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1 SUMMARY 

The control of electrical activity in the brain is important for all brain-related behavior, 

including attention, arousal, action, but also drowsiness and sleep. Voltage-gated ion channels 

are central to all these aspects of neuronal excitability. Accordingly, malfunction of ion 

channels, be it inherited or acquired, tremendously compromises brain function, and leads to 

states of epilepsy, movement disorders, sensory deficits and neuropsychiatric disease. 

Voltage-gated ion channels form a large class of pore-forming, transmembrane proteins, 

and include channels selective for the major ions Na+, Ca2+, K+, Cl-, and HCO3
-. This family 

also includes ion channels permeable for several ions. Amongst these, the hyperpolarization-

activated cyclic nucleotide-gated cation-nonselective (HCN) channels occupy a unique 

position. First, being hyperpolarization-, not depolarization-activated, these channels possess 

the capacity to function as pacemakers. Second, in addition to the voltage-gating, HCN 

channels are directly modulated by intracellular cAMP levels. Third, the channels show the 

greatest sensitivity to brief periods of abnormal neuronal activity documented so far that 

manifests as a change in expression and function after periods of hours to days following 

abnormal electrical activity. This unique sensitivity has prompted an interest into how HCN 

channels may underlie the transformation of well-balanced neuronal circuits into 

hyperexcitable networks typically observed after an epileptic insult or after injury. 

The wealth of novel information about the molecular and regulatory properties of HCN 

channels accumulated over the past years raised a series of questions related to the function of 

this unique ion channel in neuronal cells and networks, including those in the intact animal. 

 

1. At the level of the neuronal network: How does abnormal HCN channel expression 

and function causally relate to the emergence of pathological neuronal activity? 

2. At the level of the neuron: Are there, and if yes, which are the cell-type specific modes 

of cAMP-dependent regulation of the channels? 

 

In my thesis, I have addressed these questions by combining electrophysiological, 

imaging, and molecular biological techniques in healthy animals and a rat model of epilepsy. 
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1. We have used the GAERS model to investigate the properties of HCN channel 

regulation in both pre-epileptic and chronically epileptic stages. This approach has allowed us 

to address the temporal relation between abnormal HCN channel function and the emergence 

of epilepsy. The findings imply that pacemaker currents undergo an abnormal regulation in 

the cause of epileptogenesis, but remain unaffected in chronic epilepsy. Interestingly, 

thalamic cells overcome these deficits by developing compensatory changes that stabilize 

HCN channel function. 

 

2. Neurotransmitter-mediated cAMP synthesis and subsequent enhancement of HCN-

currents is a well-established mechanism that controls thalamic relay functions. The 

maintenance of arousal and wakefulness is connected with tonic activity of the noradrenergic 

locus coeruleus in the thalamocortical system. How and whether prolonged noradrenergic 

input modulates HCN channels in thalamic nuclei is subject of the second part of my thesis. 

Furthermore, a differential β-adrenergic subtype expression pattern in functionally distinct 

thalamic nuclei suggests that there could be a nucleus-specific component in the control of 

waking and sleep homeostasis. The results of my study indeed reveal a distinct β-adrenergic 

regulation of HCN channels within the thalamus. A strong β-adrenergic regulation of HCN-

currents appears to be pronounced in those portions being involved in sensory relay, while 

they may not be associated with general arousal functions. 
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2 ZUSAMMENFASSUNG 

Sämtliche Gehirnfunktionen, einschliesslich solcher wie Aufmerksamkeit, Aufwachen, 

aber auch Müdigkeit und Schlaf stehen unter der Kontrolle von elektrischer Aktivität im 

Gehirn. Diese wird entscheidend von spannungsabhängigen Ionenkanälen beeinflusst. 

Demzufolge kann eine abnormale Funktion von Ionenkänalen, sei sie angeboren oder 

erworben, zu enormen Einschränkungen der Gehirnfunktionen führen, und dabei Zustände 

wie Epilepsie, Bewegungsstörungen, sensorischen Störungen oder neuropsychiatrische 

Krankheiten hervorrufen.  

Spannungsabhängige Ionenkanäle bilden eine grosse Klasse von transmembranären 

Proteinen, mit Kanälen selektiv für die Haupt-Ionen Na+, Ca2+, K+, Cl- und HCO3
-. Dazu 

gehören auch Ionenkanäle, die permeabel für verschiedene Ionen sind. Unter diesen nehmen 

die hyperpolarisations-aktivierten, zyklisch Nukleotid-gesteuerten, nicht-selektiven Kation 

(HCN) Kanäle eine besondere Stellung ein. Erstens, da die Kanäle durch Hyper- und nicht 

durch Depolarisation aktivieren, können sie Schrittmacherfunktion übernehmen. Zweitens 

werden HCN Kanäle, zusätzlich zur Spannungsabhängigkeit, direkt durch den intrazellulären 

cAMP-Spiegel moduliert. Drittens zeigen HCN Kanäle die bislang stärkste bekannte 

Empfindlichkeit auf kurze Episoden von abnormaler neuronaler Aktivität. Diese kann über 

eine Zeitdauer von Stunden bis zu Tagen nach abnormaler elektrischer Aktivität zu 

Veränderungen in Expressionsmuster und Funktionalität führen. Durch diese einzigartige 

Sensitivität auf neuronale Aktivität stellt sich die Frage, ob und wie HCN Kanäle in der 

Transformation vom ausgeglichenen zum hyperaktiven, neuronalen Netzwerk involviert sind, 

das typischerweise während einer Epilepsie beobachtet wird. 

In den letzen Jahren hat sich eine Menge an zusätzlichen Erkenntnissen über die 

molekularen und regulativen Eigenschaften der HCN Kanäle angesammelt. Diese werfen eine 

Reihe von neuen Fragen auf, die sich mit der Funktion dieses einzigartigen Ionenkanals in 

neuronalen und zellulären Netzwerken beschäftigen. 

 

1. Auf der Ebene des neuronalen Netzwerkes: Welches sind die kausalen 

Zusammenhänge zwischen abnormaler HCN Kanal Expression und Funktion zum 

Auftreten von pathologischer neuronalen Aktivität? 

2. Auf der Ebene des Neuronen: Welche zell-spezifischen Mechanismen der cAMP 

abhängigen Regulation der HCN Kanäle gibt es? 
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In meiner Doktorarbeit habe ich mich mit diesen Fragestellungen beschäftigt. Dabei 

habe ich elektrophysiologische, bildgebende und molekularbiologische Techniken benutzt, 

und diese sowohl in gesunden Tieren wie auch den GAERS, einem durch Inzucht 

entstandenen Ratten-Modell für Epilepsie angewendet.  

 

1. Die GAERS dienten als Modell um die Eigenschaften der HCN Kanal-Regulation im 

pre-epileptischen wie auch im chronisch epileptischen Zustand zu erforschen. Diese 

Annäherung hat es uns erlaubt, eine zeitliche Relation zwischen abnormer HCN Kanal-

Funktion und dem Auftreten von Epilepsie herzustellen. Die Ergebnisse zeigen, dass während 

der Pathogenese der Epilepsie eine abnormale Regulation der Schrittmacher-Ströme auftritt. 

Interessanterweise entwickelten thalamische Zellen einen kompensatorischen Mechanismus, 

der die HCN Kanal-Funktion im erwachsenen Tier stabilisiert. 

 

2. Die Kontrolle thalamischer Schaltfunktionen durch Neurotransmitter (wie z.B. 

Noradrenalin) erfolgt unter anderem über cAMP-vermittelte Regulation der HCN-Ströme. 

Gleichzeitig sind Wachzustand und Wachsein mit einer tonischen Aktivität des noradrenergen 

Locus coeruleus im thalamocorticalen System verbunden. Wie und ob sich dieser lang 

anhaltende noradrenerge Einfluss auf die HCN Kanäle in verschienen thalamischen Kernen 

auswirkt ist Thema des zweiten Teils meiner Doktorarbeit. Ein unterschiedliches ß-adrenerges 

Expressionsmuster in thalamischen Kernen lässt eine Verbindung vermuten zu den 

unterschiedlichen Rollen thalamischer Kerne in der Regulation von Wachzustand und Schlaf. 

Die Ergebnisse meiner Studie zeigen tatsächlich eine unterschiedliche ß-adrenerge Regulation 

von HCN Kanälen innerhalb des Thalamus. Eine starke ß-adrenerge Regulation der HCN-

Ströme scheint vor allem verstärkt dort aufzutreten, wo sensorische Information weitergeleitet 

wird. Gleichzeitig sieht man kaum ß-adrenerge Regulation von HCN Kanälen in thalamischen 

Kernen, die zuständig für die allgemeine Wachfunktion sind. 



Introduction: Pacemaker channels 

 

12 

3 INTRODUCTION: PACEMAKER CHANNELS 

3.1 Introduction to the ion channel family 

The hyperpolarisation-activated cyclic nucleotide-gated cation (HCN) currents were 

identified in the early 1980s as the pacemaker currents driving the autonomous rhythmic 

discharges of the sinoatrial node (SAN) cells in the heart. These currents have been variously 

designated as Ih or Iq in the brain (‘h’ and ‘q’ stand for ‘hyperpolarisation’ and ‘queer’, 

respectively), or If  for ‘funny’ current in the heart. This naming reflects that these currents 

behave opposite to most other ion currents: they gate upon membrane hyperpolarisation, not 

depolarisation (Figure 1). Historically, the pacemaking properties have dominated the 

physiological profile of IHCN for almost twenty years. Recently, the views on the role of IHCN 

have broadened significantly, largely due to the cloning of the genes for HCN channels. They 

now cover aspects in synaptic function, dendritic integration, plasticity, learning and 

pathological neuronal and cardiac states. This chapter reviews these clear and straight modern 

developments of a historically funny and queer current (which I refer to soberly as IHCN). 

Strong evidence for the multiple involvement of HCN channels in neuronal functions 

comes from several sources: first, HCN channel proteins show organized expression patterns 

throughout the brain, including in particular areas involved in cognitive functions, such as 

learning and memory. Second, they are localized not only in somatic compartments, but also 

in dendrites, presynaptic zones and axonal elements, thus being instrumental for synaptic 

integration and transmission. Third, HCN channels belong to a small subgroup of ion 

channels whose expression is regulated in an activity-dependent manner. As a consequence, 

changes in HCN subunit expression accompany plasticity-promoting stimuli. Moreover, 

aberrant electrical activity, such as that found during epilepsy or cardiopathy, may persistently 

alter their expression levels, implicating these ion channels in the pathology of excitable 

systems. 
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Figure 1. Hyperpolarization-activated currents in neurones. Families of current responses in voltage-clamp 

conditions were obtained by stepping the membrane voltage to increasingly negative potentials in 5 mV steps 

(most negative value reached, -103 mV, is indicated next to the current traces). Note the different time scales 

over which current activation proceeds in hippocampal pyramidal cells (left) and in thalamocortical cells (right). 

In hippocampal pyramidal cells, expression of HCN1 and HCN2 predominates, whereas HCN2 and HCN4 are 

the major channel isoforms in thalamocortical cells. 
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3.2 Molecular characterization of the ion channel family 

3.2.1 Gene products and primary structure of HCN proteins 

The late 1990s brought the breakthrough in the identification of the molecular basis of 

hyperpolarisation-activated cation channels (Santoro et al., 1997; Gauss et al., 1998; Ludwig 

et al., 1998; Santoro et al., 1998). To date, a family of up to four genes is known for 

mammals, including mouse (Ludwig et al., 1998; Santoro et al., 1998), rat (Monteggia et al., 

2000), rabbit (Ishii et al., 1999; Shi et al., 1999), and human (Ludwig et al., 1999; Seifert et 

al., 1999; Vaccari et al., 1999) (for review, see (Kaupp and Seifert, 2001)). The adapted 

nomenclature for the mammalian gene family is HCN1-HCN4, standing for 

hyperpolarisation-activated cation-nonselective channels. For a detailed list of old and 

standard nomenclature, see Table 1 in (Kaupp and Seifert, 2001). The chromosomal location 

of the HCN channel genes has been determined for a) human HCN2: 19p13.3 (Ludwig et al., 

1999; Vaccari et al., 1999) and b) human HCN4: 15q24-q25 (Seifert et al., 1999). 

Two genes were reported for sea urchin sperm flagella (SpHCN1-2) (Gauss et al., 1998; 

Galindo et al., 2005), and one each for Drosophila melanogaster (DmHCN) (Marx et al., 

1999), the silkmoth Heliothis virescens (HvHCN) (Krieger et al., 1999) the honeybee Apis 

mellifera (AMIH) (Gisselmann et al., 2004) and the lobster Panulirus argus (PAIH) 

(Gisselmann et al., 2005). 

The nucleotide sequence encodes for transcripts of ~780-1200 amino acids, with a 

predicted primary structure typical for voltage-gated K+ channels, including six 

transmembrane-spanning domains S1-S6 that are highly conserved (80-90%) within the gene 

family, and a positively charged S4 domain. Notably, the pore region between S5 and S6 

contains the selectivity filter motif GYG that is a hallmark for voltage-gated K+-selective 

channels. However, adjacent amino acids differ for the HCN channel genes, perhaps 

contributing to the lack of strong K+ selectivity in IHCN. In addition, all HCN genes show a 

highly conserved C-terminal cyclic nucleotide-binding domain (CNBD) that is 120 amino 

acids in length and linked to S6 by an 80 amino acid C-linker region. The CNBD is 

homologous to those found in cyclic nucleotide-dependent kinases, in the bacterial cAMP 

binding protein catabolite gene activator protein, and in cyclic nucleotide-gated ion channels 

of olfactory sensory and photoreceptor cells. The CNBD shows uniquely positioned amino 

acids that help explain its selectivity for cAMP over cGMP (Kaupp and Seifert, 2001; Craven 

and Zagotta, 2006). The HCN genes are poorly conserved and variable in length within the 

sequences in the distal N- and C-termini, with the HCN4 protein showing an N-terminus and 



Introduction: Pacemaker channels 

 

15

C-terminus longer by ~80-120 and ~300-400 amino acids, respectively, compared to HCN1-

HCN3. 

 

3.2.2 Human diseases related to the genetic locus of HCN channels 

Three patients with idiopathic sinus node disease, characterized by marked bradycardia 

and life-threatening cardiac arrhythmia, were found to carry a mutation in one of the two 

HCN4 genes. In two cases, the mutation co-segregated with the disease in the pedigree of the 

family in a dominant fashion (Ueda et al., 2004; Milanesi et al., 2006). Mutated genes either 

encode a channel subunit with a deleted CNBD (Schulze-Bahr et al., 2003) or cause poor 

expression (Ueda et al., 2004). In the third case, mutated channels show a negatively shifted 

activation range (Milanesi et al., 2006). Mutated channel subunits showed dominant-negative 

effects on the expression of the wild-type channels. Additional human diseases were linked to 

the chromosomal locus 15q24, such as a syndrome of mental retardation (Mitchell et al., 

1998), and an autosomal dominant nocturnal frontal-lobe epilepsy (Phillips et al., 1998), 

although the involvement of mutated HCN genes remains to be demonstrated. As discussed in 

Section 3.7, abnormal mRNA expression for HCN channels is found in cardiac and neuronal 

pathologies. 

 

3.2.3 Heterologous expression of HCN channels 

All four mammalian genes, as well as the invertebrate genes, give rise to 

hyperpolarisation-activated cation currents when expressed heterologously in Xenopus 

oocytes or in mammalian cell lines (Gauss et al., 1998; Ludwig et al., 1998; Santoro et al., 

1998; Ludwig et al., 1999; Seifert et al., 1999). These currents show characteristic similarities 

with native IHCN (Figure 1), in particular with respect to a) their activation by membrane 

hyperpolarisation below ~-60 mV b) their complex activation kinetics c) their permeability to 

both Na+ and K+ ions d) the regulation by cyclic nucleotides, with a preference for cAMP 

over cGMP, e) their lack of inactivation (with the exception of spHCN) and f) their blockade 

by millimolar concentrations of extracellular Cs+, but not by traditional K+ current blockers 

(tetraethylammonium, 4-aminopyridine). The current generated by HCN1 is the poorly 

cAMP-sensitive, rapidly activating current isoform, whereas HCN2 and HCN4 give rise to 

highly cAMP-sensitive currents that activate more slowly. In recordings from intact cells, 

HCN1-mediated currents showed a half-activation voltage (V1/2) around -70 mV, whereas 
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HCN2- and HCN4-mediated currents gated half-maximally around -80 to -90 mV. In cell-free 

recordings, these values shifted by 40 to 60 mV in the hyperpolarising direction for both 

HCN1 and HCN2 channels (Chen et al., 2001c). The reason for the hyperpolarising shift in 

V1/2 with patch excision is unknown, although widely observed (DiFrancesco and Mangoni, 

1994). Recent studies reveal a role for phosphoinositides, such as phosphaditylinositol-4,5-

bisphosphate (PIP2) in HCN channel gating (see Section 3.2.6, (Pian et al., 2006; Zolles et al., 

2006)). Application of exogenous PIP2, together with cAMP, restored channel activation in 

excised patches (Pian et al., 2006; Zolles et al., 2006). 

Activation occurs after an initial lag of tens of ms, and proceeds with a complex time 

course that is typically best described by a biexponential function and accelerates with 

increased membrane hyperpolarisation. At 35°C, around the half-maximal voltage, time 

constants of activation for HCN1 amount to ~10 ms and ~100 ms, whereas activation of 

HCN2 and HCN4 is best described by time constants in the order of hundreds of milliseconds 

and seconds, respectively. In the case of HCN2 and HCN4, cAMP shifts the  activation range 

by ~15-25 mV towards more positive potentials (Ludwig et al., 1999; Chen et al., 2001c; 

Stieber et al., 2005), whereas this shift amounts to 2-6 mV in the case of HCN1 (Santoro et 

al., 1998; Chen et al., 2001c; Stieber et al., 2005). The half-maximal concentration for cAMP 

is < 1 µM (60-800 nM) (Gauss et al., 1998; Ludwig et al., 1998; Chen et al., 2001c; Zagotta 

et al., 2003), whereas that for cGMP is ~6-8 µM (Ludwig et al., 1998; Zagotta et al., 2003). 

The HCN3-mediated current is weakly modulated by cAMP, yet shows a voltage dependence 

similar to HCN2-mediated currents (Mistrík et al., 2005; Stieber et al., 2005). 

 

3.2.4 Formation of heteromers between HCN channel subunits 

Evidence for the heteromerization of HCN subunits was first provided by identifying 

interactions between N-termini of HCN1 and HCN2 (Proenza et al., 2002b) and by showing 

that co-expressed dominant-negative pore mutants of HCN1 inhibited HCN2-mediated 

currents (Xue et al., 2002). With the exception of HCN2 and HCN3, all dual combinations of 

channel subunits express and colocalize at the plasma membrane in heteromeric complexes 

(Much et al., 2003). Co-expression of two of each HCN1, HCN2 and HCN4 produce currents 

that incorporate properties of both isoforms in ways that do not correspond to those expected 

from the linear interpolation of homomers (Chen et al., 2001c; Ulens and Tytgat, 2001; 

Altomare et al., 2003; Michels et al., 2005). The most direct evidence for heteromerization is 

found in the distinct properties of single-channel events arising from co-expressed HCN2 and 
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HCN4 (Michels et al., 2005). The voltage dependence of HCN1-HCN2 heteromeric currents 

is close to that of HCN2-mediated currents, but currents show a decreased cAMP sensitivity 

at submaximal cAMP concentrations. This property could have implications for disease, since 

HCN1 protein is sensitively regulated by abnormal neuronal activity and tends to form 

heteromers (see Section 3.7.1). Co-expression of HCN1 or HCN2 with HCN4 produces 

channels with properties approximating those of HCN4 homomers (Altomare et al., 2003; 

Michels et al., 2005).  

 

3.2.5 Control of HCN channel expression  

Biochemical and functional studies indicate a role for both N-terminal and C-terminal 

sequences in the assembly and trafficking of functional channels to the surface (Proenza et al., 

2002b; Tran et al., 2002). A stretch of 52 amino acids (positions 131-182 in HCN2) located 

N-terminally of the S1 segment is > 90% conserved amongst the HCN isoforms and deletion 

of this region in HCN2 results in intracellular retention of the protein. In addition, an intact 

CNBD is required for surface expression of HCN2 in CHO cells (Proenza et al., 2002b), 

although the C-linker is sufficient in Xenopus oocytes (Wainger et al., 2001). In contrast to 

the critical N-terminal sequences, however, not every subunit of a channel needs to contain a 

CNBD to generate a functional channel. Finally, N-glycosylation at asparagine 380 of HCN2, 

lying between S5 and the pore region, is important for subunit expression, although again not 

required for every channel subunit (Much et al., 2003). The physiological relevance of 

N-glycosylation is underscored by the immunoblot analysis of native subunits, which are 

about 20 kDa larger than predicted by the primary sequence. Pharmacological removal of 

N-glycosylation restored the predicted molecular weight (Santoro et al., 1997; Much et al., 

2003). 

 

3.2.6 Accessory and regulatory proteins of HCN channels 

The list of proteins that physically interact with HCN channels and regulate their 

properties and expression is currently growing (see Figure 2 for an overview). A widely 

expressed ß subunit for Kv channels, the single transmembrane MinK related protein (MiRP1 

or KCNE2 (McCrossan and Abbott, 2004)) enhances the amplitude of IHCN and affects 

activation kinetics, although effects vary depending on expression systems and HCN isoforms 

(Yu et al., 2001; Proenza et al., 2002a; Altomare et al., 2003; Decher et al., 2003; Qu et al., 
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2004). MiRP1 and HCN2 are highly expressed in SAN, and MiRP1 co-immunoprecipitated 

with HCN2 in cultured neonatal cardiac myocytes overexpressing both proteins (Qu et al., 

2004). 

The C-terminal sequence, including the CNBD and the less conserved regions at the 

distal C-terminal end, mediate important protein-protein interactions. The extreme C-terminal 

tripeptide (SNL in HCN1, HCN2 and HCN4, ANM in HCN3) tightly binds to the protein 

TRIP8b (for tetratricopeptide repeat-containing Rab8b interacting protein), which colocalizes 

with endosomal markers and could be involved in the endocytosis of HCN channels (Santoro 

et al., 2004). This protein closely matches HCN1 expression in the dendrites of CA1 

hippocampal pyramidal and cortical layer V cells and its overexpression reduces the density 

of native channels. Alternatively spliced isoforms of Trip8b exist, suggesting that the 

significance of these proteins in controlling HCN channel function may further diversify in 

the near future. In particular, it will be important to see how the two apparently incongruent 

observations, colocalization of TRIP8b and HCN1 in a parallel gradient within the apical 

dendrites on the one hand, but negative regulation of channel expression by TRIP8b on the 

other hand, can be reconciled. C-terminal sequences also interact with scaffolding proteins 

that may mediate binding to the cytoskeleton and to postsynaptic elements (Kimura et al., 

2004). In HCN1 protein, a 22-amino acid sequence downstream of the CNBD binds to 

filamin A, a protein involved in the organization of functional complexes involving receptors, 

ion channels and cytoskeletal elements (Gravante et al., 2004). In SAN cells, HCN4 protein 

and components of the β-adrenergic signaling pathway are found in membrane fractions 

containing structurally specialized portions of the lipid membrane, the caveolae (Barbuti et 

al., 2004).  

Membrane phospholipids such as PIP2 control HCN channel gating and produce a right-

shift of the steady-state activation (Pian et al., 2006; Zolles et al., 2006). Mechanistically, the 

negatively charged headgroup of PIP2 could electrostatically interact with the channel protein 

and, as a consequence, facilitate the voltage-dependent activation of HCN channels (Zolles et 

al., 2006).  

Protein kinases, predominantly protein kinase A (PKA) and tyrosine kinases, regulate 

IHCN properties in a number of cell types (for review, see (Frère et al., 2004)). Additional 

studies now indicate that kinases may be physically associated with the channels. The C-

linker domain, which mediates intersubunit interactions required for channel gating (see 

Section 3.3.6), contains a tyrosine residue (Y476 in HCN2, Y554 in HCN4) that is 

phosphorylated by the non-receptor protein tyrosine-kinase Src. This kinase was used as a bait 
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in the first identification of the HCN genes (Santoro et al., 1997) and is now known to bind to 

the C-terminus (Zong et al., 2005; Arinsburg et al., 2006). Inhibition of Src phosphorylation 

in HCN2/HCN4-expressing human embryonic kidney (HEK) 293 cells, in SAN cells and in 

dorsal root ganglia decelerates current activation. 

 

 

 

Figure 2. Schematic view of accessory and regulatory proteins. The cartoon comprises those proteins for 

which a close colocalization with HCN channels has been demonstrated functionally (T-type Ca2+ channels, 

adenylyl cyclase, MiRP1) or for which binding to HCN channels has been demonstrated by co-

immunoprecipitation from brain tissue (Src, filamin, synaptic scaffolding molecules S-SCAM, Mint2, tamalin) 

or both co-immunoprecipitation and colocalization in neuronal cells (Trip8b). 
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3.3 Biophysical properties 

The unique biophysical characteristics of IHCN are presented in excellent reviews (Pape, 

1996; Kaupp and Seifert, 2001; Robinson and Siegelbaum, 2003; Baruscotti and DiFrancesco, 

2004; Cohen and Robinson, 2006; Craven and Zagotta, 2006). Recent research has focused, 

on the one hand, on identifying additional current properties, such as the single-channel 

characteristics and instantaneous forms of current activation. On the other hand, the molecular 

understanding of the events underlying channel gating and its regulation by cyclic nucleotides 

has advanced. These studies have also demonstrated that HCN channels are composed of a 

tetrameric arrangement of HCN subunits (Xue et al., 2002; Ulens and Siegelbaum, 2003; 

Zagotta et al., 2003), in agreement with their evolutionary relationship to the tetrameric 

voltage-gated K+ channels. This section briefly describes the main molecular underpinnings 

of HCN channel properties, and refers to the most relevant reviews for further details and for 

comparison to additional members of the voltage-gated ion channel family. 

 

3.3.1 Prototypical biophysical properties 

The three prototypical biophysical properties of native IHCN are highlighted here that 

make them unique amongst the family of voltage-gated ionic currents. 

First, IHCN typically activates upon membrane hyperpolarisation (below ~-60 mV) rather 

than depolarisation, just opposite to most voltage-gated ionic currents that are involved in 

shaping neuronal excitability (Figure 1). This unusual voltage window of activation is 

reflected in the standard denomination Ih, where “h” stands for hyperpolarisation. Upon 

hyperpolarisation, the conductance activated is fairly selective for both Na+ and K+ ions 

(permeability ratio Na+ : K+ = 0.2-0.3) ((DiFrancesco, 1981; Wollmuth and Hille, 1992; 

Gauss et al., 1998) for a review, see (Pape, 1996)). The current is carried mainly by Na+ ions 

at the membrane voltages within its activation range and produces an elevation in the 

intracellular Na+ concentration (Knöpfel et al., 1998). In addition to contributing to ion flux, 

extracellular K+ ions determine the channel conductance for Na+ (for a detailed review, see 

(Pape, 1996)). More recently, a small permeability to Ca2+ ions has also been identified for 

heterologously expressed HCN4 channels (0.6% of the inward current evoked at -120 mV 

(Yu et al., 2004)) and presynaptically expressed IHCN in crayfish (Zhong et al., 2004). The 

reversal potential of IHCN lies between -40 to -25 mV, leading to depolarising currents around 

resting membrane potentials. The resulting depolarising drive at subthreshold potentials is the 



Introduction: Pacemaker channels 

 

21

basis for the multifunctionality of IHCN, in particular its pacemaking properties and its control 

of excitability and synaptic integration. 

Second, activation of the current is generally slow, with activation time constants 

ranging between hundreds of milliseconds and seconds, even at strongly hyperpolarised 

voltages around -100 mV (for an overview of activation kinetics in different cell types, see 

Table 2 in (Santoro and Tibbs, 1999)). Few exceptions include pyramidal neurones from 

hippocampus and cortex, as well as amygdalar and cerebellar neurones, in which activation is 

complete within tens of milliseconds. Once activated, the current does not inactivate, such 

that a steadily activated (‘standing’) IHCN contributes to the resting membrane potential in 

many neurones, often by opposing the action of tonic outward currents (see Section 3.6.3). 

Third, IHCN is, in most cases, sensitive to the presence of intracellular cyclic nucleotides. 

The cyclic nucleotides cAMP and cGMP bind directly to the channels (DiFrancesco and 

Tortora, 1991; Pedarzani and Storm, 1995), accelerate the kinetics of activation, and shift the 

voltage dependence of activation towards more depolarised values. In the presence of these 

ligands, the extent and duration of current activation within the intermediate voltage range is 

increased (Robinson and Siegelbaum, 2003). This facilitatory effect of cyclic nucleotides can 

give rise to persistently activated forms of current activation that outlast the presence of 

available free cAMP (Lüthi and McCormick, 1999b; Wang et al., 2002). HCN-currents are 

also regulated by extra- and intracellular changes in pH. Extracellular pH decreases augment 

IHCN, whereas intracellular acidification decreases IHCN. The extracellular pH sensitivity has 

been implicated in the transduction of sour (pH 3-5) stimuli in taste receptor cells (Stevens et 

al., 2001), whereas the intracellular pH sensitivity may be involved in regulating the 

discharge of neuronal networks in response to moderate pH changes (< 1 unit), such as those 

occurring during intense neuronal activity (Munsch and Pape, 1999b, a). In HCN2 channels, 

intracellular pH sensitivity is mediated by direct protonation of a histidine residue (H321) 

located at the boundary between S4 and the S4-S5 linker (Zong et al., 2001). 

 

Two, most recently identified biophysical characteristics include the single-channel 

properties and instantaneous forms of channel gating. 

 

3.3.2 Single-channel properties 

The first resolution of putative single channel events underlying IHCN was achieved in 

rabbit SAN (DiFrancesco, 1986) and revealed an unusually low single-channel conductance 
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< 1 pS (DiFrancesco and Mangoni, 1994). This low single-channel conductance (~0.68 pS) 

was recently determined for IHCN found in the apical dendrites of cortical layer V pyramidal 

cells using fluctuation analysis of membrane current noise (Kole et al., 2006). These dendrites 

express IHCN at densities up to 550 channels/µm2, which is about 1000-fold higher than the 

average channel density on a typical IHCN-expressing cell. In spite of their low conductance, 

this high density renders HCN channels important determinants of membrane current noise in 

these cells. Single-channel conductances of heterologously expressed channels are 

considerably larger (2.5-35 pS) (Johnson and Zagotta, 2005; Michels et al., 2005). 

Furthermore, somatic HCN channels recorded from dissociated hippocampal neurones show a 

higher conductance (~10 pS) (Simeone et al., 2005). A high single-channel conductance of 

~30 pS has also been reported for the HvHCN channels (Krieger et al., 1999). 

 

3.3.3 Instantaneous HCN-currents 

The slowly developing inward current is the predominant manifestation of IHCN 

activation by voltage. However, a small, voltage-independent leakage current accompanies 

the gating of HCN2 channels expressed in CHO cells (Proenza et al., 2002a) and of spHCN 

channels expressed in HEK 293 cells (Proenza and Yellen, 2006). This current persisted when 

mutations were introduced into the channel that abrogated voltage-sensitive current 

components (Macri et al., 2002; Proenza et al., 2002a). The amplitude of this current 

correlates with that of the time-dependent current and shows a similar reversal potential 

(Proenza et al., 2002a; Macri and Accili, 2004), indicating that it is dependent on the 

expression of HCN2 channels. However, both K+ and Na+ ions are independently moving 

charge carriers (Macri et al., 2002), in contrast to the voltage-gated channel (see Section 

3.3.1). Moreover, the instantaneous current component of HCN2-mediated currents is 

insensitive to extracellular Cs+ ions and slightly reduced by intracellular cAMP (Proenza et 

al., 2002a). Finally, ZD7288 (see Section 3.5.2) more rapidly blocked instantaneous than the 

time-dependent currents. This observation is consistent with a model in which the 

instantaneous current is generated by an independent channel subgroup that is not in rapid 

equilibrium with voltage-gating channels (Proenza and Yellen, 2006). To what extent native 

currents contain instantaneous components remains to be examined. 

 



Introduction: Pacemaker channels 

 

23

3.3.4 Additional biophysical properties 

More recent studies have identified novel properties of expressed channels. Most 

interestingly, currents carried by spHCN or HCN1 channels show a hysteresis of voltage 

dependence, evident as a more positive voltage dependence of the current when measured 

starting from a hyperpolarising potential (Mannikko et al., 2005). Such hysteresis may 

contribute to the regularity of action potential discharge, since it helps prolonging the 

interspike interval, while facilitating repolarisation. HCN2- and HCN4-mediated currents also 

show a dependence on extracellular and intracellular Cl- (Wahl-Schott et al., 2005; Mistrik et 

al., 2006). 

A number of biophysical characteristics of IHCN have been investigated at the molecular 

level. In Figure 3, the amino acids implicated in these functions are indicated. 

 

 

Figure 3. Putative transmembrane topology of the HCN channel and functional roles of the best 

characterized amino acids and amino acid sequences. The primary structure of the HCN channel, including 

its N- and C-terminus (N, C), as well as the six transmembrane-domain sequences S1-S6, are depicted 

schematically. Position and types of amino acids are indicated below a keyword description of their roles, see 

text for more details. Numbers and letters indicated in parenthesis refer to the HCN channel subunit in which 

these amino acids were studied. In most cases, these amino acids are conserved in equivalent positions of other 

HCN isoforms. Amino acids included here are those for which mutations were shown to abrogate or alter their 

respective functions, or for sequences with which yeast two-hybrid screens for performed to study protein-

protein interactions (filamin, Trip8b). The amino acid D553 was found in an inherited form of sinus node 

disease. The putative phosphorylation sites for p38 MAPK were determined in a screen for consensus sequences, 

but are not yet validated by mutational analysis. AA stands for amino acids in cases in which the full sequence is 

not written out. 
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3.3.5 Molecular elements controlling voltage dependence 

The steps leading to channel gating show similarities to the activation of voltage-gated 

channels and of cyclic nucleotide-gated channels (Chen et al., 2002; Robinson and 

Siegelbaum, 2003; Horn, 2004; Rosenbaum and Gordon, 2004; Craven and Zagotta, 2006). 

Thus, the positively charged amino acids in S4 are essential for voltage sensing (Chen et al., 

2000; Vaca et al., 2000). Neutralizing each of the first four of these produces negative shifts 

in current voltage dependence of ~-20 mV/residue. Cysteine-substituted amino acids in S4 

show a differential sensitivity to thiol reagents, depending on whether spHCN channels are 

opened or closed. From these experiments, it could be shown that the S4 domain moves 

towards the extracellular surface of the membrane upon depolarisation, while it moves inward 

upon hyperpolarisation (Mannikko et al., 2002). This direction of S4 translocation is thus that 

of the canonical model of charge movement in six-transmembrane-domain voltage-gated ion 

channels, although the detailed picture of conformational changes differs in HCN channels 

(Bell et al., 2004; Horn, 2004; Vemana et al., 2004). Movement of the S4 domain is 

dependent on the S3-S4 linker (Tsang et al., 2004) and coupled to channel pore opening via 

unique amino acids within the S4-S5 linker domain (Chen et al., 2001a; Macri and Accili, 

2004). Particularly interesting is the requirement for an aromatic residue in this linker (Y331 

in HCN2), because it suggests that aromatic interactions in the vicinity of the inner pore 

region are important for coupling voltage changes to gating. Indeed, an activation gate in 

spHCN localizes to the pore-forming regions of S6 (Figure 3), and the accessibility of this 

gate to modulating or blocking agents is dependent on channel opening (Shin et al., 2001; 

Rothberg et al., 2002; Rothberg et al., 2003). The closure of this activation gate also 

determines the peculiar inactivation properties of spHCN channels (Shin et al., 2004). 

Altogether, the role of protein domains essential for voltage sensing and channel gating 

are remarkably conserved between depolarisation- and hyperpolarisation-activated ion 

channels (see also (Robinson and Siegelbaum, 2003)). This similarity, however, still leaves 

the puzzling question of how channel gating is oppositely coupled to voltage changes in HCN 

channels. Notably, a recent study has identified a residue (D443) within the S4-S5 linker that 

stabilizes the closed channel state and that interacts via salt bridges with the unique C-linker 

domain (Decher et al., 2004). It will be of great interest to see whether these electrostatic 

interactions may be controlled by voltage-induced conformational arrangements within S4, 

thereby helping to explain channel opening upon hyperpolarisation. 
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3.3.6 Molecular elements controlling cyclic nucleotide regulation 

The regulation by cyclic nucleotides is a most striking property of HCN channels and 

affects current properties in a dual manner. First, it shifts the voltage dependence of the 

current into the more depolarised voltage range; second, it accelerates activation kinetics 

(Pape, 1996; Robinson and Siegelbaum, 2003). Numerous studies have reported cAMP-

dependent actions on native currents, from which it became clear that cAMP-dependent 

effects are mediated by direct binding to the channel, rather than by PKA (DiFrancesco and 

Tortora, 1991; Pedarzani and Storm, 1995) (for review, see (Frère et al., 2004)). The cAMP-

effects are mediated by a cytosolic CNBD within the C-terminus (Barbuti et al., 1999; 

Wainger et al., 2001; Zagotta et al., 2003). Removal of the CNBD abolishes cyclic nucleotide 

sensitivity (Wainger et al., 2001), and mutation of a conserved arginine residue within the 

CNBD (R538 for HCN1, R591 for HCN2) largely abolishes cAMP modulation (Chen et al., 

2001c). All CNBDs of each subunit must be bound to cAMP to achieve a maximal effect on 

the voltage dependence (Ulens and Siegelbaum, 2003). 

How can a C-terminally located cytosolic portion of a channel steer voltage-gating and 

activation kinetics that are determined by the core transmembrane regions of the channel? 

Although the full picture of the interaction between the C-terminus and the core regions is not 

yet elaborated, important insights in the cAMP-induced structural arrangements within the 

CNBD and the C-terminus have been achieved. Cyclic allosteric gating models, containing 

unliganded and liganded open and closed channel states in a cyclical arrangement, were first 

used to explain the dual modulation of HCN channels by voltage and ligand (DiFrancesco, 

1999; Wang et al., 2001). These studies assumed that the channel subunits undergo a voltage-

dependent transition between a closed and an open state, but that the affinity of cAMP for the 

open state is greater by a factor of ~40-80 compared to the closed state (for review, see (Frère 

et al., 2004)). In their simplified form, these allosteric models capture the essential 

consequences of some of the mechanistic steps underlying the cAMP-binding to HCN 

channels. Thus, these models predict that the ligand-free CNBD inhibits channel gating, while 

cAMP-binding relieves this inhibition and stabilizes the channel in the open state. Indeed, 

HCN channels with a truncated CNBD activate about as rapidly as an intact channel exposed 

to a maximal cAMP concentration (Barbuti et al., 1999; Wainger et al., 2001). An essential 

role for this inhibitory action is played by the C-linker domain that connects the CNBD to S6. 

The C-linker of each subunit is required for normal cAMP modulation (Ulens and 

Siegelbaum, 2003) and salt bridges both between C-linkers and between C-linkers and 

CNBDs underlie the coupling of ligand binding to channel opening (Craven and Zagotta, 
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2004). 

Crystallization and analytical ultracentrifugation of the C-terminal portion of HCN2, 

including the C-linker and the CNBD, has dramatically shaped the molecular understanding 

of HCN channel gating. Cyclic nucleotide binding greatly favours the formation of a tetramer 

of C-terminal fragments, while monomeric and dimeric configurations prevail in the absence 

of the cyclic nucleotide (Zagotta et al., 2003). These tetramers form a gating ring with a four-

fold rotational symmetry, with the major portion of intersubunit interactions mediated by the 

C-linkers. Elegant support for the tetramerization of CNBDs as a prerequisite for HCN 

channel gating comes from electrophysiological studies on tandem dimers or tetramers of 

HCN channels, in which mutated CNBDs were introduced in two subunits lying adjacent or 

diagonal to each other (Ulens and Siegelbaum, 2003). Cyclic AMP gated those channels more 

effectively in which functional CNBDs were arranged diagonally to each other. This 

dependence on the symmetry of CNBD arrangement is best explained in a model whereby a 

cAMP-induced dimerization of CNBDs is followed by the dimerization of these dimers into a 

tetramer. Thus, cAMP gating of HCN channels can be visualized as a series of structural 

rearrangements within the C-terminus. These involve the formation of cAMP-induced dimers 

of CNBDs that promote the interaction between C-linkers and the generation of a tetramer. 

The tetramer forms a bulky ring-like structure beneath the channel pore that extends by ~5 nm 

into the cytosol. By an as yet unknown mechanism, the conformational changes induced in 

the C-linkers are then transmitted to the transmembrane gating domains, thereby facilitating 

channel opening. This coupling appears to involve the S1-S2 linker and the S2 domain 

(Stieber et al., 2003a), and additional unknown channel portions (Stieber et al., 2005). A 

detailed review further describes and compares the currently proposed activation mechanisms 

of HCN channels by cAMP (Craven and Zagotta, 2006). 

 

3.3.7 Molecular elements controlling isoform-specific properties 

Some of the molecular elements underlying the striking differences in basal activation 

kinetics between HCN1- and HCN4-currents (Ishii et al., 2001) and HCN2- and HCN4-

currents were determined (Stieber et al., 2003a). In both cases, exchanging S1 and S1-S2 

linker domain interconverted the basal activation properties of the currents (Ishii et al., 2001; 

Stieber et al., 2003a). In addition, in HCN1 channels, the C-terminal intracellular portion may 

contribute to the rapid activation kinetics (Ishii et al., 2001). A particularly important role for 

the difference between HCN2 and HCN4 is played by the leucine at position 272 within S1, 
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because its mutation to phenylalanine, the respective residue in HCN2, transfers both the 

basal activation kinetics of HCN2, as well as cAMP-induced changes in current kinetics 

typical for HCN2. However, when leucine 272 was replaced with methionine, the equivalent 

amino acid found in HCN1, activation kinetics were not accelerated. This supports the notion 

that more complex structural differences exist between the rapidly activating HCN1- and the 

more slowly activating, and structurally tightly related, HCN2- and HCN4-currents. 

The potency of modulation by cAMP is strikingly low for HCN1-mediated currents 

(Santoro et al., 1998), while it is high for HCN2- and HCN4-mediated currents (Ludwig et 

al., 1999; Seifert et al., 1999). Chimeric channels, composed of domains derived from HCN1 

and HCN2 protein, were used to examine the molecular basis for this difference (Wang et al., 

2001). The difference in cAMP modulation can be largely attributed to differences in the C-

linker domains between the two channel isoforms, whereas differences in basal voltage 

dependence are determined by the C-terminal portions and by core transmembrane regions. 
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3.4 Cellular and sub-cellular localization 

This chapter is devoted to the molecular expression patterns of HCN subunits in the 

brain and in the heart, and briefly summarizes the detailed studies carried out at the mRNA 

and protein levels. Moreover, it asks about how the molecular expression correlates with the 

properties of electrophysiologically characterized currents. Finally, it highlights recent studies 

that analyze the subcellular localizations of HCN channels, showing that these confer to 

neurones a compartmentalized control of their intrinsic excitability. 

 

3.4.1 Molecular expression patterns of HCN channel subunits in brain 

and heart 

All four HCN channel isoforms are expressed in the rodent brain. At the mRNA level, 

HCN channel subunits show distinct expression patterns that are largely consistent between 

studies on rat and mouse (Moosmang et al., 1999; Monteggia et al., 2000; Santoro et al., 

2000). A detailed map of HCN protein localization at cellular and subcellular levels in the rat 

brain was established (Notomi and Shigemoto, 2004). Immunohistochemical expression 

largely confirmed and further refined mRNA expression studies. HCN1 expression shows a 

predominance in cortical structures, with distinct expression in dendritic fields of 

hippocampus, cerebral cortex and superior colliculus. In addition, Purkinje cells of the 

cerebellum and brainstem motor nuclei show high HCN1 mRNA levels, although 

immunoreactivity in Purkinje cells was comparatively moderate. In contrast, HCN2 

expression is found more uniformly throughout the brain, with strong expression in olfactory 

bulb, in thalamus, and in brainstem regions. HCN2 expression often overlaps with other HCN 

channel subunits, most notably with the gradient of HCN1 expression in cortical and 

hippocampal apical dendrites, but accounts for most of the HCN expression in nucleus 

reticularis thalami and the subthalamic nucleus. Notably, a subpopulation of oligodendrocytes 

that occupy perineuronal space throughout the brain, shows HCN2-like immunoreactivity. 

HCN3 generally shows the weakest expression, but is present in olfactory bulb, hypothalamus 

and the substantia nigra pars compacta. Finally, HCN4 is found in regions in which IHCN 

functions as pacemaker, such as the thalamus, but is also present in olfactory bulb and in 

hypothalamus.  

Messenger RNA expressed in the heart is predominantly found for HCN1, HCN2 and 
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HCN4, but isoform expression varies among species and cardiac tissue. The SAN exhibits the 

highest expression levels of HCN channels, with HCN4 accounting for ~80% of the total 

HCN message (Ishii et al., 1999; Ludwig et al., 1999; Shi et al., 1999) in all species 

investigated (rabbit, mouse, dog). Species-dependent differences for HCN2 and HCN1 were 

seen for the remaining 20% (Moosmang et al., 2001; Marionneau et al., 2005; Zicha et al., 

2005). Expression of HCN channel subunits is also detected outside the sinus node region, 

albeit at lower levels. Both HCN1 and HCN4 message decrement in expression from atrial 

ventricular node to the ventricles (Marionneau et al., 2005). 

 

3.4.2 Molecular expression patterns of HCN channel subunits in sensory 

systems and spinal chord 

HCN channels are prominently expressed in diverse types of sensory neurones, 

including neurones of the dorsal root ganglia (Mayer and Westbrook, 1983; Moosmang et al., 

2001; Chaplan et al., 2003; Tu et al., 2004) and the nodose ganglia (Doan et al., 2004). High 

levels of HCN1 mRNA have been detected in mouse photoreceptor cells (Moosmang et al., 

2001; Demontis et al., 2002; Müller et al., 2003). The cell-type specific distribution of HCN1 

channels has been described for the main olfactory bulb (Holderith et al., 2003), and for 

spinal cord and medulla oblongata (Milligan et al., 2006). 

 

3.4.3 Correlation of expression patterns with native current properties 

The expression patterns of HCN subunits are remarkably predictive, at least in a 

semiquantitative manner, for some of the basic properties of expressed currents, in particular 

their activation kinetics and their cAMP sensitivity. Typically, rapidly activating IHCN is found 

in HCN1-expressing tissue, while slow currents predominate in regions with HCN2 and 

HCN4 (Santoro et al., 2000). This correlation was established more quantitatively for HCN1. 

Current properties correlate with HCN1 mRNA in single-cells (Franz et al., 2000) and 

gradients of current amplitudes in dendrites of cortical layer V pyramidal neurones are 

proportional to gradients of HCN1 subunit expression (Lörincz et al., 2002; Kole et al., 

2006). 

Notably, in the nucleus laminaris of the chick, HCN1 is expressed in a gradient, along 

which current properties gradually change correspondingly (Yamada et al., 2005). Studies in 

animal models of epilepsy indicate that slight imbalances in HCN1 expression, be it up- or 
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downregulation, alter current properties accordingly in different cell types (Strauss et al., 

2004; Budde et al., 2005; Kuisle et al., 2006). Finally, developmental studies show that 

expression of HCN1 leads to an acceleration of current kinetics (Vasilyev and Barish, 2002), 

while in ventricular myocytes a decreased expression of HCN1 and HCN4 mRNA is 

paralleled by a decrease in IHCN (Cerbai et al., 1999b; Shi et al., 1999; Yasui et al., 2001). 

There are also a number of cases, in which a correlation between the native current 

properties and expressed isoforms could only be partially achieved. In SAN, native current 

properties are not fully congruent with those of HCN1-HCN4 heteromers (Altomare et al., 

2003), but currents generated by HCN2-HCN4 heteromers fit well with the properties of atrial 

IHCN. In nucleus reticularis cells, HCN2 is expressed strongly, but current amplitudes are 

comparatively small (Santoro et al., 2000; Rateau and Ropert, 2006). 

 

3.4.4 Subcellular localization 

Two prominent cases point to a highly regulated subcellular expression of HCN 

channels. The first is the gradient of HCN1 and HCN2 expression of pyramidal cells in layer 

V cortical neurones and in hippocampal CA1 neurones (Santoro et al., 1997; Lörincz et al., 

2002). Immunogold labeling shows that this labeling is predominantly dendritic, and largely 

absent from glutamatergic synapses (Notomi and Shigemoto, 2004). This increase in HCN 

channel density correlates with an increasing IHCN amplitude (Magee, 1998; Williams and 

Stuart, 2000; Kole et al., 2006) and is of great relevance in the dendritic computational 

properties of these cells (see Section 3.6). How the subcellular trafficking of HCN1 protein 

gives rise to this steep gradient is unclear, but a first protein regulating channel expression has 

been identified (Santoro et al., 2004) (see Section 3.2.6). Labeling in the pyramidal cell layer 

is mostly due to presynaptic labeling of basket cell terminals. 

Recordings from presynaptic terminals revealed the presence of IHCN. These include 

chick ciliary ganglion neurones (Fletcher and Chiappinelli, 1992), crayfish neuromuscular 

junction (Beaumont and Zucker, 2000), cerebellar basket cells (Southan et al., 2000) and the 

calyx of Held in auditory brainstem (Cuttle et al., 2001). HCN1 protein is expressed in basket 

cell terminals (Santoro et al., 1997), and colocalizes with GAD65 and synaptophysin, 

suggesting that HCN1-currents are involved in inhibitory synaptic transmission (Luján et al., 

2005). Indeed, in some neurones, pharmacologically reducing IHCN with ZD7288 reduces 

GABAergic transmission in a manner consistent with a presynaptic mechanism (Southan et 

al., 2000; Aponte et al., 2006). Presynaptic expression of HCN channel protein was also 
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found in retinal bipolar cells and in photoreceptors (Müller et al., 2003).  

HCN channels may be localized in discrete microdomains of the cellular membrane, in 

conjunction with other ion channels and regulatory molecules. HCN4 channels are found in 

membrane fractions containing structural proteins of lipid rafts (‘caveolae’) in HEK and SAN 

cells, and disruption of lipid rafts altered current-voltage dependence (Barbuti et al., 2004). 

Additionally, HCN channels appear to be colocalized with T-type, low-threshold Ca2+ 

channels in dendrites of thalamocortical neurones (Stuart and Williams, 2000), perhaps 

explaining the regulation of IHCN by Ca2+ in these cells (Lüthi and McCormick, 1998a). 

 

3.4.5 Developmental expression patterns 

Differential up- and downregulation of individual HCN channel subunits occurs during 

development (for review see (Frère et al., 2004), as shown in most detail for hippocampal 

CA1 and CA3 principal cells and interneurones (Bender et al., 2001; Vasilyev and Barish, 

2002; Bender et al., 2005; Brewster et al., 2006; Surges et al., 2006). The temporal profile of 

HCN channel expression and current density matches that of synchronized electrical activity 

appearing during circuit maturation (Bender et al., 2005; Brewster et al., 2006). Activation 

rates increase with development, in agreement with a strong increase of HCN1 channel 

expression in comparison to HCN2 and HCN4 channels.  

In embryonic ventricular myocytes, an initially large IHCN gradually decays until the 

adult stage (Robinson et al., 1997; Cerbai et al., 1999b), being accompanied perinatally by the 

loss of the ability to generate spontaneous activity (Cerbai et al., 1999b; Shi et al., 1999; 

Yasui et al., 2001). This decrement is paralleled by a gradually reduced expression of HCN1 

and HCN4 mRNA, until HCN2 becomes predominant in adult cardiac myocytes (Shi et al., 

1999). 
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3.5 Pharmacology 

The sensitivity of IHCN to millimolar concentrations of extracellular Cs+, and its relative 

insensitivity to Ba2+, were crucial for its original isolation as a cationic current in cardiac cells 

(Fain et al., 1978; Bader et al., 1979; DiFrancesco, 1981; Wollmuth and Hille, 1992). The 

mechanism of action of these ions involves binding within a multi-ion conducting pore that 

competes with the fully permeant ions Na+ and K+ (Pape, 1996). The pharmacological profile 

of IHCN has diversified in recent years. In addition to bradycardiac agents, volatile and general 

anaesthetics interfere with HCN channel gating, while the antiepileptic agent lamotrigine 

potentiates hippocampal IHCN. However, a common characteristics of all IHCN blockers, 

including the most recently described ones, is the lack of full specificity for HCN channels. 

Furthermore, the pharmacology of IHCN awaits the development of isoform-specific 

compounds that would allow to define subunit-specific roles in discrete brain regions. 

 

3.5.1 Extracellular cations 

Millimolar concentrations of Cs+ ions, and, to a much weaker extent, Rb+ ions, are fast 

blockers of IHCN, acting from the extracellular side of the channel and penetrating deep into 

the pore to bind to an inner ‘blocking site’ (DiFrancesco, 1982; Gauss et al., 1998). The block 

is voltage-dependent, being greater at hyperpolarised potentials, and vanishing at more 

depolarised potentials (for review, see (Pape, 1996)). The disadvantage of the experimental 

use of Cs+ is its limited specificity: it also blocks neuronal K+ channels (Constanti and Galvan, 

1983) and interferes with K+ uptake in glial cells (Janigro et al., 1997). 

Extracellular Ba2+ ions, principally known as blockers of inward rectifier K+ currents, 

fairly strongly (~55%) reduce IHCN in photoreceptor cells (Wollmuth, 1995). In contrast, Ba2+ 

effects are minor for hippocampal IHCN and for heterologously expressed HCN1 and HCN2 

channels (~20-40%) (van Welie et al., 2005). In general, the use of Ba2+ ions is well 

established to distinguish (even small) IHCN components from large inward rectifier currents 

(see e.g. (Rateau and Ropert, 2006)) and to isolate cyclic-nucleotide-dependent current 

modulation via Gi-coupled neurotransmitter receptors that also target inward rectifier K+ 

currents (Frère and Lüthi, 2004). 
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3.5.2 Bradycardiac agents 

The important role of HCN channels on pacing in the heart is strongly supported by a 

class of heart rate-reducing agents that powerfully block the cardiac isoform of IHCN (for 

review see (Baruscotti et al., 2005) and (DiFrancesco, 2005)). These agents are termed 

bradycardiacs, because they selectively slow heart rate without interfering with other 

cardiovascular functions. Alinindine (ST567), was the first member of the family but its 

mechanism of action was not limited to IHCN (Snyders and Van Bogaert, 1987).  

Today the most widely used bradycardiac agent in IHCN pharmacology is ZD7288 

(originally named ICI D7288), which exhibits greatest specificity (Briggs et al., 1994). 

ZD7288 blocks IHCN in neurones and photoreceptor cells at concentrations between 10-

100 µM (Harris and Constanti, 1995; Gasparini and DiFrancesco, 1997; Williams et al., 1997; 

Lüthi et al., 1998; Satoh and Yamada, 2000). Additionally, ZD7288 induces a negative shift 

of the IHCN activation curve at a concentration of 0.3 µM in vitro in SAN cells (BoSmith et al., 

1993). Distinctive characteristics of ZD7288 actions on whole-cell currents involve a) its slow 

kinetics, ranging in the order of minutes b) its poor reversibility c) and its apparent lack of use 

dependence in moderate voltage ranges, although its actions are relieved by strong 

hyperpolarisations. These properties are consistent with the localization of ZD7288 binding in 

the vicinity of the intracellular portions of the channel pore (Shin et al., 2001). In spite of the 

remarkable selectivity of ZD7288 for HCN channels, it should be considered that ZD7288 

induces a downregulation of synaptic transmission that is independent of IHCN (Chevaleyre 

and Castillo, 2002) and could involve a direct action on ionotropic glutamate receptors (Chen, 

2004). This renders the usage of ZD7288 particularly delicate when assessing potential roles 

for IHCN in synaptic transmission (Mellor et al., 2002). 

In addition to ZD7288, zatebradine (UL-FS 49) (Pape, 1994) and its more potent 

derivative cilobradine (DK AH 268) (Pape, 1994; Van Bogaert and Pittoors, 2003) block IHCN 

in a concentration range of 10-100 µM. In contrast to ZD7288, however, these agents are 

“open channel blockers” and their effects are strictly use-dependent. 

The member of the family of bradycardiac agents with greatest specificity for cardiac 

IHCN is ivabradine [Corlentor®]. It is clinically used to reduce heart rate in the treatment of 

stable angina pectoris (Bucchi et al., 2002; Bucchi et al., 2006). Like zatebradine, ivabradine 

blocks IHCN in a use-dependent manner from the intracellular side in a low micromolar 

concentration range. Unlike zatebradine, the action of ivabradine is dependent on ion flow 

across the channel pore (Bucchi et al., 2002). 
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Currently available studies on bradycardiac agents reveal no specificity for HCN 

channel isoforms, although the mechanisms of block may differ for HCN1 and HCN4 (Bucchi 

et al., 2006; Stieber et al., 2006). 

 

3.5.3 Anaesthetic agents 

Volatile anaesthetics have been predominantly known to act as powerful modulators of 

the two pore domain K+ channels (for review see (Franks and Lieb, 1988)). However, studies 

on both native and cloned HCN channels have revealed a strong inhibitory action of volatile 

anaesthetics at clinically relevant concentrations (Sirois et al., 1998; Sirois et al., 2002; Chen 

et al., 2005b). These studies reveal the first evidence for an isoform-specific blockade of HCN 

channels. Thus, halothane [Fluothane®] primarily shifts the voltage dependence of HCN1-

currents towards the more hyperpolarised range, while reducing the maximal conductance of 

HCN2-currents (Chen et al., 2005b). These effects correlate strongly with the molecular 

make-up of the two channel isoforms: the CNBD and the C-linker of HCN1 channels mediate 

the halothane-induced shift in voltage dependence, while core transmembrane domains of 

HCN2 mediate the inhibition of conductance. The differential actions of halothane on 

isoforms are lost when cAMP is bound, implying a role for the CNBD, and its inhibitory 

effects on channel gating, in the isoform specificity of halothane. 

The general anaesthetic propofol [Diprivan®] inhibits IHCN in addition to its modulatory 

action on GABAergic inhibition (Jurd et al., 2003) and on small conductance (SK)-type K+ 

channels (Ying and Goldstein, 2005). Both in cortical pyramidal neurones (Chen et al., 

2005a) and in thalamocortical cells (Ying et al., 2006) strong negative shifts of about 10 mV 

were induced by propofol at clinically relevant concentrations of 3-5 µM. Propofol also 

inhibits expressed channels in an isoform-specific manner, with the most pronounced actions 

on HCN1-currents, and more moderate effects on HCN2- and HCN4-currents (Cacheaux et 

al., 2005; Chen et al., 2005a). Given the strong expression of HCN2 and HCN4 protein in 

thalamus, it remains unclear which native channel isoform in thalamocortical cells confers 

high propofol sensitivity. Interestingly, propofol also induces a decrement of HCN2 and 

HCN4 protein expression 3-24 hours after a single propofol injection (Ying et al., 2006). 

 

3.5.4 Antiepileptic agents 

Commonly used antiepileptic drugs are powerful potentiators of HCN channels (Poolos 
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et al., 2002; Berger et al., 2003; Surges et al., 2003). In hippocampal principal cells, 

lamotrigine [Lamictal®] acutely causes a several fold upregulation of dendritic IHCN amplitude 

around resting membrane potentials and an 11 mV positive shift in current voltage-

dependence (Poolos et al., 2002; Berger and Luscher, 2004) at concentrations of 50-100 µM 

in vitro. This dendritic current enhancement may attenuate neuronal excitability, either via a 

decrease in dendritic input resistance or a reduced temporal summation of synaptic inputs (see 

Section 3.6.5). However, additional effects of lamotrigine on voltage-gated Na+ channels may 

explain its neuronal-specific actions (Berger and Luscher, 2004). A potentiating action has 

also been reported for gabapentine [Neurontin®] (Surges et al., 2003). 

 

3.5.5 Additional blockers 

An inhibitory effect on HCN1-mediated currents (Gill et al., 2004), and of hippocampal 

IHCN (Ray et al., 2003), has been reported for capsazepine, a blocker of vanilloid receptors, 

with an IC50 of 8 µM. QX-314, a quaternary derivative of lidocaine and best known as an 

intracellular blocker of voltage-activated Na+ channels, completely blocked IHCN in CA1 

pyramidal cells (Perkins and Wong, 1995). Additionally, it was proposed that the tyrosine 

kinase inhibitor genistein (Shibata et al., 1999; Altomare et al., 2006) and the α2-receptor 

agonist clonidine (Parkis and Berger, 1997; Knaus et al., 2007) might directly inhibit IHCN.  
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3.6 Physiology 

Previous reviews have excellently summarized the role of HCN-currents in neuronal 

and cardiac functions (Pape, 1996; Kaupp and Seifert, 2001; Robinson and Siegelbaum, 2003; 

Baruscotti and DiFrancesco, 2004; Stieber et al., 2004; Cohen and Robinson, 2006). This 

chapter reports mostly on the novel insights into long-recognized functions of IHCN, and then 

describes some of the most recently recognized functions of this current. 

 

3.6.1 Physiological and behavioral deficiencies in HCN-subunit 

knockout mice 

Animals deficient in HCN-channel subunits illustrate the multiple involvement of HCN 

channels in neuronal and cardiac functions. The lack of the HCN1 gene in Purkinje and basket 

cells of cerebellum causes selective deficits in the training of repetitive movements that 

involve the phasic excitation and inhibition of cerebellar Purkinje cells (Nolan et al., 2003). In 

these cells, the HCN1-deficiency retards the resumption of action potential discharge after 

hyperpolarisation, since any voltage deviation induced by transient inhibition is greater than 

normal and repolarisation is slowed. Thus, by allowing a rapid response to oscillatory inputs, 

IHCN may facilitate the coincidence detection of pre- and postsynaptic activity that is required 

for synaptic plasticity of afferents to Purkinje cells. In contrast, the lack of HCN1 in cortical 

structures facilitates hippocampal-dependent spatial learning, potentiates long-term synaptic 

plasticity at some hippocampal afferents, and enhances subthreshold neuronal responses to 

inputs in the theta frequency range (Nolan et al., 2004). Deleting the HCN2 gene produces 

striking deficiencies in thalamic and cardiac cells. The resting membrane potential of thalamic 

neurones is strongly hyperpolarised, the propensity to discharge in bursts increased, and 

synchronous thalamocortical activity typical for generalized spike-and-wave discharges 

recorded in the electroenecephalogram (EEG). HCN2-deficient mice show cardiac 

arrhythmia, while sympathetic stimulation remains intact (Ludwig et al., 2003). Finally, 

HCN4-deficient mice die at embryonic stages; show a strongly reduced heart rate and 

insensitivity to sympathetic stimuli. Cardiomyocytes from these animals are virtually devoid 

of hyperpolarisation-activated currents and pacemaker-like action potentials (Stieber et al., 

2003b). Taken together, the deficits observed in HCN-channel subunit deficient animals 

illustrate, and further strengthen, the long-recognized importance of HCN-currents for some 
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of the cornerstones of neuronal excitability and of pacemaker functions. However, they also 

point to an unexpected involvement of IHCN in synaptic integration and long-term synaptic 

plasticity (Nolan et al., 2003; Nolan et al., 2004). 

 

3.6.2 HCN-currents and pacemaking 

The discovery that the diastolic phase of the cardiac action potential is carried 

predominantly by a cationic hyperpolarisation-activated current has set the ground for the 

unique profile of IHCN as a pacemaker current (Brown et al., 1979; DiFrancesco, 1981). 

Detailed reviews on the mechanisms of pacemaking in cardiac and neuronal preparations are 

found in (Lüthi and McCormick, 1998b; Robinson and Siegelbaum, 2003; Frère et al., 2004; 

Baruscotti et al., 2005; Cohen and Robinson, 2006). Neuronal pacemaker functions attributed 

to IHCN figure prominently in rhythms studied extensively in in vitro neuronal preparations, 

including sleep-related oscillations in thalamocortical cells and circuits (see Section 3.6.8 for 

detail, for review, see (Lüthi and McCormick, 1998b)), γ-oscillations in hippocampus (Fisahn 

et al., 2002), synchronized oscillations in inferior olive (Bal and McCormick, 1997), and 

subthreshold oscillations in entorhinal cortex (Dickson et al., 2000). In autonomously firing 

neurons, a kinetically precisely tuned IHCN sets the regularity and timing of action potential 

discharge (Chan et al., 2004). 

Importantly, IHCN not only serves as a pacemaker by virtue of its voltage-dependent 

activation at hyperpolarised potentials. The dual allosteric gating by cAMP and voltage also 

allows for a slow, persistent form of current enhancement that may underlie the recurrence of 

synchronous oscillations at time scales of once every 10-30 s (Lüthi and McCormick, 1998b; 

Wang et al., 2002). 

Most recent advances concerning the role of HCN channels in pacemaker mechanisms 

include the molecular identification of the HCN channel isoforms for distinct types and 

aspects of cardiac and neuronal pacemaking. In cardiac myocytes, overexpression and 

dominant-negative suppression of HCN2 and HCN4 increase or suppress cardiac beating, 

respectively, both in vitro and in vivo (for review, see (Cohen and Robinson, 2006)). Genetic 

deletion of HCN2 reduces SAN currents by 30%, whereas eliminating HCN4 in embryonic 

myocytes almost entirely abolished the current. Consistent with these effects, heart rate was 

more variable, but still present in HCN2-deficient animals, whereas the HCN4-deficient 

animals are embryonically lethal due to a failure of heart beating. 

The fact that HCN2- and HCN4-mediated currents are largely responsible for the 
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diastolic phase of the cardiac rhythm has prompted the idea that HCN genes could be used to 

re-create a pacemaker for the arrhythmic or failing heart. The initial experiments with viral or 

cell-based delivery of HCN genes into cardiac cells have proven remarkably successful (for 

review, see (Robinson et al., 2006)). Thus, within three days after injection of HCN2-

containing adenovirus in the canine atrium or in the Purkinje fibres, substantial current was 

expressed that promoted escape rhythms driving the heart after sinus node arrest (Qu et al., 

2003; Plotnikov et al., 2004). 

 

3.6.3 HCN-currents and resting membrane potentials 

By virtue of its 10-15% activation around resting membrane potential and its non-

inactivating properties, standing HCN-currents exert a depolarising action on neuronal resting 

properties in many different cell types (Pape, 1996). Activation of IHCN around rest stabilizes 

membrane potential against hyperpolarisation (Ludwig et al., 2003; Nolan et al., 2003), while 

its deactivation antagonizes membrane depolarisation (Magee, 1999). The importance of 

shortening transient hyperpolarisation to re-instate cellular excitability is perhaps best 

demonstrated in bulbospinal neurones involved in rhythmic breathing movements (Dekin, 

1993) and in Purkinje cells that are phasically inhibited during motor activity (Nolan et al., 

2003). Around rest, the depolarising effect of IHCN is cancelled by hyperpolarising currents to 

abolish net current flow at the resting membrane potential. In thalamocortical neurons, 

HCN2-currents and TASK3-currents counterbalance each other (Meuth et al., 2006). 

Consequently, although both these channel types are highly sensitive to extracellular 

acidification, thalamocortical cellular resting membrane potential is relatively unaffected by 

drops in the pH. Conversely, volatile anesthetics, which inhibit HCN- and potentiate TASK-

currents, dramatically hyperpolarise resting membrane potential (Sirois et al., 2002). 

Interactions between HCN channels and Kir/Kleak channels are prominent in pyramidal cell 

dendrites and maintain IHCN activation sufficiently high to allow for its control of temporal 

summation (Day et al., 2005). A standing IHCN is also crucial for stabilizing the on-going 

action potential discharge in Purkinje neurons (Williams et al., 2002). Primary sensory 

neurons exploit the pH and temperature sensitivity of HCN currents to generate sensory 

receptor potentials (Stevens et al., 2001; Viana et al., 2002). 
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3.6.4 Regulation by cAMP and novel modulators 

A canonical way of IHCN regulation is via the direct binding to cyclic nucleotides, 

independently of the action of PKA (DiFrancesco and Tortora, 1991; Pedarzani and Storm, 

1995). Since then, it has been shown that many G-protein-coupled neurotransmitters, 

endogenous neuropeptides and inflammatory agents regulate IHCN via altering intracellular 

cAMP and cGMP levels (for an overview, see (Pape, 1996; Frère et al., 2004)). These 

compounds principally mediate their cAMP-dependent actions by shifting the activation curve 

towards more depolarised potentials, while leaving maximal current conductance unaltered. 

The regulation by cAMP is bidirectional, in that both increases and decreases in standing 

cAMP levels, mediated by Gs- and Gi/o-coupled neurotransmitter receptors, respectively, can 

be detected (for an overview, see (Frère et al., 2004)). In entorhinal cortex, the dopaminergic 

decrease in neuronal excitability is mediated, at least in part, by cAMP-dependent regulation 

of HCN channels present in apical dendrites (Rosenkranz and Johnston, 2006). A number of 

effects of neurotransmitters on IHCN appear, however, unrelated to cAMP. In hippocampus, 

muscarinic receptor agonists augment IHCN by increasing its maximal conductance, 

independently of cAMP (Colino and Halliwell, 1993; Fisahn et al., 2002), and serotonin 

augments IHCN by affecting both maximal conductance and activation curve, an effect that is 

not fully mimicked by cAMP (Gasparini and DiFrancesco, 1999; Bickmeyer et al., 2002). 

Furthermore, a κ-opioid receptor agonist augments the maximum conductance of IHCN in 

brainstem neurones via mobilization of intracellular Ca2+, without shifting the IHCN activation 

curve (Pan, 2003). In hypothalamic paraventricular neurones, neuromedin-U, best known for 

its effect on gut smooth muscle, positively shifted the voltage dependence of IHCN, likely via 

stimulation of phospholipase C pathways (Qiu et al., 2003). Finally, the sleep-promoting 

peptide cortistatin augments the maximal conductance of IHCN by a cAMP-independent 

mechanism (Schweitzer et al., 2003). From these available data, it is reasonable to assume 

that additional modulators of HCN channels exist. Some of these are likely to be found in the 

messenger pathways involving mobilization of intracellular Ca2+ and phosphoinositide 

pathways, although Ca2+ has no direct effect on at least the thalamic isoforms of IHCN (Lüthi 

and McCormick, 1999b; Fan et al., 2005). Most recently, p38 MAPK was identified as a 

powerful modulator of the voltage dependence of hippocampal IHCN (Poolos et al., 2006). 

Inhibition of p38 MAPK negatively shifted the activation curve of hippocampal IHCN by 

~25 mV, whereas activation of this kinase induced an 11 mV positive shift, revealing the 

largest voltage window so far reported for IHCN regulation. The proposed phosphorylation site 

for p38 MAPK involves T778 on HCN1, located distal to the CNBD, whereas it is T17 for 
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HCN2 on the N-terminus (Figure 3). The existence of consensus phosphorylation sites for 

additional kinases (Poolos et al., 2006), and the diverse types of tyrosine kinase modulation of 

heterologously expressed (see e.g. (Arinsburg et al., 2006)) and native isoforms of IHCN 

(Thoby-Brisson et al., 2003) strongly suggests that elucidation of the pathways controlling 

HCN channel phosphorylation may soon lead to additional insights into the physiological 

roles of this current. 

 

3.6.5 HCN-currents in dendritic integration 

The active properties of dendrites play an important role in how synaptic input is shaped 

and integrated. A notable feature of dendritic HCN1 is its expression along a steep gradient in 

the apical dendrites of CA1 pyramidal neurons and layer V cortical neurons, with channel 

density increasing by over 60-fold towards the distal end in the latter, and about 7-fold in the 

former (see Section 3.4.3, 3.4.4). A standing IHCN contributes up to 11 mV to the resting 

membrane potential of apical dendrites (Williams and Stuart, 2000). When this current is 

deactivated partially, as it may occur by small subthreshold depolarisation, it is rapid enough 

to accelerate the decay of these deviations from resting potential. The deactivation of IHCN is 

boosted during repetitive depolarisations and produces a net membrane hyperpolarisation that 

effectively impairs the temporal summation of postsynaptic excitatory potentials, generated 

by presynaptic firing up to about 100 Hz. These effects are most pronounced for inputs at 

distal dendrites, where HCN channel density is highest. Notably, the density of HCN channels 

appears tuned such that it exactly compensates the incrementing electrotonic filtering of the 

tapering dendritic cables, thereby rendering the temporal summation essentially independent 

of dendritic location (Williams and Stuart, 2000). By a similar mechanism, dendritic IHCN also 

antagonizes the summation of backpropagating action potentials into cortical layer V 

dendrites (Berger et al., 2003). The acceleration, and hence sharpening of excitatory 

postsynaptic potentials (EPSPs), could be particularly important in auditory processing, in 

which high temporal precision in the detection of inputs is required (Yamada et al., 2005). 

The high HCN channel density, however, also imposes a shunting conductance on the 

hippocampal (Berger et al., 2001) and cortical (Fernandez et al., 2002) neuronal dendrites, 

and produces a disproportionate attenuation of the amplitude of distal inputs. A higher density 

of AMPA-type glutamate receptors at distal dendrites reinstates the site independence of 

EPSP amplitude (Andrasfalvy and Magee, 2001). 

The rapid deactivation and reactivation of IHCN shapes the responsiveness of dendrites to 
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oscillatory input, imparting to them a resonance at frequencies in the theta range (~5 Hz) 

(Magee, 2001; Hu et al., 2002). Computational models show that stochastic fluctuations of 

HCN channels, present at high densities in cortical dendrites, are strong enough to help 

regulate the precision of action potential discharge to periodic inputs (Kole et al., 2006). 

 

3.6.6 HCN-currents in synaptic plasticity 

A novel and exciting theme in HCN channel physiology is the recognition that these 

channels are members of the growing family of ion channels the expression of which is 

rapidly regulated by neuronal activity. Thus, IHCN is an important determinant of how intrinsic 

excitability can be modified, thereby influencing how synaptic input is transformed into 

axonal output (Zhang and Linden, 2003). Modifications in excitability, accompanied by 

changes in IHCN, have been reported from different groups. In the CA1 area, HCN-mediated 

currents were enhanced several fold and rapidly, within tens of minutes following exposure to 

pressure-applied glutamate (van Welie et al., 2004), following synaptic release of glutamate 

via a theta-burst pairing protocol, or following brief increases in extracellular K+ levels (Fan 

et al., 2005). In younger animals, input-specific modifications of IHCN, as well as local 

changes in dendritic integration were reported (Wang et al., 2003). Long-term plasticity was 

accompanied by an enhanced expression of HCN1 protein, while HCN2 expression remained 

unchanged. Entry of Ca2+ was required for this effect, with NMDA receptors as the principal 

source, and CaMKII and the protein synthesis machinery as likely mediators. The increased 

IHCN decreases neuronal excitability persistently and could hence be involved in the dendritic 

mechanisms controlling synaptic plasticity. Presynaptically expressed IHCN has also been 

implicated in mediating presynaptic forms of synaptic plasticity, both in mammalian 

hippocampus (Mellor et al., 2002) (but see (Chevaleyre and Castillo, 2002)), as well as in 

invertebrates (Beaumont and Zucker, 2000; Beaumont et al., 2002). 

 

3.6.7 HCN-currents in presynaptic neurotransmitter release 

In one of the original cloning studies, it was realized that HCN1 protein was strongly 

expressed in axon terminals of cerebellar basket cells (Santoro et al., 1997). In these terminals 

(Southan et al., 2000), as well as in the giant presynaptic terminals of the rat auditory pathway 

(Cuttle et al., 2001) and the avian ciliary ganglion (Fletcher and Chiappinelli, 1992), 

substantial IHCN is expressed. However, so far, evidence for an involvement of this current in 
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presynaptic neurotransmitter release in these terminals is lacking, while presynaptic IHCN in 

dentate gyrus basket cells (Aponte et al., 2006) and in crustacean terminals was proposed to 

facilitate neurotransmitter release (Beaumont and Zucker, 2000). In cerebellar basket cells, as 

well as in stratum oriens interneurones of hippocampus (Lupica et al., 2001), blocking IHCN 

reduces spontaneous GABAergic transmission, consistent with IHCN controlling 

somatodendritic excitability of these neurones and axonal propagation. More recently, it was 

shown that blocking IHCN increases the threshold for axonal action potential initiation 

(Hiramatsu et al., 2002; Aponte et al., 2006), probably because the membrane 

hyperpolarisation generated by the electrogenic Na+/K+ ATPase (Pachucki et al., 1999) is no 

longer antagonized by IHCN. 

 

3.6.8 HCN-currents in the thalamus 

To specifically highlight the importance of IHCN in the thalamocortical system, the focus 

of this thesis, the following chapter describes its role as pacemaker current in rhythmic 

electrical activity on both the level of single neurons as well as on neuronal networks. The 

chapter summarizes classic work on thalamic IHCN, which was fundamental in recognizing 

many of its unique properties. In addition, it addresses the issue of how HCN channels help to 

regulate the firing mode of thalamocortical cells and, by doing so, contribute to the control of 

arousal states. A correlation of the resting membrane potential, the firing mode of 

thalamocortical cells and arousal states could be determined in vivo. Furthermore, in vitro 

electrophysiological recordings revealed the involvement of HCN-currents in sleep related 

oscillations, namely delta waves and spindle waves. 

 

Action potential firing mode. A principal property of thalamocortical neurons is to show 

dual action potential discharge modes (Figure 4). Depending on their membrane potential, 

these neurons fire in rhythmic burst discharges or, if they are depolarized, display tonic single 

spike activity ((Jahnsen and Llinas, 1984) for review, see (McCormick and Bal, 1997)). Thus, 

by contributing to the resting membrane potential both in vivo and in vitro (see Section 3.6.3; 

(Ludwig et al., 2003; Meuth et al., 2006)) HCN-currents help to set the firing mode of 

thalamocortical neurons. HCN channels activated at rest give rise to a tonic inward current. A 

positive shift in the activation range of HCN channels due to increased cAMP synthesis could 

increase the amount of this tonic inward current resulting in membrane depolarization. 

Closure of HCN channels would mean membrane hyperpolarization. Thus, in vitro-recordings 
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showed that modulation of IHCN could result in a change of the action potential firing mode. 

This applies for blockade of HCN channels by Cs+ (McCormick and Pape, 1990b), but also 

for the activation of IHCN after stimulation of Gs-protein-coupled ß-adrenergic and 

serotoninergic receptors (McCormick and Pape, 1990a) that, together with the reduction of a 

resting leak K+ conductance, induced membrane depolarization (for review, see (McCormick 

and Bal, 1997)). Interestingly, in vivo-recordings revealed a correlation between the 

membrane potential of thalamocortical neurons and the state of arousal. During sleep, 

thalamocortical neurons showed a hyperpolarized membrane potential and the main discharge 

pattern observed consisted in action potential bursting. Conversely, during waking or rapid-

eye-movement sleep (REM sleep), the membrane potential was depolarized, supporting the 

tonic action potential firing mode (Hirsch et al., 1983; McCarley et al., 1983; Weyand et al., 

2001). In this manner, by their contribution to the resting membrane potential of 

thalamocortical neurons HCN channels could help to regulate the arousal state. For example, 

in vitro, sleep related oscillations were demonstrated to stop after application of noradrenalin 

and serotonin (Lee and McCormick, 1996). Increased cAMP synthesis after activation of 

G-protein coupled receptors (GPCRs) can shift the activation range of HCN channels to more 

depolarized potentials, thus depolarizing the membrane potential by giving rise to an inward 

current. These data demonstrate that HCN channels represent one of the cross-points between 

ascending neurotransmitter systems that activate cAMP generating GPCRs and the firing 

mode of thalamocortical cells.  

 

Delta waves. In the absence of synaptic input, thalamocortical neurons show a pattern of 

slow rhythmic burst discharges at a frequency of 0.5-4 Hz. These delta-oscillations are found 

in vitro (McCormick and Pape, 1990b; Leresche et al., 1991; Soltesz et al., 1991; Destexhe et 

al., 1993; Steriade et al., 1993b; Hughes et al., 1998) and in vivo (Steriade et al., 1991) and 

contribute to the emergence of slow EEG waves during deep sleep phases. The rhythmic 

bursts are driven through the interaction of a low-threshold Ca2+current (IT) and HCN-currents 

(for review, see (Pape, 1996; McCormick and Bal, 1997; Lüthi and McCormick, 1998b; 

Robinson and Siegelbaum, 2003). Lacking external synaptic influence, thalamocortical cells 

hyperpolarize around -75 mV. This membrane potential is sufficient to activate HCN-currents 

that depolarize the cell back towards threshold for IT, generating a low-threshold Ca2+ spike. 

The peak of the Ca2+ spike is often crowned by a burst of high frequency action potentials. In-

activation of IT terminates the Ca2+ spike and the following hyperpolarization can activate 

HCN-currents again.  
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Figure 4. Two different firing modes of action potentials in thalamocortical neurons. A, Rhythmic 

burst firing in a thalamic relay neuron in vitro at a membrane potential of -65 mV (left). Depolarization of the 

cell to -58 mV (by intracellular injection of current) induces a switch to the tonic, or single spike, mode of action 

potential generation (right). B, Expanded trace of oscillatory burst activity that is mediated by an interaction of 

pacemaker currents and low-threshold Ca2+ currents. C, Expanded trace of single-spike activity. Adapted from 

(McCormick and Pape, 1990b). 

 

 

Spindle waves. HCN-currents not only control oscillatory activity of single cells, but 

also contribute to network oscillations observed in intact thalamic preparations. During slow 

wave sleep, but also during some types of epilepsy, the thalamocortical system generates 

typical slow, synchronized firing patterns, which appear in the EEG as the so called spindle 

waves (Figure 5A). Thalamic neurons fire action potentials at 7-14 Hz that wax and wane over 

a period of 1-3 s. The phase of rapid spiking is followed by a prolonged period of silence 

lasting for 5-20 s (for review, see (McCormick and Bal, 1997)). Spindle waves are generated 

through an reciprocal interaction between the inhibitory, GABAergic neurons of the thalamic 

reticular nucleus and the excitatory, glutamatergic thalamic relay cells (Figure 5B, reviewed 

by (McCormick and Bal, 1997)). During this interaction, action potential firing in the 

excitatory thalamocortical relay neurons drives the firing of the reticular neurons. This, in 

turn, generates a burst of hyperpolarizing inhibitory postsynaptic potentials (IPSPs) in the 

relay neurons. These IPSPs activate HCN-currents and low-threshold Ca2+ spikes in 
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thalamocortical cells, which then, through the generation of bursts of action potentials, can 

reexcite the reticular cells. In vitro, the waxing of the spindle oscillations is due to a 

progressive increase in the recruitment of neurons that participate in the oscillation. The 

waning is induced by a prolonged depolarization of the thalamic relay neurons that results in 

the inactivation of the low-threshold Ca2+-current, thus preventing the neurons from spiking 

(Figure 5C) This afterdepolarization (ADP) could be triggered by an experimental 

upregulation of HCN-currents through repetitive current injections, mimicking the arrival of 

spindle waves (Bal and McCormick, 1996). During the evoked rebound bursts both 

hyperpolarization activated HCN-currents and an intracellular increase in Ca2+ is required. 

The subsequent activation of Ca2+ stimulated adenylyl cyclases leads to elevated cAMP levels 

that further enhance the activation of HCN-currents (Lüthi and McCormick, 1999b). The 

persistence of HCN channel activation is also determined by the slow rate of cAMP 

dissociation from the CNBD at the cytoplasmic tail of the channel (Wang et al., 2002). In this 

manner the slow periodicity of spindle waves, the re-occurrence of these events every 5-20 s 

only is governed by the unique properties of HCN channels, being dually gated by 

hyperpolarization and by cAMP.  

 

Knockout animals. Studies on knockout animals give additional evidence for the 

involvement of IT and IHCN in thalamocortical oscillations. Mice lacking HCN2 channels, the 

HCN-subunit that is mainly expressed in the thalamus, showed increased spontaneous activity 

in thalamic neurons of brain slices (Ludwig et al., 2003). This oscillatory activity could be 

blocked by a specific T-type Ca2+ channel antagonist and could be mimicked in wild-type 

slices by treatment with the HCN-current blocker CsCl (Ludwig et al., 2003). Also T-type 

Ca2+ channel knockout mice had defects in sleep waves such as lack of delta oscillations 

(1-4 Hz) and alteration of sleep spindles (7-15 Hz) (Lee et al., 2004). These deficits were 

accompanied by sleep disturbances (Lee et al., 2004; Anderson et al., 2005). 
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Figure 5. Spindle waves and the interaction between nRT and thalamocortical neurons during 

spindle wave generation. A, In vivo nREM sleep EEG recordings (upper trace) that are filtered for spindle 

waves (bottom trace) with a waxing and waning appearance. From (Steriade and Llinas, 1988). B, Spindle waves 

are generated in vitro by the reciprocal interaction between inhibitory neurons from the nRT and excitatory relay 

neurons. Inhibitory postsynaptic potentials can activate low-threshold Ca2+ rebound burst discharges in relay 

neurons. These rebound burst discharges can re-activate nRT neurons. C, Intracellular recordings from 

thalamocortical neurons in vitro show the slow afterdepolarization (ADP) that occurs in the refractory period 

following the generation of spindle waves. This ADP originates by upregulated HCN-currents. Adapted from 

(Bal and McCormick, 1996). 
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3.7 Relevance to disease states 

HCN channels belong to the few ionic channels known to be sensitively altered at the 

transcriptional level in response to brief periods of aberrant electrical activity (Waxman, 

2001). The ensuing abnormal functional expression of HCN channels may produce 

maladaptive increases in neuronal excitability, such as those typical for epilepsy and 

neuropathic pain. In the heart, ventricular myocytes show changes in HCN subunit 

transcription in response to cardiac stress, which may contribute to the arrhythmias that are 

seen in cardiac disease. 

 

3.7.1 Epilepsies 

Changes in HCN expression were found in a developmental form of epilepsy, in 

temporal lobe epilepsy and in generalized epilepsy (Santoro and Baram, 2003; Poolos, 2004). 

In animal models of developmental and temporal lobe epilepsy, HCN channel expression is 

disturbed following single seizure episodes and changes may persist for weeks, implicating 

them in the development of chronic epilepsy. Animal models of generalized epilepsy show 

abnormal HCN expression prior to the onset of the seizures that persists unaltered in the 

chronic phase, suggesting a genetically determined defect in HCN channel function that 

accompanies epilepsy. HCN channels appear thus involved in both inherited, as well as in 

acquired forms of epilepsy, and their rapid and high susceptibility to single phases of 

hyperexcitation could render them important causative factors in the processes of 

epileptogenesis. 

Generalized epilepsies. Perhaps the most extensive characterization of HCN channel 

expression and properties is now available for models of absence epilepsy, a generalized form 

of absence epilepsy characterized by spike-and-wave discharges (SWDs) in the 

electroencephalogram (Waxman, 2001; Meeren et al., 2005). These discharges arise from a 

hypersynchronous oscillation in reverberating thalamocortical loops, and both thalamic, as 

well as cortical mechanisms underlie these pathological oscillations. Remarkably, the two 

independent rat models of absence epilepsy, the WAG/Rij (Strauss et al., 2004; Budde et al., 

2005) and the GAERS (Kuisle et al., 2006) as well as the stargazer mouse model (Di Pasquale 

et al., 1997), show altered IHCN properties. Thalamocortical neurones of both WAG/Rij and 

GAERS show an increased expression of the cAMP-insensitive HCN1 channel isoform that is 

accompanied by a weakened cAMP sensitivity of HCN channels. The enhanced HCN1 
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expression persists throughout chronic stages, and may lead to an enhanced heteromer 

formation with HCN2, thereby reducing the sensitivity of the channels to cAMP transients 

typical for normal sleep-related oscillations (Kuisle et al., 2006). In cortex of the WAG/Rij 

model, HCN1 expression and function was downregulated in layers II/III, producing an 

increase in the excitability of these neurones (Strauss et al., 2004). Conversely, the stargazer 

mouse model shows an enhanced current amplitude in layer V principal neurones (Di 

Pasquale et al., 1997).  

Febrile seizures. Seizures induced by fever are the most common type of seizure in the 

developing brain and affect up to 5% of children younger than five years. In young rats, 

febrile seizures can be induced by briefly exposing the brain to a single (~20 min) period of 

hyperthermia. Such animals reliably (> 98%) show seizures and an increased tendency to 

develop epilepsy in adulthood (Toth et al., 1998), suggesting that early life seizures may 

predispose to later epileptic susceptibility (Walker and Kullmann, 1999; Baram et al., 2002). 

Febrile seizures are accompanied by a number of persistent modifications of neuronal 

excitability in hippocampal neurones, amongst which changes in HCN mRNA expression 

figure prominently (Brewster et al., 2002; Brewster et al., 2005). A single experimental 

febrile seizure induced a persistent decrease in HCN1 mRNA and an increase in HCN2 

mRNA in hippocampal CA1 pyramidal cells (Brewster et al., 2002; Brewster et al., 2005), 

that were accompanied by a depolarising shift in the current activation curve (Chen et al., 

2001b). These altered expression patterns were not found when animals were given 

antiepileptics prior to induction of hyperthermia, indicating that seizure activity, and not the 

elevated brain temperature, triggered changes in subunit expression. Notably, the changes in 

HCN mRNA expression levels persisted for up to 3 months, suggesting a long-lasting 

perturbation of the developmental program of HCN channel expression. In addition to the 

altered expression, HCN1 and HCN2 proteins increasingly associated in heteromers following 

the seizures, further promoting the functional expression of IHCN with altered biophysical 

properties (Brewster et al., 2005). 

Temporal lobe epilepsy. The kainate-model model of temporal lobe epilepsy is 

produced by a single injection of the convulsant agent kainic acid, which leads to chronic 

epilepsy after a latency period of a few weeks (White, 2002). During this latent phase, which 

lacks behaviorally overt epileptic activity, HCN1 and HCN2 proteins in entorhinal cortex, the 

major component of the temporoammonic pathway into the hippocampus, are markedly 

downregulated within 24 hrs, and current amplitude is reduced for up to one week (Shah et 

al., 2004). This downregulation of IHCN causes enhanced excitability of entorhinal cortex layer 
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III neurones and increased temporal summation of excitatory input. It is widely believed that 

such modifications may represent a first step in the processes leading from the latent, seizure-

free episode to chronic epilepsy. 

In contrast, during advanced stages of chronic temporal lobe epilepsies, the expression 

of HCN protein in surviving neurones is altered in a manner that suggests a neuroprotective 

effect. Thus, in surviving dentate granule cells of sclerotic human hippocampus, HCN1 is 

markedly increased compared to the non-sclerotic case. Such current enhancements in 

surviving cells may help to counteract the excessive excitation and the associated excitotoxic 

cell death (Bender et al., 2003). 

These currently available studies document that, in at least some instances, an altered 

HCN subunit expression in neurones may be a defining characteristic of neuronal networks 

prone to develop an epileptic phenotype. The detailed patterns of modified channel expression 

are determined not only by the type of seizures, but also by the cell type and the 

developmental stage. In addition, HCN subunit expression, in particular HCN1 and HCN2, 

shows a high vulnerability to single periods of enhanced neuronal activity. The influences 

during developmental stages appear to be particularly multifactorial, given that single febrile 

seizures produce persistent current enhancements (Chen et al., 2001b), but can be influenced 

by neonatal behavioural experience (Schridde et al., 2006). The mechanisms translating 

seizures into altered HCN channel expression remain, so far, unexplored, but could range 

from acute influences, such as synaptic activity (see e.g. (van Welie et al., 2004)) to long-

term, chronic modulation of channel expression, for example via hormones and inflammatory 

processes (see e.g. (Armoundas et al., 2001; Vasilyev and Barish, 2004)).  

 

3.7.2 Cardiopathies 

Cardiac myocytes undergo electrical and structural remodeling to adapt to external 

stressful factors, such as pressure overload (e.g. hypertension), inflammation and infarction 

(for review, see (Armoundas et al., 2001)). A number of cardiovascular diseases are 

accompanied by abnormal expression of HCN mRNA, notably also in areas in which this 

channel is poorly expressed under healthy conditions. Most prominently, cardiac ventricular 

myocytes, which are not normally involved in cardiac pacemaking, show increases in IHCN 

magnitude or shifts in voltage dependence, rendering them potentially rhythmogenic (Cerbai 

and Mugelli, 2006).  

An unexpected presence of IHCN was first observed in ventricular myocytes of 
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spontaneously hypertensive rats that was accompanied by a small diastolic depolarisation 

(Cerbai et al., 1994). The degree of rat myocardial hypertrophy is positively correlated with 

an increase in the density of IHCN. This correlation indicates that the mechanisms underlying 

cardiac hypertrophy such as alteration in action potential properties and response to cellular 

stress steer HCN subunit expression (Cerbai et al., 1996). At the molecular level, an 

upregulation of the HCN2 and HCN4 mRNA (Hiramatsu et al., 2002; Fernandez-Velasco et 

al., 2003) and HCN2 protein expression (Fernandez-Velasco et al., 2006) the predominant 

isoforms underlying ventricular IHCN (Shi et al., 1999), were described. Again, the change in 

expression levels was most pronounced in those cardiac regions that had highest pressure 

overload (Fernandez-Velasco et al., 2003; Sartiani et al., 2006). These changes are fairly 

specific to HCN proteins amongst the family of currents involved in cardiac diastolic 

potentials (Fernandez-Velasco et al., 2006). Cardiac remodelling also alters β-adrenergic 

regulation of HCN currents in ventricular myocytes (Cerbai et al., 1999a; Sartiani et al., 

2006). Qualitatively similar observations have also been reported for the failing heart in 

humans, including larger current densities and a positive correlation between the severity of 

hypertrophy and increased current density (Hoppe et al., 1998; Cerbai et al., 2001). 

Additionally, gene micorarray analysis points to an upregulated HCN4 gene expression in the 

failing human ventricle (Borlak and Thum, 2003).  

Signalling pathways switching on/off HCN channel expression in non-pacemaker cells 

may involve the renin-angiotensin system. Chronic administration of the type I angiotensin 

receptor-blocker losartan to old hypertensive rats not only reduces cardiac hypertrophy, but 

also reverses IHCN upregulation  and overexpression of HCN2 and HCN4 mRNA (Cerbai et 

al., 2000; Hiramatsu et al., 2002). G-protein coupled receptors also seem to play a role in 

HCN channel expression. The β2-adrenergic receptor overexpressing mice show a five times 

higher ventricular IHCN than normal animals, and a preferential upregulation of HCN4 

compared with HCN2 (Graf et al., 2001). Furthermore, HCN mRNA is correlated to thyroid 

hormone and/or thyroid hormone receptor level (Pachucki et al., 1999; Gloss et al., 2001).  

HCN channel dysregulation not only plays a role in ventricular cells, but also in the 

pacing regions of the heart, further increasing the risk for arrhythmic impulses. For example, 

in the rabbit failing heart, SAN cell automaticity is impaired by downregulation of IHCN 

(Verkerk et al., 2003), and a reduced expression of HCN2 and HCN4 subunits was described 

in a dog model of congestive heart failure (Zicha et al., 2005).  

Taken together HCN expression patterns in cardiac myocytes appear strongly correlated 

with the degree of cardiac overload and are thus electrical markers of cardiac remodelling. 
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Given the similarities in the expression profile of fetal and hypertrophied myocytes, it has 

been speculated that cardiac hypertrophy involves a recapitulation of gene expression patterns 

typical for neonatal stages and a re-entry of cells into a juvenile program. 

 

3.7.3 Injuries 

Peripheral nerve injury is often accompanied by syndromes of neuropathic pain such as 

allodynia (strong sensation evoked by light mechanical stimuli) and spontaneous painful 

sensations. Sensory pathways and a misrepresentation of sensory information are primarily 

thought to contribute to the clinical symptoms of neuropathic pain. This manifests in a 

hyperexcitability of dorsal root ganglion cells bodies that give rise to large, myelinated Aβ/δ-

fibres, which are normally not involved in the transmission of pain (Shir and Seltzer, 1990; 

Chaplan et al., 2003). Rat models of spinal cord injury, such as axotomy (Black et al., 1999), 

chronic constriction (Dib-Hajj et al., 1999) or ligation of spinal nerves (Kim et al., 2001a) 

show that an altered expression of several voltage-gated Na+ channel subunits contributes to 

the persistence of neuronal firing in injured cells (for review see (Waxman, 2001)). However, 

administration of ZD7288 reduced allodynia in rat models of neuropathic pain (Chaplan et al., 

2003; Dalle and Eisenach, 2005; Lee et al., 2005) and reversed the spontaneous discharges in 

injured large myelinated fibres (Chaplan et al., 2003). In this latter model of spinal nerve 

ligation (Chaplan et al., 2003) as well as in a model of chronic compression (Yao et al., 2003) 

the maximal IHCN density was enhanced 1.5-2-fold compared to control, with variable effects 

Ī��������e dependence and kinetics. These findings establish IHCN upregulation, 

resulting from nerve injury, as an essential factor leading to neuropathic pain. The molecular 

identity of the HCN channels that contribute to these changes remains to determined but 

appears to involve a decrease in the amount of HCN1 and HCN2 mRNA and protein in the 

case of nerve ligation (Chaplan et al., 2003). 

Besides neuronal injury, lesions in excitatory input can also cause an altered expression 

of HCN channels. Functional changes of IHCN and HCN channel expression are described for 

a lesion of the enthorhinal cortex (provides most of the synaptic inputs to the hippocampus), 

where a decreased expression of HCN1 channels was accompanied by a negative shift of Ih 

activation and a faster kinetic in several neuronal cell types of the hippocampus (Bräuer et al., 

2001). These changes were partly reversed following reactive sprouting and replacement of 

entorhinal input by septal and associational afferents. 

HCN channel activity is also modified after other forms of insults, such as hypoxia 
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(Erdemli and Crunelli, 1998) and inflammation (Ingram and Williams, 1996; Linden et al., 

2003). 
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3.8 Concluding remarks 

The HCN channels have seen a paradigmatic change in their physiological standing 

within the voltage-gated ion channel family. Funny and queer in earlier times, these channels 

have evolved to belong to the best characterized ion channels today. Particularly remarkable 

within this ion channel family is that comparatively minor differences amongst channel 

isoforms, such as their kinetics, voltage dependence and cAMP sensitivity, render them 

implicated in the most diverse neuronal functions. Two of the numerous insights into HCN 

channel structure and function are expected to have a great impact in the physiological and 

pathological situation of these channels. First, HCN channel expression in hippocampus is 

regulated rapidly by glutamatergic excitatory activity. This implicates these channels in the 

major control pathways regulating neuronal excitability, plasticity and homeostasis. It is thus 

reasonable to expect that, in the near future, a major pathway in the HCN channel field will 

consist in the elucidation of the activity-dependent co-assembly, trafficking and regulation of 

HCN channels in excitatory neuronal networks. 

Second, accruing evidence indicates that dysregulated HCN channel function and 

abnormal expression is related to cardiopathies and central nervous system diseases, and some 

of the rules by which this happens are currently being established. On the one hand, 

dysfunctional HCN channels in thalamus precede the onset of epilepsy in rat models, 

suggesting that a common genetically or developmentally determined defect in IHCN may 

predispose to epilepsy. On the other hand, brief periods of epileptic activity or neuronal injury 

persistently alter hippocampal IHCN, pointing to a high susceptibility of the mechanisms 

controlling HCN channel expression to unbalanced activity. Elucidating the genetic and 

activity-dependent mechanisms underlying these disturbances will prove crucial for 

therapeutic approaches for neuronal and cardiac diseases, including those aiming at the de 

novo creation of biological pacemakers as a substitute for electronic pacemakers. 

In conclusion, by merging the voltage- and ligand-gating modules into a single ion 

channel, it is probably fair to speculate that nature has generated a masterpiece of flexibility 

that it may not have previously anticipated. 
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4 AIM OF THIS THESIS 

The growing information about expression and function of ion channels in the nervous 

system is not only accompanied by the cognition of the tremendous importance of pacemaker 

channels to fulfill fundamental neuronal tasks, but gives an insight about their involvement in 

malfunction and disease. This thesis addresses two major open questions that remain in the 

field of HCN channels. First, does a disease characterized by aberrant electrical activity, like 

absence epilepsy, involve altered functionality of the channels that are known to show 

greatest sensitivity to abnormal excitability? Second, how is the channel modulated by the 

neurotransmitter of one of the most important arousal system in a cell-type specific manner? 

The experiments target function and regulation of pacemaker channels in the epileptic and 

healthy thalamus. The thalamus is the part of the brain that not only relays incoming 

information from the periphery to the cortex, but also has a tremendous influence on our 

behavioral state, be it sleeping or waking, unconsciousness (like in absence epileptic seizures) 

or highly alert.  

Thus, the aim of this work is to further investigate the pathological situation and 

physiological pathways of HCN channel regulation in the thalamic system, where HCN 

channels are known to have an important influence on neuronal electrophysiological 

properties. 
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5 RESULTS 

PAPER I: FUNCTIONAL STABILIZATION OF WEAKENED THALAMIC 

PACEMAKER CHANNEL REGULATION IN ABSENCE EPILEPSY 
 

 Introduction to paper I:  

 

 Absence epilepsy 

Epilepsy is a common chronic neurological condition that is characterized by recurrent 

unprovoked epileptic seizures. It affects approximately 50 million people worldwide (World 

Health Organization). During an epileptic seizure, abnormal, typically excessive, electrical 

activity in the brain prevents interpreting and processing incoming sensory signals. Also the 

control of muscles gets lost. As a result of this, an epileptic patient may fall down and show 

the characteristic twitching.  

 

Types of epilepsy. There are several types of epilepsy that are classified into generalized 

and partial seizures. Each type has different behavioral effects and is treated with different 

methods.  

1. During a generalized seizure uncontrollable discharge of neurons appear on both 

sides of the brain. It is the most common type of epilepsy. The seizure starts on one area of 

the brain and spreads across both brain hemispheres. These seizures produce muscle twitches, 

convulsions and loss of consciousness. People with this type of epilepsy do not remember 

having a seizure. Generalized seizures are tonic-clonic (“grand-mal”) seizures, absence 

(“petit-mal”) seizures, atonic seizures and status epilepticus.  

2. Partial seizures are seizures where only a small part of the brain is involved in the 

abnormal electrical activity. Sometimes a partial seizure can spread to the whole brain. Two 

types of partial seizures are simple (“focal”) seizures and complex partial (psychomotor) 

seizures. 

 

Absence ("petit mal") seizures. Absence seizures are a generalized, nonconvulsive form 
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of epilepsy and characterized by behavioral arrest and abrupt cessation of consciousness. A 

person having an absence becomes unaware of his or her surroundings and may stare off in 

space or freeze. A seizure lasts 5-30 s and, in human, is typical for children starting between 

3 to 8 years. In the electroencephalogram (EEG) absence seizures are characterized by bi-

laterally spreading of 3-4 Hz rhythmic large amplitude spike-and-wave discharges (SWDs). 

The two crucial structures in the generation and maintenance of absence seizures are the 

thalamus and the cortex (for review, see (Blumenfeld, 2005; Pinault and O`Brien, 2007)). 

Chemical ablation of either of these structures abolished SWDs in the GAERS model of 

absence epilepsy (Vergnes and Marescaux, 1992). There is, however, an ongoing debate 

about the source of the oscillations (Blumenfeld, 2005; Meeren et al., 2005). A large body of 

experimental results point to a critical role for the thalamus in absence seizure generation. In 

respect to this, absence seizures could be induced by the disturbances of intrinsic thalamic 

neuronal properties or synaptic interactions between thalamic circuits (Seidenbecher et al., 

1998; Crunelli and Leresche, 2002; Ludwig et al., 2003; Budde et al., 2005). Conversely, 

other studies show strong evidence that the cortex exerts a leading role in the initial phase of 

seizure onset (Meeren et al., 2002; Steriade and Amzica, 2003; Pinault et al., 2006).  

The pharmacological response profile distinguishes absence seizures from other, 

particularly focal, seizure types. Valproate and ethosuximide are the first choice for most 

(80%) of the patients. However, several other anti-epileptic drugs that are effective in focal 

seizures, including carbamezepine, and drugs that enhance GABA activity in the brain, such 

as vigabatrin and tiagabine, are either ineffective or aggravate absence seizures in humans and 

animal models (for review, see (Pinault and O`Brien, 2007)). 

 

Loss of consciousness. The involvement of the thalamocortical network in absence 

epilepsy manifests in the loss of consciousness during the seizures. The definition of 

consciousness or perception might be more philosophical than scientific as “episodes of 

unresponsiveness or decreased responsiveness, which are not caused by motor alterations” 

(Kostopoulos, 2001). However, research interest in mechanisms underlying consciousness all 

include some role for thalamocortical circuits. The hypothesis is that the generation of a 

functional state that characterize cognition is based on the temporal coincidence of specific, 

first-order and non-specific, intralaminar thalamic activity (Llinás et al., 1998). If the cortex is 

ready to fire with each thalamic input as seems to be the case during SWDs, such ability 

would be lost. 
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Spike-and-wave discharges. SWDs are driven by the hypersynchronized discharging of 

reciprocally connected corticothalamic and thalamocortical circuits (Crunelli and Leresche, 

2002; Meeren et al., 2002; Steriade and Amzica, 2003; Pinault et al., 2006). Several 

neurophysiological studies support the hypothesis that SWDs are sustained by a functional 

alteration of the same synchronizing mechanism that promotes sleep spindle oscillations in 

the thalamocortical system (for spindle oscillations see Section 3.6.8 of this thesis). Thus, in a 

model of feline generalized penicillin epilepsy after systemic penicillin injection spindle 

oscillations were transformed into SWDs, as a result of an increase in excitability of cortical 

neurons (Kostopoulos et al., 1981). Additionally, an in vitro study on thalamic slices showed 

that the isolated thalamo-reticular-thalamic circuit responsible for spindle generation is also 

able to generate rhythmic oscillations in the frequency range of absence-like SWDs (von 

Krosigk et al., 1993). The theory that SWDs are a perversion of sleep spindles is further 

corroborated by the fact that these two oscillatory modes share a) the need of the thalamo-

cortical network, b) the dependence on GABAergic mechanisms and c) both confer 

unawareness (for review, see (McCormick and Contreras, 2001)). 

 

Ionic and synaptic mechanisms underlying SWDs. The cellular mechanisms of SWD 

generation appear to be related to those for the generation of sleep spindle oscillations. These 

involve reciprocal excitatory and inhibitory connections in the cortex and thalamus (see 

chapter 3.6.8 of this thesis). Changes in neuronal activity in one part of the thalamocortical 

network could transform the rhythmic behavior of the entire system. Because many ion 

channels and receptors contribute to this balance, there are numerous ways how this 

fundamental circuit could be induced to generate abnormal oscillations. Amongst these 

alterations in HCN channels, Ca2+ channels and GABA receptors seem to be particularly 

important for the generation of absence epilepsy. 

1. HCN channels: The prominent role of HCN channels in absence epilepsy is discussed 

below.  

2. Ca2+ channels: Beside HCN-currents, low-threshold Ca2+ currents (IT) are crucial for 

the generation of rhythmic oscillations in thalamic neurons. Consistently, animals deficient in 

the α1G subunit of the T-type Ca2+ channel show abnormal oscillatory activity, lacking the 

thalamic burst firing mode. These animals were specifically resistant to the generation of 

SWDs in response to GABAB receptor activation (Kim et al., 2001b). Additionally, an 

enhanced low-threshold Ca2+ current expression was reported in several animal models of 

SWDs (Guyon et al., 1993; Talley et al., 2000; Zhang et al., 2002) and an increased IT is 
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observed before seizure onset in the GABAergic nucleus reticularis thalami (nRT) 

(Tsakiridou et al., 1995). Ethosuximide, a known antiepileptic drug effective in the treatment 

of absence seizures was shown to block IT in thalamocortical neurons (Coulter et al., 1989). 

Spontaneous absence seizures have also been observed in mice with mutation in various 

subunits of P/Q-type Ca2+ channels (for review see (Shin, 2006)). However, these mutants 

required α1G T-type Ca2+ channels for the generation of SWDs as SWDs were suppressed by 

the deletion of the α1G gene (Song et al., 2004).  

3. GABA receptors: The GABAergic projections coming from the reticular thalamic 

nucleus are considered to play a crucial role in the generation of SWDs. The release of GABA 

from neurons of the nRT results in the membrane hyperpolarization in thalamocortical 

neurons mediated by GABAB receptors, removing inactivation from T-type Ca2+ currents and 

causing rebound burst discharges (for review see (Crunelli and Leresche, 1991)). Recent 

investigations in rodent models revealed that activation of GABAB receptors in thalamic relay 

nuclei is important for the generation of SWDs (Hosford et al., 1992; Snead, 1992). 

Application of GABAB receptor agonists, like baclofen or γ-hydroxybutyrate induced absence 

seizures in mice. These seizures were characterized by bilaterally synchronous SWDs on 

EEGs associated with behavioral arrest (Kim et al., 2001b). GABAA and GABAB mediated 

inhibition seem to be essential for the generation of spindle and absence-like oscillations in 

thalamocortical neurons in an in vitro network that contained thalamocortical and nRT 

neurons (Bal et al., 2000; Blumenfeld and McCormick, 2000). However, in the WAG/Rij 

genetic model, the GABAA receptor makes an essential contribution to SWD-related activity, 

while GABAB receptor have minor relevance (Staak and Pape, 2001). The pharmacological 

block of GABAA receptors with bicuculline in vitro resulted in the transformation from 

spindle to SWD oscillations via a disinhibition of neurons in the nRT (Bal et al., 1995). 

Subtle, nucleus-specific, GABAA receptor abnormalities underlying SWDs of typical absence 

seizures rather than a full block of these receptors across the whole thalamocortical network 

occurred prior to seizure onset in GAERS suggesting epileptogenic significance (Bessaih et 

al., 2006). 

Human genetic studies have so far elucidated mutations in only a few families or 

individuals with absence seizure. Mutations in genes associated with absence epilepsy have 

been found for the GABAA receptor and for the α1A subunit of P/Q type Ca2+channels (for 

review see (Crunelli and Leresche, 2002; Blumenfeld, 2005). 

 

Animal models. Absence seizures accompanied by SWDs have been studied in several 
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animal models (for review see (Snead et al., 1999)). Pharmacological models include the 

feline generalized epilepsy with penicillin and the γ-hydroxy-butyrate model. Here, seizures 

are induced in otherwise non-epileptic animals by administration of a chemical stimulus that 

results in SWDs accompanied by behavioral arrest. Genetic models include several mutant 

mice (for review see (Noebels, 1999; Steinlein and Noebels, 2000; Crunelli and Leresche, 

2002)) like the tottering mouse (Kostopoulos, 1992) or the stargazer (Noebels et al., 1990). In 

these animals mutations in subunits of voltage-gated Ca2+ channels have been found 

(Steinlein and Noebels, 2000; Crunelli and Leresche, 2002). 

By far the most extensively studied rat genetic models are the GAERS (genetic absence 

epilepsy rat from Strasbourg (Danober et al., 1998)) and WAG/Rij (Wistar albino Glaxo from 

Rijswijk (Coenen et al., 1992)), which were independently derived by inbreeding of normal 

Wistar rats. The EEG and behavioral manifestations of these animal models seem to be 

similar to those of typical human absence seizures, rendering them suitable models. These 

include the unresponsiveness to mild stimuli, the spontaneity of SWDs and associated 

behavioural arrest and the pharmacological responses to anti-absence drugs (Coenen et al., 

1992; Danober et al., 1998). Compared with the human phenotype, the main differences are 

the higher frequency (7-11 Hz) of SWDs and the late development and persistence into 

adulthood of both the EEG and behavioral components of the seizures in these rats (Coenen et 

al., 1992; Danober et al., 1998; Crunelli and Leresche, 2002). 

 

 HCN channels and absence seizures 

To investigate the involvement of HCN channels in absence epilepsy was indicated by 

two observations: First, expression and function of HCN channels show greatest sensitivity to 

aberrant neuronal activity with particular relationship to hyperexcitable epileptic systems (see 

chapter 3.7.1 of this thesis). Second, the contribution of HCN channels in generating and 

terminating spindle oscillations (see chapter 3.6.8 of this thesis) suggests a role in SWDs, as 

SWDs are considered to be a hypersynchronized form of spindling. 

Moreover, the diversity of viewpoints on the role of HCN channels in epilepsy is 

currently the subject of much debate (Poolos, 2004). Recent studies reveal either a positive or 

negative relationship between HCN-current density and epileptic activity, depending on the 

type of seizure and the investigated type of cells. It is possible that different types of seizures 

respond differently to the modulation of IHCN. For example, enhancing HCN-currents might 

help to terminate seizure activity in the thalamus. There, an increase in IHCN prevents low-
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threshold Ca2+ channels from generating rhythmic burst activity (Lüthi and McCormick, 

1999b). In contrast, it appears that decreasing IHCN has a net anti-epileptic effect in cortical 

and hippocampal structures. For example pharmacological blockade of IHCN has been shown 

to abolish hyperexcitability after febrile seizures (Chen et al., 2001b) and also to increase the 

threshold for paroxysmal discharges evoked by high-frequency electrical stimulation in the 

hippocampus in vivo (Kitayama et al., 2003). 

Even within one type of epilepsy conflicting results were obtained concerning a seizure-

promoting or neuroprotective effect of HCN channels. In absence seizures these effects were 

different across different brain areas. In the cortex of the WAG/Rij rat, the HCN1 channel 

subunit was found to be reduced (Strauss et al., 2004; Kole et al., 2007), while in the 

thalamus, an increase of HCN1 was associated with diminished cAMP sensitivity of HCN 

channels before the onset of the seizures (Budde et al., 2005). That reduced HCN-currents 

promote absence seizures in the rat model is consistent with the HCN2 knockout mice that 

show an absence epileptic phenotype (Ludwig et al., 2003). However, there are experimental 

(Di Pasquale et al., 1997) and computational (Timofeev et al., 2002) studies that associate 

SWDs with increased HCN-currents. Altogehter, the data suggests a very specific and 

organized regulation of HCN channels with individual influence on neuronal and network 

excitability. The net impact of a given change in HCN channel function is likely to be 

determined by other factors such as other ionic conductances present in the cell, the nature 

and spatial distribution of synaptic inputs, and the specific molecular composition and 

subcellular localization of HCN channels. 

Conclusions about a causal relationship between HCN channel function and epilepsy 

are complicated by reports that changes in HCN channel isoforms can be acquired in models 

where focal epileptic seizures are generated by kainic acid or hyperthermia (Chen et al., 

2001b; Shah et al., 2004; Brewster et al., 2005), indicating that activity-dependent HCN 

modifications can also evolve secondarily to seizure activity.  

Thus, it is still unclear in what way HCN channels contribute to epileptogenesis and 

chronic epilepsy. The novelty of our study is, to investigate the animals during both pre-

epileptic and adult, chronically epileptic stages to answer this question. We focused on that 

part of the thalamus that is known to be primarily involved in SWDs.  
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 Abstract 

Aberrant function of pacemaker currents (Ih), carried by hyperpolarization-activated 

cation-nonselective (HCN) channels, affects neuronal excitability and accompanies epilepsy, 

but its distinct roles in epileptogenesis and chronic epilepsy are unclear. We probed Ih 

function and subunit composition during both pre- and chronically epileptic stages in 

thalamocortical (TC) neurones of the Genetic Absence Epilepsy Rat from Strasbourg 

(GAERS). Voltage-gating of Ih was unaltered in mature somatosensory TC cells, both in vivo 

and in vitro. However, the enhancement of Ih by phasic, near-physiological, cAMP pulses was 

diminished by ~40% and the half-maximal cAMP concentration increased by ~5-fold. This 

decreased responsiveness of Ih to its major cellular modulator preceded epilepsy onset in 

GAERS, persisted throughout the chronic state, and was accompanied by an enhanced 

expression of the poorly cAMP-sensitive HCN1 channel mRNA (> 50%), without changes in 

the mRNA levels of HCN2 and HCN4. To assess for alterations in TC cell excitability, we 

monitored the slow upregulation of Ih that is induced by Ca2+-triggered cAMP synthesis and 

important for terminating in vitro synchronised oscillations. Remarkably, repetitive rebound 

Ca2+ spikes evoked normal slow Ih upregulation in mature GAERS-neurones that sufficed to 

attenuate spontaneous rhythmic burst discharges. These adaptive mechanisms occurred 

upstream of cAMP turnover and involved enhanced intracellular Ca2+ accumulation upon 

repetitive low-threshold Ca2+ discharges. Therefore, HCN channels appear to play a dual role 

in epilepsy. Weakened cAMP binding to HCN channels precedes, and likely promotes, 

epileptogenesis in GAERS, whereas compensatory mechanisms stabilizing Ih function 

contribute to the termination of spike-and-wave discharges in chronic epilepsy. 
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 Introduction 

The hyperpolarization-activated cation non-selective (HCN) channels are emerging as 

important targets in neurological diseases, including epilepsy (Santoro and Baram, 2003; 

Bender et al., 2004; Frère et al., 2004; Poolos, 2004). HCN channels give rise to 

hyperpolarization-activated inward currents (Ih) that are sensitive to intracellular cAMP levels 

(Pape, 1996; Robinson and Siegelbaum, 2003). The dual gating by voltage and cAMP allows 

Ih to widely control neuronal and network excitability (Santoro and Baram, 2003; Frère et al., 

2004). Furthermore, Ih is regulated by neuronal activity, including seizures: Hippocampal Ih is 

acutely increased by synaptically released glutamate (van Welie et al., 2004), and abnormal 

regulation of Ih and of HCN channel subunit expression occurs in brain regions involved in 

seizure generation (Di Pasquale et al., 1997; Chen et al., 2001b; Brewster et al., 2002; Bender 

et al., 2003; Shah et al., 2004; Strauss et al., 2004; Budde et al., 2005), suggesting that 

modified HCN channel function may contribute to hyperexcitability. 

The recognition of an involvement of Ih in epileptic processes has prompted much 

interest into how aberrant Ih function is causally linked to the initiation and the maintenance 

of seizures. Both inherited deficits in HCN channel function, present before epilepsy onset, 

and acquired modifications resulting from seizure activity, could contribute to the epileptic 

phenotype. However, the role of Ih in epilepsy was mostly studied in either pre-epileptic 

(Shah et al., 2004; Budde et al., 2005) or chronic epileptic conditions (Chen et al., 2001b; 

Strauss et al., 2004), leaving the relative importance of inherited and acquired channel 

alterations undetermined (Poolos, 2004). Furthermore, epileptic models showing 

perturbations in Ih are often accompanied by additional changes in ion channel or synaptic 

function (Guyon et al., 1993; Tsakiridou et al., 1995; Di Pasquale et al., 1997; Chen et al., 

2001b; Zhang et al., 2002; Klein et al., 2004; Holter et al., 2005), thereby modifying Ih-

dependent changes in excitability. Finally, HCN channel subunit composition strongly 

determines the gating by cAMP (Chen et al., 2001c; Altomare et al., 2003; Budde et al., 

2005), but whether altered isoform expression affects the efficacy of cAMP transients 

produced during neuronal activity is not clear.  

Abnormal expression and regulation of HCN channels in thalamus and cortex was 

found in rodent models of generalized absence epilepsy, recognized by spike-and-wave 

discharges (SWDs) in the EEG (Di Pasquale et al., 1997; Strauss et al., 2004; Budde et al., 

2005). A principal way by which HCN-channel-mediated currents may be gated during 

SWDs is via a transient cAMP synthesis that is triggered, to a large extent, by Ca2+ entry 
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through the low-threshold (LT) Ca2+ spikes (Lüthi and McCormick, 1999b; Wang et al., 

2002). The resulting slow afterdepolarization (ADP) terminates synchronised thalamic 

oscillations in vitro (Bal and McCormick, 1996; Lüthi et al., 1998). Here, we identified a 

diminished cAMP-dependent Ih regulation that was apparent before seizure onset in 

thalamocortical (TC) cells of the Genetic Absence Epilepsy Rat from Strasbourg (GAERS), a 

well-recognized genetic model of absence epilepsy, and persisted throughout the chronic 

epileptic state. However, adaptive mechanisms upstream of cAMP turnover, involving 

enhanced intracellular Ca2+ accumulation during repetitive LT Ca2+ spiking, restored the 

activity-dependent current upregulation in mature TC cells, thereby contributing to the 

termination of SWDs. 

 

 Methods 

All experiments were performed according to the guidelines of the institutions and the 

Veterinary Offices (Comité Régional d'Ethique en Matière d'Expérimentation Animale, 

Strasbourg, France; Veterinäramt Basel-Stadt, Switzerland; UCI Animal Care committee), 

and conformed to NIH guidelines. 

 

In vivo electrophysiological recordings 

Experiments were conducted in inbred, adult male Wistar rats (71 GAERS and 56 

control non-epileptic (NE) rats, 3–6 months). All surgical procedures were made under deep 

general anaesthesia (pentobarbital: 40 mg kg-1, I.P., and ketamine: 50 mg kg-1, I.M.). A 

tracheotomy and a catheterization of the penile vein were performed, and the animal was 

placed in a stereotaxic frame (David Kopf Instruments, Tujunga, CA). A stabilizing 

craniotomy-duratomy technique was systematically applied to improve the success rate of 

single-cell electrophysiology experiments, to increase the precision to reach stereotaxically 

single neurons in a target region, and to eliminate undesirable non-neuronal rhythms (heart 

and respiratory movements) during intracellular recordings (Pinault, 2005). The rat’s rectal 

temperature was maintained at 37ºC with a thermoregulated blanket (Fine Science Tools, 

Heidelberg, Germany). 

The neuroleptanalgesia was initiated before the end of the general pentobarbital-

ketamine anaesthesia, then maintained by an intravenous injection of a mixture containing D-

tubocurarine chloride, fentanyl, haldol, and glucose (Pinault, 2003). All rats were artificially 

ventilated in the pressure mode (SAR-830, CWE, Ardmore, PA; 8-12 cm H2O; 60-65 breaths 
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min-1) using an O2-enriched gas mixture (70-50% air / 30-50% O2). The EEG, which 

displayed spontaneously synchronised slow oscillations (Pinault, 2003), and heart rate were 

also continuously monitored to maintain a constant depth of anaesthesia by adjusting the 

injection rate of the anaesthetic solution. Subcutaneous infiltrations of xylocaine (2%) were 

applied every 3 h at all surgical sites. 

Glass micropipettes (30-70 MΩ) were filled with a solution containing 1.5% N-(2 

amino ethyl) biotin amide hydrochloride (Neurobiotin®) dissolved in 1 M KAcetate. It was 

then lowered with a stepping micro-driver (Burleigh, Fishers, NY) into the somatosensory 

thalamus to reach a single TC neurone (Fig. 1A), which was extracellularly and/or 

intracellularly recorded simultaneously with the EEG of the frontoparietal cortex. 

Electrophysiological data were processed with band passes of 0.1-1200 Hz for the EEG, 

and of 0-6 kHz for cellular activity (Cyber-Amp 380, Molecular Devices, Foster City, CA). 

Signals were digitized at a sampling rate > 18 kHz. During the intracellular recording session, 

a current pulse in the range from -0.2 to -0.5 nA was applied every 2 s to keep the Wheatstone 

bridge balanced. Using square wave current pulses (range of ± 3 nA), input membrane 

resistance and intrinsic firing patterns of thalamic neurones could be assessed. 

At the end of the recording session, some of the units were individually labelled using 

the intracellular tracer microiontophoresis technique for standard histological identification 

(Fig. 1A2). After a survival time of at least 30 min, animals were killed with an intravenous 

overdose of pentobarbital, transcardially perfused with 4% paraformaldehyde and 0.25% 

glutaraldehyde in 10 mM phosphate buffer saline, and the brain tissue was processed using 

standard histological techniques for retrieving the tracer-filled neurones. 

Electrophysiological recordings were analysed with the pClamp 7.01. software 

(Molecular Devices), and the tracer-filled neurones were examined with a light microscope 

(E600, Nikon, Champigny-sur-Marne, France). Some of the neurones were reconstructed 

using the Neurolucida system (Microbrigthfield, Colchester, VT) (Fig. 1A3). The location of 

marked cells was ascertained by consulting a stereotaxic atlas (Paxinos and Watson, 1998). 

 

In vitro electrophysiological recordings 

Slices were prepared from mature, chronically epileptic rats (3-8 months) or young pre-

epileptic animals (19-24 days) and age-matched NE control animals. The majority of the 

experiments were carried out blind to the colony from which the animals were derived. Rats 

were gas-anaesthetized with isoflurane and decapitated. Coronal slices (300 µm) containing 

the somatosensory ventrobasal nuclear complex were prepared on a vibratome (VT1000S, 
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Leica, Glattbrugg, Switzerland) in an ice-cold oxygenated solution containing (in mM): 

63 NaCl, 107 sucrose, 2.5 KCl, 1.25 NaH2PO4, 26 NaHCO3, 0.5 CaCl2, 7 MgCl2, 18 dextrose, 

1.7 L(+)-ascorbic acid. The slices were allowed to recover for 5 min in a home-made 

interface-type chamber at 35.0°C in the cutting solution, before being transferred to a sucrose-

free solution containing 126 mM NaCl instead and cation concentrations were altered to 

2 mM CaCl2 and 4 mM MgCl2. After an additional 30 min, slices were incubated at room 

temperature for 1–2 h and then transferred individually into the recording chamber. 

Pretreatment of slices with the adenylyl cyclase inhibitor SQ22,536 started ~30 min after 

incubation at room temperature. Slices were transferred for at least 2 h to a small interface 

chamber containing 10 ml of 0.6 mM SQ22,536 before recordings commenced in SQ22,536-

free bathing solution. SQ22,536-treated slices were used for maximally 1 h in the recording 

chamber. 

Whole-cell recordings were obtained from TC neurones under visual control using 

differential interference contrast microscopy via upright microscopes (Olympus BX50WI and 

BX51WI, Volketswil, Switzerland) at 33.5-35°C. The location of the ventroposterior medial 

nucleus (Vpm) of the somatosensory thalamus was determined before pipette positioning 

using a 10x objective, and was clearly recognizable based on its apposition to the 

ventroposterior lateral nucleus (Vpl), which has a striated appearance. Slices were not used 

when the Vpm could not be clearly delineated. Patch pipettes were pulled from borosilicate 

glass tubing (TW150F-4, OD 1.5 mm, WPI, Berlin, Germany) on a vertical two-step puller 

(PP-83, Narishige, Tokyo, Japan) and filled with the following solution (in mM): 130 

KGluconate, 10 KCl, 10 HEPES, 2 MgCl2, 2 Na2ATP, 0.2 NaGTP, 10 phosphocreatine, 

adjusted to 290 mOsm with sucrose, pH 7.25. This solution was found previously to yield 

ADPs with kinetics and amplitudes similar to those reported from microelectrode recordings 

(Bal and McCormick, 1996), indicating that it minimally perturbed the cytosolic components 

required for the generation of the ADP. GTP was freshly added daily from stocks (100-fold 

concentrated). The resistance of the electrodes was 2.5-4 MΩ and yielded series resistances in 

the range between 7-19 MΩ. If series resistance changed by more than 10%, the experiment 

was not included in the analysis. A liquid junction potential of 10 mV measured as described 

(Neher, 1992) was taken into account for all data. The bath was constantly perfused with fresh 

medium at a rate of 3 ml min-1 throughout the recording and contained (in mM): 126 NaCl; 

2.5 KCl; 1.25 NaH2PO4; 2 MgCl2; 2 CaCl2; 26 NaHCO3, 18 dextrose, 1.7 L(+)-ascorbic acid. 

Data from voltage- and current-clamp recordings were collected through an Axopatch 200B 

amplifier (Molecular Devices), filtered at 2 kHz and acquired at 5 kHz using pClamp 9.2. 
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software. Caged cAMP (P1-(2-Nitrophenyl)ethylester, 100 µM) was added to the patch 

solution from a 100-fold concentrated stock solution in DMSO immediately before the 

experiment and the pipette solution was kept on ice and protected from light. A minimal time 

of ~3-5 min was allowed for the perfusion of caged cAMP and 8Br-cAMP (0.1-10 µM) into 

the cell. Flashes were applied with a ultraviolet (UV) lamp attached to the epifluorescence 

pathway of the microscope and discharged via the capacitive discharges of the FlashMic 

(80% of maximal capacitive charge, Rapp Optoelectronics, Hamburg, Germany). This 

procedure permits the generation of cAMP transients in a reproducible manner and was 

previously used to establish dose-response curves (Lüthi and McCormick, 1999b). Current 

amplitudes were measured with 1.5 s voltage steps from -60 to -90 mV at 4 s intervals and 

quantified by averaging responses of two successive flashes applied at intervals > 1 min. 

Amplitudes of ADPs were quantified 2 s after termination of the last current injection. For the 

data included in the concentration-response curve between 8Br-cAMP and V1/2 (Fig. 2G), the 

average series resistances did not differ between the groups (12.0 ± 0.4 MΩ, n = 32, and 11.5 

± 0.3 MΩ, n = 31, for cells derived from NE animals and GAERS, respectively, p > 0.05). 

The values for V1/2 were derived from the average of 1-4 activation curves obtained within a 

recording time of 5-20 min after gaining whole-cell access. Slices preincubated with 

SQ22,536 showed an attenuated amplitude of the ADP (2.5 ± 0.4 mV in control, n = 6, 1.4 ± 

0.2 mV in SQ22,536, n = 4, p < 0.05), indicating that stimulation of adenylyl cyclases was 

selectively reduced, but a hyperpolarization-induced sag potential was unchanged, reflecting 

unaffected voltage-gating of Ih around –80 mV (5.8 ± 0.3 mV, n = 45 in control, 6.0 ± 

0.3 mV, n = 77 in SQ22,536, p > 0.05). 

Amplitudes of currents and ADPs were measured in ClampFit (v. 9.0.). Tail current 

analysis was used for determining activation curves of Ih. Igor v. 4.0.8 was used for fitting 

Boltzman and Hill equations to Ih activation curves and 8Br-cAMP concentration- response 

curves, respectively. Hill coefficients were fixed at values between 1 and 1.4 (Lüthi and 

McCormick, 1999b; Chen et al., 2001c), yielding half-maximal concentrations that differed 

by < 5%. 

 

Fluorescent imaging of intracellular Ca2+ concentrations 

Relative fluorescent changes (∆F/F) of the long-wavelength Ca2+ indicator Oregon 

Green 488 BAPTA-2 (75 µM; Kd = 580 nM) were used to compare intracellular Ca2+ levels 

reached after single or repetitive rebound Ca2+ spikes (up to 16 pulses, 4 Hz, -0.9 nA current 

injection for 125 ms) in adult NE animals and GAERS (4-8 months). The dye was added to 
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the intracellular solution (see above) and the cells were perfused via the patch pipette for 10-

25 min, until proximal dendrites of TC cells could be visualised. Intracellular perfusion with 

the dye did not alter resting membrane potentials (-62.9 ± 0.7 mV, n = 10 and -62.0 ± 1.1 mV, 

n = 7, for NE and GAERS cells, respectively, p > 0.05) nor amplitudes of evoked ADPs (2.1 

± 0.2 mV, n = 10, and 2.3 ± 0.4 mV, n = 7 for NE and GAERS cells, respectively, p > 0.05). 

Excitation occurred at 488 nm using a Polychrome IV (TILL Photonics, Gräfelfing, 

Germany), and the light emitted at 510 nm was collected via a cooled CCD camera (Imago 

VGA, 480 x 640 pixels) after passing through a 40x objective and an Olympus fluorescein 

isothiocyanate filter set. Images were acquired for 150 ms using a binning of 8 at 0.2 s 

intervals during and at 0.5 s intervals before and after stimulation. The image acquisition was 

synchronised with the electrophysiological recordings using the Sync output of the imaging 

control unit, and data were analysed using Till Vision Imaging Software (v. 4.01) and 

SigmaPlot (v. 8.0) for fitting the time course of decay. Average fluorescence was determined 

for regions of interest (typically 80-400 µm2) over the soma (avoiding the nucleus) or a stem 

dendrite, and the average background fluorescence of a region away from the filled cell, with 

the threshold fluorescence level set to 10, was subtracted. Relative fluorescence (∆F/F in %) 

was calculated for each image [(average fluorescence - average baseline fluorescence) * 100 / 

average baseline fluorescence]. Baseline fluorescence was determined by the average of 7 

images before application of repetitive current injections. Ca2+ signals elicited by the 

protocols used for evoking ADPs were obtained at periods of 25 sec and 5 successive sweeps 

were averaged in each cell. Minimal photobleaching was observed and the fluorescence 

change for each individual sweep was calculated with respect to the baseline signal prior to 

cell stimulation. 

 

Quantitative in situ hybridization 

For in situ hybridization procedures, rats were quickly decapitated (4-5 rats per group), 

brains dissected and placed on powdered dry ice as described (Brewster et al., 2002; Brewster 

et al., 2005). Quantitative analyses of thalamic HCN isoform mRNA levels were 

accomplished using antisense 35S-cRNA probes synthetized by in vitro transcription from 

cDNAs containing specific gene regions of mouse HCN1 and HCN2 channels (Brewster et 

al., 2002; Bender et al., 2003). Briefly, 20-µm thick brain sections were cut, mounted on 

gel-coated slides and fixed in 4% paraformaldehyde. Following a graded ethanol treatment, 

sections were exposed to acetic anhydride-triethanolamine, then dehydrated through 70-100% 

ethanol. Sections were then pre-incubated in hybridization solution (50% formamide, 5X 
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SET, 0.2% sodium dodecyl sulfate, 5X Denhardt’s solution, 0.5 mg ml-1 salmon sperm 

sheared DNA, 250 g L-1 yeast tRNA, 100 mM DTT, 10% dextran sulfate) and probed 

overnight at 55ºC with antisense 35S-CTP radiolabeled HCN probes (0.5-1x106cpm / 30 µl / 

per section). The specific activity of the probes was 1.67-5.2 x108 cpm µg-1. On the following 

day, sections were washed in decreasing concentrations of saline sodium citrate (SSC) 

solutions, with the most stringent wash at 0.03 x SSC for 60 minutes at 62oC. Following 

dehydration in increasing alcohol concentrations, sections were apposed against Kodak 

Biomax films. Optimal exposure time was monitored using 14C standards to maintain signal 

linearity. 

All analyses were performed by investigators unaware of the origin (GAERS vs. NE 

animals) of all samples. Data acquisition and quantification of in situ hybridization signals 

were carried out on sections run concurrently by measuring optical density of incorporated 

radioactivity in CA1 using the image analysis program ImageTool (v. 1.25; University of 

Texas Health Science Center, San Antonio, TX) (Brewster et al., 2002). Optical density 

measured over the corpus callosum was used as background signal. Linearity of hybridization 

signal was ascertained using 14C standards (American Radiolabeled Chemicals Inc., St. Louis, 

MO). Statistical analyses for in situ hybridization data were performed using GraphPad 

software (PRISM, San Diego, Ca, USA). 

 

Anaesthetics, Chemicals and Reagents 

Pentobarbital was purchased from Sanofi, Libourne, France, and Ketamine from Merial, 

Lyon, France. Fentanyl and Haldol were obtained from Janssen, Boulogne-Billancourt, 

France; Xylocaine from Astra, Rueil-Malmaison, France; Neurobiotin® from Vector Labs, 

Burlingame, CA. Caged cAMP was obtained from Calbiochem and Oregon Green 488 

BAPTA-2 from Molecular Probes. D-Tubocurarine chloride, salts and chemicals were 

purchased from SIGMA-Aldrich. 

 

Statistical analysis 

Data were evaluated for statistical significance using paired- or unpaired Student’s t-test 

and ANOVA as appropriate, unless otherwise indicated. Significance level was set to 0.05. 

Data are presented as means ± s.e. 
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 Results 

 Unaltered hyperpolarization-activated depolarizing sag potentials in TC neurons 

in adult GAERS in vivo 

 

Figure 1. Hyperpolarization-induced depolarizing sags in thalamocortical (TC) neurones in vivo. 

A1, Stereotaxic location (2.8 ± 0.2 mm posterior to bregma) of the intracellularly recorded TC neurones (gray 

area). A2, A3, Photomicrograph and 3D-reconstruction of a typical TC neurone intracellularly labelled with 

Neurobiotin in the Vpm nucleus (frontal section). B1, B2, Four voltage responses to 200 ms hyperpolarizing 

current pulses of increasing intensity in a neurone without (left, “non-sag cell”) and with (right, “sag cell”) a sag. 

The sag amplitude (Vsag) was measured as indicated in B2 (arrowheads). C, D, Plot of Vsag amplitudes vs. Vjump 

values in TC neurones of GAERS (C; n = 28 cells with at least 5 values per cell) and of control non-epileptic 

(NE) rats (D; n = 22 cells with at least 5 values per cell). CM = central medial; LD = lateral dorsal; MD = medial 

dorsal; Po=posterior thalamic nuclear group; VL = ventral lateral; VM = ventral medial; Vpl = ventral 

posterolateral; Vpm = ventral posteromedial; Rtn = nucleus reticularis thalami. 

The h-current functions as a pacemaker for thalamic neuronal and network oscillations, 

and alterations in its voltage dependence strongly affect the propensity of TC cells to generate 
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oscillatory burst discharges (Pape, 1996; Lüthi and McCormick, 1998b). To determine 

whether voltage gating of Ih was affected in GAERS, intracellular recordings were performed 

in vivo from 73 and 61 TC neurones in GAERS and NE animals, respectively. The data 

reported here are based, respectively, on 55 and 45 recordings, which fullfilled the following 

three criteria: 1) a stable resting membrane potential without holding polarizing current; 2) a 

firing pattern similar to that recorded extracellularly in the same or in other TC neurones; and 

3) an overshooting of the action potentials. The recordings were performed in the Vpl and 

Vpm nuclei, the nuclei known to be primarily involved in SWDs in GAERS (Vergnes et al., 

1990; Seidenbecher et al., 1998; Manning et al., 2004). The location of recorded neurones 

was ascertained on the basis of their stereotaxic location, their receptive field, and/or their 

labelling (Fig. 1A). Impaled neurones were assessed for resting membrane potential, input 

resistance, and a depolarizing sag potential, the physiological correlate of Ih voltage-gating. 

The basal membrane properties of the TC neurones are summarized in Table 1. No significant 

differences in passive and active membrane properties were found between TC neurones of 

Vpl and Vpm nuclei. Two principal types of TC neurones were distinguished based on their 

ability to generate a measurable hyperpolarization-induced depolarizing sag potential 

(maximal sag amplitude ≥ 1 mV at a membrane potential < -75 mV) (Fig. 1B). The proportion 

of sag-displaying TC neurones (“sag cells”) recorded in GAERS and NE rats was comparable 

(76.4% vs. 62.2%, χ2 = 2.357, df = 1, p > 0.05). Moreover, in both GAERS and NE rats, the 

amplitude of the sag increased similarly as a function of membrane polarization, with values 

reaching 1.3 ± 0.2 mV and 1.5 ± 0.3 mV with Vjump between -65 and -70 mV, 2.6 ± 0.5 mV 

and 3.2 ± 0.6 mV between -75 and -80 mV, and 9.9 ± 1.5 mV and 9.1 ± 0.8 mV between -95 

and -100 mV for NE (n = 22) and GAERS (n = 28) cells, respectively (p > 0.05; Fig. 1C and 

D). Neurones generating sags had, on average, a higher input resistance than neurones without 

a sag (“non-sag cells”) and a more depolarized mean resting membrane potential (Table 1). 

Taken together, the relative number of Ih-expressing cells, as well as the amplitude of the sag 

potential, the physiological correlate of rapid voltage gating of Ih, was unaffected in the 

epileptic rat strain. 
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Table 1. Values of membrane properties of sag and non-sag TC neurones recorded in vivo in GAERS and 

NE rats.  

 Resting MP (mV) peak IR (MΩ) 
Sag cells   

GAERS (n = 42) 
-59.5 ± 0.6 

GAERS/NE, p > 0.05 
sag/non-sag, p < 0.01 

25.1 ± 1.1 
GAERS/NE, p > 0.05 
sag/non-sag, p < 0.01 

NE (n = 28) -58.5 ± 0.6 
sag/non-sag, p < 0.05 

23.5 ± 1.3 
sag/non-sag, p < 0.01 

Non-sag cells   

GAERS (n = 13) -65.2 ± 1.7 
GAERS/NE, p > 0.05 

18.2 ± 1.8 
GAERS/NE, p > 0.05 

NE (n = 17) -63.7 ± 1.8 18.2 ± 1.3 
IR=input resistance; MP=membrane potential. 

 

 Reduced sensitivity of Ih to near-physiological cAMP pulses in both pre-epileptic 

and mature GAERS 

The voltage dependence of Ih is regulated by cAMP, and the high cAMP sensitivity of 

thalamic Ih is essential for its multiple roles in thalamic oscillatory behavior (Lüthi and 

McCormick, 1998b). Therefore, we next investigated cAMP-dependent modulation of Ih in 

whole-cell patch-clamp recordings in thalamic slice preparations in vitro from adult NE rats 

and GAERS. Slices used for these experiments were pretreated with SQ22,536 (0.6 mM), an 

adenylyl cyclase inhibitor, to minimize binding of endogenous cAMP to the channels (see 

Methods). Values of basic cellular properties and the quality of electrical access during 

recordings were similar for both strains (resting membrane potential -59.0 ± 3.0 mV for NE, 

n = 8, -60.4 ± 1.6 mV for GAERS, n = 7, p > 0.05; input resistance 223 ± 56 MΩ for NE, 

n = 8, 156 ± 27 MΩ for GAERS, n = 7, p > 0.05; series resistance 11.8 ± 0.6 MΩ for NE, 

n = 8, 12.0 ± 0.9 MΩ for GAERS, n = 7, p > 0.05). To probe the sensitivity of Ih to cAMP in 

mature NE rats and GAERS, we initially bath-applied the non-hydrolysable analogue of 

cAMP, 8Br-cAMP (1 mM), to TC cells located in the Vpm (Fig. 2A and B). Gradual wash-in 

of 8Br-cAMP (1 mM) enhanced current amplitude at -90 mV by a similar extent; from -370 ± 

40 pA to -463 ± 36 pA (n = 8, p < 0.001) in NE, and from -329 ± 47 pA to -462 ± 58 pA in 

GAERS (n = 7, p < 0.025; Fig. 2C). Half-activation voltages (V1/2) shifted from -89.6 ± 

0.6 mV to -81.5 ± 0.9 mV (n = 7, p < 0.001; Fig. 2B and C) in GAERS, with the slope values 

remaining unchanged (from 8.5 ± 0.7 mV to 9.7 ± 0.7 mV, p > 0.05). Cells from mature NE 

rats yielded a shift from -87.5 ± 0.9 mV to -78.6 ± 1.6 mV (n = 8, p < 0.001; Fig. 2A and C) 

and the slope values were 8.3 ± 0.5 mV and 9.2 ± 0.8 mV (p > 0.05 compared to 
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corresponding values from GAERS), respectively. These data suggest that, when exposed to 

high steady levels of 8Br-cAMP, the sensitivity of thalamic Ih to the cyclic nucleotide is 

indistinguishable between GAERS and NE animals. 

We next sought to investigate whether Ih in GAERS and NE animals differed in cAMP 

sensitivity during cAMP signals approximating physiological situations. Indeed, activity-

dependent alterations in cAMP levels occurring during spontaneous thalamic oscillations in 

vitro are phasic and only partially shift the voltage dependence of Ih (Lüthi and McCormick, 

1998a). We found previously that, by using photolytic release of cAMP, we induced a dose-

dependent, submaximal enhancement of Ih, which is occluded by Ca2+-dependent Ih 

upregulation (Lüthi and McCormick, 1999b). Therefore, we applied single UV-light flashes to 

cells filled with caged cAMP (100 µM; see Methods) (Fig. 2D and E). Photolytic release of 

cAMP induced an increase to 122.5 ± 2.4% of control amplitude in cells from NE animals 

(n = 8, p < 0.0001; Fig. 2E), reflecting a sub-maximal cAMP stimulation of the channel (Lüthi 

and McCormick, 1999b). In contrast, current amplitudes in GAERS increased to only 113.8 ± 

1.3% (n = 6, p < 0.025 compared to NE; Fig. 2E) after photolysis of caged cAMP. These 

values are ~40% smaller compared to NE and suggest that the sensitivity of HCN channels in 

GAERS to physiologically relevant, phasic cAMP transients is weakened. 

To assess whether or not this difference reflected acquired alterations in channel 

function due to chronic epilepsy, we repeated the flash photolysis experiment in young 

animals (P19-24) which have not yet developed SWDs. Photolytic release of cAMP induced 

an increase to 118.5 ± 2.9% of control current in cells from the NE strain (n = 12, p < 0.0001), 

whereas the increase was only 110.8 ± 1.4% in cells from GAERS (n = 12, p < 0.05 compared 

to NE; Fig. 2D and E). Moreover, cells from young animals (both the GAERS and the NE 

strain) showed similar maximal shifts in current voltage dependence when 1 mM 8Br-cAMP 

was bath-applied (data not shown). 
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Figure 2. The Ih of GAERS TC cells shows a diminished sensitivity to sub-maximal, near-physiological 

cAMP pulses, but not to saturating cAMP concentrations. A, B, Current responses of mature TC cells from a 

NE rat (A) and a GAERS (B) to increasing negative test voltages (test voltages -50 mV and -110 mV are 

indicated next to the traces) before, and in the continuous presence of, 8Br-cAMP at a saturating concentration of 

1 mM. Corresponding activation curves, constructed from tail currents evoked at -80 mV (see Methods), are 

shown to the right. Thick lines represent the optimal fit of a Boltzmann curve, with the resulting values for the 

half-activation voltage (V1/2) and the slope (s) indicated next to the traces. Filled and open circles represent 

values before and during 8Br-cAMP application, respectively. C, Histogram showing the pooled data for V1/2, 

for s, and for the current amplitude at -90 mV before, and in the continuous presence of 8Br-cAMP (1 mM). 

Except for s, 8Br-cAMP significantly altered all control values. The changes in all three parameters were 

indistinguishable between mature NE (n = 8) and GAERS (n = 7) TC cells. D, Responses of Ih to photolytic 
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release of caged cAMP in mature (top row) and young (bottom row) NE animals and GAERS. Overlay of 

current responses to 30 mV hyperpolarizing voltage steps before and after application of a UV-flash in cells 

perfused with caged cAMP (see Methods). Holding potential was -60 mV. For clarity, only current relaxations 

during the hyperpolarizing voltage step are shown, passive responses to the step voltage were blanked. 

E, Histogram showing the percentage increase in current response in young and mature NE animals (young: n = 

12; mature: n = 8) and GAERS (young: n = 12; mature: n = 12). F, Representative tail currents obtained from TC 

cells in the absence of (control) or during perfusion of the cellular interior with 0.1 µM 8Br-cAMP. The same 

voltage protocol as in panel A was used, voltage steps applied prior to evoking tail currents are indicated next to 

the traces, and tails were evoked at – 75 mV. G, Concentration-response curve for the effect of 8Br-cAMP on 

V1/2. The number of recorded cells is indicated next to the symbols. Fitting of the Hill equation was achieved by 

fixing the Hill coefficient to 1 (see Methods), yielding a ~5-fold increase of half maximal concentration of 8Br-

cAMP.  * denotes p < 0.05, ** p < 0.01. 

 

Flash photolysis of caged cAMP does not allow determining the free cAMP 

concentrations reached. Therefore, we next assessed cAMP regulation of Ih quantitatively by 

constructing a concentration-response curve between 8Br-cAMP, included at defined 

concentrations in the patch pipette, and V1/2 values in TC cells in mature animals. Activation 

curves were constructed after allowing for equilibration of 8Br-cAMP within the cell (see 

Materials and Methods). Notably, in TC cells from GAERS, the shifts induced in the 

concentration range between ~ 0.1 µM - 1 µM were significantly smaller than those in cells 

from NE animals (Fig. 2F and G). For example, including 0.1 µM 8Br-cAMP yielded values 

of V1/2 = -84.1 ± 1.0 mV in NE TC cells (n = 9), while GAERS TC cells had a V1/2 = -89.9 ± 

1.4 mV (n = 9, p < 0.01), indicating that the voltage dependence of Ih was not appreciably 

affected in GAERS. Furthermore, whereas 1 µM 8Br-cAMP produced a near-maximal shift of 

V1/2 in NE TC cells (-76.1 ± 1.8 mV, n = 5), the voltage dependence of GAERS TC cells was 

only partially shifted (V1/2 = -80.7 ± 0.5 mV, n = 7, p < 0.05). Fitting a Hill equation to the 

concentration-response curve yielded a half-maximal concentration of 0.16 ± 0.07 µM 8Br-

cAMP for NE cells, whereas a similar shift in GAERS required 0.81 ± 0.38 µM. These 

experiments reveal that Ih in TC cells from GAERS shows a distinctly reduced sensitivity to 

submaximal steady concentrations of cAMP, consistent with the results obtained via flash 

photolysis and with a recent report on pre-epileptic TC cells in the dorsal lateral geniculate 

nucleus of the WAG/Rij strain (Budde et al., 2005). Moreover, the reduced Ih sensitivity to 

non-saturating cAMP concentrations precedes the onset of the seizures. This supports a causal 

role of this defect in SWD generation, and excludes the possibility that these changes are 

compensatory or secondary to the seizures. 
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 Altered expression of HCN channel subunit mRNA in thalamocortical neurones of 

GAERS 

The decreased sensitivity of Ih to cAMP in GAERS raises the possibility that the subunit 

composition of the channel was altered, such that weakly cAMP-sensitive isoforms were 

expressed at relatively higher levels. To test this hypothesis, we examined the expression of 

the three HCN channel isoforms present in thalamus in mature GAERS and NE controls. 

Messenger RNA levels of the cAMP-sensitive HCN channel subunit most abundant in 

thalamus, HCN2, did not differ between GAERS and NE animals in either the Vpm or in the 

reticular nucleus (Rtn) (Fig. 3, top). For example, in Vpm, mRNA levels were 71 ± 0.4 and 70 

± 0.4 nCi g-1 in NE rats and GAERS, respectively. Similarly, no difference was found in the 

expression of the other abundant, cAMP-sensitive HCN channel isoform, HCN4 (Fig. 3, 

bottom). However, a significant, 58.6% increase in the expression levels of the relatively 

cAMP-insensitive HCN1 channel isoform was found in the GAERS Vpm (34.1 ± 3.3 nCi g-1) 

compared with mature NE rats (21.5 ± 0.79 nCi g-1, p < 0.025 [t-test with Welch’s 

correction]) (Fig. 4). Similar changes were found also in the Rtn (31.17 ± 1.3 vs. 24.33 ± 

1.47 nCi g-1, p < 0.01). Note that the increased expression of HCN1 channels was specific to 

thalamic nuclei: mRNA expression levels of this isoform were similar in somatosensory 

cortical layer V of GAERS and NE control rats (61.8 ± 5.2 and 64.2 ± 5.0 nCi g-1 in controls 

and GAERS, respectively, p > 0.05).  The increased HCN1 isoform expression in select 

thalamic nuclei, with maintained levels of HCN2, is consistent with the overall reduced 

sensitivity of the resulting complement of cellular HCN channels to cAMP. 

 

 

Figure 3. Expression of HCN2 (top row) and HCN4 (bottom row) mRNA in selected thalamic nuclei does 

not differ in GAERS and NE controls. A, Representative coronal brain sections at the level of the thalamus, 

that have been subjected to quantitative in situ hybridization for the HCN2 channel isoform. The preferential 
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expression of this isoform in thalamus (compared to hippocampus) is apparent. B, C, Quantitative analysis of 

mRNA expression levels of HCN2 channels comparing GAERS to NE rats. The strains are not distinguishable in 

the expression of this isoform. D, Representative sections of GAERS and NE rat brain for HCN4 mRNA 

expression. Note the relatively lower expression of this isoform in the Rtn, and the typical signal of HCN4 in the 

habenula, supporting the specificity of the probes. E, F, Quantitative analyses of HCN4 channel mRNA 

expression indicate the absence of significant differences in GAERS vs. controls. Ha = habenula; Rtn = reticular 

nucleus of the thalamus. 

 

Figure 4. Quantitative analysis of the expression of the HCN1 channel mRNA in thalamic neurones of 

GAERS and NE rats. A, A schematic showing the level where coronal sections from brains of GAERS and NE 

control rats were obtained for in situ hybridization. B, Representative sections from GAERS and NE rats. 

Although HCN1 channel expression in the thalamus is significantly lower than that of the HCN2 isoform, the 

darker in situ hybridization signal over the Vpm and Rtn is apparent in the GAERS brain. Note the robust 

expression of HCN1 in the principal cell layers of the hippocampus of both strains. C, Quantitative analysis 

reveals a 58% increase in HCN1 mRNA levels in GAERs Vpm. D, Quantitative analysis shows a more modest 

increase of HCN1 mRNA in the Rtn (n = 5 per group). * denotes a significance level of p < 0.05 (see Methods). 

 

 Maintained Ih-mediated afterdepolarizations in fully epileptic mature GAERS 

We next queried whether the decreased cAMP sensitivity of Ih in TC cells from GAERS 

translates to an altered endogenous regulation of Ih, thereby furthering the propensity of this 

rat strain to generate long-lasting SWDs. We focused here on a slow, activity-dependent 

upregulation of Ih that is particularly crucial for the cessation of synchronised oscillations and 

leads to a persistent ADP induced by repetitive LT Ca2+ spikes (Bal and McCormick, 1996). 

This ADP reflects the combined influence of Ca2+ entry through voltage-gated Ca2+ channels, 

Ca2+-dependent cAMP synthesis, HCN channel voltage gating and binding to cAMP, and the 

degradation of cAMP by phosphodiesterases (Lüthi and McCormick, 1999b; Wang et al., 
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2002). The reduced sensitivity of Ih to cAMP in GAERS predicted smaller ADPs following 

repetitive rebound Ca2+ spike generation. 

Cells were held between -58 and -64 mV, close to their resting membrane potentials 

(-65.7 ± 0.7 mV for NE, n = 25; -63.5 ± 1.2 mV for GAERS, n = 24; p > 0.05), and 16 

negative current pulses (-0.3 to -0.9 nA), each lasting 120 ms, were injected at 4 Hz (Fig. 5A 

and D, bottom), a protocol producing maximal ADPs (Lüthi and McCormick, 1999a). The 

resulting ADP amplitude was measured relative to baseline 2 s after termination of these 

current injections to minimize the contribution of a rapidly decaying depolarization 

immediately after the end of the pulses (Fig. 5A). These ADPs, albeit small, efficiently 

attenuated spontaneous δ-oscillations that were observed in some recordings (n = 2; Fig. 5B), 

documenting the efficacy of small membrane depolarizations in preventing or terminating 

burst discharges in TC cells. In mature NE animals, ADP amplitudes were 2.3 ± 0.2 mV 

(n = 24; Fig. 5A and F) and these were reduced > 80% by extracellular application of the Ih 

blocker Cs+ (3 mM, n = 4, p < 0.05; Fig. 5C). Interestingly, amplitudes of ADPs in mature 

GAERS did not differ from those in age-matched controls (2.8 ± 0.2 mV, n = 24; Fig. 5D and 

F), sufficed to dampen intrinsic rhythmic activity (n = 4; Fig. 5E) and were largely blocked by 

extracellular Cs+ (n = 3, p < 0.05, data not shown). 

In contrast to cells from mature animals, ADPs elicited in cells from pre-epileptic 

GAERS and young NE animals were too small for further analysis (1.7 ± 0.2 mV, n = 8; for 

both NE and GAERS, p < 0.001 compared to adults), indicating insufficient maturation of the 

functional interaction between Ca2+ spikes and Ih before the onset of SWDs. These data 

suggest that both NE animals and GAERS go through a developmental enhancement of Ca2+-

induced persistent Ih upregulation, and that, in GAERS, this occurs in the face of enduring 

reduction of cAMP regulation of Ih.  
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Figure 5. Mature GAERS TC cells generate unaltered afterdepolarizations (ADPs) A, D, Representative 

ADPs (arrow) found in TC cells from mature NE rats (A) and GAERS (D). The star (*) denotes a fast ADP that 

is not mediated by Ih. The current injection protocols used to elicit the ADPs in A and D are shown below the 

traces. B, E, Cells showing spontaneous clock-like δ-oscillations in a TC cell of a NE animal (B) and a GAERS 

(E). Note the attenuation of these oscillations during the ADP and their gradual reappearance. C, The slow ADP, 

shown here for a NE control (slow ADP-ctrl), is strongly reduced in the presence of 3 mM Cs+ in the superfusing 

solution (slow ADP- Cs+ 3 mM). F, Pooled values of ADP amplitudes for all experiments (n = 24 for both 

strains). Filled circles denote results of individual experiments, and are sometimes superimposed on each other. 

Average values (open circles) were not significantly different (p > 0.05). 

 

 Unaltered cAMP turnover in TC neurones of mature GAERS 

We next aimed to determine the mechanisms in the mature GAERS that could 

overcome the functional deficits of HCN channels and facilitate the generation of robust 

ADPs. A potential mechanism yielding higher cAMP levels in the vicinity of the HCN 

channels in GAERS could be a reduced degradation of cAMP. 
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Figure 6. Unaltered decay time course of current enhancement following photolytic release of caged 

cAMP. A, B, Representative responses in cells derived from mature NE animals and GAERS on the left, with 

normalized plot of current amplitude presented to the right. Voltage protocol involved a -30 mV hyperpolarizing 

step from -60 mV, flash application occurred after 4 control responses (arrow, time 0 in the graphs). 

C, Normalized, averaged responses in NE (closed circles, n = 7) and GAERS (open circles, n = 6) to repetitive 

30 mV hyperpolarizing steps, UV-flash application occurred at time 0 (arrow). Note decreased response in cells 

from GAERS (p < 0.02 at the peak of the cAMP-induced effect). D, Monoexponential fitting of the decay time 

course of the current responses after photolysis of caged cAMP. The time constant values indicated next to the 

traces are the average ± sem values obtained by exponential fitting of the traces from individual cells (see 

Methods), and these values were not significantly different (p > 0.05). 

 

To obtain a measure of cAMP turnover, including phosphodiesterase activity, we 

examined the time course of the photolytic responses in mature GAERS and NE controls. In 

both cases, responses to the UV-light flash peaked within the first voltage step after flashing 

(see Methods) and then gradually decayed back to baseline levels. This decay reflects the 

superposition of cAMP dissociation from the channels and its subsequent degradation (Lüthi 

and McCormick, 1999b). In both NE and GAERS TC neurones, recovery was complete 

within 6 current responses obtained at 4 s intervals after flash application, characterized by a 

time constant of 11.2 ± 1.2 s for NE and 7.9 ± 1.3 s for GAERS (n = 7 for NE, n = 6 for 

GAERS, p > 0.05; Fig. 6), similar to previous observations (Lüthi and McCormick, 1999b). 

These data indicate that unbinding and/or diffusion/degradation of cAMP are not altered in 
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mature GAERS neurones, and therefore cannot account for the preserved ADP amplitudes. 

 

 Enhanced intracellular Ca2+ accumulation in GAERS neurones during repetitive 

low-threshold Ca2+ spikes 

Molecular analyses have shown that expression of Ca2+ channel subunits in rat 

decreases by ~25% between 2 weeks and 2-3 months of age, but this reduction is less 

pronounced in  GAERS (Guyon et al., 1993; Talley et al., 2000). In addition, increased 

amplitudes of LT Ca2+ currents in TC neurones were reported in several mouse models of 

SWDs (Zhang et al., 2002; Song et al., 2004). Therefore, Ca2+ entry via these channels might 

be altered in GAERS, and contribute to the normalization of the ADPs. To test this 

possibility, we performed simultaneous electrophysiological and Ca2+ imaging in cells filled 

with the Ca2+ indicator dye Oregon Green Bapta-2 (75 µM, see Methods). Changes in 

fluorescence were monitored following rebound Ca2+ spikes evoked by repetitive 

hyperpolarizing pulses. These Ca2+ spikes induced a progressive increase in the fluorescence 

signal that summated to reach a maximal average value of 115 ± 3 % of baseline after about 8 

to 16 rebound bursts (n = 8; Fig. 7A, B and D). At the end of the stimulation protocol, the 

fluorescence signal returned to baseline within seconds (τ = 2.6 ± 0.5 s, n = 8). These results 

are in agreement with observations from Budde and colleagues (Budde et al., 2000). To 

confirm that our stimulation protocol did not saturate the Ca2+ indicator and permitted 

recording larger fluorescence changes, positive current injections (+0.5 nA) were used to 

depolarize cells to suprathreshold voltages. Under these conditions, the increases in 

fluorescence recorded were about 2-fold larger (∆F/F = 132 ± 2 %, p < 0.005; Fig. 7C and D), 

but decayed on a similar time scale (τ = 2.5 ± 0.5 s, n = 8, p > 0.05). These data indicate that 

repetitive LT Ca2+ spikes did not saturate the indicator dye, permitting comparison of Ca2+ 

rises triggered by LT spikes in GAERS vs. controls. 
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Figure 7. Repetitive hyperpolarizing current pulses evoke greater intracellular Ca2+ increases in GAERS 

neurones. A, Left, Representative sweeps showing the relative fluorescence changes evoked after repetitive 

rebound Ca2+ bursting in a cell from a NE rat. Right, Expanded portion of the trace illustrating the time sections 

(vertical dotted lines) within which Ca2+ signals were averaged and compared. B, Ca2+ transients recorded in 

somatic (som.) and dendritic (dendr.) regions after somatic injection of hyperpolarizing currents to induce 

rebound bursting. Transients are averages of 5 successive sweeps for cells from a NE animal (thin line) and a 

GAERS (thick line). C, As in B, but depolarizing current pulses were injected. D, Top, pooled data showing the 

relative changes in fluorescence evoked after repetitive hyperpolarizing pulses and recorded from somatic 

(Hyperpol.-Som., n = 8 for both NE and GAERS) or dendritic (Hyperpol.-Dendr., n = 6 for NE, n = 5 for 

GAERS) regions. Bottom, as top but for depolarizing somatic pulses recorded in soma (Depol.-Som., n = 6 for 

NE, n = 5 for GAERS) or in dendrites (Depol.-Dendr., n = 4 for both NE and GAERS). The stars (*) indicate 

p < 0.05. 
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We obtained fluorescence data from both somatic and proximal dendritic compartments, 

where T-type Ca2+ channels are expressed and colocalized with HCN channels (Stuart and 

Williams, 2000). Signals evoked by hyperpolarizing pulses were comparable in amplitude at 

the end of the train in both regions (∆F/F = 115 ± 3 % in the soma, n = 8, ∆F/F = 119 ± 3 % in 

dendrites, n = 6, p > 0.05; Fig. 7B and D), but dendritic signals reached a plateau (Fig. 7B and 

D) and decayed more rapidly (τ = 1.4 ± 0.1 s, n = 6, p < 0.05). Depolarizing pulses evoked 

comparable fluorescent signals in the two compartments (Fig. 7C and D), with dendritic 

signals again decaying slightly faster (τ = 1.5 ± 0.20 s, n = 4, p < 0.05). 

Ca2+ levels were markedly elevated in somata and dendrites of GAERS compared with 

NE cells when 8 or more hyperpolarizing pulses were injected (∆F/F = 123 - 125 %, n = 8, 

∆F/F = 134 - 138 %, n = 5, in somata and dendrites, respectively, p < 0.05 compared to NE; 

Fig. 7B and D), while time constants of decay obtained by monoexponential (τ = 1.7 ± 0.1 s 

and 1.2 ± 0.04 s in somata and dendrites, respectively, p > 0.05) or biexponential fitting (data 

not shown, p > 0.05) were unaltered. GAERS and NE cells did not differ in intracellular Ca2+ 

concentrations after depolarizing pulses (n = 6 for somatic, n = 4 for dendritic recordings, 

p > 0.05; Fig. 7C and D). These data indicate that the summation of Ca2+ transients induced 

by LT Ca2+ spikes in GAERS cells is selectively augmented, and can potentiate Ca2+-

dependent Ih upregulation, thus contributing to ADP normalization. 

 

 Discussion 

In this study, we addressed the role of Ih during both epileptogenesis and the chronically 

epileptic state of the GAERS. Importantly, we focused on Ih in the somatosensory thalamus 

that constitutes the primary thalamic area generating SWDs in rat models of absence epilepsy 

(Vergnes et al., 1990; Seidenbecher et al., 1998; Renier and Coenen, 2000; Manning et al., 

2004; Nersesyan et al., 2004; Budde et al., 2005). This approach allowed us to evaluate the 

contribution of inherited (or developmentally determined), compared with acquired changes 

in current properties to the pathogenesis of generalized epilepsy. 

The principal findings presented here are: (1) basal electrophysiological characteristics, 

including resting membrane potential and voltage-gating of Ih, were unaltered in TC cells of 

adult GAERS, both in vivo and in vitro; (2) during both pre-epileptic and chronic epileptic 

stages, Ih was less sensitive to cAMP when the nucleotide was delivered at non-saturating 

doses; (3) a marked increase in mRNA levels of the relatively cAMP-insensitive HCN1 

isoform occurred in the GAERS thalamus, without significant changes in cAMP-sensitive 
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HCN2 and HCN4; (4) ADP amplitudes were normal in mature GAERS, despite the enduring, 

reduced cAMP sensitivity of Ih and the upregulation of HCN1 subunit expression; (5) 

compensatory mechanisms, restoring ADP amplitude, involved enhanced Ca2+ accumulation 

in mature GAERS TC cells resulting from LT Ca2+ spikes. In summary, Ih may play a dual 

role in the GAERS epilepsy. Abnormal regulation of this current appears not only to be 

involved in the pathogenesis of absence epilepsy, but to trigger adaptive responses to 

antagonize the functional impact of these deficits, thereby restoring Ih functions that are 

important for the termination of synchronous network activity. 

Our work further highlights that neuronal networks are exquisitely sensitive to 

imbalances in Ih regulation, consistent with the multiple roles of Ih in thalamic and cortical 

cell excitability (Santoro and Baram, 2003; Frère et al., 2004). Indeed, prior studies have 

identified comparatively small changes in current amplitude around resting membrane 

potentials (Di Pasquale et al., 1997) or current voltage dependence (Chen et al., 2001b; Budde 

et al., 2005) in rodent models of epilepsy, yet these were accompanied by major increases in 

the propensity of neuronal networks to generate seizures. 

 

 Role of altered Ih function in the development of absence epilepsy 

We identified a lowered sensitivity of Ih to near-physiological, phasic cAMP pulses in 

pre-epileptic TC cells of GAERS. In addition, consistent with a recent study on pre-epileptic 

WAG/Rij rats (Budde et al., 2005), we also reveal an altered cAMP sensitivity of the Ih 

voltage-gating. Therefore, although we did not quantify HCN mRNA levels in the pre-

epileptic state, our findings strongly suggest that abnormal cAMP sensitivity of HCN 

channels in thalamus may be a common denominator of rodent absence epilepsy during pre-

epileptic stages. Cellular activity typical for SWDs in GAERS TC neurones involves 

occasional LT Ca2+ spikes superimposed on a tonic membrane hyperpolarization that is more 

pronounced compared to that in normal, sleep-related oscillations in these networks (Pinault 

et al., 1998; Seidenbecher et al., 1998; Pinault, 2003). The Ih is a key factor controlling 

membrane potential in TC neurons. Thus, genetic deletion of HCN2 reduces thalamic Ih by 

> 90% (Ludwig et al., 2003) and provokes strongly hyperpolarized resting membrane 

potentials, burst discharges, and SWDs. In pre-epileptic GAERS, the gating of Ih by cAMP 

levels, but not its voltage dependence, was affected, leading to an attenuated depolarizing 

drive of cAMP-dependent Ih gating. This more subtle weakening of Ih–dependent membrane 

potential shifts likely contributes to the facilitation of burst discharge in pre-epileptic TC cells 
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(Budde et al., 2005), to the synchronization of TC networks, and to the eventual appearance 

of SWDs. The decreased efficacy of cAMP could result from a genetically determined 

predisposition of the GAERS strain (Rudolf et al., 2004), but might also be a consequence of 

an abnormal development of the TC network. For example, levels of neuronal and glial 

enzymes involved in the turnover of glutamate are reduced in TC networks during pre-

epileptic stages (Dutuit et al., 2000; Dutuit et al., 2002), promoting elevated concentrations of 

ambient glutamate and, therefore, altered regulation of Ih (van Welie et al., 2004). 

Of note, a number of recent studies have highlighted changes in functional and 

molecular properties of cortical Ih, particularly a decreased HCN1 expression (Di Pasquale et 

al., 1997; Strauss et al., 2004). These changes enhance temporal summation of excitatory 

synaptic responses and may hence critically contribute to the hyperexcitability of TC circuits 

and promote SWDs (Meeren et al., 2005). Our molecular analysis failed to demonstrate 

altered HCN1 or HCN2 channel expression in somatosensory cortex and thus does not 

support a major contribution of abnormal cortical Ih in the pathological condition of GAERS. 

Although potential functional changes in selected cortical neurons cannot be excluded, the 

observation that HCN2- (Ludwig et al., 2003), but not HCN1-deficient (Nolan et al., 2004) 

mice show spontaneous SWDs points to a major role of thalamic Ih isoforms in the 

susceptibility to SWD development. 

 

 Molecular composition of thalamic HCN channels in GAERS 

The mRNA expression of HCN1, the subunit with the weakest sensitivity to cAMP, was 

augmented in adult GAERS, raising the question of how increased HCN1 protein modifies 

cAMP sensitivity of native HCN channels, without altering resting membrane potential and 

basal current amplitudes. Assuming that protein expression of HCN1 correlates quantitatively 

with the mRNA levels (Brewster et al., 2005; Brewster et al., 2006), the contribution of 

HCN1 to the total complement of HCN channels in Vpm is 12.5% in controls and ~20% in 

GAERS. In addition, voltage-gating of Ih around resting potentials is small (~10%, see 

Fig. 2A). Therefore, although activation of heterologously expressed HCN1 homomers occurs 

at more depolarized potentials than that of HCN2 homomers (Chen et al., 2001c), the subtle 

change in HCN1 expression levels is expected to have minimal effects on cellular properties 

characterizing resting states. Furthermore, genetic deletion of HCN2 virtually abrogated Ih in 

TC neurones, despite preserved HCN1 protein expression (Ludwig et al., 2003), indicating 

that HCN1 protein generates only a small component of thalamic Ih on its own, whereas the 
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HCN2 channel isoform carries the majority of voltage-gated current. However, a selective 

reduction of cAMP sensitivity in GAERS HCN channels may derive from enhanced 

heteromerization of the channels, driven by increased relative HCN1 subunit abundance 

(Brewster et al. 2005). HCN1-HCN2 heteromers and HCN2 homomers have a cAMP 

concentration-response curve with a similar maximum, yet heteromers show a weaker shift at 

subsaturing concentrations (Chen et al., 2001c), thereby producing channels with properties 

approximating those found in GAERS. Taken together, our data are consistent with reduced 

contribution of HCN2 homomeric channels to whole-cell Ih of GAERS TC cells, coupled with 

increased contribution of heteromeric HCN1/HCN2 channels. The findings fit less well with 

HCN1-HCN4 heteromerization, because the maximal shift of HCN1-HCN4 heteromers is 

markedly smaller than that of HCN4 homomers (Altomare et al., 2003), and HCN4 

significantly contributes to thalamic Ih (Seifert et al., 1999). Thus, the impact of HCN1-

containing heteromers on cAMP sensitivity of whole-cell currents may depend on the type 

and amount of heteromers generated, as well as be influenced by a number of proteins 

interacting with HCN channels (Yu et al., 2001; Decher et al., 2003; Gravante et al., 2004; 

Santoro et al., 2004; Vasilyev and Barish, 2004). Altered expression or function of these (or 

other) proteins might influence, and perhaps disproportionately strengthen, the function and 

localization of HCN1-containing channels in GAERS TC cells. 

 

 Role of altered Ih function in chronic epilepsy 

In mature GAERS, TC cells recorded in vivo had normal resting membrane and Ih sag 

potentials. In addition, the fraction of cells expressing a measurable sag potential was 

unchanged, indicating that chronic epilepsy in mature animals did not modify the relative 

proportions of TC cell subtypes described in vivo (Pinault, 2003). However, the reduced 

cAMP sensitivity of Ih, accompanied by an elevated HCN1 mRNA expression, persisted in 

the chronic state of epilepsy. Thus, the changes in thalamic Ih function, already present during 

pre-epileptic stages, appear to be unaltered by the onset of epileptic activity. This is in 

contrast to other experimental models, in which a single seizure episode markedly and 

persistently affects current properties and subunit expression (Chen et al., 2001b; Brewster et 

al., 2002; Shah et al., 2004). However, chronic epilepsy is accompanied by compensatory 

adjustments of a regulatory mode of Ih that specifically controls network function and helps 

antagonizing the pronounced hyperpolarization of TC cells typical for SWDs. An attractive 

putative mechanism for such a compensatory effect involves augmented Ca2+ currents. In 
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addition to enhanced LT current expression in animal models of SWDs (Guyon et al., 1993; 

Talley et al., 2000), T-type channel expression is persistently enhanced by pathological 

hyperactivity, either due to experimental seizures (Beck et al., 1998; Su et al., 2002; Zhang et 

al., 2002), or to genetic interference with Ca2+ channel activity or neurotransmitter release 

(Song et al., 2004; Zhang et al., 2004). Here, we found a greater temporal summation of Ca2+ 

signals evoked by repetitive opening of the T-type Ca2+ channels in GAERS at frequencies 

approximating those in SWDs. However, no overt changes occurred after single or few 

spikes. This suggests that, rather than the expression of T-channels, the intracellular clearance 

of Ca2+ ions entering through these channels was diminished in GAERS, for example through 

reduced expression of Ca2+-binding proteins (Montpied et al., 1995) known to be expressed in 

TC cells (Meuth et al., 2005). Although our analysis did not reveal differences in the decay 

kinetics of the Ca2+ transients, an indicator for changes in endogenous Ca2+ buffering or 

extrusion mechanisms, further analysis of the expression patterns and functional roles of 

endogenous Ca2+-binding proteins is required to elucidate the mechanisms underlying 

enhanced Ca2+ accumulation in GAERS TC cells. 

Enhanced Ca2+ influx through T-channels has been implicated in augmented 

transcription factor activity in mouse models of SWDs (Ishige et al., 2001), suggesting an 

involvement of T-current-mediated Ca2+ signaling in the molecular mechanisms underlying 

SWDs. In GAERS, elevated levels of free Ca2+ in the vicinity of T-type Ca2+ channels should 

facilitate the stimulation of Ca2+-sensitive adenylyl cyclases, characterized by a steep Ca2+ 

dependence in the ~100 nM - 1 µM concentration range (Cooper, 2003), which contribute to 

slow Ih upregulation and ADPs (Lüthi and McCormick, 1999b). We excluded decreased 

cAMP degradation as a mechanism stabilizing ADPs, although the possibility remains that 

adenylyl cyclases activated by Ca2+ are increasingly expressed or more active in GAERS.  

The present results further substantiate the critical role of thalamic HCN channels in the 

involvement of thalamic networks in SWDs (Pinault et al., 1998; Seidenbecher et al., 1998; 

Pinault, 2003; Meeren et al., 2005). We demonstrate that activity-dependent alterations in 

HCN channel function are required for epileptogenesis, while basal current properties are 

minimally affected. In addition, we show that imbalances in HCN channel transcription 

accompany chronic epilepsy, rendering HCN channels candidates for the growing family of 

ion channels underlying transcriptional channelopathies (Waxman, 2001). A reduced HCN1 

protein was previously found in cortical neurones in the WAG/Rij absence model (Strauss et 

al., 2004). Thus, the construction of functional HCN channels may be affected at multiple 

levels and in a cell-type specific manner in TC networks generating SWDs. Moreover, while 
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thalamic neurones use homeostatic mechanisms to compensate for deficits at the channel 

level, cortical abnormalities persist through adulthood (Strauss et al., 2004). This differential 

adaptation may explain the persistence of SWDs in adult rodent models, where cortical 

hyperactivity and exacerbated burst discharges of Rtn cells initiate SWDs (Slaght et al., 2002; 

Manning et al., 2004; Meeren et al., 2005). 
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PAPER II: ß-ADRENERGIC MODULATION OF HCN CHANNELS IN 

DIFFERENT THALAMIC NUCLEI 

 

 Introduction to paper II 

 

First-order and intralaminar thalamic nuclei 

In this part of my thesis I address the question if there are cell-type specific modes of 

cAMP-dependent regulation of HCN channels. As described in chapter 3.6.8, HCN channels 

are particularly important for the electrophysiological properties of neurons in the thalamus, 

consisting of distinct nuclei. 

First-order thalamic nuclei are considered to be the “classical thalamic relays”. In the 

tonic firing mode during waking, neurons of these “specific” first-order thalamic nuclei 

transmit the incoming information relatively linear to the cortex (Sherman and Guillery, 

2005). To fulfill this function, it is crucial for the resting membrane potential of the cells to be 

depolarized sufficiently. This depolarization is under the control of ion channels that are 

modulated by G-protein-coupled receptor (GPCR)-activating neurotransmitters (McCormick, 

1992). Here, the regulation of HCN channels by β-adrenergic receptors (ß-ARs) plays a 

pivotal role (McCormick and Pape, 1990a). 

In contrast, the “non-specific” intralaminar nuclei rather provide the necessary arousal 

of cortical and subcortical regions (for review, see (Van der Werf et al., 2002)). Thus, high 

frequency stimulation in vivo in the intralaminar thalamic region leads to desynchronized 

cortical activity related to high levels of wakefulness and vigilance (Shirvalkar et al., 2006). 

Low-frequency stimulation causes slow-wave activity in the entire cortical mantle 

accompanied by somnolence (Van der Werf et al., 2002). These actions can be achieved by 

the widespread projection of intralaminar thalamic nuclei to cortical areas (Groenewegen and 

Berendse, 1994). Neurons of intralaminar thalamic nuclei can exert tonic or bursting firing 

properties like first-order thalamic neurons. However, these neurons discharge in bursts not 

only during sleep, but also during waking (Glenn and Steriade, 1982; Steriade et al., 1993a), 

contrary to neurons of first-order thalamic nuclei. Thus, the resting membrane potential seems 

to be influenced by a different regulation of ion channels. This is accompanied by a distinct 

expression pattern of GPCRs (Mansour et al., 1987; Mansour et al., 1994; Vizuete et al., 
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1997; Marcus et al., 2001), including ß-ARs (Rainbow et al., 1984; Nicholas et al., 1993).  

 

 The noradrenergic system and locus coeruleus 

The adrenergic system is an essential regulator of neuronal, endocrine, cardiovascular, 

vegetative, and metabolic functions. Activation induces the “fight-or-flight” response, 

facilitating immediate physical reactions associated with danger or stressful situations, 

respectively. These include acceleration of heart and lung action, dilation of blood vessels in 

muscle tissue, and inhibition of stomach and intestinal action. 

In the nervous system, the neurotransmitter noradrenalin (NA), also named 

norepinephrine, is released by stressful events that require high attention. This is partly caused 

by discharges of an area of the brain stem called the locus coeruleus (LC). There, a majority 

of brain noradrenergic neurons are concentrated and supply NA throughout the central 

nervous system by a widespread ascending projection system (for review, see (Berridge and 

Waterhouse, 2003)). Increasing tonic LC output activates the forebrain, which could be 

shown by EEG (Berridge and Foote, 1991). It is correlated with arousal levels (Aston-Jones 

and Bloom, 1981), and progression from drowsy low-attention states to alert, highly vigilant 

states (Usher et al., 1999). Additionally, it was shown that locally applied NA or LC 

stimulation can modulate the responsiveness of neurons, including those in the thalamus, to 

non-monoaminergic synaptic inputs (Berridge and Waterhouse, 2003). In the thalamus of 

waking rats the output from LC-firing both modulates the responsiveness of single thalamic 

neurons to synaptic input, and the representation of sensory information across ensembles of 

thalamic neurons (Devilbiss et al., 2006). These findings provide evidence that the 

noradrenergic pathway controls thalamic responses to sensory driven synaptic input. 

 

 Adrenergic receptors 

The neurotransmitter NA activates GPCRs to transmit the signal across the plasma 

membrane. These adrenergic receptors (ARs) can be divided into three different groups: the 

α1-receptors (α1A, α1B, α1D), α2-receptors (α2A, α2B, α2C), and β-receptors (β1, β2, β3). 

Upon binding of NA, the receptors undergo a conformational change that leads to the 

activation of heterotrimeric GTP-binding proteins (G-proteins). The three groups of ARs 

couple to and activate only certain G-proteins, thus leading to specific intracellular signals. 

α1-ARs are coupled to Gq-mediated pathways, which increase intracellular inositiol-
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trisphosphate (IP3) and Ca2+ concentrations. Activation of the presynaptic α2-ARs leads to the 

inhibition of adenylyl cyclases via G-proteins of the Gi/o family. ß-ARs are known to couple 

to Gs-proteins and activation stimulates adenylyl cyclases and results in increased intracellular 

cAMP levels.  

 

ß-Adrenergic receptor signaling. In 1986, the ß2-AR was the first GPCR to be cloned 

(Dixon et al., 1986). Since then a large array of cellular signaling mechanism has been 

identified in vitro. The initially linear signaling cascade of a receptor - G-protein - second 

messenger - effector coupling has evolved into a complex network of receptor activated 

signaling molecules. For some of these pathways the molecular mechanisms of signaling have 

been described in great detail. For example, ß-AR activation also initiates the process of 

receptor desensitization, an adaptive response used by cells to arrest G-protein signaling. This 

desensitization process can be induced by phosphorylation of the receptor by G-protein 

coupled receptor serine/threonine kinases (GRKs) or by protein kinase A (PKA) dependent 

phosphorylation (for review, see (Kohout and Lefkowitz, 2003)). The desensitization can 

initiate a redistribution of the receptor away from the cell surface by endocytosis, also known 

as internalization or sequestration. Internalization can, however, positively regulate receptor 

signaling and promote receptor resensitization (Kohout and Lefkowitz, 2003). Additional 

mechanisms can contribute to the dampening of receptor signaling after prolonged 

stimulation. These include receptor degradation or down-regulation, which is often carried out 

in lysosomes, a process generally operating over longer periods of time (hours) than receptor 

phosphorylation (Pierce et al., 2002; Kohout and Lefkowitz, 2003). Furthermore, in particular 

β2-ARs are known to show a switch from the well-established Gs-protein coupled pathway to 

the activation of Gi-proteins (Daaka et al., 1997). Specific scaffolding proteins like the 

ß-arrestins have been identified as multifunctional adaptors that recruit a broad spectrum of 

signaling molecules to the receptors (Pierce et al., 2002; Lefkowitz and Whalen, 2004). Thus, 

an individual ß-AR can dynamically couple to multiple signaling proteins in a temporally and 

spatially regulated manner.  

For cardiac myocytes, recent data about subtype-specific function and the signaling 

mechanism of ß-ARs has improved the understanding of the causal relationship between 

ß-adrenergic stimulation and heart failure. ß1-AR-activated cAMP signaling is widely 

broadcast within cardiomyocytes, while ß2-AR-stimulated cAMP signaling is spatially and 

functionally compartmentalized (for review, see (Xiao et al., 2006)). 

However, despite the wealth of information regarding the signaling pathways engaged 
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by ß-adrenergic stimulation, a gap exists between in vitro heterologous expression systems 

and the in vivo situation. Thus, detailed mechanisms of adrenergic signaling in neurons 

remain open. 

 

ß-Adrenergic receptors in neurons. ß-ARs are mostly known for their role in the 

regulation of cardiovascular, airway, uterine and metabolic functions. However, the brain is 

densely innervated by NA-containing neurons and ß-ARs have been identified in rat brains by 

in situ hybridization (Nicholas et al., 1993) and an antibody-binding study (Rainbow et al., 

1984). The adrenergic system plays a central role in regulating numerous functions of the 

central nervous system, such as learning and memory, mood, and the state of arousal.  

For example, the circadian rhythm of melatonin synthesis is controlled via ß-ARs by 

NA released from sympathetic nerves in the pineal gland (for review, see (Simonneaux and 

Ribelayga, 2003)). The involvement of the adrenergic system in memory functions has been 

studied in mice lacking ß-AR subtypes or dopamine ß-hydroxylase, the enzyme responsible 

for the synthesis of NA (Winder et al., 1999; Murchison et al., 2004). NA acting at ß1-ARs 

has been found to be essential for the retrieval of contextual and spatial memory but does not 

seem to be necessary for the retrieval of emotional memories (Murchison et al., 2004). A 

model of synaptic changes required for learning is hippocampal long term potentiation (LTP). 

LTP induced by prolonged theta stimulation has been found to be facilitated by activation of 

ß1-ARs (Winder et al., 1999). Also associative LTP was shown to be increased after 

stimulation of ß-ARs in hippocampal slices (Lin et al., 2003). The memory strengthening 

effects of emotion is thought to be induced by adrenergic action on ß-ARs in the amygdaloid 

complex (McGaugh and Roozendaal, 2002).  

Several recent studies on ß-adrenergic modulation of L-Type Ca2+ channels provide 

evidence for a highly organized ß-adrenergic signaling system in neurons. A localized action 

to Ca2+ channels after ß2-AR stimulation has been reported in the hippocampus, that ensures 

rapid cell signaling (Davare et al., 2001; Hoogland and Saggau, 2004). In rat adrenal 

chromaffin cells an opposite action of ß1- and ß2-ARs on Ca2+ channels has been reported. 

Here, the ß1-AR pathway develops slowly according to its diffusive characteristic, while 

ß2-ARs signaling is fast (Cesetti et al., 2003).  

In first-order thalamic nuclei, activation of ß-ARs is known to upregulate HCN-currents 

via cAMP (McCormick and Pape, 1990a). Following the coupling of pacemaker channels to 

cAMP by monitoring HCN-currents provides an opportunity to investigate ß-AR signaling. 

For example, (Frère and Lüthi, 2004) could demonstrate a cross-talk between ß-adrenergic 
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and GABAB-receptors in first-order thalamic neurons. The enhancement of HCN-currents by 

stimulation of ß-ARs was increased when simultaneously an activation of GABAB-receptors 

occurred. Importantly, the dynamics of HCN channel modulation by GPCR-agonists reflected 

the time course of intracellular cAMP concentrations (Frère and Lüthi, 2004). Thus, by 

studying the ß-adrenergic modulation of HCN-currents, my thesis not only investigates the 

regulation of a particularly important (see Section 3.6.8 of this thesis) ion channel, the 

pacemaker, in neurons of distinct thalamic nuclei. It will further contribute to the field of 

subtype specific GPCR-signaling and to resolve the complex signaling cascades following 

GPCR activation. 

 

Neuronal ß-adrenergic receptors in pharmacotherapy. In humans, many drugs are 

currently used that interact with neuronal ß-ARs, including ß-adrenergic antagonists 

(ß-blockers), such as propranolol, metoprolol or timolol. In pharmacotherapy, central 

ß-blockers are used to treat chronic migraine, essential tremor and certain anxiety disorders 

(for review, see (Emilien and Maloteaux, 1998)). Of these, in both, chronic migraine (Shields 

and Goadsby, 2005) as well as essential tremor (Hua et al., 1998) the thalamus seems to be 

involved. However, the exact mechanism of drug action in these conditions has not been 

identified yet. To uncover the physiological and pharmacological significance of ß-ARs in a 

subtype specific manner will be helpful in developing drugs with minimized side-effects. 
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 Abstract 

The thalamus is the most important subcortical station allowing for relay and 

coordination of sensory information and is broadly classified into first-order (FOn), higher-

order and intralaminar/midline (IMn) nuclei. Neurotransmitter-mediated cAMP synthesis and 

enhancement of the hyperpolarization-activated cation current (Ih) are well-established ionic 

mechanisms that control relay functions in FOn. In FOn, β1-adrenergic receptor expression is 

predominant, whereas β2-receptor expression outweighs β1-receptors in IMn nuclei. To 

address differential β-adrenergic regulation of Ih in thalamic nuclei, whole-cell Ih was 

recorded in visually identified mouse thalamic cells in the ventroposterior medial (Vpm), a 

FOn, and in the centrolateral nucleus (Cln), an IMn. 

Ih amplitudes were strikingly smaller in Cln compared to Vpm throughout the entire 

voltage activation range, but were equally modulated by cAMP. Bath-application of the non-

specific β-adrenergic agonist isoprenaline (Iso) induced a concentration-dependent 

enhancement of Ih amplitude in Vpm, described by an EC50 of 0.44 µM and a maximal 

potentiation after 1 min that fully decayed after 6 min. This desensitization could be 

prevented in the presence of the phosphodiesterase (PDE) inhibitor IBMX (100 µM), 

indicating an essential requirement of PDEs, while proteinkinase A-activity seems not to be 

involved. In contrast, application of Iso in the Cln induced a minor, not significant increase of 

Ih amplitude. The Iso response in the Vpm was mediated by β1-adrenergic receptors, because 

it remained unaltered in the presence of the β2-antagonist ICI118,551 (100 µM), and was 

mimicked by the β1-agonist xamoterol. Selective β2-receptor activation produced no 

response, neither in the Vpm, nor in the Cln. Additionally, β2-adrenergic modulation could 

not be rescued by preventing β-adrenergic desensitization during cutting and incubation of the 

thalamic slices in the presence of the β-adrenergic antagonist propranolol. Increasing the 

apparent affinity for Iso to β-adrenergic receptors by lowering the temperature increased 

β1 mediated Ih responses in both Vpm and Cln.  

Strong β-adrenergic regulation of Ih appears thus to be limited to portions of the 

thalamus involved in sensory relay, while not being involved in general arousal function. 
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 Introduction 

Hyperpolarization-activated cation (HCN) channels are widely expressed in the nervous 

system and often function as “pacemaker” for rhythmic electrical behavior (for review, see 

(Pape, 1996; Santoro and Tibbs, 1999; Robinson and Siegelbaum, 2003). These channels 

open in response to membrane hyperpolarization and give rise to a cationic current (Ih) that, 

under physiological conditions, is depolarizing. The voltage-dependence of HCN channels is 

influenced by the second messenger cAMP that directly binds to the channel and shifts the 

activation-range to more depolarized potentials (Wainger et al., 2001). Thus, HCN channels 

can be modulated by activation of the G-protein-coupled receptors (GPCRs) linked to cAMP 

synthesis, such as the ß-adrenergic receptors (ß-ARs) ((McCormick and Pape, 1990a; Frère 

and Lüthi, 2004) for review, see (McCormick, 1992; Frère et al., 2004)). In recent years, the 

palette of physiological functions of HCN-currents has increased dramatically, and now 

covers aspects of synaptic function, dendritic integration, plasticity, learning and pathological 

neuronal and cardiac states (for review, see (Robinson and Siegelbaum, 2003; Frère et al., 

2004)). 

In view of this functional diversity, understanding in detail the native pathways leading 

to cAMP synthesis and hence, HCN channel upregulation, is important. Numerous studies 

have documented in detail that GPCRs coupled to the stimulatory G-protein (Gs) can 

upregulate Ih via cAMP (for review, see (Frère et al., 2004)). Nevertheless, elementary 

questions remain open. First, how do receptor subtypes control cAMP synthesis? This 

question arises in particular for the ß-ARs, as the ß1- and ß2-AR subtypes are well-known for 

showing a differential signaling and functionality in cardiac myocytes (for review, see (Xiao 

et al., 2006)). Thus, ß2-ARs are not only coupled to Gs-proteins, but switch to activate 

pertussis toxin (PTX)-sensitive inhibitory G-proteins (Gi) after prolonged receptor stimulation 

(Xiao et al., 1995; Daaka et al., 1997). Second, it has been shown that complex interactions 

between GPCRs exist (Pedarzani and Storm, 1996; Frère and Lüthi, 2004). And third, it will 

also be important to determine, whether HCN channels may be components involved in 

macromolecular complexes of local cAMP signaling, such as that described for Ca2+ channels 

(Jurevicius and Fischmeister, 1996; Davare et al., 2001), or whether they are cAMP sensors 

for the average cAMP activity in a cell. 

The pathway from GPCR activation to ion channel upregulation is well characterized 

for the ß-adrenergic regulation of HCN channels. In particular in the thalamus, 

noradrenergically mediated cAMP synthesis and subsequent enhancement of Ih is a well-
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established mechanism that helps to control relay function (McCormick and Pape, 1990a). 

The firing mode of thalamic neurons, bursting or tonic, is strongly voltage-dependent and 

hence largely determined by their membrane potential. The resting membrane potential is in 

turn, controlled by the opening and closure of several ion channels (Hille, 2001), amongst 

which HCN channels play an important role in thalamic neurons (Ludwig et al., 2003; Meuth 

et al., 2006). Activated upon ß-AR stimulation, the current flowing through these channels 

provokes membrane depolarization and brings the membrane potential out of the bursting 

range, thereby promoting the tonic firing mode that is typical for waking. This effect is 

thought to essentially contribute to the maintenance of arousal, which is accompanied by tonic 

activity of the noradrenergic locus coeruleus in the thalamocortical system (Aston-Jones and 

Bloom, 1981; Berridge and Waterhouse, 2003). 

The thalamus is the most important subcortical station allowing for relay and 

coordination of sensory information (Sherman and Guillery, 2005). Far from being a pool of 

similar nuclei, it is now clear that it is composed of a highly differentiated set of nuclei that 

can be broadly classified into first-order, higher-order and intralaminar thalamic nuclei based 

on a number of functional, network, cellular and molecular differences (for review, see 

(Groenewegen and Berendse, 1994; Sherman and Guillery, 1996; Deschenes et al., 1998; Van 

der Werf et al., 2002)). First-order neurons are recognized as the neurons that relay incoming 

information from the periphery to the cortex, higher-order neurons are thought to serve as a 

link in cortico-thalamo-cortical pathways that continue to process these information streams, 

while intralaminar neurons have been implicated in general arousal functions. A principal 

source of noradrenergic receptor activation innervates the anterior intralaminar thalamic 

nuclei (including the centrolateral nucleus, Cln) (Krout et al., 2002). Therefore, the 

intralaminar nuclei link the brainstem arousal system to the cortical network crucial for the 

organization of wakeful behavior. 

An additional notable characteristic of thalamic subdivision is a differential expression 

of GPCR subtypes. This has been demonstrated for serotoninergic (Vizuete et al., 1997), 

orexinergic (Marcus et al., 2001) and opioid receptors (Mansour et al., 1987; Mansour et al., 

1994), all of which show differential expression of receptor subtypes across the three classes 

of thalamic nuclei. A few recent studies have shown an action of several neurotransmitters 

and neuropeptides on intralaminar thalamic neurons. Orexin and dopamine application can 

induce a depolarization, possibly via Kleak not via Ih (Govindaiah and Cox, 2006), while 

µ-opiods were shown to inhibit neurons of the Cln (Brunton and Charpak, 1998), and 

serotonin to suppress a slow AHP in intralaminar and midline nuclei (Goaillard and Vincent, 
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2002). Intralaminar and first-order thalamic nuclei also show a differential subtype expression 

pattern of ß-ARs. ß1-ARs were found to be predominant in the first-order ventroposterior 

medial (Vpm) complex, whereas ß2-ARs outweigh ß1-ARs in the Cln, an intralaminar 

nucleus (Rainbow et al., 1984; Nicholas et al., 1993). 

We take these differences in the expression pattern to estimate the roles of ß-AR 

subtypes in modulating HCN-currents, hence in controlling membrane potential and function 

of thalamic cells. By following the coupling of HCN channels to prolonged ß-AR stimulation, 

we are studying the differential effects of noradrenalin in two distinct thalamic nuclei. 

Moreover, we see a specificity of GPCR function associated with the phenomenon of 

compartmentalized and local cAMP signalling that was not described for thalamic neurons 

before. 

 

 Methods 

All experiments were performed according to the guidelines of the Veterinary institute 

of the Canton Basel-Stadt, Switzerland. 

 

Slice preparation 

C57BL/6-mice of either sex between 17-24 days were deeply anesthetized with 

isoflurane vapor in a mobile anesthesia station (Provet, Switzerland) and immediately 

decapitated. Coronal slices (300 µm) containing the Vpm and Cln and horizontal slices 

containing the Vpm were prepared on a vibratome in an ice-cold oxygenated solution 

containing (in mM): 63 NaCl, 107 sucrose, 2.5 KCl, 1.25 NaH2PO4, 26 NaHCO3, 0.5 CaCl2, 

7 MgCl2, 18 dextrose, 1.7 L(+)-ascorbic acid. The slices were allowed to recover for 5 min in 

a home-made chamber at 35°C in cutting solution, before being transferred to a sucrose-free 

solution containing 126 mM NaCl instead and cation concentrations were altered to 2 mM 

CaCl2 and 4 mM MgCl2. After an additional 30 min, slices were incubated at room 

temperature for at least 1 h and then transferred individually into the recording chamber. 

 

Electrophysiological recordings 

Whole-cell recordings were obtained from visually identified neurons in the Vpm and 

Cln of the thalamus (Olympus BX50WI and BX51WI, Volketswil, Switzerland) at 33-35°C. 

The Vpm of the somatosensory thalamus was determined before pipette positioning using a 

10x objective, and was clearly recognizable based on its apposition to the ventroposterior 



Results 

 

100 

lateral nucleus, which has a striated appearance. Neurons in the Cln were identified as 

belonging to a band of longitudinally oriented cells running from dorsal to lateral between the 

habenula/midline thalamic nuclei and the posterior thalamic group, curving towards the 

central nucleus. Slices were not used when the cells could not be clearly delineated. Patch 

pipettes were pulled from borosilicate glass tubing (TW150F-4, OD 1.5 mm, WPI, Berlin, 

Germany) on a vertical two-step puller (PP-83, Narishige, Tokyo, Japan) and filled with the 

following solution (in mM): 130 KGluconate, 10 KCl, 10 HEPES, 2 MgCl2, 2 Na2ATP, 

0.2 NaGTP, 10 phosphocreatine, adjusted to 290 mOsm with sucrose, pH 7.25. GTP was 

freshly added daily from stocks (100-fold concentrated). The resistance of the electrodes was 

2.5-4 MΩ and yielded series resistances in the range between 8-20 MΩ. If series resistance 

changed by more than 20%, the experiment was discarded. A liquid junction potential of 

10 mV measured as described (Neher, 1992) was taken into account for all data. The bath was 

constantly perfused with fresh medium at a rate of 3 ml min-1 throughout the recording and 

contained (in mM): 126 NaCl; 2.5 KCl; 1.25 NaH2PO4; 2 MgCl2; 2 CaCl2; 26 NaHCO3, 

18 dextrose, 1.7 L(+)-ascorbic acid. Data from voltage- and current-clamp recordings were 

collected through an Axopatch 200B amplifier (Molecular Devices), filtered at 2 kHz and 

acquired at 5 kHz using pClamp 9.2 software. 

Discharge properties of thalamic neurons were investigated in the current-clamp mode 

by applying increasing negative or positive current steps (-500 to +500 pA) lasting 70 ms for 

negative and 600 ms for positive current steps. The membrane potential was held at -60 mV 

prior to current injection. Action potential discharge frequencies were measured in the time 

from 300 to 500 ms after the onset of the positive current step. 

HCN-currents were activated in the voltage-clamp mode by applying 2.5 s 

hyperpolarizing voltage commands from a holding potential of -60 mV at an interstimulus 

interval of 12 s. Amplitudes were determined by measuring the steady-state current and 

subtracting from the instantaneous current at the onset of the voltage step (see Fig 2B). HCN-

currents were nornalized to the average of the 5 current amplitudes before application of the 

drug. Activation curves were determined by applying 10 mV increasing hyperpolarizing 

voltage steps, tail currents were measured at a potential of -75 mV and normalized with 

respect to the maximal tail current amplitude. The analysis program Igor v. 4.0.8 was used for 

fitting Boltzmann equations with I/Imax= (1 + exp [(V−Vhalf)/s])−1 to determine the half-

maximal activation voltage (Vhalf) and s the slope factor (s). Isoprenaline (Iso) dose-response 

curve was fit with the Hill-Equation I/Imax = [1 + (c/c0)p]-1 with I/Imax representing the 

normalized HCN-current increase, c the concentration of Iso and p for the rate. 
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Monoexponential decay time constants (τdecay) were obtained by using the Chebychev routine 

in ClampFit to approximate voltage or current response from their peak (Ca2+ spike, HCN-

current desensitization, respectively) to baseline.  

8-Bromo-cAMP (8Br-cAMP) was applied via the patch-pipette and a time of ~3-5 min 

was sufficient to perfuse the cells and record stable effects on the current. All other drugs 

were applied through the bath (Iso, 3-isobutyl-1-methyl-xanthine (IBMX), ICI118,551, 

atenolol, salbutamol, xamoterol). For blockade of proteinkinase A (PKA), slices were 

incubated with the inhibitor (H-89, KT5720) for at least 2 hours prior to recordings. 

Experiments with blocked ß-ARs were performed by adding propranolol in all solutions used 

to cut, prepare and store slices. 

Data are presented as mean ± S.E.M. Paired or unpaired t-test as appropriate were used 

for statistical analysis and value of p < 0.05 was considered statistically significant. 

 

 Results 

 Distinct electrophysiological properties of Vpm and Cn neurons 

To study the β-adrenergic regulation of HCN-currents, whole-cell current-clamp and 

voltage-clamp recordings were obtained from visually identified neurons in the Vpm and Cln 

of the thalamus. Resting membrane potentials were similar in both thalamic nuclei 

(-74.4 ± 1.5 mV in Cln, n = 16 and -74.0 ± 1.1 mV in Vpm, n = 23; p > 0.5), but the Cln 

neurons showed a higher input resistance (317 ± 25 MΩ in Cln, n = 16 and 202 ± 17 MΩ in 

the Vpm, n = 25, p < 0.005). To further distinguish the neurons in the Cln and Vpm, we 

investigated neuronal discharge properties by applying incremental depolarizing and 

hyperpolarizing current steps from a holding potential of -60 ± 2 mV. Upon 

hyperpolarization, both thalamic neuronal types showed the typical rebound low-threshold 

Ca2+ spikes crowned by 2 to 5 action potentials (Brunton and Charpak, 1998; Bayer et al., 

2002; Goaillard and Vincent, 2002; Sherman and Guillery, 2005; Govindaiah and Cox, 2006). 

The Ca2+ spike appeared with a delay after the offset of the hyperpolarizing step (Fig. 1A). On 

average, the delay from the offset of the hyperpolarizing current pulse to the peak of the Ca2+ 

spike lasted 112 ± 13 ms in the Cln (n = 8) and 53 ± 8 ms in the Vpm (n = 9; p < 0.005; 

Fig. 1B) after current injections of -500 pA. Moreover, once activated, the low-threshold 

bursts decayed with a time constant of 57 ± 12 ms in the Cln (n = 5) and 28 ± 2 ms in the 

Vpm (n = 7, p < 0.05). 

When depolarized, neurons displayed tonic action potential discharges. Neurons in Cln 
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showed a more pronounced increase in action potential discharge frequency with increasing 

depolarizing current injections (100, 150, 200 and 300 pA; Fig. 1C,D), pointing to a greater 

excitability in the Cln than in the Vpm. After a 200 pA positive current injection for 70 ms, 

Cln cells fired action potentials with a mean frequency of 39 ± 8 Hz (n = 8), while Vpm 

neurons were significantly less excitable, firing action potentials with a frequency of 8 ± 4 Hz 

(n = 11, p < 0.005). However, the discharge frequency eventually leveled off for both Cln and 

Vpm neurons around 70-80 Hz (for 500 pA: 80 ± 4 Hz in Cln, n = 6 and 72 ± 15 Hz in Vpm, 

n = 8, p > 0.05). Altogether, these data indicate that Cln neurons show a greater 

responsiveness to depolarizing stimuli, but are more resistant to burst generation, and, in part, 

seem to lack the intrinsic conductances, such as the sag potential, that facilitate bursts. 

 

 

Figure 1. Vpm and Cln neurons show distinct discharge properties. A, Representative current-clamp 

recordings show the typical rebound burst response of a Cln (left) and a Vpm (right) cell to a -500 pA current 

injection for 70 ms. The current injection protocol is shown below the traces, membrane potential was set to 

-60 ± 2 mV before applying the protocol. Note the pronounced ‘sag’ potential (arrow) in Vpm cells. 

B, Histogram showing the averaged delay to the peak of the Ca2+ spike, measured from the offset of the 

hyperpolarizing current pulse (500 pA) for Cln (n = 8) and Vpm (n = 9) cells. C, Positive current injection 

provoking tonic action potential discharge in the two cell types. The protocol is shown below, a 200 pA 

depolarizing step was applied for 70 ms in both, from a holding potential of -60 ± 2 mV. D, Firing rate vs. 

current injection curve ('f-I curve') for Cln (n = 8, black squares) and Vpm neurons (n = 11, white circles) 

obtained from recordings as presented in C. *denotes p < 0.05 in B,D 

 

 HCN-currents in Vpm and Cln neurons 

We next used voltage-clamp recordings to carry out a comparative analysis of the 

properties and the cAMP regulation of HCN-currents in Vpm and Cln cells. Previous reports 
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found a predominance of the highly cAMP sensitive HCN2 and HCN4 subunits in both 

nuclei, albeit at weaker levels for Cln (Notomi and Shigemoto, 2004). Consistent with this 

observation, membrane hyperpolarization (-30 mV negative voltage-step, holding potential 

-60 mV), yielded smaller current amplitudes in the Cln (-85.3 ± 6.3 pA, n = 16, Fig. 2A) than 

in the Vpm (-390.3 ± 37.0 pA, n = 25; p < 0.005, Fig. 2B). Significantly smaller current 

amplitudes in the Cln were found throughout the whole activation-range (Fig. 2C). 

 

 

Figure 2. HCN channels generate smaller current amplitudes in Cln cells. A, B, Representative current 

responses to a hyperpolarizing voltage step in Cln (A) and Vpm (B). Voltage clamp protocol is shown below the 

traces. Dotted lines indicate Ih amplitude, measured at steady-state, the instantaneous current amplitude at the 

onset of the voltage step was subtracted C, The full current-voltage-relationship for Ih amplitudes in Cln (n = 6, 

black) and Vpm (n = 11, white). Here, the hyperpolarizing voltage steps were applied for a duration of 8 s to 

guaranty full steady-state Ih activation. *denotes p < 0.05. 

 

 cAMP sensitivity of HCN-currents 

The cAMP sensitivity of HCN-currents in the two thalamic nuclei were assessed using 

two well-established procedures (see e.g. (Kuisle et al., 2006)). First, we determined the 

activation curve with and without 8Br-cAMP (10 µM) in the patch-pipette (Fig. 3A,B). Tail 

current analysis revealed a positive shift of the half-maximal activation voltage (Vhalf) in both 

thalamic nuclei Cln (control Vhalf = -91.0 ± 2.9 mV, n = 6; 8Br-cAMP Vhalf = -71.3 ± 2.4 mV, 

n = 5, p < 0.05, Fig. 3A,C) and Vpm (Vhalf = - 82.4 ± 0.9 mV, n = 10 and 

Vhalf = -73.3 ± 0.9 mV, n = 6, p < 0.05, Fig. 3B,D). This shift in the voltage dependence 

reflects a strong modulation of thalamic Ih by exogenous cAMP, consistent with previous 

descriptions (Lüthi and McCormick, 1999b). Slope values were similar in Vpm and Cln 

(control Vpm 7.9 ± 0.4 mV and Cln 9.3 ± 0.7 mV p > 0.05; 8Br-cAMP Vpm 6.7 ± 0.3 mV 

and Cln 7.1 ± 0.5 mV p > 0.05). Second, we increased endogenous cAMP levels with the 

phosphodiesterase-inhibitor IBMX (100 µM). Bath-application of this compound augmented 

HCN-current amplitudes at -90 mV to 130.1 ± 6.6% of control in Cln (n = 7, Fig. 4A,B) and to 
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124.6 ± 4.5% of control in Vpm cells (n = 12, Fig. 4C,D). 

Taken together, these results demonstrate that, in both thalamic nuclei, HCN-currents 

were expressed and highly sensitive to cAMP, which renders them well-suited to compare 

modulation of the currents by GPCRs, like the β-ARs.  

 

 

Figure 3. HCN channels show comparable cAMP sensitivity in Cln and Vpm. A ,B, Representative current 

responses of a Cln (A) and a Vpm (B) cell to increasing hyperpolarizing voltage steps as indicated at the end of 

each response, in control (left) and with 8Br-cAMP (10 µM, right) in the patch-pipette. C, D, Activation curves 

of representative cells, constructed from tail current analysis and normalized to the maximal current under 

control conditions. A positive shift of Vhalf was observed after application of 8Br-cAMP (10 µM, open circles) in 

both Cln (C) and Vpm (D). 

 

Figure 4. Pacemaker currents in Vpm and Cln neurons are upregulated by endogenously increased cAMP 

levels. A, Representative voltage-clamp recordings showing an increased HCN current amplitude at -90 mV in 

response to bath-application of the phosphodiesterase inhibitor IBMX (100 µM) in a Cln neuron. B, Average 

time course of normalized HCN-current amplitude during IBMX application in the Cln (n = 7). 

C, D, Corresponding data for the Vpm (n = 12). 
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 β-adrenergic modulation of HCN-currents in Vpm and Cln 

 

 

Figure 5. Stimulation of ß-adrenergic receptors in Vpm and Cln. A, Representative recordings during 

prolonged Iso application (5 µM) in the Vpm. Time points for which recordings are presented are shown above 

the traces. Currents were evoked with a 2.5 s lasting hyperpolarizing voltage-step as indicated below the first 

current trace. Dotted line denotes level of steady-state current amplitude before Iso application. B, Averaged 

time course of HCN-current upregulation and desensitization for Iso 0.25 µM (white circles), 0.5 µM (grey 

triangles) and 5 µM (black squares)(n = 8-9 for each). Iso produced a dose-dependent increase of the current 

amplitude with a maximal potentiation of 45 ± 6.7% after 1 min. Complete desensitization occurred at all 

concentrations without significant differences in time course (p < 0.05 to peak after 4 min for all concentrations). 

C, Dose-response curve for HCN-current increase after application of Iso measured at the peak of its effect 

(dotted line). Normalized current increases were fitted with the HILL-equation (thick line), yielding a regression 

coefficient of 1.5. D, A representative voltage-clamp recording of a Cln celI shows no change in the HCN-

current amplitude at -90 mV with bath-application of Iso (5 µM). E, Histogram comparing the average increase 

of Ih amplitude after 1 min of Iso (5 µM) in neurons of the Cln (filled bar, n = 7) and the Vpm (open bar, n = 8, 

p < 0.05). 
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In agreement with previous reports (McCormick and Pape, 1990a; Pedarzani and Storm, 

1995; Saitow and Konishi, 2000; Frère and Lüthi, 2004), bath-application of the non-selective 

β-adrenergic-agonist Iso (5 µM) induced an enhancement of Ih at -90 mV to 145.4 ± 6.7% of 

control in Vpm cells (n = 8; Fig. 5A,B). The increase in current amplitude reached a 

maximum after 1 min of application, but prolonged application of the agonist led to a 

desensitization of this potentation that occurred at all concentrations without significant 

differences in time course (τdecay = 2.4 ± 0.6 min for 0.25 µM, τdecay = 3.9 ± 0.7 min for 

0.5 µM, τdecay = 4.3 ± 1.3 min for 5 µM; p > 0.05). The HCN-current enhancement, measured 

at the peak of responses, showed a dose-dependence with an EC50 of 0.44 ± 0.02 µM 

(Fig. 5B,C). 

In striking contrast to HCN-currents in first-order thalamic neurons, in the Cln HCN-

currents did not show a significant increase in their amplitude upon bath application of Iso 

(5 µM). When measured at -90 mV, close to the half-maximal activation, current responses 

remained unaltered compared to control amplitude (110.5 ± 8.1%, n = 7, p > 0.05, Fig. 5D). 

Furthermore, Iso did not affect the holding current at -60 mV (18.7 ± 11.8 pA before and 

17.3 ± 14.6 pA after 1 min Iso application, p > 0.5), and the input resistance (316 ± 43 MΩ 

before and 288 ± 40 MΩ after 1 min Iso application, p > 0.05, data not shown). These data 

strongly suggest that β-AR activation has minor functional consequences on currents active 

within the resting membrane voltage range in Cln neurons, in particular HCN-current. 

To test how the different effects of Iso on HCN-currents correlated with the differential 

expression pattern of β-AR subtypes in the Cln and Vpm, we further investigated the 

modulation of Ih by applying selective β1- and β2-adrenergic agonists. Indeed, in the Vpm, 

where mainly β1-ARs are expressed, selective activation of these receptors using 

pharmacological strategies previously shown in studies using acute preparations (Skeberdis et 

al., 1997; Viard et al., 2001; Karle et al., 2002; Cesetti et al., 2003), induced current changes 

similar to those observed with Iso. First, bath-application of Iso (5 µM) in the continuous 

presence of the selective β2-antagonist ICI118,551 (0.1 µM) increased HCN-current 

amplitudes at -90 mV to 136.2 ± 10.4% (n = 10, p < 0.01 to control amplitude, Fig. 6A). 

Second, wash-in of the selective β1−agonist xamoterol (10 µM) augmented HCN-current 

amplitudes to 120.6 ± 6.3% (n = 7; p < 0.05 to control amplitude, data not shown). 

Conversely, selective stimulation of β2-ARs with salbutamol (80 µM) did not affect current 

amplitudes in the Vpm (105.1 ± 2.4%, n = 9, p > 0.05 to control amplitude; Fig. 6B). 

Therefore, the strong β-adrenergic modulation of HCN-currents in the Vpm seemed to be 

mediated predominantly, if not exclusively, by β1−ARs. Furthermore, we could not observe a 
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modulation of HCN-currents upon bath-application of salbutamol in the Cln (100.6 ± 4.7%, 

n = 5, p > 0.05; Fig. 6D). These data reveal a lack of Ih modulion by ß-ARs in the Cln. 

 

 

Figure 6. The ß-adrenergic response is mediated by ß1-ARs, while ß2-ARs show no coupling, neither in 

Vpm nor in Cln. A, Time course of averaged HCN current responses to Iso (5 µM) in the continuous presence 

of the ß2-adrenergic antagonist ICI118,551 (0.1 µM, n = 10, p > 0.05 for Iso with/without ICI118,551 after 1, 4 

and 8 min) in the Vpm. B, Averaged current responses during application of the selective ß2-receptor agonist 

salbutamol (80µM) in the presence of the ß1-antagonist atenolol (10 µM, n = 9, p > 0.05) in the Vpm. 

C, D, Time course of averaged HCN-current responses in the Cln. Neither Iso application (C, n = 7) nor selective 

ß2-AR activation (D, n = 5) affected HCN-current amplitudes (p > 0.05). For A-D, insets show an overlay of Ih 

activated during a voltage step from −60 to −90 mV in control (black) and after 1 min application of the 

ß-adrenergic agonist (grey), respectively. 

 

 Mechanisms underlying the lack of β-adrenergic modulation of HCN-currents in 

the Cln 

The lack of HCN-current regulation by ß2-AR activation could be caused for a number 

of reasons. First, β2-ARs, in spite of increasing cAMP levels, may simply not couple to HCN 

channels. In support of this possibility, a selective coupling of these receptor subtypes to ion 

channels in native cells has been described previously (Davare et al., 2001; Balijepalli et al., 

2006). Second, β2-ARs may not form functional receptors at Cln neuronal membranes, but 

could be internalized in endocytic compartments. However, a quantitative autoradiography 

with selective antagonists for labeled ß-ARs suggests membrane-bound ß2-ARs in the Cln 
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(Rainbow et al., 1984). Third, β2-ARs may be functionally present, but could be in a 

desensitized state, as has been described previously (for review see (Kohout and Lefkowitz, 

2003; Lefkowitz and Whalen, 2004)). Pronounced desensitization has been described in detail 

for ß2-ARs. 

In a first step, we aimed at testing a possible receptor desensitization by adding the non-

selective ß-adrenergic antagonist propranolol (10 µM) in all solutions used for preparing and 

storing slices. Before preparing brain slices, animals may be in a highly aroused state due to 

the exposure to novel environments (e.g. anesthesia chamber), which could lead to 

noradrenaline release in the brain (Berridge and Waterhouse, 2003). During brain slicing, 

mechanical stress of the tissue may also stimulate release from severed nerve endings. We 

reasoned that by adding propranolol during slicing, we would prevent β−AR activation at all 

stages from brain isolation throughout cutting and storing slices and hence minimize 

desensitization. Furthermore, this treatment should allow for resensitization of internalized 

ß-ARs (Yu et al., 1993; Gardner et al., 2006). Propranolol was washed-out in the recording 

chamber for at least 15 min prior to recordings (Bennett et al., 1998). Under these conditions, 

bath-application of Iso (5 µM) evoked HCN-current increases that were similar to those found 

without propranolol incubation. HCN-currents increased up to 120.3 ± 6.1% in Vpm cells 

(n = 5, p < 0.05 to control amplitude, p > 0.05 for max. increase with/without propranolol 

incubation, Fig. 7A), confirming full wash-out of propranolol and recovery of β1-AR 

function. However, propranolol treatment failed to unravel an Iso effect on Ih in Cln neurons 

(106.0 ± 5.2%, n = 4, p > 0.05; Fig. 7B). We conclude that receptor desensitization induced by 

excessive noradrenalin is unlikely to play a major role in the distinct effects of Iso on Vpm 

and Cln. 

 

 

Figure 7. Stimulation of ß-adrenergic receptors in Vpm and Cln is unaltered after incubation with 

propranolol. A, B, Time course of averaged responses to Iso (5 µM) after incubation with propranolol (10 µM) 

shows current increases similar to those induced without incubation. While in the Vpm Ih amplitudes increased 

significantly (n = 3, A), there was no change in the Cln (n = 4, B) 
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We explored additional strategies to potentate GPCR function. High temperatures are 

known to decrease the affinity of Iso to β-ARs and to promote the low affinity, desensitized 

state of the receptor (Weiland et al., 1979; Scarpace et al., 1986). Thus, we tested the 

temperature dependence of the β-adrenergic responses in thalamic cells. Notably, in Vpm 

cells, we found that the response of Ih to Iso was strongly increased when the recordings were 

performed at room temperature (RT, 25°C) instead of at 35°C. At RT, a low concentration of 

Iso (250 nM) augmented Ih amplitudes at -90 mV to 157 ± 7.9 % of control (n = 7), which is a 

more than 4-fold enhancement compared to physiological temperature (113.9 ± 4.2 % of 

control, n = 9, p < 0.05; Fig. 8A). Additionally, at RT, current responses showed only a minor 

desensitization, but increases persisted as long as Iso was present. Under these conditions, we 

HCN-current modulation by Iso (5 µM) was clearly present in neurons of the Cln. Ih 

amplitudes at -90 mV were increased up to 121.8 ± 4.6% (n = 5, p < 0.05 to control 

amplitude, Fig. 8B), in contrast to the recordings at 35°C (see Fig. 4D,E). However, contrary 

to our expectation, this effect of Iso could not be mimicked by stimulation of ß2-ARs with 

salbutamol (80 µM), which did not affect HCN-currents (96.1 ± 4.4 %, n = 5, p > 0.05 to 

control; Fig. 8D). Instead, in the continuous presence of the β2-antagonist ICI 118,551, Iso 

induced current responses similar to those without this antagonist (120.9 ± 7.4%, n = 3, 

p > 0.05 with/without ß2-antagonist; Fig. 8C). Accordingly, the stimulation of ß1-ARs could 

increase Ih-amplitudes under low temperature conditions, which is characterized by the 

prominent lack of a slow form of receptor desensitization. These data show that temperature-

dependent receptor desenstitization is prominent in our brain slices. Moreover, they establish 

ß1-ARs as the primary ß-AR subtype targeting HCN-currents in thalamic cells. 
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Figure 8. Stimulation of ß-adrenergic receptors in Vpm and Cln potentates HCN-currents at room 

temperature. A, Time course of averaged responses to a low concentration of Iso (250 nM) in the Vpm shows 

more pronounced HCN-current increases when recordings were performed at lower temperature (n = 7, white 

circles) in comparison to 35°C (n = 9, black squares B, In the Cln, HCN current increased after application of Iso 

(5 µM) at room temperature (n = 5). C, D, Selective ß1-AR stimulation with Iso in the presence of the ß2-

antagonist ICI118,551 (100 µM) showed similar responses than Iso alone (n = 3, C), while selective ß2-AR 

activation with salbutamol (80 µM) did not change Ih amplitude (n = 5, D). 

 

 Further description of the β-adrenergic modulation of HCN currents and its 

desensitization in the Vpm 

Desensitization of β1-AR has not been described in the thalamus before. We reasoned 

that a prerequisite for further understanding the distinct functional roles of β-ARs in thalamic 

nuclei was to understand the cellular mechanisms underlying slow desensitization. Since 

HCN-current potentation desensitizes with Iso, but not with IBMX (see Fig. 4D), 

desensitization must occur upstream of the cAMP-HCN channel interaction. This conclusion 

was further supported by the observation that a second application of Iso after a 10-min 

exposure within 10-25 min did not increase HCN-current amplitudes (98.3 ± 1.9%, n = 8, 

p > 0.05 to control amplitudes, data not shown), whereas the effects of IBMX were 

independent of prior Iso treatment (117.7 ± 4.3%, n=6, p > 0.05 before/after Iso application, 

data not shown). This indicates that recovery of Iso desensitization takes tens of minutes to 

start.  
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The selective degradation of cAMP seems to play a pivotal role in controlling not only 

precisely localized but also exactly timed cAMP signaling (for review see (Houslay and 

Adams, 2003; Baillie and Houslay, 2005). Therefore, we investigated the role of PDEs in β1-

adrenergic desensitization by applying Iso (0.5 µM) in the continuous presence of the PDE-

inhibitor IBMX (100 µM). Blocking PDEs completely prevented desensitization, and Ih 

amplitude still remained elevated to 136.4 ± 5.8% after 4 min of Iso application (n = 15, 

p > 0.05 to peak, Fig. 9A,B). To verify that this effect was really mediated by PDEs we 

applied Iso (5 µM) in the continuous presence of a low concentration (0.1 µM) of 8Br-cAMP. 

In this manner we rule out that increased cAMP levels (after blockade of its degradation with 

IBMX) per se interfere with desensitization. HCN-current increases were smaller than without 

8Br-cAMP (105.2 ± 1.7%, n=10, p<0.05 to control amplitude, Fig. 9C,D) probably due to 

saturating effects. However, we saw a clear desensitization of the answer (98.3 ± 2.7% after 

4 min Iso application, n = 7, p > 0.5 to control amplitude, τdecay = 4 min, Fig. 9C,D), similar to 

responses without 8Br-cAMP (p > 0.05). Thus, we demonstrated a desensitization occurring 

independent of increased cAMP levels and depending on PDE activity that was likely 

recruited when receptor stimulation was initiated. 

Short term regulation of PDE4, a PDE subtype recruited during ß-AR desensitization, is 

known to involve proteinkinase A (PKA)-dependent phosphorylation (for review see 

(Houslay and Adams, 2003). Thus, we tested the role of PKA in ß1-AR desensitization in the 

Vpm. Slices were incubated with the PKA-inhibitor H-89 (1 µM), which was shown 

previously to attenuate PKA activation effectively (Lüthi and McCormick, 1999b). Contrary 

to our expectations, desensitization was not prevented in these experiments. The HCN-current 

increases after 1 min of Iso-application were rather diminished when PKA was inhibited 

(120.6 ± 4.7%, n= 11, p < 0.05 to control amplitude, Fig. 9E,F), but declined to control values 

after 4 min (107.4 ± 3.9%, n = 11, p > 0.05 to control amplitude) with a τdecay of 3 min, similar 

to that without PKA-inhibition (p > 0.05). Comparable results were obtained when slices were 

incubated with another PKA-inhibitor KT5720 (1 µM). Ih-increased to 118.1 ± 9.6% after 

1 min Iso application (n = 6) and desensitized back to 96.5 ± 11.6% after 4 min (data not 

shown). 
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Figure 9. Desensitization of the ß-adrenergic receptors in the Vpm is dependent on the recruitment of 

phosphodiesterases and independent of PKA. A, Representative current recordings of Ih activated with a 

voltage step from -60 mV to -90 mV. Application of Iso (0.5 µM) in the continuous presence of IBMX 

(100 µM), showing a HCN-current increase that persisted as long as the drug was present. Current traces 

represent conditions before, during short (1 min), during prolonged (6 min) and after Iso application. B, Time 

course of averaged data shows that the presence of IBMX prevented ß-adrenergic desensitization (p > 0.05 to 
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peak after 8 min). C, D, Representative recordings (C) and average time course (n = 10, D) of current responses 

after Iso (0.5 µM) application in the presence of a low concentration of 8Br-cAMP (0.1 µM) in the patch-pipette. 

E, F, Desensitization did not depend on PKA, as it was still apparent when PKA was inhibited after incubation 

with H89. Representative recordings in E, and average time course in F, n = 11. G, H, PKA inhibition changed Ih 

responses upon IBMX application (100 µM). Current increases were significantly smaller and not persistent as 

long as IBMX was present. Representative recordings in G, and average time course in H (n = 10). 

 

Although incubation of slices with PKA-inhibitors is widely used (Pedarzani and Storm, 

1995; Lüthi and McCormick, 1999b; Mellor et al., 2002), we wanted to exclude that we did 

not induce other basic changes in the recorded cells. HCN-current amplitudes were unchanged 

after slice incubation with H-89 (-390 ± 37 pA in control, n = 25, -459 ± 41 pA with H-89, 

n = 17, p > 0.05; data not shown). Also the cAMP sensitivity was preserved as we tested by 

flash-photolytic release of caged cAMP (HCN-current increase to 119.2 ± 0.6% in control, n 

= 8, 121.7 ± 4.2% in H-89, n = 10; p > 0.05; data not shown). HCN-current responses to 

IBMX application were significantly reduced with H-89 PKA-inhibition. Ih increased only to 

110.3 ± 3.1% (n = 10, Fig. 9G,H) on its maximum after 2 min, significantly less than without 

H-89 (121.6 ± 3.3%, n = 10, p < 0.05; Fig. 4D), proving the efficacy of PKA-inhibition.  



Results 

 

114 

 Discussion 

Using in vitro electrophysiological recording techniques, we describe β-AR modulation 

of HCN channels in first-order and intralaminar thalamic nuclei. The main result of this work 

revealed a non-uniform HCN channel regulation in the thalamus. In the Vpm, a first-order 

thalamic nucleus, a strong coupling of HCN channels was mediated by β1-ARs that 

desensitized within minutes. This desensitization occurred independently of PKA activity, but 

seemed to involve the recruitment of PDEs. In contrast, in the Cln, an intralaminar thalamic 

nucleus stimulation of β-ARs did not change HCN-current amplitudes.  

Overall, these findings indicate that the functional subdivision of the thalamus is 

accompanied by a subdivision with respect to one of the most important ascending arousal 

system. As such, our work could have implications for the role of different thalamic nuclei in 

the control of sleep and attentive states. 

 

 Firing properties and HCN-currents 

Firing properties of thalamic neurons in Cln and Vpm were similar to those reported 

elsewhere, in particular the capability to discharge in both tonic and burst firing modes (for 

Cln see (Brunton and Charpak, 1998; Bayer et al., 2002; Goaillard and Vincent, 2002; 

Govindaiah and Cox, 2006), for Vpm see (Sherman and Guillery, 2005)). Neurons of the Cln 

showed a greater action potential discharge frequency to depolarizing stimuli compared to 

Vpm neurons, but a delayed rebound excitation after hyperpolarization. Although neuronal 

discharge properties are typically determined by a combination of intrinsic properties and 

geometric characteristics, the differences between Cln and Vpm excitability can be most 

parsimoniously explained by the different Ih amplitudes. HCN channels give rise to a 

depolarizing current upon hyperpolarization that can be seen as the so called “sag” in the 

current-clamp protocol. This current depolarizes a cell back to potentials necessary to activate 

low-threshold Ca2+ channels generating a rebound Ca2+ spike (Robinson and Siegelbaum, 

2003). Reduced Ih, and a concomitant weakening of this depolarizing influence, could thus 

explain the delayed rebound excitation after hyperpolarization. 

Recently, the contribution of Ih to the resting membrane potential of first-order 

thalamocortical neurons was determined (Ludwig et al., 2003; Meuth et al., 2006). By closing 

upon depolarization, thus reducing a tonic inward current, HCN channels could 

counterbalance excitation analogous to what is described for temporal integration of synaptic 
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input in the hippocampus (Magee, 1998). In this manner, the larger Ih amplitudes in first-order 

thalamic neurons could dampen excitable inputs, explaining reduced tonic action potential 

firing frequency in these neurons. 

 

 Molecular expression patterns of HCN subunits  

HCN channels are composed of four different subunits HCN1 to 4. The 

immunohistochemical localization study by (Notomi and Shigemoto, 2004) shows mainly 

HCN2 and HCN4 subunits in both Vpm and Cln. However, absolute expression levels are 

weaker in the Cln than in the Vpm (Notomi and Shigemoto, 2004). The different magnitudes 

of Ih amplitudes are in good agreement with this molecular expression pattern of HCN 

channel subunits, suggesting a proportionality between available protein and functional 

current. This correlation between molecular and functional expression patterns is in line with 

repeated observations that protein and current levels show a strong correlation in the HCN 

channel family (see e.g. (Santoro et al., 2000)). Furthermore, the similar cAMP sensitivity of 

HCN channels in the two distinct parts of the thalamus is also consistent with the HCN 

channel expression pattern. HCN2 and HCN4 subunits are known to be the most cAMP 

sensitive isoforms (for review, see (Frère et al., 2004). Thus, the predominance of these two 

isoforms, although to a weaker extend in the Cln, explains the high sensitivity to cAMP in 

both parts of the thalamus. 

 

 Coupling of ß-adrenergic receptors to HCN channels in first-order nuclei 

A principal property of thalamic neurons is to show dual action potential discharge 

modes. Depending on their membrane potential, these neurons fire in rhythmic burst 

discharges or, with depolarization, display tonic single spike activity (for review, see 

(McCormick and Bal, 1997). During sleep, thalamocortical neurons are hyperpolarized and 

the main discharge pattern consists in action potential bursting. Conversely, during waking or 

rapid-eye-movement sleep (REM sleep), the membrane potential is depolarized, supporting 

the tonic firing mode (Hirsch et al., 1983). Thus thalamic activity is correlated with the 

arousal state. Interestingly, the maintenance of arousal is in turn connected to increased 

activity of ascending brainstem fibers, in particular of the locus coeruleus (Aston-Jones and 

Bloom, 1981). The release of neurotransmitters from the brainstem terminals can modulate 

the firing properties. Amongst other neurotransmitters (acetylcholine, serotonin), noradrenalin 

plays a pivotal role in setting the resting membrane potentials in thalamocortical neurons. One 
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important action is the activation of ß-ARs, via which cAMP is produced and the activation 

range of HCN channels is shifted to more positive potentials. Upregulated Ih produces a 

greater standing current around resting membrane potentials and induces a depolarization of 

thalamic first-order neurons (McCormick and Pape, 1990a). We now show that this effect is 

mediated by the ß1-AR subtype. Selective β1-AR activation produced similar responses than 

Iso, while the β2-AR agonist salbutamol failed to modulate HCN-currents. This finding is in 

agreement with expression studies showing a predominantly ß1-AR expression in the Vpm 

(Rainbow et al., 1984; Nicholas et al., 1993). Notably, a recent in vivo-electrophysiological 

study investigated the possible mechanism of ß-blockers in migraine. Only ß1-, not ß2-AR 

antagonists could inhibit activity in the Vpm in response to stimulation of the superior sagittal 

sinus, a known pain-producing structure. The authors suggest the inhibitory action of ß1-

blockers could be mediated by reduced HCN-currents (Shields and Goadsby, 2005). Thus, it 

would be interesting to examine whether also HCN cannel antagonists could be possible 

candidates in therapy of migraine. 

 

 Coupling of ß-adrenergic receptors to HCN channels in intralaminar nuclei 

Intralaminar thalamic nuclei that are considered to be important for general arousal 

function also receive noradrenergic input (Krout et al., 2002). The ß-adrenergic subtype 

expression pattern in the Cln is different than in the Vpm, showing mainly ß2-ARs (Rainbow 

et al., 1984; Nicholas et al., 1993) that are known to tightly regulate ion channels (Davare et 

al., 2001; Lavine et al., 2002; Jurevicius et al., 2003). However, so far little is known about 

neurotransmitter mediated regulation of ionic currents by these receptors in thalamic neurons. 

Surprisingly, the non-specific ß-adrenergic agonist Iso did not change Ih amplitudes when 

experiments were performed at physiological temperatures, nor could we observe any 

coupling of HCN channels to ß2-ARs in the Cln. Currently, there are multiple explanations 

for this result, and further experimental tests are required to distinguish between these. 

a) ß2-ARs are known to be not only coupled to stimulatory Gs-proteins, but also to 

PTX-sensitive inhibitory Gi–proteins (Daaka et al., 1997). This uncoupling of β2-ARs from 

Gs- to Gi-proteins could prevent HCN channel activation. A recent study in cardiac ventricular 

myocytes has shown that specific ß1-AR stimulation causes a larger positive shift of the Ih 

activation curve than specific activation of ß2-ARs. Although this difference could be 

attenuated by incubation with PTX, ß2-AR stimulation never reached the amplitude of ß1-AR 

activation (Cerbai et al., 1999a). Thus it is tempting to speculate that the increase in average 



Results 

 

117

cAMP levels produced by ß2-AR stimulation is smaller than that of ß1-AR stimulation.  

b) A decreased average cAMP synthesis could be consistent with a greater subcellular 

localization of cAMP signals produced by ß2-ARs. Indeed, in PTX-treated cardiac myocytes 

a ß2-adrenergic effect on L-type Ca2+ channels could be eliminated by disruption of caveolar 

lipid rafts (Balijepalli et al., 2006). Also HCN4 channels were shown to be localized in lipid 

rafts (Barbuti et al., 2004). In cardiac sinoatrial myocytes a specific ß2-adrenergic effect on 

HCN channels was lost by causing a disorganization of lipid rafts (Barbuti et al., 2007). Not 

only in the heart, but also in the brain a tight co-localization of ß2-ARs and ion channels was 

demonstrated. A macromolecular complex localized to dendritic spines of CA1 pyramidal 

neurons was described recently, which provides a direct functional coupling between ß-ARs 

and L-type Ca2+ channels (Davare et al., 2001). Selective activation of ß2-ARs resulted in a 

preferential enhancement of spinuous compared to dendritic Ca2+ transients (Hoogland 2004). 

The distinct localization of ß2-ARs with respect to HCN channels could prevent an effective 

functional coupling of receptor to channel. This would mean that ß2-ARs activate membrane 

delimited pathways, in contrast to ß1-AR stimulation, which is diffusive and involves more 

distal effectors. 

Interestingly, also activation of other GPCRs, such as orexinergic-receptors failed to 

alter Ih in the Cln (Govindaiah and Cox, 2006). This further emphasizes a tight regulation of 

receptor- and ion channel activation in neurons, but still leaves the question about role and 

function of modulation of HCN channels in intralaminar thalamic nuclei. 

c) Given ample evidence for β2-AR desensitiziation, we made every attempt to reduce 

ß2-AR desensitization during our experimental procedure. This could arise from increased 

release of noradrenalin due to arousal and stress before cutting, or due to constitutive release 

of noradrenalin during the incubation period. Therefore, we cut and incubated the slices with 

solutions supplemented with the ß-AR antagonist propranolol. However, contrary to our 

concerns, propranolol incubation for at least 1.5 hours did not apparently alter HCN-current 

responses to Iso-application, neither in the Vpm nor in the Cln. The incubation time should be 

sufficient for ß-AR resensitization, as the time course for resensitization was reported to be in 

the order of minutes (t1/2~3min for ß2-ARs in CHO (Yu et al., 1993), t1/2~15min for ß1-ARs 

in HEK293 (Gardner et al., 2006)). We conclude that already before cutting, HCN channels 

are largely uncoupled from putative ß2-AR signaling in the Cln.  

With these experiments, a number of additional events limiting β2-AR function cannot 

be avoided. Thus, we cannot rule out receptor down-regulation, as in the latter there is an 

actual decrease in the total cellular receptor number and resensitization cannot take place 
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within minutes. However, down-regulation is only apparent after prolonged (>1 hour) 

exposure to the agonist (Bohm et al., 1997) and thus is unlikely to be caused by our 

experimental procedure. There could be physiological receptor down-regulation, due to the 

prolonged noradrenergic input the thalamus receives during waking (Aston-Jones and Bloom, 

1981; Berridge and Waterhouse, 2003). Inhibition of this noradrenergic input (e.g. via 

prolonged application of ß-blockers to the living animal or via lesions in the noradrenergic 

system) could give an idea of receptor down-regulation in vivo.  

 

 Desensitization of ß1-ARs in first-order thalamic neurons 

In addition to G-protein coupling, activation of a GPCR by its ligand also initiates the 

process of desensitization, preventing potentially harmful effects that could result from 

persistent receptor activation. Locus coeruleus neurons fire tonically during waking (Aston-

Jones and Bloom, 1981). Thus, we wanted to verify, whether this sustained noradrenergic 

input would lead to desensitization of β-ARs in thalamocortical neurons. By applying 

ß-adrenergic agonists for prolonged periods of time (10 min) we followed the coupling of 

ß-ARs to HCN channels. In the Vpm, we found a desensitization mediated by ß1-ARs that 

occurred at all concentrations with a τdecay around 3 min. Interestingly the desensitization 

involved a temperature-dependent step, as it was not apparent when recordings were 

performed at lower temperatures. Additionally, HCN-current increases with Iso were much 

more pronounced under these conditions and made an enhancement of HCN-currents 

mediated by ß1-ARs possible also in the Cln. Thus, at the more physiological temperature of 

35°C a temperature-dependent step seemed to limit the ß1-adrenergic effect on HCN-currents 

in the Cln, at least to an extent that we cannot measure any increases in Ih amplitude. 

The mechanism of phosphorylation, desensitization and internalization of GPCR have 

been well described in heterologously expressed systems and in cardiac myocytes (for review, 

see (Kohout and Lefkowitz, 2003)). However, still little is known about the physiological 

conditions leading to desensitization in neurons. Thus, to further characterize the mechanism 

mediating the desensitization of these receptors in the Vpm, we first concentrated on the role 

of PDEs. PDEs are the sole means of degrading cAMP and play a pivotal role in shaping and 

controlling intracellular cAMP gradients ((Baillie et al., 2003; Jurevicius et al., 2003), for 

review, see (Houslay and Adams, 2003; Baillie and Houslay, 2005)). PDEs can be recruited to 

β-ARs by interaction with β-arrestins upon receptor activation (Perry et al., 2002), thus 

bringing the cAMP-degrading enzymes close to the point of cAMP production in an agonist-
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dependent manner (for review, see (Baillie and Houslay, 2005)). Consequently, the selective 

degradation of cAMP seems to play an important role in controlling not only precise localized 

but also exactly timed cAMP signaling (Houslay and Adams, 2003; Baillie and Houslay, 

2005). Indeed, we could prevent desensitization with the non-selective PDE-blocker IBMX in 

our experiments, indicating that desenstitization of ß1-ARs in first-order thalamic neurons 

involves the recruitment of PDEs. 

PKA is known to be implicated in PDE regulation (for review, see (Houslay and 

Adams, 2003). For example, in cardiac myocytes PKA activation of PDE negatively regulated 

cAMP increases triggered by ß-ARs (Rochais et al., 2004). Therefore, we investigated the 

role of PKA in ß1-adrenergic desensitization in the Vpm. The prolonged desensitized state of 

β1-ARs suggests an additional mechanism to increased PDE recruitment, especially because 

IBMX application before and after desensitization induced similar HCN-current responses. 

However, our experiments revealed a β-adrenergic desensitization independent of PKA-

activity that occurred still after inhibition of PKAs. Thus, PDEs do not necessarily need to be 

activated by PKA to induce desensitization, similar to what is described for β2-ARs mediated 

PDE recruitment in frog ventricular myocytes (Jurevicius et al., 2003).  

Moreover a recently described switch of Gs to Gi coupling mediated by PKA (Daaka et 

al., 1997; Martin et al., 2004) seems not to be the reason for β-AR desensitization in the Vpm. 

Also the so called heterologous or non-agonist–specific desensitization that is mediated by 

PKA and that was described besides the homologous desensitization mediated by G-protein 

receptor kinases (GRKs) (for review, see (Gainetdinov et al., 2004)) seems not to apply for 

the desensitization we observe here. Although PKA phosphorylation contributes to β1-AR 

desensitization described in heterologously systems (Rapacciuolo et al., 2003), it appears not 

to be involved in β1-adrenergic desensitization in the Vpm. 

Altogether, for the first time, we describe a desensitization of ß1-ARs in thalamocortical 

neurons in vitro, the time course of which can be followed by the coupling of ß-ARs to HCN 

channels in the Vpm. HCN channels were not modulated upon activation of ß2-ARs, neither 

in the Vpm, nor in the mainly ß2-ARs expressing cells of the Cln.  

 

 Functional implications of differential HCN channel regulation 

Although HCN channels showed similar cAMP sensitivity, strong ß-AR modulation 

appeared to be pronounced in portions of the thalamus involved in sensory relay, but may not 

be involved in general arousal functions. Interestingly, synaptically evoked bursts are 
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characteristic for the hyperpolarized state of thalamic first-order neurons during sleep 

(Weyand et al., 2001), but were observed during wakefulness as well in cells of the Cln 

(Glenn and Steriade, 1982). This suggests that the ascending neurotransmitter systems active 

during waking are modulating ion channels not sufficiently enough to depolarize the 

membrane potential to leave the burst firing mode in the Cln. In contrast to other thalamic 

regions, intralaminar nuclei are also innervated by additional arousal related regions, such as 

the hypothalamus, and a depolarizing action of wake-related hormone orexin was found only 

in this part of the thalamus (Govindaiah and Cox, 2006). Thus, a specific regulation of ion 

channels seems to provide a cellular mechanism to organize the activity of different thalamic 

nuclei in a manner that they can fulfill their specific function in the control of sleep and 

wakefulness.
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6 GENERAL DISCUSSION 

The results of my thesis have substantiated the sensitivity of neuronal networks and 

neurons to imbalances of pacemaker channel regulation. In this respect it could be shown that 

the pathogenesis of absence epilepsy, a disease characterized by abnormal neuronal activity, 

is accompanied by an altered modulation of HCN channels. In the thalamus of a rat model of 

absence epilepsy (GAERS), a decreased responsiveness to cAMP was associated with a 

changed expression pattern of HCN channel subunits. These deficits were, however, 

compensated by a mechanism that stabilized HCN channel function in the adult, epileptic 

animal. Thus, pacemaker channels seem to play a dual role in absence epilepsy: on the one 

hand abnormal HCN channel regulation is involved in epileptogenesis, while it on the other 

hand appears to trigger adaptive changes to restore HCN channel function in the thalamus.  

The second part of the thesis shows a cell-type specific pattern of cAMP dependent 

regulation of HCN channels. Throughout the thalamus, pacemaker channels were non-

uniform modulated by ß-adrenergic receptors (ß-ARs). A tight coupling of ß1-ARs in first-

order thalamic neurons was contrasted by a lack of ß2-AR modulation. ß2-ARs are highly 

expressed in intralaminar thalamic nuclei (Rainbow et al., 1984; Nicholas et al., 1993) where 

activation of ß-ARs did not modulate HCN-currents. This specific coupling of GPCRs to 

HCN channels suggests a compartmentalized and local cAMP signaling in thalamic neurons. 

Moreover, as the ß-ARs mediate the action of noradrenalin, the neurotransmitter of one of the 

most important ascending arousal systems, the differential regulation of HCN channels could 

contribute to the different roles of thalamic nuclei in the control of sleep and arousal. 

 

In this chapter some of these major findings are discussed in more detail. They are 

presented in a more general context and described in respect to the most obvious functional 

implications. Finally, I will also reason about this work in the light of GPCR- and cAMP-

signaling. I used HCN channels to uncover a subtype specific β-AR signaling in different 

thalamic cells, making a contribution to a more detailed understanding of neuronal β-AR 

function. Moreover, based on these results, I established HCN channels as cAMP on-line 

sensors for GPCR-signaling in a heterologous expression system.  
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6.1 Discussion of paper I: 

My work about “Functional stabilization of weakened thalamic pacemaker channel 

regulation in rat absence epilepsy” contributes to the debate about the role of HCN channels 

in epilepsies with respect to a) the thalamic or cortical focus theory in absence epilepsy after 

onset of seizure activity and b) modulated ion channels as possible epilepsy-promoting 

factors. 

 

6.1.1 Cortical focus-theory in absence epilepsy 

It is well known that SWDs require the bi-lateral network activity of reciprocally 

connected thalamic and cortical structures. However, the site of initiation of the 

hypersynchronized activity is still unclear (Blumenfeld, 2005; Meeren et al., 2005). This 

controversy over the components of the thalamocortical circuits required for the generation of 

the seizures get a fundamental issue regarding treatment of absence epilepsy. Thus, 

pharmacotherapy should target the appropriate epileptogenic region. Initially, the thalamus 

was considered to be the centre for the generation of absence seizures. In an early study, 

SWDs were found to start first in the thalamus (Williams, 1953). In addition, electrical 

stimulation of the thalamus in cats produced bilaterally synchronous EEG discharges that 

resembled the classic absence pattern (Jasper and Droogleever-Fortuyn, 1947). In contrast, 

recent recordings at high temporal resolution of cortical and thalamic activity during SWDs 

have found that the first ~0.5 sec are dominated by cortical activity (Seidenbecher et al., 

1998; Meeren et al., 2002; Pinault, 2003; Pinault et al., 2006). In our study, we reveal that 

mature thalamic cells developed a compensatory mechanism that restored HCN channel 

function necessary to terminate SWD-like activity. In cortical cells, changed HCN channel 

expression does not seem to trigger adaptive responses (Strauss et al., 2004; Kole et al., 

2007), suggesting a role of cortical HCN channel dysfunction in the maintenance of SWDs in 

adult epileptic animals. Thus, with our results, we further push the discussion in the direction 

of the cortical focus-theory. In the cortex the loss of HCN1 channels could not be 

compensated, while in the thalamus cells overcame HCN channel dysfunction.  

 

6.1.2 Role of HCN channels in epileptogenesis 

Interestingly, the most direct evidence for a role of decreased HCN-current in absence 
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epilepsy exists for the thalamus (Ludwig et al., 2003), and not for the cortex (Nolan et al., 

2004). Thus, animals deficient in thalamic HCN2 channel subunits do show generalized 

absence seizures (Ludwig et al., 2003), whereas animals lacking the mainly cortical expressed 

HCN1 subunit do not (Nolan et al., 2004). This suggests that deficits in thalamic cells may be 

important for the generation of epileptogenesis.  

Epileptogenesis is referred to be the process by which the brain is altered in a manner 

that there is a propensity for recurrent spontaneous seizures. To understand the cellular and 

molecular mechanism involved in the progression of the epileptic disease is especially 

important, as currently available antiepileptic drugs do not seem to be antiepileptogenic, 

rather being used for symptomatical treatment. We found that epileptogenesis in the GAERS 

was accompanied by a changed cAMP-dependent modulation of HCN channels in the 

thalamus. Not only seem HCN channels to be sensitive to aberrant neuronal activity as it was 

reported previously (Chen et al., 2001b; Shah et al., 2004; van Welie et al., 2004; Brewster et 

al., 2005), but also can relatively small changes in HCN channel regulation have an influence 

on neuronal network activity (Di Pasquale et al., 1997; Budde et al., 2005). In future studies, 

it would be interesting to test, whether restored HCN channel function during the pre-epileptic 

phase could prevent seizure onset in the GAERS. The precise mechanism involved in 

changing HCN channel expression still remains unclear. A feasible way for its investigation 

could be the use of substances that upregulate HCN channels like lamotrigine (Poolos et al., 

2002) see chapter 3.5.4 of this thesis). Interestingly, lamotrigine is already licensed for the 

treatment of absence seizures in children. It is tempting to speculate that substances targeting 

HCN channels provide a promising approach in the search for new antiepileptic drugs. In 

particular, because these substances might give an opportunity to obtain therapeutic targets 

that could counteract the development of epilepsy. 

 

6.2 Discussion of paper II: 

The second part of my thesis about “ß-adrenergic modulation of pacemaker currents in 

different thalamic nuclei” not only shows a non-uniform regulation of an ion channel within 

the thalamus, but also might this non-uniform regulation have an effect on the distinct roles of 

thalamic nuclei in controlling arousal states. Furthermore, by following the coupling of ß-ARs 

to HCN channels we could assess ß-AR signaling in thalamic cells. For the first time we 

describe a desensitization of ß1-ARs in thalamic cells. The missing coupling of ß2-ARs to 

HCN channels suggests a tight organization of signaling pathways in these cells. 
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6.2.1 Differential role of thalamic nuclei in control of sleep and waking 

The different roles of thalamic nuclei in the control of sleep and wakefulness were 

reflected in a differential regulation of HCN channels by one of the most important arousal 

systems. Such, our work could have implications for how we see the role of the thalamus in 

the control of sleep and attentive states. It contributes to understand the cellular mechanisms 

that help to organize the activity of different thalamic nuclei necessary to maintain the diverse 

arousal states.  

The transition from sleep to the waking state is associated with depolarization of first-

order thalamocortical neurons and a conversion from rhythmic burst firing to the tonic mode 

of action potential generation (for review, see (McCormick and Bal, 1997)). Here, the 

regulation of HCN channels by β-adrenergic receptors (ß-ARs) plays a pivotal role 

(McCormick and Pape, 1990a). The results of this thesis revealed that this regulation is 

mediated by the ß1-AR subtype. Immediate stimulation of ß1-ARs activated HCN-currents, 

while prolonged exposure of ß1-adrenergic agonists induced receptor desensitization. 

Possibly, this desensitization could also occur in vivo when thalamic cells receive prolonged 

noradrenergic input during waking (Aston-Jones and Bloom, 1981). The sustained 

depolarization of the resting membrane potential of thalamic cells could be provided by the 

reduction of a resting leak K+ conductance that is also induced by neurotransmitters released 

from ascending systems (for review, see (McCormick, 1992; McCormick and Bal, 1997)). 

Neurons of intralaminar thalamic nuclei can exert tonic or burst firing properties like 

first-order neurons. However, neurons of the intralaminar nuclei discharge in bursts not only 

during sleep, but also during waking (Glenn and Steriade, 1982; Steriade et al., 1993a), 

contrary to neurons of first-order thalamic nuclei. Thus, the resting membrane potential seems 

to be influenced by a different regulation of ion channels. Accordingly, HCN channel 

expression is weaker (Notomi and Shigemoto, 2004), and we found smaller HCN-currents 

that were not coupled to ß-ARs in centrolateral thalamic neurons. This suggests that the 

increased activity of the locus coeruleus during waking (Aston-Jones and Bloom, 1981) 

cannot activate HCN-currents and induce depolarization via the ß2-AR-pathway in neurons of 

intralaminar thalamic nuclei.  

 

6.2.2 ß-adrenergic receptors and compartmentalized cAMP signaling  

With our experiments, we show a strong coupling of β1-ARs to HCN channels in first-
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order thalamic neurons. In neurons of the intralaminar thalamic nuclei, β1-adrenergic affinity 

to its agonist Iso had to be increased to see β-adrenergic regulation of HCN channels, 

probably because of the lower expression density of these receptors (Rainbow et al., 1984). 

However, this is still leaving the question, what the function of β2-ARs could be in 

intralaminar thalamic neurons. We could neither observe a change in the resting membrane 

potential nor was there an alteration of the input resistance of these cells after application of 

the β-adrenergic agonist. The intrinsic agonist and neurotransmitter NA plays an important 

role in the control of cAMP-dependent gene expression during states of arousal in the 

thalamocortical system (Cirelli et al., 1996; Cirelli and Tononi, 2000). These effects cannot be 

monitored with our electrophysiological approach. Another possibility would be that ACs in 

intralaminar thalamic nuclei need the coincident activation of different GPCRs to sufficiently 

increase cAMP levels to activate HCN channels. A complex interaction of β-ARs with other 

GPCRs was already shown for neurons in other parts of the brain (Andrade, 1993; Pedarzani 

and Storm, 1996; Frère and Lüthi, 2004). The intralaminar thalamic nuclei are known to be 

innervated by different ascending arousal systems (Krout et al., 2002). Thus, it could be 

possible that a synergistic activation of different GPCRs is necessary to activate ACs 

sufficiently enough to see a change in HCN channel gating. 

However, the fact that activation of β2-ARs did not couple to HCN channels points to a 

spatially and/or functionally compartmentalized signaling of these receptors in thalamic 

neurons, similar to what is known about these receptors in cardiac myocytes (Xiao et al., 

2006). In this manner, my work not only describes the modulation of a specific ion channel, 

the pacemaker, in different parts of the thalamus, but furthers the idea of a very complex and 

organized GPCR signaling in neurons. To understand these mechanisms in a receptor-subtype 

specific manner in neurons could have implications on the pharmacology and physiology of 

neuronal β-ARs. Subtype specific β-adrenergic antagonists could increase potency and 

minimize negative side effects of drugs acting on central β-ARs. 

 

6.2.3 HCN channels as cAMP sensors to monitor GPCR signaling 

Based on the experiments in thalamic cells that demonstrated HCN channels as reliable 

on-line sensors for cAMP-signaling, we decided to further investigate HCN channel 

modulation under the control of GPCRs in a heterologous expression system. We expressed 

the cAMP sensitive HCN2 channel subunit in Chinese hamster ovary K1 (CHO-K1) cells that 

stably express Gi/o-coupled GABAB-receptors. Alterations in the amplitude of cAMP-
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sensitive currents following activation of Gi/o-coupled neurotransmitter receptors have been 

associated with an inhibition of either basal or forskolin-stimulated AC activity (Pape, 1992; 

Ingram and Williams, 1993; Svoboda and Lupica, 1998). Thus, we applied baclofen (40 µM), 

an agonist for GABAB-receptors to the CHO cells transfected with HCN2 channels and 

monitored HCN-current amplitudes in whole-cell voltage clamp recordings at -100 mV, 

activated from a holding potential of -60 mV. Currents were decreased to 84.2 ± 5.1% of 

control 3 min after baclofen was washed in the bath (n = 6, p < 0.05, Fig. 6A). Furthermore, 

we tested whether prior increases in AC activity could strengthen the inhibiting effect of the 

GABAB-agonist on HCN-currents. Indeed, when forskolin, an activator of AC was applied 

previous to baclofen, amplitudes were then decreased to 57.7 ± 11.0% of control level (n = 3, 

p < 0.05 baclofen-effect with/without forskolin, Fig. 6B). These results show that a) activation 

of GABAB-receptors has an inhibiting effect on cAMP synthesis in CHO cells and b) HCN 

channel modulation by GPCR-dependent alteration of cAMP turnover can be reconstituted 

and recorded in a mammalian cell line.  

With these experiments we show that HCN channels could serve as on-line cAMP 

sensors in heterologous expression systems and provide a model to further investigate GPCR-

signaling.  

 

 

Figure 6. Regulation of HCN2-currents by activation of co-expressed GPCRs in a heterologous system. 

A, Time course of averaged responses of HCN-currents to the activation of GABAB-receptors by the application 

of baclofen (40 µm) shows the decrease of the normalized current amplitude at -100 mV to 84.2 ± 5.1% (n = 6, 

p < 0.05). The black bar indicates baclofen application. Inset show representative current recordings before 

(black) and during (grey) baclofen application. B, Similar as in A, stimulation of AC with forskolin previous to 

baclofen application increased inhibiting effect of the GABAB-agonist (57.7 ± 11.0% of control amplitude, n = 3, 

p < 0.05 with/without forskolin). 
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7 CONCLUSIONS AND OUTLOOK 

The experiments carried out for my thesis have predominantly dealt with the 

investigation of pathological and physiological pathways of HCN channel regulation in the 

thalamus. An abnormal HCN channel expression and function was causally related to the 

emergence of absence epilepsy which implies that neuronal networks react highly sensitive to 

aberrant HCN channel activity. Additionally a differential regulation of pacemaker channels 

in different thalamic nuclei was observed. This suggests that the difference mediated by the 

neurotransmitter of one of the most important arousal systems could contribute to the 

different roles of thalamic nuclei in the control of wakefulness and attentive states. In 

summary the results once more demonstrate the complexity of neurons and neuronal networks 

being tremendously influenced by small changes and differences in the regulation and 

function of pacemaker channels. Therefore it is most reasonable that a decreased cAMP 

sensitivity was involved in the pathogenesis of absence epilepsy and a different ß-adrenergic 

modulation contributed to different electrophysiological properties of thalamic cells, 

respectively. 

These results, however, have raised new questions about the regulation of pacemaker 

channels in the thalamus. For the understanding of the pathological pathways leading to 

absence epilepsy it would be important to know how the changed HCN channel expression 

pattern was induced. Future studies should also focus on the question whether epileptogenesis 

could be prevented by drugs acting on HCN channels. The answer would definitely prove a 

causal relationship of HCN channel dysfunction and epilepsy. This would require compounds 

restoring HCN channel function before seizure onset. To address this issue, however, GAERS 

are not an appropriate model system since HCN channels are not simply up- or 

downregulated. Nevertheless, if the trigger for restoring HCN channel function in the 

thalamus of adult epileptic animals could be identified, this would shed new light on the 

development of adaptive mechanisms in thalamic neurons.  

Finally, it would be of interest to further investigate the significance of distinct HCN 

channel regulation for the control of sleep and consciousness in vivo, since the mechanism of 

sedation by central acting ß-blockers is still unclear. Is this effect mediated via HCN channels 

in the thalamus? Is there a difference between selective antagonists for ß1- and ß2-ARs? 

Although the answers to these questions are highly relevant for the exploration of new drug 

targets, up to now, GPCR and ß-AR signaling in intralaminar thalamic nuclei is rarely 

investigated. Just as little is known about the regulation of HCN channels by other GPCR 
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activating neurotransmitters. Anyway, while working through these issues the role for the 

pacemaker channel in intralaminar thalamic nuclei might be defined, similar to what had 

previously been described for first-order thalamic neurons. 

 

The results of this thesis already provide new information about HCN channels. 

Together with the results of future projects my work might also contribute to a better 

understanding of the role of voltage-gated ion channels in thalamic function. 
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9 LIST OF ABBREVIATIONS 

AC Adenylyl cyclase 

ADP Afterdepolarization 

AHP Afterhyperpolarization 

AP Action potential 

AR Adrenergic receptor 

cAMP Cyclic 3',5'-adenosine monophosphate 

cGMP Cyclic 3',5'-guanosine monophosphate 

CHO cells Chinese Hamster ovary cells 

Cln Centrolateral thalamic nucleus 

CNBD Cyclic nucleotide binding domain 

EEG Electroencephalogramm/graphic 

EPSP Excitatory postsynaptic potential 

FOn First-order thalamic nucleus 

GABA γ-aminobutyric acid 

GABAA-receptor γ-aminobutyric acid receptor type A 

GABAB-receptor γ-aminobutyric acid receptor type B 

GAERS genetic absence epilepsy rat from Strasbourg 

GPCR G-protein coupled receptor 

G-protein GTP binding protein 

GRK G-protein receptor serine/threonine kinase 

GTP Guanosine-tri-phosphate 

HCN Hyperpolarization-activated cationic non-selective 

HEK cells Human embryionic kidney cells 

IBMX 3-isobutyl-1-methyl-xanthine (PDE-inhibitor) 

IMn Intralaminar/midline thalamic nuclei 

Ih / IHCN Hyperpolarization-activated cationic current 

Iinst Instantaneous current 

IP3 Inositol-3-phosphat 
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IPSP Inhibitory postsynaptic potential 

IT Low-threshold calcium current 

Iso Isoproterenol (β-agonist) 

Kir Inward rectifier K+-channel 

LC locus coeruleus 

LTP Longterm potentiation 

LTS Low-threshold spike 

PDE Phosphodiesterase 

PKA Protein kinase A 

PTX Pertussis toxin 

NA noradrenaline 

NE non-epileptic 

nRt/RTn Nucleus reticularis thalami 

PIP2 Phosphatidylinositol-4,5-bisphosphate 

REM sleep rapid eye movement 

RT Room temperature 

SAN Sinoatrial node 

SWD Spike-and-wave discharge 

TASK TWIK-related acid-sensitive K+ channel 

TC Thalamocortical 

V1/2, Vhalf half-activation voltage 

Vpm Ventroposterior medial thalamic nucleus 

WAG/Rij Wistar Albino Glaxo rat, bred in Rijswijk 
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