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1. Summary 

 

The introduction of this thesis concentrates on the cellular energy supplier and an 

important instrument in mediating cell death, mitochondrion. First, an overview is given to 

explain the biochemical properties of this organelle. Then, the role of mitochondria in cell death 

is discussed, followed by an article about the mitochondrial toxicity of drugs. As an example of 

the mitochondrial toxicity of a drug, an article about statins and their effects on L6 myocytes and 

rat muscle mitochondria conclude the introduction part of this thesis.  

The aim of the first project was to compare hepatocellular toxicity and pharmacological 

activity of amiodarone (B2-O-Et-N-diethyl) and eight amiodarone derivatives, including three 

amiodarone metabolites (B2-O-Et-NH-ethyl, B2-O-Et-NH2 and B2-O-Et-OH). In addition, five 

amiodarone analogues were investigated (B2-O-Et-N-dimethyl, B2-O-Et-N-dipropyl, B2-O-

Acetate, B2-O-Et-propionamide and B2-O-Et). The studies were accomplished using frehly 

isolated rat liver mitochondria, primary rat hepatocytes and the hepatoma cell line HepG2. The 

hepatocellular toxicity of amiodarone and most of the derivatives was confirmed. Amiodarone 

and most analogues showed a dose-dependent toxicity on the respiratory chain and on β-

oxidation of the mitochondria. The ROS concentration in hepatocytes increased time-

dependently and apoptotic/necrotic cell populations were identified using flow cytometry and 

annexinV/propidiumiodide staining. The effect of the three least toxic amiodarone analogues on 

the hERG channel was compared to amiodarone. In conclusion, three amiodarone analogues 

(B2-O-Et-N-dipropyl, B2-O-Acetate and B2-O-Et) showed a lower hepatocellular toxicity profile 

than amiodarone and two of these analogues (B2-O-Et-N-dipropyl and B2-O-Acetate) retained 

hERG channel interaction capacity, suggesting that amiodarone analogues with class III 

antiarrhythmic activity and lower hepatic toxicity could be developed. 

 For the second project in this thesis, we synthesized three more amiodarone analogues 

(B2-O-Ethylacetate, B2-O-Et-N-pyrrolidine and B2-O-Et-N-piperidine) and, together with 

amiodarone and its metabolites (B2-O-Et-NH-ethyl and B2-O-Et-NH2) and some derivatives 

from the first study (B2-O-Et-N-dipropyl, B2-O-Et-propionamide, B2-O-Acetate, B2-O-Et-OH), 

characterized their hepatic toxicity together with the pulmonary toxicity. The interaction with the 

hERG channel was determined for all the derivatives. Compared to amiodarone, which showed 

only a weak cytotoxicity, the desethylated metabolites, B2-O-Acetate, B2-O-Et-OH and B2-O-Et-

N-pyrrolidine showed a similar or higher cytotoxicity. On the other hand, B2-O-Et-N-dipropyl, 

B2-O-Ethylacetate, B2-O-Et, B2-O-Et-propionamide and B2-O-Et-N-piperidine were less toxic. 

Cytotoxicity was associated with a drop in the mitochondrial membrane potential and therefore 

most probably mitochondrial in origin. Substances carrying a nitrogen in the side chain 

(amiodarone, B2-O-Et-NH-ethyl, B2-O-Et-NH2, B2-O-Et-N-dipropyl, B2-O-Et-propionamide, B2-
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O-Et-N-pyrrolidine, B2-O-Et-N-piperidine) showed a much higher affinity to the hERG channel 

(range 0.22-12.2µmol/L) than those without a nitrogen in this position (B2-O-Acetate, B2-O-

Ethylacetate, B2-O-Et-OH) (range 74-216µmol/L). Neither cytotoxicity, nor the interaction with 

the hERG channel, was associated with the lipophilicity of the compounds. It was concluded, 

that the physicochemical properties of amiodarone and its analogues were not as important for 

the potassium channel interaction and cytotoxicity as the chemical structure of the compounds.  

 In the third project of this thesis, the relationship between an unexpected toxicity of a 

drug and an underlying mitochondrial defect was studied using human dermal fibroblasts. 

These cells were derived from patients suffering from a mitochondrial defect. Simvastatin and 

benzbromarone are known to cause an unexpected adverse reaction (myotoxicity or 

hepatotoxicity, respectively). Both dermal fibroblasts with a mitochondrial defect and fibroblasts 

from healthy patients were treated with different concentrations of benzbromarone and 

simvastatin, and the overall toxicity was evaluated after different time points. There were no 

differences in the toxicity pattern between the cell lines, and the toxicity assayed was relatively 

scarce in all experiments. It was concluded that the the test system was not suitable for these 

studies and that they should be repeated with other cell lines of hepatic or muscle origin.   
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2. Abbreviations 

 

ADP   adenosine diphosphate 

Apaf-1   apoptotic protease activating factor 1 

ATP   adenosine triphosphate 

CHO    chinese hamster ovary  

Cpt1   carnitine palmitoyltransferase 1 

DCFH-DA   2,7-dichlorofluorescin diacetate  

DMSO   dimethylsulfoxide  

FACS   fluorescence activated cell scanning  

ETC   electron transport chain 

FAO   fatty acid disorder 

FAS   Fas ligand 

hERG    human ether-a-go-go related gene  

HMG-CoA   Hydroxymethyl glutaryl coenzyme A 

HPLC    high performance liquid chromatography  

IDR   Idiosyncratic drug reaction 

JC-1   5,5’,6,6,’-tetraethylbenzimidazolylcarbocyanidde iodide  

LDH    lactate dehydrogenase  

MnSOD   manganese superoxide dismutase  

MOMP   mitochondrial outer membrane permeabilization 

mPT   mitochondrial permeability transition 

mtDNA  mitochondrial DNA 

MTT   3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide 

NADH   nicotinamide adenine dinucleotide 

NMR    nuclear magnetic resonance  

PBS   phosphate buffered saline 

Pi   phosphate 

PI    propidiumiodide  

∆Ψm    mitochondrial membrane potential 

RCR    respiratory control ratio  

ROS    reactive oxygen species 

SDS   sodium dodecyl sulphate 

VLCAC  very long chain acyl-CoA dehydrogenase 

VDAC   voltage-dependent anion channel
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3. Introduction 

3.1. The mitochondrion  

3.1.1. Mitochondria as cellular organelles 

Mitochondria are membrane-enclosed organelles that are found in eukaryotic cells. They 

differ in structure and function in different cell types [1] sharing features common for all 

mitochondria (Figure 1). Most cells contain hundreds of mitochondria and some of them with 

high energetic requirements (e.g. heart and muscle cells) even more. Mitochondria have an 

outer membrane and an inner membrane. Between the two membranes there is the 

intermembraneous space and inside the mitochondria the matrix. The outer membrane 

encloses the entire organelle and consists of numerous integral proteins (porins, voltage-

dependent anion channels, VDAC) and phospholipids as well as enzymes taking part to the 

metabolism of several substances (e.g. epinephrine, tryptophan) and to the transportation of the 

fatty acids into the mitochondrial matrix. The inner mitochondrial membrane has an inward fold 

called cristae and acts as a permeability barrier for a variety of compounds. While the outer 

membrane is relatively permeable for solutes and small drugs, the inner membrane is tight 

containing cardiolipin instead of cholesterol, which is present in the outer membrane. The inner 

transmembrane potential (∆Ψm) is negative (-180mV) and is being maintained by pumping 

protons into the intermembraneous space. There is a so-called respiratory chain on the inner 

surface of the inner membrane [2, 3]. Hundreds of enzymes are located in the mitochondrial 

matrix, including the enzymes involved in β-oxidation of fatty acids as well as mitochondrial 

ribosomes, tRNA and mitochondrial DNA (mtDNA). Mitochondria provide cells with energy in 

form of ATP by oxidising the glycolysis products NADH and FADH2 in the respiratory chain. 

Mitochondria store calcium taking part to the cellular calcium homeostasis. Depending on the 

cell type, mitochondria also play an important role in cellular proliferation, regulation of the 

cellular redox state, heme and steroid synthesis, glutamate-mediated neuronal injury and cell 

death [4]. 
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Figure 1. (A) Mitochondrion as viewed by electron tomography. The outer membrane is darker as the 

inner membrane that is shown in a lighter shade. (B) The Baffle model (top) was the accepted model for 

four decades. Recent investigations showed, though, that the inner mitochondrial membrane is composed 

of two or more topologically continuous but distinct domains (bottom). The inner boundary membrane is 

closely juxtaposed to the outer membrane around the circumference and the cristae is seen as tubular or 

lamellar structures connected to the inner boundary membrane by narrow tubular structures named 

cristae junctions or pediculi crista [4]. 

 

3.1.2. ATP production by the mitochondria 

The Krebs cycle located in the mitochondrial matrix is connected to the inner 

mitochondrial membrane by succinate dehydrogenase. This cycle produces NADH and FADH2 

by oxidising acetyl-CoA. NADH and FADH2 donor electrons for the electron transport chain 

(ETC), that consists of protein complexes [NADH:ubiquinone oxidoreductase (complex I), 

succinate dehydrogenase (complex II) cytocrome c reductase (complex III) and cytochrome c 
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oxidase (complex IV)] located in the inner mitochondrial membrane. ETC proteins transfer the 

electrons to oxygen (O2). The incremental energy produced in this reaction is used to pump 

protons (H+) into to the intermembraneous space. This initiates an electrochemical gradient 

across the inner membrane. The protons return to the matrix via the ATP synthase and are 

used to synthesize ATP from ADP and phosphate (Pi) [5, 6]. At certain conditions, protons may 

leak across the inner membrane resulting in the conversion of energy into heat. This process is 

called uncoupling and is mediated by a proton channel called thermogenin. The discovery of 

uncoupling proteins participating in thermogenesis and thermoregulation in newborns and 

hibernating animals has recently been gaining interest [7, 8].  

 

3.1.3. Mitochondrial DNA 

The very small, circular and double-stranded mitochondrial DNA is distinct from the 

nuclear DNA. It encodes for 13 specific subunits of complexes I, III, IV and V and 22 tRNAs and 

2 rRNAs. The rest of the subunits of complexes I, III, IV and V and all subunits of complex II are 

encoded by the nuclear DNA. Thus, one finds in mitochondria distinct processes such as DNA 

replication and repair, transcription and protein synthesis in the matrix. All the required enzymes 

and factors have to be imported from the cytosol. These facts make the ETC vulnerable for the 

changes in the mitochondrial as well as in the nuclear genome [9].  

 

3.2. Mitochondria and cell death 

Cellular homeostasis is interfered by numerous toxicants, which can result in distraction 

of the structural and functional integrity of the cell. This toxicity may be followed by one or more 

of the three critical cellular biochemical disorders, namely ATP depletion, ROS overproduction 

and/or the rise of the intracellular Ca2+. Since mitochondria play a pivotal role in regulating these 

functions, it makes them an important instrument mediating cell death, namely apoptosis or 

necrosis. To maintain the cellular homeostasis, each mitosis is compensated by one event of a 

cellular death called apoptosis. Most likely, each cell in our body is able to undergo apoptosis, 

and the disturbance in its regulation can cause severe malformations or illnesses. Besides 

apoptosis, our cells can undergo another form of cell death, necrosis, which is considered an 

accidental type of death. It is caused by severe and acute cell injury, and results in the death of 

groups of cells within a tissue [10]. Morphologically, apoptosis causes the cells to shrink and to 

form so called apoptotic bodies, whereas cells undergoing necrotic cell death swell (together 

with mitochondria), and are finally destroyed, when the cell membrane ruptures [11].  

An apoptotic cell death may be induced or it is preprogrammed into the cell (e.g. during 

cell development) and results in the death of the individual cells. In is strictly regulated and is 

controlled by a family of cysteine proteases known as caspases. The surface exposure of 
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phosphatidylserine residues (normally on the inner membrane leaflet) allows the recognition 

and elimination of apoptotic cells by their healthy neighbours, before the membrane breaks up 

and cytosol or organelles spill into the intercellular space and trigger inflammatory reactions  

[12]. If apoptosis is massive or phagocytic cells are lacking, apoptosis can eventually turn into 

necrosis [13]. Apoptosis involves the regulated action of catabolic enzymes (proteases and 

nucleases), while the plasma membrane remains mostly intact [14]. It is commonly 

accompanied by a characteristic change of nuclear morphology (chromatin condensation, 

pyknosis, karyorrhexis) and of chromatin biochemistry (step-wise DNA fragmentation). In 

contrast to apoptosis, necrosis does not involve DNA and protein degradation [15]. 

Apoptotic cell death can be accomplished via two different pathways, namely the death 

receptor pathway or the mitochondrial pathway. Death receptors are e.g. the tumour necrosis 

factor receptor-1 (TNF-R1) or the Fas (also known as Apo-1 or CD95) receptor with its ligand 

[16, 17]. Proapoptotic and antiapoptotic members of the Bcl-2 family regulate the mitochondrial 

pathway leading to apoptosis. Following TNF-R1 and Fas activation in mammalian cells a 

balance between Bax, Bid, Bak or Bad and anti-apoptotic members of the Bcl-2 family is 

established. The end result of either pathway is caspase activation and the cleavage of specific 

cellular substrates, resulting in the morphologic and biochemical changes associated with the 

apoptotic phenotype [16, 17]. The mitochondrial pathway is activated by cellular events 

including oxidative stress or cytotoxic substances (Figure 2).  

 

 

Figure 2. Mitochondrial pathway in triggering apoptosis. Pro-apoptotic Bcl-2 family members translocate 

from the cytosol to mitochondria by cellular stress. Cytochrome c is released, that catalyzes the 

oligomerization of Apaf-1 (apoptotic protease activating factor 1). Apaf-1 recruits and promotes the 

activation of procaspase-9. This, in turn, activates procaspase-3, leading to apoptosis  [16].  
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There are at least three general mechanisms known to cause apoptosis or necrosis 

activated by mitochondria including (a) the disruption of electron transportation, oxidative 

phosphorylation and ATP production, (b) release of proteins triggering activation of caspase 

family proteases and (c) alteration of cellular reduction-oxidation (redox) potential [18].  

Many toxic drugs cause either apoptosis or necrosis, depending on their dose used. 

What determines, whether the injured cell undergoes apoptosis or necrosis? There are 

suggestions, that the availability of ATP is critical in determining apoptosis, whereas the 

depletion of ATP leads to necrotic cell death [19]. Toxic substances may induce apoptosis at 

low concentrations or early after exposure whereas necrosis can occur later at higher 

concentrations. The induction of both forms of cell death by cytotoxic agents may involve similar 

metabolic disturbances and above all, mitochondrial permeability transition (mPT) [10], whereas 

blockers of mPT (e.g. cyclosporine) prevent both apoptosis and necrosis. Whether apoptosis or 

necrosis occurs, depends on the number of mitochondria affected, as illustrated in Figure 3. 

 

 
 

Figure 3. Cell death regulation by mitochondria. The decisive factor in triggering apoptosis or 

necrosis or in cell survival is the number of mitochondria involved.  
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3.2.1. ROS production by mitochondria 

Mitochondria are the major source of reactive oxygen species (ROS), especially 

intracellular superoxide [20]. ROS are able to oxidize DNA leading to impaired transcription and 

translation with a subsequent protein deformation or absent protein formation. Furthermore, 

they may peroxidise membrane lipids causing membrane disruption or deformity and impair 

DNA repair mechanism by transforming DNA bases. A small percentage of the electrons 

escape from the ETC and interact with oxygen to form superoxide anions (O2
.-) that can react 

with NO or form hydroxyl radicals [18, 21, 22]. Normally, mitochondria possesses antioxidant 

systems preventing the oxidative imbalance in the pro-oxidant/antioxidant ratio, as an example 

the manganese superoxide dismutase (MnSOD), that scavenges the superoxide produced by 

the electron transport system in mitochondria [23]. mtDNA is extremely sensitive to oxidative 

damage owing to its proximity to the inner membrane, the absence of protective histones, and 

incomplete repair mechanisms in mitochondria [24]. Mutations in mtDNA leads to gradual 

increases in abnormal ETC proteins and to mitochondrial dysfunction, and the damage to part 

of the electron transport machinery causes more oxidant stress creating a vicious circle [9].  

 

3.2.2. Increased mitochondrial membrane permeability 

As already discussed in chapter 3.2., a loss in the integrity of the outer mitochondrial 

membrane can trigger the release of certain proteins mediating the cell death. There are at least 

two ways to provoke it, depending on the cell type: First of all, the Bcl-2 family-regulated 

mitochondrial outer membrane permeabilization (MOMP), and secondly, the Ca2+- and/or ROS-

regulated mPT. The MOMP is induced by the activation of Bax and Bak locating in the outer 

mitochondrial membrane. These form pores through which the death proteins can escape. In 

this case, the inner transmembrane potential (∆Ψm) is retained. MOMP is lethal because it 

results in the release of caspase-activating molecules and caspase-independent death 

effectors, metabolic failure in the mitochondria, or both [25]. Cytochrome c is part of the electron 

transport chain and its release impaires ATP production and increases formation of ROS. 

Cytochrome c also acts as an initiator in the pathway leading to apoptosis, among other 

substances. Together with the adapter protein Apaf-1 and ATP, cytochrome c activates caspase 

9 and thus induces apoptosis.  

The mPT is caused by a multi-protein complex that expands both the inner and the outer 

membrane forming a pore that allows the exchange of ions and other molecules smaller than 

1500 Da. The ∆Ψm is not retained as a consequence of the osmotic swelling of the 

mitochondria, the rupturing of the outer mitochondrial membrane and the release of the death 

proteins. Finally, the ATP production collapses and, if enough mitochondria are affected, cell 

dies. There is evidence that the mPT leads to necrosis, but not to cytochrome c release and 



Mitochondrial toxicity of drugs  Introduction 
 
 

 16 

apoptosis. However, also the signaling crosstalk between the mPT and Bcl-2 family proteins 

occurs indicating somekind of a role for the mPT in apoptosis [26].  
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3.3.1. Abstract 

Mitochondria are important targets of drug toxicity. A variety of drugs has been shown to affect 

the electron transport chain, coupling of oxidative phosphorylation, β-oxidation or other 

mitochondrial functions. Such damaging events may lead to the opening of a large pore across 

the mitochondrial membranes - the membrane permeability transition pore - eventually leading 

to apoptosis or necrosis of cells, depending on the cellular ATP content. Such drugs may 

therefore lead to organ damage, particularly in the liver, kidney, heart or skeletal muscle. 

 

Keywords: Mitochondria, respiratory chain, β-oxidation, apoptosis, necrosis, drug toxicity 
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3.3.2. Introduction 

During the last years, mitochondrial damage has been recognized as one of the most 

important causes for adverse reactions of many drugs and toxins. The fact that mitochondria 

represent a target of drug toxicity is not surprising, since these organelles have a central 

function in cellular energy production, contain multiple metabolic pathways and are key players 

in the initiation of apoptosis and/or necrosis of a cell [27]. The mitochondrial respiratory chain, 

which is an important target of drug toxicity, is illustrated in Figure 1. 

As illustrated in Table 1, drugs can affect mitochondria by a variety of mechanisms. One 

well defined mechanism is inhibition of the electron flow across the electron transport chain 

(enzyme complexes I-IV, see Figure 1). The possibilities, of how these substances can impair 

electron flow within the electron transport chain, include direct inhibition of a protein subunit of 

one (or more) of the enzyme complexes or acceptance of electrons flowing across the electron 

transport chain instead of the natural acceptors ubiquinone or cytochrome c. 

 Uncoupling of oxidative phosphorylation is another well-defined mechanism for 

mitochondrial toxicity. Uncoupling means that the protons, shifted from the mitochondrial matrix 

to the space between inner and outer membrane, do not pass across the F0F1ATPase (complex 

V) back to the mitochondrial matrix, but instead go directly across the inner mitochondrial 

membrane. The result is production of heat, but not of energy in the form of ATP. Typical 

examples of this mechanism include weak acids and weak bases [27], which can be protonated 

in the inter-membrane space and carry protons across the inner mitochondrial membrane. 

 Several drugs have been shown to inhibit hepatic fatty acid metabolism, in particular 

mitochondrial β-oxidation of fatty acids. Such drugs can either inhibit the activation of fatty acids 

or decrease the activity of one of the enzymes engaged in the β-oxidation process [28]. 

Inhibition of mitochondrial β-oxidation is usually accompanied by the cellular accumulation of 

fat, which can be visualized by specific staining of histological sections. 
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Figure 1. Mitochondrial respiratory chain. NADH and FADH produced by β-oxidation and other metabolic 

pathways within the mitochondrial matrix are metabolized by the electron transport chain consisting of the 

enzyme complexes I, II, III and IV. Ubiquinol (UQ) and cytochrome c (cyt c) transport electrons between 

complexes I or II and III, and between complexes III and IV, respectively. Complexes I, III and IV can shift 

protons from the mitochondrial matrix into the inter-membrane space, building up a proton gradient. This 

gradient is necessary to produce ATP from ADP by complex V or F0F1ATPase. β-Oxidation also produces 

acetyl-CoA which can be used for the formation of ketone bodies, or is degraded to CO2 and H2O by the 

Krebs cycle. Further explanations are given in the text. 

 

 The final mechanism is damage to the mitochondrial DNA by oxidation or by inhibition of 

DNA synthesis [29]. Mitochondrial DNA is more susceptible to oxidative damage than nuclear 

DNA due to absence of histones and efficient repair mechanisms in mitochondria, and also due 

to the proximity of mitochondrial DNA to the oxygen radicals producing respiratory chain. A 

class of drugs known to potentially impair the synthesis of mtDNA are nucleoside analogues 

used in the treatment of HIV or hepatitis B infections. 

 Opening of a mega-channel across the mitochondrial membranes (membrane 

permeability transition pore), leading to collapse of the membrane potential and swelling of the 

mitochondria, is another potential mechanism for drug toxicity. Opening of this mega-channel 

can lead to mitochondrial loss of cytochrome c, initiating the apoptosis cascade and eventually 

ending in cell death [30]. 
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Table 1 

 

Mitochondrial toxicity of drugs: principle mechanisms and typical examples. 

 

• Inhibition of the electron transport chain 

Amiodarone, anthraline, benzbromarone, benzarone, buprenorphine, flutamide, MPP+, 

oxmetidine, perhexiline 

 

• Uncoupling of oxidative phosphorylation 

Amiodarone, benzbromarone, benzarone, bupivacaine, buprenorphine, cerivastatin, 

etidocaine, tacrine 

 

• Mitochondrial permeability transition 

Benzbromarone, benzarone, salicylate, valproate 

 

• Inhibition of mitochondrial fatty acid metabolism 

Amiodarone, asparaginase, benzbromarone, benzarone buprenorphine, female sex 

hormones, NSAIDs, salicylate, tetracycline, valproate 

 

• Oxidation of mitochondrial DNA 

Alcohol 

 

• Inhibition of mitochondrial DNA synthesis 

Nucleoside analogues, e.g. zidovudine, fialuridine 
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3.3.3. Own studies in this field 

Valproate hepatotoxicity 

 Valproate, a medium-chain branched fatty acid, is used frequently in the treatment of 

patients with different forms of epilepsy. Very occasionally, the intake of valproate can be 

associated with fulminant hepatic failure and death [31]. The most probable mechanism of 

valproate-associated hepatotoxicity is the production of toxic metabolites such as 4-ene-

valproate, a toxin inhibiting mitochondrial β-oxidation [32] (see Figure 2 for valproate 

metabolism). Other mechanisms may contribute, in particular depletion of the hepatocellular 

free coenzyme A pool, and the formation of hepatotoxic acyl-CoAs [33]. We have investigated 

the CoA and carnitine metabolites in a liver from a patient with valproate-associated fulminant 

liver failure, and could demonstrate the expected decrease in the hepatic coenzyme A content 

and alterations in the hepatic carnitine pool [33].  

 The hallmark of liver histology in such patients is microvesicular steatosis, reflecting 

inhibition of mitochondrial β-oxidation [31, 33]. Since not all patients treated with valproate 

develop hepatotoxicity, accumulation of 4-ene-valproate alone is not enough to explain the 

hepatotoxicity associated with this drug. In the search for additional risk factors, we have 

investigated the siblings of the index patients with fulminant liver failure reported above [34]. 

The sister of the index patient had died from respiratory failure due to a mitochondrial disorder. 

In addition, her brother and mother also had clinical signs of a mitochondrial disorder, which 

could not be defined in more detail. Accordingly, in a muscle biopsy of the sister of the index 

patient, complexes I and IV of the respiratory chain showed a reduced activity, but the 

mitochondrial genome did not show mutations. The presence of a mitochondrial disorder, which 

may be sub-clinical, can therefore be regarded as a risk factor for the development of fulminant 

liver failure in patients treated with valproate. We are currently investigating this possibility in 

animal models with impaired hepatic mitochondrial β-oxidation. 

 In addition, treatment with valproate is associated with the formation of a variety of 

acylcarnitines and with a decreased carnitine plasma concentration [35]. Since we have 

developed a method for the determination of carnitine and acylcarnitines in plasma by LC/MS 

[36], we intend to study the acylcarnitines accumulating in the plasma of patients treated with 

valproate. Furthermore, it will be interesting to investigate the interaction between these 

acylcarnitines and carnitine on the level of OCTN2, the carnitine transporter responsible for 

proximal tubular reabsorption of carnitine [37]. We have stably expressed OCTN2 in different 

cell lines, and are going to use this system to study the transport of carnitine in the presence of 

the acylcarnitines detected in the plasma and urine of patients treated with valproate. Since our 

LC/MS method also allows the determination of butyrobetaine, the direct precursor of carnitine, 

we will be able to study the effect of valproate on renal clearance of butyrobetaine. 
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Figure 2.Metabolism of valproate. Valproate is a medium-chain, branched fatty acid, which is primarily 

metabolized by glucuronidation and conjugation with carnitine or glycine. In addition, valproate can be 

degraded by β-oxidation, which produces odd-chain fatty acids such as propionate and pentanoate. It can 

also be metabolized to a ω-hydroxy derivative, which can be converted to 4-ene-valproate. These fatty 

acid derivatives and/or their corresponding CoA-esters can inhibit mitochondrial functions, in particular 

mitochondrial β-oxidation. 

 

Amiodarone 

 Amiodarone is a class III antiarrhythmic used widely to treat cardiac arrhythmias particularly 

in patients with coronary heart disease. In patients and animals, amiodarone can be associated 

with hepatocellular injury, which may be due to liver steatosis [38]. In mice and rats, it has been 

shown that amiodarone uncouples oxidative phosphorylation and inhibits β-oxidation of liver 

mitochondria [39, 40]. 

 Regarding amiodarone, we were interested to find out the structure which is finally 

responsible for its mitochondrial toxicity, and whether it is possible to obtain a pharmacologically 

active amiodarone derivative (block of hERG channels) without mitochondrial toxicity. In a first 

study, we confirmed amiodarone’s mitochondrial toxicity in rats, and could demonstrate the 

importance of the configuration of the diethylaminoethoxy side chain for its mitochondrial toxicity 

[41]. These data allowed us to synthesize additional derivatives with alterations in the side 

chain, rendering it more hydrophilic (see Figure 3). Indeed, we were able to detect two 

derivatives, which were lacking almost any mitochondrial toxicity. These derivatives contain only 

an ethoxy or an acetoxy group in the side chain attached to the benzoyl moiety (see Figure 3, 

unpublished results). The composition of this side chain appears therefore to be critical for 

mitochondrial toxicity of amiodarone derivatives. Further studies will have to show, whether 

these derivatives can block the hERG channels, and whether their activity to toxicity profile is 

favorable as compared to amiodarone. 
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Benzbromarone and bromarone 

 Benzbromarone and bromarone are amiodarone derivatives (see Figure 3). For both 

substances, hepatotoxicity has been shown, in some patients with a fatal outcome [42]. 

Because of the structural similarity with amiodarone, we hypothesized that the toxicity of these 

two substances may also have a mitochondrial mechanism. 

 We could indeed show that both drugs decrease the mitochondrial membrane potential, 

inhibit the activity of the respiratory chain and uncouple oxidative phosphorylation. In addition, 

both drugs impaired mitochondrial β-oxidation [43]. 

 Since inhibition of the electron transport chain can be associated with increased formation 

of oxygen radicals, we speculated that benzbromarone and benzarone could open the 

membrane permeability transition pore, leading to dissipation of the mitochondrial membrane 

potential and possibly initiating apoptosis. Indeed, we could demonstrate increased reactive 

oxygen species (ROS) formation in the presence of these substances, and opening of the 

membrane permeability transition pore; as well as mitochondrial swelling and cellular spillage of 

cytochrome c due to rupture of the outer mitochondrial membrane. This initiated either 

apoptosis or necrosis, depending on the cellular ATP content [43]. 

 
Figure 3. Structure of amiodarone and amiodarone derivatives investigated. Amiodarone, benzbromarone 

and benzarone are 3-benzoyl-benzofuran derivatives. All of these three substances are mitochondrial 

toxins, mainly affecting the respiratory chain and β-oxidation. While amiodarone carries a 

diethylaminoethoxy side chain at the benzoyl moiety, this side chain is lacking for benzarone and 

benzbromarone. Alterations of this side chain, e.g. replacement by an ethoxy or acetoxy group, is 

reducing the mitochondrial toxicity of amiodarone. 
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3.3.4. Conclusions 

Many drugs can affect mitochondrial function and can, thereby, lead to cellular and/or 

organ damage. Important mechanisms include inhibition of the respiratory chain, uncoupling of 

oxidative phosphorylation and inhibition of mitochondrial β-oxidation. These primary effects can 

secondarily lead to a decrease in the mitochondrial ATP content, increased production of ROS 

and opening of the mitochondrial membrane permeability transition pore, with consecutive 

mitochondrial swelling, rupture of the outer membrane and cellular spillage of cytochrome c. 

These events can end in apoptosis or necrosis of the affected cells, depending on the cellular 

ATP content. 
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3.4.1. Summary 

We investigated mitochondrial toxicity of four lipophilic (cerivastatin, fluvastatin, atorvastatin, 

simvastatin) and one hydrophilic statin (pravastatin). In L6 cells (rat skeletal muscle cell line), 

the four lipophilic statins (100µmol/L) induced death in 27 to 49% of the cells. Pravastatin was 

not toxic up to 1mmol/L. Cerivastatin, fluvastatin and atorvastatin (100µmol/L) decreased the 

mitochondrial membrane potential by 49 to 65%, whereas simvastatin and pravastatin were less 

toxic. In isolated rat skeletal muscle mitochondria, all statins, except pravastatin, decreased 

glutamate-driven state 3 respiration and respiratory control ratio. Beta-oxidation was decreased 

by 88 to 96% in the presence of 100µmol/L of the lipophilic statins, but only at higher 

concentrations by pravastatin. Mitochondrial swelling, cytochrome c release and DNA 

fragmentation was induced in L6 cells by the four lipophilic statins, but not by pravastatin. 

Lipophilic statins impair the function of skeletal muscle mitochondria, whereas the hydrophilic 

pravastatin is significantly less toxic. 
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3.4.2. Introduction 

Statins (3-hydroxy-3-methyl-glutaryl coenzyme A reductase inhibitors, HMG-Co A 

reductase inhibitors) impair hepatocellular cholesterol production by inhibiting the synthesis of 

mevalonate, a critical intermediary product in the cholesterol pathway. They are generally well 

tolerated, but can produce a variety of skeletal muscle-associated, dose-dependent adverse 

reactions, ranging from muscle pain to frank rhabdomyolysis. Rhabdomyolysis is a serious 

adverse reaction of these drugs for both patients and the pharmaceutical industry, as evidenced 

by numerous case reports and case series [44, 45] and the withdrawal from the market of 

cerivastatin in August 2001 [46] . 

 The frequency of rhabdomyolysis is low, with a reported incidence of approximately 

1:10,000 patient years [47] and a death rate 0.15 per million prescriptions [46, 48]. The fact that 

the frequency of myotoxicity observed for cerivastatin was higher than for the other statins 

raised the question of whether there are differences in the myotoxic potential of the statins and 

whether such differences are related to their physicochemical properties. As shown in Table 1, 

differences in the physicochemical properties of statins can result in a variable kinetic behavior, 

including bioavailability, tissue distribution and metabolism, which may affect their toxic potential 

on skeletal muscle [49]. For example, inhibition of cytochrome P450 (CYP) isozymes can lead 

to increased bioavailability of lipophilic statins [50], thereby elevating the potential for 

myotoxicity. However, since myotoxicity has been reported with all statins on the market, the 

variability in their pharmacokinetic properties does not adequately explain the susceptibility to 

develop statin-induced myotoxicity.  

 Little is known regarding the mechanisms by which statins produce skeletal muscle 

injury. HMG-CoA reductase catalyses the formation of mevalonate from HMG-CoA. Mevalonate 

is an important precursor not only of cholesterol but also of ubiquinone, dolichols and other 

isoprenoids [51]. All of these compounds are involved in various essential cell functions. A 

deficit in them may therefore adversely affect myocytes, rendering them vulnerable to myotoxic 

events [51, 52]. This hypothesis was strengthened by the observation that the myotoxicity of 

statins on myocytes in vitro could be decreased by the addition of mevalonate [53, 54]. 

Ubiquinone, whose biosynthesis is reduced in the presence of statins [51, 52], is utilized by 

mitochondria for the transport of electrons between enzyme complexes of the electron transport 

chain. Reduced levels of ubiquinone are present in specific forms of mitochondrial myopathies 

and are considered to result in impaired mitochondrial electron transport chain function and 

decreased adenosine triphosphate (ATP) synthesis [55, 56]. Regarding statins and 

mitochondria, light microscopic changes observed in muscle biopsies of patients with statin-

associated myopathy were similar to the findings in patients with mitochondrial myopathies [57-

60]. In a patient with rhabdomyolysis associated with simvastatin, MELAS syndrome manifested 

in the recovery phase, suggesting that so far unnoticed mitochondrial diseases may represent 
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risk factors for statin-associated myopathy [61]. Furthermore, in a recent study, Vladutiu et al. 

described biochemical and/or genetic abnormalities of proteins or genes involved in skeletal 

muscle energy metabolism in more than 50% of patients with statin-associated myopathy [62]. 

Recent in vitro investigations indicate that simvastatin interferes with mitochondrial calcium 

homeostasis and inhibits complex I of the electron transport chain [63]. 

On the basis of these reports, we hypothesized that statins could act as mitochondrial 

toxins and that the patients with an underlying mitochondrial disease could react preferentially 

with myopathy. Since the data about toxicity of statins on mitochondria are still rare, we decided 

to investigate the effects of several statins on isolated rat skeletal muscle mitochondria and on 

L6 cells, a rat skeletal muscle cell line. 

 

Table 1 

Physiochemical properties, pharmakokinetic parameters and metabolism of the statins studied. [48, 52] 

 

Statin Lipophi-

licity 

Hepatic 

extraction [%] 

Bioavaila-

bility [%] 

Protein 

binding [%] 

Volume of 

distribution 

(L) 

Metabolism Renal/ 

fecal 

elimina

tion 

[%] 

Cerivastatin high < 40 60 99 21 1Cyp3A4/2C8 30 / 70 

Fluvastatin high > 68 6 98 30 Cyp2C9/3A4 6 / 90 

Atorvastatin high > 70 12 80 381 Cyp3A4 2 / 70 

Simvastatin high ~ 80 5 95 2nk Cyp3A4 13 / 58 

Pravastatin low 44-66 18 50 35 Conjugation 20 / 71 
1CYP = cytochrome P450, 2nk = not known 

 

3.4.3. Materials and Methods 

3.4.3.1. Materials 

Fluvastatin was a gift from Novartis Pharma (Basel, Switzerland), simvastatin from 

Merck Sharp & Dohme (Rahaway, NJ, USA), cerivastatin from Bayer (Zürich, Switzerland) and 

pravastatin from Bristol-Myers Squibb (Sankyo, Japan). Atorvastatin was provided by Prof J. 

Drewe (University Hospital Basel, Switzerland). Simvastatin lactone was converted to the 

corresponding acid as described previously. [64] JC-1 was obtained from Alexis Biochemicals 

(Lausen, Switzerland) and [1-14C]palmitic acid from Amersham (Dübendorf, Switzerland). FAS 

ligand was prepared as described previously [65]. 

Fetal calf serum, all supplements and the culture medium were from Gibco (Paisley, 

UK). The 96-well plates were purchased from Becton Dickinson (Franklin Lakes, NJ, USA) and 

the 8-chamber slides from Nalge Nunc (Rochester, NY, USA). The VybrantTM Apoptosis Assay 
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Kit #2 was purchased from Molecular probes (Eugene, OR, USA). All other chemicals used 

were of best quality available and purchased from Sigma–Aldrich (Schnelldorf, Germany).  

 

3.4.3.2. Animals 

Male Sprague Dawley rats (Charles River, Les Onins, France) were used for all 

experiments. They were fed ad libitum, hold on a 12-hour dark and light cycle and weighed 

before their use. The study protocol had been accepted by the local Animal Ethics Committee. 

 

3.4.3.3. Cells 

L6 cell lines (rat skeletal muscle myoblasts) were obtained from LGC Promochem 

(Wesel, Germany). The cell line was cultured in Dulbecco’s Modified Eagle’s Medium (Gibco 

61965026; with 4mmol/L GlutaMAX®, 4.5g/L glucose and sodium bicarbonate) supplemented 

with 10% heat inactivated fetal calf serum, 1mmol/L sodium pyruvate and 5µL/mL penicillin-

streptomycin. Culture conditions were 5 % CO2 and 95 % air atmosphere at 37°C. 

 

3.4.3.4. Isolation of rat skeletal muscle mitochondria 

At the time of killing, the rat weight averaged 389g. The animals were first treated with 

carbon dioxide and then killed by decapitation. The skeletal muscle of the hind legs (mean 

19.0g) was removed, freed from fat and connective tissue, minced with scissors and 

homogenized according to Kerner and Hoppel [66]. From this homogenate, skeletal muscle 

mitochondria were isolated according to Palmer et al. [67]. 

The mitochondrial protein content was determined using the biuret method with bovine serum 

albumin (BSA) as a standard [68]. 

 

3.4.3.5. In vitro cytotoxicity assays 

Cell injury was assessed by the determination of the activity of lactate dehydrogenase (LDH) 

in the supernatant of statin-treated as compared to LDH activity in the supernatant of lysed cells 

(Triton X-100 0.8%) [65]. LDH activity was analyzed as described by Vassault [69]. Different 

concentrations of the compounds investigated and 100mmol/L mevalonate (only to selected 

incubations, see Results) were added to the cell cultures in a 96-well-plate for 24 hours before 

the supernatants were harvested and analyzed. Control incubations were treated with the 

vehicle used to dissolve the substances investigated. 
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3.4.3.6. Mitochondrial membrane potential (∆Ψm) 

Cells were detached from the cell culture flasks by adding 10mmol/L ethylenediamine-

tetraacetic acid (EDTA) in phosphate buffered saline pH 7.4 (PBS). After filtration, cells were 

adjusted to a density of 0.5 x 106 cells/mL and incubated in complete medium in the dark. 

Before incubation, test substances, JC-1 (4µg/mL) and 100µmol/L mevalonate (only to selected 

incubations, see Results) were added. Flow cytometry was performed after an incubation time 

of 10min using a FACS Calibur flow cytometer (Becton Dickinson, San José, CA, USA). 

Changes in ∆Ψm could be monitored by measuring the JC-1 fluorescence using FL-1 and FL-2. 

FL denotes the measured fluorescence intensity in the respective channel (FL-1 = 530 ± 15nm, 

FL-2 = 585 ± 21nm). Dinitrophenol (an uncoupler) and benzbromarone (depolarizes the 

mitochondrial membrane potential [65]) served as controls. 

 

3.4.3.7. Oxygen consumption 

Oxygen consumption was monitored polarographically using a 1mL chamber equipped with 

a Clark-type oxygen electrode (Yellow Springs Instruments, Yellow Springs, OH, USA) at 30°C 

as described previously [70]. The final concentration of L-glutamate was 20mmol/L.  

Oxygen consumption by intact mitochondria: The respiratory control ratio (RCR) was calculated 

according to Estabrook [71]. The RCR represents the ratio between the rate of oxygen 

consumption in the presence of a substrate and ADP (state 3) and the rate after complete 

conversion of ADP to ATP (state 4).  

The test compounds were added to the mitochondrial incubations before the addition of the 

respective substrate. Control experiments were carried out in the presence of the solvent (1% 

DMSO) containing no inhibitor. 

Oxygen consumption of L6 muscle cells: 1 x 106 cells were treated with oligomycin (final 

concentration 5µg/mL) in order to inhibit F1F0-ATPase. After 2 minutes, test compounds were 

added to the incubation chamber and the oxygen consumption was determined. Control 

experiments were carried out with solvent (1% DMSO). 

 

3.4.3.8. Activity of NADH-oxidase 

The activity of NADH-oxidase was determined at 30°C using freeze-thawed mitochondria as 

described originally by Blair et al. [72] with the modifications described earlier [73]. 

 

3.4.3.9. In vitro mitochondrial β-oxidation and carnitine palmitoyltransferase (CPT) activity 

The β-oxidation of [1-14C] palmitic acid by skeletal muscle mitochondria was assessed 

according to Sherratt et al. [74]. The incubation vials, which contained 500µg mitochondrial 
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protein in 900µl incubation solution, were closed with a rubber stopper and incubated for 15min 

at 30°C. A scoop containing a filter paper soaked with 90µl of 0.1mol/L KOH was fixed at the 

rubber stopper and was used to trap the volatile 14CO2. 

CPT activity was measured by the formation of palmitoyl-[3H]-carnitine from palmitoyl-CoA 

and [3H]-L-carnitine [75], a reaction mainly reflecting activity of CPT1. Palmitoylcarnitine was 

extracted with 1.4mL of water-saturated 1-butanol, which was washed with 600µL butanol-

saturated water [76] and quantified by liquid scintillation counting. 

 

3.4.3.10. Activities of mitochondrial β-oxidation enzymes 

All enzyme activities were determined using spectrophotometric assays at 37°C. Freeze-

thawed mitochondria were treated 1:1 with 5% cholic acid in order to disrupt the mitochondrial 

membranes. The solution was then diluted one hundred times with 50mmol/L potassium 

phosphate buffer (pH 7.4). Acyl-CoA dehydrogenase was determined according to Hoppel et al. 

[70], using palmitoyl-CoA as a substrate. Beta-hydroxy-acyl-CoA dehydrogenase was 

determined in the reverse direction according to Brdiczka et al. using acetoacetyl-CoA as 

substrate [77]. Beta-ketothiolase was determined using acetoacetyl-CoA as a substrate 

according to Hoppel et al. [70]. 

 

3.4.3.11. Mitochondrial swelling 

Mitochondrial swelling was monitored by measuring the decrease in light scattering at 

540nm using a SpectraMAX 250 plate reader (Paul Bucher Analytik und Biotechnologie, Basel, 

Switzerland). The decrease in light scattering has been shown to correlate closely with the 

percentage of the mitochondrial population undergoing permeability transition [78]. Freshly 

isolated mitochondria were suspended in isotonic swelling buffer (pH 7.3; 150mmol/L KCl, 

20mmol/L MOPS, 10mmol/L Tris(hydroxymethyl)-aminomethan (TRIS), 2mmol/L nitrilotriacetic 

acid and 2µmol/L calcium ionophore A23187) and exposed to test compounds at room 

temperature. Swelling was calculated from the slope between 60 and 2000 sec of exposure. 

 

3.4.3.12. Cytochrome c immunocytochemistry 

For immunocytochemistry, cells were grown in an 8 chamber-slide for 24 hours at 37°C and 

then treated with the test compounds for 24 hours. Cytochrome c was visualized by 

immunocytochemistry as described previously [65]. 
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3.4.3.13. Cellular ATP content 

Rat myoblasts (500'000 L6 cells/well) were transferred into a 12-well plate and treated for 24 

hours with test compounds. Following treatment, cells were collected and the ATP content 

measured as described previously [65]. ATP concentrations were calculated using an ATP 

standard curve.  

 

3.4.3.14. Determination of apoptosis  

Both assays were performed using L6 muscle cells cultured on poly-D-lysine coated 

(0.1mg/mL, 30min) cell culture dishes.  

Hoechst 33342 nuclear staining: A confluent cell layer was treated for 24h with test compounds, 

then incubated for 30 minutes at room temperature with Hoechst 33342 dye (50µmol/L in PBS) 

and visualized by fluorescence microscopy (Olympus IX 50, Hamburg, Germany).  

Annexin V and propidium iodide (PPI) staining: An in situ apoptosis detection kit was used for 

Annexin V binding and propidium iodide staining (VybrantTM Apoptosis Assay Kit #2). After a 

24h incubation with the test compounds, cells were stained with 25µL Annexin V-Alexa Fluor® 

488 and 2µL PPI (final concentration: 1.5µg/L). After 15 minutes of incubation at room 

temperature, samples were analyzed by flow cytometry, using a FACS Calibur flow cytometer 

(Becton Dickinson, San José, USA).  

 

3.4.4. Statistical analysis 

Data are presented as mean ± standard error of the mean (SEM). For statistical comparisons, 

data of groups were compared by analysis of variance (ANOVA). The level of significance was 

p ≤ 0.05. If ANOVA revealed significant differences, comparisons between the control and the 

other incubations were performed by Dunnett’s post test procedure. A t-test (unpaired, two-

tailed) was performed if only two groups were analyzed.  

 

3.4.5. Results 

3.4.5.1. In vitro cytotoxicity 

Cytotoxicity was investigated by treating L6 cells with various concentrations of the different 

statins for 24 hours. As shown in Figure 1, 100µmol/L cerivastatin, fluvastatin, atorvastatin or 

simvastatin showed significant toxicity. In contrast, pravastatin did not cause any cell damage 

up to 1mmol/L. Statin-associated cytotoxicity could not be prevented by the addition of 

100µmol/L mevalonate to the incubations. Since lipophilic statins were toxic to muscle cells, 

further experiments were performed to find out the mechanisms for cytotoxicity.  
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Figure 1 

Cytotoxicity of the test compounds. Cerivastatin, fluvastatin, atorvastatin and simvastatin caused a 

concentration-dependent release of LDH from L6 cells into the cell culture media. In contrast, the cells 

were not destroyed by pravastatin up to 1mmol/L. Data are expressed as the percentage of total LDH 

activity released into the cytoplasm and are presented as mean ± SEM of at least three individual 

experiments. *p<0.05 vs. control, **p<0.01 vs. control. 

 

3.4.5.2. Mitochondrial membrane potential 

Since statin-induced myopathy has been shown to be associated with mitochondrial dysfunction 

[57, 58], we first focused on mitochondria. In a first step, we measured the mitochondrial 

membrane potential, since this potential is critical for myocyte survival [79] and its dissipation 

can be associated with induction of apoptosis [80]. As shown in Figure 2, at a concentration of 

100µmol/L, 35% of the cells showed a dissipated mitochondrial membrane potential in the 

presence of cerivastatin, and 51%, 20% or 26% in the presence of fluvastatin, atorvastatin or 

simvastatin, respectively. The dissipation of the mitochondrial membrane potential could not be 

prevented by the addition of 100µmol/L mevalonate to the incubations (data not shown). 
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Figure 2 

Assessment of the mitochondrial membrane potential. After labelling the cells with JC-1, mitochondrial 

depolarization could be visualized by a shift of the fluorescence emission from green to red. In the upper 

left quadrant, cells with polarized mitochondria are located (panel A; DMSO 1%), whereas cells with 

dissipated potential are found in the upper or lower right panels (panel B, C or D; fluvastatin 10µmol/L, 

100µmol/L or 1000µmol/L, respectively). In panel E, the counts retrieved in the upper left quadrant are 

given as the percentage of total counts (defined as 100%). Data are given as mean ± SEM of at least 

three individual experiments. *p<0.05 vs. control, **p<0.01 vs. control. 

 

 

(A) (B) 

(C) (D) 
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3.4.5.3. Mitochondrial respiration 

In order to further specify the mitochondrial defects, we assessed the toxicity of the statins 

on oxidative metabolism of isolated rat skeletal muscle mitochondria. In the presence of L-

glutamate as a substrate, cerivastatin, fluvastatin, atorvastatin and simvastatin induced a 

progressive depression of the RCR, which reflects the activity of the electron transport chain 

and the tightness of the coupling of oxidative phosphorylation (see Table 2). The concentrations 

associated with a 50% decrease in the RCR were: 57µmol/L for cerivastatin, 72µmol/L for 

fluvastatin, 113µmol/L for atorvastatin and 78µmol/L for simvastatin. In contrast, pravastatin did 

not significantly affect the RCR up to 400µmol/L. 

 

Table 2  

Effects of cerivastatin, fluvastatin, atorvastatin, simvastatin and pravastatin on oxidative metabolism 

of L-glutamate by isolated rat skeletal muscle mitochondria. See method section for experimental details. 

Mean ± SEM of at least 3 experiments using different mitochondrial preparations. 
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 State 3 State 4  RCR 

Control (no inhibitor)  233 ± 21  66 ± 14 3.7 ± 0.8 

    

Cerivastatin (µmol/L)    

2  256 ± 23  69 ± 10 4.0 ± 0.6 

5  240 ± 31  69  ± 6 3.5 ± 0.4 

25  289 ± 35  88 ± 10 3.4 ± 0.5 

50  274 ± 35 137 ± 15* 2.0 ± 0.0 

100  187 ± 19 187 ± 19** 1.0 ± 0.0** 

    

Fluvastatin (µmol/L)    

5  241 ± 15  63 ± 7 3.9± 0.2 

25  224 ± 8  42 ± 21 3.5 ± 0.3 

50  266 ± 24   65 ± 6 2.3 ± 0.4 

100  192 ± 41  126 ± 28* 1.7 ± 0.5* 

200 31 ± 17**  116 ± 11* 1.0 ± 0.0** 

    

Atorvastatin (µmol/L)    

5  171 ± 28  49 ± 3 3.4 ± 0.3 

25  173 ± 20  56 ± 1  3.1 ± 0.3 

50  161 ± 45  45 ± 9 3.5 ± 0.6 

100  149 ± 6*  71 ± 11 2.2 ± 0.3* 

200 45 ± 5**  45 ± 5 1.0 ± 0.0** 

 

 

   

Simvastatin (µmol/L)    

5  200 ± 32  56 ± 6 3.0 ± 0.3 

25  213 ± 56  74 ± 16 2.8 ± 0.4 

50  157 ± 41  86 ± 18 1.9 ± 0.5* 

100  123 ± 15*  80 ± 13 1.7 ± 0.5* 

200 83 ± 9*  83 ± 9 1.0 ± 0.0** 

    

Pravastatin (µmol/L)    

50  272 ± 25  92 ± 10 3.0 ± 0.4 

100  338 ± 41  95 ± 28 2.9 ± 0.5 

200  271 ± 36  82 ± 5 3.4 ± 0.5 

300  247 ± 41  90± 12 2.7 ± 0.1 

400  278 ± 73  88 ± 10 3.1 ± 0.5 

    

*p < 0.05 vs. control; ** p < 0.01 vs. control 



Mitochondrial toxicity of drugs  Introduction 
 
 

 38 

 

While the depression of the RCR by fluvastatin, atorvastatin and simvastatin was mainly due 

to inhibition of state 3 respiration (inhibition of the electron transport chain), for cerivastatin, the 

decrease was mostly due to acceleration of state 4, suggesting uncoupling. We therefore 

determined oxygen consumption by L6 cells in the presence of oligomycin, an inhibitor of 

F1F0ATPase (Figure 3). Under these conditions, only cerivastatin showed an increase in state 4 

respiration, demonstrating that cerivastatin uncouples oxidative phosphorylation. 

 

 

 
Figure 3 

Uncoupling effect of statins. Uncoupling was determined by assessing the effect of statins on state 4 

respiration in the presence of L-glutamate and oligomycin using L6 cells. In coupled mitochondria, 

blocking of the F1F0-ATPase by oligomycin results in a restricted electron transport and oxygen 

consumption similar to state 4. If a test compound works as an uncoupler, oxygen consumption 

increases, in spite of inhibited phosphorylation (panel A). Of the tested statins, only cerivatstatin worked 

as an uncoupler, whereas the other statins did not increase oxygen consumption. Dinitrophenol and 

benzbromarone served as positive controls. *p<0.05 vs. control, **p<0.01 vs. control. 
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In order to exclude the possibility that the observed lack of toxicity of pravastatin is due to its 

hydrophilicity, which could impair membrane permeation, the activity of the mitochondrial NADH 

oxidase (reflecting activities of complex I, III and IV) was measured using broken mitochondria. 

Also in the absence of membrane barriers, pravastatin up to 1mmol/L did not impair the activity 

of the electron transport chain, whereas the lipophilic statins revealed significant inhibitory 

effects at ≥ 100µmol/L (results not shown). 

 

3.4.5.4. Fatty acid metabolism 

For the assessment of β-oxidation by skeletal muscle mitochondria, both the formation of 

acid soluble products and CO2 were determined. [74] As shown in panel A of Figure 4, 

cerivastatin (100µmol/L), fluvastatin, atorvastatin and simvastatin (each 200µmol/L) inhibited 

mitochondrial β-oxidation between 82 and 96%. For pravastatin, a significant inhibition of β-

oxidation was found at (300µmol/L). The corresponding IC50 were: 14µmol/L for cerivastatin, 

9.0µmol/L for fluvastatin, 29µmol/L for atorvastatin, 75µmol/L for simvastatin and 300µmol/L for 

pravastatin. 

In order to localize the inhibitory effect of β-oxidation in more detail, three enzymes of the β-

oxidation were investigated. Acyl-CoA dehydrogenase was inhibited by 30-40% in the presence 

of 100µmol/L cerivastatin, 200µmol/L fluvastatin, atorvastatin or simvastatin, or 400µmol/L 

pravastatin, and β-hydroxy-acyl-CoA dehydrogenase by 10-20% in the presence of 100µmol/L 

cerivastatin, 200µmol/L fluvastatin, atorvastatin or simvastatin, or 400µmol/L pravastatin. In 

contrast, β-ketothiolase was not significantly inhibited by the statins used at the same 

concentrations as above.  

Since there was some discrepancy between the inhibition of the β-oxidation pathway (using 

intact mitochondria) and individual enzymes (using disrupted mitochondria), we also determined 

the activity of CPT, which can be rate-limiting for fatty acid oxidation. [81] As shown in panel B 

of Figure 4, fluvastatin and cerivastatin inhibited CPT1 activity, whereas the other statins 

revealed no significant inhibitory effect up to 200µmol/L (atorvastatin) or 1mmol/L (simvastatin, 

pravastatin). 
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Figure 4 

Effect of statins on β-oxidation and CPT1 activity. Fatty acid oxidation (panel A) was determined using 

isolated rat skeletal muscle mitochondria and was impaired by all lipophilic statins in a concentration-

dependent manner (IC50 9.9 – 76µmol/L). In contrast, pravastatin inhibited fatty acid oxidation with an IC50 

of 300µmol/L. Data are given relative to control values (100% activity corresponds to 3.90nmol/mg 

mitochondrial protein/min). In panel B, the effect of statins on CPT1 activity using isolated mitochondria 

was determined. Cerivastatin and fluvastatin are inhibitors of CPT1, whereas the other 3 statins 

investigated do not affect CPT1 activity. Data are given relative to control values (100% activity 

corresponds to 6.45nmol/mg mitochondrial protein/min). Data are given as mean ± SEM of at least three 

individual experiments. *p<0.05 vs. control, **p<0.01 vs. control. 

 

 

3.4.5.5. Mitochondrial swelling and release of cytochrome c 

As already demonstrated, statins did cause a loss of the mitochondrial membrane potential. 

We therefore hypothesized that statins might induce mitochondrial permeability transition, which 

can result in mitochondrial swelling and cytochrome c release [82]. As shown in Figure 5, 

cerivastatin, fluvastatin, atorvastatin and simvastatin were inducing mitochondrial swelling in a 

concentration-dependent manner, whereas pravastatin did not cause an opening of the 

mitochondrial permeability transition pore.  
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Figure 5 

Induction of mitochondrial permeability transition. Mitochondrial permeability transition was monitored as 

a decrease in absorbance at 540nm. Upon pore opening, osmotically driven influx of water into the 

mitochondrial matrix leads to mitochondrial swelling, causing a change in the light scattering properties of 

mitochondria. Ca2+ was used as positive control. Among the tested statins, only pravastatin did not induce 

mitochondrial permeability transition, whereas all lipophilic statins caused a concentration-dependent 

increase in mitochondrial size. * p < 0.05 vs. control; ** p < 0.01 vs. control. 

 

As a consequence of the mitochondrial permeability transition pore opening, cytochrome c 

release from the mitochondrial intermembrane space into the cytoplasm can occur, which can 

trigger the mitochondrial pathway of apoptosis [83]. To assess this possibility, cytochrome c 

release into cytoplasm was determined. As shown in Figure 6, only pravastatin did not induce a 

release of cytochrome c from the mitochondria, whereas in the presence of the lipophilic statins, 

cytochrome c was spilled into the cytoplasm.  
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Figure 6 

Mitochondrial release of cytochrome c. L6 cells were incubated with test compounds (each 100µmol/L) for 

24 hours and cytochrome c was detected by immunocytochemistry. In the presence of 1% DMSO (panel 

A, negative control) or pravastatin (panel G), no leakage into the cytoplasm occurred (the nuclei are 

clearly visible and cytochrome c is distributed in the cytoplasm with a granular pattern). After treatment 

with benzbromarone (positive control, panel B), cerivastatin (panel C), fluvastatin (panel D), atorvastatin 

(panel E) or simvastatin (panel F), cytochrome c was released from the mitochondrial intermembrane 

space into the cytoplasm (most nuclei covered by cytochrome c and the cytoplasm stained diffusely).  

 

3.4.5.6. Mechanisms of cell death  

Cytoplasmic cytochrome c can activate caspases and induce apoptosis [84]. DNA 

fragmentation occurring during apoptosis can be visualized by fluorescence microscopy using 

dyes intercalating with DNA. As shown in Figure 7, untreated cells showed an apoptosis rate of 

1.1%. At a concentration of 100µmol/L, the proportion of apoptotic cells was 13% for 

cerivastatin, 11% for fluvastatin, 6% for atorvastatin, 6% for simvastatin and 1% for pravastatin. 

Another hallmark of the early stages of apoptosis is the translocation of phosphatidylserine 

from the inner to the outer leaflet of the plasma membrane, what can be detected by Annexin V. 

Cells were co-stained with PPI as a marker of cell membrane permeability, which increases 

during the later stages of apoptosis and also in necrosis. Since PPI only enters cells with 

already disintegrated membranes, early apoptotic cells can be distinguished from late apoptotic 

and necrotic cells. Similar to the stainings with Hoechst 33342, flow cytometric analysis of the 

cells revealed a progressive increase of the Annexin V signal (early apoptotic cells) with 

increasing concentrations of lipophilic statins. At 100µmol/L of these compounds, between 9 
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and 17% of cells underwent early apoptotic changes. In contrast, only 3% of cells treated with 

100µmol/L pravastatin were Annexin V-positive (data not shown). Fas ligand, used as a positive 

control for apoptosis induction, induced early apoptosis in 12% of cells. Similarly, only the 

lipophilic statins, but not pravastatin, caused late apoptosis/necrosis (data not shown). 

 

 
Figure 7 

Detection of apoptosis by staining with Hoechst 33342. L6 cells were treated with test compounds at a 

concentration of 100µmol/L for 24 hours and subsequently stained with Hoechst 33342. The cell nuclei 

were visualized using fluorescence microscopy. Panel (A) control, panel (B) atorvastatin, panel (C) 

pravastatin. Apoptotic cells were characterized by DNA condensation (panel B, arrow a) and/or DNA 

fragmentation (panel B, arrow b). Panel (D) summarizes the percentage of cells undergoing apoptosis. 

Pravastatin was the only statin not inducing apoptosis. * p < 0.05 vs. control; ** p < 0.01 vs. control. 

 

Since ATP is essential for executing apoptosis [82, 85], the cellular ATP content was 

assessed. The ATP content in control incubations was 1.26 ± 0.08µmol/106 myocytes and 

remained stable in presence of 100µmol/L fluvastatin, atorvastatin, simvastatin or pravastatin. In 

the presence of 100µmol/L cerivastatin, it dropped to 0.16 ± 0.09µmol/106 myocytes, suggesting 

that also necrosis occurred. 

 

 

3.4.6. Discussion 

Our investigations demonstrate that lipophilic statins are mitochondrial toxins affecting the 

electron transport chain, coupling of oxidative phosphorylation and/or mitochondrial β-oxidation. 

These alterations in mitochondrial function are associated with dissipation of the electric 
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potential across the inner mitochondrial membrane. The mitochondrial membrane potential is 

mainly maintained by a proton gradient generated by the proton pump activity of complexes I, III 

and IV of the electron transport chain. Any perturbation of these enzyme complexes and/or 

uncoupling of oxidative phosphorylation can be expected to dissipate the mitochondrial 

membrane potential, which can therefore be regarded as a marker of mitochondrial function and 

integrity. A decrease in the mitochondrial membrane potential can lead to mitochondrial 

membrane permeabilization, which is considered to be a point-of-no-return for initiating 

apoptotic cell death [84, 86]. Mitochondrial membrane permeabilization can culminate in rupture 

and therefore loss of barrier function of the outer mitochondrial membrane, with consequent 

release of apoptosis-inducing proteins (e.g. cytochrome c) from the mitochondrial 

intermembrane space. 

Our study shows that lipophilic statins are acting along this entire sequence: they inhibit the 

function of the electron transport chain, impair mitochondrial β-oxidation (limited availability of 

NADH for the function of complex I of the electron transport chain), uncouple oxidative 

phosphorylation (cerivastatin), decrease the mitochondrial membrane potential, and induce 

mitochondrial swelling and apoptosis. The induction of apoptosis by statins may not only be 

initiated by the mitochondrial pathway, however. Due to inhibition of the conversion of HMG-

CoA to mevalonate, not only the synthesis of cholesterol, but also of intermediates between 

HMG-Co A and cholesterol and products of these intermediates (e.g. ubiquinone and dolichols) 

is reduced [51]. As a consequence, cells may become poor in prenylated (farnesylated or 

geranylated) small GTP-proteins, such as Rho, Ras or Rac, which promote cell maintenance 

and cell survival [46, 87, 88]. Since mevalonate could not prevent statin- associated 

mitochondrial damage and cytotoxicity, mitochondrial toxicity, and not impaired prenylation of 

GTP-proteins, appears to initiate apoptosis of L6 cells. Patients treated with statins may have 

an increased basal rate of apoptotic cell death, which is compensated by cell proliferation under 

normal conditions. In the case an additional insult, e.g. a large increase in the statin plasma and 

tissue concentrations due to a drug-drug interaction and/or an underlying metabolic disease 

[62], there may be a massive increase in apoptotic cell death, possibly leading to organ damage 

such as rhabdomyolysis. 

Our findings support the results of Kubato et al. [89], who showed that lipophilic statins can 

cause apoptosis of hepatocytes. Also in these experiments, pravastatin did neither reduce cell 

viability nor induce apoptosis. Since a reduction in cholesterol synthesis could also be shown for 

pravastatin, also the hydrophilic pravastatin had to have entered the hepatocytes in order to 

execute its pharmacological action. At least in hepatocytes, inhibition of cholesterol synthesis is 

therefore not sufficient to induce apoptosis. 

Although all lipophilic statins tested induced apoptosis of skeletal muscle cells, their effects 

on mitochondrial function differed among each other. For instance, only cerivastatin uncoupled 

oxidative phosphorylation (see Figure 3). The uncoupling capacity of cerivastatin is obviously 
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not related to its pharmacological action, but may offer an explanation for its higher myotoxicity 

compared to the other statins [45, 48, 49, 90]. When mitochondrial uncoupling occurs, protons 

are transported into the mitochondrial matrix by bypassing the F1F0-ATPase. As a consequence, 

the mitochondrial membrane potential is dissipated and mitochondrial ATP synthesis is 

decreased, possibly leading to cellular ATP depletion and cytotoxicity [82]. Furthermore, 

uncouplers may be transported into and accumulate within the mitochondrial matrix, what could 

enhance their toxicity. The higher myotoxicity of cerivastatin compared to other statins may 

therefore be explained by its higher bioavailability (see Table 1) and by its capability to uncouple 

oxidative phosphorylation of skeletal muscle mitochondria. 

Having investigated muscle toxicity of statins in vitro, the question arises, to what extent our 

findings are relevant for the in vivo situation. For atorvastatin, pravastatin and atorvastatin, 

typical plasma concentrations after oral doses of 20-40 mg are in the range of 0.1µmol/L [48, 

91], which is considerably lower than the toxic concentrations determined in our investigations. 

Since data of statin concentrations in skeletal muscle of humans are so far lacking, possible 

tissue concentrations reached have to be estimated. The volume of distribution of lipophilic 

statins (Table 1) is high for atorvastatin, low for the statins with high protein binding (cerivastatin 

and fluvastatin) and unknown for simvastatin (intermediate protein binding). At least for 

atorvastatin (and possibly also for simvastatin), accumulation in peripheral tissues can be 

assumed, possibly also in skeletal muscle. Furthermore, most cases of rhabdomyolysis with 

statins have been described in patients having a drug-drug interaction [44], leading to plasma 

(and possibly also tissue) concentrations which are higher (in some cases ten-fold or even more 

[92]) than normal concentrations. Since it is known that even in the presence of a drug-drug 

interaction, only a minority of the patients develop rhabdomyolysis [93], patients affected by 

muscular problems may have an underlying (possibly mitochondrial) disease, rendering them 

more sensitive to lower statin concentrations [62]. Taken together, our findings may be relevant 

for the in vivo situation in sensitive humans, although the statin concentrations associated with 

mitochondrial toxicity found in our study appear to be high. 

Similar to the study of Kubota et al. [89], our investigations do not offer an explanation for in 

vivo skeletal muscle toxicity of pravastatin, which appears to have an equal frequency as for 

atorvastatin and simvastatin [47]. In our assays, pravastatin revealed only a slight inhibition of 

mitochondrial β-oxidation at high concentrations, but did not induce apoptosis or necrosis of L6 

cells. A lack of access to cell organelles can be excluded by our own studies (NADH oxidase) 

and also by the studies of Kubota et al. [89]. The possibilities remain that a metabolite of 

pravastatin is the culprit or that L6 cells are not a suitable cell system to show toxicity for this 

particular statin. 

In conclusion, the lipophilic statins impair several functions of skeletal muscle mitochondria, 

whereas as the hydrophilic pravastatin does not reveal a relevant mitochondrial toxicity in vitro. 

Although the toxic concentrations of the statins on isolated mitochondria and L6 cells are 
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considerably higher than their plasma concentrations in humans, mitochondrial toxicity may 

trigger rhabdomyolysis in sensitive patients. Since the hydrophilic pravastatin is also associated 

with rhabdomyolysis, additional mechanisms may exist. 
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4. Aims of the thesis 

The main focus of this thesis lies on a known mitochondrial toxin, amiodarone, and 

especially on its chemical structure – effect relationship. Amiodarone is a potent antiarrhytmic 

agent which use is unfortunately limited subsequent to the numerous side effects it can 

provoke. Despite these unwanted adverse effects including pulmonary, thyroidal, hepatic and 

numerous others amiodarone mostly remains the drug of choice when life-threatening 

arrhytmias are treated. The aim of the first project of this thesis was to find out more about the 

amiodarone molecule in order to predict which part of it is responsible for its hepatotoxic effect. 

Amiodarone, three metabolites of amiodarone and five derivatives differing from each other only 

by their side chain were chosen for the studies. The investigations were accomplished using 

freshly isolated rat liver mitochondria, primary rat hepatocytes and HepG2 cells. Once a non-

toxic molecule was found, it was tested on its ability to block potassium channels, as a test 

system CHO cells stably expressing the hERG potassium channel. Currents were measured by 

means of the patch-clamp technique in the whole-cell configuration. As an outcome of this 

study, we hoped to find a non-toxic but still pharmacologically active amiodarone derivative and 

to learn more about the amiodarone molecule itself.  

 The second project concentrates on studying the overall toxicity of amiodarone, its two 

main metabolites and five derivatives on pulmonary and hepatoma cell lines (A549 and HepG2 

cells, respectively), and on predicting their inhibitory effect on the hERG channel, by means of 

in vitro examinations and an in silico approach. We hoped to provide further pharmacological 

and toxicological knowledge about the amiodarone molecule, especially about its behaviour 

towards the potassium channel.  

 The third project concerns dermal fibroblasts derived from patients suffering from two 

different mitochondrial malfunctions. These primary cells were used to study the possible link 

between an underlying mitochondrial defect and an unexpected toxicity of a drug leading to 

apoptosis or necrosis of a cell. The drugs chosen for these studies were benzbromarone and 

simvastatin, both known to be the cause of an idiosyncratic reaction, which is an unexpected 

toxic response to a drug. Benzbromarone is a uricosuric agent known for its hepatocellular 

toxicity that led to its withdrawal from the market. Simvastatin belongs to the group of the HMG-

CoA reductase inhibitors used for the treatment of hypercholesterolemia. Myotoxicity, especially 

rhabdomyolysis, is a rare but severe problem associated with simvastatin use. Our main interest 

was to find out if the mitochondrial defect would predispose the fibroblasts to higher toxicity 

when treated with benzbromarone or simvastatin. 
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5. Hepatocellular toxicity and pharmacological effect of amiodarone 

and amiodarone derivatives 
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5.1. Abstract 

The aim of this work was to compare hepatocellular toxicity and pharmacological activity 

of amiodarone (2-n-butyl-3-[3,5 diiodo-4-diethylaminoethoxybenzoyl]-benzofuran = B2-O-Et-N-

diethyl) and of eight amiodarone derivatives. Three amiodarone metabolites were studied, 

namely mono-N-desethylamiodarone (B2-O-Et-NH-ethyl), di-N-desethylamiodarone (B2-O-Et-

NH2) and B2 carrying an ethanol side chain (B2-O-Et-OH). In addition, five amiodarone 

analogues were investigated, namely N-Dimethylamiodarone (B2-O-Et-N-dimethyl),  N-

Dipropylamiodarone (B2-O-Et-N-dipropyl),  B2-O carrying an acetate side chain (B2-O-Acetate), 

B2-O-Et- carrying an propionamide side chain (B2-O-Et-propionamide) and B2-O- carrying an 

ethyl side chain (B2-O-Et). A concentration-dependent increase in LDH leakage from HepG2 

cells and isolated rat hepatocytes was observed in the presence of amiodarone and of most 

analogues, confirming their hepatocellular toxicity. Using freshly isolated rat liver mitochondria, 

amiodarone and most analogues showed a dose-dependent toxicity on the respiratory chain 

and on β-oxidation, significantly reducing the respiratory control ratio and oxidation of palmitate, 

respectively. The ROS concentration in hepatocytes increased time-dependently and 

apoptotic/necrotic cell populations were identified using flow cytometry and 

annexinV/propidiumiodide staining. The effect of the three least toxic amiodarone analogues on 

the hERG channel was compared to amiodarone. Amiodarone, B2-O-Acetate and B2-O-Et-N-

dipropyl (each 10 µmol/L) significantly reduced the hERG tail current amplitude, whereas B2-O-

Et (10 µmol/L) displayed no detectable effect on hERG outward potassium currents. In 

conclusion, three amiodarone analogues (B2-O-Et-N-dipropyl, B2-O-Acetate and B2-O-Et) 

showed a lower hepatocellular toxicity profile than amiodarone and two of these analogues (B2-

O-Et-N-dipropyl and B2-O-Acetate) retained hERG channel interaction capacity, suggesting that 

amiodarone analogues with class III antiarrhythmic activity and lower hepatic toxicity could be 

developed. 
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5.2. Introduction 

Amiodarone (2-n-butyl-3-[3,5 diiodo-4-diethylaminoethoxybenzoyl]-benzofuran, B2-O-Et-N-

diethyl) is a class III antiarrhythmic used in the treatment of a wide spectrum of cardiac 

arrhythmias [94]. Amiodarone has been shown to be at least as efficacious as sotalol in patients 

with atrial fibrillation [95] and to reduce mortality in patients with a high risk for of arrhythmia, 

e.g. patients with severe congestive heart failure [96] or after acute myocardial infarction [97]. 

Amiodarone is a class III antiarrhythmic drug which blocks hERG channels, leading to 

prolongation of the refractoriness and resulting in QT prolongation [94]. In addition, it has an 

inhibitory effect on fast sodium as well as on calcium channels [94]. Similar to its 

pharmacological action, amiodarone’s adverse reaction profile is complex, ranging from 

thyroidal [98] to pulmonary [99], ocular [100] and/or liver toxicity [38, 101]. Amiodarone is a 

mitochondrial toxicant, uncoupling oxidative phosphorylation and inhibiting the electron 

transport chain and ß-oxidation of fatty acids [39-41, 43]. 

Amiodarone is composed of a benzofuran ring carrying a C4H9 side chain and a highly 

lipophilic di-iodobenzene ring (B2) with a diethylaminoethoxy side chain (see Table 1). It is 

metabolized by desalkylation of the diethylaminoethoxy group to mono-N-desethylamiodarone 

(B2-O-Et-NH-ethyl) [102] and to di-N-desethylamiodarone (B2-O-Et-NH2) [103], which may be 

transaminated and reduced to B2-O-Et-OH (see Table 1) [103].  

In earlier studies, we have investigated the significance of the 2-butyl-benzofuran group and 

O-dealkylation of the amiodarone molecule with respect to mitochondrial toxicity [41]. These 

studies revealed that the benzofuran ring and the presence of iodines were important for 

mitochondrial toxicity. More recent studies [43] showed, however, that not the benzofuran ring 

alone is responsible for hepatocellular toxicity of amiodarone, but that a side chain in position 2 

and/or 3 of the benzofuran ring was necessary. 

The principal aim of the current studies was to find out amiodarone derivatives without or 

with minimal mitochondrial toxicity, but still exhibiting inhibitory activity towards the hERG 

channel. We therefore synthesized eight amiodarone derivatives (including 3 metabolites) with 

different lipid solubilities (see Table 1). All of the derivatives synthesized contained a 

benzofuran ring carrying a butyl group and differed from each other only by their side chain. 

Amiodarone (B2-O-Et-N-diethyl), B2-O-Et-NH-ethyl, B2-O-Et-NH2, B2-O-Et-N-dimethyl, B2-O-

Et-N-dipropyl and B2-O-Et-propionamide had side chains differing from each other by the 

substituents coupled to the nitrogen atom (see Table 1). In comparison, B2-O-Acetate, B2-O-Et-

OH and B2-O-Et did not carry a nitrogen atom in the side chain coupled to the diiodophenyl ring 

(see Table 1). Hepatocellular toxicity was studied using freshly isolated rat liver mitochondria, 

primary rat hepatocytes and HepG2 cells. The effect on the blockade of the voltage-gated 

potassium channel hERG was tested for amiodarone and the least toxic analogues (B2-O-Et-N-

dipropyl, B2-O-Et and B2-O-Acetate) in order to estimate their class III antiarrhythmic activity. 
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5.3. Materials and methods 

5.3.1. Amiodarone and amiodarone derivatives 

Amiodarone hydrochloride was purchased from Sigma-Aldrich (Buchs, Switzerland). All of 

the amiodarone metabolites or analogues were synthesized starting from B2 as shown in Figure 

1. 

Chemistry, General Methods. All chemicals used in the synthesis work were purchased 

from Aldrich (Buchs, Switzerland) and were used without further purification. All melting points 

given are uncorrected. NMR spectra were obtained for all substances synthesized and will be 

reported elsewhere.  

Synthesis of (2-Butyl-benzofuran-3-yl)-(4-hydroxy-3,5-diiodophenyl)-methanone (B2). This 

compound was prepared with a yield of 60% as described previously [104]. Melting point 

(146.4-146.9°C) and NMR data (not shown) were in agreement with the previous report. As 

shown in Figure 1, B2 is the origin of the synthesis of all amiodarone metabolites and analogues 

used in this study. 
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Figure 1. 

General scheme of the synthesis of amiodarone derivatives. All the amiodarone metabolites or 

derivatives used were synthesized from B2. B2 was synthesized as described previously [104]. The 

derivatives B2-O-Et-NH-ethyl, B2-O-Et-NH2, B2-O-Et-N-dimethyl, and B2-O-Et-N-dipropyl were prepared 

by condensing B2 with the respective 2-chloroethyl amine hydrochloride salts in the presence of K2CO3. 

Using the same procedure, B2-O-Et-OH, B2-O-Acetate and B2-O-Et were obtained from the reaction of 

B2 with iodoethanol, alpha-bromo-ethylacetate (subsequently hydrolyzed in 0.1M NaOH) and iodoethyl, 

respectively. The compound B2-O-Et-NH-Propionamide was synthesized from B2 and 2-ethyl-2-

oxazoline. The yields of the reactions were between 70 and 85% and the purity of the final substances 

was ≥ 97% as assayed by HPLC. See Method section for more details on synthesis and characterization 

of the compounds. 

 

Synthesis of (2-Butyl-benzofuran-3-yl)-4-[2-(ethylamino-ethoxy)-3,5-diiodophenyl]-

methanone • hydrochloride (B2-O-Et-NH-ethyl). To a mixture of B2 (2g, 3.66mmol) and K2CO3 

(1.66g, 12mmol) in toluene:water (2:1, v/v, total volume 75mL) heated to 55-60 °C N-ethyl-2-

chloroethylamine hydrochloride (2.66g, 18.5mmol) was added portionwise. N-ethyl-2-

chloroethylamine hydrochloride had been prepared by Lasselle’s method [105]. After the 

addition, the temperature was raised to reach reflux over 30 minutes, until the yellow color of B2 
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had disappeared. The reaction was refluxed for 1 additional hours and the phases were 

separated quickly by a separation funnel at 60°C. The toluene phase was washed three times 

with 25mL of water at this temperature. The organic phase was evaporated to dryness; the 

residue suspended in 10mL of 5% NH3 and B2-O-Et-NH-ethyl was extracted three times with 

15mL toluene. The organic phases were separated by centrifugation, combined and evaporated 

to dryness under reduced pressure. Two mL of 10N HCl and 15mL of toluene were added, and 

the liquids were removed under reduced pressure at 80°C. A white solid was obtained after 

three additional treatments with 10mL toluene. The obtained residue was then crystallized from 

toluene, yielding 1.55g (65%) of analytically pure B2-O-Et-NH-ethyl. The melting point was 

176.8-177.7°C. 

 Synthesis of (2-Butyl-benzofuran-3-yl)-4-[2-(dimethylamino-ethoxy)-3,5-diiodophenyl]-

methanone • hydrochloride (B2-O-Et-N-dimethyl) and (2-Butyl-benzofuran-3-yl)-4-[2-

(dipropylamino-ethoxy)-3,5-diiodophenyl]-methanone • hydrochloride (B2-O-Et-N-dipropyl). B2-

O-Et-N-dimethyl and B2-O-Et-N-dipropyl were prepared in a similar manner as described for 

B2-O-Et-NH-ethyl, but 2-(dimethylamino)ethyl chloride and 2-(diisopropylamino)ethyl chloride 

were used instead of N-ethyl-2-chloroethylamine hydrochloride. For B2-O-Et-N-dimethyl, the 

melting point was 89.5-89.7°C and for B2-O-Et-N-dipropyl 146.8-148.7°C.  

Synthesis of [4-(2-Aminoethoxy)-3,5-diiodophenyl]-(2-butylbenzofuran-3-yl)-methanone • 

hydrochloride (B2-O-Et-NH2). A mixture of B2 (1.2g; 2mmol), 2mL (20mmol) of 2-ethyl-2-

oxazoline and 3mL of toluene was heated at reflux for 1h and cooled to room temperature. The 

mixture was taken up in 10mL methylene chloride, washed with 4N potassium hydroxide 

(3x20mL), dried (Na2CO3) and concentrated in vacuo to give brown oil. The oil was solidified by 

trituration with petroleum ether followed by recrystallization from ethyl acetate:hexane to give a 

white solid. Thin layer chromatography analysis using Merck precoated silica gel 60-F254 plates 

and hexane:isopropyl alcohol:25% NH3 (84:15:1 v/v) as an eluant revealed only one spot with 

an Rf value of 0.42 with UV detection at 254 nm. The corresponding Rf value of B2 was 0.05. 

This intermediate compound corresponded to B2-O-Propionamide (see Figure 1) by NMR 

analysis (data not shown). 

To this compound 10mL of 6N HCl were added. The mixture was heated to 130°C for 3.5h 

and then cooled to room temperature. Impurities were washed out by diethyl ether until the 

organic phase was colorless (5 x 5mL). The precipitate was collected by filtration and washed 

with water. The compound was flash-chromatographed using silica gel Merck 60 (40-60µm, 

230–400 mesh) with hexane:isopropyl alcohol:25% NH3 (84:15:1 v/v) as an eluant, yielding 0.6g 

(60%) of hydrochloride salt of B2-O-Et-NH2 as a white solid with a melting point of 200.5-

201.4°C. B2-O-Et-NH2 was found as a minor metabolite of amiodarone in humans, and its 

spectroscopic data have been reported in a previous study [103]. 

Synthesis of (2-Butyl-benzofuran-3-yl)-(4-ethoxy-3,5-diiodophenyl)-methanone (B2-O-Et). 

To a mixture of B2 (2.0g, 3.66mmol) in dry acetone (50mL) iodoethyl (2.34g, 15mmol) was 
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added over 20min. The reaction was stirred at 50°C for 16h. The insoluble salt was removed by 

filtration and the filtrate concentrated in vacuo to give 1.7g (yield 75%) of B2-O-Et as a white 

solid. The melting point was 67.0-69.4°C.  

Synthesis of (2-Butyl-benzofuran-3-yl)-[4-(2-hydroxyethoxy)-3,5-diiodophenyl]-methanone 

(B2-O-Et-OH). This compound was prepared in a similar manner as B2-O-Et, but iodoethyl was 

replaced by 2-chloroethanol. The final product was obtained as an oil. When stored in a closed 

vial at room temperature, it solidified after 10 days. The melting point was 69.6-72.9°C. B2-O-

Et-OH was found as a minor metabolite of amiodarone in humans, and its spectroscopic data 

have been reported in a previous study [103]. 

Synthesis of [4-(2-butyl-benzofuran-3-carbonyl)-2,6-diiodophenyl]-acetic acid (B2-O-

Acetate). The ethyl ester of B2-O-Acetate (not shown in Figure 1) was prepared from B2 and α-

bromoethyl acetate as described by Carlsson et al. [106]. The hydrolysis of the ester was 

performed in the presence of 0.1M NaOH at 22°C for 16 h. The melting point of the product was 

186.4-187.8°C. 

Amiodarone and the analogues were dissolved in dimethylsulfoxide (DMSO). The end 

concentration of DMSO in the experiments never exceeded 1% and control incubations 

contained the same DMSO concentration. 

Determination of the octanol/water partition coefficient of amiodarone and derivatives 

 The octanol/water partition of the compounds synthesized was determined using reversed 

phase HPLC as described by Braumann [107]. HPLC of the substances was performed at 37°C 

using different 0.005M phosphate buffer (pH7.4)/methanol mixtures as an eluant. The 

octanol/water partition of a substance can be calculated based on the retention times obtained 

in the presence of different concentrations of methanol in the eluant [107]. 

 

5.3.2. Other chemicals 

1-[14C]Palmitic acid was purchased from Amersham Pharmacia Biotech (Dübendorf, 

Switzerland), collagenase type 2 from BioConcept (Allschwil, Switzerland). Propidium iodide 

was from Molecular Probes (Eugene, OR, USA) and Alexa Fluor 633 labeled annexin V was a 

generous gift from Dr. Felix Bachmann, Aponetics Ltd. (Witterswil, Switzerland). All other 

chemicals were purchased from Sigma-Aldrich (Buchs, Switzerland) and were of best quality 

available when not otherwise stated. All cell culture media, all supplements and fetal calf serum 

were from Gibco (Paisley, UK), except for Williams E, which was purchased from Cambrex Bio 

Science (Verviers, Belgium). The 96-well-plates and the 12-well-plates were purchased from 

Beckton Dickinson (Franklin Lakes, NJ, USA). 
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5.3.3. Animals 

Male Sprague-Dawley rats were purchased from Charles River Laboratories (L’Arbresle, 

France), and kept in the animal facility of the University Hospital Basel, Switzerland. Rats were 

kept in a temperature-controlled environment with a 12-h light-dark cycle and food and water ad 

libitum. The study protocol had been accepted by the Animal Ethics Committee of the Canton 

Basel Stadt. 

 

5.3.4. Isolation of rat hepatocytes 

The isolation of rat hepatocytes by a two step collagenase perfusion was based on a 

method described by Berry [108] and performed as described earlier [43]. Cell viability was 

determined by trypan blue exclusion and was always greater than 80%. Cells were seeded into 

cell culture dishes in Williams E medium supplemented with 10% heat-inactivated fetal calf 

serum, 10mmol/L HEPES buffer (pH 7.4), 2mmol/L GlutaMax® and 1000U/mL 

penicillin/streptomycin. The mean rat weight was 395 ± 115g. 

 

5.3.5. Isolation of rat liver mitochondria 

Rat liver mitochondria were isolated by differential centrifugation according to the method 

of [70]. The mitochondrial protein content was determined using the biuret method with bovine 

serum albumin as a standard [68]. The mean rat weight was 343 ± 91g and the mean rat liver 

weight was 14.12 ± 2.81g. 

 

5.3.6. Cell lines and cell culture 

 HepG2 cells were kindly provided by Professor Dietrich von Schweinitz (University 

Hospital Basel, Switzerland). The cell line was cultured in Dulbecco’s Modified Eagle Medium 

supplemented with 10% (v/v) inactivated fetal calf serum, 10mmol/L HEPES buffer (pH 7.4), 

2mmol/L GlutaMAX (Invitrogen, Basel, Switzerland), nonessential amino acids, and 

penicillin/streptomycin (100U/mL). The culture conditions were 5% CO2 and 95% air 

atmosphere at 37°C. 

 

5.3.7. Cell viability  

Lactate dehydrogenase (LDH) leakage in the supernatant was determined as a measure 

of cell viability as described by Vassault [69] and calculated as described by Huang et al. [109].  

LDH leakage from the cells treated with the test compounds was compared to the LDH leakage 
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of cells lysed with the detergent NP40 (0.01% w/v). The activity in the supernatant of lysed cells 

was set at 100%. 

 

5.3.8. Apoptosis and necrosis detection by annexin V binding and propidium iodide 

uptake 

After an 18-h-incubation with the test compounds, hepatocytes were stained with 0.5µl 

Alexa Fluor 633 labeled annexin V and 2µl propidium iodide (final concentration: 1.5µg/L). After 

15 minutes of incubation at 37ºC, the cells were analyzed by flow cytometry (FACS Calibur flow 

cytometer: Beckton Dickinson, San José, CA, USA). As positive controls for apoptosis, 

deoxycholic acid (100µmol/L) was used. As a positive control for necrosis, cells were treated 

with the surfactant NP40 (final concentration 0.1%, v/v).  

 

5.3.9. ATP content of the cells  

Freshly isolated hepatocytes were seeded on a 12-well-plate (200,000 cells/well). 

Subsequently, they were treated for 18 hours with the test compounds. After the incubation, 

cells were trypsinized, the pellet was resuspended in 600µL reagent grade water and snap-

frozen in liquid nitrogen [110]. Intracellular ATP concentration of the cells was determined using 

a luciferin-luciferase assay (Sigma, Deissenhofen, Germany). 

 

5.3.10. Measurement of reactive oxygen species (ROS) 

A fluorescence-based microplate assay [111] was used for the evaluation of oxidative 

stress in primary hepatocytes treated with the test compounds. DCFH-DA is a membrane 

permeable, non-polar and non-ionic molecule. In the cytoplasm, it is hydrolyzed by intracellular 

esterases to non-fluorescent DCFH, which is oxidized to fluorescent dichlorofluorescein in the 

presence of reactive oxygen species (H2O2 and O2˙
-). Hepatocytes were simultaneously 

exposed to test compounds and to DCFH-DA dissolved in ethanol (final concentration 5µmol/L) 

and incubated for 2, 4, 6 and 18 hours. The fluorescence was measured using a microtiter plate 

reader (HTS 700 Plus Bio Assay Reader, Perkin Elmer, Buckinhamshire, UK) in incubations 

containing cells and exposure medium at an excitation wavelength of 485nm and an emission 

wavelength of 535nm.  

 

5.3.11. Oxygen consumption and β-oxidation of intact mitochondria 

Oxygen consumption by intact mitochondria was measured in a chamber equipped with 

Clark-type oxygen electrode (Yellow Springs Instruments, Yellow Springs, OH) at 30ºC [70]. 

The final concentration of L-glutamate was 20mmol/L. The mitochondrial respiratory control 
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ratio (RCR) as well as state 3 and state 4 of respiration were determined according to 

Estabrook [112] and as described by Krähenbühl et al. [73]. Uncoupling of the oxidative 

phosphorylation was investigated by monitoring oxygen consumption in the presence of test 

substances and oligomycin, an inhibitor of F1F0-ATPase (final concentration of 5µg/mL) [43].  

 

5.3.12. Mitochondrial β-oxidation  

Mitochondrial β-oxidation of [1-14C] palmitic acid in the presence of test compounds was 

determined usingg freshly isolated liver mitochondria according to the method of Freneaux et al. 

[113] with some modifications as described by Spaniol et al. [41].  

 

5.3.13. Effect of amiodarone, B2-O-Et-N-dipropyl, B2-O-Acetate and B2-O-Et on the 

inhibition of hERG currents 

 

5.3.13.1. CHO hERG cells 

The 3 least toxic compounds (B2-O-Et-N-dipropyl, B2-O-Acetate and B2-O-Et) and 

amiodarone were chosen for examination concerning their antiarrhythmic effect. The interaction 

of the test substances (final concentration 10µmol/L) with the hERG channel was examined 

using CHO cells stably expressing this potassium channel. Briefly, two separate human cardiac 

plasmid cDNA libraries were prepared from freshly isolated tissue and the hERG alpha subunit 

PCR product released from the pCR2.1-TOPO vector (Invitrogen, Basel, Switzerland) for 

ligation into a modified pcDNA5/FRT/TO vector (Invitrogen, Basel, Switzerland) with excluded 

BGH site. Restriction analysis and complete sequencing confirmed the correct composition and 

expression of the hERG alpha subunit in the plasmid. CHO cells were transfected with the 

calciumphosphate precipitation method (Invitrogen, Basel, Switzerland). Clones were selected 

with 700µg/mL Hygromycin B (Invitrogen, Basel, Switzerland) and checked back 

electrophysiologically for the presence of sufficient potassium current, longterm recording 

stability and sealing properties. Using limited dilution, clone CHO hERG K2, which displayed an 

average tail current amplitude of approximately 700-1500pA, was isolated. This clone was 

successfully cultivated over 40 passages without detectable loss of current density and was 

used in the current studies. The cells were generally maintained and passaged in HAM/F12 with 

GlutaMax I (GIBCO, Paisley, UK) supplemented with 9% fetal bovine serum (GIBCO, Paisley, 

UK), 0.9% Penicillin/Streptomycin solution (GIBCO, Paisley, UK) and 500µg/mL Hygromycin B 

(Invitrogen, Basel, Switzerland). For electrophysiological measurements, the cells were seeded 

onto 35mm sterile culture dishes containing 2mL culture medium (without antibiotics or 

antimycotics). Confluent clusters of CHO cells are electrically coupled. Because responses in 

distant cells are not adequately voltage clamped and because of uncertainties about the extent 
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of coupling, cells were cultured at a density enabling single cells (without visible connections to 

neighbouring cells) to be used for the experiments.  

 

5.3.13.2. Electrophysiology 

hERG currents were measured by means of the patch-clamp technique in the whole-cell 

configuration. The incubation buffer contained (in mmol/L) NaCl 137, KCl 4, CaCl2 1.8, MgCl2 1, 

D-glucose 10, HEPES 10, pH (NaOH) 7.40. The pipette solution consisted of (in mmol/L) KCl 

130, MgCl2 1, MgATP 5, HEPES 10, EGTA 5, pH (KOH) 7.20. After formation of a Gigaohm 

seal between the patch electrodes and individual hERG stably transfected CHO cells, the cell 

membrane across the pipette tip was ruptured to assure electrical access to the cell interior. All 

solutions applied to cells were continuously perfused (1mL/min) and maintained at room 

temperature. As soon as a stable seal could be established, hERG outward tail currents were 

measured upon depolarization of the cell membrane to +20mV for 3 s (activation of channels) 

from a holding potential of -80mV and subsequent partial repolarization to -40mV for 4 s. This 

voltage protocol was run a minimum of 10 times at intervals of 10 s before application of the test 

compound. After equilibration (typically taking approximately 3 min), the voltage protocol was 

run continuously until the steady state level of current block was reached. At least three 

individual measurements were run per test compound. The steady state level currents were 

compared to those from control conditions (0.01% DMSO) and the residual current calculated 

as percentage of control. 

 

5.4. Statistical methods 

Data are presented as mean ± standard error of the mean (SEM) of at least three 

individual experiments. Differences between groups (control and test compound incubations) 

were analyzed by analysis of variance (ANOVA) and Dunnett´s post hoc test was performed if 

ANOVA showed significant differences. A p value ≤ 0.05 was considered to be significant.  

 

5.5. Results 

5.5.1. Oxygen consumption 

  Oxygen consumption by isolated mitochondria can roughly be divided into two states. In 

state 3, a substrate donates electrons to the electron transport chain and ADP is being 

phosphorylated to ATP. In state 4, ADP is depleted and therefore no ATP can be produced. 

Since the RCR is the ratio between these two states, a decrease in the RCR can be due to 

reduced state 3 of respiration (impairment of the function of electron transport chain) or an 
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increase in state 4 of respiration (in most cases uncoupling of the activity of electron transport 

chain from production of ATP). 

In order to get an overview about the effect on mitochondria, the influence of  1, 10 and 

100µmol/L amiodarone and analogues on oxidative metabolism on isolated rat liver 

mitochondria was tested in the presence of L-glutamate as a substrate (see table 2). For all test 

compounds, the RCR decreased dose-dependently, and for all compounds, except for B2-O-Et, 

the decrease was statistically significant in comparison to control incubations. B2-O-Et did not 

have a significant effect on mitochondrial respiration at any concentration. 

Most of the analogues and amiodarone were associated with an increase in state 4 

respiration, suggesting uncoupling properties. In order to test this possibility, oxygen 

consumption was studied in the presence of test compounds and oligomycin. Oligomycin is an 

inhibitor of the F1F0-ATPase, and induces a so called state 4u when incubated with 

mitochondria. Under these conditions, an increase in oxygen consumption can only reflect 

uncoupling and not production of ADP by other mechanisms. After an incubation in the 

presence of oligomycin, amiodarone, B2-O-Et-N-dimethyl, B2-O-Et-N-dipropyl and B2-O-

Acetate significantly increased oxygen consumption at 10µmol/L, and B2-O-Et-N-dipropyl and 

B2-O-Et-propionamide at 100µmol/L (data not shown). In contrast, B2-O-Et-OH did not change 

the state 4u significantly up to 100µmol/L. B2-O-Et was not investigated, since it did not change 

the RCR (see Table 2). These data match well with the observed effect on state 4 respiration 

(compare with data in Table 2).  
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Table 2.  

Effects of amiodarone, and amiodarone metabolites and analogues on oxidative metabolism in isolated 

rat liver mitochondria. The values represent mean±SEM of at least three experiments. All incubations 

contained 1%DMSO; *p<0.05 and **p<0.01 versus control incubations. 

 State 3 State 4 RCR 

 natoms O x min-1 x mg-1  

Control (1%DMSO) 78.9 ± 15.0 2.30 ± 0.37 7.91 ± 1.28 

    
B2-O-Et-N-diethyl (amiodarone)(µmol/L)    

1 72.9 ± 9.3 2.5 ± 0.5 6.60 ± 0.53 

10 72.2 ± 7.7 4.17 ± 1.53* 4.21 ± 1.38** 

100 64.5 ± 8.1 9.83 ± 2.25** 1.52 ± 0.31** 

    
B2-O-Et-NH-ethyl (µmol/L)    

1 68.5 ± 16.9 3.67 ± 2.25 5.06 ± 2.17* 

10 69.7 ± 8.0 3.33 ± 1.44 5.10 ± 1.42* 

100 3.7 ± 1.3** 3.72 ± 1.29 1.00± 0.00** 

    
B2-O-Et-NH2 (µmol/L)    

1 76.7 ± 3.2 2.50 ± 0.5 7.07 ± 1.5 

10 75.2 ± 8.8 2.50 ± 0.5 7.01 ± 2.09 

100 3.4 ± 1.6** 3.37 ± 1.61 1.00± 0.00** 

    

B2-O-Et-N-dimethyl (µmol/L)    

1 75.1 ± 12.3 2.67 ± 0.58 6.40 ± 0.66 

10 66.8 ± 6.0 3.67 ± 0.58** 4.15 ± 0.67** 

100 5.2 ± 1.3** 5.20 ± 1.29** 1.00 ± 0.00** 

    

B2-O-Et-N-dipropyl (µmol/L)    

1 77.3 ± 11.4 3.17 ± 0.29 5.55 ± 1.24* 

10 72.1 ± 10.1 3.67 ± 1.26 4.70 ± 1.31** 

100 68.4 ± 3.4 5.17 ± 2.08** 3.32 ± 1.27** 

    

B2-O-Acetate (µmol/L)    

1 69.1 ± 8.9 2.50 ± 0.87 6.50 ± 1.39 

10 49.1 ± 10.2** 3.67 ± 0.58** 3.00 ± 0.38** 

100 9.7 ± 5.2** 5.13 ± 1.15** 1.25 ± 0.43** 

    

B2-O-Et-propionamide (µmol/L)    

1 63.2 ± 26.1 2.5 ± 2.71 5.67 ± 2.34* 

10 63.9 ± 9.3 3.83 ± 0.29 3.77 ± 0.79** 

100 47.6 ± 6.8* 47.57 ± 6.81** 1.00 ± 0.00** 
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B2-O-Et (µmol/L)    

1 84.7 ± 21.3 2.33 ± 0.29 8.40 ± 3.22 

10 81.0 ± 15.2 2.50 ± 0.00 7.27 ± 1.36 

100 73.6 ± 19.8 2.67 ± 0.29 6.12 ± 0.99 

    

B2-O-Et-OH (µmol/L)    

1 72.9 ± 13.4 2.50 ± 0.50 6.55 ± 0.18 

10 75.8 ± 7.7 2.67 ± 0.29 6.37 ± 0.04 

100 20.0 ± 3.2** 20.07± 3.15** 1.00 ± 0.00** 

 

 

5.5.2. Mitochondrial β-oxidation 

Since amiodarone is known to impair mitochondrial β-oxidation [39, 43], the effect on the 

metabolism of palmitate was investigated. In comparison to the control incubations, amiodarone 

and most of the derivatives significantly decreased palmitate metabolism in a dose-dependent 

fashion (Figure 2). The exceptions were B2-O-Et-N-dipropyl and B2-O-Et, which did not affect 

mitochondrial β-oxidation up to 100µmol/L. 
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Figure 2. 

Effect of amiodarone and its analogues on ß-oxidation by isolated rat liver mitochondria. With the 

exception of B2-O-Et-N-dipropyl and B2-O-Et, amiodarone (B2-O-Et-N-diethyl) and all amiodarone 

derivatives impaired mitochondrial β-oxidation at a concentration of 10 to 100µmol/L. Incubations were 

performed as described in the Method section. Results are expressed as acid soluble products produced 

from [14C]-palmitic acid and represent mean ± SEM of at least 4 experiments. All incubations contained 

1% DMSO; *p<0.05 and **p<0.01 versus control incubations. 
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5.5.3. Production of ROS  

Since increased ROS formation can be one of the consequences of the inhibition of the 

electron transport chain [43], this was determined using isolated rat hepatocytes. ROS 

formation was measured after incubation for 2, 4, 6 or 18 hours with 100µmol/L amiodarone or 

its analogues. The emitted fluorescence increased time-dependently for all derivatives and for 

amiodarone as shown in Figure 3. After 18 hours of incubation, ROS production was 

significantly increased in comparison to control incubations for all compounds except for B2-O-

Et-N-dipropyl and B2-O-Et. 
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Figure 3. 

ROS formation by primary hepatocytes. ROS formation by primary hepatocytes treated with 100 µmol/L 

amiodarone and analogues increased time-dependently for all compounds tested, reaching statistical 

significance for amiodarone, B2-O-NH-ethyl, B2-O-Et-NH2, B2-O-Et-N-dimethyl, B2-O-Acetate, B2-O-Et-

propionamide and B2-O-Et-OH. Incubations were performed as described in Methods. Results are shown 

as mean ± SEM of at least three individual experiments in quadruplicate. All incubations contained 1% 

DMSO; *p<0.05 and **p<0.01 versus control incubations. 

 

5.5.4. Cell viability  

Impaired mitochondrial ß-oxidation and/or impaired function of oxidative phosphorylation 

with ROS production can be associated with necrosis and apoptosis of the affected cells [43]. In 

order to investigate these possibilities, HepG2 cells or primary rat hepatocytes were treated for 

18 hours with amiodarone or its analogues in rising concentrations (1, 10 and 100µmol/L) and 

the extracellular LDH activity was measured in the supernatant as a marker of cell death (see 

Figure 4 for HepG2 cells). Amiodarone, its metabolites B2-O-Et-NH-ethyl, B2-O-Et-NH2 and B2-
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O-Et-OH, as well as B2-O-Et-N-dimethyl, B2-O-Acetate and B2-O-Et-propionamide showed a 

dose-dependent toxicity, which, at a concentration of 10 and/or 100µmol/L, was significant in 

comparison to control incubations. A similar pattern was obtained, when this experiment was 

repeated with primary rat hepatocytes (results not shown). 
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Figure 4. 

Cytotoxicity of amiodarone and amiodarone derivatives. Cytotoxicity was studied using HepG2 cells 

under the conditions described in the Method section. Amiodarone (B2-O-Et-N-diethyl), B2-O-Et-NH-

ethyl, B2-O-Et-NH2, B2-O-Et-N-dimethyl, B2-O-Acetate, B2-O-Et-propionamide and B2-O-Et-OH 

increased the LDH leakage into the cell culture media dose-dependently after an incubation for 18 hours. 

In contrast, for B2-O-Et-N-dipropyl and B2-O-Et, the cell membrane remained tight under each 

concentration used for the incubations. Similar data were obtained using primary rat hepatocytes. Data 

are given as mean±SEM of at least three individual experiments in triplicates. All incubations (except “no 

treatment”) contained 1% DMSO; *p<0,05 and **p<0.01 versus control incubations. 

 

5.5.5. Mechanism of cell death 

The mechanism of cell death was investigated using staining with annexin V/PI, which can 

differentiate between early apoptosis and late apoptosis/necrosis [43]. After 18 hours of 

incubation, hepatocytes showed a significant increase in late apoptosis/necrosis for all 

substances investigated, except for B2-O-Et-N-dimethyl, B2-O-Et-N-dipropyl, B2-O-Acetate and 

B2-O-Et (Figure 5). In agreement with these findings, the ATP content of the hepatocytes was 

reduced at this time point in the incubations containing amiodarone, B2-O-Et-NH-ethyl, B2-O-

Et-NH2, B2-O-Et-propionamide and B2-O-Et-OH (data not shown). With the exception of B2-O-

Et-N-dimethyl (significant LDH release and non-significant increase in late apoptosis/necrosis), 

these findings agree well with the results of the LDH leakage assay. The discrepancy between 

LDH release and annexin V/PI staining may be associated with extent of cell damage needed to 

obtain a positive result.   
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Figure 5. 

Mechanism of cell death in primary hepatocytes. Cell death was assessed using staining with Annexin 

V/propidiumiodide followed by flow cytometry. The assays were carried out as described in the Method 

section and quantified as described previously [43]. Deoxycholate (100µmol/L) was used as a positive 

control for early apoptosis and the detergent NFP40 (0.01%, v/v) as a positive control for late 

apoptosis/necrosis. During apoptosis, phosphatidylserine is externalized and can be bound by Annexin V, 

which can be detected by flow cytometry. During late apoptosis or necrosis, propidiumiodide is able to 

enter the cells across disintegrated membranes and to stain DNA, which can be differentiated by flow 

cytometry from early apoptosis [43]. After 18 hours of incubation with the compounds shown in figure, the 

positive control (deoxycholate 100µmol/L) was associated with early apoptosis, but none of the test 

compounds investigated. In comparison, late apoptosis/necrosis was detected in the presence of the 

positive control (NP40 0.01%, v/v), and also in the presence of amiodarone (B2-O-Et-N-diethyl), B2-O-Et-

NH-ethyl, B2-O-Et-NH2, B2-O-Et-propionamide and B2-O-Et-OH (all at a concentration of 100µmol/L). 

The results are presented as mean±SEM of three individual experiments. With the exception of the 

incubation labelled “no treatment”, all incubations contained 1% DMSO; *p<0,05 and **p<0.01 versus 

control incubations.  

 

5.5.6. Effects on the cardiac rapid delayed rectifier K+ current (IKr) 

Since one of the important antiarrhythmic mechanisms of amiodarone is the inhibition of 

hERG channels, the effect of amiodarone and of the three least toxic amiodarone derivatives 

(B2-O-Et-N-dipropyl, B2-O-Acetate and B2-O-Et) on the K+ current was investigated in CHO 

cells overexpressing hERG channels. As shown in Figure 6, amiodarone (10µmol/L) rapidly and 

robustly blocked hERG tail currents (6.28 ± 4.05% tail current relative to control, mean ± SEM of 

n=3 experiments). The derivatives B2-O-Acetate (10µmol/L) and B2-O-Et-N-dipropyl (10µmol/L) 

also significantly inhibited the tail current, but less than amiodarone (remaining tail current 81.9 

± 2.6% and 76.2 ± 6.5%, respectively, relative to control values, mean ± SEM of n=3 

experiments). No significant effect was observed for 10µmol/L B2-O-Et (94.6 ± 3.5% tail current 

relative to control, mean ± SEM of n=3 experiments). As expected, at higher concentrations 

(≥30µmol/L) the inhibitory effects of B2-O-Acetate and B2-O-Et-N-dipropyl was more 

pronounced with the exception of B2-O-Et, which again displayed no significant hERG blockage 
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(data not shown). Also the vehicle (0.01% DMSO) did not interfere with hERG channel activity 

(96.70 ± 0.49%, relative tail current, mean ± SEM of n=3 experiments). 
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Figure 6. 

Inhibition of potassium current. Representative current traces of potassium currents through hERG 

channels stably expressed in CHO cells are shown. Measurements were accomplished in the whole-cell 

patch-clamp configuration at room temperature. Outward currents were activated upon depolarization of 

the cell membrane from -80mV to +20mV for 3 s. Partial repolarization to -40mV for 4 s evoked large tail 

currents. At least three cells were recorded per test compound. The vehicle (0.1% DMSO) as well as 

10µmol/L B2-O-Et had no significant effect on hERG channel activity (traces at the top). In contrast, 

amiodarone, B2-O-Acetate and B2-O-Et-N-dipropyl had a clear inhibitory effect on the hERG channels. 

The upper line in the figures depicts the control incubations (0.1% DMSO) and the lower line the 

incubations containing the test compounds. 

 

5.6. Discussion 

In our current studies, amiodarone and most of its analogues demonstrated a similar 

toxicity pattern towards hepatic mitochondria as described earlier in similar investigations [39, 

40, 43, 114]. As shown in Table 3, amiodarone and its analogues inhibited the function of the 

respiratory chain, impaired mitochondrial β-oxidation and/or uncoupled oxidative 

phosphorylation. Most substances were cytotoxic, exceptions were B2-O-Et and B2-O-Et-N-

dipropyl. 
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Regarding B2-O-Et and the B2-O-Et-NR2 derivatives, the pattern of cytotoxicity (strong 

cytotoxicity of the amiodarone metabolites B2-O-Et-NH-ethyl and B2-O-Et-NH2, lower 

cytotoxicity for amiodarone and very low or lacking cytotoxicity for B2-O-Et) was very similar to 

the toxicity found on alveolar macrophages, as reported in a recent investigation [115]. As 

shown for B2-O-Et-N-dipropyl, uncoupling of the respiratory chain was not sufficient to induce 

cytotoxicity. Incomplete uncoupling (mitochondria are still able to produce some ATP) and 

extramitochondrial production of ATP (e.g. by glycolysis) could serve as explanations for this 

finding. As evidenced e.g. by amiodarone and by the amiodarone metabolites B2-O-Et-NH-ethyl 

and B2-O-Et-NH2, cytotoxicity is associated primarily with substances that affect the function of 

the respiratory chain and/or mitochondrial β-oxidation. Inhibition of the respiratory chain can be 

associated with ROS production [43], which can trigger opening of the mitochondrial 

permeability transition pore, leading to the release of cytochrome c and other substances into 

the cytoplasm and triggering apoptosis and/or necrosis, depending on the ATP content of the 

cell [116, 117]. In combination with the concomitant drop in the cellular ATP content, the results 

in Figure 4 therefore indicate that after 18 hours of incubation most hepatocytes had undergone 

necrosis in the presence of 100µmol/L amiodarone, B2-O-Et-NH-ethyl, B2-O-Et-NH2, B2-O-Et-

propionamide or B2-O-Et-OH. 

 Amiodarone and the amiodarone metabolites B2-O-Et-NH-ethyl and B2-O-NH2 were 

shown to be strong inhibitors of mitochondrial β-oxidation and of the respiratory chain (B2-O-Et-

NH-ethyl and B2-O-NH2) or uncouplers of oxidative phosphorylation (amiodarone). Regarding 

amiodarone, mitochondrial toxicity explains the histological findings in liver biopsies from 

patients [118] and mice [39] with amiodarone-associated hepatotoxicity, revealing micro- and 

macrovesicular accumulation of fat in hepatocytes as a hallmark of their toxicity. Accumulation 

of small lipid droplets in hepatocytes (microvesicular steatosis) is considered to be a 

consequence of the inhibition of β-oxidation in hepatocellular mitochondria [28]. It can therefore 

be predicted that beside amiodarone, also its metabolites B2-O-Et-NH-ethyl, B2-O-Et-NH2 and 

B2-O-Et-OH as well as the other amiodarone analogues synthesized and tested (all of them 

except B2-O-Et and B2-O-Et-N-dipropyl) will most probably be associated with microvesicular 

steatosis. For amiodarone, it has been shown that inhibition of carnitine palmitoyltransferase I 

(CPT I) is a mechanism for the inhibition of β-oxidation [119]. This may also be the case for the 

amiodarone metabolites and analogues, but formal proof is so far lacking.  

For amiodarone, the toxicity found in the current investigations (strong uncoupling 

activities and inhibition of mitochondrial β-oxidation) is in agreement with previous investigations 

[40, 41, 43]. Since the two metabolites B2-O-Et-NH-ethyl and B2-O-NH2 are strong inhibitors of 

the respiratory chain and are both associated with ROS production (which may be a 

consequence of the inhibition of the respiratory chain [43]) and with a remarkable cytotoxicity, it 

appears to be possible that they are at least partially responsible for the hepatic toxicity in 

patients treated with amiodarone. If this were the case, induction of CYP3A4, the main CYP 
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isozyme responsible for amiodarone deethylation [120], may be a risk factor for hepatotoxicity 

associated with amiodarone. While a high dosage and/or high plasma levels of amiodarone are 

considered to represent risk factors for hepatotoxicity associated with this drug [121, 122], 

induction of CYP3A4 has so far not been reported to be a risk factor for amiodarone-associated 

liver injury [38, 123, 124]. Since CYP3A4 inducers (e.g. antiepileptics such as phenytoin, 

phenobarbital and carbamazepine as well as rifampicin) are used quite frequently and since 

hepatotoxicity associated with amiodarone is potentially fatal [38], this question is clinically 

important and should therefore be investigated and answered. 

 As shown in Table 3, the toxicity of the investigated substances showed tendencies but 

no clear correlation with their lipophilicity profile. Inhibition of the respiratory chain (state 3 

respiration), of mitochondrial β-oxidation, ROS production and cytotoxicity were preferentially 

associated with less lipophilic substances. On the other hand, uncoupling of oxidative 

phosphorylation was associated preferentially with substances showing a higher lipophilicity. 

Since all substances investigated showed some mitochondrial toxicity (at least uncoupling of 

oxidative phosphorylation or inhibition of β-oxidation), all of the compounds studied had to be 

able to penetrate the inner mitochondrial membrane. Lack of penetration of the mitochondrial 

membranes is therefore no probable explanation for a low toxicity.  
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Table 3 

Overview of the toxicological properties of amiodarone and analogues and of their effect on hERG 

channels. The compounds are listed with increasing lipophilicity. The graduation was as follows. For 

state3, state4, state4u, β-oxidation and cytotoxicity: + = p<0.05 at 100µmol/L, ++ = p<0.01 at 100µmol/L 

and +++ = p<0.05 at 10µmol/L. For ROS production: + = p<0.05 at 18h, ++ = p<0.05 at 6h and +++ = 

p<0.05 at 4h. For the effect on hERG channels: + = p<0.05 at 10µmol/L, ++ = p<0.01 at 10µmol/L and 

+++ = p<0.001 at 10µmol/L. 

 

 logP
 

State3 State4
 

State4u
 

β-oxida-

tion 
 

ROS 
 

Cytotoxi-

city
1 

Effect on  

hERG 

channels
 

B2-O-Et-NH2 3.83 ++ 0 ND ++ +++ ++ ND 

B2-O-Et-OH 4.18 0 0 0 ++ + ++ ND 

B2-O-Et- Pro-

pionamide 

4.31 +++ +++ ++ +++  + + ND 

B2-O-Et-N-

dimethyl 

4.40 ++ +++ +++ ++ + ++ ND 

B2-O-Et-NH-ethyl 4.47 ++ 0 ND ++ + +++ ND 

B2-O-Acetate 4.69 + ++ +++ ++ +++ + + 

B2-O-Et 4.83 ++ ++  0 0 0 0 

B2-O-Et-N-diethyl 

(Amiodarone) 

4.92 0 +++ +++ ++ + ++ +++ 

B2-O-Et-N-

dipropyl 

5.51 0 ++ +++ 0 0 0 + 

1Cytotoxicity was determined using the data of Figure 4 

 

The lack of a clear relationship between lipophilicity of the substances and their cytotoxicity 

may be explained at least partially by the rather small differences in their lipophilicity. The log P 

values of the substances tested were between 3.83 and 5.51, indicating that all compounds 

investigated are lipophilic, and that the most lipophilic substance (B2-O-Et-N-dipropyl) has an 

approximately 50 times lower solubility in water than the compound with the lowest lipophilicity 

(B2-O-Et-NH2). In addition to their lipophilicity profile, the observed differences in hepatic 

mitochondrial toxicity between the compounds tested may therefore reflect also the composition 

of the side chain attached to B2. This is for instance substantiated by B2-O-Et, which has a 

quite high lipophilicity (log P 4.83), but almost no cytotoxicity. The cytotoxicity increases, 

however, when functional groups are attached to B2-O-Et, e.g. a hydroxyl group or an amino 

group with or without substituents. Regarding the amino groups, alkylation gradually decreases 

its toxicity (as shown by the comparison of the -NH2, -N-dimethyl, -N-diethyl and -N-dipropyl 
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derivatives), but increases the uncoupling activity. The increase in the uncoupling activity 

associated with substituents at the amino group may be explained by the positive inductive 

effect of the alkyl groups, rendering the amino group more basic and therefore better suitable as 

a proton carrier. Due to their better lipid solubility, derivatives with large alkyl substituents at the 

amino group may diffuse better out of the mitochondrial matrix after having been deprotonated 

in the basic environment of the mitochondrial matrix, thereby explaining as well the observed 

tendency for a lower toxicity on the electron transport chain and on β-oxidation. 

Similar to mitochondrial toxicity, also the effect on hERG channels did not show a clear 

relation to the lipophilicity of the compounds tested. Although the four substances investigated 

had a similar lipophilicity profile (log P values between 4.69 and 5.51), their effect on hERG 

channels was quite different. B2-O-Et had no inhibitory effect, whereas B2-O-Acetate and B2-O-

Et-N-dipropyl had a median and B2-O-Et-N-diethyl a strong inhibitory activity on the hERG 

channels. The functional groups may therefore not only be important for the toxicity of these 

substances, but also for their inhibitory activity on the hERG channels. Inhibition of hERG 

channels is associated with prolongation of the refractoriness of cardiac tissue and QT 

prolongation, resulting in an antiarrhythmic (class III) activity [94]. However, in the case of 

overdosage and/or presence of certain risk factors such as electrolyte dysbalances, QT 

prolongation may become excessive and turn into so called torsade de pointes, a specific form 

of ventricular fibrillation which may be fatal [125].   

In conclusion, despite similar lipophilicity profiles, amiodarone and the investigated 

amiodarone metabolites and analogues show large differences in mitochondrial toxicity and 

inhibition of hERG channels, accentuating the importance of the functional groups attached to 

the side chain of B2. Our studies reveal the possibility to detect amiodarone analogues with 

activity against hERG channels but with a lower mitochondrial toxicity than amiodarone, 

potentially offering the possibility to find safer antiarrhythmic drugs. 
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6. hERG channel interaction and cytotoxicity of amiodarone and 

amiodarone analogues 
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6.1. Abstract 

Amiodarone (2-n-butyl-3-[3,5 diiodo-4-diethylaminoethoxybenzoyl]-benzofuran, B2-O-CH2CH2-

N-diethyl, (1)) is an efficient class III antiarrhythmic drug with a broad field of clinical applications 

but with potentially life threatening organ toxicities. In order to better characterize hepatic and 

pulmonary toxicity and to differentiate cytotoxicity from the interaction with the hERG channel, 

we synthesized amiodarone analogues with or without a positively ionizable nitrogen in the 

phenolic side chain. After having studied cytotoxicity using HepG2 (a hepatocyte cell line) and 

A549 cells (a pneumocyte cell line), we studied the interaction of all compounds with the hERG 

channel using pharmacological and in silico methods. Compared to amiodarone, which 

displayed only a weak cytotoxicity, the mono- and bis-desethylated metabolites, the further 

degraded alcohol (B2-O-CH2-CH2-OH), the corresponding acid (B2-O-CH2-COOH) and, finally, 

the newly synthesized B2-O-CH2-CH2-N-pyrrolidine were equally or more toxic than the parent 

compound. On the other hand, structural analogues such as B2-O-CH2-CH2-N-diisopropyl and 

B2-O-CH2-CH2-N-piperidine were significantly less toxic than amiodarone. Cytotoxicity was 

correlated with a drop in the mitochondrial membrane potential and is therefore most probably 

of mitochondrial origin. Pharmacological and in silico investigations concerning the interactions 

of these compounds with the hERG channel revealed that substances carrying a basic nitrogen 

in the side chain displayed a much higher affinity than those lacking such a group. Specifically, 

B2-O-CH2-CH2-N-piperidine and B2-O-CH2-CH2-N-pyrrolidine revealed a higher affinity towards 

hERG channels than amiodarone. Our data reveal the possibility to identify amiodarone 

analogues with maintained pharmacological activity and improved cytotoxicity profiles compared 

to the parent compound. 

 

Key words 
Amiodarone, liver toxicity, hepatic toxicity, hERG channel, class III antiarrhythmics 
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6.2. Introduction 

Efficient and safe pharmacological treatment of cardiac arrhythmias is a difficult challenge. 

One of the most efficient currently used antiarrhythmic drugs is amiodarone (2-n-butyl-3-[3,5 

diiodo-4-diethylaminoethoxybenzoyl]-benzofuran, B2-O-CH2CH2-N-diethyl, (1)), a class III 

antiarrhytmic agent with additional class I and II properties. It blocks human ether-a-go-go 

(hERG) channels, leading to prolongation of the refractoriness and resulting in QT prolongation 

[94]. Amiodarone (see Table 1 for chemical structures) is metabolized via mono-[102] and bis-

desalkylation [103] to the corresponding secondary (B2-O-CH2CH2-NH-ethyl, 2) and primary 

amine (B2-O-CH2CH2-NH2, 3), respectively. The primary amine 3 can subsequently be 

transaminated and oxidized to the corresponding acid (B2-O-CH2-COOH, (5)) or primary alcohol 

(B2-O-CH2CH2-OH, (6)) [103]. 

Amiodarone’s therapeutic use is limited because of its numerous side effects that include 

thyroidal [98], pulmonary [99], ocular [100] and/or liver toxicity [38, 101]. The mechanisms 

leading to amiodarone’s toxicity are not completely understood, but they are assumed to involve 

accumulation of the parent compound as well as metabolites in cells, resulting in cellular 

toxicity, for instance by impairing mitochondrial function. Amiodarone uncouples oxidative 

phosphorylation and inhibits the electron transport chain and ß-oxidation of fatty acids in 

mitochondria [39-41, 43, 126]. 

The most serious non-cardiac side effect of amiodarone is pulmonary toxicity, occurring in 

5-15% of patients treated with this drug. This toxicity is characterized clinically by progressive 

dyspnea and impaired alveolar diffusion of oxygen and, finally, also carbon dioxide, and 

radiologically by interstitial lung damage due to interstitial fibrosis [127-130]. It is possible that 

alveolar macrophages may play a role in pulmonary fibrosis associated with amiodarone [99]. 

Interestingly, Bigler et al. [131] were recently able to show that some modifications of the 

diethyl-amino-ethoxy group of amiodarone reduced its toxicity towards alveolar macrophages. 

In earlier studies, we could show that the substituents attached to the benzofuran ring 

(aliphatic side chain in position 2 and iodinated 4-diethyl-amino-ethoxy-benzoyl chain in position 

3) are responsible for mitochondrial toxicity caused by amiodarone [41, 43]. More recent studies 

focusing on the hepatotoxic profile and the antiarrhythmic effect of amiodarone and amiodarone 

derivatives again revealed the importance of the topology of the side chain attached to the 

bicyclic aromatic template (B2, see Table 1) of amiodarone for both interaction with the hERG 

channel and hepatocellular toxicity [126]. 

Despite these studies, several questions regarding amiodarone and its metabolites and 

derivatives with different compositions of the aliphatic side chain attached to B2 remained 

unanswered. The current study was designed to address following issues: 1. Are amiodarone 

and related derivatives also toxic to cultured pneumocytes and is this toxicity similar to that on 

cultured hepatocytes? 2. Is there a correlation between the physicochemical properties of these 
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compounds and their pharmacological effects and/or cellular toxicity? We therefore synthesized 

and investigated the ethyl ester B2-O-CH2-COO-CH2CH3 (11) of the acid B2-O-CH2-COOH (5), 

as well as two derivatives with either a terminal pyrrolidine (B2-O-CH2CH2-N-pyrrolidine (8)) or 

piperidine (B2-O-CH2CH2-N-piperidine (9)) group, respectively. In addition, we investigated the 

two amines 2 and 3 (two amiodarone metabolites), as well as the bis-isopropyl amine B2-O-

CH2CH2-N-diisopropyl (4), three compounds we had investigated already in a previous study 

[126]. The data of the current investigations could then be compared with those of our previous 

study [126]. 

 

Table 1 
Chemical structures and lipophilicity of amiodarone, amiodarone metabolites and amiodarone 

analogues. LogD was determined using reversed phase HPLC at 37°C as described by 

Braumann [107]. The mobile phase consisted of different mixtures of 5mmol/L phosphate buffer 

pH 7.4 and methanol. N=3 determinations per compound, mean ± SEM.
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O

O

I

I

O

R

 

Number Compound R logD 

1 
B2-O-CH2CH2-N-diethyl 

(amiodarone) 

 

N
 

 

4.92 ± 0.25 

2 B2-O-CH2CH2-NH-ethyl 

 

H
N

 

 

4.47 ± 0.12 

3 B2-O-CH2CH2-NH2 

 

NH2
 

 

3.83 ± 0.10 

4 
B2-O-CH2CH2-N-((C(CH3)2)2 

(B2-O-CH2CH2-N-diisopropyl) 

 

N

 

 

5.51 ± 0.12 

5 B2-O-CH2-COOH 

 

COOH 

 

4.69 ± 0.08 

6 

 

B2-O-CH2CH2-OH 

 

OH
 

 
4.18 ± 0.15 

7 B2-O-CH2CH2-NH-CO-CH2CH3 

 

H
N

O  

 

4.31 ± 0.16 

8 B2-O-CH2CH2-N-pyrrolidine 

 

N
 

 

7.82 ± 0.05 

9 B2-O-CH2CH2-N-piperidine 
N

 

8.04 ± 0.11 

10 B2-O-CH2CH3 

 

 

 

4.83 ± 0.06 

11 B2-O-CH2-COO-CH2CH3 

 

O

O  

 

4.67 ± 0.08 

 =   B2 
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6.3. Materials and Methods 

6.3.1. Amiodarone and Amiodarone Derivatives 

Amiodarone hydrochloride was from Sigma-Aldrich (Buchs, Switzerland). All amiodarone 

analogues were synthesized starting from B2 [104] as shown in Table 1 and as described 

earlier for B2-O-CH2CH2-NH-ethyl (2), B2-O-CH2CH2-NH2 (3), B2-O-CH2CH2-N-diisopropyl (4), 

B2-O-CH2-COOH (5), B2-O-CH2CH2-OH (6), B2-O-CH2CH2-NH-CO-CH2CH3 (7) and B2-O-

CH2CH3 (10) [126] and for B2-O-CH2-COO-CH2CH3 (11) [103]. The remaining two amiodarone 

derivatives were synthesized as follows: 

 

B2-O-CH2CH2-N-piperidine [4-(2-butyl-benzofuran-3-yl)-[3,5-diiodophenyl-4-(2-

piperidinoethoxy)phenyl]-methanone hydrochloride] (9) 

To a mixture of B2 (2g, 3.66mmol) and K2CO3 (3.45g, 25mmol) in toluene:water (2:1v/v, total 

volume: 75mL) heated to 55-60 °C small portions of about 0.2g 1-(2-chlorethyl) piperidine 

monohydrochloride (3.41g, 18.5mmol) were added. After the addition, the temperature was 

risen to reach reflux over 30min. The yellow color of B2 disappeared. After having refluxed the 

reaction mixture for 1 additional hour, the phases were quickly separated using a separation 

funnel at 60°C. The toluene phase was washed three times with 25mL water at this 

temperature, and the organic phase was afterwards evaporated to dryness. The residue was 

suspended in 10mL 5% NH3, and B2-O-Et-NH-ethyl was extracted three times with 15mL 

toluene. The organic phase was separated by means of centrifugation and evaporated to 

dryness under reduced pressure. Then, 2mL 10N HCl and 15mL toluene were added to the 

residue, and the liquids were removed under reduced pressure at 80°C. A white solid residue 

was obtained after three additional treatments with 10mL toluene. The residue was then 

crystallized from toluene and yielded 1.62g (64%) of the target product. Analytically pure (9) 

was obtained by silica gel – low pressure chromatography [(30x5 cm i.d.) and mobile phase: 

methanol: 25% NH3 (99:1 v/v)]. Melting point and NMR, ESI-MS, NMR data of B2-O-Et-N-

piperidine (9) have been reported already in our previous communication [131]. 

 

B2-O-CH2CH2-N-pyrrolidine ([4-(2-butyl-benzofuran-3-yl)-[3,5-diiodophenyl-4-(2-pyrrolidine-1-yl-

ethoxy)phenyl]-methanone hydrochloride] (8) 

B2-O-CH2CH2-N-pyrrolidine (8) (yield 70%) was prepared in the same manner as described for 

9. The ESI-MS, NMR data supporting its chemical structure were published previously [131]. 
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6.3.2. Octanol/water partition coefficient of amiodarone and derivatives 

The octanol/water partition of the compounds synthesized was determined using reversed 

phase HPLC as described by Braumann [132]. HPLC of the substances was performed at 37°C 

using different 5mM phosphate buffer (pH 7.4)/methanol mixtures as an eluant. The 

octanol/water partition of a substance can be calculated based on the retention times obtained 

at different methanol concentrations [107]. 

 

6.3.3. Other chemicals 

All chemicals used were from Sigma–Aldrich (Buchs, Switzerland) except for JC-1, which was 

from Alexis Biochemicals (Lausen, Switzerland). All cell culture media were obtained from Gibco 

(Paisley, UK). The 96-well-plates were from BD Biosciences (Franklin Lakes, NJ).  

 

6.3.4. Cell Lines and Cell Culture 

The hepatoma cell line HepG2 was provided by Professor Dietrich von Schweinitz (University 

Hospital Basel, Switzerland) and HepT1 cells from Professor Torsten Pietsch (University of 

Bonn, Germany). A549 cells were a generous gift from Dr. Juillerat (University Institute of 

Pathology, University Hospital Lausanne). HepG2 cells were cultured in Dulbecco’s modified 

Eagle’s medium (with 2mmol/L GlutaMAX®, 1.0g/L glucose and sodium bicarbonate) 

supplemented with 10% (v/v) inactivated fetal calf serum, 10mM HEPES buffer, pH 7.2, 

100U/mL penicillin/streptomycin and non-essential amino acids. HepT1 cells were grown in 

RPMI supplemented with 10% (v/v) inactivated fetal calf serum, 10mM HEPES buffer, pH 7.2, 

2mM GlutaMAX® (Invitrogen, Basel, Switzerland) and 100U/mL penicillin/streptomycin. The 

A549 cell line was cultured in Dulbecco’s modified Eagles’s medium (with 4mmol/L GlutaMAX®, 

4.5g/L glucose and sodium bicarbonate) supplemented with 10% (v/v) inactivated fetal calf 

serum, 10mM HEPES buffer pH 7.2, nonessential amino acids and 100U/mL 

penicillin/streptomycin. The culture conditions were 5% CO2 and 95% air atmosphere at 37°C. 

Cells were seeded in a density of 70 000 cells/well on a 96-multiwell-plate and let settle over 

night before the treatment was started. 

 

6.3.5. Adenylate kinase release  

The loss of cell membrane integrity results in the release of adenylate kinase (AK), which can 

be quantified using the firefly luciferase system (ToxiLight® BioAssay Kit, Cambrex Bio Science, 

Rockland, ME). After an incubation of 4 or 24 hours, 100µL assay buffer was added to 20µL 

supernatant from cells treated with amiodarone or amiodarone derivates (concentrations 



Mitochondrial toxicity of drugs hERG interactivity and cytotoxicity of amiodarone derivatives 
 
 

 78 

indicated in the Tables and Figures) and the luminescence was measured after 5 minutes of 

incubation. 

 

6.3.6. Reductive capacity of the cells 

The fluorescent dye Alamar BlueTM (AbD Serotec, Oxford, UK) was used for this purpose. 

Proliferating cells cause the change of the oxidized form of blue and non-fluorescent Alamar 

BlueTM (resazurin) to a pink, highly fluorescent and reduced form (resorufin) that can be 

detected using the fluorescence mode (excitation 560nm; emission 590nm) [133]. The dye was 

added to the cells together with the test substances in a final concentration of 10% and the 

fluorescence was measured after 4 and 24 hours. 

 

6.3.7. Mitochondrial membrane potential 

The mitochondrial membrane potential was measured with the dye JC-1 according to Current 

Protocols of Flow Cytometry with minor modifications. HepG2 and A549 cells were harvested by 

trypsinization and adjusted to 105 cells/0.5mL pre-warmed Dulbecco’s medium without phenol 

red containing 1% FCS. The compounds to be tested were then added to the cells and the cells 

incubated for 24h. After the incubation period, JC-1 stock solution (0.25µg/100µL for 100 000 

cells) was added to the incubations and cells were incubated at 37°C in the dark for 10 min. The 

cell suspension was then washed once by adding 1.5 mL PBS and centrifugation at 500 x g for 

4min at room temperature. Cells were resuspended in 0.3mL PBS and analyzed by FACS using 

the following settings: acquisition = max 300 events/sec; FSC/SSC: E-01 – 5.08 (A549: 

6.23)/479 – 1.00; FL1: 400; FL2: 324; compensation: FL2 – 54.4% FL1. 

 

6.3.8. HEK Tet cells expressing hERG channels 

The interaction of the test substances with the hERG channel was examined using HEK Tet 

cells stably expressing this potassium channel. Briefly, a human cardiac plasmid cDNA library 

was prepared from freshly isolated tissue. The hERG alpha subunit PCR product was released 

from the pCR2.1-TOPO vector (Invitrogen, Basel, Switzerland) for ligation into a modified 

pcDNA5/FRT/TO vector (Invitrogen, Basel, Switzerland) with excluded BGH site. Restriction 

analysis and complete sequencing confirmed the correct composition and expression of the 

hERG alpha subunit in the plasmid. HEK Tet cells were transfected with the calciumphosphate 

precipitation method (Invitrogen, Basel, Switzerland). Clones were selected with 200µg/mL 

hygromycin B and 30µg/mL blasticidin (Invitrogen, Basel, Switzerland) and checked back 

electrophysiologically. Using limited dilution, clone HEK Tet hERG S12, which displayed an 

average tail current amplitude of approximately 700-1500pA, was isolated. This clone was 

successfully cultured over 100 passages without detectable loss of current density and was 
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used in the current studies. The cells were generally maintained in HAM/F12 with GlutaMax I 

(GIBCO, Paisley, UK) supplemented with 9% fetal bovine serum (GIBCO, Paisley, UK), 0.9% 

Penicillin/Streptomycin solution (GIBCO, Paisley, UK) and 100µg/mL hygromycin B and 

15µg/mL blasticidin (Invitrogen, Basel, Switzerland). For electrophysiological measurements, 

the cells were seeded onto 35mm sterile culture dishes containing 2mL culture medium and 

1µg/mL tetracycline for induction of channel expression (over night). Confluent clusters of HEK 

cells are electrically coupled. Because responses in distant cells are not adequately voltage 

clamped and because of uncertainties about the extent of coupling, cells were cultured at a 

density enabling single cells to be used for the experiments. 

 

6.3.9. Electrophysiology 

hERG currents were measured by means of the patch-clamp technique in the whole-cell 

configuration as described previously [126]. 

 

6.3.10. Molecular Modeling  

Model building of hERG was performed on a structure of potassium channel KcsA (PDB-code: 

1JVM). Modeling calculations were done on a Dell 670 workstation using the program Moloc 

[134]. An initial C-alpha model of hERG was built by fitting its aligned sequence on the 

potassium channel template C-alpha structure followed by optimization of newly introduced 

loops. Subsequently, a full atom model was generated and newly inserted loops were optimized 

with the rest of the protein kept stationary. Refinement of the full model with manual removal of 

repulsive interactions followed and was divided in three subsequent steps. First, only amino 

acid side chains were allowed to move. In a second step, all atoms except alpha carbons were 

optimized and, finally, all atoms were allowed to move, however, with positional constraints for 

alpha carbons. Quality checks were made with Moloc internal programs. 

 

6.3.11. Statistical Analysis 

Data are presented as mean ± standard error of the mean (SEM) of at least three individual 

experiments. Differences between groups (control and test compound incubations) were 

analyzed by analysis of variance (ANOVA) and Dunnett´s post hoc test was performed if 

ANOVA showed significant differences. A p value ≤ 0.05 was considered to be significant. 
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6.4. Results 

6.4.1. Toxicity on HepG2 cells 

As shown in Figures 1 and 2, the results obtained by two assays used (ToxiLight® and Alamar 

Blue® assays) are qualitatively comparable. Regarding the ToxiLight® assay, the most toxic 

compounds tested were the desethylated amiodarone metabolites 2 and 3, as well as B2-O-

CH2-COOH (5), which were toxic already in a range of 1 to 10µmol/L. Amiodarone, as well as 

the piperidine 9 and the pyrrolidine 8 were less toxic, with cytotoxicity starting only at 

100µmol/L. For the diisopropyl molecule 4 and the ethyl ester of 5 B2-O-CH2-COO-CH2CH3 (11) 

no cytotoxicity could be demonstrated up to 10µmol/L and only a minor toxicity at 100µmol/L. 

Beside the concentration, also the time of exposure had a critical influence on toxicity of the 

individual compounds. For amiodarone (1) and the pyrrolidine analogue 8, an incubation period 

of 12 hours produced clearly more toxic effects compared to 4 hours. 

Interestingly, reductive capacity assessed using the Alamar Blue® Assay increased consistently 

with the duration of the incubation, irrespective of presence or absence of our compounds 

(Figure 2). With this assay, toxic effects could be observed for the desethylated amiodarone 

metabolites 2 and 3, B2-O-CH2-COOH (5) and B2-O-CH2CH2-N-pyrrolidine (8), but only at 

concentrations of 100µmol/L. For amiodarone (1), the diisopropyl analogue 4, the ethylated acid 

11 and the piperidine analogue 9, no toxicity could be demonstrated up to 100µmol/L.  

The effect of amiodarone and amiodarone analogues on the mitochondrial membrane potential 

was comparable to the results obtained by the Alamar Blue® Assay (Table 2). At concentrations 

of 10µmol/L, the mitochondrial membrane potential was significantly decreased only for the 

desethylated amiodarone metabolites 2 and 3, respectively. 
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Figure 1.  

Adenylate kinase release from HepG2 cells treated with amiodarone or amiodarone analogues. B2-O-

CH2CH2-NH-ethyl, B2-O-CH2CH2-NH2, B2-O-CH2-COOH and B2-O-CH2CH2-N-pyrrolidine showed 

cytotoxicity starting at 10µmol/L, amiodarone and B2-O-CH2CH2-N-piperidine starting at 100µmol/L, and 

B2-O-CH2CH2-N-diisopropyl and B2-O-CH2-COO-CH2CH3 no cytotoxicity up to 100µmol/L. Simvastatin 

was used as a positive control. All incubations contained 0.1% DMSO (except medium only). Data are 

presented as means ± SEM of at least four incubations in triplicate. *P<0.05 and **p<0.01 versus control 

incubations containing 0.1% DMSO. 
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Figure 2.  

Inhibition of reductive capacity of HepG2 cells (resazurin reduction test) by amiodarone or amiodarone 

derivatives. B2-O-CH2CH2-NH2 inhibited reductive capacity starting at 10µmol/L, B2-O-CH2CH2-NH-ethyl, 

B2-O-CH2-COOH and B2-O-CH2CH2-N-pyrrolidine at 100µmol/L, and amiodarone, B2-O-CH2CH2-N-

diisopropyl, B2-O-CH2-COO-CH2CH3 and B2-O-CH2CH2-N-piperidine revealed no inhibition up to 

100µmol/L. Simvastatin was used as a positive control. All incubations contained 0.1% DMSO (except 

medium only). Data are presented as means ± SEM of at least four incubations in triplicate. *P<0.05 and 

**p<0.01 versus control incubations containing 0.1% DMSO. 

 
 
 
6.4.2. Toxicity on A549 cells 

Similar to HepG2 cells, the most toxic compounds tested were the two amines 2 and 3 

respectively, with cytotoxicity starting at 10µmol/L. For amiodarone (1), B2-O-CH2-COOH (5) 

and the pyrrolidine derivative 8, cytotoxicity was detected only at 100µmol/L, whereas the 

tertiary amine 4, the esterified acid 11 as well as the piperidine derivative 9 were not toxic up to 

100µmol/L. As found for HepG2 cells, amiodarone (1) and the cyclic pyrrolidine analogue 8 

were clearly more toxic after an incubation period of 12 compared to 4 hours. For the results, 

see Figure 3. 

Regarding reductive capacity (Alamar Blue®), the desethylamine metabolite 2 was toxic already 

at 10µmol/L for 12 h, whereas the primary amine 3 and B2-O-CH2-COOH (5) impaired reductive 
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capacity only at 100µmol/L. For amiodarone (1), the diisopropyl analogue 4, the ethylated acid 

11 and the pyrrolidine 8 as well as the piperidine derivative 9, no toxicity could be demonstrated 

up to 100µmol/L (Figure 4). The results obtained for the mitochondrial membrane potential 

using the dye JC1 were very similar to those determined in HepG2 cells (Table 2). At 

concentrations of 10µmol/L, the mitochondrial membrane potential was significantly decreased 

only by the two desethylated amiodarone metabolites 2 and 3. 
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Figure 3.  

Adenylate kinase release from A549 cells treated with amiodarone or amiodarone derivatives. B2-O-

CH2CH2-NH-ethyl and B2-O-CH2CH2-NH2 showed cytotoxicity starting at 10µmol/L, amiodarone, B2-O-

CH2-COOH and B2-O-CH2CH2-N-pyrrolidine at 100µmol/L, and B2-O-CH2CH2-N-diisopropyl, B2-O-CH2-

COO-CH2CH3 and B2-O-CH2CH2-N-piperidine no cytotoxicity up to 100µmol/L. Simvastatin was used as 

a positive control. All incubations contained 0.1% DMSO (except medium only). Data are presented as 

means ± SEM of at least four incubations in triplicate. *P<0.05 and **p<0.01 versus control incubations 

containing 0.1% DMSO. 
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Figure 4.  

Inhibition of reductive capacity of A549 cells (resazurin reduction test) by amiodarone or amiodarone 

derivatives. B2-O-CH2CH2-NH-ethyl inhibited reductive capacity starting at 10µmol/L, B2-O-CH2CH2-NH2 

and B2-O-CH2-COOH at 100µmol/L, and amiodarone, B2-O-CH2CH2-N-diisopropyl, B2-O-CH2-COO-

CH2CH3, B2-O-CH2CH2-N-pyrrolidine and B2-O-CH2CH2-N-piperidine revealed no inhibition up to 

100µmol/L. Simvastatin was used as a positive control. All incubations contained 0.1% DMSO (except 

medium only). Data are presented as means ± SEM of at least four incubations in triplicate. *P<0.05 and 

**p<0.01 versus control incubations containing 0.1% DMSO. 
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Table 2 

Effects of amiodarone and analogues on mitochondrial membrane potential in HepG2 and A549 cells. 

The mitochondrial membrane potential was determined using the dye JC-1 as described in Methods. The 

concentration of amiodarone and analogues was 10µmol/L. The cells were incubated for 24h with the 

substances indicated. With the exception of control incubations with culture medium only, all incubations 

contained 0.1% DMSO. The values represent means ± SEM of at least five experiments. *P<0.05 and 

**p<0.01 versus control incubations containing 0.1% DMSO. 

 HepG2 A549 

Cell culture medium 67 ± 3.3 87 ± 2.9 

Cell culture medium containing 0.1% DMSO 67 ± 3.5 87 ± 2.9 

B2-O-CH2CH2-N-diethyl (amiodarone) (1) 71 ± 4.1 86 ± 3.2 

B2-O-CH2CH2-NH-ethyl (2) 19 ± 4.9 ** 9 ± 3.9 ** 

B2-O-CH2CH2-NH2 (3) 10 ± 1.8 ** 8 ± 1.3 ** 

B2-O-CH2CH2-N-diisopropyl (4) 61 ± 2.1 89 ± 2.1 

B2-O-CH2-COOH (5) 58 ± 5.0 74 ± 5.5 

B2-O-CH2CH2-N-pyrrolidine (8) 69 ± 3.9 83 ± 3.2 

B2-O-CH2CH2-N-piperidine (9) 60± 3.3 91 ± 1.9 

B2-O-CH2-COO-CH2CH3 (11) 59± 4.1 76 ± 7.4 
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6.4.3. Effects on hERG channels 

Amiodarone and its analogues were investigated for their inhibitory effects on hERG potassium 

channels stably expressed in HEK Tet cells. With the exception of B2-O-CH2CH3 (10) all 

measured compounds interfered with potassium transport by the hERG channels (Figure 5), 

with IC50 values ranging from 0.05µmol/L to 216µmol/L. The IC50 values for amiodarone (1), for  

the two desethylated metabolites 2 and 3, and for the cyclic analogues 8 and 9 were all lower 

than 1µmol/L, whereas those for B2-O-CH2CH2-N-diisopropyl (4) and B2-O-CH2CH2-NH-CO-

CH2CH3 (7) ranged between 1 and 10µmol/L and the values for B2-O-CH2-COOH (5), B2-O-

CH2CH2-OH (6), B2-O-CH2-COO-CH2CH3 (11) and B2-O-CH2CH3 (10) exceeded 10µmol/L or 

were not assessable. Individual traces describing the hERG channels interaction are provided in 

Figure 6. 

 
 
Figure 5.  
Dose-response curves of amiodarone and amiodarone derivatives. Amiodarone, the amiodarone 

metabolites B2-O-CH2CH2-NH-ethyl and B2-O-CH2CH2-NH2, and the analogues B2-O-CH2CH2-N-

pyrrolidine and B2-O-CH2CH2-N-piperidine revealed strong hERG inhibition with IC50 <1µmol/L. B2-O-

CH2CH2-N-diisopropyl and B2-O-CH2CH2-NH-CO-CH2CH3 were medium strong inhibitors (IC50 <1 and 

<10µmol/L), whereas B2-O-CH2-COOH, B2-O-CH2CH2-OH, B2-O-CH2CH3 and B2-O-CH2-COO-CH2CH3 

showed only a weak or no inhibition. Measurements were accomplished in the whole-cell patch-clamp 

configuration at room temperature. Outward currents were activated upon depolarization of the cell 

membrane from -80mV to +20mV for 3 s, whereas partial repolarization to -40mV for 4 s evoked large tail 

currents. At least three cells were recorded per test compound.  
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Figure 6 

Inhibition of the potassium current by B2-O-CH2CH2-N-diethyl (amiodarone, (1)), B2-O-CH2-COO-CH2CH3 

(11), B2-O-CH2CH2-N-diisopropyl (4) and B2-O-CH2CH2-N-piperidine (9). Representative traces of 

potassium currents across hERG channels stably expressed in HEK Tet cells are shown. Measurements 

were accomplished in the whole-cell patch-clamp configuration at room temperature. Outward currents 

were activated upon depolarization of the cell membrane from -80mV to +20mV for 3 s, whereas partial 

repolarization to -40mV for 4 s evoked large tail currents. At least three cells were recorded per test 

compound. The vehicle (0.1% DMSO) had no significant effect on hERG channel activity. In contrast, 

10µmol/L B2-O-Et-N-diethyl (amiodarone, (1)) as well as 10µmol/L B2-O-CH2CH2-N-piperidine (9) 

blocked the hERG channel completely. In comparison, the interaction of 10µmol/L B2-O-CH2-COO-

CH2CH3 (11) as well as 10µmol/L B2-O-CH2CH2-N-diisopropyl (4) with the hERG channel was less 

intense. The upper trace in the individual figures depicts the control incubations (0.1% DMSO) and the 

lower trace the incubations containing the test compounds in 0.1% DMSO. 
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6.4.4. Molecular modelling of hERG inhibitor interactions 

The structure of a tetraethyl ammonium (TEA) inhibited fragment of the KcsA potassium 

channel resembles roughly an amphora and was reported recently [135]. The sequence 

alignment of the hERG protein with the KcsA channel suggests that the relevant part of the 

hERG structure (vestibule and neck of the amphora) are likely to be conserved in both proteins. 

A model of vestibule and selectivity filter of the hERG channel (neck of the amphora) was 

therefore produced using the KcsA structure as a structural template (Figure 7). Amiodarone (1) 

and some of its metabolites and/or analogues were docked manually into the hERG-model such 

that the charged basic nitrogen of 1 could mimic position and function of the ammonium 

nitrogen of TEA in the KcsA structure (Figure 7A, left panel). Access for solvated potassium 

ions to the narrow selectivity filter would be blocked by 1 in the energetically most favored 

inhibitor position. Metabolite B2-O-CH2-COOH (5, Figure 7B), which is lacking a positively 

ionizable nitrogen, but carries a negatively ionizable terminal carboxylate instead, could 

theoretically assume a similar position inside the rather hydrophobic vestibule. However, the 

positively charged diethyl-amino group of 1 is replaced by a shorter side chain in 5 that is 

bearing a terminal negatively ionizable carboxylate. The inversion of charge in the side chain of 

5 leads to dramatically lowered attractive interactions with the channel, most likely due to 

unfavorable electrostatic interferences. The strong affinity of amiodarone (1), amiodarone 

metabolites 2, 3 and some analogs 8, 9 is clearly dependent on a positively ionizable group in 

the side chain (Table 1), while molecules with a neutral or even negatively charged side chain 

display significantly lowered affinities for the hERG channel. 
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Figure 7 

A) Amiodarone (yellow) is docked into the vestibule of a hERG model. Two of the four chains of the 

hERG homo-tetramer are shown in C-alfa representation (green, magenta). The Connolly surface was 

produced with a probe radius of 1.4Å. The selectivity filter cannot be displayed in this representation due 

to its very narrow diameter. A white ball represents a potassium ion in the filter region as found in the 

KscA structure template.[135] 

B) amiodarone derivative 5 (blue) is docked in a hypothetical position similar to the one assumed by 1. 

From the apparent positional similarity of 1 and 5 it can be deduced that the positive charged nitrogen as 

seen in 1 has an attractive effect while the negative charged carboxylate of 5 being in a similar position as 

the amine nitrogen in 1 induces strong repulsive effects. 
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Table 3.  

Overview of the toxicological and pharmacological effects of amiodarone and the amiodarone analogues 

investigated. The graduation was as follows. For lactate dehydrogenase leakage: + = p<0.05 at 

100µmol/L, ++ = p<0.01 at 100µmol/L and +++ = p<0.05 at 10µmol/L. For adenalyte kinase release: + = 

p<0.05 at 100µmol/L, ++ = p<0.01 at 100µmol/L and +++ = p<0.05 at 10µmol/L. For reductive capacity: + 

p<0.05 at 100µmol/L, ++ = p<0.05 at 100µmol/L and +++p<0.01 at 100µmol/L. For mitochondrial 

membrane potential depolarization: + = p<0.05 and ++ = p<0.01 at 10µmol/L in HepG2 and A549 cell 

lines. For lipophilicity: + = logP <4.5, ++ = logP 4.5 – 6, +++ = logP >6. Abbreviations: AK, adenylate 

kinase; ROS, reactive oxygen species; MMP, mitochondrial membrane potential; ND, not determined. 

 

Compound LDH 

release 

(HepG2 

cells)
1
 

AK 

release 

(HepG2 

cells) 

Resazurin 

reduction 

(HepG2 

cells) 

AK 

release 

(A549 

cells) 

Resazurin 

reduction 

(A549 

cells) 

MMP 

depolari

-zation 

IC50 hERG 

channels 

(µmol/L) 

B2-O-CH2CH2-
N-diethyl 
(amiodarone) 
(1) 

++ + 0 + 0 0 0.22 

B2-O-CH2CH2-
NH-ethyl (2) 

+++ +++ + +++ ++ + 0.38 

B2-O-CH2CH2-
NH2 (3) 

++ +++ ++ +++ + + 0.22 

B2-O-CH2CH2-
N-diisopropyl 
(4) 

0 0 0 0 0 0 1.3 

B2-O-CH2-
COOH (5) 

+ +++ + ++ + 0 74 

B2-O-CH2CH2-
OH (6) 

++ ND ND ND ND ND 216 

B2-O-CH2CH2-
NH-CO-CH2CH3 

(7) 

+ ND ND ND ND ND 8.4 

B2-O-CH2CH2-
N-pyrrolidine 
(8) 

ND ++ + + 0 0 0.05 

B2-O-CH2CH2-
N-piperidine (9) 

ND + 0 0 0 0 0.08 

B2-O-CH2CH3 
(10) 

0 ND ND ND ND ND n.a.2 

B2-O-CH2-
COO-CH2CH3 
(11) 

ND 0 0 0 0 0 66 

 
1obtained from Waldhauser et al.[126] 
2n.a.: not accessible (no inhibition of hERG channels up to 100µmol/L, higher concentrations not soluble)) 
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6.5. Discussion 

The results of our studies demonstrate that cytotoxicity found for amiodarone and some of its 

analogues do not necessarily parallel their interaction with the hERG channel (see Table 3 for 

on overview of the results). 

For both cell lines investigated, the desethylated amiodarone metabolites 2 and 3 were more 

toxic than amiodarone itself, a finding of potential clinical importance. Similar observations have 

been reported in previous studies for HepG2 cells [126] and also for alveolar and bronchiolar 

epithelial cells [136]. Since mono- and bis-desethylation of amiodarone are primarily performed 

by CYP3A4 [120, 137], co-administration of CYP3A4 inducers to patients treated with 

amiodarone may enhance its toxicity. However, clinical evidence for this hypothesis is lacking 

so far. 

Our findings are in line with mitochondrial toxicity being associated with amiodarone and some 

of its metabolites or analogues. Several studies have already described hepatic mitochondrial 

toxicity of amiodarone and amiodarone metabolites or analogues in vivo [39] and in vitro [39-41, 

43, 126]. Amiodarone and metabolites appear to target mitochondria also in other organs or 

cells than liver or hepatocytes, for instance in the lung [136, 138, 139] and in blood cells such as 

lymphocytes [140]. It is therefore not surprising that the toxic effects observed in our 

investigations were almost identical in HepG2 and A549 cells. 

Pulmonary toxicity exerted by amiodarone is observed with a reported frequency of 5 to 10% for 

patients treated with this agent [99]. The clinical importance of this adverse drug reaction is 

given by the fact that morbidity is considerable (patients usually present with coughing and 

progressive dyspnoea) and may be lethal, if treatment is not stopped early enough. In 

comparison, symptomatic liver injury appears to be less frequent than pulmonary toxicity, with 1 

to 3% of patients being affected [38]. 

The underlying mechanisms leading to organ damage in patients treated with amiodarone 

are not fully elucidated. Accumulation of phospholipids (phospholipidosis) occurs in most organs 

of patients or animals treated with this drug [141] and is considered to reflect impairment of 

phospholipid breakdown due to inhibition of lysosomal phospholipidases by amiodarone and/or 

its metabolites [142, 143]. Lipophilic, weak bases such as amiodarone and some of its basic 

metabolites or analogues are suited for lysosomal trapping [144] and can thereby lead to 

phospholipidosis. However, the long-term implications of phospholipidosis regarding liver and/or 

lung damage are not clear yet [144]. While phospholipidosis is a dose-dependent, general 

phenomenon, lung and liver damage occur only in a small fraction of patients treated with 

amiodarone, suggesting the necessity of individual risk factors for the manifestation of these 

adverse reactions. 
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Mitochondrial toxicity could well explain steatohepatitis observed in patients treated with 

amiodarone [38, 118], but it is rather difficult to explain the development of pulmonary fibrosis 

by this mechanism. In hamsters treated intratracheally with amiodarone, pulmonary fibrosis was 

observed already after 3 weeks of treatment and was preceded by mitochondrial damage 

(reduced activity of the respiratory chain) and increased expression of transforming growth 

factor (TGF)-β1 [139, 145]. Interestingly, vitamin E prophylaxis could prevent overexpression of 

TGF-β1 and subsequent pulmonary fibrosis but not mitochondrial damage. The possibility 

therefore exists that mitochondrial damage is one of the initial events, eventually associated 

with progression to pulmonary fibrosis. As observed for other drugs causing mitochondrial 

toxicity (e.g. valproic acid) [146], pre-existing mitochondrial damage could represent a risk factor 

organ toxicity. The existence of such risk factors may explain why only a fraction of the patients 

treated with amiodarone develops symptomatic adverse drug reactions. 

Our study demonstrates that the interaction of amiodarone with the hERG channel is 

strongly favored by the presence of a basic nitrogen connected via a flexible linker to an 

aromatic moiety in the molecule. The basic nitrogen appears to be crucial for a tight interaction 

with the protein, since compounds lacking such a basic functionality such as B2-O-CH2-COOH 

(5), B2-O-CH2CH2-OH (6), B2-O-CH2CH3 (10) or B2-O-CH2-COO-CH2CH3 (11) displayed 

significantly higher IC50 values (range 66-216µmol/L) than compounds comprising a charged 

nitrogen (range 0.05-8.4µmol/L). Importantly, cellular toxicity of individual substances did not run 

in parallel with affinity for hERG channel, as clearly shown for B2-O-CH2-COOH (5) that lacks a 

basic nitrogen but is highly cytotoxic. Furthermore, desalkylation of the basic nitrogen of 

amiodarone (1) is associated with increased cytotoxicity, but leaves the affinity of the 

metabolites for the hERG channel unchanged. Most interestingly, the basic piperidine derivative 

9 revealed a low cytotoxicity but a very high affinity for the hERG channel (IC50 0.08µmol/L). As 

also shown for the pyrrolidine derivative 8, cyclization of the ethyl groups attached to the 

nitrogen in the side chain of amiodarone may increase the affinity to the hERG channel, but 

may decrease toxicity. Since metabolism of cyclic compounds in vivo may not be associated 

with the production of N-desalkylated compounds, it can be speculated that such molecules 

may also in vivo be less toxic than amiodarone, but with maintained or even improved 

antiarrhythmic activity compared to amiodarone. 

In conclusion, we can provide quantitative cytotoxicity data for amiodarone, some of its 

key metabolites that were obtained in hepatic and pulmonary cell lines and several analogues. 

The affinity of these compounds to the hERG channel critically depends on the presence of a 

positively ionizable nitrogen in their side chain. Since cytotoxicity and affinity to the hERG 

channel were not correlated, our results suggest the possibility to develop amiodarone 

analogues with possibly retained pharmacological activity but decreased toxicity. 
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7.1. Abstract 

The unexpected occurrence of an idiosyncratic drug reaction (IDR) during late clinical 

trials or after a drug has been released can lead to a severe restriction in its use or failure to 

release/withdrawal. Several attempts have been made to try to predict the potential of drugs to 

cause such reactions. Since evidence has been gathered that an underlying mitochondrial 

dysfunction can be the cause of unexpected drug toxicity, we aimed to prove this hypothesis by 

testing known mitochondrial toxins simvastatin and benzbromarone on dermal fibroblasts from 

patients suffering from a mitochondrial defect. Comparing these cells with dermal fibroblasts 

from healthy patients, we discovered that, although dose-dependent, the overall toxicity after a 

treatment with simvastatin or benzbromarone was not superior, as expected. The test we used 

was the lactate dehydrogenase (LDH) test. As measured with the formazan formation (MTT) 

test, the metabolic acitivity of the cells was reduced at high concentrations of simvastatin and 

benzbromarone. The results between the cell lines were similar. The reactive species (ROS) 

formation increased time-dependently after simvastatin or benzbromarone treatment in all cell 

lines but did not differ between them. As a conclusion, we could not affirm the hypothesis of a 

mitochondrial defect leading to increased unexpected drug toxicity in this cell line. Further 

examinations with a test system of a better suitability have to be considered.  
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7.2. Introduction 

A drug-caused idiosyncratic adverse reaction (IDR) is non-predictable and can be 

caused by many different mechanisms, involving immuno-mediated toxicity or abnormalities in 

biochemical pathways. The common factor combining these mechanisms is that they do not 

involve the pharmacological effect of the drug [147]. IDRs are rare but when occurring, a 

remarkable problem that affects the pharmaceutical industry causing unexpected market 

withdrawals, as an example cerivastatin [148]. Since the IDRs can not be predicted in preclinical 

or clinical trials there is a great interest in finding the underlying mechanism behind them [149].   

 Simvastatin belongs to hydroxymethyl glutaryl coenzyme A (HMG-CoA) reductase 

inhibitors being highly effective in reducing serum cholesterol and low-density lipoprotein 

cholesterol levels. HMG-CoA reductase inhibitors do not only affect hypercholesterolemia, but 

also reduce the risk for coronary heart diseases. In overall, statins are considered to be 

exceptionally safe, but some patients treated with statins suffer under mild, dose-dependent 

muscle symptoms [150]. The most serious adverse effect associated with the statin therapy is 

myopathy progressing sometimes to fatal or non-fatal rhabdomyolysis [148, 151, 152]. Several 

attempts have been made to explain the muscle toxicity of statins. Since statins inhibit the 

formation of mevalonate (precursor of cholesterol) leading to an impaired formation of 

ubiquinone, dolichol and other isoprenoids, there are suggestions that the myotoxicity could be 

caused by the lack or reduced cellular concentration of these substances [153, 154]. As an 

example, ubiquinone is part of the mitochondrial electron transportation chain, and the inhibition 

of its biosynthesis leads to reduced production of ATP in the cells. This has been confirmed for 

simvastatin in vivo [155]. In an in vitro study of Flint et al. was observed, that the toxicity of 

statins on muscle cells was decreased by the addition of mevalonate [156], a fact that could not 

be confirmed in L6 cells in our own study [157]. There are suggestions that an underlying 

mitochondrial disease (MELAS syndrome) may be an important factor leading to a sudden 

rhabdomyolysis after a treatment with simvastatin [158]. Light microscopic changes observed in 

muscle biopsies of patients with statin-associated myopathy were similar to the findings in 

patients with mitochondrial myopathies [59, 60, 159, 160]. There is evidence about biochemical 

and/or genetic abnormalities of proteins or genes involved in skeletal muscle energy 

metabolism in more than 50% of patients associated with myopathy caused by statins [161].  

Simvastatin has been shown to inhibit complex I of the electron transport chain and to 

interfere with mitochondrial calcium homeostasis [162]. Latest in vitro studies indicate that 

lipophilic statins cerivastatin, fluvastatin, simvastatin and atorvastatin are mitochondrial toxins 

causing apoptosis or necrosis of rat skeletal muscle cells, a fact that could explain myotoxicity 

[157]. 
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Benzbromarone is a uricosuric agent that reduces the proximal tubular reabsorption of 

uric acid [163]. Benzbromarone has been associated with hepatic injury. Its hepatotoxic effect 

can at least partly be explained by its ability to cause mitochondrial toxicity [43]. 

Lately, mitochondria have been recognized to play an important role in hepatotoxic 

processes [164]. Mitochondria contain several metabolic pathways responsible for the cellular 

energy production that makes them a vulnerable target for drug-induced toxicity [165]. One of 

the newest attempts to explain an idiosyncratic drug reaction involves the mitochondrial 

abnormalities as a predisposing factor for sudden drug toxicity [9]. This explanation is supported 

by the fact that many of the drugs that have been implicated to have caused an IDR can impair 

mitochondrial function. Evidence has been gathered in an in vivo study with Sod2+/- mice (an 

animal model with a defect in the mitochondrial superoxide dismutase 2 protein encoding 

detoxication of radicals). These mice developed increased mitochondrial damage in comparison 

to wild-type mice after a long-term treatment with low doses of nimesulide, a COX-2 inhibitor 

associated with IDR [166]. 

To provide further evidence for this hypothesis, we studied the overall toxicity of different 

concentrations of simvastatin and benzbromarone on dermal fibroblasts obtained from patients 

suffering under a mitochondrial disease [ST cells: An intensive defect on very long chain acyl-

CoA dehydrogenase (VLCAD), BL cells: a defect in carnitine palmitoyltransferase 1 (CPT1)] in 

comparison to dermal fibroblasts obtained from healthy patients (control I and II cell lines). 

Furthermore, we examined the production of reactive oxygen species after a treatment with 

simvastatin and benzbromarone.  

 

7.3. Materials and methods 

7.3.1. Reagents  

All chemicals were purchased from Sigma-Aldrich (Buchs, Switzerland) and were of best 

quality available when not otherwise stated. Simvastatin lactone was converted into its active 

form as described earlier [167]. All cell culture media, all supplements and fetal calf serum were 

from Gibco (Paisley, UK). The 96-well-plates and the 12-well-plates were purchased from 

Beckton Dickinson (Franklin Lakes, NJ, USA). 

 

7.3.2. Cell culture 

The control human fibroblast cell lines I and II from biopsies of healthy patients were a 

generous gift from Friedel Wenzel from the Department for Medical Genetics (University 

Children’s Hospital Basel). The fibroblast cell line with a defect in VLCAD and the fibroblast cell 

line with the defect in Cpt1 were received from diagnosed patients from the University Hospital 
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Zurich. Fibroblasts were cultured in Dulbecco’s modified Eagle’s medium (with 2mmol/L 

GlutaMAX®, 1.0g/L glucose and sodium bicarbonate) supplemented with 10% (v/v) inactivated 

fetal calf serum, 10mM HEPES buffer, pH 7.2, 100U/mL penicillin/streptomycin and non-

essential amino acids. Fibroblasts were seeded on a 96-well-plate in a density of 5000 cells/well 

one day before the experiment was started. Approx. 6 hours prior to the start of the incubation 

with the test substances and during the incubation and the experiment, a starvation medium 

containing no glucose or FCS but 5µmol/L BSA-Na-palmitate was used to force the cells to 

undergo fatty acid metabolism.   

 

7.3.3. Cell viability  

The enzymatic activity of lactate dehydrogenase (LDH) in the medium was measured 

spectrophotometrically at λ340 nm after the method of Vassault et al. [69]. LDH catalyses the 

oxidation of NADH during the pyruvate-lactate transformation. LDH leakage from the cells 

treated for 24 hours with the test compounds was compared to the LDH leakage of cells lysed 

with the detergent Triton X-100 (0.8% w/v). The activity in the supernatant of lysed cells was set 

at 100%. 

 
7.3.4. Colorimetric tetrazolium measurement (MTT assay) 

The metabolic activity of the fibroblasts was measured after the method of Mosmann et 

al. [168]. After an incubation time of 12 or 24 hours with simvastatin or benzbromarone, sterile 

filtered MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide, 5mg/mL dissolved in 

PBS) was added to the cells in a final concentration of 10%. MTT is metabolised by living cells 

resulting in the formation of blue formazan. After 4 hours, the medium was removed and 200µL 

1% SDS was added to solubilise the cells. The plates were shaked for 20 minutes after which 

the colour intensity reflecting cell growth condition was determined by reading optical densities 

at 550nm (L1) and at 620nm (L2) spectrophotometrically (Spectrophotometer: SofMAXPro 4.5).  

 

7.3.5. Measurement of reactive oxygen species (ROS) 

Confluent cultures of fibroblasts were simultaneously exposed to test compounds and to 

dichlorofluorescine diacetate  (DCFH-DA) dissolved in ethanol (final concentration 5µmol/L) and 

incubated for 24, 48 and 72 hours [169]. The fluorescence was measured using a microtiter 

plate reader (HTS 700 Plus Bio Assay Reader, Perkin Elmer, Buckinhamshire, UK) in 

incubations containing cells and exposure medium at an excitation wavelength of 485nm and an 

emission wavelength of 535nm.  
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7.4. Results 

7.4.1. LDH leakage from the cells  

LDH leaks to the supernatant from the cells when the cell membrane integrity is 

disturbed. In simvastatin treated cells, the absorbance measured and compared to the 1% 

DMSO treated cells was significant for both control I and II cells and for the ST and BL cells at 

concentrations 100 and 200µmol/L, as well as at 1mmol/L. There were no differences in the 

toxicity pattern between the cell lines (Fig.1). 
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Figure 1. LDH leakage from fibroblasts after a 24-hour treatment with simvastatin. (A) ST and BL cells in 

comparison to control I cells. (B) ST and BL cells in comparison to control II cells. Data are presented as 

mean ± SEM of at least five independent experiments. *p<0.05 versus 1% DMSO within the cell line, 

**p<0.01 versus 1% DMSO within the cell line.  
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As shown in figure 2, after 24 hours, benzbromarone did not show significant toxicity 

towards the control I cells. For control II cells as well as for the ST and BL cells, the highest 

concentrations 50 and 100µmol/L caused a significant leakage of LDH into the cytoplasm.  

 

Figure 2. LDH leakage from fibroblasts after a 24-hour treatment with benzbromarone. (A) ST and BL 

cells in comparison to control I cells. (B) ST and BL cells in comparison to control II cells. Data are 

presented as mean ± SEM of at least four independent experiments. *p<0.05 versus 1% DMSO within the 

cell line, **p<0.01 versus 1% DMSO within the cell line.  

 
 
7.4.2. Metabolic activity of the cells 

Metabolically active cells are able to convert the MTT dye from its yellow water-soluble 

tetrazolium salt to its water-insoluble dark blue formazan by reductive cleavage of its tetrazolium 

ring [168, 170]. The cellular mechanisms involved in this reaction are not completely understood 

but there are suggestions of the participation of the mitochondrial succinate dehydrogenase 

system [171]. After 24 hours and for all cell lines, a significant reduction of the formazan 

formation was measured in the incubations containing 100 and 200µmol/L and 1mmol/L 

simvastatin (Table 1).  

A B 

Tot
al 

to
xic

ity

No 
tre

at
m

en
t

co
nt

ro
l D

M
SO 1

%

Ben
zb

ro
m

ar
on

e 
0.

1µ
m

ol/
L

Ben
zb

ro
m

ar
on

e 
0.

5µ
m

ol/
L

Ben
zb

ro
m

ar
on

e 
1µ

m
ol/

L

Ben
zb

ro
m

ar
on

e 
5µ

m
ol/

L

Ben
zb

ro
m

ar
on

e 
10

µm
ol/

L

Ben
zb

ro
m

ar
on

e 
20

µm
ol/

L

Ben
zb

ro
m

ar
on

e 
50

µm
ol/

L

Ben
zb

ro
m

ar
on

e 
10

0µ
m

ol/
L

LD
H

 a
ct

iv
ity

 (
%

 o
f t

ot
al

) 

20

40

60

80

100

120

Control I cells 
ST 
BL ** *

* **

Tot
al 

to
xic

ity

No 
tre

at
m

en
t

co
nt

ro
l D

M
SO 1

%

Ben
zb

ro
m

ar
on

e 
0.

1µ
m

ol/
L

Ben
zb

ro
m

ar
on

e 
0.

5µ
m

ol/
L

Ben
zb

ro
m

ar
on

e 
1µ

m
ol/

L

Ben
zb

ro
m

ar
on

e 
5µ

m
ol/

L

Ben
zb

ro
m

ar
on

e 
10

µm
ol/

L

Ben
zb

ro
m

ar
on

e 
20

µm
ol/

L

Ben
zb

ro
m

ar
on

e 
50

µm
ol/

L

Ben
zb

ro
m

ar
on

e 
10

0µ
m

ol/
L

LD
H

 a
ct

iv
ity

 (
%

 o
f t

ot
al

)
0

20

40

60

80

100

120

Control II cells 
ST 
BL 

**
*

*
**

**

*



Mitochondrial toxicity of drugs  Unexpected toxicity of benzbromarone and simvastatin 
 
 

 101 

Table 1. Formazan formation in simvastatin treated fibroblasts. MTT is converted to blue formazan when 

incubated with metabolically active cells. 100 and 200 µmol/L, and 1mmol/L simvastatin inhibited the cells 

significantly from their metabolic activity after 24 hours of treatment. Results are shown as mean ± SEM 

of at least 4 independent measurements. 

 

 

Formazan formation after a 24-hour treatment with simvastatin 

(in % of control) 

 Control I cells Control II cells ST cells BL cells 

     

No treatment 115 ± 4.7 97 ± 10.7 16 ± 8.7 92 ± 11.7 

     

control DMSO 1% 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0 

     

Simvastatin 
1µmol/L 

118 ± 1.1 106 ± 12.3 125 ± 10.6 101 ± 10.2 

     

Simvastatin 
10µmol/L 

124 ± 3.3 115 ± 12.8 122 ± 10.5 121 ± 14.6 

     

Simvastatin 
25µmol/L 

120 ± 5.3 115 ± 10.2 115 ± 8.6 105 ± 12.6 

     

Simvastatin 
50µmol/L 

111 ± 8.5 88 ± 14.0 86 ± 14.16 96 ± 6.74 

     

Simvastatin 
100µmol/L 

51 ± 12.2  * 40 ± 2.8  ** 38 ± 9.2  * 47 ± 7.6  * 

     

Simvastatin 
200µmol/L 

35 ± 1.9  ** 36 ± 6.6  ** 39 ± 6.4  * 30 ± 6.5  ** 

     

Simvastatin 
1mmol/L 

33 ± 8.1  ** 32 ± 4.4  ** 38 ± 7.4  * 32 ± 9.1  ** 

 

As seen in Table 2, simvastatin treatment for 48 hours resulted in a reduced metabolic 

activity in cells treated with concentrations higher then 50 µmol/L. This reduction was significant 

for 100 µmol/L simvastatin in control II and BL cells and in all cell lines for 200 µmol/L and 1 

mmol/L. 
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Table 2. Effects of different concentrations of simvastatin on the formazan formation from MTT in dermal 

fibroblasts after an incubation time of 48 hours. The reduction of the metabolic activity of the cells 

remained but was significant at a concentration of 50 µmol/L for only control II and ST cells and at a 

concentration of 100 µmol/L and 1 mmol/L for all cell lines. Means ± SEM of at least 4 independent 

measurements. 

 

 

Formazan formation after a 48-hour treatment with simvastatin 

(in % of control) 

 Control I cells Control II cells ST cells BL cells 

     

No treatment 115 ± 10.5 123 ± 8.2 137 ± 12.8 130 ± 29.4 

     

control DMSO 1% 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0 

     

     

Simvastatin  
1µmol/ 

94 ± 15.1 123 ± 7.5 109 ± 5.2 123 ± 17.5 

     

Simvastatin  
10µmol/L 

104 ± 12.8 111 ± 8.0 113 ± 10.3 97 ± 16.3 

     

Simvastatin  
25µmol/L 

85 ± 11.4 111 ± 28.0 80 ± 5.8 125 ± 22.0 

     

Simvastatin  
50µmol/L 

73 ± 7.0 94 ± 9.2 70 ± 3.8 46 ± 9.5 

     

Simvastatin  
100µmol/L 

47 ± 13.0 52 ± 12.0  * 46 ± 9.4  * 35 ± 6.6 

     

Simvastatin  
200µmol/L 

51 ± 7.6  * 26 ± 6.3  * 48 ± 10.6  * 25 ± 6.8  * 

     

Simvastatin  
1mmol/L 

54 ± 14.6  * 38 ± 5.6  * 34 ± 5.0  ** 29 ± 7.4  * 

 

Treatment of the fibroblasts with different concentrations of benzbromarone resulted in 

no significant reduction of the formazan formation after 24 hours of incubation, although a 

colour change could be observed for the highest concentration (50µmol/L, Table 3). After 48 

hours, no significant changes could be observed, either (results not shown).  
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Table 3. The colour change from blue to red after a 24-hour-incubation with benzbromarone. There was a 

detectable but not statistically significant color change in the wells with 50µmol/L benzbromarone –treated 

fibroblasts. The results represent means ± SEM of at least 4 independent measurements. 

 

 

Formazan formation after a 24-hour treatment with benzbromarone 

(in % of control) 

 Control I cells Control II cells ST cells BL cells 

     

No treatment 103 ± 6.0 95 ± 4.8 98 ± 2.8 104 ± 3.9 

     

control DMSO 1% 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0 

     

     

Benzbromarone 
0.1µmol/ 

104 ± 6.7 102 ± 6.1 127 ± 31.8 118 ± 14.4 

     

Benzbromarone 
0.5µmol/L 

111 ± 3.9 103 ± 8.3 99 ± 5.2 106 ± 5.1 

     

Benzbromarone 
1.0µmol/L 

102 ± 6.7 115 ± 6.3 99 ± 4.4 100 ± 8.5 

     

Benzbromarone 
5µmol/L 

119 ± 1.7 128 ± 6.9 113 ± 9.4 124 ± 3.9 

     

Benzbromarone 
10µmol/L 

130 ± 9.5 132 ± 11.6 111 ± 10.2 151 ± 6.1 

     

Benzbromarone 
20µmol/L 

135 ± 10.3 137 ± 26.6 132 ± 2.2 141 ± 24.4 

     

Benzbromarone 
50µmol/L 

69 ± 19.7 70 ± 17.7 51 ± 18.4 61 ± 30.7 

 

7.4.3. ROS formation  

Under certain conditions, mitochondria can produce ROS. This happens especially when 

the electron transportation is uncoupled from the production of ATP in the respiratory chain 

located in the inner mitochondrial membrane [172]. Since ROS production is claimed to play an 

important role in the mitochondrial mediated cell death, and since both benzbromarone and 

simvastatin have been shown to impair the mitochondrial oxidative metabolism [43] [157], the 

ROS production resulting from the treatment with the test substances was assayed. Especially 

benzbromarone’s uncoupling properties in liver mitochondria refer to an increased electron 

leakage from the respiratory chain that can lead to increased ROS production  
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 As the figures 3 and 4 show, in all cell lines, a 24-hour incubation with simvastatin did 

not result in significant ROS production. The ROS production in the control I and BL cell lines 

caused by a 48-hour simvastatin treatment was not statistically significant in comparison to the 

control 1% DMSO treated cells even at the highest concentration. In ST cells, 200µmol/L and 

1mmol/L simvastatin caused a significant reactice oxygen species formation in comparison to 

the control treated cells. Surprinsingly, also the fluorescence measured for 200µmol/L and 

1mmol/L simvastatin in the control II cell line was statistically different in comparison to the 

control 1% DMSO treated cells. The 72-hour incubation resulted in a significant ROS production 

only at the highest simvastatin concentration for control I cells. For the other cell lines cells, 

200µmol/L and 1mmol/L simvastatin caused a significant increase of the ROS production in 

comparison to the control 1% DMSO treated fibroblasts. The pattern showing an increased 

ROS production during the incremental time course was for all cell lines the same.  

 

 

 

Figure 3. ROS production in dermal fibroblast control cell lines I and II after a treatment with simvastatin. 

The reactive oxygen species formation in simvastatin treated control I cells in comparison to control 1% 

DMSO treated cells was significant for 1mmol/L after 72 hours of treatment (see panel A). As illustrated in 

panel B, ROS formation in control II fibroblast cell line increased time-dependently and was statistically 

significant for 200µmol/L and 1mmol/L simvastatin after 48 hours incubation. The results represent means 

± SEM of at least 3 independent measurements in triplicate.  
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Figure 4. ROS production in ST and BL cell lines (simvastatin treatment). After 48 hours, the 1mmol/L 

simvastatin concentration caused a significant increase of the fluorescence measured in ST cells (panel 

A) in comparison to 1% DMSO. The 72-hour incubation resulted in a significant fluorescence for 

200µmol/L and 1mmol/L simvastatin treated ST cells. For BL cells (panel B), the fluorescence measured 

increased during the time course but was statistically significant only for the highest simvastatin 

concentration (1mmol/L) after a 72-hour incubation. Means ± SEM of at least 3 independent 

measurements in triplicate.  

 

The benzbromarone treatment in control I cells did not cause a remarkable increase in 

the production of ROS. Still, at the highest concentration (100µmol/L) benzbromarone, the 

measured fluorescence was statistically different in comparison to control 1% DMSO treatment. 

In control II cells, ROS production was statistically significant for the highest concentration 

benzbromarone already after 24 hours. These results are shown in figure 5.  
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Figure 5. Production of ROS in benzbromarone-treated control I and II cells. In control I cells (panel A), 

only the highest concentration benzbromarone (100µmol/L) caused a statistically significant ROS 

formation in comparison to control 1% DMSO that was observed after 72 hours whereas for control II 

cells (see panel B), this concentration was significant already after 24 hours of incubation. Means ± SEM 

of at least 3 independent measurements in triplicate.  

 

Benzbromarone-treated ST and BL cells did not produce more ROS than the control cell 

lines (figure 6). ST cells showed no significant increase of ROS production in comparison to 

control 1% DMSO treatment and BL cells only at the highest concentration (100µmol/L) after 48 

hours of treatment. 
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Figure 6. ROS production in benzbromarone-treated ST and BL cells (benzbromarone treatment). As 

shown in panel A, benzbromarone did not cause significant production of ROS even after 72 hours in ST 

cells. In BL cells, 100 µmol/L benzbromarone was significant after 48 hours. The results represent means 

of at least 3 independent measurements in triplicate. 
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7.5. Discussion 

Our aim was to study the human dermal fibroblasts with mitochondrial defects in Cpt1 and 

VLCAD in respect for their possibly increased sensitivity towards mitochondrial toxins 

simvastatin and benzbromarone in comparison to “healthy” human dermal fibroblasts. Our 

interest was the overall toxicity of the compounds and the redox state of the cells, since both 

substances are mitochondrial toxins that inhibit the mitochondrial respiratory chain and 

therefore increase the production of reactive oxygen species in the cells [43, 157]. We found, 

that the administration of simvastatin and benzbromarone increased oxidative stress dose-

dependently in all cell lines. Since this increase was similar in all cell lines it did not refer to an 

increased sensitivity of the fibroblasts suffering from the mitochondrial defect.  

The reactive oxygen species formation in the simvastatin treated cells started at the 

concentration 25µmol/L and was rising, for all cell lines. The tendency for an increased ROS 

production in the benzbromarone-treated cells started at 5µmol/L and was rising, although this 

increase was less obvious in the control I and ST cell lines. This was before the toxicity (for all 

cell lines) was shown in LDH or MTT test referring to the fact that the toxicity could partly be 

caused by the increased radical production in the cells.   

The toxic effects of simvastatin and benzbromarone in human dermal fibroblast cell lines 

measured with LDH and MTT assays were roughly comparable with each other referring to the 

fact that at least the 3 highest concentrations simvastatin and benzbromarone cause toxicity 

towards human dermal fibroblasts. The MTT assay seemed to be less sensitive than the LDH 

assay. This can be explained by the fact that the enzyme lactate dehydrogenase is actively 

leaking to the cytoplasm already at lower concentrations whereas the succinate dehydrogenase 

system can still be able to convert MTT into its spectophotometrically detectable form [171].  

VLDAC and Cpt1 deficiencies are so-called inherited fatty acid oxidation (FAO) disorders. 

FAO is essential for the energy supply in situations that require glucose sparing, for example 

during major exercise or fasting. The first and rate-limiting step leading to mitochondrial β-

oxidation of very long chain fatty acids with chain lengths C14-C20 is catalyzed by the VLCAD 

enzyme. Long-chain fatty acids are imported from the outer mitochondrial membrane into the 

mitochondrial matrix by the carnitine palmitoyltransferase (Cpt) system that consists of two 

distinguished proteins Cpt1 and Cpt2. Cpt1 in the outer mitochondrial membrane catalyzes the 

formation of acylcarnitine from carnitine and acyl-CoA and Cpt2 in the inner mitochondrial 

membrane the formation of acyl-CoA from acylcarnitine and CoA [152]. There are two tissue-

specific types of Cpt1 isoforms, the so-called muscle and liver Cpt1:s [173, 174]. The liver type 

Cpt1 is expressed in fibroblasts [175] but not in skeletal muscle [176]. This can be the reason 
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why simvastatins muscle toxicity did not become apparent in dermal fibroblasts with the defect 

in the liver type Cpt1.   

Phillips et al. [59] reported from four patients receiving statin therapy that developed 

myopathy without elevated creatine kinase levels. Muscle biopsies of these patients showed 

evidence of mitochondrial dysfunction including ragged red fibers and increased lipid stores. 

The histochemical studies suggested a defect in mitochondrial respiratory chain function. This 

assumption is only hypothetical, other suggestions include among others the effect of the 

cholesterol reduction in biological membranes [177-179] during statin therapy or the role of 

mevalonate inhibition by the statins leading to decreased synthesis of ubiquinone (coenzyme 

Q10) that is an antioxidant and a membrane stabilizer and is used in the electron transport 

chain [180]. In a study of Laaksonen et al. [181] was reported that simvastatin treatment did not 

lead to decreased ubiquinone concentration in comparison to placebo treated control patients 

as well as in another study of Blake et al. [182] about pravastatins and atorvastatins decreasing 

effects on ubiquinone levels after a 4-week-therapy. It is apparent that there are a lot of 

questions that have not yet been answered about the mechanisms behind the statin-caused 

myotoxicity. 

 Mitochondria in different cells differ in structure and function and the mitochondrial DNA 

(mtDNA) is very complex [1]. The unexpected toxic effects of simvastatin and benzbromaron 

affect muscle and liver tissue, respectively. In our study, we tried to re-establish this toxicity in 

dermal fibroblasts received from patient biopsies. The toxicity observed in our experiments was 

not higher in the fibroblasts suffering from mitochondrial defects than in control fibroblasts. 

Among other assumptions, this leads us to hesitate if the test system chosen for these studies 

was sensitive enough to re-establish the toxicity. It is possible, that fibroblasts are able to 

survive mitochondrial distraction by using other pathways as a source of energy, such as 

glycolysis.  

As previously mentioned, the mitochondrial defect leading to unexpected myotoxicity or 

hepatotoxicity is not established. Therefore, more research has to be done to reveal the 

mitochondrial conditions of the patients suffering from sudden and unexpected toxic drug 

reactions.  
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8. Conclusions and Outlook 

Understanding mitochondrial functions is important for the pharmacological and 

especially toxicological aspects in drug development. Mitochondria play an important role in cell 

survival and maintenance of cellular homeostasis and, at the same time, in triggering cell death 

[1]. Therefore, the mitochondrial involvement in the most drug adverse reactions is unevitable. A 

cascade of transactions leading to the apoptosis or necrosis of a cell takes place in 

mitochondria, affecting numerous biochemical events in the cell. A pivotal role here plays the 

loss of the integrity of the outer mitochondrial membrane. There are at least two ways to 

provoke it, depending on the cell type: First of all, the Bcl-2 family-regulated MOMP and 

secondly, the Ca2+- and/or ROS-regulated mPT. Depending on the number of mitochondria 

affected, the cell concerned either survives or dies. Drugs can affect the mitochondrial 

mechanisms in many ways. As discussed in this thesis, the mitochondria can be impaired by 

several ways, e.g. by inhibition of the electron transport chain, uncoupling of the oxidative 

phosphorylation, affection of the mitochondrial permeability, inhibition of the fatty acid 

metabolism or mitochondrial DNA synthesis, or by oxidation of the mtDNA.  

The main focus of this thesis considers amiodarone, an efficient antiarrhytmic agent with 

several side effects, possibly caused by the mechanism of mitochondrial toxicity [41, 43, 126]. 

Amiodarone is a representative example of a drug that can cause serious problems for a 

patient, beneath its valuable pharmacological effect. Many drugs have to be withdrawn form the 

market because of their side effects, that are discovered only after continuous use, as an 

example benzbromarone [183].  

 Chemical structure of a compound builds up the basics for the development of a new 

drug. Since pharmacological and toxicological forecasts can be made by comparing the 

chemical structures of new substances with known compounds, it is important to study the 

structure-effect-relationship of a new molecule. New in silico approaches make these forecasts 

easier, although there is no such thing as a model that matches the physiological reality 

perfectly. When studying the physiological environment of a protein, there are numerous factors 

to be considered, among others its stereotypical configuration. Since new drug molecules tend 

to be complicated in their structure it is almost impossible to avoid missing a position or a 

twisted ancle that already changes the relationship between the target and the substrate. New 

programmes are developed that match the requirements even better but the question remains if 

these are as confidential as needed. In this thesis, certain conclusions can be made considering 

amiodarone’s structure-(toxic) effect-relationship. In the first study, where the investigated 

derivatives and amiodarone were studied more in detail, large differences in mitochondrial 

toxicity and inhibition of hERG channels were observed, despite similar lipophilicity profiles. This 

fact led us to assume, that the functional groups attached to the side chain of B2 were decisive 
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for the effects, not the lipophilic properties, a fact that maybe helps in the future development of 

antiarrhytmic drugs. In the second study considering amiodarone, it was ascertained, that the 

pulmonary toxicity of amiodarone is similar to the hepatic toxicity, and that the loss of the 

nitrogen in the side chain of amiodarone molecule decreases the affinity to the hERG channel, 

whereas cyclisation of the alkyl groups attached to this nitrogen renders the substances less 

toxic with a small drop in the affinity to the hERG channel.  

The test system we chose for studying the pharmacologic effect of amiodarone and its 

derivatives, the inhibition of hERG channels, is associated with prolongation of the 

refractoriness of cardiac tissue and QT prolongation, which results in an antiarrhythmic (class 

III) activity [94]. However, a reduction in hERG currents due to either genetic defects or adverse 

drug effects can lead to hereditary or acquired long QT syndromes characterized by action 

potential prolongation, lengthening of the QT interval on the surface ECG, and an increased risk 

for "torsade de pointes" arrhythmias and sudden death [125]. This undesirable side effect of 

non-antiarrhythmic compounds has prompted the withdrawal of several blockbuster drugs from 

the market. Studies on the properties of the high-affinity drug binding site in hERG and its 

interaction with drug molecules have provided the basis for more refined approaches in drug 

design, safety pharmacology and in silico modelling [184]. It is important, though, to keep in 

mind, that the hERG current blockade is recognized not only as class III antiarrhytmic 

characteristics but also as a severe side effect of drugs.  

 The IDRs build up a very specific part of all drug adverse effects reported. The most 

difficult fact considering them is their unpredictability. Since the mechanisms behind these 

severe side effects are not completely understood, it is mostly not possible to detect them 

before a drug is introduced to the market. A great interest in studying this mechanism was our 

driving force when testing our hypothesis of an underlying mitochondrial defect behind the IDRs. 

Although evidence about the mitochondria involving the emergence of an IDR is already 

established [9], it is not an easy task to find a proper test system suitable for the studies. In our 

studies, there was no connection between a mitochondrial defect in VLCAD or in Cpt1 and the 

increased toxicity caused by benzbromarone and simvastatin in dermal fibroblasts. Therefore, 

we can not offer any further explanations considering this relationship but the assumptions, that 

our test system was not the right one. Since both simvastatin and benzbromarone did not have 

as intense an effect on dermal fibroblasts as on muscle or hepatic cells [43, 157], respectively, it 

can be supposed, that fibroblasts possess properties that help them defeat the toxicity. 

Unfortunately, we have to admit not bringing any further explanations considering the IDRs, 

then our speculations about mitochondrial defects behind these unwanted effects.  

There are suggestions that IDRs are due to reactive metabolites of the drug involved. 

However, many drugs that form reactive metabolites have not been associated with IDRs. 

Drugs that cause some degree of cell stress or damage may be more likely to lead to a high 

incidence of IDRs. However, a screen of the effects of drugs known to be associated with an 
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IDR using expression genomics and proteomics may reveal a pattern of mRNA and protein 

expression that predict which drug will cause a high incidence of an IDR. IDRs are difficult to 

detect in vivo because they are just as idiosyncratic in animals as they are in humans. If the 

expression of certain proteins in animals treated with a drug candidate could be used as a 

screening method to predict a drug’s potential to cause a high incidence of idiosyncratic drug 

reactions, it would greatly facilitate the development of safer drugs [185]. 

 Toxicity of drugs still remains a problem to be defeated, although numerous researchers 

focus on finding the mechanisms behind them and the suitable test system to discover them. 

This thesis sheds some light in the trials of replacing amiodarone with a similarly effective but 

less toxic compound. Hopes are rising, that, some day, these findings lead to the development 

of possibly safer antiarrhytmic drugs. It could, though, not bring any further evidence in the 

relationship between unexpected drug adverse reations and mitochondrial abnormalities. 

Further studies in this field have to be conducted to reveal the cellular events leading to non-

predictable toxicity of drugs. 
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