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Summary

 Nuclear pore complexes (NPCs) provide the sole gateway between the cytoplasm 

and nucleus of eukaryotic cells and they act as mediator of all macromolecular exchange 

between these distinct subcellular compartments. Whereas the structure of the plant NPC 

has been studied already decades ago by distinct electron microscopy approaches, the 

characterization of its molecular components, the nucleoporins, has still remained largely 

elusive. In this review, we will focus on recent progress that has been made regarding the 

molecular composition of the plant NPC as well as on its role in nucleocytoplasmic transport 

and other processes, such as host-pathogen signaling in plants. In addition, we will discuss 

recent fi ndings on the vertebrate nucleoporins that appear to be absent in the plant NPC and 

their implications in cell organization related processes and diseases.
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1.1 Introduction

 The nuclear envelope (NE) separates the cytoplasmic and nuclear compartments in 

eukaryotic cells. The double membrane of the NE, which is continuous with the endoplasmic 

reticulum, is perforated by nuclear pore complexes (NPCs). NPCs are large multi-protein 

complexes that facilitate bidirectional translocation of proteins, RNAs, and small molecules 

between the nucleus and the cytoplasm of eukaryotic cells (Fahrenkrog and Aebi 2003; 

Fahrenkrog et al. 2004). The NPC structure has been studied extensively by distinct electron 

microscopy (EM) and electron tomography approaches in a number of species, such as Xenopus 

laevis oocyte nuclei, Saccharomyces cerevisiae, Caenorhabditis elegans, Dictyostelium 

discoideum as well as plants (Franke 1970; Severs and Jordan 1975; Rout et al. 2000; Pante 

and Kann 2002; Fahrenkrog and Aebi 2003; Stoffl er et al. 2003; Beck et al. 2004). Together 

these studies have revealed that the overall structure of the NPC is evolutionary conserved, 

although the linear dimensions of the NPC might vary from species to species. The main 

function of the NPC is mediating bidirectional traffi cking and exchange of proteins, RNAs, 

and/or even large macromolecular complexes, such as ribosomes, between the nucleus and 

cytoplasm of eukaryotic cells and it is doing so with outstanding effi ciency. Cargoes are 

delivered to and transported through the NPC by an interaction between transport receptors 

and nuclear pore complex proteins (nucleoporins) that are characterized by the presence of 

phenylalanine-glycine (FG) repeat regions (Fried and Kutay 2003; Pemberton and Paschal 

2005). Directionality of nucleocytoplasmic transport pathways is thereby primarily regulated 

by the small GTPase Ran due to a chemical gradient of RanGTP between the nucleus and 

cytoplasm.

1.2 Nuclear pore complex structure

 The NPC structure has been studied extensively and in detail by distinct EM and 

electron tomography studies in a variety of species (Franke 1970; Roberts and Northcote 

1970; Severs and Jordan 1975; Hinshaw et al. 1992; Akey and Radermacher 1993; Goldberg 

and Allen 1993; Rout et al. 2000; Stoffl er et al. 2003; Beck et al. 2004), which led to a 

consensus model of the 3D NPC architecture (Fig. 1.1). Accordingly, the NPC comprises an 

eight-fold symmetric central framework that is anchored in the NE, being continuous with 

the cytoplasmic as well as the nuclear ring moiety. From the cytoplasmic ring moiety, eight 

fi laments emerge towards the cytoplasm, whereas the nuclear ring moiety anchors eight 
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fi laments that join to a distal ring thereby forming the so-called nuclear basket. Enclosed by 

the central framework is the central pore, which has a depth of ~90 nm and a diameter of ~40 

nm. The central pore mediates all traffi cking between the nucleus and the cytoplasm and it 

enables transport of macromolecules with diameters of up to 39 nm (Pante and Kann 2002). 

A controversially discussed NPC feature is the nature of the central plug (Fahrenkrog and 

Aebi 2003; Fahrenkrog et al. 2004). Based on 2-D electron micrographs, the central plug was 

supposed to be situated within the central pore and to be a bona fi de stationary component 

of the NPC (Stoffl er et al. 1999). However, studies using atomic force microscopy (AFM) 

as well as cryo-EM have showed that the central plug most likely corresponds to cargo in 

transit through the central pore and/or the distal ring of the nuclear basket (Bustamante et al. 

2000; Danker and Oberleithner 2000; Stoffl er et al. 2003).

Figure 1.1: Schematic representation of the 3-D architecture of the nuclear pore complex (NPC). The NPC 

is composed of the central framework that is continuous with a cytoplasmic and a nuclear ring moiety. The 

cytoplasmic ring moiety is decorated by the cytoplasmic fi laments, whereas the nuclear ring moiety is capped 

by a nuclear basket. This fi gure was modeled and prepared by D. Stoffl er using ViPEr, a Visual Programming 

Environment, that was developed by D. Stoffl er and M. Sanner at The Scripps Research Institute, La Jolla, 

California, USA. The model is based on a reconstruction of native NPCs embedded in thick amorphous ice 

(Stoffl er et al. 2003) .
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 The overall 3D-structure of the NPC seems to be conserved in plants as well, as 

to be judged from thin-sectioning EM (Franke 1970; Roberts and Northcote 1970; Severs 

and Jordan 1975). However, high-resolution EM studies of the plant NPC architecture have 

yet to come. Based on thin-sectioning and freeze-fracture EM, the plant NPC exhibits the 

typical eightfold radial symmetry of the central framework, as well as the nuclear basket and 

cytoplasmic fi brils (Severs and Jordan 1975; Heese-Peck et al. 1995). In its linear dimensions, 

the plant NPC appears to be very close to Xenopus NPCs and as such about 15% larger than 

the yeast NPC (Roberts and Northcote 1970; Yang et al. 1998; Stoffl er et al. 2003) (Fig. 1.2). 

However, some differences observed in linear dimensions might arise from different sample 

preparation techniques used.

Figure 1.2: Schematic comparison of nuclear pore complex dimensions in Xenopus oocytes, plants and 

yeast.

1.3 The NPC molecular architecture 

 The NPC has a molecular mass of ~125 MDa in vertebrates and it is composed of 

about 30 different proteins called nucleoporins (Rout et al. 2000; Cronshaw et al. 2002). 

Due to the eightfold rotational symmetry of the central framework of the NPC (Maul 

1971), nucleoporins are present in eight copies per NPC or in multiple of eight (Rout et 

al. 2000; Rabut et al. 2004). Immunogold-EM demonstrated that most of the nucleoporins 

are located on both, the nuclear and the cytoplasmic face of the NPC, whereas only a few 

locate to either the cytoplasmic or the nuclear face of the NPC (Rout et al. 2000). Based on 

secondary structure prediction, the symmetric nucleoporins have been grouped into three 

classes (Devos et al. 2006): nucleoporins belonging to the transmembrane group, which 

contains transmembrane α-helices and a cadherin-fold. These nucleoporins seem to form the 

outermost group of nucleoporins and are thought to help anchoring the NPC in the NE. The 

second class of symmetric nucleoporins comprises nucleoporins harboring the conserved 

sequence motif of FG-repeats in combination with a coiled-coil fold that may contribute to 
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the formation of the NPC's central framework. The third group of nucleoporins contain β-

propeller and α-solenoid folds and these nucleoporins localize towards the inside of the NPC 

(Devos et al. 2006).

 FG-repeat domains are found in about one third of the symmetric and asymmetric 

nucleoporins and they are thought to mediate the main interaction between soluble transport 

receptors and the NPC. Based on biophysical measurements, the FG-repeat domains of yeast 

nucleoporins were found to be natively unfolded, i.e. having no or only little secondary 

structure (Denning et al. 2002; Denning et al. 2003). This notion is further supported by 

immuno-EM studies on the two vertebrate FG-repeat nucleoporins Nup153 and Nup214 that 

showed that FG-repeat domains are fl exible and mobile within the NPC (Fahrenkrog et al. 

2002; Paulillo et al. 2005). AFM studies on recombinantly expressed FG-repeat domains of 

human Nup153 further revealed that this domain in fact is an extended molecule with a length 

of ~180 nm resembling an unfolded polypeptide chain (Lim and Aebi 2005). Moreover, the 

location of the FG-repeat domains of Nup153 and Nup214 is linked to the transport state of 

the NPC, further supporting their role in nucleocytoplasmic transport (Paulillo et al. 2005). 

However, systematic deletion of FG-repeat regions in yeast nucleoporins showed that yeast 

NPCs are able to compensate the loss of about 50% of their FG-repeats with only little 

effect on the effi ciency of distinct nucleocytoplasmic transport pathways (Strawn et al. 2004; 

Zeitler and Weis 2004), indicating that FG-repeats are highly redundant within the NPC and/

or that other interaction sites for transport receptors exist within the NPC.

1.4 Nucleoporin subcomplexes

 Biochemical and genetic interactions among nucleoporins have shown that 

nucleoporins are often organized in subcomplexes that interact with each other to form the 

NPC. Much progress has been made in the past few years in elucidating the composition 

of distinct subcomplexes and their localization within the NPC (Fig. 1.3). How individual 

subcomplexes interact with each other to form the NPC, however, is only poorly understood. 

One well-studied and conserved subcomplex is the vertebrate Nup107-160 complex and 

its yeast homologue the Nup84p complex. The Nup107-160 complex is composed of nine 

nucleoporins and it resides on both sides of the central framework of the NPC (Belgareh et 

al. 2001; Krull et al. 2004). The Nup107-160 complex seems to represent the core element 

of the central framework, since depletion of any member of this NPC subcomplex in nuclear 

reconstitution assays led to the assembly of NPC-free nuclei, suggesting that the Nup107-

160 complex is essential for NPC assembly (Harel et al. 2003; Walther et al. 2003). Nup155 

and the pore membrane protein POM121 have been found to be essential for NE formation 

and NPC assembly as well (Antonin et al. 2005; Franz et al. 2005). Nup155 is part of a less 
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well-characterized NPC subcomplex that also localizes to both sides of the central framework 

(see (Lim 2006)). How the Nup107-160 complex and the Nup155 complex interact with 

each other to act in NPC assembly, however, remains to be elucidated.

Figure 1.3: Schematic representation of nucleoporin and nucleoporin subcomplex localization within the 

vertebrate NPC. Nup107-160 complex: Nup107, Nup160, Nup133, Nup96, Nup75, Nup43, Nup37, Seh1, Sec 

13; Nup155 complex: Nup155, Nup98, Nup170; Nup93 complex: Nup93, Nup205, Nup188, Nup35; Nup62 

complex: Nup62, Nup58, Nup54, Nup45. c, cytoplasm; n, nucleus.

 Another well-characterized subcomplex of the NPC is the Nup62 complex, which is 

composed of four nucleoporins (Dabauvalle et al. 1990; Finlay et al. 1991; Kita et al. 1993; 

Guan et al. 1995; Hu et al. 1996). All four nucleoporins of this subcomplex contain FG-

repeats within their amino acid sequence and appear to be located near the central pore of 

the NPC, symmetrically on both sides (Guan et al. 1995). Therefore, this NPC subcomplex 

is thought to play a critical role in nuclear import as well as export (Hu et al. 1996; Levesque 

et al. 2006).
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1.5 Vertebrate nucleoporins

1.5.1 Nup358 

 Nup358 (also named RanBP2) is a huge nucleoporin that is thought to be the major 

constituent of the cytoplasmic fi laments of the NPCs (Yokoyama et al. 1995; Walther et al. 

2002). Association of Nup358 with the NPC appears to be dependent on the presence of 

Nup214 and Nup88, since all three nucleoporins co-immunoprecipitated as a subcomplex. 

However, the absence of Nup358 did not affect the localization of Nup214 and Nup88 

(Bernad et al. 2004).

  Based on its primary sequence, Nup358 exhibits the most variable structural 

organization of all known nucleoporins: an N-terminal leucine-rich region, four potential 

Ran binding sites (i.e. Ran-binding protein 1 homologous domains) fl anked by characteristic 

FXFG or FG repeats, eight zinc fi nger motifs of the Cys
2
-Cys

2
 type, and a C-terminal 

cyclophilin A domain (Wu et al. 1995). Due to the presence of FG-repeats within its amino 

acid sequence, Nup358 has been shown to provide binding sites for transport receptors of 

bulk mRNA export such as NXF1-p15, and the GTPase-activating protein for Ran, RanGAP1 

(Saitoh et al. 1998; Bachi et al. 2000). Moreover, importin-β was also reported to associate 

with Nup358 in Xenopus egg extracts (Saitoh et al. 1996) and HeLa cell extracts (Chi et al. 

1996). Finally, in addition to the binding sites provided by the FG-repeats of Nup358, its 

zinc fi ngers associate with high specifi city to the nuclear export factor, exportin-1 (CRM1) 

(Singh et al. 1999). 

 During mitosis, Nup358 is located to both spindle microtubules and kinetochores, 

and the small ubiquitin-related modifi er protein SUMO-1-dependent association of Nup358 

with RanGAP1 guarantees proper kinetochore organization and function (Joseph et al. 2002; 

Salina et al. 2003; Joseph et al. 2004). 

 The interaction of Nup358 with RanGAP1 is modulated by the essential protein 

SUMO1 (Melchior 2000) and recent experiments have highlighted the involvement of 

Nup358 in the SUMOylation process (Pichler et al. 2002). Pichler et al. investigated SUMO1 

intranuclear localization in order to elucidate the basis of SUMO1 modifi cations of targeted 

NLS-containing proteins and found that Nup358 has an E3 ligase-like activity (Pichler et al. 

2002). Although the 30-kDa catalytic domain of Nup358 involved in SUMOylation does not 

contain the typical RING-fi nger motif and does not show homology to ubiquitin E3 ligases, 

this catalytic domain was reported to stably bind to Ubc9 (Ubiquitin-like protein SUMO-1 

conjugating enzyme) (Pichler et al. 2004). It was recently demonstrated that Nup358 C-

terminal domain can bind to SUMO-1 modifi ed RanGAP1 and to Ubc9 simultaneously, 

indicating that Ubc9 could act to tether RanGAP1 to Nup358 (Matunis et al. 1998; Zhang 
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et al. 2002). Although SUMO modifi cation is believed to be a predominantly nuclear event, 

SUMO modifi cation and demodifi cation of proteins can occur at the NPC (Zhang et al. 

2002). These fi ndings confer to Nup358 unexpected roles, such as SUMOylation of particular 

cargoes by a conjugation/deconjugation process of proteins during transport. Although 

SUMOylation may be mechanistically involved in the translocation of cargoes through the 

NPC, the E3 ligase activity of Nup358 remains unclear. Additional studies are needed to 

elucidate if Nup358 E3 activity is required for RanGAP1 SUMO conjugation, or if its action 

is merely restricted to maintain a stable complex at the NPC (Reverter and Lima 2005).

1.5.2 Nup153

 Nup153, one of the most extensively studied nucleoporins in vertebrates, is 

asymmetrically located to the nucleoplasmic side of the NPC. The N-terminal domain of 

Nup153 comprises a M9-like nuclear localization signal (NLS), a RNA-binding domain and 

information for NPC targeting (Bastos et al. 1996; Enarson et al. 1998; Nakielny et al. 1999; 

Dimaano et al. 2001). Nup153’s central domain contains four zinc fi ngers (of the Cys
2
-Cys

2
 

type) that interacts with DNA, RanGDP and the COPI complex (Sukegawa and Blobel 1993; 

Nakielny et al. 1999; Liu et al. 2003). The C-terminal highly mobile FG-repeat domain of 

Nup153 binds to CRM1, transportin and importin-β (Sukegawa and Blobel 1993; Shah et al. 

1998; Nakielny et al. 1999; Ben-Efraim and Gerace 2001; Denning et al. 2003).

Immuno-EM studies of the vertebrate nucleoporin Nup153 indicated that its N-

terminal domain is anchored to the nuclear rim of the NPC, whereas its zinc-fi nger domain 

was found at the distal ring (Fahrenkrog et al. 2002). The Nup 153 C-terminal domain 

topology demonstrated a high degree of mobility and structural fl exibility, since this epitope 

could be detected at the nuclear basket and near or at the cytoplasmic ring of the NPC 

(Fahrenkrog et al. 2002). Several interacting partners were attributed to Nup153, among 

which are protein and RNA transport receptors, transcription factors, cellular regulation 

proteins and proteases, DNA, RNA, the Nup107-160 complex and Tpr, lamin B, and the 

membrane-remodeling complex, COPI (reviewed in (Ball and Ullman 2005)). 

 Three members of the COPI coatomer complex (β, β’ and α) were reported to specifi cally 

associate with Nup153’s zinc fi nger region (Liu et al. 2003) as well as with the zinc fi nger 

domain of Nup358 (Prunuske et al. 2006). The interaction of Nup153 and COPI plays a role 

in the division of eukaryotic cells leading to nuclear envelope disassembly in a stepwise 

process. This process known as nuclear envelope breakdown (NEBD) involves dispersal of 

the nuclear membrane as well as disassemble of the NPCs, which break into small subunits 

(Prunuske et al. 2006). Nup153, in turn, is an active modulator of this process, although 
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more careful mechanistic studies are still needed in order to elucidate COPI recruitment of 

Nup153 zinc fi ngers (Prunuske et al. 2006). 

1.5.3 Nup88 

 Nup88 is a nucleoporin found in a subcomplex with the oncogenic nucleoporin Nup214 

at the cytoplasmic face of the NPC. Nup88 was found to be highly overexpressed in distinct 

aggressive human tumours, which typically show a high degree of metastasis (Martinez et 

al. 1999; Gould et al. 2000; Agudo et al. 2004).

 Uv et al. reported that the Drosophila homologue of the mammalian Nup88, named 

members only (mbo), might regulate the nuclear translocation of the Rel family transcription 

factors Dorsal and Dif (Uv et al. 2000). The selective requirement of DNup88, however, 

does not affect the nuclear transport of several other proteins and RNA export (Uv et al. 

2000).

Further studies on the defect in nuclear accumulation of Rel proteins in Drosophila 

revealed that the continuous shuttling in and out of the nucleus requires DCRM1. Moreover, 

Nup88 was described to tether CRM1 to the NPC and therefore is assumed as a nuclear export 

attenuator for NES-mediated nuclear export (Roth et al. 2003). Finally, a recent article by 

Samakovlis and co-workers claims that the concentration levels of Nup88 in complex with 

Nup214 control CRM1 recruitment to the NPC (Xylourgidis et al. 2006). 

 Nup88 is also involved in the regulation of human huntingtin transport, the major 

determinant protein of Huntington’s neurodegenerative disorder (Takano and Gusella 

2002). Interestingly, the NF-kB/Rel/dorsal family of transcription factors are candidates 

for association with huntingtin to form complexes for its nuclear import, which is Nup88-

dependent (Takano and Gusella 2002), suggesting that Nup88 alone (or in complex with 

Nup214) plays a transport-independent role in such diseases.

1.5.4 Nup214

1.5.4.1 Structural characteristics, organization and interacting partners

 The vertebrate nucleoporin Nup214 is another component of the NPC’s cytoplasmic 

face, more specifi cally located at the cytoplasmic ring moiety of the NPC. It has been 
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previously shown that Nup 214 and Nup88 form a stable complex (Bastos et al. 1997; 

Fornerod et al. 1997; Matsuoka et al. 1999), which is required for the docking of Nup214 to 

the NPC (Roth et al. 2003; Bernad et al. 2004). 

 Based on its amino acid sequence, Nup214 is organized in three distinct domains: (i) 

an N-terminal domain, which is predicted to be organized into a β-propeller fold similarly 

to its yeast homologue Nup159p (Weirich et al. 2004) and which carries a WD40 domain, 

(ii) a  central domain that contains a leucine zipper motif and two predicted coiled-coil 

segments and (iii) a C-terminal domain that harbors 6 FxFG motifs and 36 FG dipeptid 

motifs (Fornerod et al. 1995). 

 Dbp5, a DEAD box helicase involved in mRNA transport, was found to interact 

with the N-terminal domain of Nup214. Izaurralde and co-workers showed that hDbp5 is 

recruited to the NPC via a conserved and stable interaction with Nup214 (Schmitt et al. 

1999). Moreover, mutated hDbp5 was microinjected into Xenopus nuclei, which resulted in 

a inhibition of nuclear exit of mRNAs (Schmitt et al. 1999).  When part of the N-terminal 

domain of Nup214’s yeast homologue Nup159p is deleted, polyadenylated RNA accumulates 

in the yeast nuclei and growth becomes temperature-sensitive (Del Priore et al. 1997). This 

indicates that the N-terminal domain of Nup159p is required for Dbp5 docking to the NPC, 

but an overexpression of Dbp5 can compensate the absence of the N-terminus of Nup159p 

(Weirich et al. 2004). Although the means by which the complex Dbp5-Nup159 is formed 

is not known, two possible non-mutually exclusive models were presented. First, the N-

terminal domain of Nup159p might be involved in Dbp5p nuclear import, and, second, 

Nup159p N-terminal domain is required for Dbp5 release from cytoplasmic RNAs (Weirich 

et al. 2004). 

 Although the sequence similarity between Nup214 and Nup159p is quite low, they 

might be functional homologues, and FG repeat motifs serve as docking sites for different 

cargoes. The export receptor for leucine-rich nuclear export signals hCRM1 binds to Nup214 

FG-repeat domain to form a stable complex, which localizes to the NE. The docking of CRM1 

to the NE by Nup214 acts as a terminal-binding site in NES-dependent hCRM1-mediated 

nuclear export (Fornerod et al. 1996; Bernad et al. 2004). In this context, Nup214 is involved 

in the disassembly of CRM1 export complex as well as CRM1 recycling (Askjaer et al. 

1999). It was proposed in earlier studies that the stable association of Nup214 and CRM1 

might be effi ciently released in a terminal step of export by an interaction with RanBP1 

(Ran Binding Protein 1) and/or with Ran binding domains of Nup358 (Kehlenbach et al. 

1999). Further studies, however, revealed RanGAP as the candidate to act catalytically in the 

release of export complexes from Nup214 (Hutten and Kehlenbach 2006). 

 Although the release of CRM1 from Nup214 in the fi nal steps of nuclear export is 
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still unclear, the formation of a very stable complex containing Nup214, CRM1, RanGTP, 

and an export substrate is central to CRM1-mediated nuclear export (Hutten and Kehlenbach 

2006). Thus, the role of Nup214 in CRM1-mediated transport is specifi c and essential for 

proper export of cargoes. 

 Some of Nup214-CRM1 transport mediated processes include the shuttling of the 

unphosphorylated signal transducer and activator of transcription factor, Stat1 between the 

nucleus and cytoplasm and the export of the HIV Rev protein in human cells (Zolotukhin 

and Felber 1999; Marg et al. 2004). Nup214 is also target for the export factor TAP, which 

plays a role in the export of viral RNAs, and may bridge the interaction between specifi c 

RNP export substrates and the NPC (Katahira et al. 1999; Bachi et al. 2000). 

 Similarly to the export factor TAP, Smad transcription factors bear hydrophobic patches 

in their C-terminal domain, referred to as the “hydrophobic corridor” which are recognized 

by FG-repeat nucleoporins such as Nup214 (Xu et al. 2002; Xu et al. 2003). Smad proteins 

are transcription factors that act as mediators of the TGF-β (transforming growth factor-β) 

receptor signals. It was shown that Nup214 associates with various members of the Smad 

family, such as Smad2, Smad3 and Smad4 (Xu et al. 2002; Xu et al. 2003). The export 

of the transcription factor Smad4 is CRM1 mediated, whereas the FG-repeat domain of 

the nucleoporins Nup214 and Nup153 are able to interact in a karyopherin-independent 

manner with Smad transcription factors (Xu et al. 2003). Interestingly, the direct contact of 

Smad4 with FG-containing nucleoporins appears to happen via a domain distinct from the 

hydrophobic corridor in Smad2 and Smad3 (Xu et al. 2003). 

Matsubayashi et al. reported a distinct pathway for nuclear import of MAPK (Mitogen-

Activated Protein Kinase), in which MAPK is able to bind directly to the FG-repeat region 

of Nup214. Similarly, the zinc fi nger-containing protein tristetraprolin (TTP), which is 

implicated in the regulation of TNF-α (Tumor Necrosis Factor-α) production in mice, was 

shown to directly bind the FG-repeats of Nup214 (Matsubayashi et al. 2001; Carman and 

Nadler 2004). These importin-β-independent interactions might play a role in the regulation 

of protein localization in the cell.

During  cell  cycle  Nup214  is  posttranslationally  modifi ed  by  O-linked N-

acetylglucosamines (O-GlcNAc) at levels that remain constant, whereas its phosphorylation 

occurs during mitosis (Macaulay et al. 1995; Miller et al. 1999). NPCs devoid of N-

acetylglucosamine-bearing nucleoporins show normal morphology, but are defective for 

import of a reporter substrate carrying an NLS (Finlay and Forbes 1990). The function 

and regulation of glycosylation and phosphorylation of nucleoporins has remained largely 

elusive.
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1.5.4.2 Nup214 and leukemia

 Nup214 as well as its associated nucleoporin Nup88 are vastly related to or directly 

implicated in cancer. Nup214 was initially identifi ed in a chromosomal translocation product 

associated with a subtype of acute myeloid leukemia (von Lindern et al. 1992). 

In these translocations (see Table 1.1), the C-terminal domain of Nup214, except its last 

six amino acids, is fused to the SET protein (von Lindern et al. 1992). 

Human SET encodes a 39 kDa predominantly nuclear phosphoprotein, which shows a 

high homology to the nucleosome assembly proteins (NAPs) that play a role in chromatin 

remodeling (von Lindern et al. 1992; Adachi et al. 1994; Miyaji-Yamaguchi et al. 1999). 

SET was also reported to interact with several other proteins, suggesting a role in mRNA 

stabilization, chromosome remodeling, apoptosis, cell cycle and transcriptional regulation 

(Li et al. 1996; Estanyol et al. 1999; Compagnone et al. 2000; Morita et al. 2000; Canela et 

al. 2003; Fan et al. 2003). 

Genes Translocations Leukemias

DEK t(6;9)(p23;q34) AML

SET t(9;9)(q34;q34) AUL

ABL1 Episomal amplicon T-ALL

Table 1.1. Nup214 translocations in leukemia. AUL, acute undifferentiated leukemia; AML, acute 

myelogenous leukemia; T-ALL, T-cell acute lymphoblastic leukemia.

SET is present in the same chromosomal region as Nup214 and the resulting product 

of the SET-NUP214 translocation is a chimeric protein of 155 kDa. A forced expression of 

SET and SET-Nup214 inhibits cell proliferation, induces differentiation and subsequently, 

cell cycle arrest in the human U937T promonocytic cell line (Boer et al. 1998; Kandilci et 

al. 2004). Overexpression of SET-Nup214 in human cells disrupted the nuclear export of 
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NES-proteins, suggesting that SET-Nup214 causes aberrant localization of hCRM1 (Saito 

et al. 2004).

The human DEK is a phosphoprotein (Fornerod et al. 1995) with several phosphorylation 

sites of which most are clustered in the carboxy-terminal region (Kappes et al. 2004) and 

the great majority of DEK is bound to chromatin (Kappes et al. 2001). DEK-Nup214 fusion 

proteins were discovered in patients with AML, which subtype is characterized by a specifi c 

(6;9) (p23;q34) chromosomal translocation. This chromosomal translocation results in most 

of the DEK coding sequence being fused to a C-terminal fragment of NUP214 (von Lindern 

et al., 1990). Overexpression of DEK-Nup214 in myeloid precursor cells, resulted in cell 

cycle arrest (Boer et al. 1998). Moreover, Nup214 overexpression arrests cells in G
0
 and its 

depletion leads to cell cycle arrest in G
2
, undeniably indicating that Nup214 is essential for 

proper cell cycle progression (Boer et al. 1998).

 DEK and SET do not show any sequence similarities except that they both contain 

highly acidic regions and coiled-coil domains (Miyaji-Yamaguchi et al. 1999; Hussey and 

Dobrovic 2002). However, the nature of DEK-NUP214 translocation is very similar to the 

one found in SET-NUP214 translocation, where both complete sequences are fused to the 

C-terminal domain of Nup214, which associates with hCRM1 (von Lindern et al. 1992; 

Fornerod et al. 1995; Fornerod et al. 1996). Moreover, the central region of Nup214 seems 

to be partially lost, since these fusion proteins failed to associate with Nup88 (Fornerod et 

al. 1996).

 DEK-Nup214 and SET-Nup214 were reported to localize exclusively in the nucleus, 

which resulted in a relocation of the carboxyterminal domain of Nup214 from the NPC to 

the nucleoplasm (Fornerod et al. 1995).

As Nup214 is essential for CRM1-dependent NES-mediated nucleocytoplasmic transport 

of target proteins, the sequestration of CRM1 to the nucleus in DEK-Nup214 and SET-

Nup214 cells impairs the shuttling of tumor suppressors or oncogenes between the nucleus 

and the cytoplasm, which may affect their functions (Brunet et al. 2002; Joseph and Moll 

2003).

 Recently, a third NUP214-related chromosomal rearrangement has been described 

leading to T-ALL (T-cell acute lymphoblastic leukemia) (Graux et al. 2004). In this 

translocation, the N-terminal domain of Nup214 was found to be fused to the kinase domain 

of the tyrosine kinase ABL1, leading to the expression of an activated tyrosine kinase 

(Graux et al. 2004). Interestingly, NUP214-ABL1 fusions retain the N-terminal domain of 

NUP214, including the coiled-coil domains that might allow its oligomerization and further 

phosphorylation (Graux et al. 2004).
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1.5.4.3 Nup214 and viruses 

 Contrary to most RNA viruses, DNA viruses require the nuclear replication machinery 

of the cell to replicate their own genome, and thus must enter the nucleus of the host cell. 

Viruses can undergo substantial uncoating in the cytoplasm before translocation into the 

nucleus and some can disassemble within the NPC (Whittaker et al. 2000). 

The NPC acts a barrier for viruses to import their high molecular weight nucleoprotein 

complex into the nucleus. The central pore of the NPC can expand up to ~39 nm in diameter 

to allow cargo-complexes, proteins or particles to translocate the NPC (Pante and Kann 

2002), however, the diameters of many viruses known to replicate in the nucleus are much 

larger.

Like other DNA viruses, adenovirus capsids disassemble at the NPC prior to import of 

the viral genome into the nucleus since their protein capsids size varies from 60-90 nm in 

diameter (Whittaker et al. 2000). The genomes of adenoviruses consist of nonenveloped 

linear, double-stranded DNA of 30-38 kbp. Adenovirus virions associate with microtubules 

for directional transport towards the NPC followed by an association with the FG-repeats of 

the nucleoporin Nup214 prior delivering their DNA to the nucleoplasm (reviewed in (Greber 

and Way 2006)).

Nup214 acts as the docking site of Ad2 (Adenovirus type 2) capsids, and this association 

does not require additional cytosolic import factors (Trotman et al. 2001). The uncoating 

of NPC-docked adenoviral capsids and subsequent genome translocation to the nucleus is 

facilitated by the nuclear histone H1, which, in turn attracts the heterodimer importin-β/

importin7 leading thus to capsid disassembly (Trotman et al. 2001). Although the translocation 

of Ad2 DNA through the NPC remains unknown, it was reported that the export factor 

CRM1 acts as a positional indicator of the nucleus for the adenovirus (Strunze et al. 2005). 

Moreover, CRM1 was reported to be crucial to the detachment of adenoviruses from the 

microtubules and required for Ad2 nuclear import (Strunze et al. 2005).

 One of the best-understood retroviral RNA export pathways is the one utilized by 

human immunodefi ciency virus type 1 (HIV-1) Rev, which is the HIV encoded regulatory 

protein responsible for the export of the Rev-responsive element containing viral RNA 

(Zolotukhin and Felber 1999).

Several peripheral nucleoporins, including Nup214, are thought to participate in Rev-

mediated RNA export by a direct interaction with FG-repeat domains (Stutz et al. 1996). 

Truncated forms of Nup214 can inhibit Rev function (Bogerd et al. 1998), furthermore, 
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the FG-containing repeat domain of Nup214 can inhibit Rev-mediated expression of viral 

proteins (Zolotukhin and Felber 1999). Rev NES was shown to directly interact with human 

CRM1, therefore a depletion of Nup214 FG-repeats impair the ability of CRM1 to bind Rev 

(Bogerd et al. 1998). 

1.6 Nucleoporins and NPC composition in plants

 Although the ultrastructure of the plant NPC has been described some decades ago 

(Franke 1970; Roberts and Northcote 1970; Severs and Jordan 1975), surprisingly little is 

known about its molecular composition. Only few Arabidopsis thaliana nucleoporins have 

been characterized hitherto. In a protein-protein BLAST search, Rose et al. identifi ed four 

putative Arabidopsis nucleoporins that share 30 to 40% of identity and similarity with the 

human nucleoporins gp210, Nup98, Tpr, and Nup155, respectively (Rose et al. 2004). 

1.6.1 gp210

gp210 is a transmembrane nucleoporin located in the lumen of the NPC and comprises a 

carboxyterminal domain as well as a luminal domain with several N-linked high mannose-

type oligosaccharide groups (Wozniak et al. 1989; Greber et al. 1990). The similarity 

between the Atgp210 and human gp210 lies in the C-terminal amino acid sequence (Rose et 

al. 2004).

gp210 is known to play a role in NPC assembly (Wozniak et al. 1989; Greber et al. 

1990), NPC biogenesis (Gerace et al. 1982; Bodoor et al. 1999), and in incorporation of 

nucleoporin subcomplexes to the NE and to the NPC (Eriksson et al. 2004). Furthermore, 

RNAi experiments in C. elegans and HeLa cells revealed that gp210 is essential for viability 

and its loss coincides with a high frequency of disorganized NPCs and defects in chromatin 

condensation (Cohen et al. 2003). However, in other studies, gp210 was found to be 

dispensable for NPC anchoring to the NE and for NPC stability maintenance (Galy et al. 

2003; Eriksson et al. 2004).

1.6.2 Nup98 and Nup96

 The fi rst identifi ed Arabidopsis protein containing a large number of FG-repeats 
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motif is AtNup98, which aligned with FG-repeats of mammalian Nup98 (Rose et al. 2004). 

Whereas mammalian Nup98 is transcribed from one gene (Powers et al. 1995; Radu et al. 

1995), two NUP98 genes have been identifi ed in Arabidopsis (At1g10390 and At1g59660) 

(Zhang and Li 2005), similar to yeast where three homologues of Nup98 are known, i.e. 

Nup100p, Nup116p, Nup145-Np (Wente and Blobel 1993; Fabre et al. 1994; Bailer et al. 

1998). Nup98 and its yeast homologue Nup145p-Np are generated by proteolytic cleavage 

from a precursor protein, which yields in mammalian nucleoporins Nup98 and Nup96 as well 

as in the yeast nucleoporin Nup145-Np and Nup145-Cp (Dockendorff et al. 1997; Emtage et 

al. 1997; Teixeira et al. 1997).

Initially Nup98 was thought to exclusively play a role in nuclear export, but more recent 

data provided evidence that Nup98 functions in nuclear import as well (Blevins et al. 2003). 

Immuno-EM revealed that Nup98 localizes to both sides of the NPC, where it interacts with 

Nup88 on the cytoplasmic side and Nup96 as well as Tpr on the nuclear side (Radu et al. 

1995). Besides this, Nup98 is known to interact with a number of distinct nuclear transport 

factors as RaeI/Gle2, TAP and CRM1 (Neville et al. 1997; Pritchard et al. 1999; Strasser et 

al. 2000; Strawn et al. 2001).

 In humans, Nup98 is frequently detected in rare chromosomal translocations 

associated with distinct forms acute and chronic myelogenous leukemia (AML and CML), 

T cell acute lymphoblastic leukemia (T-ALL), as well as myelodysplastic syndrome (MDS) 

(Lam and Aplan 2001). Up to 19 different Nup98 fusion partners have been identifi ed up to 

now, such as various homeobox genes (HOXA9, HOXA11, HOXA13, HOXC11, HOXC13, 

HOXD11 and HOXD13), the helicase DDX10, and the topoisomerase TOP1 (Romana et 

al. 2006). These fusions of NUP98 and HOX genes typically compromise the N-terminal 

GLFG-repeats of Nup98 due to breakpoints in exon 8 and 16 in the NUP98 gene, which leads 

to transcriptional transactivation of genes involved in HOX gene-regulated hematopoiesis 

(Slape and Aplan 2004).

 As mentioned above, Nup98 is autocatalytically cleaved from a Nup98/Nup96 

precursor protein, which results in the two nucleoporins Nup98 and Nup96 (Enninga et al. 

2003). Nup96, like Nup98, localizes to both sides of the NPC, and is a component of Nup107-

160 complex (Enninga et al. 2002), which has a crucial role in NPC assembly (Harel et al. 

2003; Walther et al. 2003) and mRNA export (Vasu et al. 2001). A homologue of Nup96 

has been recently been identifi ed in A. thaliana but, in contrast to vertebrates and yeast it is 

not expressed from a common precursor with Nup98 and the AtNup98 and AtNup96 genes 

locate to different chromosomal regions (Mans et al. 2004; Zhang and Li 2005). AtNup96 

(also named MOS3) is required for basal defense and constitutive resistance responses to 

pathogens mediated by the resistance gene (R-gene) (Li et al. 2001; Zhang et al. 2003). 

Interestingly, human Nup96 can be induced by interferons (Enninga et al. 2003), and more 
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recently it has been shown that Nup96 play a role innate and adaptive immunity (Faria et al. 

2006). As nucleoporins are not only involved in mediating nucleocytoplasmic transport, but 

also in a number of other cellular processes, such as regulation of gene expression, chromatin 

organization, chromosome positioning, apoptosis and the secretory pathway (reviewed in 

(Fahrenkrog and Aebi 2003; Fahrenkrog et al. 2004)) it will be interesting to see if AtNup96 

function in pathogen response is related to a putative role in nucleocytoplasmic transport or 

exclusively due to dysfunction of signaling events. 

1.6.3 Tpr

 In a protein-protein BLAST search, Rose et al. identifi ed a putative Arabidopsis 

homologue of mammalian Tpr (Rose et al. 2004), a 267 kDa coiled-coil protooncogenic 

protein localized to the nucleoplasmic side of the NPC and some intranuclear foci (Frosst 

et al. 2002; Krull et al. 2004), similar to the two putative Tpr homologues in budding yeast, 

Mlp1 and Mlp2 (Strambio-de-Castillia et al. 1999). Within the nuclear basket of mammalian 

NPCs, Tpr seems to act as scaffold for other nuclear basket proteins, such as Nup153 and 

it is known to have roles in protein and RNA export (Bangs et al. 1998; Frosst et al. 2002; 

Shibata et al. 2002), as well as probably in the recycling of the nuclear transport factors 

Importin-α and Importin-β (Bangs et al. 1998). Its role in plants remains to be elucidated.

1.6.4 Nup155

 In their BLAST search, Rose et al. identifi ed a fi fth Arabidopsis nucleoporin, the 

homologue of human Nup155 (Rose et al. 2004), which harbors no FG-repeat domains and 

was fi rst identifi ed in rat cells. Immuno-EM revealed that Nup155 resides on both the nuclear 

and cytoplasmic face of the NPC (Radu et al. 1993). Human Nup155 and its yeast homologue 

yNup170/yNup157 play a role in mRNA export due to their interaction with the putative 

mRNA export factor Gle1(Rayala et al. 2004). However, the exact targeting mechanism 

of hGle1 to the NPC has remained unclear (Kendirgi et al. 2005). RNAi studies as well as 

in vitro nuclear assembly assays have shown that Nup155 is required for postmitotic NE 

and NPC formation in C. elegans embryos and Xenopus egg extracts (Franz et al. 2005). 

However, how Nup155 exactly contributes to NPC structure has remained elusive (see also 

(Kendirgi et al. 2005)).
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1.6.5 Nup133

 Another plant nucleoporin that has been identifi ed and found to be involved in plant-

microbe interaction is Nup133 from Lotus japonicus (Kanamori et al. 2006). These fi ndings 

indicate an essential function for nucleoporins and probably nucleocytoplasmic transport in 

plant response to microbes. Lotus Nup133 shows 54% identity to the predicted Arabidopsis 

protein At2g05120 and 47% identity to a predicted rice protein (AAN52748), but only 20% 

identity to yeast and human Nup133 (Kanamori et al. 2006). Consistently, Lotus Nup133 

cannot complement Nup133 function in yeast strains deleted for Nup133 [85]. Despite this 

lack of conservation between species on sequence level, secondary structure prediction 

revealed an N-terminal β-propeller structure and a C-terminal helical domain, exactly as 

shown for the human and yeast Nup133 proteins (Berke et al. 2004; Schwartz 2005). Lotus 

Nup133 is expressed in all plant organs and mutations in NUP133 caused defects in root 

modulators, but, however, no general developmental defects (Kanamori et al. 2006). In 

contrast, Lotus lines expressing Nup133 mutants have a lower number of seeds in mature 

pods as compared to wild type lines.

Nup133, as Nup96, is a constituent of the Nup107-160 complex in vertebrates and the 

Nup84p complex in yeast, respectively (Siniossoglou et al. 1996; Allen et al. 2002; Lutzmann 

et al. 2002). Therefore, the role of plant Nup133 and Nup96 in plant-pathogen interaction 

gives rise to the question if other members of the Nup107-160 complex have similar functions 

in plants as well. Also, it will be interesting to see if besides Nup96 other members of the 

Nup107-160 complex play a role in human immune response.

1.6.6 Glycoprotein gp40

 O-Linked N-acetylglucosamine (O-GlcNAc) glycosylation is a posttranslational 

modifi cation of proteins by a single N-acetylglucosamine residue on serine and threonine 

groups. A subset of vertebrate, but not yeast, nucleoporins show GlcNAc-modifi cation and 

they specifi cally bind the lectin wheat germ agglutinin (WGA), which causes an inhibition 

of nucleocytoplasmic transport (Davis and Blobel 1987; Holt et al. 1987; Snow et al. 1987; 

Finlay et al. 1991; Guan et al. 1995). Sugar modifi cations are also found on plant proteins, 

although it occurs in a different manner compared to the addition of single O-linked GlcNAc 

found in vertebrate nucleoporins (Hicks and Raikhel 1995). The addition of the O-GlcNAc 

seems to take place in the cytoplasm, in vertebrates as well as in plants (Kreppel et al. 1997). 

The best characterized vertebrate O-GlcNAc nucleoporin is Nup62, whose glycosylation 

has been investigated extensively (Starr and Hanover 1990; Carmo-Fonseca et al. 1991; 

Cordes et al. 1991; Cordes and Krohne 1993). However, the exact function of the O-
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GlcNAc modifi cations still remains elusive (Hanover et al. 1987; Hart 1997). O-GlcNAc 

modifi cations play no role for either nucleocytoplasmic transport or NPC assembly (Miller 

and Hanover 1994), but may protect proteins from proteolysis (Hart et al. 1989; Haltiwanger 

et al. 1992).

 In search for glycoproteins in plant NEs, a 40 kDa glycoprotein called gp40 has 

been isolated from tobacco nuclear extracts (Heese-Peck and Raikhel 1998). gp40 localizes 

to the plant NPC and shows homology to bacterial aldose-1-epimerase, which functions in 

carbohydrate metabolism. The function of plant gp40 at the NPC and for plant metabolism 

remains to be elucidated.

1.6.7 Other plant nucleoporins

 Functional analysis of plant nucleoporins is still at the very beginning and besides 

nucleoporinsNup98, Nup96, Nup133 and gp40, no other nucleoporin has been characterized 

in plants thus far. A recent systemic BLAST and phylogenetic study, however, has revealed 

that out of 60 NPC or NPC-associated proteins, 45 are present in green plants. Interestingly, 

no homologues of the integral membrane proteins gp210 and POM121 have been identifi ed 

in this study (Bapteste et al. 2005). Moreover, no homologues of Nup214 and Nup358, which 

are located to the cytoplasmic periphery of the NPC, as well as of Nup153, a component of 

the nuclear basket, appear to be present in plants. Nup214, Nup358 and Nup153 are the major 

FG-repeat containing nucleoporins in vertebrates, indicating differences in the regulation of 

nucleocytoplasmic transport in plants as compared to vertebrates.

1.7 Nucleocytoplasmic transport

 The main function of the NPC is mediating the bidirectional traffi cking of proteins 

and RNAs between the cytoplasm and nucleus of interphase eukaryotic cells (Fried and Kutay 

2003; Pemberton and Paschal 2005). Small molecules, such as ions as wells as proteins that 

have a molecular mass of less than 40 kDa can traverse the NPC simply by diffusion, whereas 

the nuclear import of larger proteins is energy- and signal-dependent. Proteins destined for 

the nucleus with a molecular mass larger than ~40 kDa typically harbor nuclear localization 

signals (NLSs) within their amino acid sequence, a stretch of basic amino acids fi rst 

identifi ed in the simian virus (SV40) large T-antigen (Makkerh et al. 1996). NLS sequences 

are recognized by a class of nuclear import receptors, known as importins or karyopherins 

(Kutay et al. 1997; Fried and Kutay 2003; Rollenhagen et al. 2003). Most importins are able 
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to bind to their cargo directly, but some use adapter molecules, just as in case of the so-called 

classical nuclear import pathway (Fig. 1.4). The classical NLS, as found in the SV40 large 

T-antigen, is recognized by the adapter protein importin-α, which, in turn, interacts with the 

actual receptor importin-β. Such an importin-cargo complex is able to interact and traverses 

the NPC via interaction of importin-β with FG-repeat nucleoporins. Once the complex 

reaches the nuclear face of the NPC, binding of the small GTPase RanGTP to importin-β 

induces a conformational change within the receptor and causes the dissociation of the cargo 

from the receptor and the dissociation of the receptor from the NPC, which, in complex with 

RanGTP, next is recycled back to the cytoplasm (Fig. 1.4). Importin-α is exported out of the 

nucleus by its own export receptor, known as CAS, which is a importin-β-like protein (Fried 

and Kutay 2003; Pemberton and Paschal 2005).

 Similarly, a cargo for nuclear export requires a nuclear export signal (NES), which is 

recognized by an exportin (Gorlich and Kutay 1999). The binding of the exportin to its cargo 

can only occur in the presence of RanGTP. Such as heterotrimeric export complex is able to 

interact with the NPC via the receptor and after NPC translocation it becomes dissociated 

upon RanGTP hydrolysis by the GTPase activating protein RanGAP at the cytoplasmic face 

of the NPC (Fig. 1.4). The exportin shuttles back into the nucleus, whereas RanGDP gets 

re-imported into the nucleus by its own import receptor, known as NTF2 (nuclear transport 

factor 2) (Bayliss et al. 1999). Once in the nucleus, RanGDP is reloaded with GTP by the 

guanine nucleotide exchange factor RanGEF, called RCC1, a chromatin-associated nuclear 

protein.

Figure 1.4: Nucleocytoplasmic transport pathways. Importin-α/β dimers bind to cargo molecules harboring a nuclear 

localization signal (NLS) in the cytoplasm and mediate the interaction with the nuclear pore complex (NPC). In the nucleus, 

after NPC translocation, RanGTP binds to the importin-β, which induces a conformational change in importin-β,  and leads 

to the dissociation of the cargo-receptor complex and the release from the NPC. The importin-β,  -RanGTP complex and a 
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trimeric importin-α-CAS-RanGTP complex then recycle back into the cytoplasm, where RanGTP is displaced upon GTP 

hydrolysis mediated by a concerted action of RanGAP, RanBP1 and RanBP2 at the cytoplasmic fi laments. CAS represents 

the exclusive export receptor for importin-α. RanGDP is imported back into the nucleus by its own import receptor, 

called NTF2 (not shown). Exportins bind to cargo harboring a nuclear export signal (NES), which requires the presence 

of RanGTP. An export complex becomes dissociated upon GTP hydrolysis at the cytoplasmic face of the NPC and the 

exportin shuttles back to the nucleus.

1.7.1 Nucleocytoplasmic transport in plants

 In contrast to the NPC itself, nucleocytoplasmic transport in plants is much better 

understood. Vertebrate and yeast NLS as well as NES sequences have been found to be 

functional in plants (Ward and Lazarowitz 1999; Merkle 2001) and endogenous NLS and 

NES sequences have been found in a number of plants proteins (Meier 2005). Moreover, 

plant homologues to virtually all known vertebrate and yeast transport factors have been 

identifi ed in plants, indicating the evolutionary conservation of nucleocytoplasmic transport. 

However, plant nuclear import shows some unusual features as compared to yeast and 

vertebrates (Smith and Raikhel 1999). A unique feature of plant nuclear import, for example, 

is its occurrence at 4°C (Hicks et al. 1996; Merkle et al. 1996) and that it is not blocked by 

wheat germ agglutinin, a lectin that, in vertebrates, specifi cally binds to GlcNAc residues on 

glycosylated nucleoporins (see above).

 At least eight homologues of importin-α have been identifi ed in the Arabidopsis 

genome with high similarity to human importin-α (Meier 2005). In vitro binding assays using 

recombinant plant importin-α revealed that the different isoforms are recognizing different 

types of NLSs (Jiang et al. 2001). At-importin-α proteins show a similar domain organization 

as known from yeast and vertebrates, i.e. an amino-terminal importin-binding (IBB) domain 

(Gorlich et al. 1996; Weis et al. 1996), a central armadillo (arm)-repeat domain (Conti et al. 

1998), and a carboxyl-terminal domain that contains a critical acidic patch implicated in the 

interaction with its nuclear export receptor CAS (Herold et al. 1998). At-importin-α shows 

NE association similar to importin-β in mammalian cells (Hicks and Raikhel 1995) and can 

mediate nuclear import in the absence of importin-β in vitro (Hubner et al. 1999). Moreover, 

plant importin-α seems to interact with cytoskeleton proteins through its armadillo repeats, 

and the association of At-importin-α with microtubules and actin microfi laments occurs in 

an NLS-dependent manner in vitro (Smith and Raikhel 1998). Interestingly, At-importin-

α3,which is encoded by the gene MOS6 gene, appears to play a role in plant disease response 

(Palma et al. 2005), similar to Nup96/MOS3 (see above).

 Seventeen genes encoding importin-β-like proteins have been found in the 
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Arabidopsis genome, yet most of these predicted proteins are not characterized (Bollman et 

al. 2003). Rice importin-β, however, associates with importin-α and RanGTP (Jiang et al. 

1998). A homologue to human transportin 1, also known as importin-β2 has been identifi ed 

in Arabidopsis, which, similar to vertebrates and yeast, promotes the nuclear import of 

hnRNP proteins (Ziemienowicz et al. 2003). Two orthologues for CRM1/XPO1, the export 

receptor for cargoes harboring a leucine-rich NES, and CAS, the nuclear export receptor 

for importin-α, have been also identifi ed in Arabidopsis (Haasen et al. 1999). HASTY, the 

homologue of vertebrate exportin-5 and yeast Msn5p, respectively, is another importin-β-

like protein in Arabidopsis and it has been shown to have an essential function in plants 

growth and development (Bollman et al. 2003). PAUSED was identifi ed as the Arabidopsis 

orthologue of exportin-t/Los1p, the export receptors for tRNA in vertebrates and yeast, and 

evidences suggests that PAUSED is involved in tRNA export as well (Hunter et al. 2003). All 

identifi ed plants importin-β-like proteins interact with RanGTP (Meier 2005) and, together, 

these fi ndings suggest that most nuclear transport pathways are conserved in plants.

 Components of the Ran cycle have been identifi ed in plants as well. Ran homologues 

have been found in distinct plant species (Meier 2005) and in Arabidopsis, Ran appears to be 

encoded by a small gene family as three gene have been identifi ed (Haizel et al. 1997). At-

RanGAP can complement yeast mutants defective in the yeast RanGAP homologue Rna1p 

(Pay et al. 2002), and interestingly its anchoring to the NE is mediated by an unique tryptophan-

proline-proline (WPP) domain, which is not present in yeast or vertebrate RanGAP (Rose 

and Meier 2001). This WPP domain, which is predicted to contain three α helices and one β 

strand, is necessary and suffi cient to target At-RanGAP to the NE (Patel et al. 2004). These 

fi ndings, together with the apparent absence of Nup358/RanBP2 in the Arabidopsis genome, 

suggest that although nuclear transport pathways appear to be predominantly conserved 

during evolution, plants have evolved a different mechanism of RanGTP hydrolysis. This 

might be true for GTP loading as well, since a homologue to RCC1, the RanGEF, has not 

been identifi ed in plants thus far.
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Summary

 Nuclear pore complexes (NPCs) facilitate macromolecular exchange between 

the nucleus and cytoplasm of eukaryotic cells. The vertebrate NPC is composed of ~30 

different proteins (nucleoporins), of which around one third contain phenylalanine-glycine 

(FG)-repeat domains that are thought to mediate the main interaction between the NPC and 

soluble transport receptors. We have recently shown that the FG-repeat domain of Nup153 

is fl exible within the NPC, although this nucleoporin is anchored to the nuclear side of the 

NPC. By using domain-specifi c antibodies, we have now mapped the domain topology of 

Nup214 in Xenopus oocytes and in human somatic cells by immuno-EM. We have found 

that whereas Nup214 is anchored to the cytoplasmic side of the NPC via its N-terminal and 

central domain, its FG-repeat domain appears fl exible, residing on both sides of the NPC. 

Moreover, the spatial distribution of the FG-repeat domains of both Nup153 and Nup214 

shifts in a transport-dependent manner, suggesting that the location of FG-repeat domains 

within the NPC correlates with cargo/receptor interactions and that they concomitantly move 

with cargo through the central pore of the NPC.

Keywords: Nuclear pore complex; nuclear transport; FG-repeats; Nup214; Nup153
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2.1 Introduction

 Nuclear pore complexes (NPCs) facilitate the exchange of proteins and RNPs between 

the nucleus and cytoplasm of eukaryotic cells (Fried and Kutay 2003; Mosammaparast and 

Pemberton 2004). The vertebrate ~125 MDa NPC (Reichelt et al. 1990) is composed of 

~30 different proteins (Cronshaw et al. 2002) collectively termed nucleoporins (Nups). 

Extensive electron microscopy (EM) studies mainly in Xenopus oocytes have led to a draft 

of the 3-D NPC architecture (Hinshaw et al. 1992; Akey and Radermacher 1993; Stoffl er et 

al. 2003; Beck et al. 2004). Accordingly, the NPC is composed of an eightfold symmetric 

central framework that is continuous with a cytoplasmic and a nuclear ring moiety. Eight 

cytoplasmic fi laments decorate the cytoplasmic ring, whereas the nuclear ring is topped 

by the nuclear basket. Enclosed by the central framework is the central pore, ~90 nm long 

and 40-50 nm in diameter in its narrowest part (Pante and Kann 2002; Stoffl er et al. 2003), 

which allows diffusion of small ions and molecules and facilitated, signal-dependent nuclear 

transport in and out of the nucleus (see (Fahrenkrog and Aebi 2003; Suntharalingam and 

Wente 2003; Fahrenkrog et al. 2004)).

 For typical facilitated nuclear transport, receptors of the karyopherin family 

recognize nuclear import signals (NLSs) or nuclear export signals (NESs) on their cargo 

(Fried and Kutay 2003; Mosammaparast and Pemberton 2004). The transport receptor, in 

turn, is able to mediate the interaction of the cargo-receptor complex with the NPC. It is 

thought that the main, albeit not the exclusive (Strawn et al. 2004), interaction between the 

transport receptors and the NPC is mediated by a subset of nucleoporins that harbor FG 

(phenylalanine-glycine)-repeat domains. Based on X-ray crystallography and biophysical 

analysis, FG-repeat domains exhibit little secondary structure (Bayliss et al. 2000; Bayliss 

et al. 2000; Fribourg et al. 2001; Bayliss et al. 2002; Denning et al. 2002; Grant et al. 2002; 

Denning et al. 2003).

 Immuno-EM studies of the vertebrate nucleoporin Nup153 demonstrated a high 

degree of mobility and structural fl exibility of its FG-repeat domain (Fahrenkrog et al. 2002). 

Nup153 is a constituent of the nuclear basket of the NPC (Pante et al. 1994) and immuno-

EM analysis indicates that its N-terminal domain is anchored to the nuclear ring (Walther et 

al. 2001; Fahrenkrog et al. 2002), whereas its central zinc-fi nger domain resides at the distal 

ring (Fahrenkrog et al. 2002). The ~700 amino acid C-terminal domain of Nup153 harbors 

~40 FG-repeats, and seems to be fl exible within the NPC, since it can be detected at the 

nuclear basket and even at the cytoplasmic periphery of the central pore (Fahrenkrog et al. 

2002). Nup153 is known to be critical for both nuclear import and nuclear export (Bastos et 

al. 1996; Shah et al. 1998; Nakielny et al. 1999; Ullman et al. 1999; Walther et al. 2001).

 The vertebrate nucleoporin Nup214, also called CAN, is an FG-repeat nucleoporin 
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previously mapped to the cytoplasmic face of the NPC (Kraemer et al. 1994; Pante et al. 

1994; Walther et al. 2001). Like Nup153, Nup214 participates in both nuclear import and 

export (van Deursen et al. 1996). Nup214 depletion, however, does not lead to a complete 

block of nuclear import (van Deursen et al. 1996; Walther et al. 2002). Based on its amino 

acid sequence, Nup214 can be subdivided into three distinct domains: a N-terminal domain, a 

central domain with a region of predicted coiled-coil at its N-terminus, and a C-terminal FG-

repeat domain that spans ~800 amino acids (Fornerod et al. 1997) and mediates interactions 

with various transport factors (Fornerod et al. 1997; Katahira et al. 1999; Kuersten et al. 

2002; Rollenhagen et al. 2003).

 Based on the structural fl exibility and mobility of the FG-repeat domain of Nup153, 

we asked whether this might be a general attribute of FG-repeat domains, in particular those 

of peripheral nucleoporins such as Nup214. We therefore aimed to map the domain topology 

of Nup214 within the 3-D architecture of the NPC. To achieve this, we raised three antibodies 

against the distinct domains of human Nup214 and determined the precise location of these 

domains in intact Xenopus nuclei as well as in somatic human cells by immuno-EM. Our 

data clearly show that the three domains of Nup214 are located at distinct sites within the 

NPC and that the FG-repeat domain of Nup214 is fl exible within the NPC. Moreover, our 

data demonstrate that the localization of the FG-repeat domains of both Nup153 and Nup214 

is responsive to transport activity at the nuclear pore.
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2.2 Results

2.2.1 Production and characterization of domain-specifi c antibodies to Nup214

 In order to gain a better understanding of the topology and domain accessibility 

of Nup214 within the NPC, a number of domain-specifi c antibodies were generated (see 

Materials and Methods and Fig. 2.1A). To characterize the specifi city of these antibodies, 

their reactivity was tested in an immunoblot (Fig. 2.1B). Each antibody selectively recognized 

Nup214 in HeLa cell extracts, Xenopus egg extracts and among isolated Xenopus WGA-

binding proteins (Fig. 2.1B, lane 1-3 each panel). The Nup214-A antibody recognizes an 

additional protein of ~50 kDa in Xenopus egg extracts (Fig. 2.1B, arrow head), but not in 

HeLa cell extracts. This ~50 kDa protein is unlikely to be NPC-associated, however, as 

it is not detected in an NPC-rich annulate lamellae (AL) fraction (see 214A, Fig. 2.1B). 

All antibodies recognize to some extent a protein of ~40 kDa (Fig. 2.1B, asterisk). This 

band is still present in AL prepared in the presence of BAPTA to prevent NPC assembly 

(most noticeable in the 214D blot, Fig. 2.1B), suggesting that this band is a cross-reacting 

membrane protein. Together, these tests indicate that, while some cross-reactivity cannot 

be ruled out, reactivity at the NPC itself should clearly refl ect the presence and domain 

exposure of Nup214.

Figure 2.1: Domain-specifi c Nup214 antibodies. (A) Schematic representation of Nup214. Blue lines indicate the 

positions of individual FG-repeats. Recombinant domains used as immunogens are indicated (see Materials and Methods). 

(B) Nup214 antibodies were used to probe immunoblots. HeLa cell extract (H), Xenopus egg extracts (X), Xenopus WGA-

binding proteins (W) and Xenopus annulate lamellae (AL) assembled in the presence or absence of the inhibitor BAPTA 

(+/-) were separated by SDS-PAGE and processed for immunoblotting (see Material and Methods).
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2.2.2 The N-terminal domain of Nup214 localizes to the cytoplasmic side of the 
NPC

 To localize the distinct domains of Nup214 within the NPC, we used domain-specifi c 

antibodies for immuno-EM. Although the antibodies were raised against human Nup214, 

Xenopus oocyte nuclei were used due to the better structural resolution and higher density 

of NPCs in comparison to somatic cells. Intact nuclei were isolated and incubated with anti-

Nup214-A antibody, a secondary anti-rabbit IgG antibody conjugated to 10-nm colloidal 

gold, and then analyzed by thin section immuno-EM. We found the N-terminal domain of 

Nup214 to reside close to the nuclear membrane at a mean distance from the central plane 

of the NE of 31 nm (± 6 nm; Table 2.1), corresponding to an epitope at the cytoplasmic 

ring of the NPC. The anti-Nup214-A antibody showed some degree of cross reactivity in 

Xenopus nuclei with an epitope at the nuclear basket (data not shown). Based on Western 

blot analysis (Fig. 2.1B) we suppose this to be the protein of ~50 kDa, which is recognized 

by the antibody in Xenopus but not in human.

 To confi rm the exclusive cytoplasmic location of the N-terminal domain of Nup214 

we determined its location in HL-60 cells, human promyelocytic leukocytes. As shown in 

Fig. 2.2A, in these human somatic cells the anti-Nup214-A recognized an epitope exclusively 

on the cytoplasmic side of the NE. Quantifi cation of the gold particle distribution (Fig. 2.2B 

and Table 2.1) revealed a mean distance of 20 nm (± 13 nm) from the central plane of the 

NE and a corresponding average radial distance of 15 nm (± 13 nm), representing an epitope 

near or at the cytoplasmic ring of the NPC.

Antibody Xenopus laevis HL-60 cells

Anti-Nup214-A +31 nm±6 nm +20 nm±13 nm

Anti-Nup214-B +21 nm±12 nm +9 nm±10 nm

Anti-Nup214-D +11 nm±10 nm +14 nm±12 nm

Anti-Nup214-D –29nm±12 nm –30 nm±12 nm

Anti-Nup214-D –86 nm±13 nm –75 nm±18 nm

Numbers represent the distance from the central plane of the NPC. +, 

cytoplasmic; –, nuclear.

Table 2.1: Comparison of the location of different Nup214 domains in Xenopus nuclei versus HL-60 

cells.
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2.2.3 Location of the central domain of Nup214

 We next examined the location of the central domain of Nup214 within the NPC. 

Intact Xenopus oocyte nuclei were isolated and incubated with anti-Nup214-B (see Fig. 2.1), 

a secondary anti-rabbit IgG antibody conjugated to 10-nm colloidal gold and analyzed by 

thin section immuno-EM.

 As shown in Fig. 2.2C, the anti-Nup214-B antibody exclusively labelled the 

cytoplasmic face of the NPC. Quantifi cation of the gold particle distribution (Fig. 2.2D and 

Table 2.1) revealed an average distance of 21 nm (± 12 nm) from the central plane of the NE. 

A corresponding mean radial distance of 17 nm (± 15 nm) indicated that this location resides 

near or at the cytoplasmic ring of the NPC near the entry to the central pore. These results 

were confi rmed in HL-60 cells (see Table 2.1).

2.2.4 The C-terminal domain of Nup214 is fl exible

 Next, we wanted to resolve the location of the C-terminal FG-repeat domain of 

Nup214. As before, isolated intact Xenopus nuclei were incubated with the repeat domain 

antibody (anti-Nup214-D) and a secondary anti-rabbit IgG antibody conjugated to 10-nm 

colloidal gold. The epitope recognized by the antibody was analyzed by thin section immuno-

EM.

 As shown in Fig. 2.2E, the anti-Nup214-D recognized epitopes on both the cytoplasmic 

and the nuclear face of the NPC. Quantifi cation of the labelling pattern (Fig. 2.2F and Table 

2.1) relative to the central plane of the NPC revealed that 87% of the particles were detected 

at a mean distance of 11 nm (± 10 nm). With corresponding mean radial distances of 12 nm 

(± 11 nm), this labelling pattern is consistent with a location near or at the cytoplasmic ring. 

13% of the gold particles were found on the nuclear side of the NPC, of which 2% were 

detected at a mean distance of -29 nm (± 12 nm) and 11% at -86 nm (± 12 nm), refl ecting 

epitopes within the nuclear basket of the NPC. Again, these results were confi rmed in HL-60 

cells and a similar distribution was observed (see Table 2.1). Moreover, similar results were 

obtained in Xenopus nuclei with a distinct anti-peptide antibody raised against the FG-repeat 

domain of human Nup214 (R. Kehlenbach and B. Fahrenkrog, unpublished results). Taken 

together, the multiple locations of the C-terminal, FG-repeat domain of Nup214 indicate a 

fl exible topology of this domain.
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Figure 2.2: Domain-topology of Nup214 within the NPC. (A) HL-60 cells were pre-embedding labelled with anti-

Nup214-A antibody and a secondary anti-rabbit IgG antibody conjugated to 10-nm gold and prepared for thin section EM. 

Shown are selected examples of gold-labelled NPCs in cross-section. c, cytoplasm; n, nucleus (B) Quantitative analysis 

of the gold particle distribution associated with the NPC. 36 gold particles were scored. (C) Intact isolated Xenopus nuclei 

were incubated with anti-Nup214-B antibody and (E) anti-Nup214-D antibody and a secondary anti-rabbit IgG antibody 

conjugated to 10-nm colloidal gold. Shown are a stretch along the NE in cross-sections (top) and a gallery of selected 

examples of gold-labelled NPCs (bottom). c, cytoplasm; n, nucleus. (D) Quantifi cation of the gold particles associated with 

the NPC after labelling with the anti-Nup214-B antibody and (F) with the anti-Nup214-D antibody. One hundred sixty-six 

and two hundred fi fty-nine, respectively, gold particles were scored. Scale bars, 100 nm.



72

Chapter 2 Transport-dependent Nucleoporin Domain Topology

2.2.5 Recombinant expression of epitope-tagged hNup214 into Xenopus NPCs

 Previously we have shown that tagged hNup153 incorporates into the NPC after 

microinjection of a plasmid encoding epitope-tagged hNup153 into the nuclei of Xenopus 

oocytes (Fahrenkrog et al. 2002). We therefore aimed to confi rm the location of the N-terminus 

and the multiple locations of the C-terminus of Nup214 by similarly employing epitope 

tagged versions of Nup214. To achieve this, we generated a plasmid encoding hNup214 with 

either a N-terminal GFP-tag (GFP-Nup214) or a C-terminal myc-tag (Nup214-myc). By 

transient transfection of different cultured cell lines we fi rst verifi ed that the fusion proteins 

were expressed and incorporated into the NPC (Fig. 2.S1). Next, we microinjected the 

plasmids into the nuclei of Xenopus oocytes. To determine the location of the incorporated 

proteins we used either a polyclonal anti-GFP antibody or a monoclonal anti-myc antibody, 

both directly conjugated to 8-nm colloidal gold.

 As shown in Fig. 2.3A, the N-terminal GFP-tag localizes predominantly to the 

cytoplasmic face of the NPC (mean distance from the central plane of the NPC 25 nm ± 

9 nm with radial distances of 12 nm ± 10 nm). However, about 23% of the gold particles 

associated with the nuclear side of the NPC (Fig. 2.3B). This nuclear signal may be due in 

part to some mislocalization previously shown to be caused by overexpression (Boer et al. 

1997)

 As shown in Fig. 2.3C, the C-terminal myc-tag localizes to both faces of the NPC. 

Quantifi cation of the labelling distribution revealed that 63% of the gold particles were 

associated with the cytoplasmic side of the NPC (mean distance from the central plane of 

the NPC 31 nm ± 11 nm with a corresponding radial distance of 19 nm ± 13 nm). 37% of 

the gold particles labelled the nuclear face of the NPC. Of these, 13 % of the gold particles 
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Figure 2.3: Incorporation of tagged hNup214 into Xenopus NPCs. (A) Immunolocalization of N-terminally GFP-

tagged Nup214 (GFP-Nup214) expressed in Xenopus oocytes with a polyclonal anti-GFP antibody directly conjugated 

to 8-nm colloidal gold. Selected examples of labelled NPCs in cross-sections are shown. c, cytoplasm; n, nucleus. (B) 

Quantifi cation of the gold particle distribution associated with the NPC after labelling with an anti-GFP antibody. Ninety-

seven gold particles were scored. (C) Immunolocalization of C-terminally myc-tagged Nup214 (Nup214-myc) expressed 

in Xenopus oocytes with a monoclonal anti-myc antibody directly conjugated to 8-nm colloidal gold. Selected examples 

of gold-labelled NPCs are shown. c, cytoplasm; n, nucleus. (D) Quantitative analysis of the distribution of gold particles 

associated with the NPC after labelling with an anti-myc antibody. Ninety-two gold particles were scored. (E) Schematic 

representation of the domain-topology of Nup214 in the 3-D architecture of the NPC. Nup214 is anchored to the cytoplasmic 

ring of the NPC by its N-terminal and central domain (red), whereas the C-terminal FG-repeat domain (yellow) is fl exible 

and can be mapped at the cytoplasmic face of the NPC (left), the nuclear periphery of the central pore (middle), and even 

at the distal ring of the nuclear basket (right). c, cytoplasm; n, nucleus. Scale bars, 100 nm. 
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were found at a mean distance of-40 nm ± 7 nm, and 24 % at a mean distance of -76 nm ± 

14 nm from the central plane representing locations within the nuclear basket of the NPC. 

Taking into account that some gold particles might be associated with the nuclear face of the 

NPC due to overexpression (~23%; see above), we estimate that ~14% of the gold particles 

should refl ect specifi c location of this region to the nuclear side of the NPC. This extent of C-

terminal myc-tag detection is similar to the labelling seen with the domain-specifi c antibody 

against the FG-repeat domain of Nup214 (anti-Nup214-D; see above and Fig. 2.2E and F).

 Taken together, our immuno-EM data using domain-specifi c antibodies and 

incorporation of epitope-tagged hNup214 into Xenopus oocyte NPCs suggest that the N-

terminal and central region of Nup214 are anchored near or at the cytoplasmic ring of the NPC, 

whereas the C-terminal FG-repeat domain is fl exible and present on both the cytoplasmic 

and nuclear periphery of the NPC (Fig. 2.3E).

2.2.6 Attenuation of nuclear transport constrains FG-repeat domains to their 
anchoring site

 The pronounced heterogeneous distribution of FG-repeat domains could be due to 

mobility that is linked to nuclear transport activity, especially in cargo translocation through 

the central pore of the NPC. This hypothesis predicts that the location of the FG-repeat 

domains within the NPC would be infl uenced by the transport activity of the NPC. We 

therefore analyzed whether the location of the FG-repeat domains of the nucleoporins 

Nup153 and Nup214 is dependent on the transport state of the cell.

 Nuclear transport is readily attenuated at 4°C (Pante and Aebi 1996). To study 

the infl uence of attenuated nuclear transport on the location of the FG-repeat domains of 

Nup153 and Nup214, nuclei were isolated from Xenopus oocytes and incubated at 4°C 

for 1h. After fi xation in 4% formaldehyde, the nuclei were labelled with anti-Nup153-C2 

antibody (Fahrenkrog et al. 2002) or anti-Nup214-D antibody to determine the location of 

the FG-repeat domains of these nucleoporins under these conditions.

 At steady-state, the FG-repeat domain of Nup153 localizes to the nuclear basket as 

well as to some extent (~12%) to the cytoplasmic periphery of the central pore (Fahrenkrog 

et al. 2002). In contrast, when nuclear transport is arrested, the anti-Nup153-C2 antibody 

exclusively decorates the nuclear face of the NPC (Fig. 2.4A). 76% of the gold particles 

were found in the area of the distal ring of the NPC (mean distance from the central plane of 

the NPC -77 nm ± 12 nm) and 24% of the gold particles were closer to the nuclear ring (mean 

distance of -36 nm ± 9 nm from the central plane) (Fig. 2.4B). Under the same conditions, 
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the expression level of Nup153 does not change within the nuclei and the location of the 

N-terminal and the central Zn-fi nger domain of Nup153 are not altered in comparison to 

steady-state conditions (Fig. 2.S2A). 

 The FG-repeat domain of Nup214 localizes to the cytoplasmic periphery of the 

Figure 2.4: Attenuated nuclear transport constrains the FG-repeat domains of Nup153 and Nup214 to their anchoring 

site in the NPC. (A) Isolated Xenopus nuclei were incubated at 4°C prior labelling with an antibody against the FG-repeat 

domain of Nup153 (anti-C2-Nup153) directly conjugated to 8-nm colloidal gold. c, cytoplasm; n, nucleus. (B) Quantitative 

analysis of the gold particles associated with the NPC after labelling with the anti-C2-Nup153 antibody at 4°C. Eighty-

eight gold particles were scored. (C) Immunolabelling of isolated Xenopus nuclei after incubation at 4°C with the anti-

Nup214-D antibody and a secondary anti-rabbit IgG antibody conjugated to 10-nm colloidal gold. c, cytoplasm; n, nucleus. 

(D) Quantifi cation of the gold particle distribution associated with the NPC after labelling with the anti-Nup214-D antibody 

at 4°C. One hundred thirty-four gold particles were scored. Scale bars, 100 nm.
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central pore and, additionally, to the nuclear side of the NPC at steady-state (Figs. 2.2 and 

2.3). At 4°C, when nuclear transport is attenuated, the FG-repeat domain of Nup214 localizes 

exclusively to the cytoplasmic periphery of the central pore at a mean distance of 25 nm ± 11 

nm (Fig. 2.4D). Attenuation of nuclear transport at 4°C has no effect on the expression level 

of Nup214 in the oocyte nuclei or signifi cantly infl uenced the location of the central domain 

of Nup214 (Fig. 2.S2B).

 Similar results for Nup153 were obtained when nuclear transport was attenuated 

by either WGA or a dominant-negative mutant of importin-β, importin-β 45-462, known 

to inhibit distinct nuclear transport pathways (Kutay et al. 1997) (Fig. 2.S3A). In case of 

Nup214, however, the distribution of the FG-repeat domain after attenuating nuclear transport 

by either WGA or importin-β 45-462 was similar to steady-state conditions (Fig. 2.S3B). 

Therefore, attenuating nuclear transport at 4°C constrains the distribution of the FG-repeat 

domains of Nup153 as well as Nup214 to the site at which the corresponding nucleoporin is 

anchored within the NPC, whereas WGA and importin-β 45-462 have different infl uence on 

the distribution of the FG-repeat domains of Nup153 as compared to Nup214.

2.2.7 Nuclear import cargo infl uences the localization of FG-repeat domains

 Next we attempted to interfere with steady-state nuclear transport by challenging the 

system with an excess of import cargo and then analyzing how this infl uences the location 

of the FG-repeat domains of Nup153 and Nup214 within the NPC. As import cargo we 

used nucleoplasmin, a nuclear protein that readily becomes imported in Xenopus oocytes 

(Dingwall et al. 1982; Adam et al. 1992). To study the effect of import cargo on the location 

of the FG-repeat domains of Nup153 and Nup214, we isolated nuclei from Xenopus oocytes 

and incubated them in an import competent mixture containing excess nucleoplasmin. The 

nuclei were incubated for various length of time in this import mixture and then labelled with 

anti-Nup153-C2 or anti-Nup214-D antibody to determine the location of these FG-repeat 

domains.

 As shown in Fig. 2.5A (and Fig. 2.S4A), after 5 min of incubation, the FG-repeat 

domain of Nup153 localizes to both sides of the NPC, as observed previously (Fahrenkrog 

et al. 2002). In comparison to steady-state conditions, however, the number of NPCs that 

are labelled on their cytoplasmic side has signifi cantly increased to 39% in the presence of 

excessive nucleoplasmin versus 12% at steady-state (Fahrenkrog et al. 2002). The percentage 

of cytoplasmic labelling further increases to 50% after 15 min of incubation (Fig. 2.5A). 

Finally, after 30 min incubation the FG-repeat domain of Nup153 localizes exclusively to 

the nuclear face of the NPC (Fig. 2.5A) with approximately 90% of the gold being located 

at the distal ring of the NPC. Import mixture alone without addition of nucleoplasmin has 

no infl uence on the location of the FG-repeat domain of Nup153 (Fig. 2.S5A). The location 
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Figure 2.5: The location of the FG-repeat domains of Nup153 and Nup214 in the presence of excess import cargo. 

Quantitative analysis of the gold particles associated with the NPC after labelling with (A) the anti-C2-Nup153 antibody 

and (B) the anti-Nup214-D antibody, respectively, in the presence of excess nucleoplasmin. Import of nucleoplasmin into 

isolated intact Xenopus oocytes nuclei was allowed for the indicated time-points before the nuclei were shortly prefi xed in 

formaldehyde and pre-embedding labelled with the corresponding antibody. The following number of gold particles were 

scored for the individual experiments: fi fty-fi ve (anti-C2-Nup153, 5 min), sixty (anti-C2-Nup153, 15 min), one hundred 

and six (anti-C2-Nup153, 30 min), one hundred thirty-two (anti-Nup214-D, 5 min), one hundred seventy-eight (anti-

Nup214-D, 15 min), and one hundred sixty-three (anti-Nup214-D, 30 min).

of the N-terminal and the central Zn-fi nger domain of Nup153 remained unchanged in the 

presence of import mixture containing excess nucleoplasmin (Fig. 2.S5B and C).

 Under the same incubation conditions, the FG-repeat domain of Nup214 also shows 

a higher proportion of nucleoplasmic location in comparison to steady-state conditions (Fig. 

2.5B). Whereas at steady-state conditions about 13% of the NPCs were labelled on the 

nuclear side (see above), after incubation for 5 min. in excess nucleoplasmin this fraction 

increased to 43%, and further to about 60% after 15 min and 30 min (Fig. 2.5B; see also 
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Fig. 2.S4B). As the number of gold particles associated with the nuclear face of the NPC 

increased, the cytoplasmic value decreased correspondingly from ~57% after 5 min to ~33% 

after 30 min incubation with nucleoplasmin.

 Taken together, our data suggest that the localizations of the FG-repeat domains of 

Nup153 and Nup214 shift, corresponding to a wave of transport moving through the NPC 

and possibily refl ecting steps which promote a certain arrangement of the FG-repeat domain 

in the bulk of transport events at each particular time point.

2.2.8 The infl uence of RNA export on the localization of FG-repeat domains

 Next we wanted to examine how excess export cargo would infl uence the location of 

the FG-repeat domains of Nup153 and Nup214. We therefore isolated poly (A+) RNA from 

HeLa cells and microinjected this RNA into the nuclei of Xenopus oocytes. Nuclei were 

isolated following various incubation times and labelled with either the anti-Nup153-C2 

antibody or the anti-Nup214-D antibody. Since RNA export is slower than protein import 

(Pante et al. 1997), longer incubation times were performed.

 As illustrated in Fig. 2.6A (and Fig. 2.S6A), the FG-repeat domain of Nup153 localizes 

predominantly to the nuclear face of the NPC 30 min after microinjection of poly (A+) RNA 

into the nuclei of Xenopus oocytes. Compared to steady-state conditions (Fahrenkrog et al. 

2002) (Fig. 2.6A, fi rst panel), however, the number of the gold particles associated with the 

cytoplasmic side of the NPC increased to ~26% (Fig. 2.6A, second panel). The cytoplasmic 

location of the FG-repeat domain of Nup153 further increased by 60 min of incubation 

with excess poly (A+) RNA (Fig. 2.6A, third panel), when 37% of the gold particles were 

detected on this side of the NPC. By 90 min, the cytoplasmic proportion of the FG-repeat 

domain of Nup153 reached its maximum to ~63% (Fig. 2.6A, fourth panel).

 Microinjection of poly (A+) RNA into the nucleus of Xenopus oocytes results in a 

predominant nuclear localization of the FG-repeats of Nup214 after 30 min of incubation 
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(Fig. 2.6B; see also Fig. 2.S6B). 89 % of the gold particles were on the nuclear side of the 

NPC and predominantly at or near the distal ring of the NPC, whereas only ~11 % of the 

gold particles were found to be associated with the cytoplasmic face of the NPC. 60 min 

after microinjection of RNA into Xenopus nuclei (Fig. 2.6B, third panel) ~80 % of the gold 

particles were associated with the nuclear side of the NPC (67% of these in the area of the 

central pore) and ~20 % associated with the cytoplasmic face. After 90 min (Fig. 2.6B, fourth 

panel), ~92% of the gold particles were detected on the cytoplasmic face of the NPC and 

only ~8% on its nuclear side, similar to steady-state conditions. Largely analogous results 

were obtained after microinjection of total RNA isolated from HeLa cells into the nuclei of 

Xenopus oocytes, except for the 90 min time point in case of Nup153 (Figs. S7 and S8). This 

Figure 2.6: The infl uence of export cargo on the location of the FG-repeat domains of Nup153 and Nup214. 

Quantifi cation of the gold particle distribution associated with the NPC after microinjection of poly (A+) RNA into the 

nuclei of Xenopus oocytes and pre-embedding labelling with the (A) anti-C2-Nup153 and the (B) anti-Nup214-D antibody. 

The following numbers of gold particles were scored for the individual experiments: one hundred thirty (anti-C2-Nup153, 

30 min), one hundred four (anti-C2-Nup153, 60 min), forty-nine (anti-C2-Nup153, 90 min), eighty (anti-Nup214-D, 30 

min), two hundred twelve (anti-Nup214-D, 60 min), and eighty (anti-Nup214-D, 90 min).
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might refl ect a difference in Nup153 conformation in the presence of excess mRNA versus, 

for example, ribosomal RNA, which is present in the total RNA preparation.

 In conclusion, the location of Nup153 and Nup214 FG-repeat domains shifts 

concomitant with a transport wave of export cargo through the NPC.

2.2.9 Localization of FG-repeat domains in nuclei that lack RNA export cargo

 Next, we assessed whether depletion of cargo would also bias the location of the FG-

repeat domains of Nup153 and Nup214 within the NPC. To do so, we injected actinomycin 

D into the nuclei of Xenopus oocytes to inhibit endogenous RNA polymerases. After 3h 

incubation of actinomycin D treatment, the location of the FG-repeat domains of Nup153 

and Nup214 in manually isolated Xenopus nuclei was determined by immuno-EM.

 As shown in Fig. 2.7A (see also Fig. 2.S9A), depletion of RNA polymerase I and II 

Figure 2.7: Actinomycin D and its infl uence on the location of the FG-repeat domains of Nup153 and Nup214. 

Actinomycin D was microinjected into the nuclei of Xenopus oocytes 3 hours prior nuclei isolation and pre-embedding 

labelling with the anti-C2-Nup153 and the anti-Nup214-D antibody, respectively. Quantifi cation of the gold particle 

distribution associated with the NPC after labelling with the (A) anti-C2-Nup153 antibody and (B) the anti-Nup214-D 

antibody, respectively. Ninety-fi ve gold particles were scored for the anti-C2-Nup153 antibody and one hundred forty for 

the anti-Nup214-D antibody.
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transcripts has only a slight effect on the location of the FG-repeat domain of Nup153. 8 % 

of the gold particles were detected on the cytoplasmic face of the NPC. On the nuclear side, 

22 % of the gold particles were found at or near the nuclear ring of the NPC and 70 % at or 

near the distal ring. In comparison to steady-state conditions, this represents a movement of 

the FG-repeats towards the distal ring on the nuclear side of the NPC (70 % versus 34 % at 

steady state), whereas the cytoplasmic value is rather unaffected (8 % versus 12 % at steady-

state (Fahrenkrog et al. 2002)).

 In contrast, the location of the FG-repeat domain of Nup214 is more strongly 

infl uenced by the treatment of Xenopus nuclei with actinomycin D. Compared to steady-

state, actinomycin D treatment leads to increased nuclear localization Nup214 FG-repeat 

domain (Fig. 2.7B and Fig. 2.S9B). In the absence of transcription, 76% of the gold particles 

were associated with the nuclear side of the NPC, whereas only 25 % of the gold particles 

were found on the cytoplasmic face of the NPC.

 Taken together, preventing new transcription in Xenopus nuclei appears to cause 

an arrest of the FG-repeat domains of Nup153 and Nup214 near or at the distal ring of the 

NPC.

2.3 Discussion

 Along with the identifi cation of presumably all vertebrate nucleoporins (Cronshaw 

et al. 2002), many of these nucleoporins have been mapped within the NPC by different 

immuno-EM techniques (Belgareh et al. 2001; Walther et al. 2001; Fahrenkrog et al. 2002; 

Frosst et al. 2002; Walther et al. 2002; Enninga et al. 2003; Griffi s et al. 2003). Nucleoporins 

are large proteins with, at least in case of the FG-repeat nucleoporins, fl exibility in secondary 

structure that implies a complex topology within the NPC. Individual antibodies against 

a particular nucleoporin therefore do not yield a holistic view of the organization of this 

nucleoporin within the 3-D architecture of the NPC. In contrast, use of domain-specifi c 

antibodies against nucleoporins, such as Nup153 (Fahrenkrog et al. 2002) and Tpr (Frosst et 

al. 2002; Krull et al. 2004) has helped to resolve discrepancies regarding their localization and 

organization within the vertebrate NPC. Moreover, in the case of the FG-repeat nucleoporin 

Nup153, this approach revealed that while its N-terminal domain and central zinc-fi nger 

domain are stationary within the NPC, the C-terminal FG-repeat domain exhibits a wider 

distribution. With the present study we have now resolved the domain organization and 

topology of another large FG-repeat nucleoporin, Nup214, within the NPC. Moreover, by 

immuno-EM we show for the fi rst time that the location of the FG-repeat domains of Nup153 

and Nup214 is infl uenced by the transport state of the cell.
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2.3.1 Multiple-site topology of Nup214 within the NPC

 To determine the spatial organization of a given nucleoporin within the 3-D NPC 

architecture, domain-specifi c antibodies are required (Fahrenkrog et al., 2002; Frosst et al., 

2002). By this approach, we show here that the N-terminal domain of Nup214 resides near or 

at the cytoplasmic ring of the NPC close to the entry to the central pore (see Fig. 2.2A, 2.3A 

and 2.3E), consistent with a previous fi nding (Walther et al. 2002) in which a polyclonal 

antibody against an N-terminal fragment of Xenopus Nup214 was used. We further found that 

the central domain of Nup214 is also stationary and localizes near or at the cytoplasmic ring 

of the NPC, too (see Figs. 2.2C and 2.3E). This is in agreement with the location reported by 

Kraemer et al. using a polyclonal antibody specifi c for the central region of human Nup214 

(Kraemer et al. 1994).

 With the present study we have for the fi rst time mapped the FG-repeat domain of 

Nup214 within the NPC. Interestingly, this domain is not confi ned to a specifi c subdomain 

of the NPC. Instead, by using domain-specifi c antibodies and by expressing C-terminal 

myc-tagged Nup214 in Xenopus oocytes, we could show that this domain is fl exible in its 

arrangement, appearing at both the cytoplasmic and nuclear face of the NPC (see Figs. 2.2E, 

2.3C, and 2.3E).

 Taken together, our immuno-EM studies on the domain topology of Nup214 suggest 

that it is anchored to the cytoplasmic face of the NPC by its N-terminal and/or central domain, 

whereas the FG-repeat domain of Nup214 is fl exible within the NPC and might exist in a 

rather unstructured, more or less extended conformation.

2.3.2 Natively unfolded, extended character of FG-repeat domains

 The C-terminal domain of Nup214 spans about 800 amino acids (residues 1225 to 

2091 of the human protein). Biophysical measurements have suggested that the FG-repeat 

domains of yeast nucleoporins are natively unfolded, i.e. they have little secondary structure 

(Denning et al. 2002; Denning et al. 2003). This leads to the possibility that the FG-repeat 

domains of vertebrate nucleoporins, too, have little secondary structure, and might have a 

more or less extended conformation. If extended, the FG-repeat domain of Nup214 could 

span a distance of up to ~275 nm (Strelkov et al. 2002). This length would easily allow 

the repeat domain to span the distance from the cytoplasmic periphery of the NPC to the 

distal ring of the nuclear basket. Indeed, secondary structure prediction reveals that the FG-

repeat domain of Nup214 to be predominantly unstructured (S.M. Paulillo, O. Mayans and 

B. Fahrenkrog, unpublished data). Moreover, ~67% of the amino acids of the FG-repeat 
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domain of human Nup214/CAN have disorder-promoting character (data not shown; 

(Dunker et al. 2001; Uversky 2002)). These disorder-promoting residues are scattered 

across the FG-repeat domain, further supporting the notion that the FG-repeat domain has 

an extended conformation. Based on immuno-EM data an extended conformation has also 

been suggested for the FG-repeat domain of Nup153, which spans about 700 amino acids 

(Fahrenkrog et al. 2002). Again, about 62% of the amino acids of the FG-repeat domain of 

Xenopus Nup153 have disorder-promoting character (data not shown). Furthermore, atomic 

force microscopy measurements indeed revealed that the FG-repeat domain of Nup153 has 

an extended conformation (R. Lim, J. Koeser, and U. Aebi; personal communication).

 Natively unfolded, extended proteins usually encompass multiple binding domains 

and are thus capable of simultaneous interactions with multiple binding partners (Dunker et 

al. 2001; Uversky 2002). Both Nup153 and Nup214 are able to interact with a number of 

different nuclear transport receptors (Boer et al. 1997; Fornerod et al. 1997; Shah et al. 1998; 

Katahira et al. 1999). The fl exible nature of their FG-repeat domains would allow Nup153 

and Nup214 to act as scaffolds for the assembly of transport complexes. The export complex 

that mediates the recycling of Kap60p, the yeast importin-α, is formed directly at the yeast 

FG-nucleoporin Nup2p (Matsuura et al. 2003). Furthermore, it has been shown that the U1 

snRNP import complex is formed while associated with Nup214 (Rollenhagen et al. 2003).

2.3.3 Flexible FG-repeat domains: implications for nuclear transport

 Our localization studies have revealed the FG-repeat domain of Nup214 to be fl exible 

within the NPC. Similarly, we have documented the FG-repeat domain of Nup153 to also be 

fl exible within the NPC (Fahrenkrog et al., 2002). Here, we have now shown that the location 

of the FG-repeat domains of Nup153 and Nup214 is correlated to the transport state of the 

cell, suggesting that they may associate with cargo-receptor complexes and accompany them 

through the central pore.

 Arresting nuclear transport constrains the spatial distribution of fl exible FG-repeat 

domains of both nucleoporins to their respective anchoring sites within the NPC, i.e. the 

distal ring of the NPC in case of Nup153 and near the cytoplasmic ring in case of Nup214 

(see Fig. 2.4). A surge of nuclear import promotes cytoplasmic exposure of the FG-repeat 

domain of Nup153 followed by a distribution predominantly on the nuclear face of the NPC 

(see Fig. 2.5). The spatial distribution of the FG-repeat domain of Nup214 appears responsive 

to import cargo as well. In the presence of excess import cargo, Nup214’s FG-repeat domain 

transiently accumulates at the nuclear NPC periphery. Similarly, the FG-repeat domain of 

Nup153 predominates on the nuclear side under these conditions. These results indicate 
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that the spatial distribution of the FG-repeat domains within the NPC correlates with cargo/

receptor interactions.

 Microinjecting excess poly (A+) RNA into the nucleus leads fi rst to a higher 

frequency of the FG-repeat domains of Nup214 on the nuclear face of the NPC (see Fig. 

2.6). Next, the nuclear portion of the FG-repeat domains of Nup153 and Nup214 decreases 

as the cytoplasmic portion increases. At late time points, when the burst of poly (A+) RNA 

export is presumably complete, the FG-repeat distribution within the NPC returns to steady-

state conditions. In the case of RNA export the spatial location of the FG-repeat domains 

of Nup153 and Nup214 is biased toward the point of cargo contact, and seems to shift 

concomitantly with the cargo through the central pore of the NPC.

 Surprisingly, recent studies in yeast have shown that FG-repeat domains of asymmetric 

nucleoporins are not essential for receptor-mediated nuclear transport and that the importin-

β pathway is rather unaffected by depleting the maximal number of FG-repeats (Strawn et al. 

2004; Zeitler and Weis 2004). Asymmetric nucleoporins, such as Nup153, may play a role in 

receptor-independent nuclear transport, as shown for the nuclear import of the transcription 

factor PU.1 (Zhong et al. 2005).

 Taken together, our fi ndings suggest that FG-repeat domains have a more active role 

in cargo translocation through the NPC than simply acting as a scaffold for the formation 

of cargo-receptor complexes or providing docking sites for cargo-receptor complexes at 

the NPC. Indeed, our results indicate that FG repeat domains accompany and guide cargo 

through the NPC’s central pore to its fi nal destination. In this context, transport substrates 

might be passed from an asymmetric FG-repeat nucleoporin residing on the cytoplasmic 

face of the NPC, such as Nup214, to a symmetric FG-repeat nucleoporin, for example p62, 

to an asymmetric FG-repeat nucleoporin residing on the nuclear side of the NPC, such as 

Nup153, or vice versa. It is also conceivable that transport substrates are directly passed 

from one extended asymmetric FG-repeat nucleoporin to the next, thereby optimizing cargo 

translocation through the central pore of the NPC. It will be interesting to analyze if the 

FG-repeat domains of symmetric nucleoporins, which are, as in case of p62, are relatively 

short as compared to the FG-repeat domains of Nup214 and Nup153, have an extended 

conformation as well. Such as scenario, in fact, might explain why the deletion of individual 

or a minimal number of FG-repeat domains have only a slight effect on nuclear transport 

kinetics.
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2.4 Material and Methods

 All experimental procedures were performed at room temperature (rt) unless 

otherwise stated.

2.4.1 Antibody production and purifi cation

 Full length human Nup214 in pBluescript was a gift from Dr. Gerard Grosveld (St. 

Jude Children’s Research Hospital). Four non-overlapping fragments were created by PCR 

for expression and antibody production. 214A corresponds to the N-terminal domain (amino 

acids 1-469), 214B corresponds to the coiled-coil section of the central domain (amino acids 

702-931), 214 C corresponds to the non-coiled-coil section of the central domain (amino 

acids 1026-1364), and 214D corresponds to the FG repeat domain (amino acids 1684-

2091). Following PCR, each DNA fragment was inserted into the pTrcHis-TOPO vector 

(Invitrogen, Carlsbad, CA) for expression of N-terminal hexahistidine-tagged protein. 

Recombinant fusion proteins were expressed in BL21(DE3) cells and purifi ed on His-Bind 

resin (Novagen/EMD Biosciences, Madison, WI). Expression of the 214C fragment was 

insuffi cient for antibody production.  The 214B and 214D proteins were solubilized and 

purifi ed in the presence of 6M urea. Purifi ed protein was used to inoculate rabbits (Spring 

Valley Laboratories; Sykesville, MD) and the rabbit sera were affi nity purifi ed using the 

corresponding recombinant protein bound to a CNBr-activated Sepharose 4 Fast Flow 

support (Amersham Pharmacia Biosciences, Buckinghamshire, England). 

 For immunoblots, proteins were separated by 8% acrylamide SDS-PAGE and 

transferred to PVDF membrane. The membrane was blocked with either 2% BSA (anti-

214A) or 5% nonfat milk (anti-214B and anti-214D) in PBS with 0.2% Tween-20. Affi nity 

purifi ed antibodies were used at 1/1000 dilution in immunoblots. Antibody signals were 

detected by chemiluminescence with ECL substrate (Amersham Pharmacia Biosciences).

 2.4.2 Immuno-EM of isolated nuclei from Xenopus oocytes

 Mature (stage 6) oocytes were surgically removed from female Xenopus laevis, 

and their nuclei were isolated as described (Pante et al. 1994). Colloidal gold particles, ~8-

nm in diameter, were prepared by reduction of tetrachloroauric acid with sodium citrate 

in the presence of tannic acid and antibodies were conjugated to colloidal gold particles 

as described (Baschong and Wrigley 1990). Isolated nuclei were labelled as described 
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previously (Fahrenkrog et al. 2002) with the following modifi cations. Nuclei were incubated 

in a solution of anti-Nup214 antibodies diluted 1:1000 in PBS for 2 h and washed twice in 

PBS. After washing, nuclei were incubated for 2h in an anti-rabbit IgG antibody conjugated 

to 10-nm colloidal gold (BBI International, Cardiff, UK). Labelled nuclei were fi xed and 

processed for EM as described (Fahrenkrog et al. 2002).

2.4.3 Immuno-EM of human cultured cells

 HL-60 cells were cultivated in Dulbecco Modifi ed Eagle Medium (DMEM; Vitromex, 

Geilenkirchen, Germany) containing 10% fetal calf serum plus penicillin and streptomycin 

(Gibco BRL, Grand Island, NY). Cells were washed twice in PBS and fi xed for 15 min in 

freshly prepared PBS containing 4% paraformaldehyde. After washing twice in PBS, cells 

were permeabilized with PBS containing 0.1% Triton X-100 for 2 min, and washed again 

twice in PBS. 

 For immunolabelling, cells were resuspended in the corresponding anti-Nup214 

antibody diluted 1: 100 in PBS and incubated for 2h. Next cells were washed twice in PBS 

containing 0.1% BSA, and resuspended in secondary anti-rabbit-IgG antibody conjugated to 

10-nm colloidal gold (see above) diluted 1:2 in PBS containing 0.1% BSA and incubated for 

2h. After two washes in PBS containing 0.1% BSA, the cells were fi xed in 2% glutaraldehyde 

for 1h, washed twice in PBS and post-fi xed in 1% OsO
4
 for 1h. Fixed samples were 

dehydrated, embedded in Epon 812 resin (Fluka, Buchs, Switzerland), and processed for 

EM as described (Fahrenkrog et al. 2002). 

2.4.4 Microinjection and immuno-EM of tagged human Nup214 in Xenopus nuclei

 Full-length human Nup214 was subcloned from pET21b (a kind gift of Dr. Doris 

Kraemer, University of Würzburg) into EcoRI and NotI cut pcDNA3.1/myc-His (Invitrogen 

Corporation, Carlsbad, CA) to produce C-terminally tagged hNup214-myc. To produce N-

terminally tagged GFP-Nup214, full-length human Nup214 was subcloned from pET21b 

into EcoRI and SacII cut pEGFP-C1 (Clontech, Palo Alto, CA). For microinjection into 

nuclei, freshly isolated oocytes from Xenopus laevis were prepared and processed for 

microinjection as described (Fahrenkrog et al. 2002). The localization of the fusion proteins 

within the NPC were determined by using a polyclonal anti-GFP and a monoclonal anti-myc 

antibody, respectively, directly conjugated to 8-nm colloidal gold.
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2.4.5 Immunolocalization of FG-repeat domains at 4°C

 Freshly isolated nuclei from Xenopus oocytes were collected in low salt buffer 

(LSB) containing 1 mM KCl, 0.5 mM MgCl
2
, 10 mM HEPES, pH 7.5, and equilibrated to 

4°C for 1 h. Next the nuclei were fi xed for 15 min in LSB containing 4% formaldehyde. 

The nuclei were washed twice in LSB for 5 min each, and incubated in anti-C2-Nup153 

antibody directly conjugated to 8-nm gold (Fahrenkrog et al. 2002) for 2h to determine the 

localization of the FG-repeat domains of Nup153. For localization of the FG-repeat domain 

of Nup214, nuclei were incubated in anti-Nup214-D antibody and secondary anti-rabbit-IgG 

antibody conjugated to 10-nm colloidal gold as described above. After labelling the nuclei 

were prepared for EM as described (Fahrenkrog et al. 2002).

2.4.6 Nuclear import of nucleoplasmin

 Xenopus nucleoplasmin was expressed from a pQE70 vector and purifi ed (Qiagen 

GmbH, Hilden, Germany) as described by (Gorlich et al. 1994). Nuclei were isolated manually 

from Xenopus oocytes, collected in LSB and incubated in an import mixture (50% HeLa 

cytosol, 20mM HEPES, pH 7.3, 110 mM potassium acetate, 5 mM sodium acetate, 1 mM 

EGTA, 2 mM DTT, 1 mM ATP, 5 mM creatine phosphate, 20 U/ml creatine phosphokinase, 

and 1 μg/ml each aprotinin, leupeptin, and pepstatin (Adam et al. 1992) containing 100 

ng recombinantly expressed nucleoplasmin as indicated. Next the nuclei were fi xed in 4% 

formaldehyde and labelled with anti-C2-Nup153 and anti-Nup214-D antibody as described 

above.

2.4.7 Export of poly (A+) RNA and inhibition of transcription

 Total RNA was purifi ed from HeLa cells using the RNAeasy kit (Qiagen GmbH, 

Hilden, Germany) following the instructions of the manufacturer. From this total RNA, 

poly (A+) RNA was purifi ed using the GenElute mRNA miniprep kit (Sigma, St. Louis, 

MO) following the instructions of the manufacturer. Oocytes were microinjected into their 

nuclei with 10-20 nl purifi ed poly (A+) RNA (0.1 μg/μl) and incubated for different time 

points as indicated. Nuclei were isolated, collected in LSB, fi xed in 4% formaldehyde and 

labelled with anti-C2-Nup153 and anti-Nup214-D antibody, respectively, as described above. 

Actinomycin D (Sigma, St. Louis, MO) was dissolved in ethanol to 5 mg/ml. 10-20 nl of a 5 
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μg/ml diluted solution were microinjected into nuclei of Xenopus oocytes and incubated for 

3h. Next the nuclei were isolated, fi xed and labelled with anti-C2-Nup153 and anti-Nup214-

D antibody, respectively, as described.
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Summary

 Nucleoporins represent the molecular building blocks of nuclear pore complexes 

(NPCs), which mediate facilitated macromolecular traffi cking between the cytoplasm and 

nucleus of eukaryotic cells. Phenylalanine-glycine (FG) repeat motifs are found in about 

one third of the nucleoporins and they provide major binding or docking sites for soluble 

transport receptors. We have recently shown that localization of the FG-repeat domains of 

vertebrate nucleoporins Nup153 and Nup214 within the NPC is infl uenced by its transport 

state. To test whether chemical effectors, such as calcium and ATP, infl uence the localization 

of the FG-repeat domains of Nup153 and Nup214 within the NPC, we performed immuno-

electron microscopy of Xenopus oocyte nuclei using domain specifi c antibodies against 

Nup153 and Nup214, respectively. Ca2+ and ATP are known to induce conformational 

changes in the NPC architecture, especially at the cytoplasmic face, but also at the nuclear 

basket of the NPC. We have found calcium concentrations in the micromolar range or 1mM 

ATP in the surrounding buffer leaves the spatial distribution of the FG-repeat of Nup153 and 

Nup214 largely unchanged. In contrast, ATP depletion, calcium store depletion by EGTA 

or thapsigargin, and high divalent cation concentrations (i.e. 2 mM Ca2+ and 2 mM Mg2+) 

constrain the distribution of the FG-repeats of Nup153 and Nup214. Our data suggest that the 

location of the FG-repeat domains of Nup153 and Nup214 is sensitive to chemical changes 

within the near-fi eld environment of the NPC. 

Keywords: nuclear pore complex; nuclear transport; calcium, Nup153; Nup214; ATP
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3.1 Introduction

 Nuclear pore complexes (NPCs) are supramolecular assemblies embedded in the 

double membrane of the nuclear envelope (NE) that mediate diffusion of small molecules 

and ions as well as facilitated, signal-dependent transport of proteins and RNPs between the 

nucleus and cytoplasm of eukaryotic cells (Fried and Kutay 2003; Pemberton and Paschal 

2005). The ~120 MDa vertebrate NPC (Reichelt et al. 1990) is composed of a set of ~30 

different proteins (Cronshaw et al. 2002) known as nucleoporins (Nups). According to 

electron microscopy studies, mainly in Xenopus oocytes, the NPC is composed of a central 

framework that is continuous with a cytoplasmic and a nuclear ring moiety (Hinshaw et 

al. 1992; Akey and Radermacher 1993; Yang et al. 1998; Stoffl er et al. 2003; Beck et al. 

2004). The cytoplasmic ring moiety is decorated by eight, short, kinky fi laments, whereas 

a nuclear basket, an assembly of eight fi laments that join into a distal ring, tops the nuclear 

ring moiety (reviewed in (Fahrenkrog and Aebi 2003; Fahrenkrog et al. 2004)). The central 

framework exhibits 8-fold rotational symmetry and it encloses the central pore of the NPC, 

which mediates all traffi cking between the nucleus and cytoplasm. The central pore has a 

length of about 90 nm and it is narrowest in the midplane of the NE with a diameter of about 

45-50 nm (Stoffl er et al. 2003; Beck et al. 2004). The physical and functional diameters of 

the central pore coincide as cargo up to 39 nm is able to pass through the NPC (Panté and 

Kann 2002).

 The NE is continuous with the endoplasmic reticulum (ER) and, as such, the NE 

lumen acts, together with that of the ER, as calcium (Ca2+) store. Depletion of the lumenal 

Ca2+ stores inhibits diffusion of 10 kDa dextrans in both cultured mammalian cells and in 

Xenopus oocytes (Greber and Gerace 1995; Stehno-Bittel et al. 1995). The effect of Ca2+ 

store depletion on facilitated nuclear import is controversial: inhibition has been observed 

in some studies (Stehno-Bittel et al. 1995) but not in others (Strubing and Clapham 1999). 

Atomic force microscopy (AFM) studies further showed that depletion of nuclear Ca2+ stores 

or variations in extra-nuclear calcium concentrations led to conformational changes within 

the NPC. Such changes included the appearance of a central plug on the cytoplasmic and 

nuclear face of the NPC (Perez-Terzic et al. 1996; Wang and Clapham 1999; Moore-Nichols 

et al. 2002; Mooren et al. 2004) or alterations in the arrangement of the nuclear basket by 

~20-30 nm (Stoffl er et al. 1999). ATP can infl uence NPC conformation as well and in this 

context AFM studies revealed that addition of ATP causes dramatic conformational changes 

on the cytoplasmic surface of the NPC (Rakowska et al. 1998). A direct link between 

changes in NPC conformation and nuclear transport has not been established, although it has 

been speculated that conformational changes of the NPC could alter the accessibility of FG 

(phenylalanine-glycine)-repeat sites within the NPC, which, in turn, should affect nuclear 

transport (Erickson et al. 2004).
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 Facilitated nuclear transport requires the simultaneous interaction of soluble transport 

receptors with the NPC and with transport cargo. The interaction of the receptors with the 

NPC is mediated mainly by a subset of nucleoporins that harbor FG-repeat domains. Repeat 

domains are composed of hydrophobic FG patches that are spaced by hydrophilic linkers of 

variable length and sequence. Studies in yeast revealed that FG-repeat domains have little 

secondary structure, i.e. they are natively unfolded (Denning et al. 2002; Denning et al. 

2003). These fi ndings are supported by X-ray crystallography data (Bayliss et al. 2000) as 

well as by immuno-EM studies (Fahrenkrog et al. 2002; Paulillo et al. 2005). AFM studies 

further document that the FG-repeat domain of Nup153 resembles an unfolded polypeptide 

chain with a length of about 200 nm and a width of about 0.4 nm (Lim et al. 2006).

 We have recently mapped the domain topology of two vertebrate nucleoporins, 

Nup153 and Nup214, within the NPC of Xenopus oocytes (Fahrenkrog et al. 2002; Paulillo 

et al. 2005). The non-FG-repeat domains of both nucleoporins have a tightly constrained 

distribution, whereas, in both cases, the FG-repeat domains are fl exibly positioned within the 

NPC. Moreover, the spatial distribution of the FG-repeat domains of Nup153 and Nup214 

changes in a transport-dependent manner, suggesting that the location of FG-repeat domains 

of Nup153 and Nup214 correlates with cargo/receptor interactions at the NPC. To test whether 

the fl exibility of the FG-repeat domains of Nup153 and Nup214 is altered under conditions 

that lead to changes in NPC conformation, we isolated nuclei from Xenopus oocytes, 

incubated them in buffer solutions that vary in either Ca2+ or ATP concentrations and mapped 

the domain topology of Nup153 and Nup214 by immunogold-EM using domain-specifi c 

antibodies. Our data show that high salt concentrations in buffer solutions, the release of 

lumenal Ca2+ stores by thapsigargin, and ATP-depletion lead to distinct changes in the spatial 

distribution of the FG-repeat domains of Nup153 and Nup214, whereas moderate increase in 

external calcium or ATP levels has no signifi cant infl uence on their location. These fi ndings 

suggest that the variations in FG-repeat accessibility are due to physical changes in response 

to alterations in the chemical near-fi eld environment of the NPC.
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3.2 Results

3.2.1 The infl uence of increasing Ca2+ concentrations on the location of FG-repeat 
domains

 In resting cells, free calcium concentrations in the cytoplasm and the nucleus appear 

to be approximately equivalent and in the nanomolar range (Erickson et al. 2004). Addition 

of micromolar amounts of calcium to the buffer surrounding isolated nuclei leads to an 

increase in nuclear calcium concentration due to diffusion of Ca2+ ions through the NPC 

(Assandri and Mazzanti 1997). AFM studies in Xenopus oocyte nuclei have shown that 100 

μM Ca2+ addition to Ca2+-free buffer leads to an opening of the distal ring of the nuclear 

basket by 20-30 nm without affecting the actual height of the nuclear basket (Stoffl er et al. 

1999). The FG-repeat domain of Nup153 is tethered to the distal ring of the nuclear basket 

via the zinc-fi nger domain of Nup153 and can extend from there to the cytoplasmic face of 

the NPC (Fahrenkrog et al. 2002), whereas the FG-repeat domain of Nup214 can extend as 

far as the nuclear basket from its anchoring site near or at the cytoplasmic ring moiety of the 

NPC (Paulillo et al. 2005).

 To analyze whether an increase in Ca2+ and the related conformational changes of 

the NPC at the level of the nuclear basket affect the epitope exposure of the fl exible FG-

repeat domains of Nup153 and Nup214 and the stationary zinc-fi nger domain of Nup153 

(Fig. 3.1(a)), we isolated nuclei from Xenopus oocytes, incubated the nuclei in low salt 

buffer (LSB) containing 100 μM Ca2+ for 10 min and then fi xed and labelled the nuclei 

with antibodies against the FG-repeat domains of Nup153 (anti-Nup153-C2) (Fahrenkrog 

et al. 2002) and Nup214 (anti-Nup214-D) (Paulillo et al. 2005), respectively. At equilibrium 

state (i.e. in LSB without addition of calcium), the FG-repeat domain of Nup153 locates 

predominantly to the nuclear side of the NPC (89%), but about 11% of the FG-repeats can 

be detected at the cytoplasmic face (Fig. 3.1(b); see also (Fahrenkrog et al. 2002; Paulillo et 

al. 2005)). Incubating the nuclei with 100 μM Ca2+ did not change the nuclear-cytoplasmic 

ratio of the distribution of the FG-repeats of Nup153 (85% nuclear versus 15% cytoplasmic; 

Fig. 3.1 (c)). However, a slight shift from the distal ring of the nuclear basket towards the 

nuclear ring moiety could be observed.

 In the case of Nup214, at steady-state about 14% of the FG-repeat domains of 

Nup214 localize to the nuclear face of the NPC, whereas 86% reside on the cytoplasmic 

face of the NPC (Figs. 3.1(d); see also (Paulillo et al. 2005)). In the presence of 100 μM Ca2+ 

this overall distribution of the Nup214 FG-repeat domains is similar (21% nuclear versus 

79% cytoplasmic; Fig. 3.1(e)). Similarly, the presence of 100 μM Ca2+ does not substantially 

change the position of the zinc-fi nger domain of Nup153 within the NPC (Fig. 3.1(f) and 

(g)), although some cytoplasmic labelling was observed in the presence of 100 μM Ca2+. 
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Figure 3.1: Domain organization and localization of Nup153 and Nup214. (a) Schematic representation of the domain 

structure of Xenopus Nup153 and human Nup214. Antibodies were raised against Nup153 amino acids 655-926 (anti-

Nup153-Z), 1375-1602 (anti-Nup153-C2) and Nup214 amino acids 1684-2091 (anti-Nup214-D). Schematic representation 

and quantitation of the steady-state localization of the FG-repeat domains of (b) Nup153 and (d) Nup214 as well as (f) the 

zinc-fi nger domain of Nup153 in isolated Xenopus nuclei. Intact isolated nuclei were collected in low salt buffer (LSB) and 

immunolabelled with the anti-Nup153-C2 (Fahrenkrog et al. 2002) antibody directly conjugated to 8-nm colloidal gold, 

anti-Nup214-D antibody (Paulillo et al. 2005) and a secondary anti-rabbit IgG antibody conjugated to 10-nm colloidal 

gold, and anti-Nup153-Z antibody (Fahrenkrog et al. 2002) directly conjugated to 8-nm colloidal gold and prepared for 

EM by Epon embedding and thin-sectioning. The center of each location cloud represents the mean distance from the 

central plane of the NE and the radii are defi ned by the standard deviation of the vertical distances and the width of 

the NPC. Full colors, highest probability; subdued color, less probability. The following numbers of gold particles were 
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Thus we conclude that conformational changes at the level of the nuclear basket, such as 

those reported in response to 100 μM Ca2+, do not necessarily correlate with changes in the 

spatial distribution of the FG-repeat domains of Nup153 and Nup214.

 To mimic conditions of a localized Ca2+ fl ux from the ER, where the Ca2+ 

concentration can transiently reach the millimolar range (Petersen et al. 1998; Gerasimenko 

and Gerasimenko 2004), we studied the effect of 2 mM Ca2+ on the distribution of Nup153 

and Nup214 FG-repeat domains within the NPC. As shown in Fig. 3.2(a), the presence 

of 2 mM Ca2+ led to an almost exclusive nuclear localization of the FG-repeat domain of 

Nup153 (98%), predominantly at the distal ring of the nuclear basket (86%). Under the same 

conditions, the FG-repeat domains of Nup214 also shift towards the nuclear face of the 

NPC (50% versus 14% at equilibrium state; Fig. 3.2(b)), whereas the location of the zinc-

fi nger domain of Nup153 remains unchanged (Fig. 3.2(c)). However, these changes in the 

distribution of the FG-repeat domains are not Ca2+-specifi c, as 2 mM Mg2+ caused a similar 

shift or even more extensive shift of the FG-repeat domains of Nup153 and Nup214 towards 

the nuclear face of the NPC (Fig. 3.3 (a) and (b)).

 To test if the calcium-induced redistribution of the Nup153 and Nup214 FG-repeat 

domains is reversed following calcium chelation, isolated nuclei from Xenopus oocytes were 

fi rst incubated in buffer containing 2 mM Ca2+ and next in buffer containing 2 mM EGTA 

(for 10 minutes each) prior to labelling with the domain-specifi c antibodies. As shown in 

Fig. 3.4 (a) and (b), calcium-induced changes in the distribution of the Nup153 and Nup214 

FG-repeat domains are only partially reversible by application of 2 mM EGTA. To confi rm 

that calcium was adequately quenched by EGTA under these conditions, we next incubated 

nuclei from Xenopus oocytes for 10 minutes in buffer containing 2 mM Ca2+ and 2 mM 

EGTA simultaneously and found that in fact in the presence of 2 mM EGTA the distribution 

of the FG-repeat domains of Nup153 and Nup214 similar to equilibrium state (Fig. 3.S1 (a) 

and (b)). Again, no effect on the location of the zinc-fi nger domain of Nup153 was observed 

(Fig. 3.S1 (c)). 

scored for the individual experiments: 140 (anti-Nup153-C2, steady-state), 259 (Paulillo et al. 2005) (anti-Nup214-D, 

steady state), 89 (anti-Nup153-Z, steady-state). Incubating the isolated Xenopus nuclei in LSB containing 100 μM prior 

to immunolabelling with (c) the anti-Nup153-C2 antibody, (e) the anti-Nup214-D, and (g) the anti-Nup153-Z antibody 

does not signifi cantly affect the localization of the corresponding domains. Shown are stretches along the gold-labelled NE 

refl ecting the (left panels) typical labelling pattern for the individual antibodies. Quantitation of the labelling distribution 

is shown in the middle panels. Right panels show schematic representation of the epitope distribution revealed by the 

corresponding domain specifi c antibodies in form of location clouds. The following numbers of gold particles were scored 

for the individual experiments: 83 (anti-Nup153-C2, 100 μM Ca2+), 90 (anti-Nup214-D, 100 μM Ca2+), 68 (anti-Nup153-Z, 

100 μM Ca2+). c, cytoplasm; n, nuclear. Scale bars, 100 nm.
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Figure 3.2: Ca2+-dependent domain topology of Nup153 and Nup214. Intact isolated Xenopus oocyte nuclei were 

incubated in buffer containing 2 mM Ca2+ prior to labelling with (a) an antibody against the FG-repeat domain of Nup153 

(anti-Nup153-C2), (b) an antibody against the FG-repeat domain of Nup214, and (c) the zinc-fi nger domain of Nup153. 

Shown are stretches along the NE of Xenopus oocyte nuclei with the typical labelling pattern (second panels) as well as the 

quantitative analysis of the gold particles associated with the NPC (third panels) and a schematic summary of the epitope 

distribution (fourth panels). The following numbers of gold particles were scored for the individual experiments: 139 (anti-

Nup153-C2, 2 mM Ca2+), 150 (anti-Nup214-D, 2 mM Ca2+), 53 (anti-Nup153-Z, 2 mM Ca2+). Steady-state values are as 

shown in Fig. 3.1 and are included here for reference (fi rst panels). cytoplasm; n, nuclear. Scale bars, 100 nm.
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 A rise in cytoplasmic calcium above 300 nM was found to decrease both ATP-

dependent nuclear transport and passive diffusion (Assandri and Mazzanti 1997) in intact 

cells, whereas in permeabilized cells no inhibition of nuclear import in response to increased 

calcium concentrations could be observed (Greber and Gerace 1995). To exclude that the 

redistribution of the FG-repeat domains of Nup153 and Nup214 was due to inhibition of 

nuclear transport in the isolated nuclei, we followed nuclear import of nucleoplasmin directly 

conjugated to 8-nm colloidal gold after incubation of the nuclei with either 100 μM Ca2+ or 2 

mM Ca2+. We found that under these conditions the import of nucleoplasmin in the isolated 

Xenopus nuclei was not inhibited (Fig. 3.S2 (a)). Similarly, no inhibition of import of GFP-

labelled nucleoplasmin in digitonin-permeabilized HeLa cells (Fig. 3.S2 (b)) or export of 

mRNA from Xenopus nuclei (data not shown) were observed.

 Taken together, high concentration of divalent cations within the local nuclear 

environment infl uences the localization of the FG-repeat domains of nucleoporins Nup153 

and Nup214, but this does not interfere signifi cantly with nuclear transport.
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Figure 3.3: Mg2+-dependent domain topology of Nup153 and Nup214. Intact isolated Xenopus oocyte nuclei were 

incubated in buffer containing 2 mM Mg2+ prior to labelling with (a) an antibody against the FG-repeat domain of Nup153 

(anti-Nup153-C2) and (b) an antibody against the FG-repeat domain of Nup214. Shown are stretches along the NE with 

the typical labelling pattern (second panels) as well as the quantitative analysis of the gold particles associated with the 

NPC (third panels) and a schematic summary of the gold particle distribution within the NPC. The following numbers 

of gold particles were scored for the individual experiments: 97 (anti-Nup153-C2, 2 mM Mg2+), 174 (anti-Nup214-D). 

Steady-state values are as shown in Fig. 3.1 and are included here for reference (fi rst panels). cytoplasm; n, nuclear. Scale 

bars, 100 nm.
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3.2.2 Depletion of nuclear calcium stores infl uences FG-repeat domain distribution

 Since the calcium levels that infl uenced domain distribution corresponded to levels 

obtained by calcium fl ux, we next aimed to map the distribution of the FG-repeat domains 

of Nup153 and Nup214 under various conditions known to modify lumenal Ca2+ stores. 

Lumenal calcium stores can be depleted, for example, by the calcium chelator EGTA or by 

the Ca2+- uptake pump inhibitor, thapsigargin (Strubing and Clapham 1999; Jaggi et al. 2003). 

To analyze the effect of calcium release from lumenal calcium stores on the localization of 

the FG-repeat domains of Nup153 and Nup214 and the zinc-fi nger domain of Nup153, we 

incubated isolated nuclei from Xenopus oocytes in buffer containing 10 mM EGTA for 10 

minutes or in buffer containing 1 μM thapsigargin for 30 minutes prior to labelling with the 

anti-Nup153-C2 antibody, the anti-Nup214-D antibody, and the anti-Nup153-Z antibody, 
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respectively. Calcium store release by thapsigargin had a strong effect on the position of the 

FG-repeats of both Nup153 and Nup214. In the case of Nup153, the cytoplasmic fraction 

decreases to 5%, whereas 86% of the FG-repeats locate to the distal ring of the nuclear basket 

(Fig. 3.5(a)). In the case of Nup214, the nuclear fraction increased from 14% at steady state 

to 77% (Fig. 3.5(b)). In contrast, depletion of lumenal calcium stores by 10 mM EGTA leads 

only to a slight decrease in the presence of the FG-repeats of Nup153 on the cytoplasmic 

side of the NPC (8% versus 11% at equilibrium state) coinciding with a slight increase in 

their nuclear location and a shift towards the distal ring of the nuclear basket (Fig. 3.S3 (a)). 

The FG-repeats of Nup214 showed a more striking enhancement in nuclear location (31.5% 

versus 14% at steady-state; Fig. 3.S3 (b), but not as strong as after calcium store depletion by 

thapsigargin (Fig. 3.5(b)). Depletion of lumenal calcium stores either by 10 mM EGTA (Fig. 

3.S3 (c)) or by thapsigargin (data not shown) does not affect the location of the zinc-fi nger 

domain of Nup153 signifi cantly. Taken together, depletion of Ca2+ from nuclear calcium 

stores by either EGTA or thapsigargin causes the redistribution of the FG-repeat domains of 

nucleoporins Nup153 and Nup214 within the NPC, although to a different extent.
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3.2.3 Increased ATP concentrations and nucleoporin domain topology

 Nuclear transport is energy- and as such ATP-dependent, and high concentrations of 

ATP are associated with structural changes at the cytoplasmic face of the NPC (Rakowska et 

al. 1998). To test whether or not increased ATP concentrations affect the domain topology of 

Nup153 and Nup214, we incubated isolated nuclei from Xenopus oocytes in buffer containing 

1 mM ATP. The nuclei were incubated for various time points and thereafter labelled with 

anti-Nup153 or anti-Nup214 antibodies, respectively. We found that additional 1 mM of ATP 

do not signifi cantly affect the accessibility of the FG-repeat domain of Nup153 at the various 

time points of incubation, although a slight reduction in the labelling of the cytoplasmic face 

could be observed (Fig. 3.S5 (a)). Similarly, we did not detect signifi cant alterations in the 

distribution of the FG-repeat domains of Nup214 or the zinc-fi nger domain of Nup153 in the 

presence of high ATP concentrations (Fig. 3.S5 (b) and (c)).

3.2.4 ATP-depletion limits the fl exibility of the FG-repeat domains of Nup153 and 
Nup214

 We then asked the converse question of whether ATP-depletion affects the domain 

topology of Nup153 and Nup214, respectively. To do so, we incubated Xenopus oocyte nuclei 

in buffer containing 2U/ml apyrase for 30 minutes to deplete ATP (Newmeyer et al. 1986; 

Newmeyer and Forbes 1988) prior to labelling with our domain specifi c antibodies. After 

treatment with apyrase, the anti-Nup153-C2 antibody predominantly decorates the distal 

ring of the nuclear basket (77% of the gold particles), whereas the cytoplasmic labelling 

decreases (6% versus 11% at steady-state; Fig. 3.6(a)). Similarly, ATP-depletion by apyrase 

results in an increase of the nuclear localization of the FG-repeat domains of Nup214 (45% 

versus 14%; Fig. 3.6(b)), whereas the location of the zinc-fi nger domain of Nup153 remains 

unaffected by ATP-depletion (data not shown). This data suggest that ATP-depletion affects 

the distribution of FG-repeat domains, particularly of Nup214.
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Figure 3.7: Calcium-dependent appearance thick ice-embedded Xenopus NPCs. Isolated Xenopus nuclei were 

incubated in (a) calcium-free buffer or (b) buffer containing 100 μM Ca2+ and analyzed by cryo-EM. About 900 NPCs were 

translationally and angularly aligned and averaged, and their average radial mass density profi les computed.
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3.3 Discussion

 Domain-specifi c antibodies against the nucleoporins Nup153 and Nup214 have 

allowed mapping of the domain topology of these two nucleoporins within the NPC and have 

revealed that both harbor fl exible FG-repeat domains (Fahrenkrog et al. 2002; Paulillo et al. 

2005). Moreover, these domain-specifi c antibodies have also been shown to be a powerful 

tool to explore possible changes in nucleoporin domain topology in a nuclear transport-

dependent manner (Paulillo et al. 2005). In the present study, we have now used the domain 

specifi c antibodies against Nup153 and Nup214 to investigate nucleoporin domain topology 

with respect to NPC conformation. NPC conformation and topology have been shown by 

AFM and scanning EM (SEM) to be affected by chemical effectors, such as Ca2+ and ATP 

(Perez-Terzic et al. 1996; Stoffl er et al. 1999; Wang and Clapham 1999; Goldberg et al. 

2000; Jaggi et al. 2003). Our data suggest that gross structural changes at the level of the 

NPC as observed by AFM and SEM do not coincide with changes in the domain topology of 

the nucleoporins Nup153 and Nup214. However, the fl exibility of the FG-repeat domains of 

both nucleoporins is affected by Ca2+ as well as ATP.

3.3.1 Calcium and nucleoporin domain topology

 In isolated Xenopus oocyte nuclei, AFM studies have documented an opening and 

closing of the distal ring of the NPC’s nuclear basket by 20-30 nm in the presence or absence 

of 100 μM Ca2+ in the surrounding buffer, respectively (Stoffl er et al. 1999). Moreover, cryo-

EM studies on isolated Xenopus nuclei in the presence or absence of 100 μM Ca2+ revealed 

signifi cant differences in the radial mass density profi les of the central framework (Fig. 3.7). 

In calcium-free buffer, i.e. low salt buffer, the central framework appears more massive (Fig. 

3.7 (a)) as compared to the central framework of NPCs treated with 100 μM Ca2+ (Fig. 3.7 

(b)). Additionally, NPCs in the absence of Ca2+ yield more mass in the central pore, which 

might refl ect cargo in transit, than NPCs that have been treated with calcium.

 In the present immuno-EM study, we observed neither an effect by 100 μM Ca2+ 

on the topology and fl exibility of the FG-repeat domains of Nup153 and Nup214 nor 

the location of the zinc-fi nger domain of Nup153, which resides at the distal ring of the 

nuclear basket (see Fig. 3.1). Nup153 and Nup214 are both peripheral nucleoporins that are 

anchored to the nuclear and cytoplasmic ring moiety, respectively, and do not contribute 

to the architecture of the central framework of the NPC (Walther et al. 2001; Walther et al. 

2002). Our data therefore suggest that conformational changes on the level of the NPCs 

central framework do not correlate with changes in the topology of the FG-repeat domains 

of peripheral nucleoporins, indicating that their mobile character is not constrained by the 
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conformation of the central framework.

 The presence of higher calcium concentrations, i.e. 2 mM Ca2+, caused the 

redistribution of the FG-repeat domains of Nup153 and Nup214 within the NPC, whereas 

the location of the stationary zinc-fi nger domain of Nup153 remained unaffected (see Fig. 

3.2). This effect on the spatial distribution of the FG-repeat domains, however, appears to be 

due to charge effects, since 2 mM Mg2+ had a similar effect on the location of the FG-repeat 

domains of Nup153 and Nup214, respectively (Fig. 3.3). FG-repeat domains are natively 

unfolded (Denning et al. 2002; Denning et al. 2003; Lim et al. 2006), and as such they 

are characterized by a large net charge and hence sensitivity to temperature, pH, and ionic 

strength (Uversky 2002). Under physiological temperature, pH and ionic strength, natively 

unfolded proteins are unstructured mainly because of electrostatic repulsion between non-

compensated charges (Uversky 2002). This electrostatic repulsion, which, in turn, coincides 

with a partial folding of the protein, can be reduced by oppositely charged ions, as they are 

introduced by a shift in the pH or upon addition of salts (Uversky 2002). High concentrations 

of divalent cations, such as 2 mM Ca2+ or 2 mM Mg2+, in the near-fi eld of the FG-repeat 

domains therefore most likely cause their collapse, i.e. a partial folding which constrains 

their mobility.

 Depletion of nuclear calcium stores by thapsigargin constrained the fl exibility of 

the FG-repeat domains of both Nup153 and Nup214 (Fig. 3.5(a) and (b)), whereas calcium 

store depletion by EGTA had a milder effect on the FG-repeats (Fig. 3.S3). Thapsigargin is 

blocking the SERCA ATPase and, by this, is predicted to deplete lumenal calcium stores in 

the NE and the ER, since any leaking calcium ions cannot be replenished (Waldron et al. 

1997). Similarly, the calcium chelator EGTA causes calcium store depletion (Kao and Fong 

2004). Whereas thapsigargin causes a virtually irreversible depletion of the lumenal calcium 

stores, EGTA appears to not fully deplete calcium stores (Banhegyi et al. 1993). Hence the 

observed differences in the response of the FG-repeat domains of Nup153 and Nup214 to 

calcium depletion are therefore most likely due to these slight differences in the effect of 

EGTA and thapsigargin action on calcium stores. Nevertheless, our data suggest that such 

calcium store depletion can cause redistribution of nucleoporin FG-repeat regions within the 

NPC, which, in turn, might play a role in calcium signaling events to the nucleus.

3.3.2 ATP and nucleoporin domain topology

 AFM studies have previously revealed that addition of 1 mM ATP to isolated Xenopus 

nuclei is inducing conformational changes on the cytoplasmic face of the NPC (Rakowska et 

al. 1998). Our data presented here show that these ATP-dependent conformational changes 
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do not correlate with changes within the topology of the FG-repeat domains of Nup153 and 

Nup214 (Fig. 3.S4), which most likely is due to the high fl exibility of these nucleoporin 

domains. In contrast, ATP-depletion constrains the fl exibility of the FG-repeat domains of 

both Nup153 and Nup214, indicating that FG-repeat fl exibility is infl uenced by an active 

process that requires energy. Similar to our previous fi ndings (Paulillo et al. 2005), limited 

FG-repeat fl exibility under these conditions might be due to an arrest in nuclear transport, 

since nuclear transport is known to be ATP-dependent (Newmeyer and Forbes 1988).

 Taken together, our fi ndings suggest that the spatial distribution of fl exible FG-

repeat domains is not signifi cantly infl uenced by gross conformational changes in the central 

framework or the central pore of the NPC, such as the appearance and movement of a central 

plug, mass redistribution within the central framework, or the opening and closing of the 

distal ring of the nuclear basket. However, increased levels in divalent cation concentrations 

as well as ATP-depletion, coincide with a constrained fl exibility of the FG-repeat domains of 

Nup153 and Nup214, further strengthening the notion that FG-repeat domains are natively 

unfolded and that nucleoporin topology within the NPC architecture is infl uenced by energy-

dependent processes.

 These data underscore the multi-layered nature of NPCs dynamics and plasticity. 

Whereas gross changes in NPC architecture have been documented by atomic force to 

scanning electron microscopy studies (Perez-Terzic et al. 1996; Stoffl er et al. 1999; Wang and 

Clapham 1999; Goldberg et al. 2000; Jaggi et al. 2003), dynamics in nucleoporin residence at 

the NPC have been revealed by real-time imaging (Griffi s et al. 2004; Rabut et al. 2004), and 

changes in domain topology of Nup153 and Nup214 are refl ected in this and other immuno-

EM studies (Fahrenkrog et al. 2002; Paulillo et al. 2005). Here, we have shown that the 

local dynamics of FG-repeat domains can change in response to salts and energy-depletion. 

All these aspects of NPC dynamics and plasticity, although still poorly understood at the 

molecular level, are important to consider in the context of constitutive nuclear transport and 

its modulation in response to specifi c signaling and cell growth conditions essential for cell 

survival.
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3.4 Material and Methods

 All experimental procedures were performed at room temperature (rt) unless 

otherwise stated.

3.4.1 Immuno-EM of isolated nuclei from Xenopus oocytes and labelling at 
equilibrium state

 Mature (stage 6) oocytes were surgically removed from female Xenopus laevis, and 

their nuclei were isolated as described (Panté et al. 1994). Colloidal gold particles, ~8-nm 

in diameter, were prepared by reduction of tetrachloroauric acid with sodium citrate in the 

presence of tannic acid and antibodies were conjugated to colloidal gold particles as described 

(Baschong and Wrigley 1990). Isolated nuclei were labelled with anti-Nup153 antibodies as 

described previously (Fahrenkrog et al. 2002). In case of Nup214, nuclei were incubated in 

a solution of anti-Nup214 antibodies diluted 1:1000 in PBS for 2 hours and washed twice 

in PBS. After washing, nuclei were incubated for 2 hours in an anti-rabbit IgG antibody 

conjugated to 10-nm colloidal gold (BBI International, Cardiff, UK). Labelled nuclei were 

fi xed and processed for EM as described (Fahrenkrog et al. 2002; Paulillo et al. 2005).

3.4.2 Immunolocalization of FG-repeat domains in the presence of exogenous 
calcium

 Freshly isolated nuclei from Xenopus oocytes were collected in low salt buffer (LSB) 

containing 1 mM KCl, 0.5 mM MgCl
2
, 10 mM HEPES, pH 7.5, and incubated in LSB 

containing 100 μM Ca2+, 2 mM Ca2+, and 2 mM Mg2+, respectively, for 30 minutes. Next 

the nuclei were fi xed for 5 minutes in LSB containing 4% formaldehyde. The nuclei were 

washed twice in LSB for 5 minutes each, and incubated in anti-Nup153-C2 antibody directly 

conjugated to 8-nm gold (Fahrenkrog et al. 2002) for 2 hours to determine the localization 

of the FG-repeat domains of Nup153. For localization of the FG-repeat domain of Nup214, 

nuclei were incubated in anti-Nup214-D antibody and secondary anti-rabbit-IgG antibody 

conjugated to 10-nm colloidal gold as described above. After labelling the nuclei were 

prepared for EM as described.
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3.4.3 Immunolocalization of FG-repeat domains after Ca2+-depletion from calcium 
stores

 Freshly isolated nuclei from Xenopus oocytes were collected in LSB and incubated 

in LSB containing 10 mM EGTA for 10 minutes, and 1 μM thapsigargin for 30 minutes, 

respectively. Next the nuclei were fi xed for 5 minutes in LSB containing 4% formaldehyde. 

The nuclei were washed twice in LSB for 5 minutes each, and incubated in anti-Nup153-C2 

antibody directly conjugated to 8-nm gold for 2 hours to determine the localization of the FG-

repeat domains of Nup153. For localization of the FG-repeat domain of Nup214, nuclei were 

incubated in anti-Nup214-D antibody and secondary anti-rabbit-IgG antibody conjugated to 

10-nm colloidal gold as described above. After labelling the nuclei were prepared for EM as 

described.

3.4.4 Immunolocalization of FG-repeat domains under different ATP 
concentrations

 Freshly isolated nuclei from Xenopus oocytes were collected in LSB and incubated 

in LSB containing 1 mM ATP for various time points as indicated. To deplete ATP, isolated 

nuclei were incubated in LSB containing apyrase (2U/ml) for 30 minutes. Next the nuclei 

were fi xed for 5 minutes in LSB containing 4% formaldehyde. The nuclei were washed twice 

in LSB for 5 minutes each, and incubated in anti-Nup153-C2 antibody directly conjugated 

to 8-nm gold (Fahrenkrog et al. 2002) for 2 hours to determine the localization of the FG-

repeat domains of Nup153. For localization of the FG-repeat domain of Nup214, nuclei were 

incubated in anti-Nup214-D antibody and secondary anti-rabbit-IgG antibody conjugated to 

10-nm colloidal gold as described above. After labelling the nuclei were prepared for EM as 

described.

3.4.5 Cryo-EM and 2-D image processing

 Xenopus oocyte nuclei were isolated, opened manually and spread on an EM grid 

as described (Stoffl er et al. 1999). After washing the grid with LSB, a 5 μl droplet of LSB 

containing 100 μM Ca2+ or a 5 μl droplet of fresh LSB were applied and allowed to equilibrate 

for 15 minutes at room temperature. Samples were prepared for rapid freezing and zero-loss 

fi ltered EM and image processing essentially as described (Stoffl er et al. 2003). In brief, 

the images were recorded digitally with a slow-scan CCD camera (Proscan, Scheuring, 

Germany; 2 MHz read-out, 14 bit information depth, 1024×1024 pixel). The microscope and 
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the camera were controlled by a VIPS-1000 (Tietz Video and Image Processing Systems, 

Gauting, Germany. The sample thickness was determined on-line from a zero-loss fi ltered/

unfi ltered image pair by a macro routine applying the log/ratio method (Malis et al. 1988) 

combined with the experimentally determined partial inelastic mean free electron path (Feja 

and Aebi 1999). All images were recorded at 120 kV acceleration voltage. The magnifi cation 

was 12,500× (15,600× on the camera), and the defocus was 15 μm. The electron dose ranged 

between 300 and 500 e-/nm2. 2-D image processing including was performed as described 

(Stoffl er et al. 2003). The multivariate statistical analysis was performed with the Coran 

program package (Frank et al. 1988). From each image data set ~900 particles in 128×128 

pixel subframes were extracted interactively and contrast-normalized.
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Summary

Nucleoporins constitute the building block of the nuclear pore complex (NPC) and 

mediate transport of proteins and RNA traffi cking between the nucleus and cytoplasm of 

eukaryotic cells. Recent fi ndings revealed that nucleoporins play a dynamic role in other 

cellular processes, such as chromosome segregation and kinetochore structure. Moreover, in 

yeast, nucleoporins tether telomeres to the NPC, which might play a role in the regulation 

of chromatin organization and gene expression. Here we show that the human nucleoporin 

Nup214 colocalizes in part with human telomeres. By performing pull-down assays to 

identify novel interacting partners of Nup214, we found a protein involved in telomere length 

regulation, named telomeric repeat-binding factor 1 (TFR1), isoform 2 as putative Nup214-

interacting protein. By immunofl uorescence we show that a fraction of Nup214 localizes to 

human telomeres and that Nup214 colocalizes with tankyrase 1, a binding partner of TRF1 

(isoform 2) and which is known to localize to NPCs in interphase cells. However, we found 

no direct interaction between Nup214 and TRF1 (isoform 2), suggesting that Nup214 might 

form a trimeric complex with TRF1 (isoform 2) and tankyrase 1.
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4.1 Introduction

 Nuclear pore complexes (NPCs) perforate the nuclear envelope (NE) of eukaryotic 

cells and regulate the bidirectional transport of proteins, RNAs and ribonucleoprotein 

(RNP) particles between the nucleus and cytoplasm of eukaryotic cells (Gorlich and Kutay 

1999; Fried and Kutay 2003). Proteomic analysis of the mammalian NPC revealed that it is 

composed of about ~30 different proteins called nucleoporins or Nups. About one-third of 

the nucleoporins are characterized by distinct phenylalanine-glycine (FG) sequence motifs 

(Cronshaw et al. 2002). FG-repeat nucleoporins interact specifi cally with the importin-β 

family of  transport receptors (Radu et al. 1995), with NTF2 (Paschal and Gerace 1995; 

Clarkson et al. 1996) as well as  factors involved in mRNA export (Bachi et al. 2000; Strasser 

et al. 2000), and thus play a crucial role in the translocation of cargoes through the NPC 

(Ryan and Wente 2000; Ribbeck and Gorlich 2001; Cronshaw et al. 2002). 

 Nup214 is a putative oncogenic nucleoporin that contains multiple FG-repeats which 

mediate interactions with a number of transport receptors, such as hCRM1, Xpo-t, Rev and 

TAP/NXF1 (Fornerod et al. 1997; Zolotukhin and Felber 1999; Bachi et al. 2000; Kuersten 

et al. 2002). Based on its primary amino acid sequence, Nup214 is organized into three 

different domains: (i) an N-terminal domain that forms an asymmetric seven-bladed beta-

propeller structure (Weirich et al. 2004); (ii) a central domain that contains a leucine zipper 

motif and two predicted coiled-coil domains (von Lindern et al. 1992; Bastos et al. 1997); 

and (iii) a C-terminal domain that harbors a nuclear localization signal (NLS) and contains 

36 FG dipeptid motifs and 6 FxFG motifs in the human isoform (Fornerod et al. 1995). 

Immuno-electron microscopy (EM) studies on the topology of Nup214’s distinct domains 

revealed that Nup214 is anchored to the cytoplasmic side of the NPC by its N-terminal and 

central domain, whereas its C-terminal FG-repeat domain is able to shift from the cytoplasmic 

to the nuclear face of the NPC in a transport-dependent manner (Paulillo et al. 2005). This 

C-terminal FG-repeat domain of Nup214 mediates its interaction with several transport 

receptors and hence Nup214 plays an important role in different nuclear transport pathways, 

such as importin-β, CRM1, TAP and exportin-t-dependent/mediated transport (Fornerod et 

al. 1997; Zolotukhin and Felber 1999; Bachi et al. 2000; Kuersten et al. 2002; Rollenhagen 

et al. 2003). The central coiled-coil domain of Nup214 is critical for its incorporation into 

the NPC due to interaction with the coiled-coil domain of the nucleoporin Nup88 (Bastos et 

al. 1997). The functional role of the N-terminal domain of Nup214, however, has remained 

largely elusive, despite the fact that this domain has been shown to interact with the RNA 

helicase Dbp5 (Schmitt et al. 1999; Weirich et al. 2004).

 The main function of NPCs is attributed to its role in nucleocytoplasmic transport. 

However, in the last few years, it has become evident that NPCs are involved in a number 

of other various cellular processes, for example, chromosome segregation, kinetochore 
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integrity, the secretory pathway and apoptosis (Fahrenkrog and Aebi 2003; Fahrenkrog et 

al. 2004). Amongst these processes, the association of NPCs with chromatin can play a role 

in genome regulation and integrity. The non-random distribution of heterochromatin in the 

close proximity to the NE and active genes localized to the nuclear periphery demonstrates 

that NPCs in particular play a critical role in activation of gene transcription. (Ishii et al. 

2002; Casolari et al. 2004; Casolari et al. 2005; Dilworth et al. 2005; Schmid et al. 2006; 

Therizols et al. 2006). In yeast, an intriguing connection between NPCs and telomeres has 

been described (Therizols et al. 2006).

 Telomeres are multifunctional structures that protect chromosome ends from end-to-

end fusions and degradation, prevent activation of DNA damage checkpoints, and modulate 

the maintenance of telomeric DNA by telomerase (Chan and Blackburn 2002). Telomere 

regulation requires a minimal length of telomere repeats and telomere-binding proteins 

that protect the ends of human chromosomes, known as shelterin complex. This complex is 

composed by six telomere-specifi c proteins, which associates with the telomeric  TTAGGG 

sequence. Three of these shelterin subunits, TRF1 (Telomeric Repeat Binding Factor 1), 

TRF2 (Telomeric Repeat Binding Factor 2), and POT1 (Protection Of Telomeres 1) directly 

recognize TTAGGG repeats, whereas TIN2 (TRF1-interacting nuclear factor 2), TPP1 

(Tripeptidyl-Peptidase I Precursor), and Rap1 interconnect shelterin proteins (reviewed in 

(de Lange 2005)).

 In yeast, telomeres are tethered to the nuclear periphery by an interaction with 

NPCs, which appears to be mediated by the Mlp (Myosin-like protein) proteins and 

yKu70p (Hediger et al. 2002). Mlp1p and Mlp2p have been shown to localize to the nuclear 

periphery and bind to nuclear pore proteins (Strambio-de-Castillia et al. 1999; Galy et al. 

2000; Kosova et al. 2000). Additionally, Mlp2p is able to bind yKu70p, suggesting that 

telomere tethering to the nuclear periphery is mediated by an interaction of yKu with both 

Mlp proteins (Galy et al. 2000; Feuerbach et al. 2002). Disruption of Mlp proteins causes 

telomere clustering and releases telomeric gene repression (Hediger et al. 2002). Moreover, 

the Mlp proteins are interacting with NPCs via Nup145p, and consequently disruption of 

NPC architecture through mutation of Nup145p and Nup60p disrupted telomere anchoring 

to the nuclear periphery (Feuerbach et al. 2002). Moreover, Fabre and co-workers found that 

nucleoporins of the Nup84p complex anchor telomeres to the nuclear periphery and that the 

correct tethering of telomeres is critical for effi cient double-strand DNA repair (Therizols et 

al. 2006).

 In mammalian cells, the telomeric protein tankyrase 1 was found to localize at 

somatic telomeres and NPCs during interphase (Smith and de Lange 1999). Meiotic cells of 

certain plant and grasshopper species show an accumulation of NPCs near the membrane-

attached telomeres (Loidl 1990; Zickler and Kleckner 1998) and during mammalian 
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meiosis, a small fraction of TRF1 was found to colocalize or partially overlap with NPC by 

immunofl uorescence, although telomeres appear to be tethered to the nuclear envelope in 

areas that lack NPCs (Scherthan et al. 2000).

 In order to better understand the functional role of the N-terminal domain in Nup214, 

we aimed to identify novel binding partners of this domain. By doing so, we identifi ed 

TRF1 (isoform 2) as putative Nup214-interacting protein by performing pull-down assays. 

Transiently transfected TRF1 (isoform 2) localizes to telomeres of unsynchronized cells, and 

it colocalizes with tankyrase 1. We also show that Nup214 localizes partially to telomeres 

and colocalizes with tankyrase 1. Although  Nup214 and TRF1 (isoform 2) were shown to 

colocalize with tankyrase 1, both proteins do not interact directly in vitro. Similarly to the 

localization of Nup214 N-terminal and central domain (Paulillo et al. 2005), tankyrase is 

known to localize to the cytoplasmic side of the NPC (Smith and de Lange 1999). Therefore, 

we speculate that these proteins form a heterotrimeric complex, which might confer a new 

functional role for Nup214 in either cell cycle control or telomere maintenance. 
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4.2 Results

4.2.1 Identifi cation of novel Nup214-interacting protein

 We have recently mapped the domain topology of the nucleoporin Nup214 and we 

found that Nup214-NTD, similar to its central domain is anchored to the cytoplasmic face 

of the NPC, whereas the FG-repeat domain of Nup214 is fl exible, changing its location in a 

transport–dependent manner (Paulillo et al. 2005). Whereas it is known that Nup214 central 

domain mediates the incorporation of Nup214 to the NPC via interaction with Nup88 and 

that the C-terminal FG-repeat domain mediates the interaction with distinct nuclear transport 

factors, only little is know about the functional role of Nup214-NTD. Thus far, only the 

DEAD box helicase Dbp5 was found to interact with Nup214-NTD (Schmitt et al. 1999). 

We therefore aimed to identify novel interaction partners of this domain in order to better 

understand its functional role.

 To do so, we fi rst expressed residues 1-430 of Nup214-NTD in E.coli and purifi ed 

the protein by affi nity chromatography (see Materials and Methods). To identify proteins 

that bind to Nup214-NTD, the recombinantly expressed domain was immobilized on Ni-

NTA beads and incubated with HeLa nuclear extract. Proteins that bind to the immobilized 

Nup214-NTD were analyzed by SDS-PAGE, and proteins that bound specifi cally to Nup214-

NTD but not to Ni-NTA were identifi ed by mass spectrometry. 

 As shown in Fig. 4.1, three proteins bind specifi cally to Nup214-NTD but not to 

the Ni-NTA beads. These proteins had molecular masses of approximately 65 kDa, 55 kDa 

and 35 kDa, and were identifi ed as anti-Hepatitis C Virus E2 antibody, mitocondrial C1-

tetrahydrofolate synthetase, and TRF1 (isoform 2), respectively. 

The observed band for TRF1 (isoform 2) corresponds to ~35 kDa (Fig. 4.1) most probably 

due to cleavage during the experiment, since the molecular weight of the unprocessed 

precursor is ~50 kDa.

 TRF1 is a double-stranded DNA binding protein involved in telomere length 

regulation via negative feedback mechanism, probably by inhibiting the activity of telomerase 

at the ends of individual telomeres (van Steensel and de Lange 1997). Moreover, TRF1 

overexpression results in shortened telomeres, and mutation of its telobox domain causes 

elongated telomeres (van Steensel and de Lange 1997).  Except for an internal deletion of 

20 amino acids (296 to 316 in TRF1), TRF1 (isoform 2) is identical to TRF1, suggesting 

that these proteins may be generated by alternative splicing from the same gene, PIN2/TRF1 

(Chong et al. 1995; Lu et al. 1996; Shen et al. 1997). Both TRF1 dimers were localized to 

telomeres, and no functional differences between these proteins have been demonstrated so 
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far. Additionally, Smith and de Lange have reported that tankyrase 1, an interacting partner 

from TRF1 localizes to the cytoplasmic face of the NPC during interphase (Smith and de 

Lange 1999). We therefore decided to analyze in more detail whether or not TRF1 (isoform 

2) in fact interacts with Nup214, either directly or indirectly. 

Figure 4.1: Silver-stained polyacrylamide gel showing proteins that interact with the N-terminal domain of 

Nup214. (1) HeLa S3 nuclei extract, (2) HeLa S3 nuclei extract bound to beads, (3) Nup214-NTD and bound 

fraction of HeLa S3 nuclei extracts. 

 

4.2.2 Nup214 does not interact directly with TRF1 (isoform 2)

 To further elucidate whether Nup214-NTD is able to directly interact with TRF1 

(isoform 2), we performed solution-binding assays. For this purpose, we expressed Nup214-

NTD by coupled in vitro transcription and translation as well as full-length His-tagged TRF1 

(isoform 2) recombinantly in E.coli. Recombinant His-TRF1 (isoform 2) was immobilized 

on Ni-NTA beads and incubated with 35S-labelled Nup214-NTD and the unbound and bound 

fractions were analyzed by SDS-PAGE and autoradiography. As shown in Fig. 4.2, Nup214-

NTD does not directly interact with TRF1 (isoform 2) as Nup214-NTD was detected in the 

unbound fraction. 
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Figure 4.2: Solution-binding assay and autoradiography of protein-protein interaction between Nup214-

NTD and TRF1 (isoform 2). 

4.2.3 Cell cycle-dependent localization of Nup214

 In a next step, since Nup214 does not appear to directly interact with TRF1 (isoform 

2), we analyzed whether or not Nup214 and TRF1 (isoform 2) colocalize at any stage of 

the cell cycle. For this purpose, we fi rst performed immunofl uorescence detection of the 

Nup214-NTD epitope in a cell cycle-dependent manner. HeLa cells were arrested at the 

G
2
/M boundary by treating the cells with nocodazole (40 ng/mL) or synchronized at the 

G
1
/S boundary by mimosine arrest (400 μM), followed by an immunofl uorescence assay. As 

shown in Figs. 4.3A and 4.3B, the immunofl uorescence signals for Nup214 show a punctated 

pattern similar to telomere staining both in nocodazole and mimosine treated cells, but it is 

also dispersed throughout the nucleus, suggesting that Nup214 partially colocalizes with 

human telomeres.

4.2.4 Nup214 colocalizes with telomeres

 In order to confi rm that Nup214 in fact localizes to telomeres, we next performed 

co-localization immunofl uorescence experiments. Tankyrase 1 is a known telomeric protein, 

and we therefore decided to use an anti-tankyrase 1 antibody as telomeric marker. Moreover, 
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tankyrase 1 is known to localize to the cytoplasm, while a minor portion is also found at the 

NPCs, and around the perinuclear matrix of mitotic centromeres (Smith and de Lange 1999). 

During interphase a small fraction of tankyrase 1 is found in the nucleus, associated with 

TRF1 (Smith and de Lange 1999). 

As described in Materials and Methods, HeLa or HeLa S3 cells were synchronized 

at the G
1
/S boundary and at the G

2
/M boundary by mimosine and nocodazole treatment, 

respectively, and cells were fi rst stained with anti-tankyrase 1 antibody and subsequently 

with anti-Nup214-NTD. 
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 As shown in Fig. 4.4, in both nocodazole and mimosine treated HeLa cells, we found 

a partial co-localization of Nup214 and tankyrase 1, suggesting that, in fact, a fraction of 

Nup214 localizes to telomeres.

4.2.5 TRF1 (isoform 2) exclusively localizes to human telomeres

 Next, we wanted to analyze the subcellular localization of TRF1 (isoform 2), in 

particular whether or not TRF1 (isoform 2) colocalizes with NPCs. To to so, we transiently 

transfected TRF1 (isoform 2) into HEK-293 cells. The TRF1 (isoform 2) construct consists 

of an N-terminal GFP tag that was introduced to the full-length protein. GFP-TRF1 (isoform 

2) shows telomeric signal pattern (Fig. 4.5A), but no colocalization with NPCs. However, a 

soluble pool within the nucleus may exist. 

Next, we studied if TRF1 (isoform 2) in fact colocalizes with known telomeric proteins. 
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We therefore performed co-localization experiments using HEK-293 cells transiently 

transfected with GFP-TRF1 (isoform 2) and an anti-tankyrase 1 antibody. As shown in Fig. 

4.5B, TRF1 (isoform 2) and tankyrase 1 in fact colocalize at human telomeres.

  Taken together, our data suggest that TRF1 (isoform 2) exclusively localizes to 

telomeres, but not to NPCs. This, in turn, indicates that Nup214 interacts with telomeric 

proteins at telomeres and not at NPCs.
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4.3 Discussion

 Our search for novel binding partners of the Nup214-NTD has returned three putative 

candidates, from which we decided to investigate the telomeric protein TRF1 (isoform 2) 

more closely. Even though our pull-down assay is a strong indication for an interaction 

between Nup214 and TRF1 (isoform 2), we could not observe a direct interaction between 

the two proteins in solution binding assays.

 Although Nup214 does not interact directly with TRF1 (isoform 2), both proteins 

were found to localize at telomeres on immunofl uorescence level. It has been observed by 

us (Paulillo et al. 2005) and others (Kraemer et al. 1994) that unsynchronized cells show a 

nucleoporin characteristic nuclear rim-staining pattern for Nup214. However, in cells treated 

with nocodazole or mimosine, a punctated telomeric immunofl uorescence signal was detected 

for Nup214 (Fig. 4.3). While Nup214 shows a partial telomeric localizaton, we found a GFP-

TRF1 (isoform 2) fusion protein exclusively at telomeres. Interestingly, Schertan et al. by 

using immunofl uorescence, found TRF1 at telomeres, partially co-localizing or overlaping 

with NPCs in spermatocyte nuclei (Scherthan et al. 2000). These data together suggest that 

in somatic cells a minor pool of TRF1 (isoform 2) may localize to NPCs, which is not 

detectable by immunofl uorescence, but by electron microscopy. We found Nup214 and TRF1 

(isoform 2) localized at telomeres but no direct interaction between both proteins could be 

detected in vitro. This paradoxical result led us to investigate a third protein, tankyrase 1. 

Tankyrase 1 is localized at human telomeres through its interaction with TRF1 (Smith and 

de Lange 1999). In addition to its telomeric localization, tankyrase 1 localizes to interphase 

NPCs (Smith and de Lange 1999). However, the interaction partner of tankyrase 1 at the 

NPC is still unknown. Tankyrase 1 was found to localize to the cytoplasmic face of the NPC, 

close to the cytoplasmic ring moiety of the NPC (Smith and de Lange 1999). Nup214-NTD 

is anchored to this cytoplasmic ring moiety (Paulillo et al. 2005), suggesting that Nup214 

might be the docking site for tankyrase 1 at the NPC.

 We show here, by immunofl uorescence, that Nup214 and tankyrase 1 colocalize 

in interphase HeLa cells. Further double immuno-EM localization studies of Nup214 and 

tankyrase 1 are required to more precisely analyze the colocalization of both proteins at 

the nuclear envelope. Moreover, our immunofl uorescence experiments confi rmed the 

localization of TRF1 (isoform 2) and tankyrase 1 in unsynchronized HEK-293 cells (see Fig. 

4.5). This is in agreement with previous studies, which have shown that tankyrase 1 localizes 

to mammalian telomeres through interaction with both TRF1 (isoform 2) and TRF1 (Smith et 

al. 1998; Smith and de Lange 1999; Lages et al. 2004). Taken together, the known interaction 

of TRF1 (isoform 2) with tankyrase 1 (Lages et al. 2004) and the observed colocalization 

of Nup214 with tankyrase 1 suggest that tankyrase 1 might be the binding factor between 

Nup214 and TRF1 (isoform 2). 
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 This highly interesting link between Nup214 and telomeric proteins lead to questions 

about the functional roles of this putative complex. The fi rst obvious speculation would 

be that Nup214 plays an unknown role in telomere regulation by controlling the entry 

of TRF1 (isoform 2) into the nucleus that, in turn, negatively regulates telomere length. 

Secondly, this Nup214-TRF1 (isoform 2) complex might play a role in cell cycle regulation/

progress. Van Deursen et al. showed that NUP214-/- mouse embryonic stem (ES) cells are 

not viable and that NUP214-/- embryos die in the utero (van Deursen et al. 1996). Although 

progressive depletion of Nup214 leads to cell cycle arrest, no morphological infl uence on 

the nuclear envelope or NPCs could be detected  (van Deursen et al. 1996). Similarly, the 

depletion of TERF1, the TRF1 gene, fi rst exon results in embryonic death, suggesting that 

TRF1 function is not limited to telomere length regulation, in particular since telomeres and 

telomerase activity are unaffected in this knock-out mice (van Steensel and de Lange 1997; 

Smogorzewska et al. 2000; Karlseder et al. 2002; Karlseder et al. 2003).

 In summary, TRF1 (isoform 2) is a putative binding partner for Nup214, although both 

proteins do not appear to interact directly. Colocalization experiments, however, suggest that 

binding between Nup214 and TRF1 (isoform 2) might be mediated by tankyrase 1. Further 

analysis of the putative function of this novel Nup214 complex will require additional EM, 

cell biology and biochemistry studies to unravel its function, for example in cell cycle 

progression and/or telomere function. 
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4.4 Materials and Methods

4.4.1 DNA Constructs.

 Full-length human Nup214 cloned in a Bluescript vector was a kind  gift from Dr. 

Maureen A. Powers.  The Nup214 N-terminal domain (Nup214-NTD) construct compraising 

residues 1-430 was PCR amplifi ed from the Bluescript vector, cloned in a pETM-11 vector, 

and the correct DNA sequence was confi rmed by sequencing. The nucleotide sequence 

of the forward primer was 5’-CATGCCATGGTATGGGAGACGAGATGGATGCC 

with NcoI restriction site.The reverse primer was 5’-ATAAGAATGCGGCCGCTCAT 

GACTTGGGCTGTCGCTCTCCTTC-3’ with a NotI restriction site. 

 TRF1 (isoform 2) (IRAUp969A0289D, RZPD Deutsches Ressourcenzentrum für 

Genomforschung GmbH. Berlin, Germany) construct comprising the full-length sequence 

was PCR amplifi ed from pDNR-LIB vector, cloned in a pETM-11 vector, and the construct 

was confi rmed by sequencing. The nucleotide sequence of the forward primer was 5’-

CATGCCATGGCGGAGGATGTTTCCTCA with NcoI restriction site. The reverse primer 

was 5’- GGGGTACCTCAGTCTTCGCTGTCTGAGGA-3’ with a KpnI restriction site. 

The pETM-11 expression vector (kindly provided by Dr. Olga Mayans, Biozentrum, 

Basel) is a modifi ed version of the pET24d (Novagen, Madison, WI, USA) with an upstream 

sequence coding for a hexahistidine-tag (His
6
-tag) plus a TEV protease cleavage site followed 

by the non-essential gene of a protein called MAD. For all constructs design, the MAD insert 

was excised and replaced with the gene encoding the protein of interest.

 The Nup214-NTD construct comprising residues 1-455 was PCR amplifi ed 

from pBluescript vector and cloned into a modifi ed pBluescript vector (Stratagene, 

La Jolla, CA, USA) into which the multiple cloning site of the vector pALTER 

(Promega, Madison, WI, USA) was introduced (kind gift of Dr. D. Sitterlin, 

Université de Versailles St. Quentin en Yveline, France), and the correct sequence 

was confi rmed by sequencing. The nucleotide sequence of the forward primer was 5’-

CCGGAATTCATGGGAGACGAGATGGATGCC with an EcoRI restriction site. The reverse 

primer was 5’-AAGGAAAAAAGCGGCCGCTAAAGGGGCTGCAGCTGCAGAAG-3’ 

with a NotI restriction site.

 The full length TRF1 was amplifi ed by PCR from pDNR-LIB vector, digested with 

KpnI and BamHI and ligated into pEGFP-C1 (Clontech Laboratories, Inc. Mountain View, 

USA), and the correct sequence was confi rmed by sequencing. The nucleotide sequence 

of the forward primer was 5’-GGGGTACCATGGCGGAGGATGTTTCCTCA with KpnI 

restriction site. The reverse primer was 5’-GCGGATCCGTCAGTCTTCGCTGTCTGAGG-
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3’ with a BamHI restriction site. 

4.4.2 Protein expression

 Recombinant His
6
-fusion proteins were expressed in E.coli Rosetta (DE3) strain 

(Novagen, Madison, WI, USA). Cells were grown in LB medium supplemented with 34 μg/

ml chloramphenicol and 25 μg/ml kanamycin at 37°C. At an optical density (OD) of 0.3 at 

600 nm for Nup214-NTD and OD
600

 of 0.4 for TRF1 (isoform 2), expression was induced by 

addition of 0.5 mM isopropyl-β-D-thiogalactopyranoside (IPTG) and cells were incubated 

at 20°C for 16-18 h. The cells were harvested by centrifugation at 8000 g, for 30 minutes at 

4°C, and stored at -80°C or immediately used.

4.4.3 Protein purifi cation

 For purifi cation of recombinantly expressed TRF1 (isoform2), cells were resuspended 

in lysis buffer containing of 50 mM HEPES pH 7.5, 800 mM KCl, 10% glycerol, 5 mM ß-

mercaptoethanol, 10 mM imidazole, 5 μg/ml DNase I, 1 mM phenylmethylsulphonylfl uoride 

(PMSF), 0.2 mg/ml lysozyme and protease inhibitor cocktail (Complete EDTA free; Roche 

Diagnostics GmbH, Mannheim, Germany).

 Cell lysis was performed by sonication on ice (Branson Digital Sonifi er, Branson 

Ultrasonics Corporation, Danbury, CT, USA) using 20 short pulses (5 seconds) with pauses 

(10 seconds).

 The lysate was centrifuged at 40’000 g for 45 min at 4°C, the clarifi ed supernatant 

was purifi ed by affi nity chromatography on a His-trap chelating column (GE Healthcare, 

Upsala, Sweden) pre-equilibrated with lysis buffer. A salt gradient wash was employed to 

discard contaminant proteins, and the protein was eluted with 200 mM imidazole. The elution 

product was dialyzed overnight in lysis buffer lacking imidazole. The protein was analyzed 

by SDS-PAGE and protein identity confi rmed by mass spectrometry. 

 The same above described procedure was utilized for purifi cation of the expressed 

Nup214-NTD, except that cell lysis was performed by using a French press (3 X 1000 pounds 

per square inch).
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4.4.4 Isolation of HeLa nuclei

 Nuclei from HeLa S3 cells were prepared by a method employing hypotonic swelling 

and Dounce homogenization (Spector, D., Cells, A laboratory manual, vol. 1, 43.7-43.11, 

1998, CSHL press). Briefl y, swollen cells were lysed in hypotonic buffer (0.01M NaCl, 1.5 

mM MgCl
2
, 0.01 M Tris-HCl, pH 7.4) by tight-fi tting Dounce homogenization, and nuclear 

fractions were collected by low spin centrifugation. Isolated nuclei were stored at -70°C.

4.4.5 Pull-down assays with His-tagged protein

 Recombinantly expressed Nup214-NTD (amino acids 1-430) was immobilized on 

40 μL Ni-NTA beads (QIAGEN Inc, Valencia, CA, USA) in binding buffer and incubated at 

4°C overnight. The beads were washed three times with wash buffer (50 mM Tris-HCl, pH 

7.5, 200 mM NaCl, and 40 mM imidazole). HeLa S3 cell nuclei were lysed by hypotonic 

lysis with 450 μL of 50 mM Tris-HCl, pH 7.5, 150 mM potassium acetate, 5 mM magnesium 

acetate and homogenized with a tight fi tting Dounce homogenizer. Next, beads were loaded 

with HeLa nuclei extract, incubated overnight at 4°C and subsequently washed three times 

with wash buffer. Bound proteins were eluted by boiling in 3X gel sample buffer (5 min, 

95°C). Proteins that bound specifi cally to Nup214-NTD as well as unbound fractions were 

analyzed by 10% SDS-PAGE and visualized by silver staining. Proteins of interest were 

identifi ed by mass spectrometry.

4.4.6 In vitro transcription and translation

 Nup214-NTD (amino acids 1-455) was expressed by coupled in vitro transcription 

and translation following the manufacturer’s protocol (TnT quick coupled transcription/

translation systems, Promega Corporation, Madison, USA). Briefl y, Nup214-NTD (amino 

acids 1-455) cloned into a pBluescript modifi ed vector containing a T7 promoter was added 

to the master mix and labelled with [35S] methionine. The reaction was incubated at 30°C 

for 60-90min. The reaction mix was loaded onto a 10% SDS-PAGE gel and visualized by 

autoradiography. 
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4.4.7 Solution binding assay

 Recombinant His-tagged Nup214-NTD was prebound to 40μL Ni-NTA beads for 8 

h at 4°C with gentle agitation. The beads were washed three times with a washing buffer (50 

mM HEPES, pH 7.5, 400 mM KCl, and 40 mM imidazole), and subsequently beads were 

loaded with 10 μl in vitro transcribed/translated TRF1 (isoform 2) for 24 h at 4°C with gentle 

agitation in a fi nal volume of 200 μL of binding buffer. The beads were next washed for three 

times with wash buffer and bound proteins were eluted by heating in 3X gel sample buffer (5 

min, 95°C). Unbound and bound protein fractions were separated by 10% SDS-PAGE gels 

and visualized by autoradiography.

4.4.8 Cell culture and cell synchronization

 HeLa cells were grown in monolayer on coverslips in DMEM (Sigma-Aldrich, St. 

Louis, MO, USA) supplemented with 10% fetal calf serum (FCS), 2 mM L-glutamine and 

antibiotics at 37°C with 5% CO
2
. Synchronous population of HeLa cells was obtained by 

nocodazole treatment. Briefl y, exponentially growing cells (cell density 2 X 105 to 6 X 105) 

were treated with 40 ng/mL nocodazole (Sigma-Aldrich, St. Louis, MO, USA) for 12-16 h, 

mitotic cells were detached from the fl ask and prepared for immunofl uorescence.

Alternatively, cells were arrested at the G
1
/S border by mimosine (Sigma-Aldrich, St. 

Louis, MO, USA) treatment. Exponentially growing cells were treated for 12 h with 2 mM 

thymidine, released in DMEM medium for 9 h, and retreated with 400 μM of mimosine for 

12 h and prepared for immunofl uorescence. 

 

4.4.9 Transient transfection assays

 HEK-293 cells were cultured on coverslips coated with 0.01% poly-L-lysine (Sigma-

Aldrich, St. Louis, MO, USA) in a 24-well plate in DMEM supplemented with 10% fetal 

bovine serum at 37°C in a 5% CO
2
 atmosphere incubator. On the day of transfection, DMEM 

was removed and replaced with Opti-MEM® reduced serum medium (Life Technologies, 

Gaithersburg, MD, USA). Transfection was performed using LipofectamineTM 2000 reagent 

(Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s protocol. Briefl y, a mixture 

of LipofectamineTM 2000 and Opti-MEM was incubated for 5 minutes at room temperature. 

This solution was then combined with plasmid DNA mixed with Opti-MEM and incubated 

for further 20-25 minutes and the reaction mixture was added to the cells. After 21 hours, the 
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cells were rinsed with PBS and prepared for immunofl uorescence.

4.4.10 Immunofl uorescence microscopy

 HeLa cells were cultured on coverslips or HeLa S3 non-adherent cells were 

grown and seeded on poly-L-lysine coated coverslips. Cells were fi xed in PBS containing 

4% paraformaldehyde and permeabilized in PBS containing 0.2% Triton X-100. The 

permeabilized cells were washed and incubated with the corresponding primary antibodies 

in PBS for 1 h, followed by a wash step and 45 minutes incubation with a secondary antibody 

containing DRAQ-5 cell permeable DNA fl uorescence dye (1:250, ALEXIS, San Diego, 

USA).

 The following antibodies were used: anti-Nup214-NTD (1:100; (Paulillo et al. 

2005)), anti-tankyrase1 (1:30 , Calbiochem, Darmstadt, Germany), anti-rabbit Alexa 488 

(1:800, Molecular Probes, Eugene, OR, USA) and Cy3-anti-mouse IgG (1:2000; Jackson 

ImmunoResearch Europe Ltd., Cambridgeshire, UK). 

 The immunostained cells then were next mounted in Mowiol and visualized by using 

a confocal laser-scanning microscope (Leica TCS NT/SP1, Leica, Vienna, Austria). Images 

were recorded using the microscope-system software and processed with Adobe Photoshop 

(Adobe Systems, Mountain View, CA, USA).
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 5.1 FG-repeats: the chaperones of nucleocytoplasmic transport

 In the last years, a consensus model of the 3-D architecture of the NPC has evolved 

from extensive EM studies, such as immuno-EM, cryo-EM, cryo-electron tomography, as 

well as AFM studies (Fahrenkrog et al. 2002; Stoffl er et al. 2003; Beck et al. 2004; Lim 

et al. 2006). These studies led to a better understanding of the organization of individual 

nucleoporins within the NPC, how they assemble into subcomplexes, and how individual 

nucleoporins and subcomplexes act in nucleocytoplasmic transport (for review see (Tran and 

Wente 2006)).

 In order to better understand the spatial organization of the nucleoporin Nup214, we 

used immuno-EM to determine the position of the three distinct domains of Nup214 within 

the 3-D architecture of the NPC. For this purpose, we used domain-specifi c antibodies in 

human somatic cells as well as in Xenopus oocyte nuclei in combination with the expression 

of epitope-tagged Nup214 in Xenopus oocytes. These studies revealed that the Nup214 N-

terminal domain and central domain are located to the cytoplasmic face of the NPC, while 

the C-terminal FG-repeat domain localizes to both its cytoplasmic and the nuclear face. 

These results are in agreement with previous studies that showed that the N-terminal and 

central domain of Nup214 localized to the cytoplasmic face (Kraemer et al. 1994; Pante et al. 

1994; Walther et al. 2002), whereas the C-terminal FG-repeat domain had thus far not been 

localized by immuno-EM.

 FG-repeat domains have been previously described to be natively unfolded, i.e. they 

lack ordered secondary structures (α-helix and β-sheet) (Denning et al. 2002; Denning et al. 

2003). Natively unfolded proteins exhibit features that assure simultaneous interactions with 

different binding partners and fast association-dissociation molecular rates (Denning et al. 

2003), suggesting that the disordered nature of FG-repeat domains is intimately related to 

the mechanism of nuclear transport.

 To further elucidate the functional role of FG-repeat domains in nucleocytoplasmic 

transport, we aimed to localize the domain topology of Nup214 and Nup153 FG-repeat 

domains in Xenopus oocyte nuclei. We found that in the presence of the excessive import 

cargo nucleoplasmin or in the presence of excessive poly(A+) RNA isolated from HeLa cells, 

the localization of the FG-repeat domains of both, Nup214 and Nup153, shifted with regard 

to occurring import or export events. Moreover, an arrest of nucleocytoplasmic transport 

at 4°C constrains the mobility of the FG-repeat domains of Nup214 and Nup153 to their 

anchoring site within the NPC (Paulillo et al. 2005). 

 Our data therefore clearly underline the fl exible and mobile character of FG-repeat 

domains, which, in turn, will have a high impact on the effi ciency of nucleocytoplasmic 
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transport. Our data are supported by the fi nding that FG-repeat domains act as an entropic 

barrier at the periphery of the NPC and at the same time serve as selective gate by “trapping” 

transport complexes (Lim et al. 2006). Because of the natively unfolded nature of FG-repeat 

domains, even a small number of FG-repeat domains are suffi cient to keep the entropic 

barrier, although probably less optimal (Lim et al. 2006). This, in turn, could explain why 

Wente and co-workers did not observe major effects on nucleocytoplasmic transport and 

cell viability when yeast cells were depleted for more than half of their FG-repeat domains 

(Strawn et al. 2004).

 The notion that FG-repeat domains act as entropic barrier (see also (Lim et al. 2006)) 

is further supported by the fi nding that FG-repeat domains of Nup153 “collapse” upon 

binding of importin-β and that this collapse is reversible upon RanGTP binding, both in vivo 

and in vitro (R. Y. H. Lim, personal communication).

Our studies have revealed that the FG-repeat domains of Nup214 and Nup153 are both 

extended, fl exible domains, which react to changes in their chemical environment, although 

slightly different (Paulillo et al. 2005; Paulillo et al. 2006).

In this context, it would be interesting to analyze if importin-β affects the FG-repeats 

of Nup214 in a similar way as described for Nup153. Also, it is known that Nup214 plays 

a critical role in CRM1-mediated nuclear export (Fornerod et al. 1997; Kehlenbach et al. 

1999; Kehlenbach et al. 2001) and it would therefore be interesting to study the effect of 

importin-β versus CRM1 on both Nup214 and Nup153 FG-repeat domains. 

5.2. Nup214 and nuclear export

 Nup214 is anchored at the cytoplasmic face of the NPC and it is known to interact 

with the nuclear export receptor CRM1 (Kehlenbach et al. 1999; Kehlenbach and Gerace 

2000). When CMR1 is depleted from HeLa cells, CRM1-mediated export is inhibited, 

whereas nuclear import appears to be unaffected (Hutten and Kehlenbach 2006). Fornerod 

and co-workers, in contrast, found nuclear import to be inhibited upon Nup214 depletion in 

mouse embryos, whereas a CRM1-dependent nuclear export was not studied (Fornerod et al. 

1997). Both reports consistently show that Nup214 depletion results in an impaired mRNA 

export. Additional data from the Kehlenbach lab implies that Nup214 serves as a terminal 

binding for nuclear export complexes (Hutten and Kehlenbach 2006). RanGTP was shown 

to be required for the high-affi nity complex containing Nup214, CRM1, RanGTP, and an 

export substrate (Hutten and Kehlenbach 2006). The complex formation between Nup214 

and CRM1 at the nuclear face of the NPC is further supported by our immuno-EM data. We 
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performed co-localization experiments in Xenopus oocytes and found ~17% of the Nup214 

and CRM1 gold particles co-localizing at the nuclear face of the NPC, whereas ~83% of 

the co-localization particles where found at the NPC cytoplasmic face. Interestingly, these 

particles were found exclusively at the distal ring of the basket or at the cytoplasmic ring 

of the NPC, possibly due to fast complex translocation through the NPC (unpublished data, 

Figure 5.1). 

Fig. 5.1: Immuno-colocalization between Nup214 FG-repeats and CRM1. Intact isolated Xenopus 

nuclei were incubated with anti-Nup214-FG-repeats and to a secondary anti-rabbit IgG antibody 

conjugated to 10 nm colloidal gold. Subsequently the nuclei were incubated to anti-CRM1 direct 

conjugated to 5 nm colloidal gold. Scale bars represent 100 nm. 

5.3 Chemical effectors and nucleoporin topology

 Changes in levels of cellular calcium and ATP, respectively, are known to induce 

conformational changes in the NPC architecture, especially at the cytoplasmic face, but also 

at the nuclear basket and to affect nuclear transport (Greber and Gerace 1995; Rakowska et al. 

1998; Stoffl er et al. 1999; Wang and Clapham 1999). However, no direct link between these 

changes and nuclear transport has been demonstrated so far, although it has been suggested 

that NPC conformational changes could alter the accessibility of FG-repeat sites within the 

NPC (Erickson et al. 2004).



152

Chapter 5Conclusions and Future Prospects

 We studied the infl uence of Ca2+ or ATP on the domain topology of Nup214 and 

Nup153 in Xenopus oocytes (Paulillo et al. 2006). Previous AFM studies have revealed 

a reversible opening and closing of the distal ring of the nuclear basket in the presence or 

absence of 100 μM Ca2+ (Stoffl er et al. 1999) and we have shown previously that the zinc-

fi nger domain of Nup153 resides at the distal ring of the nuclear basket (Fahrenkrog et al. 

2002). However, we observed no effect on the location of Nup153’s zinc-fi nger domain upon 

addition of 100 μM and 2 mM Ca2+, respectively (Paulillo et al. 2006).

 Similarly, the presence of 100 μM Ca2+ in the buffer does not infl uence the distribution 

of the FG-repeat domains of Nup214 and Nup153. The presence of 2 mM Ca2+ as well as 

calcium store depletion by thapsigargin, in contrast, causes a dramatic redistribution of the 

FG-repeat domains of Nup214 and Nup153. This, however, is not a calcium-specifi c effect, 

since 2 mM Mg2+ lead to a similar alteration in the FG-repeat domain distribution of Nup214 

and Nup153, underlining the natively unfolded nature of these domains. Natively unfolded 

proteins are characterized by the presence of charged amino acids, and are unstructured 

mainly due to electrostatic repulsion between non-compensated charges (Uversky 2002). 

Oppositely charged ions can reduce this electrostatic repulsion, which leads to partial 

refolding of the molecule. Therefore, FG-repeat domains likely collapse in the presence of 

high salt concentration and their partial folding reduces their mobility.

 Whereas the peripheral FG-repeat domains of Nup214 and Nup153 as well as the 

zinc fi nger domain of Nup153 are rather unaffected in the presence of 100 μM Ca2+, by 

employing cryo-EM in Xenopus nuclei we observed signifi cant alterations in the radial mass 

density of the central framework in the presence of 100 μM Ca2+ in the buffer environment 

(Paulillo et al. 2006). Together our data therefore suggest that chemical effectors, such as 

Ca2+, can cause structural reorganization within the central framework, whereas the highly 

fl exible cytoplasmic fi laments and the nuclear basket are rather insensitive to these effectors. 

In this context, it would be therefore interesting to map the domain topology of nucleoporins 

known to be components of the central framework, such as the Nup107-160 complex, in a 

Ca2+ dependent manner.

5.4 Other roles for Nup214

 Nuclear pore complexes and nucleoporins undoubtedly have their main function in 

promoting nucleocytoplasmic transport and NPC structure. In the past few years, however, 

it became evident that nucleoporins play import roles in other processes, such as gene 

expression, DNA repair and apoptosis (Fahrenkrog et al., 2004; Fahrenkrog and Aebi, 

2003). 
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The nuclear architecture provides a framework on which chromosomes are non-randomly 

organized into territories and their location within the nucleus varies between cell types   

(Oliver and Misteli 2005). Correct positioning of chromosomes refl ects effi cient transcriptional 

activity and have important implications for the regulation of gene expression (Misteli 2004; 

Gilbert et al. 2005). Additional roles of the nuclear periphery in gene regulation is linked to 

the NPC, since several export factors and NPC components were identifi ed to be essential 

for activation of a reporter gene (Feuerbach et al. 2002; Hediger et al. 2002; Ishii et al. 2002; 

Casolari et al. 2004; Drubin et al. 2006). Measurements of gene locus movements reinforced 

the model that genes are physically associated with the NPC (Drubin et al. 2006). Likely, 

very similar experiments have shown that telomeres are highly associated with the NPC and 

nuclear periphery (Laroche et al. 1998; Galy et al. 2000; Heun et al. 2001; Feuerbach et al. 

2002). 

 Along this line, we proposed that Nup214 might be involved in cell cycle and/or 

telomere length regulation via its putative interaction with two telomere associated proteins, 

TRF1 (isoform 2) and tankyrase 1. In this context, Nup214-NTD, which localizes to the 

cytoplasmic face of the NPC (Paulillo et al. 2005), may act as a docking site for a TRF1 

(isoform 2)/tankyrase 1 complex during their nuclear import. This suggests that Nup214 

might control the entry of TRF1 (isoform 2) into the nucleus and this, in turn, negatively 

regulates telomere length. 

 Interestingly, recently TRF1, similar to Nup214, has also been described to be 

associated with leukemia (Bellon et al. 2006). Patients with T-cell leukemia (ATL) showed 

increased transcriptional and post-transcriptional expression of telomeric binding proteins, 

such as TRF1, TRF2 and TIN2 (Bellon et al. 2006). Moreover, overexpression of TRF1 

could be detected in several types of cancer (Matsutani et al. 2001; Yokota et al. 2003). 

Bellon et al. suggested that the overexpression of TRF1, TRF2 and TIN2 may increase the 

progress of ATL to a late stage (Bellon et al. 2006). In addition, high concentrations of TRF1 

and TIN2 might prevent apoptotic signals resulting from short telomeres (Bellon et al. 2006). 

Overexpression of Nup214, on the other hand, is also known to induce apoptosis (Boer et al. 

1998). If this, however, is linked to a role of Nup214 in telomere regulation remains to be 

elucidated. 

 Alternatively, both proteins Nup214 and TRF1 might have different functions from 

their original ones. Nup214 depletion leads to cell cycle arrest in mouse embryonic cells 

although no NPC or NE defects were detected (van Deursen et al. 1996). Similarly, depletion 

of part of the TRF1 gene resulted in embryonic death, but not due to telomere or telomerase 

misfunction (van Steensel and de Lange 1997; Smogorzewska et al. 2000; Karlseder et al. 

2002; Karlseder et al. 2003), suggesting that TRF1 depletion causes cell cycle defects. TRF1 

was also reported to interact with other non-telomere-interacting partners, such as the human 
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nucleoside diphosphate kinase nm23-H2 and the transcriptional repressor Sall1 (Sal-like 

1) involved in Townes-Brocks syndrome (Nosaka et al. 1998; Netzer et al. 2001), which 

indicate that TRF1’s function is not confi ned to the telomere regulation process.

 Together this might indicate an unknown function for the Nup214-TRF1 complex, 

for example in cell cycle regulation/progression.
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Figure S2.1: BHK cells transiently transfected with either pEGFP-Nup214 (left panel) or pCMV-Nup214-myc (right 

panel). GFP-Nup214 was visualized by direct immunofl uorescence and Nup214-myc by using a primary monoclonal 

antibody against the myc-tag follwed by a secondary Cy3-labelled anti-mouse antibody. Scale bar, 5 μm.
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Figure S2.2: Attenuated nuclear transport does not infl uence the localization of the stationary domains Nup153 

and Nup214. (A) Isolated Xenopus nuclei were incubated at 4°C prior labelling with an antibody against the N-

terminal domain (anti-N-Nup153) and the central zinc-fi nger domain (anti-Z-Nup153) of Nup153, respectively, directly 

conjugated to 8-nm colloidal gold, and the gold particles associated with the NPC were quantitatively analyzed. The 

following numbers of gold particles were scored: two hundred three (anti-N-Nup153, steady-state), sixty-eight (anti-

N-Nup153, 4°C), one hundred fi ve (anti-Z-Nup153, steady-state), and one hundred thirty (anti-Z-Nup153, 4°C). (B) 

Immunolabelling of isolated Xenopus nuclei after incubation at 4°C with the anti-Nup214-B antibody and a secondary 

anti-rabbit IgG antibody conjugated to 10-nm colloidal and quantifi cation of the gold particle distribution associated with 

the NPC. One hundred sixty-six (steady-state) and thirty-four (4°C) gold particles were scored, respectively. At 4°C, 

some cross-reactivity with the nuclear face of the NPC was observed as it has been seen in other sets of experiments at 

room temperature as well.
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Figure S2.3: Infl uence of attenuating nuclear transport by WGA and importin-β 45-462 on the FG-repeat domains of 

Nup153 and Nup214. (A) Quantitative analysis of the gold particles associated with the NPC after labelling with the anti-

C2-Nup153 antibody at 4°C, incubation with WGA or importin-β 45-462, respectively. The following numbers of gold 

particles were scored: one hundred sixty (steady-state), eighty-eight (4°C) sixty-fi ve (WGA), and seventy-six (importin-β 

45-462), respectively. (B) Quantifi cation of the gold particle distribution associated with the NPC after labelling with 

the anti-Nup214-D antibody at 4°C, incubation with WGA or importin-β 45-462, respectively. Two hundred fi fty-nine 

(steady-state), one hundred thirty-four (4°C), seventy-six (WGA), and one hundred seventy-fi ve (importin-β 45-462) gold 

particles were scored, respectively.
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Figure S2.4: Immunolocalization of the FG-repeat domains of Nup153 and Nup214/CAN, respectively in the 

presence of excessive nucleoplasmin. Xenopus nuclei were isolated manually and incubated in nucleoplasmin-containing 

import mixture for the indicated time-points prior labelling with (A) the anti-C2-Nup153 antibody directly conjugated to 

8-nm colloidal gold and (B) the anti-Nup214-D antibody and a secondary anti-rabbit IgG antibody conjugated to 10-nm 

colloidal gold, respectively. Shown ate stretches along the NE in cross sections (top panels) and selected examples of 

gold labelled NPCs in cross sections (middle and bottom panels). c, cytoplasm; n, nucleus. Scale bars, 100 nm.
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Figure S2.5: The location of the FG-repeat domain and the stationary domains of Nup153 in the presence of excess 

import cargo. (A) Quantitative analysis of the gold particles associated with the NPC after labelling with the anti-C2-

Nup153 antibody in the presence of import mixture lacking additional cargo. One hundred sixty (steady-state) and one 

hundred twenty-seven (import mixture) gold particles were scored, respectively. (B) Quantitative analysis of the gold 

particles associated with the NPC after labelling with the anti-N-Nup153 and the anti-Z-Nup153 antibody, respectively, 

in the presence import mixture containing excess nucleoplasmin. Import of nucleoplasmin into isolated intact Xenopus 

oocytes nuclei was allowed for the indicated time-points before the nuclei were shortly prefi xed in formaldehyde and 

pre-embedding labelled with the corresponding antibody. The following numbers of gold particles were scored for the 

individual experiments: not determined (anti-N-Nup153, 5 min), fi fty-fi ve (anti-N-Nup153, 15 min), fi fty-eight (anti-N-

Nup153, 30 min), fi fty-fi ve (anti-Z-Nup153, 5 min), forty-fi ve (anti-Z-Nup153, 15 min), and fi fty-fi ve (anti-Z-Nup153, 

30 min). Labelling with the anti-N-Nup153 antibody after 5 min incubation of the nuclei in the presence of excess 

nucleoplasmin could not be analyzed, since under these experimental conditions the nuclear face of the NPC repetitively 

appeared not accessible for the antibody.
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Figure S2.6: Immunolocalization of the FG-repeat domains of Nup153 and Nup214/CAN, respectively in the 

presence of excessive poly(A+) RNA. After microinjection of poly (A+) RNA into the nuclei of Xenopus oocytes, 

isolated nuclei were preembedding labelled with (A) the anti-C2-Nup153 antibody directly conjugated to 8-nm colloidal 

gold and (B) the anti-Nup214-D antibody and a secondary anti-rabbit IgG antibody conjugated to 10-nm colloidal gold, 

respectively. Cross section along the NE as well as selected examples of labelled NPCs are shown. c, cytoplasm; n, 

nucleus. Scale bars, 100 nm.
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Figure S2.7: The infl uence of export cargo on the location of the FG-repeat domains of Nup153 and Nup214. 

Quantifi cation of the gold particle distribution associated with the NPC after microinjection of total RNA into the nuclei 

of Xenopus oocytes and pre-embedding labelling with the (A) anti-C2-Nup153 and the (B) anti-Nup214-D antibody. The 

following numbers of gold particles were scored for the individual experiments: ninety-two (anti-C2-Nup153, 30 min), 

sixty-eight (anti-C2-Nup153, 60 min), ninety-three (anti-C2-Nup153, 90 min), ninety (anti-Nup214-D, 30 min), thirty-

nine (anti-Nup214-D, 60 min), and one hundred fi fty-four (anti-Nup214-D, 90 min). 
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Figure S2.8: Immunolocalization of the FG-repeat domains of Nup153 and Nup214/CAN, respectively in the 

presence of excessive total RNA. After microinjection of RNA into the nuclei of Xenopus oocytes, isolated nuclei were 

preembedding labelled with (A) the anti-C2-Nup153 antibody directly conjugated to 8-nm colloidal gold and (B) the anti-

Nup214-D antibody and a secondary anti-rabbit IgG antibody conjugated to 10-nm colloidal gold, respectively. Cross 

section along the NE as well as selected examples of labelled NPCs are shown. c, cytoplasm; n, nucleus. Scale bars, 100 

nm.
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Figure S2.9: Localization of the FG-repeat domains of Nup153 and Nup214/CAN under infl uence of actinomycin 

D. A cross section along the NE and selected examples of NPCs in cross sections after labelling with (A) the anti-C2-

Nup153 and (B) the anti-Nup214/CAN antibody are shown. c, cytoplasm; n, nucleus. Scale bars, 100 nm.
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Figure S3.1: Quantifi cation of the gold particle distribution associated with the NPC after isolated intact 

Xenopus nuclei were incubated in low salt buffer containing 2 mM Ca2+ and 2 mM EGTA for 10 minutes before 

nuclei were shortly fi xed and pre-embedding labelled with (a) an antibody against the FG-repeat domain of Nup153 

(anti-Nup153-C2), (b) an antibody against the FG-repeat domain of Nup214, and (c) the zinc-fi nger domain of 

Nup153. The following numbers of gold particles were scored for the individual experiments: 105 (anti-Nup153-

C2, 2 mM Ca2+/2 mM EGTA sim.), 165 (anti-Nup214-D, 2 mM Ca2+/2 mM EGTA sim.), 65 (anti-Nup153-

Z, 2 mM Ca2+/2 mM EGTA sim.). Steady-state values are as shown in Figure 1 and are included here for reference. 
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Figure S3.2: Infl uence of extranuclear calcium on the nuclear import of nucleoplasmin. (a) Digitonin permeabilized 

HeLa cells were incubated for 10 minutes with 100 μM Ca2+ and 2 mM Ca2+, respectively, prior to incubation in an 

import-competent cytosolic mixture containing 100 nm nucleoplasmin-GFP for 30 minutes. Shown are confocal sections 

through the midplane of the nucleus as well as coincident fl uorescence differential interference contrast images. (b) Isolated 

Xenopus oocyte nuclei were incubated for 10 minutes with 100 μM Ca2+ and 2 mM Ca2+, respectively, prior to incubation 

in an import-competent cytosolic mixture containing nucleopplasmin-GFP conjugated to 8-nm colloidal gold for 30 

minutes. Shown are stretches along the nuclear envelope. c, cytoplasm; n, nucleus. Scale bars, (a) 10 μm., (b) 100 nm.
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Figure S3.3: Quantifi cation of the gold particle distribution associated with the NPC after incubation of isolated 

Xenopus oocyte nuclei in low salt buffer containing 10 mM EGTA to deplete luminal calcium stores and labelling 

with (a) an antibody against the FG-repeat domain of Nup153 (anti-Nup153-C2), (b) an antibody against the FG-

repeat domain of Nup214, and (c) the zinc-fi nger domain of Nup153. The following numbers of gold particles were 

scored for the individual experiments: 135 (anti-Nup153-C2, 10 mM EGTA), 467 (anti-Nup214-D, 10 mM EGTA), 

53 (anti-Nup153-Z, 10 mM EGTA). Steady-state values are as shown in Figure 1 and are included here for reference.
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Figure S3.4: ATP and its infl uence on the domain topology of Nup153 and Nup214. Quantitative analysis of gold 

particles associated with the NPC after labelling with (a) the anti-Nup153-C2 antibody, (b) the anti-Nup214-D antibody, 

and (c) the anti-Nup153-Z antibody. Isolated intact Xenopus nuclei were incubated in low salt buffer containing 1 mM 

ATP for the indicated time-points before nuclei were shortly fi xed and pre-embedding labelled with the corresponding 

antibodies. The following numbers of gold particles were scored for the individual experiments: 123 (anti-Nup153-C2, 2 

minutes), 150 (anti-Nup153-C2, 10 minutes), 121 (anti-Nup153-C2, 90 minutes), 134 (anti-Nup214-D, 2 minutes), 163 
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(anti-Nup214-D, 10 minutes), 195 (anti-Nup214-D, 90 minutes), 69 (anti-Nup153-Z, 2 minutes), 78 (anti-Nup153-Z, 

10 minutes), 106 (anti-Nup153-Z, 90 minutes). Steady-state values are as shown in Figure 1 and are included here for 

reference.
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