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Summary 

 

 

 

Chapter I gives a brief introduction to supramolecular chemistry, silver chemistry, 

pyridazine chemistry. 

 

Chapter II discusses the general procedure used for this work. It introduces the 

Sonogashira reaction used to prepare the ethynyl precursors, and the inverse 

electron demand Diels Alder reaction used to synthesise all the ligands presented in 

this work. 

 

Chapter III describes the synthesis and the characterisation of phenyl substituted 

pyridazines and their silver complexes. This chapter presents the crystal structure of 

ligand 8. 

 

Chapter IV discusses the synthesis and characterisation of the halogenated 

pyridazine and their silver complexes. It also discusses the crystal structure of ligand 

15 and complexes 15sc, 18sc and 20sc. 

 

Chapter V describes the synthesis of diverse pyridazines. These ligands have 

methoxy, cyano, tert-butyl phenyl substituents. It also shows the crystal structure of 

ligand 34 and complexes 30sc, 39sc, 42sc, 43sc and 49sc. 

 

Chapter VI discusses the synthesis and characterisation of pyridazine substituted 

with alkyl chains. The crystal structure of complex 53sc is presented. 

 

Chapter VII gives the conclusion to this work and a general overview of the ligands 

and complexes synthesised in this thesis. 
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ABBREVIATIONS 
  
  
General  
  
NaOH sodium hydroxide 
MgSO4 magnesium sulfate 
Na2S2O3 sodium thiosulfate 
MeCN acetonitrile 
DCM dichloromethane 
DMSO dimethylsulfoxide 
CDCl3 deuterated chloroform 
CD3CN deuterated acetonitrile 
EtOAc ethyl acetate 
NaCl sodium chloride 
NaNO2 sodium nitrite 
SiMe3 trimethylsilyl 
THF tetrahydrofurane 
Bpy Bipyridine 
  
Analysis  
  
STM scanning tunnelling microscopy 
TLC thin layer chromatography 
ESI/MS electrospray ionisation mass spectrometry 
FAB/MS fast atom bombardment mass spectrometry 
1H NMR proton nuclear magnetic resonance 
13C NMR carbon nuclear magnetic resonance 
  
1H NMR  
  
J coupling constant 
� chemical shift 
d doublet 
dd doublet of doublets 
dt doublet of triplets 
m multiplet 
s singlet 
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CHAPTER I 

 

INTRODUCTION 

 

 

 

 

I.1 Supramolecular chemistry 

 

The importance of supramolecular chemistry was recognized by the 1987 Nobel 

Prize for chemistry which was awarded to Donald J. Cram, Jean-Marie Lehn and 

Charles J. Pedersen in recognition of their work in this area. 

 

Supramolecular chemistry refers to the area of chemistry which focuses on the non-

covalent bonding interactions in molecules1. Traditional organic synthesis involves 

the making and breaking of covalent bonds to construct a desired molecule. In 

contrast, supramolecular chemistry utilizes weaker and reversible non-covalent 

interactions, such as hydrogen bonding, metal coordination, van der Waals forces, �-

� interactions and/or electrostatic effects to assemble molecules. Important concepts 

that are demonstrated by supramolecular chemistry include molecular recognition 

and self-assembly. 

 

Supramolecular chemistry processes have been applied to the development of new 

materials and the topic is often pursued to develop new functions that cannot be 

exhibited by a single molecule. These functions include magnetic properties, light 

responsiveness, catalytic activity, self-healing polymers, chemical sensors, etc. 

Supramolecular chemistry is also important to the development of new 

pharmaceutical therapies by understanding the interactions at a drug binding site. 

 

 

 

 

 



Chapter I: Introduction 
___________________________________________________________________ 

 13

I.2 Molecular recognition 

 

Molecular recognition involves selection and binding of substrates by a given 

receptor molecule similar to the “lock and key” concept devised by Emil Fisher2. The 

binding sites can distinguish the shape, size, bonding and electronic properties of the 

substrate3. This process occurs through non-covalent chemical bonds including 

hydrogen bonding, hydrophobic interactions, ionic interactions, or other interactions 

between two molecules4-6.  

For example, molecular recognition can be used for the development of 

specific molecular diagnostics and sensor materials. Chawala et al.7 report the role of 

hydrogen bonding in shaping the cavity of azocalixarenes and showed the role of 

ionic recognition through the azo quinoidal form (Figure 1.1). 

 

 

Figure 1.1: Example of ionic recognition through the azo quinoidal form 

 of a derivatized calixarene. 

 

 

I.3 Self-assembly 

 

Self-assembly is a process generating supramolecular entities from molecular 

components capable of mutual interactions8-10. In that sense, self-assembly may be 

regarded as a branch of supramolecular synthesis. Self-assembly is a very powerful 

strategy for the generation of structural and functional complexity. Indeed, in the 

living world, both structural and functional features of biological assemblies are 
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mainly generated through self-assembly processes. The best example is 

deoxyribonucleic acid (DNA) which forms a double helix from two complementary 

oligonucleotides11 (Figure 1.2). Hosseini’s group12 has reported the hydrogen bonded 

network formed between the dicationic tecton (bisamidinium) and 

hexacyanometallate complex anion, presented in Figure 1.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Diagram showing a part of the double helix of DNA. 

 

 

 

 

 

 

 

 

Figure 1.3: A schematic representation of the 2-D hydrogen       

bonded network formed between the dicationic tecton 10 and 

hexacyanometallate complex anion. 
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I.4 Metallosupramolecular chemistry 

 

Metallosupramolecular chemistry has become a main research area in 

supramolecular chemistry. Constable has defined metallosupramolecular chemistry 

as follows: “Metallosupramolecular chemistry is concerned with the use of metal ions 

to control the assembly of appropriate molecular components containing metal-

binding domains”.13 

 

The principle of the formation of metallosupramolecules depends mainly on the 

number and orientation of the coordination sites of ligands and the coordination 

number and geometry of the metal ions. A variety of metallosupramolecular 

architectures, including rods14, helices15-18, knots19-21, catenanes22,23, rotaxanes24-27, 

grids28-31, cages32-34 and dendrimers35,36 have been formed spontaneously by the 

self-assembly of labile metal ions with multidendate ligands. 

In the following discussion, examples of a few self-assembly structures are 

presented. 

 

 

 

 Supramolecular helices 

 

There has been considerable interest in helical supramolecular architectures, 

particularly helices from coordination compounds. Field and Venkataraman15 report 

an ortho-substituted phenyl amine (Figure 1.4) that can form an hydrogen bonded 

supramolecular helix. They showed that the conformation of the intermolecular 

hydrogen-bonding, and thus the supramolecular structure, can be controlled through 

an internal hydrogen bond (Figure 1.5) 

 

 

 

 

 

Figure 1.4: Compounds used for the preparation of the supramolecular helices. 
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Figure 1.5: The supramolecular structures from a) 1, b) 2, c) 3 (R=phenyl) 

from single crystal X-ray diffraction. 

 

 

 

 Supramolecular catenanes 

 

A catenane is a mechanically interlocked molecular architecture consisting of two or 

more interlocked macrocycles. These compounds are very interesting from a 

photophysical and photochemical viewpoint because of the properties which originate 

from the electronic interactions of the various subunits. Catenanes that exhibit 

coordination ability (catenands) can give rise to metal complexes (catenates) where 

the photochemical and the photophysical properties are profoundly affected by the 

nature of the coordinated metal23. 

Reports22 present the use of long biphenylethene-4,4’-dicarboxylate (bpea) 

and chelating 1,10-phenanthroline (phen) as mixed ligands. Wang et al. have 

isolated a new species [Zn(bpea)(phen)] (1), containing polymeric chains that are 

assembled via molecular recognition into an intriguing 3D polycatenated array 

featuring an uneven “density of catenation” (Figure 1.6)22. 
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Figure 1.6: Schematic view of the polycatenation in 1 (a) and the schematic and space-filling 

presentations of the two kinds of windows in one layer unevenly catenated by those from other 

independent layers (b and c). Two sets of layers are shown in red and green. 

 

 

 

Supramolecular rotaxanes 

 

A rotaxane is a mechanically-interlocked molecular architecture consisting of a 

dumbbell-shaped molecule that is threaded through a macrocycle or ring-like 

molecule. Rotaxanes are usually based on the movement of the macrocycle along 

the dumbbell. The macrocycle can rotate around the axis or slide from one 

coordination site to another and these systems can therefore be used as molecular 

switches. 

Sauvage has reported a rotaxane incorporating two different ligand domains. 

The system can be switched from a four coordinated Cu(I) to a five coordinated 

Cu(II) and vice versa by oxidising or reducing the metal37 (Figure 1.7). 
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Figure 1.7: Representation of the molecular motion processes of the rotaxanes by oxidising or 

reducing the metal centre. 

 

 

 

 Supramolecular grids 

 

Supramolecular grids are entities based on multidendate ligands and metal ions. The 

grid type complexes are generally based on metal-ligand coordination. 

 

Barboiu et al.31 used 2-iminopyridine groups to have access to bifunctional 

bipyridine-type ligands, which generate grid-type compounds in the presence of 

tetrahedral metal ions (Cu(I) and Ag(I)). Metal-ion binding imposes a cisoid 

arrangement of pyridine nitrogens, as is common in very numerous complexes of 

bipyridine (bipy). This is presented in Figure 1.8. 
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Figure 1.8: Crystal structure of the grid complexes (stick representation),  

Cu+, red-brown spheres; Ag+, grey spheres. 

 

Osborn’s group29 presented a grid like structure based on the coordination of 

Cu(I) and 3,6-dipyridin-2-ylpyridazine (dppn). This ligand presents two chelating sites 

based on nitrogen atoms and is almost planar. This leads to a grid like Cu(I) complex 

where �-� interactions between two ligands may play a role of the formation of a 

supramolecular grid. Figure 1.9 shows the ligand and its grid like structure when 

coordinating the metal ion (Cu(I)). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.9: Grid like structure of [Cu4(dppn)4](CF3SO3)4 presented by Osborn. 

 
 

N NN N

dppn 
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I.5 Silver(I) chemistry 

 

Silver(I) coordination chemistry has attracted many research groups38-41. The silver 

ion is of great interest in the synthesis of coordination complexes. This is probably 

due to the flexibility of its coordination sphere and the ease with which it varies its 

coordination number (from 2 to 4, rarely 5 or 6). Coordination complexes of silver are 

known to be alterable via several methods: typically by changes in ligand geometry, 

rigidity or functionality and/or by modifications to the counter-ion or solvent 

system42,43. 

 

Many silver coordination architectures are readily obtained through slight variations in 

ligand and/or anion and include discrete, small molecules, supramolecular arrays, 

and 1-, 2-, and 3-dimensional network44-46. 

 

Silver is often used to prepare coordination polymers47,48 or associated with N-donor 

ligands to form chelating systems49,50. 

 

 

 

 Silver coordination polymers 

 

Silver based coordination polymers have received great attention lately51,52. This is 

owed to the rich chemistry that is available to this versatile metal53. 

 

A report has shown the use of aliphatic N-donor ligands for ligand directed 

strategy in the assembly of discrete clusters. They investigated 1D chains, 2D layers, 

3D networks. They showed that this family of amine (cis-cis-1,3,5-

triaminocyclohexane, cis-trans-1,3,5-triaminocyclohexane, cis-1,3-

diaminocyclohexane, cis-3,5-diaminopiperidine) form a diverse set of coordination 

polymers with silver salts Ag(I)54. 

Figure 1.10 presents the chain formation of silver perchlorate and cis-1,3-

diaminocyclohexane. 
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Figure 1.10: The chain formation of silver perchlorate and cis-1,3-diaminocyclohexane 

  

 

Pickering et al. also introduced the macrocyclic formation of the coordination 

polymer based on silver nitrate and cis-cis-1,3,5-triaminocyclohexane. In that case 

the asymmetric unit is composed of one ligand (cis-cis-1,3,5-triaminocyclohexane), 

one silver(I) ion and one nitrate couterion. Here, each Ag(I) has a trigonal planar 

coordination sphere with three cis amines of different ligands, forming an infinite 

tubular channel. The macrocyclic tube formation and the packing of the coordination 

polymer are shown in Figure 1.11. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.11: Macrocyclic tube formation and the packing of the coordination polymer  

based on silver nitrate and cis-cis-1,3,5-triaminocyclohexane. 
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Zubieta et al.55 published the synthesis of a silver coordination polymer 

prepared with 2,4’-bipyridine as the N-donor ligand. They realised that the crystal 

structure of that compound consists of a one – dimensional sinusoidal chain. Here, 

the Ag(I) sites exhibit a “T”-shaped geometry. The silver centre is coordinated to two 

nitrogen donor from two 2,4’-bipyridine groups and to a sulfate counter ion. This is 

presented in Figure 1.12. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.12: A view of the one-dimensional chain of [Ag2(2,4’-bpy)2(SO4)(H2O)] · 5H2O and a view 

parallel to the chain axis and parallel to the crystallographic b axis 

 

The chains exhibit two distinct silver sites: the first exhibits an essentially ‘T’ shaped 

Ag(I) center, bonded to two nitrogen donors from two 2,4’-bpy groups and one 

oxygen of the sulfate ligand, with an additional secondary Ag···O (sulfate) interaction. 

The second silver is also ‘T’-shaped but through coordination to two pyridyl nitrogen 

donors and an aqua ligand. 
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O

N N

NN

L11

An interesting paper56 presents the synthesis of eight new silver coordination 

polymers based on 4,4'-(3,3'-(1,3,4-oxadiazole-2,5-diyl)bis(3,1-

phenylene))bis(ethyne-2,1-diyl)dibenzonitrile (L11). They used five different silver 

salts and different solvent system to prepare the eight new silver coordination 

polymers. Figure 1.13 summarises the conditions of the complexes sythesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.13: Synthesis of the silver coordination polymers 1 to 8  

and schematic drawing of ligand L11. 

 

They showed that in this Ag(I)-L11 system, the conformation of L11 is versatile and 

depends greatly on the counterion and solvent system used in the formation of the 

complexes: (a) in one-dimensional structures 1 and 2, the ligand displays 

conformation II with the central oxadiazole and its two adjacent phenyl rings being 

coplanar; (b) in two-dimensional compounds 3-5, L11 takes either conformation I or II 

but with the central oxadiazole and two neighbouring phenyl rings being nonplanar; 

and (c) in three-dimensional compounds 6-8, L11 chooses an intermediate 

conformation between I and III, with the two long cyanophenylacetylene arms lying in 
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different planes. Figure 1.14 presents the eight silver coordination polymers based on 

ligand L11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.14: The eight silver coordination polymers based on ligand L11. 
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Silver complexes based on chelating ligands 

 

Ligands containing multiple binding sites are considered as multidentate ligands and 

offer the possibility to make several bonds to one metal centre. Bidentate ligands, like 

2,2’-bipyridines, are called chelating ligands. In that case, two adjacent nitrogen 

atoms can coordinate one metal centre43,57. 

 

The case of bipyridine is very interesting. A recent report presented a 

“sandwich-shaped” silver(I) metallomacrocycle (based on 4-(2-pyridyl)pyrimidine 

(pprd)) encapsulating a XF6
2- (X= Si, Ge, Sn) anion58 (Figure 1.15). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.15: (a) Top view and (b) side view of {[Ag4(pprd)4]2(SiF6)}(BF4)6 8MeNO2}. The six BF4
- anions 

and the eight solvated MeNO2 molecules are omitted for clarity.  
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The 4-(2-pyridyl)pyrimidine (pprd) ligand has two coordination sites, one is a simple 

chelating site analogous to 2,2’-bipyridine and the other is an exo N-donor site for 

bridging. Since the two coordination sites are oriented ca. 90° to each other, the pprd 

ligand is expected to produce both finite metallomacrocyclic compounds and infinite 

polymeric compounds. Four silver atoms are joined by the four pprd ligands in a 

“head-to-tail” fashion to afford a square [Ag4(pprd)4]4+ metallomacrocycle. It is to be 

noted that the SiF6
2- anion is encapsulated in the central vacant space between the 

two [Ag4(pprd)4]4+ metallomacrocycles, resulting in the formation of a sandwich-

shaped structure. 

 

 

Recently, in our group, silver complexes based on 3,6-bis(2’-pyridyl)-1,2,4,5-

tetrazine (A), 3,6-bis(2-pyridyl)pyridazine (B) and 4-phenyl-3,6-bis(2-

pyridyl)pyridazine (C) have been synthesised59,60 (Figure 1.16).  

 

 

 

 

 

 

Figure 1.16: Schematic representation of ligands A, B and C. 

 

The investigations of these complexes were based on a previous paper published by 

Osborn61, where a tetranuclear 2x2 grid was prepared with the spontaneous self-

assembly of a copper(I) salt with 3,6-bis(2-pyridyl)pyridazine (B). Much of the 

successful metal-directed chemistry utilised in the synthesis of topological novel 

species is based upon the assumption the coordination behaviour of silver(I) and 

copper(I) is similar. They showed that the behaviour of 3,6-bis(2’-pyridyl)-1,2,4,5-

tetrazine (A) with silver(I) does not parallel that 3,6-bis(2-pyridyl)pyridazine (B) with 

copper(I) and that instead of a tetranuclear complex with a tetrahedral geometry 

about the metal, a dinuclear chelating species with near planar silver centres were 

obtained. Figure 1.17 shows the three silver(I) species, obtained by Constable, with 

the chelating ligands A, B and C. 
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[Ag2(A)2]2+ [Ag(B)2]+ [Ag2(C)2]2+

N

N N

N
HH

 

Figure 1.17: Silver complexes of ligands A, B and C. 

 

Ligand A appeared to be responsible for imposing the extremely unusual near-planar 

geometry upon the silver centre. They also showed that the coordination behaviour of 

silver(I) with 3,6-bis(2-pyridyl)pyridazine (B) presents a rich structural diversity and 

that, in contrast to the corresponding behaviour of copper(I), no grid-like structure 

were obtained. In the reaction with the phenyl-substituted ligand (C), a single isomer 

is obtained in the solid state and no strong packing interactions (which might favour 

this isomer) were observed. 

 

 

 

I.6 Tetrazine chemistry 

 

First synthesised by Hantsch and Lehmann, in 1900, 1,2,4,5-tetrazine is probably the 

best-known tetrazine isomer62. Interest in the physical and spectroscopic properties 

of 1,2,4,5-tetrazine and in the high reactivity of tetrazines as dienes in (4+2) 

cycloaddition reactions is still increasing. Figure 1.18 shows the structure of the  

1,2,4,5-tetrazine molecule. 

 

 

 

Figure 1.18: 1,2,4,5-Tetrazine. 

 

Compounds containing the 1,2,4,5-tetrazine skeleton are used as pharmaceuticals. 

For example, 3-amino-6-aryl-1,2,4,5-tetrazine showed modest antimalarial 
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activities63, some hexahydro-s-tetrazines proved to have useful analgesic and 

antiflammatory activity.  For a series of tetrahydro-s-tetrazines the antibacterial and 

antifungal have been evaluated64, and a special 1,4-dihydro-s-tetrazine derivative 

has pronounced antiviral activity62. 

We attached particular attention to 3,6-bis(2’-pyridyl)-1,2,4,5-tetrazine and the 

substituted 3,6-bis(2-pyridyl)pyridazine (synthesized by an inverse electron demand 

Diels-Alder reaction) and their metal complexes65-71. These ligands have been used 

to study the coordination behaviour of different metals such as copper72, iridium73, 

palladium74. Our group prepared a polymeric sodium complex of 3,6-bis(2’-pyridyl)-

1,2,4,5-tetrazine75. Bu et al. presented a one-dimensional chain based on the 

diprotonated salt of 3,6-bis(2’-pyridyl)-1,2,4,5-tetrazine76. 

 

The next few pages will introduce some complexes, obtained with 3,6-bis(2’-pyridyl)-

1,2,4,5-tetrazine or substituted 3,6-bis(2-pyridyl)pyridazines and various metal 

centres such as ruthenium(II), copper(I), nickel(II) or zinc(II). 

 

Published in 2006 by Thomas77 et al., the preparation of 3,6-bis(2’-pyridyl)-

1,2,4,5-tetrazine ruthenium based complexes show interesting crystal structures. 

They used [([n]aneS4)Ru] metal centres. In fact, they prepared dinuclear ruthenium 

complexes bridged by 3,6-bis(2’-pyridyl)-1,2,4,5-tetrazine. Figure 1.19 presents these 

three dinuclear ruthenium complexes. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.19: Diagram of the structures of the three ruthenium complexes. 
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These ruthenium, 3,6-bis(2’-pyridyl)-1,2,4,5-tetrazine based coordination complexes 

show interesting photochemical properties. A comparison of the electrochemistry of 

the three complexes reveals that the first oxidation of the [RuII([n]aneS4)]-based 

systems, is a ligand-based couple. This indicates that the formation of the radical 

anion form of the bridging ligand is stabilized by coordination to the metal centre. 

 

 

A report from Hoogenboom78 describes the polymerisation of L-lactide utilizing 

a novel supramolecular initiating system, based on the 3,6-bis(2’-pyridyl)pyridazine 

ligand. For this purpose they synthesized and polymerized a hydroxyl-functionalized 

3,6-bis(2’-pyridyl)pyridazine. The resulting macroligands were assembled into grid 

like complexes with copper(I) (Figure 1.20) 

 

Figure 1.20: Schematic representation of the formation of polymeric  

gridlike complexes from the macroligands. 

 

They showed that this coper(I) complex has a grid-like structure. In fact, this species 

exhibits UV-vis spectroscopy absorption bands at 295 and 440 nm. These absorption 

bands were also described for similar unfunctionalized grid-like complexes. 
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Another report79 introduced the preparation and characterisation of a 

tetranuclear nickel(II) complex with 3,6-bis(2’-pyridyl)pyridazine as a ligand. [Ni4(�-

OH)2(�-dppn)4(�-H2O)2](Cl)(ClO4)5, (ddpn= 3,6-bis(2’-pyridyl)pyridazine). The 

tetranuclear nickel complex is schown in Figure 1.21. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.21: Side view of the tetranuclear [Ni4(�-OH)2(�-dppn)4(�-H2O)2](Cl)(ClO4)5 cation. 

 

The pair of nickel atoms that are connected by the (�-dppn) ligand are joined through 

the hydroxyl group and water molecule bridges to form the tetranuclear core. Within 

this tetranuclear unit, one nickel atom is six-coordinate with distorted octahedral 

geometry and an N4O2 donor set from two equivalent dppn ligands and two oxygen 

atoms of the bridging hydroxyl and water molecule. 

 

 

The last example presents another tetranuclear coordination complex based 

on the complexation of zinc and 3,6-bis(2’-pyridyl)-1,2,4,5-tetrazine80 (dptz). The 

ligand used for this coordination becomes a bridging ligand. Although the two pyridyl 

groups of dptz can rotate around the C–C bonds between the pyridine rings and 

tetrazine ring, upon coordinating to metal ions the three aromatic rings can become 

almost coplanar to bridge two metal centres. The dptz ligand would serve as a rigid 

multitopic spacer ligand and a thermodynamically stable assembly could be formed 
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by the use of the Zn(II). Figure 1.22 shows the molecular structure of the tetranuclear 

Zn(II) complex. Figure 1.23 shows the space filling diagram of that complex. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.22: The molecular structure of the tetranuclear Zn(II) complex. 

 

 

Figure 1.23: Space-filling diagrams showing (a) a side-view and (b) a top-view of the box cavity 

 of the tetranuclear Zn(II) complex. 
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Literature examples show diverse structures features for complexes involving 

1,2,4,5-tetrazine based ligands. For these reasons, we embarked on a study of 

related ligands and their silver complexes. 
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CHAPTER II 

 

GENERAL PROCEDURE 

 

 

II.1 Introduction 

 

The synthesis of 3,6-dipyridin-2-ylpyridazine substituted ligands is generally a two 

step synthesis involving 3,6-bis(2�-pyridyl)-1,2,4,5-tetrazine and an alkyne compound. 

The first step is to prepare the alkyne compound with the Sonogashira1 reaction. The 

second step consists in an inverse electron demand Diels-Alder2 reaction. Here the 

alkyne compound and the 3,6-bis(2�-pyridyl)-1,2,4,5-tetrazine react together to give 

the desired ligand. As all the ligands have been prepared with this two step reaction, 

a general approach to these main reactions will be given in this chapter. 

 

 

II.2 The Sonogashira reaction 

II.2.1 General approach 

 

The Sonogashira reaction was the main method of preparing all the precursors 

(except for those we bought) used to synthesise the target ligands. The Sonogashira 

reaction is a palladium catalysed coupling of terminal alkynes to aromatic bromides 

or iodides in amine solvent. It is probably the most frequently used carbon-carbon 

bond forming processes in organic chemistry3,4.  

This coupling is a powerful method to form a carbon-carbon single bond between an 

sp and sp2 hybridised carbon centre.  

This protocol is based on the discovery of CuI-transmetallation in amines5 and on a 

combination of three catalytic cycles (A, B, B’, Figure 2.1). This reaction follows the 

normal oxidative addition, reductive elimination process common to the Pd-catalysed 

carbon-carbon bond forming reactions. We must say that the exact mechanism is not 

known. In particular the structure of the catalytically active species and the role of the 

CuI catalyst remain obscure.The mechanism is described in Figure 2.1. 
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Figure 2.1: Pd-catalysed cross-coupling reaction of halogenated organic substrates  

with terminal alkynes. 

 

The process may be considered to involve Pd(0) species (6) (neutral Pd(0)(PPh3)2 or 

anionic [Pd(0)(PPh3)2X]-) which is generated from the Pd(II) pre-catalyst (4) and gives 

the Pd(II) intermediate (7) by the oxidative addition of sp2 carbon halide. Subsequent 

reaction with a terminal alkyne, possibly via a transient copper acetylide species 

(cycle B), leads to the alkynylpalladium(II) derivatives (8). This then leads to the 

required coupled products and regenerates the active palladium species (6). There is 

no evidence for the acceleration of the reductive elimination step by Cu(I) (step iii, 

from (8) to (6)), although some destabilisation of  cis-alkenylacetylide (8) via 

coordination of Cu(I) to the acetylide ligand is expected6. 

 

 

II.2.2 Experimental conditions for the Sonogashira reaction 

 

The Sonogashira reaction is a reliable method for the synthesis of conjugated 

alkynes by coupling vinyl halide, aryl iodides, bromides or triflates with the terminal 

alkynes. This synthesis needs a careful choice of substrate and a large amount of 
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palladium and copper catalyst. Side reactions are often observed if less reactive 

halide compounds are chosen. 

The organic solvents used for this synthesis are toluene, dimethylformamide or 

tetrahydrofuran. We also need an amine such as diethyl-, triethyl-, or isopropylamine. 

We decided to use distilled, dried and degassed triethylamine as a solvent. 

Bis(triphenylphosphine)palladium dichloride and copper(I) chloride were used as 

catalyst and dissolved in the triethylamine. The reacting halide component and the 

ethynyl component were added to the suspension. The reaction mixture was then 

heated under argon at 40-60°C for a range of time varying between 6 to 20 hours. 

The general scheme of the reaction is presented in Figure 2.2. We obtain a protected 

intermediate (purified by chromatographic work-up). The deprotection needs the 

presence of a base. We used an aqueous sodium hydroxide solution (1M).  

 

Figure 2.2: General reaction scheme for the Sonogashira reaction. 

 

The palladium catalyst was easily synthesised in a 5 g amount in good yield. This 

reaction was carried out according to the Cookson7 method.   

The Sonogashira reaction is generally very efficient and with some reactive 

compounds it can be carried out without heating. This method has been developed 

by many research groups8-12 and it is possible to run the reaction without the 

copper(I) chloride catalyst13-15. The main reason for removing the copper(I) chloride is 

to stop undesired complexation between copper and N-donor-functionalities (if 

present in the reaction mixture) such as 2,2’-bipyridine or 2,2’:6’,2’’-terpyridine. 

 

 

II.3 Inverse electron demand Diels Alder reaction 

II.3.1 General approach 

 

Ligands containing multiple binding sites are of interest for the construction of 

structural and reactivity models of certain metallobiomolecules as well as 

R X Me3Si R+ CuCl + Pd(PPh3)2Cl2 +
1) Et3N

X: Br or I

2)NaOH
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N N NN

Br

N NN N N N NN

polyelectronic systems16. In this work we decided to focus our interest on highly 

functionalized pyridazines (such as 3,6-bis(2-pyridyl)-4-phenylpyridazine17). 

Examples of pyridazine molecules synthesised in this thesis are shown in Figure 2.3.  

 

 

Figure 2.3: Examples of some functionalized pyridazines synthesised in this work. 

 

These compounds can act as metal-coordinating ligands for copper(I)18, silver(I)19 

and nickel(II)20 ions, resulting in grid-like metal complexes (Figure 2.4). The 

introduction of functional groups could allow the incorporation of the ligands and the 

corresponding metal complexes into larger assemblies and polymers.  

 

 

 

 

 

 

 
 

Figure 2.4: Self-assembly of 3,6-di(2-pyridyl)pyridazine into a grid like  

metal complex with copper(I) or silver(I) ions. 

 

Functionalized pyridazine ligands are easily accessible via an inverse electron 

demand Diels Alder reaction between 1,2,4,5-tetrazines and a wide range of alkynes, 

whereby the 1,2,4,5-tetrazine acts as the electron deficient diene. The synthesis of 

3,6-dipyridin-2-ylpyridazine and its utilisation in inverse type Diels Alder reaction was 

first described by Butte and Case17.  By coupling two 2-cyanopyridines with 

hydrazine hydrate, 3,6-di(2-pyridyl) dihydrotetrazine was obtained. Oxidation of this 

dihydrotetrazine resulted in the fully-conjugated 3,6-di(2-pyridyl)tetrazine. 
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N N

NN
HH

 

Carboni and Lindsey21 showed that dienophiles, containing electron-releasing 

substituents, were found to facilitate the reaction while electron-attracting groups 

exhibited a retarding effect. Figure 2.5 shows a representation of the inverse electron 

demand Diels Alder reaction. 

 

 
 

 

 

 

 

 

 

Figure 2.5: Schematic representation of the investigated inverse electron demand Diels-Alder reaction 

between 3,6-di(2-pyridyl)-1,2,4,5-tetrazine and alkynes. 

 

This cycloaddition is generally slow, but as described before it depends on the nature 

of the dienophile. For electron withdrawing substituents in the 3- or 6- positions, the 

reactivity is particularly high, and 1,2,4,5-tetrazine (Figure 2.6) was found to be the 

second case of Diels Alder reactions with inverse electron demand, as proven by the 

kinetic measurements of Sauer et al.22. 

 

 

 

 

Figure 2.6: Schematic representation of 1,2,4,5 tetrazine. 

 

[4+2]-Cycloaddition of 1,2,4,5-tetrazines are LUMO - HOMO controlled reactions23. 

Donor substituents raise the HOMO energy of the dienophile and by decreasing the 

LUMO - HOMO gap, increase the rate constant of the cycloaddition step. In principle, 

any exchange of hydrogen in the dienophile for a larger substituent has an impeding 

steric effect. So, the substitution of hydrogen by a substituent in the dienophile 

component, depending on its electron-donating power, can lead to an increase or 
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decrease of the dienophile’s reactivity. This effect is the main explanation for the 

different reaction times of each ligands synthesised in this work. 

In the course of the [4+2]-cycloaddition of tetrazine, the colour (purple) of the diene 

component disappears. It is easy to monitor the reactions by the disappearance of 

the typical n��* absorption24 of tetrazines. For a large number of dienophiles, 

1,2,4,5-tetrazine can be used as an electron poor diene in inverse-type Diels Alder 

reactions to yield a wide variety of pyridazine derivatives, not easily accessible by 

other synthetic methods. The results obtained by Sauer23, using 1,2,4,5-tetrazine as 

the diene can be applied to other tetrazines. 

Following this idea we used 3,6-di(2-pyridyl)-1,2,4,5-tetrazine as an electron poor 

diene in inverse-type Diels-Alder reaction with many different alkynes. Some 

examples are given in figure 2.7. 

 

 

Figure 2.7: 3,6-Di(2-pyridyl)-1,2,4,5-tetrazine and some alkynes used  

for the inverse-type Diels Alder reaction. 

 

 

II.3.2 Experimental conditions of the inverse-type Diels Alder reaction 

II.3.2.1 Experimental conditions for the 3,6-Di(2-pyridyl)-1,2,4,5-tetrazine 

         synthesis. 

 

3,6-Di(2-pyridyl)-1,2,4,5-tetrazine was obtained by using the Butte and Case17 

synthesis. The compound was prepared by the action of hydrazine on 2-

cyanopyridine to give the orange, dihydro compound followed by oxidation with nitric 

N

N N

N

NN
Br

OH N

3,6-di(2-pyridyl)-1,2,4,5-tetrazine
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acid and purification by chromatographic work up. Figure 2.8 shows the general 

synthesis of 3,6-di(2-pyridyl)-1,2,4,5-tetrazine.  

 

 

Figure 2.8: Synthetic method to form 3,6-di(2-pyridyl)-1,2,4,5-tetrazine. 

 

 

II.3.2.2 Experimental conditions of the inverse-type Diels-Alder reaction 

 

The ligand synthesis was achieved by using the 3,6-di(2-pyridyl)-1,2,4,5-tetrazine 

and the substituted alkyne corresponding to the target molecule. The two compounds 

were placed under reflux. Several attempts with different organic solvents were 

made. We tried dimethyl sulfoxide, dimethylformamide, diphenyl ether and toluene. 

Finally we choose toluene, which had an advantage in respect of its boiling point 

compared to the three other solvents. Evaporation and purification were much easier 

with toluene. The reflux time varied from 24 hours to 15 days. The typically purple 

colour of 3,6-di(2-pyridyl)-1,2,4,5-tetrazine was very useful to determine the reaction 

times. In fact, the colour of the refluxing solution changed from purple to orange, 

yellow or brown (depending on the alkyne), when the end of the reaction was 

reached. We only needed to confirm the presence of the desired ligand with a rapid 

TLC plate.  

In some cases it was impossible to obtain the target ligand with this procedure. We 

decided to increase the temperature (up to 170°C) and try the reaction without any 

solvent. Sometimes this strategy enabled us to synthesise the ligand.   
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The new compounds were then purified by chromatographic work-up (in almost every 

synthesis) or recrystallisation. The ligands were dried under high vacuum and 

analysed (1H NMR and 13C NMR spectroscopy, mass spectrometry and elemental 

analysis) to confirm that the reactions were successful. Figure 2.9 presents 

schematic examples of some ligand syntheses. 

 

 

Figure 2.9: Examples of some ligand syntheses. 

 

 

 

II.4 Conclusion 

 

This chapter outlines a general approach for the two main reactions, used to 

synthesise the N-donor ligands. Some other syntheses have been done and will be 

discussed in the appropriate chapters. 

To prepare the target ligand we typically used the Sonogashira reaction followed by 

an inverse electron demand Diels Alder reaction. The first step is a palladium 

catalysed coupling of terminal alkynes to aromatic bromides or iodides in an amine 

solvent and the second step is a [4+2] cycloaddition involving an electron poor diene 

compound (3,6-di(2-pyridyl)-1,2,4,5-tetrazine) and dienophiles (alkynes with different 

electron donating power).  

Specific notes, yields and comments will be given for each ligand in the coming 

chapters. 
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II.5 Experimental part 

 

Synthesis of 3,6-bis(2�-pyridyl)-1,2,4,5-tetrazine (1)  

 

 

2-Cyanopyridine (15.0 g; 144 mmol) and hydrazine (19.3 g; 60.3 mmol) were refluxed 

for 6 hours in 100 ml of ethanol. The resulting orange precipitate was filtered and 

recrystallised from ethanol. The orange precipitate was dried under high vacuum and 

dissolved in 70 ml of acetic acid. Concentrated nitric acid (12 ml) was added 

dropwise with cooling. The solution was stirred at room temperature for 2 hours. 

Then 100 ml of water was added and the mixture was made alkaline by the addition 

of sodium hydrogen carbonate (excess). The solution was stirred overnight at room 

temperature, and then filtered. The product was extracted with chloroform and 

purified by chromatographic work-up (alumina, dichloromethane/MeOH/EtOAc 

(1:1:1), the second band was collected) to give a purple powder (5.8 g, 24 mmol, 

34%, C12H8N8, 236.2 g/mol). 

 
1H NMR (CDCl3, 400 MHz) �/ppm: 8.96 (d, J=4.7 Hz, 2H, H6A), 8.73 (d, J=7.9 Hz, 2H, 

H3A), 7.99 (td, J=7.8, 1.6 Hz, 2H, H4A), 7.56 (dd, J=7.6, 4.8 Hz, 2H, H5A). 
13C NMR (CDCl3, 100 MHz) �/ppm: 163.9, 151.0, 150.1, 137.5, 126.6, 124.5. 

MS (ES) m/z [Na+L+MeCN]+ 300, [Na+L+MeCN2]+ 340, [L]+ 535. 

Elem. Anal. (C12H8N6) [%]  calc. C 61.0, H 3.4, N 35.6; found C 60.6, H 3.4, N 35.1. 

 

 

Synthesis of bis(triphenylphosphine)palladium dichloride (2) 

 

Under argon, palladium dichloride (2.51 g, 14.1 mmol) was suspended in chloroform 

(100mL) and triphenylphosphine (9.62 g, 36.7 mmol) was added. The mixture was 

stirred at room temperature for 1 hour and triphenylphosphine (4.80 g, 18.3 mmol) 

was added and then refluxed for 10 min at 60°C. The solvent was removed and the 

residue was recrystallised from hexane to give yellow crystals of [PdCl2(PPh3)2] (5.9 

g, 8.4 mmol, 60%, C36H30Cl2P2Pd, 701.9 g/mol). 

 
1H NMR (CDCl3, 400 MHz) �/ppm: 7.70 (m, 12H, C6H5), 7.38 (m, 18H, C6H5). 

NN

N NN N
A B
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13C NMR (CDCl3, 100 MHz) �/ppm: 143.9, 133.6, 130.5, 129.8, 126.7, 128.0. 

Elem. Anal. (C36H30Cl2P2Pd) [%] calc. C 61.6, H 4.3, found C 62.5, H 4.4. 
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CHAPTER III 

 

PHENYL SUBSTITUTED PYRIDAZINES 

 

 

III.1 Introduction 

 

Introducing phenyl substituents on N-donor ligands, such as 2,2’-bipyridine1,2,3 and 

terpyridines, has attracted a lot of research interest. The phenyl group can be used to 

prepare rigid linear bridging ligands composed of two 2,2’:6’,2’’-terpyridines4.  

In this chapter, we focus our interest on phenyl substituted pyridazine. We used the 

phenyl group as a substituent and as a linker. An example, in our research group, 

has been published5. It has been shown that the phenyl group can be used as a rigid 

linker between two or three terpyridines and can form co-ordination polymers and 

oligomers.  

 

This chapter describes the synthesis and the characterisation of the six ligands 3, 4, 

6, 8, 10, and 13 shown in Figure 3.1 and their silver complexes 3sc, 4sc, 6sc, 8sc, 

10sc, and 13sc. It also introduces the synthesis of the ethynyl precursors 5, 7, 9, 11, 

and 12 (Figure 3.2). 

 

To simplify the comprehension of the numbering and permit readers to see the 

relationship between the ligand and its corresponding silver complex, we decided to 

assign the same number to a ligand and its silver complex. The difference lies in the 

abbreviation that follows the number assigned to the silver complex. This 

abbreviation is “sc” and stands for “silver complex”. 
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Figure 3.1: Phenyl substituted pyridazine ligands presented in this chapter. 
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Figure 3.2: Ethynyl precursors described in this chapter. 
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III.2 Synthesis of the ethynyl precursors 

III.2.1 Synthetic method 

 

According to the procedure presented in chapter II, we prepared five ethynyl 

precursors. We used the basic Sonogashira reaction6, where the halogenated phenyl 

compound was mixed with trimethylsilylacetylene, copper(I) chloride and 

bis(triphenylphosphine)palladium dichloride in triethylamine. This solution was 

refluxed under nitrogen for several hours to give the protected ethynyl precursors. 

The deprotection was easily achieved with the use of a strong base. In our case, a 

solution of 1M sodium hydroxide was the most appropriate. Figure 3.3 describes the 

general synthetic method. 

 

Figure 3.3: General synthetic method for the family of ethynyl precursors described in this chapter. 

 

Copper(I) chloride and bis(triphenylphosphine)palladium dichloride were used in a 

catalytic amount7 varying from 5 to 10% in regard of the amount of the halogenated 

compounds shown in Figure 3.4.  

 

Figure 3.4: Halogenated compounds used for the synthesis of the ethynyl precursors. 

 

For each ethynyl precursor presented in here, the reactant ratio, time and yield are 

listed in the Table 3.1. Purification methods and synthetic details are discussed in the 

experimental section at the end of this chapter. 

SiMe3X SiMe3+ CuCl + Pd(PPh3)2Cl2 +

X= Br or I

Et3N

THF

NaOH (1M)

refux

Br Br Br

Br

Br

Br IBr

1a 2a 3a 4a
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Precursor Halogenated 
compound 

Reaction ratio 
(halogenated / 
tms acetylene) 

Reaction 
temperature 

(°C) 

Reaction time 
(hr) Yield (%) 

5 1a   1 to 3  40 19 39 

7 2a   1 to 4  40 18 50 

9 3a   1 to 2  40 18 75 

11 4a acetylene  50 12 60 

12 11  1 to 3 60 6 53 

 

Table 3.1: Reaction conditions of the synthesis of the ethynyl precursors 5, 7, 9 and 12. 

 

All the ethynyl precursors have been synthesised by following the Sonogashira 

method. Compounds 5, 7, 9, were synthesised without isolation and characterisation 

of the protected intermediate. In fact, the purification of the intermediate is a 

chromatographic work-up with hexane, as an eluent, over alumina. This method 

enables us to obtain the pure intermediate without traces of the catalysts or the 

trimethylsilylacetylene. We always collected the major compound. This intermediate 

was deprotected and isolated as a pure compound. Compound 12 resulted from a 

two step synthesis8 with 11 as an intermediate. The synthetic procedure is described 

in Figure 3.5. 

 

Figure 3.5: Synthetic procedure for compounds 11 and 12. 

 

For the synthesis of the ethynyl precursors, it was necessary to add an excess of 

trimethylsilylacetylene to the reaction mixture. But, this excess leads to a coupling 

reaction9 between to trimethylsilylacetylene molecules. Nevertheless, this side 

product was not really a problem to us, because it was easy to remove from the 

crude products by the chromatographic work-up. 

SiMe3Br Br ++ CuCl + Pd(PPh3)2Cl2

+CuCl + Pd(PPh3)2Cl2IBr HH Br Br
Et3N

Et3N

11

12
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This method was the most appropriate to form the carbon-carbon bond10 and to 

access to the desired ethynyl precursors.  

 

 

  III.2.2 Characterisation of the ethynyl precursors 

 

All the ethynyl precursors have been characterised by 1H NMR and 13C NMR 

spectroscopy, mass spectrometry and elemental analysis.  

 
1H NMR spectroscopy  
1H NMR spectroscopic characterisation was always the first analysis to be carried 

out. In the case of the “phenyl-ethynyl” compounds, we focused our interest on the 

presence of the ethynyl and aromatic signals7, and on the absence of a signal for the 

SiMe3 group, present in the protected compound. Table 3.2 shows the 1H NMR 

signals of the precursors. 

 

 Ethynyl 
precursor 

Aromatic 
signals 
(�/ppm) 

Ethynyl 
signals 
(�/ppm) 

 

  

5 7.47 3.18 

 

  

7 7.56 3.10 

 

9 7.55 3.15 

 

  

11 7.48-7.37 none 

 

  

12 7.47 3.18 

 

Table 3.2: 1H NMR characterisation of the precursors 5, 7, 9, 11 and 12 (see figure 3.6). 

BrBr
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BrBr

The 1H NMR spectrum of each ethynyl precursor could be assigned by the chemical 

shifts and the relative integrals. 

As expected11 the different aromatic signals are at around � 7.5 ppm and the ethynyl 

signals are near to � 3.2 ppm. We can notice that almost all the aromatic signals are 

singlets. This phenomenon is due to the symmetry of the molecules 5, 7 and 12 

where all the aromatic protons appear to be equivalent. Compound 9 shows a 

multiplet integrating for 9 protons and the halogenated precursor 11 shows a doublet 

of doublets. Figure 3.6 shows the 1H NMR spectrum of the five ethynyl compounds. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: 1H NMR spectra of the ethynyl compounds 5, 7, 9, 11 and 12  

in CDCl3 solution. 
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BrBr

Mass spectrometric characterisation 

Most of the ethynyl precursors (5, 7, 9 and 11) have been characterised by fast atom 

bombardment spectrometry. All the ethynyl precursors have one or two peaks 

corresponding to the m/z of the precursor or to the m/z of the precursor with an ion of 

sodium. Figure 3.7 shows an example of a mass spectrum of one of the alkyne 

derivatives. 

The mass spectrometry characterisation of each ethynyl precursor is given in the 

experimental part. 

 

Figure 3.7: Mass (FAB) spectrum of 1,2-bis(4-bromophenyl)ethyne (11). 

 

After purification and characterisation, the ethynyl precursors were used to 

synthesise the target ligands. The phenyl substituted ligand synthesis and 

characterisation will be discussed in the third part of this chapter. 
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III.3 Synthesis of the phenyl substituted pyridazine 

III.3.1 Synthetic method 

 

We decided to base the synthesis of the phenyl substituted pyridazines on the 

method presented in chapter II12. These ligands are easily accessible via an inverse 

electron demand Diels Alder reaction between 1,2,4,5-tetrazines and a wide range of 

alkynes, whereby the 1,2,4,5-tetrazine acts as the electron deficient diene13.  

To carry out the synthesis of the phenyl substituted pyridazines, we used 3,6-bis(2’-

pyridyl)-1,2,4,5-tetrazine (1) that has been dissolved in toluene with the ethynyl 

precursors and placed under reflux. By using this method we synthesized four 

different ligands (3, 6, 8 and 10). We were obliged to modify the procedure for the 

synthesis of the ligands 4 and 13. They were not accessible by refluxing a toluene 

solution of 3,6-bis(2’-pyridyl)-1,2,4,5-tetrazine (1) and the corresponding ethynyl 

precursor. It appeared that the temperature was too low to synthesise the ligands. 

There was not enough energy to proceed to the inverse electron demand Diels Alder 

reaction. Several attempts, with several solvent systems were carried out, but always 

resulted in a very low yield. Thus, we decided to do the synthesis of ligands 4 and 13 

without solvent at 170°C. This method has been adopted for the synthesis of all the 

disubstituted pyridazines presented in this work. Reactant ratio, time, solvent and 

yields are listed in Table 3.3. 

 

Ligand 
Reaction ratio 

(tetrazine / 
ethynyl) 

Reaction 
temperature 

(°C) 
Solvent Reaction time Yield (%) 

3 1 to 1.2 120 toluene 24 hrs 55 

4 1 to 1.4 170 none 66 hrs 78 

6 2.1 to 1 120 toluene 14 days 90 

8 3 to 1 120 toluene 6 days 69 

10 1 to 1.8 120 toluene 66 hrs 85 

13 4 to 1 170 none 18 hrs 80 

 

Table 3.3: Reaction conditions for the synthesis of the ligands 3, 4, 6, 8, 10 and 13. 
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All the inverse electron-demand Diels Alder reactions presented in this chapter were 

easy to carry out and there was no need to use a nitrogen or argon atmosphere or 

freshly distilled toluene. We were obliged to find the optimal conditions (temperature, 

time, and reactant ratio) and after various unsuccessful attempts we learnt by 

experience how to carry out successful syntheses.  

It was really useful to us to repeat the synthesis of 4-phenyl-3,6-dipyridin-2-

ylpyridazine (3) presented by Butte and Case12. This was the first synthesis, of a 

substituted pyridazine, made for this work, it enabled us to set all the reaction 

conditions, see the characteristic colour changing (from purple to yellow), showing 

the end of the reaction, and compare and assign all the NMR signals of that ligand 3. 

Compounds 6, 8 and 10, have been successfully synthesized by using the same 

method as the one described by Butte and Case. They were obtained as powders 

(respectively pink, pale pink and violet) with relatively good yields. For compounds 4 

and 13, it was impossible to follow the reaction by looking at the colour. At 170°C, we 

almost reached the melting points and the mixture colour was brown. We then 

decided to monitor the progress of the reaction by TLC. 

 

All the ligands have been purified by chromatographic work up, except for compound 

3 which was recrystallised from ethanol.  
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III.3.2 Characterisation of the phenyl substituted pyridazines 

 

Every compound has been characterised by 1H NMR and 13C NMR spectroscopy, 

mass spectrometry and elemental analysis. 

 

 
1H NMR spectroscopy  
1H NMR spectroscopy of compounds 3, 4, 6, 8, 10 and 13 were run in deuterated 

chloroform and could be assigned by the chemical shifts, relatives integrals, and the 

coupling patterns.  

The 1H NMR spectra of the compounds 3, 6 and 8 and the assignments are shown in 

Figure 3.8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8: The 1H NMR spectra and assignments of ligands 
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The 1H NMR spectrum of each ligand (3, 6 and 8) shows the typical signals for mono-

substituted dipyridin-2-ylpyridazine14. 

 

The asymmetry of the dipyridin-2-ylpyridazine part of the molecule (due to the 

substituent) result in a set of nine different NMR signals instead of the four signals 

present in the spectrum of 3,6-bis(2-pyridyl)-1,2,4,5-tetrazine (1). Each 1H NMR 

spectrum shows four doublets (H3A, H3C, H6A, H6C), two triplets of doublets (H4A, H4C), 

two doublets of doublets (H5A, H5C) and the typical singlet14 (H3B). All these signals 

are in the same region, between � 7 and 9 ppm. We can also notice an overlapping 

of some signals. In compound 3 the protons signals H4A and H3C overlap at � 7.8 

ppm. This case is also present in the 1H NMR spectra of compound 8. For that ligand 

there is an other overlapping, the proton signals of H6A and H3A are in the same 

region (� 8.8 ppm). 

 

The protons of the substituent ring are also assigned by the coupling patterns and 

relative integrals. For ligand 3, the five protons signal is a multiplet and also overlaps 

with the H5C proton signal. The signals of the phenyl substituent from the compounds 

6 and 8 are as expected5. They both present a singlet integrating respectively for 4 

and 3 protons. 
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The 1H NMR spectra of the compounds 4, 10 and 13 and the assignments are shown 

in Figure 3.9. 

 

Figure 3.9: The 1H NMR spectra and assignments of ligands  

4, 10 and 13 in CDCl3 solution. 

 

The 1H NMR spectrum of compound 4 shows five signals. The symmetry of the 

ligand simplifies the spectrum. That spectrum is composed of five signals: three of 

them are corresponding to the pyridyl rings protons (H6A, H3A+H5A (overlapped) and 

H4A) and the two others are the phenyl ring signals integrating for 3 and 2 protons. 1H 

NMR spectra of compounds 10 and 13 are similar to the spectra of ligands 3, 6 and 

8. They present nine different NMR signals with the typical H3B signal and the 

substituent signals (biphenyl and bi-substituted phenyl).  

All the 1H NMR spectroscopic data for the ligands presented in this chapter are 

summarized in the Table 3.4. 
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Ligand H3A H4A H5A H6A H3B H3C H4C H5C H6C Phenyl 
Ring 

3  
(�/ppm) 

8.80 
d 

7.91 
td 

7.41 
dd 

8.72 
d 

8.66 
s 

7.89 
d 

7.79 
td 

7.29 
m 

8.47 
d 7.29 m 

4  
(�/ppm) 

7.68 
m 

7.18 
td 

7.68 
m 

8.43 
d ° ° ° ° ° 7.00-6.87 m  

6  
(�/ppm) 

8.81 
d 

7.94 
m 

7.44 
dd 

8.75 
d 

8.66 
s 

7.94 
m 

7.78 
td 

7.30 
dd 

8.48 
d 7.23 s 

8  
(�/ppm) 

8.77 
m 

7.90 
m 

7.44 
dd 

8.77 
m 

8.25 
s 

7.90 
m 

7.86 
td 

7.35 
dd 

8.56 
d 7.14 s 

10  
(�/ppm) 

8.81 
d 

7.90 
td 

7.41 
m 

8.73 
d 

8.71 
s 

7.95 
d 

7.81 
td 

7.28 
dd 

8.49 
d 7.56-7.41 m 

13  
(�/ppm) 

8.80 
d 

7.92 
td 

7.42 
dd 

8.74 
d 

8.66 
s 

7.98 
d 

7.83 
td 

7.29 
td 

8.46 
d 7.47-7.26 d 

 

Table 3.4: The 1H NMR spectroscopic characterisation of ligands 3, 4, 6, 8, 10 and 13. 

 

We can see that all the mono-substituted ligands present the same chemical shift for 

the same proton. In fact, the H3A proton is around � 8.8 ppm for each ligand, the H4A 

proton is around � 7.9 ppm, and the H5A proton is around � 7.4 ppm. It means that we 

have the same chemical effect, due to the substituent, for each mono-substituted 

compound. This effect is not depending from the number of phenyl substituent ring: 

compound 10 has nearly the same chemical shifts as compound 3. This effect is also 

not depending on the number of the pyridazines attached on the phenyl ring: 

compounds 3, 6 and 8 have almost the same chemical shifts. 

 



Chapter III : Phenyl substituted pyridazines 
___________________________________________________________________ 

 

 64

Mass spectrometry 

Mass spectrometry of ligands 3, 4, 6, 8 and 10 was run with the electrospray 

ionisation technique. For all the spectra, except the one from compound 10, we can 

see the [L]+ peak. The other peaks correspond to m/z of the ligand with a solvent 

molecule and a sodium or potassium ion. All m/z are perfectly consistent with the 

calculated mass. Mass spectrometry of compound 13 was performed with MALDI 

mass spectrometry and shows a peak corresponding to m/z of the free ligand. 

 

Figure 3.10 shows the mass spectra of compound 4 and 10. 

 

 

 

 

 

 Figure 3.10: Mass spectra of the ligand 4 and 10. 

 

Table 3.5 summarises the calculated and detected m/z values for each ligand. 
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Ligand 3 4 6 8 10 13 

  m/z 
calc. 

m/z 
det. 

m/z 
calc. 

m/z 
det. 

m/z 
calc. 

m/z 
det. 

m/z 
calc. 

m/z 
det. 

m/z 
calc. 

m/z 
det. 

m/z 
calc. 

m/z 
det. 

[L]+ 310.4 309 386.4 385 542.6 543 774.8 775 ° ° 641.7 643 
[Na+L+MeCN]+, 
2H2O 410.4 411 ° ° ° ° ° ° ° ° ° ° 
[Na+2L+MeCN]+, 
2H2O 677.4 678 ° ° ° ° ° ° ° ° ° ° 
[Na+L+MeCN]+ ° ° 477.4 477 ° ° ° ° ° ° ° ° 
[Na+L+2MeCN]+ ° ° 487.4 487 ° ° ° ° ° ° ° ° 
[Na+2L+MeCN]+ ° ° 829.4 829 1044.6 1045 ° ° 834.4 835 ° ° 
[K+L+2MeCN]+ ° ° ° ° 664.6 664 ° ° ° ° ° ° 
[K+2L+2MeCN]+ ° ° ° ° 1201.6 1202 ° ° ° ° ° ° 
[K+L+DCM]+ ° ° ° ° ° ° ° ° 507.4 508 ° ° 
[K+2L+DCM]+ ° ° ° ° ° ° ° ° 892.4 893 ° ° 

 

Table 3.5: Calculated and detected m/z values for the ligands 3, 4, 6, 8, 10 and 13. 

 

 

Single crystal structure for ligand 8 

A crystal of the compound 8 suitable for single X-ray diffraction was grown from a 

chloroform solution. Details of the structure solution are given in Appendix 1. Figure 

3.11 shows the molecular structure of 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11: The molecular structure of ligand 8 with the labelling scheme. 
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Compound 8 has three dipyridin-2-ylpyridazine groups attached to the phenyl ring. 

Each dipyridin-2-ylpyridazine is composed of three heterocyclic rings called A, B and 

C as mentioned in chapter II. �-� stacking interactions are observed between two 

pyridyl rings from two different molecules (Figure 3.12). The �-� stacking 

interaction15,16, with a distance from 3.52 Å, takes place between the pyridyl ring A 

from one ligand 8 and pyridyl ring A from an other ligand 8. The two molecules are 

related by a centre of symmetry. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12: The arrangement of two molecules and the �-� stacking interaction in the crystal 

structure of compound 8. 

 

We noticed that this ligand does not superimpose with its mirror image and is 

therefore chiral. Figure 3.13 shows a simplified drawing of ligand 8 and its mirror 

image. 

 

 

 

 

 

 

 

 

Figure 3.13: Simplified representation of ligand 8 and its mirror image. 
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The pyridyl rings A, B and C are not coplanar. The torsion angles from C-C-C-N are 

varying between 4.0° and 47.5°. Table 3.6 summarises the C-C-C-N torsion angles 

present, between the pyridyl rings, in ligand 8. 

 

 

  Torsion angles (C-C-C-N)   

C4-C5-C6-N2 15.44° 40.68° C11-C10-C9-N3 
C51-C50-C49-N43 47.50° 31.06° C44-C45-C46-N42 
C24-C25-C26-N22 4.02° 41.88 C31-C30-C29-N23 

 

Table 3.6: C-C-C-N torsion angles present in ligand 8. 

 

 

 

III.4 Synthesis of the silver complexes 

III.4.1 Synthetic method 

 

The silver(I) centre in each complex possesses d10 electronic configuration. The 

complexes are mainly square planar17. We considered that the introduction of a 

range of different substituents on the four position of the pyridazine would force the 

adjacent 3-(2’-pyridyl) ring out of the plane leading to structures with a non planar 

shape. 

Unfortunately, it was impossible to grow crystals from the five new silver(I) complexes 

synthesised and presented in this chapter. 

All the ligands synthesised in this chapter have been used to prepare their silver 

complexes 3sc, 4sc, 6sc, 8sc, 10sc and 13sc. The reaction of the ligands with the 

silver salt in acetonitrile proceeded smoothly to give a yellow-orange solution from 

witch the complex was obtained. 

Table 3.7 summarises the experimental conditions for the synthesis of the species 

3sc, 4sc, 6sc, 8sc, 10sc and 13sc. 
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Silver 
complex 

Reaction ratio 
(ligand / silver) Silver salt Yield (%) 

3sc 1 to 1 AgCF3SO3 88 
4sc 1 to 1 AgBF4 86 
6sc 1 to 1 AgCF3SO3 91 
8sc 1 to 3 AgBF4 77 
10sc 1 to 1 AgBF4 92 
13sc 1 to 2 AgBF4 88 

 

Table 3.7: Experimental method for the synthesis of the silver complexes  

3sc, 4sc, 6sc, 8sc, 10sc and 13sc. 

 

 

All the silver complexes were prepared by mixing the silver salt and the ligand in 

acetonitrile. The mixture was sonicated for five minutes and then stirred under reflux 

for a further fifteen minutes. The solvent was evaporated to give the silver 

complexes. They were easily accessible and it was not necessary to proceed to a 

chromatographic work up or recrystalisation. All the silver complexes are insoluble in 

chloroform, slightly soluble in acetonitrile, and soluble in dimethylsulfoxide. However, 

it was not always possible to obtain 13C NMR spectroscopic data (except for 10sc).  

 

 

III.4.2 Characterisation of the silver complexes 

 

The complexes were characterised by 1H and 13C NMR spectroscopy, and mass 

spectrometry. Because of the low solubility of some of these silver complexes, it was 

sometimes impossible to obtain a well resolved 1H NMR or 13C NMR spectrum. 

Compounds 3sc, 4sc, 6sc, 8sc were not soluble enough in DMSO to obtain the 

carbon NMR spectrum. Complex 8sc was not soluble enough in DMSO to obtain the 

proton NMR spectrum. They were all characterised by mass spectrometry. 
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1H NMR spectroscopy 
1H NMR spectroscopy of complexes 3sc, 4sc, 6sc, 8sc, 10sc and 13sc have been 

run in deuterated dimethylsulfoxide and could be assigned by the chemical shifts, 

relatives integrals and the coupling patterns. 

 

 

 
 

Figure 3.14: 1H NMR spectra of silver complexes 3sc and 6sc. 
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Figure 3.15: 1H NMR spectra of silver complexes 10sc and 13sc. 

 
1H NMR spectra of the silver complexes 3sc, 6sc, 10sc and 13sc and the 

assignments are shown in figures 3.14 and 3.15. 
1H NMR spectrum of 3,6-bis(2�-pyridyl)- 3,4-diphenyl pyridazine silver complex (4sc) 

is presented in Figure 3.16. 

All the 1H NMR spectra show the same signals as those present in the 1H NMR 

spectrum of their respective ligand. For the mono substituted pyridazine silver 

complexes 3sc, 6sc, 10sc and 13sc we can see the signal (singlet) of the H3B 

proton. This signal is typically shifted to high field, which is characteristic for a one to 

one silver complexation18. 
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C 
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Figure 3.16: 1H NMR spectrum of 3,6-bis(2�-pyridyl)- 3,4-diphenyl pyridazine silver complex (4sc). 

 

The spectra of all the silver complexes exhibited a single ligand environment. No 

species other than the free ligands and the silver complexes were detected by 1H 

NMR spectroscopy. 

The complexation of the ligand and the silver species induces some overlapping 

signals. In the silver complex 13sc three signals (H3C, H6A and H3B) have almost the 

same chemical shift (� 8.62 ppm). This case also appears in the 1 H NMR spectrum 

of 4-phenyl-3,6-dipyridin-2-ylpyridazine silver complex (3sc). It is important to notice 

that the protons H3B, H6A+6C and H3A+3C are the most affected by the silver 

complexation, with their signals being shifted to higher field. This effect is due to the 

short distance between the affected proton and the N-Ag bond. 

The species 4sc shows sharp signals. There is no H3B signal because both 3B and 

4B positions are substituted by phenyl groups. All the proton signals are present. The 

overlapping of the signals from the protons H3A and H5A present in the 1H NMR of the 

free ligand disappears in the 1H NMR of the silver complex and shows the different 

shifts (high and low field) that are induced by the silver complexation. 

Table 3.8 summarises the 1H NMR spectroscopic data for the silver complexes 

presented in this chapter. 
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Silver 
Complex H3A H4A H5A H6A H3B H3C H4C H5C H6C Phenyl Ring 

3sc 
(�/ppm) 

8.65 
m 

8.14 
td 

7.72 
dd 

8.87 
d 

8.65 
m 

7.58 
d 

7.90 
fd 

7.54 
dd 

8.65 
m 7.39-7.27 m 

4sc 
(�/ppm) 

7.38 
d 

7.80 
td 

7.47 
dd 

8.66 
d ° ° ° ° ° 7.10-6.92 m 

6sc 
(�/ppm) 

8.69 
m 

8.18 
t 

7.72 
m 

8.88 
d 

8.69 
m 

7.72 
m 

8.00 
td 

7.56 
dd 

8.18 
d 7.36 s 

8sc 
(�/ppm) ° ° ° ° ° ° ° ° ° ° 

10sc 
(�/ppm) 

8.62 
d 

8.17 
td 

7.78 
dd 

8.94 
d 

8.72 
s 

7.44 
m 

7.88 
td 

7.61 
dd 

8.83 
d 7.56-7.41 m 

13sc 
(�/ppm) 

8.87 
d 

8.15 
td 

7.67 
m 

865 
m 

8.65 
m 

8.65 
m 

7.94 
td 

7.67 
m 

7.57 
m 7.57 m - 7.33 d 

 

Table 3.8: The 1 H NMR spectroscopic characterisation of  

silver complexes 3sc, 4sc, 6sc, 8sc, 10sc and 13sc. 

 

The 1H NMR characterisation of the different silver complexes synthesised in this 

chapter was successful, except for 1,3,5-tris(3,6-di(pyridin-2-yl)pyridazin-4-

yl)benzene silver complex (8sc) which could not be characterised by 1H or 13C NMR 

spectroscopy. There was no doubt about the ligand (fully characterised and X-ray 

structure) but the nature of the complex was hard to determine.  

All the silver complexes could be characterised by mass spectrometry. 

 

 

Mass spectrometry 

Mass spectrometry of all the silver complexes was run with electro spray ionisation 

technique. The species have been dissolved in acetonitrile. 

The mass spectrometry of the complexes 3sc, 4sc and 6sc show the expected19 

[AgL]+ peak. Beside this peak we could see the ligand peak (6sc), the [Ag(L)MeCN]+ 

and [AgL2]+ peaks (3sc, 4sc) and the [NaL2MeCN]+ peak for the complex 3sc. 

As the 1,3,5-tris(3,6-di(pyridin-2-yl)pyridazin-4-yl)benzene silver complex (8sc) could 

not be characterised by NMR spectroscopy because of its low solubility in 

acetonitrile, we decided to run the mass spectrometry in acetonitrile. For the 

electrospray technique, we do not need a lot of compound in the solution (less than 

0.1mg per mL) and the low solubility of the complex was not a problem in this case. 
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We obtained an electrospray spectrum that exhibited two peaks. These peaks were 

assigned to the ligand peak (m/z= 775) and to the [AgL2MeCN]+ peak (m/z=1033). 

3,6-Bis(2�-pyridyl)-4-biphenylpyridazine (10sc) and 1,2-bis(4-phenyl-3,6-dipyridin-2-

ylpyridazine)ethyne silver complex (13sc) both show the same peaks assigned to the 

ligand and to the species [AgL]+. 

Table 3.9 summarises the calculated and the detected m/z values for each silver 

complex and Figure 3.17 shows representative mass spectra (3sc and 10sc). 

 

silver complex 3sc 4sc 6sc 8sc 10sc 13sc 

  m/z 
calc. 

m/z 
det. 

m/z 
calc. 

m/z 
det. 

m/z 
calc. 

m/z 
det. 

m/z 
calc. 

m/z 
det. 

m/z 
calc. 

m/z 
det. 

m/z 
calc. 

m/z 
det. 

[L]+ ° ° ° ° 542 543 774 775 386 387 643 643 

[Ag+L+MeCN]+ 459 458 535 534 ° ° ° ° ° ° ° ° 

[Na+2L+MeCN] 683 683 ° ° ° ° ° ° ° ° ° ° 

[Ag+L]+ 418 417 494 495 650 652 ° ° 492 493 751 753 

[Ag+2L]+ 628 727 880 881 ° ° ° ° ° ° ° ° 

[Ag+2L+MeCN]+ ° ° ° ° ° ° 1031 1033 ° ° ° ° 
 

Table 3.9: Calculated and detected m/z values for the species 3sc, 4sc, 6sc, 8sc, 10sc and 13sc. 

 

Figure 3.17: Mass spectra of silver complexes 3sc and 10sc. 
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Many attempts, to obtain single crystals suitable for X-Ray analysis, were 

unsuccessful. We tried different solvent systems, different technique (slow diffusion 

and slow evaporation). It was impossible to determine the structure of the complexes 

prepared in this chapter. 

But, with a closer look at the mass spectrometry and the result obtained by 

Christopher B. Smith in our group17 (he presented the silver complexes of 3,6-di(2-

pyridyl)pyridazine and 4-phenyl-3,6-dipyridin-2-ylpyridazine (3)) we can try to predict 

the possible structures of the phenyl substituted pyridazine silver complexes. In fact, 

most of the complexes show [AgL]+ and/or [AgL2]+ peaks in their mass spectrum. 

This would mean that one ligand is coordinated with one silver ion, or that two ligands 

are coordinated with one silver ion. The geometry of the complexes is likely to be 

square planar.  Figure 3.18 shows a drawing of the possible structures. 

 

 

 

 

 

 

 

 

 

Figure 3.18: Drawing of the possible crystal structures from the silver  

complexes presented in this chapter. 

 

The crystal structure of compound 3sc was obtained by C. B. Smith and is showed in 

figure 3.19. This crystal structure shows a dinuclear [Ag2L2]2+ cation. 
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Figure 3.17: Crystal structure from complex 3sc synthesised 

 by Christopher B. Smith17. 

 

 

The two ligands are arranged in a trans configuration about the dinuclear silver core. 

We can also see that the phenyl substituents are twisted with respect to the 

pyridazine that they are bounded to with a torsion angle of 58°. There are no �-

stacking or short C…H interactions involving the heterocyclic or phenyl rings of the 

ligand. The terminal pyridine rings are significantly out of the plane of the pyridazine 

(angle: 28.7° and 35.5°). This twisting is reminiscent of the distortion from ideal 

square planar geometry. This distortion has a consequence for the coordination 

geometry and the sum of bond angles about the silver is 688.5°, which is best 

described as a flattened tetrahedron. 

 

These square planar or almost square planar geometries were the most frequently 

encountered during all this work. But sometimes, we were faced with different and 

unexpected geometries. This will be described in the coming chapters. 
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III.5 Conclusion 

 

In this chapter we described the synthesis of the ethynyl precursors 5, 7, 9, 11 and 

12 that have been prepared with the Sonogashira reaction. 

We also showed the methodology to access to mono- and di-substituted pyridazine, 

based on an inverse electron demand Diels-Alder reaction that enabled us to 

prepare the ligands 3, 4, 6, 8, 10 and 13. All these ligands were characterised by 

NMR, mass spectrometry and elemental analysis. We also obtained a single X-ray 

crystal structure for the ligand 8. 

Five new silver complexes (4sc, 6sc, 8sc, 10sc and 13sc) were prepared and 

characterised by NMR, mass spectrometry (apart from some cases, discussed in the 

chapter). 

Unfortunately, it was impossible to obtain suitable crystal from the silver complexes 

to do single X-ray diffraction. 
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III.6 Experimental part 

 

Synthesis of 4-phenyl-3,6-dipyridin-2-ylpyridazine (3) 

 

 

 

 

Phenylethyne (330 mg, 3.24 mmol) and 3,6-bis(2�-pyridyl)-1,2,4,5-tetrazine (1) (660 

mg, 2.80 mmol) were dissolved in 25 ml of toluene and refluxed for 24 hours. The 

solvent was removed by evaporation and the solid residue was recrystallised from 

ethanol to give a beige powder (480 mg, 1.54 mmol, 55.0%, C20H14N4, 310.4 g/mol). 

 
1H NMR (CDCl3, 400 MHz) �/ppm: 8.80 (d, J=7.9 Hz, 1H, H3A), 8.72 (d, J=4.8 Hz, 

1H, H6A), 8.66 (s, 1H, H3B), 8.47 (d, J=5.0 Hz, 1H, H6C), 7,91 (td, J=7.6, 1.6 Hz, 1H, 

H4A), 7.89 (d, J=7.7 Hz, 1H, H3C), 7.79 (td, J=7.7, 1.6 Hz, 1H, H4C), 7.41 (dd, J=7.6, 

4.8 Hz, 1H, H5A), 7.29 (m, 6H, H5C and HD). 
13C NMR (CDCl3, 100 MHz) �/ppm: 158.3, 157.7, 155.7, 153.3, 149.4, 149.0, 140.5, 

137.2, 136.9, 136.6, 128.9, 128.4, 125.7, 124.9, 124.8, 123.4, 121.9, 3 carbon 

signals unresolved. 

MS (ES) m/z [L]+ 309, [Na+L+MeCN+2H2O]+ 411, [Na+2L+2H2O]+ 678. 

Elem. Anal. (C20H14N8) [%] calc. C 77.4, H 4.6, N 18.0, found C 77.0, H 4.7, N 17.8. 

 

Synthesis of 3,6-bis(2�-pyridyl)- 4,5-diphenyl pyridazine (4) 

 

 

 

 

Diphenylethyne (214 mg, 1.20 mmol) and 3,6-bis(2�-pyridyl)-1,2,4,5-tetrazine (1) 

(200 mg, 0.85 mmol) were heated without solvent at 170°C for 66 hours. The 

product was purified by chromatographic work-up (alumina, CHCl3, the third band 

was collected) to give a red powder (258 mg, 0.66 mmol, 77.6%, C26H18N4, 386.4 

g/mol). 
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1H NMR (CDCl3, 400 MHz) �/ppm: 8.43 (d, J=4.4 Hz, 2H, H6A), 7.68 (m, 4H, H3A+5A), 

7,18 (td, J=7.0, 1.6 Hz, 2H, H4A), 7.0 (m, 6H, HC), 6.87 (m, 4H, HC). 
13C NMR (CDCl3, 100 MHz) �/ppm: 158.9, 156.1, 148.8, 139.2, 136.1, 134.7, 130.1, 

127.5, 127.2, 125.0, 122.8, 2 carbon signals unresolved. 

MS (ES) m/z [L]+ 385, [L+Na+MeCN]+ 477, [L+Na+2MeCN]+ 487, [2L+Na+MeCN]+ 

829. 

Elem. Anal. (C26H18N4) [%] calc. C 80.8, H 4.7, N 14.5, found C 79.4, H 4.6, N 14.2. 

 

Synthesis of 1,4-diethynylbenzene (5) 

  

 

Under argon and exclusion of moisture, 1,4 dibromobenzene (1.0 g, 4.2 mmol), CuCl 

(84 mg, 0.85 mmol), and PdCl2(PPh3)2 (3) (0.59 g, 0.85 mmol) were suspended in 

dry, argon degassed, triethylamine (50 ml). Then trimethylsilylacetylene (1.8 ml, 13 

mmol) was added and the mixture stirred at 40°C for 19 hours. The solvent was 

removed and the residue extracted with hexane (150 ml). The solution was filtered 

and the solvent removed from the filtrate by evaporation. The residue was purified 

by chromatographic work-up (alumina/hexane, the second band was collected). The 

product was dissolved in THF (50 ml) and an aqueous solution of 1M NaOH added 

(75 ml). The mixture was stirred at room temperature overnight and then diluted with 

water until a precipitate was formed. The compound was extracted with 

dichloromethane and the combined organic phases were dried over MgSO4. The 

solvent was removed to give an orange powder (170 mg, 1.35 mmol, 32.1%, C10H6, 

126.1 g/mol). 

 
1H NMR (CDCl3, 400 MHz) �/ppm: 7.47 (s, 4H, C6H4), 3.18 (s, 2H, ethynyl). 
13C NMR (CDCl3, 100 MHz) �/ppm: 132.1, 122.1, 83.2, 79.1. 

MS (ES) m/z [L+Na]+ 349. 
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Synthesis of  1,4-bis(3,6-bis(2�-pyridyl)pyridazine-4yl)benzene (6) 

 

 

 

 

 

1,4 Diethynylbenzene (5) (0.04 g, 0.3 mmol) and 3,6-bis(2�-pyridyl)-1,2,4,5-tetrazine 

(1) (0.15 g, 0.64 mmol) were dissolved in toluene (50 ml). The mixture was heated 

under reflux at 120°C for 14 days. The solvent was removed by evaporation and the 

product purified by chromatographic work-up (silica, dichloromethane/MeOH (98:2), 

the first band was collected), to give a pale pink powder (0.15 g, 0.27 mmol, 90%, 

C34H22N8, 542.6 g/mol). 

 
1H NMR (CDCl3, 400 MHz) �/ppm: 8.81 (d, J=8.0 Hz, 2H, H3A), 8.75 (d, J=5.5 Hz, 

2H, H6A), 8.66 (s, 2H, H3B), 8.48 (d, J=5.5 Hz, 2H, H6C), 7,94 (m, 4H, H4A + H3C),  

7.78 (td, J=7.5, 1.6 Hz, 2H, H4C), 7.44 (dd, J=7.6, 4.8 Hz, 2H, H5A), 7.30 (dd, J=7.6, 

4.8 Hz, 2H, H5C), 7.23 (s, 4H, HD). 
13C NMR (CDCl3, 100 MHz) �/ppm: 169.2, 164.1, 158.2, 150.5, 149.4, 149.0, 139.8, 

137.3, 137.1, 136.6, 131.7, 129.0, 124.9, 123.4, 121.9, 2 carbon signals unresolved. 

MS (ES) m/z [L]+ 543, [L+K+2MeCN]+ 664, [2L+Na+MeCN]+ 1045, [2L+K+2MeCN]+ 

1202. 

Elem. Anal. (C34H22N8) [%] calc. C 75.3, H 4.1, N 20.6, found C 73.2, H 4.2, N 20.7. 

 

Synthesis of 1,3,5-triethynylbenzene (7) 

 

 

 

 

 

Under argon and exclusion of moisture, 1,3,5 tribromobenzene (1.5 g, 4.8 mmol), 

CuCl ( 0.10 g, 0.95 mmol), and PdCl2(PPh3)2 (3) (0.66 g, 0.95 mmol) were 

suspended in dry, argon degassed, triethylamine (75 ml). Then 

trimethylsilylacetylene (2.6 ml, 19 mmol) was added and the mixture stirred at 40°C 
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for 18 hours. The solvent was removed and the residue extracted with hexane (150 

ml). The solution was filtered and the solvent removed from the filtrate by 

evaporation. The residue was purified by chromatographic work-up 

(alumina/hexane, the second band was collected). The product was dissolved in 

THF (50 ml) and an aqueous solution of 1M NaOH added (75 ml). The mixture was 

stirred at room temperature overnight and then diluted with water until a precipitate 

was formed. The compound was extracted with dichloromethane and the combined 

organic phases were dried over MgSO4. The solvent was removed to give a brown 

powder (367 mg, 2.44 mmol, 50.8%, C12H6, 150.1 g/mol). 

 
1H NMR (CDCl3, 400 MHz) �/ppm: 7.56 (s, 3H, C6H3), 3.10 (s, 3H, ethynyl). 
13C NMR (CDCl3, 100 MHz) �/ppm: 135.6, 135.1, 134.1, 122.8, 81.5, 81.0, 79.2, 

78.6. 

MS (ES) m/z [L]+ 150. 

 

Synthesis of 1,3,5-tris(3,6-di(pyridin-2-yl)pyridazin-4-yl)benzene (8) 

 

 

 

 

 

 

 

1,3,5-Triethynylbenzene (7) (0.15 g, 0.99 mmol) and 3,6-bis(2�-pyridyl)-1,2,4,5-

tetrazine (1) (700 mg, 2.97 mmol) were dissolved in toluene (50 ml). The mixture 

was heated under reflux at 120°C for 6 days. The solvent was removed by 

evaporation and the product purified by chromatographic work-up (silica, 

dichloromethane/MeOH (9:1), the second band was collected), to give a pink powder 

(0.54 g, 0.69 mmol, 69%, C48H30N12, 774.8 g/mol). 

 
1H NMR (CDCl3, 400 MHz) �/ppm: 8.77 (m, 6H, H6A+H3A), 8.56 (d, J=5.0 Hz, 3H, 

H6C), 8.25 (s, 3H, H3B), 7.90 (m, 6H, H4A+H3C), 7.86 (td, J=7.5, 1.6 Hz, 3H, H4C), 7.44 

(dd, J=7.6, 4.8 Hz, 3H, H5A), 7.35 (dd, J=7.6, 4.8 Hz, 3H, H5C), 7.14 (s, 3H, HD). 
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13C NMR (CDCl3, 100 MHz) �/ppm: 157.9, 157.7, 155.2, 153.1, 149.2, 148.9, 139.3, 

137.4, 137.4,137.1, 136.6, 129.4, 125.4, 124.9, 124.4, 123.8, 121.8. 

MS (ES) m/z [L]+ 775. 

Elem. Anal. (C48H30N12) [%] calc. C 74.4, H 4.1, N 21.7, found C 70.4, H 4.2, N 21.5. 

 

Synthesis of 4-ethynylbiphenyl (9) 

 

 

 

Under argon and exclusion of moisture, 4-bromobiphenyl (2.0 g, 8.6 mmol), CuCl 

(60 mg, 0.61 mmol), and PdCl2(PPh3)2 (3) (0.44 g, 0.61 mmol) were suspended in 

dry, argon degassed, triethylamine (75 ml). Then trimethylsilylacetylene (2.3 ml, 17 

mmol) was added and the mixture stirred at 40°C for 18 hours. The solvent was 

removed and the residue extracted with hexane (150 ml). The solution was filtered 

and the solvent removed from the filtrate by evaporation. The residue was purified 

by chromatographic work-up (alumina/hexane, the second band was collected). The 

product was dissolved in THF (50 ml) and an aqueous solution of 1M NaOH added 

(50 ml). The mixture was stirred at room temperature overnight and then diluted with 

water until a precipitate was formed. The compound was extracted with 

dichloromethane and the combined organic phases were dried over MgSO4. The 

solvent was removed to give a beige powder (1.16 g, 6.51 mmol, 75.7%, C14H10, 

178.2 g/mol). 

 
1H NMR (CDCl3, 400 MHz) �/ppm: 7.55 (m, 9H, HA+B), 3.15 (s, 1H, ethynyl). 
13C NMR (CDCl3, 100 MHz) �/ppm: 140.5, 132.6, 131.9, 128.6, 126.8, 126.8, 126.7, 

121.4, 83.3, 78.1. 

MS (ES) m/z [L]+ 178. 

Elem. Anal. (C14H10) [%] calc. C 94.3, H 5.7, found C 93.3, H 6.1. 
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Synthesis of 3,6-bis(2�-pyridyl)- 4-biphenylpyridazine (10) 

 

 

 

 

 

 

4-Ethynyl-biphenyl (9) (400 mg, 2.25 mmol) and 3,6-bis(2�-pyridyl)-1,2,4,5-tetrazine 

(1) (300 mg, 1.27 mmol) were dissolved in toluene (70 ml). The mixture was heated 

under reflux at 120°C for 66 hours. The solvent was removed by evaporation and the 

product purified by chromatographic work-up (alumina, hexane/EtOAc (1:1), the 

second band was collected), to give a violet powder (0.42 g, 1.1 mmol, 85%, 

C26H18N4, 386.4 g/mol). 

 
1H NMR (CDCl3, 400 MHz) �/ppm: 8.81 (d, J=8.0 Hz, 1H, H3A), 8.73 (d, J=5.6 Hz, 

1H, H6A), 8.71 (s, 1H, H3B), 8.49 (d, J=5.0 Hz, 1H, H6C), 7.95 (d, J=7.5 Hz, 1H, H3C), 

7.90 (td, J= 7.5, 1.6 Hz, 1H, H4A), 7.81 (td, J= 7.5, 1.6 Hz, 1H, H4C), 7.56 (m, 4H, 

HD+E), 7.41 (m, 3H, H5A + HD+E), 7.34 (m, 3H, HD+E), 7.28 (dd, J=7.6, 4.8 Hz, 1H, 

H5C). 
13C NMR (CDCl3, 100 MHz) �/ppm: 158.2, 157.6, 155.8, 153.3, 149.4, 149.0, 141.0, 

140.1, 140.0, 137.1, 136.5, 135.7, 129.3, 128.7, 127.6, 127.0, 126.9, 125.4, 124.8, 

124.7, 123.3, 121.8, 4 carbon signals unresolved. 

MS (ES) m/z  [L+K+DCM]+ 508, [2L+Na+MeCN]+ 835, [2L+K+DCM]+ 893. 

Elem. Anal. (C26H18N4) [%] calc. C 80.8, H 4.7, N 14.5 found, C 80.8, H 4.7, N 14.3. 

 

Synthesis of 1,2-bis(4-bromophenyl)ethyne (11) 

 

 

Under argon, 1-iodo-4-bromobenzene (10 g, 35 mmol), CuCl (36 mg, 0.36 mmol) 

and PdCl2(PPh3)2 (3) (0.13 g, 0.36 mmol) were dissolved in dry, argon degassed, 

triethylamine (100ml). Acetylene gas was bubbled through the solution for 5 hours. 

The solution was refluxed at 50°C for 12 hours. The solvent was removed and the 

residue extracted with hexane (180 ml). The solution was filtered and the solvent 
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removed from the filtrate by evaporation. The compound was recrystallised from 

hexane to give a pale brown powder (3.6 g, 11 mmol, 60%, C14H8Br2, 336.0 g/mol). 

 
1H NMR (CDCl3, 400 MHz) �/ppm: 7.48 (d, J=6.8 Hz, 4H, C6H4), 7.37 (d, J=6.8 Hz, 

4H, C6H4). 
13C NMR (CDCl3, 100 MHz) �/ppm: 132.9, 131.6, 122.7, 121.8, 89.4. 

MS (ES) m/z [L]+ 336, [LNa]+ 359. 

Elem. Anal. (C14H8Br2) [%] calc. C 50.0, H 2.4, found, C 50.2, H 2.6. 

 

Synthesis of 1,2-bis(4-ethynylphenyl)ethyne (12) 

 

 

Under argon and exclusion of moisture, 1,2-bis(4-bromophenyl)ethyne (11) (1.5 g, 

4.5 mmol), CuCl (105 mg, 1.05 mmol), and PdCl2(PPh3)2 (3) (750 mg, 1.05 mmol) 

were suspended in dry, argon degassed triethylamine (110 ml). Then 

trimethylsilylacetylene (2.1 ml, 15 mmol) was added and the mixture stirred at 60°C 

for 6 hours. The solvent was removed and the residue extracted with hexane (150 

ml). The solution was filtered and the solvent removed from the filtrate by 

evaporation. The residue was purified by chromatographic work-up (alumina, 

hexane/dichloromethane (95:5) the second band was collected). The product was 

dissolved in THF (50 ml) and an aqueous solution of 1M NaOH added (100 ml). The 

mixture was stirred at room temperature overnight and then diluted with water until a 

precipitate was formed. The compound was extracted with dichloromethane and the 

combined organic phases were dried over MgSO4. The solvent was removed to give 

a beige powder (0.54 g, 2.4 mmol, 53%, C18H10, 226.3 g/mol). 

 
1H NMR (CDCl3, 400 MHz) �/ppm: 7.47 (s, 8H, C6H4-C6H4), 3.18 (s, 2H, ethynyl). 
13C NMR (CDCl3, 100 MHz) �/ppm: 132.1, 131.5, 123.3, 122.1, 90.7, 83.2, 79.0 

MS (maldi) m/z [L]+ 226. 

Elem. Anal. (C18H10) [%] calc. C 95.5, H 4.5, found, C 92.9, H 4.6. 

 

 

 



Chapter III : Phenyl substituted pyridazines 
___________________________________________________________________ 

 

 84

Synthesis of 1,2-bis(4-phenyl-3,6-dipyridin-2-ylpyridazine)ethyne (13) 

 

 

 

 

 

1,2-Bis(4-ethynylphenyl)ethyne (12) (0.15 g, 0.66 mmol) and 3,6-bis(2�-pyridyl)-

1,2,4,5-tetrazine (1) (625 mg, 2.65 mmol) were heated without solvent at 170°C for 

18 hours. The product was purified by chromatographic work-up (silica, 

dichloromethane/MEOH (9:1), the second band was collected) to give a pale brown 

powder (0.34 g, 0.53 mmol, 80%, C42H26N8, 641.7 g/mol). 

 
1H NMR (CDCl3, 400 MHz) �/ppm: 8.80 (d, J=7.5 Hz, 2H, H3A), 8.74 (d, J=4.5 Hz, 

2H, H6A), 8.66 (s, 2H, H3B), 8.46 (d, J=5.0 Hz, 2H, H6C), 7.98 (d, J=7.5 Hz, 2H, H3C), 

7.92 (td, J=7.5, 1.6 Hz, 2H, H4A), 7.83 (td, J=7.5, 1.6 Hz, 2H, H4C), 7.47 (d, J=8.6 Hz, 

4H, H3D+5D), 7.42 (dd, J=7.6, 4.8 Hz, 2H, H5A), 7.29 (dd, J=7.6, 4.8 Hz, 2H, H5C), 7.26 

(d, J=8.6 Hz, 4H, H2D+6D). 
13C NMR (CDCl3, 100 MHz) �/ppm: 158.0, 157.7, 155.5, 153.2, 149.4, 149.0, 139.8, 

137.2, 137.1, 136.7, 131.6, 128.9, 125.4, 124.9, 124.8, 123.5, 123.1, 121.8, 90.2, 2 

carbon signals unresolved. 

MS (maldi) m/z [L]+ 643. 

Elem. Anal. (C42H26N8) [%] calc. C 78.5, H 4.1, N 17.4, found C 76.6, H 4.4, N 16.0. 

 

 

Silver complexes 

 

All the silver complexes have been prepared by using the same procedure. One 

equivalent of silver tetrafluoroborate or silver trifluoromethane sulfonate was mixed 

with one equivalent of the diazine ligand in 15 ml of acetonitrile. The mixture was 

sonicated for five minutes and then stirred under reflux for a further fifteen minutes. 

The solvent was evaporated to give the silver complexes. 
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Synthesis of 4-phenyl-3,6-dipyridin-2-ylpyridazine silver complex (3sc) 

 

 

 

 

4-Phenyl-3,6-dipyridin-2-ylpyridazine (3) (50 mg, 0.16 mmol) and silver 

trifluoromethanesulfonate (41 mg, 0.16 mmol) were used to prepare the silver 

complex (79 mg, 0.14 mmol, 88%, C20H14N4AgCF3SO3, 567.3 g/mol). 

 
1H NMR (DMSO, 400 MHz) �/ppm: 8.87 (d, J=4.0 Hz, 1H, H6A), 8.65 (m, 3H, 

H3B+3A+6C), 8.14 (td, J=8.0, 1.6 Hz, 1H, H4A), 7.90 (td, J=8.4, 1.6 Hz, 1H, H4C), 7.72 

(dd, J=7.6, 5.2 Hz, 1H, H5A), 7.58 (d, J=8.0 Hz, 1H, H3C), 7.54 (dd, J=7.6, 5.2 Hz, 1H, 

H5C), 7.39 (m, 3H, HD), 7.27 (m, 2H, HD). 
13C NMR the product was not enough soluble in DMSO to record the 13C NMR 

spectrum. 

MS (ES) m/z [Ag+L]+ 417, [Ag+L+MeCN]+ 458, [Na+2L+MeCN]+ 683, [Ag+2L]+ 727. 

Elem. Anal. (C20H14N4AgCF3SO32H2O) [%] calc. C 41.8, H 3.0, N 9.3, found, C 41.7, 

H 2.7, N 9.2. 

 

Synthesis of 3,6-bis(2�-pyridyl)- 3,4-diphenyl pyridazine silver complex (4sc) 

 

 

 

 

3,6-Bis(2�-pyridyl)-3,4-diphenyl pyridazine (4) (50 mg, 0.09 mmol) and silver 

tetrafluoroborate (18 mg, 0.09 mmol) were used to prepare the silver complex (43 

mg, 0.074 mmol, 86%, C26H18N4AgBF4). 

 

 1H NMR (DMSO, 400 MHz) �/ppm: 8.66 (d, J=4.8 Hz, 2H, H6), 7.80 (td, J=6.0, 1.6 

Hz, 2H, H4), 7.47 (dd, J=7.6, 5.2 Hz, 2H, H5), 7.38 (d, J=8.0 Hz, 2H, H3), 7.10 (m, 

3H, HC), 6.92 (m, 2H, HC). 
13C NMR the product was not enough soluble in DMSO to record the 13C NMR 

spectrum. 
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N N NN

N N NN
A B C

D AgCF3SO3

MS (ES) m/z [Ag+L]+ 495, [Ag+L+MeCN]+ 534, [Ag+2L]+ 881. 

 

Synthesis of 1,4-bis(3,6-bis(2�-pyridyl)pyridazine) benzene silver complex (6sc) 

 

 

 

 

 

1,4-Bis(3,6-bis(2�-pyridyl)pyridazine) benzene (6) (60 mg, 0.11 mmol) and silver 

trifluoromethanesulfonate (56 mg, 0.22 mmol) were used to prepare the silver 

complex (79 mg, 0.10 mmol, 91%, C34H22N8AgCF3SO3). 

 
1H NMR (DMSO, 400 MHz) �/ppm: 8.88 (d, J=4.0 Hz, 2H, H6A), 8.69 (m, 4H, H3B+3A), 

8.63 (d, J=4.8 Hz, 2H, H6C), 8.18 (t, J=8.0Hz, 2H, H4A), 8.00 (td, J=8.0, 1.6 Hz, 2H, 

H4C), 7.72 (m, 4H, H3C+5A), 7.56 (dd, J=7.6, 5.2 Hz, 2H, H5C), 7.36 (s, 4H, HD). 
13C NMR the product was not enough soluble in DMSO to record the 13C NMR 

spectrum. 

MS (ES) m/z [L]+ 543, [Ag+L]+ 652. 

 

Synthesis of 1,3,5-tris(3,6-di(pyridin-2-yl)pyridazin-4-yl)benzene silver complex 

(8sc). 

 

 

 

 

 

 

1,3,5-tris(3,6-di(pyridin-2-yl)pyridazin-4-yl)benzene (8) (95 mg, 0.13 mmol) and silver 

tetrafluoroborate (76 mg, 0.39 mmol) were used to prepare the silver complex (98 

mg, 0.10 mmol, 77%, C48H30N12Ag3B3F12). 

 
1H NMR the product was not enough soluble in DMSO to record the 1H NMR 

spectrum. 
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13C NMR the product was not enough soluble in DMSO to record the 13C NMR 

spectrum. 

MS (ES) m/z [L]+ 775, [Ag+2L+MeCN]+ 1033. 

 

Synthesis of 3,6-bis(2�-pyridyl)- 4-biphenylpyridazine silver complex(10sc) 

 

 

 

 

 

3,6-Bis(2�-pyridyl)- 4-biphenylpyridazine (10) (50 mg, 0.13 mmol) and silver 

tetrafluoroborate (25 mg, 0.13 mmol) were used to prepare the silver complex (68 

mg, 0.12 mmol, 92%, C26H18N4AgBF4). 

 
1H NMR (DMSO, 400 MHz) �/ppm: 8.94 (d, J=4.0 Hz, 1H, H6A), 8.83 (d, J+4.4 Hz, 

1H, H6C), 8.72 (s, 1H, H3B), 8.62 (d, J=8.0 Hz, 1H, H3A), 8.17 (td, J=8.0, 1.6 Hz, 1H, 

H4A), 7.88 (td, J=8.0, 1.6 Hz, 1H, H4C), 7.78 (dd, J=7.6, 5.2 Hz, 1H, H5A), 7.71 (m, 

4H, HD+E), 7.61 (dd, J=7.6, 5.2 Hz, 1H, H5C), 7.44  (m, 4H, H3C+E+D), 7.30 (d, J=7.8 

Hz, 2H, HE). 
13C NMR (DMSO, 100 MHz) �/ppm: 157.7, 155.4, 152.9, 150.6, 150.5, 150.1, 140.8, 

140.7, 138.7, 138.6, 137.5, 134.0, 129.7, 128.9, 128.0, 127.2, 126.7, 126.6, 126.4, 

126.1, 125.0, 123.4, 4 carbon signals unresolved. 

MS (ES) m/z [L]+ 387, [Ag+L]+ 493. 

Elem. Anal. (C26H18N4AgBF4) [%] calc. C 53.7, H 3.12, N 9.64, found, C 57.6, H 3.4, 

N 10.3. 

 

Synthesis of 1,2-bis(4-phenyl-3,6-dipyridin-2-ylpyridazine)ethyne silver 

complex (13sc) 
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1,2-Bis(4-phenyl-3,6-dipyridin-2-ylpyridazine)ethyne (13) (50 mg, 0.08 mmol) and 

silver tetrafluoroborate (31 mg, 0.16 mmol) to prepare the silver complex (59 mg, 

0.07 mmol, 88%, C42H26N8AgBF4). 

 
1H NMR (DMSO, 400 MHz) �/ppm: 8.87 (d, J=4.0 Hz, 1H, H3A), 8.65 (m, 3H, 

H3C+6A+3B), 8.15 (td, J=8.0, 1.6 Hz, 1H, H4A), 7.94 (td, J=8.0, 1.6 Hz, 1H, H4C), 7.67 

(m, 2H, H5A+5C), 7.57 (m, 3H, HD+6C), 7.33 (d, J=8.4 Hz, 2H, HD). 
13C NMR the product was not enough soluble in DMSO to record the 13C NMR 

spectrum. 

MS (ES) m/z [L]+ 643, [Ag+L]+ 753. 

Elem. Anal. (C42H26N8AgBF4) [%] calc. C 60.2, H 3.1, N 13.4, found, C 60.5, H 3.6, N 

12.7. 
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CHAPTER IV 

 

HALOGENATED PYRIDAZINES 

 

 

IV.1 Introduction 

 

In order to see the effect of the substituents on the 4-position of the tetrazine, we 

turned our attention to halogenated substituents. In fact the halogenated substituents 

offer the opportunity to introduce electron withdrawing substituents1, 2, 3, 4 onto the 

pyridazine ligands. They have been used to prepare macrocycles5 or polymers6 

based on halo-substituted terpyridines and ruthenium. 

 

To prepare the halogenated ligands, we used bromo, iodo, and fluoro substituted 

phenyl acetylenes. They reacted with 3,6-bis(2�-pyridyl)-1,2,4,5-tetrazine (1) to give 

the desired ligands. This chapter presents all the halogenated precursors 

synthesized (14, 17, 19, 23, 25 and 27 shown in Figure 4.1) and their respective 

pyridazines (15, 18, 20, 24, 26 and 28 shown in Figure 4.2). They have all been 

characterized by 1H and 13C NMR spectroscopy, mass spectrometry and elemental 

analysis. 

The target molecules were the silver complexes (15sc, 18sc, 20sc, 24sc, 26sc and 

28sc).  

So, we will talk about the synthesis of the ethynyl precursors, the desired ligands and 

finally about the silver complexes. 
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Figure 4.1: Ethynyl precursors described in this chapter. 
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Figure 4.2: Halogenated pyridazines presented in this chapter. 
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IV.2 Synthesis of the ethynyl precursors 

IV.2.1 Synthetic method 

 

To prepare these compounds, we used the Sonogashira7 reaction as described in the 

chapter II. To obtain the desired ethynyl precursor we needed an halogenated phenyl 

compound. These compounds were mixed with trimethylsilylacetylene, copper(I) 

chloride and bis(triphenylphosphine)palladium dichloride in triethylamine. This 

solution was refluxed under nitrogen to give the protected ethynyl precursor. This 

intermediate was dissolved in tetrahydrofuran and a solution of 1M sodium hydroxide 

was added. The target molecule was extracted and purified by chromatographic 

work-up over alumina. 

The problem of this reaction is that the trimethylsilylacetylene reacts with the 

halogenated compounds. We were obliged to use di-halogenated compounds 

containing an iodinated part. In fact, the Sonogashira reaction works much better with 

an iodo compound than with a bromo compound8. For compounds 14, 19 and 27, we 

used commercial iodo compounds, and they were directly accessible with the 

Sonogashira reaction. Compounds 17, 23 and 25 are obtained via a multiple step 

synthesis. Figure 4.3 shows the synthetic method adopted for the synthesis of 

compounds 14, 19 and 27. Figure 4.4 shows the multiple step synthesis for the 

preparation of compounds 17, 23 and 25. 

 

 

 

Figure 4.3: Synthetic method for the synthesis of compounds 14, 19 and 27. 

 

Br I Br

CF3I
F

F
F

I

Br BrMe3Si

Me3Si

Me3Si
14

19

27
CuCl + Pd(PPh3)2Cl2 +

CuCl + Pd(PPh3)2Cl2 +

CuCl + Pd(PPh3)2Cl2 +

NaOH

NaOH

NaOH



Chapter IV : Halogenated pyridazines 
___________________________________________________________________ 

 95

 

Figure 4.4: Multiple step synthesis for the preparation of compounds 17, 23 and 25. 

 

The preparation of 1-iodo-3,5-dibromobenzene (16) starting from 1,3,5-

tribromobenzene is easily accessible by using butyllithium and iodine9, and results 

with an acceptable yield of product (65%). This compound needs to be purified by 

recrystalisation from hexane. We then proceeded to the Sonogashira reaction to 

synthesize 1,3-dibromo-5-ethynylbenzene (17). At the end of the reaction after 

deprotection, we noticed the presence of second spot on the TLC plate and we 

decided to investigate this using 1H NMR spectroscopy characterization. We found 

that this side product was 1-bromo-3,5-diethynylbenzene (25). This compound was 

obtained with a low yield, near to 6%, but we had enough material to proceed to a full 

characterization. 

To synthesize compound 23 we needed three steps. In fact, it was not possible to 

use 1,4-diiodobenzene and to proceed directly to the Sonogashira reaction. 

Trimethylsilylacetylene would have reacted with both iodo groups present in the 
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starting material. This would also happen, if we had decreased the amount of 

trimethylsilylacetylene added in the reaction. We decided to synthesize 4-

((trimethylsilyl)ethynyl)aniline (21) by reacting 4-iodoaniline with 

trimethylsilylacetylene, copper(I) chloride and bis(triphenylphosphine)palladium 

dichloride (2). Compound 21 was mixed with hydrochloric acid, sodium nitrite and 

potassium iodide to obtain 4-((trimethylsilyl)ethynyl)iodobenzene (22). Finally, 

compound 22 was deprotected with an aqueous solution of sodium hydroxide to 

obtain 1-ethynyl-4-iodobenzene10 (23). Figure 4.5 shows the compounds used to 

prepare the ethynyl compounds. 

 

 

Figure 4.5: Compounds used to prepare the ethynyl compounds. 

 

For each ethynyl precursor presented here, the reactant ratio, time and yield are 

listed in the Table 4.1. Purification methods and synthetic details are discussed in the 

experimental section at the end of this chapter. 

 

 

Precursor Halogenated 
compound 

Reaction ratio 
(halogenated / 
tms acetylene) 

Reaction 
temperature 

(°C) 

Reaction time 
(hr) Yield (%) 

14 4a 1/1.3 40 18 73 

17 16 1/1.3 60 20 97 

19 6a 1/1.9 60 20 17 

23 22 ° ° ° 85 

25 16 1/1.4 60 18 6 

27 7a 1/1.1 40 18 48 

 

Table 4.1: Reaction conditions for the synthesis of the ethynyl precursors 

 14, 17, 19, 23, 25 and 27. 
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Compounds 14, 17, 23 and 27 were obtained, after purification, with relative good 

yields and could be used for the synthesis of the pyridazine ligands.  

We made several attempts to synthesis compounds 19 and 25. Each time the yields 

were very low and we did a last attempt with a lot of starting materials in order to 

obtain these ethynyl precursors in sufficient quantity, so that we could proceed to the 

ligand synthesis.  

 

 

IV.2.2 Characterisation of the ethynyl precursors 

 

All the ethynyl precursors have been characterized by 1H NMR spectroscopy. 13C 

NMR spectroscopy could only be obtained for compounds 14, 17, 23, 25 and 27. 

Compounds 14, 17 and 25 were characterized by mass spectrometry. 

The general procedure and characterization of intermediates 16, 21 and 22 are 

discussed at the end of this chapter in the experimental section. 

 

 
1H NMR spectroscopy  

We first focused our interest in the 1H NMR spectroscopic characterization. The 

halogenated phenyl ethynyl compounds synthesized in this chapter should have the 

characteristic signals for the ethynyl and phenyl groups11. It was also important to 

see the absence of the SiMe3 signals. This would show that the deprotection had 

been carried out successfully.  Table 4.2 summarises the 1H NMR signals of the 

precursors. 
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I

 

  Ethynyl 
precursor 

Phenyl signals  
(�/ppm) 

Ethynyl 
signals 
(�/ppm) 

 
 

14 7.46-7.35 (d-d) 3.12 (s) 

 
 

17 7.65-7.55 (t-d) 3.16 (s) 

 
 

19 7.58 (s) 3.19 (s) 

 
 

23 7.66-7.21 (d-d) 3.14 (s) 

 
 

25 7.60-7.52 (d-t) 3.13 (s) 

 
 

27 7.65-7.48-7.41-7.18 
(t-d-d-t) 3.13 (s) 

  

Table 4.2: 1H NMR characterisation of the precursors 14, 17, 19, 23, 25 and 27. 

 

The 1H NMR spectrum of each ethynyl precursor could be assigned by the chemical 

shifts and the relative integrals. As expected12, the different phenyl signals are at 

around � 7.5, 7.6 ppm and the ethynyl signals are near to � 3.1 ppm. The 1H NMR 

spectra of compounds 14 and 23 show two doublets. Each signal integrated for two 

protons. They also show one singlet for the ethynyl signal. The 1H NMR spectrum of 

the ethynyl precursor 17 shows a triplet and a doublet for the phenyl protons and one 

singlet for the ethynyl signal. The 1H NMR spectrum of compound 19 shows an 

unexpected singlet for the phenyl protons and a singlet for the ethynyl proton. 

Because of the symmetry of compound 25, we can see a doublet and a triplet signal 

for the phenyl protons on the 1H NMR spectrum. As expected, we also see the 

ethynyl proton signal. The 1H NMR spectrum of 27 shows four different signals for the 

phenyl protons. This molecule is unsymmetrical and exhibits a triplet, doublet, 

doublet and triplet signals. We can also notice the presence of the ethynyl signal. In 

Br

Br

Br

F

F
F

Br

Br
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every ethynyl precursor synthesised in this chapter, there is no SiMe3 signal on the 
1H NMR spectra. Figure 4.6 shows the 1H NMR spectra of the ethynyl precursors 23 

and 27. 

 

 

Figure 4.6: 1H NMR spectra of the ethynyl precursors 

 23 and 27 in CDCl3 solution. 

 

 

Mass spectrometric characterisation 

We were only able to obtain mass spectra for 1-bromo-4-ethynylbenzene (14), 1,3-

dibromo-5-ethynylbenzene (17) and 1-bromo-3,5-diethynylbenzene (25). Compound 

14 was characterised with the fast atom bombardment technique and its mass 

spectrum shows only one peak corresponding to the [L]+ peak. The two other 

compounds (17 and 25) were characterised with the electrospray technique. The 

spectra of this two ethynyl precursors show [L]+ and [L-Br]+ peaks. The mass 
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spectrum of 1,3-dibromo-5-ethynylbenzene (17) shows an additional peak 

corresponding to [L-2Br]+. Table 4.3 summarises the different mass peaks detected 

for 14, 17 and 25. 

 

Ligand 14 17 25 

 m/z calc. m/z det. m/z calc. m/z det. m/z calc. m/z det. 

[L]+ 180.9 181 259.9 260 203.9 204 

[L-Br]+ ° ° 180 179 124 125 

[L-2Br]+ ° ° 100.1 100 ° ° 

 

Table 4.3: Calculated and detected m/z values for 14, 17 and 25. 

  
All m/z values are perfectly consistent with the calculated mass values. We were not 

able to obtain mass spectra for 1-ethynyl-4-(trifluoromethyl)benzene (19), 1-ethynyl-

4-iodobenzene (23) and 1-bromo-3-ethynylbenzene (27). They were not soluble 

enough in the different solvents we tried. 1H NMR spectroscopic characterisation of 

these three compounds was sufficient to establish their identity, and we decided to 

carry on with the synthesis of their respective ligands. This will be discussed later on 

in this chapter. Two examples of mass spectra are presented in Figure 4.7 (ethynyl 

precursors 17 and 25).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: Mass spectra of the ethynyl precursors 17 and 25. 

Br

Br

Br
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IV.3 Synthesis of the halogenated pyridazine 

IV.3.1 Synthetic method 

 

This part of the chapter introduces the synthesis and the characterisation of six new 

substituted pyridazine ligands. These compounds are 4-(4-bromophenyl)-3,6-

di(pyridin-2-yl)pyridazine (15), 4-(3,5-dibromophenyl)-3,6-di(pyridin-2-yl)pyridazine 

(18), 3,6-di(pyridin-2-yl)-4-(4-(trifluoromethyl)phenyl)pyridazine (20), 4-(4-

iodophenyl)-3,6-di(pyridin-2-yl)pyridazine (24), 4,4'-(5-bromo-1,3-phenyl)bis(3,6-

di(pyridin-2-yl)pyridazine) (26) and 4-(3-bromophenyl)-3,6-di(pyridin-2-yl)pyridazine 

(28). 

The synthesis of these new N-donor ligands follows the procedure presented in 

chapter II. They were obtained via an inverse electron demand Diels Alder13, 14 

reaction between 1,2,4,5-tetrazine and the ethynyl precursors presented in the first 

part of this chapter. To carry out these reactions, we used 3,6-bis(2�-pyridyl)-1,2,4,5-

tetrazine (1) dissolved in toluene with the ethynyl precursor. This mixture was then 

placed under reflux. All the compounds presented in this part of the chapter were 

prepared with this method. Reactant ratio, time, solvent and yields are listed in the 

table 4.4. 

 

Ligand 
Reaction ratio 

(tetrazine / 
ethynyl) 

Reaction 
temperature 

(°C) 
Solvent Reaction time Yield (%) 

15 1 to 1 120 toluene 11 days 91 

18 1 to 1 120 toluene 6 days 58 

20 1 to 1 120 toluene 4 days 74 

24 1 to 1 120 toluene 74 hrs 92 

26 2.2 to 1 120 toluene 14 days 87 

28 1 to 1 120 toluene 9 days 83 

 

Table 4.4: Reaction conditions for the synthesis of the ligands 

15, 18, 20, 24, 26, 28. 

 

The reaction times are really long for all the syntheses except for the synthesis of the 

iodophenyl substituted pyridazine 24. These different reaction times are based on the 

disappearance of the purple colour of the 1,2,4,5-tetrazine. We never stopped the 

reactions until the purple colour has entirely disappeared. This factor sometimes 
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gives us really long reaction times but always with good yields. The inverse electron 

demand Diels-Alder reaction is not so fast but is a really good working reaction. All 

the ligands introduced in this chapter were purified by chromatographic work-up. 

 

IV.3.2 Characterisation of the halogenated pyridazines 

 

All the compounds were characterised by 1H NMR and 13C NMR spectroscopy, mass 

spectrometry and elemental analyses. 

 
1H NMR spectroscopy 
1H NMR spectra of ligands 18, 24, 26 and 28 were run in deuterated chloroform. 1H 

NMR spectra of compounds 15 and 20 were run in deuterated acetonitrile and 

dimethylsulfoxide respectively. The spectra could be assigned by the chemical shifts, 

relatives integrals and the coupling patterns of the signals without the need of COSY 

experiments. 

The 1H NMR spectra of the compounds 15 and 18 and the assignments are shown in 

Figure 4.8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8: The 1H NMR spectra and assignments of ligands 15 and 18. 
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The 1H NMR spectra of the compounds 20 and 24 and the assignments are shown in 

Figure 4.9 and compounds 26 and 28 in Figure 4.10. 

 

 

 

Figure 4.9: The 1H NMR spectra and assignments of ligands 20 and 24. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10: The 1H NMR spectra and assignments of ligands 26 and 28. 
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The 1H NMR spectra of ligands 15, 18, 20, 24, 26 and 28 present well defined and 

sharp peaks. As for the non symmetrical compounds shown in chapter III, the spectra 

present a set of nine NMR signals. Each 1H NMR spectrum shows four doublets (H3A, 

H3C, H6A, H6C), two triplets of doublets (H4A, H4C), two doublets of doublets (H5A, H5C) 

and the typical singlet (H3B)15. These signals are in the same 1H NMR region between 

� 7 and � 9 ppm.  

Each ligand has an halogenated phenyl group, and the protons of this group are 

present in the same 1H NMR region as the other aromatic rings. The proton signals of 

the phenyl group are two doublets (15, 26 and 28), a triplet and a doublet (18 and 20) 

or a triplet, doublet and multiplet (28). These signals sometimes overlap with the 

dipyridin-2-ylpyridazine signals. We will discuss this later on. 

The 1H NMR spectrum of 4-(4-bromophenyl)-3,6(di-pyridin-2-yl)pyridazine (15) shows 

four doublets (H3A, H3C, H6A, H6C), two triplets of doublets (H4A, H4C), two doublets of 

doublets (H5A, H5C) and a singlet (H3B). In this molecule, the signals of the protons 

H5A and H2D+6D overlap. This case is also present in the 1H NMR spectrum of 4-(3,5-

dibromophenyl)-3,6-di(pyridin-2-yl)pyridazine (18), except that in that compound it is 

the signals of the proton H5C that overlap with the signal of the phenyl group. The 1H 

NMR spectra of 3,6-di(pyridin-2-yl)-4-(4-(trifluoromethyl)phenyl)pyridazine (20) and 4-

(4-iodophenyl)-3,6-di(pyridin-2-yl)pyridazine (24) show nine, well defined and 

separated, NMR signals. These spectra also present the two doublets of the protons 

of the phenyl group. The two last ligands introduced in this chapter, (4,4'-(5-bromo-

1,3-phenyl)bis(3,6-di(pyridin-2-yl)pyridazine) (26) and 4-(3-bromophenyl)-3,6-

di(pyridin-2-yl)pyridazine (28) also show well defined 1H NMR spectra. Compound 26 

has eight NMR signals. One of these signals results from the overlapping of two 

signals corresponding of the protons H3A and H6A. We also notice that the 1H NMR of 

the H3B signal is slightly shifted to highfield compared to compound 28 which should 

have approximately the same spectrum for the 3,6-di(pyridin-2-yl)pyridazine protons . 

This is due to the halogen atom (bromine) placed at the same position on the phenyl 

ring as in compound 28. The phenyl 1H NMR signals are not overlapping with another 

signal in these two last 1H NMR spectra. 

All the 1H NMR spectroscopic data for the ligands presented in this chapter are 

summarized in Table 4.5. 
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Ligand Solvent H3A H4A H5A H6A H3B H3C H4C H5C H6C Phenyl Ring 

15 
(�/ppm) CD3CN 8.72 

d 
8.00 
td 

7.52 
dd 

8.76 
d 

8.56 
s 

7.96 
d 

7.92 
td 

7.38 
dd 

8.39 
d 7.49-7.18 d 

18 
(�/ppm) CDCl3 

8.80 
d 

7.93 
td 

7.44 
dd 

8.75 
d 

8.61 
s 

8.11 
d 

7.89 
td 

7.34 
m 

8.46 
d 7.64 t-7.34 m 

20 
(�/ppm) 

DMSO-
d6 

8.69 
d 

8.10 
td 

7.61 
dd 

8.81 
d 

8.58 
s 

8.38 
d 

8.01 
td 

7.44 
dd 

8.46 
d 7.72-7.52 d 

24 
(�/ppm) CDCl3 

8.79 
d 

7.92 
td 

7.41 
dd 

8.72 
d 

8.62 
s 

7.97 
d 

7.83 
td 

7.29 
dd 

8.56 
d 7.64-7.00 d 

26 
(�/ppm) CDCl3 

8.77 
m 

7.92 
td 

7.44 
dd 

8.77 
m 

8.43 
s 

8.02 
d 

7.87 
td 

7.34 
dd 

8.51 
d 7.36 d-7.11 t 

28 
(�/ppm) CDCl3 

8.78 
d 

7.90 
td 

7.40 
dd 

8.72 
d 

8.62 
s 

7.99 
d 

7.82 
td 

7.28 
td 

8.44 
d 

7.48 t-7.45 d-
7.12m 

 

Table 4.5: The 1H NMR spectroscopic characterisation  

of ligands 15, 18, 20, 24, 26 and 28. 

 

We can notice that the ligands, the 1H NMR spectra of which were run in deuterated 

chloroform,have similar chemical shifts for corresponding protons. However, there is 

an exception to this statement. The chemical shifts of the protons from ring A from 

compounds 18, 24, 26 and 28 are the same. This is not true for the protons from ring 

B and C. Their chemical shifts are approximately in the same NMR region but are not 

as accurately reproduced as the chemical shifts from the A ring protons in going from 

one compound to another. That would mean that the substituent mostly affects the 

protons from ring B and C, and present different chemical shifts for the different 

substituents. Of course, it was not possible to include compounds 15 and 20 in this 

remark. Their 1H NMR spectra were not run in the same deuterated solvent as 

ligands 18, 24, 26 and 28. 
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Mass spectrometry 

Mass spectra of ligands 15, 18, 20, 24, 26 and 28 were obtained with the 

electrospray technique. For all the spectra except the one from compounds 26 and 

28, we can see the [L]+ peak. The other peaks correspond to m/z values of the ligand 

with a solvent molecule and a sodium or potassium ion. All m/z values are perfectly 

consistent with the calculated mass values.  

 

Figure 4.11 shows the mass spectra of compounds 15 and 28. 

 

 

Figure 4.11: Mass spectra of the ligand 15 and 28. 

 

All the m/z (calculated and detected) values, from each ligand synthesised in this 

chapter, are listed in Table 4.6. 
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Ligand 15 18 20 24 26 28 
 m/z 

calc. 
m/z 
det. 

m/z 
calc. 

m/z 
det. 

m/z 
calc. 

m/z 
det. 

m/z 
calc. 

m/z 
det. 

m/z 
calc. 

m/z 
det. 

m/z 
calc. 

m/z 
det. 

[L]+ 389 391 ° ° 378 379 436 437 ° ° ° ° 

[Na+L+2MeCN]+ 492 494 ° ° ° ° ° ° ° ° ° ° 

[Na+2L+MeCN]+ 840 841 ° ° ° ° 934 935 1306 1307 840 841 

[Na+L+MeCN]+ ° ° ° ° 441 442 498 499 ° ° ° ° 

[K+L+DCM]+ ° ° 592 593 ° ° ° ° 743 744 511 512 

[K+2L+DCM]+ ° ° ° ° ° ° ° ° 1366 1366 902 903 

[Na+2L+K]+ ° ° 998 999 ° ° ° ° ° ° ° ° 
 

Table 4.6: Calculated and detected m/z values for the ligands 15, 18, 20, 24, 26 and 28. 

 

 

Single crystal structure for ligand 15 

A crystal of the compound 15 suitable for single X-ray diffraction was grown from a 

chloroform solution. Details of the structure solution are given in Appendix 2. Figure 

4.12 shows the molecular structure of 15. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12: The molecular structure of ligand 15 with the labelling scheme. 
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Compound 15 shows two different torsion angles between rings A, B and C. In fact, 

the torsion angle between ring A and ring B is 4.1° (C11-C10-C9-N3). These two 

rings are almost co-planar. The torsion angle between the ring B and C is 27.4° (C4-

C5-C6-N2). This effect is due to the presence of the substituent (bromophenyl ring D) 

that forces the twist of ring C. It is also interesting to notice that ring B and ring D are 

not co-planar; the torsion angle between these two rings is 120° (C8-C7-C15-C16). 

Compound 15 does not present hydrogen bonds or �-� stacking interactions with 

another molecule in the unit cell. The N atoms are arranged in a trans, trans-

conformation. The packing shows two repetitive orientations. There are two different 

channels. In one of them the bromophenyl ring is oriented to the upper side of the 

cell axis c. In the second channel the bromophenyl ring is oriented to bottom of the 

cell axis c. This is presented in Figure 4.13.  

 

 

Figure 4.13: The packing diagram showing the orientation of the bromine atoms 

 in the crystal structure of 15. 

 



Chapter IV : Halogenated pyridazines 
___________________________________________________________________ 

 109

IV.4 Synthesis of the silver complexes 

IV.4.1 Synthetic method 

 

As discussed in chapter III, the silver(I) complexes of bipyridine ligands are mainly 

square planar16. Our attempts to grow single crystals of the complexes described in 

chapter III were unsuccessful. All these complexes contained phenyl-substituted 

pyridazines. In the current chapter, ligands are halo-substituted, and we hoped that 

steric factors might play a part in forcing the coordination geometry at the silver(I) 

centres to be non planar. 

The ligands synthesised in this chapter have been used to prepare their silver 

complexes 15sc, 18sc, 20sc, 24sc, 26sc and 28sc. The reaction of the ligands with 

the silver salt in acetonitrile proceeded smoothly to give a yellow-orange solution 

from which the complex was obtained. 

Table 4.7 summarises the experimental conditions for the synthesis of the species 

15sc, 18sc, 20sc, 24sc, 26sc and 28sc. 

 

Silver 
complex 

Reaction ratio 
(ligand / silver) Silver salt Yield (%) 

15sc 1 to 1 AgCF3SO3 88 

18sc 1 to 1 AgCF3SO3 85 

20sc 1 to 1 AgBF4 73 

24sc 1 to 1 AgBF4 90 

26sc 1 to 2 AgBF4 67 

28sc 1 to 1 AgBF4 72 

 

Table 4.7: Experimental conditions for the synthesis of the silver complexes  

15sc, 18sc, 20sc, 24sc, 26sc and 28sc. 

 

All the silver complexes were prepared by mixing the silver salt and the ligand in 

acetonitrile. The mixture was sonicated for five minutes and then stirred under reflux 

for a further fifteen minutes. The solvent was evaporated to give the silver 

complexes. They were easily accessible and it was not necessary to proceed to a 

chromatographic work up or recrystallisation. All the silver complexes are insoluble in 

chloroform, slightly soluble in acetonitrile, and soluble in dimethylsulfoxide. 
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IV.4.2 Characterisation of the silver complexes 

 

The complexes were characterised by 1H and 13C NMR spectroscopy, and mass 

spectrometry. 1H and 13C NMR spectra of compound 15sc were run in deuterated 

acetonitrile. 1H and 13C NMR spectra of the five other complexes were run in 

deuterated DMSO. They were all characterised by mass spectrometry except 

compound 26sc. 

 
1H NMR spectroscopy 

All the complexes were characterised by 1H NMR spectroscopy. Figure 4.14 shows 

the 1H NMR spectra of 4-(4-bromophenyl)-3,6(di-pyridin-2yl)pyridazine silver complex 

(15sc) and 4-(3,5-dibromophenyl)-3,6-di(pyridin-2-yl)pyridazine silver complex 

(18sc). 

 

 

Figure 4.14: 1H NMR spectra of silver complexes 15sc and 18sc. 

 

 

The next figure presents the 1H NMR spectra of 3,6-di(pyridin-2-yl)-4-(4-

(trifluoromethyl)phenyl)pyridazine silver complex (20sc) and 4-(4-iodophenyl)-3,6-

di(pyridin-2-yl)pyridazine silver complex (24sc) (Figure 4.15). 
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Figure 4.15: 1H NMR spectra of silver complexes 20sc and 24sc. 

 

Figure 4.16 shows the 1H NMR spectra of 4,4'-(5-bromo-1,3-phenyl)bis(3,6-di(pyridin-

2-yl)pyridazine) silver complex (26sc) and 4-(3-bromophenyl)-3,6-di(pyridin-2-

yl)pyridazine silver complex (28sc). 

Figure 4.16: 1H NMR spectra of silver complexes 26sc and 28sc. 
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The 1H NMR spectra of complexes 15sc, 18sc, 20sc, 24sc, 26sc and 28sc could be 

assigned by the chemical shifts, relatives integrals and the coupling patterns of the 

signals. 

All the 1H NMR spectra show the same signals as those present in the 1H NMR 

spectrum of their respective ligand. For the mono substituted pyridazine silver 

complexes 15sc, 18sc, 20sc, 24sc, 26sc and 28sc we can see the signal (singlet) of 

the H3B proton. 

The spectra of all the silver complexes exhibited a single ligand environment. No 

species other than the free ligands and the silver complexes were detected by 1H 

NMR spectroscopy. The complexation of the ligand and the silver species induces 

some overlapping signals. In the spectrum of 4-(4-bromophenyl)-3,6-di-pyridin-2yl-

pyridazine silver complex (15sc) two signals have the same chemical shift. The 

signals of the protons H5C and H4A are overlapping in the same NMR region (� 7.70 

ppm). This case also appears in the 1H NMR spectrum of 4-(3,5-dibromophenyl)-3,6-

di(pyridin-2-yl)pyridazine silver complex (18sc) for the signals of the H4C and H4D 

protons. These complexes show the same spectra as the one presented in chapter 

III. In fact, the protons H3B, H6A and H6C are mostly affected by the silver 

complexation. Again, this effect is due to the short distance between the affected 

proton and the Ag-N bond. 

A closer look at all the 1H NMR spectra, shows that all the spectra present an 

overlapping of two, three or four signals. We found overlapping of signals around � 

7.6 to 7.7 ppm. For species 20sc this effect concerns the protons H3C, H4C,H2D and 

H6D, for the silver complex 24sc, the protons H5A, H3D and H5D, for compound 26sc, 

the protons H5A and H3C are concerned. The last silver complex (28sc) shows an 

overlapping of signals of protons H5C, H4D and H6D. 

It is important to notice that all the 1H NMR spectra of the silver(I) complexes have 

sharp signals and that there is no signal missing. We also noticed that the H3C proton 

signal is shifted to the higher field. This is the case for all the silver complex spectra 

presented in this chapter. This is probably due to the short distance between the H3C 

proton and the Ag-N bond and to the presence of the substituent that is really close 

to that proton. 

Table 4.8 summarises the 1H NMR spectroscopic data for the silver complexes 

presented in this chapter. 
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Complex Solvent H3A H4A H5A H6A H3B H3C H4C H5C H6C Phenyl Ring 

15sc 
(�/ppm) CD3CN 7.14 

d 
7.65 
m 

7.47 
dd 

8.75 
d 

8.32 
s 

8.23 
dt 

8.04 
td 

7.65 
m 

8.72 
d 7.53-7.03 d 

18sc 
(�/ppm) DMSO 8.74 

d 
8.20 
td 

7.79 
dd 

8.91 
d 

8.79 
s 

7.60 
m 

7.96 
m 

7.60 
m 

8.74 
d 7.96 m-7.49 d 

20sc 
(�/ppm) DMSO 8.68 

d 
8.10 
td 

7.62 
dd 

8.81 
d 

8.58 
s 

8.05 
d 

8.01 
td 

7.43 
dd 

8.38 
d 7.72-7.52 d 

24sc 
(�/ppm) DMSO 8.58 

d 
8.17 
td 

7.79 
m 

8.91 
d 

8.68 
s 

7.38 
d 

7.88 
td 

7.62 
dd 

8.81 
d 7.79 m-7.01 d 

26sc 
(�/ppm) DMSO 8.61 

d 
8.15 
td 

7.70 
m 

8.88 
m 

8.47 
s 

7.70 
m 

8.01 
td 

7.58 
dd 

8.65 
d 7.47 d-7.36 s 

28sc 
(�/ppm) DMSO 8.62 

d 
8.19 
td 

7.80 
dd 

8.92 
d 

8.77 
s 

7.10 
d 

7.87 
td 

7.63 
m 

8.82 
d 

7.63 m-7.38 d-
7.31 t 

 

Table 4.8: The 1 H NMR spectroscopic characterisation of silver complexes 

 15sc, 18sc, 20sc, 24sc, 26sc and 28sc. 

 

 

The 1H NMR characterisation of the different silver complexes synthesised in this 

chapter was successful. We could also characterise all the complexes by 13C NMR 

spectroscopy. Details on this 13C NMR characterisation are given in the experimental 

part at the end of this chapter.  

 

 

Mass spectrometry 

Mass spectra of all the silver complexes were run with the electrospray ionisation 

technique. The species were dissolved in acetonitrile. We were not able to obtain a 

mass spectrum of 4,4'-(5-bromo-1,3-phenyl)bis(3,6-di(pyridin-2-yl)pyridazine) silver 

complex (26sc). This silver(I) complex was not soluble enough in acetonitrile to 

obtain a suitable spectrum. The mass spectra of complexes 15sc, 18sc and 24sc 

showed an [AgL2]+ peak. The mass spectrum of complex 15sc shows three peaks 

corresponding to [AgLMeCN]+, [Ag2LCF3SO3]+ as well as the [AgL2]+ peak. The mass 

spectrum of 4-(3,5-dibromophenyl)-3,6-di(pyridin-2-yl)pyridazine silver complex 

(18sc) has two peaks ([AgL]+ and [AgL2]+).  

All the calculated and detected m/z values are summarised in Table 4.9. Figure 4.17 

shows a representative mass spectrum (28sc). 
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silver complex 15sc 18sc 20sc 24sc 26sc 28sc 

 m/z 
calc. 

m/z 
det. 

m/z 
calc. 

m/z 
det. 

m/z 
calc. 

m/z 
det. 

m/z 
calc. 

m/z 
det. 

m/z 
calc. 

m/z 
det. 

m/z 
calc. 

m/z 
det. 

[L]+ ° ° ° ° 379 378 436 436 ° ° ° ° 

[Ag+L+MeCN]+ 537 538 ° ° ° ° 584 585 ° ° ° ° 

[Ag+L]+ ° ° 575 575 485 487 ° ° ° ° 497 497 

[Ag+2L]+ 887 887 1047 1048 ° ° 980 980 ° ° 884 885 

[Ag+2L+MeCN]+ ° ° ° ° ° ° ° ° ° ° ° ° 

[2Ag+2L+2MeCN]+ ° ° ° ° ° ° 934 935 ° ° 1082 1081 

[2Ag+L+CF3SO3]+ 752 753 ° ° ° ° ° ° ° ° ° ° 
 

Table 4.9: Calculated and detected m/z values for the species 

 15sc, 18sc, 20sc, 24sc, 26sc and 28sc. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.17: Mass spectrum of silver complex 28sc. 

 

Single crystal structure for silver complex 15sc 

N N NN

Br

AgBF4
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Crystals of 15sc are colourless plates. 15sc crystallizes in the triclinic space group P-

1. A dinuclear [Ag2(15)2]2+ cation is observed. One N atom of the pyridyl ring and one 

N atom of the pyridazine ring coordinate a silver atom. One silver centre, 

(coordinating ring A and B from each ligand) exhibits four normal Ag-N contacts 

(2.360(3), 2.363(3), 2.363(3), and 2.374(4)Å). The other silver atom centre 

(coordinating ring B and C from each ligand) has four Ag-N contacts (2.395(4), 

2.411(3), 2.513(3), and 2.330(4)Å) and one silver-triflate contact (2.683(3)Å). The 

distance between Ag-O is too long to be considered as a bond, but there is an 

interaction between the silver and the oxygen. The two ligands are arranged in a cis 

configuration around the dinuclear silver core (Figure 4.18). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.18: The molecular structure of 15sc with the labelling scheme. 

 

The bromo-phenyl substituents are twisted with respect to the pyridazine that they 

are bounded to, with a torsion angle of 48° (C7-C8-C15-C16). The terminal pyridine 

rings are also significantly out of the plane of the pyridazine with torsion angles of 6, 

27, 39 and 43° (Figure 4.19). 
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Figure 4.19: The molecular structure of 15sc, non planar rings. 

 

The silver-silver distance is 4.027(4)Å, and the N-Ag-N angles are between 69 and 

71°. The Ag-O distance is 2.693(3)Å. The important bonds and angles are listed in 

Table 4.10. Details of the structure solution are given in Appendix 3. 

 

Distances Å  Angles deg(°) 
Ag1 N1 2.374(4)  N1 Ag1 N2 70.09 (12) 
Ag1 N2 2.363(3)  N1 Ag1 N5 108.13 (12) 
Ag1 N5 2.360(3)  N2 Ag1 N5 166.15 (12) 
Ag1 N6 2.363(3)  N1 Ag1 N6 165.26 (13) 
Ag2 N3 2.411(3)  N2 Ag1 N6 114.18 (11) 
Ag2 N4 2.395(4)  N5 Ag1 N6 71.19 (12) 
Ag2 N7 2.513(3)  N3 Ag2 N4 71.23 (12) 
Ag2 N8 2.330(4)  N3 Ag2 N7 109.02 (11) 
Ag2 O3 2.693(3)  N4 Ag2 N7 174.91 (13) 
Ag1 Ag2 4.027(4)  N3 Ag2 N8 174.62 (13) 

    N4 Ag2 N8 109.41 (12) 
    N7 Ag2 N8 69.85 (12) 

 

Table 4.10: Important bond distances and angles present in 15sc. 

 

 

The packing shows an alternating orientation of the [Ag2(15)2]2+ species. The silver 

atom linked to a triflate is alternatively placed on an up or down position. 

Consequently the substituent has the same alternating arrangement (Figure 4.20). 
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Figure 4.20: Arrangement of the [Ag2(15)2]
2+ ions and the triflate anions. 

 

 

The first picture in Figure 4.20 shows a layer composed of [Ag2(15)2]2+ species. Each 

layer is separated by the triflate anion (Figure 4.21). There are no �-stacking 

interactions or hydrogen bonds involving the heterocyclic or substituent rings of the 

ligand. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.21: Layer motif in 15sc. 
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Single crystal structure for silver complex 18sc 

Crystals of 18sc are yellow plates. 18sc crystallizes in the monoclinic space group 

P21/a. A dinuclear [Ag2(18)2]2+ cation is observed. One nitrogen atom of the pyridyl 

ring and one nitrogen atom of the pyridazine coordinate a silver atom. The two silver 

centres are equivalent. The 18sc possesses a centre of symmetry and the two 

ligands are arranged in a trans configuration around the dinuclear silver core. The 

unit cell has two ligands, two silvers, one tetrafluoroborate and one acetonitrile. The 

molecular structure of 18sc with labelling scheme is given in Figure 4.22. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.22: The molecular structure of 18sc with the labelling scheme. 

 

The silver centre Ag1 (coordinating ring A and B from one ligand to ring C and B from 

the other ligand) and, because of the symmetry, the silver centre Ag2 (coordinating 

ring C and B from one ligand to ring A and B from the other ligand) have four normal 

Ag-N contacts (2.355(3), 2.370(3), 2.313(3) and 2.430(3)Å)17. 

The dibromo-phenyl substituents are twisted with respect to the pyridazine that they 

are bounded to, with a torsion angle of 51° (C8-C7-C15-C16). The terminal pyridine 

rings are also significantly out of the plane of the pyridazine with torsion angles of 

27.21° and 34.63° (Figure 4.23). 
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Figure 4.23: The molecular structure of 18sc, non planar rings. 

 

The silver-silver distance is 3.691(3)Å, and the N-Ag-N angles are 70.43(11)° and 

70.64(11)°. The important bonds and angles are listed in Table 4.11. Details of the 

structure solution are given in Appendix 4. 

 

 

Distances Å  Angles deg(°) 
Ag1 N4 2.430(3)  N4 Ag1 N3 70.64(11) 
Ag1 N3 2.313(3)  N4 Ag1 N1 103.54(11) 
Ag1 N1 2.355(3)  N3 Ag1 N1 165.38(11) 
Ag1 N2 2.370(3)  N4 Ag1 N2 158.26(11) 

    N3 Ag1 N2 119.90(11) 
    N1 Ag1 N2 70.43(11) 

 

Table 4.11: Important bond distances and angles present in 18sc. 

 

The packing shows five [Ag2(18)2]2+ species. They are alternately placed in the “up to 

down” and “down to up” orientation. In fact, two parallel [Ag2(18)2]2+ species are 

oriented from “up to down”, then one [Ag2(18)2]2+ specie is oriented from “down to 

up”, and again two [Ag2(18)2]2+ are oriented from “up to down” (Figure 4.24). This 

kind of chain is repetitive and parallel. Between all the [Ag2(18)2]2+ species that are 

oriented from “down to up” there is a space filled with two tetrafluoroborate anions. 
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Figure 4.24: Arrangement of the  [Ag2(18)2]
2+ species in the crystal structure of 18sc. 

 

 

 

Figure 4.25 shows different views of the packing of 18sc. We can see the different 

orientations of the layers and the presence of the tetrafluoroborate anion occupying 

the space between some layers. 

 

 

 
Figure 4.25: Layer motifs in 18sc. 
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Single crystal structure for silver complex 20sc 

Crystals of 20sc are pale red plates. 20sc crystallizes in the monoclinic space group 

C2/c. This third structure also shows a dinuclear [Ag2(20)2]2+ cation. One nitrogen 

atom of the pyridyl ring and one nitrogen atom of the pyridazine coordinate a silver 

atom. The two silver centres are equivalent. 20sc possesses a centre of symmetry 

and the two ligands are arranged in a trans configuration around the dinuclear silver 

core. 

The unit cell contains two ligands, two silvers, one tetrafluoroborate and 1/3 

acetonitrile. The molecular structure of 20sc with labelling scheme is given in Figure 

4.26. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.26: The molecular structure of 20sc with the labelling scheme. 

 

The silver centre Ag1 (coordinating ring A and B from one ligand to ring C and B from 

the other ligand) and, because of the symmetry, the silver centre Ag2 (coordinating 

ring C and B from one ligand to ring A and B from the other ligand has four normal 

Ag-N contacts (2.311(2), 2.3838(17), 2.2721(18) and 2.476(2)Å)18. 

The CF3-phenyl substituents are twisted with respect to the pyridazine that they are 

bounded to, with a torsion angle of 58° (C8-C7-C15-C16). The terminal pyridine rings 

are also significantly out of the plane of the pyridazine with torsion angles of 28.59° 

and 35.63° (Figure 4.27). We can notice that the pyridyl ring (ring C) adjacent to the 
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substituent has a larger torsion angle than the other pyridyl ring (ring A). This larger 

torsion angle is due to the steric effect induced by the substituent. 

 

Figure 4.27: The molecular structure of 20sc, non planar rings. 

 

 

 

The silver-silver distance is 3.6439(4)Å, and the N-Ag-N angles are 70.66(6)° and 

71.09(7)°. The important bonds and angles are listed in Table 4.12. Details of the 

structure solution are given in Appendix 5. 

 

 

Distance Å  Angles deg(°) 
Ag1 N4 2.476(2)  N4 Ag1 N3 70.66(6) 
Ag1 N3 2.2721(18)  N4 Ag1 Ag1 128.26(5) 
Ag1 Ag1 3.6439(4)  N3 Ag1 Ag1 61.84(4) 
Ag1 N1 2.311(2)  N4 Ag1 N1 102.57(7) 
Ag1 N2 2.3838(17)  N3 Ag1 N1 165.36(7) 
Ag1 F4 2.809(2)  Ag1 Ag1 N1 128.24(5) 

    N4 Ag1 N2 155.66(6) 
    N3 Ag1 N2 120.42(6) 
    Ag1 Ag1 N2 58.64(4) 
    N1 Ag1 N2 71.09(7) 

 

Table 4.12: Important bond distances and angles present in 20sc. 
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Figure 4.28: Arrangement of the  [Ag2(20)2]
2+ cations in the crystal structure of 20sc. 

 

 

The packing shows 15 [Ag2(20)2]2+ species. They are not coplanar. Five [Ag2(20)2]2+ 

species are parallel, the next five [Ag2(20)2]2+ ions are parallel. This two groups of five 

[Ag2(20)2]2+ ions are not in the same plan, they are twisted in regard to each others. 

The third group of five [Ag2(20)2]2+ ions is parallel to the first group. The packing 

shows a repetitive scheme (Figure 4.28). 

 

 

The three crystal structure obtained in this chapter show [Ag2(L)2]2+ species. 15sc 

presents a cis arrangement of the substituents around the silver centers. Silver 

complexes 18sc and 20sc present a trans arrangement of the substituent around the 

silver centers. This effect is probably due to the contre-anion but we could not obtain 

a crystal structure of the silver complex composed of ligand 15 and silver 

tetrafluoroborate to proove this statement.  

The mass spectrometry showed that the solution species of 15sc, 18sc and 20sc are 

composed of one silver and one ligand or one silver and two ligands. This is different 

from the x-ray analysis that always showed a crystal structure composed of two 

silvers and two ligands. 

We also noticed that the withdrawing substituents have an influence on the Ag-N 

bond lengths. In fact, in complexes 28sc and 20sc the shortest bond length, between 

a silver atom and a nitrogen atom is, in both cases, the Ag-N3 distance. The N3 atom 
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is placed on ring B, that is directly related to the halogenated substituent. This case is 

not true for 15sc, the shortest Ag-N distance is Ag-N8. The N8 atom belongs to the 

external pyridil ring C. Here the steric effects are responsible for that short distance. 

 

 

 

IV.5 Conclusion 

 

In this chapter we described the synthesis of the ethynyl precursors 14, 17, 19, 23, 

25 and 27 that have been prepared with the Sonogashira reaction. 

We also showed the methodology to access to mono-substituted pyridazines, based 

on a retro Diels-Alder reaction that enabled us to prepare the ligands 15, 18, 20, 24, 

26 and 28. All these ligands were characterised by NMR spectroscopy, mass 

spectrometry and elemental analysis. We also obtained a single X-ray crystal 

structure for the ligand 15. 

Six new silver complexes (15sc, 18sc, 20sc, 24sc, 26sc and 28sc) were prepared 

and characterised by NMR, mass spectrometry (apart from some cases, discussed 

in the chapter). 

We obtained suitable crystals for silver complexes 15sc, 18sc and 20sc to carry out 

single X-ray diffraction analysis. All the crystal structures showed a dinuclear 

[Ag2(L)2]+ cation with an arrangement of the ligands in a cis (4-(4-bromophenyl)-

3,6(di-pyridin-2yl)pyridazine silver complex (15sc)) or a trans (4-(3,5-

dibromophenyl)-3,6-di(pyridin-2-yl)pyridazine silver complex (18sc) and 3,6-

di(pyridin-2-yl)-4-(4-(trifluoromethyl)phenyl)pyridazine silver complex (20sc)) 

conformation. None of these crystal structures showed a grid like structure19, �-

stacking or hydrogen bonding interactions. 
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IV.6 Experimental part 

 

Synthesis of 1-bromo-4-ethynylbenzene (14) 

 

 

Under argon and exclusion of moisture, 1-bromo-4-iodobenzene (1.0 g, 3.4 mmol), 

CuCl (66 mg, 0.66 mmol), and PdCl2(PPh3)2 (3) (0.43 g, 0.66 mmol) were suspended 

in dry, argon degassed, triethylamine (50 ml). Then trimethylsilylacetylene (0.60 ml, 

4.3 mmol) was added and the mixture stirred at 40°C for 18 hours. The solvent was 

removed and the residue extracted with hexane (150 ml). The solution was filtered 

and the solvent removed from the filtrate by evaporation. The residue was purified by 

chromatographic work-up (alumina, hexane, the second band was collected). The 

product was dissolved in THF (50 ml) and an aqueous solution of 1M NaOH added 

(100 ml). The mixture was stirred at room temperature overnight and then diluted with 

water until a precipitate was formed. The compound was extracted with 

dichloromethane and the combined organic phases were dried over MgSO4. The 

solvent was removed to give a brown powder (0.45 g, 2.5 mmol, 73%, C8H5Br, 181.0 

g/mol). 

 
1H NMR (CDCl3, 400 MHz,) �/ppm: 7.46 (d, J=8.1 Hz, 2H, H4+6), 7.35 (d, J=8.6 Hz, 

2H, H3+5), 3.12 (s, 1H, ethynyl). 
13C NMR (CDCl3, 100 MHz) �/ppm: 133.5, 131.6, 123.1, 121.0, 82.5, 78.3. 

MS (FAB) m/z [L]+ 181. 

 
Synthesis of 4-(4-bromophenyl)-3,6(di-pyridin-2-yl)pyridazine (15) 
 
 
 
 

 

 

A solution of 3,6-bis(2�-pyridyl)-1,2,4,5-tetrazine (1) (0.26 g, 1.1 mmol) and 1-bromo-

4-ethynylbenzene (14) (0.21 g, 1.1 mmol) in toluene (50 ml) was refluxed for 11 days 

at 120°C. After evaporation of the solvent under reduced pressure, the crude product 

was purified by column chromatography (alumina, EtOAc, The third band was 

Br

N N NN

Br

A B C

D



Chapter IV : Halogenated pyridazines 
___________________________________________________________________ 

 126

collected). The product was obtained as an orange powder (0.39 g, 1.0 mmol, 91%, 

C20H13BrN4, 389.3 g/mol). 

 
1H NMR (CD3CN, 500 MHz) �/ppm: 8.76 (d, J=4.5 Hz, 1H, H6A), 8.72 (d, J=8.0 Hz, 

1H, H3A), 8.56 (s, 1H, H3B), 8.39 (d, J=4.5 Hz, 1H, H6C), 8.00 (td, J=7.9, 1.6 Hz, 1H, 

H4A), 7.96 (d, J=8.0 Hz, 1H, H3C), 7.92 (td, J=7.8, 1.6 Hz, 1H, H4C), 7.52 (dd, J=7.6, 

4.8 Hz, 1H, H5A), 7.49 (d, J=8.5 Hz, 2H, H2D+6D), 7.38 (dd, J=7.3, 4.4 Hz, 1H, H5C), 

7.18 (d, J=8.5 Hz, 2H, H3D+5D). 
13C NMR (CD3CN, 125 MHz) �/ppm: 158.4, 157.8, 155.7, 153.1, 149.7, 148.6, 139.1, 

137.4, 136,7, 136.5, 131.4, 130.7, 125.1, 124.9, 123.6, 122.2, 121.3, 117.3, 2 carbon 

signals unresolved. 

MS (ESI) m/z: [L]+ 391, [Na+L+2MeCN]+ 494, [Na+2L+MeCN]+ 841. 

 

Synthesis of 1,3-dibromo-5-iodobenzene (16) 

 

 

 

 

Under argon and exclusion of moisture 1,3,5-tribromobenzene (5.0 g, 16 mmol) was 

dissolved in dry diethyl ether. The solution was cooled down at -90°C. BuLi (10 ml, 

1.60 M in hexane, 16 mmol) was slowly added (half an hour). The mixture was stirred 

at -90°C for one hour. A solution of I2 (4.2 g, 17 mmol) in diethyl ether was added. 

The mixture was stirred until the temperature reached 20°C. The organic phase was 

washed with a 5% aqueous solution of Na2SO3 and with a saturated aqueous 

solution of NaCl. The compound was recrystallised from hexane to give a brown 

powder (3.8 g, 10 mmol, 65%, C6H3Br2I, 361.7 g/mol). 

 
1H NMR (CDCl3, 400 MHz) �/ppm: 7.44 (d, J=1.6 Hz, 2H, H4+6), 7.28 (t, J=1.6 Hz, 1H, 

H2). 
13C NMR (CDCl3, 100 MHz) �/ppm: 138.4, 133.6, 123.3, 94.4. 

MS (ESI) m/z: [L]+ 362, [(L-I)]+ 235, [(L-I-Br)]+ 154, [(L-I-2xBr)]+ 74. 

Elem. Anal. (C6H3Br2I) [%] calc. C 19.9, H 0.8, found, C 20.0, H 0.9. 

 

 

Br

I

Br
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Synthesis of 1,3-dibromo-5-ethynylbenzene (17) 

 

 

 

Under argon and exclusion of moisture, 1,3-dibromo-5-iodobenzene (16) (0.50 g, 1.4 

mmol), CuCl (30 mg, 0.30 mmol), and PdCl2(PPh3)2 (3) (0.20 g, 0.30 mmol) were 

suspended in dry, argon degassed triethylamine (50 ml). Then trimethylsilylacetylene 

(0.25 ml, 1.8 mmol) was added and the mixture stirred at 60°C for 20 hours. The 

solvent was removed and the residue extracted with hexane (120 ml). The solution 

was filtered and the solvent removed from the filtrate by evaporation. The residue 

was purified by chromatographic work-up (alumina, hexane/dichloromethane (9:1), 

the second band was collected). The product was dissolved in THF (50 ml) and an 

aqueous solution of 1M NaOH added (100 ml). The mixture was stirred at room 

temperature overnight and then diluted with water until a precipitate was formed. The 

compound was extracted with dichloromethane and the combined organic phases 

were dried over MgSO4. The solvent was removed to give a brown powder (0.35 g, 

1.4 mmol, 97%, C8H4Br2, 259.9 g/mol). 

 
1H NMR (CDCl3, 400 MHz) �/ppm: 7. 65 (t, J=2.0 Hz, 1H, H2), 7.55 (d, J=2.0 Hz, 2H, 

H4+6), 3.16 (s, 1H, ethynyl). 
13C NMR (CDCl3, 100 MHz) �/ppm: 134.6, 133.5, 125.4, 122.5, 80.5, 79.8. 

MS (ESI) m/z: [L]+ 260, [(L-Br)]+ 179, [(L-2xBr)]+ 100. 

 

Synthesis of 4-(3,5-dibromophenyl)-3,6-di(pyridin-2-yl)pyridazine (18) 

 

 

 

 

 

A solution of 3,6-bis(2�-pyridyl)-1,2,4,5-tetrazine (1) (0.18 g, 0.77 mmol) and 1,3-

dibromo-5-ethynylbenzene (17) (0.21 g, 0.77 mmol) in toluene (50 ml) was refluxed 

for 6 days at 120°C. After evaporation of the solvent under reduced pressure, the 

crude product was purified by column chromatography (alumina, EtOAc/hexane (3:1), 

Br

Br
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the third band was collected). The product was obtained as a beige powder (0.21 g, 

0.45 mmol, 58%, C20H12Br2N4, 465.9 g/mol). 

 
1H NMR (CDCl3, 400 MHz) �/ppm: 8.80 (d, J=8.0 Hz, 1H, H3A), 8.75 (d, J=5.5 Hz, 1H, 

H6A), 8.61 (s, 1H, H3B), 8.46 (d, J=4.5 Hz, 1H, H6C), 8.11 (d, J=7.6 Hz, 1H, H3C), 7.93 

(td, J=7.5, 1.6 Hz, 1H, H4A), 7.89 (td, J=7.5, 1.6 Hz, 1H, H4C), 7.64 (t, J=1.5 Hz, 1H, 

H4D), 7.44 (dd, J=7.6, 4.8 Hz, 1H, H5A), 7.34 (m, 3H, H5C and H2D+6D). 
13C NMR (CDCl3, 100 MHz) �/ppm: 157.8, 157.5, 154.7, 152.8, 149.4, 148.8, 140.7, 

137.8, 137.3, 136.9, 133.8, 130.5, 125.5, 125.1, 124.8, 123.8, 122.7, 121.9, 2 carbon 

signals unresolved. 

MS (ESI) m/z: [L+K+DCM]+ 593, [2L+Na+K]+ 999. 

Elem. Anal. (C20H12Br2N4) [%] calc. C 51.3, H 2.6, N 12.0, found, C 51.7, H 2.7, N 

12.0. 

 

Synthesis of 1-ethynyl-4-(trifluoromethyl)benzene (19) 

 

 

Under argon and exclusion of moisture, 1-iodo-4-(trifluoromethyl)benzene (2.0 g, 7.4 

mmol), CuCl (72 mg, 0.74 mmol), and PdCl2(PPh3)2 (3) (0.52 g, 0.74 mmol) were 

suspended in dry, argon degassed, triethylamine (130 ml). Then 

trimethylsilylacetylene (2.0 ml, 14 mmol) was added and the mixture stirred at 60°C 

for 20 hours. The solvent was removed and the residue extracted with hexane (120 

ml). The solution was filtered and the solvent removed from the filtrate by 

evaporation. The residue was purified by chromatographic work-up (alumina, hexane, 

the second band was collected). The product was dissolved in THF (100 ml) and an 

aqueous solution of 1M NaOH added (100 ml). The mixture was stirred at room 

temperature overnight and then diluted with water until a precipitate was formed. The 

compound was extracted with dichloromethane and the combined organic phases 

were dried over MgSO4. The solvent was removed to give an orange oil (210 mg, 

1.23 mmol, 16.6%, C9H5F3, 170.1 g/mol). 

 
1H NMR (CDCl3, 250 MHz) �/ppm: 7.58 (s, 4H, C6H4), 3.19 (s, 1H, ethynyl). 
13C NMR not soluble enough in CDCl3 to record the carbon NMR spectrum. 

 

CF3
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Synthesis of 3,6-di(pyridin-2-yl)-4-(4-(trifluoromethyl)phenyl)pyridazine (20) 

 

 

 

 

 

A solution of 3,6-bis(2�-pyridyl)-1,2,4,5-tetrazine (1) (0.13 g, 0.53 mmol) and 1-

ethynyl-4-(trifluoromethyl)benzene (19) (90 mg, 0.53 mmol) in toluene (50 ml) was 

refluxed for 4 days at 120°C. After evaporation of the solvent under reduced 

pressure, the crude product was purified by column chromatography (alumina, 

EtOAc/hexane (1:1), the second band was collected). The product was obtained as a 

deep red powder (0.15 g, 0.39 mmol, 74%, C21H13F3N4, 378.1 g/mol). 

 
1H NMR (DMSO, 500 MHz) �/ppm: 8.81 (d, J=5.5 Hz, 1H, H6A), 8.69 (d, J=8.0 Hz, 

1H, H3A), 8.58 (s, 1H, H3B), 8.38 (d, J=7.6 Hz, 1H, H3C), 8.10 (td, J=7.6, 1.6 Hz, 1H, 

H4A), 8.05 (d, J=5.5 Hz, 1H, H6C), 8.01 (td, J=7.5, 1.6 Hz, 1H, H4C), 7.72 (d, J=8.5 Hz, 

2H, H2D+6D), 7.61 (dd, J=7.6, 4.8 Hz, 1H, H5A), 7.52 (d, J=8.5 Hz, 2H, H3D+5D), 7.44 

(dd, J=7.6, 4.8 Hz, 1H, H5C). 
13C NMR (DMSO, 125 MHz) �/ppm: 158.0, 157.4, 154.8, 152.4, 149.9, 148.7, 141.2, 

138.6, 137.8, 137.2, 129.6, 128.7, 128.5, 125.5, 125.3, 125.2, 125.2, 125.1, 124.8, 

124.0, 121.3. 

MS (ESI) m/z: [L]+ 379, [L+Na+MeCN]+ 442. 

Elem. Anal. (C21H13F3N4) [%] calc. C 66.7, H 3.5, N 14.8, found, C 65.9, H 3.5, N 

14.7. 

 

Synthesis of 4-((trimethylsilyl)ethynyl)aniline (21) 

 

 

Under argon and exclusion of moisture, 4-iodoaniline (10 g, 46 mmol), CuCl (90 mg, 

0.91 mmol), and PdCl2(PPh3)2 (3) (0.64 g, 0.91 mmol) were suspended in dry, argon 

degassed, triethylamine (200 ml). Then trimethylsilylacetylene (7.6 ml, 55 mmol) was 

added and the mixture stirred at 60°C for 20 hours. The solvent was removed and 

the residue extracted with hexane (300 ml). The solution was filtered and the solvent 

removed from the filtrate by evaporation. The residue was purified by 
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chromatographic work-up (alumina, hexane/dichloromethane (4:1) the second band 

was collected). The product was dissolved in THF (150 ml) and an aqueous solution 

of 1M NaOH was added (200 ml). The mixture was stirred at room temperature 

overnight and then diluted with water until a precipitate was formed. The compound 

was extracted with dichloromethane and the combined organic phases were dried 

over MgSO4. The solvent was removed to give an orange powder (5.11 g, 27.0 

mmol, 59.1%, C11H15NSi, 189.3 g/mol). 

 
1H NMR (CDCl3, 400 MHz) �/ppm: 7.27 (d, J=2.8 Hz, 2H, H2+6), 6.57 (d, J=2.8 Hz, 

2H, H3+4), 3.49 (s, 2H, NH2), 0.22 (s, 9H, Me3). 
13C NMR (CDCl3, 100 MHz) �/ppm: 146.7, 133.3, 114.5, 112.5, 105.9, 91.4, 0.1. 

MS (FAB) m/z: [L]+ 189, [(L-CH3)]+ 174, [(L-3CH3)]+ 144. 

 

Synthesis of 4-((trimethylsilyl)ethynyl)iodobenzene (22) 

 

 

Under argon 4-((trimethylsilyl)ethynyl)aniline (21) (1.3 g, 6.9 mmol) was suspended in 

water (50 ml). Concentrated hydrochloric acid (2.5 ml) was added and the brown 

solution cooled to 0°C. A solution of sodium nitrite (0.49 g, 7.2 mmol) in 10 ml water 

was slowly added. The mixture was stirred at 0°C for one hour. A catalytic amount of 

copper(I) iodide (125 mg) was added before the slow addition of potassium iodide 

(2.9 g, 18 mmol). The mixture was stirred at 0°C for 6 hours. From time to time, 

tetrahydrofuran (total 50 ml) was added to increase the solubility. Water (50 ml) and 

diethyl ether (80 ml) were added under vigorous stirring and the two layers 

separated. The aqueous layer was extracted with diethyl ether and the combined 

organic phases washed with brine and dried over MgSO4. The solvent was removed 

under reduced pressure and the dark residue purified by chromatographic work-up 

(alumina, hexane, the second band was collected) to give a white solid (1.1 g, 3.6 

mmol, 52%, C11H13ISi, 300.2 g/mol). 

 
1H NMR (CDCl3, 400 MHz) �/ppm: 7.63 (d, J=2.8 Hz, 2H, H2+6), 7.18 (d, J=2.8 Hz, 

2H, H3+4), 0.24 (s, 9H, Me3). 
13C NMR (CDCl3, 100 MHz) �/ppm: 137.3, 133.4, 122.6, 103.9, 95.9, 94.4, -0.1. 

MS (EI) m/z: [L]+ 300, [(L-CH3)]+ 285, [(L-CH3I)]+ 158, [(L-2CH3I)]+ 143. 

I SiMe3
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Synthesis of 1-ethynyl-4-iodobenzene (23) 

 

 

4-((Trimethylsilyl)ethynyl)iodobenzene (22) (1.0 g, 3.4 mmol) was dissolved in THF 

(100 ml) and an aqueous solution of 1M NaOH added (100 ml). The mixture was 

stirred at room temperature overnight and then diluted with water until a precipitate 

was formed. The compound was extracted with dichloromethane and the combined 

organic phases were dried over MgSO4. The solvent was removed to give an orange 

powder (0.66 g, 2.9 mmol, 85%, C8H5I, 227.9 g/mol). 

 
1H NMR (CDCl3, 400 MHz) �/ppm: 7.66 (d, J=8.8 Hz, 2H, H3+5), 7.21 (d, J=8.8 Hz, 

2H, H2+6), 3.14 (s, 1H, ethynyl). 
13C NMR (CDCl3, 100 MHz) �/ppm: 137.4, 133.5, 121.5, 94.8, 82.6, 78.6. 

 

Synthesis of 4-(4-iodophenyl)-3,6-di(pyridin-2-yl)pyridazine (24) 

 

 

 

 

 

A solution of 3,6-bis(2�-pyridyl)-1,2,4,5-tetrazine (1) (414 mg, 1.75 mmol) and 1-

ethynyl-4-iodobenzene (23) (400 mg, 1.75 mmol) in toluene (120 ml) was refluxed for 

74 hours at 120°C. After evaporation of the solvent under reduced pressure, the 

crude product was purified by column chromatography (alumina, EtOAc/hexane (1:1), 

the second band was collected). The product was obtained as a pink solid (0.70 g, 

1.6 mmol, 92%, C20H13IN4, 436.0 g/mol). 

 
1H NMR (CDCl3, 400 MHz) �/ppm: 8.79 (d, J=8.0 Hz, 1H, H3A), 8.72 (d, J=4.4 Hz, 1H, 

H6A), 8.62 (s, 1H, H3B), 8.46 (d, J=4.4 Hz, 1H, H6C), 7.97 (d, J=8.0 Hz, 1H, H3C), 7.92 

(td, J=8.0, 1.6 Hz, 1H, H4A), 7.83 (td, J=8.0, 1.6 Hz, 1H,H4C), 7.64 (d, J=8.8 Hz, 2H, 

H3D+5D), 7.41 (dd, J=7.6, 4.8 Hz, 1H, H5A), 7.29 (dd, J=7.6, 4.8 Hz, 1H, H5C), 7.00 (d, 

J=8.4 Hz, 2H, H2D+6D). 
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13C NMR (CDCl3, 100 MHz) �/ppm: 157.9, 157.7, 155.4, 153.1, 149.4, 149.0, 139.5, 

137.5, 137.2, 136.7, 136.6, 130.5, 125.3, 124.9, 124.8, 123.5, 121.8, 94.7, 2 carbon 

signals unresolved. 

MS (ESI) m/z: [L]+ 437, [L+Na+MeCN]+ 499, [2L+Na+MeCN]+ 935. 

Elem. Anal. (C20H13IN4) [%] calc. C 55.1, H 3.0, N 12.8, found, C 55.0, H 3.0, N 12.6. 

 

Synthesis of 1-bromo-3,5-diethynylbenzene (25) 

 

 

 

 

Under argon and exclusion of moisture, 1,3-dibromo-5-iodobenzene (16) (4.2 g, 12 

mmol), CuCl (115 mg, 1.16 mmol), and PdCl2(PPh3)2 (3) (823 mg, 1.16 mmol) were 

suspended in dry, argon degassed, triethylamine (120 ml). Then 

trimethylsilylacetylene (2.3 ml, 17 mmol) was added and the mixture stirred at 60°C 

for 18 hours. The solvent was removed and the residue extracted with hexane (120 

ml). The solution was filtered and the solvent removed from the filtrate by 

evaporation. The residue was purified by chromatographic work-up (alumina, hexane, 

the second band was collected). The product was dissolved in THF (50 ml) and an 

aqueous solution of 1M NaOH added (100 ml). The mixture was stirred at room 

temperature overnight and then diluted with water until a precipitate was formed. The 

compound was extracted with dichloromethane and the combined organic phases 

were dried over MgSO4. The solvent was removed and the product was purified by 

chromatographic work-up (alumina, hexane) to give an orange powder (side product 

from the synthesis of 1,3-dibromo-5-ethynylbenzene (17)) (0.14 g, 0.68 mmol, 5.7%, 

C10H5Br, 204.0 g/mol). 

 
1H NMR (CDCl3, 400 MHz) �/ppm: 7.60 (d, J=1.6 Hz, 2H, H2+6), 7.52 (t, J=1.2 Hz, 1H, 

H4), 3.13 (s, 2H, ethynyl). 
13C NMR (CDCl3, 100 MHz) �/ppm: 135.1, 134.1, 124.1, 122.6, 81.0, 79.2. 

MS (EI) m/z: [L]+ 204, [(L-Br)]+ 125. 

Elem. Anal. (C10H5Br) [%] calc. C 58.6, H 2.5, found, C 58.9, H 3.3. 

 

Br
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Synthesis of 4,4'-(5-bromo-1,3-phenyl)bis(3,6-di(pyridin-2-yl)pyridazine) (26) 

 

 

 

 

 

 

A solution of 3,6-bis(2�-pyridyl)-1,2,4,5-tetrazine (1) (0.16 g, 0.68 mmol) and 1-bromo-

3,5-diethynylbenzene (25) (64 mg, 0.31 mmol) in toluene (60 ml) was refluxed for 14 

days at 120°C. After evaporation of the solvent under reduced pressure, the crude 

product was purified by column chromatography (alumina, EtOAc/hexane (2:1), the 

second band was collected). The product was obtained as a deep pink solid (0.16 g, 

0.26 mmol, 87%, C34H21BrN8, 621.5 g/mol). 

 
1H NMR (CDCl3, 400 MHz) �/ppm: 8.77 (m, 4H, H3A+6A), 8.51 (d, J=5.0 Hz, 2H, H6C), 

8.43 (s, 2H, H3B), 8.02 (d, J=8.0 Hz, 2H, H3C), 7.92 (td, J=7.6, 1.6 Hz, 2H, H4A), 7.87 

(td, J=7.6, 1.6 Hz, 2H, H4C), 7.44 (dd, J=7.6, 4.8 Hz, 2H, H5A), 7.36 (d, J=1.6 Hz, 2H, 

H2D+6D), 7.34 (dd, J=7.6, 4.8 Hz, 2H, H5C), 7.11 (t, J=2.0 Hz, 1H, H4D). 
13C NMR (CDCl3, 100 MHz) �/ppm: 157.8, 157.7, 154.9, 152.9, 149.3, 148.9, 139.1, 

138.4, 137.2, 136.8, 131.5, 128.1, 125.4, 124.9, 124.8, 123.8, 122.0, 121.8. 

MS (ESI) m/z: [L+K+DCM]+ 744, [2L+Na+MeCN]+ 1307, [2L+K+DCM]+ 1366. 

Elem. Anal. (C34H21BrN8) [%] calc. C 65.7, H 3.4, N 18.0, found, C 65.2, H 3.7, N 

17.1. 

 

Synthesis of 1-bromo-3-ethynylbenzene (27) 

 

 

 

Under argon and exclusion of moisture, 1-bromo-3-iodobenzene (2.0 g, 7.1 mmol), 

CuCl (70 mg, 0.71 mmol), and PdCl2(PPh3)2 (3) (0.50 g, 0.71 mmol) were suspended 

in dry, argon degassed, triethylamine (80 ml). Then trimethylsilylacetylene (1.3 ml, 

7.9 mmol) was added and the mixture stirred at 40°C for 18 hours. The solvent was 

removed and the residue extracted with hexane (150 ml). The solution was filtered 

and the solvent removed from the filtrate by evaporation. The residue was purified by 
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chromatographic work-up (alumina, hexane, the second band was collected). The 

product was dissolved in THF (50 ml) and an aqueous solution of 1M NaOH added 

(100 ml). The mixture was stirred at room temperature overnight and then diluted with 

water until a precipitate was formed. The compound was extracted with 

dichloromethane and the combined organic phases were dried over MgSO4. The 

solvent was removed to give a brown powder (0.62 g, 3.4 mmol, 48%, C8H5Br, 181.0 

g/mol). 

 
1H NMR (CDCl3, 400 MHz) �/ppm: 7.65 (t, J=1.7 Hz, 1H, H2), 7.48 (d, J=8.0 Hz, 1H, 

H4), 7.41 (d, J=7.6 Hz, 1H, H6), 7.18 (t, J=7.6 Hz, 1H, H5), 3.13 (s, 1H, ethynyl). 
13C NMR (CDCl3, 100 MHz) �/ppm: 134.8, 131.9, 130.6, 129.7, 124.1, 122.0, 81.9, 

78.6. 

 

Synthesis of 4-(3-bromophenyl)-3,6-di(pyridin-2-yl)pyridazine (28) 

 

 

 

 

 

A solution of 3,6-bis(2�-pyridyl)-1,2,4,5-tetrazine (1) (0.46 g, 1.9 mmol) and 1-ethynyl-

3-bromobenzene (27) (0.35 g, 1.9 mmol) in toluene (60 ml) was refluxed for 9 days at 

120°C. After evaporation of the solvent under reduced pressure, the crude product 

was purified by column chromatography (alumina, chloroform, the third band was 

collected). The product was obtained as a beige powder (0.61 g, 1.6 mmol, 83%, 

C20H13BrN4, 389.2 g/mol). 

 
1H NMR (CDCl3, 400 MHz) �/ppm: 8.78 (d, J=7.5 Hz, 1H, H3A), 8.72 (d, J=4.5 Hz, 1H, 

H6A), 8.62 (s, 1H, H3B), 8.44 (d, J=4.0 Hz, 1H, H6C), 7.99 (d, J=8.0 Hz, 1H, H3C), 7.90 

(td, J=7.5, 1.6 Hz, 1H, H4A), 7.82 (td, J=7.5, 1.6 Hz, 1H, H4C), 7.48 (t, J=1.5 Hz, 1H, 

H2D), 7.45 (d, J=7.5 Hz, 1H, H6D), 7.40 (dd, J=7.6, 4.8 Hz, 1H, H5A), 7.28 (dd, J=7.6, 

4.8 Hz, 1H, H5C), 7.12 (m, 2H, H4D+5D). 
13C NMR (CDCl3, 100 MHz) �/ppm: 157.9, 157.7, 155.2, 153.0, 149.4, 148.8, 

139.1,139.0, 137.2, 136.7, 131.6, 131.3, 129.7, 127.5, 125.5, 124.8, 124.7, 123.5, 

122.4, 121.8. 
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MS (ESI) m/z: [L+K+DCM]+ 512, [2L+Na+MeCN]+ 841, [2L+K+DCM]+ 903. 

Elem. Anal. (C20H13BrN4) [%] calc. C 61.7, H 3.4, N 14.4, found, C 61.8, H 3.4, N 

14.2. 

 

Silver complexes 

 

All the silver complexes were prepared by using the same procedure. One equivalent 

of silver tetrafluoroborate or silver trifluoromethane sulfonate was mixed with one 

equivalent of the diazine ligand in 15 ml of acetonitrile. The mixture was sonicated for 

five minutes and then stirred under reflux for a further fifteen minutes. The solvent 

was evaporated to give the silver complexes. 

 

 

Synthesis of 4-(4-bromophenyl)-3,6-di(pyridin-2yl)pyridazine silver complex 

(15sc) 

 

 

 

 

 

4-(4-Bromobenzene)-3,6-di(pyridin-2-yl)pyridazine (15) (30 mg, 0.08 mmol) and silver 

trifluoromethanesulfonate (21 mg, 0.08 mmol) were used to prepare the silver 

complex (46 mg, 0.07 mmol, 88%, C20H13BrN4AgCF3SO3). 

 

 1H NMR (CD3CN, 500 MHz) �/ppm: 8.75 (d, J=5.0 Hz, 1H, H6A), 8.72 (d, J=5.0 Hz, 

1H, H6C), 8.32 (s, 1H, H3B), 8.23 (dt, J=8.2, 0.9 Hz, 1H, H3C), 8.04 (td, J=7.8, 1.6 Hz, 

1H, H4C), 7.65 (m, 2H, H5C+4A), 7.53 (d, J=8.8 Hz, 2H, H2D+6D), 7.47 (dd, J=7.6, 5.2 

Hz, 1H, H5A), 7.14 (d, J=7.8 Hz, 1H, H3A), 7.03 (d, J=8.5 Hz, 2H, H3D+5D). 

 13C NMR (DMSO, 100 MHz) �/ppm: 157.4, 155.1, 152.2, 150.8, 149.6, 140.3, 138.9, 

137.6, 134.1, 131.7, 131.1, 127.6, 126.6, 126.2, 125.2, 123.7, 123.3, 117.9, 1.1, 2 

carbon signals unresolved. 

MS (ES) m/z [Ag+L+MeCN]+ 538, [2Ag+L+CF3SO3]+ 753, [Ag+2L]+ 887. 

Elem. Anal. (C20H13BrN4AgBF4 + CH3CN) [%] calc. C 42.3, H 2.6, N 11.2, found, C 

43.4, H 2.7, N 10.0. 
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Synthesis of 4-(3,5-dibromophenyl)-3,6-di(pyridin-2-yl)pyridazine silver 

complex (18sc) 

 

 

 

 

4-(3,5-Dibromophenyl)-3,6-di(pyridin-2-yl)pyridazine (18) (60 mg, 0.13 mmol) and 

silver trifluoromethane sulfonate (25 mg, 0.13 mmol) were used to prepare the silver 

complex (72 mg, 0.11 mmol, 85%, C20H12Br2N4AgBF4). 

 
1H NMR (DMSO, 400 MHz) �/ppm: 8.91 (d, J=4.0 Hz, 1H, H6A), 8.79 (s, 1H, H3B), 

8.74 (d, J=4.4 Hz, 1H, H6C), 8.63 (d, J=8.0 Hz, 1H, H3A), 8.20 (td, J=8.0, 1.6 Hz, 1H, 

H4A), 7.96 (m, 2H, H4C+4D), 7.79 (dd, J=7.6, 5.2 Hz, 1H, H5A), 7.60 (m, 2H, H5C+3C), 

7.49 (d, J=1.6 Hz, 2H, H2D+6D). 
13C NMR (DMSO, 100 MHz) �/ppm: 157.5, 155.3, 152.3, 150.8, 150.4, 149.7, 139.0, 

138.9, 138.3, 137.7, 133.9, 130.9, 127.7, 126.6, 126.1, 125.1, 123.6, 122.4, 2 carbon 

signals unresolved. 

MS (ES) m/z [Ag+L]+ 575, [Ag+2L]+ 1048. 

Elem. Anal. (C20H12Br2N4AgBF4) [%] calc. C 35.3, H 2.1, N 8.2, found, C 35.6, H 2.1, 

N 8.3. 

 

Synthesis of 3,6-di(pyridin-2-yl)-4-(4-(trifluoromethyl)phenyl)pyridazine silver 

complex (20sc) 

 

 

 

 

3,6-Di(pyridin-2-yl)-4-(4-(trifluoromethyl)phenyl)pyridazine (20) (40 mg, 0.11 mmol) 

and silver tetrafluoroborate (20 mg, 0.11 mmol) were used to prepare the silver 

complex (46 mg, 0.08 mmol, 73%, C21H13F3N4AgBF4). 

 
1H NMR (DMSO, 500 MHz) �/ppm: 8.81 (d, J=3.6 Hz, 1H, H6A), 8.68 (d, J=7.8 Hz, 

1H, H3A), 8.58 (s, 1H, H3B), 8.38 (d, J=4.0 Hz, 1H, H6C), 8.10 (td, J=6.0, 1.6 Hz, 1H, 

H4A), 8.05 (d, J=7.4 Hz, 1H, H3C), 8.01 (td, J=6.0, 1.6 Hz, 1H, H4C), 7.72 (d, J=6.4 Hz, 
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1H, H2D+6D), 7.62 (dd, J=7.6, 5.2 Hz, 1H, H5A), 7.52 (d, J=6.4 Hz, 2H, H3D+5D), 7.43 

(dd, J=7.6, 5.2 Hz, 1H, H5C). 
13C NMR (DMSO, 125 MHz) �/ppm: 157.9, 157.3, 154.7, 152.3, 149.8, 148.6, 141.1, 

138.5, 137.7, 137.1, 129.5, 128.7, 128.4, 125.4, 125.3, 125.2, 125.1, 124.8, 124.0, 

122.9, 121.2. 

MS (ES) m/z [L]+ 378, [Ag+L]+ 487, [2Ag+L]+ 595. 

 

Synthesis of 4-(4-iodophenyl)-3,6-di(pyridin-2-yl)pyridazine silver complex 

(24sc) 

 

 

 

 

 

4-(4-Iodophenyl)-3,6-di(pyridin-2-yl)pyridazine (24) (90 mg, 0.21 mmol) and silver 

tetrafluoroborate (39 mg, 0.21 mmol) were used to prepare the silver complex (0.12 

g, 0.19 mmol, 90%, C20H13IN4AgBF4). 

 
1H NMR (DMSO, 400 MHz) �/ppm: 8.91 (d, J=4.0 Hz, 1H, H6A), 8.81 (d, J=4.4 Hz, 

1H, H6C), 8.68 (s, 1H, H3B), 8.58 (d, J=8.4 Hz, 1H, H3A), 8.17 (td, J=7.8, 1.6 Hz, 1H, 

H4A), 7.88 (td, J=7.8, 1.6 Hz, 1H, H4C), 7.79 (m, 3H, H5A+3D+5D), 7.62 (dd, J=7.6, 5.2 

Hz, 1H, H5C), 7.38 (d, J=8.0 Hz, 1H, H3C), 7.01 (d, J=8.0 Hz, 2H, H2D+6D). 
13C NMR (DMSO, 100 MHz) �/ppm: 157.5, 155.2, 152.3, 150.8, 150.7, 149.6, 140.4, 

138.9, 137.7, 137.5, 134.4, 131.0, 127.5, 126.6, 126.2, 125.2, 123.7, 98.83, 2 carbon 

signals unresolved. 

MS (ES) m/z [L]+ 436, [Ag+L+MeCN]+ 585, [Ag+2L+2MeCN-I]+ 935, [Ag+2L]+ 980. 

Elem. Anal. (C20H13IN4AgBF4) [%] calc. C 38.1, H 2.1, N 8.9, found, C 38.0, H 2.2, N 

8.8. 
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Synthesis of 4,4'-(5-bromo-1,3-phenyl)bis(3,6-di(pyridin-2-yl)pyridazine) silver 

complex (26sc) 

 

 

 

 

 

4,4'-(5-Bromo-1,3-phenyl)bis(3,6-di(pyridin-2-yl)pyridazine) (26) (35 mg, 0.06 mmol) 

and silver tetrafluoroborate (22 mg, 0.12 mmol) were used to prepare the silver 

complex (84 mg, 0.08 mmol, 67%, C34H21BrN8Ag2B2F8). 

 

 1H NMR (DMSO, 400 MHz) �/ppm: 8.88 (d, J=4.0 Hz, 2H, H6A), 8.65 (d, J=4.4 Hz, 

2H, H6C), 8.61 (d, J=8.0 Hz, 2H, H3A), 8.47 (s, 2H, H3B), 8.15 (td, J=7.6, 1.6 Hz, 2H, 

H4A), 8.01 (td, J=7.6, 1.6 Hz, 2H, H4C), 7.70 (m, 4H, H5A+3C), 7.58 (dd, J=7.6, 5.2 Hz, 

2H, H5C), 7.47 (d, J=1.6 Hz, 2H, H2D+6D), 7.36 (s, 1H, H4D). 
13C NMR (DMSO, 100 MHz) �/ppm: 167.3, 162.5, 157.6, 156.3, 153.2, 150.8, 149.7, 

138.5, 138.4, 138.2, 137.4, 131.8, 126.4, 126.1, 125.5, 122.5, 115.4. 

Elem. Anal. (C34H21BrN8Ag2B2F8 + H2O) [%] calc. C 39.7, H 2.3, N 10.9, found, C 

40.0, H 2.5, N 10.9. 

 

Synthesis of 4-(3-bromophenyl)-3,6-di(pyridin-2-yl)pyridazine silver complex 

(28sc) 

 

 

 

 

4-(3-Bromophenyl)-3,6-di(pyridin-2-yl)pyridazine (28) (70 mg, 0.18 mmol) and silver 

tetrafluoroborate (35 mg, 0.18 mmol) were used to prepare the silver complex (77 

mg, 0.13 mmol, 72%, C20H13BrN4AgBF4). 

 
1H NMR (DMSO, 400 MHz) �/ppm: 8.92 (d, J=4.4 Hz, 1H, H6A), 8.82 (d, J=4.4 Hz, 

1H, H6C), 8.77 (s, 1H, H3B), 8.62 (d, J=8.4 Hz, 1H, H3A), 8.19 (td, J=7.6, 1.6 Hz, 1H, 

H4A), 7.87 (td, J=7.6, 1.2 Hz, 1H, H4C), 7.80 (dd, J=7.6, 5.2 Hz, 1H, H5A), 7.63 (m, 3H, 

N
N

N

N

N
N

N

N

Br

A

B

C

D

AgBF4

N N NN

Br

A B C

DAgBF4



Chapter IV : Halogenated pyridazines 
___________________________________________________________________ 

 139

H5C+4D+6D), 7.38 (d, J=8.0 Hz, 1H, H2D), 7.31 (t, J=8.0 Hz, 1H, H5D), 7.10 (d, J=8.4 

Hz,1H, H3C). 
13C NMR (DMSO, 100 MHz) �/ppm: 157.5, 155.0, 152.1, 150.9, 150.8, 149.4, 139.9, 

137.7, 132.2, 131.7, 130.6, 128.2, 128.0, 126.8, 125.3, 123.9, 122.0, 3 carbon 

signals unresolved. 

MS (ES) m/z [Ag+L]+ 497, [Ag+2L]+ 885, [2Ag+2L+2MeCN]+ 1081. 

Elem. Anal. (C20H13BrN4AgBF4) [%] calc. C 41.1, H 2.2, N 9.6, found, C 41.2, H 2.3, 

N 9.6. 
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CHAPTER V 

 

DIVERSE PYRIDAZINES 

 

 

V.1 Introduction 

 

In this chapter, we focused on the effect of different substituents. We did not focus 

our interest on a general chemical family as we did in the two previous chapters. We 

used electron withdrawing or donating groups such as methoxy1, cyano2, methyl3,4 or 
tbutyl5,6-substituted phenyl substituents. We tried to find out the relationship between 

the substituent and the adopted structure by each silver complex. The different 

substituents introduced in this chapter have also been used by different research 

groups to prepare substituted terpyridine7,8 or bipyridine9, 10 metal complexes. 

 

To prepare these different ligands, we used methoxy, acetophenone, cyano, methyl, 

dimethoxy, tbutyl-substituted phenyl acetylenes and trimethylsilylacetylene. We 

reacted all the ethynyl precursors with 3,6-bis(2�-pyridyl)-1,2,4,5-tetrazine (1) to give 

the target ligands. 

 

This chapter presents the synthesis and characterisation of all the ethynyl precursors 

(29, 31, 33, 35, 38 and 41 shown in Figure 5.1) used to prepare the N-donor ligands 

(30, 32, 34, 36, 39, 42, 43 and 44 shown in Figure 5.2). They have all been 

characterized by 1H and 13C NMR spectroscopy, mass spectrometry and elemental 

analysis. 

We then synthesised and characterised all the silver complexes (30sc, 32sc, 34sc, 

36sc, 39sc, 42sc, 43sc and 44sc). 

 

So, we will talk about the synthesis of the ethynyl precursors, the desired ligands and 

finally about the silver complexes. 
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Figure 5.1: Ethynyl precursors described in this chapter. 
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Figure 5.2: Diverse pyridazine ligands presented in this chapter. 
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V.2 Synthesis of the ethynyl precursors 

V.2.1 Synthetic method 

 

We prepared all these ethynyl compounds using the Sonogashira11 reaction. We 

followed the procedure introduced in chapter II. The starting compounds of this 

reaction are halogenated molecules. The halogenated compounds were mixed with 

trimethylsilylacetylene, copper(I) chloride and bis(triphenylphosphine)palladium 

dichloride in triethylamine. The solution was refluxed under nitrogen to give the 

protected ethynyl precursor. The intermediate compound was purified by 

chromatographic work-up and then dissolved in tetrahydrofuran and an aqueous 

solution of 1M sodium hydroxide was added. The target molecule was extracted and 

purified by chromatographic work up over alumina. 

Compounds 29, 31, 33 and 35 were prepared with commercial iodo or bromo 

precursors. They were directly accessible with the procedure described above. The 

synthetic method to prepare compounds 29, 31, 33 and 35 is shown in Figure 5.3. 

 

 

 

Figure 5.3: Synthetic method for the synthesis of compounds 29, 31, 33 and 35. 

 

Figure 5.4 shows the multiple step synthesis for the preparation of compounds 38 

and 41. 
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Figure 5.4: Multiple step synthesis for the preparation of compounds 38 and 41. 

 

The preparation of compound 38 needs 1-iodo-3,5-dimethoxybenzene (37) as an 

intermediate. We synthesised 37 starting from 3,5-dimethoxyaniline that was mixed 

with NaNO2, hydrochloridric acid and potassium iodide. 1-Iodo-3,5-

Dimethoxybenzene (37) was purified by chromatographic work-up over alumina and 

used in the Sonogashira11 reaction to obtain 1-ethynyl-3,5-dimethoxybenzene (38). 

We repeated the same procedure to prepare 1-tert-butyl-4-ethynylbenzene (41). In 

that case the synthesized intermediate is 1-tert-butyl-4-iodobenzene (40). 

Figure 5.5 shows the halogenated compounds (bought or prepared) used to prepare 

the ethynyl compounds. 

 

Figure 5.5: Compounds used to prepare the ethynyl compounds. 
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For each ethynyl precursor presented here, the reactant ratio, time and yield are 

listed in the Table 5.1. Purification methods and synthetic details are discussed in the 

experimental section at the end of this chapter. 

 

Precursor Halogenated 
compound 

Reaction ratio 
(halogenated / 
tms acetylene) 

Reaction 
temperature 

(°C) 

Reaction time 
(hr) Yield (%) 

29 1a 1.1/1 60 14 57 

31 2a 1/1.5 60 14 76 

33 3a 1/1.7 65 14 91 

35 4a 1/1.4 60 4 39 

38 37 1/1.6 60 18 76 

41 40 1/1.7 60 18 27 

 

Table 5.1: Reaction conditions for the synthesis of the ethynyl precursors 

 29, 31, 33, 35, 38 and 41. 

 

Compounds 29, 31, 33, 35, 38 and 41 were obtained, after purification, in relatively 

good yields and could be used for the synthesis of the pyridazine ligands. 

 

 

V.2.2 Characterisation of the ethynyl precursors 

 

All the ethynyl precursors have been characterized by 1H NMR and 13C NMR 

spectroscopy. Compounds 29, 31, 33 and 38 were characterized by mass 

spectrometry. 

The general procedure and characterization of intermediates 37 and 40 are 

discussed at the end of this chapter in the experimental section. 

 

 
1H NMR spectroscopy  

We first focused our interest in the 1H NMR spectroscopic characterisation. The 

halogenated phenylethynyl compounds synthesized in this chapter should have the 

characteristic ethynyl signal and the phenyl signals12. It was also important to see the 

absence of the SiMe3 signals. This would show that the deprotection had been 

carried out successfully.  Table 5.2 summarises 1H NMR signals of the precursors. 
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  Ethynyl 
precursor 

Phenyl 
signals 
(�/ppm) 

Ethynyl 
signals 
(�/ppm) 

Other signals 
(�/ppm) 

 
 

29 744-8.65(d-d) 3.01 (s) 3.81 (s) 

  

31 7.89-7.55 (d-d) 3.24 (s) 2.47 (s) 

  

33 7.61-7.56 (d-d) 3.32 (s) ° 

  

35 7.45-7.16 (d-d) 3.09 (s) 2.39 (s) 

  

38 6.65-6.47 (d-t) 3.04 (s) 3.78 (s) 

  

41 7.45-7.36 (d-d) 3.04 (s) 1.33 (s) 

 

Table 5.2: 1H NMR characterisation of the precursors 29, 31, 33, 35, 38 and 41. 

 

The 1H NMR spectrum of each ethynyl precursor could be assigned by the chemical 

shifts and the relative integrals. As expected12, the different phenyl signals are at 

around � 7.5, 7.6 ppm and the ethynyl signals are near to � 3.1 ppm. There is only 

one exception.  

The 1H NMR spectra of all but one of the ethynyl compounds show two doublets in 

the aromatic region. Each signal integrates for two protons. There is also one singlet 

for the ethynyl group signal. The 1H NMR spectrum of ethynyl precursor 38 presents 

a triplet and a doublet for the phenyl protons and one singlet for the ethynyl signal. 

Compounds 29, 31, 35 and 38 present an additional signal corresponding to the 

methoxy or methyl group. In each case, this 1H NMR signal is a singlet with an 

integral corresponding to three protons. Compound 38 has two methoxy groups and 

this additional 1H NMR signal integrates for six protons. The tbutyl group of 1-tert-

butyl-4-ethynylbenzene (41) has a 1H NMR signal integrating for nine protons (�/ppm 

1.33). 
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In every ethynyl precursors synthesised in this chapter, there is no SiMe3 signal in 

the 1H NMR spectrum. Figure 5.6 presents the 1H NMR spectra of the ethynyl 

precursors 31 and 33. 

 

Figure 5.6: 1H NMR spectra of the ethynyl precursors 31 and 33. 

 

 

Mass spectrometric characterisation 

We were only able to obtain mass spectra for 1-ethynyl-4-methoxybenzene (29), 1-

(4-ethynylphenyl)ethanone (31), 4-ethynylbenzonitrile (33) and 1-ethynyl-3,5-

dimethoxybenzene (38). Compound 29 was characterised with the MALDI technique 

and its mass spectrum shows two peaks corresponding to [L]+ and [L+K]+. The three 

other compounds were characterised with the electrospray technique. They all 

present the [L]+ peak. Ethynyl precursor 29 shows two other peaks corresponding to 

[L-COMe]+ and [L-Me]+. Compound 38 shows two other peaks. One corresponds to 

the loss of two methoxy groups and the second to the loss of one methoxy group. 

Table 5.3 summarises the different mass peaks detected for 29, 31, 33 and 38. 
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Ligand 29 31 33 38 
 m/z calc. m/z det. m/z calc. m/z det. m/z calc. m/z det. m/z calc. m/z det. 

[L]+ 132 132 144 144 127 127 162 162 

[L-C0Me]+ ° ° 100 101 ° ° ° ° 

[L-Me]+ ° ° 129 129 ° ° ° ° 

[L+K]+ 170 171 ° ° ° ° ° ° 

[L-2OMe]+ ° ° ° ° ° ° 101 102 

[L-OMe]+ ° ° ° ° ° ° 133 133 

 

Table 5.3: Calculated and detected m/z values for 29, 31, 33 and 38. 

 

All m/z are perfectly consistent with the calculated mass. Two examples of mass 

spectra are presented in Figure 5.7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7: Mass spectra of the ethynyl precursors 31 and 33. 
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V.3 Synthesis of diverse substituted pyridazine 

V.3.1 Synthetic method 

 

This part of the chapter introduces the synthesis and the characterisation of eight 

new substituted pyridazine ligands. The synthesised compounds are 4-(4-

methoxyphenyl)-3,6-di(pyridin-2-yl)pyridazine (30), 1-(4-(3,6-di(pyridin-2-yl)pyridazin-

4-yl)phenyl)ethanone (32), 4-(3,6-di(pyridin-2-yl)pyridazin-4-yl)benzonitrile (34), 3,6-

di(pyridin-2-yl)-4-tolylpyridazine (36), 4-(3,5-dimethoxyphenyl)-3,6-di(pyridin-2-

yl)pyridazine (39), 4-(4-tert-butylphenyl)-3,6-di(pyridin-2-yl)pyridazine (42), 1-(3,6-

di(pyridin-2-yl)pyridazin-4-yl)cyclohexan-1-ol (43) and 3,6-di(pyridin-2-yl)-4-

(trimethylsilyl)pyridazine (44). 

The synthesis of these new N-donor ligands follows the procedure presented in 

chapter II. They were obtained via an inverse electron demand Diels Alder reaction13 

between 1,2,4,5-tetrazine and the ethynyl precursors presented in the first part of this 

chapter. To carry out these reactions, we used 3,6-bis(2�-pyridyl)-1,2,4,5-tetrazine (1) 

dissolved in toluene with the ethynyl precursor. This mixture was then placed under 

reflux. All the compounds presented in this part of the chapter were prepared with 

this method. Reactant ratio, time, solvent and yields are listed in the table 5.4. 

 

 

Ligand 
Reaction ratio 

(tetrazine / 
ethynyl) 

Reaction 
temperature 

(°C) 
Solvent Reaction time Yield (%) 

30 1 to 1 120 toluene 70 hours 70 

32 1 to 1 120 toluene 72 hours 75 

34 1 to 1.1 120 toluene 6 days 88 

36 1 to 1 120 toluene 6 days 91 

39 1 to 1 120 toluene 7 days 88 

42 1 to 1.4 120 toluene 42 hours 87 

43 1 to 1.2 120 toluene 15 days 71 

44 1 to 1.3 120 toluene 60 hours 50 

 

Table 5.4: Reaction conditions for the synthesis of the ligands 

30, 32, 34, 36, 39, 42, 43 and 44. 

 



Chapter V : Diverse pyridazines 
___________________________________________________________________ 

 152

The reaction times are long and range between 42 and 72 hours to 6 days to 15 

days. We always followed the progress of the reactions by TLC plates and judged 

whether the reaction was completed by the disappearance of the purple colour. 

These long reaction times are not really an advantage, but all the retro Diels-Alder 

reactions ended up with good yields. All the ligands introduced in this chapter were 

purified by chromatographic work-up. 

 

 

V.3.2 Characterisation of the halogenated pyridazines 

 

All the compounds were characterised by 1H NMR and 13C NMR spectroscopy, mass 

spectrometry and elemental analyses. 

 
1H NMR spectroscopy 
1H NMR spectroscopy of ligands 30, 32, 34, 36, 39, 42, 43 and 44 were run in 

deuterated chloroform. The spectra could be assigned by the chemical shifts, 

relatives integrals and the coupling patterns. 

The 1H NMR spectra of the compounds 30 and 32 and the assignments are shown in 

Figure 5.8. 

 

Figure 5.8: The 1H NMR spectra and assignments of ligands 30 and 32. 
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The 1H NMR spectra of the compounds 34 and 36 and the assignments are shown in 

Figure 5.9, and compounds 39 and 42 in Figure 5.10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9: The 1H NMR spectra and assignments of ligands 34 and 36. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10: The 1H NMR spectra and assignments of ligands 39 and 42 without  

the substituent signals (methoxy and tert-butyl ). 
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The 1H NMR spectra of the compounds 43 and 44 and the assignments are shown in 

Figure 5.11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11: The 1H NMR spectra and assignments of ligands 43 and 44. 

 

 

The 1H NMR spectra of ligands 30, 32, 34, 36, 39, 42, 43 and 44 present well defined 

and sharp signals. As for the non symmetrical compounds shown in chapter III and 

IV, the spectra present a set of nine NMR signals. Each 1H NMR spectrum shows 

four doublets (H3A, H3C, H6A, H6C), two triplets of doublets (H4A, H4C), two doublets of 

doublets (H5A, H5C) and the typical singlet (H3B)14. These signals are in the same 1H 

NMR region between � 7 and 9 ppm.  

The ligands have different substituents. Compounds 30, 32, 34, 36, 39 and 42 each 

contains phenyl group, substituted in the 3,5- or 4-positions. The proton signals of the 

phenyl group are two doublets (30, 32, 34, 36 and 42) or a triplet and a doublet (39). 

Compound 43 has a cyclohexanol as a substituent and the proton signals of that 

group are composed of five signals in the 1H NMR region between � 1 and � 2 ppm. 

The last ligand (44) has a trimethylsilyl substituent and the proton signal of that group 

is a singlet placed at � 0.3 ppm. 
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The 1H NMR spectra of compounds 30, 32, 34, 36, 39 and 42 show four doublets 

(H3A, H3C, H6A, H6C), two triplets of doublets (H4A, H4C), two doublets of doublets (H5A, 

H5C) and a singlet (H3B). 

The 1H NMR spectrum of compounds 30 shows well defined signals and no 

overlapping signals. The 1H NMR signal of the methoxy group is a singlet integrating 

for three protons (� 3.8 ppm). The 1H NMR spectrum of compounds 32 shows nine 

well defined and separated signals. The 1H NMR signal of the phenyl’s substituent is 

a singlet integrating for three protons. The 1H NMR spectrum of compounds 34 

shows also nine well defined and separated signals. The 1H NMR spectrum of 

compounds 36 shows all the expected signals14. In that compound, the signals of 

protons H3C and H4C overlap. The 1H NMR signal of the phenyl’s substituent is a 

singlet integrating for three protons (methyl group). 

The 1H NMR spectrum of compounds 39 shows all the expected signals14. In this 

compound, the signals of protons H3C and H4C overlap. The 1H NMR signal of the 

phenyl’s substituent is a singlet integrating for six protons (two methyl groups). 

Similar case is also present in the 1H NMR spectrum of 42. In this ligand, the signals 

of protons H3C and H4A overlap. The 1H NMR signal of the tbutyl group is a singlet 

and is integrating for nine protons (� 1.30 ppm). 

The two last ligands have a different substituent (not phenyl group). The 1H NMR 

spectra show all the proton signals. For these two compounds the 1H NMR signal of 

the proton H3B is shifted to the low field, in regard of the six other ligands. This is due 

to the cyclohexanol substituent for 43 and to the trimethylsilyl group for 44.  The 1H 

NMR spectra also show some signals that overlap. The 1H NMR signals of protons 

H3A and H6A for 43 and 44 overlap.  

We can see that in the ligand containing phenyl groups, the 1H NMR signals of the 

protons from the phenyl group do not overlap with other 1H NMR signals. 

 

All the 1H NMR spectroscopic data for the ligands presented in this chapter are 

summarized in Table 5.5. 
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Ligand Solvent H3A H4A H5A H6A H3B H3C H4C H5C H6C Phenyl Ring Others 

30 
(�/ppm) CDCl3 

8.80 
d 

7.92 
td 

7.42 
dd 

8.74 
d 

8.65 
s 

7.85 
d 

7.82 
td 

7.30 
dd 

8.54 
d 7.21-6.84 d 3.81 s 

32 
(�/ppm) CDCl3 

8.78 
d 

7.90 
m 

7.41 
dd 

8.71 
d 

8.65 
s 

8.02 
d 

7.82 
td 

7.27 
m 

8.38 
d 7.90 m-7.35 d 2.59 s 

34 
(�/ppm) CDCl3 

8.79 
d 

7.92 
td 

7.42 
dd 

8.71 
d 

8.62 
s 

8.13 
d 

7.86 
td 

7.28 
dd 

8.35 
d 7.61-7.36 d ° 

36 
(�/ppm) CDCl3 

8.82 
d 

7.95 
td 

7.45 
dd 

8.75 
d 

8.70 
s 

7.84 
m 

7.84 
m 

7.33 
m 

8.55 
d 7.21-7.09 d 2.36 s 

39 
(�/ppm) CDCl3 

8.78 
m 

7.90 
td 

7.40 
dd 

8.71 
m 

8.66 
s 

7.80 
m 

7.80 
m 

7.28 
dd 

8.55 
d 6.39 m 3.64 s 

42 
(�/ppm) CDCl3 

8.79 
d 

7.88 
m 

7.39 
dd 

8.72 
d 

8.66 
s 

7.88 
m 

7.90 
td 

7.91 
dd 

8.50 
d 7.32-7.19 d 1.30 s 

43 
(�/ppm) CDCl3 

8.72 
m 

7.98 
td 

7.45 
dd 

8.72 
m 

8.74 
s 

8.36 
d 

7.87 
td 

7.38 
dd 

8.63 
d 

1.96 d-1.85 
m-1.64 m-

1.21 m 
8.51 d 

44 
(�/ppm) CDCl3 

8.73 
d 

7.90 
td 

7.40 
dd 

8.75 
d 

8.87 
s 

8.61 
d 

7.88 
td 

7.38 
dd 

8.66 
d ° 0.35 s 

 

Table 5.5: The 1H NMR spectroscopic data for the ligands presented in this chapter. 

 

We can notice that for the ligands, the 1H NMR spectra have similar chemical shifts 

for corresponding protons. As we said in chapter IV, the chemical shifts of the 

protons from ring A from compounds 30, 32, 34, 36, 39, 42, 43 and 44 are the same. 

This is not true for the protons from ring B and C. Their chemical shifts are 

approximately in the same NMR region but are not as accurately reproduced as the 

chemical shifts from the A ring protons in going from one compound to another. That 

would mean that the substituent mostly affects the protons in rings B and C, and 

present quite diagnostic chemical shifts for the different substituents. 

 

 

Mass spectrometry 

Mass spectra of ligands 32, 34, 36, 39, 42, 43 and 44 were obtained using the 

electrospray technique. The mass spectrum of compound 30 was obtained using the 

MALDI technique. This ligand’s mass spectrum shows [L]+ and [Na+L2+MeCN]+ 

peaks. The mass spectra of compounds 32 and 34 show two peaks corresponding to 

[Na+L+MeCN2]+ and [Na+L2+MeCN]+. The mass spectrum of 36 shows only one 

peak ([L]+). The other ligands mass spectra show peaks corresponding to m/z values 
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of the ligand with a solvent molecule and a sodium or potassium ion. All m/z values 

are perfectly consistent with the calculated mass values. Figure 5.12 shows the mass 

spectra of compounds 39 and 42. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12: Mass spectra of the ligands 39 and 42. 

 

All the m/z (calculated and detected) values, from each ligand synthesised in this 

chapter, are listed in Table 5.6. 

 

Ligand 30 32 34 36 39 42 43 44 

 m/z 
calc. 

m/z 
det. 

m/z 
calc. 

m/z 
det. 

m/z 
calc. 

m/z 
det. 

m/z 
calc. 

m/z 
det. 

m/z 
calc. 

m/z 
det. 

m/z 
calc. 

m/z 
det. 

m/z 
calc. 

m/z 
det. 

m/z 
calc. 

m/z 
det. 

[L]+ 340 342 ° ° ° ° 324 323 ° ° ° ° ° ° ° ° 

[Na+L+2MeCN]+ ° ° 457 456 439 439 ° ° ° ° ° ° ° ° ° ° 

[Na+2L+MeCN]+ 743 744 766 767 733 733 ° ° ° ° ° ° 727 727 675 675 

[Na+L+MeCN]+ ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° 

[K+L+DCM]+ ° ° ° ° ° ° ° ° 491 492 486 488 ° ° ° ° 

[K+2L+DCM]+ ° ° ° ° ° ° ° ° 864 863 ° ° ° ° ° ° 

[Na+2L+K]+ ° ° ° ° ° ° ° ° 802 803 727 727 ° ° ° ° 

[L+CHCl3]+ ° ° ° ° ° ° ° ° ° ° ° ° 454 454 ° ° 

[2L+CHCl3]+ ° ° ° ° ° ° ° ° ° ° 853 854 785 787 ° ° 

 

Table 5.6: Calculated and detected m/z values for the ligands30, 32, 34, 36, 39, 42, 43 and 44. 

Single crystal structure of ligand 34 

N N NN

MeO

OMe

N NN N
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A crystal of compound 34 suitable for single X-ray diffraction was grown from a 

chloroform solution. Details of the structure solution are given in Appendix 6. Figure 

5.13 shows the molecular structure of 34. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.13: The molecular structure of ligand 34 with the atom labelling scheme. 

 

Compound 34 shows two different torsion angles between rings A, B and C. In fact, 

the torsion angle between ring A and ring B is 9.66° (C7-C6-C5-N1). These two rings 

are almost co-planar. The torsion angle between rings B and C is 24.29° (C8-C9-

C10-N4). This effect is due to the presence of the substituent (cyanophenyl ring D) 

that forces the twist of ring C. It is also interesting to notice that ring B and ring D are 

not co-planar. The torsion angle between these two rings is 54.55° (C7-C8-C19-

C18). Compound 34 does not present hydrogen bonds or �-� stacking interactions 

with another molecule in the unit cell. The N atoms in adjacent rings are arranged in 

a trans, trans-conformation. 

The packing shows alternating orientations that repeat through the lattice. The 

arrangement of 34 in the crystal shows optimal space filling and the substituent is 

oriented to the upper side for one molecule and to the bottom side for the other 

molecule. This is presented in Figure 5.14. 

A 
B C 

D 
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Figure 5.14: The packing diagram showing the orientation of the ligand 

 in the crystal structure of 34. 

 

 

 

V.4 Synthesis of the silver complexes 

V.4.1 Synthetic method 

 

The ligands synthesised in this chapter have diverse substituents. We hoped that this 

diversity would lead to silver(I) complexes with differing structures. We also thought 

that steric factors might play a part in forcing the coordination geometry at the silver(I) 

centres to be non-planar. We hoped especially that sterically demanding groups like 

trimethylsilyl or tbutylphenyl would lead to non planar silver(I)centres. 

The ligands synthesised in this chapter have been used to prepare the silver 

complexes 30sc, 32sc, 34sc, 36sc, 39sc, 42sc, 43sc and 44sc. The reaction of the 

ligands with silver tetrafluoroborate in acetonitrile proceeded smoothly to give a 

yellow-orange solution from which the complex was obtained. 

Table 5.7 summarises the experimental conditions for the synthesis of the species 

30sc, 32sc, 34sc, 36sc, 39sc, 42sc, 43sc and 44sc. 
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Silver complex Reaction ratio 
(ligand / silver) Silver salt Yield (%) 

30sc 1 to 1 AgBF4 81 

32sc 1 to 1 AgBF4 85 

34sc 1 to 1 AgBF4 92 

36sc 1 to 1 AgBF4 82 

39sc 1 to 1 AgBF4 75 

42sc 1 to 1 AgBF4 89 

43sc 1 to 1 AgBF4 81 

44sc 1 to 1 AgBF4 88 

 

Table 5.7: Experimental conditions for the synthesis of the silver complexes  

30sc, 32sc, 34sc, 36sc, 39sc, 42sc, 43sc and 44sc. 

 

All the silver complexes were prepared by mixing silver tetrafluoroborate and the 

ligand in acetonitrile. The mixture was sonicated for five minutes and then stirred 

under reflux for a further fifteen minutes. The solvent was evaporated to give the 

silver complexes. They were easily accessible and it was not necessary to proceed to 

a chromatographic work up. 

 

 

V.4.2 Characterisation of the silver complexes 

 

The complexes were characterised by 1H and 13C NMR spectroscopy, and mass 

spectrometry. 1H NMR and 13C NMR spectra of compounds 36sc and 44sc were run 

in deuterated acetonitrile. 1H NMR and 13C NMR spectra of the five other complexes 

were run in deuterated DMSO. All the complexes were characterised by mass 

spectrometry. 

 
1H NMR spectroscopy 

All the complexes were characterised by 1H NMR spectroscopy. Figure 5.15 shows 

the 1H NMR spectra of 4-(4-methoxyphenyl)-3,6-di(pyridin-2-yl)pyridazine silver 

complex (30sc) and 1-(4-(3,6-di(pyridin-2-yl)pyridazin-4-yl)phenyl)ethanone silver 

complex (32sc). 
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Figure 5.15: 1H NMR spectra of silver complexes 30sc and 32sc (methyl signals not shown). 

 

The next figure presents the 1H NMR spectra of 4-(3,6-di(pyridin-2-yl)pyridazin-4-

yl)benzonitrile silver complex (34sc) and  3,6-di(pyridin-2-yl)-4-tolylpyridazine silver 

complex (36sc). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.15: 1H NMR spectra of silver complexes 34sc and 36sc (methyl signal not shown). 
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Figure 5.17 shows the 1H NMR spectra of 39sc and 42sc. Figure 5.18 shows the 1H 

NMR spectra of 43sc and 44sc. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.17: 1H NMR spectra of silver complexes 39sc and 42sc  

(methyl and Tbutyl signals not shown). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.18: 1H NMR spectra of silver complexes 43sc and 44sc. 
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The 1H NMR spectra of complexes 30sc, 32sc, 34sc, 36sc, 39sc, 42sc, 43sc and 

44sc could be assigned by the chemical shifts, relatives integrals and the coupling 

patterns of the signals. 

All the 1H NMR spectra show the same signals as those present in the 1H NMR 

spectrum of their respective ligand. For the mono substituted pyridazine silver 

complexes 30sc, 32sc, 34sc, 36sc, 39sc, 42sc, 43sc and 44sc, we can see the 

signal (singlet) of the H3B proton. 

The 1H NMR spectra of 3,6-di(pyridin-2-yl)-4-tolylpyridazine silver complex (36sc) 

and 3,6-di(pyridin-2-yl)-4-(trimethylsilyl)pyridazine silver complex (44sc) were run in 

deuterated acetonitrile. They both present a single ligand environment. No species 

other than the free ligands and the silver complexes were detected by 1H NMR 

spectroscopy. The complexation of the ligand and the silver species induces some 

overlapping signals for 36sc. The signals of the protons H6A and H6C overlap. The 1H 

NMR spectrum of complex 44sc presents well defined and sharp signals. In both 

spectra the 1H NMR signal of proton H3C is shifted to higher fields. This proton is 

affected by the silver complexation. This effect is due to the short distance between 

the affected proton and the Ag-N bond. 

The six other 1H NMR spectra (30sc, 32sc, 34sc, 39sc, 42sc and 43sc) were run in 

deuterated dimethylsulfoxide. 30sc, 32sc and 43sc have well defined, sharp and 

separated 1H NMR signals. The 1H NMR spectra show the same signals as those 

present in the 1H NMR spectrum of their respective ligand. Again, the protons H3B 

and H3C are mostly affected by the silver complexation. The 1H NMR signal of proton 

H3C is typically shifted to high field, which is characteristic for a one to one silver 

complexation15. 

The three last 1H NMR spectra (34sc, 39sc and 42sc) show all the expected 

signals15. A closer look, at all the 1H NMR spectra, shows that they present an 

overlapping of two or three signals. For species 34sc, this effect concerns protons 

H3B and H6C, and H3A, H3D and H5D; for the silver complex 39sc, the protons H5A and 

H3C and the protons H3B, H6C and H3A. The last silver complex (42sc) shows an 

overlapping of signals of protons H6C and H3A and the signals of protons H3C and H5A 

overlap. 

It is important to notice that all the 1H NMR spectra of the silver(I) complexes have 

sharp signals and that there is no signal missing.  
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Table 5.8 summarises the 1H NMR spectroscopic data for the silver complexes 

presented in this chapter. 

 

Complex Solvent H3A H4A H5A H6A H3B H3C H4C H5C H6C Phenyl Ring Others 

30sc 
(�/ppm) 

DMSO 8.55 
d 

8.13 
td 

7.75 
dd 

8.90 
d 

8.57 
s 

7.32 
d 

7.83 
td 

7.59 
dd 

8.81 
d 

7.11-6.92 d 3.77 s 

32sc 
(�/ppm) 

DMSO 8.51 
d 

8.08 
td 

7.69 
dd 

8.82 
d 

8.64 
s 

7.33 
d 

7.76 
td 

7.50 
m 

8.68 
d 

7.85-7.29 d 2.60 s 

34sc 
(�/ppm) 

DMSO 8.60 
d 

8.19 
td 

7.79 
dd 

8.91 
d 

8.77 
m 

8.13 
d 

7.88 
m 

7.60 
dd 

8.77 
m 

7.88 m-7.44 
d ° 

36sc 
(�/ppm) 

CD3CN 8.17 
d 

8.01 
td 

7.60 
dd 

8.69 
m 

8.25 
s 

7.04 
m 

7.57 
m 

7.43 
m 

8.69 
m 

7.17-6.97 d 2.33 s 

39sc 
(�/ppm) 

DMSO 8.60 
m 

8.10 
td 

7.66 
m 

8.83 
d 

8.60 
m 

7.66 
m 

7.93 
td 

7.50 
dd 

8.60 
m 

6.50 t-6.39 d 3.62 s 

42sc 
(�/ppm) 

DMSO 8.61 
m 

8.09 
td 

7.65 
m 

8.83 
d 

8.56 
s 

7.65 
m 

7.92 
td 

7.50 
dd 

8.61 
m 

7.37-7.17 d 1.26 s 

43sc 
(�/ppm) 

DMSO 8.72 
m 

8.16 
td 

7.73 
dd 

8.78 
d 

8.67 
s 

7.79 
d 

8.06 
td 

7.62 
dd 

8.71 
d 

1.64 m-1.41 
m-1.05 m 

8.51 d 

44sc 
(�/ppm) 

CD3CN 8.26 
d 

7.06 
td 

7.61 
dd 

8.66 
d 

8.47 
s 

8.01 
d 

7.91 
td 

7.53 
dd 

8.59 
d 

° 0.19 s 

 

Table 5.8: The 1 H NMR spectroscopic characterisation of silver complexes 

30sc, 32sc, 34sc, 36sc, 39sc, 42sc, 43sc and 44sc. 

 

 

 

Mass spectrometry 

Mass spectra of all but one of the silver complexes were run using the electro-spray 

ionisation technique. That of complex 30sc was run using the MALDI technique. The 

species were dissolved in acetonitrile. The mass spectra of complexes 30sc, 34sc 

and 36sc showed [L]+, [AgL]+ and [AgL2]+ peaks. The mass spectra of 34sc and 36sc 

also present an additional peak corresponding to the [Ag2L2BF4]+ species. The mass 

spectrum of complex 32sc shows [AgLMeCN]+  and [AgL(MeCN)3]+ peaks. The mass 

spectra of 39sc, 42sc, 43sc and 44sc show different peaks and the major one 

corresponds to the [AgL2]+ peak. 

All the calculated and detected m/z values are summarised in the Table 5.9.  
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silver 
complex 30sc 32sc 34sc 36sc 39sc 42sc 43sc 44sc 

  m/z 
cal. 

m/z 
det. 

m/z 
cal. 

m/z 
det. 

m/z 
cal. 

m/z 
det. 

m/z 
cal. 

m/z 
det. 

m/z 
cal. 

m/z 
det. 

m/z 
cal. 

m/z 
det. 

m/z 
cal. 

m/z 
det. 

m/z 
cal. 

m/z 
det. 

[L]+ 340 340 ° ° 336 336 325 325 372 372 ° ° ° ° ° ° 

[AgLMeCN]+ ° ° 498 499 ° ° ° ° ° ° ° ° ° ° 454 454 

[AgL]+ 448 448 ° ° 442 442 432 431 ° ° ° ° 439 439 ° ° 

[Ag2L]+ 787 788 ° ° 776 777 756 755 850 849 842 841 773 772 720 719 

[AgL3MeCN]+ ° ° 585 585 ° ° ° ° ° ° ° ° ° ° ° ° 

[2Ag2LBF4]+ ° ° ° ° 973 973 952 951 ° ° ° ° 967 967 914 914 

[Na2LMeCN]+ ° ° ° ° ° ° ° ° ° ° 795 796 ° ° ° ° 

[3Ag2L2BF4]+ ° ° ° ° ° ° ° ° ° ° ° ° ° ° 1109 1110 

[3Ag3L2BF4]+ ° ° ° ° ° ° ° ° ° ° ° ° ° ° 1417 1416 

[3Ag2L3BF4]+ ° ° ° ° ° ° ° ° ° ° ° ° ° ° 1610 1609 

[5Ag3L4BF4]+ ° ° ° ° ° ° ° ° ° ° ° ° ° ° 1805 1804 

 

Table 5.9: Calculated and detected m/z values for the species 

30sc, 32sc, 34sc, 36sc, 39sc, 42sc, 43sc and 44sc. 

 

 

We can notice that the data are consistent with each complex involving the [AgL2]+ 

cation or the [Ag2L2BF4]+ cation. This would mean that one ligand is coordinated with 

one silver ion, or that two ligands are coordinated with one silver ion.  

The mass spectrum of compound 44sc shows peaks of multinuclear species.  

 

Figure 5.19 shows representative mass spectra (34sc and 36sc). 
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Figure 5.19: Mass spectra of silver complex 34sc and 36sc. 

 

 

 

Single crystal structure for silver complex 30sc 

 

Crystals of 30sc are colourless plates. 30sc crystallizes in the monoclinic space 

group C2/c. The system is polymeric with a repeat unit of [Ag3(30)2]3+. The cation 

possesses a centre of symmetry. One ligand coordinates to three silver centres. Ring 

A (N1) and B (one of the two nitrogen N2) acts like a bipyridine and coordinates to a 

silver cation (Ag2). The second nitrogen of ring B (N4) is linked to a silver cation 

(Ag2). The last pyridyl ring (ring C) is strongly twisted and its nitrogen atom (N3) 

coordinates to a silver cation (Ag1). The two ligands are arranged in a trans 

configuration around the dinuclear silver core. 

The molecular structure of 30sc with labelling scheme is given in Figure 5.20. 

 

N NN N

N

AgBF4

N N NN
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Figure 5.20: The molecular structure of 30sc with the labelling scheme. 

 

The silver centre Ag2 has three normal Ag-N contacts16 (2.207(2), 2.407(2) and 

2.166(2)Å). The other silver atom centre (coordinating ring C from one ligand and ring 

C from a second ligand) has one Ag-N contact (2.130(4)Å). 

The methoxy-phenyl substituent is twisted with respect to the pyridazine that it is 

bounded to, with a torsion angle of 39.05° (C7-C8-C15-C16). The terminal pyridine 

rings are also significantly out of the plane of the pyridazine with torsion angles of 

20.34° (N1-C5-C6-N2) and 70.07° (N4-C9-C10-N3) (Figure 5.21). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.21: The molecular structure of 30sc, non planar rings. 
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The silver-silver distance is 3.587(2)Å, and the N-Ag-N angles are between 71 and 

176°. The important bond distances and angles are listed in Table 5.10. Details of the 

structure solution are given in Appendix 7. 

 

Bond distance Å  Angles deg(°) 
Ag1 Ag2 3.5362(2)  Ag2 Ag1 Ag2 179.912(14) 
Ag1 Ag2 3.5362(2)  Ag2 Ag1 N3 64.45(6) 
Ag1 N3 2.130(2)  Ag2 Ag1 N3 115.55(6) 
Ag1 N3 2.130(2)  Ag2 Ag1 N3 115.55(6) 
Ag2 N1 2.207(2)  Ag2 Ag1 N3 64.45(6) 
Ag2 N2 2.407(2)  N3 Ag1 N3 176.38(12) 
Ag2 N4 2.166(2)  Ag1 Ag2 N1 110.48(6) 

    Ag1 Ag2 N2 148.88(5) 
    N1 Ag2 N2 71.78(7) 
    Ag1 Ag2 N4 65.42(6) 
    N1 Ag2 N4 164.89(8) 
    N2 Ag2 N4 119.73(7) 
    Ag2 N1 C1 122.50(17) 
    Ag2 N1 C5 119.04(16) 

 

Table 5.10: Important bond distances and angles present in 30sc. 

 

The packing shows a polymer with the repeat unit of the [Ag3(30)2]3+ cation. These 

units are linked by a silver cation (Ag1). This silver cation coordinates the nitrogen 

atom (N3) from the pyridil ring C. In that structure we can see that the substituent 

induces a large torsion angle for the pyridyl ring C and enables to the [Ag3(30)2]3+ 

species to be linked together to form a polymer. Part of the polymeric chain is 

presented in Figure 5.22. 

 

 

Figure 5.22: Polymer of the [Ag3(30)2]
3+ species. 
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These polymers form layers that are placed one over the other. They have the same 

orientation (Figure 5.23). There are no �-stacking interactions or hydrogen bonds 

involving the heterocyclic or substituent rings of the ligand. 

 

 

 

 

Figure 5.23: Arrangement of the [Ag3(30)2]
3+ ions (cell axes b and c). 

 

 

 

Single crystal structure for silver complex 34sc 

 

Crystals of 34sc are yellow plates. 34sc crystallizes in the monoclinic space group 

P21/c. A dinuclear [Ag2(34)2]2+ cation is observed. The 34sc possesses a centre of 

symmetry and the two ligands are arranged in a trans configuration around the 

dinuclear silver core. The unit cell has one ligand, one silver and one 

tetrafluoroborate. 

Each silver cation is coordinated to three nitrogens. The silver cation is coordinated 

to two nitrogen atoms (ring A and B) from one ligand and to one nitrogen atom from 

the second ligand (ring C). 

The silver centre exhibits three Ag-N contacts17 (2.505(2), 2.236(2) and 2.213(2)Å). 

The silver centre is bound to N1, N3 and N4. The last nitrogen shows an interaction 

with the silver centre, but this cannot be considered as a bond because distance Ag-

N2 of 2.738(2)Å is too long. The molecular structure of 34sc and labelling scheme 

are presented in Figure 5.24. 
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Figure 5.24: The molecular structure of 34sc with the labelling scheme. 

 

The cyano-phenyl substituents are twisted with respect to the pyridazine that they are 

bound to, with a torsion angle of 27.84° (C8-C7-C15-16). The terminal pyridine rings 

are also significantly out of the plane of the pyridazine with torsion angles of 38.96° 

(N1-C5-C6-N2) and 19.14° (N3-C9-C10-N4) (Figure 5.25). 

 

 

Figure 5.25: The molecular structure of 34sc, showing the non-planarity of the rings. 
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The silver-silver distance is 4.206(3)Å, and the N-Ag-N angles are 67.35(7)° and 

171.93(8)°. The important bonds and angles are listed in Table 5.11. Details of the 

structure solution are given in Appendix 8. 

 

Bonds Å  Angles Deg(°) 
Ag1 N4 2.505(2)  N4 Ag1 N3 70.45(8) 
Ag1 N3 2.236(2)  N4 Ag1 N1 111.23(8) 
Ag1 N1 2.213(2)  N3 Ag1 N1 171.93(8) 
Ag1 N2 2.738(2)  N4 Ag1 N2 172.01(7) 

    N3 Ag1 N2 109.83(8) 
    N1 Ag1 N2 67.35(7) 

 

Table 5.11: Important bond distances and angles present in 34sc. 

 

The packing shows an alternating arrangement of the [Ag2(34)2]2+ species. In fact, 

they present offset rows forming a layer. This repetitive arrangement is also present 

in the different layers from the packing. Figure 5.26 shows different views of the 

packing of 34sc. 

 

 

Figure 5.26: Layer motifs in 34sc. 

 

 

There are no �-stacking interactions or hydrogen bonds involving the heterocyclic or 

substituent rings of the ligand.  
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Single crystal structure for silver complex 39sc 

 

Crystals of 39sc are pale yellow prisms. 39sc crystallizes in the monoclinic space 

group C21/c. A mononuclear [Ag(39)2]+ cation is observed. The 39sc complex 

possesses a centre of symmetry and the two ligands are arranged in a trans 

configuration around the mononuclear silver core. The asymmetric unit has two 

ligands, one silver and one tetrafluoroborate ion. 

The silver cation is coordinated to two nitrogen atoms. The coordination sites are the 

nitrogen from ring B and ring C (N1 and N2). The symmetry of the structure induces 

that the silver is than coordinated to the nitrogen from ring B and ring C from the 

second ligand. The two other nitrogen (N3 and N4) are not coordinated to the silver 

centre. The silver centre has two normal Ag-N contacts18 (2.3737(19) and 2.304(2) 

Å). 

The molecular structure of 39sc with labelling scheme is given in Figure 5.27. 

 

Figure 5.27: The molecular structure of 39sc with the labelling scheme. 

 

The dimethoxy-phenyl substituent is twisted with respect to the pyridazine that it is 

bound to, with a torsion angle of 116.20° (C8-C7-C15-16). The terminal pyridine rings 
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are also significantly out of the plane of the pyridazine with torsion angles of 32.73° 

(N3-C9-C10-C11) and 8.75° (N1-C5-C6-N2) (Figure 5.28). 

 

Figure 5.28: The molecular structure of 39sc, showing the non-planarity of the rings. 

 

The structure confirms a mononuclear complex and there are no Ag-Ag contacts. The 

N-Ag-N angle is 71.23°. The important bonds and angles are listed in Table 5.12. 

Details of the structure solution are given in Appendix 9. 

 

 

Bond Å  Angles Deg(°) 
Ag1 N2 2.3737(19)  N2 Ag1 N1 71.23(7) 
Ag1 N1 2.304(2)  N2 Ag1 N1 108.77(7) 

    N1 Ag1 N1 179.995 
 

Table 5.12: Important bond distances and angles present in 39sc. 

 

 

The packing shows four [Ag(39)2]+ cations. They are alternately placed in the “up to 

down” and “down to up” orientation (Figure 5.29). 
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Figure 5.29: Arrangement of the  [Ag(39)2]
+ cations in the crystal structure of 39sc. 

 

 

Single crystal structure for silver complex 42sc 

 

42sc crystallizes in the monoclinic space group C2/a. A dinuclear [Ag2(42)4]2+ cation 

is observed. The 42sc possesses a centre of symmetry and two ligands are arranged 

in a cis configuration around the mononuclear silver core. The asymmetric unit has 

four ligands, two silver atoms, one tetrafluoroborate and one diethyl ether molecule. 

The molecular structure of 42sc with labelling scheme is given in Figure 5.30. 

 

Figure 5.30: The molecular structure of 42sc with the labelling scheme. 
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Each silver centre is five coordinated. Two ligands present two N-donors to one silver 

ion and one ligand present one N-donor to the other silver ion. The second ligand 

presents two N-donors to one silver ion and two N-donors are left free. 

The tbutyl-phenyl substituents are twisted with respect to the pyridazine that they are 

bounded to, with a torsion angle of 51.09° (C48-C38-C39-C47) and 24.18° (C10-

C11-C20-C29). The terminal pyridine rings are also significantly out of the plane of 

the pyridazine with torsion angles of 35.22° (N33-C32-C31-N30), 176.09° (N50-C49-

C51-N52), 3.69° (N2-C4-C5-N6) and 57.03° (N13-C12-C14-N19) (Figure 5.31). 

 

Figure 5.31: The molecular structure of 42sc, non planar rings. 

 

The silver centre has five Ag-N contacts19 (2.369(2), 2.3301(19), 2.471(2), 

2.3705(19) and 2.4575(19)Å). The five nitrogens are almost arranged like a square 

pyramid around the silver centre (Figure 5.32). 

     

 

 

 

 

 

 

 

 

 

Figure 5.32: Arrangement of the nitrogens around the silver centre. 
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The silver-silver distance is too long to be considered bounding (5.025Å), and the N-

Ag-N angles are between 57° and 150°. The important bonds and angles are listed in 

Table 5.13. Details of the structure solution are given in Appendix 10. 

 

Bond Å  Angle Deg(°) 
Ag1 N19 2.369(2)  N19 Ag1 N2 126.90(7) 
Ag1 N2 2.3301(19)  N19 Ag1 N6 99.10(7) 
Ag1 N6 2.471(2)  N2 Ag1 N6 67.39(7) 
Ag1 N30 2.3705(19)  N19 Ag1 N30 95.26(7) 
Ag1 N33 2.4575(19)  N2 Ag1 N30 137.41(7) 

    N6 Ag1 N30 103.88(7) 
    N19 Ag1 N33 110.06(7) 
    N2 Ag1 N33 98.36(7) 
    N6 Ag1 N33 150.17(8) 
    N30 Ag1 N33 68.13(6) 

 

Table 5.13: Important bond distances and angles present in 42sc. 

 

The packing shows different layers composed of  [Ag2(42)4]2+ species. Each layer 

present an alternating orientation of the  [Ag2(42)4]2+ species. They are placed in the 

“down to up” and “up to down” orientation. The layers follow the same orientation as 

one another (Figure 5.33). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.33: Layer motifs in 42sc. 
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Single crystal structure for silver complex 44sc19 

 

44sc crystallizes in the monoclinic space group P2/n. A pentanuclear [Ag5(44)4]5+ 

cation is observed. This structure is best described as a tetrahedron of four silver 

atoms with a fifth silver at the centre. Details of the structure solution are given in 

Appendix 11, along with the atomic coordinates. The molecular structure of 44sc with 

labelling scheme is given in Figure 5.34.  

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

Figure 5.34: The molecular structure of 44sc with the labelling scheme. 

 

The central silver Ag5 is in a distorted tetrahedral N4 environment provided by the 

four pyridazine N2 donors. The Ag5–N contacts are 2.347(4) and 2.364(4) Å and the 

N–Ag5–N angles are 88.64(15)-122.23(15)°. The remaining four silver centres each 

show one short bond to a nitrogen in a ring C (2.176(4)–2.219(4) Å), one longer bond 

to a nitrogen in a ring A (2.220(5)-2.321(4) Å) and longer contacts to a chelating N1 

of a ring B (2.380(4)–2.419(4) Å), together with a contact to the fluorine of a 

tetrafluoroborate anion (Ag…F, 2.847–3.248 Å). The coordination geometry is best 

described as two-coordinate linear (N–Ag–N, 155.80(16)–157.55(19)° for the two 

shortest Ag–N bonds) with an additional interaction with the chelating B1 donor. Each 
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ligand binds the central silver atom and then acts as a bidentate donor and a 

monodentate donor to two further silver atoms of the outer Ag4 tetrahedron. The 

torsion angles between the B and C rings lie between 65.7° and 74.4°. However, 

instead of simply forming a [4 + 4] metallomacrocycle, an additional silver atom is 

bound to account for the four uncoordinated N2 atoms of the B ring that would 

otherwise result. The relationship between the four ligands and the silver core is 

shown in Figure 5.35. 

 

 

 

 

 

 

 

 

 

 

Figure 5.35: A graphical representation of the cation [Ag5(44)4]
5+. 

 

We note that the four silicon atoms and five silver atoms describe a metal-centred 

pair of stellated tetrahedra (Figure 5.36). 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.36: The relationship between the Ag4 and Si4 tetrahedra and the central Ag+ centre. 
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V.5 Conclusion 

 

In this chapter we described the synthesis of the ethynyl precursors 29, 31, 33, 35, 

38 and 41 that have been prepared with the Sonogashira reaction. 

We also showed the methodology to access to mono-substituted pyridazines, based 

on a retro Diels-Alder reaction that enabled us to prepare the ligands 30, 32, 34, 36, 

39, 42, 43 and 44. All these ligands were characterised by NMR spectroscopy, mass 

spectrometry and elemental analysis. We also obtained a single X-ray crystal 

structure for the ligand 34. 

Eight new silver complexes (30sc, 32sc, 34sc, 36sc, 39sc, 42sc, 43sc and 44sc) 

were prepared and characterised by NMR, mass spectrometry (apart from some 

cases, discussed in the chapter). 

We obtained suitable crystals for silver complexes 30sc, 34sc 39sc, 42sc and 44sc 

to carry out single X-ray diffraction analysis. Some of the crystal structures showed a 

dinuclear [Ag2(L)2]2+ cation with an arrangement of the ligands in a trans 

conformation (30sc and 34sc). The crystal structure of complex 39sc showed an 

[Ag (L)2]+ cation. Crystal structure of complexes 42sc and 44sc showed unexpected 

[Ag2(L)4]2+ and [Ag5(L)4]5+ cations. The steric environment of the tbutyl phenyl or 

trimethylsilyl substituents leads to these multinuclear silver structures by forcing the 

pyridyl ring C of the ligand to be significantly out of the plane of the ligand.  None of 

these crystal structures showed a grid like structure20, �-stacking or hydrogen 

bonding interactions. 
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V.6 Experimental part 

 

Synthesis of 1-ethynyl-4-methoxybenzene (29) 

 

 

Under argon and exclusion of moisture, 4-iodoanisole (3.0 g, 19 mmol), CuCl (0.28 g, 

2.8 mmol), and PdCl2(PPh3)2 (3) (1.8 g, 2.8 mmol) were suspended in dry, argon 

degassed, triethylamine (100 ml). Then trimethylsilylacetylene (2.3 ml, 17 mmol) was 

added and the mixture stirred at 60°C overnight. The solvent was removed and the 

residue extracted with hexane (150 ml). The solution was filtered and the solvent 

removed from the filtrate by evaporation. The residue was purified by 

chromatographic work-up (alumina, hexane, the second band was collected). The 

product was dissolved in THF (50 ml) and an aqueous solution of 1M NaOH added 

(100 ml). The mixture was stirred at room temperature overnight and then diluted with 

water until a precipitate was formed. The compound was extracted with 

dichloromethane and the combined organic phases were dried over MgSO4. The 

solvent was removed to give an orange powder (1.4 g, 11 mmol, 57%, C9H8O, 132.2 

g/mol). 

 
1H NMR (CDCl3, 400 MHz) �/ppm: 7.44 (d, J=8.6 Hz, 2H, H3+5), 6.85 (d, J=9.0 Hz, 

2H, H4+6), 3.81 (s, 3H, CH3), 3.01 (s, 1H, ethynyl). 
13C NMR (CDCl3, 100 MHz) �/ppm: 159.8, 133.5, 114.1, 113.8, 83.6, 75.7, 55.2. 

MS (MALDI) m/z: [L]+ 132, [L+K]+ 171. 

 

Synthesis of 4-(4-methoxyphenyl)-3,6-di(pyridin-2-yl)pyridazine (30) 

 

 

 

 

 

3,6-Bis(2�-pyridyl)-1,2,4,5-tetrazine (1) (0.60 g, 2.5 mmol) and 1-methoxy-4-

ethynylbenzene (29) (0.33 g, 2.5 mmol) were dissolved in toluene (50 ml). The 

solution was refluxed for 70 hours. After evaporation of the solvent under reduced 

pressure, the crude product was purified by chromatographic work-up (alumina, 

MeO

N NN N

OMe

A B C

D



Chapter V : Diverse pyridazines 
___________________________________________________________________ 

 181

chloroform, the third band was collected). The product was obtained as a beige 

powder (591 mg, 1.73 mmol, 69.5%, C21H16N4O, 340.4 g/mol). 
1H NMR (CDCl3, 400 MHz) �/ppm: 8.80 (d, J=7.9 Hz, 1H, H3A), 8.74 (d, J=4.8 Hz, 1H, 

H6A), 8.65 (s, 1H, H3B), 8.54 (d, J=4.8 Hz, 1H, H6C), 7.92 (td, J=7.7, 1.6 Hz, 1H, H4A), 

7.85 (d, J=7.6 Hz, 1H, H3C), 7.81 (td, J=7.4, 1.6 Hz, 1H, H4C), 7.42 (dd, J=7.6, 4.8 Hz, 

1H, H5A), 7.30 (dd, J=7.6, 4.8 Hz, 1H, H5C), 7.21 (d, J=8.8 Hz, 2H, H3D+5D), 6.84 (d, 

J=8.9 Hz, 2H, H2D+6D), 3.81 (s, 3H, OCH3). 
13C NMR (CDCl3, 100 MHz) �/ppm: 159.8, 158.3, 157.6, 156.0, 153.4, 149.3, 149.0, 

140.1, 137.3, 136.7, 130.4, 128.8, 125.2, 124.9, 124.8, 123.3, 121.9, 114.0, 55.3, 2 

carbon signals unresolved. 

MS (MALDI) m/z: [L]+ 342, [Na+2L+MeCN]+ 744. 

Elem. Anal. (C21H16N4O) [%] calc. C 74.1, H 4.7, N 16.5, found, C 73.7, H 4.8, N 

16.5. 

 

Synthesis of 1-(4-ethynylphenyl)ethanone (31) 

 

 

Under argon and exclusion of moisture, 4-bromoacetophenone (2.0 g, 10 mmol), 

CuCl (0.22 g, 2.2 mmol), and PdCl2(PPh3)2 (3) (1.5 g, 2.1 mmol) were suspended in 

dry, argon degassed, triethylamine (100 ml). Then trimethylsilylacetylene (2.1 ml, 15 

mmol) was added and the mixture stirred at 60°C overnight. The solvent was 

removed and the residue extracted with hexane (150 ml). The solution was filtered 

and the solvent removed from the filtrate by evaporation. The residue was purified by 

chromatographic work-up (alumina, hexane/dichloromethane (25:1), the second band 

was collected). The product was dissolved in THF (50 ml) and an aqueous solution of 

1M NaOH added (100 ml). The mixture was stirred at room temperature overnight 

and then diluted with water until a precipitate was formed. The compound was 

extracted with dichloromethane and the combined organic phases were dried over 

MgSO4. The solvent was removed to give an orange powder (1.1 g, 7.6 mmol, 76%, 

C10H8O, 144.2 g/mol). 

 
1H NMR (CDCl3, 400 MHz) �/ppm: 7.89 (d, J=8.5 Hz, 2H, H2+6), 7.55 (d, J=8.5 Hz, 

2H, H3+5), 3.24 (s, 1H, ethynyl), 2.47 (s, 3H, CH3). 

O

Me
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13C NMR (CDCl3, 100 MHz) �/ppm: 197.1, 136.6, 132.2, 128.0, 126.8, 82.6, 80.3, 

26.5. 

MS (ESI) m/z: [(L-COCH3)]+ 101, [(L-CH3)]+ 129, [L]+ 144. 

Elem. Anal. (C10H8O) [%] calc. C 83.3, H 5.6, found, C 83.3, H 5.7. 

 

Synthesis of 1-(4-(3,6-di(pyridin-2-yl)pyridazin-4-yl)phenyl)ethanone (32) 

 

 

 

 

 

3,6-Bis(2�-pyridyl)-1,2,4,5-tetrazine (1) (0.50 g, 2.1 mmol) and 1-(4-

ethynylphenyl)ethanone (31) (0.31 g, 2.2 mmol) were dissolved in toluene (80 ml). 

The solution was refluxed for 72 hours. After evaporation of the solvent under 

reduced pressure, the crude product was purified by chromatographic work-up 

(alumina, dichloromethane/EtOAc (5:1), the second band was collected). The product 

was obtained as a beige solid (0.58 g, 1.6 mmol, 75%, C22H16N4O, 352.4 g/mol). 

 
1H NMR (CDCl3, 500 MHz) �/ppm: 8.78 (d, J=8.0 Hz, 1H, H3A), 8.71 (d, J=4.7 Hz, 1H, 

H6A), 8.65 (s, 1H, H3B), 8.38 (d, J=4.7 Hz, 1H, H6C), 8.02 (d, J=7.8 Hz, 1H, H3C), 7.90 

(m, 3H, H2D+6D+4A), 7.82 (td, J=7.5, 1.6 Hz, 1H, H4C), 7.41 (dd, J=7.5, 4.4 Hz, 1H, 

H5A), 7.35 (d, J=8.1 Hz, 2H, H3D+5D), 7.27 (dd, J=7.5, 4.4 Hz, 1H, H5C), 2.59 (s, 3H, 

CH3). 
13C NMR (CDCl3, 125 MHz) �/ppm: 197.6, 158.0, 157.8, 155.3, 153.1, 149.6, 149.0, 

142.1, 139.6, 137.4, 136.9, 136.6, 129.2, 128.4, 125.7, 125.1, 124.9, 123.7, 122.0, 

26.7, 2 carbon signals unresolved. 

MS (EI) m/z: [Na+L+2MeCN]+ 456, [Na+2L+MeCN]+ 767. 

Elem. Anal. (C22H16N4O) [%] calc. C 75.0, H 4.6, N 15.9, found, C 75.2, H 4.7, N 

15.7. 

 

Synthesis of 4-ethynylbenzonitrile (33) 

 

 

N NN N
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Under argon and exclusion of moisture, 4-bromonitrobenzene (2.0 g, 11 mmol), CuCl 

(0.16 g, 1.6 mmol), and PdCl2(PPh3)2 (3) (0.40 g, 0.57 mmol) were suspended in dry, 

argon degassed, triethylamine (120 ml). Then trimethylsilylacetylene (2.6 ml, 19 

mmol) was added and the mixture stirred at 65°C overnight. The solvent was 

removed and the residue extracted with hexane (150 ml). The solution was filtered 

and the solvent removed from the filtrate by evaporation. The residue was purified by 

chromatographic work-up (alumina, hexane, the second band was collected). The 

product was dissolved in THF (5O ml) and an aqueous solution of 1M NaOH added 

(75 ml). The mixture was stirred at room temperature overnight and then diluted with 

water until a precipitate was formed. The compound was extracted with 

dichloromethane and the combined organic phases were dried over MgSO4. The 

solvent was removed to give a brown powder (1.3 g, 10 mmol, 91%, C9H5N, 127.1 

g/mol). 
 

1H NMR (CDCl3, 400 MHz) �/ppm: 7.61 (d, J=8.4 Hz, 2H, H2D+6D), 7.56 (d, J=8.4 Hz, 

2H, H3D+5D), 1.26 (s, 1H, ethynyl). 
13C NMR (CDCl3, 100 MHz) �/ppm: 132.6, 131.9, 126.9, 118.2, 112.2, 81.8, 81.5. 

MS (EI) m/z: [L]+ 127. 

Elem. Anal. (C9H5N, 0.2 H2O) [%] calc. C 82.7, H 4.1, N 10.6, found C 82.8, H 4.2, N 

10.5. 

 

Synthesis of 4-(3,6-di(pyridin-2-yl)pyridazin-4-yl)benzonitrile (34) 

 

 

 

 

 

 

3,6-Bis(2�-pyridyl)-1,2,4,5-tetrazine (1) (0.83 g, 3.5 mmol) and 4-ethynylbenzonitrile 

(33) (0.50 g, 3.9 mmol) were dissolved in toluene (140 ml). The solution was refluxed 

for 6 days. After evaporation of the solvent under reduced pressure, the crude 

product was purified by chromatographic work-up (alumina, hexane/EtOAc (1:1), the 

second band was collected). The product was obtained as a pale yellow powder 

(1.03 g, 3.07 mmol, 87.7%, C21H13N5, 335.4 g/mol). 

N NN N
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1H NMR (CDCl3, 400 MHz) �/ppm: 8.79 (d, J=8.0 Hz, 1H, H3A), 8.71 (d, J=4.8 Hz, 1H, 

H6A), 8.62 (s, 1H, H3B), 8.35 (d, J=4.4 Hz, 1H, H6C), 8.13 (d, J=8.0 Hz, 1H, H3C), 7.92 

(td, J=8.0, 1.6 Hz, 1H, H4A), 7.86 (td, J=8.0, 1.6 Hz, 1H, H4C), 7.61 (d, J=8.4 Hz, 2H, 

H3D+5D), 7.42 (dd, J=7.6, 4.8 Hz, 1H, H5A), 7.36 (d, J=8.4 Hz, 2H, H4D+6D), 7.28 (dd, 

J=7.6, 4.8 Hz, 1H, H5C). 

 13C NMR (CDCl3, 100 MHz) �/ppm: 157.7, 157.5, 154.7, 152.7, 149.4, 148.7, 142.3, 

138.7, 137.2, 136.9, 132.0, 129.4, 125.5, 125.0, 124.7, 123.8, 121.8, 118.4, 111.9, 2 

carbon signals unresolved. 

MS (EI) m/z: [Na+L+2MeCN]+ 439, [Na+2L+MeCN]+ 733. 

Elem. Anal. (C21H13N5) [%] calc. C 75.2, H 3.9, N 20.9, found, C 75.0, H 4.0, N 20.7. 

 

Synthesis of 1-ethynyl-4-methylbenzene (35) 

  

 

Under argon and exclusion of moisture, 4-iodotoluene (3.0 g, 14 mmol), CuCl (70 mg, 

0.85 mmol), and PdCl2(PPh3)2 (3) (0.60 g, 0.85 mmol) were suspended in dry, argon 

degassed, triethylamine (120 ml). Then trimethylsilylacetylene (2.6 ml, 19 mmol) was 

added and the mixture stirred at 60°C for 4 hours. The solvent was removed and the 

residue extracted with hexane (150 ml). The solution was filtered and the solvent 

removed from the filtrate by evaporation. The residue was purified by 

chromatographic work-up (alumina, hexane/dichloromethane (99:1), the second band 

was collected). The product was dissolved in THF (100 ml) and an aqueous solution 

of 1M NaOH added (150 ml). The mixture was stirred at room temperature overnight 

and then diluted with water until a precipitate was formed. The compound was 

extracted with dichloromethane and the combined organic phases were dried over 

MgSO4. The solvent was removed to give a yellow powder (0.62 g, 5.3 mmol, 39%, 

C9H7, 116.2 g/mol). 

 
1H NMR (CDCl3, 400 MHz) �/ppm: 7.45 (d, J=8.0 Hz, 2H, H2+6), 7.16 (d, J=8.0 Hz, 

2H, H3+5), 3.09 (s, 1H, ethynyl), 2.39 (s, 3H, CH3). 
13C NMR (CDCl3, 100 MHz) �/ppm: 138.8, 131.9, 128.9, 118.9, 83.7, 76.4, 21.3. 

 

 

 

Me



Chapter V : Diverse pyridazines 
___________________________________________________________________ 

 185

Synthesis of 3,6-di(pyridin-2-yl)-4-tolylpyridazine (36) 

 

 

 

 

 

3,6-Bis(2�-pyridyl)-1,2,4,5-tetrazine (1) (0.78 g, 3.3 mmol) and 1-ethynyl-4-

methylbenzene (35)  (0.39 g, 3.4 mmol) were dissolved in toluene (90 ml). The 

solution was refluxed for 6 days. After evaporation of the solvent under reduced 

pressure, the crude product was purified by chromatographic work-up (alumina, 

hexane/EtOAc (1:2), the second band was collected). The product was obtained as 

an orange powder (0.97 g, 3.0 mmol, 91%, C21H16N4, 324.1 g/mol). 

 
1H NMR (CDCl3, 500 MHz) �/ppm: 8.82 (d, J=7.8 Hz, 1H, H3A), 8.75 (d, J=4.5 Hz, 1H, 

H6A), 8.70 (s, 1H, H3B), 8.55 (d, J=4.5 Hz, 1H, H6C), 7.95 (td, J=7.8, 1.6 Hz, 1H, H4A), 

7.84 (m, 2H, H3C+4C), 7.45 (dd, J=7.6, 4.8 Hz, 1H, H5A), 7.33 (m, 1H, H5C), 7.21 (d, 

J=6.8 Hz, 2H, H2D+6D), 7.09 (d, J=6.8 Hz, 2H, H3D+5D), 2.36 (s, 3H, CH3). 
13C NMR (CDCl3, 125 MHz) �/ppm: 158.3, 157.6, 155.8, 153.3, 149.3, 148.9, 140.4, 

138.5, 137.3, 136.7, 133.7, 129.2, 128.9, 125.5, 125.0, 124.8, 123.4, 121.9, 21.2, 2 

carbon signals unresolved. 

MS (EI) m/z: [L]+ 323. 

Elem. Anal. (C21H16N4) [%] calc. C 77.8, H 5.0, 17.3, found C 77.1, H 5.0, N 17.0. 

 

Synthesis of 1-iodo-3,5-dimethoxybenzene (37) 

 

 

 

Under argon 3,5-dimethoxyaniline (5.0 g, 32 mmol) was suspended in water (150 ml). 

Concentrated hydrochloric acid (2.5 ml) was added and the brown solution cooled to 

0°C. A solution of sodium nitrite (2.3 g, 34 mmol) in 30ml water was slowly added. 

The mixture was stirred at 0°C for one hour. A catalytic amount of copper(I) iodide 

(125 mg) was added before the slow addition of potassium iodide (14 g, 88 mmol). 

The mixture was stirred at 0°C for 6 hours. From time to time, tetrahydrofuran (total 

90 ml) was added to increase the solubility. Water (50 ml) and diethyl ether (80 ml) 
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were added under vigorous stirring and the two layers separated. The aqueous layer 

was extracted with diethyl ether and the combined organic phases washed with brine 

and dried over MgSO4. The solvent was removed under reduced pressure and the 

dark residue purified by chromatographic work-up (alumina, chloroform, the third 

band was collected) to give a yellow solid (2.7 g, 10 mmol, 31%, C8H9IO2, 264.1 

g/mol). 
1H NMR (CDCl3, 400 MHz) �/ppm: 6.86 (d, J=2.0 Hz, 2H, H2+6), 6.40 (t, J=2.0 Hz, 1H, 

H4), 3.76 (s, 6H, (OCH3)2). 
13C NMR (CDCl3, 100 MHz) �/ppm: 161.0, 115.7, 100.6, 99.0, 55.4. 

MS (EI) m/z: [L]+ 264. 

 

Synthesis of 1-ethynyl-3,5-dimethoxybenzene (38) 

 

 

  

 

Under argon and exclusion of moisture, 1-iodo-3,5-dimethoxybenzene (37) (1.0 g, 3.8 

mmol), CuCl (40 mg, 0.38 mmol), and PdCl2(PPh3)2 (3) (0.27 g, 0.38 mmol) were 

suspended in dry, argon degassed, triethylamine (100 ml). Then 

trimethylsilylacetylene (0.8 ml, 6 mmol) was added and the mixture stirred at 60°C for 

18 hours. The solvent was removed and the residue extracted with hexane (150 ml). 

The solution was filtered and the solvent removed from the filtrate by evaporation. 

The residue was purified by chromatographic work-up (alumina, 

hexane/dichloromethane (9:1), the second band was collected). The product was 

dissolved in THF (100 ml) and an aqueous solution of 1M NaOH added (150 ml). The 

mixture was stirred at room temperature overnight and then diluted with water until a 

precipitate was formed. The compound was extracted with dichloromethane and the 

combined organic phases were dried over MgSO4. The solvent was removed to give 

a brown powder (0.47 g, 2.9 mmol, 76%, C10H10O2, 162.2 g/mol). 

 
1H NMR (CDCl3, 400 MHz) �/ppm: 6.65 (d, J=2.0 Hz, 2H, H2+6), 6.47 (t, J=2.0 Hz, 1H, 

H4), 3.78 (s, 6H, (OCH3)2), 3.04 (s, 1H, ethynyl). 
13C NMR (CDCl3, 100 MHz) �/ppm: 160.4, 123.3, 109.9, 102.2, 85.5, 76.7, 55.3. 

MS (EI) m/z: [L-2OCH3]+ 102, [L-OCH3]+ 133, [L]+ 162. 

OMe

OMe
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Elem. Anal. (C10H10O2) [%] calc. C 74.1, H 6.2, found, C 73.6, H 6.4. 

 

Synthesis of 4-(3,5-dimethoxyphenyl)-3,6-di(pyridin-2-yl)pyridazine (39) 

 

 

 

 

 

3,6-Bis(2�-pyridyl)-1,2,4,5-tetrazine (1) (0.26 g, 1.1 mmol) and 1-ethynyl-3,5-

dimethoxybenzene (38) (0.20 g, 1.2 mmol) were dissolved in toluene (35 ml). The 

solution was refluxed for 7 days. After evaporation of the solvent under reduced 

pressure, the crude product was purified by chromatographic work-up (alumina, 

hexane/EtOAc (1:2), the second band was collected). The product was obtained as a 

pale orange powder (0.36 g, 0.97 mmol, 88%, C22H18N4O2, 370.4 g/mol). 

 
1H NMR (CDCl3, 400 MHz) �/ppm: 8.78 (d, J=8.4 Hz, 1H, H3A), 8.71 (d, J=5.0 Hz, 1H, 

H6A), 8.66 (s, 1H, H3B), 8.55 (d, J=5.0 Hz, 1H, H6C), 7.90 (td, J=8.0, 1.6 Hz, 1H, H4A), 

7.80 (m, 2H, H3C+4C), 7.40 (dd, J=7.6, 4.8 Hz, 1H, H5A), 7.28 (dd, J=7.6, 4.8 Hz, 1H, 

H5C), 6.39 (m, 3H, HD), 3.64 (s, 6H, CH3). 
13C NMR (CDCl3, 100 MHz) �/ppm: 160.6, 158.3, 157.7, 155.8, 153.3, 149.3, 149.1, 

140.3, 138.6, 137.1, 136.4, 125.2, 124.7, 123.2, 121.8, 107.0, 100.9, 55.3, 4 carbon 

signals unresolved. 

MS (EI) m/z: [L+K+DCM]+ 492, [2L+K+Na]+ 803, [2L+K+DCM]+ 863. 

Elem. Anal. (C22H18N4O2) [%]: calc. C 71.3, H 4.9, N 15.1, found, C 71.3, H 4.9, N, 

15.0. 

 

Synthesis of 1-tert-butyl-4-iodobenzene (40) 

 

 

Under argon 4-tert-butylaniline (3.0 g, 20 mmol) was suspended in water (150 ml). 

Concentrated hydrochloric acid (4.6 ml) was added and the brown solution cooled to 

0°C. A solution of sodium nitrite (1.4 g, 20 mmol) in 20 ml water was slowly added. 

The mixture was stirred at 0°C for one hour. A catalytic amount of copper(I) iodide 

(115 mg) was added before the slow addition of potassium iodide (9.0 g, 55 mmol). 
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The mixture was stirred at 0°C for 6 hours. From time to time, tetrahydrofuran (total 

70 ml) was added to increase the solubility. Water (50 ml) and diethyl ether (80 ml) 

were added under vigorous stirring and the two layers separated. The aqueous layer 

was extracted with diethyl ether and the combined organic phases washed with brine 

and dried over MgSO4. The solvent was removed under reduced pressure and the 

dark residue purified by chromatographic work-up (alumina, chloroform, the third 

band was collected) to give a red oil (4.6 g, 18 mmol, 90%, C10H13I, 260.1 g/mol). 

 
1H NMR (CDCl3, 400 MHz) �/ppm: 7.61 (d, J=8.4 Hz, 2H, H3+5), 7.14 (d, J=8.8 Hz, 

2H, H2+6), 1.30 (s, 9H, t-butyl). 
13C NMR (CDCl3, 100 MHz) �/ppm: 150.8, 137.0, 90.6, 127.5, 34.5, 31.1. 

MS (EI) m/z: [L-3CH3]+ 217, [L-CH3]+ 245, [L]+ 260.  

Elem. Anal. (C22H18N4O2 + CH3CN) [%]: calc. C 47.9, H 5.4, found, C 47.8, H 5.3. 

 

Synthesis of 1-tert-butyl-4-ethynylbenzene (41) 

 

 

Under argon and exclusion of moisture, 1-tert-butyl-4-iodobenzene (40) (2.0 g, 7.7 

mmol), CuCl (80 mg, 0.77 mmol), and PdCl2(PPh3)2 (3) (0.54 g, 0.77 mmol) were 

suspended in dry, argon degassed, triethylamine (100 ml). Then 

trimethylsilylacetylene (1.8 ml, 13 mmol) was added and the mixture stirred at 60°C 

for 18 hours. The solvent was removed and the residue extracted with hexane (150 

ml). The solution was filtered and the solvent removed from the filtrate by 

evaporation. The residue was purified by chromatographic work-up (alumina, hexane, 

the second band was collected). The product was dissolved in THF (100 ml) and an 

aqueous solution of 1M NaOH added (120 ml). The mixture was stirred at room 

temperature overnight and then diluted with water until a precipitate was formed. The 

compound was extracted with dichloromethane and the combined organic phases 

were dried over MgSO4. The solvent was removed to give an orange oil (0.33 g, 2.1 

mmol, 27%, C12H14, 158.2 g/mol). 

 
1H NMR (CDCl3, 400 MHz) �/ppm: 7.45 (d, J=8.4 Hz, 2H, H3+5), 7.36 (d, J=8.8 Hz, 

2H, H2+6), 3.04 (s, 1H, ethynyl), 1.33 (s, 9H, t-butyl).  
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13C NMR (CDCl3, 100 MHz) �/ppm: 152.0, 131.8, 125.2, 119.0, 83.78, 76.4, 34.7, 

31.1. 

 

Synthesis of 4-(4-tert-butylphenyl)-3,6-di(pyridin-2-yl)pyridazine (42) 

 

 

 

 

 

 

3,6-Bis(2�-pyridyl)-1,2,4,5-tetrazine (1) (0.20 g, 1.3 mmol) and 1-tert-butyl-4-

ethynylbenzene (41) (0.28 g, 1.8 mmol) were dissolved in toluene (30 ml). The 

solution was refluxed for 42 hours. After evaporation of the solvent under reduced 

pressure, the crude product was purified by chromatographic work-up (alumina, 

hexane/EtOAc (2:1), the second band was collected). The product was obtained as a 

beige powder (0.42 g, 1.1 mmol, 87%, C24H22N4, 366.5 g/mol). 

 
1H NMR (CDCl3, 400 MHz) �/ppm: 8.79 (d, J=7.8 Hz, 1H, H3A), 8.72 (d, J=4.8 Hz, 1H, 

H6A), 8.66 (s, 1H, H3B), 8.50 (d, J=4.8 Hz, 1H, H6C), 7.88 (m, 2H, H3C+4A), 7.90 (td, 

J=7.5, 1.6 Hz, 1H, H4C), 7.39 (dd, J=6.8, 4.4 Hz, 1H, H5A), 7.32 (d, J=9.2 Hz, 2H, 

H2D+6D), 7.91 (dd, J=6.8, 4.4 Hz, 1H, H5C), 7.19 (d, J=8.8 Hz, 2H, H3D+5D), 1.30 (s, 9H, 

t-butyl). 
13C NMR (CDCl3, 100 MHz) �/ppm: 158.3, 157.6, 156.0, 153.4, 151.6, 149.4, 149.0, 

140.3, 137.1, 136.4, 133.7, 128.6, 125.5, 125.3, 124.8, 124.6, 123.2, 121.8, 34.6, 

31.2, 2 carbon signals unresolved. 

MS (EI) m/z: [L+K+DCM]+ 488, [2L+K+Na]+ 795, [2L+CHCl3]+ 854. 

Elem. Anal. (C22H18N4O2) [%]: calc. C 78.7, H 6.1, N 15.3, found, C 78.5, H 6.2, N 

15.1. 

 

Synthesis of 1-(3,6-di(pyridin-2-yl)pyridazin-4-yl)cyclohexan-1-ol (43) 
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3,6-Bis(2�-pyridyl)-1,2,4,5-tetrazine (1) (0.30 g, 1.3 mmol) and 1-ethynyl-cyclohexan-

1-ol (0.19 g, 1.5 mmol) were dissolved in toluene (70 ml). The solution was refluxed 

for 15 days. After evaporation of the solvent under reduced pressure, the crude 

product was purified by chromatographic work-up (alumina, hexane/EtOAc (1:1), the 

second band was collected). The product was obtained as a pale pink powder (0.30 

g, 0.90 mmol, 71%, C20H20N4O, 332.4 g/mol). 

 
1H NMR (CDCl3, 400 MHz) �/ppm: 8.74 (s, 1H, H3B), 8.72 (m, 2H, H3A+6A), 8.63 (d, 

J=5.0 Hz, 1H, H6C), 8.36 (d, J=7.6 Hz, 1H, H3C), 7.98 (td, J=7.5, 1.6 Hz, 1H, H4A), 

7.87 (td, J=7.6, 1.6 Hz, 1H, H4C), 7.45 (dd, J=7.6, 4.8 Hz, 1h, H5A), 7.38 (dd, J=7.6, 

4.8 Hz, 1H, H5C), 1.96 (d, J=12.1 Hz, 2H, CH2D), 1.85 (m, 2H, CH2D), 1.64 (m, 3H, 

CHD+CH2D), 1.21 (m, 1H, CHD). 
13C NMR (CDCl3, 100 MHz) �/ppm: 158.0, 157.6, 157.3, 153.2, 149.5, 147.7, 146.6, 

138.2, 137.0, 126.4, 124.7, 124.2, 121.8, 121.7, 70.8, 36.2, 25.6, 21.8, 2 carbon 

signals unresolved. 

MS (EI) m/z: [L+CHCl3]+ 454, [Na+2L+MeCN]+ 727, [2L+CHCl3]+ 787. 

Elem. Anal. (C20H20N4O) [%] calc. C 72.1, H 6.4, N 16.8, found, C 71.9, H 6.1, N 

16.7. 

 

Synthesis of 3,6-di(pyridin-2-yl)-4-(trimethylsilyl)pyridazine (44) 

 

 

 

A solution of 3,6-bis(2�-pyridyl)-1,2,4,5-tetrazine (1) (1.0 g, 4.2 mmol) and 

trimethylsilylacetylene (0.75 ml, 5.4 mmol) in toluene (50 ml) was refluxed for 60 

hours. After evaporation of the solvent under reduced pressure, the crude product 

was purified by column chromatography (alumina, EtOAc/hexane (1:2), the second 

band was collected). The product was obtained as a yellow powder (0.64 g, 2.1 

mmol, 50%, C17H18N4Si, 306.4 g/mol). 

 
1H NMR (CDCl3, 400 MHz) �/ppm: 8.87 (s, 1H, H3B), 8.75 (d, J=4.8 Hz, 1H, H6A), , 

8.73 (d, J=7.9 Hz, 1H, H3A), 8.66 (d, J=4.8Hz, 1H, H6C), 8.61 (d, J=8.0 Hz, 1H, H3C), 

7.90 (td, J=8.1, 1.6 Hz, 1H, H4A), 7.88 (td, J=8.1, 1.6 Hz, 1H, H4C), 7.40 (dd, J=7.5, 

4.4 Hz, 1H, H5A), 7.38 (dd, J=7.5, 4.4 Hz, 1H, H5C), 0.35 (s, 9H, Si (CH3)3). 
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13C NMR (CDCl3, 100 MHz) �/ppm: 162.0, 156.3, 155.5, 153.9, 149.4, 147.4, 139.9, 

137.2, 137.0, 132.4, 124.5, 124.2, 122.8, 121.8, 1.1, 2 carbon signals unresolved. 

MS (ESI) m/z: [Na+2L+MeCN]+ 675. 

Elem. Anal. (C17H18N4Si) [%] calc. C 66.6, H 5.9, N 18.3; found, C 67.0, H 6.0, N 

18.2. 

 

 

Silver complexes 

 

All the silver complexes were prepared by using the same procedure. One equivalent 

of silver tetrafluoroborate or silver trifluoromethane sulfonate was mixed with one 

equivalent of the diazine ligand in 15 ml of acetonitrile. The mixture was sonicated for 

five minutes and then stirred under reflux for a further fifteen minutes. The solvent 

was evaporated to give the silver complexes. 

 

Synthesis of 4-(4-methoxyphenyl)-3,6-di(pyridin-2-yl)pyridazine silver complex 

(30sc) 

 

 

 

 

4-(4-Methoxyphenyl)-3,6-di(pyridin-2-yl)pyridazine (30) (32 mg, 0.16 mmol) and silver 

tetrafluoroborate (55 mg, 0.16 mmol) were used to prepare the silver complex (68 

mg, 0.13 mmol, 81%, C21H16N4OAgBF4). 

 
1H NMR (DMSO, 400 MHz) �/ppm: 8.90 (d, J=4.8 Hz, 1H, H6A), 8.81 (d, J=4.8 Hz, 

1H, H6C), 8.57 (s, 1H, H3B), 8.55 (d, J=8.0 Hz, 1H, H3A), 8.13 (td, J=8.0, 1.6 Hz, 1H, 

H4A), 7.83 (td, J=8.0, 1.6 Hz, 1H, H4C), 7.75 (dd, J=6.8, 4.8 Hz, 1H, H5A), 7.59 (dd, 

J=8.0, 4.8 Hz, 1H, H5C), 7.32 (d, J=8.0 Hz, 1H, H3C), 7.11 (dt, J=9.2, 2.0 Hz, 2H, 

H3D+5D), 6.92 (dt, J=9.2, 2.0 Hz, 2H, H2D+6D), 3.77 (s, 3H, O-CH3). 
13C NMR (DMSO, 100 MHz) �/ppm: 160.2, 157.5, 155.2, 153.1, 150.5, 150.4, 150.1, 

140.7, 138.6, 137.4, 130.6, 126.8, 126.7, 126.3, 125.9, 124.9, 123.4, 114.2, 55.2, 2 

carbon signals unresolved. 

MS (MALDI) m/z [L]+ 340, [Ag+L]+ 448, [Ag+2L]+ 788. 
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Synthesis of 1-(4-(3,6-di(pyridin-2-yl)pyridazin-4-yl)phenyl)ethanone silver 

complex (32sc) 

 

 

 

 

1-(4-(3,6-Di(pyridin-2-yl)pyridazin-4-yl)phenyl)ethanone (32) (70 mg, 0.20 mmol) and 

silver tetrafluoroborate (38 mg, 0.20 mmol) to prepare the silver complex (92 mg, 

0.17 mmol, 85%, C22H16N4OAgBF4). 

 
1H NMR (DMSO, 400 MHz) �/ppm: 8.82 (d, J=4.0 Hz, 1H, H6A), 8.68 (d, J=4.4 Hz, 

1H, H6C), 8.64 (s, 1H, H3B), 8.51 (d, J=8.0 Hz, 1H, H3A), 8.08 (td, J=8.0, 2.0 Hz, 1H, 

H4A), 7.85 (d, J=8.8 Hz, 2H, H3D+5D), 7.76 (td, J=7.8, 1.6 Hz, 1H, H4C), 7.69 (dd, 

J=6.8, 4.4 Hz, 1H, H5A), 7.50 (dd, J=6.8, 4.0 Hz, 1H, H5C), 7.33 (d, J=7.6 Hz, 1H, 

H3C), 7.29 (d, J=8.0 Hz, 2H, H2D+6D), 2.60 (s, 3H, CH3). 
13C NMR (DMSO, 100 MHz) �/ppm: 197.4, 157.6, 155.4, 152.4, 150.8, 150.6, 149.8, 

140.3, 139.6, 138.9, 137.6, 136.9, 129.5, 128.4, 127.6, 126.6, 126.1, 125.1, 123.5, 2 

carbon signals unresolved. 

MS (ES) m/z [Ag+L+MeCN]+ 499, [Ag+L+3MeCN]+ 585. 

Elem. Anal. (C22H16N4OAgBF4 + 0.5H2O) [%] calc. C 47.5, H 3.1, N 10.1, found, C 

47.7, H 3.3, N 10.0. 

 

Synthesis of 4-(3,6-di(pyridin-2-yl)pyridazin-4-yl)benzonitrile silver complex 

(34sc) 

 

 

 

 

 

4-(3,6-Di(pyridin-2-yl)pyridazin-4-yl)benzonitrile (34) (80 mg, 0.24 mmol) and silver 

tetrafluoroborate (46 mg, 0.24 mmol) were used to prepare the silver complex (0.12 

g, 0.22 mmol, 92%, C21H13N5AgBF4). 

 

N NN N

O
Me

A B C

D
AgBF4

N NN N

N

A B C

DAgBF4



Chapter V : Diverse pyridazines 
___________________________________________________________________ 

 193

1H NMR (DMSO, 400 MHz) �/ppm: 8.91 (d, J=4.0 Hz, 1H, H6A), 8.77 (m, 2H, H3B+6C), 

8.60 (d, J=8.0 Hz, 1H, H3A), 8.19 (td, J=8.0, 2.0 Hz, 1H, H4A), 7.88 (m, 3H, H4C+3D+5D), 

7.79 (dd, J=7.6, 5.2 Hz, 1H, H5A), 7.60 (dd, J=7.6, 5.2 Hz, 1H, H5C), 7.44 (d, J=8.0 

Hz, 2H, H2D+6D), 7.44 (d, J=8.0 Hz, 2H, H3C) 
13C NMR (DMSO, 100 MHz) �/ppm: 157.4, 155.3, 152.1, 150.8, 150.6, 149.6, 139.9, 

139.8, 138.9, 137.7, 132.5, 130.1, 127.8, 126.7, 126.2, 125.3, 123.7, 118.2, 111.9, 2 

carbon signals unresolved. 

MS (ES) m/z [L]+ 336, [Ag+L]+ 442, [Ag+2L]+ 777, [2Ag+2L+BF4]+ 973. 

Elem. Anal. (C42H26N10Ag2BF4 + 3H2O) [%] calc. C 49.1, H 3.1, N 13.6, found, C 

49.1, H 2.9, N 13.6. 

 

Synthesis of 3,6-di(pyridin-2-yl)-4-tolylpyridazine silver complex (36sc) 

 

 

 

 

 

3,6-di(pyridin-2-yl)-4-p-tolylpyridazine (36) (70 mg, 0.22 mmol) and silver 

tetrafluoroborate (42 mg, 0.22 mmol) were used to prepare the silver complex (92 

mg, 0.18 mmol, 82%, C21H16N4AgBF4). 

 
1H NMR (CD3CN, 500 MHz) �/ppm: 8.69 (m, 2H, H6A+6C), 8.25 (s, 1H, H3B), 8.17 (d, 

J=6.4 Hz, 1H, H3A), 8.01 (td, J=6.4, 1.2 Hz, 1H, H4A), 7.60 (dd, J=7.6, 5.2 Hz, 1H, 

H5A), 7.57 (td, J=6.4, 1.2 Hz, 1H, H4C), 7.43 (dd, J=7.6, 5.2 Hz, 1H, H5C), 7.17 (d, 

J=6.0 Hz, 2H, H3D+5D), 7.04 (d, J=6.4 Hz, 1H, H3C), 6.97 (d, J=6.4 Hz, 2H, H2D+6D), 

2.33 (s, 3H, Me). 

 13C NMR (CD3CN, 125 MHz) �/ppm: 159.0, 156.1, 153.4, 152.2, 152.1, 150.4, 143.4, 

141.5, 140.1, 138.5, 132.4, 130.6, 130.1, 129.0, 127.7, 127.5, 126.4, 124.8, 21.2, 2 

carbon signals unresolved. 

MS (ES) m/z [L]+ 325, [Ag+L]+ 431, [Ag+2L]+ 755, [2Ag+2L+BF4]+ 951. 

Elem. Anal. (C21H16N4AgBF4 + 0.5H2O) [%] calc. C 47.8, H 3.2, N 10.6, found, C 

47.8, H 3.4, N 10.5. 
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Synthesis of 4-(3,5-Dimethoxyphenyl)-3,6-di(pyridin-2-yl)pyridazine silver 

complex (39sc) 

 

 

 

 

4-(3,5-Dimethoxyphenyl)-3,6-di(pyridin-2-yl)pyridazine (39) (60 mg, 0.16 mmol) and 

silver tetrafluoroborate (32 mg, 0.16 mmol) were used to prepare the silver complex 

(69 mg, 0.12 mmol, 75%, C22H18N4O2AgBF4). 

 
1H NMR (DMSO, 400 MHz) �/ppm: 8.83 (d, J=4.8 Hz, 1H, H6A), 8.60 (m, 3H, 

H3B+6C+3A), 8.10 (td, J=7.8, 1.6 Hz, 1H, H4A), 7.93 (td, J=7.8, 1.6 Hz, 1H, H4C), 7.66 

(m, 2H, H3C+5A), 7.50 (dd, J=7.6, 5.2 Hz, 1H, H5C), 6.50 (t, J=2.4 Hz, 1H, H4D), 6.39 

(d, J=2.8 Hz, 2H, H2D+6D), 3.62 (s, 6H, OMe). 
13C NMR (DMSO, 100 MHz) �/ppm: 160.3, 158.2, 156.6, 154.5, 151.6, 149.4, 140.1, 

138.1, 137.7, 137.1, 125.7, 125.6, 125.2, 124.1, 122.1, 107.0, 100.7, 55.2, 3 carbon 

signals unresolved. 

MS (ES) m/z [L]+ 372, [Ag+2L]+ 849. 

Elem. Anal. (C66H54N12O6Ag + H2O) [%] calc. C 64.1, H 4.6, N 13.6, found, C 64.0, H 

4.6, N 13.6. 

 

Synthesis of 4-(4-tert-butylphenyl)-3,6-di(pyridin-2-yl)pyridazine silver complex 

(42sc) 

 

 

 

 

 

4-(4-tert-Butylphenyl)-3,6-di(pyridin-2-yl)pyridazine (42) (70 mg, 0.19 mmol) and 

silver tetrafluoroborate (37 mg, 0.19 mmol) were used to prepare the silver complex 

(93 mg, 0.17 mmol, 89%, C24H22N4AgBF4). 

 
1H NMR (DMSO, 400 MHz) �/ppm: 8.83 (d, J=4.0 Hz, 1H, H6A), 8.61 (m, 2H, H6C+3A), 

8.56 (s, 1H, H3B), 8.09 (td, J=7.6, 5.2 Hz, 1H, H4A), 7.92 (td, J=7.6, 2.4 Hz, 1H, H4C), 
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7.65 (m, 2H, H3C+5A), 7.50 (dd, J=7.2, 2.0 Hz, 1H, H5C), 7.37 (d, J=8.4 Hz, 2H, 

H2D+6D), 7.17 (d, J=8.4 Hz, 2H, H3D+5D), 1.26 (s, 9H, tbu). 
13C NMR (DMSO, 100 MHz) �/ppm: 154.5, 151.5, 150.1, 149.4, 140.0, 138.0, 137.1, 

132.8, 128.6, 125.7, 125.3, 125.2, 124.2, 121.9, 34.3, 30.8, 8 carbon signals 

unresolved. 

MS (ES) m/z [Na+2L+MeCN]+ 796, [Ag+2L]+ 841. 

Elem. Anal. (C48H44N8Ag + 2H2O) [%] calc. C 65.8, H 5.5, N 12.8, found, C 65.4, H 

5.4, N 12.8. 

 

Synthesis of 1-(3,6-di(pyridin-2-yl)pyridazin-4-yl)cyclohexan-1-ol silver 

tetrafluoroborate (43sc) 

 

 

 

 

 

1-(3,6-Di(pyridin-2-yl)pyridazin-4-yl)cyclohexan-1-ol (43) (70 mg, 0.21 mmol) and 

silver tetrafluoroborate (41 mg, 0.21 mmol) were used to prepare the silver complex 

(92 mg, 0.17 mmol, 81%, C20H20N4OAgBF4). 

 
1H NMR (DMSO, 400 MHz) �/ppm: 8.78 (d, J=4.0 Hz, 1H, H6A), 8.71 (d, J=5.2 Hz, 

1H, H6C), 8.67 (s, 1H, H3B), 8.16 (td, J=7.2, 1.6 Hz, 1H, H4A), 8.06 (td, J=7.2, 1.6 Hz, 

1H, H4C), 7.79 (d, J=8.4 Hz, 1H, H3C), 7.73 (dd, J=7.6, 5.2 Hz, 1H, H5A), 7.62 (dd, 

J=7.6, 5.2 Hz, 1H, H5C), 1.64 (m, 7H, HD), 1.41 (m, 2H, HD), 1.05 (m, 1H, HD). 
13C NMR (DMSO, 100 MHz) �/ppm: 159.6, 157.4, 155.0, 154.4, 150.7, 150.2, 148.5, 

138.9, 137.7, 126.3, 125.6, 124.2, 123.5, 122.9, 71.7, 36.4, 24.5, 21.0, 2 carbon 

signals unresolved. 

MS (ES) m/z [Ag+L]+ 439, [Ag+2L]+ 772, [2Ag+2L+BF4]+ 967. 

Elem. Anal. (C20H20N4OAgBF4) [%] calc. C 45.6, H 3.8, N 10.6, found, C 40.8, H 3.8, 

N 10.6. 
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Synthesis of 3,6-di(pyridin-2-yl)-4-(trimethylsilyl)pyridazine silver complex 

(44sc) 

 

 

 

3,6-Di(pyridin-2-yl)-4-(trimethylsilyl)pyridazine (44) (25 mg, 0.08 mmol) and silver 

tetrafluoroborate (16 mg, 0.08 mmol) were used to prepare the silver complex (35 

mg, 0.07 mmol, 88%, C17H18N4SiAgBF4). 

 
1H NMR (CD3CN, 500 MHz) �/ppm: 8.66 (d, J=4.3 Hz, 1H, H6A), 8.59 (d, J=4.8 Hz, 

1H, H6C), 8.47 (s, 1H, H3B), 8.26 (d, J=8.0 Hz, 1H, H3A), 8.06 (td, J=7.8, 1.7 Hz, 1H, 

H4A), 8.01 (d, J=7.8 Hz, 1H, H3C), 7.91 (td, J=7.7, 1.7 Hz, 1H, H4C), 7.61 (dd, J=7.6, 

4.9 Hz, 1H, H5A), 7.53 (dd, J=7.6, 4.9 Hz, 1H, H5C), 0.19 (s, 9H, Si(CH3)3). 
13C NMR (CD3CN, 125 MHz) �/ppm: 164.8, 156.2, 154.6, 152.1, 151.3, 150.3, 143.7, 

140.2, 139.1, 135.0, 127.6, 126.5, 124.7, 124.5, 0.3, 2 carbon signals unresolved. 

MS (ES) m/z [Ag+L+MeCN]+ 454, [Ag+2L]+ 719, [2Ag+2L+BF4]+ 914, 

[3Ag+2L+2BF4]+ 1109, [3Ag+3L+2BF4]+ 1416, [4Ag+2L+3BF4]+ 1609, 

[5Ag+3L+4BF4]+ 1804. 

Elem. Anal. (C17H18N4SiAgBF4+ C17H18N4SiAg) [%] calc. C 44.6, H 4.0, N 12.2, 

found, C 44.3, H 4.1, N 12.3 
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CHAPTER VI 

 

PYRIDAZINES WITH PENDANT ALKYL CHAINS 

 

 

VI.1 Introduction 

 

In order to further investigate the effect of the substituents on the 4-position of the 

tetrazine, we decided to focus our interest on substituents based on alkyl chains1,2. 

These substituents have also been used by other research groups to prepare 

complexes based on bipyridine and ruthenium3 or cobalt4. These complexes were 

used to do STM measurements5. 

We prepared these pyridazine ligands and complexes and used then for STM 

measurements, but the different attempts to obtain STM images were unsuccessful. 

However we obtained a single crystal structure from decyl-substituted pyridazine 

silver complex. 

 

To prepare these ligands, we used butyl, octyl or decyl substituted phenyl acetylenes 

and dodecyne. They reacted with 3,6-bis(2�-pyridyl)-1,2,4,5-tetrazine (1) to give the 

desired ligands. This chapter presents all the alkyl chain precursors synthesized (45, 

48 and 51 shown in Figure 6.1) and their respective pyridazines (46, 49, 52, and 

ligand 53 shown in Figure 6.2). They have all been characterized by 1H and 13C NMR 

spectroscopy, mass spectrometry and elemental analysis. 

The target molecules were the silver complexes (45sc, 48sc, 51sc and 53sc).  

So, we will talk about the synthesis of the ethynyl precursors, the desired ligands 

and, finally, about the silver complexes. 
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45 48

51
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Figure 6.1: Ethynyl precursors described in this chapter. 

 
 
 
 

 

Figure 6.2: Alkylated pyridazines presented in this work. 
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NH2 R I R

I R
SiMe3

R

+ NaNO2
+ KI+HCl

Pd(PPh3)2Cl2 + CuCl+

R= C8H17 or C10H21

NaOH

VI.2 Synthesis of the ethynyl precursors 

VI.2.1 Synthetic method 

 
To prepare these compounds, we used the Sonogashira6 reaction as described in the 

chapter II. To obtain the desired ethynyl precursor we needed a halogenated phenyl 

compound. These compounds were mixed with trimethylsilylacetylene, copper(I) 

chloride and bis(triphenylphosphine)palladium dichloride in triethylamine. This 

solution was refluxed under nitrogen to give the protected ethynyl precursor. This 

intermediate was dissolved in tetrahydrofuran and a solution of 1M sodium hydroxide 

was added. The target molecule was extracted and purified by chromatographic 

work-up over alumina. 

We always used iodo phenyl compounds. Ethynyl precursor 45 was prepared with 

the commercial 1-butyl-4-iodobenzene (A). To prepare compound 48 and 51 we 

needed to synthesise the halogenated compounds 1-iodo-4-octylbenzene (47) and 1-

iodo-4-decylbenzene (50). We synthesised 47 and 50 starting from 4-octylaniline and 

4-decylaniline that was mixed with NaNO2, hydrochloric acid and potassium iodide. 

More details of these syntheses are given in the experimental part at the end of this 

chapter. 

Figure 6.3 shows the general synthetic method adopted for the synthesis of 

compounds 48 and 51. 

 

 

Figure 6.3: Synthetic methods for the synthesis of compounds 48 and 51. 
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I I I

A 47 50

The preparation of 1-butyl-4-ethynylbenzene (45) follows the literature and examples 

given in chapter II. We mixed 1-butyl-4-iodobenzene with trimethylsilylacetylene, 

copper(I) chloride and bis(triphenylphosphine)palladium dichloride in triethylamine. 

This solution was refluxed under nitrogen to give the protected ethynyl precursor. 

This intermediate was dissolved in tetrahydrofuran and a solution of 1M sodium 

hydroxide was added. 1-Butyl-4-ethynylbenzene (45) was extracted and purified by 

chromatographic work-up over alumina. 

The last ethynyl compound used in this chapter was dodecyne. This compound is 

available commercially and was used directly, to synthesise 4-decyl-3,6-di(pyridin-2-

yl)pyridazine (53), without any further purification. More details of that reaction will be 

given in the second part of this chapter. 

Figure 6.4 shows the compounds used to prepare the ethynyl compounds. 

 

Figure 6.4: Compounds used to prepare the ethynyl compounds. 

 

For each ethynyl precursor presented here, the reactant ratio, time and yield are 

listed in the Table 6.1. Purification methods and synthetic details are discussed in the 

experimental section at the end of this chapter. 

 

Precursor Halogenated 
compound 

Reaction ratio 
(halogenated / 
tms acetylene) 

Reaction 
temperature 

(°C) 

Reaction time 
(hr) 

Yield (%) 

45 A 1/2.1 60 18 90 

48 47 1/1.8 60 18 88 

51 50 1/1.7 60 18 93 

 

Table 6.1: Reaction conditions for the synthesis of the ethynyl precursors 

 45, 48 and 51. 

 

Compounds 45, 48 and 51 were obtained, after purification, with good yields and 

could be used for the synthesis of the pyridazine ligands.  
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VI.2.2 Characterisation of the ethynyl precursors 

 

All the ethynyl precursors have been characterized by 1H NMR spectroscopy. 13C 

NMR spectroscopy could only be obtained for compounds 45, 48 and 51. 

Compounds 45, 48 and 51 were characterized by mass spectrometry. 

The general procedure and characterization of intermediates 47 and 56 are 

discussed at the end of this chapter in the experimental section. 

 

 
1H NMR spectroscopy  

We first focused our interest in the 1H NMR spectroscopic characterization. The 

ethynyl compounds synthesized in this chapter should have the characteristic signals 

for the ethynyl and phenyl groups7. It was also important to see the absence of the 

SiMe3 signals. This would show that the deprotection had been carried out 

successfully. We also focused our interest on the 1H NMR signals of the protons from 

the alkyl chain. Table 6.2 summarises the 1H NMR signals of the precursors. 

 

Ethynyl 
precursor 

Phenyl 
signals 
(�/ppm) 

Ethynyl 
signals 
(�/ppm) 

Alkyl chain 

45 740-7.13 (d-d) 3.02 (s) 2.60t- 1.54m- 1.34m-
0.94t 

48 7.42-7.14 (t-d) 3.04 (s) 2.61t- 1.62m- 1.29m-
0.91t 

51 7.42-7.14 (t-d) 3.04 (s) 2.61t- 1.61m- 1.30m-
0.90t 

 

Table 6.2: 1H NMR characterisation of the precursors 45, 48 and 51. 

 

 

The 1H NMR spectrum of each ethynyl precursor could be assigned by the chemical 

shifts and the relative integrals. As expected7, the different phenyl signals are at 

around � 7.5, 7.6 ppm and the ethynyl signals are near to � 3.1 ppm. The 1H NMR 

signals of the protons from the alkyl chain are between � 0.9 and 2.6 ppm. We can 
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1.01.52.02.53.03.54.04.55.05.56.06.57.07.5

1.01.52.02.53.03.54.04.55.05.56.06.57.07.5

notice that the spectra have the same diagnostic pattern of signals and that all the 

signals are placed in the same region. Figure 6.5 shows the 1H NMR spectra of the 

ethynyl precursors 48 and 51 

 

 

 

Figure 6.5: 1H NMR spectra of the ethynyl precursors 48 and 51. 

 

 

Mass spectrometric characterisation 

We obtained mass spectra for 1-butyl-4-ethynylbenzene (45), 1-ethynyl-4-

octylbenzene (48) and 1-decyl-4-ethynylbenzene (51). They were all characterised 

with the electrospray technique. These compounds show simple mass spectra with 

two peaks. In each case the peaks could be assigned to the “phenyl-ethynyl-CH2” 

m/z value and to the “L” m/z value. Table 6.3 summarises the different mass peaks 

detected for 45, 48 and 51. 

 

Ligand 45 48 51 

  m/z calc. m/z det. m/z calc. m/z det. m/z calc. m/z det. 

[L]+ 158 158 214 214 242 242 

[ethynyl-phenyl-CH2]
+ 114 115 114 115 114 115 

 

Table 6.3: Calculated and detected m/z values for 45, 48 and 51. 
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All m/z values are perfectly consistent with the calculated mass values. Two 

examples of mass spectra are presented in Figure 6.6 (ethynyl precursors 48 and 

51). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6: Mass spectra of the ethynyl precursors 48 and 51. 

 

 

 

VI.3 Synthesis of pyridazine with pendant alkyl chains 

VI.3.1 Synthetic method 

 

As presented in the other chapters the synthesis of substituted pyridazine with alkyl 

chains is based on the method presented in chapter II8. These ligands are easily 

accessible via an inverse electron demand Diels Alder reaction between 1,2,4,5-

tetrazines and a wide range of alkynes, whereby the 1,2,4,5-tetrazine acts as the 

electron deficient diene9. 

The procedure to synthesise the N-donor pyridazine ligands is the same as the 

procedures presented in the past chapters. 3,6-Bis(2’-pyridyl)-1,2,4,5-tetrazine (1) 

CH2

+

CH2

+
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was dissolved in toluene with the ethynyl precursors and placed under reflux. By 

using this method we synthesized four different ligands (46, 49, 52 and 53).  

Reactant ratio, time, solvent and yields are listed in Table 6.4. 

 

Ligand 
Reaction ratio 

(tetrazine / 
ethynyl) 

Reaction 
temperature 

(°C) 
Solvent Reaction time  Yield (%) 

46 1 to 1.2 120 toluene 88 hrs 78 

49 1 to 1.3 120 toluene 7 days 93 

52 1 to 1.1 120 toluene 3 days 90 

53 1 to 1.6 120 toluene 50 hrs 68 

 

Table 6.4: Reaction conditions for the synthesis of the ligands 46, 49, 52 and 53. 

 

All the inverse electron-demand Diels Alder reactions presented in this chapter were 

easy to carry out and there was no need to use a nitrogen or argon atmosphere or 

freshly distilled toluene. These reactions had various reaction times based on the 

disappearance of the characteristic purple colour of the 3,6-bis(2’-pyridyl)-1,2,4,5-

tetrazine (1). They all had relatively good yields (between 68% and 90%). 

The four ligands were purified by chromatographic work-up over alumina.  

 

 

VI.3.2 Characterisation of alkylated pyridazines 

 

Every compound has been characterised by 1H NMR and 13C NMR spectroscopy, 

mass spectrometry and elemental analyses. 

 
1H NMR spectroscopy  
1H NMR spectroscopy of compound 46 and 49 were run in deuterated chloroform, 52 

and 53 were run deuterated DMSO, and could be assigned by the chemical shifts, 

relatives integrals, and the coupling patterns.  
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The 1H NMR spectra of the compounds 46 and 49 and the assignments are shown in 

Figure 6.7.  

 

Figure 6.7: The 1H NMR spectra and assignments of ligands 46 and 49  

run in deuterated chloroform. 

 

 

The 1H NMR spectra of the compounds 52 and 53 and the assignments are shown in 

Figure 6.8. 

 

Figure 6.8: The 1H NMR spectra and assignments of ligands 52 and 53  

run in deuterated DMSO. 
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We can see that the compounds show sharp and well defined 1H NMR spectra. The 

non symmetry of the dipyridin-2-ylpyridazine part of the molecule (due to the 

substituent) result in a set of nine different NMR signals instead of the four signals 

present in the spectrum of 3,6-bis(2�-pyridyl)-1,2,4,5-tetrazine (1). Each 1H NMR 

spectrum shows four doublets (H3A, H3C, H6A, H6C), two triplets of doublets (H4A, H4C), 

two doublets of doublets (H5A, H5C) and the typical singlet10 (H3B). All these signals 

are in the same region, between � 7 and 9 ppm. We can also notice an overlapping 

of some signals. In compound 53 the protons signals H6A and H6C overlap at � 8.6 

ppm.  

 

The protons of the substituent ring are also assigned by the coupling patterns and 

relative integrals. The signals of the phenyl substituent from the compounds 46, 49 

and 52 are as expected10. They present two doublets, both, integrating respectively 

for 2 protons. 

 

The 1H NMR signals of the alkyl chain always show the same shapes. In fact, there 

are a triplet, two multiplets and a triplet. All the 1H NMR spectroscopic data for the 

ligands presented in this chapter are summarized in the Table 6.5. 

 

Ligand H3A H4A H5A H6A H3B H3C H4C H5C H6C Phenyl 
Ring Others 

46 (�/ppm) 8.78 
d 

7.89 
td 

7.38 
dd 

8.71 
d 

8.46 
s 

7.84 
d 

7.77 
td 

7.25 
m 

8.48 
d 

7.16-7.10 
d 

2.58t- 1.57m- 
1.32m- 0.90t 

49 (�/ppm) 8.78 
d 

7.89 
td 

7.39 
dd 

8.71 
d 

8.65 
s 

7.85 
d 

7.77 
td 

7.26 
m 

8.49 
d 

7.16-7.10 
d 

2.58t- 1.56m- 
1.27m- 0.86t 

52 (�/ppm) 8.80 
d 

7.92 
td 

7.42 
dd 

8.74 
d 

8.67 
s 

7.85 
d 

7.80 
td 

7.29 
m 

8.51 
d 

7.18-7.11 
d 

2.59t- 1.59m- 
1.28m- 0.88t 

53 (�/ppm) 8.72 
d 

7.87 
td 

7.38 
dd 

8.72 
m 

8.49 
s 

8.08 
d 

7.87 
td 

7.38 
dd 

8.72 
m ° 3.06t- 1.58m- 

1.24m- 0.85t 

 

Table 6.5: The 1H NMR spectroscopic characterisation of ligands 46, 49, 52 and 53. 

 

We can see that all the phenyl mono-substituted ligands have the same chemical 

shift for the same proton. In fact, the H3A proton is around � 8.8 ppm for each ligand, 

the H4A proton is around � 7.9 ppm, and the H5A proton is around � 7.4 ppm. 
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 It means that we have the same chemical effect, due to the substituent, for each 

mono-substituted compound. This effect does not depend on the length of the alkyl 

chain. 

 

 

Mass spectrometry 

Mass spectra of ligands 46, 49, 52 and 53 were recorded with the electrospray 

ionisation technique. For all the spectra we can see the [L+K+DCM]+ peak and the 

[2L+K+DCM]+ peak. All the mass spectra have an additional peak corresponding to 

[2L+Na+MeCN]+ for 46, 49 and 52. Ligand 53 has a third mass peak where the m/z 

value correspond to [2L+Na+K]+. All m/z are perfectly consistent with the calculated 

mass.  

Figure 6.9 shows the mass spectra of compound 49 and 52. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.9: Mass spectra of the ligand 49 and 52. 
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All the m/z values for each ligand are summarised in Table 6.6. 

 

 

Ligand 46 48 52 53 

 m/z 
calc. 

m/z 
det. 

m/z 
calc. 

m/z 
det. 

m/z 
calc. 

m/z 
det. 

m/z 
calc. 

m/z 
det. 

[L+Na+K]+ ° ° ° ° ° ° 811 811 

[Na+2L+MeCN]+ 796 795 908 908 965 964 ° ° 

[K+L+DCM]+ 487 488 543 544 571 572 495 496 

[K+2L+DCM]+ 855 855 910 910 1020 1022 868 869 

 

Table 6.6: Calculated and detected m/z values for the ligands 46, 48, 52 and 53. 

 

 

 

VI.4 Synthesis of the silver complexes 

VI.4.1 Synthetic method 

 

The ligands synthesised in this chapter have long alkyl chains. In these cases we did 

not think that the substituents will induce steric effects leading to non square planar 

silver(I)centres. The past chapters of this work showed us that almost all the 

complexes, of which we had a crystal structure, showed a [Ag2(L)2]+ cation. 

 

The ligands synthesised in this chapter have been used to prepare their silver 

complexes 46sc, 49sc, 52sc and 53sc. The reaction of the ligands with the silver 

salt in acetonitrile proceeded smoothly to give a yellow-orange or brown solution from 

which the complex was isolated as [BF4]+ salts. 

Table 6.7 summarises the experimental conditions for the synthesis of the species 

46sc, 49sc, 52sc and 53sc. 
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Silver complex Reaction ratio 
(ligand / silver) Silver salt Yield (%) 

46sc 1 to 1 AgBF4 84 

49sc 1 to 1 AgBF4 88 

52sc 1 to 1 AgBF4 78 

53sc 1 to 1 AgBF4 88 

 

Table 6.7: Experimental method for the synthesis of the silver complexes  

46sc, 49sc, 52sc and 53sc. 

 

All the silver complexes were prepared by mixing silver tetrafluoroborate and the 

ligand in acetonitrile. The mixture was sonicated for five minutes and then stirred 

under reflux for a further fifteen minutes. The solvent was evaporated to give the 

silver complexes. They were easily accessible and it was not necessary to proceed to 

a chromatographic work up or recrystallisation. All the silver complexes are insoluble 

in chloroform, slightly soluble in acetonitrile, and soluble in dimethylsulfoxide. 

The silver complexes were easily accessible and there was no need to proceed to 

purification. Column chromatography or recrystallisations were not necessary. 

 

 

VI.4.2 Characterisation of the silver complexes 

 

The complexes were characterised by 1H and 13C NMR spectroscopy, and mass 

spectrometry. 

All the 1H and 13C NMR spectra of the silver complexes were run in deuterated 

dimethylsulfoxide. It appeared to be the best solvent for NMR characterisation of the 

complexes.  

46sc, 49sc, 52sc and 53sc were also characterised by mass spectrometry. All the 

details are given in the experimental section at the end of this chapter. 
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1H NMR spectroscopy 
1H NMR spectroscopy of complexes 46sc, 49sc, 52sc and 53sc were run in 

deuterated dimethylsulfoxide and could be assigned by the chemical shifts, relative 

integrals and the coupling patterns. 1H NMR spectra of the silver complexes 46sc, 

49sc, 52sc and 53sc and the assignments are shown in figures 6.10 and 6.11. 

 

 

Figure 6.10: 1H NMR spectra of silver complexes 46sc and 49sc. 

 

 

Figure 6.11: 1H NMR spectra of silver complexes 52sc and 53sc. 

 

All the 1H NMR spectra show the same signals as those present in the 1H NMR 

spectrum of their respective ligand. The spectrum of each of the alkyl chain 

substituted pyridazine silver complexes 46sc, 49sc, 52sc and 53sc exhibits a signal 
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(singlet) for the H3B proton. This signal is typically shifted to higher field with respect 

to the free ligand, which is characteristic for a silver complexation11. The spectra of all 

the silver complexes exhibited a single ligand environment. No species other than the 

free ligands and the silver complexes were detected by 1H NMR spectroscopy. 

The complexation of the ligand and the silver species induces some overlapping of 

signals. In the silver complex 46sc the phenyl proton signals have the same chemical 

shift (� 7.10 ppm). Overlapping also appears in the 1 H NMR spectrum of 49sc, and 

the signals of protons H4C and H5A overlap. Complex 52sc has three signals that 

overlap (H3C, H2D and H6D). The last spectrum shows the overlapping of the signals of 

protons H6A and H6C. It is important to notice that the protons H3B, H6A+6C and H3A+3C 

are the most affected by the silver complexation, with their signals being shifted to 

higher field. This effect is due to the short distance between the affected proton and 

the N-Ag bond. 

Table 6.8 summarises the 1H NMR spectroscopic data for the silver complexes 

presented in this chapter. 

 

Complex H3A H4A H5A H6A H3B H3C H4C H5C H6C Phenyl 
Ring Others 

46sc 
(�/ppm) 

8.65 
d 

8.05 
td 

7.56 
dd 

8.76 
d 

8.50 
s 

7.84 
d 

7.95 
td 

7.41 
m 

8.43 
d 7.12m 

2.51m- 
1.48m- 

1.24m- 0.84t 

49sc 
(�/ppm) 

8.59 
d 

8.15 
td 

7.80 
m 

8.90 
d 

8.66 
s 

7.29 
d 

7.80 
m 

7.59 
dd 

8.81 
d 

7.19-7.10 
d 

2.57t- 1.53m- 
1.24m- 0.85t 

52sc 
(�/ppm) 

8.59 
d 

8.17 
td 

7.88 
m 

8.91 
d 

8.69 
s 

7.21 
m 

7.88 
m 

7.62 
dd 

8.87 
d 

7.21m-
7.11 d 

2.57t- 1.53m- 
1.23m- 0.83t 

53sc 
(�/ppm) 

8.47 
d 

8.10 
td 

7.65 
dd 

8.71 
m 

8.52 
s 

7.90 
d 

8.03 
td 

7.59 
dd 

8.71 
m ° 2.82t- 1.40m- 

1.13m- 0.79t 

 

Table 6.8: The 1 H NMR spectroscopic characterisation of  

silver complexes 46sc, 49sc, 52sc and 53sc. 

 

For the free ligands, we saw that protons in the same region but in different ligands, 

came at the same chemical shifts in the 1H NMR spectrum. However this is not true 

in the silver complexes. There is an effect due to the complexation but this effect on 

the 1H NMR spectra is not the same for the different complexes. We could think it will 

be the same effect for the three complexes. In fact the only difference between these 

three complexes is the length of their alkyl chain. We have seen that for the free 
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ligands this length has no influence on their respective 1H NMR spectra. However the 

complexes exhibit significantly different 1H NMR spectra. 

 

 

Mass spectrometry 

All the silver complexes were characterised by mass spectrometry. Mass 

spectrometry of complexes 46sc, 49sc and 52sc were recorded using the 

electrospray ionisation technique. For these three spectra, we can see the [L]+ peak, 

the [Ag+L]+ peak, the [Ag+L+MeCN]+ peak, the [Ag+2L]+ peak and the 

[2Ag+2L+BF4]+ peak. The last complex (53sc) shows four peaks ([L]+, 

[Ag+L+MeCN]+, [Ag+2L]+ and [2Ag+2L+BF4]+). 

Table 6.9 summarises the calculated and the detected m/z values for each silver 

complex, and Figure 6.12 shows representative mass spectra (46sc and 49sc). 

 

 

silver complex 46sc 49sc 52sc 53sc 

 m/z 
cal 

m/z 
det 

m/z 
cal 

m/z 
det 

m/z 
cal 

m/z 
det 

m/z 
cal 

m/z 
det 

[L]+ 366 367 422 423 450 451 374 375 

[AgLMeCN]+ ° ° ° ° ° ° 521 522 

[AgL]+ 472 473 528 529 556 557 ° ° 

[Ag2L]+ 840 841 952 953 1008 1009 856 857 

[AgL3MeCN]+ 599 600 656 657 682 683 ° ° 

[2Ag2LBF4]+ 1034 1035 1146 1147 1202 1203 1050 1051 

 

Table 6.9: Calculated and detected m/z values for the species 

 46sc, 49sc, 52sc and 53sc. 
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Figure 6.12: Mass spectra of silver complexes 46sc and 49sc. 

 

 

 

Single crystal structure for silver complex 53sc 

Crystals of 53sc are colourless plates. 53sc crystallizes in the triclinic space group P-

1. Two crystallographically independant (but structurally similar) [Ag(53)2]+ cations 

are observed. Two ligands coordinate to each silver ion. The difference between two 

independant complex ion lies in the bond angles and in the torsion angles. Each 

ligand has two N-donor sites that coordinate a silver ion, and two other N-donor sites 

remain uncoordinated. This case appears in the two different [Ag(53)2]+ species. 

Each species exhibits four normal Ag-N contacts12 (species A: 2.333(3), 2.378(3), 

2.375(3), 2.347(3)Å, species B: 2.268(3), 2.419(4), 2.297(3), 2.420(3)Å). In each 

species, the two ligands are arranged in a trans configuration around the silver core 

(Figure 6.13). 

 

 

 

 

 

N N NN

AgBF4

N N NN

AgBF4
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Figure 6.13: The molecular structure of (the two species) 

 53sc with the labelling scheme. 

 

The decyl chain substituents are twisted with respect to the pyridazine unit to which 

they are bound, with a torsion angle of 0.48° and 4.51° (species A) and 0.03° and 

1.91 (species B). The terminal pyridine rings are also significantly out of the plane of 

the pyridazine unit with torsion angles between 2.92° and 28.71° (Figure 6.14). 

 

 

 

 

 

 

 

 

 

Figure 6.14: The molecular structure of 53sc, non planar rings. 

 

The silver-silver distance (between specie A and B) is 14.5Å (i. e. far too long to be a 

bounding interaction), and the N-Ag-N angles are between 69.1 and 69.9°. The 

important bonds, angles and torsion angles are listed in Table 6.10. Details of the 

structure solution are given in Appendix 12. 

B 

A 
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Bond Å  Angles Deg(°) 
Ag1 N1 2.333(3)  N1 Ag1 N2 69.74(15) 
Ag1 N2 2.378(3)  N1 Ag1 N5 173.28(17) 
Ag1 N5 2.375(3)  N2 Ag1 N5 104.11(15) 
Ag1 N6 2.347(3)  N1 Ag1 N6 116.34(15) 
Ag2 Ag2 3.5375(15)  N2 Ag1 N6 173.03(14) 
Ag2 N51 2.268(3)  N5 Ag1 N6 69.65(15) 
Ag2 N52 2.419(4)  N51 Ag2 N52 69.12(16) 
Ag2 N55 2.297(3)  N51 Ag2 N55 174.00(15) 
Ag2 N56 2.420(3)  N52 Ag2 N55 106.21(16) 

    N51 Ag2 N56 114.69(16) 
    N52 Ag2 N56 175.94(13) 
    N55 Ag2 N56 69.89(15) 

 

Torsion angles specie A Deg(°)  Torsion angles specie B Deg(°) 
N55 C19 C20 N6 17.42  N51 C55 C56 N52 9.15 
N7 C23 C24 C25 21.60  N53 C59 C60 C61 2.92 
C11 C10 C9 N3 28.71  C75 C74 C73 N57 3.22 
N2 C6 C5 N1 16.50  N56 C70 C69 N55 13.62 

 

Table 6.10: Important bond distances, angles  

and torsion angles present in 53sc. 

 

The packing shows four [Ag(53)2]+ species. They are almost coplanar. There is an 

alternating placement of the species. One B, then two A and finally one B species. 

The two A species are really close together, one over the other. There is certainly an 

interaction between the two A species, but the distance between two pyridyl rings 

(ring A from species A and ring A from species B : 3.7Å) indicates only weak �-� 

interactions (Figure 6.15). 

 

Figure 6.15: Arrangement of the  [Ag(53)2]
+ cations in the crystal structure of 53sc. 
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VI.5 Conclusion 

 

In this chapter we described the synthesis of the ethynyl precursors 45, 48 and 51 

that have been prepared with the Sonogashira reaction. 

We also showed the methodology to access to mono-substituted pyridazines, based 

on a retro Diels-Alder reaction that enabled us to prepare the ligands 46, 49, 52 and 

53. These ligands were characterised by NMR spectroscopy, mass spectrometry 

and elemental analysis. Four new silver complexes (46sc, 49sc, 52sc and 53sc) 

were prepared and characterised by NMR spectroscopy, and mass spectrometry. 

We obtained suitable crystals for silver complex 53sc to carry out single X-ray 

diffraction analysis. The crystal structures showed two [Ag(L)2]+ cation in the 

asymmetric unit with an arrangement of the ligands in a trans conformation around 

the silver centre. This crystal structures did not show a grid like structure13, or 

hydrogen bonding interactions. 
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VI.6 Experimental part 

 

Synthesis of 1-butyl-4-ethynylbenzene (45) 

 

 

 

Under argon and exclusion of moisture, 1-butyl-4-iodobenzene (2.0 g, 7.7 mmol), 

CuCl (76 mg, 0.77 mmol), and PdCl2(PPh3)2 (3) (0.55 g, 0.77 mmol) were suspended 

in dry, argon degassed, triethylamine (100 ml). Then trimethylsilylacetylene (1.4 ml, 

10 mmol) was added and the mixture stirred at 60°C for 18 hours. The solvent was 

removed and the residue extracted with hexane (150 ml). The solution was filtered 

and the solvent removed from the filtrate by evaporation. The residue was purified by 

chromatographic work-up (alumina, hexane, the second band was collected). The 

product was dissolved in THF (100 ml) and an aqueous solution of 1M NaOH added 

(120 ml). The mixture was stirred at room temperature overnight and then diluted with 

water until a precipitate formed. The compound was extracted with dichloromethane 

and the combined organic phases were dried over MgSO4. The solvent was removed 

to give a brown oil (1.1 g, 6.9 mmol, 90%, C12H14, 158.2 g/mol). 

 
1H NMR (CDCl3, 400 MHz) �/ppm: 7.40 (d, J=8.4 Hz, 2H, H2+6), 7.13 (d, J=8.0 Hz, 

2H, H3+5), 3.02 (s, 1H, ethynyl), 2.60 (t, J=8.0 Hz, 2H, Ph-CH2), 1.54 (m, 2H, Ph-C-

CH2), 1.34 (m, 2H, Ph-C-C-CH2), 0.94 (t, J=7.8 Hz, 3H, Ph-C-C-C-CH3). 
13C NMR (CDCl3, 100 MHz) �/ppm: 143.9, 131.9, 128.3, 119.1, 83.8, 35.5, 33.3, 

29.6, 22.2, 13.9. 

MS (EI) m/z: [L-(CH2-CH2CH3)]+ 115, [L-(CH2CH3)]+ 128, [L]+ 158. 

 

Synthesis of 4-(4-butylphenyl)-3,6-di(pyridin-2-yl)pyridazine (46) 

 

 

 

 

 

3,6-Bis(2�-pyridyl)-1,2,4,5-tetrazine (1) (0.52 g, 2.2 mmol) and 1-butyl-4-

ethynylbenzene (45) (0.40 g, 2.5 mmol) were dissolved in toluene (120 ml). The 

N N NN
A B C
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solution was refluxed for 88 hours. After evaporation of the solvent under reduced 

pressure, the crude product was purified by chromatographic work-up (alumina, 

hexane/EtOAc (1:1), the second band was collected). The product was obtained as 

brown oil (0.62 g, 1.7 mmol, 78%, C24H22N4, 366.5 g/mol). 

 

 1H NMR (CDCl3, 400 MHz) �/ppm: 8.78 (d, J=7.6 Hz, 1H, H3A), 8.71 (d, J=5.0 Hz, 

1H, H6A), 8.46 (s, 1H, H3B), 8.48 (d, J=5.0 Hz, 1H, H6C), 7.89 (td, J=7.5, 1.6 Hz, 1H, 

H4A), 7.84 (d, J=7.6 Hz, 1H, H3C), 7.77 (td, J=7.5, 1.6 Hz, 1H, H4C), 7.38 (dd, J=7.6, 

4.8 Hz, 1H, H5A), 7.25 (dd, J=7.6, 4.8 Hz, 1H, H5C), 7.16 (d, J=8.5 Hz, 2H, H2D+6D), 

7.10 (d, J=8.1 Hz, 2H, H3D+5D), 2.58 (t, J=7.5 Hz, 2H, Ph-CH2), 1.57 (m, 2H, Ph-C-

CH2), 1.32 (m, 2H, Ph-C-C-CH2), 0.90 (t, J=7.1 Hz, 3H, CH3). 
13C NMR (CDCl3, 100 MHz) �/ppm: 158.3, 157.6, 155.9, 153.4, 149.3, 148.9, 143.3, 

140.4, 137.0, 136.4, 133.9, 128.7, 128.4, 125.4, 124.8, 123.2, 121.7, 35.2, 33.2, 

22.2, 13.8, 3 carbon signals unresolved. 

MS (ESI) m/z: [L+K+DCM]+ 488, [2L+Na+MeCN]+ 795, [2L+K+DCM]+ 855. 

Elem. Anal. (C24H22N4) [%]: calc. C 78.7, H 6.1, N 15.3, found C 77.7, H 6.2, 15.1. 

 

Synthesis of 1-iodo-4-octylbenzene (47)  

 

 

Under argon, 4-octylaniline (1.0 g, 4.9 mmol) was suspended in water (150 ml). 

Concentrated hydrochloric acid (1.8 ml) was added and the brown solution cooled to 

0°C. A solution of sodium nitrite (0.80 g, 12 mmol) in 20 ml water was slowly added. 

The mixture was stirred at 0°C for one hour. A catalytic amount of copper(I) iodide 

(115 mg) was added before the slow addition of potassium iodide (4.0 g, 25 mmol). 

The mixture was stirred at 0°C for 6 hours. From time to time, tetrahydrofuran (total 

70 ml) was added to increase the solubility. Water (50 ml) and diethyl ether (80 ml) 

were added under vigorous stirring and the two layers separated. The aqueous layer 

was extracted with diethyl ether and the combined organic phases washed with brine 

and dried over MgSO4. The solvent was removed under reduced pressure and the 

dark residue purified by chromatographic work-up (alumina, hexane, the second 

band was collected) to give an orange oil (1.5 g, 4.7 mmol, 96%, C14H21I, 316.2 

g/mol). 
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1H NMR (CDCl3, 400 MHz) �/ppm: 7.59 (d, J=7.6 Hz, 2H, H2+6), 6.93 (d, J=8.0 Hz, 

2H, H3+5), 2.53 (t, J=7.6 Hz, 2H, Ph-CH2), 1.58 (t, J=7.6 Hz, 2H, Ph-C-CH2), 1.27 (m, 

10 H, Ph-C-C-(CH2)5), 0.89 (t, J=7.1 Hz, 3H, CH3). 
13C NMR (CDCl3, 100 MHz) �/ppm: 142.4, 137.1, 130.5, 90.4, 76.9, 35.4, 31.8, 31.2, 

29.2, 22.6, 14.0, 1 carbon signal unresolved. 

MS (ESI) m/z: [L-(CH2)6CH3]+ 216, [L]+ 316. 

 

Synthesis of 1-ethynyl-4-octylbenzene (48) 

 

 

Under argon and exclusion of moisture, 1-iodo-4-octylbenzene (47) (1.0 g, 3.2 mmol), 

CuCl (32 mg, 0.32 mmol), and PdCl2(PPh3)2 (3) (0.23 g, 0.32 mmol) were suspended 

in dry, argon degassed, triethylamine (100 ml). Then trimethylsilylacetylene (0.9 ml, 6 

mmol) was added and the mixture stirred at 60°C for 18 hours. The solvent was 

removed and the residue extracted with hexane (100 ml). The solution was filtered 

and the solvent removed from the filtrate by evaporation. The residue was purified by 

chromatographic work-up (alumina, hexane, the second band was collected). The 

product was dissolved in THF (100 ml) and an aqueous solution of 1M NaOH added 

(120 ml). The mixture was stirred at room temperature overnight and then diluted with 

water until a precipitate was formed. The compound was extracted with 

dichloromethane and the combined organic phases were dried over MgSO4. The 

solvent was removed to give an orange oil (0.60 g, 2.8 mmol, 88%, C16H22, 214.3 

g/mol). 

 
1H NMR (CDCl3, 400 MHz) �/ppm: 7.42 (d, J=8.0 Hz, 2H, H2+6), 7.14 (d, J=8.0 Hz, 

2H, H3+5), 3.04 (s, 1H, ethynyl), 2.61 (t, J=7.6 Hz, 2H, Ph-CH2), 1.61 (m, 2H, Ph-C-

CH2), 1.30 (m, 10H, Ph-C-C-(CH2)5), 0.90 (t, J=7.5 Hz, 3H, CH3). 
13C NMR (CDCl3, 100 MHz) �/ppm: 144.2, 132.3, 128.6, 120.5, 84.1, 36.2, 32.1, 

31.5, 29.7, 29.6, 22.9, 14.4, 2 carbon signals unresolved. 

MS (ESI) m/z: [L-(CH2)6CH3]+ 115, [L]+ 214. 
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Synthesis of 4-(4-octylphenyl)-3,6-di(pyridin-2-yl)pyridazine (49) 

 

 

 

 

 

 

3,6-Bis(2�-pyridyl)-1,2,4,5-tetrazine (1) (0.35 g, 1.5 mmol) and 1-ethynyl-4-

octylbenzene (48) (0.40 g, 1.9 mmol) were dissolved in toluene (75 ml). The solution 

was refluxed for 7 days. After evaporation of the solvent under reduced pressure, the 

crude product was purified by chromatographic work-up (alumina, hexane/EtOAc 

(3:2), the second band was collected). The product was obtained as a brown oil (0.60 

g, 1.4 mmol, 93%, C28H30N4, 422.6 g/mol). 

 
1H NMR (CDCl3, 400 MHz) �/ppm: 8.78 (d, J=8.1 Hz, 1H, H3A), 8.71 (d, J=4.5 Hz, 1H, 

H6A), 8.65 (s, 1H, H3B), 8.49 (d, J=4.5 Hz, 1H, H6C), 7.89 (td, J=7.5, 1.6 Hz, 1H, H4A), 

7.85 (d, J=8.1 Hz, 1H, H3C), 7.77 (td, J=7.5, 1.6 Hz, 1H, H4C), 7.39 (dd, J=7.6, 4.8 Hz, 

1H, H5A), 7.26 (dd, J=7.6, 4.8 Hz, 1H, H5C), 7.16 (d, J=8.0 Hz, 2H, H2D+6D), 7.10 (d, 

J=8.0 Hz, 2H, H3D+5D), 2.58 (t, J=7.6 Hz, 2H, Ph-CH2), 1.58 (m, 2H, Ph-C-CH2), 1.27 

(m, 10H, Ph-C-C-(CH2)5), 0.86 (t, J=7.5 Hz, 3H, CH3). 
13C NMR (CDCl3, 100 MHz) �/ppm: 158.3, 157.6, 155.9, 153.4, 149.3, 148.9, 143.4, 

140.4, 137.1, 136.4, 133.9, 128.7, 128.4, 125.4, 124.8, 124.6, 123.2, 121.8, 35.5, 

31.7, 31.1, 29.3, 22.6, 14.0, 4 carbon signals unresolved. 

MS (ESI) m/z: [L+K+DCM]+ 544, [2L+Na+MeCN]+ 908, [2L+K+DCM]+ 910. 

Elem. Anal. (C28H30N4 + 0.2 H2O) [%]: calc. C 78.8, H 7.1, N 13.1, found, C 78.7, H 

7.3, N 13.1. 

 

Synthesis of 1-decyl-4-iodobenzene (50) 

 

 

Under argon, 4-decylaniline (2.0 g, 8.6 mmol) was suspended in water (150 ml). 

Concentrated hydrochloric acid (3.6 ml) was added and the brown solution cooled to 

0°C. A solution of sodium nitrite (1.6 g, 23 mmol) in 30 ml water was slowly added. 

The mixture was stirred at 0°C for one hour. A catalytic amount of copper(I) iodide 
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(145 mg) was added before the slow addition of potassium iodide (8.0 g, 49 mmol). 

The mixture was stirred at 0°C for 6 hours. From time to time, tetrahydrofuran (total 

70 ml) was added to increase the solubility. Water (50 ml) and diethyl ether (80 ml) 

were added under vigorous stirring and the two layers separated. The aqueous layer 

was extracted with diethyl ether and the combined organic phases washed with brine 

and dried over MgSO4. The solvent was removed under reduced pressure and the 

dark residue purified by chromatographic work-up (alumina, hexane, the first band 

was collected) to give a brown oil (2.9 g, 8.4 mmol, 98%, C16H25I, 344.3 g/mol). 

 
1H NMR (CDCl3, 400 MHz) �/ppm: 7.59 (d, J=8.0 Hz, 2H, H2+6), 6.93 (d, J=8.4 Hz, 

2H, H3+5), 2.53 (t, J=7.6 Hz, 2H, Ph-CH2), 1.58 (m, 2H, Ph-C-CH2), 1.28 (m, 14H, Ph-

C-C-(CH2)7), 0.90 (t, J=7.5 Hz, 3H, CH3). 
13C NMR (CDCl3, 100 MHz) �/ppm: 142.4, 137.2, 130.5, 128.3, 128.1, 125.5, 90.5, 

35.4, 31.8, 31.2, 29.6, 29.1, 22.6, 14.1. 

MS (ESI) m/z: [L-(CH2)8CH3]+ 216, [L]+ 344. 

Elem. Anal. (C16H25I) [%]: calc. C 55.8, H 7.3, found, C 57.5, H 7.4. 

 

Synthesis of 1-decyl-4-ethynylbenzene (51) 

 

 

Under argon and exclusion of moisture, 1-iodo-4-octylbenzene (50) (2.0 g, 5.8 mmol), 

CuCl (57 mg, 0.58 mmol), and PdCl2(PPh3)2 (3) (0.41 g, 0.58 mmol) were suspended 

in dry, argon degassed, triethylamine (100 ml). Then trimethylsilylacetylene (1.25 ml, 

9.03 mmol) was added and the mixture stirred at 60°C for 18 hours. The solvent was 

removed and the residue extracted with hexane (100 ml). The solution was filtered 

and the solvent removed from the filtrate by evaporation. The residue was purified by 

chromatographic work-up (alumina, hexane, the second band was collected). The 

product was dissolved in THF (100 ml) and an aqueous solution of 1M NaOH added 

(120 ml). The mixture was stirred at room temperature overnight and then diluted with 

water until a precipitate was formed. The compound was extracted with 

dichloromethane and the combined organic phases were dried over MgSO4. The 

solvent was removed to give a beige powder (1.3 g, 5.4 mmol, 93%, C18H26, 242.4 

g/mol). 
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1H NMR (CDCl3, 400 MHz) �/ppm: 7.42 (d, J=8.0 Hz, 2H, H2+6), 7.14 (d, J=8.0 Hz, 

2H, H3+5), 3.04 (s, 1H, ethynyl), 2.61 (t, J=7.6 Hz, 2H, Ph-CH2), 1.62 (m, 2H, Ph-C-

CH2), 1.29 (m, 14H, Ph-C-C-(CH2)7), 0.91 (t, J=7.5 Hz, 3H, CH3). 
13C NMR (CDCl3, 100 MHz) �/ppm: 144.2, 132.2, 128.6, 125.8, 119.5, 84.1, 76.4, 

36.2, 32.2, 31.5, 29.8, 29.6, 29.4, 29.3, 22.9, 14.4. 

MS (ESI) m/z: [L-(CH2)8CH3]+ 115, [L]+ 242. 

Elem. Anal. (C18H26) [%]: calc. C 89.2, H 10.8, found, 89.1, 10.8. 

 

Synthesis of 4-(4-decylphenyl)-3,6-di(pyridin-2-yl)pyridazine (52) 

 

 

 

 

 

 

3,6-Bis(2�-pyridyl)-1,2,4,5-tetrazine (1) (0.71 g, 3.0 mmol) and 1-decyl-4-

ethynylbenzene (51) (0.80 g, 3.3 mmol) were dissolved in toluene (70 ml). The 

solution was refluxed for 3 days. After evaporation of the solvent under reduced 

pressure, the crude product was purified by chromatographic work-up (alumina, 

hexane/EtOAc (1:1), the second band was collected). The product was obtained as a 

beige solid (1.2 g, 2.7 mmol, 90%, C30H34N4, 450.3 g/mol). 

 
1H NMR (CDCl3, 400 MHz) �/ppm: 8.80 (d, J=8.1 Hz, 1H, H3A), 8.74 (d, J=4.5 Hz, 1H, 

H6A), 8.67 (s, 1H, H3B), 8.51 (d, J=4.5 Hz, 1H, H6C), 7.92 (td, J=7.5, 1.6 Hz, 1H, H4A), 

7.85 (d, J=8.1 Hz, 1H, H3C), 7.80 (td, J=7.5, 1.6 Hz, 1H, H4C), 7.42 (dd, J=7.6, 4.8 Hz, 

1H, H5A), 7.29 (dd, J=7.6, 4.8 Hz, 1H, H5C), 7.18 (d, J=8.0 Hz, 2H, H2D+6D), 7.11 (d, 

J=8.0 Hz, 2H, H3D+5D), 2.59 (t, J=7.6 Hz, 2H, Ph-CH2), 1.59 (m, 2H, Ph-C-CH2), 1.28 

(m, 14H, Ph-C-C-(CH2)5), 0.88 (t, J=7.5 Hz, 3H, CH3). 
13C NMR (CDCl3, 100 MHz) �/ppm: 159.6, 150.7, 149.3, 145.2, 137.3, 136.6, 134.5, 

128.8, 128.5, 125.5, 125.3, 124.9, 124.7, 123.3, 123.2, 121.9, 117.5, 114.4, 35.6, 

31.8, 31.2, 29.6, 29.4, 29.2, 22.7, 14.1, 4 carbon signals unresolved. 

MS (ESI) m/z: [L+K+DCM]+ 572, [2L+Na+MeCN]+ 964, [2L+K+DCM]+ 1022. 

Elem. Anal. (C30H34N4) [%]: calc. C 80.0, H 7.6, N 12.4, found, C 80.0, H, 7.6, N 12.4. 
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Synthesis of 4-decyl-3,6-di(pyridin-2-yl)pyridazine (53) 

 

 

 

 

 

3,6-Bis(2�-pyridyl)-1,2,4,5-tetrazine (1) (0.94 g, 4.0 mmol) and dodecyne (1.0 g, 6.0 

mmol) were dissolved in toluene (70 ml). The solution was refluxed for 50 hours. 

After evaporation of the solvent under reduced pressure, the crude product was 

purified by chromatographic work-up (alumina, hexane/EtOAc (4:1), the second band 

was collected). The product was obtained as a yellow oil (1.0 g, 2.7 mmol, 68%, 

C24H30N4, 374.5 g/mol). 

 
1H NMR (CDCl3, 400 MHz) �/ppm: 8.72 (m, 3H, H3A+6A+6C), 8.49 (s, 1H, H3B), 8.08 (d, 

J=7.6 Hz, 1H, H3C), 7.87 (m, 2H, H4A+4C), 7.38 (m, 2H, H5A+5C), 3.06 (t, J=7.6 Hz, 2H, 

diazine-CH2), 1.58 (m, 2H, diazine-C-CH2), 1.24 (m, 14H, diazine-C-C-(CH2)7), 0.85 

(t, J=7.2 Hz, 3H, CH3). 
13C NMR (CDCl3, 100 MHz) �/ppm: 159.1, 157.1, 156.4, 153.6, 149.3, 148.4, 142.8, 

137.1, 136.7, 125.5, 124.7, 124.5, 123.4, 121.7, 32.2, 31.8, 29.7, 29.5, 29.4, 29.3, 

29.2, 29.1, 22.6, 14.0. 

MS (ESI) m/z: [L+K+DCM]+ 496, [2L+Na+K]+ 811, [2L+DCM+K]+ 869. 

Elem. Anal. (C24H30N4) [%]: calc. C 77.0, H 8.1, N 15.0, found, C 76.6, H 8.1, N 14.8. 

 

Silver complexes 

 

All the silver complexes were prepared by using the same procedure. One equivalent 

of silver tetrafluoroborate or silver trifluoromethane sulfonate was mixed with one 

equivalent of the diazine ligand in 15 ml of acetonitrile. The mixture was sonicated for 

five minutes and then stirred under reflux for a further fifteen minutes. The solvent 

was evaporated to give the silver complexes. 
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Synthesis of 4-(4-butylphenyl)-3,6-di(pyridin-2-yl)pyridazine silver complex 

(46sc) 

 

 

 

 

 

 

4-(4-Butylphenyl)-3,6-di(pyridin-2-yl)pyridazine (46) (70 mg, 0.19 mmol) and silver 

tetrafluoroborate (37 mg, 0.19 mmol) were used to prepare the silver complex (88 

mg, 0.16 mmol, 84%, C24H22N4AgBF4). 

 
1H NMR (DMSO, 400 MHz) �/ppm: 8.76 (d, J=4.0 Hz, 1H, H6A), 8.65 (d, J=8.0 Hz, 

1H, H3A), 8.50 (s, 1H, H3B), 8.43 (d, J=4.0 Hz, 1H, H6C), 8.05 (td, J=7.6, 1.6 Hz, 1H, 

H4A), 7.95 (td, J=7.6, 1.6 Hz, 1H, H4C), 7.82 (d, J=8.0 Hz, 1H, H3C), 7.56 (dd, J=7.6, 

5.2 Hz, 1H, H5A), 7.41 (dd, J=7.8, 5.2 Hz, 1H, H5C), 7.12 (m, 4H, H2D+3D+5D+6D), 2.51 

(m, 2H, Ph-CH2), 1.48 (m, 2H, Ph-C-CH2), 1.24 (m, 2H, Ph-C-C-CH2), 0.84 (t, J=7.2 

Hz, 3H, CH3). 
13C NMR (DMSO, 100 MHz) �/ppm: 158.3, 157.2, 155.6, 152.5, 149.7, 148.6, 142.8, 

139.6, 137.6, 136.8, 133.6, 128.5, 128.2, 125.2, 124.6, 123.6, 121.1, 34.3, 32.7, 

21.6, 13.6, 3 carbon signals unresolved. 

MS (ES) m/z [L]+ 367, [Ag+L]+ 473, [Ag+L+3MeCN]+ 600, [Ag+2L]+ 841, 

[2Ag+2L+BF4]+ 1035. 

Elem. Anal. (C24H22N4AgBF4 + 0.5 CH3CN) [%] calc. C 51.6, H 4.0, N 10.8, found, C 

51.8, H 4.3, N 10.3. 

 

Synthesis of 4-(4-octylphenyl)-3,6-di(pyridin-2-yl)pyridazine silver complex 

(49sc) 

 

 

 

4-(4-Octylphenyl)-3,6-di(pyridin-2-yl)pyridazine (49) (70 mg, 0.17 mmol) and silver 

tetrafluoroborate (32 mg, 0.17 mmol) were used to prepare the silver complex (91 

mg, 0.15 mmol, 88%, C28H30N4AgBF4). 
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1H NMR (DMSO, 400 MHz) �/ppm: 8.90 (d, J=4.4 Hz, 1H, H6A), 8.81 (d, J=5.2 Hz, 

1H, H6C), 8.66 (s, 1H, H3B), 8.59 (d, J=8.0 Hz, 1H, H3A), 8.15 (td, J=8.0, 1.6 Hz, 1H, 

H4A), 7.80 (m, 2H, H4C+5A), 7.59 (dd, J=7.6, 5.2 Hz, 1H, H5C), 7.29 (d, J=8.0 Hz, 1H, 

H3C), 7.19 (d, J=8.4 Hz, 2H, H2D+6D), 7.10 (d, J=8.0 Hz, 2H, H3D+5D), 2.57 (t, J=7.6 Hz, 

2H, Ph-CH2), 1.53 (m, 2H, Ph-C-CH2), 1.24 (m, 10H, Ph-C-C-(CH2)5), 0.85 (t, J=7.2 

Hz, 3H, CH3). 
13C NMR (DMSO, 100 MHz) �/ppm: 157.7, 155.2, 152.7, 150.7, 150.6, 149.8, 144.1, 

141.3, 138.8, 137.4, 132.2, 129.0, 128.7, 127.4, 126.5, 126.2, 125.1, 123.6, 34.7, 

31.2, 28.7, 28.6, 28.5, 22.0, 13.9, 3 carbon signals unresolved. 

MS (ES) m/z [L]+ 423, [Ag+L]+ 529, [Ag+L+3MeCN]+ 657, [Ag+2L]+ 953, 

[2Ag+L+BF4]+ 1147. 

Elem. Anal. (C28H30N4AgBF4) [%] calc. C 54.5, H 4.9, N 9.1, found, C 54.2, H 4.9, N 

9.4. 

 

Synthesis of 4-(4-decylphenyl)-3,6-di(pyridin-2-yl)pyridazine silver complex 

(52sc) 

 

 

 

 

 

 

 

4-(4-Decylphenyl)-3,6-di(pyridin-2-yl)pyridazine (52) (80 mg, 0.18 mmol) and silver 

tetrafluoroborate (35 mg, 0.18 mmol) were used to prepare the silver complex (87 

mg, 0.14 mmol, 78%, C30H34N4AgBF4). 

 
1H NMR (DMSO, 400 MHz) �/ppm: 8.91 (d, J=4.4 Hz, 1H, H6A), 8.87 (d, J=4.8 Hz, 

1H, H6C), 8.69 (s, 1H, H3B), 8.59 (d, J=8.0 Hz, 1H, H3A), 8.17 (t, J=7.6 Hz, 1H, H4A), 

7.88 (m, 2H, H4C+5A), 7.62 (dd, J=7.6, 5.2 Hz, 1H, H5C), 7.21 (m, 3H, H3C+2D+6D), 7.11 

(d, J=8.4 Hz, 2H, H3D+5D), 2.57 (t, J=7.6 Hz, 2H, Ph-CH2), 1.53 (m, 2H, Ph-C-CH2), 

1.23 (m, 14H, Ph-C-C-(CH2)7), 0.83 (t, J=7.4 Hz, 3H, CH3). 
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13C NMR (DMSO, 100 MHz) �/ppm: 157.6, 154.9, 152.3, 150.9, 149.4, 144.3, 141.6, 

139.0, 137.5, 131.9, 129.1, 128.7, 127.8, 126.7, 126.3, 125.3, 123.9, 34.7, 31.2, 

30.6, 28.9, 28.9, 28.7, 28.6, 28.5, 22.0, 13.8, 3 carbon signals unresolved. 

MS (ES) m/z [L]+ 451, [Ag+L]+ 557, [Ag+L+3MeCN]+ 683, [Ag+2L]+ 1009, 

[2Ag+L+BF4]+ 1203. 

Elem. Anal. (C30H34N4AgBF4 + H2O) [%] calc. C 54.3, H 5.5, N 8.5, found, C 53.9, H 

5.3, N 8.5. 

 

Synthesis of 4-decyl-3,6-di(pyridin-2-yl)pyridazine silver complex (53sc) 

 

 

 

 

 

 

4-Decyl-3,6-di(pyridin-2-yl)pyridazine (53) (60 mg, 0.16 mmol) and silver 

tetrafluoroborate (31 mg, 0.16 mmol) were used to prepare the silver complex (77 

mg, 0.14 mmol, 88%, C24H30N4AgBF4). 

 
1H NMR (DMSO, 400 MHz) �/ppm: 8.71 (m, 2H, H6A+6C), 8.52 (s, 1H, H3B), 8.47 (d, 

J=8.0 Hz, 1H, H3A), 8.10 (td, J=7.6, 2.0 Hz, 1H, H4A), 8.03 (td, J=7.6, 1.6 Hz, 1H, 

H4C), 7.90 (d, J=7.6 Hz, 1H, H3C), 7.65 (dd, J=7.6, 5.2 Hz, 1H, H5A), 7.59 (dd, J=7.6, 

1.6 Hz, 1H, H5C), 2.82 (t, J=6.0 Hz, 2H, CH2), 1.40 (m, 2H, C-CH2), 1.13 (m, 14H, C-

C-(CH2)7), 0.79 (t, J=6.8 Hz, 3H, CH3). 

 13C NMR (DMSO, 100 MHz) �/ppm: 159.3, 155.1, 154.0, 150.5, 150.3, 149.6, 143.3, 

138.5, 137.7, 126.6, 125.9, 124.7, 124.6, 122.6, 31.2, 31.1, 28.8, 28.6, 28.5, 28.4, 

28.3, 22.0, 13.8, 1 carbon signal unresolved. 

MS (ES) m/z [L]+ 375, [Ag+L+MeCN]+ 522, [Ag+2L]+ 857, [2Ag+L+BF4]+ 1051. 

Elem. Anal. (C72H90N12Ag2BF4) [%] calc. C 60.6, H 6.4, N 11.8, found, C 60.7, H 6.3, 

N 11.9.  
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CHAPTER VII 

 

CONCLUSION 

 

 

This work introduces the synthesis of new substituted pyridazines ligands and their 

silver(I) complexes. We focussed our attention on the diversity of the ligands and 

silver complexes prepared.  

 

We synthesised four different family of ligands. First we prepared phenyl substituted 

pyridazines (4, 6, 8, 10, and 13) and the silver complexes (4sc, 6sc, 8sc, 10sc, and 

13sc). Then we prepared halogenated pyridazines (14, 17, 19, 23, 25 and 27) and 

the corresponding silver complexes (15sc, 18sc, 20sc, 24sc, 26sc and 28sc). We 

also focussed our attention on pyridazines substituted with electron-withdrawing or 

donating groups (29, 31, 33, 35, 38 and 41) and their silver complexes (30sc, 32sc, 

34sc, 36sc, 39sc, 42sc, 43sc and 44sc). The last chapter of this work presents 

pyridazines with alkyl chains (46, 49, 52, and 53) and the respective silver complexes 

(45sc, 48sc, 52sc and 53sc).  

 

The aim of this project was to study the silver complexes and their crystal structure. 

We wanted to find the relationship between the different substituted pyridazine silver 

complexes and their crystal structure. We obtained three crystal structure of free 

ligands (8, 15 and 34) and nine crystal structure of silver complexes (15sc, 18sc, 

20sc, 30sc, 34sc, 39sc, 42sc, 44sc and 53sc). The crystal structures of the ligands 

are presented in Figure 7.1. Those of the silver complexes are shown in Figure 7.2. 

We saw that the electronic effect, steric effects and the nature of the counter-anion 

influence the shape of the crystal structure. It is hard to determine which effect is 

predominant for the formation of the structure of the complexes. The most important 

effect is the steric factor of the substituent. This forces the outher ring (C) to be 

significantly out of the plan and enables other structures (polymers or multi-nuclear 

silver core). 
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Figure 7.1: Crystal structure of ligands 8, 15 and 34. 

 

 

 

 

Figure 7.2: Crystal structure of silver complexes 15sc, 18sc, 20sc, 30sc, 34sc, 

 39sc, 42sc, 44sc and 53s
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Appendix 1 
X-ray characterisation 

 

1,3,5-Tris(3,6-di(pyridin-2-yl)pyridazin-4-yl)benzene C49 H31.5 N12.5 O0.25 (8) 

 

 

 

 

 

General parameters 

 

empirical formula C49 H31.5 N12.5 O0.25 
formula weight 799.37 
temperature (K) 173 
wavelength (Å) 0.71073 
cryst system triclinic 
space group P -1 

a 12.3401 
b 13.3823 

unit cell dimensions (Å) 

c 13.6639 
� 73.983 
� 77.345 

[deg] 

� 79.120 
crystal size (mm) 0.10x0.10x0.10 
volume (Å3) 2096.3 
Z 2 
density (calc) (gcm-3) 1.266 
crystal colour colorless 
crystal description block 
abs coefficient (mm-1) 0.080 
F (000) 830 
theta range for data collection (deg) 3.06 to 28.50 

h -16 to 16 
k -17 to 17 

index ranges 

l -18 to 18 
reflections collected  10593 
reflections for refinement 6433 
parameters 578 
goodness of fit on F^2 1.0723 
R1 (all data) 0.0594 
wR2 (all data) 0.0605 
R1 (ref) 0.0496 
wR2 (ref) 0.0564 
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Appendix 2 
X-ray characterisation 

 

4-(4-Bromobenzen)-3,6-di-pyridin-2-ylpyridazine C20H13BrN4 (15)  
 
 
 
 
 
 
General parameters 
 
empirical formula C20H13BrN4 
formula weight 389.25 
temperature (K) 123 
wavelength (Å) 0.71073 
cryst system orthorombic 
space group Pcab 

a 6.2688(3) 
b 21.845(3) 

unit cell dimensions (Å) 

c 24.209(3) 
� 90 
� 90 

[deg] 

� 90 
crystal size (mm) 0.14x0.17x0.40 
volume (Å3) 3315.4(5) 
Z 8 
density (calc) (gcm-3) 1.560 
crystal colour Colorless 
crystal description plate 
abs coefficient (mm-1) 2.489 
F (000) 1568 
theta range for data collection (deg) 3.26 to 29.99 

h -8 to 8 
k -30 to 30 

index ranges 

l -34 to 31 
reflections collected  69540 
reflections for refinement 4828 
parameters 279 
goodness of fit on F^2 1.1129 
R1 (all data) 0.0500 
wR2 (all data) 0.0341 
R1 (ref) 0.0248 
wR2 (ref) 0.0259 
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Appendix 3 
X-ray characterisation 

 
4-(4-Bromobenzene)-3,6-di(pyridin-2yl)pyridazine silver complex 

C42H26Ag2Br2F6N8O6S2 (15sc) 

 

 

 

 

empirical formula C42H26Ag2Br2F6N8O6S2 
formula weight 1292.38 
temperature (K) 173 
wavelength (Å) 0.71073 
cryst system triclinic 
space group P-1 

a 9.8179(2) 

b 14.3098(2) 

unit cell dimensions (Å) 

c 15.8176(2) 

� 81.2132 

� 78.5495 

[deg] 

� 83.9300 

crystal size (mm) 0.10x0.10x0.20 

volume (Å3) 2145.9(1) 

Z 4 
density (calc) (gcm-3) 2.000 
crystal colour colorless 
crystal description plate 
abs coefficient (mm-1) 2.959 
F (000) 1259.219 
theta range for data collection (deg) 5.20 to 27.44 

h -12 to 12 
k -18 to 18 

index ranges 

l -20 to 20 
reflections collected  19368 
reflections for refinement 9795 
parameters 677 
goodness of fit on F^2 1.1055 
R1 (all data) x 
wR2 (all data) x 
R1 (ref) 0.0397 
wR2 (ref) 0.0475 



 

 238

Appendix 4 
X-ray characterisation 

 
4-(3,5-Dibromophenyl)-3,6-di(pyridin-2-yl)pyridazine silver complex 

C22H15AgBBr2F4N5 (18sc) 

 
 
 
 
 
 
empirical formula C22H15AgBBr2F4N5 
formula weight 703.87 
temperature (K) 173 
wavelength (Å) 0.71073 
cryst system monoclinic 
space group P 1 21/a 1 

a 8.1005(9) 
b 34.509(4) 

unit cell dimensions (Å) 

c 8.4695(8) 
� 90 
� 97.13 

[deg] 

� 90 
crystal size (mm) 0.06x0.28x0.32 
volume (Å3) 2349.3(4) 
Z 4 
density (calc) (gcm-3) 1.990 
crystal colour yellow 
crystal description plate 
abs coefficient (mm-1) 4.313 
F (000) 1360 
theta range for data collection (deg) 3.002 to 29.506 

h -11 to 10 
k -47 to 47 

index ranges 

l -11 to 11 
reflections collected  57426 
reflections for refinement 6410 
parameters 376 
goodness of fit on F^2 1.0355 
R1 (all data) 0.072 
wR2 (all data) 0.0696 
R1 (ref) 0.0405 
wR2 (ref) 0.0454 
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Appendix 5 
X-ray characterisation 

 
3,6-Di(pyridin-2-yl)-4-(4-(trifluoromethyl)phenyl)pyridazine silver complex 

C47.20H33.80Ag2B2F14N10.60 (20sc) 

 
 
 
 
 
 
empirical formula C47.20H33.80Ag2B2F14N10.60 
formula weight 1252.79 
temperature (K) 173 
wavelength (Å) 0.71073 
cryst system monoclinic 
space group C 1 2/c 1 

a 12.7058(5) 
b 10.9051(4) 

unit cell dimensions (Å) 

c 35.4146(13) 
� 90 
� 93.1367 

[deg] 

� 90 
crystal size (mm) 0.12x0.22x0.29 
volume (Å3) 4899.6(3) 
Z 4 
density (calc) (gcm-3) 1.698 
crystal colour pale red 
crystal description plate 
abs coefficient (mm-1) 0.900 
F (000) 2484.800 
theta range for data collection (deg) 3.059 to 26.967 

h -16 to16 
k -12 to 14 

index ranges 

l -46 to 46 
reflections collected  65828 
reflections for refinement 5587 
parameters 416 
goodness of fit on F^2 1.0634 
R1 (all data) 0.0448 
wR2 (all data) 0.0360 
R1 (ref) 0.0329 
wR2 (ref) 0.0325 
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Appendix 6 

X-ray characterisation 

 

4-(3,6-Di(pyridin-2-yl)pyridazin-4-yl)benzonitrile C21H13N5 (34) 

 

 

General parameters 
 

empirical formula  C21H13N5 

formula weight  335.37 

temperature (K)  173 

wavelength (Å)  0.71073 

cryst system  monoclinic 

space group  P 1 21/c 1 

unit cell dimensions (Å) a 14.5427(3) 

 b 6.48220(10) 

 c 17.9287(4) 

[deg] � 90 

 � 105.9912(12) 

 � 90 

crystal size (mm)  0.18x0.22x0.30 

volume (Å3)  1624.71(6) 

Z  4 

density (calc) (gcm-3)  1.371 

crystal colour  colorless 

crystal description  plate 

abs coefficient (mm-1)  0.086 

F (000)  696 

theta range for data collection 
(deg)  2.914 to 27.478 

index ranges h -18 to 18 

 k -8 to 8 

 l -23 to 23 

reflections collected   7452 

reflections for refinement  3724 

parameters  235 

goodness of fit on F^2  1.0975 

R1 (all data)  0.0821 

wR2 (all data)  0.1082 

R1 (ref)  0.0398 

wR2 (ref)  0.0432 



 

 241

 
Appendix 7 

X-ray characterisation 

 

4-(4-Methoxyphenyl)-3,6-di(pyridin-2-yl)pyridazine silver complex 

C21H16Ag1.5B1.5F6N40 (30sc) 

 

General parameters 
 

empirical formula C21H16Ag1.5B1.5F6N40 

formula weight 632.39 

temperature (K) 173 

wavelength (Å) 0.71073 

cryst system monoclinic 

space group C 1 2/c 1 

a 25.405(3) 

b 11.560(3) 
unit cell dimensions (Å) 

c 17.609(3) 

� 90 

� 122.06 
[deg] 

� 90 

crystal size (mm) 0.06x0.13x0.22 

volume (Å3) 4392.3(2) 

Z 8 

density (calc) (gcm-3) 1.917 

crystal colour colorless 

crystal description plate 

abs coefficient (mm-1) 1.428 

F (000) 2468.147 

theta range for data collection (deg) 5.05 to 29.99 

h -35 to 35 

k -16 to 16 
index ranges 

l -24 to 24 

reflections collected  123897 

reflections for refinement 6381 

parameters 344 

goodness of fit on F^2 ° 

R1 (all data) 0.0210 

wR2 (all data) ° 

R1 (ref) 0.0219 

wR2 (ref) 1.2050 
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Appendix 8 
X-ray characterisation 

 

4-(3,6-Di(pyridin-2-yl)pyridazin-4-yl)benzonitrile silver complex C21H13AgBF4N5 

(34sc) 

 

General parameters 

 

empirical formula  C21H13AgBF4N5 

formula weight  530.04 

temperature (K)  173 

wavelength (Å)  0.71073 

cryst system  monoclinic 

space group  P2/c 

unit cell dimensions (Å) a 10.0117(9) 

 b 9.8350(10) 

 c 19.4852(11) 

[deg] � 90 

 � 95.780(6) 

 � 90 

crystal size (mm)  O.10x0.12x0.20 

volume (Å3)  1908.9(3) 

Z  4 

density (calc) (gcm-3)  1.844 

crystal colour  yellow 

crystal description  plate 

abs coefficient (mm-1)  1.115 

F (000)  1.048 

theta range for data collection 
(deg) 

 
3.024 to 27.522 

index ranges h -10 to 13 

 k -12 to 12 

 l -25 to 25 

reflections collected   38527 

reflections for refinement  4383 

parameters  289 

goodness of fit on F^2  1.0510 

R1 (all data)  0.0419 

wR2 (all data)  0.0337 

R1 (ref)  0.0361 

wR2 (ref)  0.0327 
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Appendix 9 
X-ray characterisation 

 

4-(3,5-Dimethoxyphenyl)-3,6-di(pyridin-2-yl)pyridazine silver complex 

C44H36AgBF4N8O4 (39sc) 

 

General parameters 

 

empirical formula C44H36AgBF4N8O4 

formula weight 935.49 

temperature (K) 173 

wavelength (Å) 0.71073 

cryst system monoclinic 

space group C 2/c 

a 34.9234(15) 

b 6.6039(8) 
unit cell dimensions (Å) 

c 20.7468(12) 

� 90 

� 123.924(13) 
[deg] 

� 90 

crystal size (mm) 0.05x0.12x0.24 

volume (Å3) 3970.4(8) 

Z 4 

density (calc) (gcm-3) 1.565 

crystal colour pale yellow 

crystal description prism 

abs coefficient (mm-1) 0.583 

F (000) 1904 

theta range for data collection (deg) 1.405 to 23.905 

h -43 to 44 

k 0 to 8 
index ranges 

l -26 to 26 

reflections collected  15371 

reflections for refinement 4209 

parameters 300 

goodness of fit on F^2 1.1935 

R1 (all data) 0.0410 

wR2 (all data) 0.0437 

R1 (ref) 0.0380 

wR2 (ref) 0.0410 
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Appendix 10 
X-ray characterisation 

 

4-(4-Tert-butylphenyl)-3,6-di(pyridin-2-yl)pyridazine silver complex 

C50H49AgBF4N8O0.5 (42sc) 

 

General parameters 

 

empirical formula C50H49AgBF4N8O0.5 

formula weight 964.66 

temperature (K) 293 

wavelength (Å) 0.71073 

cryst system monoclinic 

space group P 2/a 

a 21.788 

b 9.171 
unit cell dimensions (Å) 

c 22.625 

� 90 

� 90.62 
[deg] 

� 90 

crystal size (mm) ° 

volume (Å3) 4520.61 

Z 4 

density (calc) (gcm-3) 1.417 

crystal colour ° 

crystal description ° 

abs coefficient (mm-1) 0.509 

F (000) 1988 

theta range for data collection (deg) 1.800 to 26.869 

h -27 to 27 

k -11 to 11 
index ranges 

l -28 to 25 

reflections collected  34780 

reflections for refinement 11539 

parameters 582 

goodness of fit on F^2 0.9936 

R1 (all data) 0.0416 

wR2 (all data) 0.0447 

R1 (ref) 0.0312 

wR2 (ref) 0.0407 
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Appendix 11 
X-ray characterisation 

 

3,6-Di(pyridin-2-yl)-4-(trimethylsilyl)pyridazine silver complex (44sc) 

 

 

General parameters 

 

empirical formula C78H89.5Ag5B5F20N19.5O1Si4 
formula weight 2401.90 
temperature (K) 173 
wavelength (Å) 0.71073 
cryst system monoclinic 
space group P 2/n 

a 25.1896(3) 
b 15.2357(2) 

unit cell dimensions (Å) 

c 27.9532(3) 
� 90 
� 106.6790(7) 

[deg] 

� 90 
crystal size (mm) 0.16x0.18x0.20 

volume (Å3) 10276.6 
Z 4 

density (calc) (gcm-3) 1.552 
crystal colour yellow 
crystal description block 

abs coefficient (mm-1) 1.069 
F (000) 4773.353 
theta range for data collection (deg) 5.00 to 27.44 

h -32 to 32 
k -19 to 19 

index ranges 

l -36 to 36 
reflections collected  12698 
reflections for refinement 1315 
parameters 1315 
goodness of fit on F^2 1.0127 
R1 (all data) ° 
wR2 (all data) ° 
R1 (ref) 0.0496 
wR2 (ref) 0.0510 
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Appendix 12 
X-ray characterisation 

 

4-Decyl-3,6-di(pyridin-2-yl)pyridazine silver complex C48H60AgBF4N8 53sc 
 

 

 

General parameters 

 

empirical formula C48H60AgBF4N8 
formula weight 943.73 
temperature (K) 173 
wavelength (Å) 0.71073 
cryst system triclinic 
space group P-1 

a 8.1443(7) 
b 24.5845(17) 

unit cell dimensions (Å) 

c 25.8037(17) 
� 115.007(4) 
� 98.246(4) 

[deg] 

� 97.300(4) 
crystal size (mm) 0.10x0.10x0.50 

volume (Å3) 4531.2(6) 
Z 4 

density (calc) (gcm-3) 1.383 
crystal colour yellow 
crystal description plate 

abs coefficient (mm-1) 0.505 
F (000) 1968 
theta range for data collection (deg) 1.556 to 25.429 

h -9 to 9 
k -29 to 29 

index ranges 

l -30 to 30 
reflections collected  14192 
reflections for refinement 10378 
parameters 955 
goodness of fit on F^2 1.1274 
R1 (all data) 0.1274 
wR2 (all data) 0.1529 
R1 (ref) 0.0879 
wR2 (ref) 0.0975 
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Compounds synthesised but not discussed in this work 

 

Synthesis of 4-(methoxymethyl)-3,6-di(pyridin-2-yl)pyridazine (54) 

 

 

 

 

A solution of 3,6-bis(2�-pyridyl)-1,2,4,5-tetrazine (1) (500 mg, 2.11 mmol) and 3-

methoxyprop-1-yne (280 mg, 3.99 mmol) in toluene (80 ml) was refluxed for 24 hours 

at 120°C. After evaporation of the solvent under reduced pressure, the crude product 

was purified by recrystallisation from ethanol. The product was obtained as a beige 

powder (0.46 g, 1.7 mmol, 81%, C16H14N4O, 278.3 g/mol). 

 
1H NMR (CDCl3, 400 MHz) �/ppm: 8.92 (m, 1H, H3A), 8.76 (m, 2H, H6A+3B), 8.71 (d, 

J=4.6 Hz, 1H, H6C), 8.43 (d, J=8.0 Hz, 1H, H3C), 7.90 (m, 2H, H4A+4C), 7.39 (m, 2H, 

H5A+5C), 5.02 (s, 2H, CH2), 3.54 (s, 3H, OCH3). 

 13C NMR (CDCl3, 100 MHz) �/ppm: 155.8, 153.7, 149.5, 148.4, 139.8, 137.0, 136.8, 

124.4, 124.3, 123.7, 122.8, 121.7, 70.8, 58.9, 2 carbon signals unresolved. 

MS (ESI) m/z: [(L-CH3)+Na+MeCN]+ 328, [2(L-CH3)+2Na+MeCN]+ 615. 

Elem. Anal. (C16H14N4O) [%] calc. C 69.0, H 5.0, N 20.1, found, C 68.3, H 5.2, N 

19.8. 

 

Synthesis of (3,6-di(pyridin-2-yl)pyridazin-4-yl)methanol (55) 

 

 

 

 

A solution of 3,6-bis(2�-pyridyl)-1,2,4,5-tetrazine (1) (0.30 g, 2.1 mmol) and 1-

hydroxyprop-2-yne (0.13 g, 2.5 mmol) in toluene (30 ml) was refluxed for 46 hours at 

120°C. After evaporation of the solvent under reduced pressure, the crude product 

was purified by chromatographic work-up (alumina, EtOAc, the third band was 

collected). The product was obtained as a purple powder (0.20 g, 0.76 mmol, 36%, 

C15H12N4O, 264.3 g/mol). 

N N NN

MeO

A B C

N N NN

OH

A B C
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1H NMR (CDCl3, 400 MHz) �/ppm: 8.72 (m, 2H, H3A+6A), 8.68 (d, J=5.0 Hz, 1H, H6C), 

8.61 (s, 1H, H3B), 8.57 (d, J=8.0 Hz, 1H, H3C), 7.97 (td, J=7.5, 1.6 Hz, 1H, H4A), 7.87 

(td, J=7.5, 1.6 Hz, 1H, H4C), 7.46 (dd, J=7.5, 4.4 Hz, 1H, H5A), 7.38 (dd, J=7.5, 4.4 

Hz, 1H, H5C), 4.72 (s, 2H, CH2). 
13C NMR (CDCl3, 100 MHz) �/ppm: 158.1, 158.0, 155.1, 152.9, 149.4, 148.0, 139.8, 

137.9, 137.1, 125.8, 124.9, 124.8, 124.4, 121.6, 63.3. 

MS (ESI) m/z: [L+Na+2MeCN]+ 369, [2L+Na+MeCN]+ 591. 

Elem. Anal. (C15H12N4O) [%] calc. C 68.2, H 4.6, N 21.2, found, C 67.8, H 4.6, N 

21.0. 

 

Synthesis of 3,6-di(pyridin-2-yl)-4-(triisopropylsilyl)pyridazine (56) 

 

 

 

3,6-Bis(2�-pyridyl)-1,2,4,5-tetrazine (1) (0.69 g, 2.9 mmol) and 

triisopropylsilylacetylene (0.53 g, 2.9 mmol) were dissolved in toluene (100 ml). The 

solution was refluxed for 10 days. After evaporation of the solvent under reduced 

pressure, the crude product was purified by chromatographic work-up (alumina, 

hexane/dichloromethane/EtOAc (1:1:1), the third band was collected). The product 

was obtained as a white solid (135 mg, 0.346 mmol, 11.7%, C23H30N4Si, 390.6 

g/mol). 

 
1H NMR (CDCl3, 500 MHz) �/ppm: 9.01 (s, 1H, H3B), 8.76 (m, 2H, H6A+3A), 8.65 (d, 

J=4.7 Hz, 1H, H6C), 8.38 (d, J=7.8 Hz, 1H, H3C), 7.88 (m, 2H, H4A+4C), 7.39 (m, 2H, 

H5A+5C), 1.50 (q, J=7.5 Hz, 3H, CH (TIPS)), 1.07 (d, J=7.5 Hz, 18H, CH3 (TIPS)). 

 13C NMR (CDCl3, 125 MHz) �/ppm: 163.9, 157.2, 155.3, 153.6, 149.5, 147.9, 137.1, 

136.7, 133.9, 124.5, 124.0, 123.8, 121.7, 19.2, 13.0, 2 carbon signals unresolved. 

MS (ESI) m/z: [L-(CH(CH3)2)]+ 347, [2Na+2(L-TIPS)]+ 512, [Na+2L+MeCN]+ 843. 

 

Synthesis of 1-ethynyl-4-nitrobenzene (57) 

 

 

N N N N

tips

A B C

NO2
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Under argon and exclusion of moisture, 4-bromonitrobenzene (2.0 g, 9.9 mmol), 

CuCl (0.15 g, 1.5 mmol), and PdCl2(PPh3)2 (3) (1.0 g, 1.4 mmol) were suspended in 

dry, argon degassed, triethylamine (100 ml). Then trimethylsilylacetylene (2.9 ml, 21 

mmol) was added and the mixture stirred at 75°C overnight. The solvent was 

removed and the residue extracted with hexane (150 ml). The solution was filtered 

and the solvent removed from the filtrate by evaporation. The residue was purified by 

chromatographic work-up (alumina, hexane/dichloromethane (33:1), the second band 

was collected). The product was dissolved in THF (50 ml) and an aqueous solution of 

1M NaOH added (75 ml). The mixture was stirred at room temperature overnight and 

then diluted with water until a precipitate was formed. The compound was extracted 

with dichloromethane and the combined organic phases were dried over MgSO4. The 

solvent was removed to give an orange powder (1.1 g, 7.6 mmol, 77%, C8H5NO2, 

144.2 g/mol). 

 
1H NMR (CDCl3, 400 MHz) �/ppm: 8.19 (d, J=8.8 Hz, 2H, H2+6), 7.63 (d, J=8.8 Hz, 

2H, H3+5), 3.36 (s, 1H, ethynyl); 
13C NMR (CDCl3, 100 MHz) �/ppm: 147.5, 132.9, 128.8, 123.5, 82.3, 81.5. 

MS (EI) m/z: [L-NO2]+ 101, [L-O2]+ 117, [L]+ 147. 

Elem. Anal. (C8H5O2) [%] calc. C 65.3, H 3.4, N 9.5, found, C 64.7, H 3.7, N 9.1. 

 

Synthesis of 4-(4-nitrophenyl)-3,6-di(pyridin-2-yl)pyridazine (58) 

 

 

 

 

 

3,6-Bis(2�-pyridyl)-1,2,4,5-tetrazine (1) (0.40 g, 1.7 mmol) and 1-ethynyl-4-

nitrobenzene (57) (0.30 g, 2.1 mmol) were dissolved in toluene (80 ml). The solution 

was refluxed for 5 days. After evaporation of the solvent under reduced pressure, the 

crude product was purified by chromatographic work-up (alumina, hexane/EtOAc 

(1:2), the second band was collected). The product was obtained as a brown powder 

(0.51 g, 1.4 mmol, 83%, C20H13N5O2, 355.2 g/mol). 
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1H NMR (CDCl3, 400 MHz) �/ppm: 8.77 (d, J=8.1 Hz, 1H, H3A), 8.70 (d, J=4.1 Hz, 1H, 

H6A), 8.63 (s, 1H, H3B), 8.32 (d, J=5.0 Hz, 1H, H6C), 8.15 (m, 3H, H3’ + H2D+6D), 7.90 

(td, 1H, J=7.5, 1.6 Hz, H4A), 7.85 (td, J=7.5, 1.6 Hz, 1H, H4C), 7.41 (m, 3H, H5A + 

H3D+5D), 7.27 (dd, J=7.6, 4.8 Hz, 1H, H5C). 
13C NMR (CDCl3, 100 MHz) �/ppm: 157.7, 157.4, 154.6, 152.7, 149.4, 148.7, 147.4, 

144.2, 138.4, 137.3, 136.9, 129.6, 125.5, 125.0, 124.6, 123.8, 123.4, 121.8, 2 carbon 

signals unresolved. 

MS (EI) m/z: [L]+ 356, [Na+L+CHCl3]+ 477, [Na+2L+2MeCN]+ 773. 

 

Synthesis of 4-ethynylaniline (59) 

 

  

4-Trimethylsilylethynylaniline (21) (1.3 g, 6.7 mmol) was dissolved in THF (75 ml) and 

an aqueous solution of 1M NaOH added (150 ml). The mixture was stirred at room 

temperature overnight and then diluted with water until a precipitate was formed. The 

compound was extracted with dichloromethane and the combined organic phases 

were dried over MgSO4. The solvent was removed to give a brown black powder 

(0.77 g, 6.6 mmol, 98%, C8H7N, 117.1 g/mol). 

 
1H NMR (CDCl3, 400 MHz) �/ppm: 7.29 (d, J=8.4 Hz, 2H, H3+5), 6.58 (d, J=8.4 Hz, 

2H, H2+6), 3.82 (bs, 2H, NH2), 2.97 (s, 1H, ethynyl). 
13C NMR (CDCl3, 100 MHz) �/ppm: 146.9, 133.3, 114.5, 111.1, 84.3, 74.8. 

MS (EI) m/z: [L]+ 117. 

Elem. Anal. (C21H13N5) [%] calc. C 82.0, H 6.0, N 12.0, found, C 82.0, H 6.2, N 11.8. 

 

Synthesis of 4-(3,6-di(pyridin-2-yl)pyridazin-4-yl)aniline (60) 

 

 

 

 

 

3,6-Bis(2�-pyridyl)-1,2,4,5-tetrazine (1) (0.81 g, 3.4 mmol) and 4-ethynylaniline (59) 

(0.40 g, 3.4 mmol) were dissolved in toluene (120 ml). The solution was refluxed for 5 

NH2
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days. After evaporation of the solvent under reduced pressure, the crude product was 

purified by chromatographic work-up (alumina, chloroform, the third band was 

collected). The product was obtained as a dark brown powder (0.99 g, 3.0 mmol, 

88%, C20H15N5, 325.4 g/mol). 

 
1H NMR (CDCl3, 400 MHz) �/ppm: 8.76 (d, J=7.5 Hz, 1H, H3A), 8.72 (d, J=5.5 Hz, 1H, 

H6A), 8.59 (s, 1H, H3B), 8.55 (d, J=5.5 Hz, 1H, H3C), 7.88 (td, J=7.5, 1.6 Hz, 1H, H4A), 

7.77 (m, 2H, H4C+6C), 7.38 (dd, J=7.6, 4.8 Hz, 1H, H5A), 7.26 (m, 1H, H5C), 7.04 (d, 

J=8.5 Hz, 2H, H3D+5D), 6.56 (d, J=8.5 Hz, 2H, H2D+6D). 
13C NMR (CDCl3, 100 MHz) �/ppm: 158.3, 157.5, 156.4, 153.6, 149.3, 149.1, 147.0, 

140.3, 137.1, 136.4, 130.3, 126.0, 124.8, 124.7, 124.6, 123.1, 121.8, 114.8, 2 carbon 

signals unresolved. 

MS (EI) m/z: [L]+ 326, [L+K+2MeCN]+ 447, [2L+Na+MeCN]+ 713, [2L+K+2MeCN]+ 

773. 

 

Synthesis of 1-bromo-4-(4-methoxyphenylethynyl)benzene (61) 

 

 

Under argon and exclusion of moisture, 1-iodo-4-bromobenzene (1.0 g, 3.5 mmol), 1-

ethynyl-4-methoxybenzene (29) (0.50 g, 3.8 mmol), CuCl (37 mg, 0.38 mmol), and 

PdCl2(PPh3)2 (3) (0.27 g, 0.38 mmol) were suspended in dry, argon degassed, 

triethylamine (100 ml). The mixture stirred at 60°C for 18 hours. The solvent was 

removed and the residue extracted with hexane (100 ml). The solution was filtered 

and the solvent removed from the filtrate by evaporation. The residue was purified by 

chromatographic work-up (alumina, hexane, the second band was collected). The 

solvent was removed to give a beige solid (0.82 g, 2.9 mmol, 83%, C15H11BrO, 287.2 

g/mol). 

 
1H NMR (CDCl3, 400 MHz) �/ppm: 7.46 (m, 4H, H3+5+10+14), 7.36 (d, J=8.8 Hz, 2H, 

H2+6), 6.88 (d, J=8.6 Hz, 2H, H11+13), 3.83 (s, 3H, CH3). 
13C NMR (CDCl3, 100 MHz) �/ppm: 159.7, 133.0, 132.8, 131.5, 122.5, 122.0, 114.9, 

114.0, 90.5, 87.0, 55.3. 

MS (ESI) m/z: [L-CH3]+ 273, [L]+ 287. 

Elem. Anal. (C15H11BrO) [%]: calc. C 62.7, H 3.9, found, C 62.7, H 3.9. 

OMeBr A B
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Synthesis of 4-(4-bromophenyl)-5-(4-methoxyphenyl)-3,6-di(pyridin-2-

yl)pyridazine (62) 

 

 

 

 

1-bromo-4-((4-methoxyphenyl)ethynyl)benzene (61) (0.30 g, 1.1 mmol) and 3,6-

bis(2�-pyridyl)-1,2,4,5-tetrazine (1) (0.25 g, 1.1 mmol) were heated without solvent at 

170°C for 5 days. The product was purified by chromatographic work-up (alumina, 

hexane/EtOAc (1:1)) and then purified again by chromatographic work-up (alumina, 

CHCl3, the third band was collected) to give a violet powder (0.23 g, 0.47 mmol, 45%, 

C27H19N4BrO, 494.1 g/mol). 

 
1H NMR (CDCl3, 400 MHz) �/ppm: 8.46 (d, J=4.5 Hz, 1H, H6A), 8.40 (d, J=8.0 Hz, 1H, 

H3A), 7.72 (m, 2H, H6C+4A), 7.67 (td, J=4.5, 1.6 Hz, 1H, H4C), 7.60 (d, J=8.1 Hz, 1H, 

H3C), 7.19 (m, 4H, H5A+5C+2D+6D), 6.74 (m, 4H, H3D+5D+2E+6E), 6.58 (d, J=8.4 Hz, 2H, 

H3E+5E), 3.69 (s, 3H, CH3). 
13C NMR (CDCl3, 100 MHz) �/ppm: 159.2, 158.8, 158.5, 156.1, 155.8, 148.9, 148.7, 

138.8, 138.1, 136.3, 136.2, 134.0, 131.7, 131.4, 130.8, 126.3, 124.9, 123.0, 122.8, 

121.5, 113.3, 55.0, 5 carbon signals unresolved. 

MS (ESI) m/z: [L+K+DCM]+ 618, [2L+DCM+K]+ 1113. 

Elem. Anal. (C27H19N4BrO) [%]: calc. C 65.5, H 3.9, N 11.31, found, C 64.8, H 4.00, N 

11.1. 

 

Synthesis of 1,3-dibromo-5-((4-methoxyphenyl)ethynyl)benzene (63) 

 

 

 

 

Under argon and exclusion of moisture, 4-iodoanisole (0.54 g, 2.3 mmol), 1-ethynyl-

3,5-dibromobenzene (17) (0.60 g, 2.3 mmol), CuCl (23 mg, 0.23 mmol), and 

PdCl2(PPh3)2 (3) (0.17 g, 0.23 mmol) were suspended in dry, argon degassed, 

triethylamine (60 ml). The mixture stirred at 60°C for 18 hours. The solvent was 

removed and the residue extracted with hexane (100 ml). The solution was filtered 
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and the solvent removed from the filtrate by evaporation. The residue was purified by 

chromatographic work-up (alumina, hexane, the second band was collected). The 

solvent was removed to give a beige solid (0.56 g, 1.5 mmol, 65%, C15H10Br2O, 

363.9 g/mol). 

 
1H NMR (CDCl3, 400 MHz) �/ppm: 7.69 (t, J=8.0 Hz, 1H, H2), 7.59 (d, J=7.8 Hz, 2H, 

H4+6), 7.44 (d, J=8.4 Hz, 2H, H10+14), 6.88 (d, J=8.8 Hz, 2H, H11+13), 3.83 (s, 3H, CH3). 
13C NMR (CDCl3, 100 MHz) �/ppm: 141.2, 135.3, 133.8, 133.2, 132.7, 124.7, 122.7, 

122.5, 114.1, 75.5, 55.3. 

MS (ESI) m/z: [L]+ 365. 

Elem. Anal. (C15H11Br2O) [%]: calc. C 49.2, H 2.8, found, C 49.3, H 2.9. 

 

Synthesis of 4-(3,5-dibromophenyl)-5-(4-methoxyphenyl)-3,6-di(pyridin-2-

yl)pyridazine (64) 

 

 

 

 

1,3-Dibromo-5-(4-methoxyphenylethynyl)benzene (63) (0.20 g, 0.55 mmol) and 3,6-

bis(2�-pyridyl)-1,2,4,5-tetrazine (1) (0.13 g, 0.55 mmol) were heated without solvent at 

170°C for 10 days. The product was purified by chromatographic work-up (alumina, 

EtOAc, the third band was collected) to give a beige powder (0.23 g, 0.40 mmol, 

73%, C27H19N4Br2O, 572.0 g/mol). 

 
1H NMR (CDCl3, 400 MHz) �/ppm: 8.45 (d, J=4.7 Hz, 1H, H6A), 8.40 (d, J=4.7 Hz, 1H, 

H6C), 7.87 (d, J=8.0 Hz, 1H, H3A), 7.77 (td, J=7.5, 1.6 Hz, 1H, H4A), 7.67 (td, J=7.5 

Hz, 1H, H4C), 7.60 (d, J=8.0 Hz, 1H, H3C), 7.37 (t, J=8.0 Hz, 1H, H2D), 7.20 (m, 2H, 

H5A+5C), 6.98 (d, J=7.5 Hz, 2H, H4D+6D), 6.76 (d, J=8.4 Hz, 2H, H2E+6E), 6.61 (d, J=8.8 

Hz, 2H, H3E+5E), 3.69 (s, 3H, CH3). 
13C NMR (CDCl3, 100 MHz) �/ppm: 159.1, 158.9, 157.8, 155.7, 155.1, 148.9, 148.6, 

139.0, 138.6, 136.5, 136.1, 132.7, 131.8, 131.2, 125.8, 124.9, 123.2, 122.9, 121.7, 

113.3, 55.0, 6 carbon signals unresolved. 

MS (ESI) m/z: [L+K+DCM]+ 696, [2L+MeCN+Na]+ 1213, [2L+CHCl3]+ 1269. 
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Elem. Anal. (C27H19N4Br2O) [%]: calc. C 56.4, H 3.3, N 9.7, found, C 56.5, H 3.2, N 

9.7. 

 

Synthesis of 4-(methoxymethyl)-3,6-di(pyridin-2-yl)pyridazine silver complex 

(54sc) 

 

 

 

4-(Methoxymethyl)-3,6-di(pyridin-2-yl)pyridazine (54) (60 mg, 0.22 mmol) and silver 

tetrafluoroborate (42 mg, 0.22 mmol) were used to prepare the silver complex (61 

mg, 0.13 mmol, 60%, C16H14N4OAgBF4). 

 
1H NMR (DMSO, 400 MHz) �/ppm: 8.84 (d, J=4.8 Hz, 1H, H6A), 8.78 (d, J=4.4 Hz, 

1H, H6C), 8.59 (d, J=7.6 Hz, 1H, H3A), 8.23 (d, J=8.0 Hz, 1H, H3C), 8.11 (m, 2H, 

H4A+4C), 7.67 (dd, J=7.6, 5.2 Hz, 1H, H5A), 7.61 (dd, J=7.6, 5.2 Hz, 1H, H5C), 4.90 (s, 

2H, CH2). 
13C NMR (DMSO, 100 MHz) �/ppm: 156.5, 152.3, 151.4, 150.2, 149.1, 139.7, 138.3, 

137.6, 125.7, 124.6, 124.3, 122.7, 122.0, 69.6, 58.4, 1 carbon signal unresolved. 

MS (ES) m/z [Ag+L]+ 387, [Ag+L+MeCN]+ 428, [Na+2L+MeCN]+ 619, [Ag+2L]+ 663. 

 

Synthesis of (3,6-di(pyridin-2-yl)pyridazin-4-yl)methanol  silver complex (55sc) 

 

 

 

 

(3,6-Di(pyridin-2-yl)pyridazin-4-yl)methanol (55) (50 mg, 0.19 mmol) and silver 

tetrafluoroborate (37 mg, 0.19 mmol) were used to prepare the silver complex (71 

mg, 0.15 mmol, 79%, C15H12N4OAgBF4). 

 
1H NMR (DMSO, 400 MHz) �/ppm: 8.76 (m, 3H, H3B+3A+6A), 8.46 (d, J=7.8 Hz, 1H, 

H3C), 8.11 (m, 3H, H4A+4C+6C), 7.67 (dd, J=7.6, 5.2 Hz, 1H, H5A), 7.62 (dd, J=7.6, 5.2 

Hz, 1H, H5C), 4.83 (d, J=4.4 Hz, 2H, CH2). 
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13C NMR (DMSO, 100 MHz) �/ppm: 156.9, 155.3, 152.8, 150.6, 150.3, 149.9, 138.8, 

137.9, 126.3, 125.1, 124.8, 124.0, 122.7, 59.5, 1 carbon signal unresolved. 

MS (ES) m/z [Ag+L]+ 371, [Ag+2L]+ 635, [2Ag+L+BF4]+ 831. 

Elem. Anal. (C15H12N4OAgBF4) [%] calc. C 39.3, H 2.6, N 12.2, found, C 39.3, H 2.7, 

N 12.2. 

 

Synthesis of 3,6-di(pyridin-2-yl)-4-(triisopropylsilyl)pyridazine silver  complex 

(56sc) 

 

 

 

 

3,6-Di(pyridin-2-yl)-4-(triisopropylsilyl)pyridazine (56) (40 mg, 0.10 mmol) and silver 

tetrafluoroborate (20 mg, 0.10 mmol) were used to prepare the silver complex (46 

mg, 0.08 mmol, 80%, C23H30N4SiAgBF4). 

 
1H NMR (DMSO, 400 MHz) �/ppm: 8.83 (m, 2H, H3B+6A), 8.71 (d, J=6.0 Hz, 1H, H6C), 

8.61 (d, J=8.0 Hz, 1H, H3A), 8.22 (d, J=7.8 Hz, 1H, H3C), 8.11 (td, J=8.0, 2.4 Hz, 1H, 

H4A), 8.05 (td, J=7.2, 1.8 Hz, 1H, H4C), 7.62 (m, 2H, H5A+5C), 1.01 (m, 21H, TIPS). 
13C NMR the product was not enough soluble in CD3CN or DMSO to record the 13C 

NMR spectrum. 

MS (ES) m/z [L-(CH(CH3)2)]+ 347, [Ag+L-(CH(CH3)2)+MeCN]+ 494, [Ag+L+MeCN]+ 

537, [Ag+2(L-(CH(CH3)2))+MeCN]+ 843, [Ag+2L]+ 887. 

 

Synthesis of 4-(4-nitrophenyl)-3,6-di(pyridin-2-yl)pyridazine silver complex 

(58sc) 

 

 

 

 

4-(4-Nitrophenyl)-3,6-di(pyridin-2-yl)pyridazine (58) (70 mg, 0.20 mmol) and silver 

tetrafluoroborate (38 mg, 0.20 mmol) were used to prepare the silver complex (93 

mg, 0.17 mmol, 85%, C20H13N5O2AgBF4). 
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1H NMR (DMSO, 400 MHz) �/ppm: 8.91 (d, J=4.0 Hz, 1H, H6A), 8.77 (s, 1H, H3B), 

8.70 (d, J=4.0 Hz, 1H, H6C), 8.62 (d, J=8.0 Hz, 1H, H3A), 8.25 (d, J=8.8 Hz, 2H, 

H2D+6D), 8.18 (td, J=7.8, 2.0 Hz, 1H, H4A), 7.91 (td, J=7.8, 2.0 Hz, 1H, H4C), 7.77 (dd, 

J=6.0, 4.8 Hz, 1H, H5A), 7.57 (m, 4H, H3C+5C+3D+5D). 
13C NMR (DMSO, 100 MHz) �/ppm: 157.5, 155.6, 152.4, 150.7, 150.3, 150.0, 147.6, 

142.2, 139.3, 138.8, 137.7, 130.6, 127.5, 126.6, 125.1, 123.6, 123.3, 2 carbon 

signals unresolved. 

MS (ES) m/z [Ag+L]+ 462, [Ag+2L]+ 817, [2Ag+2L+BF4]+ 1013. 

Elem. Anal. (C20H13N5O2AgBF4) [%] calc. C 43.7, H 2.4, N 12.7, found, C 43.8, H 2.8, 

N 12.7. 

 

Synthesis of 4-(3,6-di(pyridin-2-yl)pyridazin-4-yl)aniline silver complex (60sc) 

 

 

 

 

 

4-(3,6-Di(pyridin-2-yl)pyridazin-4-yl)benzenamine (60) (80 mg, 0.25 mmol) and silver 

tetrafluoroborate (48 mg, 0.25 mmol) were used to prepare the silver complex (99 

mg, 0.19 mmol, 76%, C20H15N5AgBF4). 

 
1H NMR (CD3CN, 500 MHz) �/ppm: 8.64 (d, J=3.6 Hz, 1H, H6A), 8.61 (d, J=3.6 Hz, 

1H, H6C), 8.12 (m, 2H, H3B+3A), 7.98 (td, J=6.0, 1.6 Hz, 1H, H4A), 7.60 (m, 2H, H4C+5A), 

7.40 (dd, J=7.6, 5.2 Hz, 1H, H5C), 7.12 (d, J=6.4 Hz, 1H, H3C), 6.79 (d, J=6.8 Hz, 2H, 

H3D+5D), 6.54 (d, J=6.4 Hz, 2H, H2D+6D), 4.64 (bs, 2H, NH2). 
13C NMR (CD3CN, 125 MHz) �/ppm: 158.6, 155.8, 154.0, 152.0, 151.9, 151.3, 150.6, 

143.6, 139.9, 138.4, 131.6, 127.8, 127.5, 127.2, 126.2, 124.6, 122.4, 115.0, 2 carbon 

signals unresolved. 

MS (ES) m/z [L]+ 326, [2Ag+L+BF4+2MeCN]+ 711. 

Elem. Anal. (C20H15N5AgBF4 + H2O) [%] calc. C 44.6, H 3.2, N 13.0, found, C 44.9, H 

3.2, N 13.1. 
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Synthesis of 4-(4-bromophenyl)-5-(4-methoxyphenyl)-3,6-di(pyridin-2-

yl)pyridazine silver complex (62sc) 

 

 

 

 

 

 

4-(4-Bromophenyl)-5-(4-methoxyphenyl)-3,6-di(pyridin-2-yl)pyridazine (62) (60 mg, 

0.12 mmol) and silver tetrafluoroborate (24 mg, 0.12 mmol) were used to prepare the 

silver complex (69 mg, 0.10 mmol, 83%, C27H19N4BrOAgBF4). 

 
1H NMR (DMSO, 400 MHz) �/ppm: 8.86 (d, J=4.0 Hz, 1H, H6A), 8.82 (d, J=4.4 Hz, 

1H, H6C), 7.86 (m, 2H, H4A+4C), 7.60 (m, 2H, H5A+5C), 7.39 (d, J=8.4 Hz, 2H, H2E+6E), 

7.26 (d, J=7.6 Hz, 1H, H3A), 7.16 (d, J=8.0 Hz, 1H, H3C), 6.82 (d, J=8.4 Hz, 2H, 

H3E+5E), 6.75 (d, J=3.6 Hz, 4H, H2D+3D+5D+6D), 3.66 (s, 3H, CH3). 
13C NMR (DMSO, 100 MHz) �/ppm: 159.0, 152.7, 150.8, 139.5, 137.5, 132.8, 131.9,, 

131.2, 131.0, 126.1, 124.8, 121.8, 113.7, 55.0, 13 carbon signals unresolved (the 

sample was only poorly soluble in DMSO). 

MS (ES) m/z [Ag+L]+ 603, [Ag+L+3MeCN]+ 728. 

 

Synthesis of 4-(3,5-dibromophenyl)-5-(4-methoxyphenyl)-3,6-di(pyridin-2-

yl)pyridazine silver complex (64sc) 

 

 

 

 

 

 

4-(3,5-Dibromophenyl)-5-(4-methoxyphenyl)-3,6-di(pyridin-2-yl)pyridazine (64) (70 

mg, 0.12 mmol) and silver tetrafluoroborate (24 mg, 0.12 mmol) were used to prepare 

the silver complex (81 mg, 0.11 mmol, 92%, C27H19N4Br2OAgBF4). 
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1H NMR (DMSO, 400 MHz) �/ppm: 8.77 (d, J=4.8 Hz, 1H, H6A), 8.61 (d, J=4.4 Hz, 

1H, H6C), 7.95 (td, J=8.0, 1.6 Hz, 1H, H4A), 7.82 (d, J=8.0, 1.6 Hz, 1H, H4C), 7.66 (s, 

1H, H4D), 7.54 (m, 3H, H5A+5C+3A), 7.23 (d, J=8.0 Hz, 1H, H3C), 7.16 (d, J=1.6 Hz, 2H, 

H2D+6D), 6.80 (d, J=8.8 Hz, 2H, H2E+6E), 6.70 (d, J=8.8 Hz, 2H, H3E+5E), 3.66 (s, 3H, 

CH3). 
13C NMR (DMSO, 100 MHz) �/ppm: 159.0, 158.0, 153.2, 153.1, 150.5, 149.8, 139.9, 

137.9, 137.5, 137.4, 137.3, 132.8, 131.7, 131.2, 125.9, 125.7, 124.8, 124.5, 121.6, 

113.5, 55.0, 5 carbon signals unresolved. 

MS (ES) m/z [L]+ 573, [Ag+L]+ 681, [Ag+2L]+ 1255,[2Ag+2L+BF4]+ 1451. 

Elem. Anal. (C27H19N4Br2OAgBF4 + 0.5 CH3CN) [%] calc. C 42.6, H 2.5, N 8.0, found, 

C 43.0, H 2.4, N 7.7. 
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NMR TITRATION        
        
 4-(4-bromophenyl)-3,6(di-pyridin-2-yl)pyridazine (15) with 
AgBF4   
        
        

eq AgBF4 shift ppm  9 mg Ligand in 0.3 mL CD3CN   
0 8,544       

0,1 8,444  0.1 eq is 0.0023 mmol of AgBF4 and 0.025 mL CD3CN 
0,2 8,385       
0,3 8,348 
0,4 8,326 
0,5 8,326 
0,6 8,334 
0,8 8,349 
0,9 8,356 
1 8,361 

1,1 8,367 
1,2 8,369 
1,4 8,376 
1,6 8,383 
1,8 8,389 
2 8,395 

 

 

NMR TITRATION         

          
4-phenyl-3,6-dipyridin-2-ylpyridazine (3) with AgBF4 
          
          

eq 
AgBF4 

Shift 
ppm 

NMR 
file  

3.4 mg Ligand in 0.3 mL 
CD3CN    

             

0 8,586 632  
0.1 eq is 0.0010 mmol of AgBF4 and 0.02mL 
CD3CN  

0,1 8,476 633  
0,2 8,407 634  
0,3 8,383 635  
0,4 8,385 636  
0,5 8,393 637  
0,6 8,4 638  
0,7 8,407 639  
0,8 8,412 640  
0,9 8,417 641  
1 8,421 642  

1,1 8,427 643  
1,2 8,429 644  
1,4 8,435 645  
1,6 8,44 646  
1,8 8,445 648  
2 8,45 649 
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NMR TITRATION         

          
4-(4-nitrophenyl)-3,6-di(pyridin-2-yl)pyridazine (58) with AgBF4 
          

    
4 mg Ligand in 0.3 mL 
CD3CN    

eq 
AgBF4 

shift 
ppm 

NMR 
file        

       
0.1 eq is 0.0011 mmol of AgBF4 and 0.02 mL 
CD3CN  

0 8,609 650        
0,1 8,538 651  
0,2 8,502 652  
0,3 8,483 653  
0,4 8,478 654  
0,5 8,479 655  
0,6 8,482 656  
0,7 8,487 657  
0,8 8,491 658  
0,9 8,495 659  
1 8,499 662  

1,1 8,502 663  
1,2 8,506 664  
1,4 8,511 665  
1,6 8,518 666  
1,8 8,522 667  
2 8,526 668  

   

 

 
 

NMR TITRATION        
         
4-(4-methoxyphenyl)-3,6-di(pyridin-2-yl)pyridazine (30) with AgBF4  
         

eq 
AgBF4 

shift 
ppm 

NMR 
file  7 mg Ligand in 0.3 mL of CD3CN  

            

0 8,554 572  
0.1 eq is 0.0020 mmol of AgBF4 and 0.025 mL 
CD3CN 

0,1 8,447 573 
0,2 8,371 574 
0,3 8,312 575 
0,4 8,281 576 
0,5 8,281 577 
0,6 8,285 578 
0,7 8,292 579 
0,8 8,297 580 
0,9 8,302 581 
1 8,306 582 

1,1 8,31 583 
1,2 8,314 584 
1,6 8,324 589 
1,8 8,328 590 
2 8,332 591 
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NMR TITRATION        
         
4-(4-tert-butylphenyl)-3,6-di(pyridin-2-yl)pyridazine 
(42) with AgBF4 (single H3B signal)    
         
         

    
16 mg of Ligand in 0.3 mL 
CD3CN   

NMR file eq AgBF4 H shift       
       0.04 eq is 0.00175 mmol AgBF4 and 12.5�L CD3CN 
1032 0 8,571       
1033 0,04 8,499 
1034 0,08 8,452 
1035 0,12 8,421 
1036 0,16 8,395 
1037 0,2 8,376 
1038 0,24 8,359 
1039 0,28 8,348 
1040 0,32 8,336 
1044 0,36 8,326 
1045 0,4 8,321 
1046 0,44 8,326 
1047 0,48 8,317 
1048 0,52 8,309 
1049 0,56 8,298 
1050 0,6 8,292 

 

1051 0,64 8,288       
1052 0,68 8,282       
1053 0,72 8,277       
1054 0,76 8,273       
1055 0,8 8,27       
1056 0,84 8,269       
1057 0,88 8,269       
1058 0,92 8,269       
1059 0,96 8,27       
1060 1 8,272       
1061 1,04 8,273       
1062 1,08 8,274       
1063 1,12 8,276       
1064 1,16 8,276       
1065 1,2 8,277       
1067 1,24 8,28       
1068 1,28 8,281       
1069 1,32 8,284       
1070 1,36 8,286       
1071 1,4 8,285       
1073 1,44 8,288       
1074 1,48 8,292       
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NMR TITRATION       
        
4-(4-tert-butylphenyl)-3,6-di(pyridin-2-yl)pyridazine (42) with 
AgBF4 (tert-butyl signals)   
        
        
NMR 
file 

eq 
AgBF4 

terbut 
shift  16 mg of Ligand in 0.3 mL CD3CN  

           

1032 0 1,291  
0.04 eq is 0.00175 mmol AgBF4 and 12.5�L 
CD3CN 

1033 0,04 1,288      
1034 0,08 1,296 
1035 0,12 1,284 
1036 0,16 1,286 
1037 0,2 1,284 
1038 0,24 1,286 
1039 0,28 1,286 
1040 0,32 1,288 
1044 0,36 1,288 
1045 0,4 1,288 
1046 0,44 1,283 
1047 0,48 1,284 
1048 0,52 1,287 
1049 0,56 1,29 

 

1050 0,6 1,291      
1051 0,64 1,292      
1052 0,68 1,295      
1053 0,72 1,296      
1054 0,76 1,296      
1055 0,8 1,298      
1056 0,84 1,298      
1057 0,88 1,298      
1058 0,92 1,299      
1059 0,96 1,299      
1060 1 1,299      
1061 1,04 1,299      
1062 1,08 1,299      
1063 1,12 1,299      
1064 1,16 1,299      
1065 1,2 1,299      
1067 1,24 1,299      
1068 1,28 1,299      
1069 1,32 1,3      
1070 1,36 1,3      
1071 1,4 1,3      
1073 1,44 1,3      
1074 1,48 1,302      
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