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Cover illustration : 
Schematic representation of the components of the actin cytoskeleton in Ashbya gossypii. 
Shown are the first twenty micrometers of a hypha (zero m being the very tip). Nucleus, cell 
wall and plasma membrane are indicated for orientation. The main structures of the actin 
cytoskeleton are actin patches, concentrated in the apical region, actin cables emanating 
from the tip, and actin rings, auxiliary structures required for forming hyphal crosswalls, the 
septa.
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Thesis Summary 

This thesis deals primarily with the dynamics and organisation of the actin cytoskeleton in 

Ashbya gossypii. The structures, parameters and dynamic behavior of the different aspects of 

the actin cytoskeleton were analyzed in detail. A model of the organisation of actin in the tip of 

A. gossypii is presented. Herefore, three proteins tagged with GFP were recorded by 

fluorescence microscopy. The two subunits of actin capping protein AgCap1p-GFP and 

AgCap2-GFP were used for analysis of actin patches. The other structures are actin cables 

and actin rings. They were visualized with a weak actin crosslinker, AgABP140p-GFP, which 

is present in both structures. Further GFP constructs were used for vesicles destined for 

exocytosis (AgSec4-GFP) and for an actin patch mutant (Bnr1 DAD-Cap1GFP). The tip 

organisation model comprises of three processes: endocytosis, exocytosis and polarization 

through vesicle recycling. Experimental findings also support this model. FRAP experiments 

and a membrane fluidizer are used for apical membrane analysis, as well as an endocytosis 

marker and an actin inhibiting drug.

While this part of the study is being submitted for publication, part of the section regarding 

Sec4-GFP has recently been published in Molecular Biology of the Cell.

In a second approach, a protein responsible for hyphal fusion in N. crassa and for the cell 

cycle in S. cerevisiae was characterized in A. gossypii. AgFar11 is responsible for premature 

hyphal abscission and is a possible link to the cell cycle of A. gossypii. This is the result of 

sequential analysis of AgFar11p and microscopic study of a deletion mutant thereof. These 

findings will soon be submitted as well.

An appendix features details on fluorescence microscopy, which was key to this work. 

I have continued to study both aspects for a year now. In this process, the work has evolved 

considerably, and for reasons of succinctness, image quality and newest findings, I would 

strongly recommend reading the corresponding scientific publications.
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Part I - The dynamic actin cytoskeleton of Ashbya gossypii
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Abstract

Polarized growth is an intriguing aspect in a continuously elongating organism like A.

gossypii. We therefore attempted a detailed study of the live actin cytoskeleton in this model 

filamentous fungus. We analyse the different components of the actin cytoskeleton tagged 

with Green Fluorescent Protein (GFP) by means of rapid, multi-dimensional video 

microscopy, studying their structural and dynamic properties.

Cap1p and Cap2p are the subunits making up capping protein, a heterodimer which binds the 

barbed end of actin filaments. GFP-labelled variants of each were studied. Cap1-GFP and 

Cap2-GFP colocalize with actin patches in rhodamine-phalloidin stainings. They are highly 

enriched in the first six micrometers from the tip, mostly cortical, and at sites of septation and 

branch formation. Cap1p-GFP and Cap2p-GFP patches moved at 224 (+-98) nm/s over 

distances of 0.8 m (+/-0.7 m) and generally had a lifetime of 14 seconds ((+/-6.5). 

Sequential recordings of the entire hypha were analysed, suggesting that these particles 

undergo a pattern of movement consistent with their role in endocytosis. That is, following an 

initial non-motile stage, actin patches undergo random movement near their site of formation, 

often followed by a secondary, linear retrograde movement away from the tip. Co-stainings 

with the endocytosis marker FM4-64 show partial colocalization, further supporting the notion 

that actin patches are involved in endocytosis. A second movement type is that of retrograde 

patches returning to the tip, resulting in a cycling pattern. This suggests maintenance of 

polarization by endocytic recycling, a mechanism which was corroborated by experiments 

concerning lateral diffusion in the apical membrane. Application of Latrunculin A results in 

depolarized, spherical tips. The combination of these results suggests that apart from their 

role in endocytosis, Cap-GFP patches are charged with the task of maintaining polarization 

by endocytic recycling.

Actin cables and actin rings were made visible by using a GFP tagged variant of Abp140p, an 

F-actin binding and crosslinking protein. Abp140p-GFP colocalizes fully with actin cables, 

actin patches and actin rings in rhodamine phalloidin stainings. Abp140p-GFP cables are 

mostly cortical, often helical, can be as long as 40 m and are highly motile. The different 

fluorescent intensities indicate existence of actin bundles with different numbers of cables. 

Elongation of the tip of a cable is 184 (+/-62) nm/s. Fine cables in the apical zone often 

feature Abp140p-GFP patches moving to the tip, where they desintegrate. This is strongly 

reminiscent of the short, straight actin cables in S. cerevisiae, which have been shown to 

transport exocytic vesicles to the site where a new cell wall is formed. We conclude with a 

model of the hyphal organisation of the actin cytoskeleton in A. gossypii.

abbreviations: CP capping protein, Cap-GFP (= either Cap1-GFP or Cap2-GFP), A.g. Ashbya gossypii  
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Introduction
Apical growth is the primary mode of growth in filamentous fungi. Elucidation of the 

interactions and of the dynamics of these different components is providing unique insight 

into the mechanisms of polarized growth. 

In the last few years, exciting discoveries about actin have been made mainly using the 

cytoskeleton of the unicellular budding yeast Saccharomyces cerevisiae. The ultrastructure of 

actin patches has been revealed (Young et al., 2004),  their life cycle analysed (Smith et al., 

2001), a factor coupling endocytosis and actin patches discovered (Kaksonen et al., 2003), 

and actin cables visualized (Yang et al., 2002), just to name a few. This new information 

expands the concept of the many different chores the actin cytoskeleton has (see Pruyne and 

Bretscher, 2000). Yet, most studies have been done in the budding yeast Saccharomyces 

cerevisiae, and while good knowledge regarding actin patches was also gained from the 

fission yeast Schizosaccharomyces pombe (Takagi et al., 2003; Pelham and Chang, 2001), 

very little is known about the actin cytoskeleton and its dynamics in filamentous fungi. Ashbya

gossypii, a novel filamentous model fungus, is well suited to help fill this information gap.

Many observations concerning the development of filamentous fungi have been described in 

meanwhile standard volumes of mycology (Carlile et al., 2001; Gow and Gadd, 1995; Griffin, 

1994). Under favourable environmental conditions, fungal spores germinate and form 

hyphae. During this process, the spore absorbs water through its wall, the cytoplasm 

becomes activated, nuclear division takes place, more cytoplasm is synthesized, and from 

the wall of the germinated spore a germ tube bulges out, enveloped by a wall of its own that 

is formed as the tube grows. The cell wall forms an extracellular layer that is rigid enough to 

withstand substantial internal turgor pressure, yet flexible enough to permit the cell to grow. 

This makes of the fungal hypha a continuously moving mass of protoplasm in a continuously 

extending tube, with occasional branching occuring further back in the hypha. This unique 

mode of growth – continuous tip extension - is the hallmark of fungi, and it accounts, in 

combination with their enzyme repertoire,  for much of their environmental and economic 

significance. It ultimately enables a sessile cell to acquire needed nutrients by exploring the 

local environment - the same principle which can be found in the extension of root hairs and 

pollen tubes in plants. Underlying this rapid growth are turnover and synthesis of cytoskeletal 

elements, and exocytosis and endocytosis of membrane vesicles.

The most important part of a hypha for this kind of growth is the tip. The hyphal tip plays a 

vital role for navigation, elongation and maintenance of the fungus. The rate of tip extension 

can be extremely rapid - up to 20 m per minute. It is supported by the continuous movement 

of materials into the tip from older regions of the hyphae. Factors responsible for this tubular 

growth are located at the very tip, polarizing the actin cytoskeleton and hereby the whole cell. 

So the tip is a site of heavy traffic: Material for the plasma membrane and the cell wall and 
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catabolic enzymes to degrade the nutrition in the surroundings need to be disposed of, while 

the digested food has to be transported into the cell. All this happens while the tip is growing 

and the factors vectorising growth are kept in place.

In a nutshell, exocytosis of vesicles at the apex provides precursor material for the 

continuously expanding cell wall of the growing cell, while endocytosis accounts for nutrient 

uptake and especially polarization by vesicle recycling - a way to keep membrane proteins at 

the tip. But the orchestration of these events is not yet understood. Elucidation of the 

ultrastructural organisation, of interactions and of the dynamics of these different components 

is providing an important clue into the mechanisms of polarized growth. 

The filamentous fungus Ashbya gossypii is well suited for model studies 

The filamentous fungus Ashbya gossypii, an Ascomycete, belongs to the family of 

Saccharomycetaceae (Prillinger, Schweigkoffer et al. 1997) in the order of 

Saccharomycetales and was first described in 1926 by Ashby and Nowell. It possesses the 

smallest known genome of a free-living eukaryote. The completion of the whole genome 

sequencing project in A. gossypii revealed the most compact known eukaryotic genome 

(Dietrich et al., 2004), which consists of nine million base pairs distributed on 7 haploid 

chromosomes, containing 4720 open reading frames with very few gene duplications. 

Interestingly, 95 % of all genes identified in A. gossypii had a homologue in the budding yeast 

S. cerevisiae and for all 200 genes implicated in cell polarity in S. cerevisiae, homologues 

could be identified in A. gossypii.

Figure 1 (Movie S01) shows a young mycelium of wild type. The development of A. gossypii

starts with a phase of isotropic growth. The middle part of the needle-shaped spore (indicated 

by an asterisk) forms a germ bubble (g), where actin patches localize randomly at the cortex 

(Knechtle et al., 2003). Then, actin patches start to concentrate at one region at the cortex 

perpendicular to the axis of the needle, thus marking the site of germ tube emergence. This 

polarized actin cytoskeleton directs growth from this region causing the first germ tube to 

extend and form a unipolar germling. Actin localizes as cortical patches to the tip or the germ 

and less frequently to the hypal cortex. Actin cables run from the tip into the hypha. The germ 

tube maintains polarisation and extends consistently in one direction. At the opposite side of 

the germ bubble a second germ tube is formed to give rise to a bipolar germling. Additional 

sites of polarity are established at the hyphal cortex and initiate lateral branches. Actin rings 

are formed at sites that will later form septa, chitin-rich ring-like structures. The first septum is 

preferably formed at the neck between germ bubble and first germ tube. Hyphal tip growth 

speed increases during maturation and apical tip branching occurs in mature mycelium 

(Ayad-Durieux et al., 2000; Wendland and Philippsen, 2000; Wendland and Philippsen, 

2001). As no cytokinesis occurs in A. gossypii, hyphae consist of multinucleated 

compartments limited by septa, which are ring-like structures and thus do not divide off the 

compartments. Sporangia, usually containing eight spores, can be observed in older 
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mycelium. The spores, which are needle shaped with a whip-like appendix, are set free by 

lysis. 

ARS plasmids of S. cerevisiae are able to freely replicate in A. gossypii. Moreover, Ashbya

integrates DNA exclusively via homologous recombination (Steiner et al., 1995). It is the only 

known filamentous that has both of these properties, which made it possible to develop a very 

powerful tool for functional genome analysis including PCR-based one-step gene targeting 

(Wach et al., 1994; Wendland et al., 2000) and recombinant plasmid technology (Steiner and 

Philippsen, 1994; Steiner et al., 1995). Due to the highly efficient recombination, the 

background of false positive in such gene-replacement experiments is significantly reduced. 

For PCR-based one-step gene targeting there is no time consuming in cloning steps because 

the cassettes can be produced quickly by PCR. All that is needed to construct a cassette is 

the sequence information of the gene of interest and the DNA template of the selectable 

marker gene. 

Ashbya was originally isolated as a cotton pathogen and causes a disease called 

stigmatomycosis which affects the development of the hair cells in cotton bolls. It is also a 

pathogen on citrus plants and tomatoes, where it causes the infected fruits to dry out and 

collapse (Phaff and Starmer, 1987). Insects like Antestia and Dysdercus serve as carriers for 

the needle shape spores as well as for parts of mycelium, thus transferring the disease from 

plant to plant.

The actin cytoskeleton is a key player for the growing tip 

Actin filaments form a cytoskeletal and motility system in all eukaryotes. In the last three 

decades, eminent discoveries have been made about the many structural facettes of the actin 

molecule and the filaments it forms (dos Remedios and Dickens, 1978; Aebi et al., 1980; 

Fowler and Aebi, 1983; Steinmetz et al., 1997; Kammerer et al., 1998) as well as the bundling 

of actin filaments (Millonig et al., 1988; Meyer et al., 1990; Guild et al., 2003). As an essential 

part of the cytoskeleton, networks of cross-linked actin filaments resist deformation, transmit 

forces, and restrict diffusion of organelles. A network of cortical actin filaments excludes 

organelles, reinforces the plasma membranes, and restricts the lateral motion of some 

integral membranes protein. The actin cytoskeleton complements and interacts physically 

with cytoskeletal structures composed of microtubules and intermediate filaments. 

The actin filament itself is a right-handed, two-strand long-pitch helix. Actin filaments 

themselves are polarized, owing to the uniform orientation of the asymmetrical subunits along 

the polymer. One end is call the barbed end, the other the pointed end (according to the 

arrowhead appearance of actin filaments decorated with myosin in the electron microscope). 

Actin filaments grow and shrink by addition and loss of actin subunits at the two ends of the 

filament. The two ends, barbed and pointed, are both able to add and lose subunits. 

Polymerisation is favoured at the barbed end over the pointed end in terms of steady-state 

affinity binding. 
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Reorganization of the actin cytoskeleton is essential for cell-shape change, cell motility, and 

regulation of cell-to-cell and cell-to-matrix adhesion (Pollard and Cooper, 1986; Gumbiner, 

1996; Lauffenburger and Horwitz, 1996). In the budding yeast Saccharomyces cerevisae, the 

actin cytoskeleton is involved in the establishment and maintenance of polarized secretion 

and cell growth. Polarization of actin cables and actin patches, two major components of the 

yeast actin cytoskeleton, is critical for establishment of cell polarity in budding and mating 

yeast, and many recent discoveries have helped elucidate the role and orchestration of the 

different parts of the fungal actin cytoskeleton.

A comparison of the genetic basis of the actin cytoskeleton in A. gossypii and S. cerevisiae is 

made in Table 0. While components for actin cables and actin rings (neck rings) are all 

present - albeit often duplicated in S. cerevisiae - one important component of actin patches 

is missing. The F-actin binding domain in Sla2p has been shown to play a role in endocytosis 

(Baggett et al., 2003). Kaksonen et al. identified ScSla2p as a linker between endocytosis 

and actin patches. This is an item of the actin patch toolbox that is missing in A. gossypii.

While this is no indication that these processes are not coupled in A. gossypii, it 

demonstrates that A. gossypii must have processes at least partially different from the 

organisation in S. cerevisiae.

The main components of the actin cytoskeleton of Ashbya gossypii are depicted in Figure 2 

(Movie S02).

Actin patches:

Actin patches are cortical membrane zones invested with F-actin and a host of actin-binding 

and regulatory proteins including, for example, capping proteins (e.g. Cap1p, Cap2p) and 

actin nucleation proteins (the Arp2/3 complex). They are core components of the yeast actin 

cytoskeleton, undergo redistribution during establishment of cell polarity and contain at least 

30 proteins (Smith et al., 2001). 

Actin cables:

Actin cables are bundles of actin filaments lying at the cell cortex (Knechtle et al., 2003). 

Aligned along the axis of growth in hyphae, they serve as tracks for polarized particle 

movement. This accounts for their important role in establishing and maintaining polarity. 

Actin cables are randomly distributed in nondividing S. cerevisiae cells, but are oriented along 

the mother-bud axis during polarized growth from late G1 to M phase (Yang and Pon, 2002). 

Actin rings:

They are a prerequisite for septum formation, but not required for polarized growth. A.

gossypii deletion mutants have been described which are totally devoid of actin rings and

septa, but still grow in a normal polarized manner (Wendland et al., 2002).
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We used CAP1 and CAP2, the two subunits which make up capping protein, and fused them 

with the ORF for GFP to visualize actin patches in live conditions. CAP1 and CAP2 belong to 

the family of actin capping proteins. While some capping proteins have been shown to sever 

actin filaments (Sizonenko et al., 1996), their main role is to block addition and dissociation of 

actin subunits to and from an actin filament by binding to its barbed or pointed end. Many of 

these proteins also stimulate the formation of new filaments that grow only at their free end. 

The capping protein of S. cerevisiae has been shown to be one of four components required 

for actin polymerization and motility in vitro (Loisel et al., 1999), although actin patches 

lacking capping protein seem relatively normal (Young et al., 2004). 

CAP1 corresponds to the alpha subunit of CP (capping protein). CAP1 is encoded by the 

single gene CAP1 with a Mr of 32 kD. The association of both the a subunit CAP1 and b 

subunit CAP2 make up CP, a heterodimer. Conservation thereof can be seen in the fact that 

the alpha and beta subunits of nematode actin capping protein function in yeast (Waddle et 

al., 1993). The interaction of CP with actin is essential for the proper assembly of actin 

filaments. During the cell cycle, CP colocalizes with actin in cortical patches but not with actin 

cables or actin rings.

Null mutants of CAP1 and/or CAP2 are viable in S. cerevisiae. They grow slowly and have 

cell size heterogeneity, a severe deficit or complete absence of actin cables, and 

depolarization of the cortical actin patches. Deletion of one subunit leads to disappearance of 

the other. Deletion of the gene for one subunit leads to a loss of protein for the other subunit. 

The null mutant has a severe deficit of actin cables and an increased number of actin spots in 

the mother. Cells are round and relatively large. These features are heterogeneous within a 

population of cells and vary with genetic background. Overexpression of CAP1 and CAP2 

also causes loss of actin cables and cell enlargement, as well as the additional traits of 

aberrant morphogenesis and cell wall thickening. Capping protein null strains and 

overexpression strains exhibited normal polarized secretion during bud growth

For visualization of actin cables and rings, we used ABP140 fused to GFP. Asakura et al. 

discovered 1998 that actin binding protein 140 (Abp140p) is an F-actin binding protein in 

budding yeast. Two years ago, it was used by Yang and Pon to label actin cables and record 

their dynamics in living yeast. Abp140p does not show homology to any known actin binding 

protein and is expressed in cells by fusion of two ORFs (YOR239W and YOR240W) by 

means of a +1 translational frameshift. The encoded protein Abp140p consists of 628 amino 

acids with a calculated Mr of 71,484 kD (the ‘140’ in the name stemming from the fact that it 

immuno-precipitates as a dimer). Abp140p interacts directly with F-actin and binds along the 

sides of F-actin. Abp140p has a weak F-actin-cross-linking activity. Abp140p binds to F-actin 

at a molar ratio of one Abp140p molecule to about 30 actin molecules. In comparison, the 

stoichiometry of the binding of most cross-linking proteins to actin molecules is 1:4 - 1:6. 

Abp140p-GFP colocalizes with both cortical actin patches and cytoplasmic actin cables in 

intact cells. ABP140 is not required for cell growth and does not affect actin polymerisation, 
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and deletion mutants of ABP140 are viable.

Materials and Methods 

Construction of AgCap1p-GFP, AgCap2p-GFP and AgAbp140p-GFP 

(kindly provided by Philipp Knechtle and Hans-Peter Schmitz) 

We were interested in the localisation pattern and the dynamics of AgCAP1 and AgCAP2 and 

decided to integrate a second copy of each of these genes that is C-terminally fused to GFP. 

The plasmid pGUG (Knechtle P., PhD Thesis, 2003) was amplified with oligonucleotides for 

the selected ORFs: AgCAP1: 5CAP1GFPpGUG x 3CAP1GFPpGUG; AgCAP2: 

5'CAP2GFPpGUG x 3'CAP2GFPpGUG. The deletion set was 50 bp each for AgCAP1 and 

AgCAP2. For a C-terminal GFP fusion of AgCap1p and AgCap2p, the plasmids pAGCAP1 

and pAGCAP2 were transformed with the respective PCR product. Verification for a correct 

recombination was done by PCR using oligonucleotides CAP1verfor x Green2 for the 5‘-site 

and G3.2 x CAP1verrev for the 3‘-site in pAGCAP1-GFP; pAGCAP2-GFP was verified using 

CAP2verfor x Green2 for the 5‘-site and G3.2 x CAP2verrev for the 3‘-site. The plasmid 

pAGCAP1-GFP was digested with BglII. Blunt ends were generated in a "fill-in" reaction using 

a polymerase with a 5‘ - 3‘ exonuclease activity. The 2279 bp fragment was then subcloned 

into the ScaI site of pAIC. The new plasmid pAIC_AGCAP1-GFP carried the AgCAP1 ORF C-

terminally fused to GFP without any remaining of the GEN3 module. The promoter region of 

AgCAP1 was 483 bp in length. pAIC_AGCAP1-GFP was amplified in E.coli and digested 

PstI/SalI to obtain the AgCAP1-GFP fusion gene with flanking homologies to the AgADE 

locus. 5 µg were transformed into the Agade2delta1 strain. Homokaryotic transformants were 

obtained and named AgCAP1-GFP. Verification was done by PCR using oligonucleotides 

Agade2verfor x Agade2verrev. The plasmid pAGCAP2-GFP was digested with 

EcoRV/HinDIII. Blunt ends were generated in a "fill-in" reaction using a polymerase with a 5‘ - 

3‘ exonuclease activity. The 3014 bp fragment was then subcloned into the ScaI site of pAIC. 

The new plasmid pAIC_AGCAP2-GFP carried the AgCAP2 ORF C-terminally fused to GFP. 

The promoter region of AgCAP2 was 1294 bp in length, the ScURA3 terminator from the 

GUG module was shortened from 286 bp to 136 bp in length. pAIC_AGCAP2-GFP was 

amplified in E. coli and digested with SpeI/HinDIII to obtain the AgCAP2-GFP fusion gene 

with flanking homologies to the AgADE locus. 5 µg were transformed into Agade2.1. 

Homokaryotic transformants were obtained and named AgCAP2-GFP. Verification was done 

by PCR using oligonucleotides Agade2verfor x Agade2verrev.

The C-terminus of Abp140p was tagged with GFP(S65T) by using PCR-based insertion into a 

plasmid bearing a copy of ABP140. The sequence of the homolog of ScABP140 was 

retrieved from the A. gossypii genome database. Primers 02.378 and 02.379 were designed 
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and used for PCR amplification with genomic A. gossypii DNA as template. Obtained PCR 

product was cut with HinDIII and BamHI and ligated into YCPlac111 (Gietz and Schiestl, 

1991) cut with the same restriction enzymes. The resulting vector was dubbed YCPABP140. 

Primers 02.272 and 02.279 were used to obtain the GFP and resistance marker fragment 

from pGUG (Knechtle et al., PhD Thesis). Co-transformation of this fragment together with 

YCPABP140 was performed in S. cerevisiae and transformants subsequently grown under 

selective pressure by G418. Growing colonies were picked and the YCPABP140-GFP 

plasmid isolated. The plasmid was then transformed via electrophoresis into A. gossypii and 

the resulting strain grown under selective conditions. Since integration is of plasmidic nature, 

hyphae with strong signals were chosen directly with the microscope under weak UV 

illumination (10%) and then recorded.

Analysis of the Cap1p, Cap2p and Abp140p protein sequences 

The sequences of ABR007C, ADL101C and ACR130W, the A. gossypii homologs of CAP1, 

CAP2 and ABP140, were retrieved from the Ashbya genome database, generated from the 

complete genome sequencing approach by Dietrich et al., 2004. The resulting amino acid 

sequences were used for analyzing similarity to the homologous genes in S. cerevisiae

(YKL007W, YIL034C and YOR239W, respectively).

Regions of identity were defined using the Align Plus 5.03 module of the CloneManager 7.03 

suite (Scientific & Educational Software, Cary, NC). "Compare multiple sequences" was used 

in Multi-Way mode for multiple alignment without reference. "Align two sequences" in the 

global alignment mode was used to determine the percentage of identity in similar regions. 

For all analyses, the BLOSUM 62 scoring matrix for amino acids was chosen. 

Staining Procedures 

The actin cytoskeleton was visualized using phalloidin coupled fluorophores (according to 

Amberg, 1998, modified). A. gossypii was cultured in AFM (selective conditions for ABP140-

GFP). All subsequent steps were performed on ice and without centrifugation to assure 

maximum preservation of the delicate actin cytoskleleton. After letting mycelia settle to the 

ground, 200 µl of the culture were mixed with 1.5 ml of 4% paraformaldehyde and fixed for 1 

h. 100 µl of settled mycelia were washed twice with phosphate-buffered saline (PBS), and 

resuspended in PBST (PBS containing 0.03% Triton X-100). The concentration of rhodamine-

phalloidin (6.6 µM in MeOH; Molecular Probes, Eugene, OR) was reduced to 5ul per 100ul 

mycelium. This way, the usually overpowering fluorescence of actin patches in the tip was 

reduced as to reveal the less bright structures as well.  The dye was incubated with mycelia 

for 1 to 1.5 hours in the dark. After three washing procedures in PBST, mycelia were 

resuspended in 50 µl of Vectashield mounting medium (Vector Laboratories, Burlingame, 

CA). Five microliter thereof were put on a slide, covered with a coverslip and sealed with 
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rubber cement (''Fixogum,'' Marabuwerke GmbH & Co., D-71732 Tamm). Images were taken 

during the next five hours to avoid the possibility of age-induced artifacts.

The endocytic live dye FM4-64 was added to the coverslip of time-lapse slides to an end 

concentration of 2 M. Absorption sucked in the dye and uptake could quickly thereafter be 

observed in the microscope. The same technique was used for administration of the 

membrane fluidizer Benzyl alcohol [20 M] and the actin-inhibiting drug Latrunculin A (in 

concentrations of 10, 50 and 200 M).

Microscope Setup 

The microscopy units used (as described in Hoepfner et al., 2000, modified) consisted of two 

'Axioplan 2 imaging e' microscopes (Carl Zeiss, Feldbach, Switzerland). One was equipped 

with the objectives Plan Neofluar 100x Ph3 N.A. 1.3, Plan Neofluar 63x Ph3 N.A. 1.3, Plan 

Neofluar 40x Ph3 N.A. 1.3 and the illumination sources 75 W XBO, HBO and 100 W halogen. 

The other, with the objectives Plan Apochromat 100x DIC N.A. 1.4, Plan Apochromat 63x DIC 

N.A. 1.4, Plan Neofluar 40x Ph3 N.A. 1.3 and the illumination sources 75 W XBO and 100 W 

halogen. The UV illumination source was controlled by a MAC2000 shutter and filter wheel 

system (Ludl Electronics, Hawthorne, NY, USA). The cameras were a TE/CCD-1000PB and 

an NTE/CCD back-illuminated cooled charge-coupled device (Princeton Instruments, 

Trenton, NJ). Phase contrast and DIC filters for Nomarski illumination were used for 

brightfield imaging, according to the manufacturer (Carl Zeiss). Following filter sets were 

applied for different fluorophores: DIC filter for Nomarski Illumination and #41018 for GFP 

with excitation spectrum at 450-490nm and a longpass emission at 500+  (Chroma 

Technology Corp, Rockingham, VT); for rhodamine-phalloidin double stainings with GFP, 

Chroma filter #41025 Piston GFP with a bandpass emission of 500-530nm (excitation at 450-

490) for GFP and Zeiss Filter #15 for rhodamine (ex: 540-552, em: 590+). The FM4-64 live 

dye in Cap-GFP strains was recorded with the same double labelling filter set. Excitation 

intensity was controlled with different neutral density filters (Chroma Technology). The setup, 

including microscope, camera, and Ludl controller, was controlled by MetaMorph 4.1.7 

software (Universal Imaging Corporation, Downingtown, PA).

For FRAP experiments, a Leica TCS-NT-SP1 and a Zeiss CLSM 510 META were used. An 

area with the diameter of 3 m was bleached by 32x zoom and subsequent recovery recorded 

during two to three minutes. The bleached area was plasma membrane either stained by 

FM4-64 or labelled with Rho1-GFP.

Image Acquisition and Processing

With a fluorescent image taken every 2 minutes, growing hyphae could be observed for 2 

hours and 40 minutes without harm, although the GFP signal was bleached gradually and 

hyphal autofluorescence increases with exposure to UV light. Alternatively, streaming movies 
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of a single focal plane of a specimen provided temporal resolution of three images per 

second. To assure that the movement of all observed structures were integrated, we further 

performed rapid sequential recording in all three spatial axes. With x,y and z being combined 

with the dimension of time, this is also called 4D microscopy. This way, the entire fluorescent 

action in the apical zone of a hypha could be recorded in 2-3 seconds for a single timepoint, 

resulting in complete three-dimensional information over a timespan of averagely 2 minutes.

When strong fluorescent signals were recorded, no other image processing than adjustment 

of contrast was used. This was done with the "Scale Image" of the Metamorph drop-in. With 

many signals in this study being of rather weak nature, though, deconvolution yielded 

unsatisfying results. Another method was chosen to reduce the diffuse hyphal background 

and thus emphasize the GFP signal. For these cases, the "Flatten Background" algorithm 

worked fine (object size definition of four pixels). While the whole image gets more grainy this 

way, the contrast is sometimes dramatically increased. To avoid processing artifacts by 

different methods, this was the only processing applied. Movement analysis was performed 

by following individual elements (i.e. actin patch or actin cable) through time and space, 

selecting the pixel with the highest fluorescent intensity as the center of the element. 

Coordinates and paths were logged directly in Excel worksheets and evaluated there.

Measurement of brightness was achieved using MetaMorph's "Region measurements" drop-

in. Fluorescent picture sets of two labels were combined using Meta-Morph's "Color overlay" 

and "Color align" drop-in. The time-lapse and 4D image series were transformed into movies 

(QuickTime (Apple Computer, Cupertino, CA) using MetaMorph. Adobe Photoshop 6.0 

(Adobe Systems, Mountain View, CA) was used for still pictures. 

For time-lapse acquisition, the fungus was grown on a slide with a cavity (time-lapse slide) 

that was filled with agar-solidified AFM (AMM for fluorescent images). Spores were 

preincubated in a humid chamber without coverslip until they reached the required 

developmental stage. Then, a coverslip was applied. 
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Results

ACTIN PATCHES

Actin patches are concentrated in the apical zone

The amount and distribution of actin patches was assessed in rhodamine-phalloidin stainings 

of fixed wildtype mycelium (Table 1). We wanted to assure that actin patches are indeed 

concentrated at the tip, and not simply brighter, an effect which might mask a polarization of 

actin patches in numbers. For this, we divided the hyphal tip into three adjacent zones (Table 

1 A). The first six micrometers at the very tip were determined by eye in different specimens 

as the zone where actin patches are brightest and seem most numerous. The two following 

zones of the same length provided a 'control' by showing the average patch number in the 

subapical region. An example of a hypha is given (Table 1 B). All examined hyphae were 

stained with the same procedure and recorded in three dimensions as not to miss any 

patches. Table 1 C shows the variation of actin patch density within the same hypha and 

between individuals. There is an average of 66 (+/-20, n=28 specimens) actin patches in the 

first 18 m of the tip, ranging from 123 to 42. The densest accumulation is in the apical zone 

just beneath the tip. These dense zones are indicative of polar growth. The first, apical 

segment of the six micrometers at the tip has 45 (+/- 6) percent actin patches, while the 

following two segments are roughly equal (28 (+/-4) percent for 6-12 m and 27 (+/-5) percent 

for the last 12-18 m). We measured the hyphal diameter of the same specimens where actin 

patches were counted to assure that a higher number of actin patches is not due to a larger 

hyphal diameter. It is not the case that higher amounts of actin patches correspond to a larger 

diameter of the hypha, whether within the same hypha nor between individuals (Table 1 D). 

Thus, the zone of polarization is restricted to the first six m after the very tip.

But rhodamine-pahlloidin is used in fixed mycelium and cannot inform about the live actin 

cytoskeleton. So we used two actin capping proteins tagged with GFP to visualize actin 

patches in A. gossypii.

Sequence analysis of AgCap1p and AgCap2p

Figure 3 A shows the alignment of AgCap1p and ScCap1p. The putative protein AgCap1p 

has a length of 261 amino acids. It shares 45% identity with ScCap1p, which is only 7 amino 

acids longer. Identity increases towards the C-terminus. The protein was modeled with 

SWISS-PROT (Guex and Peitsch, 1997) (Figure 3 B) and shows the same 'mushroom' 

structure seen in the model for budding yeast. Amino acids 239R and 251W at the COOH 

terminus of the alpha subunit (Cap1p) were shown to be paramount to the model proposed 

for the alpha-beta subunit combined protein as investigated in the study of Kim and 
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coworkers (2004). In this model, the C-terminus of each subunit forms a ‘tentacle’ which 

binds to a groove in the actin monomer. The amino acids 239R and 251W are the pivots for 

the ‘tentacle’ of the Cap1p subunit, and substituting them results in a weak binding affinity of 

Cap1p to actin. These structurally important amino acids were found at the same alignment 

positions in A. gossypii (R232 and W244 in Ashbya). They are shown as green molecule 

structures in Figure 3 B. Figure 3 C compares AgCap2p and ScCap2p. The identity of 

AgCap2p and ScCap2p is more than 10% higher, though, although it increases towards the 

N-terminus in this case. The difference of amino acids lies at 13 (274 for A. gossypii, 284 for 

S. cerevisiae). Cap2p in budding yeast has been shown to be of less importance than Cap1p. 

While necessary for high affinity capping, it contributes over 1000 times less to actin capping 

than the alpha subunit Cap1p. The SWISS-PROT model features a similar structure for 

AgCap2p as that for AgCap1p (Figure 3 D). The two subunits form a heterodimer.

CapZ, the capping protein of the chicken sarcomer which was analyzed by the 

multiwavelength anomalous dispersion crystallography at 0.21nm resolution (Yamashita et 

al., 2003), was used as a template in both cases. The resulting homology-based model for A.

gossypii CP is similar to that of chicken CP. Both models share important structural features 

of the 'tentacle' model: CapZ has a pair of mobile extensions for actin binding, probably 

forming flexible links to the end of the actin filament. The same amphipathic alpha-helix is 

found at the C-terminus in each monomer of the A. gossypii CP. Pivotal basic residues linking 

the tentacle to the mushroom-like main structure are found at conserved places in A. gossypii

CP as well.

Addition to Figure 3:

Comparison of highly 

homologous regions in the 

Cap1 (A) and Cap2 

protein (B) of A. gossypii 

and S. cerevisiae. 

AgCap1p-GFP and AgCap2p-GFP colocalize fully with actin patches in rhodamine-

phalloidin stainings 

In double stainings of Rhodamine-Phalloidin in the Cap-GFP strain, Cap-GFP proteins 

colocalize fully with rhodamine-phalloidin stained actin patches (Figure 4 A). An accumulation 

of Cap-GFP actin patches in the apical zone is observed in both cases. Since growth and 
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structure of the mutant Cap-GFP strains are identical to wildtype, we conclude that both 

Cap1p-GFP and Cap2p-GFP label fully functional actin patches.

While the majority of Cap-GFP patches corresponded to the rhodamine-phalloidin staining in 

terms of fluorescent intensity, exceptions could be found (Figure 4 B and C). About 5% of all 

patches did not show a corresponding relative intensity between Cap-GFP patches and actin 

patches labelled by rhodamine-phalloidine. An explanation therefore is discussed later.

Live actin patches were then visualized using Cap-GFP strains.

Characterization of the AgCap-GFP strains 

The first observation was long-term, to confirm the expectation that Cap-GFP patches should 

localize at all time to polarized tips (Figure 5 and Movie S03). In addition, sites of emerging 

branches can be determined by a gathering of Cap-GFP patches. The specimen shown was 

observed for nearly three hours. However, hyphal autofluorescence increases with age and 

UV illumination. With both Cap-GFP signals being of low intensity, we focused on mycelium 

between 12 and 20 hours old, usually recording activity over periods between one and ten 

minutes.

Figure 6 shows still images from such short-term recordings. Since up to three images may 

be taken per second, the movement of individual patches may be followed. Figure 6 A (Movie 

S04) has the usual concentration of actin patches at the tip, with a few running further back in 

the hypha. In certain conditions, hyphal tips will grow towards the coverslip, enabling a frontal 

view of the activity in the tip. In Figure 6 B (Movie S05), it can be seen that Cap-GFP patches 

localize mainly to the cortex of the hyphal tip, while the spherical segment of the very tip is 

patch-free. In the apical zone, though, actin patches moving in the cytosol are observed more 

often. Figure 6 C (Movie S06) confirms a cortical distribution of actin patches further back in 

the hypha, although some patches may be seen in the cytosol. The cortical localization of 

actin patches is similar to the findings in S. cerevisiae and S. pombe.

Cap-GFP patches can be seen in all stages of A. gossypii's life cycle (Figure 7 and Movies 

S07 and S08). Beginning with the germ bubble (Figure 7 A and B), it is then visible in unipolar 

germlings (Figure 7 C), young mycelium with lateral branches (Figure 7 D) and also in old 

mycelium featuring tip branching (data not shown).

Actin cables and rings are not labeled by either Cap-GFP strain, and the Cap-GFP strains are 

devoid of filamentous structures.

Actin patches visible with Cap-GFP move rapidly in distinct ways 

We analyzed movement of Cap-GFP patches in rapid sequential Z-series of hyphal tips, 

resulting in so-called 4D-movies. Since the human eye is adapted primarily to movement 

(Russ, 1996), the movies of the section Supplemental Material should be considered.
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Figure 8 shows activity of Cap-GFP patches at the hyphal tip. Figure 8 A (Movie 09) is 

another case of a tip growing towards the objective. This way, actin patch movement can be 

seen frontally at the very tip. There are patches coming from the cytoplasm to the front and 

reversing at the tip, following the plasma membrane. It is clear that, although patches come to 

the tip, the very center of the tip is mostly devoid of patches. This agrees with a patch-free 

spherical tip segment first observed in Rhodamine-Phalloidin stainings of wildtype (Knechtle 

et al., 2003). Figure 8 B (Movie S10) shows thirty images of a rapid 4D recording of a hyphal 

tip viewed from the side. Any patch chosen in the subapical region can be seen moving away 

from the tip. Movement in the apical zone seems rather chaotic and is hard to define, as the 

directionality of single patches often appears to be random.

From multiple 4D recordings, the dynamic parameters were evaluated (Table 2). Patch speed 

was measured, following patches through one plane in rapid time-lapse movies (Table 2 A). It 

averages 224 (+-98) nm/s (n=84), thus lying below patch speeds measured in S. cerevisiae

(386.6 (+/-176.9) nm/s (Smith et al., 2001); 490 +/- 300 nm/s (Doyle and Botstein, 1996; 

Waddle et al., 1996)) and S.p. (320 (+/-140) nm/s; Pelham and Chang, 2001)). The running 

distances of patches were also determined. They vary depending on the zone. Cap-GFP 

patches in the apical zone run short distances rarely exceeding 1 m. Especially redirecting 

patches disappear once they have reached the very tip. Patches further back in the hypha 

can cover distances over 5 m, though. This makes for a wide spread, resulting in an 

average distance of 0.8 m (+/-0.7 m).

The lifetime of patches was measured in 4D recordings (Table 2 B). With an average of 14 

seconds ((+/-6.5); n=64), they live 1.5 times longer than Abp1-GFP patches in budding yeast 

(10.9 +/-4.2). The spread of speed measurements is also larger in A. gossypii, ranging from 

five seconds to half a minute. This is, however, significantly lower than the lifetime of over two 

minutes measured in Crn1-GFP patches of S. pombe.

In S. cerevisiae and S. pombe, patches were described as showing directed and random 

movement (Waddle et al., 1996; Pelham and Chang, 2001). While random movement is also 

observed in A. gossypii Cap-GFP patches, the movement of many patches falls into three 

possible categories (Table 2 C). The first, most obvious movement is retrograde, i.e. away 

from the tip. It can be seen in rapid sequential time lapse (4D) movies of AgCap-GFP tips. Of 

84 patches with an obvious directionality, 66 moved away from the tip, while only 10 moved 

towards it. 8 patches moved to the center of the hypha, i.e. its longitudinal (rotationally 

symmetrical) axis.

We attempted to resolve the seemingly chaotic movement of actin patches in the apical 

region. For this means, movement of individual Cap-GFP patches was traced and combined 

in the schematic representation of the hyphal tip (Figure 9). The most prominent movement of 

patches away from the tip is already evident in 4D movies. It is depicted in Figure 9 A. A 

different movement was discovered late due to its nature: In the apical region distal from the 

tip, Cap-GFP patches often return to the tip (Figure 9 B and Movie S11). This is a process of 
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redirection, where actin patches appearing at the plasma membrane three to six m behind 

the tip move back towards the tip in the cytosol.

A constitutively activated formin causes Cap-GFP patches to form elongated 

structures

Formins are being thoroughly investigated in A. gossypii, and one formin has been shown to 

be involved in the formation of actin cables, mediating transport of secretory vesicles. In a 

deletion of the formin Bnr1 in A. gossypii, hyphal tips were enlarged and had more actin 

patches than wild type (Hans-Peter Schmitz, personal communication). We wanted to see 

what kind of role this formin plays in actin patches in live conditions. To this end, we 

integrated a constitutively activated formin, BNR1 with the regulatory domain DAD deleted, 

into the CAP1-GFP strain.  

The dynamic properties of Bnr1 DAD-Cap1p-GFP patches do not differ from those measured 

in the Cap-GFP strains. Directionality of movement is similar to the wild-type Cap-GFP 

strains, and the average patch speed was 208nm/s (+/-176), thus lying in the normal range of 

Cap-GFP patches. But these strains with the constitutively activated Bnr1 show an interesting 

feature: Their Cap1-GFP patches are often associated with fluorescent, elongated structures. 

This is shown in Figure 10 (Movie S12), where three images of a single-plane streaming 

recording are shown. The cable-like structures persisted for 40 seconds. We were surprised 

to find such structures, because no filamentous structures can be observed in the normal 

Cap-GFP strains. Hence, the filamentous structures must originate from the Cap-GFP 

patches themselves. While the mechanism for this is not clear, it shows that these elongated 

structures and actin patches are closely related.

Effect of Latrunculin A on actin patches

The actin depolymerizing drug Latrunculin A was added to study its effect on Cap-GFP 

patches (Figure 11). Administered in high doses (200 M), it leads to their gradual destruction 

and a subsequent blurred fluorescence in the hypha (Figure 11 A). It also seems to inhibit 

actin patch movement in low doses (25-50 M, data not shown),  Prolonged exposure to LatA 

causes tips to swell, resulting in the typical 'frog fingers' (Figure 11 B). The swollen tips 

eventually lyse, probably due to a weakened cell wall collapsing under turgor pressure.

Actin patches have been shown to function in the endocytotic process in S. cerevisiae

(Kaksonen et al., 2003). FM4-64, a marker for endocytosis (Vida et al., 1995; Fischer-Parton 

et al., 2000), was used in combination with Cap-GFP strains (Figure 12). Half a minute after 

addition to the microscope slide (2-20 M), FM4-64 appeared as dots at the tip, 

corresponding to putative endosomes. These dots colocalize with Cap-GFP actin patches 

(while not every actin patch contains FM4-64). This observation is consistent with dye 

internalization by endocytosis. With FM4-64 also strongly staining the plasma membrane, it is 
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noteworthy that at the very tip fluorescence is markedly decreased. The plasma membrane is 

either thinner in this area, or FM4-64 uptake is obstructed there. Another possibility is that the 

new addition of membrane rapidly dilutes the dye.

Actin patches suggest maintenance of polarization by endocytic cycling 

In S. cerevisiae, it has been shown that polarity can be maintained by endocytic cycling of 

membrane proteins responsible for polarized growth (Valdez-Taubas and Pelham, 2003). For 

this mechanism, slow diffusion in the plasma membrane is required. Filipin was shown to 

stain shmoos, the elongated and polarized yeast appearance which form in response to 

mating pheromone, in a highly polarized manner (Bagnat and Simons, 2002). This is probably 

due to the high affinity of Filipin for sterols. Filipin also brightly stains the apical region of 

hyphae in A. gossypii (Hanspeter Helfer, personal communication), indicating that the tip may 

be rich in sterols, resulting in slow diffusion in the apical region of the plasma membrane. We 

proceeded to investigate the properties of the apical membrane in A. gossypii in two ways to 

evaluate if endocytic cycling contributes to polarity in A. gossypii. We would predict that such 

a mechanism of polarity maintenance would be crucial in a permanently polarized hypha.

Benzyl alcohol is a membrane fluidizer (Mukhopadhyay et al, 2002; Sinicrope et al., 1992). It 

increases fluidity of the plasma membrane in S. cerevisiae by 12%. We applied it to young 

mycelium of the Cap-GFP strains with normal apical concentration of actin patches (Figure 13 

A). The observed effect two minutes later is shown in Figure 13 B. Indeed, fluidization of the 

plasma membrane makes the polarisation of actin patches in the tip disappear. The 

recordings were evaluated statistically to corroborate this impression (Figure 13 C): Benzyl 

alcohol equalizes the polarized distribution of Cap-GFP patches.

We proceeded to perform FRAP experiments to determine  the diffusion constant of the 

apical membrane of A. gossypii (Figure 14). For an area with the diameter of three 

micrometers, two minutes are required to recover fluorescence. A diffusion constant of 

0.0086 m2/s (+/-0.0016) was determined. Although 3-4 times more fluid than the plasma 

membrane in S. cerevisiae, it is nowhere near the rapid diffusion in mammalian COS cells. 

The results, obtained with FM4-64 stained membranes, was confirmed using a AgRho1-GFP 

strain, in which the membrane is brightly fluorescent.

While actin patches are the most prominent element of the fungal actin cytoskeleton, the two 

other important components, actin cables and actin rings, were not visualized with Cap-GFP 

constructs. For this reason, we continued the study by labeling an actin binding protein.
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ACTIN CABLES

Sequence analysis of AgAbp140p 

AgAbp140p was compared to its homolog in budding yeast (Figure 15). They share 49% 

identity, which is more prominent at the C-terminal half of the protein. ScAbp140p is 58 amino 

acids longer than AgAbp140p. With no crystallographical analysis of Abp140p yet, a 

structural comparison could not be performed.

The translational frameshift found in S. cerevisiae at the base pairs 829-835 was also 

detected in A. gossypii, at the position 643-650. The heptamer with the frameshift is identical 

in both organisms: CTT-AGG-C. Interestingly, this sequence is now used to detect hitherto 

unknown frameshifts in other proteins (Shah et al., 2002).

AgAbp140p-GFP fully colocalizes with actin cables and rings in rhodamine-phalloidin 

stainings

The appearance and localization of actin cables was assessed in Rhodamine-Phalloidin 

stainings of the cytoskeleton of wildtype and of the fixed Abp140p-GFP strain (Figure 16). 

Actin cables and rings feature complete colocalization. The general appearance of actin in 

Rhodamine-Phalloidin stainings is described and pictured in Knechtle et al. (2003) and is 

consistent with the findings in this sttudy. Apart from staining actin cables, actin patches are 

also labelled with Abp140p-GFP, albeit less strongly than the cables. Abp140p-GFP patches 

are found predominantly at the tip. The brightest signal in Abp140p-GFP strains is found at 

actin rings, though. The results regarding this structure are presented later on. With growth 

and structure of the Abp140-GFP strain being indiscriminate to wildtype, we conclude that 

Abp140p-GFP is a completely functional label for actin cables, rings and patches in a fully 

functional strain. We proceeded to study the dynamics of actin cables, patches and rings with 

this strain.  

Abp140p-GFP cables are often associated with actin patches 

An observation in many studies of the fungal actin cytoskeleton was that actin patches are 

often associated with actin cables. This notion was corroborated in rhodamine-phalloidin 

stainings as well as in live recordings of the Abp140p-GFP strain (Figure 17 A and B, 

respectively). Due to the difference in fluorescent intensity of these two structures, the 

percentage of actin patches associated with cables could not reliably be determined, though. 

Interestingly, Abp140p-GFP patches observed at the end of Abp140p-GFP cables are 

strongly reminiscent of actin comet tails seen in bacteria like Lysteria, which hijack the actin 

cytoskeleton of the invaded host.
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The possibility that these punctate structures are merely the bright diametral circle of cross-

sectioned cables was eliminated by making complete three-dimensional recordings of the 

hypha at different time steps. With the entire hypha being covered in 0.4 m steps at different 

time points, no cross-sections of Abp140-GFP cables are made.

Characterization of the AgAbp140p-GFP strain 

As with Cap-GFP patches, Abp140p-GFP labelled structures can be seen in all 

developmental stages in A. gossypii. As presented in Figure 18 A, actin cables are seen 

already in germ bubbles of the Abp140p-GFP strain. In unipolar germlings (Figure 18 B and 

Movie S13), they align along the main germ tube axis, emanating from the tip. The tip itself 

often features Abp140p-GFP actin patches. In older mycelium of 12-20 hours of age, actin 

cables are oriented along the axis of growth in an often spiral manner (Figure 18 C and Movie 

S14). Three-dimensional reconstructions reveal that they are predominantly cortical. Some 

are as long as 40 m.

Actin cables visualized with Abp140p-GFP are highly motile and flexible 

The first impression of dynamic Abp140p-GFP cables is that they are surprisingly motile. 

Possibly, the term 'track', which is often used for actin cables, is misleading in its association 

with rigidity. Figure 19 shows dynamic actin cables in the Abp140p-GFP strain. In Figure 19 A 

(Movie S15), a cable is shown of which the end at the tip of the germ tube (marked by an 

arrowhead) moves toward the germ bubble. The inverse movement can be seen in Figure 19 

B (also Movie S15), where a minute later, a bright segment of a cable moves towards the tip. 

Bright cables towards the back of the hypha show nicely how much Abp140p-GFP cables 

may change appearance within two minutes (Figure 19 C (Movie S16) and Figure 19 D 

(Movie S17)). Bright cables found back in a hypha can also be observed in rhodamine-

phalloidin stainings of wild type. In both cases, though, they are not observed in young 

mycelial stages. They appear remote from the tip in older individuals of more than 20h age.

 By following the growing ends of Abp140p-GFP cables, we were able to measure cable 

elongation (Table 3). The average rate of extension of the tip of an elongating actin cable is 

184 (+/-62) nm/s (n=19). Although slower and spread over a smaller range, it is in the same 

order of magnitude observed for Abp140p-GFP cables in S. cerevisiae (290 +/-80 m /s).  

Actin patches move towards the tip on Abp140p-GFP cables

Concomitant with the observation that in Abp140-GFP strains, actin patches are often 

associated with actin cables, Abp140p-GFP patches are also regularly associated with cables 

emanating from the tip (Figure 20 A and Movies S18 and S19). They can also be seen at the 

tip without being linked to a cable. A most decisive observation is that Abp140p-GFP cables 
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emanating from the very tip feature punctate structures which are delivered to the tip, where 

they dissolve. Three such events are pictured in Figure 20 B (Movie S20), Figure 20 C and D. 

This movement was always directed towards the tip. The punctate structures in Abp140p-

GFP strains colocalize with actin patches in rhodamine-phalloidin stainings, and the speed 

achieved by these punctate structures is similar to that of Cap-GFP patches (174nm/s (+/-

68)). Cables at the tip are often shorter-lived than brightly fluorescing cables towards the back 

of the hypha. Tip-associated cables exist for merely half a minute, while the bright cables 

back in the hyphal body may persist for well over two minutes. 

In the presence of the actin polymerization inhibitor Latrunculin A, Abp140p-GFP cables are 

abolished, giving rise to a uniformly blurred GFP fluorescence in the hypha (data not shown). 

Unlike Cap-GFP patches, mobility of Abp140p-GFP cables could not be arrested. Even with 

low doses of LatA, they disintegrated rapidly. The cause for this may be that the actin in actin 

cables is more easily accesible for phalloidin than in actin patches.

Actin cable based vesicle transport is defect in the formin deletion mutant Agbni1

Because Formins were reported to catalyse actin cable polymerization (Pruyne et al., 2002; 

Sagot et al., 2002b), we investigated the actin cytoskeleton of another formin deletion mutant, 

Agbni1. To confirm that AgBni1p is needed for secretory vesicle transport, the SEC4

homolog of Ashbya was isolated by Hans-Peter Schmitz and fused to GFP. In budding yeast, 

the gene product of SEC4 fused to GFP localizes to secretory vesicles and moves in a 

directed manner towards the bud tip along actin cables (Schott et al., 2002). We transformed 

A. gossypii with a plasmid carrying an amino-terminal fusion of GFP to AgSEC4 under its 

native promoter. As shown in Figure 21 A (Movie S21), the fusion product localizes mainly to 

the tip. Using video microscopy, movements of vesicles towards the tip can be observed. Two 

sets of frames of this movie, demonstrating tip-directed movements, are shown in Figure 21 B 

(Movie S22 and S23). Vesicles move with an average speed of 0.9 ± 0.5 m/sec (n=29) 

observable over distances up to 10 m. Addition of Latrunculin A, which disrupts actin 

structures, abolishes vesicular movement and apical localization, giving rise to a uniform 

fluorescence within hyphae (Figure 21 C). In order to observe the localization of vesicles in 

the absence of AgBni1p we transformed heterokaryotic mycelium of Agbni1 with the plasmid 

carrying the GFP-AgSec4p marker. Spores of these transformants were grown under 

conditions selective for both, the deletion and the plasmid. The GFP signal was distributed all 

over the cells (Figure 21 D). This verifies that continous tip-directed transport of secretory 

vesicles via actin cables is essential for hyphal growth. 
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ACTIN RINGS 

A surprising result was that in the Abp140p-GFP, actin rings are labelled strongly. This was 

not the case for Abp140p-GFP in S. cerevisiae. The strength of this signal became obvious in 

one experiment: We integrated ABP140-GFP in the genome. While the signal intensity for 

actin cables was disappointingly low, the actin rings were still well visible. However, the actin 

ring is a difficult structure to study, as the exact site and time of its genesis are rather hard to 

predict.

Actin rings are no barrier for actin cables. Figure 22 A (Movies S24 and S25) shows two 

examples where actin cables clearly pass through actin rings. Figure 21 B shows still images 

of a three-dimensional reconstruction, in which the ring is viewed frontally. At twenty seconds, 

two filamentous structures are clearly seen inside the ring. The original recording, in which 

these filaments are viewed from the side, identifies them clearly as Abp140p-GFP cables.

Actin rings are not uniform in their distribution of fluorescent label. Figure 22 C shows how 

fluorescent intensity of Abp140p-GFP actin rings varies in time and concentrates at different 

places of the ring. At timepoint 0, the top part of the ring is weakly stained, while its 'sides' are 

brightly labelled. Two minutes later, the bulk of signal is found to the right side of the ring, 

while another two minutes on, the top of the ring is brightest. The nature and reason of this 

shifting are unknown.

Actin rings may exist for a long while. In one case, an actin ring was observed for more than 

seven minutes, with its fluorescent intensity being barely diminished even by photobleaching. 

(Figure 22 D and Movie S26). It is unclear if septum formation requires the actin ring for a 

long period as a scaffold.

With the cytoplasm visible by hyphal autofluorescence in older specimens, it was observed 

that cytoplasmic flow is unrestricted by actin rings (data not shown).

To confirm the strong concentration of Abp140p-GFP at actin rings, the fusion construct was 

integrated into the genome, under control of its native promoter. The resulting GFP signal 

was again strongest in the actin ring (Figure 23). Bright field images assured that these actin 

rings were found at sites of septum formation. While actin cables are not well visible in this 

strain with the genomic Abp140p-GFP, it may be well used for studying development of the 

actin ring. Since an actin ring is the structural precursor of a septum, this is most suitable for 

investigating the process of septation.

Cap-GFP patches are also involved in septation (Figure 23). They were found to temporarily 

localize to septa. Figure 24 shows three septa in different stages of development. When a 

septum is barely visible in the brightfield DIC image, Cap-GFP patches are already 

concentrated at its site in the fluorescence image (first column, Movie S27). With increased 
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development, the septum gets stronger contrasted in DIC images, and the number of Cap-

GFP patches localizing to it is increased (middle column, Movie S28). When the septum has 

fully developed, Cap-GFP patches are no longer visible at its site (right column).

Septation is a well-balanced process. Disturbed septation may lead to complete demise of 

the organism. This is demonstrated in the second part of this thesis, highlighting the 

importance of this process. 

As an overview, the dynamic data are summarized and compared with the budding yeast 

Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe in the 

following table:

Organism Ashbya gossypii Saccharomyces cerevisiae Schizosaccharomyces 
pombe 

Actin patch speed 
[nm/s] 

224 (+/-98) 386.6 (+/-76.9) 320 (+/-140) 

Actin patch distances 
[nm]

787 (+/-675) 764.7 (+/-420) - 

Actin patch lifetime 
[s] 

14 (+/-6.5) 10.9 (+/-4.2) many over 120, longest 
224

Direction of actin patch 
movement

Away from tip, redirected, 
and movement towards tip 

on actin cables 

Away from sites of 
polarized growth 

primarily undirected at cell 
tips, directed along actin 

cables away from cell tips

Diffusion constant of 
plasma membrane 

[nm2/s]* 

8.6  (+/-1.6) 2.5 - 

Cable elongation rate 
[nm/s] 

184 (+/-62)   290 (+/-80)   - 

References  this study Actin patches: Smith et al., 2001. 
Diffusion constant: Valdez-Taubas 

and Pelham, 2003. Cable 
elongation: Yang and Pon, 2002  

Pelham and Chang, 2001 

* for comparison: mammalian COS cells: 100 nm2/s
  Spiny dendrites of cerebellar Purkinje neurons: 43000 nm2/s (+/-11000)

Comparison of dynamic parameters of the actin cytoskeleton 

of the three fungi A. gossypii, S. cerevisiae and S. pombe
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Discussion

A model for organisation of the actin cytoskeleton in A. gossypii

The combined findings of this study give rise to a hypothetical model in which the actin 

cytoskeleton is responsible for endocytosis, maintenance of polarization and exocytosis and 

plays a major role in septation as well. This is summarized in Figure 25.

Endocytosis:

In this model, the bulk of Cap-GFP actin patches is responsible for endocytosis. This is 

supported by the high percentage of backward movement in Cap-GFP patches, which is 

necessarily a feature of endocytosis in a filamentous fungus. Partial colocalizations with the 

endocytic marker FM4-64 further corroborate this hypothesis. FM4-64 is a membrane-

selective dye which is incorporated into endocytic vesicle membranes (Fischer-Parton et al., 

2000) and thus concluded to be a marker for endocytosis. Adding to incorporation in a wide 

range of filamentous fungi, it is also taken up in A. gossypii. With the punctate structures of 

FM4-64 colocalizing with Cap-GFP patches, this is a strong argument for an endocytotic 

function of actin patches in A. gossypii. These endocytic Cap-GFP patches usually reach the 

subapical region and disintegrate 6-12 m behind the tip. While endocytosis is not solely 

restricted to the tip, this is where most endocytic material seems to come from. Still, patches 

appearing at septa might also be formed in subapical regions. Using the upper average 

values for Cap-GFP patch speed and lifetime, a rather quick patch will make a maximum of 

6.6 m in his lifetime. But septa are usually constructed over 20 m behind the tip. So 

endocytosis must also occur in hyphal parts remote from the tip. While endocytosis has not 

definitely been proven to occur in fungal hyphae, the evidence is clearly in favor of this 

function (Read and Kalkman, 2003).

Polarization by endocytic cycling:

The other movement, redirection of retrograde Cap-GFP patches back towards the tip, may 

prove to be responsible for maintenance of polarization. In the budding yeast, it has been 

shown that this can be achieved by endocytic cycling (Valdez-Taubas and Pelham, 2003). 

Indications that recycling of vesicles plays a role in polarization is also found in other fungi, for 

example Ustilago maydis (Wedlich-Soeldner et al, 2000), where impaired endocytosis results 

in a non-polarized distribution of cell wall components and morphological changes.

Several findings argue for this function of Cap-GFP patches. Firstly, endocytic cycling as a 

mode for polarization implies cycling as a motion. This was made visible by following Cap-

GFP patches in the apical region. They are endocytosed behind the tip, turn around and 

move towards the tip again. This movement can not readily be explained by pure endo- or 

exocytosis. Secondly , endocytic cycling requires slow diffusion in the plasma membrane. 

Although lateral diffusion in the plasma membrane of A. gossypii is three to four times faster 
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than in S. cerevisiae, (8.6 nm2/s +/-1.6, compared to 2.5 nm2/s in budding yeast), this is 

several orders of magnitudes slower than the diffusion coefficients measured in polarized 

neurons (43000 nm2/s (+/-11000); Schmidt et al., 2003) or mammalian COS cells (100 nm2/s; 

Valdez-Taubas and Pelham, 2003). In any case, this slow lateral diffusion is responsible for 

the polarization of Cap-GFP patches. This was shown by the experiment with a membrane 

fluidizer, which caused the loss of amassed Cap-GFP patches in the apical region. Two 

possible explanations exist for this result. One being that factors for triggering endocytic 

vesicles are at the polarized region of the tip, where sterols reduce lateral mobility in the 

plasma membrane. The other explanation is that polarization by endocytic cycling, which 

requires a low lateral mobility of the membrane, is made impossible. The different domain of 

the apical membrane is overmore visible in stainings with the steryl dye Filipin (Hanspeter 

Helfer, personal communication). 

Thirdly, the fact that tips depolarize to a spherical shape by addition of the actin-

depolymerizing drug Latrunculin A reveals the central role of the actin cytoskeleton in 

polarization. Hence, maintenance of polarization may plausibly be attributed, at least in part, 

to Cap-GFP patches.

Asymmetric distribution of proteins to distinct domains in the plasma membrane is crucial to 

the function of a polarized cell. This can be done by constructing a very physical barrier to the 

plasma membrane that works like a crosswall. This mechanism is found in epithelia, where 

distinct apical and basolateral surfaces are maintained by tight junctions. In A. gossypii, the 

only structure which could account for this is the septum. Yet, the septum appears about 

40 m behind the tip, making it a highly unlikely candidate for maintenance of polarization.

Another possibility is cytoskeletal tethering, as proposed for polarized neurons (Winckler et 

al., 1999). Tethering means that a cytoskeletal structure keeps the membrane proteins 

responsible for polarization in place. This is a way to avoid having to alter the properties of 

the plasma membrane. A protein which links the cytoskeleton to the membrane is required for 

cytoskeletal tethering. In the polarized neuron, this is done by ankyrin - a role which might be 

occupied in A. gossypii by Cdc42 (Pruyne and Bretscher, 2000). But Abp140p-GFP cables to 

the tip are a short-timed event and not a durable scaffold, and cytoskeletal tethering has not 

been observed in any other fungal organism.

Actin cables might be part of the polarization maintenance machinery. Punctate structures 

moving along cables towards the tip were observed. If actin cables in A. gossypii grow the 

same way as in S. cerevisiae - from the site of polarization, that is - then they would emanate 

from the tip. Since myosin V, a barbed-end directed motor for vesicular transport, uses actin 

cables as tracks for polarized secretion, the punctate structures seen on Abp140p-GFP 

cables may well be vesicles destined for exocytosis. The polarization of rapid Myo2p-driven 

vesicles along actin cables occurs independently of the distribution of actin patches (Pruyne 

et al., 1998). Hence, patches do not seem to play a direct role in targeting vesicles to the cell 

surface. Yet, actin patches and actin cables are often associated. In a study in S. pombe, the 

actin patch component Coronin was tagged with GFP, and actin patches were subsequently 
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observed moving along cables also labelled by Coronin. It is thus possible that actin cables 

serve as tracks for Myo2p-driven vesicles as well as actin patches.

Pelham and Chang (2003) proposed that actin cables may be the tails formed by actin 

patches. Patches would be the nucleators for F-actin filaments in this scenario. The filaments 

would then immediately be bundled and stabilized to form an actin cable. While there is no 

evidence for this hypothesis, the association of Abp140p-GFP patches with cables bears a 

striking resemblance to an actin comet tail. 

Exocytosis:

A last direction of patches is movement towards the tip without redirection. This calls for 

exocytosis. A function of actin patches in deposition of the cell wall was suggested for S.

pombe and S. cerevisiae (Takagi et al., 2003; Doyle and Botstein, 1996; Kobori et al, 1989). 

But while Cap-GFP patches may contribute to exocytosis, they are surely not the only 

operators for this function. This is reflected by the rather low percentage of patches moving 

from back in the hypha towards the tip. If Abp140p-GFP patches are different from the Cap-

GFP patches, then their movement towards the tip is indicative of exocytosis. Also, other 

exocytic vesicles were observed in A. gossypii. Sec4p is a RabGTPase that is essential for 

fusion of secretory vesicles with the plasma membrane. Sec4p, being bound to vesicles, also 

polarizes to the cap in a Myo2p-dependent manner (Walch-Solimena et al., 1997; Schott et 

al., 1999). Analysis of a Sec4p-GFP strain of A. gossypii (Schmitz et al., submitted) revealed 

that Sec4p-vesicles move towards the tip, where they desintegrate. This is done with 

remarkable speed: They average 855 (+-555) nm/s (n=29). Clearly, Cap-GFP patches are not 

the only vesicular structure responsible for exocytosis.

It is known from several studies that actin cables can serve as tracks for different cargos such 

as secretory vesicles (Johnston et al., 1991), several organelles (Hoepfner et al., 2001, 

Rossanese et al., 2001, Hill et al., 1996 and Simon et al., 1995) as well as mRNA (Bobola et 

al., 1996, Sil and Herskowitz, 1996 and Takizawa et al., 2000). Using the AgSec4p fused to 

GFP we were able to show that secretory vesicles move along actin cables and accumulate 

at the hyphal tips. They no longer do so in AgBNI1 deleted hyphae even though the 

polarisome component AgSpa2p localizes correctly. Thus the material needed for the 

permanently polarized growth is distributed along the cortex leading to non-directed surface 

expansion which explains the misshapen structure of the giant mutant cells before they finally 

lyse.

The very last section of the tip often being devoid of Cap-GFP patches agrees with a patch-

free spherical tip segment first observed in Rhodamine-Phalloidin stainings of wildtype 

(Knechtle et al., 2003). This zone is possibly filled with tip-growing factors and exocytosed 

Abp140p-GFP patches, while endocytosis occurs at the periphery of the very tip. A dense 

structure seen at the tip in electron microscope images shows that Ashbya possesses a 

Spitzenkörper, after all (Robert Roberson, personal communication).



33

Septation:

Apart from flocking in the tip, Cap-GFP patches also gather at septa. While Cap-GFP patches 

move to the septum and away from it, no net direction could be determined. The number of 

patches and their activity are strongly reminiscent of the apical patch action. With actin patch 

accumulations indicating polarization, the septum may thus be viewed as just the other end of 

polarity in an A. gossypii hyphal compartment. Of course, its nature is different, since actin 

patches disappear once the septum is fully constructed.  Interestingly, the disappearance is 

not observed in Far11 deletion mutants (see ‘Far11p is required to prevent premature hyphal 

abscission in the filamentous fungus Ashbya gossypii’).

Actin rings are not coupled to polarization. While AgCla4p is required for proper formation of 

actin rings, deletion strains show cortical patches concentrated at tips, and a fully developed 

network of actin cables is also found (Ayad-Durieux et al., 2000). But an actin ring is the 

structural precursor of the septum and forms early in its development. Since the mechanism 

of septal formation is not well understood yet, good insight might be gained by using the 

genomic or plasmidic AgABP140-GFP strain in septin knockouts. 

It is possible that there are different types of the same actin structure. In budding yeast, two 

populations of actin cables were described (Yang and Pon, 2001). The first one, cables which 

extend from the bud along the mother-bud axis, can, in terms of polarized orientation, be 

compared to the tip-associated cables in A. gossypii. The second population, short cables, 

which are randomly oriented, has no evident counterpart in A. gossypii. Especially in terms of 

movement, such cables were not observed. Yet, there seem to be two distinct classes of 

Abp140p-GFP cables in A. gossypii: the linear, tip-associated, dim Abp140p-GFP cables and 

the spiraling, strongly fluorescent cables away from the tip.

Tip-associated cables are seen less frequently in fixed rhodamine-phalloidin stainings than in 

live recordings of the Abp140p-GFP strain. This may be due to the fact that they are usually 

weakly stained and especially in the apical zone outshone by the intense fluorescent 

brightness of actin patches. With actin patches being less bright and numerous in the 

Abp140p-GFP strain, this may account for an unmasking effect. Another possibility is that 

these short-lived cables are delicate and rarely withstand fixation procedures. It is a plausible 

assumption that the tip-associated cables are responsible for delivering exocytotic vesicles. In 

contrast, the bright variant of cables back in the hypha usually showing a spiral, cortical 

arrangement and found only in older hypha of 20h age, its main function may be of structural 

nature.

The question whether different patches exist in A. gossypii cannot be answered by this study. 

What in budding yeast was previously thought to indicate different classes of actin patches, 

for example by the finding that Abp1p and Sla1p patches can exist separately (Warren et al., 

2002), has now been shown to be actin patches differing in their protein composition 
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depending on their stage in the life cycle (their 'age'), which also determines their movement 

pattern (Kaksonen et al., 2003).
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Figures and Tables 

Table 0   Comparison of actin cytoskeleton components in Ashbya gossypii (Ag) and 

Saccharomyces cerevisiae (Sc) (based on Pruyne and Bretscher, 2000).  

The first column shows the systematic names of the homologous genes in Ashbya gossypii, the second 

those of Saccharomyces cerevisiae (with some duplicated). The third row features the 

standard names for respective homologs in S. cerevisiae. The last column indicates the percentage of 

homology between the different homologs.   

Ag ORF 
name

Sc
homolog(s)

Sc standard 
name for 

homolog(s)

% identity 
to Sc 

homolog(s)

Patches

AGL237C YCR088W ABP1 55
ABR222W YFL039C ACT1 99
ABL043W YMR092C AIP1 54
ADR316W YDL029W ARP2 89
AFR419C YJR065C ARP3 90
ADL061W YIL062C ARC15 61
AFR584C YLR370C ARC18 75
ACL092C YKL013C ARC19 85
AGL221W YNR035C ARC35 62
AFL022W YBR234C ARC40 70
ABR007C YKL007W CAP1 47
ADL101C YIL034C CAP2 59
ADL337W YBR109C CMD1 96
ADR235W YLL050C COF1 86
AER114W YLR429W CRN1 64
AER416C YNL084C END3 49

YLR206W ENT1 58ACL157C
YDL161W ENT2 60

AER155C YJR125C ENT3 58
ACL061C YLL038C ENT4 40
AGR048C YLR113W HOG1 84
AGR285W YOR181W LAS17 / BEE1 53

YMR109W MYO3 74
AEL306C

YKL129C MYO5 70
ADR018C YIR006C PAN1 / DIM2 42

YIL095W PRK1 45
ADL217W

YNL020C ARK1 46
AER193W YCR009C RVS161 / END6 85
AGR069C YDR129C SAC6 80
AGR170C YBL007C SLA1 55

- YNL243W SLA2 (END4) -
AFR061W YNL138W SRV2 57

Ag ORF 
name

Sc
homolog(s)

Sc standard 
name for 

homolog(s)

% identity to 
Sc

homolog(s)

ABR105C YGR080W TWF1 41
ABR038C YLR337C VRP1 / END5 50

YHR161C YAP1801 44
AEL209W

YGR241C YAP1802 46

Cables

ACR130W YOR239W ABP140 49 
ABR222W YFL039C ACT1 99 
AGR069C YDR129C SAC6 80 

YNL079C TPM1 70 
AER424C

YIL138C TPM2 61 
YOR326W MYO2 66 

ADR354W
YAL029C MYO4 51 

Rings

ABL200W YNL233W BNI4 38 
AFR301C YIL159W BNR1 31 
AAL016C YCL014W BUD3 51 
AGL306C YJR092W BUD4 31 
AFR111C YLR314C CDC3 58 
AAR001C YCR002C CDC10 75 
AER445C YJR076C CDC11 74 
AER238C YHR107C CDC12 78 
ABL159W YDL225W SHS1 60 
AEL190W YBR038W CHS2 68 
AEL189W YBR023C CHS3 66 

YBL061C CHS4/SKT5 48 
ACR227W

YER096W SHC1 37 
ABL034W YKL101W HSL1 43 

YDR507C GIN4 56 
AFR696C

YCL024W KCC4 53 
ABR082W YMR032W HOF1 35 
AFL150C YPL242C IQG1 35 
ACL168C YOR122C PFY1 83 
ACR068W YHR023W MYO1 48 
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Supplemental Material

Movies:  

S01_Fig01: (Movie corresponds to Figure 1) 
Phase contrast time-lapse movie.

Development of wild-type mycelium grown on agar, starting with a germ bubble.  

Time format:  Min : Sec 

S02_Fig02: (Movie corresponds to Figure 2) 
Three-dimensional reconstruction of a rhodamine-phalloidin stained hypha, 12 hours old. 

The main structures of the actin cytoskeleton are visible: actin patches, actin cables and an 

actin ring. 

S03_Fig05: (Movie corresponds to Figure 5) 
Combination of phase contrast (red) and fluorescent (green) time-lapse recording of nearly 

four hours growth of hyphae of the Cap1-GFP strain. 

Cap1-GFP patches (green) are constantly at the tip of all hyphae, of which the cell wall 

contours are shown in red. 

S04_Fig06_A: (Movie corresponds to Figure 6 A) 
Rapid fluorescent recording (‘streaming movie’) (green) of a hyphal tip of a Cap-GFP strain.

Cap-GFP patches are concentrated at the tip, but also visible at the cell wall throughout the 

rear part of the hypha.

Time format:  Sec 

S05_Fig06_B: (Movie corresponds to Figure 6 B) 
Streaming movie of a frontal tip of a Cap-GFP hypha. 

Cap-GFP patches are seen moving at the tip. While a directionality is hard to determine, the 

very tip is often devoid of patches.

Time format:  Sec 

S06_Fig06_C: (Movie corresponds to Figure 6 C) 
Streaming movie of a frontal hypha of the Cap-GFP strain. 

Cap-GFP patches are seen moving cortically at the cell wall, although some are shortly in the 

cytoplasm.  

Time format:  Sec 

S07_Fig07_ABC: (Movie corresponds to Figure 7 A, B and C) 
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Brightfield images followed by time-lapse recording of a germ bubble (bottom) and a unipolar 

germling (top right, with germ tube pointing to the right) of the Cap-GFP strain. 

Cap-GFP patches are seen moving in both young structures.  

S08_Fig07_D: (Movie corresponds to Figure 7 D) 
Brightfield image followed by streaming movie of lateral branches in 12h old mycelium of the 

Cap-GFP strain. 

Cap-GFP patches are concentrated at all three  tips, but also visible at the cell wall 

throughout the main part of the hypha.  

Time format:  Sec 

S09_Fig08_A: (Movie corresponds to Figure 8 A) 
Brightfield image followed by streaming movie of a hyphal tip viewed from front, of 12h old 

mycelium of the Cap-GFP strain. 

Cap-GFP patches are seen moving in the apical region, while the very tip is mostly devoid of 

patches. Patches fusing during their itinerary can also be seen.

Time format:  Sec 

S10_Fig08_B: (Movie corresponds to Figure 8 B) 
Rapid sequential z-series (‘four-dimensional’ or 4D recording) of the entire tip region of a 12h 

old hypha of the Cap-GFP strain. 

Cap-GFP patches are seen concentrated at the tip in the apical region. In the subapical 

region, all patches are seen moving away from the tip. This illustrates the movement depicted 

in Figure 9 A. 

Time format:  Sec 

S11_Fig09_B: (Movie example of motion depicted in Figure 9 B) 
4D recording of the tip of a 12h old hypha of the Cap-GFP strain. 

Cap-GFP patches are seen concentrated at the tip in the apical region. One patch originates 

on the left side, shortly behind the tip, and moves towards the tip. This is a typical example of 

a ‘redirected’ patch, which may be involved in endocytic cycling.  

Time format:  Sec 

S12_Fig10: (Movie corresponds to Figure 10) 

4D recording of the tip region of a 12h old hypha of the Bnr1 DAD-Cap1GFP strain. 

In this strain with the constitutively active formin Bnr1p, Cap-GFP patches are associated with 

filamentous structures.  

Time format:  Sec 

S13_Fig18_B: (Movie corresponds to Figure 18 B) 
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4D recording of a unipolar germling of the Abp140p-GFP strain. 

Here, Abp140p-GFP cables are seen moving in the hypha and are often connected to the 

tip,where Abp140p-GFP patches are concentrated. The lower part of the image is shaded 

because of the overpowering autofluorescence present in the needle-shaped spore.

Time format:  Min : Sec 

S14_Fig18_C: (Movie corresponds to Figure 18 C) 
4D recording of branches of 15h old mycelium of the Abp140p-GFP strain. 

Abp140p-GFP cables are seen moving in the hypha, often spanning a considerable length.

Time format:  Min : Sec 

S15_Fig19_AB: (Movie corresponds to Figure 19 A and B) 
4D recording of a unipolar germling of the Abp140p-GFP strain. 

Abp140p-GFP cables move in the hypha of this unipolar germling, extending towards and 

away from the tip. Abp140p-GFP patches are concentrated at the tip.

Time format:  Min : Sec 

S16_Fig19_C: (Movie corresponds to Figure 19 C) 
4D recording of a 15h old hypha of the Abp140p-GFP strain. 

A strongly fluorescent Abp140p-GFP cable is highly motile, showing undulating movements 

and changing its appearance completely within nine minutes.  

Time format:  Min : Sec 

S17_Fig19_D: (Movie corresponds to Figure 19 D) 
4D recording of a 15h old hypha of the Abp140p-GFP strain. 

Strongly fluorescent Abp140p-GFP cables, arranged in a spiral manner back in the hypha, 

show undulating movements and change appearance completely within six minutes.  

Time format:  Min : Sec 

S18_Fig20_A1: (Movie supporting events depicted in Figure 20) 
4D recording of an evolving lateral branch of 15h old mycelium of the Abp140p-GFP strain. 

A secretion event is shown: From second 11 to second 38, an Abp140p patch, originating at 

the upper side in the region just behind the tip, moves on an Abp140p-GFP cable towards the 

very tip, where it desintegrates. A new patch forms at the site where the desintegrated 

Abp140p-GFP patch emerged. Actin cables behind the tip reach into the main hyphal part.  

Time format:  Sec 

S19_Fig20_A2: (Movie supporting events depicted in Figure 20) 
4D recording of a hyphal tip of 15h old mycelium of the Abp140p-GFP strain. 
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Two secretion events are visible. At the very beginning of the movie, an Abp140p patch 

moves towards the very tip and desintegrates there, while at second 52, an Abp140p patch 

moves from the upper part behind the tip towards the tip and again is disassembled.  

Time format:  Sec 

S20_Fig20_B: (Movie corresponding to Figure 20 B) 
4D recording of a hyphal tip of 15h old mycelium of the Abp140p-GFP strain. 

The secretion event depicted in Figure 20 B is shown with the extended hypha behind the tip. 

It starts at 59 seconds.

Time format:  Min : Sec 

S21_Fig21_A: (Movie corresponding to Figure 21 A) 
Streaming movie of a hyphal tip of 15h old mycelium of the Sec4p-GFP strain. 

The apical localization of the Sec4p-GFP signal is evident, and movement of punctate 

structures towards the tip can be observed.

Time format:  Sec : Millisec 

S22_Fig21_B: (Movie corresponding to Figure 21 B) 
Streaming movie of a hyphal tip of 15h old mycelium of the Sec4p-GFP strain. 

The tip-directed movement of Sec4p-GFP vesicles indicated in Figure 21 B is visible.

Time format:  Sec : Millisec 

S23_Fig21: (Further example of events depicted in Figure 21 A and B) 
Streaming movie of a hyphal tip of 15h old mycelium of the Sec4p-GFP strain. 

At second 4, a Sec4p-GFP vesicle originates from the left side directly behind the tip, moves 

towards the very tip and fuses with the brightly fluorescing Sec4p-GFP ‘cap’ at the very tip.  

Time format:  Sec : Millisec 

S24_Fig22_A: (Movie corresponds to Figure 22 A, left side) 
4D recording of a 15h old hypha of the Abp140p-GFP strain. 

Strongly fluorescent actin rings are visible in the Abp140p-GFP strain, and Abp140p-GFP 

cables can be seen moving through the actin rings.  

Time format:  Sec 

S25_Fig22_A: (Movie corresponds to Figure 22 A, right side) 
4D recording of a 15h old hypha of the Abp140p-GFP strain. 

An actin ring is  visible in the upper part of the hypha, and Abp140p-GFP cables can be seen 

moving through it.  

Time format:  Min : Sec 
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S26_Fig22_D: (Movie corresponds to Figure 22 D) 
4D recording of a 15h old hypha of the Abp140p-GFP strain. 

The varying fluorescent brightness of an Abp140p-GFP actin ring is shown, which persists for

24 minutes.   

Time format:  Min : Sec 

S27_Fig24: (Movie corresponds to Figure 24, images to the left) 
DIC brightfield image followed by a streaming movie of a 12h old hypha of the Cap-GFP 

strain. 

The septum is visible in the brightfield picture, and the activity of Cap-GFP patches at the 

septum is subsequently shown.  

Time format:  Sec 

S27_Fig24: (Movie corresponds to Figure 24, images in the middle) 
DIC brightfield image followed by a streaming movie of a 15h old hypha of the Cap-GFP 

strain. 

The septum is visible in the brightfield picture, and the frenzied activity of Cap-GFP patches 

at the septum is subsequently shown.  

Time format:  Sec 
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Part II – Far11p is required to prevent premature hyphal abscission in 

the filamentous fungus Ashbya gossypii

___________________________________________________________________________
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Abstract
AgFar11p belongs to the Far proteins which have diverse functions. In the budding yeast 

Saccharomyces cerevisiae, the syntenic homolog ScFar11p links pheromone response to the 

cell cycle. In the filamentous fungus Neurospora crassa, the Far11p homolog (NcHAM-2) is 

required for hyphal fusion. While this process is important for communication and 

homeostasis in filamentous fungi, it has not been observed in A.gossypii. We investigated the 

structure and role of AgFar11p. It is a putative transmembrane protein and bears conserved 

domains found in the homologs of S.cerevisiae and N.crassa. Deletion of the FAR11 gene in 

Ashbya gossypii leads to premature hyphal abscission at septa and lysis of hyphal 

compartments. This chain of events occurs in wild type only at the end of the life cycle, when 

spores are released from hyphal compartments. We conclude that hyphal abscission in 

far11 strains is premature and suggest that in A.gossypii, Far11p is involved in the timing of 

sporangium formation.

Index descriptors: Ashbya gossypii, FAR11, HAM-2, filamentous fungus, hyphal abscission, 

hyphal lysis, sporangium formation.

Introduction
Far proteins are found in many fungi, but also in fly, man and worm. Detailed studies have 

been done in the budding yeast Saccharomyces cerevisiae, with Far1 being the best 

researched family member. ScFar1p was shown to function as a pheromone-dedicated 

cyclin-dependent kinase inhibitor for Cdc28 (Peter and Herskowitz, 1994). Its deletion mutant 

fails to arrest in G1 after stimulation with alpha-factor, thus linking pheromone response to the 

cell cycle. Interestingly, it also plays a role in cell polarity (Nern and Arkowitz, 2000, O'Shea 

and Herskowitz, 2000, Shimada et al., 2000). Far3 and Far7 to Far11, on the contrary, have 

been shown to prevent premature recovery from pheromone arrest. They work by a different 

pathway and as a complex (Kemp and Sprague Jr, 2003).

But the role of Far11 seems to be a quite different one in filamentous fungi. The homolog of 

ScFar11p, NcHam-2p, was investigated in the filamentous fungus Neurospora crassa. It 

accounts for somatic cell fusion during vegetative growth: Deletion mutants of NcHAM-2 are 

incapable of hyphal fusion (anastomosis). In hyphal anastomosis, two compartments of 

different hyphae fuse completely, allowing nearly unrestricted flow of protoplasm. This 

process forms hyphal grids and is responsible for augmenting the level of communication and 

providing homeostasis in the organism. Hyphal fusion in filamentous fungi may share features 

with both mating cell fusion in Saccharomyces cerevisiae (Glass et al., 2000; Hickey et al., 

2002) and somatic cell fusion events resulting in syncytia, such as muscles, bones, and 

placenta formation in animals, as proposed in Xiang et al. (2002). 
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In A.gossypii, hyphal fusion has not been observed (Louise Glass, personal communication). 

And pheromone response, a process in which Far11 plays a role in Saccharomyces 

cerevisiae, is absent as well. We thus wanted to elucidate the role of this protein in 

A.gossypii.

Materials and Methods 

Ashbya gossypii strains and growth conditions 
Agfar11  was produced as an Agfar11 ::GEN3, leu2 , thr4  genotype for this study, using 

the Agleu2 thr4  genotype as background strain (Altmann-Jöhl and Philippsen, 1996). Wild-

type strain Agleu2 thr4  was used as reference. All strains were grown under the same 

conditions. A. gossypii media preparation and culture conditions were performed as 

described in Wendland et al., 2000. For macroscopical growth analysis and microscopical 

time-lapse recordings, Ashbya Full Medium was used. In each case, 1.0 M sorbitol was 

added to osmotically stabilize the medium to exclude osmosis as a factor for hyphal 

abscission and lysis. AFM and 1.0 M sorbitol were also used for cultures grown in liquid 

medium.

Generation of the Agfar11  strain 
We used a polymerase chain reaction (PCR)-based approach (Wendland et al., 2000) to 

construct the Agfar11  gene deletion. The dominant drug resistance marker GEN3 was 

amplified in a preparative PCR reaction from the E. coli plasmid pGEN3 by using the 

oligonucleotides 5'-CGAAGAATTCACGAACGTGGATGAGATTGACGGGCCGATCTCGCCG

CTAGGGATAACAGGGTAAT-3' and 5'-GTACCAATGCCTAGGGGCAACTCTTTTAATCTAT 

AAGTTTTCTTGCAGGCATGCAAGCTTAGATCT-3'. The oligonucleotides carried 45 base 

pair extensions at their 3' site with homology to the AgFAR11 locus. Ten micrograms of PCR

product were transformed into Agleu2 thr4 , deleting the complete coding region of the 

AgFAR11 gene between the start and the stop codon. Correct integration of the cassette was 

verified by analytical PCR using the oligonucleotides 5'-GAAGAAGCAACAGAACAAGAAG-3'

and 5'-GCAATTTCATGTCCATAGGCATCATG-3' binding to the promoter and terminator 

region of AgFAR11, in combination with the standard oligonucleotides binding to the GEN3 

sequence. Three independent homokaryotic Agfar11 transformants were obtained. All three 

showed the same growth phenotype.

Cell wall staining

For staining the cell wall, Calcofluor White M2R was used (Sigma-Aldrich Chemie GmbH, 

Germany). A. gossypii mycelium was grown in liquid Ashbya Full Medium (AFM) in selective 
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conditions and with shaking, spun down at 2000 x g and incubated for 5-10 min in a 0.17 

mg/ml Calcofluor White solution (Stock solution 1 mg/ml Calcofluor white in sterile H2O,

stored at -20 ºC). The cells were washed twice with Ashbya Minimal Medium (AMM, with a pH 

of 7.0) for minimal background fluorescence, and five microliters were used for microscopy. 

Since Calcofluor is harmless in low doses for at least three hours, the images were taken of 

live specimens.

Cytoskeletal staining

The actin cytoskeleton was visualized using phalloidin coupled fluorophores (according to 

Amberg, 1998, modified). A. gossypii was cultured in AFM and 1.0 M sorbitol for 15-20h in 

selective conditions. After letting mycelia settle to the ground, 200 µl of the culture were 

mixed with 1.5 ml of 4% paraformaldehyde and fixed for 1 h. Mycelia were centrifuged at 

2000 x g, washed twice with phosphate-buffered saline (PBS), and 100 µl thereof 

resuspended in PBST (PBS containing 0.03% Triton X-100). Ten microliters of rhodamine-

phalloidin (6.6 µM in MeOH; Molecular Probes, Eugene, OR) were added, and mycelia 

incubated for 1 h in the dark. After three washing procedures in PBST, mycelia were 

resuspended in 50 µl of Vectashield mounting medium (Vector Laboratories, Burlingame, 

CA). Five microliter thereof were put on a slide, covered with a coverslip and sealed with 

rubber cement (‘‘Fixogum,’’ Marabuwerke GmbH & Co., D-71732 Tamm). Images were taken 

during the next five hours to ensure that any possibility of biological changes induced by old 

age in the organism was avoided. 

Microscope setup 

 The microscopy unit used (as described in Hoepfner et al., 2000, modified) consisted of an 

Axioplan 2 imaging microscope (Carl Zeiss, Feldbach, Switzerland) and images made with 

the objectives Plan Apochromat 100 x Ph3 numerical aperture (N.A.) 1.4 and Plan 

Apochromat 63 x N.A. 1.4. It was equipped with a 75 W XBO illumination source controlled by 

a MAC2000 shutter and filter wheel system (Ludl Electronics, Hawthorne, NY). The camera 

was a TE/CCD-1000PB back-illuminated cooled charge-coupled device camera (Princeton 

Instruments, Trenton, NJ). The following filter sets for different fluorophores were used: #15 

for rhodamine (Carl Zeiss) and 31044v2 for Calcofluor (Chroma Technology Corp, 

Rockingham, VT). Phase contrast was used according to the manufacturer (Carl Zeiss). The 

excitation intensity was controlled with different neutral density filters (Chroma Technology). 

The setup, including microscope, camera, and Ludl controller, was controlled by MetaMorph 

4.1.7 software (Universal Imaging Corporation, Downingtown, PA).

Image acquisition and processing

Brightfield and fluorescence images were taken with exposure times ensuring maximum 
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contrast. For time-lapse movies, single images were taken at three minute intervals. In the 

other cases, Z-series were made to assure the complete three-dimensional information – 1.0 

m for brightfield Z-series and 0.4 m for fluorescence images. For time-lapse acquisition, the 

fungus was grown on a slide with a cavity (time-lapse slide) that was filled with agar-solidified 

AFM (AMM for fluorescent images) and 1.0 M sorbitol for osmotical stability. Spores were 

preincubated in a humid chamber without coverslip until they reached the required 

developmental stage. A coverslip was then applied.

Brightfield and fluorescent images and stacks were scaled using the "scaling" drop-in in 

MetaMorph. Z-series were projected on a single plane with the"'Best Focus" for brightfield or 

"Maximum" algorithm for fluorescent images. In some cases, the "Flatten Background" 

command was used for equalizing gradients caused by non-uniform illumination. For three-

dimensional reconstructions, stacks were assembled with MetaMorph's "3D reconstruction" 

drop-in. Fluorescent picture sets were processed as mentioned above and overlaid using 

Meta-Morph's "overlay" drop-in. The time-lapse image series were transformed into movies 

(QuickTime format (Apple Computer, Cupertino, CA)) using MetaMorph. Adobe Photoshop 

6.0 (Adobe Systems, Mountain View, CA) was used for still pictures. 

Analysis of the AgFar11p protein sequence 

The sequence of AGR339C, the A.gossypii homolog of ScFar11p, was retrieved from the 

Ashbya genome database generated from the complete genome sequencing approach by 

Dietrich et al., 2004. The resulting amino acid sequence was used for analyzing the 

homologous genes in S. cerevisiae, ScFar11p (YNL127W), and N. crassa, NcHam-2p 

(NCU03727.1). The program of the Centre for Bioinformatics and Biocomputing of the 

Karolinska Institute in Sweden (Persson and Argos, 1996; Persson and Argos, 1994; 

http://130.237.130.31/tmap/) was used for predicting transmembrane domains in all three 

proteins. The PSORT II program, developed by Nakai and Horton (1999), was used to predict 

the subcellular localization of proteins derived from translated ORFs. Regions of identity were 

defined using the Align Plus 5.03 module of the CloneManager 7.03 suite (Scientific & 

Educational Software, Cary, NC). “Compare multiple sequences” was used in Multi-Way 

mode for multiple alignment without reference. "Align two sequences" in the global alignment 

mode was used to determine the percentage of identity in similar regions. For all analyses, 

the BLOSUM 62 scoring matrix for amino acids was chosen. 

Results
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Analysis of the AgFar11p protein sequence 

AgFar11p is a putative transmembrane protein. Three transmembrane (TM) domains were 

predicted and three conserved regions found by multiple sequence alignment, as shown in   

Figure 1. AgFar11p was compared to the Far11p homologs of Neurospora crassa and 

Saccharomyces cerevisiae. It shares an identity of 44% percent with ScFar11p, but only 19% 

compared to NcHam-2p. The Domains 1 and 2, as described in Kemp and Sprague (2003), 

were also found in A.gossypii, with an identity of 61% for both domains compared to budding 

yeast. The comparison with those domains in N.crassa yielded an identity of only 31% for 

Domain 1 and 21% for Domain 2. A third conserved region was detected in the middle of the 

three putative proteins. We dubbed it the 'proline repeat'. Although it is only 13 amino acids 

(aa) long, identity was 92% percent in the case of both comparisons, with S.cerevisiae and 

N.crassa. The consensus sequence is HIATPAPSPPXSP (with X being any aa). This 

sequence is, like Domain 1 and 2, a motif of hitherto unknown function. The main theme is a 

four-fold repetition of Proline preceded by an amino acid with a hydroxyl group (or Alanine, in 

one case).

Multiple aligned sequences of the three proteins were used to predict TM domains. These 

follow a similar arrangement in all proteins, with one TM domain being closer to the N-

terminus and two neighboring TMs towards the C-terminus. This is in agreement with the 

previous studies of TM domains in N.crassa (Xiang et al, 2002; Kemp and Sprague, 2003).

Agfar11  mutants commit hyphal abscission

The far11 phenotype shows complete abscission of hyphal compartments. Figure 2 

compares wild type (left half) with the FAR11 deletion mutant (right half). The large phase 

contrast image of 14h old wild-type mycelium reflects normal development: In the middle of a 

needle-shaped spore, a germ bubble forms (black arrow) and gives rise to a germ tube, the 

primary hypha. Two to three hours later, a second hypha emerges at the other end. As these 

main hyphae grow in opposite directions, they start forming lateral branches, a process which 

is repeated with every branch, resulting in a ramification pattern. This dendritic stage is called 

the mycelium. All the while, crosswalls called septa are formed to compartmentalize the 

hyphae (white arrowheads). A septum contains a pore and is formed at the base of a hypha 

or behind its tip. Figure 2 B shows a septum behind the tip at higher magnification. With radial 

expansion of the mycelium originating from a single spore, a dense, circular layer will be 

formed (Figure 2 C). Figure 2 D demonstrates the defect of the FAR11 deletion mutant. 

Though the germ bubble (black arrow) has a hypha attached at its lower end, it is completely 

detached from the upper part. Since the upper mycelial part contains no needle-shaped 

spore, its origin can only be the now dissociated germ bubble, so the two structures must 

have been connected at an earlier stage. The site of former attachment is indicated by an 

asterisk (*). Hyphae of the upper mycelial part are less streamlined than in wild type, and the 

main, vertical hypha is enlarged. Correlated with the number of lateral hyphae, it is far shorter 
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than the main hyphae of wild type. Weak septa can be discerned at the bases of lateral 

hyphae. But in three cases, the hyphal base is severely constricted. The same aspect is 

depicted in Figure 2 E in a hyphal tip of 18h old mycelium. Disturbed growth is also seen 

when the FAR11 deletion mutant is grown on osmotically stabilized agar (Figure 2 F): It is 

irregularly shaped and covers less than one sixth of the area of wild-type mycelium (Figure 2 

C). To assure that this is not a consequence of slower growth, expansion speed of hyphal tips 

was measured, resulting in the same average value of 6-10 m/h observed in young wild-type 

mycelium (Knechtle et al. 2003). With hyphae maintaining a stable, linear axis, curved growth 

may also be excluded as a cause for impaired mycelial expansion.

Hyphal abscission occurs at septa of the Agfar11  mutant  

The only possible structure capable of hyphal constriction is the septum. This notion was 

supported by the finding that constrictions are always visible in places where septa usually 

form. To verify this, development of septa in the mutant phenotype was investigated in time 

lapse recordings. Figure 3 (Movie S1) shows a main hypha (A), of which a lateral branch 

emerges (B). The base of a lateral hypha is a site predestined for septum formation. Indeed, 

about five hours after emergence, a septal crosswall is visible at the base (C), rising to wild-

type appearance in (D). But constriction of the cell wall rapidly continues at the septum 

(E,F,G) and ultimately leads to abscission of the hypha (H). Abscission seems complete in 

highly magnified images of the constricted septa. We proceed to demonstrate this by a 

different means.

Hyphal abscission leads to complete separation

FAR11 deletion mutants grown on osmotically stabilized agar often show hyphal parts which 

are translocated from their part of origin (Figure 2 D, 3 H, 6 C and 7 C). Our hypothesis was 

that, if abscission is complete, the lack of a solid substrate would produce hyphal parts 

lacking a germ bubble with its typical needle-shaped spore. This is shown in Figure 4. (A) is 

the phase contrast image of such a mycelial piece, (B) its cell wall stained by Calcofluor 

White, a fluorescent probe that interacts with polysaccharides of the fungal cell wall. (C) is the 

combination of (A) and (B). The cell wall staining shows that one end of the hyphal bit is 

strongly fluorescent. Since septa are rich in cell wall material and thus very bright in 

Calcofluor stainings of wild type and the far11  mutant, this bright end must be the site of 

abscission. The completely separated mycelial parts are still capable of growth. This means 

that the septa, which in their wild-type form are perforated by a septal pore, are plugged in 

far11 mutants, thus preventing loss of cytoplasm and turgor pressure.

A prerequisite for septum formation is the actin ring. We thus investigated the structure of the 

actin cytoskeleton in far11 mutants. Figure 5 shows actin stained with rhodamine-coupled 

phalloidin. The central germ bubble, pointed out by the white arrow, is surrounded and 
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isolated by large gaps. These gaps, which are not stainable with rhodamine-phallidin, are 

even bigger than in mature septa (Knechtle et al., 2003) and show that mature septa no 

longer contain actin. Actin rings (demarcated by a small 'r') are also visible and of normal, 

wild-type appearance. The bright dots are actin patches, seen throughout the hypha and 

concentrated at the three emerging hyphal tips pointing to the top of the image. These 

findings suggest that organisation and therefor polarization of the actin cytoskeleton are 

undisturbed in far11  mutants with respect to these aspects. Actin patches also gather at 

septa (Figure 4B and C). This is observed in wild type, where actin patches are believed to 

deposit cell wall material required for septum formation. But the difference here is that the 

gaps which demarcate the septum in far11  mutants are considerably wider, and that they 

appear early in Agfar11  young mycelium. In wild type, septal localization of actin patches 

stops once the septum is visible as a thin gap. The still visible concentration of actin patches 

at already broad septal gaps is another feature in Agfar11 .

Hyphal abscission is often followed by displacement and lysis

After hyphal abscission, two distinct events may ensue. One occurrence is that the abscided 

hyphal compartment is bent, resulting in a turning movement with one end of the septum 

forming the pivotal center. Figure 6 (Movie S2) demonstrates such an incident, in which the 

hyphal compartment in the process of abscission is bent backwards by 125 degrees. The 

origin or mechanism of this movement is not known, but must reflect tension stemming either 

from an unequal constriction or unsymmetrical cell wall deposition. It is in any case 

reminiscent of the vigorous action which cytokinesis can exhibit.

The other, graver occurrence often following hyphal abscission is hyphal lysis. Lysis of hyphal 

compartments may be preceded by displacement, but the two events are not inevitably 

coupled. Figure 7 (Movie S3) explores a case which led to annihilation of the entire mycelium. 

While the chain of events is described in detail in the figure legend, one observation needs to 

be pointed out separately: Lysis of one hyphal compartment does not necessarily affect the 

adjacent compartment. This is best illustrated in Figure 7 E, where the proximal compartment 

of the hypha at eight o’clock lyses, while the distal part keeps on growing. This is a clear 

indication that hyphal abscission leads to plugged septa.

Figure 7 demonstrates another characteristic of FAR11 deletion mutants: Hyphal abscission 

is often follows a temporal order, first occuring at older septa. Although the germ bubble is the 

mycelial point of origin, it is the last mycelial structure to lyse in Figure 7. In order to prevent 

lysis, it must be completely sealed by hyhpal abscission from the rest of the mycelium. This 

temporal order of hyphal abscission was observed in many other cases and may also be 

concluded from the segregation of the germ bubble in Figure 2 D. 

Hyphal abscission and lysis showed different grades of severeness. While in some 

specimens abscission of hyphal parts was visible only 20 hours after formation of the first 

hypha, extreme cases started making total cytokinesis as the first septum near the germ 
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bubble appeared. In these, lysis occurred soon after emergence of the primary hypha and 

often continued until the entire mycelium was lysed. Less severe cases did not have lysing 

compartments and were able to construe an entire mycelium. These cases showed increased 

invasive growth, though. However, the majority features early abscission and lysis: Of 233 

specimens, 172 were severe cases with hyphal abscission.

To understand why FAR11 deletion mutants commit hyphal abscission and lysis, we wanted 

to see where these processes may occur in wild type.

Sporangium formation in wild type features hyphal abscission and lysis as well

Constriction at septa, hyphal abscission and lysis are processes which cannot be detected in 

young mycelium of wild type. They are observed in mycelium of three days age, though. The 

end of the life cycle in A.gossypii is initiated by building special compartments for spore 

formation. In these so called sporangia, eight needle-shaped spores are formed. They are 

subsequently released by rupture of the encasing cell wall. Septation followed by cytokinesis 

is found at the ends of sporangia, which are often detached from the old mycelium (Wendland 

and Philippsen, 2002). Figure 8 shows images of a developing sporangium (A), its constricted 

and abscided ends (B, C) and rupture of the cell wall with the end of a spore exiting (D).

Discussion
This study shows that the lack of FAR11 in Ag leads to hyphal abscission at septa and lysis of 

hyphal compartments. Normally, these events observed at the end of Ag's wild-type life cycle. 

Hence, the simplest explanation is that Far11p is responsible for scheduling these processes 

required for spore formation and release. This would mean that after septation, AgFAR11 

deletion mutants continue directly to the program for sporangium formation, where abscission 

of hyphal parts and rupture of the cell wall is needed for releasing the spores. This could also 

explain lysis. Since all AgFAR11 deletion mutants were grown on osmotically stabilized 

medium, a defect in osmotic regulation can be excluded as reason for lysis. Thus, AgFAR11 

deletion mutants would suffer from an event early their life which for wild-type cells only 

occurs at the end of the individual life cycle. 

Septa are used as crosswalls for making hyphal compartments in filamentous fungi. In 

A.gossypii, although septa restrict cytoplasmic flow between compartments, septal pores 

ensure that even nuclei can traverse septal crosswalls (Alberti-Segui et al., 2001). Since in 

FAR11 deletion mutants, detached hyphal parts can be found where one end has lysed and 

the other keeps growing (Figure 4), the septal pore must be closed. Septation is a complex 

process involving many different proteins (Wendland, 2003; Ayad-Durieux et al., 2000; see 

also Walther and Wendland, 2003) and is essential for sporangium formation (Wendland and 

Philippsen, 2002). Hyphal abscission at septa, as shown in Figure 8, is required to line out the 

spore-bearing compartment, the sporangium. Spores are then released by hyphal lysis.
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The function of  the Far11 protein in Ag cannot be the same as that of the Far11 protein 

homologs in Neurospora crassa or Saccharomyces cerevisiae. In the latter two, it participates 

in processes (hyphal fusion and pheromone response, respectively) which are absent in Ag.

Yet, compartmentalization, septal plugging and cell lysis are events observed during 

heterokaryon incompatibility in N.crassa (Marek et al., 2003). This filamentous fungus is 

capable of hyphal fusion, in contrast to Ashbya gossypii. If the fusion partner is a genetically 

different individual, then a heterokaryon can be formed. But the viability of such 

heterokaryons is governed by specific genetic loci. These are the so-called het-loci and 

responsible for heterokaryon incompatibility (Glass and Kuldau, 1992). In the case of het-

locus incompatibility, the fusion cell auto-destructs, a process which was likened to 

programmed cell death. Whether hyphal anastomosis nor het-loci are known to exist in 

A.gossypii. Hence, Far11 must play a different role in this organism. And there is no evident 

link between hyphal fusion and septation. Although it was observed that a septum formed at 

the site of hyphal fusion in the nematode-trapping fungus Arthrobotrys oligospora (Nordbring-

Hertz et al., 1989), no other findings yet support a connection between those two diverse 

processes.

AgFar11p might also just ensure correct septum formation. This connection has been shown 

for other proteins already. BIMG phosphatase for example is directly involved in septum 

formation, distinct from its role in mitosis (Fox et al., 2002). And in budding yeast, it was 

proposed that Far3 and Far7 to Far11 are part of a checkpoint that monitors cell fusion (Kemp 

and Sprague, 2003): They might be required to prevent premature re-entry into mitosis, thus 

ensuring that mating cells have enough time to fuse. So Far11 could be responsible for 

ending septum formation in A.gossypii. In a hypha, once the septum is formed, the older 

compartment does not require further cell wall deposition, whereas the younger one needs it 

at the growing tip. AgFar11p would be the checkpoint calling for a stop of cell wall deposition. 

The continuous cell wall deposition at already thick septa in A.gossypii (Figure 5) could be 

explained by Far11 deletion mutants missing out on the stop signal for septum construction. 

In this scenario, hyphal abscission and lysis would be consequences of relentless cell wall 

deposition at septa, but not an implemented part of the program for septation.

A possibility which cannot be excluded is that the phenotype of the Far11 deletion is due to a 

biochemical defect. Specifically, the deposed cell wall material would not be fully functional. 

Many events of lysis have been recorded, and in some specimens older than 20h, ruptures in 

the cell wall were observed. In this scenario, A.gossypii would try to compensate a weak cell 

wall with additional deposition of material, resulting in the thicker cell wall visible in Calcofluor 

stainings. But the fact that cells also lyse on osmotically stabilized medium is not in favor of 

this hypothesis, nor does it explain hyphal abscission at septa.

The reason for the varying degrees of severeness in Far11 deletion mutants is unknown. 

Less severe cases, which didn't show lysis of hyphal compartments, had more invasive 

growth. The surrounding medium in invasive growth stabilizes a weak cell wall, as 
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demonstrated by spheroblasts embedded in agar (Solingen and Haas, 1970). Hyphal lysis 

could be prevented this way.

Apart from the comparison to N.crassa and S.cerevisiae, AgFar11p was aligned with the 

homologs in the human fungal pathogen Candida albicans, the fruitfly Drosophila

melanogaster (CG11526 (AE003477)) and us, Homo sapiens (KIAA1170 (AB093 2996)) 

(data not shown). Conservation of Domain 1 and 2 was found in all these hypothetical 

proteins as well. The third domain in the middle of AgFar11p, the proline repeat, was only 

conserved in Candida albicans (besides S.cerevisiae and N.crassa), but could not be 

detected in the homologs of the other compared species. This suggests that the 4x(T,A,S)P 

motif may be specific to fungi. A thorough search yielded no immediate corresponding motif. 

But the consensus sequence HIATPAPSPPXSP may be broken down into two motifs, PxPxP 

followed by PxxP. These motifs were found in a recent study concerning the acetylation of the 

transcription factor p53 (Dornan et al., 2003). The tumor suppressor protein p53 is one of the 

most well-studied stress-responsive eukaryotic transcription factors that function in a 

damage-induced cell cycle checkpoint pathway, and the study shows that its acetylation 

depends on the transcriptional coactivator p300. p300 binds in vitro to PXXP-containing 

peptides derived from the proline repeat domain, and PXXP-containing peptides inhibit 

sequence-specific DNA-dependent acetylation of p53, indicating that p300 docking to a 

contiguous PXXP motif in p53 is required for p53 acetylation. If this binding to a transcription 

factor is a role for the proline repeat in the Far11 protein, remains to be seen. This goes for 

the transmembrane domains and Domain 1 and 2 as well, since none of these regions is 

confirmed on a biochemical or ultrastructural level for any of the above species.

No detailed model of the mode of action of Far proteins exists so far, with exception of the 

well investigated ScFar1p. There, is has been shown that a Cdc24p-Far1p complex is 

exported from the nucleus as a reaction to pheromone exposure. This mode of action is also 

a possibility for Far3 and Far7 to Far11 proteins, as they might play a general role in RNA 

metabolism (Kemp and Sprague, 2003).

AgFAR11 deletion mutants have a disturbed septation process. It is of paramount interest to 

investigate a FAR11 deletion in a septum mutant. The best candidate for such a double 

deletion is the CYK1 deletion strain, in which no septa at all are formed. If Far11p governs 

septation, the hyphal abscission/lysis phenotype of Agfar11  would be invisible in a 

Agfar11/cyk1 double deletion.
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Supplemental Material

Movie S1: Phase contrast recording of a hypha of 15h age.

Hyphal abscission forming at a septum in a FAR11 deletion mutant.  

Movie corresponds to Figure 3 of this publication. 

Time format:  Min : Sec 

Movie S2: Phase contrast recording of a hypha of 15h age.

Violent abscission with bending in a FAR11 deletion mutant.  

Movie corresponds to Figure 6 of this publication. 

Time format:  Min : Sec 

Movie S3: Phase contrast of a 12h old mycelium.

FAR11 deletion mutant with complete mycelial lysis.  

Movie corresponds to Figure 7 of this publication. 

Time format:  Min : Sec 
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Appendix

This appendix deals with important aspects of electronic fluorescence microscopy. Because 

GFP strains with generally weak signal intensity were used for this study, the limits of this 

fluorescence video microscopy setup were explored and determining factors evaluated and 

optimized.

For general information on human vision with respect to science, John C. Russ has posted a 

script on his website (‘Seeing the scientific image’, http://www.drjohnruss.com/archives/000013.html).

Providing an enthralling read, it informs on general principles of visual perception like 

adaptation, pattern recognition, color/grayscale differentiation, and their use in science. It 

might also help to avoid some common mistakes, for example going from the bright 

laboratory space to the dark microscope room to ‘quickly check a GFP signal’. 

Resolution for video microscopy of live organisms is not solely determined by the optics of the 

microscope. Two other factors are equally important: Illumination time, which is the main 

factor in recording speed, and sensitivity. Here, sensitivity describes the signal intensity, 

which depends on the local concentration of the fluorophore. These three factors, optical 

resolution, recording speed and sensitivity, determine how much information about dynamics 

or structural arrangement may be gained from an observed specimen (not regarding the fact 

that the observed organism should, colloquially put,  behave itself).

With the microscopes used in this study, optical resolution is state of the art. While lateral 

resolution is 100nm in x and y direction, resolution along the z-axis is limited to 300 nm. 

Hence, it rarely makes sense, in the case of z-series, to choose a z-step below 0.3 m.

These limitations are given by the wavelength of light and cannot be improved. But other 

factors can be heavily improved. By improving signal-to-noise ratio and camera sensitivity, 

exposure time of the weak Cap-GFP signals has been decreased from an initial five seconds 

to 80 ms, improving resolution more than sixty-fold. 
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  Electronic light microscopy:

Sensitivity

       Resolution                                            Recording speed 

1. Cell viability 
2. Temporal and spatial resolution

 of the process observed

Figure 1   Factors responsible for resolution in electronic light microscopy. As the 

optical resolution cannot be maximized, it is important to push recording speed and 

sensitivity. These factors are, in turn, both dependent on the strength of the fluorescent 

signal.
(adapted from SD Kohlwein, ‘The beauty of the yeast: live cell microscopy at the limits of optical resolution’, published 

in Microscopy Research Technique, 2000) 

The basis for excellent images in fluorescence microscopy is a good specimen. Your best 

images will be obtained from specimens of highest quality. This includes a number of factors:

General tissue quality
In A.gossypii, this is mostly determined by the age of the mycelium. Not only does hyphal 

autofluorescence increase with age, but also enlargment of vacuoles often makes for a 

porous overall appearance of the hypha. This must be balanced by the need for the strongest 

possible signal, though. In some cases, a good GFP signal appears only after proper folding, 

which may take as much as twelve hours. Temperature may contribute to the folding process: 

Chromophore formation of the wild-type GFP is strongly temprature dependent, favoring 

expression at lower temperatures of 20-25°C. Yet, improved GFP variants (Kimata et al., 

1997; Siemering et al., 1996) impose no limitations for applications in the physiological 

temperature range of Ashbya. Hence, only the hottest summer days, where temperature in 

the microscope room may rise well above 30°C, should be excluded for long-term 

observations of GFP signals.

Special care must be applied in cases of double staining in a GFP strain (see below, ‘Double 

labelling’). Many observations concerning fixation in a GFP strain, namely exclusion of 

centrifugation and fixation/staining on ice, have also yielded good results for visualizing the 
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delicate structure of actin cables in standard rhodamine-phalloidin stainings of the actin 

cytoskeleton.  

Highest possible signal to noise ratio
The labelled process should be readily distinguished from the background. High background 

fluorescence is a general problem of this kind of microscopy. In budding yeast, it is often 

circumnavigated by overexpressing the protein of interest, which in turn poses other 

significant questions to answer. In the case of A.gossypii, this point needs to be elaborated.

In a CCD camera, the chip accumulates a charge proportional to the intensity of the incident 

light. As the amount of light declines, the camera produces a more grainy, noisy image. With 

progressively lower light levels, the camera fails to detect a sufficient number of incident 

photons to provide a useful image. This problem cannot be eliminated by averaging multiple 

weak images or integrating them via software. In colloid-based photography (like, old 

cameras with argentine rolls of film, that is), the photographer has a number of options: 

A) Increase the exposure time (=illumination time) 

B) Increase the aperture or light collecting ability of the optics 

C) Increase the 'speed' of the film (i.e. its sensitivity) 

Interestingly, the natural reflex seems to be that exposure time is increased. This may have to 

do with the habit of common photography. But longer exposure to UV bleaches the signal 

faster, increases the chance of creating radiation artifacts and the longevity of the organism is 

reduced altogether. Luckily, video microscopy offers a myriad of other possibilities to counter 

this problem.

Increasing the diameter of the pinhole is an option for conventional photography and confocal 

microscopy, but in the normal fluorescence microscope, all incident light is collected anyway. 

So point B can not be altered in the setup of our microscopes. If you need to observe rapidly 

changing events, one possibility though is to increase the speed of the film (the ASA number; 

the higher, the more light sensitive, the quicker). In the case of fluorescent video microscopy, 

this means decreasing the energy used by a photon for triggering a charge release. This is 

done by elevating the base charge of the chip. The disadvantage of this technique is that 

signals resulting from thermic or non-specific signals (i.e. noise) also trigger a charge release 

more rapidly, resulting in noisier images altogether. But if the signal is sufficiently strong, this 

is a good way to get rapid sequential recordings, since exposure time can thusly be reduced.

There are other possibilities which may be exploited in digital fluorescent microscopy: 

D) Increasing the amount of illumination.

E) Increasing signal intensity.

With the setup of a conventional fluorescence microscope, the amount of illumination is 

usually a constant value. But the LUDL controller allows to select a discrete amount of 

fluorescent excitation intensity. So exposure time may be reduced by using 100% fluorescent 

illumination instead of a lower amount calling for longer exposure. This should be considered 
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for rapid processes. While the exposure to more intense UV light again reduces the lifetime of 

the observed organism (or part thereof) and bleaches the signal faster, this is often the only 

resort for recording events happening in fractions of seconds.

Increasing signal intensity may be done in two ways. A first choice often is to tag the protein 

of interest with more than one GFP copy. This is often done in cases where a protein with low 

abundance is tagged. But this process should be considered only if all other parameters have 

been perfected for the process (protein) observed, as the complete viability of a protein with 

two GFPs attached may be more easily questioned. The other method of choice is to reduce 

the background of the medium in which the hypha is observed. A vast reduction of 

illumination time was achieved in this study by approaching the problem of signal strength this 

way.  

This was done by replacing Ashbya Full Medium (AFM) with Ashbya Minimal Medium (AMM, 

also known as Ashbya Synthetic Dropout, ASD). This resulted in a fifth of the exposure time 

used for Cap-GFP in one third AFM and was further reduced by exploiting the possibilities of 

the rapid camera (the 'Meta' microscope).

After this improvement, the first time-lapse movies were done in the following way:

With a fluorescent image taken every 2 minutes, growing hyphae could be observed for 2 

hours and 40 minutes without harm. While recording such a length of time is possible, 

bleaching of the signal makes it increasingly hard to discern from the background of hyphal 

autofluorescence, which overmore increases with the amount of UV illumination. Bleaching, 

however, is strongest in the first images taken, while the bleaching curve in latter images 

becomes asymptotic. This is due to relaxation of the fluorescing molecule, which is 

exponential.

This is of advantage when it comes to recording rapid processes. The alternative to long-time 

observation of a single focal plane is called 'streaming'. In this case, recorded images are 

kept in the working memory (Random Access Memory, RAM) of the computer, thereby not 

forfeiting valuable time for saving an image to harddisk. The speed with which images are 

taken is then solely determined by the size of the image and its exposure time. By focusing 

on the restricted apical zone, images could be taken in intervals as short as 63 milliseconds. 

Combining this kind of rapid time-lapse imaging with the three spatial axes x,y,z, multiple 

plains can be taken along the Z-axis at successive, short time intervals. With exposure time 

being limited to 80ms, successive image acquisition was brought down to 300ms for a single 

image of the apical zone. A hypha being covered by 6-10 images in 0.5 m steps, the entire 

fluorescent action in a tip can be recorded in 2 to 3 seconds for one timepoint. Since many 

focal planes make up one single time point, the entire three-dimensional information for that 

time point is preserved. Adding multiple time points, this results in complete three-

dimensional data over time, hence also dubbed 4D microscopy. The disadvantage of this 

technique is quick bleaching of the specimen. 4D recordings could be extended to 5 minutes, 

but usually, the best information was found in the first 2 minutes.
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Double labelling. In cases of double labelling, good separation of fluorophores is required 

(considering e.g. that CCD video cameras are quite sensitive in the red to infra-red range). 

This is of less importance if your two (or more) proteins of interest are in different locations. If 

one is in the nucleus and the other in the cytoplasm, then the problem of bleed-through in two 

different spectra (i.e. one signal partly visible in the filter determined for visualization of the 

other protein) is of less concern.

Double stainings with one component being GFP are the most widespread application. 

Usually, the affiliation of a protein tagged with GFP and a cellular structure visualized by a 

known dye (Hoechst for nuclei, rhodamine-phalloidin for the actin cytoskeleton etc.) needs to 

be confirmed. In any case, the fluorescent excitation and emission spectra determined by the 

filters need to be considered. They are listed in Table 1 and 2 of this appendix. For example, 

when GFP is one component and rhodamine-phalloidin the other, then a bandpass filter has 

to be considered for GFP in order to avoid bleed-through in the upper nanometer range. 

Since the Endow GFP filter is a longpass, all signal above 500 nm is passed on to the 

camera, which would interfere with the rhodamine signal. This can be avoided by choosing 

the Piston filter for the GFP. Its emission being limited to 500-530 nm, rhodamine may then 

be recorded without any crosstalk of the fluorophores.

In the case of fixation in a GFP strain, structural preservation is an important factor. Cells are 

usually concentrated in a tube by centrifugation. It should be noted, however, that high 

centrifugal force may alter vacuolar morphology as well as the cytoskeleton. While double 

stainings of GFP and, for example, rhodamine-phalloidin, need to be adjusted to the specific 

GFP strain investigated (mainly regarding the fixation protocol), it is revealing that the 

colocalization images of Cap-GFP (see Part I, Figure 4) and Abp140p-GFP (Figure 16), both 

combined with rhodamine-phalloidin, were only achieved by letting the mycelia settle to the 

ground prio to fixation. After fixation, centrifugation steps were avoided as well.

Tissue preservation is also increased by low temperatures. Especially in double stainings with 

GFP, fixation and subsequent staining on ice may greatly increase conservation of the GFP 

signal. This was again the case with the Cap-GFP and Abp140p-GFP fusion constructs.
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 Table 1: Filter spectra and specifications on microscope Meta2

FILTERS               units: [nm]                                    
Microscope: Meta2 Manufacturer:

#1 YFP                                                                               Chroma 
Excitation 490 - 510            Emission 520 – 550

#2 RHODAMIN                                                                     Chroma 
Excitation 527.5 - 552.5       Emission 577.5 – 627.5

#3 PISTON GFP (BANDPASS)                                                Chroma 
Excitation 450 - 490            Emission 500-530

#4 DIC                                                                               Chroma 

#3 ENDOW GFP (LONGPASS)                                                Chroma 
Excitation 450 - 490            Emission 500+

#6 FITC                                                                               Zeiss
Excitation 450 - 490            Emission 515 – 565

#7 CFP                                                                               Chroma 
Excitation 426 - 446            Emission 460 – 500

#8 DAPI                                                                          Zeiss 
Excitation 365                     Emission 420+
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 Table 2: Filter spectra and specifications on microscope PicMic

FILTERS units: [nm]
Microscope: PicMic Manufacturer:

#1 FITC                                                                               Zeiss
Excitation 450 - 490            Emission 520+ 

#2 DAPI                                                                        Zeiss 
Excitation 365                     Emission 420+

#3 DIC                                                                       Chroma 

#4 EGFP                                                                            Chroma 
Excitation 450 - 490            Emission 500+

#5 FRET                                                                               Chroma 
Excitation 426 – 446            Emission 520 - 550 

#6 CFP                                                                                Chroma
Excitation 426 - 446            Emission 460 – 500

#7 YFP                                                                                Chroma 
Excitation 490 - 510            Emission 520 – 550

#8 RHODAMIN                                                                        Zeiss 
Excitation 540 - 552             Emission 590+ 
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