 
explanation: 
The application runs the facial feature detection algorithm based on W-RVM detectors 
and the PSM correlation classifier on a list on images. Which features to use and the 
configuration of the application is stored in the config file. 
 usage: FD_FFpDetectApp [<cfg_file.afd>] [<image_list.lst>] 
    <cfg_file.afd>: Configfile, default: "..\config\fd_config_ffd.mat" 
    <image_list.afd>: Imagelist, default: ".\tst_i-search.lst" 

 example: FD_FFpDetectApp ..\config\fd_config_ffd.mat .\tst_i-search.lst 
 

 Component FD_HRVM_DetectApp 
Stereotype: application 

author: 
Matthias Raetsch 
explanation: 
The application runs the face detector for a list of images using the Haar-like approxi-
mated vectors trained with Morphological Filters.  

Usage see “FD_HRVM_DetectApp -h”. 

 Component FD_HRVM_PredictApp 
Stereotype: application 
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author: 
Matthias Raetsch 
explanation: 
The application runs the face detector for a set of patches using the Haar-like approxi-
mated vectors trained with Morphological Filters.  

Usage see “FD_HRVM_PredictApp –h”. 

 Subsystem MFC Applications 
Dependency Links 

to Interface FDetection 

to Subsystem Configuration 

Contained Elements 

 Component FaFeDe and FaFaFeDe 
Stereotype: application 

author: 
Matthias Raetsch 
explanation: 

Live Video Application FaFaFeDe – Fast Facial Feature Detector 

 
Figure A-3: The Fast Facial Feature Detector (FaFaFeDe) 

1. Goal 

For demonstrating the Fast Facial Feature Detection an application is implemented based on 
the face detection application FaFaDe for detecting a single feature or single face detection. 

FaFaFeDe can run several facial feature detectors, use ROI’s for each feature relative to the 
detected face and show the stages of the detectors.  

The results of the detectors are combined and using additional a 3D correlation model for the 
feature points the final feature assortment is found. All other detections are rejected as False 
Acceptances.  

After showing the stages of the single W-RVM detectors a combination of the detection results 
is evaluated, if at least five facial feature points are detected. A 3D Prior Shape Model is used 
to estimate the 3D correlations of the features. Finally the unification of results from the 
appearance model (combinations of the outputs of the detectors) and the shape model is 
computed. The detection certainties and the final confidence, combining the detection and 
prior shape results, can be visualized. The best feature assortment is marked by circles at 
these stages. 

The here described version is developed for using the first PSM using five facial features.  
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2. FaFaFeDe GUI 

2.a. The FaFaFeDe Toolbar 
• From left to right can here be chosen (Figure A-4): the video source, to pause the 

video, to start or stop the detector with “Go!” (to load the configuration and classifiers 
takes some seconds, since of the size; restarting the detection sets back all 
parameters to the values from the configuration files), switch off the visualization, 
open the video format dialog (e.g. to change the video resolution), open the video 
source dialog to adjust the parameters of the camera, like brightness, shutter time, 
gain etc. and to open the about dialog. 

 
Figure A-4: FaFaFeDe Toolbar 

  
Figure A-5: FaFaFeDe video format and source dialog 

2.b. The FaFaFeDe status bar 
• The status bar is used to watch the most important outputs of the detector, like the 

certainty of the detectors, the frame rate or a pose estimation. Also the current 
adjusted values of the most significant method parameters are shown, like the number 
of used scales, or which stage is visualized at the display window. 

 

   
 

 

 

   

 

  Figure A-6:  FaFaFeDe status bar and keys for adjusting some of the control parameter 
 

2.c. The visualisation of the W-RVM stages by FaFaFeDe 
• The W-RVM detection is a multi-stage approach. Each stage rejects detected 

locations of the features from the output of the previous stage. The algorithm starts 
from a core and fast to a fine and complex filter. The output of each stage can be 
visualized by FaFaFeDe for each detector into the same view by different colors and 
different markers (blue 'x': left eye, red '+': right eye, green 'v': nose tip, cyan '<': left 
mouth corner, and magenta '>': right mouth corner). A dark color shows always a low 
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detection probability of the current filter stage and a bright color a high probability. The 
detections of the face classifier are marked by the bounding box and bright red for 
uncertain and bright blue for certain detections.   

• The stages of the W-RVM approaches are (see Figure 4-3): 
i) "WRVM": default visualization of the full approach, same as last stage “6Conf” 
ii) “1WRVM”: The first stage, the Wavelet Approximated Reduced Vector Machine 

classifier runs in a sliding window method over each column, each row and each 
scale of the pyramid images and classifies the underlying patch. Over 95% of the 
locations are rejected as non feature and it will not further evaluate. The W-RVM is 
also a Double Cascaded classifier of the number of used Wavelet Approximated 
Reduced Set Vectors (W-RSV’s) and over the approximation resolution levels. 
Hence easy to classify image location (like homogeneous background) are rejected 
very efficient with less as fifty computational operations (see Chapter 2, 3 for 
details).  

iii) "2WRVMoe" (W-RVM overlap elimination): All detections per cluster are rejected 
except the top n best detections (see key in Config). At this stage also the ROI’s are 
shown by bright boxes and the image pyramid of each feature in the top left image 
corner by a brighter color of each feature. 

iv) “3SVM" Full Support Vector Machine Stage: The full classification power with the 
well-known best generalization performance of the SVM for most accurate detection 
and certainty outputs. 

v) "4Cert" Certainty of the combinations of all possible combinations of detections. 
Each feature point is shown with the max certainty of all combination where it is 
incorporated. Only all detections after an overlap elimination of the SVM detections 
(similar to the overlap elimination after the “1WRVM” stage) are considered. 

vi) "5Prio": Probability of the Prior Shape Model for each combination of detections. It 
shows the probability that this set of features has a valid correlation in a 3D facial 
space. 

vii) "6Conf": Final confidence of each combination of features as function of the 
certainty from the appearance model (see “4Cert”) and from probability (see “5Prio”)  
of the 3D Prior Shape Model. 

The Stages v) until viii) can only be computed by at least five feature points, (otherwise 
nothing is shown here). The combination of feature points with the highest likelihood to be the 
final assortment is marked by circles. You can switch between the stages with the keys ‘O’ 
and ’P’ and check at the status bar which stage current is shown.  

2.d. Optimization parameter of the W-RVM approach 
• All used parameter to control the W-RVM algorithm can be adjusted in 

configuration files. The format of these files is similar to Windows Ini files. The 
parser is MatLab and can also used as editor. At the command prompt the 
parameter ‘-i <config_file>’ can be used to call FaFaFeDe with a configuration file 
(see usage). This general configuration file includes the description witch feature 
points are to detect and default parameter for each detector. This parameter can 
be over loaded by the specific config files of the features. The set of configuration 
files of the single feature detectors are expected at the same directory as the 
<config file> or their path must be defined in the MatLab environment variable 
MATLABPATH. The filename syntax is <ffp_config_file>=<config_file>_<ffp>.mat, 
where <config_file> is the name of the general configuration file (without 
extension) and <ffp> the abbreviation of the feature (‘fd’ face, ‘le’ left eye, ‘re’ right 
eye, ‘nt’ nose tip, ‘lm’ left and ‘rm’ right mouth corner detector).  

• The most relevant parameters can also be live adjusted by short cuts keys in 
FaFaFeDe  
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Short 
cut 
key 

Config section and 
key name  

Description          

 ALLGINFO.confign
ame 

Path and name of the configuration file (after changes MatLab will 
save the file there). Running the general config files saves all config 
files of the defined features. Syntax of the file names see above. 

 ALLGINFO.verbose
level9o9o9o 
oi0lö0öp.öp.-     
7 6u 

Verbose level for debug outputs at the console and into the event log 
(use e.g. http://www.download.com/DebugView/3000-2218_4-
10213956.html) (0: no, 1: most important, 2: many outputs) 

 ALLGINFO.dumping List of bool values which debug information and images shood be 
saved (InImg, GreyImg, OverElmImg, DrawScalings, DrawROI, 
OutImg, drawBB, BBList, facc, tacc, frej, trej; eg.  
[0 0 0 0 0 0 1 0 0 0 0 0]: only draw detection into the image (fast!) 
[0 0 1 1 1 1 1 1 0 0 0 0]; save images of all stages, draw image 
pyramid, draw ROI’s and draw the detections and save a list in a ascii 
file of them). Use this to report questions or bugs, be careful of HHD 
space and slow performance) 

 ALLGINFO.outputd
ir 

Directory for debug outputs (see ALLGINFO.dumping) 

 FFD.detec_featur
es and 
FFD.num_features 

This key is only set in the general config file and defines the set of to 
detect facial feature points (at the moment 0=face, 1=left eye, 2=right 
eye, 3=nose tip, 4=left and 5=right mouth corner are defined) 

eg. only face detector: [0]; 
eg. face and eye detectors: [0 1 2]; 
eg. face and nose tip detectors: [0 3]; 

The face detector must be the first, if the other detectors shell run only 
into the detected face area. num_features is defined by the length 
of the vector. 

 FD.scenario This key can be used to define configs for specific scenarios like 
webcams, FireWireCams or working at a data base. 

 FD.ffp Key to define the kind of feature point for that detector (at the moment 
0=face, 1=left eye, 2=right eye, 3=nose tip, 4=left and 5=right mouth 
corner are defined) 

‘O’, ‘P’  Visualized W-RVM stage in FaFaFeDe (see Section 3c)  

‘S’,’D’ FD.maxscales Max number of scales for the image pyramid 

‘F’,’G’ FD.scalefactor Scaling factor for sup sampling to the next smaller image in the 
pyramid 

‘H’,’J’ FD.face_size_min Min. height of the feature in pixel 

‘N’,’M’ FD.expected_numb
er_faces 

Max number of expected objects (if n=1,2 or 3 then always only the 
best n detection are not reject, if n>3 all object with a higher certainty 
output as the threshold are not rejected) 

‘←’,’→
’ 

FD.limit_reliabi
lity 

Threshold offset for final SVM stage. All feature detections with a 
smaller output are rejected 

‘↑’,’↓’ FD.limit_reliabi
lity_filter 

Threshold offset for all W-RSV’s. All feature detections with a smaller 
output at the cascaded filters over the W-RSV’s are rejected (e.g. -0.1, 
than less patches are rejected at each filter, since less false rejections, 
but slower performance, since more have to be evaluated by more 
complex stages) 

‘PgUp’, 
’PgDn’ 

FD.numUsedFilter Number of used W-RSV’s. Only one until the full number of trained 
W-RSV’s can be used before the W-RVM cascade stops and the SVM 
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stage is used (Default is 0 = all trained W-RSV’s) 

 FD.expected_face
_orientation 

Excepted orientation of the feature, at moment only frontal, uprithgt 
features are trained, but the classifiers are about +-15° in plane, +-45° 
yaw und 30° pitch angle rotation invariant 

 FD.roi ROI within the feature will be detected  
eg.: [0 0 0 0] full image 
eg.: [-1 -1 -1 -1] full bounding box of the face detector 
eg.: [l  t r b] l pixels border from the left,  t  from top, r from right, 
and b from the bottom of the detected face box, or of the full image in 
the case it is a face detector or no face detector defined. 

 FD.only_full_svm Only full SVM (no W-RVM), SLOW!!! 

 FD.doesPPOverlap
Elimination 

Mode for overlap elimination 
eg. 0: only after SVM, 1: only after W-RVM stage or n: Reduce each 
cluster to the n top best after W-RVM and to the best after the SVM 
stage. 

 FD.distOverlapEl
imination 

Overlap elimination distance [and ratio] that two detection belong to 
the same cluster.  
eg. [d r]: If more overlap (smaller dist as d of the centres and smaller 
ratio r of the feature areas), than detections with lower likelihood will 
be rejected (d <=1: distance is measured relative to the feature widths, 
d >1: distance measured in pixels) 

 FD.distOverlapEl
imination 

Overlap elimination distance [and ratio] 

% if more overlap (smaler dist as [0] and ratio [1]), than the all 
detections with the lower likelihood will be deleted  

% Werte: [0]: float ([0]<=1 rel. to patch width, [0]>1 in pixel), [1]: 
flaot (-1.0 ingnore, 0.0<[1]<=1.0); Default: 5,-1 

 FD.stepsize Step size of the detector in pixel. The step size depends at the image 
scale coef and is defined by max(1,int(coef * FD.stepsize +0.5))  
eg. 3.0: step size of 3 pixel for the full resolution image (smallest 
feature), for the other resolution the step size is smaller 3.0 but at least 
1.0 pixel. 

 FD.classificator Path and name of the file which contains the trained W-RVM and 
SVM classifier in *.mat format 

 FD.threshold Path and name of the file which contains the trained thresholds of the 
W-RSV’s in *.mat format 

 

3. How to start and optimize the detection results by FaFaFeDe  

3.a. FaFaFeDe can be started at the command prompt as following 
 

 
3.b. How to optimize detection results and solving problems 
o Read the documentation carefully  
o By problems look at the system log, since FaFaFeDe hast no console (e.g. use 

http://www.download.com/DebugView/3000-2218_4-10213956.html) 

Usages: fafafede.exe [-i <config file>] 

 -i <config file>:  configuration file which includes the 
description witch feature points are to de-
tect and default parameter for each detec-
tor (Default ‚..\config\ffd_config_wc.mat' 

Example: fafafede.exe -i ..\config\fdetection\ffd_config_wc.mat 



Matthias Rätsch; Thesis; 2008  APPENDIX A.  UML DOCUMENTATION 

 138

o Start the application with default parameter (see usage.) or use an optimized 
configuration file.  

o Check if the camera and the light conditions are good adjusted. The detector is sensitive 
to the brightness. Do don’t start with light mostly from one side, spectacular highlights 
within the face and other strange lighting conditions. 

o It is always better to use more light and longer shutter times than to turn the gain control 
of the camera higher (noisy images)  

o Start the detection with “Go!” at the tool bar. First the classifier is loaded, that can tack 
some seconds, since of the size of the trained SVM. 

o Switch to the first stage with the key ‘P’ for initial optimization. 
o Start with an as frontal as possible face detection in ALL three axes. The detectors are 

rotation invariant until about ±15° in plane, ±45° yaw und ±30° pitch angle. But best 
results are obtained by frontal, upright and not tilt features. 

o Optimize orientation, distance to the camera and brightness of the camera/lighting 
source until the bounding box of the face detector is bright blue and you get as bright and 
as large as possible detection clusters for the feature detectors at the first W-RVM stage. 

o Now change to the next detector stage “2WRVMoe” using the key ‘P’. Here you can 
optimize the image pyramid (size of the detector patches), the ROI, thresholds of the 
classifier and other parameter (see above). Find an optimal trade off between speed 
(frame rate) and detection certainty (see both at the status bar). 

o If you changed parameter and don’t get a detection anymore go back to the default 
parameter set (e.g. by restarting the detectors clicking “Go!” twice.) 

o  After optimization copy your best parameters to the configuration files (see 
documentation of the status bar). 

o If you need support or have suggestions don’t hesitate sending your comments to 
matthias.raetsch@web.de (please with a copy of the debug infos from the system log, 
saved debug images (see config file), and the used set of config files) 

 Subsystem V4_FD 
Dependency Links 

to Interface FDetection 

to Subsystem Configuration 

Contained Elements 

 Component DetectObject 
Stereotype: application 

author: 
Matthias Raetsch in cooperation with HGK Basel 
explanation: 
The compenent realises the application InFaFeDe – Interactive Fast Face Detection 
(see Section 4.3.3).  

The application runs the face detection algorithm using the graphical programming lan-
guage VVVV. This language is convenient for real-time video applications: camera 
inputs or displays are simple graphical nodes and thus easy to use. 

The advantage of the interactive interface is that it is applicable, for projects not in the 
field of computer science. For VVVV no imperative programming knowledge is 
needed. In addition, the interface can be used for experimental programming or rapid 
prototyping. The parameters of the W-RVM approach can be demonstrated: For in-
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stance, non-experts can optimise the detection with respect to the trade-off between 
accuracy and runtime performance for specific environments. 

Dependency Links 
to Component FeatureDetection 

 Component FeatureDetection 
Stereotype: library 

author: 
Matthias Raetsch 
explanation: 
The library realises the Free Frame interface for the W-RVM detector. Free Frame is an 
open-source cross-platform for real-time video effects. With Free Frame, we use a 
plug-in system, which is a common interface for visual programming languages, e.g. 
Free Frame interfaces can be used for Adobe plug-ins (see Section 4.3.3).  

 Subsystem I-Search 
Dependency Links 

to Interface FDetection 

to Subsystem Configuration 

Contained Elements 

 Component ClusterManager 
Stereotype: library 

author: 
Matthias Raetsch in cooperation with ITWM Kaiserslautern 
explanation: 
The library realises the API for the I-Search project (see Section 4.2). 

I-Search was the first project using an API of our face detector applying the W-RVM 
classifier introduced in Chapter 2. One intension of the project was to use a web 
crawler to search through the WWW for faces. A cluster architecture was set up and the 
computational load optimised for each cluster. The W-RVM detector is one of the func-
tions running at the cluster. 

A further documentation of the project and detailed descriptions of the results are given 
in our final report [69]. 

 Component Web_FrontEnd 
Stereotype: application 

author: 
Matthias Raetsch in cooperation with ITWM Kaiserslautern 
explanation: 
The component realises a web application for the I-Search project (see Section 4.2). 
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The intention of this application was to build up a live detection system, as seen in Fig-
ure 4-7. One of the applications for this setting was our face detection approach. The 
API was applied by a web-service application. 

At the final presentation, we could show that our W-RVM face detector was able to 
detect all of the persons, which passed the installation during the demonstration.  

A further documentation of the project and detailed descriptions of the results are given 
in our final report and Section 4.2. 

Dependency Links 
to Component ClusterManager 

 Subsystem FD Applications GraVis 

author: 
Matthias Raetsch in cooperation with diploma, master, and bachelor students 
explanation: 
This is a platform where projects can be developed using the W-RVM approach. The 
purposes of the projects are HCI and CHIL applications (see Section 4.1.5, 4.3). Stan-
dard libraries of our research group like libCam (camera interface), libRabbit (GUI li-
brary), and libGravis (standard image and matrix library) are used. 

Dependency Links 
to Interface tFDedection 

to Component LibGravis 

to Component LibCam 

to Component LibRabbit 

Contained Elements 

 Component camFDViewer 
Stereotype: application 

author: 
Matthias Raetsch in cooperation with Pascal Paysan 
explanation: 
This is a portable application for FFD, which is not limited to Windows like FaFaDe 
and FaFaFeDe because of the usage of the MFC. This application is a starting point for 
further extensions of the face and facial features detection approach. The application 
camFDViewer is limited to face detection or one facial feature but uses the identical 
classes as the facial feature set detection, only the GUI has to be expanded and the in-
terface adapted. 

The application camFDViewer could already be adapted for new applications. For in-
stance, the projects “Face and Facial Feature Point Tracking” in Section 4.3.1, “Avatar 
Following with Eye and Head Motion” in Section 4.3.2, and the “Tracking of Higher 
Feature Parameters” in Section 5.2.4 took advantage of camFDViewer as a starting 
point. 
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 Component ISeeYou 
Stereotype: application 

explanation:  
The project “I See You” is one example for an HCI application see “Avatar Following 
with Eye and Head Motion” in Section 4.3.2 

Component Detail 

 Component Fd_Detect 
Stereotype: library 

author: 
Matthias Raetsch 

explanation: 
The library realises the face and facial feature classifiers, detectors and the facial feature 
set detection as introduced in Chapter 2 and 3. Table 2-2 can be used for a summary of 
the W-RVM classifier, Table 3-6 for the W-RVM detectors, and Table 3-7 for a sum-
mary of the W-RVM facial feature set detection using the PSM.  

"Supports" links 
to Interface tFDedection 

to Interface FDetection 

Dependency Links 
to Subsystem Std_Libraries 

to Subsystem Configuration 

to Component MatLab engine 

to Component LibGravis 

 Component LibCam 
Stereotype: library 

 Component LibGravis 
Stereotype: library 

author: 
GraVis research group 

explanation: 
The library realises the handling of images, vectors, arrays and matrices 

 Component LibRabbit 
Stereotype: library 
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author: 
GraVis research group 

explanation: 
The library realises the handling of GUI displays and dialogs 

 Component libjpeg 
Stereotype: library 

explanation: 
The standard library realises the handling of jpeg images 

 Component libtiff 
Stereotype: library 

explanation: 
The standard library realises the handling of tiff images 

 Component MatLab 
Stereotype: library 

explanation: 
The MatLab libraries realise the handling of MatLab data files 

 Component MatLab engine 
Stereotype: library 

explanation: 
The MatLab libraries realise the handling of a MatLab engine used to run the PSM func-
tions 

Interface Detail 

 Interface FDetection 

author: 
Matthias Raetsch 

explanation: 
The component realises an interface for all applications using libraries of the subsystem 
Std_Libraries and Std_Image as image format. 

 Interface tFDedection 

author: 
Matthias Raetsch 

explanation: 
The component provides an interface for all applications using standard libraries of the 
GraVis research group, like libRabbit, libGravis and tImage as image format. 

 



 

  

Appendix B 
 
Used Data Sets 
Description of some of the used data sets for training and validation of face and facial feature 
classifiers: 

Sets Patches: 

Set Patches neg pos pose Comment 

patches_ind_front_faces.txt 

p_front_all_rand_#F18213.txt 

0 18.213 frontal Web 

<root_data>..\Sets 

patches_ind_nonface.txt 93.630 0 most frontal Web,  

good_#F4911_#nF5604.txt 5.604 4.911 most frontal Manually sortet from Web 

patches_faces-and-
nonfaces_tr_3194f_20275nf.txt  

f-nf-train.mat 

20.275 
taken randomly 
from 100 Corel 
images 

3.194 
80% of the 300 
faces from 
Manchester, 100 
female models of 
Corel and 4000 
faces of Penev 

most frontal from former project train-set 

<root_data>\Sets\ 

patches_faces-and-nonfaces_test.txt 

f-nf-test.mat 

5.375  828 
20 remaining % of 
the training set. 

most frontal from former project test-set 

<root_data>\Sets\ 

patches_faces-and-
nonfaces_101_1000f-
vontr_5x20000nf-vontr.csv  

f-nf-tr_001.mat 

100.000 

5x20.000nf von f-
nf-tr.mat 

1000 

1.000f von f-
nf-tr.mat 

most frontal  

patches_vir-2_train.txt   13.890 19.377 

3194 from above 
and 5 virtual per 
face 

most frontal from former project 

patches_vir-5_train.txt   13.504 20.504  
from above + faces 
detected in the 600 
Corel images + 
webimages 

most frontal from former project 

patches_vir-2_test.txt  28.080 5.003 most frontal from former project test-set zu 
vir-5/2 

bdisc-20x20-testset.mat 100.000 

<root_data>\bdisc-
20x20_testset 

7.742 frontal pos. from feret (all frontal with 
mirrored)  

<root_data>\Sets\ 

<root_data>\Sets\b2_1920\le_tr.mat 
training set 

100800         

 

2880 frontal and pose pos. from feret (all frontal with 
mirrored re, see Section 3.1) 

<root_data>\Sets\b2_1920\le_ts.mat 
test set 

33600          960 frontal and pose pos. from feret (all frontal with 
mirrored re, see Section 3.1) 

<root_data>\Sets\b2_1920\nt_tr.mat 
training set 

109432         2880 frontal and pose pos. from feret (all frontal with 
mirrored, see Section 3.1) 

<root_data>\Sets\b2_1920\nt_ts.mat 
test set 

36476          960 frontal and pose pos. from feret (all frontal with 
mirrored, see Section 3.1) 
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<root_data>\Sets\b2_1920\lm_tr.mat 
training set 

92160         2878 frontal and pose pos. from feret (all frontal with 
mirrored rm, see Section 3.1) 

<root_data>\Sets\b2_1920\lm_ts.mat 
test set 

30720          960 frontal and pose pos. from feret (all frontal with 
mirrored rm, see Section 3.1) 

<root_data>\Sets\b2_1920\lx_tr.mat 
training set 

119280        22812 randomly pos. from feret (all frontal with 
mirrored rx) mixed with 
synthetic data (see Section 3.1) 

<root_data>\Sets\b2_1920\lx_ts.mat 
test set 

59640        11406 randomly pos. from feret (all frontal with 
mirrored rx) mixed with 
synthetic data (see Section 3.1) 

<root_data>\Sets\b2_1920\ls_tr.mat 
training set 

119280        22812 randomly pos. from feret (all frontal with 
mirrored) mixed with synthetic 
data (see Section 3.1) 

<root_data>\Sets\b2_1920\ls_ts.mat 
test set 

59640        11406 randomly pos. from feret (all frontal with 
mirrored) mixed with synthetic 
data (see Section 3.1) 

<root_data>\Sets\b2_1920\lb_tr.mat 
training set 

119280        20238 randomly pos. from feret (all frontal with 
mirrored rb) mixed with 
synthetic data (see Section 3.1) 

<root_data>\Sets\b2_1920\lb_ts.mat 
test set 

59640        10119 randomly pos. from feret (all frontal with 
mirrored rb) mixed with 
synthetic data (see Section 3.1) 

Table B-1: Sets patches 

Syntax sets for patches: 
- each row is one patch (h×w image vector, where h is the height and w the width of a patch) 
- first number is the lable (1: feature, -1: non-feature) 
- followed by (h×w, e.g. 20×20=400) grey values. 

Sets Images: 

Set Numb Number faces per 
image 

pose Comment 

Frontal FERET data base 
feret-frontal.eye 

3.876 1 frontal All frontal faces form FERET 
see Table B-3 
<root_data>\Feret\ground_truths\ 

feret-frontal_m2.lst 74 1 frontal Subset of FERET 
feret-frontal_m3.lst 33 1 frontal ditto 
feret-frontal_m4.lst 30 1 frontal ditto 
Bioid.lst 100 1 frontal Subset from BioID 

see Table B-5 
cmu.lst 30 1-n frontal and pose Subset from MIT-CMU 

see Table B-4 

Table B-2: Sets of images used for validation and experiements 

Syntax sets for images: 
- each row is one image, given by the path and filename followed optional by labels. 
 

name  Face Recognition Technology (FERET) program database  
description  images  The Colour FERET database contains a total of 11338 facial images. They were collected by 

photographing subjects over the course of 15 sessions between 1993 and 1996. This database is largely a 
colour version of the original Facial Recognition Technology (FERET) Database, which was released in 
2001 and consisted of 14051 greyscale images of human heads with views ranging from frontal to left 
and right profiles.  

number 
subjects  

994 subjects (Colour FERET database), 1209 subjects (Grey FERET database)  

colour 
depth  

24-bit colour images and eight-bit greyscales images  

resolution  512 by 768 pixels (Colour FERET database), 256 by 384 pixels (Grey FERET database)  
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labels  four (eyes, nose tip, mouth centre)  
comment  The FERET program ran from 1993 through 1997. Sponsored by the Department of Defence’s 

Counterdrug Technology Development Program through the Defence Advanced Research Products 
Agency (DARPA), its primary mission was to develop automatic face recognition capabilities that could 
be employed to assist security, intelligence, and law enforcement personnel in the performance of their 
duties. The program consisted of three major elements: sponsoring research, collecting the FERET 
database and performing the FERET evaluations.   

URL  http://www.nist.gov/humanid/colorferet/home.html (Colour FERET database)  
http://www.itl.nist.gov/iad/humanid/feret/ (Grey FERET database)  

Table B-3: Face Recognition Technology (FERET) program database 
 

name  MIT-CMU Face Detection Database  
description  images  130 images including images from the World Wide Web, scanned from photographs and newspaper 

pictures, and digitized from broadcast television. The image dataset was first used by the CMU Face 
Detection Project and is provided for evaluating algorithms for detecting frontal views of human faces. 
It combines images provided by K.-K. Sung and T. Poggio at MIT (Test Set B), and by H. Rowley, S. 
Baluja, and T. Kanade (Test Sets A,C and the rotated test set) at CMU.  

number 
subjects  

507 frontal faces  

colour 
depth  

grey scale  

resolution  large range  
labels  six (eyes centres, nose tip, mouth centre and corners)  
comment  poor resolution, difficult illumination, pose, rotation, occlusions, structural components, line drawings   

URL  http://vasc.ri.cmu.edu//idb/html/face/frontal_images/index.html 

Table B-4: MIT-CMU Face Detection Database 
 

name  BioID Face Database  
description  images  The BioID Face Database is a test set of 1521 images. Each one shows the frontal view of a face of one 

out of 23 different test persons. For comparison reasons the set also contains manually set eye positions. 
During the recording special emphasis has been laid on "real world" conditions. Therefore the test set 
features a large variety of illumination, background and face size.  

number 
subjects  

23  

colour 
depth  

grey scale  

resolution  384x286  
labels  20 (eyes centres, nose tip, mouth centre and corners, etc.)  
comment  The BioID Face Database is being used within the FGnet project of the European Working Group on 

face and gesture recognition. D. Cristinacce and K. Babalola, (University of Manchester) selected 
several additional feature points.   

URL  http://www.bioid.com/ (BioID database)  
http://www-prima.inrialpes.fr/FGnet/html/home.html (BioID used by European Working Group on face and gesture 
recognition)  

Table B-5: BioID Face Database 
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Appendix C 
 
Trained W-RVM Classifiers 
 

Tables with some of the trained SVM's, RVM's, and W-RVM's   

WRVM #W-RSVs #Lev #RSVs final Stage Used RVM threshold
ed with 

Comment 

hrvm_ss_ts3_b1-4x1-
4_8_bkorr_c0.2_2_20_With-
v5-SVM.mat 

90 1 

 

90 

 

v5-SVM f-nf-
hk90.mat 

f-nf-tr fd with  
MorFilter 
generated.  
only one 
level 

wrvm_o8x8_n7l20_thr0.7-
0.3.mat 

140 7 20 f-nf-hk90.mat f-nf-
hk90.mat 

f-nf-tr fd, no 
thresholds 
trained 

fd_f-nf_ 
wvm_r0.06_c1_o8x8_ 
n14l20t10_ 
hcthr0.84-0.42,0.36-0.18.mat 

80 14 20 f-nf-hk90.mat f-nf-
hk90.mat 

f-nf-tr  

fd_rbf2_20x20_wvm_ 
r1e-006_c2_o8x8_n30l7t5_ 
hcthr0.84-0.49,0.60-0.35.mat 

210 7 30 bdisc-20x20-
rbfb1_svm_org.mat 

bdisc-
20x20-
rbfb2_rvm.
mat 

bdisc-
20x20-
testset.mat 

fixed eye 
coordinates 

le_wvm_r0.1_c4_o8x8_n30l
7t5_thr0.91-0.49,0.65-
0.35.mat 

210 7 30 le_wvm_r0.1_c4_o8x8_
n30l7t5_thr0.91-
0.49,0.65-0.35--
le_ts_thres_0.01.mat 

le_rvm_r0.1
_c4.mat 

b2_1920\ 
le_tr.mat 

 

nt_wvm_r0.2_c1_o8x8_n30l
7t5_hcthr0.84-0.49,0.60-
0.35.mat 

210 7 30 nt_wvm_r0.2_c1_o8x8_
n30l7t5_hcthr0.84-
0.49,0.60-0.35--
nt_ts_thres_0.01.mat 

nt_rvm_r0.2
_c1.mat 

b2_1920\ 
nt_tr.mat 

 

lm_wvm_r0.1_c4_o8x8_n30
l7t5_thr0.91-0.49,0.65-
0.35.mat 

210 7 30 lm_wvm_r0.1_c4_o8x8
_n30l7t5_thr0.91-
0.49,0.65-0.35--
lm_ts_thres_0.01.mat 

lm_rvm_r0.
1_c4.mat 

b2_1920\ 
lm_tr.mat 

 

lx_wvm_r0.4_c10_o8x8_n5
0l7t5_hcthr0.84-0.49,0.60-
0.35.mat 

350 7 50 lx_wvm_r0.4_c10_o8x8
_n50l7t5_hcthr0.84-
0.49,0.60-0.35--
lx_ts_thres_0.01.mat 

lx_rvm_r0.4
_c10.mat 

b2_1920\ 
lx_tr.mat 

 

ls_wvm_r0.3_c10_o8x8_n30
l7t3_thr0.84-0.56,0.60-
0.40.mat 

210 7 30 ls_wvm_r0.3_c10_o8x8
_n30l7t3_thr0.84-
0.56,0.60-0.40--
ls_ts_thres_0.01.mat 

ls_wrvm_r0
.3_c10.mat 

b2_1920\ 
ls_tr.mat 

 

lb_wrvm_r0.5_c8_o8x8_n30
l7t5_thr0.84-0.49,0.60-
0.35.mat 

210 7 30 lb_wrvm_r0.5_c8_o8x8
_n30l7t5_thr0.84-
0.49,0.60-0.35--
lb_ts_thres_0.01.mat 

lb_rvm_r0.5
_c8.mat 

b2_1920\ 
lb_tr.mat 

 

Table C-1: Trained W-RVM's 
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RVM #RSVs final Stage Used SVM Thres Comment 

bdisc-20x20-
rbfb1_rvm.mat 

100 bdisc-20x20-
rbfb1_svm_org.mat 

bdisc-20x20-
rbfb1_svm_org.mat 

<root_data>\SVM 

Sets\bdisc-20x20-
testset.mat 

RVM: 
<root_data>\RVM
\bdisc-20x20-
rbfb1_rvm_n 

bdisc-20x20-
rbfb2_rvm.mat 

100 bdisc-20x20-
rbfb2_svm_org.mat 

bdisc-20x20-
rbfb2_svm_org.mat 

Sets\bdisc-20x20-
testset.mat 

RVM: 
<root_data>\RVM
\bdisc-20x20-
rbfb2_rvm_n 

f-nf-hk90_With-v5-
SVM.mat 

 

90 v5-SVM f-nf threshold_ss_ts3_b1-4x1-
4_8_bkorr_c0.2_2_20_f-
nf-tr_001.mat 

Large SVM 

f-nf-hk90.mat 90 f-nf f-nf threshold_ss_ts3_b1-4x1-
4_8_bkorr_c0.2_2_20_f-
nf-tr_001.mat 

 

le_rvm_r0.1_c4.mat 100 le_svm_r0.1_c4.mat le_svm_r0.1_c4.mat le_rvm_r0.1_c4-
le_ts_thres_0.05.mat 

 

nt_rvm_r0.2_c1.mat 100 nt_svm_r0.2_c1.mat nt_svm_r0.2_c1.mat nt_rvm_r0.2_c1-
nt_ts_thres_0.05.mat 

 

lm_rvm_r0.1_c4.mat 100 lm_svm_r0.1_c4.mat lm_svm_r0.1_c4.mat lm_rvm_r0.1_c4-
lm_ts_thres_0.05.mat 

 

lx_rvm_klr_r0.3_c50
p_10n.mat 

100 lx_svm_klr_r0.3_c50p
_10n.mat 

lx_svm_klr_r0.3_c50
p_10n.mat 

lx_rvm_klr_r0.3_c50p_10
n--lx_ts_thres_0.05.mat 

 

ls_rvm_r0.3_c10.mat 100 ls_svm_r0.3_c10.mat ls_svm_r0.3_c10.mat ls_rvm_r0.3_c10--
ls_ts_thres_0.05.mat 

 

lb_rvm_r0.5_c8.mat 100 lb_svm_r0.5_c8.mat lb_svm_r0.5_c8.mat lb_rvm_r0.5_c8--
lb_ts_thres_0.05.mat 

 

Table C-2: Trained RVM's 

 

SVM from Set Numb SSVs pos neg Comment 

bdisc-20x20-
rbf2_svm_org.mat 

Cog.  11.307 

<root_data>\bdisc-20x20-
rbf2_ssv_allv 

5.679 5.628 best without 
bootstrapping 

gamma=1e-6(bei 0-
255), 0.065(0-1) 
alphabound=2: 

On Bound  = 8832 

bdisc-rbf2-1e-6-alpb2-
20x20.zip 

bdisc-20x20-rbfb1 Cog.  16.892 

<root_data>\bdisc-20x20-
rbfb1 

7.674 9.218 gamma=1e-6 
alphabound=10: 

On Bound  = 6883 

Bootstrap 

bdisc-rbfb1-1e-6-
alpb10-20x20.zip 

bdisc-20x20-rbfb2 Cog.  22.130 

<root_data>\bdisc-20x20-
rbfb2 

10.591 11.539 gamma=1.5e-6 
alphabound=2 

On Bound = 13811 

Bootstrap 

bdisc-rbfb2-1.5e-6-
alpb2-20x20.zip 

f-nf -SVM f-nf-train.mat 769 324 445 gamma=0.06 
alphabound=1 

v5-SVM patches_vir-5_ 
train.txt   

11831 5242 6589 gamma=0.14 
alphabound=1 

le_rvm_r0.1_c4.mat b2_1920\le_tr.mat 1609 557 1052 gamma=0.1 
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alphabound=4 

nt_svm_r0.2_c1.mat b2_1920\nt_tr.mat 3238 931 2307 gamma=0.2 
alphabound=4 

lm_svm_r0.1_c4.mat b2_1920\lm_tr.mat 1454 610 844 gamma=0.1 
alphabound=4 

lx_wvm_r0.4_c10.mat b2_1920\lx_tr.mat 16932 4815 12108 gamma=0.4 
alphabound=10 

ls_rvm_r0.3_c10.mat b2_1920\ls_tr.mat 9184 3358 5826 gamma=0.3 
alphabound=10 

lb_svm_r0.5_c8.mat b2_1920\lb_tr.mat 16353 4424 11929 gamma=0.5 
alphabound=8 

Table C-3: Trained SVM's 
 

Syntax W-RVM's: 

MatLab file containing the following matrices: 

• num_hk: 1×1 scalar containing the number of all W-RSV’s (in general 
num_hk_wvm*num_lev_wvm). 

• num_hk_wvm: 1×1 scalar containing the number of W-RSV’s per level. 
• num_lev_wvm: 1×1 scalar containing the number of appr. levels per W-RSV’s. 
• param_nonlin1: 1×5 matrix, see SVM 
• area: 1×num_hk matrix of structures 

o area(1,i): represenstation of the i-th W-RSV (i = (l-1) num_hk_wvm + n, 
where l is the appr. level and n the n-th W-RSV at this level) 

 val_u: [1×  num_v_u] vector of num_v_u grey values of the residual u(n,l) (the 
number of grey values can be smaller than the number of rectangles)  

 val_a: [1×  num_v_u] vector of num_v_a grey values of the appr. vector (a(n,l) is the 
sum of residuals over the appr. levels: u(n,j), with j=1,...,l)) 

 cntrec_u: [1×  num_v_u] vector of number of rectangles per num_v_u grey values of 
u(n,l) 

 cntrec_a: [1×  num_v_a] vector of number of rectangles per num_v_a grey values of 
a(n,l) 

 rec_u: [num_v_u ×max(cntrec_u)] matrix of structures of rectangles coordinates of 
u(n,l)  

• coordinates (up/left and down/right point) of the rectangle: x1,x2,y1,y2 (if 
for this grey values exist less than max(cntrec_u) rectangles the coordinates 
are set to []) 

 rec_a: [num_v_a ×max(cntrec_a)] matrix of structures of rectangles coordinates of 
a(n,l)  

• coordinates (up/left and down/right point) of the rectangle: x1,x2,y1,y2 
 cntallrec_u: 1×1 scalar with number of all rectangles of u(n,l) 
 cntallrec_a: 1×1 scalar with number of all rectangles of a(n,l) 
 cntallopr_u: 1×1 scalar with number of all operations to compute the kernel function 

for u(n,l) 
 cntallopr_a: scalar with number of all operations to compute the kernel function for 

a(n,l) 
 cntallval_sum_u: 1×1 sum over the numbers of all grey values (num_v_u) of u(n,j), 

with j=1,...,l 
 cntallrec_sum_u: 1×1 sum over the numbers of all rectangles of u(n,j), with j=1,...,l 
 cntallopr_sum_u: 1×1 sum over the numbers of all operations to compute the kernel 

function for u(n,j), with j=1,...,l 
 crec: [num_v_u ×max(cntrec_u)] same as rec_u, but all coordinates a in C-syntax 

(i.e. first row and columns are zero not one) 
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• app_rsv_convol: 1×  num_hk vector of sqare values (u(n,l)´ u(n,l)) of the residual 
u(n,l) for all W-RSV’s, used for fast evaluation of the norm in a RBF kernel based on 
Integral Images (see x´x in Eq. (2.7) in Section 2.3.1) 

• rvmfile: sting with name of the used RVM 
• statistics: structure with many statistics of the W-RVM approximation 
• support_hk<i>: where <i> is a number which runs from 1 to num_hk. These 20×20 

matrices store the Wavelet Appr. Reduced Set Vectors (as double) 
• weight_hk<i>: where <i> is a number which runs from 1 to num_hk. These 1× i 

matrices store the weights of the num_hk W-RSV’s. 
• support_nonlin1: h×w×Nx matrix storing the Nx Support Set Vectors of the full SVM, 

with h is the height and w the width of a vector. 
• weight_nonlin1: 1×Nx matrix storing their weights. 
note: images in MatLab run over the columns not over the rows. 

Syntax RVM's: 

MatLab file containing the following matrices: 

• num_hk: 1×1 matrix containing the number of RSV’s. 
• param_nonlin1: 1×5 matrix, see SVM 
• support_hk<i>: where <i> is a number which runs from 1 to num_hk. These 20×20 

matrices store the Reduced Set Vectors (as double) 
• weight_hk<i>: where <i> is a number which runs from 1 to num_hk. These 1× i 

matrices store the weights of the num_hk RSV’s 
• support_nonlin1: h×w×Nx matrix storing the Nx Support Set Vectors of the full SVM, 

with h is the height and w the width of a vector 
• weight_nonlin1: 1×Nx matrix storing their weights. 
note: images in MatLab run over the columns not over the rows. 

Syntax ROC Files: 

MatLab file containing the following matrices: 

ROC:  3(FRR, FAR, Thres) ×  NumbROCPnts ). 

These files are generated by the program hk_roc. It contains the matrices roc_hk<i> where i 
runs from 1 to num_hk (the number of sequential RSV's from which this file originates). 
These matrices are of dimension 3×T, where T is the number of points of that ROC. The first 
row contains the false negative ratio, the second, the false positive ratio and the third row, the 
threshold of the RSM for which this point was obtained (or rather the delta threshold, i.e. that 
number must be added to the full SVM threshold to obtain that point on the ROC). 

Syntax SVM’s: 

MatLab file containing the following matrices: 

• param_nonlin1: 1×5 matrix 
o element 1×1: threshold of the full SVM (this threshold is subtracted from the 

sum of kernels to have the SVM evaluation of a patch). 
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o element 1×2: the type of threshold according to John Platt's notation (for 
Gaussian kernel, the value is 2). 

o element 1×3: this is the Gaussian parameter b : 2( , ) exp( )k x y b x y= − −  (be 
careful if you compute the kernel at the range [0,1] or [0,255]) 

o element 1×4 and  
o element 1×5: would be used for polynomial kernels 

• support_nonlin1: h×w×Nx matrix storing the Nx Support Set Vectors of the full SVM, 
with h is the height and w the width of a vector 

• weight_nonlin1: 1×  Nx matrix storing their weights. 
note: images in MatLab run over the columns not over the rows. 

note: kernel parameter depends on used range: 
σ : 2( , ) exp( )i i i ik σ= − −x z x z . Important in which range one works. Training sets are 
stored as integer in the range: 0-255, but the SSV's are trained and stored as double: 0-1. 
At classification the range is again: double, 0-255, therefore σ  is dived by 2552 (because 
σ =1/ 2γ ).   

σ : 0.01-1 for range 0-1 (e.g. ls about 0.3, rbf2 0.065; e.g. for training and stored in *.mat) 
σ : 1.7e-7 - 1.5e-5 for range 0-255 (e.g. ls about 4.6e-6, rbf2 1e-6; for classification) 

RVM Training, mat:  0-1:   2( , ) exp( )i i i ik σ= − −x z x z  
SVM Classification: 0-255:   2 2( , ) exp( / 255 (255 ) )i i i ik σ= − −x z x z   

 



Matthias Rätsch; Thesis; 2008  APPENDIX C.  TRAINED W-RVM CLASSIFIER 

 152

 P
oi

nt
 ID

 

 M
PE

G
4 

 A
nt

hr
op

om
et

ri
c 

po
in

t n
am

e 

 1
) 

In
va

ri
an

ce
 o

f p
os

iti
on

 w
rt.

 to
  

  
ex

pr
es

si
on

, s
ub

j. 
an

d 
ag

in
g 

 2
) 

In
va

ri
an

ce
 o

f t
he

 a
re

a 
w

rt.
  

 
sc

al
e,

 p
os

e 
an

d 
ill

um
in

at
io

n 

 3
) 

V
is

ib
ili

ty
 (a

s p
er

ce
nt

ag
e 

of
  

 
im

ag
es

) 5
 a

ll,
4 

¾
, 3

 ½
 , 

2 
 ¼

 , 
1 

0 

 4
) 

R
el

ia
bi

lit
y 

of
 fi

nd
in

g 
th

e 
po

in
t  

 
(d

ep
en

ds
 o

n 
th

e 
cl

as
si

fie
r)

10
 

 5
) 

Sa
lie

nc
y 

(in
 a

 c
er

ta
in

  
 

ne
ig

hb
ou

rh
oo

d)
 

 6
) 

E
st

im
ab

ili
ty

 (u
si

ng
 lo

ca
tio

ns
 o

f  
 

ot
he

r f
ea

tu
re

 p
oi

nt
s)

 

 7
) 

IS
O

 c
om

pa
tib

ili
ty

 (p
oi

nt
 li

st
ed

  
 

in
 M

PE
G

4 
IS

O
 st

an
da

rd
) 

 8
) 

A
cc

ur
ac

y 
of

 m
an

ua
l l

ab
el

lin
g 

 9
) 

U
se

fu
ln

es
s f

or
 p

os
e 

es
tim

at
io

n 

 1
0)

 U
se

fu
ln

es
s f

or
 th

e 
M

M
 fi

tt
in

g.
 

 A
ve

ra
ge

 

 R
es

um
e 

–R
an

k 
fo

r 
FF

D
11

 

 C
om

m
en

t 

 H
ow

 to
 p

oi
nt

 

v  11.4  Vertex  
- - - - - - - - - - - - outside of 

the face 
The highest point of head when the head is oriented in FH  

g   Glabella  5 2 5 3 1 4 4 1 2 2 2,9 3  The most prominent middle point between the eyebrows  
op   Opisthocranion  - - - - - - - - - - - - outside of 

the face 
Situated in the occipital region of the head is most distant from 
the glabella  

eu   Eurion  - - - - - - - - - - - - outside of 
the face 

The most prominent lateral point on each point of the skull in 
the area of the parietal and temporal bones  

ft   Frontotemporale  4 2 3 1 1 1 2 1 4 2 2,1 4  The point on each side of the forehead, laterally from the 
elevation of the linear temporalis  

tr  11.1  Trichion  1 4 4 1 2 3 4 2 3 3 2,7 4  The point on the hairline in the midline of the forehead  
zy   Zygion  4 1 3 2 2 1 2 1 1 1 1,8 4  The most lateral point of each of the zygomatic  
go  2.15 

2.16  
Gonion  3 2 4 2 2 2 4 2 2 5 2,8 3  The most lateral point on the mandibural angle close to the 

bony gonion  
sl   Sublabiale  2 2 4 2 2 3 2 3 3 3 2,6 4  Determines the lower border of the lower lip or the upper border 

of the chin  
pg  2.10  Pogonion  1 3 5 3 4 2 4 2 3 2 2,9 3  The most anterior midpoint of the chin, located on the skin surface 

in the front of the identical bony landmark of the mandible 
gn  2.1  Menton (or 

gnathion)  
2 2 3 2 3 2 4 2 2 4 2,6 3  The lowest median landmark on the lower border of the mandible  

cdl   Condylion laterale  4 3 3 1 2 1 2 1 4 1 2,2 4  The most lateral point on the surface of the condyle of the mandible  
en  3.8 

3.11  
Endocanthion  4 4 4 4 4 4 4 5 4 5 4,2 3 (label 

available!)  
ex better 

The point at the inner commissure of the eye fissure  

ex  3.7 
3.12  

Exocanthion (or 
ectocanthion)  

4 4 4 4 4 4 4 5 5 5 4,3 2 (label 
available!) 

The point at the outer commissure of the eye fissure  

p  3.5 3.6  Center point of 
pupil  

5 4 4 5 5 5 4 5 4 4 4,5 1 label 
available! 

Is determined when the head is in the rest position and the eye is 
looking straight forward  

or  3.9 
3.10  

Orbitale  3 3 4 4 1 4 4 4 3 4 3,4 4 saliency! The lowest point on the lower margin of each orbit  

ps  3.1 3.2  Palpebrale 
superius  

3 3 4 4 1 4 4 3 3 4 3,3 4 saliency! The highest point in the midportion of the free margin of each upper 
eyelid  

pi  3.3 3.4  Palpebrale inferius  3 3 4 4 1 4 4 4 3 4 3,4 4 saliency! The lowest point in the midportion of the free margin of each lower 
eyelid  

os   Orbitale superius  3 3 4 4 1 4 2 2 3 4 3 4 sci better The highest point on the lower border of the eyebrow  
sci  

4.3 
4.4  Superciliare  

2 5 3 4 3 3 4 3 4 5 3,6 3 no analogue 
for 4.5/6 by 
Farkas, sci 
nearest  

The highest point on the upper border in the midportion of each 
eyebrow  

n   Nasion  4 4 5 2 1 3 2 1 3 3 2,8 4 g better  The point in the middle of both the nasal root and nasofrontal suture  
se   Sellion (or 

subnasion)  
4 4 5 2 1 3 2 1 3 3 2,8 4 g better Is the deepest landmark located on the bottom of the nasofrontal angle 

mf   Maxillofrontale  ? ? ? ? ? ? 2 ? ? ? 0,2 ?  The base of the nasal root medially from each endocanthion  
al  9.1 9.2  Alare  2 2 4 3 4 4 4 4 3 4 3,4 3 sbal better The most lateral point on each alar contour  

prn  9.3  Pronasale  2 5 5 2 3 5 4 2 5 5 3,8 1 label 
available! 

The most protruded point of the apex nasi  

sn  9.15  Subnasale  5 3 3 4 4 5 4 5 4 4 4,1 3 ls better The midpoint of the angle at the columella base where the lower 
border of the nasal septum and the surface of the upper lip meet  

sbal   Subalare  4 4 3 4 3 4 2 5 3 5 3,7 2  The point at the lower limit of each alar base, where the alar base 
disappears into the skin of the upper lip  

ac  9.1 9.2  Alar curvature 
(or alar crest) 
point  

4 2 2 1 2 3 4 2 4 3 2,7 4  The most lateral point in the curved base line of each ala  

cph  8.9 
8.10  

Christa philtri 
landmark  

2 3 4 3 3 4 4 4 3 4 3,4 3 ls better The point on each elevated margin of the philtrum just above the 
vermilion line  

Is  8.1  Labiale (or 
labrale) superius  

3 4 4 4 4 5 4 5 4 5 4,2 2  The midpoint of the upper vermillion line  

li  8.2  Labiale (or 
labrale) inferius  

2 4 4 3 1 2 4 2 3 5 3 3 (label 
available!) 

The midpoint of the lower vermillion line  

ch  8.3 8.4  Cheilion  2 2 3 4 5 4 4 5 4 5 3,8 1 (label 
available!) 

The point located at each labial commissure  

sa  10.1 
10.2  

Superaurale  4 2 2 1 2 3 4 2 5 4 2,9 4  The highest point of the free margin of the auricle  

sba  10.5 
10.6  

Subaurale  4 2 3 2 3 4 4 4 5 5 3,6 3  The lowest point of the free margin of the ear lobe  

pra  10.9 
10.10  

Preaurale  4 2 2 1 2 4 4 4 4 3 3 3  The most anterior point on the ear, located just in front of the 
helix attachment to the head  

pa   Postaurale  4 2 2 1 1 2 2 2 4 3 2,3 4  The most postrerior point on the free margin of the ear  
obs  10.3 

10.4  
Otobasion 
superious  

4 2 2 1 1 2 4 2 4 4 2,6 4 pra better The point of attachment of the helix in the temporal region  

obi   Otobasion 
infrious  

4 2 3 2 4 4 2 4 5 5 3,5 3 sba better The point of attachment of the ear lobe to the cheek  

po   Porion (soft)  5 2 2 3 4 4 2 4 5 3 3,4 3  The highest point of the upper margin of the cutaneous 
auditory meatus  

t   Tragion  5 2 3 2 2 3 2 4 5 4 3,2 4 po better The notch on the upper margin of the tragus  

Table C-4: Multi-criteria evaluation of optimal facial features 
Catalogue of criteria for discussion which facial features to choose for the W-RVM training (see Sec-
tion 3.3.1; for the localisations of the MPEG-4 and Farkas landmarks see Figure 3-16). 

                                                 
10 see: Heisele et al. [44], [41], [42], [43] 
11 1: first, 2: second,… 5: last 
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