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1 Introduction 

1.1 Introduction into glycosylation 

Glycosylation involves the transfer of carbohydrates onto proteins, lipids or 

carbohydrates themselves. It is the most abundant and extensive modification in higher-

ordered cells. Carbohydrates can be transferred by specific enzymes or in a non-

enzymatic process termed glycation. Carbohydrates, oligosaccharides and 

polysaccharides are summarized in the collective term glycans. The different glycans 

occurring in mammals are often summarized as the mammalian glycome. This glycome 

is evolutionarily conserved and its importance is reflected in the fact that 1-2% of the 

genome encodes for substrates or cellular enzymes involved in glycosylation (1). Nine 

different sugar precursors can be coupled enzymatically onto proteins or lipids giving 

rise to 14 different glycans. These monosaccharides can then be extended by one out of 

49 different glycosyltransferase reactions (1). Depending on the amino acid to which the 

sugars are transferred, protein glycosylation can be N-linked (asparagine), O-linked 

(serine or threonine) or C-linked (tryptophan). Additional amino acids that can be 

glycosylated include hydroxylysine (2), cysteine (3) hydroxyproline (4, 5) and tyrosine 

(6). The focus of this introduction will be carbohydrates N-,O- or C-linked to mammalian 

proteins. Large glycosaminoglycans will not be discussed (reviewed in (7, 8)) 

1.2 N-glycosylation 

N-glycosylation occurs on the asparagine in the consensus sequence Asn-X-Ser/Thr 

(so-called sequon). It is found in all eukaryotic cells and in prokaryotes such as the 

mucosal gut pathogen Campylobacter jejuni (reviewed in (9)). N-glycosylation is initiated 

on the cytoplasmic side of the ER when the precursor dolichol-pyrophosphate receives 

the oligosaccharides Man5 GlcNAc2 by sequential biosynthesis steps, involving seven 

different enzymes using UDP-GlcNAc and GDP-Man as sugar precursors. This lipid-

linked oligosaccharide (LLO) is then translocated into the luminal space of the ER. The 

reaction is believed to be catalyzed by a bidirectional flippase, which in yeast requires 

the protein Rft1 (10, 11). Upon translocation, four mannose and three glucose moieties 
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from the precursor dolichol-P-Man or dolichol-P-Glc respectively are transferred onto the 

LLO. The terminal α-1,2 linked Glucose moiety serves subsequently as a recognition 

signal for the multisubunit enzyme oligosaccharyltransferase (OST), which transfers the 

LLO onto the Asn of the sequon (Figure 1). The OST is closely connected to the 

translocation complex and is tightly associated with the chaperone BIP (GRP78) and the 

lectins calnexin and calreticulin. It is believed that the OST complex scans the nascent 

polypeptide chain, and once the polypeptide chain as has reached a length of 12-14 

amino acids (30-40Å) the glycans are transferred. The N-glycans protrude about 30Å 

from the protein backbone and depending on localization and protein, they either 

facilitate or are even obligatory for proper folding. The lectins calnexin and calreticulin 

play an important role in the so-called quality control mechanism where N-glycosylated 

proteins are scanned for their native structure.  

 
adapted from (10) modified 

Figure 1: N-glycosylation in the ER 
N-glycosylation starts on the cytosolic side of the ER where the lipid carrier dolichol-pyrophosphate 
receives Man5 GlcNAc2 through successive addition by seven different enzymes. The lipid-linked 
oligosaccharide flips into the ER lumen, where it is extended with mannose and glucose into the core N-
glycan Glc3-Man9-GlcNAc2. The core N-glycan is subsequently transferred by the large 
oligosaccharyltransferase complex onto the sequon (NXT or NXS) of nascent polypeptide chains. 
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The Glc3-Man9-GlcNAc2 core N-glycan is subsequently trimmed by two sequential 

glucosidases. Glucosidase I (GI) recognizes the terminal α1,2Glc moiety and 

glucosidase II (GII) removes the second α1,3-linked glucose. GII has a carbohydrate 

recognition domain (CRD) for α1,3-linked glucose and one mannose-6-phosohate 

receptor subunit, which recognizes the tetra-mannose branch of a secondary N-glycan 

(12). The terminal α1,3-linked glucose is then recognized by the globular domain of 

either calnexin or calreticulin which is further associated with a phospho-disulfide 

isomerase (PDI) termed ERp57. Together these lectins and chaperons assist folding of 

the protein. Upon release from calnexin and calreticulin the α1,3-linked glucose is 

removed by GII. Native proteins can now leave the ER to the Golgi where their N-glycan 

is further processed. Unfolded or incompletely folded proteins are recognized by uridine 

diphosphate glycosyltransferase 1 (UGT1) which re-glycosylates the terminal α1,3Glc. 

The binding of UGT1 is believed to be dependent on non-native hydrophobic patches or 

unpaired cysteins (13). Re-glycosylation of glucose results in re-association with 

calnexin and calreticulin and the protein undergoes a second round of chaperone-

assisted folding (i.e. calnexin-calreticulin cycle). If the protein can not adopt its native 

conformation and shuttles continuously between GII-deglycosylation and UGT1-

mediated re-glycosylation the protein is finally translocated into the cytosol for 

destruction (ER-associated destruction ERAD). The molecular switch between re-

glycosylation by UGT1 or destruction in the ERAD is still a matter of debate. It was 

shown that UGT1 can only re-glycosylate nearly-native but not completely misfolded 

proteins. Maturing proteins can spend quite some time in the folding cage of the 

calnexin-careticulin cycle (14). If a protein is destined for destruction, it associates with 

chaperones like BIP. BIP goes hand-in-hand with other chaperones and specific ER-

α1,2-mannosidases of the EDEM (ER degradation enhancer, mannosidase alpha-like) 

family. These glycosidases remove mannose from the core mannose glycan which 

renders proteins unrecognizable by calnexin, calreticulin and UGT1 (13, 15). Finally 

retro translocation of terminally misfolded proteins can be carried out through a porous 

channel termed Sec61 (16) into the cytosol where proteins become polyubiquitinated 

and are subsequently degraded by 26S proteasome. N-glycans of proteins that 

successfully folded into their native structure are trimmed by an α1,2-mannosidase 
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yielding Man8-GlcNac2-Asn N-glycans and are subsequently translocated to the Golgi. 

The N-glycosylated protein can then either be modified by GlcNAc phosphotransferase, 

which upon trimming results in high mannose-type glycans containing mannose-6-

phosphate. This structure is a recognition signal for the Mannose-6-phosphate 

receptors, which transport their cargo protein to the endosomes (17). Alternatively, 

various α1,2-mannosidases can remove mannose moieties resulting in the processed 

high mannose Man5-GlcNAc2-structure. This structure can then be elongated with 

GlcNAc, Gal, Fuc or sialic acid either into the hybrid type (i.e. substituted GlcNAc and 

unsubstituted Man residues) or into the complex type (both α2,3 and α2,6Man are 

substituted with GlcNAc). Hybrid as well as complex N-glycans can contain GlcNAc 

bearing branches commonly known as antenna. Different N-glycan structures can occur 

on different sites of the same protein, commonly known as micro heterogeneity, 

depending on accessibility and availability of sugar donors to glycosyltransferase (8) 

(Figure 1.2). As the N-glycan protein traverses through the Golgi it becomes a substrate 

for various glycosyltransferases that modify the different antenna with GlcNAc, Gal or 

sialic acids resulting in a diversified carbohydrate tree with various functions. 

 
adopted from (8) modified 

Figure 2: Types of N-glycans in the Golgi 
The processed glycan Man5-GlcNAc2 that is produced in the ER serves as a substrate of N-glycan 
diversification in the Golgi. Addition of a GlcNAc to the first branch by GlcNAc-TI (encoded by Mgat1) in 
β1,2 position produces N-glycan of the hybrid type, which can be trimmed by α-mannosidase II cleaving 
α1,3 and α1,6-linked mannose. Alternatively, hybrid types can also be produced through mannose 
trimming by α-mannosidase III which is a substrate for GlcNAc-TI. Addition of a second GlcNAc by 
GlcNAc-TII catalyzes the conversion of hybrid to the complex type, which eventually can be core 
fucosylated in the α1,6 position on the first GlcNAc linked to Asn. 
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1.2.1 Function and disorders of N-glycosylation  

N-glycosylation is occurring on virtually all proteins that traverse the secretory pathway. 

Its importance is reflected in experiments performed with tunicamycin the competitive 

inhibitor of the enzyme that transfers the first GlcNAc onto dolchichol (GPT: UDP-

GlcNAc: dolicholphosphate N-acetylglucosamine-1-phosphate-transferase), which is 

associated with severe cellular malfunctions and death in cells. Furthermore, mice with a 

targeted deletion of GPT die at embryonic day 5.5 (7), implicating that mammals having 

a complete absence of N-glycans do not survive to term. Not only the complete absence 

but also the lack of diversification in N-glycans is embryonically lethal as demonstrated 

by Mgat1 knock-down animals. Mgat1 encodes for the GlcNAc transferase that converts 

high-mannose N-glycans to hybrid N-glycans. Knock-out mice for this key-enzyme die at 

embryonic day 9.5-10.5 due to defects in neural tube formation and vascularization, and 

severe heart abnormalities (18). In humans, genetic defects resulting in incomplete 

glycan assembly are commonly referred as congenital disorders of glycosylations 

(CDG). CDGs of N-glycosylation affect about 600 people world wide and are subdivided 

into Type I, affecting one of the steps in biosynthesis or addition of the LLO to the 

protein (CDG Ia-IL) and Type II, which affects trimming, remodeling or extensions of the 

glycan (CDG IIa-IIf). Type I CDGs result from incomplete or LLO precursors that are 

ineffectively transferred to proteins. The symptoms are often mental retardation, 

hypotonia, or seizures but can vary considerably amongst patients. Type II CDGs alter 

the processing of protein N-glycans. In patients, these diseases are often characterized 

by growth and mental retardation, dysmorphism and hypotonia. In CDG Type II patients, 

a new group is emerging that are defective in functions attributed to the COG 

(Conserved Oligomeric Golgi) genes. These genes encode an eight-subunit protein 

complex that is involved in intra-Golgi retrograde trafficking mediated by coat protein I 

vesicles (19). CDG patients with mutations in these genes show various alterations in 

glycosylation. In future, this group of CDGs will probably be further extended with 

patients, which could not been classified into the known CDG classes (20). The 

suspicion for the presence of a CDG, arises clinically on the observed symptoms of 

patients. Grouping into the known CDG subclasses can then be done based on the 

glycan profile of marker proteins like transferrin or α1-antitrypsin. However, the 
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emerging numbers of patients classified as CDG-IIx, which can not be grouped into the 

known classes, require novel marker proteins and analysis tools. Especially, the 

application of mass spectrometry provides possibilities to identify CDG-patients (21). 

Additionally, there are diseases associated with N-glycosylation which are not listed as 

CDGs. Patients suffering from Mucolipidosis I or II have defects in the GlcNAc 

phosphotransferase complex required for the targeting of mannose rich N-glycans to the 

lysosomes (17). Other Type II diseases include congenital dyserythropoietic anemia and 

a recently described disease mapped to the a2 subunit of the V-type H+ ATPase (20, 

22). A list of the currently known CDGs is given in Table 1 (taken from (20)). 
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Disorder Gene Enzyme OMIM Key Features
CDG-Ia PMM2 Phosphomannomutase II 212065 Mental retardation, hypotonia, esotropia, lipodystrophy, cerebellar hypoplasia, stroke-like episodes, 

seizures
CDG-Ib MPI Phosphomannose isomerase 602579 Hepatic fibrosis, protein-losing enteropathy, coagulopathy, hypoglycaemia

CDG-Ic ALG6 Glucosyltransferase I Dol-P-Glc: Man9-GlcNAc2-P-P-Dol 
glucosyltransferase

603147 Moderate mental retardation, hypotonia, esotropia, epilepsy

CDG-Id ALG3 Dol-P-Man:Man5-GlcNAc2-P-P-Dol mannosyltransferase 601110 Profound psychomotor delay, optic atrophy, acquired microcephaly, iris colobomas, hypsarrhythmia

CDG-Ie DPM1 Dol-P-Man synthase I GDP-Man: Dol-P-mannosyltransferase 603503 Severe mental retardation, epilepsy, hypotonia, mild dysmorphism, coagulopathy

CDG-If MPDU1 Man-P-Dol utilization 1/Lec35 608799 Short stature, icthyosis, psychomotor retardation, pigmentary retinopathy
CDG-Ig ALG12 Dol-P-Man:Man7-GlcNAc2P-P-Dol mannosyltransferase 607143 Hypotonia, facial dysmorphism, psychomotor retardation, acquired microcephaly, frequent 

infections
CDG-Ih ALG8 Glucosyltransferase II Dol-P-Glc: Glc1-Man9-GlcNAc2-P-P-

Dol glucosyltransferase
608104 Hepatomegaly, protein-losing enteropathy, renal failure, hypoalbuminaemia, oedema, ascites

CDG-Ii ALG2 Mannosyltransferase II GDP-Man: Man1-GlcNAc2-P-P-Dol 
mannosyltransferase

607906 Normal at birth; mental retardation, hypomyelination, intractable seizures, iris colobomas, 
hepatomegaly, coagulopathy

CDG-Ij DPAGT1 UDP-GlcNAc: Dol-P-GlcNAc-P transferase 608093 Severe mental retardation, hypotonia, seizures, microcephaly, exotropia

CDG-Ik ALG1 Mannosyltransferase I GDP-Man: GlcNAc2-P-P-Dol 
mannosyltransferase

608540 Severe psychomotor retardation, hypotonia, acquired microcephaly, intractable seizures, fever, 
coagulopathy, nephrotic syndrome, early death

CDG-Il ALG9 Mannosyltransferase Dol-P-Man: Man6- and Man8-GlcNAc2-
P-P-Dol mannosyltransferase

608776 Severe microcephaly, hypotonia, seizures, hepatomegaly

CDG-IIa MGAT2 GlcNAc transferase 2 212066 Mental retardation, dysmorphism, stereotypies, seizures

CDG-IIb GLS1 Glucosidase I 606056 Dysmorphism, hypotonia, seizures, hepatomegaly, hepatic fibrosis; death at 2.5 months
CDG-IIc SLC35C1/FUCT1 GDP-fucose transporter 266265 Recurrent infections, persistent neutrophilia, mental retardation, microcephaly, hypotonia; normal 

transferrin
CDG-IId B4GALT1 beta1,4 galactosyltransferase 607091 Hypotonia (myopathy), spontaneous haemorrhage, Dandy–Walker malformation
CDG-IIe COG7 Conserved oligomeric Golgi complex subunit 7 608779 Fatal in early infancy; dysmorphism, hypotonia, intractable seizures, hepatomegaly, progressive 

jaundice, recurrent infections, cardiac failure
CDG-IIf SLC35A1 CMP-sialic acid transporter 605634 Thrombocytopaenia, no neurological symptoms; normal transferrin, abnormal platelet glycoproteins

CDG-II/COG1 COG1 Conserved oligomeric Golgi complex subunit 1 606973 Hypotonia, growth retardation, progressive microcephaly, hepatosplenomegaly, mild mental 
retardation

Mucolipidosis II and III GNPTA UDP-GlcNAc: lysosomal enzyme, GlcNAc-P transferase 252500 Coarsening features, organomegaly, joint stiffness, dysostosis, median neuropathy at the wrist; 
MLIII is less severe than MLII, which presents in infancy

Congenital dyserythropoietic 
anaemia (CDA II)

Unknown Unknown 224100 Anaemia, jaundice, splenomegaly, gall bladder disease

autosomal recessive cutis laxa 
(ARCL) type II a

ATP6V0A2 a2 subunit of the V-type H+ ATPase 219200 growth and developmental delay , bone dystrophy, joint laxity and retarded development

 
a: adapted from (22) 
Abbreviations: CDG-congenital disorder of glycosylation CMP-Cytidine monophosphate, Dol-dolichol GDP:guanidine diphosphate Glc-glucose 
GlcNAc-N-acetylglucosamine, Man-mannose, UDP-uridine diphosphate 
Table 1: Diseases associated with N-glycosylation 
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1.3 O-glycosylation 

Another protein glycosylation is O-glycosylation. Serine or threonines can be O-

glycosylated by N-acetylgalactosamine, fucose, glucose, mannose, N-

acetylglucosamine or xylose (1). The most common O-glycosylation is initiated by a 

GalNAc residue through a α-glycosidic bond to Ser/Thr residues. This O-glycosylation 

has been termed mucin-type O-glycosylation. 

 

1.3.1 Mucin-type O-glycans 

Mucin-type O-glycosylation is initiated by a GalNAc moiety transferred by one of the 

UDP-GalNAc: polypeptide N-acetylgalactosaminyltransferases (GalNAc Ts). The 

modification was originally described to occur on the mucins-highly glycosylated proteins 

that form the mucus of the respiratory or digestive tract. Meanwhile, these glycans have 

also been described on a variety of different proteins like erythropoietin (23), podoplanin 

(24) or the transmembrane glycoprotein CD44v6 (25). In contrast to N-glycosylation in 

the ER, which occurs co-translationally, O-glycosylation of the mucin-type occurs post-

translationally in the Golgi apparatus. The GalNAc-T family comprises 15 members with 

five or more still predicted (26). It has been reported that these enzymes are regulated in 

different tissues or expressed in different stages of development, but they can also be 

expressed simultaneously. Redundant expression of several GalNAc T homologues 

often comes along with overlapping substrate specificity. An observation that might 

explain the lack of phenotype observed in knock-out animals (27). Some GalNAc-Ts are 

also restricted in their substrate repertoire and their specific glycosylation pattern has 

been shown to be important in development (28, 29). O-glycosylation of the mucin-type 

often appears as highly glycosylated clusters. The density of these clusters is influenced 

by competing GalNAc Ts having peptide or glycopeptide activity (30). Since not all 

possible residues are equally modified, the existence of a sequence comparable to the 

sequon in N-glycans had been proposed. Unfortunately, a general valid consensus 

sequence could not be defined. This is largely due to a large number of peptides 

required to characterize the requirements of all the GalNAc T family members in vitro 
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and various problems like redundancy of transferases in vivo (26). Threonines rather 

than serines have been demonstrated to be preferred residues for GalNAc transferases 

(31). In the neighborhood of the glycosylated amino acid uncharged hydrophobic 

residues like Pro at position -1 and +3 (relative to the glycosylated residue) are favored, 

whereas charged residues at the same positions are inhibitory (26, 30). Many peptides 

can be glycosylated in vitro even at residues which are cryptic under native conditions in 

the protein, indicating that the glycosylated residue in vivo needs to be exposed 

preferably in an extended conformation (β-strand conformation) at the surface of the 

protein (31).  

Once the GalNAc moiety has been added onto the substrate, the GalNAc (also known 

as the Tn-antigen) can be extended into various glycan structures termed core 

structures. The core structures 1-4 (see Figure 3) are the most common. Core structures 

5-7 have been described to occur only in specific tissues or at specific developmental 

stages (8). Under pathological conditions e.g. in cancer, the Tn-antigen can be sialylated 

by α6-sialyltransferase (ST6GalNAc) into sialyl-Tn. Extension of the Tn-antigen with Gal 

in β1,3-linkage by the Core 1 β1,3-galactosyltransferase (T-synthase) results in the Core 

1 structure, which is also called T-antigen. The Core structure can also be sialylated by 

α,3-sialyltransferase (ST3Gal) or ST6GalNAc into sialyl-T-antigen. Tn, sialyl-Tn, T-

antigen and its sialylated variants are commonly referred to Thomsen-Friedenreich 

related antigens. Using the Core 1 structure as building block for further extension, three 

different Core 2 GlcNAc transferases (C2GnT) can transfer a GlcNAc onto the GalNAc 

in β1,6-linkage. Alternatively, to the formation of the Core 1 glycan, the Tn antigen can 

also be extended by Core 3 β1,3-GlcNAc transferase (Core 3 GlcNAc-T) with GlcNAc in 

β1,3-linkage to the GalNAc. Core 3 can now itself form a building block for Core 4 which 

is performed by C2GnT2 adding a GlcNAc in β1,6-linkage. All core structures can be 

extended with multiple Galβ1,4GlcNAc (lactosamine) structures in a mono-or 

biantennary fashion. These glycans can additionally be sialylated, fucosylated, 

GalNAcylated or sulfated at the end. 
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adapted from (32) modified 

Figure 3: Core structures of Mucin type O-Glycans 

Mucin-type O-glycosylation is initiated by transfer of a αGalNAc moiety by a GalNAc T. This structure is 
also called Tn antigen, which can be sialylated by (ST6GalNAc) to yield sialyl-Tn. Extension with Gal, 
results in the Core 1 structure also called T-antigen. T-antigen can be sialylated by ST6GalNAc or ST3Gal 
resulting in sialyl-T-antigen. The Core 1 structure can be alternatively, extended to the Core 2 structure by 
C2GnT. Glycans of Core 3 structures are obtained by modification of the Tn antigen with Core GlcNAc-T. 
The product is a substrate for C2GnT2 to yield Core 4. All the Core structures can be further extended as 
mono-or biantennary glycans. 
 
 

1.3.1.1 Functions and diseases of O-glycosylation 

Similar to N-glycosylation, O-glycosylation of the mucin-type is required for various 

functions, ranging from a barrier function to leukocyte homing (reviewed under (33)). 

These glycans are often tightly regulated and their expression is altered under 

physiological as well pathological conditions. A well-known function of O-glycans is the 

formation of the ABO blood group antigens. The blood group system is based on 

antibodies recognizing specific carbohydrates located on O-glycans and glycolipids. The 

precursor glycan based on multiple lactosamine (Galβ1,4-GlcNAc) moieties is 

fucosylated by α1,2-fucosyltransferase adding a fucose in α1,2-linkage onto the terminal 

galactose. The unmodified glycan is called the H-antigen and defines blood group 0. 

Alternatively, it can be extended by α1,3 GalNAc T (blood group A) or α1,3 
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galactosyltransferase (blood group B). These glycans are displayed on the surface of 

erythrocytes. They trigger the formation of IgM antibodies directed against glycans of the 

ABO system which are absent in the individual. The “matching” of the correct blood 

group system in transfusion medicine is important to prevent blood transfusions 

reactions due to antibody-and complement-dependent red cell lysis (8). 

The importance of mucin-type glycosylation in development is illustrated with the finding 

that mutations in the GalNAc T3 are associated with a CDG termed familial tumoral 

calcinosis (FTC). FTC is an autosomal recessive disorder characterized by 

phosphatemia and calcium deposits in the skin and subcutaneous tissues. It was found 

that this disease can result from nonsense mutations in the gene encoding for GalNAc 

T3 (GALNT3) (29) or from mutations in the regulator for calcium homeostasis FGF23 

(34). FGF23 contains a Thr179 residue adjacent to a subtilisin-like pro-protein convertase 

cleavage site. It was demonstrated that this residue is O-glycosylated by GalNAc T3. 

Further processing of the O-glycan into the sialylated Tn or the sialyl-T-antigen with a 

α2,6-sialylated GalNAc abrogated the proteolytic cleavage. It was suggested that a 

competition between O-glycosylation and proteolytic cleavage tightly regulates FGF23 

and that deregulation might be a possible reason for the disease (35). Another disease 

where the Tn antigen plays a major role is the so-called Tn-syndrome. The Tn-syndrome 

is an autoimmune disease where subpopulations of blood cells are O-glycosylated only 

with the Tn antigen resulting in anemia (i.e. decreased number of red blood cells), 

leukopenia (i.e. decreased number of leucocytes) or thrombocytopenia (i.e. decreased 

number of platelets). The molecular defect for this disease was attributed to the protein 

Cosmc. Cosmc is a chaperone, which is required by the Core 1 β1,3-

galactosyltransferase for its function and expression (36). In Tn syndrome, Cosmc is 

mutated in subpopulations of hematopoetic stem cells leading to expression of the 

autoimmune Tn antigen on blood cells from different lineages.  

In cancer, the mucin-type O-glycans are often altered. In colon cancer, the Tn, sialyl-Tn 

and T-antigens have been described to be significantly increased. Normal colonic 

epithelium expressed O-glycans of Core 3. In cancer, a shift of glycosylation results in 

the increased formation of shorter glycans of the Thomsen-Friedenreich related 

antigens. This was attributed to a decrease of Core 3 GlcNAc-T in favor of expression of 
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increased Core 1 glycans. Additionally, increased expression of sialyltransferases and 

O-acetyltransferases modifying sialic acids simplify O-glycan biosynthesis in colon 

cancer (32, 37). Similarly, in breast cancers O-glycans are also simplified. These cells 

often show increased expression of sialyltransferases in particular ST6GalNac-I 

throughout the Golgi. This enzyme competes with Core 1 transferase resulting in 

increased expression of sialyl-Tn structures, which is associated with poor prognosis 

and formation of metastases.  

 

1.3.2 O-fucosylation 

Another functionally relevant O-glycosylation is O-fucosylation. This modification 

involves an L-fucose α1-linked to the hydroxyl group of Ser or Thr residues. This 

modification has been found on epidermal growth factor like repeats (EGF) on 

thrombospondin type 1 repeats (TSRs) and on the protease inhibitor from Locusta 

migratoria (38-40). O-fucosylation of EGF repeats is performed by protein O-fucosyl 

transferase 1 (41) (POFUT1) and TSRs are modified by POFUT2 (42). Both ER resident 

enzymes have been shown to be unique for their substrate and cannot glycosylate the 

other (43). 

 

1.3.2.1 O-fucosylation of Notch 

POFUT1 transfers a fucose moiety onto serine or threonine in the recognition motif 

C2X4-5S/TC3 of properly folded EGF repeats (41). A SwissProt database search against 

the consensus sequence revealed 102 proteins, potentially modified with O-fucose. 

Within these proteins, the transmembrane receptor Notch was present. Notch is a 

single-pass transmembrane receptor forming a heterodimer upon processing by a furin-

like convertase in the Golgi (S1 cleavage). In mammals four Notch receptors are known 

(Notch 1-4) containing 36, (Notch 1,2), 34 (Notch 3) or 29 (Notch 4) EGF repeats and 3 

NOTCH/LIN repeats on the extracellular part. The intracellular part encompasses 6 

ankyrin repeats, a transactivation domain (TAD) and a PEST domain (44). The 

importance of Notch in particular Notch 1 and 2 is reflected in embryonic lethality at day 

11.5 in homozygous knock-out mice (45, 46). Notch receptor signaling occurs by 
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interaction with transmembrane ligands on adjacent cells. These ligands are called DSL 

(Delta, Serrate or Lag). In mammals, Serrate is called Jagged and two Jagged (Jagged 

1 and 2) and four Delta-like ligands (Delta –like 1-4) have been described. Upon 

interaction with one of the ligands, the Notch receptor changes its conformation. 

Subsequent proteolytic cleavage inside and outside the membrane (S2 and S3 

cleavage) releases the intracellular domain. The intracellular domain interacts with 

transcription factors and initiates the transcription of target genes (44). Interestingly a 

POFUT1 knock-out in mice displayed similar phenotypes as observed in knock-out from 

Notch downstream targets, implicating the importance of O-fucosylation in Notch 

signaling (47). 21 out of 36 EGF repeats in Notch 1 contain the recognition motif for 

POFUT1 and can undergo O-fucosylation. EGF repeats on Notch can either be 

glycosylated with a single O-fucose or extended to the tetrasaccharide NeuNAcα2,3/6-

Gal-β1,4-GlcNAc-β1,3-Fuc-α1-O-Ser/Thr (48). The GlcNAc residue is added onto 

fucose by the fucose-specific β1,3-GlcNAc transferase fringe. In Drosophila, fringe was 

shown to be important for boundary formation in the wings (49). In mammals, three 

fringes are known which are called Manic, Lunatic, and Radical fringe. Lunatic fringe 

knock-down mice have been shown to display multiple phenotypes in somitogenesis. 

Radical fringe seems to be important for chick limb growth (reviewed in (44, 48)). 

Different fringes display different preferences for EGF repeats, which are necessary to 

modulate Notch signaling (see below). Addition of Galcatose onto the disaccharide 

GlcNAc-β1,3Fuc-α-Ser is performed by β4Gal-T1 which also modulates Notch activity in 

a Chinese hamster ovary (CHO) expression model (50) but was shown to be 

dispensable in an in vitro system with purified components of the Drosophila Notch-

signaling pathway (51). The α2,3/6-linked sialic acid is transferred by unknown 

sialyltransferases. This sugar was demonstrated to be unimportant for Notch signaling 

(44). 
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1.3.2.1.1 Functions and diseases 

As mentioned above POFUT1 knock-out in mice phenocopies a Notch knock-out and 

shows a more severe phenotype than mice or flies lacking fringe (44). These results 

suggest that the protein plays an important role in development. If this function is located 

in the fucose moiety or in POFUT1 is currently a matter of discussion. In Drosophila a 

chaperone function of the fly POFUT1 orthologue (in Drosophila OFUT1) was 

demonstrated independent of its glycosyltransferase activity. It was discovered that 

Notch accumulated in the ER when OFUT1 was depleted in cells in the Drosophila 

imaginal wing disc. This phenotype could be rescued by a mutant murine POFUT1 

where the GFD-fucose binding site had been mutated. It was shown that the mutant had 

lost its glycosyltransferase activity but retained a chaperone activity, necessary 

exclusively for intracellular trafficking of Notch (52). Furthermore, a recent study 

demonstrated, that Drosophila embryos expressing an OFUT1 mutant lacking its 

enzyme activity but retaining its chaperone activity, completed embryogenesis and 

hatched without grossly evident abnormalities. The authors speculated that the 

glycosyltransferase function of OFUT1 is not necessary for all Notch signaling (53). By 

contrast, in mammalian cells lacking POFUT1 Notch receptors are equivalently 

expressed on the surface (54), requiring further experimental proof of the chaperone 

hypothesis of POFUT1 in Notch signaling.  

An important role of the O-fucose moiety was proposed in an in vitro co-culturing assay. 

Co-culturing with L-cells expressing Jagged1 resulted in a four-fold induction of Notch 

signaling in wild type CHO cells. This induction was due to O-fucosylation as 

demonstrated by the CHOlec13 cell line that transfers only minimal levels of fucose to 

glycoconjugates (i.e. deficiency in GDP-D-mannose-4,6dehydratase). Co-culturing of 

CHOlec13 together with L-cells decreased significantly Notch signaling and could 

partially be restored by adding fucose into the medium (49). These experiments argue 

that either the fucose moiety alone or the lack of fringe mediate the observed effects. In 

the CHO co-culturing assay fringe, inhibited Jagged1 induced Notch signaling and in 

Drosophila ectopically expressed fringe eliminated the normal fringe expression border 

in the wing and induced a novel expression border in ventral cells (49). It was shown 

that the three fringes in mammals modulate Notch signaling in a different manner. While 
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lunatic fringe enhanced signaling mediated by Delta and inhibited signaling by Jagged 1, 

manic fringe inhibited only the Jagged 1 signaling. Radical fringe even enhances Delta 

and Jagged 1 signaling. It was proposed that the different specificities of the fringes on 

the EGF repeats can increase or attenuate binding of the ligands and therefore mediate 

a specific Notch signal (55). These results indicate that regulation of Notch signaling 

strongly depends on the glycosylation by protein O-fucosyltransferases or the fringes, 

which can influence directly the interaction with Delta or Jagged (Serrate in Drosophila). 

How the individual proteins and carbohydrates mediate exactly the observed effects is 

still a matter of debate. 

Due to the significance of Notch signaling in development various diseases are known 

where correct Notch signaling is disturbed. CADASIL (cerebral autosomal dominant 

arteriopathy with subcortical infarcts and leukoencephalopathy) is a human disease 

characterized by repeating ischemic attacks resulting in dementia and decline. It was 

discovered that mutation of the Notch 3 gene accounts for this disease. Mutations were 

predominantly present in the first 5 EGF domains and often resulted in the replacement 

of a conserved residue with a cysteine or the mutation of a cysteine. These findings 

suggested a phenotype due to misfolding or defective receptor trafficking. Investigation 

of the glycosylation revealed normal O-fucosylation but reduced elongation by Lunatic 

fringe and increased tendency for aggregation as hetero-or homodimers (56). In cancer, 

Notch overexpression was observed in T cell acute lymphoblastic leukemia (T-ALL) 

where often a translocation leads to a constitutive active Notch 1 protein. The 

glycosylation of Notch 1 in T-ALL has not been studied in detail. However, the 

observation that Notch1 and Lunatic fringe regulate T cell progenitors and suppress B 

cell potential (57) implies the involvement of fringe and probably POFUT1 in cancer (44).  

Besides Notch, an effect on signaling of O-fucosylation has also been observed in the 

urokinase-plasminogen activator (uPA). uPA binds a specific receptor and this triggers 

cell proliferation in Sa-OS-2 osteosarcoma cells. It was shown that de-fucosylated uPA 

retains its receptor binding activity but loses its growth promoting activity. A 

phenomenon attributed to O-fucosylation of Thr18 (58). Initially it was also thought that 

also O-fucosylation of Cripto is important for signaling. Cripto is a GPI-anchored co-

receptor for the Nodal receptor, which is essential for mesoderm formation and left-right 
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asymmetry. It was shown earlier in signaling assays, that Cripto-nodal interaction 

required an O-fucoslyated Thr (59) However, later mutagenesis work revealed, that only 

the Thr but not the O-fucosyl moiety mediated the interaction required for signaling (60). 

 

1.3.2.2 O-fucosylation of Thrombospondin Type 1 repeats (TSRs) 

L-Fucose can also be added on serines or threonines in the consensus sequence C1X2–

3S/TC2X2G. This type of O-fucosylation has been described to occur on 

Thrombospondin type 1 repeats (TSRs) (view chapter 4.1.1 for a detailed description of 

TSRs). Meanwhile, the modification has been demonstrated on TSRs of 

thrombospondin-1 (39), the axonal guidance protein F-spondin (61), the positive 

regulator of complement properdin (62), the metalloprotease ADAMTS13 (63) and the 

metalloprotease-like protein puctuin-1 (64). The fucose moiety is transferred by a 

POFUT1 homologue designated POFUT2. This enzyme has been shown to be localized 

in the ER, although it lacks ER-retention signals like POFUT1 (65). Similarly, to 

POFUT1, which modifies only properly folded EGF repeats, POFUT2 was shown to 

require a properly folded TSR (42, 43). The fucose moiety on TSRs can be extended 

with glucose to the disaccharide Glcβ1,3Fuc-O-Ser/Thr (43, 61, 66). Recently, the β1,3-

Glucosyltransferase (β3Glc-T) responsible for adding the glucose was identified and 

characterized (65, 67). Similarly, to POFUT1 also β3Glc-T required a properly folded 

TSR module. Interestingly it was found that β3Glc-T contained a REEL-sequence at its 

C-terminus, which is similar to the KDEL sequence an ER-retention signal. As previously 

mentioned POFUT2 lacks an ER-retention signal but was found to localize in the ER. 

Since the activity of POFUT 2 and β3Glc-T strongly overlaps it was speculated that both 

enzymes could interact (65). 
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1.3.2.2.1 Function and diseases 

POFUT2 is conserved from protozoa to mammals. The C. elegans POFUT2 orthologue 

is called PAD-2. This enzyme has been shown to be the O-fucosyltransferase in the 

nematode that modifies TSRs. Targeted deletion of the PAD-2 in C. elegans resulted in 

loss of enzymatic activity. Mutant animals were homozygous viable and fertile but 

displayed a gonad phenotype. The bilobed gonad is the reproductive organ of the 

nematode; its shape is determined by migration of the two distal tip cells (DTCs). During 

development in L2 larvae stage, the DTCs start on the ventral side of the animal and 

migrate horizontally. Subsequently the DTCs turn towards the dorsal side and after a 

right angle turn they migrate centripetally along the dorsal site of the dorsal body wall 

muscles. The migration is depended on attractive and repulsive cues of the netrin and 

TGFβ signaling pathways. The pad-2 mutant displayed an early dorsal migration 

phenotype of the anterior arm of the gonad. Genetic analysis revealed that pad-2 acts 

upstream or parallel to the netrin pathway. This is the first report that the O-

fucosyltransferase PAD-2 is important role in cell migration in a multicellular organism 

(68).  

In another study using the TSR-containing metalloproteinase ADAMTS13, the O-

fucosylated serines of TSR1-8 were mutated to alanines. This resulted in decreased 

secretion efficiency of the full-length ADAMTS13 protein compared to wild type. 

Mutagenesis of two particular O-fucosylation sites on the TSRs or RNAi of POFUT2 

strongly diminished secretion. Overexpressed POFUT 2 on the other hand, was able to 

rescue the secretion of two mutated TSRs (63). A similar result was obtained with the 

ADAMTS metalloproteinase-like protein punctuin-1. Here, mutations in TSR2-4 and 

culturing in the GDP-D-mannose-4,6-dehydratase deficient cell line CHOlec13 resulted 

in significant decreased secretion levels (64). Based on these result, the authors 

suggested that POFUT2 like POFUT1 may be involved in quality control recognizing 

correctly folded modules. However, unlike in POFUT1, in POFUT2 the 

glycosyltransferase activity was still required (63). 

Another function for O-fucosylation on TSRs was recently discovered by the 

identification of human disease termed Peter-Plus syndrome. It was reported that 

truncating mutations in a gene designated B3GALTL are responsible for the clinical 
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manifestation. The disease is characterized by anterior eye chamber defects, short 

statue, developmental delay and characteristic craniofacial features. DNA sequencing 

revealed that, all examined Peters-Plus patients had acquired a c.1020+1G A 

mutation. This mutation most likely results in skipping of exon 8 and an out-of frame 

mRNA (69). Interestingly the described B3GALTL gene was the same as the one found 

by Kozma et al or Sato et al (65, 67) being the β1,3-Glucosyltransferase (β3Glc-T) that 

modifies O-fucosylated TSRs. In order to study the disaccharide Glcβ1,3Fuc-O-Ser/Thr 

in these patients properdin was purified and its glycan composition analyzed. Properdin 

is the positive regulator of complement, it contains six TSRs. In four TSRs the 

Glcβ1,3Fuc-O-Ser/Thr disaccharide is present and its position is known (61, 70). The 

results demonstrated that in all patients examined the Glcβ1,3Fuc-O-Ser/Thr 

disaccharide was missing and the TSRs were demonstrated to contain solely O-Fuc 

(71). These results validated Peters-Plus syndrome as a novel CDG and emphasize the 

important role of the Glcβ1,3Fuc-O-Ser/Thr disaccharide for development.  

 

1.3.3. O-GlcNAcylation 

O-GlcNAcylation involves a GlcNAc moiety β-linked to serines or threonines. This 

modification is one of the most common posttranslational modifications and is conserved 

in all metazoan studies so far. In contrast to N-glcyans or other O-glycans, O-

GlcNAcylated proteins are not further extended and can be found in cytosolic, as well as 

in nuclear proteins. O-GlcNAc is transferred by O-GlcNAc transferase (OGT) using 

UDP-GlcNAc as a sugar donor. Targeted deletion of this X-linked gene results in loss of 

embryonic stem cell viability (72). The O-GlcNAc can be removed by an enzyme called 

O-GlcNAcase, which exhibits a similar phenotype in C. elegans than deletion of OGT. 

These animals are viable but show defects in dauer formation and macronutrient 

storage in a daf-2 knock-out background (i.e. insulin-like receptor in C. elegans) (73). O-

GlcNAc proteins are present in almost every cellular compartment. So far, no consensus 

sequence could be defined. However, a preference was observed for PVS (Pro-Val-Ser) 

or for PEST (Pro-Glu-Ser-Thr) sequences. O-GlcNAcylation is observed on residues, 

which are also found to be phosphorylated. This adds another factor of complexity and 
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diversity to signaling via phosphorylation. Proteins can not just be phosphorylated by a 

kinase and de-phosphorylated by a phosphatase but also GlcNAcylated or de-

GlcNAcylated. The tight balance between phosphorylation on one hand and O-

GlcNAcylation on the other hand renders the system susceptible for misregulations 

which manifest in diseases (74). Insulin resistance is the hallmark of type 2 diabetes, 

which is accompanied by increased levels of O-GlcNAcylation. It was shown that even 

moderate overexpression of OGT in muscle and fat tissues lead to insulin resistance, 

suggesting that increased transfer of O-GlcNAc onto proteins impairs directly glucose 

metabolism. While O-GlcNAc levels are elevated in diabetes, in Alzheimer’s disease 

these levels are drastically reduced. This neurodegenerative disease is characterized by 

neurofibrillary tangles that result from hyperphosphorylation of the protein tau. The 

microtubule-associated protein tau is also O-GlcNAcylated in healthy individuals and a 

negative regulation of various phosphate sites has been observed. O-GlcNAcylation was 

suggested to compete with phosphates for the same positions. In Alzheimer’s disease 

the glucose uptake into neurons is impaired, resulting in decreased levels of O-GlcNAc 

which could result in hyperphosphorylation of tau (75). 

 

1.4 C-glycosylation 

C-glycosylation involves α-mannose C-linked to the C2 atom of the indol ring of 

tryptophan (76, 77) (see Figure 4). C-mannosylation was first reported in human 

RNase2 (76) but in the meantime was demonstrated to be present in a variety of 

different proteins (see Table 2). Similarly, to O-hexoses, C-hexoses add 162 Da to the 

mass of a peptide. They can be compared in tandem MS experiments, where C-

glycosides exhibit a characteristic loss of 120 Da (formally four times CH2=O) which is 

often accompanied by multiple water losses (78, 79). O-glycans on the other hand show 

a characteristic neutral loss of 162 Da. The recognition sequence of this modification 

was determined to be WXXW in a chimeric RNAse designated RNase2.4 (80). Later it 

was found in TSR proteins of the human complement system (C6-C9) containing the 

motif WXXWXXW, that one, two or three tryptophans can be C-mannosylated. In these 

proteins, C-mannosylation of tryptophan was even reported when no tryptophan or 
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aromatic amino acid at position +3 (relative to the glycosylated tryptophan) was present 

(81). Therefore, it was suggested that a secondary C-mannosylation signal may exist 

which is directed by the primary or tertiary structure (81, 82). The modification was 

demonstrated to be an enzyme-catalyzed process in the ER, using Dol-P-Man as a 

sugar precursor (83). The observation that the WXXW motif is not strictly conserved in 

all proteins, suggests the existence of several C-mannosyltransferases. These protein 

C-mannosyltransferases (PCMT) have not been cloned and only the activity or the 

discoveries of C-mannosylated proteins indicate their existence. Enzymatic activity of C-

mannosylation was found from nematodes to humans suggesting a high conservation of 

this modification. In mammalian tissues a C-mannosyltransferase activity was detected 

in most of the organs (83) indicating an important function. Studies with native RNase 

produced in E.coli revealed that only proteins that have not acquired their three-

dimensional structure can be efficiently C-mannosylated (80, 83). Similar to N-

glycosylation, C-mannosylation must consequently take place as an early event on the 

nascent polypeptide chain before it has adopted its final tertiary structure (84). 

 

 

 

 

 

 

 

 
Figure 4: Structure of C-mannosyl tryptophan 
The Mannosylpyranose is linked via its anomeric carbon to the C2 of the indol ring of tryptophan. The 
dashed line indicates the loss of 120 Da, which is characteristic for C-glycosides 
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Protein Reference 
No. of C2-
Man -Trp Remarks 

RNAse 2 (76) 1  

Hypertrehalosemic 
hormone (85) 1 

First insect hormone 
described to contain C-Man-
Trp; no consensus sequence 

Interleukin-12 (83) 1  
C6 6 
C7 4 
C8α 4 
C8β 4 
C9 (81) 2 

C-mannosylation detected on 
more than one tryptophan. C-
mannosylation detected in 
absence of consensus 
sequence 

Properdin (70) 15  

thrombospondin 1 (39, 86) 4 
Ihara et al, used a C-Man-Trp 
specific antibody 

F-spondin (61) 8  
soluble Erythropoietin 
receptor (87) 1  
MUC5B/Cys3 1 

MUC5A/Cys5 (84) 1 

C-mannose detected with 
mannose binding lectins 
(GNA and LCA) a  

bovine lense MP20 (88) 1 

Neutral losses of 162 and 
120 Da; no consensus 
sequence b 

Ebola virus soluble 
glycoprotein sGP  (89) 1  

a The mannose binding lectins ConA and MBL do not recognize C-Man-Trp (90). 
 
b In the insect Aedes aegypt N-mannosyl-tryptophan was described that exhibited a clear 162 Da loss 
(91). Since a 162 Da loss has never been observed for C2-linked α-mannopyranose, the linkage of this 
protein needs to be carefully evaluated.  
 
Table 2: Proteins described to be C-mannosylated 
C-mannosylated proteins reported in the literature. Proteins, where the carbohydrate has not been 
detected by mass spectrometry or novel observations/conclusions, are indicated  
  

1.4.1 Proposed functions 

Cytokine receptors contain in their extracellular domain a so-called WSXWS motif, which 

was shown to be critical for surface expression of the erythropoietin receptor (EPOR) 

(92). This motif is also the recognition motif for C-mannosylation. Therefore, the 

modification was studied in a soluble variant of the receptor. The soluble EPOR was 

found to be C-mannosylated on the first tryptophan to a degree of about 50%. Similar 

levels of modification where observed in a mutant (A234E) which promotes secretion 
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and in a mutant (S233A) which totally blocks secretion. Both mutants had a degree of 

modification inside and outside the cell comparable to wild type. Based on these results, 

it was concluded that C-mannosylation is not necessary for the secretion of the soluble 

EPOR but rather fulfills a stabilizing function (87). The results are in contrast to a study 

using the cystein-rich subdomains Cys3 and Cys5 of the mucin proteins MUC5B and 

MUC5A. These domains contain a WXXW motif close to their N-terminus. C-

mannosylation was proven indirectly by binding to the mannose-specific lectins (GNA 

and LCA) and by competing binding with mannose. Mutagenesis of the WXXW motif 

resulted in decreased expression of the cysteins subdomains in COS 7 cells. This 

secretion deficiency was attributed to the missing C-mannosyl moieties. The authors 

confirmed this hypothesis by expressing the cysteins subunits in CHOlec35.1 cells. 

CHOlec35.1 are deficient in Dol-P-Man utilization and the gene mutated in these cells is 

necessary for all modifications requiring Dol-P-Man (N-glycans, GPI anchored proteins, 

O-mannosylation, C-mannosylation) (93). It was shown that C-mannosylation is 

significantly decreased in these cells (93). Expression of mucin cysteins subdomains in 

CHOlec35.1 cells resulted in proteins, which are retained in the ER. These effects were 

attributed to the missing C-mannosylation suggested to play a critical role for the 

secretion efficiency of mucin cystein-rich subdomains (84). 

A connection between diabetes and C-mannosylation was suggested in macrophage 

RAW264.7 cells and in the aortic vessels of diabetic rats. Using a specific C-Man-Trp 

antibody, the authors could show that C-mannosylation was increased in secreted 

proteins in RAW264.7 cells cultured under hyperglycemic conditions. In a rat diabetes 

model, the level of C-Man-containing proteins was increased in the aortic vessels, other 

organs were not affected. In these tissues, an elevated C-mannosylated 

thrombospondin 1 was reported. It was suggested that C-mannosylation could play a 

role in the etiology of diabetes (86).  

Using again RAW264.7 macrophage cells the same group demonstrated that chemically 

synthesized peptides containing C-mannosyl tryptophan potentiated the damage 

induced by the bacterial outer membrane component lipopolysaccharide (LPS). This 

effect was mediated through activation of C-Jun activated kinase (JNK) and resulted in 

increasing production of the inflammatory cytokine TNF-α. At the moment, it is not clear, 
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why these peptides mediated this effect and if degradation products of specific C-

mannosylated proteins also elicit such an inflammatory effect. 

In viruses, C-mannosylation was found in the glycoprotein sGP from the Zaire Ebola 

virus. The modification was observed by the characteristic loss of 120 Da in tandem MS 

on a peptide containing the WXXW repeat. Mutation of the WXXW motif to WXXA 

abrogated C-mannosylation. In contrast to the inflammatory response triggered by LPS 

and C-mannosylated peptides no change in function, biosynthesis or structure of the 

mutated sGP was observed. Therefore, it was suggested that the modification could be 

a consequence from an anomaly resulting from unedited transcripts. The WXXW motif 

and C-mannosylation are widespread in viruses. Database searches against the WXXW 

motif considering passage through the secretory pathway of the host revealed 373 

proteins. These numbers and the fact that some viruses even contain multiple 

conserved C-mannosylation consensus sequences indicate that this modification might 

play a significant role in some processes of viral infections (89). 

 

1.5 Rare glycosylations 

Carbohydrates attached to serines or threonines encompass a huge field in protein 

glycosylation. In addition to the glycosylation described above, the last decade has 

brought major insights in the involvements of glycans at multiple levels in the cell. 

Especially with the help of transgenes and modern analysis tools like mass spectrometry 

the role of glycans in development or in diseases could be elucidated. These results 

position the glycobiology more and more in the field of system biology, where glycans 

are involved in various functions in-and outside the cell. In this regard, also less-well 

understood “rare” glycosylations become the focus of investigation. Some of them will 

be discussed in this chapter. 

In addition to O-fucosylation EGF repeats also contain O-glucose in the recognition 

sequence C1XSXPC2 (the modified Ser is underlined). This modification has been found 

in Notch and in EGF repeats of the blood coagulation factors VII and IX. The glycan can 

be extended to the structure Xyl-α1,3-Xyl-α1,3-Glcβ1-O-Ser. Activities of the 

UDP:glucose protein O-glucosyltransferase (Poglut) and of the enzymes adding both 
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xyloses have been observed in CHO cells. Recently the Drosophila protein Rumi was 

described as the enzyme that adds O-glucose to EGF repeats. Interestingly, it was 

observed that Rumi mutants phenocopy Notch in a temperature dependent fashion 

,providing an additional mode of regulation of Notch signaling (94). 

A very important glycosylation is mammalian O-mannosylation. In yeast, O-

mannosylation is essential for viability. In mammals, O-mannose has been described to 

occur in brain, eye and skeletal muscle. The best studied protein is α-dystroglycan 

having the tetrasaccharide Sia-α2,3-Gal-β1,4-GlcNAc-β1,2-Man-O-Ser/Thr. Similarly, to 

C-mannosylation, O-mannosylation requires Dol-P-Man as a sugar precursor. The 

mannose moiety is transferred by a hetero-complex of protein O-mannosyltransferase 1 

and 2 (POMT1, POMT2). Mutations in POMT1 have been associated with Walter-

Warburg syndrome (WWS). This disease is characterized by severe brain malfunctions 

and eye abnormalities and patients usually die within the first year. The mannose can be 

extended by protein O-mannose β1,2-N-acetylglucosamyltransferase 1 (POMGnT1) 

transferring a GlcNAc in β1,2-linkage to the mannose. Loss-of-function mutations of 

POMGnT1 in humans result in muscle eye brain disease (MEB), which is characterized 

by similar but less severe phenotypes than WWS. Both diseases and probably other 

muscular dystrophies like Fukuyama muscular dystrophy or congenital muscular 

dystrophy, are associated with under-glycosylation of α-dystroglycan. These under-

glycosylations inhibit engagement with extracellular matrix components like laminin, 

agrin or neurexin and account for the various features associated with disturbed muscle 

development (7, 95).  
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2 Aim of the Thesis 
The study of glycosylation is becoming increasingly important for understanding 

processes within and outside the cell. For example, glycans play pivotal roles in 

signaling as powerfully illustrated by the modulation of Notch signaling by glycosylation 

through the GlcNAc transferase fringe. Furthermore, many mutations in enzymes that 

carry out protein glycosylation cause severe, often systemic disorders (e.g. Peters-Plus-

syndrome). Today, the major tasks in glycobiology are (i) to define the exact molecular 

role of glycans, (ii) to characterize the factors how a particular protein becomes modified 

and which glycans are involved and (iii) to obtain a complete list of glycan structures. In 

this thesis, I am addressing aspects of the first two questions. 

 

In the first part, I am extending preliminary observations that a change in structure of a 

well-studied protein module, the thrombospondin type 1 repeat (TSR), causes an 

alteration of its pattern of glycosylation. This task was performed using the following 

approaches: 

(i) Characterization of the acquired glycosylation by mass spectrometry 

(ii) Biochemical characterization of the mutant 

(iii) Identification of glycosyltransferases involved in the glycosylation. 

 

In the second part, I aim to produce the tools to address, in molecular detail, the role of 

normal glycosylation of TSRs, i.e. C-mannosylation of Trp and modification with 

Glcβ1,3Fuc-O-Ser/Thr. Therefore, the following methods were applied:  

i) Expression of TSRs in high amounts in organisms performing C-mannosylation 

and O-fucosylation 

ii) Expression of TSRs in organisms which do not glycosylate TSRs 

iii) Analysis of the expressed proteins and discussion of their suitability as model 

proteins in functional assays. 
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3 Material and Methods 
In this chapter only those materials and methods are described which have not been 

included in the manuscript in Chapter 4.2. 

 

3.1 Materials 

Vectors: The vectors IRES-GFP-pRS5a (a kind gift from S. Geisse Novartis) pSecTagB–

TSR4, pSecTagB–TSR1-4, pSecTagB-F-spondin and pPICZα (Invitrogen ™ 

Switzerland) were applied. Buffers: Acetonitrile and HPLC-grade water were from JT 

Baker (Griesheim, Germany), Trifluoro acetic acid (TFA) was from Pierce (Rockford IL, 

USA) and formic acid, methanol, ethanol were of ultrahigh purity and were purchased 

from Fluka (Buchs, Switzerland). Oligonucleotides: Primers used for PCR experiments 

were purchased from Microsynth (Balgach, Switzerland). Cell lines: HEK-EBNA (ATCC 

CRL-10852), HEK 293T (ATCC CRL-11268), COS 7 (ATCC CRL-1651), CHO-K1 

(ATCC CCl-61). Yeast: Pichia pastoris (ATCC 28485). 

 

3.2 Transformation of plasmids 

The vectors were propagated in DH5α (Invitrogen ™) by adding 100 ng to 50 μl 

competent DH5α. The bacteria were incubated 20 min on ice, 50 s at 42°C and 2 min on 

ice. 950 μl 2xYP medium was added and incubated at 37°C for 2h. The bacterial 

solution was centrifuged at 1000xg for 5 min, 900 μl medium were discarded and the 

bacterial pellet was resuspended in the remaining 100 μl. The transformed bacteria were 

grown on LB (5 g/l yeast extract, 10 g/l tryptone, 10 g/l NaCl pH 7.5, 15 g/l agarose) 

plates and incubated over night at 37°C. One colony was picked, incubated for 8h in 4ml 

LB +50 mg/ml Ampicillin and 500 μl were used to incoluclate 250 ml LB +50mg/ml 

Ampicillin. On the next day, plasmids were purified according to the Macherey Nagel ™ 

Maxi Prep protocol. 
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3.3. Cloning of TSRs into mammalian and yeast expression vectors 

TSR4 and TSR1-4 were amplified by PCR from pSecTag B –TSR4 and pSecTag B –

TSR1-4 using the primers ckTSRIgK and ckTSR(4)3rev. This PCR created IgK-TSR4-

TEV and IgK-TSR1-4-TEV having a SaII restriction site at the 5’-end. Subsequently the 

Fc tag was amplified from the pRS5a-IgG using the primers ckTSR(4)4 and ckTSR(1-

4)6rev resulting in TEV-Fc-His with a Bglll site at the 3’-end. The PCR products were 

separated by 1% agarose gel electrophoresis in 1x TAE buffer (4.84 g Tris base, 1.142 

ml acetic acid 2 ml 0.5M EDTA) and purified  according to the manufacturer’s 

instructions(Gel extraction kit Qiagen, Hilden, Germany). A third PCR amplification was 

performed using both fragments and the primers ckTSRIgK and ckTSR(1-4)6rev.  

This resulted in amplicons encoding IgK-TSR4-TEV- Fc-His (1117 bp) and IgK-TSR1-4-

TEV- Fc-His (1551 bp) which will be called TSR4fchis and TSR1-4fchis. For expression 

in yeast TSR4fchis and TSR1-4fchis were amplified using the primers ckTSRpischia3 

and ckTSRpischia4rev resulting in an amplicon of 1145 and 1487 bp respectively. The 

PCR products and plasmids were separated on a 1% agarose gel, extracted and 

digested over night at 37°C using the enzymes SaII and Bglll (Roche™) for the 

mammalian vector and XhoI and NotI for the yeast vector. In parallel 2 μg of the 

mammalian target vector IRES-GFP-pRS5a and the yeast Pichia pastoris expression 

vector pPICZα were digested with the same enzymes. IRES-GFPpRS5a is a bicistronic 

vector containing a GFP, which is under the same promoter control than the target 

protein and can therefore be used to monitor expression. After a second gel purification 

to remove restriction enzymes, the vectors were de-phosphorylated using alkaline 

phosphatase according to the manufacturer’s instructions (Roche™). The PCR products 

were ligated using T4 ligase kit as described (Roche™) and 5 μl were pipetted to 50 μl 

of chemical competent DH5α (Novagen™) bacteria. Transformation of competent 

bacteria was performed as described before. 10-30 colonies were inoculated in 4 ml 

LB+Amp/colony. Plasmids were extracted according to Qiagen MiniPrep kit and 5 μl 

eluate was digested over night with the corresponding restriction enzymes. After 

separation on an 1% agarose gel, clones were screened for the correct insert and 

positive ones were subjected to DNA sequencing. 
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5’ primer 
Name 

Sequence 

3’ primer 
Name 

Sequence 
PCR conditions 

ckTSRIgK 

ACGCGTCGACAGCCAC

CATGGAGACAGACACAC

TCCTGC 

ckTSR(4)3rev 

AGATTTGCCCTGAAAAT

ACAAATTCTCGGGGCAC

TCTGGCAGCATACA 

- 94°C 2min  
- (94°C 1min, 50°C 1min, 

72°C 1.5min) x 5 cycles  
- (94°C 1min, 55°C 1min, 

72°C 1.5min) x 25 cycles 
- 72°C 5min  
- 4°C 

ckTSRIgK 

ACGCGTCGACAGCCAC

CATGGAGACAGACACAC

TCCTGC 

ckTSR(1-4)6rev 

GAAGATCTTCTCAGTGG

TGGTGGTGGTGGTGTTT

ACCCGGAGACAGGGA 

- 94°C 2min  
- (94°C 1min, 50°C 1min, 

72°C 1.5min) x 5 cycles  
- (94°C 1min, 55°C 1min, 

72°C 1.5min) x 25 cycles 
- 72°C 5min  
- 4°C 

ckTSRpischia3  

CCGCTCGAGAAAAGAGA

GGCTGAAGCTGCGGCC

CAGCCGGCCAGG 

 

ckTSRpischia4rev 

TTTTCCTTTTGCGGCCG

CTCAGTGGTGGTGGTG

GTGGTGTTTACC 

- 94°C 2min  
- (94°C 1min, 55°C 1min, 

72°C 1.5min) x 5 cycles  
- (94°C 1min, 65°C 1min, 

72°C 1.5min) x 25 cycles 
- 72°C 5min  
- 4°C 

Table 3: Primer and PCR conditions 

 

3.4 Expression systems 

3.4.1 The mammalian expression system HEK-EBNA 

HEK-EBNA cells are derived from the human embryonic kidney cell line HEK 293 

containing a stably integrated Epstein-Barr Nuclear Antigen (EBNA). EBNA encodes for 

a protein that drives episomal replication of plasmids carrying the oriP derived from the 

Epstein - Barr virus (96). These cells were successfully used for large-scale protein 

expression (97). It was demonstrated that HEK-EBNA cells are positive for C-

mannosylation (82). The presence of POFUT2 and β1,3GlcT in HEK-EBNA to 

glycosylate the disaccharide Glc-Fuc-O-Ser/Thr on TSRs has not been demonstrated 
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directly in HEK-EBNA cells but in the related human embryonic kidney cell variant HEK 

293T (65). 

 

3.4.2. The methylotrophic expression system Pichia pastoris 

The methylotrophic yeast P. pastoris is suitable for high extracellular expression of 

recombinant proteins. It is able to form correct disulfide bridges even on difficult 

proteins. N-linked as well as O-mannosylated O-linked glycans have been described 

(98). Neither C-mannosylation nor O-fucosylation has been reported.  

 

3.5 Cell culture  

HEK-EBNA, HEK 293T and CHO-K1 cells were routinely cultivated in a humidified 

incubator at 5% CO2. HEK EBNA and HEK 293T were cultured in DMEM + 10%FCS 

Penicillin, Streptomycin and 2.5 mM glutamine. CHO-K1 cells were cultured in αMEM 

10%FCS Penicillin, Streptomycin and 2.5 mM glutamine 

 

3.6 Transfection 

HEK-EBNA, COS7 and CHO-K1 cells were transfected with Lipofectamine (Invitrogen 

™) according to the manufacturer’s instructions.  

 

3.7 Cell sorting of stable HEK-EBNA cell 

Two days after transfection 100 μg/ml Zeocin (Invitrogen™) was added and incubated 

for 2 weeks. Culture medium was replaced every 3 days. Subsequently two 10 cm 

dishes containing stable transfected cells expressing TSR4fchis and TSR1-4fchis were 

subjected to cell sorting based on the GFP fluorescence using a MoFlo 

(DakoCytomation™). Subclones were subsequently expanded and screened for high 

expression of the target protein. 
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3.8 Transformation and expression of recombinant proteins in Pichia 

Pastoris  

The vector pPICZα containing TSR4fchis and TSR1-4fchis was linearized with SacI over 

night. Pichia pastoris was made competent using a modified Lithium acetate method (A. 

Hein, Novartis). A preculture of 5 ml YPD (10 g/l yeast extract, 20 g/l peptone, 20 g/l 

glucose pH 6.5) was inoculated with one colony P. pastoris and grown over night at 

37°C. On the next day 100 ml YPD were inoculated with 20 μl o/n culture and grown to a 

OD600=1-2. The cells were pelleted by centrifugation at 500 xg for 5min) and 1x1010 cells 

were incubated in 96 ml LiAc-DTT buffer (100 mM lithium acetate, 10 mM DTT, 0.6 M 

sorbitol, 10 mM Tris pH 7.5) for 30 min. Subsequently cells were pelleted down for 10 

min at 1500xg and resuspended in 25ml ice cold 1M sorbitol. This step was repeated 

twice, then the cells were pelleted and resuspended in 960 μl 1 M sorbitol. Linearized 

DNA was mixed with 8 x 108 cells and pipetted into a cold electroporation cuvette, 

incubated for 5 min and then pulsed with 1500V, 25 μF, 200 Ohm in a BioRad 

Micropulser. The transformed cells were then diluted in 1ml ice cold 1 M sorbitol, 

incubated for 1 h at 30°C.Then 1 ml YPD medium was added, incubated for 1h at 30°C 

at 225 rpm and spread onto YPSD-Zeocin plates (2% peptone, 1% yeast extract, 2% 

dextrose, 2% agar, and 1 M sorbitol) 

 

3.9 Expression of recombinant TSRs in P. pastoris 

A 5 ml preculture of BMGY (1% yeast extract, 2% peptone, 100 mM potassium 

phosphate, pH 6.0, 1.34% yeast nitrogen base, 0.4 mg/L biotin, 1% glycerol ) +100 

μg/ml Zeocin was inoculated with a Zeocin resistant P. pastoris clone and grown over 

night at 30°C and 225 rpm. Then 50 ml BMGY + Zeocin was inoculated with the 

overnight culture and grown at the same conditions. The next day the cells were pelleted 

and resupended in 50 ml BMMY (same as BMGY but with 0.5% methanol instead of 

glycerol) in a 250 ml baffled Erlenmeyer flask at a OD600=10 and grown for 48 h. 0.5% 

Methanol was added twice a day to a concentration of 0.5% (v/v).  

 



Materials and Methods 

 31 

3.10 Purification of recombinant proteins using IMAC 

F-spondin or TSRs containing a His6-tag were transfected into HEK 293T using 

Lipofectamine. 24 h after transfection cells were cultured with Optimen (Gibco ™) 

without serum or antibiotics fro 48 h. The supernatant was spun and cells or cell debris 

removed. Subsequently the supernatant was dialyzed against a 100 x excess of 50 mM 

Tris pH 8 100 mM NaCl. The buffer was replaced twice. The next day the dialysate was 

incubated with 1/100 of the total volume of NiNTA beads over night at 4°C. Beads were 

collected by centrifugation and washed with at least 20 column volumes of washing 

buffer (50 mM Tris, pH 8, 500 mM NaCl, 20 mM imidazole). Elution was performed with 

two bead volumes of elution buffer (50 mM Tris, pH 8, 150 mM NaCl, 500 mM imidazole) 

for two-times five minutes. The protein was reduced, carboxyamidomethylated and 

digested as described in 3.14. 

 

3.11 Purification of recombinant TSR-Fc fusion proteins  

Supernatant from stable clones expressing TSR4fchis and TSR1-4fchis was collected 

and 500 ml to 1 L were loaded at a flow of 0.5 ml/min on a commercial 1ml NiNTA 

column (GE Healthcare™). Proteins were washed with buffer A (20 mM NaPi pH 7.4, 

500 mM NaCl, 20 mM Imidazol) at 1 ml/min for 10 min. Elution was performed by 

switching to 100% buffer B (20 mM NaPi pH 7.4, 500 mM NaCl, 500 mM Imidazol) for 5 

min. Fractions of 0.5 ml were collected and protein concentration was measured 

manually at OD280. Fractions containing high protein amounts were pooled, dialyzed 

over night at 4°C against PBS and incubated over night at 4°C with protein G beads (GE 

Healthcare™) with 1/100 of the total fraction volume. Proteins were washed in PBS 

containing 0.5 M NaCl and eluted using a pH shift with buffer containing 0.2 M Glycine 

pH 3, 150 mM NaCl. In order to prevent precipitation eluted proteins were immediately 

neutralized using a 1/33 of the total volume of 1 M Tris pH 9. Protein purity was examined 

by SDS-PAGE. 

Supernatant of TSRs expressed in yeast was cleared by centrifugation at 1000 xg for 10 

min and incubated with 1/100 of the total volume of protein G beads. Washing and elution 

was performed as described above.  
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TSRs (5 μg / protein) expressed in HEK-EBNA cells were additionally analyzed by 

HPLC (Agilent 1100) on a 1 mm C4 column (Vydac™). The system was operated in the 

microflow mode at a flow rate of 50μl/min. The HPLC was connected to a Triple 

Quadrupole LC/MS/MS Mass Spectrometer (API 300 10x, Perkin Elmer Sciex-

Instruments, Toronto Canada). A gradient from 5-80% buffer B in 60 min (Buffer A: 2% 

ACN, 0.05% TFA, Buffer B: 80% ACN, 0.045% TFA) was used.  

 

3.12 Sandwich ELISA of proteins having a Myc-His-tag 

Quantification of His-tagged proteins was performed with commercially available  

Ni-NTA HisSorb Plates (Qiagen, Hilden, Germany). As a standard purified TSR4 was 

used at a concentration of 0.25-0.005 ng/μl. TSR4 was prepared as previously 

described (65). Protein concentration was measured by absorption at 280 nm and the 

protein diluted in 0.2% BSA in PBS + 0.05% Tween 20. Subsequently the samples were 

diluted 1:1000 to 1:2000 in the same buffer and pipetted into the wells. Samples and 

standards were always applied in triplicate at a volume of 200 μl and incubated for two 

hours at room temperature or at 4°C over night. The wells were washed four times with 

PBS + 0.05% Tween and subsequently anti-Myc antibody (Sigma) at a dilution of 1:5000 

in 0.2% BSA in PBS +0.05% Tween was added into the wells. After two hours 

incubation at room temperature, wells were washed four times with 0.2% BSA in PBS + 

0.05% Tween and the secondary anti-mouse antibody was added at a dilution of 1:2500 

in 0.2% BSA in PBS +0.05% Tween. The plate was incubated for one hour at room 

temperature and washed four times. SIGMAFAST™ OPD (o-Phenylenediamine 

dihydrochloride) (Sigma) was used for detection according to the manufacturer’s 

recommendation. The reaction was stopped after 30 min incubation in the dark with 50 

μl M H2SO4 and absorbance was read at 490 nm on a Spectra MAX Plus 

spectrophotometer (Bucher biotech, Basel, Switzerland). Figure 5 shows a 

representative diagram of the standards measured in the ELISA that were used for 

quantification. 
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Figure 5: ELISA of TSR4 standards 

3.13 Analytical gel filtration 

Gel filtration is used to determine molecular weights of unknown samples and to 

estimate the Stokes Radius (Rs) of an unknown molecule. The Stokes Radius is the 

radius of a hard sphere that diffuses at the same rate as the protein to be measured. It 

defines a value that reflects the compactness and molecular size of globular proteins, 

assuming that a long extended molecule has a greater Stokes radius than a compact 

molecule of the same molecular mass. In practice, a gel filtration column is calibrated 

with known molecular weight standards. For calibration, the following parameters are 

necessary to define a column: Vt represents the total volume of the column. Large 

proteins, which are not retained by the column, elute in the void volume V0. The elution 

volume of the sample is given by the parameter Ve. The partition coefficient Kav is 

defined as: 

0

0

VV
VVK

t

e
av −

−
=  (Equation 1) 

Using a plot Kav versus log molecular weight (MW) of standards, the molecular weight of 

an unknown sample can be determined. The retention coefficient R is given by the 

division of V0/Ve. A plot √–log Kav versus known Stokes radii of the standard proteins can 
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be used to estimate the Stokes radius of the sample (99).  For gel filtration experiments, 

a Superdex 75 100/300 GL connected to an Aekta Prime (GE Healthcare) 

chromatography system was used. The column had a total volume of 24 ml and an 

experimentally determined void volume of 7.65 ml. Bovine serum albumin (BSA) dimer 

(134 kDa), BSA monomer (67 kDa, Rs=35.5 Å), Ovalbumin (43 kDa, Rs=27.3 Å), 

RNAse A (13.7 kDa, Rs=16.4 Å) and Aprotinin (6.5 kDa, Rs=10.8 Å) were used to 

calibrate the system. Stokes radii were taken from the literature (99, 100). For each 

standard 50 μg of protein was loaded. The running buffer was 20 mM NaPI pH 7.4, 150 

mM NaCl. The flow rate was set to 0.2 ml/min. Chromatography was performed until the 

salt peak, indicated by an increase in the conductivity was detected. Figure 6A shows 

the plot Kav versus log molecular weight and figure 6B √–log Kav versus the Stokes 

radius (for this plot only BSA monomer was considered). 
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Figure 6: Calibration of Superdex 75 100/300 GL gel filtration column: 
(A) The partition coefficient Kav was blotted against the log molecular weight of Kav of known standards. (B) 
Plot of √–log Kav against known Stokes radii of the standard proteins. 
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Samples of native TSR4wt and ΔDS2,3-TSR4 were chromatographed under the same 

conditions as standards. Denatured TSRs were generated by treatment with TCEP at a 

concentration of 5 mM for 1 h at 60°C, reduced cysteines were carboxyamidomethylated 

with 85 mM iodacetamide for 30 min in the dark. Fractions of 0.2 ml were collected and 

analyzed by TSR4-specific ELISA as described. 

  

3.14. Reduction, carboxyamidomethylation and digestion  

Protein samples (3-10 μg) were dialyzed over night at 4°C against H2O or 50 mM 

NH4HCO3 and subsequently dried in the speed vac. Proteins were dissolved in 6 μl 

argon-purged RCM (500 mM Tris pH 8.6, 6 M guanidium-HCl) + DTT and incubated at 

37°C for 1-3 h. Cysteines were carboxyamidomethylated using 1 μl iodacetamide in the 

dark at a final concentration of 115 μg/μl for 30 min at room temperature. The reaction 

mix was diluted with 35 μl digestion buffer (500 mM NaPi pH 8, 700 mM guanidium-HCl 

) and digested over night at 37°C with 400 ng endoproteinase Lys-C.  

 

3.15 LC-MS 

Peptides were separated on a HPLC-MS (Agilent 1100 HPLC system connected to a 

triple quadrupole mass spectrometer IONICS, EP10+, a modified PE SCIEX API 360, 

Concord Canada) at a flow rate of 50 μl/min. In order to separate glycosylated TSRs a 

flat gradient of 0-50% B in buffer system 1 (A=2% ACN 0.05% TFA B=80% ACN, 

0.045% TFA) in 120 min was used. The UV280 signal of C-mannosylated glycoforms was 

divided by the factor 1.3 for peptide with a single (C2-Man)Trp and by 1.6 for those 

containing two (C2-Man)Trp residues. For analysis of glycopeptides at high resolution, 

buffer system 2 (A=2% ACN 0.1%FA, B=80% ACN 0.1% FA) was used. Relevant 

Peptides were collected manually in Low-Bind tubes (Eppendorf ™), neutralized with an 

equal volume of 50 mM NH4HCO3 and dried in a Speed Vac.  
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3.16 SDS-PAGE and Western Blotting 

SDS-PAGE was performed according to Laemmli (101) using 72 x 1.5 x 102mm 

minigels in a Protean II chamber (BioRAD). Gels were stained by Coomassie using the 

NuPAGE™ staining kit (Invitrogen). Alternatively, proteins were blotted onto 

nitrocellulose (BioRad) using 10 mM CAPS pH 11, 10%(v/v) methanol. Probing of the 

membrane with different antibodies was performed according to the manufacturer’s 

instructions. HRP-labeled secondary antibodies were detected using the ECL detection 

kit, according to the manufacturer’s instructions (GE Healthcare).  
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4 Mucin-type glycosylation of ΔDS2,3-TSR4 

4.1 Introduction 

The fourth thrombospondin type 1 repeat (TSR4) of the axonal guidance protein F-

spondin has been demonstrated to contain C-mannosylation on the WXXW motif and 

the disaccharide Glcβ1,3-Fuc-O- Thr in the consensus sequence C1X2–3(S/T)C2X2G 

(61). In this chapter it will be shown, that a structural mutant of TSR4 lacking two out of 

three disulfide bridges (termed ΔDS2,3-TSR4), exhibits a third type of glycosylation. The 

glycan was determined to be NeuNAcα2,3Galβ1,3[NeuNAc]GalNAc-O linked to the 

same residue modified with the disaccharide Glcβ1,3-Fuc-O- in wild type TSR4. It will be 

shown that ΔDS2,3-TSR4 behaves as an independently folding protein and that mucin-

type O-glycosylation on this module can be initiated in vitro and in vivo by GalNAc T3. In 

order to place these findings in a suitable background a short structural and functional 

overview on TSRs will be provided. 

 

4.1.1 Thrombospondin Type 1 repeat as a model protein 

Thrombospondin Type 1 repeats (TSR) are highly conserved molecules of about 60 

amino acids found from protozoa to humans. BLASTp searches against non-redundant 

databases revealed that 187 TSRs in 41 different proteins occur in the human genome 

(102, 103). The crystal structure of TSR2 and TSR3 of thrombospondin 1 (TSP-1) 

revealed an anti-parallel three-stranded fold (strands A-C). Strand A has a rippled 

conformation whereas strand B and C form regular β-sheets. The conserved 

tryptophans in the WXXW motif interact in a cation-π –interaction with conserved 

arginines in the B strand. This structure is capped by disulfide bridges at the top and at 

the bottom forming a CWR-layered structure. A cysteine in the loop between strand A 

and B forms the third disulfide bridge with a cysteine in the C strand located at the C-

terminus. Based on their disulfide connectivity TSRs have been grouped into two 

groups. Group 1 containing proteins like thrombospondin, properdin, ADAMTS-1 and 4 

or TSRs from the complement factors C6, C7 C8α and C9β, have a connectivity of 1-5, 



Mucin-type glycosylation of ΔDS2,3-TSR4 

 39 

2-6 and 3-4. Group 2 has a connectivity of 1-4, 2-5 and 3-6 (cysteines have been 

numbered according to the appearance in the molecule as proposed by Huwiler et al 

(104)) and is found in TSRs of F-spondin, Mindin or the plasmodium protein TRAP 

(105). TSRs have been shown two contain two glycosylations, C-mannosylation of the 

Trp in the WXXW motif (61, 66, 81) and the disaccharide Glcβ1,3-Fuc-O-Ser/Thr 

occurring in the consensus sequence C1X2–3(S/T)C2X2G (61). It has been suggested 

that the C-mannosyl tryptophans protrude to the outside of the molecule on strand A. 

Glcβ1,3-Fuc-O-Ser/Thr is located in the loop between strand A and B (105) (Figure 7).  

 
adapted from (105), modified 

Figure 7: Crystal structure of TSR of TSP-1 with modeled glycosylation 
The TSR contains an anti-parallel three-stranded fold consisting of by strand A with a rippled conformation 
and strands B and C with a regular β-sheet structure. The conserved tryptophans interact with conserved 
arginines in a cation-π –interaction capped by disulfide bridges. TSRs of thrombospondin 1 have three 
conserved Trp residues in a WXXWXXW motif, which can be modified with C-mannose. These mannose 
moieties have been suggested to protrude to the outside of the molecule. The second glycosylation, the 
disaccharide Glcβ1,3-Fuc-O-Ser/Thr, is located in the loop between strand A and B as illustrated here by 
modeling. 
 

The function of TSRs is diverse and will be presented only exemplarily. The function of 

the TSRs in F-spondin will be mentioned in chapter 5.1.1. TSRs of TSP-1 and TSP-2 

have been shown to bind the scavenger receptor CD36 through their CSVTCG-motif 

(106). This interaction was shown to be responsible for the anti-angiogenic response of 

thrombospondins (107, 108). TSRs in the transmembrane protein TRAP from the 

protozoa Plasmodium have been shown to be necessary for invasion of the parasite into 

the cells of the mosquito salivary glands (109). Finally, peptides of a TSR located in the 

metalloproteases ADAMTS-4 have been implicated to bind to the glycosoaminoglycans 
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of aggrecan, which was shown to be necessary for the aggrecanase activity of 

ADAMTS-4 (110).  
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4.2 Manuscript: Alternative glycosylation of Thrombospondin Type 1 
repeats  
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SUMMARY  
Thrombospondin type 1 repeats have been demonstrated to contain the disaccharide Glcβ1,3Fuc-O-
Ser/Thr that is synthesized by protein-O-fucosyltransferase 2 and β1,3-glucosyltransferase. Here we 
demonstrate that a mutant of the fourth Thrombospondin type 1 repeat (TSR) of f-spondin, lacking two 
disulfide bridges undergoes an alternative O-glycosylation. This mutant lacks O-fucosylation, but carries 
the disialylated core 1 modification (NeuNAcα2,3Galβ1,3[NeuNAcα2,6]GalNAc-O-) on the same residue 
that is otherwise O-fucosylated. In a peptide screen we identified ppGalNAc transferase 3 to be able to 
initiate this modification in vitro. This observation was confirmed by co-expressing ppGalNAc transferase 
3 and the mutant TSR in CHO-K1 cells and analyzing the modification by relative quantification. To the 
best of our knowledge, this is the first example of a switch in glycosylation on one-and-the-same residue. 
The results suggest that mutations may exist, that cause a gain of mucin type O-glycosylation. 
 
INTRODUCTION 

Glycosylation is the most abundant form of post-
translational modification in eukaryotes. Besides 
N-glycosylation, O-glycosylation is the second 
most frequent type (111). O-glycosylation of the 
mucin-type is initiated by the attachment of a α-
GalNAc moiety to Ser or Thr, which is catalyzed 
by a member of the polypeptide GalNAc-
transferase family. At the moment this family 
consists of 15 characterized proteins and at least 
five predicted ones (26, 35). Unsubstituted O-
linked GalNAc is commonly known as the Tn 
antigen, which can be sialyated to yield sialyl-Tn 
(STn). Alternatively, extension of the Tn antigen 
by core I β1,3Gal-transferase results in the 
formation of the T-antigen (Galβ1,3GalNAc-O-
Ser/Thr)2. Addition of sialic acid in α2,3-linkage 
results in the sialyl-T antigen (ST), which can be 
further modified to yield the disialyl-T-antigen 
(dST) (Siaα2,3Galβ1,3[Siaα2,6]GalNAc-O-

Ser/Thr). Tn and T-antigens, as well as their 
sialylated counterparts have been associated with 
a variety of different cancers including breast 
(112), colon (113) and gastric cancer (114). A 
different type of O-glycosylation is O-
fucosylation, the attachment of L-fucose to Ser 
or Thr. It has been found in a protease inhibitor 
from Locusta migratoria (40), in epidermal 
growth factor like repeats (EGF)3 (38) and in 
thrombospondin type I repeats (TSRs) (39, 61). 
O-fucosylation of TSRs is performed by 
POFUT2, which similar to O-fucosylation of 
EGF repeats by POFUT1, requires a properly 
folded protein as the acceptor substrate (41). 
Importantly, POFUT1 and -2 are specific for 
their respective acceptor substrates (43, 65). In 
C. elegans O-fucosylation by POFUT2 is 
necessary for normal gonad development, since 
a knock-out of the nematode orthologue, PAD-2, 
results in abnormal distal tip cell migration 
(115). The fucose moiety on TSRs can be further 
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extended by an ER- resident β1,3-
glucosyltransferase to form the disaccharide 
Glcβ1,3Fuc-O-Ser/Thr (65). Mutations in the 
gene encoding this transferase were recently 
described to cause Peters-Plus-Syndrome (69) 
and to result in the lack of glucose in the TSRs 
of the reporter protein, properdin4. This 
autosomal recessive disorder is characterized by 
anterior eye-chamber defects, short stature, 
developmental delay and cleft lip and/or palate. 
Together, these observations emphasize the 
importance of this form of glycosylation of 
TSRs for normal development. 

The three-dimensional structure of TSRs from 
thrombospondin and the axonal guidance protein 
f-spondin consists of a unique three-stranded 
antiparallel fold that is stabilized by disulfide 
bridges (102, 116). Recently, Haltiwanger and 
coworkers demonstrated that reduced and 
carbamidomethylated TSR is no longer a 
substrate for POFUT2 in vitro (43). We wanted 
to address the question whether correct disulfide 
bridge formation in a TSR is important for 
recognition by POFUT2 in vivo. Towards that 
aim, we expressed a mutant of the fourth TSR of 
rat f-spondin, which lacks its second and third 
disulfide bridge, in HEK293T cells. In contrast 
to the wild type TSR, this mutant did not 
undergo O-fucosylation on Thr-601. Instead, it 
carried a disialylated T-antigen on this amino 
acid residue. To the best of our knowledge, this 
is the first example of a complete switch of the 
type of O-glycosylation on one-and-the same 
amino acid position. In addition, we obtained in 
vitro and in vivo evidence that GalNAc-T3 can 
initiate the observed O-glycosylation of this TSR 
mutant. 

 

EXPERIMENTAL PROCEDURES 

Materials - Neuraminidase from Clostridium 
perfrigens (which cleaves α2-3-, α2-6-, and α2-
8-linked N-acetylneuraminic acid, O-
Glycosidase and endopeptidase Asp-N were 
purchased from Roche (Basel, Switzerland). α2-
3-Neuraminidase from Salmonella typhimurium 
was obtained from Calbiochem (San Diego, CA., 
USA). Endoproteinase Lys-C was from Wako 
(Dallas, TX, USA). Mouse anti-Myc monoclonal 

antibodies and Extravidin-labelled peroxidase 
were purchased from Sigma (Buchs, 
Switzerland). Biotinylated peanut agglutinin 
(PNA) and rabbit anti-mouse-HRP were from 
Vector Laboratories (Burlingame, USA) and GE 
Healthcare (Wädenswil, Switzerland), 
respectively. Acetonitrile and HPLC-grade water 
were from JT Baker (Griesheim, Germany), TFA 
was from Pierce (Rockford IL, USA) and formic 
acid, methanol, and ethanol (ultrahigh purity) 
were purchased from Fluka (Buchs, 
Switzerland). Oligonucleotides used for PCR 
experiments were purchased from Microsynth 
(Balgach, Switzerland). Plasmid for the 
expression of recombinant TSR4 - The fourth 
thrombospondin type I repeat of rat f-spondin 
(residues 615-666; Swiss-Prot P35446) was 
amplified from cDNA (a kind gift from Dr. A. 
Klar, Hebrew University, Jerusalem) using the 
following primers (forward: 
AAGCTTTGCTTGCTGTCTCCTTGGTCCG 
and reverse: 
TCTAGAGCCCTGAAAATACAAATTCTCG
GGGCACTCTGGCAGCATA), introducing a 
HindIII- and XbaI site at the 5`- and 3` end, 
respectively. The reverse primer also introduced 
a tobacco-etch-virus cleavage site (TEV). This 
construct was cloned in-frame into pSecTagB 
(Invitrogen). This strategy resulted in 14 
additional amino acids at the N-terminus and a 
TEV cleavage site, a Myc-epitope and a His6 tag 
at the C-terminus (all in italics), resulting in the 
following amino acid sequence: 
DAAQPARRARRTKLCLLSPWSEWSDCSVTC
GKGMRTRQRMLKSLAELGDCNEDLEQAE
KCMLPECPENLYFQGSRGPEQKLISEEDLNS
AVDHHHHHH. This protein is indicated as 
wild type TSR4. The mutant TSR4 lacking 
the second and third disulfide bridges 
(designated ∆DS2,3-TSR4) was obtained by 
inverse PCR using pfu DNA polymerase 
(Promega, Wallisellen, Switzerland) with 
overlapping primers containing the desired 
Cys to Ala mutations (underlined in the 
sequence above) (117). The coding regions 
of all expression plasmids were sequenced to 
verify the presence of the desired mutation 
and the absence of unwanted ones. Cell 
culture - HEK293T cells were maintained in 
DMEM, supplemented with 10% FCS, 
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penicillin, streptomycin and 2.5mM glutamine in 
a humidified incubator at 37°C with 5% CO2. 
CHO K1 cells were grown in MEMα (Gibco, 
Switzerland) supplemented with 10% FCS, 
2.5mM glutamine, penicillin and streptomycin.  

Expression and purification of recombinant 
TSR4 - Plasmids encoding wild type or mutant 
TSR4 were transiently transfected into 
HEK293T in Optimem (Gibco, Basel, 
Switzerland), using Lipofectamine (Invitrogen), 
according to the manufacturer’s instructions. 
Conditioned medium was collected after 48h, 
and dialyzed overnight against 20 mM Tris-HCl 
pH 8.0, containing 150 mM NaCl. TSR4 from 
50 ml of conditioned medium was extracted with 
50 μl NiNTA resin (Qiagen) for 18h at 4oC. 
After washing the resin with 20 volumes of 20 
mM Tris-HCl, pH 8.0, 100 mM NaCl, TSR4 was 
eluted with 500 mM imidazole in the same 
buffer. The purity of the protein was verified by 
SDS-PAGE. The purified proteins were dialyzed 
over night against 50 mM NH4HCO3 or H2O 
prior to further analysis. 

Analysis of glycosylation status of TSR4 by 
peptide mapping – Samples of TSR4 was dried, 
carboxamidomethylated (80) and digested with 
Lys-C (8 % w/w) at 37°C overnight. The digests 
were fractionated by LC-MS , using an Agilent 
1100 HPLC system that was interfaced with an 
upgraded (IONICS, EP10+) API 300. MS 
experiments were performed in the positive ion 
mode using an atmospheric pressure ionization 
source and a declustering potential of 40V. For 
initial separation of glycopeptides a reversed-
phase C18 column (1 x 250 mm; Grace Vydac, 
Deerfield, USA) was used with a 120-min linear 
gradient of 0-50% B at a flow rate of 50 μl/min 
(solvent A: 0.05% TFA, 2% CH3CN; solvent B: 
0.045% TFA 80% CH3CN). Relevant 
glycopeptides were collected manually, 
neutralized with an equal volume of 50 mM 
NH4HCO3, dried and digested overnight at 37°C 
with endopeptidase Asp-N in 50 mM NH4HCO3. 
Purification of the polar glycopeptides was 
performed on a Hypercarb column (1 x 150 mm, 
Thermo Electron Waltham, MA, USA) using a 
35-min linear gradient of 0-70% B (solvent A: 
0.1% formic acid, 0.01% TFA, 2% CH3CN; 
solvent B: 0.1% formic acid, 0.01% TFA, 80% 

CH3CN) at a flow rate of 50 μl/min. This 
procedure yielded peptide K2*D2. 

Determination of the structure of the 
tetrasaccharide - Peptide K2*D2 was analyzed 
by CID tandem MS in the static nano-
electrospray mode on a quadrupole linear 4000 
Q TRAP instrument (Applied Biosystems, Foster 
City, CA, USA) as described (118). The 
collision energy was chosen so that sequence 
information on the O-glycan was generated. 
Further structural information was obtained by 
treating the glycopeptide with endoglycosidases. 
Digestion with neuraminidase from Clostridium 
perfringens (0.05 mU) was performed overnight 
in 25 μl of 50 mM ammoniumacetate, pH 4.5, at 
37oC, in the presence of 1x complete protease 
inhibitor cocktail (Roche). Part of the product 
was dried, dissolved in 25 μl 100 mM Na-
phosphate, pH 6.0 and treated with O-glycanase 
(0.5 mU) at 37oC overnight. Another aliquot of 
the peptide was treated overnight at 37°C with 
α2-3 neuraminidase from Salmonella 
typhimurium (100 units) in 25 μl 50 mM sodium 
citrate, 100 mM NaCl, pH 6.0. Reactions were 
terminated by dilution into 1% formic acid, 
containing 30% methanol, and the mass of the 
reaction products was determined by LC-MS 
using the Hypercarb system described above. In 
addition, the product of the digestion with the 
neuraminidase from Clostridium perfringens was 
analyzed by Western blotting using biotinylated 
PNA and antibodies against the Myc tag. 
Determination of the modified amino acid 
residue – Glycosylated peptide K2*-D2 was 
examined by CID tandem MS using static 
nanospray in the enhanced product ion mode 
with variable collision energies. Ions 
representing a putatively glycosylated fragments 
were further fragmented in the MS3 mode to 
examine the presence of the glycan. 

In vitro assay of polypeptide GalNac-transferase 
activity – The ∆DS2,3-TSR4-derived peptide, α-
biotinyl-GAGAGWSDASVTAGK-NH2 and the 
MUC2-derived peptide, α-biotinyl-
APTTTPITTTTTVTPTPTPTGTQTK-NH2) 
were obtained from Bachem (Bubendorf, 
Switzerland). They were glycosylated by 
recombinant human GalNAc-T1, -T2, -T3 and –
T4 from insect cells as previously described 
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(119). The reactions were performed in 25 μl 25 
mM cacodylic acid, pH7.4, containing 10 mM 
MnCl2, 0.25% Triton X-100, 1.5 mM UDP-
GalNAc, 10 μg of ∆DS2,3-TSR4 and 0.4 μg of 
recombinant human GalNAc-transferases. 
Reaction conditions for the MUC2-derived 
peptide were same as for TSR4-derived one, 
except that the reaction mixtures contained 4% 
(v/v) DMSO. Reactions were terminated by 
diluting 0.5 μl incubation mixture with 3.5 μl of 
0.1% TFA/H2O and 1μl of each sample was 
applied on a tip and mixed with 25 mg/ml of 2,5-
DHB dissolved in H2O/CH3CN (2:1) solution. 
MALDI-TOF mass spectra were obtained on a 
Voyager-DETM Pro instrument (Applied 
Biosystems) operating at an accelerating voltage 
of 20 kV (grid voltage 94%, guide wire voltage 
0.1%) in the linear mode with the delayed 
extraction setting. Recorded data were processed 
using Data Explorer ver.4. 

Co-expression of GalNAc-T3 and ∆DS2,3-TSR4 
in CHO-K1 cells – The plasmids encoding 
human polypeptide-N-
acetylgalactosaminyltransferase 3 (a kind gift 
from Dr. E. Bennett) and ∆DS2,3-TSR4 were 
co-transfected into CHO-K1 cells using 
Lipofectamine as described above. As a control 
the plasmid pEGFP-N1 (Clontech) was 
substituted for the one encoding GalNAc-T3.  

Analysis of ∆DS2,3-TSR4 from CHO-K1 by 
tandem LC-MS in the MRM mode - ∆DS2,3-
TSR4 was purified and digested with 
endoproteinase Lys-C as described above. 
Peptides were separated by reversed-phase 
chromatography on a Magic C18 column (75 μm 
x 100 mm, Michrom BioResources, Auburn 
USA), using an Agilent 1100 Nanospray LC 
System (Agilent Technologies, Santa Clara, 
USA) interfaced to a quadrupole linear 4000 Q 
TRAP mass spectrometer. Digests were loaded 
onto a Peptide Captrap (Michrom BioResources, 
Auburn, USA) in 0.05% TFA and 2% 
acetonitrile at a flow rate of 10μl/min. Peptide 
were eluted with a 60-min linear gradient of 15-
50% B (Solvent A: 0.1% formic acid, containing 
2% acetonitrile; solvent B: 0.1% formic acid, 
80% acetonitrile) at a flow rate of 300 nl/min. 
For determination of the glycosylation status of 
∆DS2,3-TSR4 from CHO-K1 cells, the mass 

spectrometer was operated in an information-
dependent acquisition mode. This involved 
monitoring specific transitions in the MRM 
mode to measure the amount of a particular 
peptide, triggering CID tandem MS to confirm 
its structure. Peptide-specific transitions for the 
K2* peptides of ∆DS2,3-TSR4 were first 
determined by tandem MSMS experiments using 
peptides from the protein obtained from HEK 
293T cells. This experiment provided the 
required information on abundance, charge state 
and collision energy, necessary to select suitable 
transitions. A total of 28 transitions were 
selected (supplemental Table S1) and the dwell 
time for each of them was optimized. As a 
control for the amount of protein analyzed the 
non-glycosylated peptide K4* 
(SLAELGDCNEDLEQAEK) was also 
monitored. Its signal was used to normalize the 
data. The threshold for tandem MSMS was set to 
500 cps and target ions were excluded for further 
measurements at 2 occurrences for 40 s. 

 
RESULTS 

Production of recombinant TSR4 from rat f-
spondin. Initially, with the aim to determine 
whether proper protein folding is required for O-
fucosylation of TSRs in vivo, we expressed the 
fourth TSR from rat f-spondin in HEK293T 
cells. The wild type protein (TSR4) and a mutant 
lacking the second and third disulfide bridge 
(∆DS2,3-TSR4) migrated as two bands on an 
SDS-PAA gel, with apparent molecular weights 
of 18 and 20 kDa (data not shown). Protein 
sequencing by Edman degradation showed that 
the two bands differed in their N-terminal amino 
acid sequence, starting with DAA and TKL, 
respectively. The former start point represents 
the full-length recombinant TSR4, whereas the 
latter one appears to results from a furin-like 
cleavage (see experimental procedures for the 
complete amino acid sequence) 

Analysis of glycosylation status. In full-length 
f-spondin, the fourth TSR carries Glc-β1,3-Fuc-
O- on Thr-601 and is C-mannosylated on Trp-
592 and Trp-595 (61). To examine the 
glycosylation pattern of the isolated modules, 
purified TSR4 and ∆DS2,3-TSR4 were reduced, 
carboxamidomethylated and digested with 
endoproteinase Lys-C. The resulting peptides 

Comment [h1]: This needs 
clarification! 
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were analyzed by reverse-phase LC-MS (Fig. 1). 
Peptide K2, which contains all three known 
glycosylation sites, eluted as a series of 
glycoforms that differed in mass by 162 Da (Fig. 
1A and Table 1). Low energy CID tandem MS 
demonstrated that this series resulted from the 
presence of 2 (MM), 1 (M0), or no C-mannosyl 
residues on the tryptophan residues6. 
Furthermore, their mass (Table 1) and the facile 
loss of 308 Da by in-source fragmentation 
showed the presence of the Glc-Fuc-O- (FG) 
disaccharide. Thus, three major glycopeptides 
were obtained from TSR4: K2+MMFG, 
K+2M0FG, and K2+00FG; Fig. 1A)4. In 
addition, we observed, in most cases, minor 
accompanying peaks that contained peptide 
forms with masses that were 162 and 308 Da 
lower (Table 1). These data agreed with the 
glycosylation pattern observed in full length f-
spondin, i.e. nearly complete C-mannosylation 
of Trp-592, very partial C-mannosylation of Trp-
595, and nearly complete modification of Thr-
601 with the disaccharide Glc-Fuc-O- (61).  

Also the peptide map of ∆DS2,3-TSR4 
contained a series of peptides that differed in 
mass by 162 Da (K2*+MM00, K2*+M000 and 
K2*, Fig. 1B), that resulted from partial C-
mannosylation of the two tryptophan residues. 
Importantly, the masses of these peptides 
indicated that the Glc-Fuc-O- disaccharide was 
absent (Table 1). However, each of these 
peptides was preceded by a peak containing a 
peptide that was 948 Da heavier (K2*+MM+ 
948 Da, K2*+M0 + 948 Da and K2* + 948 Da; 
Fig.1B). An increase in mass of 948 Da would 
exactly correspond to a tetrasaccharide 
consisting of 1 hexosyl-, 1 N-acetylhexosaminyl- 
and 2 N-acetylneuraminic acid residues. Indeed, 
for each of these peptides we observed in-source 
fragmentation that produced a series of fragment 
ions that differed in mass by values 
corresponding to single sugar units (162, 203 
and 291 Da). Thus ∆DS2,3-TSR4 appeared to 
have undergone some other form of 
glycosylation, in addition to C-mannosylation.  

Peptide K2* contains four hydroxyl amino 
acids that could potentially be O-glycosylated. In 
order to simplify subsequent structural analysis 
by MS, the relevant peptides from the Lys-C 
digest of ∆DS2,3-TSR4 were pooled and further 
digested with endopeptidase Asp-N. This should 

yield the N-terminal fragments K2*-D1 
(LCLLSPWSEWS, carrying variable number of 
C-mannosyl residues) and the C-terminal peptide 
K2*-D2 (DASVTAGK). In initial fractionation 
experiments, using reversed-phase C18 
chromatography, only the differentially C-
mannosylated peptides K2*-D1+MM, K2*-
D1+M0 and K2*-D1 were recovered (data not 
shown). This suggested that the putative 
tetrasaccharide was linked to peptide K2*-D2, 
which was too polar to bind to the C18 reversed 
phase material. Therefore, we used a column 
containing porous graphitized carbon 
(Hypercarb) to isolate this fragment (Fig. 2). 
Static nanospray MS of the purified peptide 
revealed a doubly charged ion at m/z 848.5, 
corresponding to a mass of 1695 Da (Fig. 2, 
inset). The amino acid sequence of this peptide 
was confirmed by CID tandem MS (data not 
shown). Together, these results indicated that 
peptide K2*-D2 carried the putative 
tetrasaccharide (expected mass: 1695.66 Da). 

Determination of the structure of the putative 
tetrasaccharide – To examine whether peptide 
K2*-D2 is glycosylated, we performed 
nanospray CID tandem MS experiments on the 
singly charged precursor (m/z 1696), using 
relatively low collision energies (10-30 V). This 
should yield structural information on the 
putative glycan, but cause minimal 
fragmentation of the polypeptide chain. The 
highest observed fragment mass (m/z 1404.7) is 
291 mass units lower than the precursor and can 
be explained by the neutral loss of a terminal 
NeuNAc residue (Fig. 3). This fragment 
undergoes both a 162 and 291 Da loss, which 
can be explained by the presence of a linear or 
branched glycan (Fig. 3). The resulting fragment 
ions at m/z 1242.7 and 1113.7 can be explained 
as K2*D2 – NeuNAc – Hex and K2*D2 – 
2NeuNAc, respectively. Further 291 and 162 Da 
losses yielded K2*D2 – 2 NeuNAc - Hex (m/z 
951.6). Finally, the neutral loss of a HexNAc 
residue explains the formation of the fragment 
ion at m/z 748.4 (K2*D2 – 2 NeuNAc – Hex - 
HexNAc). A series of doubly charged fragment 
ions could be explained in the same way. These 
data showed that peptide K2*-D2 is indeed 
glycosylated, and the tandem MS spectrum is 
fully consistent with the presence of a 
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tetrasaccharide with the structure: NeuNAc-Hex-
[NeuNAc]-HexNAc-O-. 

To determine the structure of the 
tetrasaccharide in detail, we treated glycosylated 
peptide K2*D2 with glycosidases and analyzed 
the reaction products by LC-MS using the 
Hypercarb column. Treatment with the 
neuraminidase from Clostridium perfrigens, 
which cleaves α2-3-, α2-6- and α2-8-linked 
NeuNAc residues, resulted in a peptide with a 
mass of 1112 Da (Fig. 4A), showing the 
cleavage of two NeuNAc residues. Subsequent 
digestion of the desialylated glycopeptides with 
O-glycanase, which is specific for the core 1 
structure (120), removed all carbohydrate as 
indicated by the mass of the product (747 Da; 
Fig. 4B). This result was confirmed by Western 
analysis of ∆DS2,3-TSR4, using the core 1-
specific lectin PNA. We only observed binding 
of the lectin to ∆DS2,3-TSR4 that had been 
treated with the neuraminidase from Clostridium 
perfringens (Fig. 4C). Thus, the desialylated 
glycopeptide carries the structure 
Galβ1,3GalNAc-O- 

Incubation of glycosylated K2*D2 with an 
α2-3-specific neuraminidase from Salmonella 
typhimurium yielded a peptide with a mass of 
1403.7 Da (Fig. 4D), indicating the loss of a 
single α2-3-linked NeuNAc residue. We propose 
that the product of this reaction is K2*D2 with 
the trisaccharide Galβ1,3[NeuNAc]GalNAc-O- 
for the following reasons: 1. Since the 3-OH 
position of the GalNAc residue is occupied by 
the Gal, the NeuNAc residue removed in this 
experiment was attached to the 3-OH of the Gal 
residue. 2. The tandem MS spectrum of the 
completely glycosylated peptide showed the loss 
of a NeuNAc residue from the quasi-molecular 
ion, but not of a hexose (Fig. 3). Such a loss was 
only observed after loss of one NeuNAc residue. 
This indicates that the Gal moiety is sub-
terminal to the NeuNAc residue. Furthermore, 
the remaining NeuNAc residue must be attached 
to GalNAc. 

We have not determined the position on the 
GalNAc to which the NeuNAc is attached. It 
most likely occupies position 6, since NeuNAc 
attachment to the 4-OH has not been reported. 
Taken together, the data in Figs. 3 and 4 
demonstrate that the tetrasaccharide has the 

structure 
NeuNAcα2,3Galβ1,3[NeuNAc]GalNAc-O-, an 
known O-linked glycan called disialyl-T-antigen 
(dST) (121) 

Determination of the glycosylated amino acid 
residue. In glycosylated peptide K2*D2 Ser-599 
and Thr-601 are possible attachment sites for the 
tetrasaccharide. Tandem MS experiments using 
collision energies that are sufficiently high to 
achieve backbone fragmentation always resulted 
in the loss of the two NeuNAc residues. We 
performed MS3 experiments on diagnostic 
fragment ions that could potentially carry the 
core 1 structure or the GalNAc residue. This 
approach resulted in two fragment ions, which 
allowed us to deduce the modified amino acid 
(Figure 5). The MS3 experiment on the fragment 
ion at m/z 741.5 (putatively y4: T(+365)AGK) 
exhibited sequential neutral losses of 162 and 
203 Da (Fig. 5). Importantly, the b3 or b4 ions 
(DAS and DASV) were only observed as such, 
and no neutral sugar losses from these fragments 
were observed. From these data we conclude that 
the tetrasaccharide is attached to Thr-601 in 
∆DS2,3-TSR4. 

GalNActransferase 3 can glycosylate a 
∆DS2,3-TSR4-derived peptide in vitro - 
Formation of the disialyl-T-antigen is initiated 
by the transfer of a GalNAc moiety, a reaction 
that probably is catalyzed by a member of the 
family of polypeptide GalNAc transferases 
(GalNAc-T). In order to identify potential 
candidate enzymes, a ∆DS2,3-TSR4-derived 
peptide spanning the putative Thr-601 acceptor 
amino acid and a MUC2 peptide, serving as a 
control, were synthesized. The peptides were 
incubated with purified recombinant human 
GalNAc-T1, -T2, -T3 and -T4 and the 
incorporation of a GalNAc moiety (203 Da) was 
examined by MALDI-TOF-MS. All examined 
GalNAc-T homologues modified the MUC2a 
peptide (Fig. 6B). However, only GalNAc-T1 
and-T3 were found to incorporate a GalNAc 
moiety into the ∆DS2,3-TSR4-derived peptide. 
Contrary to transferase 1, which added two 
GalNAc moieties to the TSR-derived peptide, 
GalNAc-T3 attached a single GalNAc residue in 
a time- dependent manner. In order to identify 
the modified amino acids we purified the 
products of the reaction catalyzed by GalNAc-
T1 an-T3 by HPLC. In both cases we found a 
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putative y4 ion at m/z 578.2 in CID tandem MS 
experiments, which would indicate glycosylation 
of Thr-601 (data not shown). Using the same 
MS3 approach as described above, it was found 
that these ions exhibited a loss of 203 Da (shown 
in Fig. 7A for the product of GalNac-T3). The 
same result was obtained for the ppGalNAc-T1 
product. However, in that case an additional 
glycosylation was indicated by the presence of a 
fragment ion at m/z 1202.5 (data not shown). 
This would correspond to the glycosylated b9 
ion, GAGAGWS (+203 Da) suggesting 
modification of Ser-596. This was confirmed in 
an MS3 experiment, which showed the neutral 
loss of the GalNAc residue (Fig. 7B). These data 
confirmed that of the tested GalNAc 
transferases, only GalNAc-T3 was able to 
modify a single residue in the ∆DS2,3-TSR4-
derived peptide, i.e. Thr-601. 

GalNAc-T3 modifies ΔDS2,3-TSR4 in 
cultured cells - In an initial screen of different 
cell lines, we noticed a very low level of 
modification of ∆DS2,3-TSR4 with dST in 
CHO-K1 cells. This allowed us to examine the 
effect of overexpression of GalNAc-T3 on the 
modification of ΔDS2,3-TSR4 with GalNAc in 
vivo. For this, the degree of glycosylation of 
ΔDS2,3-TSR4 purified from CHO-K1 cells that 
were co-transfected with GalNAc-T3 or GFP 
were compared by tandem LC-MS in the 
multiple reaction monitoring mode (MRM). In 
MRM experiments peptide-specific precursor 
ions are selected in the first quadrupole, 
fragmented in the collision cell and characteristic 
fragment ions are selected in the third 
quadrupole (the precursor-/specific fragment ion 
pair is called a ‘transition’). The high selectivity 
and the short scan times necessary for measuring 
multiple transitions, allows sensitive and 
quantitative analysis (122). Glycan- as well as 
peptide backbone-specific transitions 
(Supplemental data; table S1) were used to 
monitor the disappearance of unmodified peptide 
K2*, as well as the appearance of the five 
different glycoforms, i.e. K2*+MMdST, 
K2*+MM0, K2*+M0dST, K2*+M00 and 
K2*+00dST 5. An overlay of representative 
MRM chromatograms is shown in Fig. 8. Upon 
overexpression of GalNAc-T3 we observed a 
strong decrease in the species lacking O-
glycosylation, i.e. K2*+MM0 and K2*+M00 

(Fig. 8A and B). Concomitantly, a 5.3 ± 0.9 and 
9.1 ± 2-fold increase in peptides K2*+MMdST 
and K2*+M0dST occurred, respectively. These 
changes were not due to differences in the 
amount of protein injected for analysis, as can be 
seen from the equal intensity of the non-
glycosylated control peptide K4*. In all cases the 
identity of the dST was confirmed, and thus the 
mass of the polypeptide backbone, by a full 
tandem MS experiment that was triggered by the 
relevant transition (Supplemental data Fig.S1). 
Thus, GalNAc-T3 can not only modify the 
ΔDS2,3-TSR4-derived peptide in vitro, but also 
strongly enhances the formation of disialylated 
T-antigen in CHO-K1 cells. 

 

DISCUSSION 

1. Description of the results 
TSRs undergo two types of glycosylation: 
attachment of the disaccharide Glcβ1,3-Fuc-O- 
to a Thr or Ser residue, and C-mannosylation of 
Trp residues (61). Here we report a mutant of f-
spondin, lacking the second and the third 
disulfide bridge (∆DS2,3-TSR4), which shows 
C-mannosylation on both Trps but harbors a 
disialylated-T-antigen (NeuNAcα2,3Galβ1,3-
[NeuNAcα2,6]GalNAc-O-) on Thr-601. In a 
peptide screen we identified GalNAc transferase 
T3 as the putative enzyme initiating the O-
glycan. This enzyme modifies exclusively Thr-
601 and its co-expression together with the 
mutated TSR significantly increases the 
expression of the disialylated-T-antigen in CHO-
K1 cells 

2. Lack of Glc-Fuc-O 
It has been shown recently that the O-
fucosyltransferase POFUT2 and the 
glucosyltransferase β3Glc-T, that glycosylate 
TSRs, require a properly folded molecule to 
attach Glcβ1,3-Fuc-O- (42, 65). Deletion of two 
out of three disulfide bridges most likely alters 
the three-dimensional structure of the TSR in 
way that these enzymes loose their capability to 
recognize it as a substrate. Work from our own 
laboratory indicates that less severe changes 
affecting the 3D fold of the TSR molecule (i.e. 
replacement of only one disulfide bridge), still 
lead to a substantial modification with the 
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disaccharide Glcβ1,3-Fuc-O. This suggests that 
the native module has a compact structure which 
can only be distorted by severe structural 
changes7. The fact that the mutated TSR is not 
degraded in the ER but receives the Disialyl-T-
antigen in the Golgi implies that the module still 
retains sufficient secondary and tertiary structure 
to traverse the secretory pathway. These features 
of ∆DS2,3-TSR4 seem to be valid not only in 
human embryo kidney cells (HEK 293T) but 
also in Chinese hamster ovary cells (CHO-K1).  

3. Gain of Disialyl-Tantigen initiated by 
GalNAc T3 
Alteration of the loop between strand A and 
strand B in the TSR module can lead to 
abrogation of the Glc-Fuc-O disaccharide 
without formation of the Disialyl-T-antigen7. 
Therefore, formation of the Disialyl-T-antigen 
was not merely an effect of lack of O-
fucosylation. The enzyme initiating the observed 
core 1 modification is a UDP-N-acetyl-α-D-
galactosamine: polypeptide N-
acetylgalactosaminyltransferase (ppGalNAc-T). 
Currently, this family consists of up to 20 
predicted members, 16 of which have been 
cloned (123). Although a consensus sequence 
has not been defined, it is believed that the 
primary amino acid sequence is critical for 
enzyme substrate recognition (124) and that the 
in vitro specificity for distinct residues reflects 
the in vivo condition (12). In order to confirm 
this hypothesis, we screened for potential 
candidate enzymes using a peptide of ∆DS2,3-
TSR4 spanning the Thr-601 residue and a 
MUC2a peptide as a control. This screen 
discovered UDP-GalNAc T1, T3 of the tested 
enzymes as the ones, capable of modifying the 
∆DS2,3-TSR4-peptide. GalNAc T1 was shown 
to glycosylate as well Ser-596 and Thr-601, 
whereas GalNAc T3 solely glycosylated Thr-601 
(Figure 7). Interestingly, we could confirm the 
potential of GalNAc T3 to glycosylate ∆DS2,3-
TSR4 in CHO-K1 cells using a semi-quantitative 
MS approach. This method allowed us to 
monitor multiple glycoforms at the same time. 
CHO-K1 cells exhibited already basal activity to 
modify ∆DS2,3-TSR4 with a disialylated-T-
antigen, but this activity could be enhanced 
significantly upon over expression of GalNAc-
T3. The observation that GalNAc T3 can 
glycosylate ∆DS2,3-TSR4 in vitro and in vivo 

extends the list of known substrates for this 
glycosyltransferase. GalNAc T3 has been 
described to be overexpressed in various cancers 
(125, 126). It was suggested that in cancer 
overexpression of tightly regulated GalNAc 
transferases could result in initiation of O-
glycosylation at normally unoccupied sites, 
which may contribute to cancer (127) In this 
context the usage of specific peptides of known 
substrates of GalNAc T3 like ∆DS2,3-TSR4, 
could help to further define the specificity of this 
glycosyltransferase. 

4. ∆DS2,3-TSR4 is an experimental proof of a 
gain of O-glycosylation 
Mutations resulting in a loss of glycosylation 
have been reported in various different genes. It 
was estimated that at least 170 mutations result 
in loss of N-glycosylation and 230 mutations 
influence directly O-glycosylation (128). 
Mutations that affect synthesis of glycans can 
clinically manifest in diseases known as 
congenital disorders of glycosylation (CDGs). 
Interestingly, mutations resulting in a gain of 
glycosylation are less well studied. The best 
characterized example of a gain of N-
glycosylation is the T168N mutation in the 
IFNγR2, which is sufficient and necessary for an 
inherited disease called Mendelian susceptibility 
for mycobacterial disease (MSMD) (28). This 
paper provides an experimental proof of a gain 
of O-glycosylation. The same threonine residue 
that is modified with the disaccharide Glcβ1,3-
Fuc-O- in wild type TSR4 receives the 
tetrasaccharide NeuNAcα2,3Galβ1,3 
[NeuNAcα2,6]GalNAc-O in ΔDS2,3-TSR4. 
Whereas the disaccharide Glcβ1,3-Fuc-O is 
synthesized in the ER, all enzymes required for 
the synthesis of mucin-type O-glycans are 
known to localize in the Golgi. Thus the 
discovered glycosylation represents not only a 
switch in specificity but also encompasses 
different cellular organelles. This shows the 
intriguing flexibility of glycosylation and 
provides experimental evidence that gain of O-
glycosylation may exist. 
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FIGURE LEGENDS 
Figure 1. Peptide mapping of wild type TSR4 and the mutant ΔDS2,3-TSR4 by LC-MS. A, Partial UV 
chromatogram of the peptide map generated by cleavage of wild type TSR4 with endoproteinase Lys-C. 
Only the portion with the different glycoforms of peptide K2 (inset) is shown. These were identified by 
their mass and CID tandem MS, and are indicated with M representing a C-mannosylated tryptophan 
(underlined in the amino acid sequence), FG a threonine (indicated in bold in the amino acid sequence) 
carrying the Glc-Fuc-O- disaccharide and ‘0’ the absence of modification. In addition to glycopeptides 
carrying the Glc-Fuc-O- disaccharide, also peptides lacking Glc (162 Da) and/or Fuc (146 Da) were 
observed in chromatographically separated peaks. B, Partial UV chromatogram of the Lys-C peptide map 
of ΔDS2,3-TSR4, the mutant lacking the second and third disulfide bridge. Glycoforms of peptide K2* 
(see inset, with Cys-598 and -602 replaced by Ala indicated in italics) were identified as in ‘A’. Peptides 
lacking the Glc-Fuc-O- disaccharide were readily identified: K2* + MM00, K2* + M000 and K2*. Each 
of these peptides was preceded by a peptide that has a 948 Da higher mass. 
 
Figure 2. Isolation and LC-MS analysis of peptide K2*-D2, carrying a putative tetrasaccharide. 
Peptides K2*+MM+947Da, K2*+M0+948 Da and K2*+948 Da (see Fig. 1B) were pooled and cleaved 
with endopeptidase Asp-N. The C-terminal fragment was purified on a porous graphite carbon column 
(Hypercarb) and its mass was determined by enhanced resolution MS  to be 1695 Da (inset). 
 
Figure 3. CID MS characterization of the putative tetrasaccharide. The doubly-charged precursor of 
peptide K2*-D2 was analyzed by CID tandem MS in the static nanospray mode at low collision energy 
(10-30 V). Neutral losses corresponding to the mass of monosaccharide constituents are indicated. The 
structures assigned to the attached glycan are based on this spectrum together with the results from the 
experiment depicted in Fig. 4, since the exact nature of the sugars can not be deduced from mass 
spectrometry. The fragment ion at m/z 1404.7 results from the loss of a NeuNAc residue from the 
precursor ion. The subsequent concomitant loss of a hexose and NeuNac residue indicates that the glycan 
has a bi-antennary structure. The spectrum also shows a series of doubly-charged fragment ions, which 
confirm these assignments. They are labeled with their m/z value only for sake of clarity.  
 
Figure 4. Determination of the tetrasaccharide structure. 
A, Digestion of glycosylated peptide K2*-D2 with neuraminidase from Clostridium perfringens resulted in 
a glycopeptide with 582 Da lower mass, corresponding to the loss of two NeuNAc residues. B, The 
product of the reaction in ‘A’ was further treated with O-Glycanase, which yielded peptide K2*-D2 that 
lacks all sugars as indicated by the singly charged ion at m/z 748.4. C, ΔDS2,3-TSR4 was treated with 
neuraminidase from Clostridium perfringens and compared to the untreated protein by Western blot using 
peanut agglutinin (PNA; upper panel). To verify the loading of equal amounts of protein, the blot was re-
probed with an antibody against the Myc tag (lower panel). D, Digestion of glycosylated peptide K2*-D2 
with an α2-3-specific neuraminidase from Salmonella typhimurium resulted in a peptide with a 291 Da 
lower mass, indicating the presence of a single α2-3-linked NeuNAc residue in the original glycopeptide. 
 
Figure 5. Determination of the amino acid residue carrying the tetrasaccharide. Doubly charged 
glycosylated peptide K2*-D2 was fragmented by CID in the static nanospray mode, using variable 
collision energies, to produce peptide sequence ions. Under these conditions, the glycopeptides underwent 
neutral loss of two NeuNAc residues. The fragment ion at m/z 741.4 (putatively y4 T(+ 365 Da)AGK) 
was further fragmented in an MS3 experiment. The sequential loss of a hexose- (162 Da) and a HexNAc 
residue (203 Da) is indicated. 
 
Figure 6. In vitro peptide modification by GalNAc transferases. A, A peptide derived from the 
sequence of ΔDS2,3-TSR4 (underlined in the inset) was incubated for various length of time with 
GalNAc-T1, -T2, -T3 and -T4. Modification was monitored by MALDI-TOF MS, monitoring the loss of 
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starting material (m/z 1560.7) and the formation of GalNAcylated products. The observed m/z values are 
indicated with in parenthesis the number of incorporated GalNAc residues. B, For comparison the mucine 
2-derived peptide (inset) was treated and analyzed in the same way.  
 
Figure 7. Characterization of the glycosylated products from the in vitro reactions catalyzed by 
GalNAc-T1 and –T3. A, Glycosylated ΔDS2,3-TSR4-derived peptide obtained from the reaction 
catalyzed by GalNAc-T3, was analyzed by CID tandem MS in the static nanospray mode (data not 
shown), and the fragment ion at m/z 578.2 (putatively y4 T(+ 203 Da)AGK) was further fragmented in an 
MS3 experiment. The loss of 203 Da indicates the presence of the GalNAc residue on Thr-601. B, 
Analysis of the product obtained form the GalNAc-T1-catalyzed reaction by the same approach, showed 
this enzyme also modifies Ser-596.  
 
Figure 8. Modification of ΔDS2,3-TSR4 by GalNAc-T3 in CHO-K1 cells. CHO-K1 cells were co-
transfected with plasmids encoding ΔDS2,3-TSR4 and GalNAc-T3 (—) or as a control ΔDS2,3-TSR4 and 
GFP (…..) Purified ΔDS2,3-TSR4 was digested with endoproteinase Lys-C and the state of glycosylation 
of peptide K2* from the two experiments was compared by relative quantification using tandem LC-MS 
in the multiple reaction monitoring mode. A, peptide K2* containing two C-mannosyltryptophan residue 
was monitored using the indicated transitions (precursor/product) indicated in italic (see also supplemental 
data, Table S1). The non-glycosylated control peptide K4* was monitored to assess the amount of injected 
digest. B, The same analysis was performed for peptide K2* with one C-mannosyltryptophan residue. 
Note that the order of elution of glycopeptides with or without dST differs from that in Fig.1, as a result of 
the use of formic acid instead of TFA in the eluent. 
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Table 1: Identification of the glycoforms of peptide K2 from TSR4 and K2DS2,3-TSR4.a*   

Protein 
Average observed 
Mass [Da] Assignment 

Average theoretical 
Mass [Da]a 

    
TSR4 2917.2 K2+MMFG 2918.1 
 2754.8 K2+MMF0 2756.0 
 2609.2 K2+MM00 2609. 9 
 2754.8 K2+M0FG 2756.0 
 2592.4 K2+M0F0 2593. 9 
 2446.8 K2+M000 2447.8 
 2592.4 K2+00FG 2593. 9 
 2430.8 K2+00F0 2431.8 
 2284.4 K2 2285.6 
    
ΔD2,3-TSR4 3378.8 K2*+MM+948 Da 3379.5 
 2429.2 K2*+MM 2431.7 
 3216.4 K2*+M0+ 948 Da 3217.4 
 2268.4 K2*+M0 2269.5 
 3054 K2*+ 948 Da 3055.2 
 2106.8 K2* 2107.4 

 

a The average theoretical mass for the given assignment is shown. The assignments are supported by CID 
tandem MS analyses. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 
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Table S1. Transitions used in LC-MRM-driven IDA experiments 
Precursor Product 

Identity m/z Charge Identity m/z Charge 
 

Collision energy (V) 
 

Dwell time (ms) 
K4* 961 2 b3 272 1 53 60 
K4* 961 2 b4 401 1 53 60 

K2*+MMdSTa 1127.5 3 b2 274 1 30 200 
K2*+MMdST 1127.5 3 NeuNAc 292 1 20 200 
K2*+MMdST 1127.5 3 y4 376.24 1 40 200 
K2*+MMdST 1127.5 3 K2*+MM0 1216 2 30 200 
K2*+MMdST 1127.5 3 K2*+MMmSTb 1544.8 2 20 200 

K2*+MM 1216 2 b2 274.2 1 65.8 200 
K2*+MM 1216 2 LLS-H20c 296.2 1 65.8 200 
K2*+MM 1216 2 b3 387.5 1 65.8 200 
K2*+MM 1216 2 y7 633.2 1 65.8 200 

K2*+M0dST 1072.4 3 b2 274.2 1 30 200 
K2*+M0dST 1072.4 3 NeuNAc 292.1 1 20 200 
K2*+M0dST 1072.4 3 y4 376.2 1 40 200 
K2*+M0dST 1072.4 3 K2*+M00 1135.2 2 30 200 
K2*+M0dST 1072.4 3 K2*+MMTnd 1236.6 2 30 200 

K2*+M00 1135.1 2 b2 274.1 1 61.7 200 
K2*+M00 1135.1 2 LLS-H20 296.3 1 61.7 200 
K2*+M00 1135.1 2 b3 387.5 1 61.7 200 
K2*+M00 1135.1 2 y7 633.2 1 61.7 200 

K2*+00dST 1019.5 3 b2 274.1 1 30 200 
K2*+00dST 1019.5 3 NeuNAc 292.1 1 20 200 
K2*+00dST 1019.5 3 y4 376.2 1 40 200 
K2*+00dST 1019.5 3 K2* 1054 2 30 200 

K2* 1054 2 b2 274.1 1 61.7 200 
K2* 1054 2 LLS-H20 296.3 1 61.7 200 
K2* 1054 2 b3 387.5 1 61.7 200 
K2* 1054 2 y7 633.2 1 61.7 200 

 
a dST: Disialyl-T-antigen 
b mST: Monosialyl-T-antigen 
c LLS – H2O: Internal fragment ion, Leu-Leu-Ser -H2O 
d  Tn: Tn antigen 
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Figure S1 
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4.3 Supplementary data  

4.3.1 Expression and structural studies 

Results 

 In ΔDS2,3-TSR4 two disulfide bridges were deleted. These changes result most likely in 

alterations of the three dimensional structure. Severe distortions of the three 

dimensional fold often lead to misfolded proteins that accumulate inside the cells. Since 

accumulated proteins are toxic, the cell has developed various ways to solve this 

problem. In order to enhance folding, chaperons are upregulated. Terminal misfolded 

proteins are removed from the ER and degraded.  

An indication that the introduced mutations in ΔDS2,3-TSR4 result in a severely 

misfolded protein, would be decreased secretion levels of ΔDS2,3-TSR4 compared to 

wild type TSR4. Therefore, wild type TSR4 and ΔDS2,3-TSR4 were transiently 

expressed in HEK 293T cells. The proteins were purified from the conditioned medium 

as described in chapter 3.10 and secretion levels were quantified. For quantification, a 

sensitive TSR specific ELISA was developed that allowed analysis of expressed TSRs 

under native conditions (Figure 8).  

 
Figure 8: ELISA of secreted TSR4wt and ΔDS2,3-TSR4. 

HEK 293T cells were transiently transfected with TSR4wt and ΔDS2,3-TSR4. The secreted proteins were 
purified based on their His6-tag and the total amount was determined by ELISA.  
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Quantification of ΔDS2,3-TSR4 compared to wild type TSR4 revealed no significant 

differences in the secretion levels. This observation was surprising, since it indicated 

that ΔDS2,3-TSR4 was not misfolded but rather contained some structure allowing the 

molecule to traverse ER and Golgi.  

Western blot analysis of wild type TSR4 and ΔDS2,3-TSR4 revealed that both proteins 

displayed significant heterogeneity. It was observed, that wild type TSR4 migrated as 

three bands between 16 band 20 kDa. The identities of the bands at about 20 kDa and 

at 18 kDa were determined by N-terminal sequencing (not shown). The band at 20 kDa 

demonstrated to be wild type TSR4 starting with the sequence DAA, whereas the major 

band at 18 kDa turned out to be wild type TSR4 starting with TKL. The blot of ΔDS2,3-

TSR4 revealed three bands migrating at a slightly higher molecular weight than the 

bands of wild type TSR4. Additional bands were also detected at about 25 and 50 kDa 

for ΔDS2,3-TSR4 which indicated higher oligomers (see Figure 9).  

 

 

 

 

 

 
Figure 9: Western Blot of TSR4wt and ΔDS2,3-TSR4 

Wild type TSR4 (lane A) and ΔDS2,3-TSR4 (lane B) were transiently expressed in HEK 293T cells, 
purified by IMAC and blotted using a mouse anti-Myc antibody as primary and anti-mouse-HRP as 
secondary antibody. 
 

In order to gain information about the structure of ΔDS2,3-TSR4 under physiological 

conditions, ΔDS2,3-TSR4 and wild type TSR4 were analyzed by analytical gel filtration 

where proteins elute in the order un-, partially and fully-folded proteins. It was possible 

that ΔDS2,3-TSR4 represents a partially folded intermediate that possess native-like 

secondary structure, but due to the lacking of disulfide bridges can not collapse into its 

compact three-dimensional conformation. These folding intermediates are called molten 

globules (129) and occur under physiological conditions in the von Hippel-Lindau tumor 

suppressor (99), the apolipoproteins E3 and E4 (130) and in the α(S1) and κ-casein milk 
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proteins (131). An experimental value that gives indication about the folding state is the 

Stokes radius that decreases with the degree of folding. The Stokes radius of an 

unknown analyte can be estimated based on the elution volumes of globular standard 

proteins (see Chapter 3.13). Wild type TSR4 and ΔDS2,3-TSR4 were chromatographed 

on a Superdex 75 100 300/GL gel filtration column that had been calibrated with known 

standards (see Figure 6A). In order to mimic denatured proteins, TSRs were reduced, 

cysteins carboxyamidomethylated and the proteins were chromatographed under the 

same conditions than the un-treated “native” proteins (Figure 10).  

 

 
Figure 10: Analytical gel filtration of wild type TSR4 and ΔDS2,3-TSR4. 

Gel filtration experiments of native and denatured TSR4 and ΔDS2,3-TSR4. 10 μg of TSR were loaded 
onto a Superdex 75 100 300/GL column and fractions from 7 to 17.5 ml elution were analyzed by ELISA.  
 

 As shown in Fig. 10, the majority of ΔDS2,3-TSR4 eluted as two peaks with  maxima at 

11.6 ml and 12.5 ml. Additionally, a minor third peak eluted at the void volume (7.59 ml) 

indicating the presence of a large multimer. No significant peak could be measured for 

denatured ΔDS2,3-TSR4. Either the protein was lost during the reduction, 

carboxyamidomethylation, or during the gel filtration experiment in the FPLC system. In 

contrast, wild type TSR4 eluted as a sharp peak having a maximum at 11.4 ml. TSR4 

with denatured and modified cysteins eluted at 11.5 ml. Unlike with ΔDS2,3-TSR4, 
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denaturation of the protein reduced the amount of recovered wild type TSR4 only to 

about 3.5-fold. Based on the equations obtained for the plot of Kav versus molecular 

weights of standards (Figure 6A) and √–log Kav versus Stokes radii of the standards 

(Figure 6B), the molecular weight and Stokes radii of the major TSR4 species were 

calculated (Table 4).  

Sample Name Ve (ml) Ve/V0 Kav Calculated Stokes 
radius (Å)

Calculated Molecular 
Weight (kDa)

TSR4 native 11.4 1.49 0.23 22.54 28.44
TSR4 denatured 11.5 1.5 0.24 22.12 27.22
ΔDS2,3-TSR4 peak 1 11.6 1.52 0.24 21.7 26.05
ΔDS2,3-TSR4 peak 2 12.5 1.63 0.3 18.26 17.56  
Table 4: Determined and calculated parameters of wild type TSR4 and ΔDS2,3-TSR4 in gel filtration 

experiments 
The molecular weight of the various TSR4 forms was calculated using the equation 
y=0.1395Ln(x)+1.6602 determined from the plot Kav versus log molecular weight. The Stokes radius was 
determined by the equation y=0.171x + 0.4143 from the plot √–log Kav versus Stokes radii of standard 
proteins (see Chapter 3.13) 
 

The calculated molecular weights for wild type TSR4 correspond rather to a dimer than 

to a monomer. Similarly the calculated molecular weight for peak of ΔDS2,3-TSR4 also 

suggested the presence of a dimer in solution (see discussion part). The Stokes radius 

of ΔDS2,3-TSR4 was calculated to be similar or even smaller than the Stokes radius of 

wild type TSR4, indicating that ΔDS2,3-TSR4 does not fold as an molten globule. 

 

Discussion: 

The ΔDS2,3-TSR4 protein was found to express a tetrasaccharide termed disialyl-T-

antigen on amino acid Thr-601. In contrast to wild type TSR4, ΔDS2,3-TSR4 contains 

only one disulfide bridge. It could be possible that such a deletion of cysteines results in 

a misfolded protein which is predominately degraded and only secreted at minor 

amounts. Neither in ELISA of the native protein (see Figure 8) nor in SDS 

polyacrylamide gels (view figure 9), a decrease in secretion could be demonstrated. The 

ΔDS2,3-TSR4 protein has adopted a structure, which is not recognized by POFUT2 as a 

potential substrate for O-fucosylation. POFUT2 was shown to O-fucosylate only properly 

folded TSRs (43). Proteins, which contain a mutation of the O-fucosylated residue, show 
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decreased secretion (63, 64). It was proposed that POFUT2, similar to POFUT1, acts as 

a chaperone. Unlike POFUT1, however, the chaperone activity of POFUT2 is mediated 

by its glycosyltransferase function (63). Addition of O-fucose on TSRs was proposed to 

provide a signal for proper folding. Absence of this signal was suggested to result in 

poor secretion. ΔDS2,3-TSR4 seems to escape this quality control mechanism. 

Apparently, it is not recognized as a misfolded protein and absence of O-fucosylation 

does not lead to decreased secretion. In this context, it would be interesting to 

determine the structural requirements for recognition by POFUT2. For O-fucosylation the 

recognition motif was described to be C1X2–3S/TC2X2G. Studies from our laboratory 

indicated that replacement of either of the cysteines to alanine (but not both as in 

ΔDS2,3-TSR4) still leads to substantial O-fucosylation (D. Klein unpublished). Currently, 

it is not known whether these replacements result in significant distortion of the three-

dimensional fold. However, the data suggests that POFUT2 can tolerate some changes 

in TSRs and still recognize it as a properly folded molecule that can be O-fucosylated.  

 

The fact that POFUT2 does not O-fucosylate ΔDS2,3-TSR4 indicated that it has not 

adopted the native TSR conformation. One possibility was that ΔDS2,3-TSR4 might be a 

molten globule. One way to detect the molten globule state is the comparison of the 

hydrodynamic dimensions and the compactness of ΔDS2,3-TSR4 and wild type TSR4. 

Both proteins were examined by analytical gel filtration (Figure 10). The molecular 

weights calculated for wild type TSR4 and for ΔDS2.3-TSR4 corresponded rather to a 

dimer than to a monomer. Calibration of the gel filtration column was performed with 

globular standard proteins. It has to be kept in mind that a TSR4 is not a globular but an 

elongated protein (see Figure 7). Thus, the molecular weight of TSR4 could be over-

estimated. The significance of the Stokes radius has to be taken with a similar caution. 

Based on the solution structure of TSR4 from F-spondin determined by Paakonen and 

coworkers (116) the dimensions along the longitudinal and vertical axis can be 

estimated using the program Coot (http://www.ysbl.york.ac.uk/~emsley/coot/). This 

resulted in 56 Å along the longitudinal axis and 12 Å along the vertical axis. These 

values vary considerably from the calculated Stokes radius obtained from gel filtration 

experiments. Since the Stokes radius reflects the compactness of a molecule, it is 
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possible that TSR4 is not very compact. This could explain why denaturation of wild type 

TSR4 may not change too much the Stokes radius. 

Examination of native ΔDS2,3-TSR4 in analytical gel filtration suggested, that the protein 

displays significant more heterogeneity than native wild type TSR4. Denatured ΔDS2.3-

TSR4 could not be detected. The fact that native ΔDS2,3-TSR4 can be analyzed by gel 

filtration, but not denatured ΔDS2,3-TSR4, strongly indicates that the former has some 

degree of structure. 

Apart from a large peak at the void volume, two major peaks were detected for native 

ΔDS2,3-TSR4. It is possible that these two peaks result from the difference in 

glycosylation observed for ΔDS2,3-TSR4. The molecule was shown to be glycosylated 

with the disialyl-T-antigen to about 50%. It is possible that the glycosylated portion of the 

protein interacted differently with the column matrix than the un-glycosylated ΔDS2,3-

TSR4. This hypothesis is supported by the fact that an elution buffer with relative low 

ionic strength was used that could facilitate protein-matrix effects.  

In order to further characterize the structure, circular dichroism (CD) measurements on 

ΔDS2,3-TSR4 could be made and compared to the known CD spectrum of wild type 

TSR4 (65). A potential folding intermediate could also be investigated using the 

fluorescence of ANSA (8-Anilino-1-naphthalene Sulfonic Acid) as a readout. An increase 

in ANSA fluorescence has been reported to be a criterion to distinguis folded, molten 

globule and unfolded states (99).  

 

4.3.2 Characterization of the disialyl-T-antigen on ΔDS2,3-TSR4 

Results: 
Expression of the disialyl-T-antigen in other cells 

The presence of the disialyl-T-antigen on ΔDS2,3-TSR4 was originally discovered in 

HEK 293T cells (see Chapter 4.2). The modification could be dependant on intrinsic 

properties of the used cell line or the protein itself. Therefore, it was of interest to 

determine whether the modification of ΔDS2,3-TSR4 with the disialyl-T-antigen would 

also occur in other mammalian cell lines. ΔDS2,3-TSR4 was transiently transfected into 

the hamster cell line CHO-K1, the African green monkey cell line COS 7 and into HEK 
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293T cells as a control. The proteins were purified as described, digested with Lys-C 

and analyzed by LC-MS. ΔDS2,3-TSR4 from CHO-K1 cells was hardly modified with the 

disialyl-T-antigen (see Chapter 4.2), precluding quantification using the A280. In contrast, 

ΔDS2,3-TSR4 from both HEK 293T and COS 7cells was heavily modified with the 

disialyl-T-antigen (45% and 54%).This allowed the reliable quantification of the various 

glycoforms of peptide K2* (see Fig. 11) 

 
 

Figure 11: Quantification of the various glycoforms of peptide K2*  from ΔDS2,3-TSR4 expressed in 
HEK 293T or COS 7 cells 
ΔDS2.3-TSR4 was expressed in HEK 293T cells (A) and in the African green monkey cell line Cos 7 (B). 
The protein was purified digested and purified on a HPLC-MS using a C18 reverse phase column. The 
A280 area of various glycoforms of peptide K2* was normalized for two and one C-mannosyl tryptophans 
as described. 
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Both cell lines were capable to modify the ΔDS2,3-TSR4 protein with the disialyl-T-

antigen. These results demonstrated that both cell lines were capable to modify ΔDS2,3-

TSR4 with the disialyl-T-antigen. Therefore, the glycosylation pattern of ΔDS2,3-TSR4 

results from intrinsic features of the structure or amino acid sequence of the proteins. 

Differences in the relative amount of each glycoform in COS 7 cells and in HEK 293T 

cells may result from a variation in the cellular repertoire of involved enzymes, or sugar 

donors (see discussion chapter 6). Remarkably, we only observed the complete 

tetrasaccharide and never biosynthetic intermediates. 

 

Analysis of residues required for glycosylation: 

The biosynthesis of the disialyl-T-antigen is initiated by the transfer of a GalNAc residue 

from UDP-GalNAc to the Ser or Thr amino acid chain. Unlike for protein N-glycosylation 

no general recognition sequence for O-glycosylation has been defined. The main reason 

for this is that there exist at least 16 experimentally validated GalNAc transferases, 

many of which are thought to have their own unique substrate specificity (28, 132). Only 

recently, has insight into this problem been obtained from in vitro studies with purified, 

recombinant transferases and synthetic peptide substrates. For example it was shown 

with purified GalNAc transferases and a peptide library that GalNAc T1 has the 

preferred consensus sequence -(F/D)(F/A)(P/V)TP(G/A)P-. In contrast GalNAc T2 was 

demonstrated to prefer the consensus sequence -(P/I)GPTPGP- (26). Interestingly, 

GalNAc transferases have been described that display activity against already 

glycosylated peptides. Such a glycopeptide activity has been observed for GalNAc T4 

(124) GalNAc T7 (133) and GalNAc T10 (134). 

In an attempt to narrow down the possible GalNAc transferases that are involved in the 

modification of ΔDS2,3-TSR4, we have studied the importance of the residue at position 

-1 for the synthesis of the disialyl-T-antigen. The Val residue was mutated into Pro, Ala, 

and Lys and the recombinant protein was expressed in HEK 293T cells. To determine 

the level of modification with the disialyl-T-antigen, an endoproteinase Lys-C peptide 

map of the purified protein was made using LC-MS as described in Chapter 4.2. The 

relevant glycoforms of peptide K2* were quantified from their absorbance at 280 nm and 

the levels of glycosylation have been summarized in Fig. 12.  
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Figure 12: Quantification of the amount of disialyl-T-antigen on ΔDS2.3-TSR4 

In the mutants the residue at position -1 was replaced from Val to Pro, Ala or Lys. The amount of disialyl-
T-antigen was quantified based on the UV280 signal of the K2* peptides. 
 

The results show that Val at position -1 results in the highest level of glycosylation 

(50.9%). Interestingly, it was found that ΔDS2.3-TSR4 with Pro was nearly equally well 

modified (42.8%), followed by Ala with 9.2%. The analysis of the protein with the Val-Lys 

substitution was slightly more complicated, because the mutation created an additional 

protease cleavage site Therefore, the ΔDS2.3-TSR4 V-K mutant was cleaved with Asp-

N. In both digests, no disialyl-T-antigen could be detected, indicating that positive 

charged residues at position -1 destroy the capability of a GalNAc transferase to 

glycosylate the module. 

 

Detailed analysis of peptides from in vitro glycosylation experiment: 

 The peptide K* derived from the sequence  of ΔDS2,3-TSR4 was demonstrated to be 

glycosylated in vitro by GalNAc T1 and GalNAc T3. The MS data in vitro suggested that 

GalNac T3 only modified Thr-601, whereas GalNAc T1 modified both Thr-601 and Ser-

596. Since the O-linked GalNAc residue is easily lost in tandem MS experiments, we 
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wanted to strengthen these results by isolating the relevant peptides. The glycosylated 

peptides from the in vitro assay were digested with endoproteinase Asp-N. This resulted 

in an N-terminal peptide K*D1 and a C-terminal peptide K*D2 (Figure 13A). The digests 

were fractionated by LC-MS using a C18 column. The de-clustering potential in the MS 

was varied between 25 and 45 V to visualize the neutral loss of 203 Da as an indicator 

for the GalNAc moiety. The UV chromatograms for K* glycosylated with GalNAc T1 and 

GalNAc T3 are shown in Fig.13B and Fig.13C, respectively. The peptide peaks were 

numbered according to the order of appearance in the chromatogram and their 

assignment has been summarized in Table 5. 

 
Figure 13: UV chromatograms of peptide ΔDS2,3-TSR4 glycosylated with GalNAc T1 and T3 

(A) Peptide ΔDS2,3-TSR4 (K*) glycosylated by GalNAc T1 or GalNAc T3 was digested with Asp-N 
resulting in peptide K*D1 and K*D2. Subsequently the digest was measured by LC-MS. (B) 
Chromatogram of ΔDS2,3-TSR4 glycosylated with GalNAc T1. (C) Chromatogram of ΔDS2,3-TSR4 
glycosylated with GalNAc T3. 
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Elution time

min MH+ M2H+ MH+ M2H+

1 12.85 747.6 747.83 K*D2
2 13.4 950.4 951.2 K*D2+GalNAc
3 34.85 1034.4 1035.1 K*D1+GalNAc
4 36.11 831.2 831.93 K*D1 

35.59 881.6 882.46
36.66 881.6 882.46

1 12.34 950.4 951.2 K*D2+GalNAc
2 36.1 831.2 831.93 K*D1 

35.59 881.6 882.46 K*+GalNAc

K*+GalNAc

AssignmentppGalNAc Peak

T1

mass expectedmass detected

T3

 
Table 5: Assignments of the peaks identified in LC-MS 

 

K* glycosylated by GalNAc T1 represents a mixture of two glycoforms. One glycoform is 

modified on Ser-596 in peptide K*D1 and one on Thr-601 in peptide K*D2. Two peptides 

were found to co-elute with peak 4. These peptides represent the unmodified peptide 

K*D1 and the uncleaved peptide K* containing one GalNAc moiety. The results obtained 

for GalNAc T3 indicate that exclusively Thr-601 in peptide K*D2 is modified, since 

unmodified peptide K*D2 or modified peptide K*D1 peptides could not be detected. 

Similar to the results obtained for GalNAc T1, unmodified peptide K*D1 and undigested 

co-eluting glycosylated ΔDS2.3-TSR4 were detected in peak 2. Extraction of the m/z 

value of the undigested material, revealed a minor peak at 35.59 min and the major part 

eluting at 36.66 min for the sample treated with GalNAc T1. Interestingly, this peptide 

eluted predominantly at 36.59 in the sample glycosylated with GalNAc T3, indicating that 

the localization of the modified residue had an influence on the elution behavior of the 

ΔDS2.3-TSR4.  
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Discussion: 

Modification of ΔDS2,3-TSR4 with the disialyl-T-antigen: 

The modification of ΔDS2,3-TSR4 with NeuNAcα2,3Galβ1,3[NeuNAcα2,6]GalNAc-O- 

requires a complex interplay of enzymes located throughout the Golgi apparatus (32). It 

is known that the involved enzymes modify the substrate in a sequential process. The 

first enzyme the GalNAc transferase is of particular importance because it needs to 

recognize the polypeptide chain directly. It is generally assumed that the primary 

sequence is the major factor that defines substrate specificities for GalNAc transferases 

(135). In a recent peptide screen for the requirements of GalNAc T1 and T2, positive 

enhancement factors were defined for hydrophobic residues at -1 and + 3 relative to the 

glycosylated residue (26). In order to study the structural requirements for enzyme 

substrate recognition the Val at position -1 of Thr-601 in ΔDS2,3-TSR4 was replaced by 

Pro, Ala and Lys (Figure 12). Quantification of the glycoforms modified with the disialyl-

T-antigen revealed that the level of modification decreased in the order 

Val>Pro>Ala>Lys. These results suggest that large hydrophobic residues like Val or Pro 

positively influence mucin-type O-glycosylation in ΔDS2,3-TSR4. A Val rather than a Pro 

at position -1 was found to be favored for O-glycosylation. Small uncharged residues like 

Ala at position -1 seem to play already an inhibitory role, since only about 1/5 of the 

glycoforms receive the disialyl-T-antigen. Introduction of a Lys at position -1 blocked the 

modification of Thr-601 with the disialyl-T-antigen completely. This result is consistent 

with earlier reports that charged residues at position -1 and +3 have an inhibitory effect 

on O-glycosylation (136). ΔDS2,3-TSR4 has a positively charged Lys residue at position 

+3. Therefore, it would be interesting to determine whether this residue already exerts a 

negative effect on ΔDS2,3-TSR4 or ΔDS2,3-TSR4 V-P and whether the total amount of 

disialyl-T-antigen could be increased by replacing this residue with a hydrophobic 

residue. 

Using ΔDS2,3-TSR4-derived peptides, it was found that mucin type O-glycosylation can 

be initiated by GalNAc T1 and GalNAc T3 (see Chapter 4.2 or figure 13). GalNAc 

transferase 1 was found to glycosylate both Ser-596 and Thr-601 after 24h (Chapter 4.2 

and table 5). GalNAc transferase 3 was shown to glycosylate solely Thr-601 (Chapter 

4.2, Figure 13 and table 5). This transferase could also be confirmed in vivo in co-
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expression experiments in ChO-K1 cells (Chapter 4.2 figure 8). These results indicate 

that in CHO-K1 cells ΔDS2,3-TSR4 can be efficiently glycosylated by GalNAc T3. Table 

6 shows further peptides glycosylated by GalNAc T3 and where the site had been 

mapped. 

 

Protein Alignment Reference 

ΔDS2,3-TSR4            DASVTAGKG this study 

HIV gp120 protein  RGPGRAFVTIGKIGNMR (132) 

Muc1a            AHGVTSAPDTR 

Erythropoietin           PPDAATAAPLR 
(137) 

Fibronectin           Ac-PFVTHPGYD (28) 

FGF23         PIPRRHTRSAEDDSERDP (35) 
Table 6: Peptides glycosylated by GalNAc T3 
Peptides taken from literature: Only those peptides with mapped sites were considered. The glycosylated 
residue is highlighted in bold. 
 

The peptides glycosylated by GalNAc T3 show some similarities. Apart from the FGF23 

peptides, all selected peptides contain a Val residue at position -1 and small uncharged 

residues at position +1 and +2 are frequently observed. GalNAc T3 has been implicated 

in familial tumoral calcinosis (29) and secretion of FGF23 was shown to be dependent 

on a specific GalNAc T3 site (35). Additionally, GalNAc T3 has been described to be 

over expressed in a variety of epithelial cancers of breast, colon, stomach and pancreas 

origin (138). In breast cancer, GalNAc T3 expression was found to correlate with 

malignancy (139). These results render the identification of ΔDS2,3-TSR4 as a substrate 

for GalNac T3 a valuable tool for further analysis of this enzyme. Interestingly, GalNAc 

T3 cannot be the only polypeptide GalNAc transferase that modifies ΔDS2,3-TSR4 in 

vivo. In this study the disialyl-T-antigen on ΔDS2,3-TSR4 was also identified in COS 7 

cells. The kidney cell line derived from the African green monkey Cercopithecus 

aethiops was described to express no detectable transcript of GalNAc T3 (136). 

Consequently, an additional GalNAc homologue must be present in COS 7 cells that 

glycosylate ΔDS2,3-TSR4. A potential candidate is GalNAc T6. In humans, GalNAc T3 

and GalNAc T6 are highly conserved and show similar specificity but are expressed in 
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different tissues (28). Alternatively, GalNAc T1 which modifies Ser-596 and Thr-601 in 

vitro could mediate O-glycosylation of ΔDS2,3-TSR4 in COS 7 cells.   

In summary, the data provides compelling evidence that ΔDS2,3-TSR4 can be 

glycosylated in vitro, and in vivo in the hamster cell line CHO-K1 by human GalNAc T3. 

Glycosylation seems to be strongly dependent on the Val at position -1, which is also 

present in a variety of other specific GalNAc T substrates. Data from COS 7 cells, 

suggests however that this enzyme is not the only one capable of glycosylating ΔDS2,3-

TSR4.  

 

Potential functions of the disialyl-T-antigen: 

The synthesis of disialyl-T-antigen requires the successive action of four different 

enzymes that modify the substrate. As described, GalNAc T3 is one possible candidate 

out of at least 16 different GalNAc Ts that can initiate O-glycosylation. Subsequently the 

T- antigen is generated by transfer of Gal by the Core 1 β1,3 galactosyltransferase. The 

sialic acid in α2,3 linkage onto Gal can be transferred by ST3Gal-I,-II or IV. The sialic 

acid in α2,6 linkage onto the GalNAc can be transferred by ST6GalNAcI-IV (37). This 

transfer has to occur after the addition of galactose, since the NeuNAc moiety α2,6-

linked to GalNAc is inhibitory for the Core 1 β1,3 galactosyltransferase (32). Thus the 

transfer of the disialyl-T-antigen tetrasaccharide onto ΔDS2,3-TSR4 requires a complex 

interplay of glycosyltransferases in the right order. Interestingly, so far always only the 

disialyl-T-antigen and not other core structures or shorter glycans were observed on 

ΔDS2,3-TSR4. The observation that the disialyl-T-antigen is also generated in cells 

different from HEK 293T indicates a specific function of the glycan.  

As indicated in table 7 the presence of sialyl-T-antigen is observed in various proteins 

ranging from surface receptors to secreted proteins. The function of these proteins is 

often determined by lectin binding. On receptors such a binding can lead to specific 

activation of downstream molecules (see references (25, 140) as an example). On 

secreted proteins like podoplanin the sialic acids on the disialyl-T-antigen are critical for 

the platelet-aggregation activity (24). Plasminogen 2 contains a sialyl-T-antigen on Thr-

345 and on Ser-248. The sialic acids of this protein have been implicated in decreasing 

the catalytic efficiency of tissue-type plasminogen activator and urinary-type 
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plasminogen activator (141). These results demonstrate that especially the negatively 

charged sialic acids can mediate or decrease binding to other proteins.  

So far the disialyl-T-antigen was observed on ΔDS2,3-TSR4. This raises the question 

whether wild type TSR4 also undergoes the same modification under specific cellular 

conditions that affect disulfide formation. Correct disulfide bridge formation is dependent 

amongst other things on availability of O2 and on disulfide isomerases. In order to study 

these effects on glycan expression of wild type TSR4, transiently transfected HEK 293T 

cells were incubated under hypoxic conditions or with the protein disulfide isomerase 

inhibitor bacitracin for 48 h. The protein was purified and the glycosylation pattern was 

analyzed by mass spectrometry as described before. In both cases, glycosylation of wild 

type TSR4 was not changed. These preliminary experiments were hampered by the fact 

that positive controls were missing. Further analysis is required to see if the 

glycosylation could be “induced” on wild type TSR4. 

Another possible function of the glycan on ΔDS2,3-TSR4 would be that the disialyl-T-

antigen stabilizes the module and facilitates secretion. In order to verify that hypothesis 

secretion of the ΔDS2,3-TSR4 mutants was measured. However, it was observed that 

the Val-Lys mutant exhibited increased secretion levels in HEK 293T cells compared to 

ΔDS2,3-TSR4 or the Val-Pro mutant (not shown).These results argue against a 

stabilizing function of the glycan. 
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Protein Reference Proposed Function 

Podoplanin (24) Necessary for platelet 
aggregation 

von Willebrand factor (142) Inverse relation between PNA 
binding and healthy individuals 
compared to liver cirrhosis or von 
Willebrand disease 

Plasminogen 2 (141) Trisaccharide O-glycan located 
between kringle 2 and 3 
proposed to disturb the 
interaction between plasminogen 
and tPAa 

CD45 (protein 
tyrosine 
phosphatase) 

(140) Induction of IL2 production by 
Jacalinb binding 

alpha-dystroglycan (143) Inhibition of lamin-induced AChRc 
clustering by Jacalin  

human milk bile salt-
activated lipase 
(BAL) 

(144) May contribute to adhesive 
activity in the physiological 
function of BAL. 

CD44v6, (25) PNA stimulates colon cancer 

cells by interaction with C-met 
a: Tissue specific plasminogen activator 

b: Lectin from the Jackfruit, Artocarpus integrifolia binds to sialylated T-antigens 

c: Acetylcholine receptor 

Table 7: Proteins modified with sialyl-T-antigen
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5 Identification of an O-glycan in the reespo domain of F-
spondin 

5.1 Introduction 

The axonal guidance molecule F-spondin has been shown to be important for axonal 

guidance. Studies have revealed that the molecule is highly glycosylated on its TSRs 

(61). This study extends the knowledge of glycosylation of this protein. It will be shown 

for the first time that the tetrasaccharide NeuNAcα2,3Galβ1,3[NeuNAc]GalNAc-O is 

linked to a residue located in the N-terminal reelin/spondin (reespo) domain of rat F-

spondin (P35446). The presentation of the results will be preceded by a brief 

introduction about the protein. 

5.1.1 The axonal guidance protein F-spondin 

F-spondin is an extracellular matrix (ECM) protein highly expressed in the floor plate 

during early spinal cord development. It contains 807 amino acids and has an apparent 

molecular weight of 116 kDa in SDS polyacrylamide gels (145) (Figure 14). 

 
 
Figure 14: Graphical illustration of vertebrate F-spondin 
Vertebrate F-spondin consists of an N-terminal reelin domain, a spondin domain six class two 
thrombospondin type 1 repeats (TSRs). Three consecutive proteolytic events (indicated with arrows) 
release the reelin/spondin domain (grey box), TSR1-4 (blue box) and the basic TSRs TSR5 and TSR6 
(yellow boxes). 
 
F-spondin contains two potential N-glycosylation sites, TSR1-5 have been shown to be 

C-mannosylated and TSR1-4 contain the disaccharide Glcβ1,3-Fuc-O-Ser/Thr (61). 

Proteolytic processing has been described to generate a reelin/spondin fragment 

(reespo) of about 60 kDa. Additionally, F-spondin can be cleaved by the serine protease 

plasmin between TSR5 and TSR6 and within TSR5. Upon cleavage by plasmin, F-

spondin loses its capacity to bind to the ECM, which is presumably mediated through 
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basic domains in the second and third antiparallel strand of TSR5 and TSR6. This 

releases a soluble protein containing TSR1-4 (146). F-spondin has been shown to 

promote neurite outgrowth of neuronal subpopulations like commissural neurons (147), 

hippocampal neurons (148) or sensory neurons like dorsal root ganglions (149). 

Depending on cellular context, different domains of F-spondin were shown to promote 

neurite outgrowth. Sensory neuron outgrowth is promoted by the reespo domain. 

Outgrowth of hippocampal neurons were only promoted by TSR1-4. These domains 

were demonstrated to be inhibitory for commissural neurons (150). Therefore, it was 

proposed that F-spondin mediates negative and positive cues depending on cellular 

context and cell (151). In the floor plate, F-spondin is involved in the turning of 

commissural neurons in the basement membrane that underlines the floor plate. The 

TSR1-4 fragment has been shown to bind to Apolipoprotein E receptor (ApoEr2) (152) 

and other members of the low density lipoprotein receptor-related protein family (e.g. 

megalin, LPR4) and to exert repulsive cues on commissural neurons. This leads to a 

squeezing of the axon between floor plate and basement membrane. At the same time, 

the reespo domain, together with the plasmin-released TSR5 and TSR6, bind to the 

ECM of the floor plate and exert attractive cues on the commissural axon (Figure 15) 

(150). 

Comment [m2]: Is it 
apolipoprotein? 
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Adapted from (150) 

Figure 15: Proposed function of F-spondin in the floor plate during embryonic development 
F-spondin is secreted from the floor plate and cleaved between the reelin/spondin domain and by a serine 
protease within TSR5 and between TSR5 and TSR6. (A) The released soluble TSR1-4 binds to receptors 
of the LRP family. TSR5 and TSR6 and the reelin/spondin domain bind the ECM of the basement 
membrane underlining the floor plate (B). Commissural axons are repelled by TSR1-4 and attracted by 
TSR5, TSR6 and the reelin/spondin domain. This leads to a squeezing of the axon between floor plate 
and basement membrane and prevents lateral drifting as soon as the commissural neuron has crossed 
the floor plate. 
 

5.2 Results 
It has been shown that rat F-spondin (P35446) expresses C-mannosyl tryptophans on 

its TSRs and the disaccharide Glcβ1,3-Fucα-O- on serines or threonines (61). 

Preliminary results from the laboratory indicated that F-spondin produced in COS 7 

might be modified with another harbor glycan. Two tryptic peptides at m/z 1304.8 and 

1348 were found to exhibit glycan specific fragments in LC-MS (D.Klein unpublished). 

Edman sequencing of the triply charged peptide at m/z 1304.8 demonstrated that it 

corresponded to Lys-C peptide K9 (153LCEQDPTLDGVTDRPILDCCACGTAK178). 

Residues 153-166 are located in the reelin domain and residues 167-178 represent the 

N-terminus of the spondin domain. The peptide with m/z 1348 was found to correspond 

to the same peptide containing a uncleaved Lys residue at the N-terminus (designated 
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K8-9). The observed mass of peptide K9 (3911.4 Da) and peptide K8-9 (4041 Da) was 

approximately 947 Da higher than expected from the amino acid sequence. This 

together with the observed glycan-specific fragmentation strongly suggested that a 

disialyl-T-antigen was attached to this part of the molecule. In order to examine this, F-

spondin was produced in COS 7 and in HEK 293T cells, purified and digested with 

endoproteinase Lys-C. The relevant peptides (m/z 1305 and 1348) were identified in LC-

MS experiments. In source decay experiments at a de-clustering potential of 120 V 

demonstrated successive losses of m/z 97.2, 54, 98.2, 54.8 and 66.8 (not shown), 

confirming the initial observation that these peptides are glycosylated. Due to 

overlapping losses of the precursor ions at m/z 1305 and m/z 1348, the spectrum 

contained various unidentified peaks. First fragmentations at high CE were performed 

which confirmed the identity of the peptide as K9 and K8-9 respectively (not shown). To 

obtain sequence information on the structure of the glycan, tandem MS experiments at 

relatively low CE (30V) were carried out. As expected we observed a stepwise 

fragmentation of the glycan in a pattern very similar to that of ΔDS2,3-TSR4 (see Fig 3 

Chapter 4.2). The tandem MS fragmentation pattern of the glycan was identical for K9 

and K8-9 peptides from F-spondin expressed in COS 7 and HEK 293T cells (not 

shown). In figure 16 the glycan fragmentation of peptide K9 from COS 7 cells is 

illustrated. The peptide K8-9 exhibited a similar fragmentation pattern (not shown). 
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Abbreviations: dST: Disialyl-T-antigen; mST: Monosialyl-T-antigen; sTn: Sialyl-Tn-antigen; T: T-antigen; 
Tn:Tn-antigen 

Figure 16: Tandem MS at low collision energy of Lys-C peptide K9 of rat F-spondin 
Zoomed ions are indicated with a double-tipped arrow. Peptide-linked carbohydrates are indicated with 
“~”. The triple charged precursor ion at m/z 1305.1 experiences sequential losses of a NeuNAc (loss of 
96.9) resulting in the ion at m/z 1208.2, presumably corresponding to the sialyl-T-antigen. Simultaneous 
losses of a hexose (54.2) or a NeuNAc (97.1), result in a triple charged peptide plus a T-antigen (m/z or 
1111.1) or a sialyl-Tn antigen (m/z 1154). These ions lose another hexose (53.9) or NeuNAc (96.8) 
resulting in a fragment containing the Tn-antigen (m/z 1057.2). Finally, a loss of a HexNAc yields the 
unmodified peptide at m/z 989.9. The only known structure consistent with the spectrum is the structure of 
a disialyl-T-antigen (NeuNAc-Hex-[NeuNAc]-HexNAC-O). In parallel to the peptide-linked glycan, also the 
glycan (fragment ion m/z 948.4) undergoes fragmentation. These ions exhibit an identical fragmentation 
pattern as observed for the triple charged peptide-linked glycans  
 

The fragmentation pattern was completely consistent with the presence of a disialyl-T-

antigen. Unfortunately, the modified amino acid could not be identified, because it was 

not possible to establish conditions under which glycosylated fragments were generated 
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that yield information on the amino acid sequence. In order, to further confirm the sugar 

identity and their conformation, the glycosylated peptides were digested with endo- and 

exo-glycosidases using a very similar approach as described in Chapter 4.2. Peptides 

K9 and K8-9 were isolated from F-spondin produced in COS 7, neutralized and digested 

with neuraminidases. Probably due to the additional positive charge at its N-terminus 

peptide K8-9 was found to display better ionization efficiency in LC-MS than peptide K9. 

Therefore, the data obtained with this peptide are presented here, although peptide K9 

gave very similar results. Digestion with neuraminidase from Clostridium perfringens 

resulted in a peptide with a mass of 3459 Da (Fig. 17A) indicative of removal of both 

sialic acids (Figure 17A). Full-length F-spondin was digested with this neuraminidase in 

the same way, and analyzed by western blot, using the Core 1-specific lectin, PNA. F-

spondin only bound the lectin when the sialic acids had been removed, confirming that 

the presence of the core 1 structure (Galβ1,3-GalNAc-O), which in the untreated peptide 

is masked by two sialic acids (Figure 17B). 

 
 

Figure 17: Digestion of peptide K8-9 with neuraminidase from Clostridium perfrigens and 
immunoblot of F-spondin before and after treatment with neuraminidase. 
(A) K8-9 was purified by HPLC and digested with neuraminidase from Clostridium perfringens. 
Subsequent LC-MS revealed that two sialic acids had been removed and only the peptide backbone and 
a disaccharide remained. (B) The disaccharide was determined to be Galβ1,3-GalNAc-O with the core 1-
specific lectin peanut agglutinin (PNA) on an immunoblot of full-length F-spondin.  
 

Comment [MM3]: Abbreviatio
ns are enough in legends 
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In order to determine the linkage position of the sialic acids peptide K8-9 was digested 

with α2,3 neuraminidase. This yielded a peptide with a mass of 3749.4 Da. This is 

consistent with the peptide K8-9 containing a sialyl-T-antigen (Figure 18) and results 

prove the presence of a Core-1 glycan with α2,3-linked sialic acid on peptide K8-9.  

 

 
 

Figure 18: Digestion of peptide K8-9 Da with α2,3 Neuraminidase 

Peptide K8-9 was digested with a neuraminidase specific for the α2,3 linkage. This yielded a peptide in 
LC-MS, which was found to contain a trisaccharide, confirming the presence of a α2,3-linked sialic in K8-9  
 

In summary, the tandem MS spectra and the digestion with neuraminidases proved the 

existence of the NeuNAcα2,3Galβ1,3[NeuNAc]GalNAc-O- tetrasaccharide on F-spondin 

in the reespo domain. The exact amino acid residue remains to be determined.  
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5.3 Discussion 

These results firmly establish the presence of a disialyl-T-antigen in the reespo domain 

of rat F-spondin. Besides C-mannosylation and O-fucosylation (61), this demonstrates 

another glycosylation on this protein. The glycosylated peptides K9 and K8-9 were 

identified in F-spondin from either COS 7 or HEK 293T cells. The results suggest that 

this modification is due to intrinsic properties of the protein. The glycosylated peptides 

contain three Thr residues (Thr159, Thr164 and Thr176), which could potentially carry the 

tetrasaccharide. In tandem MS experiments, no prominent ion could be identified which 

corresponds to a modified Thr. The glycans of the disialyl-T-antigen in particular the 

sialic acids were demonstrated to be very labile in tandem MS experiments and showed 

facile fragmentation even under low collision energies. At low collision energies, the 

peptide backbone often stays intact and no information about the modified residue can 

be obtained. At higher collision energies only low abundant peptide fragments 

containing a Galβ1,3GalNAc-O or only a GalNAc-O can be observed. In ΔDS2,3-TSR4 

the modified residue was determined in MS3 experiments on diagnostic tandem MS ions 

containing a di-or monosaccharide. The reduction of peptide size by successive 

digestion with endoproteinase Lys-C followed by Asp-N greatly facilitated this 

identification. A similar approach was also tried on the glycosylated Lys-C peptides K9 

and K8-9 from F-spondin. Theoretically an Asp-N digest on these peptides yields the 

tetrapeptides DPT159L, DGVT164 and the nonapeptide DCCACGT176AK. Unfortunately, 

none of these peptides could be identified in static nanospray experiments. The tandem 

MS fragmentation of the Lys-C peptides K9 and K8-9 yielded low abundant fragments 

that would correspond to a modified Thr159 (and a modified Thr176). No ions 

corresponding to a modified Thr164 were observed. The putative glycosylated ions would 

fit to a triple charged peptide connected with the Galβ1,3GalNAc-O disaccharide. Since 

these ions were not examined in MS3 experiments for a loss of a hexose and a HexNAc 

(view chapter 4.2) it is unknown if these ions really represent a modified Thr ion or are 

simply background ions. Further experiments are necessary to prove the site of 

modification. The identification of the modified residue would also give an indication 

about the involved GalNAc T that recognizes the sequence. Based on the specificity of 



Identification of an O-glycan in the reespo domain of F-spondin 

 88 

different GalNAc T on peptides it was postulated that Pro, or Val at position – 1 relative 

to the glycosylated Thr/Ser and a Pro at position + 3 are preferred residues (26, 31). 

Merely, Thr164 fulfills these criteria having a Val (Val163) at position -1 and a Pro at 

position +3 (Pro167). Neither this amino acid nor the remaining two threonines are 

predicted to be modified with a mucin-type O-glycan using the online prediction tool 

NetOGlyc 3.1 (http://www.cbs.dtu.dk/services/NetOGlyc-3.1/). O-glycosylation of F-

spondin is consequently another example of a protein, which is predicted not to be 

glycosylated, yet is experimentally demonstrated to contain a mucin-type O-glycan. This 

illustrates the difficulty of accurately predicting O-glycosylation sites. 

A Blastp of Lys-C peptide K8-9 against a complete database revealed a high 

conservation among different species. In mouse human and bovine F-spondin the 

threonines are conserved. Additionally, the first and the third threonines are present in 

F-spondin from Xenopus laevis and the second and third Thr residues are present in 

chicken and in zebrafish. Interestingly, chicken and zebrafish also have a conserved 

Pro167 at position +3 relative to the second Thr implicating this residue as a possible 

candidate for the glycosylation. Determination of the glycosylation status of F-spondin 

from different species would further answer the question whether not only the residue 

but also the glycosylation is conserved in evolution.  

It has been described before that F-spondin mediates attractive and repulsive cues 

depending on tissue and domains examined. The reespo domain mediates attractive 

cues on commissural neurons in the developing floor plate (150) and in dissociated 

cortical neurospheres (153). In cultures of rat dorsal root ganglions (DRG) from 

embryonic day 14 (E14), addition of F-spondin resulted in neurite outgrowth in a dose 

dependent manner. The outgrowth could be blocked by a spondin specific antibody 

indicating that this effect was mediated by the reespo domain (149). TSRs on the other 

hand, were shown to be attractive (TSR5 and TSR6) as well as repulsive (TSR1-4) to 

commissural neurons and TSRs alone are sufficient to promote outgrowth in 

hippocampal neurons (148). The distinct effects of various domains could result from 

expression of different target receptors. TSR1-4 binds to receptors of the low density 

lipoprotein receptor-related (LRP) protein family (ApoER2, VLDLR, LRP4, megalin), 

which was described to mediate repulsive cues on commissural neurons in the floor 
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plate (150, 152). A possible mechanism would be the immobilization of the TSRs that 

they can be presented to the growth cone of the commissural neuron. The repulsive 

effect mediated by TSR-LRP binding could be mediated by a similar effect than the Slit-

Robo repulsion on commissural neurons. Slit is an evolutionary conserved axon 

guidance molecule first described in Drosophila as a midline axon repellent. It binds to a 

receptor of the Roundabout (Robo) family expressed on commissural neurons before 

and during the midline crossing of the axon. Binding of Slit to the Robo receptor leads to 

repulsion of the commissural neuron. Slit is immobilized by heparan sulfate in the 

extracellular matrix providing a gradient that prevents the commissural axon to cross the 

midline (154). In analogy to the Slit-Robo system TSRs could be immobilized by 

receptors of the LRP family. Binding to a counter receptor expressed on commissural 

neurons could then mediate the repulsive effect of the TSR1-4. In combination with the 

attractive cues mediated by TSR5, TSR6 and the reespo domain this could lead to the 

squeezing of the commissural neuron under the floor plate. A receptor for the reespo 

domain has not been described. A potential candidate could be the myelin-associated 

glycoprotein MAG (Siglec-4a). This assumption is based on several lines of evidence. It 

was shown that this transmembrane receptor shows a high affinity for sialylated O-

glycans including the disialyl-T-antigen. Inhibition experiments showed that MAG could 

be inhibited by sialyl-T-antigen or disialyl-T-antigen in the low micromolar range (155). 

MAG is highly expressed in Schwann cells, which form the myelin sheath of axons. 

Interestingly, it was found that expression of F-spondin was significantly upregulated in 

Schwann cells after axotomy (i.e. severing) of the sciatic nerve in embryonic rats. It is 

noteworthy that F-spondin co-localized in this case with the so-called HNK-1 

carbohydrate (149). This structure has been described to occur on the MAG protein 

(156).  

In summary, it was demonstrated that F-spondin expresses a disialyl-T-antigen on its 

reespo domain. This domain has been implicated in the promotion of outgrowth of 

various neuronal sub-populations. Currently no receptor has been described which 

could bind to this domain. A potential candidate could be the myelin-associated 

glycoprotein MAG that has a high affinity for the disialyl-T-antigen and its temporal as 

well as spatial expression partially overlaps with F-spondin.  
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6 Expression and Purification of TSRs 

 6.1 Introduction 

TSRs are present in a variety of different proteins performing distinct functions. 

Currently, it is unknown how the glycosylations of TSRs are involved in these processes. 

In order to obtain tools to understand the function of glycosylation, TSRs of the rat 

axonal guidance protein F-spondin were selected for purification. These TSRs have 

been described to be glycosylated (61) and provide unique model proteins to study C-

mannosylation and the disaccharide Glcβ1,3Fuc-O-Ser/Thr. TSR4 and TSR1-4 were 

expressed as fusion proteins at high amounts in HEK-EBNA cells. Analysis of 

glycosylation reveled the presence of (C2-Man)Trp and Glcβ1,3Fuc-O-Ser/Thr. The 

same fusion proteins were expressed in the methylotrophic yeast Pichia pastoris. 

However, only the single TSR-containing fusion protein could be successfully purified. 

Although this protein was demonstrated to lack glycosylation on the TSR, indirect 

evidence indicated that the protein is glycosylated in the Fc portion of the fusion protein. 

 

6.2 Results  

6.2.1 Analysis of Thrombospondin-Type 1 repeats 

6.2.1.1 Strategy and cloning 

In order to obtain TSRs with and without glycosylation, the proteins were expressed in 

two different species. HEK-EBNA cells were selected as an expression system capable 

to modify tryptophans with mannose and to synthesize the disaccharide Glcβ1,3Fuc-O-

Ser/Thr. The methyloptrophic yeast Pichia pastoris was selected to express TSRs in its 

non-glycosyated form. As model proteins, the fourth TSR (TSR4) and four successive 

repeats of F-spondin (TSR1-4) were chosen. These proteins were expressed as 

secreted proteins containing a tandem Fc-His6 tag for purification preceded by a tobacco 

Etch Virus cleavage site (TEV). Proteins expressed in mammalian systems contained an 

IgΚ secretion signal and proteins expressed in yeast were secreted using the α-factor 
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prepro-signal present in the yeast expression vector pPicZα. Due to the cloning strategy, 

14 additional amino acids derived from the vector pSecTAgB were added to the N-

terminus (DAAQPARRARRTKL) of the proteins expressed in the mammalian system. 

This resulted in two different N-termini starting with DAA or TKL respectively. In order to 

have comparable proteins these 14 amino acids were also introduced in the TSRs 

expressed in yeast. As an example, the PCR products of TSR1-4Fchis and TSR4Fchis 

are illustrated in Figure 19. These products were ligated into the mammalian vector 

IRES-GFP-pRS5a and into the Pichia pastoris secretion vector pPICZα 

 

 
 

Figure 19: Fusion PCR resulting in TSR1-4fchis and TSR4fchis  
TSRs were amplified from the rat F-spondin cDNA using primers adding a tobacco-etch-virus (TEV) at the 
5’ site. The Fc tag was amplified from human IgG using primers adding an additional His6 sequence at the 
5’ end. PCR products were fused using the strategy of overlap extension as described (157) (A) PCR 
product of TSR1-4Fchis. (B) PCR product of TSR4Fchis. 
 

6.2.1.2 Purification and analysis of mammalian expressed TSRs   

To obtain stably transformed HEK-EBNA cells, expressing TSR-fusion proteins, 

transfected cells were selected using Zeocin. Expression levels were monitored using 

the GFP signal produced from the bicistronic vector IRES-GFP-pRS5a. After two weeks, 

Zeocin resistant cells were sorted by flow cytometry using the GFP fluorescence as 

readout (Figure 20).  
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Figure 20: Cell sorting of HEK EBNA cells expressing TSR4fchis or TSR1-4fchis. 
(A) Sorting of cells stably expressing TSR4fchis. (B) Sorting of cells stably expressing TSR1-4fchis. Only 
cells exhibiting the highest GFP fluorescence (R2) were collected.  
 

The cells were sorted as single or multiple clones and further expanded. The single cell 

clones exhibited higher protein amounts of the target TSR4Fchis and TSR1-4Fchis (not 

shown). TSR4Fchis and TSR1-4Fchis were purified using a tandem purification strategy. 

In the first step, the supernatant containing the secreted proteins was loaded onto a 

NiNTA column, where the TSR-fusion proteins bound through their attached His6-tag. 

Upon elution, relevant fractions were subjected to the second dimension. In the second 

dimension, proteins were purified by binding to the Fc tag using protein G beads. Purity 

was observed on SDS gels and on HPLC (Figure 21). 

A 

B 
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Figure 21: Two step purification approaches for TSR4fchis and TSR1-4fchis produced in 
mammalian cells 
(A) Immobilized metal affinity chromatography (IMAC) of TSR4fchis (B) IMAC of TSR1-4Fchis. (C) UV280 
trace of 5 μg TSR4fchis protein. (D) SDS-PAGE after elution of TSR4Fchis from protein G beads. (E) 
UV280 trace of 5 μg TSR1-4fchis protein. (F) SDS-PAGE after elution of TSR1-4Fchis from protein G. 
 
The tandem purification strategy resulted in high protein amounts of TSR4fchis 

(approximately 11.2 mg/l conditioned medium) and TSR1-4Fchis (approximately 9.2 

mg/l conditioned medium). The HPLC profile revealed only one major peak for 

TSR4fchis and TSR1-4fchis. In SDS polyacrylamide gels some contaminants were 

visible. 

In order to investigate the glycosylation of the TSR-fusion proteins, peptides of 

TSR4fchis and TSR1-4fchis were analyzed by LC-MS. The purified TSR-fusion proteins 

were reduced, cysteines carboxyamidomethlylated and digested by Lys-C. This 
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endoproteinase generated peptides encompassing C-mannosylation as well as the 

disaccharide Glc-Fuc-O. To assign the glycopeptides to the measured peaks, the total 

ion count (TIC) of the LC-MS chromatogram was extracted for the theoretical mass-to-

charge ratio (m/z) of the glycopeptides. C-mannnosylation as well as the disaccharide 

Glc-Fuc-O were considered for peptide maps. Peptides were only regarded as identified 

when theoretical and observed masses differed by less than 1 Da. In total, nine different 

glycoforms per TSR have previously been observed, which result from differential 

glycosylation of the involved tryptophans, serines or threonines.  

Peptide T4+MMFG, for example, represents the fully glycosylated TSR4 having two C-

mannosylation sides at tryptophan 592 and 595 (nomenclature based on mature F-

spondin) and the disaccharide Glc-Fuc-O- on threonine 601. Absence of a glycosylation 

site is indicated with 0. Consequently, the peptide T4+M0FG describes TSR4 plus a C-

mannosyl residue at W-595 and Glc-Fuc-O- at a T-601. This nomenclature was applied 

to all peptide glycoforms observed in the LC-MS runs of TSR1-4fchis and in TSR4fchis. 

From previous experiments, it was known that the elution time of C-mannosylated 

peptides strongly decreases with the number of (C2-Man)Trp residues (80, 83, 89). It 

was found that a peptide containing two (C2-Man)Trp residues eluted approximately 5-9 

minutes earlier than a glycoform having one (C2-Man)-Trp residues. In contrast, a 

glycoform containing the disaccharide Glc-Fuc-O eluted approximately one minute 

earlier than the glycoform containing only the O-fucose moiety. Using this knowledge, 

the glycoforms could be grouped according to elution time and m/z value (Figure 22).  
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Abbreviations: M-Mannose, F-Fucose, G-Glucose, 0-non modified 

Figure 22: UV chromatogram and assigned peptides from TSR4fchis and TSR1-4fchis 
(A) 5 μg TSR4fchis and (B) 5 μg TSR1-4Fchis digested with Lys-C and fractionated by LC-MS. 
Glycopeptides were assigned according to their m/z value and their elution time. Naming was done 
according to the presence of the glycosylated residues in the relevant TSR peptide. The first M represents 
C-mannosylation of the first tryptophan and the second M C-mannosylation of the second tryptophan in 
the consensus sequence WXXW. The disaccharide Glc-Fuc-O in the consensus sequence C1X2–

3S/TC2X2G is indicated by FG. Glycoforms lacking a carbohydrate at a particular position are indicated 
with 0. Further, assigned peptides belonging to TSR4fchis, TSR1-4fchis are indicated with K plus the 
number of appearance in the proteins.   
 
The glycosylation analysis revealed that TSR4fchis and TSR1-4fchis expressed in HEK-

EBNA cells consist of a large set of different glycoforms. C-mannosylation of both 
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tryptophans was detected in the TSR4fchis protein and in the four consecutive TSR 

repeats in TSR1-4fchis. Furthermore, all the examined TSRs carried the disaccharide 

Glc-Fuc-O-Ser/Thr. Compared to the single TSR in TSR4fchis fewer peptide glycoforms 

were observed in the fourth TSR of the TSR1-4 protein. In TSR4fchis the A280 area 

under the glycoforms could be integrated. However, in the peptide map from TSR1-

4fchis, various glycoforms and non-glycosylated Lys-C peptides co-eluted. Therefore, an 

estimation of the degree of modification was not possible in those cases. The results of 

the integration of TSR4fchis are shown in Table 8. Glycoforms are indicated as a 

fraction of the total area. The percentage of the individual modified residues is also 

marked. 

identified 
glycoform

% total of 
K2 area Residue modified Total % of glycosylation

2Man +Fuc-Glc 22.3 (C2-Man-)Trp592 84.6

2Man +Fuc 11.6 (C2-Man-)Trp595 37.4

2Man 3.6 Thr601
96.4

Man+Fuc-Glc 47.2  (O-Fuc-Glc-)Thr601
82.3

Fuc-Glc 12.8

Fuc 2.6  
 

Table 8: Distribution of glycoforms in the TSR4fchis protein 
The area under the peaks in figure 12A was integrated To be able to calculate molar ratios, the areas 
were corrected for the difference in absorbance between (C2-Man)Trp and Trp .The areas of peptides with 
one and two (C2-Man)Trp residues were divided by 1.3 and 1.6, respectively. 
 

The integration revealed that Trp592 (nomenclature according to majored F-spondin) in 

TSR4fchis is almost completely C-mannosylated. Residue Trp595 shows only partial 

modification and Thr601 is modified in almost all of the identified glycoforms, 

predominantly with the disaccharide Glc-Fuc-O.  

In summary, TSRs can be efficiently expressed in high amount as Fchis fusion proteins 

in HEK-EBNA cells. Analysis of the glycosylation demonstrated that the cell line has the 
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capability to modify both tryptophans in the WXXW motif and also possesses POFUT2 

and β3Glc-T activity that synthesize the disaccharide Glcβ1,3-Fuc-O-Ser/Thr. No un-

glycosylated TSR peptide could be identified. Integration of the areas in TSR4fchis 

pointed to almost complete glycosylation of the first tryptophan in the WXXW motif and 

the threonine in the C1X2–3S/TC2X2G consensus sequence. 

 

6.2.1.3 Purification and analysis of TSRs expressed in yeast 

We chose the yeast Pichia pastoris as the expression system for unglycosylated TSRs. 

Although E. coli also lacks the relevant enzymes for glycosylation, expression of TSRs 

in this system is complicated due to the formation of intermolecular disulfide bridges. 

TSR1-4 has not been successfully expressed in E. coli. In order to obtain a system 

having fewer problems with the disulfide bridge formation, TSR-fusion proteins were 

expressed in Pichia pastoris. The yeast was made competent and plasmids for the 

expression of TSR4fchis and TSR1-4fchis were introduced through electroporation. 

After selection on agarose plates containing the antibiotic Zeocin™, resistant clones 

were screened for expression of the transgene by dot blot analysis (not shown). High 

expression clones were cultured in baffled Erlenmeyer flasks. Protein production was 

induced by adding methanol. After culturing for 48 hours in the presence of methanol 

cells were spun and the supernatant was chromatographed over a protein G column. 

Although Zeocin resistant clones were obtained, unfortunately no expression of TSR1-

4fchis was achieved. TSR4fchis, however was successfully expressed and purified with 

a yield of 250 μg purified protein from 1L culture. Analysis of the protein G-purified 

fusion protein TSR4fchis is shown in Fig. 23. For comparison, also the TSR4fchis 

expressed in HEK-EBNA cells is loaded. 
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Figure 23: Expression of TSR4fchis in HEK-EBNA cells and in P. pastoris 

TSR4fchis can be expressed in the methylotrophic yeast P. pastoris. Protein production was induced and 
48h after induction, the supernatant was chromatographed over protein G columns. Lane A shows 
TSR4Fchis isolated from HEK-EBNA cells as a control and lane B shows the protein isolated from P. 
pastoris (2 μg of total protein /lane was loaded). 
 
TSR4fchis from P. pastoris migrated as two major bands at a molecular weight of about 

37 kDa and about 42 kDa. Compared to mammalian TSR4fchis control, the apparent 

molecular weight in SDS-PAGE of the yeast expressed protein was slightly higher. 

Western blot analysis with antibodies against the His6 tag showed bands in this area and 

additional bands at about 50 kDa (not shown). The bands at 37 kDa and 42 kDa were 

excised, digested by Lys-C and analyzed by LC-MS on the 4000 Q trap mass 

spectrometer using a linear gradient of 0-45%B in buffer system 2. This indicated that 

both bands contained TSR4fchis (not shown). In order to verify that the TSR4 lacked all 

glycosylation, the peptide map was searched for peptide K2. This peptide contains all 

potentially glycosylated residues. We only could identify the non-glycosylated peptide 

(1143.2 Da). Its identity was confirmed by CID tandem MS (Figure 24). 
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Figure 24: MSMS spectrum of K2 peptide of TSR4fchis produced in P.pastoris 

Peptide K2 obtained from a Lys-C digest ofTSR4fchis produced in P.pastoris was sequenced by MSMS. 
An almost complete set of b -and -y-ions was obtained showing no indication of glycosylation 
 

Taken together, the data indicate, that TSR4fchis produced in P. pastoris was negative 

for C-mannosylation and modification with the disaccharide Glcβ1,3Fuc-O. However, the 

observation of bands with a higher molecular weight than found in TSR4fchis from 

mammalian cells is an important concern. It may indicate the presence of different forms 

of N-glycans or O-glycans presumably in the Fc portion of the molecule.  
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6.3 Discussion 

6.3.1 C-Mannosylation of TSRs expressed in HEK-EBNA cells 

The HEK-EBNA system has been used for the recombinant expression of various 

proteins. The high titers of recombinant proteins are due to a stably integrated EBNA-1 

gene that drives the episomal replication of vectors containing the oriP origin of 

replication (97). Similar to other cell lines HEK-EBNA can be selected with a suitable 

antibiotic to obtain stable expression of the transgene. In HEK-EBNA cells, the 

transgene is not integrated randomly in the genome, but stays extra-chromosomal (S. 

Geisse personal communication). Consequently, recombinant proteins can be 

expressed at high levels even in stable systems. In this study, HEK-EBNA cells were 

successfully used to express high titers of the recombinant proteins TSR4fchis and 

TSR1-4fchis. These proteins were demonstrated to be C-glycosylated on tryptophans in 

the WXXW motif and to contain the disaccharide Glcβ1,3-Fuc-O-Ser/Thr in the 

consensus sequence C1X2–3S/TC2X2G. However, the glycosylation of both TSR4fchis 

and TSR1-4fchis was heterogeneous. This was mainly caused by partial C-

mannosylation of the Trp residues. The exact reason for this is presently unclear, but 

previous studies have revealed various factors affecting the efficiency of C-

mannosylation. Initially, C-mannosylation was only observed on the first tryptophan of 

the WXXW repeat in RNAse (76, 77, 80). Later, it was shown in the four terminal 

components of complement that also the second tryptophan can be C-mannosylated. 

Moreover, even proteins and peptides lacking a WXXW motif were identified to be C-

mannosylated (80, 81). These findings prompted the suggestion of a secondary C-

mannosylation signal located in the three-dimensional structure of the molecule (81). 

Currently, the structural requirements of this alternative C-mannosylation signal are not 

known. 

 

C-mannosylation has been described to be highly variable. In properdin the tryptophans 

were demonstrated to be modified almost quantitatively (70). In thrombospondin 1, the 

complement factors, and in this study, variable degrees of C-mannosylation between 

TSRs were observed (70, 81). In vitro studies with synthetic peptides have shown that 
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the degree of c-mannosylation is dependent on the amino acid sequence around the Trp 

residues. For example, the peptide Ac-KWAQW-NH2 was only modified to a degree of 

30% and the peptide Ac-WAQWAK-NH2 was C-mannosylated to about 110% compared 

to a control peptide. The peptide Ac-WSEW-NH2 was found to be a substrate showing 

130% modification (62). These results suggest that amino acids surrounding the WXXW 

motif can directly influence the level of modification. Some amino acids inside the 

WXXW motif may decrease or abolish C-glycosylation. This is illustrated in the WMNW 

sequence in β-fibrinogen or in the WFHW sequence in tenacin C. Both proteins have 

been shown to lack C-mannosylation (62). The rate of folding of an individual C-

mannosylated protein could also influence its glycosylation. It was shown that C-

mannosylation is an early event that is likely to happen when the protein has not 

adopted its tertiary structure (80). This is supported by the observation that in pulse 

chase experiments the mannose-binding lectin GNA detects putative C-mannosylated 

cysteine-rich sub-domains of mucin 5A and 5B after five minutes of labeling (84). The 

rate of folding amongst proteins can vary considerably, since it is dependent on various 

factors, like amino acids composition or availability of chaperones or lectins. It is 

possible that for fast-folding proteins sufficient access of protein C-mannosyltransferase 

to its recognition sequence is reduced. Another factor, which might influence the amount 

of C-mannosylation, is the availability of sugar donor Dol-P-Man. In N-glycans it has 

been shown that the amount of N-glycosylation depends on the size of the pool of Dol-

P-Man (158). In a similar way, the availability of sugar donors or responsible enzymes 

could influence the amount of C-mannosylation.  

Only little is known about the function of C-mannosylation on TSRs. Modeling  the C-

mannosyltryptophans into the known crystal structure determined by Tan and 

colleagues suggested that the sugars protrude from the surface of the molecule (102). It 

is conceivable that these moieties interact with other proteins. Single TSR modules can 

be expressed in C-mannosylation deficient systems like in E.coli or P. pastoris. Multiple 

repeats without C-mannosylation could not be expressed. The hexoses could therefore 

play an important role in the correct assembly of multi-TSR-containing proteins.  

In the erythropoietin receptor, a structural function for C-mannosylation had been 

suggested. (87). Conversely, Perez-Vilar and co-workers proposed a crucial role of C-
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mannosylation for secretion of cysteine-rich subdomains (84) (see Chapter 1.4.1). A 

putative role for secretion was also obtained from my own experiments. A TSR4-GFP 

fusion protein was expressed in CHO-K1 wild type cells, in CHOlec15 (deficient in Dol-

P-Man synthase) or in CHOlec35.1 cells (deficient in Dol-P-Man utilization). It was 

observed that TSR4 secretion levels were lower in CHOlec15 and almost absent in 

CHOlec35.1 cells. In CHOlec35.1 cells, accumulation of TSRs was observed inside the 

cells (data not shown). A possible explanation is that absence of C-mannosylation leads 

to a misfolded TSR. Alternatively, the absence of C-mannosylation abolishes a signal for 

an unknown protein required for secretion. Future experiments using CHOlec35.1 and 

CHOlec15 cells and C-mannosylated proteins having point mutations in the WXXW 

repeat could help to define a precise role of this modification on proteins. 

 

6.3.2 Pichia pastoris as an expression system for TSRs 

In order to generate TSRs lacking C-mannosylation and the disaccharide Glc-Fuc-O, the 

methylotrophic yeast Pichia pastoris was used for expression studies. This eukaryotic 

expression system secretes low amounts of endogenous proteins facilitating the 

purification of recombinant secreted proteins (98). Proteins containing a high number of 

disulphide bridges, like for example the snake venom rhodostomin were demonstrated 

to be active and correctly folded in P. pastoris (159). In order to use P. pastoris as an 

expression system, TSR4fchis and TSR1-4fchis were cloned in a vector containing the 

S. cerevisiae α-factor prepro-signal. Induction of the transgene was driven by the AOX1 

promoter. This promoter binds methanol and induces the expression of alcohol oxidase 

1, which allows the yeast to grow exclusively on methanol as a carbon source. 

TSR4fchis was successfully expressed in this system. Mass spectrometric analysis of 

the Lys-C peptide K2 revealed no glycosylation. In total 250 μg/l TSR4fchis was 

obtained from Pichia pastoris. This was achieved by culturing in baffled Erlenmeyer 

flasks. Erlenmeyer cultures of TSR4 in E. coli yield in average 150 μg/l correctly folded 

TSR4 (Chun-I Chen personal communication and (65)). It is not known if the TSR4fchis 

produced in the yeast contains a correctly folded TSR. To check this, circular dichroism 

(CD) analysis would be required. Bacteria and P. pastoris generate comparable final 
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amounts of the TSR4fchis. In E. coli a large amount of expressed protein is lost in 

aggregated TSRs due to formation of inter-molecular disulfide bridges. This problem can 

be overcome by production in large batch cultures. In P. pastoris, protein production in 

shaking flasks is influenced by various factors resulting in a reduction of recombinant 

protein amount. The Mut+ strain of Pichia pastoris used in this study easily becomes 

oxygen deprived in batch cultures. Therefore, the use of controlled bioreactors is 

preferable for heterologous protein expression in this yeast (98). The expressed 

TSR4fchis protein displayed an apparent molecular weight on an SDS polyacrylamide 

gel that was higher than that of the recombinant mammalian homologue. The TSR4fchis 

protein from P. pastoris was identified by MS in various bands, indicating that the 

recombinant protein was potentially differently glycosylated in the Fc portion of the 

moelcule. The observed effect could also result from inefficient processing of the α-

factor prepro-signal. This secretion signal undergoes three consecutive proteolytic 

steps. The pre signal is recognized by the signal peptidase in the ER to translocate the 

nascent protein into the ER lumen. The pro signal is recognized by Kex-2 

endopeptidase cleaving between Arg and Lys in the pro leader sequence. The third 

proteolytic cleavage is performed by Ste13 recognizing Glu-Ala repeats. Particularly the 

third cleavage process can be disturbed by the three-dimensional folding of the protein 

or by the close proximity of Pro residues (160). The expressed TSR4fchis has a Pro 

residue at amino acid five, which could theoretically perturb the efficient cleavage. 

Another factor that is often observed in recombinant proteins is hyperglycosylation. P. 

pastoris is capable to add N-and O-linked glycans onto secreted proteins. O-linked 

glycans in yeast consist of multiple mannoses added to serines or threonines. The 

mannoses are linked in α1,2-linkage and the glycans can be three to five sugar moieties 

in length. Similar to mammalian O-glycosylation, no consensus sequence is known in 

yeast. In P. pastoris, protein O-glycosylation can occur on residues, which are not 

glycosylated when the protein is expressed in mammalian cells. In some cases hyper-O-

glycosylation can account for up to 15% of the total molecular weight of the expressed 

protein (160). The TSR4fchis protein contains 19 threonine and 26 serine residues. O-

glycosylation on yeast expressed TSR4fchis has not been observed in mass 

spectrometry. However, the fact that O-glycosylation was not detected on TSR4fchis 
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does not mean it is non-existent. Since O-glycans are labile in CID tandem MS 

experiments, it is possible that potential O-glycosylation sites have been missed. 

N-glycans are often observed as high mannose-type glycans (Man8-9GlcNAc2-Asn) on 

secreted proteins, which can occur on sequons that are unused in mammalian cells. The 

used fusion construct contains one potential N-glycosylation site in the CH2 domain of 

the Fc tag. PNGase F experiments with mammalian Fc-fusion proteins revealed no 

obvious shift in SDS polyacrylamide gels indicating that no N-glycans are present. 

However, it is possible that in yeast, this site has been used and an N-glycan could have 

been added. 

 

The reason why TSR1-4fchis could not be expressed in P. pastoris is presently unclear. 

Further studies with TSR-containing proteins expressed in P. pastoris are necessary to 

elucidate the underlying reasons. Yeast of the Saccharomycetaceae family lack TSR-

containing proteins (103). It is possible that single TSRs can be efficiently folded in the 

yeast ER. Proteins like TSR1-4fchis with a large number of cysteins (24 in TSR1-4, 7 in 

Fc tag) may exhaust the folding machinery leading to a misfolded protein. All these 

assumptions are made on the basis that the protein was misfolded and therefore 

degraded. Additional analysis on the transcript level would further confirm this 

hypothesis. 

 

6.3.3 Suitability of expressed TSRs for neuronal assays 

The functions of the different TSRs of F-spondin have been examined by using them as 

substratum for cultured neuronal cells (145, 147, 149). To elucidate the precise role of 

the glycosylation of TSRs, we intended to perform similar experiments with fully 

glycosylated and non-glycosylated recombinant TSR-fusion proteins. Whereas the 

former could be easily obtained from a mammalian expression system only TSR4fchis 

lacking glycosylation of the TSR could be isolated from P. pastoris. In that case, 

however, indirect evidence suggests that hyperglycosylation of the fusion protein had 

occurred. Since this could lead to artifacts in cellular assays, it was decided to abort this 

project at this point.  
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7 Outlook and summary 

7.1 Outlook 

The results presented in this thesis raise various questions which will be discussed here: 

 

ΔDS2,3-TSR4 as a model protein 
The study of mucin-type O-glycans is challenging because of the lack of consensus 

sequence, the large number of polypeptide GalNAc transferases and the redundant 

substrate specificities. Enzyme specificity is often determined based on in vitro assays 

using peptides. The ΔDS2,3-TSR4 represents a small protein where the glycosylation 

has been intensively studied. Modification in vivo has been observed with GalNAc T3. 

The available data from the in vitro peptide assay indicates that ΔDS2,3-TSR4 might be 

a limited substrate that is efficiently modified only by a number of GalNAc transferases. 

The large number of GalNAc Ts, however suggests functional redundancy. Currently it 

is not known if redundancy in vivo can also be achieved by up-regulation of a less 

specific enzyme. ΔDS2,3-TSR4 could be used to answer the question if different 

GalNAc transferases could also functionally complement a missing enzyme. It would be 

conceivable to inhibit a GalNAc that modifies ΔDS2,3-TSR4 and observe if over-

expression of another transferase could rescue the modification. The fact that ΔDS2,3-

TSR4 expressed in different cells was found to be modified only with the tetrasaccharide 

allows the detailed study of the involved enzymes. Besides the elucidation of the 

GalNAc T, the question can also be answered which sialyltransferase can add the sialic 

acids in α2,3 and in α2,6 linkage to ΔDS2,3-TSR4. These analysis could help to reveal 

how different glycosyltransferases contribute to the formation of the tetrasaccharide on 

ΔDS2,3-TSR4. 
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F-spondin as a model protein for detection of CDGs 
An increasing number of patients suspected to suffer from a congenital disorder of 

glycosylation has to be grouped as CDG-IIx, because their defects can not be detected 

using the classical CDG marker proteins transferrin or α1-antitrypsin. Therefore, novel 

marker proteins are required which would not only detect defects in N-glycosylation but 

reveal the global impact of glycans on the cell. F-spondin could largely fulfill these 

criteria. F-spondin has two predicted N-glycosylation sites, which require further detailed 

analysis. Preliminary experiments indicate, however, that they contain hybrid and 

complex N-glycans (personal information Chun-I Chen unpublished). Together with the 

identification of the disialyl-T-antigen (this work) and the previously reported C-

mannosylation and the disaccharide Glcβ1,3-Fuc-O-Ser/Thr (61) F-spondin contains at 

least four different types of glycosylation. These glycosylations occur in the ER (N-

glycans, C-mannosylation and Glcβ1,3-Fuc-O-Ser/Thr) but also in the Golgi (disialyl-T-

antigen, N-glycan) and involve a variety of different monosaccharides and sugar donors. 

Whether glycosylation of F-spondin could be used as a novel disease marker for CDGs 

has to be demonstrated experimentally. Therefore, further detailed analysis of F-spondin 

from healthy individuals versus F-spondin from patients is required to validate this 

approach. The glycan analysis of F-spondin could be based on mass spectrometric 

methods similar to those applied in this dissertation, which would provide sensitive and 

also quantitative information about the glycosylation pattern.  
 
Function of glycosylation on TSRs of F-spondin 
The TSRs of F-spondin have been implicated to exert positive as well as negative cues 

on various neuronal subpopulations. Currently it is not known how glycosylation is 

involved in these processes. Recently it was shown that soluble TSR1-4 fused to a Myc-

tag can be immobilized on the surface of COS cells by co-expression with ApoeR. The 

TSRs were detected with the 9E10 anti-myc antibody and visualized by microscopy 

(150). In order to assess a function of the glycan this binding could be competed with 

glycosylated peptides. (C2-Man-)Trp containing peptides can either by synthesized 

chemically (161) or peptides containing C-mannosylation as well as Glcβ1,3-Fuc-O-

Ser/Thr can be purified by HPLC using TSR4cfhis and TSR1-4fchis from HEK-EBNA 
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cells. As controls, peptides obtained from peptide synthesis could be used. In order to 

extend the study for function of the glycans on thrombospondin-type 1 repeats, single 

TSR repeats could be expressed in mammalian cells and in a system incapable to 

perform the required glycosylation (preferably bacteria). These proteins could be purified 

and plated as substratum for cells. To minimize the experimental error the glycosylated 

and unglycosylated protein could be plated in stripes next to each other using a specific 

silicon matrix. This matrix was applied in a neuronal outgrowth assay where it was 

shown that neurons extend their neurites only on substrate that promotes outgrowth 

(162). In a similar experiment the effect of glycosylation on TSRs on neuronal outgrowth 

could be studied by plating a mammalian TSR next to the homologous protein 

expressed in bacteria. This assay could be used to study the effect of TSR glycosylation 

on neurite outgrowth of various neuronal subpopulations. 
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7.2 Summary 

In the course of mutagenesis of the forth thrombospondin type 1 repeat (TSR4) of the 

axonal guidance protein F-spondin, one mutant designated ΔDS2,3-TSR4 missing two 

out of three cystein bridges was found to lack the disaccharide Glcβ1,3-Fuc-O. This 

protein was demonstrated to be secreted as efficiently as wild type TSR4. In gel filtration 

experiments unusual features of folding could not be observed. Analysis of the protein 

by mass spectrometry indicated that the module had acquired an additional 

glycosylation. Using a combination of tandem CID MS and digestion with glycosidases, 

it was demonstrated that the tetrasaccharide corresponds to a biantennary 

NeuNAcα2,3Galβ1,3[NeuNAcα2,6]GalNAc-O- glycan. This carbohydrate structure is 

also known as the disialyl-T-antigen. The glycan could be demonstrated to be attached 

exclusively to the same residue (Thr-601) that carries the disaccharide Glcβ1,3-Fuc-O in 

wild type TSR4. ΔDS2,3-TSR4 is consequently an experimental proof that one residue 

can be modified with two different types of glycosylation. Since the disaccharide 

Glcβ1,3-Fuc-O is transferred in the Endoplasmatic Reticulum and the disialyl-T-antigen 

is added in the Golgi, ΔDS2,3-TSR4 has undergone a glycosylation shift involving 

different cellular organelles. In order to identify the enzymes that recognized the module 

and modify the Thr-601 residue ΔDS2,3-TSR4-derived peptides were screened in an in 

vitro assay. It was found that GalNAc T1 and GalNAc T3 are capable to add GalNAc 

moieties. GalNAc T1 was found to glycosylate as well Thr-601 and Ser-596. GalNAc T3 

was identified to be specific for Thr-601, thus mimicking the situation observed in vivo. 

The role of this transferase could be further confirmed in vivo by co-expression 

experiments of GalNAc T3 together with ΔDS2,3-TSR4 in CHO-K1 cells. These 

experiments resulted in significant increase of the disialyl-T-antigen on glycopeptides of 

ΔDS2,3-TSR4. The results further demonstrated that after initiation of mucin-type O-

glycosylation by a glycosyltransferase such as GalNAc T3 the carbohydrate is extended 

to the tetrasaccharide of a disialyl-T-antigen type in various cell types. Interestingly the 

same O-glycan was also identified in the rat axonal guidance protein F-spondin. F-

spondin had previously been described to be C-mannosylated on tryptophans and to 

contain the disaccharide Glcβ1,3Fuc-O-Ser/Thr. Using low energy CID tandem MS in 
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combination with glycosidases and specific sugar-binding lectins, it was possible to map 

the disialyl-T-antigen to a peptide located in the N-terminal reelin/spondin domain. F-

spondin is therefore the first protein known to contain C-mannosylation, the disaccharide 

Glcβ1,3Fuc-O-Ser/Thr, N-glycosylation and also the tetrasacchride NeuNAcα2,3Galβ1,3 

[NeuNAcα2,6]GalNAc-O-. 

In order to study the glycosylation of thrombospondin type 1 repeats of F-spondin in 

more detail, the fourth (TSR4) and four consecutive thrombospondin type 1 repeats 

(TSR1-4) were expressed in the mammalian cell line HEK-EBNA. In order to facilitate 

purification, the proteins were expressed as fusion proteins designated TSR4fchis and 

TSR1-4fchis. The proteins were purified in high amounts and C-mannosylation as well 

as the modification with the disaccharide Glcβ1,3-Fuc-O were examined by LC-MS. It 

was found that the TSR4fchis and TSR1-4fchis proteins carried C-mannosylation on 

their tryptophans and Glcβ1,3-Fuc-O on their serines or threonines in the consensus 

sequence C1X2–3S/TC2X2G. Quantification of the amount of glycosylation on the 

TSR4fchis protein revealed that the first tryptophan in the WXXW motif is almost 

quantitatively C-mannosylated, the second tryptophan shows partial C-mannosylation 

and the threonine in the consensus sequence C1X2–3S/TC2X2G was predominantly 

modified with the disaccharide Glcβ1,3-Fuc-O. In order to have non-glycosylated TSRs, 

TSR4fchis and TSR1-4fchis were expressed in the methylotrophic yeast Pichia pastoris. 

TSR4fchis could be successfully expressed and purified in amounts comparable to 

correctly folded TSR4 expressed in E. coli. It was found that this host is negative for C-

mannosylation and O-fucosylation. However, indirect evidence indicated, that TSR4fchis 

expressed in yeast had undergone hyperglycosylation of the fusion protein. Therefore a 

direct comparison of TSR4fchis from HEK-EBNA and TSR4fchis from P. pastoris was 

not possible. 
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