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      Abstract 

 

Growth in 3D architectures has been shown to promote the resistance of cancers to treatment with 

drugs, cytokines, or irradiation, thereby potentially playing an important role in tumor expansion. 

3D architectures might also play a role in impairing immunorecognition of cancer cells by 

cytotoxic T lymphocytes (CTLs) specific for tumor-associated antigens.  

 

Culture of HBL, D10 (both HLA-A*0201+, TAA+) and NA8 (HLA-A*0201+, TAA-) melanoma 

cell lines on poly-Hydroxyethylmethacrylate-coated plates, resulted in generation of 3D 

multicellular tumor spheroids (MCTS). Kinetics of cell proliferation in MCTS was significantly 

slower than in monolayer cultures. Following long-term culture (>10-15 days) MCTS showed 

highly compact and organised cell growth in outer layers, with necrotic cores.  

 

To obtain an insight into the role played by tumor architecture in the elicitation of specific gene 

expression patterns, we addressed gene expression profiles of NA8 melanoma cells cultured in 

two-dimensional monolayers (2D) or in 3D (MCTS). Oligonucleotide microarray analysis of the 

expression of over 20,000 genes was performed on cells cultured in standard 2D, in the presence 

of collagen as model of extracellular matrix (ECM), or in MCTS. Gene expression profiles of 

cells cultured in 2D in the presence or absence of ECM were highly similar, with more than 

threefold differences limited to five genes. In contrast, culture in MCTS resulted in the 

significant, more than threefold, upregulation of the expression of >100 transcripts, while 73 

transcripts were more than threefold downregulated. In particular, genes encoding CXCL1, 2, and 

3 (GRO-α, -β, and γ), IL-8, CCL20 (MIP-3α), and Angiopoietin-like 4 were significantly 

upregulated, whereas basic-FGF and CD49d encoding genes were significantly downregulated. 

Oligonucleotide chip data were validated at the gene and protein level by quantitative real-time 

PCR, ELISA, and cell surface staining assays. Taken together, our data indicate that structural 

modifications of the architecture of tumor cell cultures result in a significant upregulation of the 

expression of a number of genes previously shown to play a role in melanoma progression and 

metastatic process. 

 

Then we investigated the effects of 3D culture on the recognition of melanoma cells by antigen-

specific HLA class I-restricted Cytotoxic T-Lymphocytes (CTL). IFN-γ production can be used 



 

as a surrogate marker for tumor cell immunorecognition. Co-culture of melanoma spheroids with 

HLA-A0201 restricted Melan-A/MART-127-35-specific CTL clones resulted in significantly 

defective TAA recognition by CTL as compared to 2D, as witnessed by decreased IFN-γ 

production and decreased Fas Ligand, perforin and granzyme B gene expression. Indeed, Melan-

A/MART-1 expression, at both gene and protein levels, was significantly decreased in 3D as 

compared with 2D tumor cell cultures. Concomitantly, a parallel decrease of HLA class I 

molecule expression was also observed. Differential gene profiling studies on HBL cells showed 

an increased expression of genes encoding molecules involved in intercellular adhesion, such as 

junctional adhesion molecule 2 and cadherin-like 1 (>20- and 8-fold up-regulated, respectively) 

in 3D as compared with 2D cultures.  

 

We further identified a multiplicity of mechanisms potentially involved. In particular : 

1) MCTS per se limit CTL capacity of recognizing HLA class I restricted antigens by reducing 

exposed cell surfaces.  

2) Expression of melanoma differentiation antigens is down-regulated in tumor cell spheroids as 

compared to 2D unrelated to hypoxia or increased Oncostatin M gene expression but rather to 

decreased MITF gene expression.  

3) Expression of HLA class I molecules is frequently down-regulated in melanoma MCTS, as 

compared to 2D, possibly due to decreased IRF-1 gene expression.  

4) Lactate production by melanoma cells is increased in MCTS, as compared to 2D and lactate 

significantly inhibits TAA triggered IFN-γ production by CTL.  

 

Taken together, our data suggest that mere growth of melanoma cells in 3D architectures, in the 

absence of immunoselective pressure, may result in defective recognition by tumor-associated 

antigen-specific CTL and a constellation of mechanisms are involved in causing this impairment 

of immunorecognition. 
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Chapter 1 
 

Introduction 

“Wat  ik  will  is  dat  alles  rond  is  en  er als “Wat  ik  will  is  dat  alles  rond  is  en  er als “Wat  ik  will  is  dat  alles  rond  is  en  er als “Wat  ik  will  is  dat  alles  rond  is  en  er als ‘t  ware  begin  noch  ei‘t  ware  begin  noch  ei‘t  ware  begin  noch  ei‘t  ware  begin  noch  eind  ergens  aan nd  ergens  aan nd  ergens  aan nd  ergens  aan 
de  vorm  is,  doch  die  een  harmonisch  levend  geheel  uitmaakt“.de  vorm  is,  doch  die  een  harmonisch  levend  geheel  uitmaakt“.de  vorm  is,  doch  die  een  harmonisch  levend  geheel  uitmaakt“.de  vorm  is,  doch  die  een  harmonisch  levend  geheel  uitmaakt“.    

   
(What I want is for everything to be round without, so to speak, a beginning 

or end of the figure anywhere, so that it makes one, lifelike harmonious whole) 
 

           Vincent Van Gogh 
                     (1853-1890) 

Melan-A/MART-127-35 epitope-specific HLA-A*0201 restricted CD8+ T 
lymphocytes could infiltrate only superficially in HBL spheroids, as analyzed 
by confocal microscopy.  

Chapter 1 
 

Introduction 
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1. Introduction 
 

Skin cancer has increasingly been brought into focus during recent decades in the 

international epidemiological community, due to steep upwards slope of trends for malignant 

melanoma. It is expected that more than 60,000 persons will be diagnosed and there will be death 

of around 8,000 melanoma patients in 2006 only in USA. (American Cancer Society: Cancer 

Facts and Figures 2006).  

Increase in the incidence of malignant melanoma is strongly related to frequency of 

recreational exposure to the sun and to history of sunburn. United Nations Environment 

Programme (UNEP) has estimated that more than 2 million non-melanoma skin cancers and 

200,000 malignant melanomas occur globally each year. In the event of a 10% decrease in 

stratospheric ozone, an additional 300,000 non-melanoma and 4,500 melanoma skin cancers 

could be expected worldwide. Caucasians have a higher risk of skin cancer because of the 

relative lack of skin pigmentation. Melanoma arises in melanocytes found along the basement 

membrane of the epithelium which synthesize, store and transfer melanin pigments to 

surrounding epithelial cells in skin. Radial growth of melanoma (e.g. few layers of neoplastic 

cells) has traditionally been associated with good prognosis.  

 

1.1. Need for simple in vitro tumor model system: 

Rapidly developing anticancer research requires better understanding of tumor 

architectures and better model systems for cheap and rapid testing of therapeutic approaches in 

vitro. Growing evidence is supporting the idea that tumor microenvironment and tumor tissue 

architectures may be the ultimate regulators of the cellular phenotype and functions. These 

factors determine how the cancer cells interpret biochemical cues from their immediate 

surroundings. Currently, there is no “in vitro” model, utilizing human cells, allowing to 

adequately address these issues in controlled conditions. Simple and reproducible in vitro model 

systems using human cells are urgently needed to simulate the in vivo microenvironment of small 

avascular tumour.  

Active antigen specific immunotherapy is currently being investigated in a number of 

clinical centers as treatment option for advanced stage melanoma. Although a variety of different 

vaccination procedures are capable of inducing Tumor associated antigen (TAA) specific 
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cytotoxic T-lymphocyte (CTL) “in vivo” in large percentages of immunized patients, but clinical 

responses are only detectable in a minority of them. Cytotoxicity assays or the functional 

monitoring of clinical immunotherapy trials are usually performed by utilizing, as targets, cell 

lines, frequently of lympho/myeloid origin, expressing appropriate HLA alleles upon pulsing 

with specific peptides. At present, in the human setting, typical experimental protocols imply the 

admixture of effector and target cells pelleted together in culture wells. The lack of correlation 

between data obtained “in vitro” with these technologies and clinical data of immunotherapy 

trials suggests that this model system might not adequately account for critical aspects of the 

interaction between immunocompetent cells and cancers.   

 

1.2. Importance of simulating 3D tumor architecture 

Experimental murine models indicate that tumor cells in suspension, regardless of their 

numbers, are frequently unable to produce life threatening cancer outgrowth, as opposed to solid 

tumor fragments (Ochsenbein AF et al 2001), while inducing specific immune responses. Thus, 

proliferation in structured architectures appears to represent a pre-requisite for cancer 

development. Immunocompetent cells infiltrating in vivo 3D tumor architectures are often found 

to be functionally impaired. In particular, tumor infiltrating CD8+ cells staining positive for TAA 

specific multimers, have been reported to be in a quiescent state and unable to respond with IFN-

γ production to antigenic challenges. 

Human tumours are complex three-dimensional tissues in which extensive cell-cell and 

cell-extracellular matrix (ECM) interactions take place, gradients of diffusible molecules develop 

and cells assume particular geometries. In contrast, simple in vitro two-dimensional conventional 

monolayer cultures limit the extent to which cell-cell and cell-ECM interactions can occur, 

diffusion gradients are absent, and cells are organized (and constrained) in a 2D plane. To a large 

extent it is these features that dictate the response to treatment, either directly or indirectly. Direct 

modulation arises for such reasons as drug transport limitations (diffusion) and altered 

physiochemical environment (e.g., the efficacy of radiotherapy is reduced in low oxygen 

environments).  Indirectly, the microenvironmental features of a tissue direct cellular phenotype 

and function. Changes in protein expression, cell physiology, and cell-cycle status attenuate the 

response to anti-tumor treatment. A classic example is that many chemotherapeutic agents target 

proliferating cell population, yet a significant proportion of tumour cells enter a quiescent state 
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due to reduced availability of nutrients and oxygen (diffusion limitation). In contrast monolayer 

cultures are generally in a replicative state, making them more susceptible to treatments. 

Hence it is critically important to understand 3D tumor microenvironment for designing a 

successful treatment protocol. Many microenvironment changes occur within an in vivo tumor as 

a result of its 3D architecture and insufficient vascular function. Small avascular tumor nodules 

as well as microregions of large tumors can develop a typical tumor microenvironment niche in 

which there may be major gradients of oxygen, glucose, lactate, H+ ions, other nutrients, growth 

factors, toxic waste products. This heterogeneous environment along with instability of malignant 

genome can generate diverse phenotypes responsible for altered responses to therapeutic agents.  

One approach of investigating the biology of this heterogeneous tumor microenvironment 

is by culturing cancer cells in the form of three-dimensional tumor spheroids. This model system  

have been developed in the past decade, aiming at exploring radio or chemoresistence of tumor 

cells in “in vitro” assays more closely related to “in vivo” conditions than standard monolayers. 

In the late 1950s, multicellular aggregates of cells were first proposed by Holtfreter (Holtfreter J 

1944) and Moscona (Moscona A 1957). Around early 1970s Sutherland and coworkers 

systematically investigated the response of tumor cell aggregates to anti-neoplastic therapy. 

Because the cell lines formed nearly perfect sphere-shaped cell aggregates, they were called 

"spheroids." (Sutherland RM et al 1971; Sutherland RM 1988).  

1.3. Multicellular tumor spheroid model system 

Multicellular tumor spheroids (MCTS) have been reported to accurately represent early 

events of avascular tumor growth especially with respect to growth kinetics, cellular 

heterogeneity (e.g. the induction of proliferation gradients and quiescence), as well as 

differentiation characteristics, such as the development of specific histological structures or the 

expression of antigens, morphological features of poorly vascularised tumour regions and 

micrometastases (reviewed by Mueller-Klieser W 1987; Sutherland RM 1988; Desoize et al. 

2000). MCTS remind in vivo cancers in their capacity to develop necrotic areas far from nutrient 

and oxygen supplies. Furthermore, cells cultured in MCTS are also similar to solid tumors in 

their proliferation dynamics (Gorlach A et al. 1994). Unlike the conventional monolayer cultures, 

proliferation curve of MCTS typically fit the Gompertz equation, which is classically used to 
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quantitatively evaluate neoplastic growth (Bajzer et al. 1997; Chignola et al. 2000). Most 

importantly, it has been shown that MCTS display different metabolic characteristics (Santini MT 

et al. 1999) and a decreased sensitivity to apoptosis due to radio-chemo treatments or to death 

receptors ligation (Santini MT et al. 2000) as compared to their 2D cultured counterparts. As 

already reported by several groups, 3D architecture of MCTS can regulate gene expression 

pattern and cellular differentiation (Grover A et al. 1983; Sutherland RM et al. 1986; Dangles V 

et al 2002). But the genetic and molecular bases of the biological peculiarities found in malignant 

cells grown as three-dimensional aggregates still need to be systematically investigated.        

Due to such close similarities with in vivo tumor, MCTS model system have been widely 

used in biomedical research (Mueller-Klieser W 1997) - mostly as an in vitro model for 

systematic studies of tumor cell response to radiotherapy and chemotherapy. Evidence is 

accumulating in support of the thought that the tight intercellular contact, rather than attachment 

to artificial substrate, could represent the key factor for enhanced resistance to cytotoxic agents 

like, radiation, heat, ultrasound, drugs (Durand RE et al. 1975; Sacks PG et al. 1981). Adjacent 

cells in MCTS are held together by surface membrane microprojections, extracellular matrix and 

a variety of cell-cell junctions (desmosomes, tight junctions, junctional complexes, gap 

junctions). The frequency of these junctions varies widely among spheroids of different cell lines. 

Cell surface proteins, allowing Ca2+-dependent or independent adhesion, from the selectin 

(binding to carbohydrate groups), cadherin and integrin (cell surface protein binding) families 

facilitate recognition and adherence between cells. In addition to the obvious role of cell-cell 

adhesion, binding of these proteins to the appropriate ligands results in conformational changes, 

transmitting a signal across the cell membrane to the cytosol (Bates RC et al. 2000). 

However there is a curious paucity of research regarding immune responsiveness to tumor 

cells cultured in 3D architectures. We envisage that further exploration of the interaction of tumor 

microenvironment with immune cells may help gathering improved understanding about immune 

recognition process and in turn this may lead to better therapeutic strategies.  

1. 4.  Spheroid culturing techniques 

1.4.1. Introduction 

The development of appropriate in vitro models that may reflect the in vivo tumor 

environment may represent a key factor for the study of malignancies. Although lacking of 
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stroma and the vasculature of in vivo solid tumors, MCTS model systems have many similarities 

to in vivo cancers. Several different methods to cultivate MCTS are available, their suitability 

depending on the particular application. All these methods have in common the cultivation of 

cells in a non- or poorly adherent environment. With no accessible substratum to which they 

might adhere, naturally anchorage dependent cells self-aggregate and develop into spheroids.  

 

1.4.1.1. Stirred cultivation methods 

To avoid the complication of a nonhomogenous environment, Moscona introduced the 

spinner flask method in the early 1960’s for the cultivation of embryonic cells (Moscona A 1957; 

Moscona MH et al 1963; Moscona A 1968). This method was later adopted by several groups 

(Sutherland RM et al. 1976; Wiens AW et al. 1972) for the cultivation of MCTS. In this approach 

cells are stirred at 150-200 rpm to inhibit adhesion to the flask and to maintain them in   

 

  

Figure 1: Traditionally used spinner flasks for preparing multicellular spheroids 

 

suspension (Figure-1). Co-incidental collision and adherence of cells with each other result in the 

formation of aggregates. Today this is achieved using spinner flasks, shake flasks, or roller 

bottles, and large numbers of spheroids can be generated with minimal handling. Unfortunately 

shear sensitive or weakly adherent cells often fail to aggregate and develop into spheroids in 

these systems, although a pre-formation step in static culture may be used. Additionally, the 

random nature of aggregate formation typically results in MCTS populations of widely 

Spinner flask 
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distributed size, and for analytical purposes a selection step is required (Santini MT et al 1999). 

Possible effects of the mechanical forces on cellular phenotypes must also be considered. 

 

Another popular approach to MCTS cultivation is the rotating wall vessel bioreactor 

(RWVB), or microgravity bioreactor (Figure 2). The rotating bioreactor was invented by NASA 

as a model of microgravity effects on cells to generate a three-dimensional tissue construct 

(Hammond TG et al 2001). Freed et al (Freed LE et al 1997) grew specimens of bovine cartilage 

tissue under both normal (Earth) and microgravity conditions (Mir), and reported that initially 

disk-like specimens became spherical in space, whereas constructs grown on Earth maintained 

their initial disk shape. 

 

 

Figure 2: Rotating wall vessel bioreactor 

 

In RWVB cells are maintained in suspension by randomizing the gravity vector, leaving them in 

a state of perpetual freefall to fecilitate aggregation and formation of spheroidal tissue (reviewed 

in Hammond TG et al 2001). This approach combines the advantages deriving from stirred flasks 

(e.g., large numbers/volumes) with a gentle environment that facilitates cell-cell adhesion, while 

providing excellent bulk mixing of the cultivation medium (Licato LL et al 2001; Song H et al 

2004; Simons DM et al 2006).  

 

1.4.1.2. Hanging-drop method 

The use of hanging drops in the production of cellular aggregates has been first reported 

for non-neoplastic cells (Kennedy TE et al. 1994). Recently Kelm et al. (Kelm JE et al 2003) 

adopted this method for the generation of MCTS.  In this method a small volume (20–30 µL) of 
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cell suspension is dispensed into the wells of a 60-well micro-titer Terasaki plate. The plate is 

then inverted, resulting in a hanging-drop by surface tension of the culture medium. Under the 

influence of gravity, cells settle at the medium-air interface, where they subsequently aggregate 

and develop into multicellular Spheroid. This approach avoids contact with any artificial 

substratum and provides a very gentle environment, and it has been reported to result in spheroid 

population of narrowly distributed size. A major drawback is the limited volume of culture 

medium that can be employed due to the design of the plates, limiting cultivation periods and 

producing very small spheroids. 

 Hanging-drop method has also been employed by cancer researchers to generate 

confrontation cultures for studies of tumour invasion and angiogenesis (Timmins NE et al 2004). 

As demonstrated by Del Duca et al. (Del Duca D et al 2004), the hanging-drop method can also 

be combined with that of liquid overlay, aggregating cells in hanging drops and subsequently 

cultivating in overlay culture. 

 

1.4.1.3. Gel encapsulation 

Gel encapsulation approaches have also been employed for the generation of MCTS 

(Kupchik HZ 1983; O’Keane JC et al 1990; Kupchik HZ et al 1990; Hoffmann J et al 1997). A 

cell suspension is mixed with a gelling agent (e.g. alginate or agarose) which is dispensed 

dropwise into a setting agent (e.g., Ca2+ solution for alginate, or reduced temperature for 

agarose).  One advantage of this method is that in some respects it recreates the physically 

constrained environment encountered in vivo, where tumor tissue is surrounded by other tissue.  

It has been shown that growth induced stress in agarose encapsulated cultures can induce ECM 

synthesis and growth inhibition, and decrease the rate of apoptosis (Helmlinger G et al. 1997). 

Solid stress can also facilitate MCTS formation especially for highly metastatic cancer cell lines 

that do not easily form spheroids. Growth-inhibiting stress in the range of 45-120 mmHg can 

increase ECM (hyaluronan) synthesis by tumor cells (Koike C et al 2002). Stress release, 

however, may cause loss of MCTS integrity. Cells have also been cultivated first as spheroids in 

spinner flasks and then entrapped in alginate-polyLysine beads. But the entrapped spheroids did 

not increased in size or number whereas free spheroids in suspension increased in size (Papas KK 

et al. 1993). 
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1.4.1.4. Static cultivation methods 

A most common and simple approach to the cultivation of MCTS is that of liquid overlay.  

Cell culture dishes are coated with a non-adherent medium (e.g., agarose, agar, poly- 

Hydroxyethyl methacrylate), or fabricated from non-adherent materials (e.g., polystyrene Petri 

dishes), and a cell suspension layered over top (Yuhas JM et al 1977). Cells settle onto the non-

adherent surface, but are unable to find anchorage site and subsequently assemble into 

aggregates.  This method is well suited for use with cells that are particularly sensitive to shear or 

are only weakly adherent.   

Poly(2-Hydroxyethyl methacrylate) (PolyHEMA)was first described by Woodhouse 

(Woodhouse JC. US Patent 2 129 722) and later widely used as a hydrogel for making contact 

lens, as proteins do not easily adhere to it. Application of PolyHEMA hydrogels as biomaterials 

gained quick popularity as some of its physical properties are similar to living tissue (high water 

content, soft and rubbery consistency, hydrophiliity, water permeability, low interfacial tension). 

PolyHEMA is well known to prevent cellular adhesion and spreading (Folkman J et al. 1978). 

 

Figure 3: Chemical composition of Poly-Hydroxy ethyl methacrylate 

 

Although widely employed, these static methods of MCTS cultivation have several 

undesirable features. Under such conditions the rate of aggregate formation is variable, 

essentially being a random process, and the resulting MCTS vary in size. As the MCTS lie on top 

of a solid substratum, diffusion may not be homogeneous and this complicates theoretical 

analysis, while the lack of stirring can lead to heterogeneity in the cultivation medium. 

Furthermore, possible interactions with the substrate cannot be easily discounted (Santini MT et 

al 1999). Simple modifications of the general approach can be employed to address some of these 

issues. Controlled aggregation of individual MCTS can be achieved by cultivation in 96-well 

plates coated with PolyHEMA (all cells contributing to one MCTS in each well), and shakers can 

be used to facilitate mixing of the medium. 
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1.4.2. MCTS Characterization  

1.4.2.1.   Growth kinetics of MCTS 

Kinetics of cell growth can be measured by incorporation of tritium-thymidine (Carlsson J 

1977; Nederman T et al. 1988) or by reduction of Alamar Blue (Ghosh S et al. 2005a). Alamar 

Blue is a non-toxic chemical, stable at culture medium, which can be used to monitor the 

reducing environment of the proliferating cell. 

 Multicellular tumor spheroids closely resemble in vivo solid tumors in their growth 

dynamics. The Gompertz equation is traditionally used to describe the size-limiting growth of 

tumours and tumour spheroids and is given by: 

in which D0 and D(t) are measures of spheroid size (either diameter or volume) at initial time and 

time t respectively, Dmax is the limiting size, and a is the specific growth rate (Winsor 1932; Ward 

JP et al 1997). The resulting growth curve has a sigmoidal shape and reflects a continuously 

increasing doubling time that causes an asymptotic approach to size Dmax. The Gompertz 

equation was used to fit the spheroid growth curves of diameter vs time (Marusic M et al 1994). 

 

1.4.2.2. Morphological characterization 

The value of three-dimensional MCTS in tumour research stems from their similarity to in 

vivo tumours, and this is readily apparent from a comparison of physiochemical environment, cell 

status and growth kinetics. “In vivo” the distance from the nearest capillary limits diffusion 

resulting in a decrease in the availability of nutrients and oxygen with build-up of gradient of 

metabolic products. A corresponding gradient in cellular status is observed, with proliferating 

cells near the capillary and quiescent cells in the underlying regions, followed by areas of 

necrosis.  

Thomlinson et al (Thomlinson RH et al. 1955) and Tannock (Tannock IF 1968) showed 

that within solid tumor in vivo only the cells near capillaries were proliferating and the cells at a 

distance of about 100–200 µm from the vasculature were degenerating. However, both of these 

studies were carried out in tumors with a pronounced nodular appearance; penetrating vessels and 

capillaries were surrounded by rather thin layers of viable cells. In general, regions of massive 

necrosis are often seen in fast growing in vivo malignant tumors (Rubin P et al 1968; Folkman J 

1975). The fraction of viable and proliferative cells and the degree of nodular appearance seem to 
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vary widely between different tumor types (Ackerman LW et al 1974). Vascularisation-deficient 

areas of tumor have retarded growth rate, due to inadequate nutrition, accumulation of catabolic 

products- which may produce low pH, high osmolality, or other toxic effects. A continuously 

decreasing fraction of proliferating cells, a continuously increasing frequency of cell death and 

 

 

Figure 4: Similarity of in vivo tumor with in vitro spheroid model system, in simulating the 
gradient of pH, oxygen concentration, nutrient availability and different proliferative status 

 

accumulation of debris from dying cells are some of the histological changes associated with 

tumor progression (Steel GG, 1977). Poorly vascularized regions may also be difficult to reach 

with cytotoxic drugs, immunological agents (e.g., immunoglobulins, macrophages, cytotoxic T 

lymphocytes). Very similar to the morphology of in vivo tumor, the same gradient of 

physiochemical environment and cell status is observed while progressing from the outer edge of 

MCTS towards the center (Figure 4).   

Multicellular tumor spheroid morphology has the potential to closely resemble in vivo 

tumors by their capacity to develop necrotic cells in areas far from nutrient and oxygen supplies. 

Unlike conventional monolayer cell culture of exponential or plateau phase, there is always 

significant metabolic diversity in spheroids, somewhat similar to the in vivo tumors. Position of a 

particular cell in the spheroidal aggregate may have critical influence on the fate of governing 

cellular function (Folkman J et al 1973). Rosenstraus et al showed that in a spheroid near 

peripheral position is essential to differentiate embryocarcinoma cells into functional visceral 

endoderm cells (Rosenstraus MJ et al 1983). 

Within the spheroid, cells deposit their own extra cellular matrix in extensive amount as 

compared to the monolayer cell culture, which had been reported by many groups (Glimelius B et 
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al. 1988).  Nederman et al showed that spheroids of a human glioma cell line and a human 

thyroid cancer cell line can generate ECM composed of fibronectin, laminin, collagen 

(demonstrated by microscopy and indirect immunofluorescence) and glycosaminoglycans in a 

similar organization to that of tumors in vivo (Nederman T et al. 1984).  

 Beyond a critical size of 500µm, most spheroids from permanent cell lines develop a 

necrotic core surrounded by a viable rim of cells (100-300 µm) consisting of proliferating cells in 

the spheroid periphery and quiescent, yet intact and viable cells close to the necrotic center. The 

size at which necrosis starts and the thickness of the viable rim of cells differ from cell types, 

culture medium, duration of culture etc. Larger dimensions would result in a greater difficulty for 

oxygen and nutrients to reach the cells located in the center of the spheroid thus leading to the 

formation of a necrotic central area (Walenta S et al 1990). Consequently, the cell number and 

culture time after spheroid formation should be critically evaluated before beginning a study, and 

spheroid size should be established to suit particular experimental needs.  

 

1.5. Gene expression 

1.5.1. Introduction: 

Hallmark of carcinogenesis is a combination of mainly three factors- (a) decreased 

genomic stability together with (b) specific genetic changes in oncogenes and tumor suppressor 

genes and (c) faulty DNA-repair mechanisms. Compared to the cells cultured in vitro in 

monolayer on a Petri dish, the cells in a tumor are in close contact with the extracellular matrix.  

Growing evidence is indicating that there is a functional continuity between the extracellular 

matrix, the cytoskeleton, hypoxia, nuclear matrix with both direct and indirect effects on gene 

expression (Boudreau N et al 1995). Comparison of gene expression pattern in cells cultured in 

monolayer and 3D spheroid can give some insight about the effect of 3D tumor 

microenvironment on gene expression profile. 

 

1.5.2. Regulation of gene expression by 3D tumor architecture  

Characteristics of cancer cells are traditionally assessed in a monolayer environment in 

plastic culture dishes in the presence or absence of coating of ECM macromolecules (such as 

collagen, fibronectin, hyaluronic acid etc). Cell shape can play critical role in gene expression 

and controlling growth and cellular differentiated functions, via cytoskeleton modulation 

(Folkman J et al 1975). In conventional monolayer culture the cell shape is mainly governed by 
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the affinity of the cells for the substratum, surface morphology. So a perfect selection/choice of 

substratum is needed in monolayer culture, to maintain differentiated cellular functions for each 

cell type. But in spheroid culture, no particular cell shape is dictated/imposed on the cell. One 

might postulate that cell shape in spheroid is mainly governed by the intrinsic homotypic cell-cell 

adhesive interactions, specific microenvironmental conditions and by the nature of extracellular 

matrix produced by the cell type. This 3D architecture of tumor cells, with a critical influence of 

hypoxia, may dictate specific gene expression patterns of potentially high functional relevance.  

ECM produced by cancer cells in MCTS can regulate gene expression pattern and cellular 

differentiation. In monolayer culture, differentiation is not markedly observed, but in spheroids 

often differentiation is induced. This differentiation is reported to be intermediate between 

monolayer and in vivo xenografts in nude mice (Knuechel R et al. 1990; Sutherland RM et al. 

1986). Grover et al (Grover A et al. 1983) showed that when exogenous Laminin was deposited 

on the outer side of the F9 spheroids in addition to the normal position of endogenous Laminin 

below the first cell layers a lack of expression of differentiated functions was observed, possibly 

due to asymmetric arrangement of cells. Endogenous Laminin plays a key role in organizing the 

epithelial layer of endoderm cells and hence indirectly affects gene expression. It has also been 

(Grover A et al. 1985) showed that in aggregated F9 embryonal carcinoma cells fibronectin has a 

role in aggregation whereas laminin is important in the differentiation process.  

The expression of specific sets of genes might also be modulated by hypoxia and cell 

cluster architecture (Poland J. et al. 2002). Systemic studies of modulation of gene expression 

within the tumour microenvironment could help identifying potential new targets for rational 

drug design. Knowles at al (Knowles H J et al. 2001) studied the gene expression pattern in 

spheroids by differential display and validated it by Northern blot or semiquantitative RT-PCR. 

 Oloumi et al (Oloumi A. et al. 2002) studied gene expression modulation in Chinese 

hamster V79 cells by differential display technique. Genes upregulated in the outer cell layer of 

spheroids relative to monolayers included: (1) mts1 (S100A4), a calcium binding protein 

implicated in proliferation, metastasis, cell adhesion, and angiogenesis, (2) cytochrome c oxidase 

II, (3) B-ind1, a mediator of Rac-1 signaling, (4) TRAM, an endoplasmic reticulum protein. 

Genes downregulated in spheroids were: (1) phosphoglycerate kinase, (2) ARL-3, a ras-related 

GTP binding protein, (3) MHC class III complement 4A and (4) 2,4-dienoyl-CoA. 

 Dangles et al (Dangles V et al. 2002) studied influence of culture condition over gene 

expression profiles which enabled them to shortlist 28 key genes using three bladder cancer tissue 
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specimens and their derived cell lines in single-cell suspensions, 2D monolayers and 3D 

multicellular spheroids (having 10,000 cancer cells per spheroid) and showed how the in vitro 

spheroid model may closely mimick in vivo phenotypes of tumours. 

 Timmins et al (Timmins NE et al. 2004) used microarrays comprising 18,664 human 

gene-specific oligonucleotides (Compugen) to shortlist 42 genes which were differentially 

expressed by more than 2-fold using monolayer and spheroids (8 days old) of HCT116 colon 

carcinoma cell line. Three of them might contribute to the multicellular drug resistance 

phenotype (S100A4, SKIP3, and p48). S100A4 was 2.3 fold upregulated in MCTS compared to 

monolayer. SKIP3 (down-regulated 2.4-fold in MCTS) is an NF-kB inducible gene, and a 

negative feedback inhibitor of NF-kB dependent gene expression. NF-kB is known to confer 

resistance to cytotoxic therapies via suppression of apoptosis, and its transcriptional activity is 

regulated by phosphorylation of the p65 subunit. p48 was up-regulated 4.4-fold in spheroid than 

monolayer. Out of 42 shortlisted transcripts 13 are involved in interferon response, 10 are 

differentiation related, and 14 are differentially regulated in tumours as compared to healthy 

tissue. 

 

1.5.3. Gene expression pattern in melanoma 

Most melanomas arise within the epidermis (melanoma in situ) and then invade the 

basement membrane. These melanoma cells escape from control by keratinocytes through five 

major mechanisms:  

(1) downregulation of receptors important for communication with keratinocytes such as 

E-cadherin, P-cadherin, and desmoglein, which is achieved through growth factors such as 

hepatocyte growth factor, platelet-derived growth factor, and endothelin-1 produced by 

fibroblasts or keratinocytes. 

(2) upregulation of receptors and signaling molecules important for melanoma cell-cell 

and melanoma cell-fibroblast interactions such as N-cadherin, Mel-CAM (MCAM), and zonula 

occludens protein-1 (ZO-1).  

(3) deregulation of morphogens such as Notch receptors and their ligands. 

(4) loss of anchorage to the basement membrane due to an altered expression of cell-

matrix adhesion molecules. 

(5) increased expression of metalloproteinases.  
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The most frequent genetic aberrations in malignant melanoma are rearrangements in chromosome 

1, in tumor suppressor genes. Chromosomal abnormalities such as duplication, deletion, mutation 

of genes on chromosomes 6, 7, 9, 10, 11, 22 and Y have also been reported. Several groups 

addressed gene expression profiles of melanoma cells in different clinical and physiological form 

(Carr KM et al. 2003; Bittner M et al. 2000; Clark EA et al. 2000; Hayward NK 2003).  

 

 

Figure 5: Current model of melanoma outgrowth 

 

 

Normal melanocytes are generally arranged individually at the epidermal-dermal junction 

or in small organized clusters of benign nevus. Primary melanoma progresses by the steps 

showed in Figure 5, including: 

(i) Radial growth phase which is characterized by horizontal spreading of transformed 

melanocytic cells within the epidermis and small nests of invasive cells limited to the upper part 

of dermis.   
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(ii) Vertical growth phase characterized by invasion of melanoma cells into the deeper dermis 

and underlying subcutaneous tissue. Then melanoma cells from this phase metastasise to regional 

lymph nodes or to distant organs. 

Activating mutations in BRAF are very frequent in melanomas (detected in 59% of 

melanoma cell lines and 6/9 melanoma specimens) (Davies H et al 2002), indicating that BRAF 

would be a legitimate target of experimental therapy of melanoma.  

 Another report shows that overexpression of RhoC, a member of Rho family of GTP-

hydrolyzing proteins, is important for tumorigenesis in melanoma and its metastases. (Clark EA 

et al 2000) 

Progression from radial growth phase to vertical growth phase is associated with loss of 

E-cadherin and expression of N-cadherin. Expression of αvβ3 induces expression of matrix 

metalloproteinase-2, an enzyme that degrades the collagen in basement membrane. In addition 

αvβ3 also stimulates the motility of melanoma cells through reorganization of cytoskeleton and 

increased expression of anti-apoptotic bcl-2 (Petitclerc E et al. 1999). There is no systematic 

comparative study on melanoma using monolayer cell culture and spheroid culture system, which 

may simulate progression from radial growth phase to vertical growth phase. 

 

 

1.6. Immune recognition 

1.6.1. Introduction 

The identification of a large series of tumor associated antigens (TAA) (Renkvist N et al 

2001) has generated high hopes regarding the possibility to take advantage of the enormous 

increase of knowledge stemming from basic immunology research to favorably steer the 

prognosis of neoplastic diseases by active antigen specific immunotherapy, i.e. by vaccination. 

Promising clinical data have been reported in many trials based on diverse immunization 

procedures (Rosenberg SA 1998; Rosenberg SA et al 1998; Nestle FO et al 1998; Thurner B et al 

1999; Slingluff CL et al 2003; Bedrosian I et al 2003). A common finding in these clinical trials 

irrespective of immunization procedures is that, although cytotoxic T lymphocyte (CTL) 

responses specific for TAA can be relatively easily induced, clinical responses are only rarely 

observed. Within that context MCTS model system could be useful tool to simulate the effect of 

tumor microenvironment /architecture on activation of defense cells and to understand 

mechanisms of immune escape (Ganss R et al 1998; Parmiani G et al 1990).  
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The molecular mechanisms underlying the discrepancy between immunological and 

clinical responsiveness to active antigen specific immunotherapy have been investigated by 

several groups, but still there is poor understanding about the effect of 3D tumor architecture to 

the immune responsiveness. Experimental models indicate that tumor cells in suspension, 

regardless of their numbers, are frequently unable to produce life threatening cancer outgrowth, 

as opposed to solid tumor fragments (Ochsenbein AF et al 2001), while being able to induce 

specific immune responses. Radial growth of melanoma (e.g. few layers of neoplastic cells) has 

traditionally been associated with good prognosis. Thus, proliferation in structured three 

dimensional architectures appears to represent a pre-requisite for cancer development.  

 

1.6.2. Infiltration of MCTS by TAA specific T cells.  

Tumor infiltration by T-lymphocytes, macrophages, monocytes was long thought to be a 

hallmark of the immune response to the tumor (Virchow R 1863, Brocker EB et al. 1988). T cell 

infiltration in primary melanoma was reported to correlate with a better eight year survival rate 

(Halpern AC et al 1997). Previous work on clinical materials suggests that detection of tumor 

infiltrating lymphocytes is indeed associated with improved prognosis in melanoma, but only in 

cases where a “brisk” (Clemente CG et al. 1996; Anichini A et al. 1999) and not a merely 

superficial infiltration can be observed. Interestingly even in vitro experiments, tumor infiltrating 

lymphocytes of undefined antigenic specificity, capable of killing autologous bladder tumor cells 

cultured in 2D or in suspension, have been shown to be unable of recognizing targets cultured in 

3D (Dangles V et al. 2002). Similarly a CTL clone specific for a mutated α-actinin-4 peptide 

expressed by autologous lung cancer cells poorly recognized targets growing in MCTS, possibly 

due to a down-regulation of HSP70 expression (Dangles-Marie V et al. 2003). Furthermore Fas 

ligand (FasL) gene was found to be expressed in HRT-18 and CX-2 colorectal cancer cell lines 

cultured as MCTS but not in 2D (Hauptmann et al. 1998). Clearly these data suggest that antigen 

recognition capacities and resulting functional activities of CTL might be significantly altered in 

the presence of tumor cells growing in three dimensional architectures. 

  In melanoma patients, T-lymphocytes specific for TAA do appear to be immunologically 

silent or anergic not only at the tumor site even when patients display a high frequency of 

circulating, memory melanoma specific CTL (Anichini A et al 1999), but also in systemic 

circulation (Lee PP et al 1999). This is consistent with the discrepancies observed between 

detectable tumor specific immune responses and lack of clinical effectiveness represented by 
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frequently observed in active specific immunotherapy of melanoma (Anichini A et al 2004). 

Taken together, these data suggest that antigen recognition capacity and the resulting functional 

activities of cytotoxic T-Lymphocytes might be significantly altered in the presence of tumor 

cells growing in multilayered architectures. Although significant amount of work has been done 

to characterize spatial distribution and infiltration of tumor infiltrating lymphocytes using 

spheroid models, our understanding of the cancer cell-lymphocyte interaction is still rather 

limited.  

1.6.3. Modulation of immunorecognition 

Tumor antigens expressed in situ may be capable of inducing antitumor T cell immune 

responses (Mortarini R et al. 2003). However, past work from our group has underlined the lack 

of expression of genes typically transcribed upon TCR triggering of T cells in metastatic 

melanoma biopsies infiltrated by CD8+ lymphocytes expressing activation markers, and capable, 

following “ex vivo” culture, of recognizing TAA on autologous tumor cells (Luscher U et al. 

1994). Tumor escape from CTL recognition has been attributed to down-regulation of TAA or 

HLA class I molecules expression resulting from the selection of resistant variants in neoplastic 

cell populations exposed to immunological pressure. However, this mechanism, whose “in vivo” 

relevance is hotly debated, might indirectly support the concept of a clinical efficacy of CTL 

induction, whose evidence is mostly missing (Marincola FM et al. 2003a; 2003b). On the other 

hand, more recently, the discrepancy between induction of TAA specific immune responses and 

clinical responsiveness has also been attributed to CTL defects. 

 

1.6.4. CTL mediated immune response 

When the complex of tumor antigen epitope bound to MHC-1 is engaged by antigen-

specific T cell receptor, the cytotoxic T cell induces death of the target cells primarily by two 

pathways, involving granule-mediated apoptosis and/or Fas/Fas-ligand interaction.  

When CTLs are activated by recognition of specific antigen on a cell, they release 

perforin and other lytic enzymes into the intercellular space between lymphocyte and target cells. 

Perforin undergoes a Ca2+ induced conformational change, integrates into the membrane of the 

target cell and forms a membrane pore. This allows the protease granzyme to enter into the 

cancer cell and activate the apoptotic caspase proteolytic cascade, and also allows other 

molecules to cross the cell membrane and trigger osmotic lysis of the membrane.  
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The interaction of T-cell Fas ligand with the Fas receptor in the target cell can also 

activate the caspase cascade and other pathways involved in apoptosis. The interaction of a CTL 

with antigen-MHC I complex may induce them to proliferate, threrby amplifying the immune 

response against that specific antigen. 

Lytic functions of CD8+ TILs have been found to be defective in vivo (Whiteside TL 

1998). Typically freshly isolated TILs do not lyse cognate tumor cells or MHC matched tumor 

cells but this deficient lytic function is transient. Following separation from tumor cells and 

culture in vitro in presence of exogenous IL-2, tumor specific killing can be detected (Rajoda S et 

al 2001). 

 

1.6.5. Accumulation of Lactic acid causing poor tumor infiltration by immunocompetent 

cells 

 In previous studies it has been demonstrated that low oxygen level and poor glucose 

concentration may influence the metabolism and proliferative characteristics of cells (Marx E et 

al. 1988) and promote the development of necrotic cores (Sutherland RM et al. 1986; Mueller-

Klieser W et al. 1986). Furthermore it has been reported (Marx E et al. 1988, Bourrat-Floeck B et 

al. 1991) that production of lactic acid is substantially enhanced in spheroids as compared to 

monolayer culture, similarly to in vivo tumor samples. In clinical tumor biopsies lactate has been 

shown to accumulate up to a concentration of > 20 mM (Rauen et al 1969). Hypoxia in a tumor 

can induce production of glycolytic enzymes and glucose transporter (LDH), which can lead to 

enhanced glycolytic flux for energy production, causing accumulation of lactic acid. High lactate 

level can correlate with metastasis and clinical outcome (Walenta S et al 2000). So accumulation 

of lactic acid can cause high extracellular acidity in a tumor, preventing immune cells to infiltrate 

inside the tumor (Walenta S et al 2004; Lardner A 2001). Gottfried et al (Gottfried E et al 2006b) 

showed that infiltration of monocytes in the melanoma spheroids can be controlled by using 

oxamic acid (as an inhibitor of LDH) to suppress endogenous production of lactic acid. Thus 

tumor-derived lactic acid may be considered an important factor modulating the tumor 

environment, critically contributing to tumor escape mechanisms. 
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1.7. Research plan:         

This thesis work has the following specific aims: 

 

Specific aim 1: Development of a simple in vitro three dimensional tumor model 

 

Specific aim 2: Characterization and validation of gene expression profiles differentially 

detectable in melanoma cell lines cultured in standard monolayer conditions and as MCTS. 

 

Specific aim 3: Evaluation of the TAA recognition ability by HLA class I restricted TAA 

specific CTL. 

 

Specific aim 4: Evaluation of factors affecting immunorecognition when melanoma cells are 

growing in MCTS. 
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HBL spheroid repelled Human microvascular endothelial cells, whereas NA8 spheroids attracted 
HMECs.  T-cadherin was over-expressed 400 times by adenovirus-mediated gene transfer in 
HMECs. To determine effects of T-cad upregulation per se on behavior of endothelial cells, either 
HMECs with overexpressed T-cad or control (LacZ-infected) was cocultured with NA8 spheroids. T-
cad overexpressed HMECs massively infiltrated within the spheroids and proliferated.  

Making the simple complicated is commonplace; 
making the complicated simple, awesomely simple, that's creativity 

                                                                        Charles Mingus (1922-1979) 
 

Creativity is inventing, experimenting, growing, taking risks, 
breaking rules, making mistakes and having fun. 

                                                                                Mary Lou Cook (1918- ) 

Chapter 2 
 

Materials 
& 

methods 
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2. Materials & methods: 

2.1. Cells used 

 

2.1.1. Melanoma cells 

NA8 (courtesy of Dr. Jotereau, Nantes, France), HBL and D10 cell lines (courtesy of Dr. 

A. Eberle, Basel, Switzerland) derive from metastatic melanoma and have widely been used in 

tumor immunology studies in the recent past (Oertli D et al 2002; Zazac P et al 2003). They are 

all HLA-A*0201+. However, while HBL and D10 express typical melanoma differentiation 

TAA, NA8 does not. 

Cell lines were routinely passaged in conventional 2D cultures in RPMI 1640 

supplemented with 10mM HEPES buffer, 1mM sodium pyruvate, 2mM non-essential amino-

acids, 2mM glutamine, 100 µg/ml Kanamycin (Invitrogen, Carlsbad, California) and 10% heat-

inactivated FCS, thereafter referred to as complete medium.  

 

2.1.2. CTL clones 

T lymphocyte clones of defined specificity, mostly recognizing HLA-A0201 restricted epitopes 

from melanoma differentiation antigens gp100280-288, Melan-A/MART-127-35 were generated from 

PBMC of patients undergoing specific vaccination procedures and are thus endowed with high 

functional avidity and capacity to kill target cells endogenously producing the relevant TAA 

(Ghosh S et al, 2005b). Briefly, cells from bulk cultures showing evidence of antigen specific 

cytotoxic activity, as detectable by 51Cr release assays, were cloned in 60 well Terasaki plates 

(Nunc, Glostrup, Denmark) at 0.3 cells per well in 20 µl volumes in the presence of 10,000 

irradiated allogenic PBMC/well, in RPMI 1640 supplemented with 10mM HEPES buffer, 1mM 

sodium pyruvate, 2mM non-essential amino-acids, 2mM glutamine, 100 µg/ml Kanamycin 

(Invitrogen, Carlsbad, California) and 5% pooled human serum (RPMI-HS), to which rIL-2 (200 

units/ml) and purified phytohemagglutinin (PHA, 0.5 µg/ml, Remel, Dartford, UK) were added. 

After 14 days, wells where cell growth was microscopically detectable were expanded in RPMI-

HS supplemented with 100 units/ml rIL-2 and screened for antigen specific cytotoxic activity by 
51Cr realease assay. CTL clones were maintained in RPMI-HS supplemented with 100 units/ml 

rIL-2 and restimulated periodically with PHA in the presence of irradiated allogenic PBMC. All 

assays reported here were performed at least one week after re-stimulation. 
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2.2. Preparation of spheroids 

2.2.1. Stirred culture: Rotary cell culture bioreactor system (RCCS, Synthecon, USA) spins a 

fluid medium filled with cells to neutralize most of gravity's effects and encourage cells to 

aggregate in suspension without being touched by any artificial surface. The RWV bioreactor 

consisted of a 40 ml culture vessel, a medium recycling system, provided with a bubble trap, an 

external oxygenator, and a peristaltic pump. The medium was re-circulated at 0.6 ml/min. The 

angular velocity range of the vessel was 30-50 rpm. 

2.2.2. Hanging drop method: 20–30 µL of cell suspension was dispensed into the wells of a 60-

well micro-titer Terasaki plate. 150-500 melanoma cells (NA8, HBL, D10) per well were 

cultured in Terasaki plates for 7-10 days. 

2.2.3. Alginate gel encapsulation: Melanoma cell suspension was mixed at room temperature 

with a sterile sodium alginate solution (1.5-2%). The mixture was extruded dropwise through a 

microsyringe needle into a Calcium Chloride solution (200 mM). This resulted in formation of 

gel beads of 1.5-2.5 mm in diameter, which was hardened for 15 minutes in a sterile CaCl2 

solution. 

2.2.4. Agarose or PolyHEMA coated dish: 

96 well plates were coated with 200 µl of 2% agarose gel and after few minutes they were sucked 

out to leave a thin layer of agarose coating at the bottom. Plates were dried for 3-4 hours before 

cell seeding. 

 PolyHEMA crystals (600 mg) were dissolved in 5 ml 95% EtOH by rotating over night at 37°C. 

This stock solution was diluted by adding 7 ml of 95% EtOH. Plates were coated with 50 µl/ well 

/96 well plate (0.1 ml /cm²) and then dried overnight at room temp in a sterile environment. 

Plates could be stored indefinitely prior to use. 

 

2.2.5. Histological procedures and Morphological evaluation. 

H&E staining:  Spheroid samples were fixed in 4% formalin, embedded in paraffin, and 

dissected (5 µm thick). Sections were stained with Hematoxylin and Eosin (H&E) according to 

standard protocol. 

BrdU staining:  Samples were incubated with BrdU (10 mM) for 12 h followed by histological 

procedure. The paraffin-embedded tissue sections were completely dewaxed and rehydrated with 

PBS followed by microwave antigen retrieval. Thereafter they were incubated in 0.3% H2O2 in 

methanol for 10 min to inhibit endogenous peroxidase activity and rinsed in PBS. After blocking 
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with serum at room temperature, the sections were incubated with primary anti-BrdU antibody 

(Sigma, St. Louis, MO) overnight at 4°C in a humidified chamber followed by washing in PBS. 

The negative control sample was incubated with PBS. After being incubated with secondary 

antibody biotin-conjugated rabbit anti-mouse IgG, Sigma, St. Louis, MO) for 1 hr at room 

temperature and washed in PBS, the sections were incubated with HRP-linked streptavidin at 

room temperature for 1 hr and washed with PBS. The sections were developed with DAB and 

examined under a light microscope. 

 

2.2.6. Proliferation 

Cell proliferation was measured by the AlamarBlue™ reduction assay (Serotec, Oxford, UK) 

spectrophotometrically. The internal environment of the proliferating cell is more reduced than 

that of non-proliferating cells. Specifically, the ratios of NADPH/NADP, FADH/FAD, 

FMNH/FMN, and NADH/NAD, increase during proliferation. AlamarBlue can be reduced by 

these metabolic intermediates. Hence cell proliferation can be monitored as reduction is 

accompanied by a measurable shift in color (blue to pink). 

Proliferation capacity of CTLs was investigated by using lymphocyte tracking dye 

carboxyfluorescein diacetate succinimidyl ester (CFDA-SE) (Lyons AB et al 1994; Parish CR 

1999). CFDA diffuse into a living cell and de-acetylate and then concentrate. The two acetate 

side chains make the molecule highly membrane permeant. However, once inside cells, the 

acetate groups are removed by intracellular esterases and the resultant carboxyfluorescein exits 

from cells at a much slower rate. The slow exit rate also provides ample time for the CFDA-SE to 

covalently couple to intracellular molecules. Coupling is via the succinimidyl moiety, which  

 

 

 

Figure 6: Mechanism of fluorescently labelling of cells by CFDA-SE 
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reacts with intracellular amine groups, forming a highly stable amide bond. Proliferation rate of 

the cells was calculated by the progressive halving of the fluorescence intensity of the dye in cells 

after each cell division. 

 
2.3. Modulation of Gene profiling 

Cells were harvested by trypsinization and total RNA extracted using Qiagen RNeasy® 

Mini Kit (Qiagen, Basel, Switzerland) following suppliers instruction. Its integrity was monitored 

by using Agilent 2100 Bioanalyzer (Ambion, Austin TX). Ten µg RNA from each sample was 

reverse transcribed and labeled by utilizing commercial kits according to the suppliers` 

instructions (MEGAscript T7, Ambion, Austin TX; Bio-11-CTP and Bio-16-UTP, Enzo 

Biochem, NY). Biotinylated cRNA was then be fragmented by treatment at 94°C for 35 minutes 

in 40 mM TRIS-acetate, pH 8.1, 100 mM potassium acetate, and 30 mM magnesium acetate and 

hybridized to oligonucleotide arrays.  

 Two hybridizations were performed for each sample under investigation. Raw data 

collected using a confocal laser scanner were analysed using commercial software (Gene Spring 

Version 7.2, Silicon Genetics, Redwood City, CA) with two separate data readings for each 

hybridization, as previously described (Padovan E et al. 2002; Ghosh S et al. 2005a; Ghosh S et 

al., 2005b).  

One way ANOVA tests were performed for gene lists filtered on fold change in the log-

of-ratio mode of experimental interpretation (Gene Spring 7.2 software, Silicon Genetics, 

Redwood City, CA). Duplicates of each experimental group were compared and the parametric 

Welch t test was used with a cut-off p value of 0.05. The false positive rate of finding a gene is 

associated with the standard p value. A significant p-value in 1-way ANOVA test would indicate 

that a gene is differentially expressed in at least one of the groups analysed. Genes displaying ≥3 

fold up or down-regulations between 2D and 3D culture conditions were specifically considered.  

 

2.4. Cellular immunology studies 

2.4.1. IFN-γ detection by ELISA 

IFN-γ production was used as antigen recognition assays. As target/stimulator cells, we 

used melanoma cells cultured in 2D or as MCTS. CTLs, specific for Melan-A/MART-1 or 

gp100, used as effectors, were co-cultured with target cells at different E:T ratio for 24 hours. 

Supernatants were collected and IFN-γ secretion was measured by using human IFN-γ BD 
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OptEIA™ ELISA Set (BD Biosciences, Franklin Lakes, NJ). All samples were measured in 

triplicates.  

 

2.4.2. Chemotaxis assay 

Migration assays were performed by using Costar® 24-transwell chemotaxis chambers 

(Corning Costar Corporation, Cambridge, MA) with 5-µm and 3-µm pore size polycarbonate 

filters, for immature DC (iDC) and CD8+ T cells, respectively. In brief, 600 µl of supernatant of 

NA8 cells cultured in 2D or 3D, or as a negative control, complete medium, were placed in the 

lower wells. CD8+ peripheral blood T cells were purified by using magnetic beads (Miltenyi 

Biotech, Bergish Gladbach, Germany), whereas iDC were prepared by culturing peripheral blood 

monocytes in the presence of IL-4 and GM-CSF, as previously detailed (Remmel E et al. 2001). 

Upper wells of chemotactic chambers were loaded with 100 µl cell suspension of iDC or CD8+ T 

cells at a concentration of 1 x 106/ml. Each condition was set up in duplicate. Plates were kept at 

37°C for 20 hours. Cells suspensions from the upper wells and cells migrated to the lower wells 

through the filters were then collected, stained with specific mAbs and counted by flow 

cytometry for a fixed defined time. Chemotactic index was determined by dividing the number of 

cells migrated in the experimental condition by the number of cells migrated in the negative 

control cultures (medium only).  

 

2.4.3. Immunofluorescence analysis 

NA8 or HBL cells were stained with PKH26 red fluorescent cell linker (Sigma, Sigma-

aldrich Co., St. Louis, MO) following suppliers instructions, and cultured on polyHEMA coated 

plate for 3 days to form 30,000 cells MCTS. Total CD8+ T cells from an healthy donor and CTL 

clone specific for HLA-A0201 restricted Melan-A/MART-127-35 epitope were stained with CFSE 

(molecular Probes, Eugene, OR). Cytotoxic cells (E:T ratio = 5:1) were added on each MCTS 

and co-cultured for 1 day. Confocal images for the evaluation of total CD8+ T cells or CTL 

infiltration in NA8 and HBL MCTS respectively, were obtained using a laser-scanning confocal 

microscope Zeiss LSM510 (Carl Zeiss Microlmaging Inc. NY). 

Immunoflourescence labeling of permeabilized and fixed cells was done by incubating 

them for 30 minutes at room temperature and minimal exposure to light. Actin filaments were 

directly labelled with 488-Alexa phalloidin (Invitrogen, diluted 1: 400 in MHB). Vimentin 

intermediate filaments were also directly labelled with a monoclonal antibody (Mab) anti-vim 
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Cy3 (Sigma, diluted 1:900 in MHB). Labelled samples on slides were then washed with MHB 

and embedded in Mowiol 4–88 (Hoechst) containing 0.75 % of n-propyl-gallate as an anti-

bleaching agent. Mounted slides were left dry for 24 hrs at room temperature in dark until 

viewed.  

 

2.4.4. Flow cytometry analysis 

NA8 cells cultured in 2D were collected by trypsinization after day 3. Accordingly, MCTS 

obtained after 3 days of culture on polyHEMA treated plasticware were centrifuged and pellets 

were disrupted by Trypsin-EDTA (Gibco, Paisley, Great Britain) treatment for 10 min at 37OC. 

Cellular phenotypes were evaluated by surface staining using fluorochrome conjugated mouse 

monoclonal antibodies recognizing the indicated determinants. Samples were analyzed on a 

FACS Calibur (Becton Dickinson, San Jose, CA) using propidium iodide (PI) to exclude dead 

cells. 

In particular HLA expression was verified using anti-HLA-A0201 or anti-HLA-A, B, C 

FITC-conjugated mAb (PharMingen, San Diego, CA). HBL, D10 or NA8 cells cultured in 2D 

were collected using Trypsin-EDTA (Invitrogen, Carlsbad, CA) after 3 days culture. 

Accordingly, MCTS obtained after 3 days culture, were disrupted by 5 min trypsinisation at 

37°C. Phenotypes were evaluated by staining with specific or control mAbs, incubated 45 min at 

4°C in the dark, washed twice in cold PBS, fixed 1 min in Paraformaldehyde 1%, re-suspended in 

200 µl PBS, and analyzed on a FACSCalibur® cytometer (Becton Dickinson, NJ).  

 Melan-A/MART-1 expression was evaluated by intracellular staining after 

permeabilization using BD Cytofix/Cytoperm™ kit (BD Biosciences, San Jose, CA), following 

supplier’s protocol. Staining was performed using as primary antibody a specific Melan-A/ 

MART-1 mAbs (Novocastra, Newcastle upon Tyne, UK) and as secondary antibody a FITC-

conjugated goat anti-mouse Ig (Southern Biotech, Birmingham, AL).  

 

2.4.5. Quantification of gene expression by quantitative Real-Time PCR 

Cells were collected at the indicated time points and washed in PBS. Surgical samples 

from metastatic melanoma patients were disrupted and homogenized by sonication. Total RNA 

were extracted using the RNeasy® Mini Kit protocol (Qiagen, Basel, Switzerland), treated by 

Deoxyribonuclease I (DNase I) (Invitrogen, Carlsbad, California), and reverse transcribed by 
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using the Moloney Murine Leukemia Virus Reverse Transcriptase (M-MLV RT, Invitrogen, 

Carlsbad, California). Quantitative real-time PCR were performed in the ABI prism™ 7700 

sequence detection system, using the TaqMan® Universal PCR Master Mix, No AmpErase® 

UNG (both from Applied Biosystems, Forster City, CA). Quantification of gene expression was 

calculated by using the 2-∆∆CT method (Livak KJ et al 2001; Winer J et al 1999). Normalization of 

gene expression was performed using GAPDH as reference gene and data were expressed as ratio 

to reference samples. 

Primers and probes 

Oncostatin M (OSM), IRF-1 and MITF primers and probes are from pre-developed assays 

(Assays-on-Demand, Gene Expression Products (Applied Biosystems, Foster City, CA)). 

Oligonucleotide primers and probes for c-myc, Melan-A/MART-1, gp100 and tyrosinase were 

generated using appropriate software (Primer Express™, Applied Biosystems, Foster City, CA) 

from sequences obtained from the NCBI gene bank.  

 

2.4.6. Lactic acid measurement from tumor supernatant 

Glucose and lactate concentrations were assessed by an immobilized enzyme biosensor 

(YSI 2300 STAT Glucose analyzer, Kreienbaum, Germany). Melanoma cells were cultured in 

spheroids or monolayers in different oxygen environment for 3 days. Then lactate and glucose 

content were measured from the supernatant.  
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Scanning Electron microscopic view of HBL cells either as monolayer or spheroid, after 24 hours 
of coculture with TAA-specific CTL clones. Monolayer cells  seemed to have perforated and 
disrupted surface morphology, whereas spheroids maintained their three dimensional structure. 

IIIIIIII        aaaaaaaammmmmmmm        aaaaaaaammmmmmmmoooooooonnnnnnnngggggggg        tttttttthhhhhhhhoooooooosssssssseeeeeeee        wwwwwwwwhhhhhhhhoooooooo        tttttttthhhhhhhhiiiiiiiinnnnnnnnkkkkkkkk        tttttttthhhhhhhhaaaaaaaatttttttt        sssssssscccccccciiiiiiiieeeeeeeennnnnnnncccccccceeeeeeee        hhhhhhhhaaaaaaaassssssss        ggggggggrrrrrrrreeeeeeeeaaaaaaaatttttttt        bbbbbbbbeeeeeeeeaaaaaaaauuuuuuuuttttttttyyyyyyyy........        
AAAAAAAA        sssssssscccccccciiiiiiiieeeeeeeennnnnnnnttttttttiiiiiiiisssssssstttttttt        iiiiiiiinnnnnnnn        hhhhhhhhiiiiiiiissssssss        llllllllaaaaaaaabbbbbbbboooooooorrrrrrrraaaaaaaattttttttoooooooorrrrrrrryyyyyyyy        iiiiiiiissssssss        nnnnnnnnooooooootttttttt        oooooooonnnnnnnnllllllllyyyyyyyy        aaaaaaaa        tttttttteeeeeeeecccccccchhhhhhhhnnnnnnnniiiiiiiicccccccciiiiiiiiaaaaaaaannnnnnnn;;;;;;;;        

hhhhhhhheeeeeeee        iiiiiiiissssssss        aaaaaaaallllllllssssssssoooooooo        aaaaaaaa        cccccccchhhhhhhhiiiiiiiilllllllldddddddd        ppppppppllllllllaaaaaaaacccccccceeeeeeeedddddddd        bbbbbbbbeeeeeeeeffffffffoooooooorrrrrrrreeeeeeee        nnnnnnnnaaaaaaaattttttttuuuuuuuurrrrrrrraaaaaaaallllllll        pppppppphhhhhhhheeeeeeeennnnnnnnoooooooommmmmmmmeeeeeeeennnnnnnnaaaaaaaa        
wwwwwwwwhhhhhhhhiiiiiiiicccccccchhhhhhhh        iiiiiiiimmmmmmmmpppppppprrrrrrrreeeeeeeessssssssssssssss        hhhhhhhhiiiiiiiimmmmmmmm        lllllllliiiiiiiikkkkkkkkeeeeeeee        aaaaaaaa        ffffffffaaaaaaaaiiiiiiiirrrrrrrryyyyyyyy        ttttttttaaaaaaaalllllllleeeeeeee........         

 
                                                                             Marie Curie (1867 - 1934) 
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&  
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3. Results and discussion 

3.1. Spheroid Cultivation Techniques 

 

3.1.1. Rotating wall vessel bioreactor:   

NA8 Melanoma cell suspension was cultured in RWV Bioreactor (Synthecon) for 7-

10 days with 60-80 rpm of cylinder speed. Aggregation was random and the resulting 

spheroids were of various sizes. There was absolutely no control over size of the spheroids. 

Single cells, small aggregates or debris were highly present in the vessel.  

 

3.1.2. Hanging drop method 

150-500 melanoma cells (NA8, HBL, D10) per well were cultured in Terasaki plates for 7-10 

days. In some cases initially several multicellular spheroids formed in each well and after 1 or 

2 days they were merged to form a single spheroid/aggregate per well. Out of the three cell  

 

 

    

Figure 7: (A) NA8 spheroid in DMEM 10% FCS,  (B) Merging of NA8 spheroids, (C) D10 
aggregate in  DMEM 10% FCS,   (D) D10 aggregate in  DMEM 20% FCS 

 

lines tested NA8 formed only round spheroids, whereas HBL and D10 formed irregularly 

shaped aggregates in media containing 10% FCS. However when they were cultured in 20% 

FCS containing media, aggregates were much firmer (Figure 7 C, D). 

A B 

C D 
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Notably as the volume of the media is very low ((20–30 µL) only spheroids having 

100-500 cells can be generated by this technique. Therefore they might not create typical 

hypoxic environment needed to produce a typical tumor microenvironment modulating gene 

expression or impairing immunorecognition. The micro-spheroids were so delicate that it was 

difficult to transfer them in 96 well plate from Terasaki plates. 

 

3.1.3. Gel encapsulation method: 

Melanoma cell suspension was mixed at room temperature with a sterile sodium alginate 

solution. The mixture was extruded dropwise through a microsyringe needle into a Calcium 

Chloride solution (200 mM). This resulted in formation of gel beads, which were hardened for 

15 minutes in a sterile CaCl2 solution. With careful optimization of CaCl2 solution stirring 

speed large numbers of spheroids were formed by alginate encapsulation.  

   

  

 

Figure 8: melanoma cell aggregates encapsulated within alginate beads 

 

On the other hand, several aggregates were formed within one alginate bead, without 

the possibility of controlling the size or cell number (Figure 8). Furthermore some cell 

aggregates started to come out of the alginate bead. EDTA treatment and pipetting could 

disrupt spheroids and alginate capsule formed might have acted as a permeability barrier. 
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Importantly, although no specific interactions between mammalian cells and alginate are 

known, they cannot be completely discounted. 

 

3.1.4. Static cultivation technique on non-adhesive surface : 

Melanoma cells were cultured on agarose coated 96 well plate. Morphology of the aggregates 

and cell viability were checked at regular interval. All the cell lines in culture formed only 

irregularly shaped aggregates, with poor adhesive strength. 

 

Figure 9:  Irregularly shaped aggregates formed over agarose-coated dish 

 

A dramatic improvement of cell-cell adhesion was observed when cells were cultured 

on PolyHEMA coated dish. NA8 cells formed perfectly round shaped spheroids (Figure 10). 

Although HBL and D10 cells also formed round shaped spheroids, their level of adhesion was 

slightly inferior to that of NA8 cells. Cell viability (assessed by trypan blue dye exclusion 

assay) decreased from 94% in 3rd day of culture on PolyHEMA coated dish, to 70% in 21 day 

old spheroid, which was supported by flowcytometry studies.  



 32

 

Figure 10: Multicellular spheroids formed on PolyHEMA coated 96 well plates: 

 (A) NA8, (B) HBL 

 

3.1.5. Effect of culture media 

Consideration must be given to the growth medium used; in particular, the influence of 

serum should not be overlooked. Chun (Chun MH 2000) found that expired/aged human 

serum, deficient in plasminogen activator inhibitor, resulted in the formation of anchorage 

independent MCTS from monolayer cultures of BT20 human breast cancer cells, and that 

addition of fresh serum reverted the culture back to monolayer growth. Furthermore, it is 

known that various human breast and colon cancer cells form multicellular spheroids in 

response to the serum signaling factors, plasmin, CEA, interferon-γ ( Kanai T. et al. 1993), 

IGF-II and heregulinβ1 (Tan M et al. 1999). But the exact signalling mechanisms by which 

these factors can induce formation of multicellular spheroids is not yet fully understood. Kelm 

et al. (Kelm et al. 2003) found that increasing serum concentration improved aggregation and 

MCTS forming capacity in hanging drop cultures of several melanoma derived cells lines. In 

accordance with their findings, we have also observed that the use of higher % of FCS 

resulted in firmer aggregates and culture in DMEM based medium, rather than RPMI-1640 

medium, resulted in enhanced aggregation, possibly due to increased calcium levels.  

 

After reviewing all these techniques of spheroid formation, we finally decided to 

continue our work with MCTS formed over PolyHEMA coated dish, because by using this 

technique we could prepare round and compact spheroids having highly homogeneous size 

distribution within a very short time period, having highest viability of cells, as compared to 

other methods of spheroid formation. By this method, we could generate large numbers of 

spheroids having uniform characteristics with minimal handling, as compared to other 

techniques. 

A B 
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3.2. MCTS Characterization 

3.2.1. Proliferation of melanoma cells 

AlamarBlue proliferation curves revealed that proliferation in 2D cultures of NA8 and 

HBL cells typically reached a plateau within 7-8 days, whereas no apparent increase in cell 

proliferation was detectable in MCTS for the first two weeks of culture, but could only be 

observed at later time points (Figure 11), a pattern frequently observed previously in 3D 

culture models. 
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Figure 11: AlamarBlue proliferation curves of (A) NA8 and (B) HBL cells cultured in 

monolayer and as spheroid 

 

Cells in conventional monolayer cultures grow exponentially. Spheroids display the 

typical biphasic growth pattern of solid tumors in vivo (an early exponential phase followed 

by a period of retarded growth) (McCredie JA et al. 1965). In general, three distinct growth 

phases have been described in tumor spheroids. The first phase is the exponential growth of 

the cells with little modification in cell cycle distribution as compared to monolayer culture, 
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until the spheroids reach a diameter of 20-400 µm depending on cell lines. Then the average 

cell cycle distribution within the spheroids begins to change, resulting in an accumulation of 

G1-like cell at the centre and a sequestration of the proliferating cells at the periphery until a 

plateau is reached (Freyer JP et al. 1980; Carlsson J 1977). The first phase is independent of 

external factors while the second depends on the size of the tumor spheroid and the nutritional 

restrictions imposed to cells located in the spheroid interior. This leads to progressive 

reduction of growth fraction (Durand RE 1976; Durand RE 1990) and then another growth 

phase by linear expansion of diameter with time. The observation that final spheroid volume 

increases slightly with inoculation density suggests that growth after 10-15 days may be 

hampered by a decay in conditions, such as spontaneous degradation of glutamine, 

photodegradation of some vitamins and amino acids, accumulation of waste products. 

In order to demonstrate the strong similarity that exists between in vivo solid tumor 

growth and growth of multicellular spheroids, various mathematical models have been 

applied which can account for the three successive phases (geometric, linear and plateau). The 

exponential-Gompertzian tumor growth model has been applied to several tumor cell lines 

grown in monolayer and to multicellular spheroids as well as to in vivo tumors. Monolayer 

cultures do not adequately fit this mathematical model while both in vivo tumors and 

spheroids fit the model quite well and strongly resemble each other in their growth 

characteristics. The geometric phase corresponds to early aggregation and proliferation of 

small spheroids, while the linear and plateau phases represent the development of a 

nonproliferative inner region and the formation of a necrotic core in spheroids, respectively. 

Importantly cells within the same tumor mass can be influenced by different 

microenvironments. Khaitan et al (Khaitan D et al 2006) compared cell cycle distribution of 

exponentially growing monolayer and spheroids at different time point (7-28 days). They 

observed that in spheroids grown on agarose-coated dish, proportion of G1-phase cells was 

higher (approximately 60%) in spheroids as compared to exponentially growing monolayer 

cells (approximately 48%).  

 

3.2.2. Morphological characterisations of MCTS 

We observed that there was no major change in diameter of spheroids during 10-15 

days of culture, but Hematoxylin & eosin staining showed that NA8 spheroids of 30000 cells 

formed necrotic cores within MCTS upon prolonged culture (>10 days), soon resulting in 

hollow center, with large, compact cells typically detectable in the periphery. HBL and D10 

spheroids having 30000 cells also formed necrotic cores, but less prominent as compared with 
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NA8 cells (Figure 12). Small spheroids of NA8 (500-1000 cells) could not form necrotic core 

even after 15 days of culture. This suggests that, this small spheroid model system might not 

be able to simulate typical hypoxic tumor microenvironment.  

 

Necrosis and slow proliferation rate in the spheroid system might be due to lack of sufficient 

nutrients and metabolites. For some spheroid types such as WiDr human colon 

adenocarcinoma and tumourigenic Rat1-T1 rat embryo fibroblasts emergence of necrosis and 

hypoxia during growth has been documented with the thickness of viable cell rim reflecting 

oxygen availability (Monz B et al 1996). Role of oxygen gradient has also been studied 

(Franko AJ et al 1979a; 1979b). Oxygen diffusion within spheroids has been first theoretically 

calculated (Burton AC 1966). Spherical symmetry of the spheroid is very critical for such 

calculation. Several research groups have measured O2 tension (pO2) distributions in 

spheroids with oxygen-sensitive microelectrodes (Carlsson J et al 1979; Mueller-Klieser W 

1984; Mueller-Klieser WF et al 1984). Those measurements showed that pO2 values may vary 

considerably depending on different cell lines, culture methods and detection techniques used 

(Walenta S et al 2001). Mathematical modellings by Groebe et al (Groebe K et al 1996) 

indicated that no single limiting factor (such as, oxygen deficiency) can account for the 

development of necrosis. 

Figure 12:   Hematoxylin and Eosin staining of paraffin embedded sections of 
spheroids, showing NA8 and HBL spheroids formed a necrotic core after 10-12 
days of culture on a PolyHEMA coated 96 well plate 
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Figure 13:  Difference of morphology of cells from periphery and central part of the paraffin 
embedded H&E stained NA8 spheroids 

 

To verify if all cells in a spheroid have equal proliferative capacity, staining with 5-

bromo-2-deoxy-uridine (BrdU) incorporation in DNA using a peroxidase-based 

immunohistochemical assay was performed. BrdU staining (Figure 14) (Ghosh S et al 2005a)  

 

Figure 14: BrdU staining of NA8 spheroid showed that peripheral cells are mainly in 
proliferating stage, whereas inner cells are mostly in quiescent stage 
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indicated that the cells located in the center of MCTS are alive but mostly in quiescent state, 

whereas cells in outer layers are actively cycling, which strongly reminded the historical 

reports of Thomlinson et al (Thomlinson RH et al 1955) who showed that in tumor biopsies 

only the cells in periphery were in proliferating stage. Later Sutherland (Sutherland RM 1988) 

reported that most of the proliferating cells in spheroids are located within outer 3-5 cell 

layers (75 µm). Quiescent cells represent the major population of cells in a spheroid and they 

are reproducibly viable when removed from this environment (Luk CK et al 1985; Luk CK et 

al. 1986). Some investigators used autoradiography after pulse labeling with 3H-thymidine to 

confirm this by showing a large fraction of S-phase cells in the outer few cell layers compared 

to the cells located in central part of the spheroids. Inner cells remain unlabeled in a period of 

several cell cycles, indicating that they are not cycling through S-phase (Yuhas JM et al 

1978).  

Typical morphology of MCTS (i.e. presence of proliferating cells at periphery, viable 

but quiescent cells at intermediate and necrotic core) is a multifactorial event resulting by lack 

of oxygen and/or nutrients, accumulation of waste products, and low pH as proposed by 

Acker and coworkers (Acker H et al. 1987; Carlsson J et al. 1988). Mueller-Klieser and his 

coworkers showed (Bredel-Geissler A et al 1992; Teutsch HF et al 1995; Walenta S et al 

1990; Freyer JP et al 1991) in EMT-6 mouse mammary carcinoma spheroids, on steady-state 

levels of glucose, lactate and energy-rich phosphates, that cells in the inner spheroid regions 

may adapt their metabolism to environmental stress by reducing their metabolic turnover rates 

to maintain intracellular homeostasis until shortly before cell death; thus, critical reduction in 

ATP and intracellular pH can be excluded as a mechanism for cell quiescence and cell 

destruction by necrosis (Walenta S et al 1990). At later stages of disease progression some of 

these quiescent cells may act as stem cells to cause regrowth of tumor (Sutherland RM 1988).  
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3.3.    Gene expression 

Prompted by previous small scale gene expression profile studies on MCTS, we 

(Ghosh S et al, 2005a) addressed large scale gene profiling in melanoma cells cultured in 

standard 2D conditions, with or without extracellular matrix and as 3D MCTS, by taking 

advantage of high density oligonucleotide arrays. For NA8 cells we used Affymetrics 

genechip Human Genome-U133A allowing the analysis of over 20,000 expressed genes. For 

HBL cells we used Affymetrics gene chip Human Genome-U133 Plus 2.0 (which includes all 

of the probe sets of HG-U133A and HG-U133B arrays and more than 10,000 additional probe 

sets), allowing analysis of more than 54,000 transcripts.  

As the model extracellular matrix we chose collagen for NA8 since NA8 cells express 

both α1β1 and α2β1 integrin receptors for collagen and fibronectin for HBL since HBL cells 

express α4β1 and α5β1 integrin receptors for fibronectin. We studied gene expression profile 

using 3 days old spheroids, which had not formed necrotic cores yet. 

 Our data provide a first large scale database focused on structure-related gene 

expression pattern in tumor cells. Most importantly, they show that the architecture of 

melanoma cells, possibly due to the inherent homotypic cell-cell interaction or specific tumor 

microenvironmental conditions, may determine specific gene expression patterns of 

potentially high functional relevance.   

In the case of NA8 cells, over 11000 genes were found to be expressed in all three 

conditions (monolayer, monolayer over collagen coating, spheroid). Cells cultured in 

monolayers, irrespective of the presence of collagen extracellular matrix, showed remarkably 

similar gene expression patterns, with statistically significant differences being limited to five 

genes. In particular, a downregulation (5 fold) of Hsp 40 encoding gene was observed in cells 

cultured in the presence of collagen. In contrast, cells cultured in MCTS displayed significant 

modulation in the expression of a number of genes as compared to their monolayer 

counterparts. 106 genes showed evidence of upregulation and 73 of downregulation. 

Importantly, significant upregulation of the expression of genes whose products are known to 

play a critical role in melanoma progression and metastatic process was observed. In 

particular, a significant upregulation of the expression of genes encoding chemokines, 

including CXCL1, CXCL2, and CXCL3, (GRO-α, -β and -γ, 10 fold, 15 fold and 6 fold, 

respectively), IL-8 (67 fold), CCL20 (75 fold), IL-1A (3 fold), IL-1B (4 fold) were detectable 

in MCTS, as compared to cells cultured in 2D. The expression of genes encoding pro-

angiogenic factors or adhesion molecules, such as angiopoietin-like 4 (34 fold) or hypoxia 
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inducible protein 2 (HIG2, 7 fold) and CD54 (ICAM1, 3.5 fold) was also found to be 

significantly upregulated in MCTS in comparison with cells growing in monolayers. 

Expression of the gene encoding fibroblast growth factor-2 (FGF2) was found to be 

significantly downregulated (6.8 fold).  

 

 

culture conditions       

 

 

Figure 15: Gene expression profile for NA8 cells cultured as monolayer (with or without 
ECM) and as spheroid 

 

Strikingly, culture in MCTS appears to result in the upregulation of a constellation of 

genes whose expression has previously been shown to correlate with high malignancy. 

CXCL1 (melanoma growth stimulatory activity) is a potent growth factor for melanoma cells, 

with only limited proliferative activity towards normal melanocytes. IL-8 plays an important 

role in melanoma progression. Leslie et al (Leslie MC et al 2005) studied gene expression 
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associated with transition from Radial growth phase (RGP) to Vertical growth phase (VGP). In 

their study the mostly overexpressed gene was the pro-angiogenic factor IL-8. 

 

In case of HBL cells, our study revealed that culture in 3D spheroid architecture had a 

relatively modest overall impact on gene expression in HBL cells, whereas a wider range of 

gene expression pattern was observed when cells were cultured over fibronectin coated dish 

(Figure 17). However we observed only a slightly higher rate of proliferation in monolayer 

cells cultured over fibronectin coating, as compared to standard monolayers (Figure 16).  
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Figure 16:  AlamarBlue proliferation curves of HBL cells cultured in standard monolayer, 

monolayer over fibronectin coating and in MCTS. 

Beside a number of expressed sequences encoding undescribed gene products, 47 

genes only were significantly modulated more than 3 fold, with down-regulation of 18 and 

up-regulation of 29 in 3D as compared with 2D cultures.     

176 transcripts were upregulated more than 2 fold and 79 transcripts were 

downregulated more than 2 fold in spheroids compared to monolayer cultures. The gene list 

for upregulation in spheroids included genes encoding molecules involved in intercellular 

adhesion such as junctional adhesion molecule 2 (JAM2, >22-fold up-regulated), tight 

junction protein 4 (peripheral) (5.4 fold up-regulated) and cadherin-like 1 (>8-fold up-

regulated). Transcript encoding Podoplanin was 2.5 fold upregulated (Wicki A et al 2006), 

while interferon gamma receptor-1 was downregulated 4.9 fold in MCTS compared to 

monolayer cells. 
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Figure 17: Gene expression profile for HBL cells cultured as monolayer (with or 

without ECM) and as spheroid 

 

 

3.3.1. Validation of differential gene expression 

Large scale gene expression databases require validation at the gene and protein level. 

We have validated expression pattern of some interesting genes or gene products by Real-

time, quantitative RT-PCR or ELISA (Ghosh S et al 2005b). These data strongly support the 

integrity of the gene profiling methods adopted in these studies. 

Two genes whose products, CXCL1 (GRO-α) and IL-8, have been shown to play a 

relevant role in melanoma progression and metastatic process were found to be significantly 2D 2D 
collage

3D 
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upregulated in cells cultured in NA8 MCTS as opposed to monolayers NA8. Real-time, 

quantitative RT-PCR confirmed the upregulation of CXCL1 (GRO-α) gene expression in cells 

sampled after 3-day culture in MCTS, as compared with cells growing in monolayers. We 

were then interested in investigating whether the upregulation of CXCL1 gene reflected 

transient events, merely related to MCTS formation or more durable modifications of NA8 

gene expression profile. Indeed, CXCL1 gene upregulation, although declining, was still 

observed at 10 days after the initiation of cultures. Accordingly, secretion of this chemokine 

was significantly increased in cells cultured in MCTS as compared to their monolayer 

cultured counterparts at both 3 and 10 days of culture (Figure 22). 

 

 

Figure 22: Chemokine CXCL1 gene expression and protein secretion in NA8 cells cultured in 
monolayers and MCTS at two different time points 

 

Similarly, increased IL-8 gene expression, as detected by oligonucleotide array 

hybridization of cRNA from 3 days MCTS in comparison to 2D cultures, could be confirmed 

by real-time RT-PCR at day 3 and, to a lower extent, at 10 days. Accordingly, significant 

increases in protein secretion were also observed (Figure 23). Most conspicuously, massive 

IL-8 secretion, exceeding 80 ng/ml, was detected in supernatants of NA8 cells cultured for 10 

days in MCTS. 
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Figure 23: Chemokine IL8 gene expression and protein secretion in NA8 cells cultured in 

monolayers and MCTS at two different time point 

 

Interestingly, immunohistochemical studies (Figure 24) revealed that IL-8 specific staining 

was detectable in MCTS, with a preferential localization mostly in inner cell layers. Na8 cells 

were cultured for 10 days in MCTS. Spheroids were then fixed, processed as detailed in 

Ghosh S et al 2005a, and incubated in the presence of a monoclonal antibody recognizing IL-

8. Specific staining is preferentially detectable in the inner layers of MCTS. 

 

 
 

Figure 24:  Immunohistochemical detection of IL-8 in MCTS. 
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The marked increase in the expression of CCL20 (Macrophage inflammatory protein 

MIP-3α) gene in cells cultured in MCTS, as compared to monolayers, detected upon 

oligonucleotide chip hybridization, was also confirmed by real-time RT-PCR. ELISA assays 

showed a significant increase in CCL20 protein secretion from MCTS at 3 days and 10 days 

as compared to cells cultured in 2D for the same time, whereas specific gene expression 

declined in 10 days MCTS. 

 
 

 
Figure 25: Chemokine CCL20 (MIP3α) gene expression and protein secretion in NA8 cells 

cultured in monolayers and MCTS at two different time points 
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3.4. Cellular immunology studies- focus on immunorecognition 

Growing evidence is accumulating to indicate that functional activities of tumor 

associated antigen specific cytotoxic T-Lymphocytes might be significantly altered in the 

presence of tumor cells growing in multilayered architectures, as compared to the monolayer 

cultures. Clinical data of immunotherapy trials underline that even in the presence of specific 

immune responses, 3D tumors in vivo may be relatively insensitive to their effects. But the 

molecular mechanisms underlying the discrepancy are still unclear. 

 

3.4.1. Description of the model system   

We selected as model melanoma cell lines HBL and D10 cells, which are HLA-

A0201+ve and are characterized by high expression of melanoma differentiation antigens. 

Percentages of TAA specific T cells “ex vivo” are extremely low, and usually do not exceed 

0.5% of total CD8+ T cells. To perform our studies in controlled conditions, we resorted to 

the use of antigen specific cloned T cells as effectors. Importantly, CTL clones are far more 

efficient in this respect than T cells freshly obtained from peripheral blood.  

CTL clones, recognizing Melan-A/MART-127-35 epitope and/or gp100280-288 were 

generated from peripheral blood of patients undergoing active, antigen specific 

immunotherapy in the context of specific clinical trials. They were able to kill in standard 51Cr 

release assays HBL melanoma cells in monolayer expressing both antigen and HLA-A0201 

restriction determinant (Ghosh S et al 2005b). 

 

3.4.2. Migration of immunocompetent cells in response to MCTS supernatants 
 

Melanoma cell lines may produce proinflammatory chemokines. We previously 

showed that when NA8 cells are cultured as 3D MCTS, there is significant enhancement of 

the expression of CCL20, CXCL1 and IL-8 genes (Ghosh S et al. 2005a). Receptors for these 

chemokines are largely expressed on iDC and CD8+ T cells (Greaves DR et al. 1997; Lippert 

U et al. 2004; Takata H et al. 2004). Thus, chemoattraction by MCTS might reflect the 

potential chemoattractive capacity of neoplastic tissues.  

Then we assessed differential chemotactic responsiveness of iDC and CD8+ T cells to 

chemokines present in culture supernatants, using, as melanoma model, NA8 cells cultured in 

2D or in MCTS. Addition of supernatants of cells growing in monolayers to the lower part of 

a transwell system induced migration of both iDC and total CD8+ T cells, suggesting that 

NA8 cells constitutively produce chemotactic factors in vitro. Most importantly, supernatants 
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derived from the same number of NA8 cells growing in MCTS induced a significant increase 

in the migration of iDC and CD8+ T cells as compared to supernatants of their 2D 

counterparts. Chemotactic index is defined by the number of migrated cells in the 

experimental conditions divided by number of migrated cells in negative control (culture 

medium). 

 

The above data suggest that when melanoma cells are cultured in the form of 3D 

MCTS, they are capable of attracting APC and CD8+ T cells. But this ability curiously 

contrasts with the relatively low effectiveness of tumor specific immune responses “in vivo”. 

Puzzled by this discrepancy, we sought to investigate the morphology of the interaction 

between melanoma cells, iDC and, most importantly, CD8+ T cells, which are largely 

responsible for tumor specific cytotoxic activities. 

 

3.4.3. Morphology of interaction between TAA specific CTLs and melanoma cells 

cultured in spheroids 

To explore CTL-tumor cell interaction, first morphological aspects were addressed 

(Ludford-Menting MJ et al 2005). By Scanning electron microscopy one can easily inspect 

the morphological features of the cells. Antigen-specific T cells get activated after interaction 

of T cell antigen receptor (TCR) with MHC-peptide complexes expressed on tumor cell 
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total CD8+ T cells to supernatant of NA8 melanoma cells cultured in 2D or as MCTS 



 47

surfaces. This interaction takes place in a 30-40 nanometer scale gap between the two cells, 

known as an “immunological synapse” (Grakoui A et al 1999; Bromley SK et al 2001). 

HBL tumor spheroids were placed on a glass slide and allowed 4-5 hours to attach. 

Some cells started to proliferate out of the spheroids and started to grow on the slide in 

monolayer surrounding the spheroid. Then MART-specific CD8+ CTLs (clone E2MA4) were 

added on top and after 24 hours the whole structure was fixed with 4% glutaraldehyde. No T 

cells were found to express uropod (Friedl P et al 1998), which forms during migration or cell-

cell interaction, but some of them appeared to form stable contacts with cancer cells.  

 

Figure 27:  Morphological view of T-lymphocytes attached over HBL spheroid 
by Scanning Electron Microscopy 

 

It has been suggested that while cells in monolayer are killed by CTL attack, spheroids 

may be able to maintain their structural integrity. This might lead to the assumption that 

although some T cells can form immunological synapse, the peripheral cancer cells of the 

spheroid may not get detached, forming a layer of protection, possibly causing lack of 

interaction of T cells with the tumor cells embedded within the 3D architecture. 

  

Figure 28:  Scanning Electron Microscopic view of tumor spheroid, showing integrated 3D 
structure of HBL spheroid, after 24 hours of co-culture with MART-1-specific CTL clones 
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Hence as the next step, by using our spheroid model we investigated whether infiltration of 

TAA-specific T lymphocytes into tumor spheroid has a “brisk” (deep and/or diffuse) or a 

“non brisk” (focal and superficial) character and its timing by confocal microscope. 

  

   A         B           

 

  

 

  HLA-A0201 restricted MART-127-35 -specific T lymphocytes were labelled with CFSE 

and cocultured overnight with 3 days old HBL spheroids (labelled with PKH 26 Red 

fluorescent dye). By confocal microscopy we observed that Melan-A/MART-1-specific CTLs 

could infiltrate only the peripheral part of the HBL spheroid (Figure 29A), although HBL 

cells express MART-1 antigen and HLA-A0201. 

Middle 

Figure 29:  Non-brisk infiltration of 

melanoma MCTS immunocompetent 

cells 

Figure A: 3D HBL 30,000 & Melan-            
A /MART-127-35 specific CTL clone 
  
Figure B: 3D NA8 30,000  &  Total 
CD8+  T cells  
 
Figure C: 3D projection of HBL 
spheroid, challenged with CTL clones 
to show only superficial infiltration 

C 

Surface 



 49 

   Similarly, total CD8+ T lymphocytes were freshly isolated from a buffycoat. Melan-

A/MART-1 negative and HLA-A0201+ve NA8 cells were cocultured with total CD8+ T cells 

(undefined antigenic specificity) and they were also unable to penetrate in deep into the 3D 

architecture of MCTS but rather tended to remain on the spheroid surfaces (Figure 29B). These 

pictures closely reminded the “non brisk” infiltration of melanoma by T cells observed in the past 

in clinical tumor specimens (Anichini A et al 1999; Bernsen MR et al 2004). 

 

These data indicate that irrespective of antigenic specificity, three dimensional tumor 

spheroids are poorly infiltrated by CD8+ T cells. 

 

3.4.4. Immunorecognition: 

 Lack of MCTS infiltration by TAA specific CTLs hinted at a possible defective killing of 

tumor cells cultured in 3D spheroids. 

 

3.4.4.1. IFNγ as a surrogate marker of antigen recognition: 

  Cell death is traditionally measured by the quantification of chromium (51Cr) release from 

labeled target cells. In this assay, living cells nonspecifically incorporate and retain the 

radionuclide. As the cells are killed, 51Cr is released into the culture medium and is quantified by 

scintillation counting. This assay is a standard way to measure the cell killing ability of cytotoxic 

T cells. However tumor cells cultured as 3D spheroids are unfit to serve as target for 51Cr release  

 
 

 

      Figure 30: Schematic view of antigen recognition and IFN-γ production by T-lymphocytes 
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 assays, because washing steps required after labeling may disrupt cells aggregates. Hence, we 

decided to measure IFN-γ production by antigen specific T cells following interaction with 

targets expressing appropriate TAA and restriction determinants, as a classical alternative marker 

of antigen recognition.   

 

3.4.4.2. Antigen recognition by IFN- γ secretion measurement 

HBL spheroids were prepared in so that each spheroid contained 30000 cells. When co-

cultured together with HBL melanoma cells cultured in monolayer CTL clones produced high 

amounts of IFN-γ, in the order of magnitude of nanograms. IFN-γ production by CTL clones was 

detectable within 4 hour incubation, with a peak level usually observed at 24 hours (Ghosh S et al 

2005b). Instead, significantly lower amounts of cytokine were produced when CTLs were 

challenged with the same numbers of HBL target cells cultured for 2-3 days in 3D architectures 

(Figure 31). 

 

 

 

   

                                

 

 
 
Figure 31: Functional activities of HLA-A0201 restricted Melan-A/MART-127-35 specific CTL 
clones, homogeneously tetramer specific (representative example in upper panel), using HBL 
melanoma cells cultured in 2D and 3D conditions (30000 cells per well) as targets. Panel A, B are 
representative of two different CTL clones 
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Then HBL cells in monolayer and as 3D spheroids were challenged with gp100280-288 specific 

CTL clones at different effector: target ratios.  In this case too CTL clones produced more IFN-γ 

when they were challenged with HBL cells in monolayer than spheroids. 

 

 

 

 

Figure 32: Functional activities of a HLA-A0201 restricted gp100 specific CTL clone, showing 
homogeneous tetramer staining (left panel), using HBL melanoma cells cultured in 2D and 3D 

conditions as targets. 
 

These experiments indicated that there is indeed impaired immunorecognition when cancer cells 

are in the form of 3D spheroid for HBL melanoma cells.  

 

We asked if this phenomenon was only valid for HBL cells or it is more general. Hence 

we have studied immunorecognition using D10 cells and gp100-specific HLA-A0201 restricted 

CTL clones at different E:T ratios.  
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Figure 33: Functional activities of HLA-A0201 restricted gp100-specific CTL clones using, D10 
melanoma cells as targets cultured in 2D and 3D conditions. 
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Thus, growth in 3D architectures indeed appears to impair recognition of TAA by specific 

effector T cells.  

 

3.4.4.3. Efects of interaction with targets cultured in spheroids on CTL machinery 

  

Elicitation of CTL functions relies on the expression of an array of components of their 

lytic machinery. For instance, CTL may kill through Fas pathway and granzymes entering target 

cells may rapidly induce their DNA fragmentation based apoptosis Furthermore, perforin in the 

CTL granules plays a pivotal role in granule-mediated killing. We also assessed CTL functions 

by evaluating FasL, granzyme B and perforin gene expression in CTLs co-cultured with 

melanoma target cells growing in 2D or in MCTS (Figure 34). As expected, interaction with 

targets Melan-A/MART-127-35+HLA-A*0201+ cultured in monolayer induced the expression of 

FasL, granzyme B and perforin genes in antigen specific CTL. However, the expression of these 

genes was significantly lower when effector cells were stimulated by MCTS. 
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Figure 34: functionality of TAA specific CTLs is impaired within the 
3D tumor spheroid microenvironment 

 

Taken together, these data indicate that CTLs exposed to a 3D “in vitro” tumor 

microenvironment show an impaired functionality of their lytic machinery, reminding situations 

frequently observed in vivo (Zippelius A et al 2004; Mortarini R et al 2003). 

   

Proliferative capacity of tumor cell stimulated CTL: 

 

We have also investigated proliferation capacity of CTLs by using lymphocyte tracking dye 

carboxyfluorescein diacetate succinimidyl ester (CFDA-SE) (Lyons AB et al 1994; Parish CR 

1999). CFDA-SE labelled MART-1 specific CTL clones were co-cultured with HBL cells in monolayer 

and as spheroids at two different cell densities (15000 and 30000 cells per well) and proliferation was 

measured by fluorocytometry after 4 days of culture. While minimal proliferation was observed in CTL 

stimulated by 2D cultured melanoma cells, it was totally absent in CTL stimulated by MCTS.  
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Figure 35: CFDA-SE labeled proliferation of CTLs stimulated by melanoma cell lines, as 
detected by flow cytometry 
 
 

3.4.5. Possible mechanisms causing impaired immunorecognition 

Data from different groups (Dangles V et al 2002, Dangles-Marie V et al 2003), including 

ours (Ghosh S et al 2005b), indicate that culture of tumor cells in three-dimensional structures 

modulates their gene expression profiles and decreases their susceptibility to the immuno-

mediated CTL attack although still unclear are the underlying molecular mechanisms. We would 

like to use our MCTS model system to get some insight about the probable mechanisms. We 

envisage that this impaired immune recognition might result from many reasons including: 

(a) complex 3D tumor spheroid architecture which prevents penetration of T cells 

(b) downregulation of tumor antigen expression 

(c) downregulation of MHC class-I molecules expression 

(d) accumulation of acidic metabolic products, such as lactate 
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3.4.5.1. Structural hindrance of spheroid: 
 

Poor infiltration of CTLs inside the spheroid might be attributed to the structural 

constraints of 3D architecture. Culture in spheroids may provide an overall smaller cell surface 

accessible to CTL attack, as compared to monolayers, resulting in decreased activation of effector 

cells. To address this issue, HBL cells were cultured as MCTS and after 3 days, spheroids were 

disrupted by vigorous pipetting and seeded again as monolayer with 30000 cells/well cell density. 

On the same day, HBL melanoma cells who had never experienced 3D tumor microenvironment 

were also cultured in monolayer at the same cell density. After 6-8 hours CTL clones were added 

and IFN-γ secretion by the CTL clones was measured after 24 hours. 

 

 

 

 

 

 

 

 

 

Figure 36: IFN-γ secretion by CTLs cultured with HBL cells from intact or disrupted MCTS 

 

Upon stimulation by cells deriving from disrupted spheroids, Melan-A/MART-127-35 specific 

CTLs secreted IFN-γ at intermediate levels between 3D spheroids and 2D cultures.  These results 

indicate that the observed impairment of antigen recognition by CTL is at least in part due the 

smaller cell surface accessible to effectors, but cannot be exclusively ascribed to structural 

hindrances. 
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3.4.5.2. Downregulation of expression of melanoma differentiation antigens: 

 

We then studied TAA expression, at both gene and protein level, in monolayer cultured 

cells and spheroids.  

 

Indeed the extent of TAAs expression has major implications for immunorecognition by 

the antigen-specific CTLs. First HBL cells were stained for MART-1 expression using specific 

antibody. Spheroids were disrupted by vigorous pipetting and scattered single cells were fixed on 

a coverslip. Intensity of MART-1 specific staining in cells  

          

 

 

Figure 37:  Melan-A/MART-127-35 immunostaining on cells from 
(A) disrupted spheroids and (B) monolayer cultured cells, 40X 

 

from MCTS was compared with monolayer cultured cells. A marked difference in intensity of 

staining was visible (Figure 37). Some cells from disrupted spheroids were almost clear of 

MART-1 specific staining, as compared to the HBL cells cultured as monolayer.  

 

To get deeper insights about the event of downregulation of TAA, we performed qRT-

PCR analysis of antigen expression in HBL cells in monolayer and spheroids. NA8 was the 

negative control as it does not express MART-1 antigen. Our experiments indicated that in cells 

cultured in 3D spheroid six fold lower expression of Melan-A/MART-1 was indeed detectable as 

compared to 2D conditions (Figure 38A). By FACS analysis, following intracellular staining 

Melan-A/MART-127-35 expression was also found to be at least 4-5 fold downregulated in HBL 

cells from spheroid cultures (Figure 38B). 

B A 
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Figure 38: MART-1 antigen expression in HBL melanoma cells in 2D or 
in MCTS:  (A) by RT-PCR, (B) by flow cytometric analysis 

  

Then we tested expression of another TAA, gp100, by quantitative RT-PCR in both HBL and 

D10 cells cultured in conventional monolayer fashion or as 3D spheroids. Expression of the gene 

encoding gp100 antigen also was significantly downregulated in 3D spheroids as compared to the 

cells cultured in monolayers (Figure 39). 

 

 

 

 

 

 

 

 

 

Figure 39: Expression of gp100 in HBL and D10 cells by quantitative RT-PCR 
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3.4.5.2.1. Effect of spheroid size: 

Depending upon different cell numbers (e.g. size of the spheroid), there could be different 

level of hypoxic microenvironment, gradient of nutrients and accumulation of toxic metabolic 

products. These factors may play important role in governing immunorecognition process. By 

varying the cell numbers in the spheroid, one can prepare spheroids having wide range of 

exposed surface (approximately 150-800 µm).  

 

 

 
Figure 40: Seeding of different cell number in single wells can result in the formation of  

spheroids of different volume 
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Two different CTL clones were cocultured with spheroids of 5 different cell number, 

starting from 500 cells per spheroid, to a maximum of 50000 cells per spheroid. CTL clones were 

co-cultured with these spheroids or equal numbers of HBL cells in monolayer for 24 hours at two 

different effector:target ratios and then IFN-γ secretion was measured by ELISA. Interestingly, 

CTLs produced more IFN-γ if stimulated by spheroids than monolayer cultures, when the 

spheroids contain less than 10000 cells. 
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Figure 41:  IFN-γ production by two different CTL clones upon stimulation with HBL cells 

cultured in different cell densities (A: CTL clone 2.6.1;   B: CTL clone 2.7.1) 

 

Hence the number of cells in a tumor spheroid could play a critical role in T cell activation, as 

observed by other groups (Dangles V et al 2002) showing that TNF release decreased in an 

inverse ratio to the spheroid volume; spheroids containing 2,000 cells were still able to stimulate 

T cells, whereas spheroids containing 5,000 cells had lost this capacity.  

  

 We also measured Melan-A/MART-1 gene expression in HBL cells cultured at three 

different cell densities (5000, 15000, 30000 per well) either as spheroids or as monolayer, and 

measured Melan-A/MART-1 gene expression by quantitative Real time PCR after 2 days of 

culture (Figure 43). Indeed the highest down-regulation of the expression of genes encoding  
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Figure 42:   Melan-A/MART-1 gene expression as related to different cell numbers 
 in 2D and 3D cultures of HBL melanoma cells 

 

differentiation TAA was detectable in spheroids containing 30,000 melanoma cells, whereas 

milder effects were recorded in 3D structures including 15,000 tumor cells. So Melan-A/MART-

1 gene expression was strongly correlated with increase in cell number in spheroids, but no major 

modulation was noticed in monolayer culture (not fully confluent).  

 

 3.4.5.2.2. Recovery of TAA after disruption of 3D tumor microenvironment: 

Cells from spheroids were disrupted by trypsin treatment or mechanically by vigorous 

pipetting and subsequently re-cultured again in monolayers for the indicated times. In all cases 

total cellular RNA was extracted and reverse transcribed. Melan-A/MART-1 gene expression 

was comparatively evaluated in cells cultured in 2D or in 3D by quantitative real time RT-PCR. 

Data were expressed as ratio of Melan-A/MART-1 gene expression using as reference value 

expression in 2D HBL cultures. 
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Figure 43: Recovery of Melan-A/MART-1 antigen by gene expression by  
Re-culturing in monolayer 

 
In our hand, TAA expression was recovered not earlier than after 4-5 days of culture in 

monolayer. 

 

3.4.5.2.3. Comparison of TAA expression with melanoma clinical specimens: 

To assess the potential in vivo relevance of our findings, we have also compared 

expression levels of melanoma associated antigens in tumor spheroids (30000 cells, cultured for 4 

days) with those detectable in several tumor biopsies. Although a wide range of antigen 

expression levels can be observed in biopsies, levels of expression of MART-1 in MCTS 

frequently matched expression levels in clinical specimens. 

 

 

 

 

 

 

 

 

 

 

Figure 44: Melan-A/MART-1 gene expression in tumor biopsies and comparison  
with HBL cells cultured in 2D and as 3D spheroid 
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3.4.5.2.4. Role of transcription factors downregulating TAA expression: 

We comparatively explored the expression of the genes encoding factors potentially 

involved in the modulation of antigen expression, in HBL, D10 and NA8 melanoma cells 

cultured in either MCTS or conventional 2D conditions. 

 

OncostatinM is an interleukin-6 type cytokine originally described by its capacity to 

inhibit melanoma proliferation in vitro (Zarling JM et al 1986). It has been recently reported that 

Oncostatin M, produced by melanoma cells cultured in confluent monolayer fashion, can actively 

down regulate Melan-A/MART-1 mRNA transcription inducing antigen silencing in tumor cells 

(Durda PJ et al 2003). In our studies, however we could not detect gene expression of Oncostatin 

M gene in our cells.  

On the other hand, Microphthalmia-associated transcription factor is the “master 

regulator” of melanocytic differentiation (Tachibana M et al 1996). Previously Melan-A/MART-1 

and gp100 gene expression have been shown to be transcriptionally regulated by MITF (Du J et 

al 2003). Indeed, we observed downregulation of Microphthalmia-associated transcription factor 

(MITF) paralleling with TAA gene expression in our system. These effects also appeared to be 

cell density dependent (Figure 45).  
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Figure 45: (A) Modulation of gene expression of three tumor associated antigens as related to 
different spheroid size and culture architectures, (B) MITF gene expression in melanoma cells 
cultured in monolayer and as spheroids at different cell densities 
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 3.4.5.3. Modulation of HLA expression: 

Antigen recognition by T cells is restricted by HLA-A2. Loss of HLA-expression may 

represent an important mechanism by which melanoma evade immune recognition (Garcia-Lora 

A et al, 2003). HLA class I molecules present peptides from endogenously processed proteins, 

whereas HLA class II molecules present peptides from exogenous proteins. The level of 

expression of HLA molecules by cancer cells is decisive to determine the outcome of an immune 

response.  Absence or decreased expression of HLA Class I allele(s) would enable tumor cells to 

escape from immune response. Downregulation or loss of HLA class I molecules may be due to 

mutation or loss of β-2 microglobulin gene or of a single HLA allele.     

It is of interest that in MCTS a decrease of the surface expression of HLA class I 

molecules expression can also be observed. HBL cells were cultured in 2D or in 3D for three 

days. Cells were then trypsinized and stained with monoclonal antibodies specific for HLA-

A0201 or a monomorphic epitope of HLA class I heavy chains, or control reagents. Mean 

fluorescence intensities (MFI) of the specific stainings were also calculated. Data reported in the 

figure refer to one representative experiment out of three performed (Figure 46). 

         

 

 

Figure 46: HLA expression in HBL cells cultured in monolayer or in spheroid 
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Figure 47: Modulation of HLA expression in D10 cells cultured in monolayer or spheroid 

 

HBL cultured in 3 days old MCTS (30,000 cells per spheroids) displayed a significant (>5 

fold) decrease in HLA-A0201 expression at the protein level, as compared to 2D cultures. 

Importantly, this effect was not allele specific, but concerned all HLA class I gene products, as 

indicated by staining with a mAb specific for a monomorphic determinant on HLA class I heavy 

chains (Figure 46). Similar results were observed with D10 MCTS with a significant (≥2 fold) 

decrease in HLA molecules expression as compared to 2D cultures (Figure 47). 

 

This reduction in HLA appeared to be cell density dependent. On the other hand, NA8 

melanoma cells (HLA-A*0201+, TAA-) displayed a divergent HLA modulation pattern as 

compared to HBL and D10. Indeed, when cultured in MCTS, NA8 showed significant (≥2 fold) 

increases in HLA-A*0201 and overall HLA class I expression, especially for a cell density of 

5,000 cells per spheroid. 
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HLA class I gene expression is regulated by transcription factors of the Interferon 

Regulating Factor (IRF) family (Girdlestone J et al 1993). Consistent with the HLA expression 

data observed at the protein level, IRF-1 gene expression was also cell density dependently 

down-regulated in HBL and D10 cultured in MCTS as compared to 2D. Accordingly, IRF-1 gene 

expression was up-regulated in NA8 MCTS in comparison with cells cultured in monolayers.  

 

Figure 48: HLA class I expression in melanoma cells cultured in 2D or in 
MCTS at different cell numbers 
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Figure 49:  Expression of IRF-1 genes in melanoma cells cultured in 2D 
or in MCTS at different cell numbers 

 
 

3.4.5.4. Effects of Lactate on immunorecognition 

In previous studies it has been demonstrated that low oxygen level and poor glucose 

concentration may influence the metabolism and proliferative characteristics of cells (Marx E et 

al 1988) and promote the development of necrotic cores (Sutherland RM et al 1986; Mueller-

Klieser W et al 1986). So far, no study has investigated the effects of lactic acid on 

immunorecognition. Hypoxia in a tumor can induce production of glycolytic enzymes and 

glucose transporters (such as, Lactic dehydrogenase LDH), which can lead to enhanced 

glycolytic flux for energy production, causing high accumulation of lactic acid. Gottfried et al 

reported that infiltration of monocytes in the melanoma spheroids can be markedly enhanced by 

using oxamic acid (as an inhibitor of LDH), suppressing endogenous production of lactic acid 

(Gottfried et al 2006b). 

 Lactic acid content in the supernatants of tumor spheroids made of 30000 cells was 

measured after 3 days of culture. In monolayer cultures, cells were cultured for 3 days in 5% and 

20% oxygen incubators.  

 A higher amount (>60% increase) of lactate was produced by HBL spheroids, as 

compared to 2D cultures. D10 spheroids showed a nominal increase (≤ 15%) of lactate 
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production as compared to 2D cultures. HBL Cells in 2D produced more lactate in 5% oxygen 

environment, but still far below production in 3D. Although Glucose consumption was lower 

when cells were cultured in 5% oxygen environment we did not observe major differences in cell 

number or cell morphology as compared to cells cultured in 20% oxygen incubator. 

 

      Table  : Concentration of lactic acid and glucose in supernatants of melanoma cell culture  

Samples Lactate conc (mmol/Lt) Glucose conc (mMol/Lt) 

Fresh DMEM 1.32 24.3 

HBL 3D 30000 cells 18.2 18.4 

HBL-2D- 5% oxygen  13.8 21.4 

HBL-2D- 20% oxygen 11.0 19.5 

D10 3D 30000 cells 14.3 19.3 

D10-2D- 5% oxygen 12.0 22.5 

D10-2D- 20% oxygen 12.5 18.5 

 

We then performed our antigen recognition assays by using HBL melanoma cells cultured in 2D 

or 3D as targets in the presence or not of exogenously added lactate. 10mM and 20mM L-lactic 

acid (Sigma) was exogenously added and cancer cells were cultured for 8 hours in 5% and 20% 

oxygen. Then MART-1-specific CTL clones were cocultured with them (MART-specific CTL 

E2MA4: HBL = 2:1). After 24 hours IFN-γ production was measured. 
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Figure 50: Effects of addition of exogenous lactate to HBL cells cultured in monolayers at 

dfferent O2 saturation levels on immunorecognition by antigen specific CTL 
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Pre-exposure of target cells cultured in 2D to exogenous lactate dose-dependently inhibited 

antigen stimulated IFN-γ production by MART-1 specific HLA-A0201 restricted CTL clones. 

Importantly, however the addition of exogenous lactate to melanoma cells cultured in monolayer 

could not induce down-regulation of expression of melanoma differentiation antigens. These data 

suggest that lactic acid may cause a functional inhibition of effector cells, as also suggested by 

other groups (Gottfried E et al, 2006a). 

 

3.4.5.5. Close cell-cell interaction in specific cell types may lead to dedifferentiation: 

The process of melanocyte differentiation requires exit from the cell cycle and the 

expression of genes that encode proteins necessary for the production of pigment — two 

processes that are often deregulated in melanoma in vivo. Our above data witnessing a decreased 

expression of HLA and tumor associated antigens of the differentiation antigen family may 

suggest an ongoing dedifferentiation process in cells cultured in spherois. Importantly Hypoxic 

microenvironment in 3D tumor spheroids may also promote dedifferentiation of tumor cells 

(reviewed by Axelson H et al 2005). 

 Bodey et al (Bodey B et al 1996) observed in clinical samples that during melanoma 

progression cells undergo dedifferentiation with increased expression of vimentin, cytokeratin, 

but reduced expression of actin. Several other groups have reported similar over- expression of 

vimentin (Hendrix et al 1992). Hence strong co-expression of vimentin and keratin intermediate 

filaments can be considered as marker of dedifferentiated or interconverted (between epithelial 

and mesenchymal) phenotype. Upregulation in vimentin expression was interpreted by some 

researchers as a sign of Epithelial to Mesenchymal Transition, reflecting a major step in tumor 

dedifferentiation and development of a chemotherapy resistant-phenotype (Thiery JP 2002; 

Sommers CL et al, 1992). 

By immunofluorescence, we have detected a clear change in morphology of actin stress 

fibre networks in 7-10 days old spheroids as compared to monolayer cells. Actin fibres were 

more fragmented, whereas vimentin expression pattern is dramatically enhanced, especially in 

NA8 cells.  
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Figure 51:  Immunofluorescence stainings of NA8  cells:  

(A) upper panel showing Vimentin (red), actin (green), co-expression in monolayer 

(B) lower panel showing Vimentin (red), actin (green), co-expression in spheroid 

 

On the other hand, for HBL cells in MCTS, vimentin expression is strongly upregulated in the 

peripheral part of spheroids. 
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Figure 52:  Immunofluorescence stainings for Vimentin (red), actin (green) expression in HBL 
cells, (A) upper panel showing monolayer, (B) middle panel showing peripheral part of spheroid, 
(C) lower panel showing inner part of spheroid 

 

These preliminary results indicate that for the investigation is warranted to explore 

expression of vimentin, and actin in different architectures of melanoma cell cultures. 

 

MITF, whose expression is downmodulated in spheroids (see above), can regulate a 

number of melanocyte specific genes, including those involved in melanin biosynthesis (such as 

Melan-A, tyrosinase, TRP-1 etc) by binding to M-box sequences in the promoter regions 
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(Bentley NJ et al 1994; Bertolotto C et al 1996). Previously, Iwakiri et al showed that transfection 

of MITF siRNA could reduce MITF synthesis and induced dedifferentiation in retinal pigment 

cells (Iwakiri R et al 2005). Hence strong expression of vimentin especially in the peripheral part 

of spheroid, along with severe downregulation of MITF gene expression may suggest ongoing 

overall dedifferentiation of melanoma cells upon culture in spheroids. 
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H&E staining of a representative metastatic melanoma specimen showing evidence of “non 
brisk” infiltration by lymphocytes, limited to peripheral areas of the neoplastic outgrowth.

Chapter 4 
 

Concluding 
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4. Concluding remarks 

Development of a simple in vitro three dimensional tumor model to study human 

malignancy is crucial to understand the biology of the disease, and the interactions of human 

tumour cells with their microenvironment, including immunorecognition, so that improved 

therapies can be designed. In this thesis we addressed the development of novel in vitro models 

utilizing human cells and permitting controlled investigations of the interaction between tumor 

cells and the immune system. 

 

Culture of melanoma cells over PolyHEMA coated dish resulted in a simple, highly 

reproducible, in vitro multicellular tumor spheroid model system (MCTS) having a highly 

homogeneous size distribution,  as compared with several other spheroid formation techniques. 

Flow cytometry studies showed minimal cell death within the spheroid in the initial days of 

culture in PolyHEMA based system in comparison to other techniques. PolyHEMA based MCTS 

model resemble in vivo  tumors in their slow growth kinetics, capacity to develop necrotic areas 

far from nutrient and oxygen supplies after 10-12 days of culture, and preferential proliferation of 

cells located in the peripheral part of spheroid. 

 

Data from different groups, including ours, indicated that culture of tumor cells in tri-

dimensional structures modulates their gene expression profiles. The data presented in this thesis 

provide a large-scale gene profile analysis of tumor cells cultured in different architectures and 

this indicated that architecture of melanoma cells, possibly due to the inherent homotypic cell-

cell interaction or specific microenvironmental conditions, with a putative role of hypoxia, may 

determine specific gene expression patterns of potentially high functional relevance. 

Interestingly, the expression pattern of several genes found to be modulated, which are known to 

play a relevant role in melanoma progression and metastatic process. 

 

We have also showed that culture of tumor cells in tri-dimensional structures decreases 

their susceptibility to the immune-mediated CTL attack. Functional activity of TAA specific 

CTLs is impaired when they are challenged with melanoma cells in MCTS, compared to 

monolayer cells, as evident by lower expression of FasLigand, perforin, Granzyme B genes. Our 

data indicate that a constellation of mechanisms are probably acting together in decreasing the 
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susceptibility of melanoma cells cultured as MCTS to the attack of antigen specific CTL, as 

compared to the melanoma cells cultured in conventional monolayer fashion: 

 

(1) Three-dimensional structures per se, limit the capacity of effector cells of recognizing HLA 

class I restricted antigens possibly by merely reducing the cell surface exposed to CTL. This 

mechanism, however, is only partially responsible for the impaired antigen recognition since 

CTL cultured with melanoma cells from disrupted MCTS secreted IFN-γ at a level intermediate 

in between 2D and MCTS. 

(2) The expression of melanoma differentiation antigens is down-regulated in tumor cells 

cultured in 3D as compared to monolayers. In our hands, this is neither related to hypoxia nor to 

increased Oncostatin M gene expression but rather to a decreased MITF gene expression and to 

the high cell concentrations elicited by culture in MCTS.  

(3) The surface expression of HLA class I molecules can be down-regulated in melanoma cells 

cultured in 3D, as compared to their counterparts in 2D. 

(4)  Lactic acid production by melanoma cells is increased if they are cultured in MCTS, as 

compared to monolayer cultures, and lactate significantly inhibits infiltration and TAA triggered 

IFN-γ production by antigen-specific CTL. 

 

Most importantly, none of these mechanisms alone is able to entirely account for the 

inhibition of antigen recognition by specific CTL, detectable upon culture in the presence of 

melanoma cells cultured in 3D, as opposed to 2D. Their combination, however, elicits powerful 

inhibitory effects.  

These features have been detected relatively frequently in clinical melanoma specimen. 

Their occurrence has been attributed to the outgrowth of cancer cells characterized by low 

expression of TAA and/or restricting HLA class I determinants following exposure of tumors to 

immunoselective pressures. However, our data suggest that a low expression of HLA class I 

molecules and at least of melanoma differentiation antigens in tumors, could be inherent in their 

three-dimensional growth, even in the absence of an exogenous immune pressure. We are fully 

aware of the fact that culture of melanoma cell lines in 3D might only partially reflect the 

complexity of solid tumors developing in vivo. However, the clear discrepancy between data 

obtained by applying techniques of current use for the in vitro detection of antitumor responses 

and clinical evidence urges the development of alternative experimental models. 
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Chapter 5 
 

References 

Nothing is a waste of time if you use the experience 
wisely. 

Auguste Rodin 
(1840-1917) 
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 Abstract 

Cancer cells growth in three-dimensional (3D) architectures promotes resistance to 
drugs, cytokines, or irradiation. We investigated effects of 3D culture as compared to 
monolayers (2D) on melanoma cells recognition by tumor-associated antigen (TAA)-specific 
HLA-A*0201-restricted cytotoxic T-Lymphocytes (CTL).  

Culture of HBL, D10 (both HLA-A*0201+, TAA+) and NA8 (HLA-A*0201+, TAA-) 
melanoma cell lines on polyHEMA-coated plates, resulted in generation of 3D multicellular 
tumor spheroids (MCTS) characterized by slow proliferation. IFN-γ production by HLA-
A*0201-restricted Melan-A/MART-127-35 or gp100280-288-specific CTL clones served as 
marker for immunorecognition.  

Co-culture with melanoma cells MCTS, resulted in significantly defective TAA 
recognition by CTL as compared to 2D, as witnessed by decreased IFN-γ production and 
decreased Fas Ligand, perforin and granzyme B gene expression. We identified a multiplicity 
of mechanisms potentially involved. First, MCTS per se limit CTL capacity of recognizing 
HLA class I restricted antigens by reducing exposed cell surfaces. Second, expression of 
melanoma differentiation antigens is down-regulated in tumor cell spheroids as compared to 
2D unrelated to hypoxia or increased Oncostatin M gene expression but rather to decreased 
MITF gene expression. Third, expression of HLA class I molecules is frequently down-
regulated in melanoma MCTS, as compared to 2D, possibly due to decreased IRF-1 gene 
expression. Fourth, lactate production by melanoma cells is increased in MCTS, as compared 
to 2D and lactate significantly inhibits TAA triggered IFN-γ production by CTL.  

Taken together, our data suggest that melanoma cells growing in 3D, even in the 
absence of immune selection, feature characteristics capable of dramatically inhibiting TAA 
recognition by specific CTL. 
 
 
 
Introduction 
 

The identification of a large number of tumor associated antigens (TAA) (1) has raised 
the hope of taking advantage of the enormous increase of knowledge stemming from basic 
immunology research to ameliorate the prognosis of neoplastic diseases by active antigen 
specific immunotherapy, i.e. by vaccination. Trials based on diverse immunization procedures 
have been performed in different types of cancer and promising data have been reported (2-6).  

Indeed, immune responses specific for TAA can be generated relatively easily “in 
vitro” and “in vivo”, as detectable by phenotypic and functional assays. However, only in a 
minority of patients showing evidence of successful immunization, clinical responses are also 
detectable. 

Interestingly, experimental murine models indicate that tumor cells in suspension, 
regardless of their numbers, are frequently unable to produce life threatening cancer 
outgrowth, as opposed to solid tumor fragments (7), while inducing specific immune 
responses. Thus, proliferation in structured architectures appears to represent a pre-requisite 
for cancer development. 

In the human experimental setting, cytotoxicity assays or the functional monitoring of 
clinical immunotherapy trials are usually performed by utilizing, as targets, cell lines, 
frequently of lympho/myeloid origin, expressing appropriate HLA alleles upon pulsing with 
specific peptides. TAA recognition may eventually be confirmed by using, as additional 
targets, tumor cell lines expressing specific HLA determinants and transcribing relevant TAA 
encoding genes. Current protocols typically imply the admixture of effector and target cells 
pelleted together in culture wells. The lack of correlation between data obtained “in vitro” 
with these technologies and clinical data suggests that this model might not adequately 
account for critical aspects of the interaction between immunocompetent cells and cancers.   
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Three-dimensional (3D) culture models have been developed in the past decade, 
aiming at exploring radio or chemoresistance of tumor cells in “in vitro” assays more closely 
related to “in vivo” conditions than standard monolayers (8). In particular, multicellular tumor 
spheroids (MTCS) have been suggested to accurately represent early events of avascular 
tumor growth (9).  

MCTS remind in vivo cancers in their capacity to develop necrotic areas far from 
nutrient and oxygen supplies. Furthermore, cells cultured in MCTS are also similar to solid 
tumors in their proliferation dynamics (10), since, at difference with monolayer cultures, they 
fit the Gompertz equation, classically used to quantitatively evaluate neoplastic growth (11).  

Three-dimensional growth of tumor cell in vitro has been shown to affect antigen 
recognition by specific CTL. For instance, tumor infiltrating lymphocytes capable of killing 
autologous bladder tumor cells in 2D, failed to recognize targets when cultured in 3D (12). 
Similarly, a CTL clone specific for a mutated α-actinin-4 peptide expressed by autologous 
lung cancer cells poorly recognized targets growing in MCTS, possibly due to a down-
regulation of HSP70 expression (13). 

Regarding melanoma, a cancer frequently targeted in clinical immunotherapy trials, 
we recently showed that the architecture of tumor cell growth determines specific gene 
expression profiles, of potentially high functional significance. Furthermore, we showed that 
the recognition of a melanoma TAA by a specific CTL clone was impaired when target cells 
were cultured in MCTS (14, 15). 

These data suggest that antigen specific functional activities of CTL might be 
significantly altered in the presence of tumor cells growing in multilayered architectures. 
Underlying mechanisms, however, are still poorly investigated. 

In this work we explored the molecular bases of impaired recognition by CTL specific 
for TAA of melanoma cells cultured in tri-dimensional architectures. We report that a 
multiplicity of mechanisms ranging from structural hindrances to down regulation of antigen 
and HLA expression to lactic acid overproduction concurrently limit the susceptibility of 
melanoma cells cultured in MCTS to the attack by TAA specific CTL. 
 
 
 
Materials and Methods 
 
Cell culture 

NA8 (courtesy of Dr. Jotereau, Nantes, France), HBL and D10 cell lines (courtesy of 
Dr. A. Eberle, Basel, Switzerland) derive from metastatic melanoma and have widely been 
used in tumor immunology studies in the recent past (16-18). They are all HLA-A*0201+. 
However, while HBL and D10 express typical melanoma differentiation TAA (1, 19), NA8 
does not (1). 

Cell lines were routinely passaged in conventional 2D cultures in RPMI 1640 
supplemented with 10mM HEPES buffer, 1mM sodium pyruvate, 2mM non-essential amino-
acids, 2mM glutamine, 100 µg/ml Kanamycin (Invitrogen, Carlsbad, California) and 10% 
heat-inactivated FCS, hereafter referred to as complete medium.  

Multicellular tumor spheroids (MTCS) were prepared in U-bottom 96-wells plates 
previously coated with 50 µg/ml poly-2-hydroxyethylmethacrylate (polyHEMA, Sigma, St. 
Louis, MO) solution, preventing cell binding, as described (20). Cells proliferation was 
measured by the alamarBlue™ Assay (Serotec, Oxford, UK) (21). 

CTL clones were generated from peripheral blood CD8+ T cells of patients 
undergoing active antigen specific immunotherapy in the context of specific clinical trials, as 
previously described (17, 18). Briefly, cells from bulk cultures showing evidence of antigen 
specific cytotoxic activity, as detectable by 51Cr release assays, were cloned in 60 well 
Terasaki plates (Nunc, Glostrup, Denmark) at 0.3 cells per well in 20 µl volumes in the 
presence of 10,000 irradiated allogenic PBMC/well, in RPMI 1640 supplemented with 10mM 
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HEPES buffer, 1mM sodium pyruvate, 2mM non-essential amino-acids, 2mM glutamine, 100 
µg/ml Kanamycin (Invitrogen, Carlsbad, California) and 5% pooled human serum (RPMI-
HS), to which rIL-2 (200 units/ml) and purified phytohemagglutinin (PHA, 0.5 µg/ml, Remel, 
Dartford, UK) were added. After 14 days, wells where cell growth was microscopically 
detectable were expanded in RPMI-HS supplemented with 100 units/ml rIL-2 and screened 
for antigen specific cytotoxic activity by 51Cr realease assay. CTL clones were maintained in 
RPMI-HS supplemented with 100 units/ml rIL-2 and restimulated periodically with PHA in 
the presence of irradiated allogenic PBMC. All assays reported here were performed at least 
one week after re-stimulation. 
 
Chemotaxis assays 

Migration assays were performed by using Costar® 24-transwell chemotaxis chambers 
(Corning Costar Corporation, Cambridge, MA) with 5-µm and 3-µm pore size polycarbonate 
filters, for immature DC (iDC) and CD8+ T cells, respectively. Briefly, 600 µl of supernatant 
of NA8 cells cultured in 2D or 3D, or as a negative control, complete medium, were placed in 
the lower wells. CD8+ peripheral blood T cells were purified by using magnetic beads 
(Miltenyi Biotech, Bergisch Gladbach, Germany), whereas iDC were prepared by culturing 
peripheral blood monocytes in the presence of IL-4 and GM-CSF, as previously detailed (22). 
Upper wells of chemotactic chambers were loaded with 100 µl cell suspension of iDC or 
CD8+ T cells at a concentration of 1 x 106/ml. Each condition was set up in duplicate. Plates 
were kept at 37°C for 20 hours. Cells suspensions from the upper wells and cells migrated to 
the lower wells through the filters were then collected, stained with specific mAbs and 
counted by flow cytometry for a fixed defined time. Chemotactic index was determined by 
dividing the number of cells migrated in the experimental condition by the number of cells 
migrated in the negative control cultures (medium only).  

 
Confocal microscopy 

Cells were stained with PKH26 red fluorescent cell linker (Sigma-Aldrich, St. Louis, 
MO) following suppliers instructions, and cultured on polyHEMA coated plates for 3 days to 
form 30,000 cells MCTS. Total CD8+ T cells from healthy donors and CTL clones specific 
for HLA-A*0201 restricted Melan-A/MART-127-35 epitope were stained with CFSE 
(molecular Probes, Eugene, OR). Cells (E:T ratio = 2.5:1) were added to each MCTS and co-
cultured for 1 day. Confocal images for the evaluation of total CD8+ T cells or CTL 
infiltration in NA8 and HBL MCTS respectively, were obtained using a laser-scanning 
confocal microscope Zeiss LSM 510 (Carl Zeiss Microimaging Inc., Thornwood, NY). 
 
IFN-γγγγ detection by ELISA 

IFN-γ production was used as antigen recognition assays. As target/stimulator cells, 
we used melanoma cells cultured in 2D or in MCTS. CTL specific for Melan-A/MART-1 or 
gp100, used as effectors, were co-cultured with target cells at 2.5:1 ratio for 24 hours. When 
indicated, assays were performed by using, as target, HBL cells previously cultured in 
monolayers in the presence of 0-20mM lactate (Sigma-Aldrich, St. Louis, MO) for three days. 
In all cases, supernatants were collected and IFN-γ secretion was measured by using human 
IFN-γ BD OptEIA™ ELISA Set (BD Biosciences, Franklin Lakes, NJ). All samples were 
measured in duplicates.  
 
Quantification of gene expression by quantitative Real-Time PCR 

Cells were collected at the indicated time points and washed in PBS. Surgical samples 
from metastatic melanoma patients were disrupted and homogenized by sonication. Total 
RNA were extracted using the RNeasy® Mini Kit protocol (Qiagen, Basel, Switzerland), 
treated by Deoxyribonuclease I (DNase I) (Invitrogen, Carlsbad, California), and reverse 
transcribed by using the Moloney Murine Leukemia Virus Reverse Transcriptase (M-MLV 
RT, Invitrogen, Carlsbad, California). Quantitative real-time PCR were performed in the ABI 
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prism™ 7700 sequence detection system, using the TaqMan® Universal PCR Master Mix, 
No AmpErase® UNG (both from Applied Biosystems, Forster City, CA).  

Specific gene expression was quantitated by using the 2-C
T method(23-26). 

Normalization of gene expression was performed using GAPDH as reference gene and data 
were expressed as ratio to reference samples. 

  

Primers and probes 
Oncostatin M (OSM), IRF-1 and MITF primers and probes are from pre-developed 

assays (Assays-on-Demand, Gene Expression Products (Applied Biosystems, Foster City, 
CA)). Oligonucleotide primers and probes for c-myc, Melan-A/MART-1, gp100 and 
tyrosinase were generated using appropriate software (Primer Express™, Applied 
Biosystems, Foster City, CA) from sequences obtained from the NCBI gene bank.  

Furthermore, a number of sequences for primers and probes were derived from 
existing literature, as indicated below. 
 
GAPDH (27)  
Fwd  ATGGGGAAGGTGAAGGTCG 
Rev  TAAAAGCAGCCCTGGTGACC 
Probe  FAM-CGCCCAATACGACCAAATCCGTTGAC-TAMRA 
FasL (28) 
Fwd CCATTTAACAGGCAAGTCCAACT 
Rev TCACTCCAGAAAGCAGGACAATT 
Probe FAM-TCACTCCAGAAAGCAGGACAATT-TAMRA 
Perforin (29) 
Fwd TTCTACAGTTTCCATGTGGTACACACT 
Rev GTGGGTGCCGTAGTTGGAGATA 
Probe FAM-ACCCAGCCCGCCTACCTCAGGC-TAMRA 
Granzyme B (30) 
Fwd TCCTAAGAACTTCTCCAACGACACT 
Rev GCACAGCTCTGGTCCGCT 
Probe FAM-TGCTACTGCAGCTGGAGAGAAAGGCC-TAMRA 
Melan-A/MART-1 
Fwd TCTATGGTTACCCCAAGAAGGG 
Rev GATCACTGTCAGGATGCCGA 
Probe FAM-ACGGCTGAAGAGGCCGCTGGGAT-TAMRA 
gp100 
Fwd TCCCCCTGGATTGTCTTCTG 
Rev CTCAAATGCATCCCCCTCA 
Probe FAM-CCCTGGACATTGTCCAGGGTATTGAAAGTGA-TAMRA 
Tyrosinase 
Fwd TTTGCCTGAGTTTGACCCAAT 
Rev AGAGGCATCCGCTATCCCA 
Probe FAM-TAGAAATACACTGGAAGGATTTGCTAGTCCACTTACTA-TAMRA 
c-myc 
Fwd GCCACGTCTCCACACATCAG 
Rev TCTTGGCAGCAGGATAGTCCTT 
Probe FAM-ACGCAGCGCCTCCCTCCACTC-TAMRA 
 
Flow cytometry analysis 
 

HLA class I expression was quantified using FITC-conjugated mAb specific for 
HLA-A*0201 or a similar reagent specific for a non polymorphic determinant of HLA 
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class I heavy chain (PharMingen, San Diego, CA). HBL, D10 or NA8 cells cultured in 2D 
were collected using Trypsin-EDTA (Invitrogen, Carlsbad, CA) after 3 days culture. 
Accordingly, MCTS obtained after 3 days culture, were disrupted by 5 min trypsinisation 
at 37°C. Cells were then incubated with specific or control mAbs, for 45 min at 4°C in the 
dark, washed twice in cold PBS, fixed 1 min in Paraformaldehyde 1%, re-suspended in 200 
l PBS, and analyzed on a FACSCalibur® cytometer (Becton Dickinson, Franklin Lakes, 
NJ).  

 

Lactate measurement 

 

Quantification of lactate production by melanoma cells was performed after 3 day cultures 
in 2D or in 3D (30,000 cell density), using as immobilized enzyme biosensor, YSI 2300 
STAT Glucose & Lactate analyzer (YSI, Yellow Springs, Ohio), following suppliers` 
protocols. 

   
  

Results 

 
Morphological characterization and growth pattern of melanoma spheroids 

Melanoma cells were routinely maintained in monolayer (2D) cultures in complete 
medium. Upon culture on 96-wells plates coated with polyHEMA preventing cell attachment 
(20), they formed three-dimensional aggregates. Multicellular tumor spheroids (MCTS) of a 
0.3 to 0.8 mm diameter contained from 5,000 to 30,000 cells, depending on their size (Figure 
1A). 

Consistent with previous results by our group (14, 15), proliferation kinetics of cells 
cultured in 2D or 3D were dramatically different. Data reported in figure 1B regarding D10 
melanoma cell line as representative example, indicate that proliferation in 2D cultures 
reached a plateau within 5 days, whereas, in contrast, no major increases in cell numbers were 
detectable in MCTS within 20 days of culture. 
 
Immature Dendritic Cells and CD8+ T cells migrate in response to MCTS supernatants 
 Previous studies by us and others indicate that tumor cells from melanoma and 
colorectal cancer cell lines produce proinflammatory chemokines (22, 31, 32). For instance, 
HBL cells express RANTES gene (22). Importantly, we previously showed that culture in 3D 
of NA8 cells significantly enhances the expression of CCL20, CXCL1 and IL-8 genes (14). 
Receptors for these chemokines are largely expressed on iDC and CD8+ T cells (33-37). 

Thus, chemoattraction by MCTS might reflect the potential chemoattractive capacity 
of neoplastic tissues. Therefore, we assessed differential chemotactic responsiveness of iDC 
and CD8+ T cells to chemokines present in culture supernatants, using, as melanoma model, 
NA8 cells cultured in 2D or in MCTS (Figure 2A).  
 Addition of supernatants of cells growing in monolayers to the lower part of a 
transwell system induced migration of both iDC and total CD8+ T cells, suggesting that NA8 
cells constitutively produce chemotactic factors in vitro. Most importantly, supernatants 
derived from the same number of NA8 cells growing in MCTS induced a significant increase 
in the migration of iDC and CD8+ T cells as compared to supernatants of their 2D 
counterparts.  
 
Morphology of the interaction between TAA specific CTL and melanoma cells cultured in 
spheroids 
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The above data suggested that melanoma cells, particularly if cultured in 3D are 
characterized by a peculiar capacity of attracting APC and CD8+ T cells. This ability 
curiously contrasts with the relatively low effectiveness of tumor specific immune responses 
“ in vivo”. Puzzled by this discrepancy, we sought to investigate the morphology of the 
interaction between melanoma cells, iDC and, most importantly, CD8+ T cells, largely 
responsible for tumor specific cytotoxic activities. 

NA8 (HLA-A*0201+, Melan-A/MART-1-) or HBL (HLA-A*0201+, Melan-
A/MART-1+) cells cultured as MCTS, iDC, total CD8+ T cells and HLA-A*0201-restricted 
Melan-A/MART-127-35 specific CTL clones were labeled with different fluorochromes. NA8 
cells were co-cultured with either iDC or total CD8+ T cells. Furthermore, HBL cells were 
co-incubated for 24 hours together with TAA specific CTL clones. Confocal microscopy was 
then used to verify the consequences of this interaction at morphological level. Typically, 
iDC, CD8+ T cells in general and TAA specific CTL in particular were unable to penetrate in 
deep the 3D architecture of MCTS but rather tended to remain on their surfaces (Figure 2B). 
These pictures closely reminded the “non brisk” infiltration of melanoma by T cells, as 
frequently observed in clinical tumor specimens (38, 39) (Figure 2C). 
 
CTL clones display a differential capacity of recognizing endogenously processed tumor 
associated antigens in melanoma cells cultured in monolayers or in MCTS of different sizes.    

 Lack of MCTS infiltration by TAA specific CTL hinted at a possible defective killing 
of tumor cells cultured in spheroids. Indeed, growth in 3D architectures was previously 
suggested to prevent the recognition of TAA by specific effector T cells (12, 13, 15). We 
intended to verify if similar events occur when melanoma cells are cultured in MCTS and the 
eventually underlying molecular mechanisms.   

Percentages of TAA specific T cells “ex vivo” are extremely low, and usually do not 
exceed 0.5% of total CD8+ T cells, at best (40). Thus, to perform our studies in controlled 
conditions, we again resorted to the use of antigen specific cloned T cells as effectors. 
Importantly, CTL clones are far more efficient in this respect than T cells freshly obtained 
from peripheral blood (41). Since tumor cells cultured in 3D are unfit to serve as targets for 
51Cr release assays, because washing steps required after labeling disrupt cells aggregates, we 
turned to IFN-γ production by antigen specific T cells following interaction with targets 
expressing appropriate TAA and restriction determinants, as a classical alternative antigen 
recognition assay (42, 43).  

HBL and D10 HLA-A*0201+ melanoma cells expressing Melan-A/MART-1 and 
gp100 differentiation TAA cultured in 2D or 3D were used to stimulate IFN-γ production by 
previously characterized specific CTL clones (18). NA8 cells (HLA-A*0201+, TAA-) were 
used as negative controls. 

As expected, HBL and D10 cells cultured in 2D induced high IFN-γ production in 
gp100280-288 or Melan-A/MART-127-35 specific CTL clones. In sharp contrast, considerably 
lower amounts of cytokine were produced if CTL were stimulated with spheroids of 30,000 
HBL or D10 target cells following 3 day culture in 3D. Similar results were obtained in 
independent experiments performed by using different gp100280-288 or Melan-A/MART-127-35 

specific, HLA-A*0201 restricted CTL clones, at different E:T ratios. Representative data are 
reported in figure 3A.  
 Elicitation of CTL functions relies on the expression of an array of components of 
their lytic machinery. For instance, CTL may kill through Fas pathway (44, 45), and  
granzymes entering target cells (46-49) may rapidly induce their DNA fragmentation based 
apoptosis (50, 51). Furthermore, perforin in the CTL granules plays a pivotal role in granule-
mediated killing (52-55). Thus, we also assessed CTL functions by evaluating FasL, 
granzyme B and perforin gene expression in CTL co-cultured with melanoma target cells 
growing in 2D or in MCTS (Figure 3B). As expected, interaction with targets Melan-
A/MART-127-35+HLA-A*0201+ cultured in 2D resulted in the expression of FasL, granzyme 
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B and perforin genes in antigen specific CTL. However, the expression of these genes was 
significantly lower when effector cells were stimulated by MCTS.  

These data indicated that antigen recognition by CTL can be impaired if target cells 
are cultured in 3D, rather than in monolayers. A possible explanation for this observation 
could be offered by merely structural considerations: culture in spheroids may provide an 
overall smaller cell surface accessible to CTL attack, as compared to monolayers, resulting in 
decreased activation of effector cells. To address this issue, HBL cells were cultured in MCTS 
and subsequently disaggregated. The resulting cell suspensions were used to stimulate antigen 
specific CTL. Melanoma cells from freshly disrupted spheroids indeed induced IFN-γ 
secretion in Melan-A/MART-127-35 specific CTL clones, to intermediate levels between those 
induced by 2D or 3D cultured HBL (Figure 3C). These results indicate that the observed 
impairment of antigen recognition by CTL is at least in part due the smaller cell surface 
accessible to effectors, but cannot be exclusively ascribed to structural hindrances.  
 
Melan-A/MART-1, gp100 and tyrosinase expression in HBL and D10 cells cultured in 2D 
and 3D 

Previous works suggest that high cell density in monolayer cultures could affect TAA 
expression (56). In an attempt to clarify molecular mechanisms underlying our observations, 
we addressed antigen expression in target cells. Thus, we comparatively explored the 
expression not only of Melan-A/MART-1 and gp100 but also of tyrosinase genes, encoding 
differentiation antigens widely used in active specific immunotherapy (18) in HBL and D10 
melanoma cells cultured in either MCTS or conventional 2D conditions. NA8 cells (1) were 
used as negative control (Figure 4A).  

 
Quantitative real-time PCR analysis revealed that HBL and D10 cells cultured in MCTS 
display a significantly lower (≤40%) expression of Melan-A/MART-1, gp100 and tyrosinase 
differentiation TAA as compared to similar numbers of cells cultured in 2D conditions. 
Importantly, this down-modulation was visible in 3 days old spheroids, well before the 
appearance of inner necrotic cores on days 10-12 (14, 57, 58). Most interestingly, it was 
clearly related to cell density. Indeed the highest down-regulation of the expression of genes 
encoding differentiation TAA was detectable in spheroids containing 30,000 melanoma cells, 
whereas milder effects were recorded in 3D structures including 5,000 tumor cells.  

Interestingly, HBL and D10 cells from aggregates disrupted by vigorous pipetting, and 
subsequently cultured in monolayers could not recover baseline (2D) TAA gene expression 
before 3-5 days (data not shown). 

Since hypoxia may represent an early event in inner MCTS layers, leading, as 
reviewed previously (59, 60), to typical gene expression profiles, we investigated whether it 
could play a role in the down-regulation of the expression of melanoma differentiation 
antigens observed in spheroids. Monolayer cultures of D10 and HBL cell lines were incubated 
in low (5%) pO2 for three days and the expression of the genes under investigation was 
subsequently assessed. In no case we observed a significant down-modulation of melanoma 
TAA in cells cultured in hypoxic conditions (data not shown).   

Taken together these data indicated that the architecture of cultures may regulate the 
expression of melanoma differentiation antigens. Three-dimensional cultures are frequently 
assumed to be closer to “in vivo” conditions than standard monolayers. To validate this model 
we addressed the quantification of Melan-A/MART-1 and gp100 gene expression in surgical 
specimens from metastatic melanoma patients.  

Data from 11 clinical samples are displayed in figure 4B. In at least 5/11 cases, levels 
of Melan-A/MART-1 gene expression were similar to those observed in 3D cultures at 30,000 
cells density, namely from 2 to over 5 fold lower than levels detectable in melanoma cells 
cultured in monolayers. Regarding gp100, with one exception (Me 60), specific gene 
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expression was either undetectable (6/11) or, anyway, significantly lower than that detectable 
in 2D cultured HBL cells.  

It has been recently reported that Oncostatin M, produced by melanoma cells actively 
down regulates Melan-A/MART-1 mRNA transcription inducing antigen silencing in tumor 
cells (61). On the other hand, Melan-A/MART-1 and gp100 gene expression have been shown 
to be transcriptionally controlled by microphtalmia-associated transcription factor (MITF) 
(62), the master regulator of melanocytic differentiation. 

We comparatively explored the expression of the genes encoding these soluble factors 
potentially involved in the modulation of antigen expression, in HBL, D10 and NA8 
melanoma cells cultured in either MCTS or conventional 2D conditions (Figure 4C). While 
Oncostatin M gene expression was not detectable (data not shown), MITF gene expression 
was down-regulated in the three cell lines under investigation, when cultured in MCTS as 
compared to 2D. These effects appeared to be cell density dependent. 

 
HLA modulation in different size spheroids 
 The expression of HLA class I molecules and, in particular, of HLA-A*0201, the 
allele restricting the immunodominant CTL response to the gp100 and Melan-A/MART-1 
epitopes under investigation, was also evaluated in melanoma cells cultured in MCTS as 
compared to 2D. Figure 5A reports data from one representative experiment out of 3 
performed. HBL MCTS (30,000 cells per spheroids) displayed a significant (>5 fold) decrease 
in HLA-A*0201 expression at the protein level, as compared to 2D cultures. Importantly, this 
modulation did not appear to be allele specific, since similar results were obtained by using a 
mAb specific for a monomorphic epitope on HLA class I heavy chain. This reduction also 
appeared to be cell density dependent. Similar results were observed with D10 MCTS with a 
significant (≥2 fold) decrease in HLA molecules expression as compared to 2D cultures. 

On the other hand, NA8 melanoma cells (HLA-A*0201+, TAA-) displayed a 
divergent HLA modulation pattern as compared to HBL and D10. Indeed, when cultured in 
MCTS, NA8 showed significant (≥2 fold) increases in HLA-A*0201 and overall HLA class I 
expression, especially for a cell density of 5,000 cells per spheroids. 

 
HLA class I gene expression is regulated by transcription factors of the Interferon 

Regulating Factor (IRF) family (63), while c-myc has been shown to down-regulate HLA 
class I  expression in human melanoma (64).  

Consistent with the HLA expression data observed at the protein level, IRF-1 gene 
expression was also cell density dependently down-regulated in HBL and D10 cultured in 
MCTS as compared to 2D. Accordingly, IRF-1 gene expression was up-regulated in NA8 
MCTS in comparison with cells cultured in monolayers.  

On the other hand, surprisingly, c-myc expression was significantly down-regulated in 
D10 and HBL spheroids, as compared to cells cultured in monolayer, but it was unaffected in 
NA8 spheroids (Figure 5B). 

 

Role of lactic acid in the defective recognition by TAA specific CTL of tumor cells cultured 
in spheroids. 

Recently, it has been shown that production of lactate is enhanced in tumor cells 
cultured in spheroids, as compared to monolayers (65). Most importantly, lactate, at the 
concentrations produced by tumor cells in these culture conditions inhibits the proliferation of 
antigen specific CTL lines co-cultured with autologous dendritic cells in the presence of 
antigenic peptides (65). Prompted by this report we evaluated the production of lactic acid by 
the melanoma cell lines under investigation and its eventual role in the defective antigen 
recognition by specific CTL.  
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Culture of HBL cells in MCTS induced a >60% increase in their lactate production 
(Figure 6, panel A). More modest effects were detected in D10 cells (≤15% increases). We 
then performed our antigen recognition assays by using as targets HBL melanoma cells 
cultured in 2D in the absence or in the presence of graded concentrations of exogenous 
lactate.  

Indeed, pre-exposure of target cells cultured in 2D to exogenous lactate dose-
dependently inhibited antigen stimulated IFN-γ production by a Melan-a/MART-127-35 HLA-
A*0201 restricted CTL clone. However, cytokine production was still significantly higher 
than that induced by stimulating the same clone with HBL cell cultured in spheroids (Figure 
6, panel B). Importantly, addition of exogenous lactate to melanoma cells cultured in 
monolayers did not induce the down regulation of the expression of melanoma differentiation 
antigens (data not shown). 

 

 

Discussion 

 
The past decade has witnessed an unprecedented wave of cancer immunotherapy 

trials, prompted by the identification of large numbers of TAA and by major advances in 
basic immunology. Most of these efforts have targeted metastatic melanoma. A large majority 
of published reports suggest that a variety of different vaccination procedures are capable of 
inducing TAA specific CTL in high percentages of immunized patients. However, clinical 
responses are only detectable in a minority of them. These data underline that even in the 
presence of specific immune responses, tumors may be relatively insensitive to their effects. 

Molecular mechanisms underlying the discrepancy between immunological and 
clinical responsiveness to active antigen specific immunotherapy have been investigated by 
several groups. 

Tumor escape from CTL recognition has been attributed to down-regulation of TAA 
or HLA class I molecules expression (66) possibly resulting from the selection of resistant 
variants in neoplastic cell populations exposed to immunological pressure. However, this 
mechanism, whose in vivo relevance is debated, might indirectly support the concept of a 
clinical efficacy of CTL induction, whose evidence is mostly missing (67). 

More recently, the discrepancy between induction of TAA specific immune responses 
and clinical responsiveness has also been attributed to CTL defects. TAA specific T cells 
sampled ex vivo from tumor metastases have been shown to be quiescent (68-70), and 
characterized by an impaired capacity to produce IFN-γ upon antigenic challenge. Still 
unclear, however, is the role of the tumor cells, if any, in inducing such state. 

These reports urge the development of novel in vitro models utilizing human cells and 
permitting controlled investigations of the interaction between tumor cells and the immune 
system. 

Data from different groups, including ours, indicate that culture of tumor cells in tri-
dimensional structures modulates their gene expression profiles and decreases their 
susceptibility to the immune-mediated CTL attack although still unclear are the underlying 
molecular mechanisms (14, 15). 

Consistent with our previous report, showing a significant up-regulation of genes 
encoding CCL20, IL-8, CXCL1 chemokines in melanoma cells cultured in MCTS, as 
compared to 2D (14), here we demonstrated the high chemoattractive capacity of MCTS for 
iDC  and CD8+ T cells. Interestingly, however, iDC, CD8+ T cells in general and TAA 
specific CTL in particular, were unable to penetrate in deep the 3D architecture of MCTS, 
closely, reminding the “non brisk” infiltration of melanoma by T cells observed in clinical 
cancer tissues (38, 39). This lack of infiltration by TAA specific CTL suggested a possible 
defective killing of tumor cells cultured in spheroids. Indeed, our study shows that lower 
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amounts of IFN-γ are produced by CTL stimulated by melanoma cells cultured in MCTS as 
compared to those cultured with tumor cell monolayers. The concept of impaired elicitation of 
CTL functions was reinforced by decreases in FasL, granzyme B and perforin gene 
expression in antigen specific CTL when cultured with MCTS as compared with their 
counterparts cultured in 2D. 

Our data indicate that a multiplicity of mechanisms concur in decreasing the 
susceptibility of melanoma cells cultured in MCTS to the effects of antigen specific CTL, as 
compared to cell monolayers. 

First, tri-dimensional structures per se, limit the capacity of effector cells of 
recognizing HLA class I restricted antigens possibly by merely reducing the cell surface 
exposed to CTL. This mechanism, however, is only partially responsible for the impaired 
antigen recognition since CTL cultured with melanoma cells from disrupted MCTS secreted 
IFN-γ at a level intermediate in between 2D and MCTS. 

Second, the expression of melanoma differentiation antigens is down-regulated in 
tumor cells cultured in 3D as compared to monolayers. In our hands, this is neither related to 
hypoxia nor to increased Oncostatin M gene expression but rather to a decreased MITF gene 
expression and to the high cell concentrations elicited by culture in MCTS.  

Third, the surface expression of HLA class I molecules can be down-regulated in 
melanoma cells cultured in 3D, as compared to their counterparts in 2D. 

These features have been detected relatively frequently in clinical melanoma 
specimen. Their occurrence has been attributed to the outgrowth of cancer cells characterized 
by low expression of TAA and/or restricting HLA class I determinants following exposure of 
tumors to immunoselective pressures (66). However, our data suggest that a low expression of 
HLA class I molecules and at least of melanoma differentiation antigens in tumors, could be 
inherent in their tri-dimensional growth, even in the absence of an exogenous immune 
pressure. 

Fourth and finally, lactic acid production by melanoma cells is increased if they are 
cultured in MCTS, as compared to monolayer cultures, and lactate significantly inhibits TAA 
triggered IFN-γ production by specific CTL. Consistent with previous reports (71), these 
effects appear to be mediated by functional inhibition of effector cells, since no down-
regulation of TAA expression is detectable in melanoma cells cultured in these conditions. 
Interestingly, lactic acid produced within melanoma and prostate cancer MCTS has also been 
shown to impair the phenotypic and functional maturation of infiltrating dendritic cells 
thereby inhibiting their antigen presenting capacity (71).  

Most importantly, none of these mechanisms alone is able to entirely account for the 
inhibition of antigen recognition by specific CTL, detectable upon culture in the presence of 
melanoma cells cultured in 3D, as opposed to 2D. Their combination, however, elicits 
powerful inhibitory effects. 

We are fully aware of the fact that culture of melanoma cell lines in 3D might only 
partially reflect the complexity of solid tumors developing in vivo. However, the clear 
discrepancy between data obtained by applying techniques of current use for the in vitro 
detection of antitumor responses and clinical evidence urges the development of alternative 
experimental models. MCTS may then qualify as technology of choice for the screening not 
only of novel drugs, but also of immune-mediat ed therapeutic procedures. 

Further research is warranted to explore in this controlled in vitro model the 
consequences on effector cells of their interaction with tumor cells growing in tri-dimensional 
architectures, as opposed to monolayers or in suspension. 

Importantly, providing a molecular background to widespread clinical experience, our 
data suggest that the effectiveness of anti-tumor immune response may largely depend not 
only on affinity and functional capacities of effector cells, but also on the structural 
characteristics of the growth of cancer cells, rather than on their mere numbers and strongly 
support the use of active antigen specific immunotherapies in minimal residual disease states.  
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Figure legends 

 

Figure 1. Generation and characterization of multicellular tumor spheroids (MCTS) of melanoma cells. 

A. 5,000 and 30,000 melanoma cells (NA8, HBL, and D10) were cultured on polyHEMA 

coated plates to prevent cell attachment for 3 days, resulting in the formation of MTCS of an 

average of 300 to 800 µm diameter.  

B. D10 cells proliferation was evaluated by alamarBlue™ Assay (Serotec, Oxford, UK). 

Divergent kinetics were detectable for D10 cells cultured in monolayer (2D) or MCTS (3D). 

Similar results were observed for NA8 (14) and HBL cells (15). 

 

Figure 2: Chemotactic responses of immunocompetent cells to melanoma cells cultured in 

2D or in MCTS. 

(A.) Differential chemotactic responses of immature Dendritic Cells and total CD8+ T 

cells to supernatants of NA8 cells cultured in 2D or in MCTS.  The chemotactic 

responsiveness of iDC and total CD8+ T cells to supernatants of NA8 cells cultured in 2D or 

in MCTS was tested by using 24-well chemotaxis chambers. Monocyte-derived iDC or 

purified total CD8+ T cells (106 cells) resuspended in medium were loaded into the upper 

wells and supernatants of NA8 cells cultured in 2D or in 3D were placed in lower chambers, 

in duplicates. Cells migrated through the filter to the lower wells were collected after 20 hours 

incubation and counted by flow cytometry. Data reported refer to one representative 

experiment out of three independently performed with similar results.  

(B.) Infiltration of melanoma MCTS by iDC, total CD8+ T cells and antigen specific 

CTL clone. NA8 and HBL cells were stained with PKH26 red fluorochrome and cultured on 

polyHEMA coated plates for 3 days to form 30,000 cells MCTS. Immature DC, total CD8+ T 

cells from a healthy donor and a CTL clone specific for HLA-A*0201 restricted Melan-

A/MART-127-35 epitope were labeled with CFSE. Cells were added at a 2.5:1 ratio to each 

MCTS and co-cultured for 24 hours. Immature DC, total CD8+ T cells and CTL infiltration in 

NA8 and HBL MCTS, respectively, was analyzed by confocal microscopy.  

(C.) „Non brisk“ infiltration of tumor biopsies by T cells. HE staining of a representative 

metastatic melanoma specimen showing evidence of “non brisk” infiltration by lymphocytes, 

limited to peripheral areas of the neoplastic outgrowth. 

 

Figure 3: Functionality of TAA specific CTL is impaired if target melanoma cells are 

cultured in MCTS.  
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(A.) IFN- γγγγ secretion by CTL clones upon stimulation with HBL, D10 or NA8 cells 

cultured in 2D or in MCTS. CTL clones specific for HLA-A*0201 restricted gp100280-288 or 

Melan-A/MART-127-35 epitopes and displaying corresponding tetramer binding profiles (right 

panels) were co-incubated for 24 hours at 2.5:1 E:T ratio in the presence of similar numbers 

of HBL or D10 melanoma cells (HLA-A*0201+,gp100+,Melan-A/MART-1+), cultured in 2D 

(�) or in 3D (�). IFN-γ secretion was measured by ELISA in culture supernatants. Data are 

reported as average of triplicate measurements.  

(B.) FasL, perforin and granzyme B gene expression in CTL stimulated by 2D or 3D 

cultured HBL.  Cells from a CTL clone specific for HLA-A*0201 restricted Melan-

A/MART-127-35 epitope were co-cultured for 24 hours at 2.5:1 E:T ratio in the presence of 

HBL melanoma cells cultured in 2D (�) or in 3D (�). Total cellular RNA was extracted and 

reverse transcribed. FasL, perforin and granzyme B gene expression were analyzed by 

quantitative real-time PCR. Data were expressed as ratio to 2D sample.  

(C.)  IFN-γγγγ secretion by CTL cultured with HBL cells from intact or disrupted MCTS. 

Cells from a CTL clone specific for HLA-A*0201 restricted Melan-A/MART-127-35 epitope 

were stimulated for 24 hours at 2.5:1 E:T ratio in the presence of HBL melanoma cells 

cultured in 2D (�), in 3D (�) or following MCTS disruption (�). IFN-γ secretion was 

measured by ELISA in culture supernatants. Data are reported as average of triplicate 

measurements.  

 

Figure 4. TAA expression in melanoma cells cultured in 2D or in MCTS. 

(A.) Melan-A/MART-1, gp100 and tyrosinase gene expression in melanoma cells cultured in 

2D or in MCTS at different cell densities. HBL and D10 cells were cultured for three days in 

monolayer or in 3D at different cell densities (5,000 and 30,000 cells). Total cellular RNA 

was extracted, reverse transcribed. Melan-A/MART-1, gp100 and Tyrosinase gene expression 

were analyzed by quantitative real-time PCR. Data were expressed as ratio to the 

corresponding 2D sample. NA8 cells, known to be negative for TAA expression, were used as 

negative control.  

(B.) Melan-A/MART-1 and gp100 gene expression in melanoma biopsies. Surgical specimens 

from metastatic melanoma patients were mechanically disrupted and homogenized by 

sonication. Total cellular RNA was extracted and reverse transcribed. Melan-A/MART-1 and 

gp100 gene expression were analyzed by quantitative real-time PCR. Data are expressed as 

ratio to the expression of the same genes by HBL cells cultured in 2D.  NA8 cells were used 

as negative control.  
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(C.) MITF gene expression in melanoma cells cultured in 2D or in MCTS at different cell 

densities. Melanoma cells (HBL, D10 and NA8) were cultured for 3 days in 2D (�) or in 3D 

(�: 5,000 cells - �: 30,000 cells). Gene expression was analyzed by quantitative real-time 

PCR. Data are expressed by using, as reference, specific gene expression observed in the 

corresponding 2D sample.  

 

 

Figure 5. HLA class I expression in melanoma cells cultured in 2D or in MCTS.  

(A.) Flow cytometric analysis of HLA-A*0201 and HLA Class I expression in melanoma 

cells cultured in 2D or in MCTS at different cell densities. HBL, D10 and NA8 cells were 

cultured for 7 days in 2D (�) or in 3D (�: 5,000 cells - �: 30,000 cells). Cells were then 

harvested, and aggregates were disrupted by vigorous pipetting and trypsinisation. Cells were 

stained either with control antibodies or with mAbs recognizing HLA-A*0201 or a 

monomorphic epitope on HLA class I heavy chains. Relevant mean fluorescence intensities 

were calculated by subtracting values deriving from isotype control staining from 

experimental values.  

(B.) Expression of c-myc and IRF-1 genes in melanoma cells cultured in 2D or in MCTS 

at different cell densities. HBL, D10 or NA8 cells were cultured for 3 days in 2D (�) or in 

3D (�: 5,000 cells - �: 30,000 cells). Gene expression was analyzed by quantitative real-time 

PCR and results are expressed as ratio to specific gene expression observed in the 

corresponding 2D sample, used as reference.  

 

Figure 6. Lactic acid production by tumor cells cultured in different conditions and its role 

in antigen recognition by CTL. 

(A.) Lactic acid production by melanoma cells cultured in 2D or in 3D. HBL and D10 

cells were cultured in standard monolayers or in MCTS (30,000 cells) for 3 days. 

Supernatants were then harvested and their lactic acid content was measured as described in 

“materials and methods”. 

(B.) Effects of lactate on antigen recognition by CTL. CTL from a MelanA/MART-127-35 

specific HLA-A*0201 restricted clone were co-incubated with HBL melanoma cells cultured 

in 2D (�) or 3D (�), as indicated, in the presence of lactate at the indicated concentrations.  
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Figure 1. Generation and characterization of multicellular tumor spheroids (MCTS) 
of melanoma cells. 
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Figure 2. Chemotactic responses of immunocompetent cells to melanoma cells 
cultured in 2D or in MCTS. 
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Figure 3. Functionality of TAA specific CTL is impaired if target melanoma cells 
are cultured in MCTS.  
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Figure 4. TAA expression in melanoma cells cultured in 2D or in MCTS.  

A. 

Fold variation as compared to 2D 
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

2D NA8

2D HBL

3D HBL 5,000

3D HBL 30,000

2D D10

3D D10 5,000

3D D10 30,000

Ty
ro
si
na
se 

0.0 0.2 0.4 0.6 0.8 1.0 1.2

2D NA8

2D HBL

3D HBL 5,000

3D HBL 30,000

2D D10

3D D10 5,000

3D D10 30,000

g
p1
00 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

2D NA8

2D HBL

3D HBL 5,000

3D HBL 30,000

2D D10

3D D10 5,000

3D D10 30,000

M
el
an
-

A/
M
A

B. 

0.0 1.0

2D NA8

2D HBL2D

3D HBL 30,000

Me 60

Me 62

Me 63

Me 64

Me 122

Me 155

Me 173

Me 174

Me 175B

Me 200

Me 201

4.0 5.0 6.0

M
el
an
-

A/
M
A

Fold variation as compared to 2D HBL 
0.0 0.2 0.4 0.6 0.8 1.0 1.2

2D NA8

2D HBL2D

3D HBL 30,000

Me 60

Me 62

Me 63

Me 64

Me 122

Me 155

Me 173

Me 174

Me 175B

Me 200

Me 201

g
p1
00 

Fold variation as compared to 2D 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

2D NA8

3D NA8 5,000

3D NA8 30,000

2D HBL

3D HBL 5,000

3D HBL 30,000

2D D10

3D D10 5,000

3D D10 30,000

MI
T
F 

C. 



 135

 

 

 

 

Figure 5. HLA class I expression in melanoma cells cultured in 2D or in MCTS.  
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Figure 6. Lactic acid production by tumor cells cultured in 
different conditions and its role in antigen recognition by CTL.  
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(iii)  Three-dimensional culture of melanoma cells profoundly affects gene 
expression profile: A high density oligonucleotide array study 
             S Ghosh, GC Spagnoli, I Martin, S Ploegert, P Demougin, M Heberer, A 
Reschner, Journal of  Cellular Physiology, 2005 ; 204(2):522-31 
 

(iv) Use of Polysaccharide fibres in wound dressing- 
              S Ghosh, M Jassal, Indian Journal of Fibre & Textile Research , 2002, 27(4), 
434-450 
 
(v) Aramid Fibres : an over view-  
            M Jassal, S Ghosh, Indian Journal of Fibre & Textile Research , 2002, 27(3), 
290-306 
 (vi) Packing fraction, Porosity and Diameter of Textile yarn:  revisited 
            SK Biswas, S Ghosh, Golden Jubilee Year Publication (2000-2001), Institute 
of Jute Technology, Kolkata  
 
(vii)  Medical Textiles: a new horizon to explore- 

          S Ghosh,    The Indian Textile Journal , 2000, 110 (6), 10-14 
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in International in International in International in International 
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(i)  Culture of melanoma cells in three dimensional architectures results in 
impaired immunorecognition by antigen specific cytotoxic T lymphocytes  
          Conference of American Association of Immunologists, Boston, USA, 12-16th 
May, 2006 
 
(ii) Culture of melanoma cells in three dimensional architectures results in 
impaired immunorecognition by cytotoxic T lymphocytes specific for Melan-A 
/MART-1 tumor associated antigen 
          Conference of European Surgical Association, Stockholm, Sweden, 7-8th April, 
2005 

(iii)  Novel polymeric scaffolds for Bone and Cartilage Tissue Engineering-                               
International Conference on emerging trends in Polymers & Textiles, IIT Delhi, New 
Delhi, India, 7-8th January, 2005 

(iv) Three-dimensional culture of melanoma cells profoundly affects gene 
expression profile 
           3rd International conference on Tumor microenvironment: Progression, 
Therapy and Prevention, Prague, Czech Republic, 10-16th October, 2004 
 
(v) Development of an Alginate-based  wound dressing material 
          International Conference on “Innovations & Challenges in Medical Material”, 
I.I.T., Madras, India, Nov, 2001 
 

Poster Poster Poster Poster 

presentationpresentationpresentationpresentation    

 
(i)  Culture of melanoma cells in three dimensional architectures results in 
impaired immunorecognition by antigen specific cytotoxic T lymphocytes  
          Biovalley Life Sciences Week 2006, Basel, Switzerland, 17th Oct, 2006 
 
(ii) Culture of melanoma cells in three dimensional architectures results in 
impaired immunorecognition by antigen specific cytotoxic T lymphocytes  
          Conference of American Association of Immunologists, Boston, USA, 12-16th 
May 2006 
 
(iii)  Development of Alginate based wound dressing material 
     S Ghosh, M Jassal, AR Ray,   International Conference on Polymers, 7-8th 
January, 2005, Dept of Textile Technology, IIT Delhi 
 
(iv) A novel Alginate-based hydrogel as post-surgical adhesion preventive material 
     S Ghosh, M Jassal, AR Ray,  Conference of Swiss Society of Biomedical 
Engineering, 2nd -3rd September, ETH Zürich, Switzerland 
 
(v) Multicellular spheroid culture system represents a better model than monolayer 
culture for studying melanoma development in vitro. 
     S Ghosh, GC Spagnoli, I Martin, M Heberer, A Reschner, Conference of Swiss 
Society of Biomedical Engineering, 2nd -3rd September, ETH Zürich, Switzerland 
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Preparation of a new Alginate-based wound dressing material:  
Indian Patent 736/DEL/2002 filed on 11th July , 2002 
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(i) Generation of 3D melanoma tumor model, simulating typical tumor 
microenvironment.  
          Dept of Material Science, Swiss Federal Inst of Technology, Lausanne (EPFL), 
Sept 2005 
 
(ii) Application of DNA Microarray technique to study tumor progression using in 
vitro three dimensional tumor model system  
         Centre of Biomedical Engineering, I.I.T., Delhi, January, 2005 
 
(iii)  Preparation of a novel Alginate-based  wound dressing material 
            First Prize in Tryst-2001, arranged by I.I.T., Delhi, All India Technical paper 
presentation contest, Biomedical & Biotechnology section 
 
(iv) A modification of conventional Rotor Spinning Machine-  
 First prize in Bhavana Soni Contest, 1999- arranged by Textile Engineering 
Society, Department of Textile Technology, IIT (Delhi). 
 
(v) Ecofriendly Textiles- labeling and relevant approaches of processing-  
 Selected in Textvision-2000, a paper presentation contest, held by D.K.T.E. 
Society’s Textile and Engineering Institute, Ichalkaranji, Maharastra, India. 
  
(vi) Design of the Artificial Wearable Human Lung- 
 Participated in Bhavana Soni Contest, 2000, arranged by Textile Engineering 
Society, Department of Textile Technology, IIT (Delhi). 
 
(vii) Design of a new generation wound dressing- 
 First Prize in Bhavana Soni Contest , 2000.  
 
(viii) Waste disposal in Indian metro cities- 
 Paper presented in Tryst-2000, Technical Paper presentation contest, I.I.T., 
Delhi 
(ix) Optimisation of bleaching process of jute using Scourex- 
 Paper presented in Tryst-2000, Technical Paper presentation contest, I.I.T., 
Delhi 
 
(x) A simple method of estimating arsenic from water sample and vivisection-  
 Acknowledged by Centre for Cellular and Molecular Biology (CCMB), 
Hyderabad, India (1995)  
 
(xi) Effect of Melanoma tumor architecture on Immuno-recognition 
3rd International symposium on the Clinical use of Cellular Products, Regensburg, 
Germany, 17-18th March, 2005  (presented by A. Reschner) 
 
(xii) Effect of Melanoma tumor architecture on Immuno-recognition 
Annual Meeting of American College of Surgeons, SanFrancisco, 5th Oct. 2005 
(presented by M. Bolli) 
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Painting, reading about various subjects, swimming, travelling, social works -  
• former representative of Maxfoundation (www.themaxfoundation.org) in India  
• volunteer of Cancer Patients Aid Association, India 
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(i) Fellowship for Prospective Researchers- Swiss National Science Foundation, 
2006 
 
(ii) Teaching assistantship for three semesters in 2000-2001 in Textile Technology 
Department, IIT Delhi  
 
(iii) First prize in All India Technical paper presentation contest, Tryst-2001, I.I.T. 
Delhi  
 
(iv) First prize in Bhavana Soni Contest (National level Machine Design contest), 
I.I.T. Delhi, 1999 
 
(v)  Graduate Aptitude Test in Engineering (GATE) scholarship (88.65 
percentile), 1999 
 
(vi) National Scholarship and certificate of Merit (Ministry of H.R.D., West 
Bengal Government) for Madhyamik Examination, 1989 

 

 

 

 

 

 

 

 


