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Abstract 
 
 
Antigen recognition and presentation to subsequently induce an appropriate host response is 

dependent on the action of antigen-presenting cells such as dendritic cells and macrophages. In this 

thesis, the function of cholesterol and coronin 1 in antigen-presenting cells was studied.  

In the first part of this thesis, the delivery of exogenous antigens into the MHC class I pathway, 

termed cross-presentation, was investigated. Cross-presentation is important for the establishment of 

an immune response against viruses or tumour cells in vivo. Antigens to be cross-presented are 

frequently internalized via macropinocytosis. Here it is shown, that by cholesterol-depletion of 

antigen-presenting cells macropinosome formation was abolished resulting in an impaired cross-

presentation of exogenous antigens. In accordance with a role of cholesterol in cross-presentation, 

modification of antigens by palmitoylation, a modification known to increase the affinity to 

cholesterol, resulted in a strongly enhanced uptake and improved cross-presentation of the antigen. 

Together, these results indicate that cholesterol plays an important role in macropinocytosis and in the 

subsequent delivery of antigens into the MHC class I pathway. To explore palmitoylation as a 

modification that would enhance cross-presentation of antigens, we found that such modification often 

results in the insolubility of the modified antigen. For specific antigens however the use of 

palmitoylation to improve cross-presentation of soluble proteins could be explored for the 

development of new vaccines. 

 

The second part of this thesis focused on coronin 1, a member of the WD repeat protein family of 

actin-binding proteins termed coronins. In contrast to the other mammalian coronins, coronin 1 is 

expressed predominantly in leukocytes arguing for a role in leukocyte specific processes. To 

understand a function for coronin 1, the structure of coronin 1 was analyzed. Coronin 1 consists of 

three structural domains: a N-terminal region containing 5 WD40 repeats, which is connected by a 

linker region with a C-terminal coiled coil domain. Coronin 1 occurs in vivo as homotrimeric 

complexes, which associate with the plasma membrane and with the cytoskeleton via two distinct 

binding domains. It was found, that association of coronin 1 with the cytoskeleton was mediated by 

coiled coil induced trimerization of a stretch of positively charged residues within the linker region. In 

contrast, plasma membrane binding was independent of the oligomerization state of coronin 1 and 

required the presence of the N-terminal, WD repeat-containing domain. By bridging the F-actin 

cytoskeleton with the plasma membrane coronin1 may serve as a linker integrating outside signals  

with the remodelling of the F-actin cytoskeleton. 
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1.1. Abstract 
 

In this chapter the basic mechanisms involved in the generation of adaptive immunity 

are introduced. Antigen-presentation is dependent on the function of antigen-presenting 

cells such as macrophages and dendritic cells. It will be explained how these cells process 

and present antigens. Furthermore, cross-presentation, a mechanism important in the 

generation of immunity against viruses and tumour cells are discussed.  Many functions 

in the immune system are dependent on the remodelling of the actin cytoskeleton 

including the interaction of antigen-presenting cells with T-cells. This results in the 

generation of a so-called immunological synapse, that represents the clustering of 

cytoskeletal elements with transmembrane receptors and signaling molecules. One 

protein, which may play a regulatory role in the formation of the immunological synapse 

is coronin 1. The final part of this chapter describes the current knowledge on coronin 1.  

 

1.2. The immune system 
 

Vertebrates are constantly exposed to microorganisms such as bacteria, viruses, fungi and 

parasites. However, they do not develop infections under normal conditions due to the 

presence of a protective system - the immune system -, which is involved in pathogen 

recognition and subsequent clearance of these pathogens from the body. In vertebrates, two 

different kinds of immunity exist and the generation of an effective immune response relies 

on both of them. 

The early phase of host defence is controlled by the components of the so-called innate 

immune system. In this phase, removal of antigens relies mainly on the action of phagocytes 

such as macrophages and neutrophils. These cells express pattern-recognition receptors 

(PPR), which are germline-encoded and recognize conserved repetitive antigenic structures 

so-called PAMPs (pathogen-associated molecular patterns), (Janeway, 1989; Ezekowitz at al., 

1990; Janeway and Medzhitov, 2002). Recognition leads to internalization of the microbes 

and their products and subsequently to their degradation in the endosomal/lysosomal 

compartments.  

In the later phase of host defence, when the pathogens have managed to evade the 

mechanisms of innate host defence and established an infection, the generation of a more 
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pathogen-specific immune response is required, resulting in the induction of an adaptive 

immune response. Adaptive immune responses can be induced against practically all foreign 

antigens and allows the generation of “memory”, which, in a second encounter with the 

antigen, generates a more efficient immune response. 

 

1.3. The basic mechanisms of adaptive immunity 
 

Antigen recognition in the adaptive immunity is based on the presence of a broad variety of 

highly diverse soluble and membrane-bound antigen receptors. This diversity is mainly 

generated by somatic rearrangement of germline-encoded receptor gene segments (Tonewaga, 

1988). To be able to deal both with extracellular as well as with intracellular pathogens, two 

different types of adaptive immune responses exist, namely a humoral and a cellular response. 

The appropriate stimulation of these responses relies on the action of different effector cells; 

the antigen-presenting cell (APC) such as macrophages and dendritic cells, the B-cell and the 

T-cell. 

Effector B-cells, the mediators of the humoral immune response, use membrane-bound 

receptors (immunoglobulins (Igs)) to recognize epitopes formed by the native-three 

dimensional structure of the antigen (Amit et al., 1985, 1986; Colman et al., 1987). Upon 

activation, B-cells secrete antibodies (= soluble Igs), which bind to soluble or membrane-

associated antigens. Binding can lead to neutralization of extracellular pathogens and their 

products and facilitate uptake by phagocytic cells (Lanzavecchia, 1987).  

T-cells, the mediators of the cellular immune response, recognize antigens (usually peptides) 

via a membrane-bound receptor, the T-cell receptor (TCR), only when antigens are bound to 

molecules of the major histocompatibility complex (MHC) and are presented on the surface of 

APC. Peptides, which are to be bound to MHC molecules are derived from proteins, which 

are intracellulary processed. Two processing pathways exit within the APC, generating 

ligands for the two different MHC subsets, the MHC class I and MHC class II molecules. 

Peptides bound to MHC class I molecules are recognized by CD8+ (cytotoxic) T-cells. 

Antigen recognition induces effector CD8+ T-cells to rapidly kill the presenting cell by 

secretion (perforin/granzymes) or surface expression (Fas-ligand) of apoptosis inducing 

factors (Berke, 1997). In the case of an infection, pathogens residing in the cytosol are thereby 

either killed or released into the extracellular space. There they can be eliminated by 
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subsequent internalization in macrophages or by recognition by antibodies followed by 

complement-mediated lysis (Harty et al., 2000).  

Recognition of peptides bound to surface MHC class II molecules activates CD4+ (helper) T-

cells. Effector CD4+ T-cells then produce soluble factors, which induce macrophage 

activation to enhance macrophage microbicidal capacity (TH1 T-cells) or to stimulate B-cells 

to produce antibodies (TH2 T-cells) (Abbas et al., 1996; Ma et al., 2003). 

Taken together, whereas B-cells and CD4+ T-cells ensure the elimination of pathogens 

residing in the extracellular space, CD8+ T-cells are necessary for the clearance of pathogens 

residing in the cytosol of infected cells.  

 

1.4. The antigen-presenting cells 
 

Antigen-presenting cells (APCs) convert endogenous and exogenous proteins into peptides, 

which are then bound on MHC molecules presented to T-cells for T-cell activation. 

Professional APCs are distinct from every other MHC expressing cell, as they possess the 

unique ability to stimulate naïve T-cells. Stimulation of naïve T-cells upon their first 

encounter with an antigen requires an additional signal delivered from the APC (Bugeon and 

Dallman, 2000). Professional APCs such as B-cells, macrophages and dendritic cells express 

therefore high levels of co-stimulatory molecules of the B7 family, which act on the T-cell 

surface molecules CD28 and CTLA-4.  

 
1.4.1. B-cells 
 
Antigen-presentation in B-cells is mainly linked with their function to secrete antibodies. 

Antigen binding to their surface Igs, results in the internalization of the antigen and 

subsequent processing in the MHC class II pathway (Lanzavecchia, 1990; Watts, 1997).  

 
1.4.2. Macrophages 
 
Macrophages possess a high endocytic capacity, which accounts for their important role in 

clearance of invading microorganism during the early phase of host response (Aderem and 

Underhill, 1999). They can internalize virtually any form of antigen, including soluble as well 

as particulate antigens non-specifically or via specific receptors. The endosomal/lysosomal 

compartments of these cells ensure the efficient digestion of the endocytosed material. In 

addition, upon infection or inflammation macrophages become activated enhancing
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their ability to kill internalized microbes by production of reactive oxygen (oxidative burst) 

and nitrogen radicals and by accelerating phagosomal/lysosomal fusion (Fang, 2004). 

Macrophages express MHC class I, MHC class II and co-stimulatory molecules. However, 

compared to dendritic cells and B-cells, the expression levels are lower and this could be one 

reason why macrophages are less efficient in priming of naïve T-cells compared to DCs and 

B-cells (Chang et al., 1995; Mellman et al., 1998; Banchereau and Steinman, 1998). 

Activation of T-cells by macrophages is thought to occur especially at the site of infections or 

inflammation (Trombetta and Mellman, 2005). 

 
1.4.3 Dendritic cells 
 
Due to their efficiency in antigen-presentation and their unique migration behaviour dendritic 

cells are regarded as the antigen-presenting cell responsible for the activation of naïve T-cells 

(Banchereau and Steinman, 1998; Engering, 1998). Indeed, mice lacking DCs show defects in 

the initiation of adaptive immune responses (Jung et al., 2002). In the tissue, dendritic cells 

occur in an immature state. Similar to macrophages, immature dendritic cells have a large 

capacity to internalize a broad range of antigens using specific and non-specific uptake 

modes. Stimulation by cytokines or bacterial compounds causes dendritic cells to migrate 

from the periphery to the T-cell zones of draining lymph nodes, where naïve T-cells are 

located (Roake et al., 1995; MacPherson et al., 1995). During migration, dendritic cells 

undergo a profound phenotypical change converting into a professional antigen-presenting 

cell, a so-called mature cell. This maturation process is accompanied by downregulation of 

endocytic capacities, by upregulation of the expression of co-stimulatory molecules, by 

enhanced intracellular antigen-processing and transport of peptide loaded MHC class 

molecules to the cell surface (Sallusto and Lanzavecchia, 1994; Cella et al., 1997; West et al., 

2000; Garrett et al., 2000; Inaba et al., 2000; Trombetta et al., 2003).  

Several different DCs subsets occur in vivo, classified by their progenitors, their tissue 

distribution and surface markers (Shortman and Liu, 2002). 

 

1.5. The sampling of antigens 
 

Three general types of endocytic routes used by APCs can be distinguished: recepetor-

mediated endocytosis, phagocytosis and macropinocytosis.  
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1.5.1. Receptor-mediated endocytosis 
 
Receptor-mediated endocytosis allows the efficient internalization of antigens, which enables 

the APC to present antigens also then antigens occur at low concentrations (Lanzavecchia, 

1990). A broad range of surface receptors including Fc receptors, scavenger receptors, lectins 

such as complement receptor, mannose receptor or DEC-205 are involved in the recognition 

of a variety of extracellular material. Internalization of ligand-receptor complexes is 

performed mainly by clathrin-coated pits and to a lesser extent also through caveolae 

(caveolin containing invaginations) (Mellman, 1996; Conner and Schmid, 2003). 

 
1.5.2. Phagocytsosis 
 
The uptake of particulate antigens by phagocytosis not only serves antigen sampling but also 

represents an important innate host defence mechanism. Phagocytosis relies partially on the 

same receptors used for the uptake of soluble ligands, as these receptors can also recognize 

their ligands on the surface of microbes (Trombetta and Mellman, 2005). Beside extracellular 

microbes, cells killed upon infection represent a major source of exogenous antigens. For 

internalization of apoptotic bodies a large repertoire of surface receptors are used including 

Fc-receptors, scavenger receptors and integrins (Almeida and Linden, 2005). Phagosome 

formation is an actin-dependent process, in which particle binding induces receptor clustering 

and F-actin assembly resulting in pseudopod formation and finally particle engulfment.  

 
1.5.3. Macropinocytosis 
 
Macropinocytosis accounts for the random internalization of extracellular fluid and soluble 

antigens (Lanzavecchia, 1996; Steinman, 1995). Whereas immature dendritic cells carry out 

macropinocytosis constitutively, it can be induced in macrophages by treatment with phorbol 

esters or growth factors (Swanson, 1989; Racoosin and Swanson, 1989; Sallusto et al., 1995). 

Macropinosome formation starts at the cell periphery by extension of a large planar 

membrane ruffle (lamellipodium) that folds back to form the vesicles of 0.5-2 µm size (Araki 

et al., 1996; Amyere et al., 2000; Rupper et al., 2001).  

Together, using different internalization pathway allows the antigen-presenting cell to sample 

a great variety of antigens.  
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1.6. Antigen-processing 
 

Internalized antigens need to be further processed to generate peptide ligands for surface 

presentation on MHC molecules. Processing takes place within antigen-presenting cells via 

either the MHC class I or the MHC class II pathway.  

 
1.6.1.The MHC class I pathway 
 
MHC class I molecules are heterodimers consisting of a membrane-spanning heavy chain 

which is non-covalently associated with a β-chain, called microglobulin. The peptides bind in 

a cleft generated by the folding of the α1 and α2 domains of the heavy chain (Bjorkman et al., 

1987). MHC class I peptide ligands are normally 8-10 aa long and possess two anchor 

positions (Townsend et al., 1989; Falk et al., 1991). Typically, MHC class I binding peptides 

are derived from different sources including cytosolic self or foreign proteins, alternative 

translation products and defective ribosomal products (DRiPs), or proteins retro-translocated 

to the cytosol from the endoplasmatic reticulum (Wang et al., 1996; Bullock and Eisenlohr, 

1996; Bacik et al., 1997; Schild and Rammensee, 2000; Schubert et al., 2000). Once in the 

cytosol, antigens are ubiquitinated thereby becoming substrates for the proteasome, a 

cytosolic multi-enzyme complex (Baumeister et al., 1998) that has the capacity to cleave the 

ubiquitinated proteins into peptides of 10-20 aa length. Stimulation of cells with interferon-γ 

can modulate the activity of the proteasome by upregulation of a subset of proteasomal 

subunits (LMP2, LMP7, MECL-1, P28) to generate more antigenic peptides (Belich et al., 

1994; Gaczynska et al., 1994; Realini et al., 1994; Nandi et al., 1996; Groettrup et al., 1996). 

Subsequently the generated peptides are transported into the ER-lumen by the ATP-dependent 

transporter associated with antigen-processing, the TAP1/TAP2 heterodimer (Spies et al., 

1990; Androlewicz et al., 1993; Neefjes et al., 1993). In the ER-lumen, the N-termini of the 

peptides are further proteolytic processed by an ER amino peptidase (ERAP) prior to their 

loading onto the newly synthesized MHC class I molecules (Serwold et al., 2002). MHC class 

I peptide binding occurs with the assistance of the ER chaperones calnexin, calreticulin and 

tapasin and the thiol oxidoreductase ERp57 (Sadasivan et al., 1996; Vassilakos et al., 1996; 

Hughes and Cresswell, 1998; Lindquist et al., 1998; Morrice and Powis; 1998).  
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Peptide binding releases the MHC class I molecule for transport via the exocytic pathway to 

the cell surface (Townsend et al., 1989). Peptides presented on MHC class I molecules are 

recognized by CD8+ T-cells (figure 1.1.). Processing and presentation of MHC class I ligands 

occurs constitutively in all nucleated cells allowing protein expression to be monitored at all 

times.  

 
1.6.2. The MHC class II pathway 
 
Expression of MHC class II molecules is normally restricted to professional antigen-

presenting cells. However, interferon-γ treatment can also lead to class II expression in other 

cell types (Steimle et al., 1994). MHC class II molecules are composed of two transmembrane 

glycoproteins, the α- and β-chain. Due to the more open confirmation of the peptide binding 

site formed by the α1 and β1 domain of the two chains, the peptide length is not restricted and 

varies from 13 to 25 aa length (Brown et al., 1993).  

MHC class II peptide ligands are derived from endogenous proteins found in the endocytic 

compartment of the cell or from material that has gained access to this location upon 

internalization. For proteolytic processing, proteins are transported into the acidic lysosomal 

compartment where they are cleaved into shorter peptides by proteases, which include 

cysteine proteases, the cathepsins as well as asparaginyl endopeptidase (Chapman, 1998; 

Figure 1.1. The MHC class I pathway 
 
Pathogen-derived or self-proteins within 
the cytosol (A), DRiPS (B) or retro-
translocated proteins from the ER (C) 
are degraded by the proteasome. 
Generated peptides of 10-20 aa length 
are transported by the TAP transporter 
into the endoplasmic reticulum (ER). In 
the ER-lumen, peptides are N-terminal 
trimmed by ER aminopeptidase (ERAP) 
prior to binding to newly synthesized 
MHC class I molecules [heavy chain + 
β2 microglobulin (β2m)] . Binding of 
peptides occurs with the assistance of 
ER chaperones, calreticulin ( ),  
tapasin, ( ) and the ER-oxidoreductase 
ERp57 ( ). Subsequently, the peptide-
MHC class I complexes (pMHC class I) 
are transported via the Golgi complex to 
the plasma membrane. Recognition by 
CD8+ T-cells results in killing of the 
presenting cell. 
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Manoury et al., 1998). Subsequent MHC class II loading onto MHC class II molecules takes 

place in a specialized endocytic compartment, the so-called MHC class II compartment 

(MIIC) where the antigenic peptides encounter the MHC class II molecules coming from the 

ER (Peters et al., 1991, Pieters et al., 1991; Amigorena et al., 1994; Tulp et al., 1994, West et 

al., 1994). Until peptide binding, the newly synthesized MHC class II molecules are 

complexed with the invariant chain (Ii) which occupies the peptide binding cleft of the MHC 

class II with its CLIP (class II linked invariant chain peptide) sequence. This prevents the 

unspecific binding of peptides in the ER (Roche and Cresswell, 1990; Teyton et al., 1990; 

Eynon et al., 1999). Furthermore the Ii targets the MHC class II molecules from the ER to the 

MIIC (Bakke et al., 1990; Lotteau et al., 1990; Pieters et al., 1993).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the MIIC, the Ii is cleaved and the CLIP peptide bound to the MHC class II molecules is 

exchanged for high affinity antigenic peptides with the assistance of specific MHC class II 

like molecule HLA-DM (Mellins et al., 1990; Kelly et al., 1991; Denzin and Cresswell, 1995; 

Sloan et al., 1995; Kropshofer et al., 1996). Once loaded, the peptide-MHC class II 

complexes are transported to the surface of the antigen-presenting cell where they are 

recognized by CD4+ T-cells (figure 1.2.).  

 

Figure 1.2. The MHC class II pathway. 
 
Extracellular proteins/pathogens are 
internalized via receptor-mediated 
endocytosis, phagocytosis or 
macropinocytosis and are subsequently 
degraded in the endosomal/lysosomal 
system. MHC class II molecules are 
synthesized in the endoplasmatic 
reticulum (ER), where they associate non-
covalently with the invariant chain (Ii) to 
block binding of peptides to the MHC 
class II complex. The MHCII:Ii complex 
(one Ii trimer binds to three MHC class II 
molecules) is then transported via the 
Golgi complex, to the MHC class II 
loading compartment (MIIC), where the 
peptide loading takes place. First the Ii is 
degraded, giving raise to the CLIP 
peptide. Exchange of the CLIP peptide for 
antigenic peptides occurs with the 
assistance of HLA-DM. After loading the 
peptide: MHC class II complex (pMHC 
class II) is transported to the plasma 
membrane, where they are recognized by 
CD4+ T-cells, which can then activate the 
presenting cell or mount an antibody 
response.  
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After development in the thymus, naïve CD4+ and CD8+ T-lymphocytes circulate in the blood 

system and the secondary lymphoid organs. As they are excluded from the periphery, 

generation of immunity against peripheral antigens depends on the action of antigen-

presenting cells. These cells migrate from the periphery to the secondary lymphoid organs to 

present antigens internalized at the periphery to naïve T-cells.  

 

1.7. Cross-presentation: The MHC class I processing pathway for 

exogenous antigens 
 

For the generation of an immune response against viruses and tumour cells in the periphery, 

exogenous antigens have to gain access to the MHC class I processing pathway of antigen-

presenting cells. Indeed, in vivo such a pathway exists and is referred to cross-presentation 

(Bevan, 1976). 

Cross-presentation, first described in 1976 (Bevan, 1976) has two physiological outcomes. It 

can lead either to induction of tolerance against peripheral antigens (von Boehmer and Hafen, 

1986; Kurts et al., 1997; Heath and Carbone, 2001) or to stimulation of CD8+ T-cells. In the 

latter case, it ensures the generation of an anti-viral immune response when the professional 

APC is not infected by the virus itself  (Sigal et al., 1999; Prasad et al., 2001) or when the 

virus interferes with the ability of professional APC to activate T-cells (Mueller et al., 2002; 

Basta et al., 2002; Gold et al., 2002). Importantly, cross-presentation was also shown to be 

involved in the induction of an antitumour response (Huang et al., 1994). 

 
1.7.1. The nature of the cross-presented antigen  
 
To date there appears to be no limitation to the types of antigens that can be cross-presented. 

In in vitro and in vivo studies, different types of exogenous antigens can gain access to the 

MHC class I processing pathway, including free peptides, peptides associated with heat-shock 

proteins, soluble proteins, immune complexes, exosomes, apoptotic bodies and material from 

both necrotic cells and live cells (Norbury et al., 1995; Suto and Srivastava, 1995; Albert et 

al., 1998; Regnault et al., 1999; Harshyne et al., 2001; Larsson et al., 2001; Wolfers et al., 

2001; Andrieu et al., 2003). One major source for the exogenous antigens in vivo might be 

cells killed in the course of an infection and their debris such as apoptotic bodies. It was 

shown that cell death leads to enhanced cross-presentation in vivo (Kurts et al., 1998).  
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1.7.2. The nature of the cross-presenting cell 
 
Several types of endocytic cells including L-cells, keratinocytes, macrophages, B-cells and 

dendritic cells have been shown to cross-present exogenous antigens in vitro (Ackerman and 

Cresswell, 2004). In vivo, dendritic cells are necessary and sufficient for cross-presentation. 

Of the different DC subsets in vivo, CD8+ DCs seem to be the predominant cross-presenting 

cells (Kurts et al., 2001; Belz et al., 2002; Jung et al., 2002).  

 
1.7.3. The mechanism of cross-presentation 
 
The mechanism of cross-presentation can be influenced by the type of antigen and by the 

nature of the cross-presenting cell. Whereas some antigens directly traverse the plasma 

membrane and thereby gain access to the MHC class I processing pathway (Kim et al., 1997; 

Jeannin et al., 2000), in the majority of the cases, the antigens to be cross-presented are 

actively taken up by the APC via phagocytosis, macropinocytosis or receptor-mediated 

endocytosis (Reis e Sousa and Germain, 1995; Albert et al., 1998; Norbury et al. 1995; Basu 

et al., 2001). Studies of the subsequent processing of the internalized antigens led to the 

description of two different pathways, a TAP-independent and a TAP dependent pathway.   

 
1.7.3.1. The TAP-independent pathway 
 
After internalization, antigen can be processed in the endosomal/lysosomal compartment of 

the APC, generating peptides which either bind to recycling MHC class I molecules (Jondal et 

al., 1996; Svensson et al., 1997; Chefalo and Harding, 2001) or, after regurgitation, to empty 

MHC class I molecules on the cell surface (Harding and Song, 1994). This pathway is 

referred as the TAP-independent cross-presentation pathway (Campbell et al., 2000; Chen and 

Jondal, 2004). 
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In dendritic cells cross-presentation of exogenous antigens is not affected by inhibitors of 

lysosomal proteolysis or by chloroquine, which blocks acidification and thereby protein 

degradation in the endosomal/lysosomal system (Reis e Sousa and Germain, 1995; 

Kovacsovic-Bankowski and Rock, 1995; Norbury et al., 1995), indicating that this pathway 

does not play an important role in cross-presentation in vivo. 

 
1.7.3.2. The TAP-dependent pathway 
 
The major processing pathway, which is used for cross-presentation of most antigens relies on 

proteosomal degradation and TAP-dependent peptide MHC class I loading. The existence of 

such a pathway was first described in macrophages (Kovacsovics-Bankowski and Rock, 

1995; Norbury et al., 1995; Reis e Sousa and Germain, 1995) and later also in dendritic cells 

(Shen et al., 1997; Norbury et al., 1997).  

TAP dependency of antigen-processing is not restricted to the mode of antigen internalization 

and the type of antigen. Phagocytosis, macropinocytosis as well as receptor-mediated 

endocytosis are used for sampling of different kinds of antigens to be cross-presented via this 

pathway (Kovacsovics-Bankowski and Rock, 1995; Rescigno et al., 1998; 

Figure 1.3. The TAP independent 
pathway 
 
Exogenous antigens are processed 
after internalization in the 
endosomal/lysosomal compartment 
of the cell. Subsequent peptide 
loading onto recycling MHC class I 
molecules (A) occurs in the 
endosomal/lysosomal compartment. 
In addition, peptides can bind on 
empty MHC class I molecules at the 
cell surface after regurgitation (B).  
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Svensson and Wick, 1999; Norbury et al., 1995, 1997; Rodriguez et al., 1999; Regnault et al., 

1999; Huang et al., 1996; Miller et al., 1998; Sigal et al., 1999).  

Concerning the underlying molecular basis, where are two major questions. First, where do 

antigens gain access to the cytosol and second, where does the TAP-dependent peptide 

loading onto MHC class I molecules takes place.  

 
1.7.3.2.1. MHC class I loading in the ER 
 
After internalization and cytosolic transport, the antigen is degraded by the proteasome and 

the generated peptides are transported via the TAP complex into the ER. In the ER, peptides 

are loaded onto newly synthesized MHC class I molecules prior to the delivery to the cell 

surface for presentation (Heath and Carbone, 2001). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
1.7.3.2.2. MHC class I loading in the ER-phagosome 
 
Recent work based on the finding that the ER contributes to phagosome formation (Garin et 

al., 2001; Gagnon et al. 2002), led to the discovery of an ER-phagosome organelle 

(Ackerman et al., 2003, Guermonprez et al., 2003, Houde et al., 2003). In addition to the 

endocytosed antigen, these “ER-phagosomes” contain newly synthesized MHC class I 

 
Figure 1.4. The TAP dependent 
pathway “ER loading” 
 
After internalization, the exogenous 
antigens are transported via an 
unknown mechanism into the 
cytoplasm of the antigen-presenting 
cell. The subsequent processing of 
the antigens occurs via the classical 
MHC class I pathway.   
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molecules, TAP transporters and all components of the MHC class I loading complex. 

Furthermore, they associate with proteasomes at their cytoplasmic side (Ackerman et al., 

2003, Guermonprez et al., 2003, Houde et al., 2003). ER-phagosomes are sufficient for cross-

presentation, fulfilling thereby a similar function as the ER in the classical MHC class I 

processing pathway. Shuttling of antigens to be cross-presented in an ER-like environment 

prior to the proteasomal degradation was also observed in dendritic cells where soluble 

proteins could gain access to the perinuclear lumen of the ER after internalization (Ackerman 

et al., 2005). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

These studies suggests that after cytosolic transport, the proteins are proteolytical cleaved by 

the ER-phagosome associated proteasome, then transported back into the ER-phagosome 

where loading on the MHC class I molecules takes place. How the generated peptide: MHC 

class I complexes are then transported to the cell surface is currently not well understood. 

As proteasomal products are relatively short lived (Reits et al., 2003), the 

compartmentalization of cross-presentation in ER-phagosomes may help to increase the 

efficiency of cross-presentation of the phagocytosed antigens.  

 

 

 

Figure 1.5. TAP-dependent pathway “ 
ER-phagosome loading” 
 
Exogenous antigens can gain access to 
an ER-like compartment during or 
immediately after internalization.  
These ER-phagosomes are fully 
competent to mediate cross-
presentation. 
For subsequent proteasomal 
degradation, proteins are transported 
into the cytoplasm via an unknown 
mechanism. The generated peptides are 
transported back into the lumen of the 
ER-phagosome via the TAP transporter. 
After loading onto MHC class I 
molecules in the ER-phagosome, the 
peptide: MHC class I complexes are 
transported to the plasma membrane. 
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1.7.3.2.3. How does the cytosolic transport of antigens occur? 
 
In order to be efficiently cross-presented in vivo, the exogenous antigens have to reach the 

cytosol (Ackerman and Cresswell, 2004). It is not known how transport from the endosome to 

the cytosol occurs.  

Early studies suggested that cytosolic transfer is a selective transport mechanism comprised of 

specific channels or translocators mediating the delivery by leakage or in a size dependent 

manner (Norbury et al. 1995; Rodriguez et al., 1999; Ackerman et al., 2004). The recent 

description of the functional intersection between the ER and the endocytic pathways led to 

the proposal that ER proteins could mediate the transport of antigens to the cytosol. Indeed, in 

the ER, there exists a pathway, termed ERAD (ER associated degradation) that is involved in 

the transport of misfolded proteins into the cytosol where the proteins are subjected to 

degradation (Tsai et al., 2002). Cytosolic transport in the ERAD pathway is shown to occur 

by the same transporter used for the translocation of proteins into the ER, the Sec61 

translocon (Wiertz et al., 1996). Whether or not Sec61 mediates also the translocation of 

exogenous antigens from the endocytic compartment into the cytosol for cross-presentation 

remains to be proven (Koopmann et al., 2000; Houde et al., 2003; Imai et al., 2005).  

The human cytomegalovirus protein US11 induces the dislocation of the MHC class I heavy 

chain from the ER to the cytosol for subsequent degradation, thereby circumventing the 

induction of an immune response. Recent work by two groups (Lilley and Ploegh, 2004; Ye et 

al., 2004) now identified an ER membrane protein, called Derlin-1, which is involved in this 

US11 mediated retro-translocation. Derlin-1 is proposed to be a component of the transport 

channel. Together with the cytosolic ATPase p97, which generates the driving force for the 

transport by ATP hydrolysis and targets the protein by ubiquitination for subsequent 

degradation, Derlin-1 might mediate also the transport of exogenous antigens into the cytosol.  

 
1.7.4. Regulation of cross-presentation 
 
Cross-presentation of exogenous antigens can be induced in dendritic cells by inflammatory 

compounds (Schulz et al., 2005; Gil-Torregrose et al., 2004; Datta et al., 2003), by Fc 

receptor signaling (den Haan and Bevan, 2002), or by CD4+ T-cells (Machy et al., 2002), 

raising the question whether cross-presentation is regulated perhaps similar to the presentation 

of MHC class II restricted antigens during DC maturation (Cella et al., 1997; Pierre et al., 

1997). 
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The mechanisms underlying this regulation are not well understood. Enhancement of cross-

presentation might be achieved by increased synthesis of MHC class I and components of the 

MHC class I loading complex (Gil-Torregrose et al., 2004), by shifting the proteasomal 

activity from endogenous to exogenous protein processing (Lelouard et al., 2002), by 

recruitment of MHC class I molecules to “cross-presentation” compartments (Lizee et al., 

2003) and by enhancement of the T-cell stimulatory capacity (Schulz et al., 2005). Further 

investigations are necessary to completely understood how cross-presentation is regulated in 

vivo.  

 

1.8. Antigen-presentation and T-cell activation 
 

The peptide: MHC complexes presented on the surface of the APC are recognized by T-cells 

through their T-cell receptor (TCR). The TCR is a multimeric protein complex composed of 

the ligand binding TCR α and β-chain, the CD3γδε chains and the homodimer CD3ζ (Clefers 

et al., 1988; Klausner et al., 1990). Unlike the TCR chains, the CD3 components have long 

cytoplasmic tails containing double tyrosine based motifs, the so-called immune receptor 

tyrosine-based activation motifs (ITAM) which mediate the signal transduction through 

interaction with cytoplasmic proteins (Reth et al., 1989). Signaling via the TCR results in the 

intracellular activation of transcription factors such as NFκB, AP-1 and NF-AT (Cantrell, 

1996). Together these factors promote transcription and secretion of the T-cell growth factor 

IL-2 and other cytokines, leading to T-cell proliferation, differentiation or induction of the 

effector function. 

 
1.8.1. Formation of an immunological synapse at the contact site between T-cell 

and APC 

 
Signaling by the TCR is accompanied with clustering of receptors, signaling molecules and 

cytoskeletal proteins in a so-called immunological synapse at the contact site between the 

APC and the T-cell (Monks et al., 1998; Grakoui et al., 1999). Formation of the 

immunological synapse is important to prolong signaling, for the regulation of signaling by 

successive recruitment of signaling molecules into the synapse and for receptor internalization 

(Monks et al., 1998; Bunnell et al., 2002; Huppa et al., 2003). Furthermore, the close contact 

between APC and T-cell allows the targeted release of lytic granules and cytokines 

(Stinchcombe et al., 2001; Reichert et al., 2001).  
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In figure 1.6. a simplified scheme of an immunological synapse is shown. In the center of the 

synapse, the so-called centralized supramolecular activation cluster (cSMAC), peptide: MHC-

TCR/CD3 complexes, the co-stimulatory molecules CD80/CD28 and the signaling molecules 

are aggregated. A rim, termed peripheral SMAC (pSMAC) formed by the adhesion receptors 

LFA-1/ICAM-1 and the cytoskeletal proteins surrounds the center of the immunological 

synapse and thereby stabilizing the junction (Bromley et al., 2001).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.8.2. Role of lipid rafts and the cytoskeleton in formation of the immunological 

synapse 

 
The assembly of the immunological synapse depends on the interaction of lipid rafts and the 

F-actin cytoskeleton (Friedl and Storim, 2004; Meiri, 2004). Lipid rafts are glycosphingolipid 

and cholesterol enriched membrane microdomains, which are biochemically defined by their 

insolubility in nonionic detergents at 4°C (Simons and Ikonen, 1997). Protein localization in 

rafts is promoted by lipid anchors including glycophosphatidylinositol (GPI) or myristoyl and 

palmitic acid moieties or by association with cholesterol (Brown and Rose, 1992; 

Figure 1.6. The immunological 
synapse 
 
In the center of the synapse, the 
so-called centralized 
supramolecular activation cluster 
(cSMAC), TCR/CD3 complex and 
CD28 accumulate. A second group 
of molecules including the 
adhesion receptor LFA-1 which 
interacts with ICAM-1 on the 
opposing APC, form a ring 
around the cSMAC, termed 
peripheral SMAC. Signaling 
through the TCR results in the 
activation of transcription factors 
and subsequent expression of 
cytokines (adapted from Friedl 
and Storim, 2004). 

 



Chapter 1 

 18 

Melkonian et al., 1999). The immunological synapse represents a complex assemblage of 

rafts. Many proteins found in the immunological synapse are either constitutive raft proteins 

including CD4, CD28, CTLA-4 or can localize to rafts such as components of the TCR-CD3 

complex, or the kinases ZAP-70 and PKCθ. Blockage of protein localization to rafts impairs 

TCR signaling supporting the importance of rafts in T-cell activation (Balamuth et al., 2004; 

Bi et al., 2001, Webb et al., 2000).  

The formation of the immunological synapse is accompanied with reorganization of the 

cortical F-actin cytoskeleton through the action of the small Rho GTPases Rac 1 and Cdc 42. 

Cdc 42 activates the Wiscott-Aldrich syndrome protein (WASP), which in turn controls the 

actin regulatory complex Arp2/3 (Snapper and Rosen, 1999; Rohatgi et al., 1999). WASP 

plays a crucial role in T-cells as shown in Wiskott-Aldrich syndrome patients and WASP 

deficient mice. WASP deficiency leads to impairment of T-cell proliferation upon T-cell 

activation (Molina et al., 1993; Gallego et al., 1997; Zhang et al., 1999). This indicates that 

the F-actin cytoskeleton not only exhibits a structural role in shaping the contact between 

APC and T-cell, but also contributes to TCR signaling for example trough generation of 

scaffolds for the assembly of signaling complexes (Kaga et al., 1998) or by supporting raft 

recruitment to the immunological (Harder and Simons, 1999). The molecular mechanisms 

underlying these processes are not well understood. 

 

1.9. Coronin 1  
 

A role in interaction between the plasma membrane and the F-actin cytoskeleton in immune 

cells could be fulfilled by coronin 1, also known as p57 or TACO. Coronin 1 belongs to the 

protein family of actin-binding WD40 repeat containing proteins, termed coronins (Rybakin 

and Clemen, 2005). In mammalian cells, up to seven coronin homologues are described 

(Okumura et al., 1998; de Hostos, 1999; Rybakin et al., 2004), whereby less is known about 

their function. Coronin 1 is predominantly expressed in leukocytes (Suzuki et al., 1995; 

Ferrari et al., 1999, Nal et al., 2004), where it concentrates at sites of rearrangement of the 

cytoskeleton. In T-cells, upon activation of TCR-CD3 signaling, coronin 1 localizes to F-

actin-rich areas of the immunological synapse (Nal et al., 2004). In phagocytes, coronin 1 

seems to be involved in early steps of phagosome formation (Yan et al., 2005), accumulating 

at the cytosolic side of phagosomes. At later stages of phagocytosis, dissociation of



          Chapter 1 

 19 

coronin 1 from the phagosome is required for further phagosome maturation (Itoh et al., 

2002). Pathogenic mycobacteria can actively retain coronin 1 at the phagosomal membrane 

allowing these bacteria to survive within macrophages (Ferrari et al., 1999; Gatfield and 

Pieters, 2000). In neutrophils, coronin 1 interacts with a cytosolic subunit of the NADPH 

oxidase complex (Grogan et al., 1997).  

The precise role of coronin 1 in the remodelling of the cortical actin cytoskeleton or its 

regulation is however currently unknown.   

 

1.10. Aims of this thesis  

 
Part I (Chapter 3 and Chapter 4) 
 
Cross-presentation plays an important role in the initiation of an immune response against 

intracellular pathogens and tumour cells. One way used by antigen-presenting cell to sample 

antigens to be cross-presented is through macropinocytosis.  

To better understand the molecular mechanisms involved in macropinosome formation and in 

the subsequent delivery of macropinocytosed antigens to the cross-presentation pathway, the 

regulation of macropinocytosis in antigen-presenting cells was studied. The goal was to 

identify factors important for macropinosome formation and for the transport of internalized 

antigens into the cytosol. Furthermore, it was investigated whether specific targeting of 

exogenous antigens into the MHC class I pathway resulted in an improved cross-presentation 

and could provide a basis for the development of new vaccines against intracellular infectious 

agents and tumour cells. 
 
Part II (Chapter 5) 
 
Many functions in the immune system such as antigen-sampling, antigen-presentation and T-

cell activation are inseparably associated with dynamic and specific changes of the 

cytoskeletal structures within immune cells. Coronin 1, whose role in the cell is not well 

defined, is one candidate involved in the remodelling of the F-actin cytoskeleton. 

Similar to other members of the coronin family, coronin 1 possesses a three-domain structure, 

which mediates the interaction of the protein with the F-actin cytoskeleton and the plasma 

membrane. The goal in the second part of this thesis was to specify the role of the single 

coronin 1 domains, in order to better understand the function of coronin 1 in immune cells.
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2.1. Reagents 
 
2.1.1. Chemicals 
 
acetic acid          Merck 
acetone                          Merck 
acrylamide          Bio-Rad 
agarose (LE)                                           Roche Diagnostics 
adenosine-5′-triphosphate (ATP)                                             Boehringer Mannheim 
albumin, bovine, 96% pure        Sigma 
albumin, chicken egg grade V, minimum 98 % purity    Sigma 
aluminum oxide, type 5016A, basic [Al2O3]      Fluka 
ammonium persulfate (APS)        Bio-Rad 
ammonium sulfate [(NH4)2SO4]       Merck 
ampicillin          Sigma 
antipain          Fluka 
aprotinin          Merck 
Bacto-Tryptone                  Difco 
Bacto-Yeast          Difco 
bicinchoninic acid (BCA)        Pierce 
bisacrylamide (N`,N-methylen bisacrylamide)     Bio-Rad 
boric acid          Merck 
bromophenol blue         Merck 
calcium chloride [CaCl2 x H2O]        Sigma 
cerium (VI)-sulfate [Ce(SO4)2 x 4H2O]                 Fluka 
cholesterol, 98% pure                                           Avanti Polar-Lipids, Inc. 
chloroform          Merck  
chymostatin          Merck 
Coomassie brilliant blue G-250       Bio-Rad 
Coomassie brilliant blue R-250       Bio-Rad 
deoxycholate                Sigma 
desoxynucleotides (dNTP)                              Roche Diagnostics 
deuterated chloroform [CDCl3]       Dr. Glaser 
dextran fluorescein, anionic, lysine fixable (MW 2 000 000)                           Molecular Probes 
3.3`-diaminobenzidine tetrahydrochloride (DAB)     Sigma 
o-dianisidine          Sigma 
dichloromethane         Merck 
dicyclohexyl carbodiimide (DCC)        Sigma 
4-(dimethylamino)-pyridine (DMAP)       Sigma 
3.3`-dimethoxybenzidine, dihydrochloride (o-Dianisidine)    Sigma 
N,N-dimethylformamide (DMF)       Merck 
dimethylsulfoxide (DMSO)        Fluka 
1,4-dioxane          Sigma 
N,N′-disuccinimidyl carbonate (DSC)      Sigma 
dithiothreitol (DTT)         Sigma 
DNA standards                               Roche Diagnostics 
T4 DNA Ligase                          New England Biolabs 
EBSS (10x)            Gibco BRL 
ethylene glycol-bis(β-aminoethylether)-tetraacetic acid (EGTA)   Sigma 
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elastase                                Roche Diagnostics 
ethanol           Merck 
ethidium bromide         Sigma 
ethyl acetate               Acros Organic 
ethylendiamine tetraacetate (EDTA), sodium salt     Fluka 
trans, trans-farnesol, 96% pure       Sigma 
fatty acids          Sigma 
ferric chloride [FeCl3 ]        Sigma 
Ficoll-Paque          Pharmacia 
FluoroGuard Antifade Reagent       Bio-Rad 
Hi-Di™ Formamide                              Applied Biosystems 
5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside (X-Gal)             Appli Chem 
gel filtration molecular weight standards      Biorad 
D(+)-glucose          Fluka 
glutaraldehyde, 50% aqueous solution      Sigma 
glycine           Fluka 
glycerol          Fluka 
hydroxyethylpiperidine-ethanesulfonic acid (HEPES)    AppliChem 
horseradish peroxidase (HRP)          Sigma 
H2O2, 30 %, p.a.         Fluka 
hydroxylamine hydrochloride        Fluka 
hydrochloric acid (HCl)        Merck 
imidazole          Fluka 
iodine           Amersham 
isopropyl-thiogalactoside (IPTG)       AppliChem 
lactacystin, synthetic         Calbiochem 
leupeptin          Fluka 
lipofectin          Gibco BRL 
lovastatin          Calbiochem 
lipopolysaccharide (LPS)        Sigma 
lysine           Sigma 
lysis buffer (FacsTMLysing Solution)                   Becton Dickinson 
lysozyme          Sigma 
manganese chloride [MnCl2]        Sigma 
magnesium chloride [MgCl2]        Sigma 
magnesium sulfate [MgSO4]        Sigma 
mevalonic acid         Sigma 
methanol          Merck 
methylacetate          Fluka 
methyl-β-cyclodextrin         Sigma 
mevalonic acid         Sigma 
Mircoscient™40          Packard 
ammonium molybdat-tetrahydrat [Mo7O24 x 4H2O]      Fluka 
2-(N-morpholin) ethansulfonic acid (MES)      Fluka 
N-hydroxysuccinimide (NHS)        Perbio 
n-octylglucopyranoside        Sigma 
oregon Green-NHS                                Molecular Probes 
palmitic acid-N-hydroxy succinimidester (NHS-palmitic acid)    Sigma 
paraformaldehyde, powder, 95% pure      Aldrich 
pepstatin          Fluka 
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petrol ether (40-60°C)         Fluka 
phenylmethylsulfonylfluoride (PMSF)      Sigma 
piperazine-1,4-bis(2-ethanesulfonic acid) (PIPES)     Sigma 
phosphoric acid          Fluka 
phorbol-1.2-myrisate, 1.3-acetate (PMA)      Sigma 
Polyfect          QIAGEN 
Ponceau S          Sigma 
potassium chloride [KCl]        Sigma 
potassium hydroxide [KOH]        Sigma 
potassium dihydrogen phosphate [KH2PO4]      Merck 
2-propanol          Merck 
restriction enzymes                            New England Biolabs 
saponin (from Quillajo Burk)        Sigma 
SDS-PAGE molecular weight standards      Bio-Rad 
shrimp alkaline phosphatase (SAP)                                  Roche Diagnostics 
sodium acetate          Fluka 
sodium chloride [NaCl]        Merck 
sodium dihydrogen phosphate [NaH2PO4]      Fluka 
sodium dodecylsulfate (SDS)        Bio-Rad 
sodium hydroxide [NaOH]        Merck 
di-sodium hydrogenphosphate [Na2HPO4]      Fluka 
sucrose          BDH 
sulfuric acid [H2SO4]         Fluka 
N,N,N`,N`-tetramethylenethylendiamine (TEMED)     Bio-Rad 
[methyl-3H]-thymidine                 Amersham 
trichloroacetic acid (TCA)        Merck 
triethanolamine         Fluka 
trifluoroacetic acid (TFA)        Fluka 
tris(hydroxylmethyl)aminomethane (Tris / Trizma base)    Sigma 
Triton X-100                         Boehringer Mannheim 
trypan blue          Gibco BRL 
trypsin-EDTA in HBSS        Gibco BRL 
Tween 20          Merck 
xylene cyanol FF         Sigma 
         
 
2.1.2. Kits 
 
Big Dye1.1Terminator v 1.1 Cycle Sequencing Kit          Applied Biosystems 
BCA protein detection kit        Pierce 
Enhanced Chemoluminescence (ECL) kit                          Amersham 
Expand Long Template PCR System Kit              Roche Diagnostics 
Plasmid DNA Mini/Maxi-prep kit        QIAGEN 
PolyFect® Transfection Reagent        QIAGEN 
QIAqick Gel Extraction kit        QIAGEN 
QIAquick Nucleotide Removal kit       QIAGEN 
QIAquick PCR Purification kit       QIAGEN 
pGEM-T-Easy Vector kit         Promega 
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2.1.3. Peptides 
 
GSGSGSK(Acetyl)    Peptide Specialty Laboratories, Germany 
GILGFVTLTV  [IM (58-66)]   Neosystem, Strasbourg,  
YKLVVVGAG  [Ras (4-12)]   Neosystem, Strasbourg,  
 
SIINFEKL and Palm-SIINFEKL were synthesized using Fmoc-chemistry on peptide 
synthesizer AMS 422 (Abimed). 
 

2.2. General buffers and solutions 
 

DNA loading buffer (6x)    0.25% bromophenol blue 
       0.25% xylene cyanol FF 
       1 mM EDTA pH 8.0 
       30% glycerol 
      
 
Homogenization buffer (HB)    10 mM triethanolamine 
       10 mM acetic acid 
       1 mM EDTA 
       0.25 M sucrose 
       adjusted of pH 7.4 with NaOH 
 
Lysis buffer (10x)     200 mM HEPES pH 7.4 
       1 M NaCl 
       50 mM MgCl2 
       10% Triton X-100 
 
PBS        137 mM NaCl 
       2.7 mM KCl 
       8 mM Na2HPO4 
       1.5 mM KH2PO4 
 
PBST       PBS + 0.2% (v/v) Tween 20 
 
PD-buffer      7 mM Na-phosphate pH 7.4 
       137 mM NaCl 
       3 mM KCl 
 
SDS-PAGE electrophoresis buffer,   1.9 M glycine 
(10x)       250 mM Tris 
       SDS was added to the 1x buffer  
       to a final conc. of 0.1% before use 
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SDS-PAGE reducing sample buffer, (5x)  10% (w/v) SDS 
       20% (v/v) glycerol 
       500 mM DTT (as powder) 
       300 mM Tris/HCl pH 6.8  
       0.015% (w/v) bromphenol blue 
 
Semi-dry transfer buffer, 10x    480 mM Tris  
       390 mM glycine 
       0.375% (w/v) SDS 
       20% (v/v) methanol was added  
       to the 1x buffer before use 
 
10x TBE       108 g Tris 
       55 g Boric acid 
        40 ml of 0.5 M Na2EDTA (pH 8.0) 
       filled up to 1L with dH2O 
 
100x CLAAP      100 µg/ml chymostatin 
       100 µg/ml leupeptin 
       100 µg/ml aprotinin 
       100 µg/ml antipain 
       100 µg/ml pepstatin 
 
100x PMSF      1 mM PMSF in 100 % ethanol 
 

2.3. Bacterial media and supplements 
 

Luria-Bertani Media (LB)    10 g tryptone (Difco) 
       5 g yeast extract (Difco) 
       10 g NaCl 
       dissolved in 1L H2O and autoclaved 
 
ampicilin     Sigma, stock 100 mg/ml, use at 100 µg/ml 
         
kanamycin     Sigma, stock 50 mg/ml, use 50 µg/ml 
 

2.4. Cell culture media and supplements 
 

DMEM powder         Gibco BRL 
DMEM          Gibco BRL 
RPMI 1640 w/o L-arginine, L-cysteine, L-methionine    Gibco BRL 
   Inositol, glucose, L-glutamine   
IMDM           Gibco BRL 
Fetal calf serum (FCS)        Gibco BRL 
Horse serum          Gibco BRL 
Human serum                    Blutspendezentrum, Basel, Switzerland 
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L-glutamine (200 mM)        Gibco BRL 
β-mercaptoethanol (50 mM)        Gibco BRL 
Sodium pyruvate (100 mM)        Gibco BRL 
MEM (non-essential amino acids)       Gibco BRL 
HEPES (1 M)          Gibco BRL 
Penicillin/Streptomycin (10.000 U/ml, 10.000 µg/ml)    Gibco BRL 
Kanamycin (10.000 U/ml)        Gibco BRL 
Trypsin/EDTA in HBBS        Gibco BRL 
GM-CSF                Genzyme, Diagnostic 
Lactacystin, synthetic                   Calbiochem 
Interleukin 2 (IL-2), recombinant, murine                PharMingen 
Interleukin 4, (IL-4), recombinant, murine              R&D Systems 
Interleukin 4 (IL-4), human               ..       Dr. Lanzavecchia, Bellinzona, Switzerland 
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2.5. Vectors 
 

 
Name (kb) 

 

 
Vector 

 
Insert; cloning site 

 
Constructor 
(reference) 

 
Application 

 
pGEM-T Easy  

(3kb) 
 

 
pGEM-T Easy  

ampr 
 

 
 

—— 

 
Promega 

 
subcloning 

 
pCB6 

(6.2kb) 
 

 
pCB6, 

ampr, neor 

 
 

—— 

obtained through P. 
van der Sluijs 
Utrecht University, 
Netherlands 

 
eukaryotic expression vector cloning 

 
pCB6-Cor1-HA 

(7.6kb) 
 

 
pCB6, 

ampr, neor 

 
Cor1-HA via EcoR1 

 
J. Gatfield 
 

 
expression of Cor-1-HA in HEK293 
cells 

 
pCB-Cor1ΔCC-HA 

(7.5kb) 
 

 
pCB6, 

ampr, neor 

 
Cor1-HA lacking aa 433-
461; via EcoR1 

 
J.  Gatfield 

 
expression of Cor1-ΔCC-HA in 
HEK293 cells 

 
pCB6-Cor1Δ400-416 

(7.5kb) 
 

 
pCB6, 

ampr, neor 

 
Cor1-HA lacking aa 400-
416; via EcoR1 

 
I. Albrecht, this 
thesis 

 
expression of Cor1-Δ400-416-HA in 
HEK293 cells 

 
pCB6-Cor1-Δ361-422 

(7.4kb) 

 
pCB6, 

ampr, neor 

 
Cor1-HA lacking aa 361-
422; via EcoR1 

 
I. Albrecht, this 
thesis 

 
expression of Cor1-Δ400-416-HA in 
HEK293 cells 
 

 
pCB-Cor1L+C-HA 

(6.5kb) 
 

 
pCB6, 

ampr, neor 

 
Cor1-HA lacking aa 1-355; 
via EcoR1 

 
B. Zanolari / I. 
Albrecht, this thesis 

 
expression of Cor1L+C-HA in  
HEK293 cells 

 
pEGFP-N1 

(4.7 kb) 
 

 
pEGFP-N1 
kanr, neor 

 

 
 

—— 

 
BD Biosciences 
Clontech 
 

 
expression of EGPF and of c-terminal 
tagged EGFP fusionproteins in  
eukaryotic cells 
 

 
pEGFP-N1-CCcoronin1 

(4.8kb) 
 

 
pEGFP-N1 
kanr, neor 

 

 
Cor1 lacking aa 1-428;  
via Xho I and Bam HI 

 
B. Zanolari 

 
expression Cor1-CC-EGFP fusion 
protein in HEK293 cells 
 

 
pEGFP-N1-CCmatrilin 4 

(4.8kb) 
 

 
pEGFP-N1 
kanr, neor 

 

 
Mat4 coiled-coil (aa 574-
619) via Bgl II and Bam 
HI 

 
I. Albrecht, this 
thesis 

 
expression Mat4-CC-EGFP fusion 
protein in HEK293 cells 
 

 
pET22b-Cor1L+C 

(5.8kb) 

 
pET22b ampr 
(Novagen), 

 

 
Cor1 lacking aa 1-355;  
via NdeI and XhoI, no tag 

 
I. Albrecht, this 
thesis 

 
expression of Cor1L+C in E. coli 

 
 pET16-NLS-IM- (1-

252) (6.4kb) 

 
pET16b ampr 

(Novagen) 

 
NLS-mutant of IM 1-252, 
via Xho I and BglII 

 
from F. Baudin, 
EMBL Grenoble 
 

 
expression of NLS-mutated influenza 
matrix protein (1-252) in E. coli 
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2.6. Oligonucleotides 
 

 
Name 

 

 
Sequence (5′-3′) 

 
Source of sequence 

 

 
Application 

 
pET 22, F2.2 

 
GGG AAT CCC ATA TGT CGG ACC TGT 
TCC AGG AGG ACC TG 
 

 
Cor1-cDNA, 
bp 1066-1089 

 
generation of of Cor1L+C , 
coding 

 
pET 22 R2.2 

 

 
CCG CTC GAG CTA CTA CTT GGC CTG 
AAC AGT CTC CTC CAG 
 

 
Cor1-cDNA 
bp 1360-1386 

 
generation of Cor1L+C , 
reverse 

 
Dom I start 

 
GTG AAT TCC ATG AGC CGG CAG GTG 
GTT CG 

 
Cor1-cDNA, 
bp 1-20 

 
site-directed mutagenesis, deletion 
of aa 400-416 and of aa 361-422 
 

 
Dom II start 

 

 
GTG AAT TCC ATG TCG GAC CTG TTC 
CAG GAG 

 
Cor1-cDNA,  
bp 1066-1083 
 

 
generation of Cor1L+C-HA, 
coding 

 
Dom III HA stop 

 
GAG GAT CCC TAA GCG TAA TCT GGA 
ACA TCG TAT GGG TAC TTG GCC TGA 
ACA GTC TCC 

 
Cor1-cDNA, 
bp 1365-1383 

- generation of Cor1L+C-HA, 
reverse  
- site-directed mutagenesis, 
deletion of aa 400-416 and of aa 
361-422 

 
Cor1M1198-1249-

F 

 
GGC TAC GTG CCC CCA // GCT ACA CCA 
GAG CCC AGC GGC A 
 

 
Cor1-cDNA,  
bp 1184-1197 // 1249-
1270 
 

 
site-directed mutagenesis, deletion 
of aa 400-416 

 
Cor1M1198-1249-

R 

 
GGG CTC TGG TGT AGC // TGG GGG CAC 
GTA GCC ATC CTT G 
 
 

 
Cor1-cDNA, 
bp   1176-1197// 1249-
1263 

 
site-directed mutagenesis,  
deletion of aa 400-416 

 
Cor1M1081-1266 -

F 
 
 

 
GGA CCT GTT CCA G // GG CAC GCC CAG 

 
Cor1-cDNA, 
bp 1068-1080 //1267-
1277 

 
site-directed mutagenesis, 
deletion of aa 361-422 

 
Cor1M1081-1266-

R 

 
CTG GGC GTG CC // C TGG AAC AGG TCC 

 
Cor1-cDNA, 
bp 1068-1080 //1267-
1277 
 

 
site-directed mutagenesis, 
deletion of aa 361-422 
 

 
Mat4-1612 

 
GAT CTG AGC TTC GGA GCC CAT GCG AA 

 
hMatrilin4 cDNA, 
variant 1, bp 1612-1632 
 

 
generation of CCmatrilin 4 construct, 
introduction for restriction sites, 
reverse 

 
Mat4-Stop-R 

 

 
CGC GGA TCC TCA CTT CTG GTT GGC 
CAG CTG 

 
hMatrilin4 cDNA, 
variant 1, bp 1735-1755 
 

 
generation of CCmatrilin 4 construct, 
introduction of restriction sites, 
coding 

 
 

Mat4T-1612 

 
GAG CTT CGG AGC CCA TGC GAA TGC 
GAA AGC CTC GTG GAG TTC CAG GGC 
CGC ACG CTG GGG GCG CTC GAG AGC 
CTG ACG CTG AAC CTG 
 

 
hMatrilin4 cDNA, 
variant 1, 
bp 1612-1699 
 

 
generation of CCmatrilin 4 construct  
template for PCR, coding 

 
 

Mat4T-1669 

 
TCA CTT CTG GTT GGC CAG CTG GTT CTC 
CAG ATC CTC CAG GCG CGC CGT CAG 
CTG GGC CAG GTT CAG CGT CAG GCT 
CTC GAG CGC CCC C 
 

 
hMatrilin4 cDNA, 
variant 1, 
bp 1668-1755 
 

 
generation of CCmatrilin 4 construct, 
template for PCR, reverse 
 

 
Remarks: coding sequence in italics, // marks deletion, sequence for HA-tag is underlined 
All primers were obtained from Microsynth GmbH, Switzerland. 
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2.7. Antibodies / Dyes 
 

 
Name 

 
 

 
Isotype 

 
Antigen / Target 

 
Source 

 
Application 
(dilution) 

 
 
antiserum 1002 

 
rabbit 

 
GST-coronin 1, (mouse) 

 
J. Gatfield 

 
native immunoprecipitation 
immunofluorescence (1:1000) 

 
antiserum 560 

 
rabbit 

VVRSSKFRHVFGQ 
PAK (coronin 1, aa 5-20) 
(mouse) 

 
G. Ferrari BII 

 
immunoblotting (1:1000) 

 
12CA5 (anti-HA) 
(0.2 mg/ml) 

 
mouse IgG2b 

 
YDYPVPDYA 
(hemagglutinintag) 

 
Boehringer Mannheim 

 
immunofluorescence 
 (5 µg/ml) 

 
HA.11 (anti-HA) 

 
mouse IgG1 

 

 
CYPYDVPDYASL 
(hemagglutinintag) 

 
Covance 

 
immunoblotting, 
immunofluorescence  (1:1000) 

 
anti-clathrin 
 

 
mouse IgG1 

 
clathrin heavy chain 

 
Transduction laboratories 

 
immunofluorescence (1:50) 

 
4D1B 

 
rat IgG2a 

 
mouse LAMP-1 

T.August, Dev.Studies 
Hybridoma Bank, Univ. 
Iowa 

 
immunofluorescence 
undiluted supernatant 

 
anti Na/K ATPase 
 

 
mouse IgG2a 

 
human Na/K-ATPase 

 
H.P. Hauri, Biozentrum 
Basel 

 
immunofluoresecence 
immunoblotting  (1:100) 

 
anti-actin 
 

 
mouse IgG1κ 

 
G-and F-actin 

 
Chemicon International 

 
immunoblotting (1:2000) 

 
anti-GFP, (4 mg/ml) 
 

 
mouse IgG1κ 

 
GFP 

 
Roche Diagnostics 

 
immunoblotting (1:1000) 

 
FITC anti-CD8 
 

 
rat IgG2a 

 
mouse CD8 α chain 

 
Becton Dickinson 

 
flow cytometry (1:100) 

 
FITC anti-CD8 
 

 
mouse IgG2a 

 
human CD8 

 
Becton Dickinson 

 
flow cytometry (1:50 - 1:100) 

 
FITC anti-Vβ-TCR 
 

 
mouse IgG1,κ 

 
mouse Vβ  5.1, 5.2 TCR 

 
Becton Dickinson 

 
flow  cytometry (1:100), 
typing OT-1 mice 

 
R-PE anti-Vα-TCR 
 

 
rat IgG2a 

 
mouse Vα 2 TCR 

 
Becton Dickinson 

 
flow cytometry (1:1000), 
typing OT-1 mice 

 
anti-CD4 
 

 
rat IgG2a 

 
mouse CD4 

 
Becton Dickinson 

 
coupled to dynabeads 

 
anti-MHC class II 
 

 
rat IgG2b 

 
mouse 

 
Becton Dickinson 

 
coupled to dynabeads 

 
PE anti-CD11c 
 

 
hamster IgG1 

 
mouse CD11c α-chain 

 
Becton Dickinson 

 
flow cytometry (1:200) 

 
FITC anti-CD11b 
(Mac1) 

 
rat IgG2b 

 
mouse integrin αM –chain  

 
Becton Dickinson 

 
flow cytometry 

 
FITC anti F4/80 
 

 
rat 

 
mouse F4/80 

 
Serotech 

 
flow cytometry (1:1000) 

 
NLDC145 
 

 
rat 

 
mouse DEC-205 

 
Georg Kraal, University of 
Amsterdam 

 
flow cytometry (1:40) 

R-PE-HLA-
A*0201/GILGFVFTL 
pentamers 

 
- 

 
human GILGFVFTL 
specific TCR 

 
Proimmune 

 
flow cytometry (1:50 - 1:100) 

 
anti-rat IgG(H+L)-
TXRD 

 
goat 

 
rat IgG (H+L 

 
Southern Biotechnology  
Association 

 
immunofluorescence, (1:200) 
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Alexa Fluor™-586 
goat-anti-mouse IgG 
(H+L), (2 mg/ml) 

 
goat 
 

 
rat IgG (H+L) 

 
Molecular Probes 

 
immunofluorescence (1 :200) 

Alexa Fluor™-488 
goat-anti-mouse IgG 
(H+L), (2 mg/ml) 
 

 
goat 

 
rat IgG (H+L) 
 

 
Molecular Probes 

 
immunofluorescence (1:200) 
 

goat-anti-mouse IgG1-
TXRD 
 (1 mg/ml) 

 
goat 

 
heavy chain of mouse IgG1 

 
Southern Biotechnology  
Association 

 
immunofluorescence (1:200) 

goat-anti-mouse IgG2b-
FITC,  
 (1 mg/ml) 

 
goat 

 
heavy chain of mouse IgG2b 

 
Southern Biotechnology  
Association 

 
immunofluorescence (1:200) 

goat-anti-mouse IgG1-
TXRD 
 (1 mg/ml) 

 
goat 

 
heavy chain of mouse IgG1 

 
Southern Biotechnology  
Association 

 
immunofluorescence (1:200) 

goat-anti-mouse IgG2b-
TXRD,  
 (1 mg/ml) 

 
goat 

 
heavy chain of mouse IgG2b 

 
Southern Biotechnology  
Association 

 
immunofluorescence (1:200) 

anti-mouse IgG (H+L)-
HRP 
(1mg/ml) 

 
goat 

 
heavy chain of mouse IgG 

 
Southern Biotechnology 
Association 

 
immunoblotting (1:10 000) 

anti-rabbit IgG (H+L)-
HRP 
(1 mg/ml) 

 
goat 

 
heavy chain of rabbit IgG 

 
Southern Biotechnology  
Association 

 
immunoblotting (1:10 000) 

 
AlexaFluor®-
Phalloidin 568 

 
- 

 
F-actin 

 
Molecular Probes 

 
immunofluorescence (1:100) 

 
AlexaFluor®-
Phalloidin 488 

 
- 

 
F-actin 

 
Molecular Probes 

 
immunofluorescence (1:100) 

 
Filipin 
(5% in MeOH) 

 
- 

 
cholesterol 

 
Fluka 

 
immunofluorescence (1:100) 

 
CD14 Microbeads 
 

 
mouse IgG2a 

 
human CD14 

 
Miltenyi Biotech 
 

isolation of CD14+ monocytes by 
magnetic bead separation (1:10) 

 
CD8 Microbeads  
 

 
mouse IgG2a  

 
human CD8 

 
Miltenyi Biotech 

isolation of CD8+ T-cells by 
magnetic bead separation (1:10) 

 

2.8. Bacteria, culture conditions 
 

 
Name 

 
Source 

 
Culture 
Medium 

 
Culture 

Conditions 
 

 
Applications 

 

 
   E. coli DH10β 
 

 
S. Arber, 
Biozentrum Basel 

 
LB-media 

  
37°C, 250 rpm 

 
propagation and storage of 
plasmid DNA 

 
   E. coli BL21 

 
J. Pieters 
Biozentrum Basel 

 
LB-media  

 
37°C, 250 rpm 

  
protein expression 
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2.9. Cells and cell lines, culture conditions 
 

 
Name 

 
Cell type 

 
Source 

 
Culture Medium 

 
 
J774A.1 

mouse 
macrophage-like 
cell line (Balb/c-
mouse) 

 
ATCC 

 
DMEM, 10% (v/v) FCS 
1% (v/v) 200 mM glutamine  

 
BMM∅ 

 
bone marrow  
derived 
macrophages 

 
C57BL/6 mouse 

 
DMEM, 10% (v/v) FCS 
5% (v/v) horse serum 
1% (v/v) penicillin/streptomycin 
1% (v/v) 200 mM glutamine 
1% (v/v) 100 mM sodium pyruvate 
0.1% (v/v) 50 mM β-mercaptoethanol 
30% (v/v) L929-conditioned medium 

 
BMDC 

 
bone marrow 
derived dendritic 
cells 

 
C57BL/6 mouse 

 
DMEM, 10% (v/v) FCS 
1% (v/v) penicillin/streptomycin 
1% (v/v) 200 mM glutamine 
25 ng/ml GM-CSF 
after three days of culture 1.5 ng/ml of 
murine IL-4 were added 

 
HEK293 

 

 
human embryonic 
kidney cells 

 
ATCC 

 
DMEM, 10% (v/v) FCS 
1% (v/v) 200 mM glutamine 

 
OT-1 
lymphocytes 

 
lymphocytes 

 
ova WT Rag-/-OT-1 mouse 
(Hogquist et al., 1994), 
obtained from E. Palmer, 
ZLF, Kantonsspital Basel 
Switzerland 

 
IMDM, 5% (v/v) FCS 
1% (v/v) penicillin/streptomycin 
1% (v/v) 200 mM glutamine 
0.1% (v/v) 50 mM β-mercaptoethanol 
 

 
human     
dendritic cells 
(hDC) 

 
derived from  
peripheral blood 
monocytes  

 
isolated from blood of a 
healthy donor 

 
RPMI 1640, 10% (v/v) FCS 
1% (v/v) kanamycin 
1% (v/v) 200 mM glutamine 
1 % (v/v) 100 mM sodium pyruvate 
1% (v/v) MEM 
0.1% (v/v) 50 mM β-mercaptoethanol 
1000 U/ml human IL-4  
50 ng/ml GM-CSF 

 
human T cells 
 
 

 
derived from 
peripheral blood 

 
isolated from blood of a 
healthy donor 

 
RPMI 1640, 5% (v/v) HS 
1% (v/v) kanamycin 
1% (v/v) 200 mM glutamine 
1% (v/v) 1 M HEPES 
1% (v/v) sodium pyruvate 
1% (v/v) MEM 

 
L929 

 
fibroblasts 

 
(Wiltschke et al., 1989) 
obtained from M. Kopf, 
ETH, Zürich, Switzerland 

 
IMDM, 10% (v/v) FCS 
0.1% (v/v) 50 mM β-mercaptoethanol 
1% (v/v) 200 mM glutamine 

Cells and cell lines were cultured at 37°C in a humified atmosphere at 5 % CO2. 
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2.10. Molecular biology 
 
2.10.1. Agarose gel electrophoresis 
 
Analytical and preparative gel electrophoretic separation of DNA was performed using low 
endotoxin agarose (Roche Diagnostics) gels of different concentrations in 1x TBE buffer. 
Ethidium bromide (10 µg/ml) was normally added to the gel before pouring and prior to 
loading 6x DNA loading buffer was added to each sample. Electrophoresis was performed at 
50-90V using gel electrophoresis chambers (Werkstatt, Biozentrum Basel). 
 
2.10.2. Preparation of electro-competent E. coli BL21 
 
Materials 
 
- 10% glycerol, sterile 
- 2L dH2O, sterile 
 
1L of LB media was inoculated with 10 ml of a fresh overnight culture of E. coli BL21 from a 
single bacteria colony. The culture was grown at 37°C with vigorous shaking to an OD600 of 
0.5-0.8, and then the flask was placed on ice for 15-30 min. All of the following steps were 
performed at 4°C. The bacteria were washed subsequently with 1L of ice-cold dH2O, with 
0.5L of ice-cold dH2O and with 20 ml of 10% ice-cold glycerol. Bacteria were pelleted in 
between the different wash steps by centrifugation at 4000 x g (15 min, 4°C). After the last 
wash, the bacteria were resuspended to a final volume of 2-3 ml in 10% glycerol (final cell 
concentration 3x 1010 bacteria /ml) and 50 µl aliquots were prepared, frozen in a mixture of 
ethanol and dry ice or liquid nitrogen and stored until use at -70°C.   
 
2.10.3. Preparation of ultra-competent E. coli DH10β  
 
Materials 
 
- SOB solution:  0.5% (w/v) yeast extract, 2% (w/v) tryptone, 10 mM NaCl, 2.5 mM 
   KCl, 10 mM MgCl2, 10 mM MgSO4 were dissolved in 1L dH2O and 
   autoclaved 
- TB solution:   10 mM PIPES, 15 mM CaCl2, 250 mM KCl were dissolved in dH2O, 
   the pH was adjusted to 6.7 with KOH or HCl then 55 mM MnCl2    
   were added, filled up to 1L with dH2O and filtered (0.45 µm) 
- DMSO  storage O/N at -20°C 
 
Preparation of ultra-competent E. coli DH10β cells was performed according Inoue et al., 
(1990). Ten to twelve large colonies of DH10β cells were picked from a LB agar plate 
cultured O/N at 37°C and used for inoculation of 250 ml SOB media. Culture in 1L flask was 
grown at 19°C under vigorous shaking till OD600 = 0.5, then the flask was placed for 10 min 
on ice. All of the following steps were performed at 4°C. Bacteria were pelleted by 
centrifugation at 4000 rpm (Sorvall®RC5C, rotor GS3) for 10 min. The obtained pellet was 
gently resuspended in 80 ml ice-cold TB and stored for 10 min on ice. After a further 
centrifugation at 4000 rpm for 10 min (4°C), the supernatant was discarded, 20 ml ice-cold 
TB and 1.4 ml DMSO were added and the bacterial pellet was gently resuspended. For 
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transformation 50 µl to 500 µl aliquots were prepared, frozen in a mixture of ethanol and dry 
ice or liquid nitrogen and stored until use at -70°C.   
 
2.10.4. Transformation 
 
Materials 
 
- 14 ml miniprep tubes (Falcon) 
- electroporator 2510 (Eppendorf) 
- electroporation cuvettes, sterile and disposable, 1 mm gap or 2 mm gap (Eppendorf) 
 
For transformation of ultra-competent E. coli DH10β, a 50 µl aliquot was thawed on ice 
(maximal 15 min) and then 5 µl of the ligation mix was added. After 5 min incubation on ice, 
bacteria were transferred into a 14 ml miniprep tube containing 1ml pre-warmed LB + 0.1% 
glucose without antibiotics. Following shaking (250 rpm) for 60 min at 37°C, bacteria were 
plated onto agar plates including the appropriate antibiotics and incubated O/N at 37°C. On 
the next day, single colonies were picked, expanded in liquid culture and the DNA isolated 
and analyzed for correct ligation by restriction digest.  
Electro-competent bacteria E. coli BL21 were transformed as follows. A 50 µl aliquot was 
thawed on ice (maximal 15 min), then 1 µl DNA (0.5-2 µg) was added, the mixture was 
transferred into pre-cooled electroporation cuvette and placed in the electroporator. After 
pulsing (1.8V for 1 mm gap cuvette, 2.5 V for 2 mm gap cuvette), bacteria were immediately 
transferred into a 14 ml miniprep tube containing 1 ml pre-warmed LB + 0.1% glucose 
without antibiotics, and agitate for 1 hour (250 rpm) at 37°C. Afterwards bacteria were plated 
onto agar plates containing the appropriate antibiotics and incubated O/N at 37°C. For 
inoculation of liquid culture for protein expression, E. coli BL21 directly scraped from the 
plate were used. 
 
2.10.5. Cloning procedure 
 
2.10.5.1. Polymerase chain reaction (PCR) 
 
PCR reactions were used for the introduction of restriction sites and of the C-terminal 
hemagglutinin (HA)-tag into fragments of the coronin 1 sequence, for introduction of 
restriction sites into matrilin 4 coiled coil sequence and for the generation of coronin 1 
deletion mutants (see also site-directed mutagenesis).  
 
Amplification was performed using Expand Long Template PCR System Kit (Roche 
Diagnostics). 
 
To that end,  
 x µl template DNA (10 ng) 
1.5 µl forward primer (300 nM) 
1.5 µl reverse primer (300 nM) 
1.75 µl 10 mM dNTP (PCR Nucleotide Mix Cat. No. 1581295, Roche Diagnostics) 
5 µl 10x PCR reaction buffer (containing 17.5 mM MgCl2) 
0.75 µl Expand Long Template Enzyme mix   
filled up with dH2O to 50 µl 
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were mixed on ice, placed into the T3 thermocycler (Biometra) and PCR was performed using 
the following standard program: 
 
1. initial denaturation  95°C   2 min 
2. denaturation  95°C  10 sec 
3. annealing   58°C  30 sec (or as calculated) 
4. elongation   68°C  60 sec 
     10 cycles 
5. denaturation  95°C  10 sec 
6. annealing   58°C  30 sec 
7. elongation   68°C  60 sec + 20 sec for each successive cycle 
     15 cycles 
8. final elongation  68°C  7 min 
9. cooling   4°C  until analysis 
 
The PCR fragments were analyzed by agarose gel electrophoresis and purified using the PCR 
QIAquick Nucleotide Removal Kit (QIAGEN). Subsequently, PCR products were digested 
with the appropriate restriction enzymes for further cloning or directly subcloned into the 
pGEM-T-easy vector.  
 
2.10.5.2. Restriction digest of plasmid DNA/PCR fragments 
 
For restriction digest 0.25-5 µg DNA, the appropriate reaction buffer and the restriction 
enzyme (ratio 1U/100 ng DNA) were mixed and incubated at 37°C. For analysis of plasmid 
DNA, digestion was performed for 1-2 hours. To prepare DNA fragments or vectors for 
ligation, digest was carried out overnight. All restriction enzymes were obtained from New 
England Biolabs (NEB).  
 
2.10.5.3. Dephosphorylation of DNA 
 
To prevent self-ligation of vectors after restriction digest, the vectors were treated with shrimp 
alkaline phosphatase (SAP) (Roche Diagnostic) to remove the 5′ phosphate groups. To that 
end, SAP (1U/250 ng DNA) and SAP reaction buffer were added directly to the digest 
mixture, and incubated for 10 min at 37°C. After heat inactivation (15 min, 65°C), agarose gel 
electrophoresis was performed to purify the linearized vector.  
 
2.10.5.4. Purification of DNA from agarose gel 
 
DNA bands of interest, visualized under UV light were excised from the agarose gel and 
purified with the gel extraction kit (QIAGEN) following the manufacturer′s protocol. 
 
2.10.5.5. Ligation with T4 DNA ligase 
 
Ligation of DNA fragments into linearized vectors was performed using T4 DNA ligase 
(NEB, Cat. No. M0202S). To that end, the ratio between vector and insert was determined 
according the following formula using a vector to insert ratio of 1 to 5:  
 
   50 ng x kb vector / kb vector = insert (ng) x 5 
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Subsequently,     50 ng vector DNA 
     x µl insert DNA (calculated) 
     2 µl 5x ligation buffer 
     1 µl T4 DNA ligase (6 Weiss U) 
 
were mixed, filled up with dH2O to 20 µl, incubated overnight at 16°C and then 8 µl of 
ligation mix were transformed into ultra-competent E. coli. As ligation control, reaction was 
performed without insert and without T4 DNA ligase.  
 
2.10.5.6. Ligation of PCR products into pGEM-T Easy Vector (Subcloning) 
 
Materials 
 
pGEM-T-Easy Vector kit (Promega, Cat. No. A1360) 
LB/amp/IPTG (0.5 mM) /X-Gal (80 µg/ml) agar plates 
 
In cases, where the restriction digest of the PCR fragments was incomplete, PCR fragments 
were subcloned into the pGEM-T-easy vector according the manufacturer′s instruction. The 
amount of insert was calculated using a vector to insert ratio of 1 to 8:  
 
    ng x kb vector / kb vector = insert (ng) x 8  
 
For ligation,   x µl of purified PCR product (calculated) 
   1 µl pGEM®-T-Esay Vector (= 50ng) 
   5 µl 2x reaction buffer supplied 
   1 µl T4 DNA ligase 
 
were mixed, filled up with dH2O to 10 µl and incubated for 60 min at RT. Afterwards, 5 µl of 
the ligation mix was transformed into ultra-competent E. coli. Cells were plated onto 
LB/amp/X-Gal/IPTG agar plates and, after incubation O/N at 37°C, white colonies (contain 
inserts) were picked, expanded in liquid culture and the DNA isolated and digested with the 
appropriate restriction enzymes to obtain fragments for further ligation into the actual 
expression vector. 
 
2.10.5.7. Preparation of plasmid DNA from E. coli cultures 
 
All plasmid DNA was prepared with QIAGEN Maxi- and Mini-prep Kits according to the 
manufacturer′s protocol. For plasmid DNA used for transfection of eukaryotic cells, 
purification was performed under endotoxin-free conditions. 
 
2.10.5.8. Ethanol precipitation of DNA 
 
To precipitate DNA, 1/10 volume of 3 M Na-acetate, pH 5.3 and 2 volumes of 100% ethanol 
were added to the DNA solution, mixed and incubated for at least 15 min at -20°C. 
Precipitated DNA was pelleted subsequently by centrifugation (20 000 x g, 15 min, 4°C), 
washed twice with 70% ethanol and air-dried. DNA was dissolved in dH2O or TE-buffer (10 
mM Tris/HCl, 1mM EDTA, pH 8.0). To obtain a sterile DNA solution for transfection, DNA 
was resuspended in sterile water or buffer. 
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2.10.6. Site directed mutagenesis 
 
For generation of coronin deletion mutant Cor1-Δ400-416-HA a two-step PCR approach was 
used. In a first PCR the coding sequence for the N-terminal region including the deletion 400-
416 was generated using the primer pair DomI-start/Cor1M1198-1249-F resulting in the 
EcoR1-Cor1nt1-1197//1249-1270 fragment. The coding sequence for the C-terminal region including 
the deletion 400-416 was generated using the primer pair Cor1M1198-1249-R/DomIII-
HAstop resulting in the Cor1nt1176-1197/1249-1383-HA-BamH1 DNA fragment. In a subsequent 
PCR, EcoR1-Cor1nt1-1197//1249-1270 together with Cor1nt1176-1197/1249-1383-HA-BamH1 were used as 
templates and with primers DomI-start/DomIII-HAstop the EcoR1-Cor1nt1-1197//1249-1383 -HA-
BamH1fragment was amplified and subcloned into the pGEM®-T-easy Vector. For 
expression in mammalian cells, the pGEM-Cor1-Δ400-416-HA construct was digested with 
HindIII and BamH1 and the HindIII-BamHI fragment containing the deletion was used for 
exchanging the corresponding wildtype fragment in the pCB6-Cor1-HA construct.  
 
Generation of the Cor1-Δ361-422 deletion construct was performed following the same 
protocol using the primers Cor1M1081-1266-F/R instead of Cor1M1198-1249-F/R. 
 
2.10.7. Sequencing 
 
Materials 
 
- Big Dye1.1Terminator v 1.1 Cycle Sequencing Kit  
  (Applied Biosystems, Cat. No. 4337452) 
- 500 µl PCR-tubes (Treff) or 96-well optical reaction plate (Applied Biosystems) 
- T3 thermocycler (Biometra) or Primus 96 plus (MWG Biotec) for 96 well plate  
- Hi-Di™ Formamide (Applied Biosystems, Cat. No. 4311320) 
 
Sequencing of plasmid DNA was performed using the Big Dye Terminator chemistry 
following the manufacturer′s protocol.  
To that end,    2 µl plasmid DNA (300-500 ng) 
    4 µl Big Dye (containing DNA polymerase, reaction buffer, 
    fluorescent didesoxynucleotide) 
    0.5 µl primer (stock 10 pmol/µl) 
    3.5 µl dH2O 
 
were mixed in a 0.5 ml tube or in one well of a 96 well plate. For the subsequent amplification 
of the plasmid template DNA the following program was used: 
 
1. preheating  98°C    
2. denaturation 96°C  30 sec 
3. annealing  50°C  15 sec 
4. elongation  60°C  4 min 
    25 cycles 
5. cooling  4°C  until analysis of sample 
 
The extension products were purified afterwards by ethanol precipitation. 26 µl dH2O and 64 
µl ethanol (100%) were added to each sample, mixed by pippetting, and incubated for 15 
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min at RT away from exposure to bright light. DNA was pelleted by centrifugation at 3000 x 
g (RT) for 30 min, then the supernatant was carefully removed and the pellet was washed with 
150 µl ethanol (70%). After centrifugation at 2000 x g (RT) for 10 min, supernatant was 
removed completely, the pellet was air-dried and then stored at 4°C in the dark until use, or, 
for direct use immediately resupended in 30 µl of 67% formamide.  
 
Sequencing was performed by capillary electrophoresis on an ABI PRISM Genetic Analyzer 
3700 and sequences were analyzed using MacVector™ software (version 7.2.2). 
 

2.11. Cell culture 
 
2.11.1. Determination of cell numbers 
 
The cell number was determined in a Neubauer counting chamber (0.1 mm depth). An aliquot 
of the cell suspension was diluted 1:10 with trypan blue solution [0.05% (w/v)] and the cells 
in 16 small squares were counted. The cell number per ml was calculated from the counted 
cell number multiplied by 2 x 104. 
 
2.11.2. Freezing and thawing of cells 
 
For freezing, cells were suspended in freezing medium (FCS / 10% (v/v) DMSO), at a 
minimal cell density of 5 x 106 cells /ml. Then 1 ml aliquots were transferred to 2 ml 
cryotubes (Nunc), placed in pre-cooled freezing containers (Nalgene) and put O/N at -80°C 
prior to the final storage in the liquid nitrogen. 
Cell were thawed in a water bath at 37°C and immediately transferred into 10 ml of pre-
warmed appropriate medium and pelleted (5 min, 1200 rpm, RT; Sorvall®T6000D, rotor: H-
1000B). The pellet was gently resuspended in medium and transferred into a culture dish. 
 
2.11.3. Subculture and freezing of J774A.1 cells 
 
J774A.1 cells were washed once with PBS and then detached from the culture plate using a 
cell scraper. The cell suspension was transferred into a 15 ml Falcon tube, centrifuged (5 min, 
1200 rpm, RT; Sorvall®T6000D, rotor: H-1000B), and cell pellet resuspended in culture 
media or freezing media.  
 
2.11.4. Subculture and freezing of adherent cells 
 
Adherent cells such as the human embryonic kidney cell line HEK293 or the fibroblast cell 
line L929 have to be trypsinized prior to subculture or freezing. Therefore cells were washed 
once with PBS and then incubated for 5 min at 37°C with trypsin/EDTA. Trypsinization was 
stopped by addition of two volumes of cell culture media containing FCS. Detached cells 
were pelleted by centrifugation (5 min, 1200 rpm, RT; Sorvall®T6000D, rotor: H-1000B) and 
resuspended either in cell culture or freezing medium. 
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2.11.5. Preparation of L929-conditioned medium 
 
107 L929 cells were plated out in 100 ml L929-medium onto a 15 cm tissue culture dish. After 
7 days, the medium was removed, filtered (0.2 µm) and stored at 4oC before use.  
This procedure was repeated 3-4 times before the cells were discarded. 
 
2.11.6. Generation of murine bone marrow derived macrophages and dendritic 
cells 
 
For the generation of bone marrow derived macrophages and dendritic cells, bone marrow 
cells were isolated from C57BL/6 mice and cultured in the presence of different growth 
factors/cytokines, which induce the differentiation of monocytes present in the bone marrow 
into macrophages or dendritic cells. 
Isolation of bone marrow was performed as follows. Mice were killed by CO2 and afterwards 
their hind legs isolated and freed from all muscle tissue. Subsequently, the femur bone was 
cut above the knee, the lower leg bone above the foot. Then the bones were transferred into a 
yellow pipette tip with the cut surface pointing downwards. The loaded tip was placed in a 5 
ml centrifugation tube containing 200 µl DMEM and centrifuged 12 min by 2000 rpm 
(Eppendorf 5810R, rotor: A-4-62) at RT to isolate the bone marrow cells. Afterwards the tips 
with the empty bones were discarded, the pelleted bone marrow cells resuspended in culture 
media, counted and transferred to culture dishes. 
 
Generation of macrophages from bone marrow monocytes was performed as described before 
(Wiltschke et al., 1989). In brief, 1 x 107 isolated bone marrow cells were plated in a 10 cm 
teflon dish (Rowatec) and cultured for 6-10 days in BMM∅-medium, at 37°C and 5% CO2. 
The cultured cells had typical macrophage morphology, expressed macrophage markers (such 
as Mac-1) and were phagocytic (uptake of E. coli). 
Generation of dendritic cells was performed according to previous reports (Schreurs et al., 
1999). To that end, 5 x 106 bone marrow cells were plated in 5 cm culture dishes (Corning) 
and cultured in DMEM containing 10% (v/v) FCS, 1% (v/v) penicillin/streptomycin, 2 mM 
glutamine and 25 ng/ml GM-CSF for 2 days. On the third day, non-adherent cells 
(predominately granulocytes) were carefully removed by aspiration and medium with fresh 
GM-CSF and IL-4 (1.5 ng/ml) was added. Maximal yield of DCs was obtained between day 6 
and 8 of culture. The cells displayed typical dendritic cell morphology and expressed 
dendritic cell markers (CD11c, NLDC145). 
 
2.11.7. Isolation of total and CD8+ lymphocytes from OT-1 mice 
 
Materials 
 
- Dynabeads M-450 Sheep anti-Rat IgG (Dynal Biotech) coupled to anti-murine CD4 and    
  anti-murine MHC class II  
- Magnet (Dynal MPC) 
 
Total lymphocytes were isolated from OT-1 mice, which are transgenic for the T-cell receptor 
for the H-2Kb-MHC I-SIINFEKL complex (Hogquist et al., 1994). The animals were killed 
by CO2, the thymus and lymph nodes (inguinal, mesenteric, axillary, brachial) were removed, 
transferred to culture dish and mashed between 2 nylon nets to obtain a single cell suspension. 
Cells were pelleted by centrifugation, washed once with media, counted and added to antigen-
presenting cells. 
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Isolation of CD8+ T-cells from total lymphocytes was performed by immunomagnetic cell 
separation using the Dynabeads system. To that end, lymphocytes were counted and 
transferred into a 15 ml polypropylene falcon tube such that the final volume of the cell 
suspension would be at least 2 ml to allow effective separation. Then dynabeads coated with 
an anti-CD4 and anti-MHC class II antibodies were added (1 bead of each antibody/cell) and 
the cell suspension was incubated for 20-30 min at 4°C under rotation to allow cell selection 
to take place.  
A magnet was then applied to the tube for two minutes and the supernatant was carefully 
removed, leaving CD4+ T-cells and APCs bound to the dynabeads behind. Cells of the 
supernatant (= CD8+ T-cells) were washed once with PBS, then pelleted by centrifugation at 
1200 rpm (5 min, 4°C; Eppendorf 5810R, rotor: A-4-62), counted and used in a further 
proliferation assay.  
 
2.11.8. Isolation of CD14+ monocytes and CD8+ T-cells from human peripheral 
blood 
 
Materials  
 
- Ficoll-PaqueTM (Pharmacia)        
- MACS buffer: PBS/0.5% FCS/2 mM EDTA, pH 8.0, filtered (0.22 µm) 
- anti-human CD14 microbeads/anti-human CD8 microbeads     Miltenyi Biotech 
- LS MACS column and MACS separator         Miltenyi Biotech 
 
Peripheral blood monocytes (PBMC) were isolated from heparinized venous peripheral blood 
of a healthy HLA-A*0201 donor. 10 ml of blood was diluted with 20 ml PBS, layered onto 10 
ml of Ficoll and centrifuged at 315x g for 15 min (no brake). PBMCs localized in the 
interphase between the blood plasma and Ficoll were collected and washed once with PBS. 
Isolation of CD14+ monocytes and CD8+ T-cells was performed afterwards by using the Midi-
Macs magnetic bead system (Miltyeni Biotech). To that end, PBMCs washed once with 
MACS buffer were resuspended in 1:10 with MACS buffer diluted solution of anti-CD14 or 
anti-CD8 microbeads (1x108 cells/ml), vortexed and incubated for 30 min on ice. For the 
subsequent cell separation, a LS MACS column was placed onto the MACS separator (strong 
magnet) and equilibrated with 3 ml of MACS buffer. In the meantime, cells were washed 
once again with MACS buffer, resuspended in 3 ml MACS buffer, filtered (30 µm nylon 
mesh) and loaded onto the equilibrated LS MACS column. Cells coupled to microbeads are 
retained due to magnetic forces in the column and therefore separated from the other cells. 
After washing the column three times with 3 ml MACS buffer, the MACS separator was 
removed. Next the column was placed onto a 15ml falcon tube and cells were eluted with 2x 
2ml MACS buffer by firmly applying force using a plunger supplied with the column. Eluted 
cells were washed once with PBS and then resuspended in the appropriate media. 
 
2.11.9. Generation of immature dendritic cells from CD14+ monocytes 
 
Culturing CD14+ monocytes in the presence of GM-CSF and IL-4 induces these cells to 
differentiate into immature dendritic cells. This was done by resuspending CD14+ monocytes 
in DC media and seeding them into a 6-well plate (1x106 cells/well). The maximal yield of 
DCs was obtained between day 5 and 8 of culture. 
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2.11.10. Transient transfection of HEK293 
 
Transient transfection of HEK293 cells was performed using PolyFect® Transfection Reagent 
(QIAGEN, Cat. No. 301105) following the manufacturer's protocol. HEK293 cells were 
seeded in a 6 well culture dish (1x 106 cells /plate) or on glass slides (1x 105 cells /well) and 
allowed to adhere O/N. For transfection of one 10 well slide and one well of a 6 well culture 
dish, 2 µg plasmid DNA and 20 µl PolyFect reagent were mixed with 100 µl DMEM (without 
FCS) and incubated for 10 min at RT to allow the formation of a PolyFect-DNA complex. 
After addition of 2.1 ml DMEM containing FCS and glutamine, the solution was layered onto 
the washed (PBS) cells (50 µl/slide well; 1.7 ml /well of 6 well culture dish). Gene expression 
was analyzed twenty-four hours after transfection. 
 
2.11.11. Cholesterol depletion and replenishment 
 
Materials 
 
- 10 mM lovastatin stock solution: To 25 mg lovastatin 100% ethanol and 938 µl NaOH 
 were added and the suspension was heated for 2 hours at 50°C in the dark. After 
 complete dissolving, pH was adjusted to 7.0-7.5 by addition of 2-3 drops of 1N HCl 
 and then solution was filled up to 6.25 ml with dH2O, filtered (0.2 µm) and stored at 
 -20°C in 50 µl aliquots.  
- 250 mM mevalonic acid stock solution: 0.25 mg of mevalonate was dissolved in 7.7 ml 
 dH2O, filtered (0.2 µm), and stored at -20°C in 50 µl aliquots. 
- 200 mM methyl-β-cyclodextrin (MCD): The average molecular weight was estimated at 
 1303 g/mol. For preparation of a 200 mM stock solution, made freshly before every 
 experiment, 260 mg of MCD were dissolved in DMEM to give a volume of 1 ml. 
- 6 mg/ml cholesterol-β-methyl-cyclodextrin inclusion complex in DMEM 
 
Cholesterol depletion was performed as described previously (Gatfield et al., 2000). In brief, 
cells were grown in the presence of 4 µM lovastatin and 250 µM mevalonate (J774A.1 for 60 
hours, bone marrow derived macrophages and dendritic cells for 108 hours) after which the 
residual plasma membrane cholesterol was extracted with methyl-β-cyclodextrin (J774A.1: 
10 mM MCD for 45 min, bone marrow derived macrophages: 20 mM MCD for 108 hours, 
bone marrow derived dendritic cells: 15 mM MCD for 45 min). All subsequent experiments 
were done in serum-free media.  For the replenishment of cholesterol, depleted cells were 
incubated for one hour in DMEM containing 6 mg/ml cholesterol-β-methyl-cyclodextrin 
complex. 
 
2.11.12. Cross-presentation 
 
2.11.12.1. Proliferation assay 
 
Irradiated (3000 rad) bone marrow derived macrophages were seeded in 96 well plates (2x 
104 cells/well). After PMA stimulation and cholesterol extraction, cells were incubated with 
ovalbumin / palmitoylated ovalbumin or SIINFEKL /palmitoylated SIINFEKL peptide for 3 
hours. The non-internalized and non-bound antigens were removed by extensive washing. 
Lymphocytes (total or CD8+ T-cells) isolated from OT-1 mice (Hogquist et al., 1994) were 
then added to the bone marrow derived macrophages (ratio 5:1). T-cell proliferation was 
measured after three days by labeling the cells with [methyl-3H]-thymidine (Amersham 
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Pharmacia Biotech). Lactacystin treatment was performed by incubating the cells with 10 µM 
lactacystin one hour before and during the three hour antigen pulse. In case of fixing the 
APCs, fixation with 1% paraformaldehyde (30 min, 37°C) was done prior to incubation with 
the antigen. 
 
2.11.12.2. CTL induction  
 
Cross-presentation of the influenza matrix protein (IM) (1-164) was measured by induction of 
HLA class I restricted CTLs specific for the IM derived GILGFVFTL peptide (IM 58-66). To 
that end, immature dendritic cells generated from peripheral blood monocytes (PBMC) of a 
healthy HLA-A*0201 donor were seeded in a 24 well culture dish (5x 105 cells/well) and 
treated with LPS or LPS + 50 µg/ml IM (1-164) or LPS + 125 µg/ml ovalbumin for twenty-
four hours. Subsequently cells were washed three times with PBS to remove LPS and non-
internalized antigen. Cells were then resuspended in T-cell media, counted and seeded into a 
24-well culture dish (1x 105 cells/well). CD8+ T-cells isolated from PB of the same donor 
were added to each well (ratio dendritic cells:T-cell=1:15). To dendritic cells only treated 
with LPS 2.5 µg/ml ras (4-12) peptide or 2.5 µg/ml IM (58-66) were added. Dendritic cells 
and T-cells were co-cultured for seven days. At day 4, 5, and 6 the media was supplemented 
with 10 U/ml of interleukin 2.  

To determine the percentages of IM (58-66) specific CD8+ T-cells within the cultured cells 
after seven days of co-culturing, tetramer staining was performed. 
 

2.12. Flow cytometry 
 
2.12.1. Testing of transgenic OT-1 mice 
 
Mice carrying the transgene were identified by staining peripheral T-cells for expression of 
the transgenic TCR (Vα2 / Vβ5.1 /5.2). To that end, 20 µl of heparinized peripheral tail blood 
was transferred into a 96 well V bottom plate and mixed with 100 µl of antibody solution 
(final concentration in PBS/2% BSA: FITC-anti-Vβ-TCR 1:100, R-PE-anti-Vα-TCR: 
1:1000). After a one hour incubation on ice in the dark, cells were pelleted by centrifugation 
(1200 rpm, 5 min, 4°C, Eppendorf 5810R, rotor: A-4-62), the supernatant was flicked out, 
then cells were washed once with PBS / 2% BSA, resuspended in 100 µl 1x lysis buffer 
(FacsTMLysing Solution, BD) and incubated for 5-10 min at RT. After complete lysis of red 
blood cells, the solution is clear. The remaining lymphocytes were washed once with PBS / 
2% BSA, then transferred into FACS tubes and analyzed onto a FACS calibur (Becton 
Dickinson). 
 
2.12.2. Quantification of IM (58-66) specific CD8+ T-cells by tetramer staining 
 
Co-cultured DCs and CD8+ T-cells were washed once with PBS and resuspended after 
pelleting in 100 µl of R-PE-HLA-A*0201/GILGFVFTL pentamers (Proimmune) diluted 
1:100 in PBS. After a 15 min incubation at RT in the dark, cells were washed with PBS and 
100 µl of FITC anti-CD8 antibody diluted 1:100 with PBS were added. Following an 
incubation of 30 min on ice, cells were washed twice with PBS, resuspended in 200 µl of PBS 
and analyzed by flow cytometry. 
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2.12.3. Flow cytometry phagocytosis assay 
 
J774A.1 cells grown in a 24 well culture dish (5x 105 cells /well) were left untreated or 
depleted for cholesterol and then incubated for 1 hour at 37°C or 4°C with FITC-labeled latex 
beads (FITC-microspheres, ∅ 1µm, Molecular Probes), diluted in DMEM 1:100. Following a 
30 min chase, cells were placed on ice and washed three times with ice-cold PBS/2% BSA to 
remove adherent, non-internalized beads before 200 µl of PD-buffer was added. After a 10 
min incubation on ice, cells were scraped from the culture dish and the cell suspension was 
transferred into a FACS tube containing 200 µl 3% PFA and fixed on ice for 30 min. Uptake 
of beads was quantified by flow cytometry by measuring an increase in fluorescence.  
 
2.12.4. Quantification of internalization of FITC labelled ovalbumin and 
palmitoylated ovalbumin 
 
Bone marrow derived macrophages were incubated with 0.1 mg/ml FITC labeled ovalbumin 
or palmitoylated ovalbumin for 20 min at 37°C and at 4°C. Cells were then washed, fixed 
with 3% PFA for 30 min on ice and analyzed by flow cytometry. Internalization of ovalbumin 
measured as increase in fluorescence was corrected for background adherence at 4°C. 
 

2.13. Microscopy 
 
2.13.1. Indirect immunofluorescence and filipin staining of cells 
 
Materials 
 
- teflon-coated ten well slides (Polysciences, Inc., Cat. No. 18357) 
- FluoroGuard Antifade Reagent (Bio-Rad) 
- Q-tips 
- wet chamber for staining (Kartell®, Italy) 
- slide jar (Glaswerk, Germany) 
- 3% paraformaldehyde (PFA) in PBS: 
   For preparation of 100 ml 3% PFA, 90 ml dH2O and 300 µl 0.1 N NaOH were 
 added to 3 g PFA, heated with stiring to 60°C until completely dissolving. The 
 solution was then cooled down to 37°C, 10 ml of 10x PBS was added and the pH was 
 adjusted to 7.2. 
 
Microscopes and software: 
 
- confocal scanning laser microscope system: Axiovert 200M + laser scanning  
  module (LSM 510 Meta) (Zeiss), LSM 510 software (version 3.2 SP2) 
- fluorescence microscope: Axiovert 100 TV (Zeiss), OpenLab software (version 2) 
 
For staining, the cells were grown on teflon-coated ten well slides at a density of 1x 105 cells 
per well. After aspiration of the media, cells were washed once with PBS, fixed in a slide jar 
with pre-warmed 3% (w/v) paraformaldehyde, pH 7.2 for 10 min at 37°C. Afterwards,
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slides were transferred into a new slide jar and washed 5 min with PBS, 5 min with PBS + 5 
mM glycine, and 5 min with PBS.  
For intracellular staining cellular membranes were permeabilized by treatment with saponin, a 
mild detergent which does not solubilize membranes and thus allows staining of cytosolic 
proteins as well as intracellular membrane components. To that end, slides were incubated for 
20 min at RT with 0.1 % (w/v) saponin dissolved in PBS (SAP). After blocking with 2% 
(w/v) BSA/0.1% saponin/PBS (SAP+) for 20 min at RT, the slides were dried carefully 
around each well with a Q-tip, placed in a wet chamber and the primary antibody (diluted in 
SAP+ or undiluted hybridoma supernatant) was added. After 30-45 min (depending on the 
antibody used) incubation at RT the slides were transferred into a slide–jar and washed three 
times each for 5 min with SAP+. Then the slides were placed back in the wet chamber, the 
liquid around each well was removed with a Q-tip and the secondary antibody coupled to a 
fluorescent dye and diluted in SAP+ was added. After 30 min incubation in the dark, the 
slides were transferred again into a slide-jar and washed 3x 5 min with SAP+ and 3x 5 min 
with PBS. For mounting, the slides were dried carefully around each well, a drop of 
FluoroGuard-Anti-Fade reagent was added onto each well and subsequently covered with a 
cover slip. Slides were stored at 4°C in the dark to prevent bleaching of the fluorescent dyes. 
To stain for cholesterol, cells were fixed, washed and then incubated for 45 min with 0.05% 
filipin complex III (stock solution: 50 mg/ml, freshly made), washed three times with PBS 
and mounted. When filipin was used together with antibody staining, the normal saponin-
based staining protocol was performed, whereby filipin was included with the primary and 
secondary antibodies. 
 
2.13.2. Internalization of FITC-Dextran 
 
To study internalization of the fluid-phase marker Dextran, a FITC labeled form of this 
glucose polymer with a molecular weight of 2000000 K was used. The assay was performed 
as follows. Cells grown on glass slides were washed once with PBS and then incubated in 
FITC-Dextran solution (1 mg/ml in DMEM / 1% (v/v) glutamine) for 7 or 12 min. The 
diluted FITC-Dextran solution was always centrifuged (50 000 rpm, 20 min, RT; Optima™ 

TLX-UZ, rotor: TLA 120.1) prior to use to remove aggregates that may cause background 
fluorescence. After incubation, the FITC-Dextran solution was aspirated and the cells were 
washed twice with PBS prior to fixation. When indicated, the cells were stained subsequently 
using Texas-Red coupled antibodies against cellular markers. 
 
2.13.3. Internalization and detection of horseradish peroxidase 
 
For visualization of internalized fluid-phase marker horseradish peroxidase a colourimetric 
reaction based on a redox reaction catalysed by HRP was used. The intensity of the cell 
staining (brown) was dependent on the amount of internalized HRP. 
Internalization of horseradish peroxidase (5 mg/ml) was performed for one hour at 37°C 
followed by a chase of four hours. Afterwards the cells were washed five times with PBS, 
fixed in glutaraldehyde (0.5% w/v) at RT and internalized horseradish peroxidase was 
visualized by incubation with 0.5 mg/ml diaminobenzidine (Sigma), 0.05% (v/v) H2O2 in PBS 
for 10 min (Sallusto et al., 1995).  
For palmitoylated horseradish peroxidase, internalization was performed for one hour with 0.5 
mg/ml of control or palmitoylated protein. Afterwards the cells were washed, fixed, 
permeabilized with 0.1% saponin for 20 min and internalized horseradish peroxidase was 



          Chapter 2 

 55 

visualized as described above. Slides were viewed under a Leica DMIL microscope (Leica) 
and pictures were taken using Coolpix 995 digital camera (Nikon). 
 
2.13.4. Time-lapse video microscopy 
 
Time-lapse video microscopy was used to investigate the effect of cholesterol on 
macropinosome formation. Control and cholesterol-depleted J774A.1 cells, bone marrow 
derived macrophages and dendritic cells were plated out at 10-20% confluence in 5 cm dishes 
with a gas-permeable lumoxTM fluorocarbon film base (Greiner Bio-one, Cat. No. 96077303). 
These plates were placed under a microscope (Axiovert 100 TV, Zeiss) equipped with a 
thermoequilibrated chamber (37°C, 5% CO2). After addition of 10-7 M PMA (in the case 
when macrophages were observed) 30 min video sequences were recorded at 10 seconds 
intervals using a digital camera controlled by OpenLab software (version 2.0).  
 

2.14. Biochemical methods 
 
2.14.1 Determination of protein concentration  
 
Materials 
 
- BCA reagents (Pierce) 
- Bradford reagent: 100 mg Coomassie G-250 (Bio-Rad), 50 ml 95% ethanol, 100 ml of 85%    
  phosphoric acid, filled up to 200 ml with dH2O, filtered 
- Standard: 1 mg/ml protein standard (Bio-Rad, Cat. No. 500-0005) in dH2O 
- microplate reader (Paul Bucher), software: SoftMax Pro (version 1.2.0)  
 
Protein concentration was determined according the Bradford method (Bradford, 1976). In 
cases where the sample contained detergents such as TritonX-100 or NP40 protein 
concentration was then measured with the BCA method (Smith et al., 1985). 
Measurements were performed as follows. Different volumes of the sample (1-20 µl) and the 
standard solution (1, 3, 5, 7 and 9 µl) were placed in a 96-well plate, flat bottom and 200 µl of 
BCA-solution (prepared according manufacturer′s protocol) or 200 µl Bradford reagents 
respectively were added. Samples were measured using an ELISA reader immediately 
(Bradford, OD595) or after 15 min incubation at RT (BCA, OD560). The protein concentration 
was calculated from the measured values using a standard curve under consideration of 
sample volume and dilution factors. 
 
2.14.2. Protein precipitation with trichloroacetic acid (TCA) 
 
TCA (50% in acetone) was added to protein samples given a final concentration of 10%. 
Samples were mixed and incubated on ice for 30 min. Precipitated proteins were pelleted by 
centrifugation (20 000 x g, 30 min, 4°C), and washed two times with acetone (-20°C). The 
pellet was air-dried and then resuspended in 1x SDS-PAGE sample buffer. 
 
For analysis of total protein synthesis, an aliquot of the lysate of metabolically labeled cells 
was spotted onto 3MM Whatman paper. The filter was dried, then soaked in ice-cold TCA 
(10% in acetone) and incubated for 30 min on ice. After washing 1x 5 min with ice-cold 
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TCA (5% in acetone) and 1x 5 min in acetone (-20°C), the filters were dried and amount of 
radioactivity determined by liquid scintillation counting (Ultima Gold, Becton Dickinson, LS-
analyzer TRI-CARB 2000CA, Packard). 
 
2.14.3. Discontinuous SDS polyacrylamide gel electrophoresis (SDS-PAGE) 
 
Materials 
 
- Protean II minigel system (Biorad) 
- 5x reducing sample buffer 
- 10x SDS-PAGE electrophoresis running buffer 
- 30% (w/v) acrylamide/ 0.8% (w/v) bisacrylamide in water (0.2 µm filtered) 
- 20% (w/v) SDS 
- 2 M Tris/HCl, pH 8.8 
- 0.5 M Tris/HCl, pH 6.8 
- 10% (w/v) ammonium persulfate (APS) 
- TEMED (Biorad) 
- Biorad SDS-PAGE standard (broad range)  
 
Preparation of minigels (7 cm x 10 cm x 0,75 mm)  
Components of the running gel were mixed together according table 2.1, poured into the glass 
plate assembly and overlaid during the polymerization with water-saturated isobutanol. The 
stacking gel was poured onto the top of the polymerized running gel and the comb was 
inserted immediately. Before sample loading, the gel slots were washed with running buffer. 
Samples were mixed with 5x reducing sample buffer, boiled for 5 min at 95°C, centrifuged 
and loaded.  
Running conditions: constant voltage (80V for stacking, 120-150 V for running gel). 
 
Table 2.1. Preparation of Minigels 
 Running gel 

15% 
(ml) 

Running gel 
10% 
(ml) 

Stacking gel 
(4%) 
(ml) 

30%  acrylamide/bisacrylamide 5 3.3 0.65 
2 M Tris/HCl, pH 8.8 2 2 - 
0.5 M Tris/HCl, pH 6.8 - - 1.25 
20 % SDS 0.05 0.05 0.025 
dH2O 2.9 4.6 3.05 
10% APS 0.05 0.05 0.025 
TEMED 0.01 0.01 0.005 

(Shown quantities are for two minigels) 
 
2.14.4. Coomassie staining after SDS-PAGE 
 
Materials 
 
- staining solution: 0.25% Coomassie brilliant blue R-250 (Biorad), 10% acetic acid,  
         45% methanol in dH2O 
- fixation solution: 10% acetic acid, 45% methanol in dH2O 
 



          Chapter 2 

 57 

Gels were agitated in the staining solution for 30-60 min and then destained with fixation 
solution. Afterwards the gels were placed onto a filter paper and dried under vacuum at 60°C. 
 
2.14.5. Semi-dry protein transfer onto nitrocellulose membranes and 
immunodetection 
 
2.14.5.1. Transfer 
 
Materials 
 
- semi-dry transfer cell (Biorad) 
- semi-dry transfer buffer 
- Ponceau S solution [0.1% in 5% acetic acid (Sigma)] 
- Hybond C super nitrocellulose membrane (Amersham Bioscience) 
- filter paper (FP) [7 cm x10 cm, Whatmann 3MM (thin) and Macherey&Nagel               
  MN440 (thick)] 
- ECL™ Western Blotting Detection Reagents (Amersham Bioscience) 
- Hyperfilm™ ECL (Amersham Bioscience) 
 
The gel, membrane and filter papers were soaked in transfer buffer and assembled in a 
sandwich formation [lower electrode (anode)/FP thick/ FP thin/ membrane/gel/FP thin/FP 
thick]. Then all air bubbles between the single layers were removed and the upper electrode 
fitted (cathode) and the transfer started (time: 0.6 h, voltage: 25 V and ampere: 2.5 mA/cm2 = 
0.17 A/ minigel). After the transfer the membrane was stained with Ponceau S solution, 
photocopied and the molecular weight standards were marked with a pen. 
 
2.14.5.2. Immunodetection 
 
After transfer and Ponceau S staining, membranes were incubated for 2 hours at RT under 
agitation in 5% (w/v) low fat milk powder in PBST. Incubation with the primary antibody 
diluted in PBST/milk for 45 min at RT was performed on parafilm, afterwards the membranes 
were washed three times with PBST/milk and incubated for further 30 min with the secondary 
HRP-labeled antibody diluted in PBST/milk. Finally the membranes were washed 3x 5min 
with PBST/milk and 3x 5min PBST and subsequently incubated in the ECL solution for 1 
min at RT. Subsequently the membranes were dried with a paper towel, transferred to a 
transparent plastic bag and exposed for different times to films. 
 
2.14.5.3. Stripping of antibody stained membranes for reprobing 
 
Materials 
 
- stripping buffer: 67 mM Tris/HCl, pH 6.7, 2% SDS, 100 mM β-mercaptoethanol 
 
Antibody stained membranes were incubated in stripping buffer for 30 min at 50°C under 
agitation, washed two times 10 min with PBST and then blocked for 2 hours in 5% (w/v) low 
fat milk powder in PBST at RT. Subsequently staining was performed as described above 
(2.14.5.2.).  
 



Chapter 2 

 58 

2.14.6. Purification of the nuclear localization sequence (NLS)-mutant of the 
influenza matrix protein IM (1-164) 
 
Materials 
 
- buffer A:  20 mM MES/KOH, pH 5.7, 10 mM NaCl, 10 mM β-mercaptoethanol 
- buffer B:   20 mM MES/KOH, pH 5.7, 500 mM NaCl, 10 mM β-mercaptoethanol 
- buffer C:  20 mM MES/KOH, pH 5.7, 250 mM NaCl, 10 mM β-mercaptoethanol,  
  10 mM MnCl2 
- buffer D:  10 mM Tris/HCl, pH 7.5, 200 mM NaCl, 10 mM β-mercaptoethanol 
 
- Elastase from porcine pancreas (Roche Diagnostics, Cat. No. 1027891) 
- SP Sepharose FF (Amersham Bioscience) 
- Superdex 75 HP 10/30 (Pharmacia Biotech) 
- Amicon® Ultra-4 /15 Centrifugal Filter Units, NMWL membrane,  
  cut-off 5 000 kDa, 10 000 kDa (Millipore) 
 
For inoculation of the liquid culture, E. coli BL21 transformed via electroporation (2.10.4.) 
with plasmid DNA encoding for NLS-mutant IM (1-252) (pET16-NLS-IM-1-252) were 
directly scraped from LB-amp agar plates. For 1L of LB-amp media, two agar plates with a 
confluent bacteria lawn were used. After inoculation, the culture was grown at 30°C under 
agitation. Protein expression was induced at OD600 = 0.5 with 0.5 mM IPTG and after 4 hours 
growth, bacteria were harvested by centrifugation (5000 rpm, 10 min, 4°C; Sorvall®RC3C, 
rotor: H-6000A). The bacteria pellet was washed once with 50 ml PBS, resuspended in 5 ml 
buffer A, and bacteria were lysed by sonication. 
Purification of the NLS-mutant IM (1-252) protein from the bacteria lysate was performed as 
described before (Baudin et al., 2001; Arzt et al., 2004) using a two-step FPLC protocol. The 
bacteria lysate was centrifuged (14 000 rpm, 20 min, 4°C; Eppendorf centrifuge 5417R, rotor 
type F4530-11) to remove insoluble material, the obtained supernatant was filtered (0.2 µm 
filter) and then loaded onto an ion exchange column (SP Sepharose FF). By applying a linear 
FPLC gradient (10-500 mM NaCl), proteins were eluted and collected in 1 ml fractions. 
The fractions containing the NLS-mutant IM (1-252) determined by Coomassie Blue-stained 
SDS-PAGE were pooled, concentrated to 1/10 of the starting volume by centrifugation (cut-
off 10 000 kDa, 4000 rpm; Eppendorf centrifuge 5810R, rotor type: A-4-62) and dialysed 
against buffer C.  
Subsequently size exclusion chromatography was performed. To that end, the 200 µl of the 
concentrated protein solution was loaded onto a Superdex 75 column. Separation was 
performed at a flow-rate of 0.5 ml/min using buffer C as running solvent. 0.5 ml fractions 
were collected and analyzed for the presence of NLS-mutant IM (1-252) by Coomassie Blue-
stained SDS-PAGE. The NLS-mutant IM (1-252) containing fractions were pooled and 
dialysed against buffer D. To obtain the NLS-mutant IM (1-164) protein, the full-length 
protein (1-252) was then digested with elastase in a 50:1 molar ratio at 37°C for 2.5 hours. 
The reaction was stopped by addition of 1 mM PMSF and the protein solution was 
concentrated by centrifugation  (cut-off 5 000 kDa, 4000 rpm; Eppendorf centrifuge 5810R, 
rotor type: A-4-62 ) to 1/10 of starting volume. To further purify the N-terminal domain, size 
exclusion chromatography was performed again, as described above.  
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2.14.7. Expression of recombinant Cor1L+C in E. coli and purification 
 
Materials 
 
- buffer A:  20 mM Tris/HCl, pH 8.0, 10 mM NaCl, 1 mM β-mercaptoethanol 
- buffer B:  20 mM Tris/HCl, pH 8.0, 1M NaCl, 1 mM β-mercaptoethanol 
- lysozyme  (Sigma) 
- protease inhibitors (1x CLAAP, 1x PMSF) 
- Mono Q (10/10, Pharmacia Biotech)  
- Superdex 200 High load (16/60, Pharmacia Biotech) 
 
1L LB/Amp were inoculated with E.coli BL21 transformed with pET22-Cor1L+C plasmid by 
electroporation (2.10.4.), scraped from two agar-plates. Expression of Cor1L+C protein was 
induced at OD600= 0.5 by addition of 0.5 mM IPTG and after 3 hours growth at 37°C under 
agitation (250 rpm), bacteria were harvested by centrifugation (5000 rpm, 10 min, 4°C; 
Sorvall®RC3C, rotor: H-6000A). The bacteria pellet was washed once with 50 ml PBS, 
resuspended in 5 ml buffer A and incubated for 20 min on ice with 1 mg/ml lysozyme. After 
addition of 1x CLAAP and 1x PMSF, cells were lysed by sonication.  
Insoluble material and intact cells were removed by centrifugation (14 000 rpm, 20 min, 4°C; 
Eppendorf centrifuge 5417R, rotor type F4530-11), then the supernatant was transferred into 
1.5 ml Eppendorf tubes and heated for 5 min at 95°C in order to denature the proteins. 
Subsequently the protein solution was slowly cooled down at RT to allow the refolding of 
Cor1L+C. Precipitated proteins were removed by centrifugation (14 000 rpm, 20 min, 4°C; 
Eppendorf centrifuge 5417R, rotor type F4530-11), the supernatant was filtered (45 µm) and 
then loaded onto an anion exchange column (Mono Q). By applying a linear FPLC gradient 
(10-1000 mM NaCl), proteins were eluted and collected in 1 ml fractions. The fractions 
containing the Cor1L+C proteins as determined by Coomassie Blue-stained SDS-PAGE 
analysis were pooled, concentrated to 1/10 of the starting volume by centrifugation and 
loaded onto a size exclusion column. Proteins were eluted in 1 ml fractions, pooled, dialysed 
against PBS, and stored until use at -80°C. 
 
2.14.8. Preparation of total cell lysate 
 
Materials 
 
- 1x lysis buffer 
- protease inhibitors (1x CLAAP, 1x PMSF) 
 
Cells were washed three times with ice cold PBS, scraped from the culture dish and 
transferred into a 15 ml tube. After centrifugation (1200 rpm, 5 min, 4°C; Eppendorf 5810R, 
rotor: A-4-62), the supernatant was removed and cell pellet was resuspended in 1x lysis buffer 
containing protease inhibitors. To clear the lysate, a further centrifugation (10 min, 14 000 
rpm, 4°C; Eppendorf centrifuge 5417R, rotor type F4530-11) was performed and the 
supernatant was transferred into a new tube. The lysate can be stored at -80°C until use.  
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2.14.9. Homogenization of cells and preparation of membrane and cytosol 
 
Materials 
 
- homogeniztation buffer (HB): 10 mM Triethanolamine, 10 mM acetic acid, 1 mM EDTA, 
       250 mM sucrose, pH 7.4 
- protease inhibitors (1x CLAAP, 1x PMSF) 
 
Subcellular fractionation was performed according to standard protocols (Tulp et al., 1994; 
Ferrari et al., 1997). Cell monolayers were washed three times with ice-cold homogenization 
buffer on ice and subsequently cells were scraped from the culture dish in a minimal volume 
of HB (cell density 1x 107 cells /ml) and transferred into a tube of suitable size. 
Homogenization of the cells was performed by mechanical disruption using a syringe and a 
22G 1¼ needle (0.7 x 30 mm, Becton Dickinson). To that end, the cell suspension was kept 
on ice, mixed with protease inhibitors and was pushed several times through the needle. 
Homogenization was continued until the ratio of intact cells and nuclei was 1:10 as 
determined by transmission microscopy. The number of strokes needed for 90% 
homogenization is dependent on the cell type. To clear the homogenate from unbroken cells 
and cell nuclei, a low speed centrifugation at 240 x g for 15 min was performed. The obtained 
postnuclear supernatant (PNS) was further subjected to ultracentrifugation (100 000 x g, 30 
min, 4°C) to isolate cytosol and membranes. 
 
2.14.10. Isolation of cytoskeleton 
 
Materials 
 
- resuspension buffer:    80 mM PIPES, pH 6.8, 5 mM EGTA, 1mM MgCl2 
- cytoskeletal isolation buffer:   resuspension buffer + 1% Triton X-100 
 
Isolation of the cytoskeleton-containing detergent insoluble fraction was performed as 
follows. Cells were washed once with PBS, scraped from the culture dish and the cell number 
was determined. Subsequently, 1x 105 cells were pelleted (1200 rpm, 5 min, 4°C; Eppendorf 
centrifuge 5417R, rotor type F4530-11), the cell pellet was resuspended in 10 µl of 
resuspension buffer and 190 µl of ice cold cytoskeletal isolation buffer was added. The tube 
was flicked five times and immediately centrifuged (3000 x g, 2 min). The supernatant was 
careful removed and the TX-100 insoluble pellet was resuspended in 200 µl cytoskeletal 
isolation buffer prior to the addition of 5x sample buffer. For analysis, the same volume of the 
supernatant and the pellet fraction was loaded on SDS-PAGE.  
 
2.14.11. Gel filtration of HEK293 cytosol  
 
Materials 
 
- SMART system (Amersham Bioscience) 
- Superdex 200 (3.2 mm x 300 mm, Pharmacia Biotech) 
- gel filtration standard (Bio-Rad, Cat. No. 151-1901) 

 
For size exclusion chromatography, HEK293 cells transfected with different Cor-1 constructs 
were homogenized in homogenization buffer, and the cytosolic fractions were prepared as 
described earlier (2.14.9.). To completely solubilize residual membranes in the cytosolic 
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fractions, the cytosol was incubated for 30 min on ice in the presence of 2% (w/v final 
concentration) octylglucopyranoside. Next the samples were filtered (0.2 µm) and the protein 
concentrations were adjusted to 1 mg/ml. 50 µl of each sample was loaded on a Superdex 200 
gel filtration column. Separation was performed at a flow-rate of 50 µl/min using PBS as a 
running solvent. 75 µl fractions were collected and the presence of Cor1 in these fractions was 
determined by subsequent SDS-PAGE and immunoblotting. Molecular weight was calibrated 
using 180 µg of gel filtration standard. 
 
2.14.12. Metabolic labeling of cells using 35S-methionine / cysteine 
 
Materials 
 
- starvation medium:   RPMI 1640, lacking methionine/cysteine  
    (Gibco BRL, Cat. No. 51871-010) 
- 35S-methionine/cysteine: Promix, 14.3 mCi/ml  
    (Amersham Pharmacia, Cat. No. SJQ0078) 
- 1x lysis buffer   
 
Cells were washed twice with PBS, then starvation medium was added and cells were starved 
for 45 min at 37°C. Subsequently 35S-methionine/cysteine (Promix) was added to a final 
concentration of 0.2 mCi/ml. After one hour incubation at 37°C, cells were washed three 
times with PBS, then lysed in TX-100 lysis buffer and the proteins were precipitated with 
TCA (2.14.2.).   
 
2.14.13. Quantitation of horseradish peroxidase internalization  
 
Materials 
 
- 1x lysis buffer    
- reaction buffer: 0.342 mM o-dianisidine, 0.003% (v/v) H2O2, 50 mM Na-phosphate 
      pH 5.0, 0.3% (v/v) Triton-X100 
 
Cells seeded in a 48 well plate (3x 105 cells/well) were incubated with 2 mg/ml horseradish 
peroxidase for one hour at 37°C or 0°C, washed and subsequently lysed in TX-100 lysis 
buffer. The enzymatic activity of horseradish peroxidase in the lysates was determined by 
mixing 10 µl of cell lysate with 200 µl reaction buffer and after a five minute incubation at 
RT the absorbance was measured at 455 nm. The obtained values, which correlate with the 
amount of horseradish peroxidase in the lysate were related to the total protein amount in the 
lysates. 
 
2.14.15. F-actin co-sedimentation assay 
 
Materials 
 
- G-actin purified from rabbit skeletal muscle  
- 2.5 M KCl 
- G-actin-buffer: 2 mM imidazole, pH 7.2, 0.2 mM MgCl2, 0.2 mM ATP  
- Protein-buffer:  40 mM Tris/HCl, pH 7.4, 20 mM KCl, 4 mM MgCl2 
- Polycarbonate Centrifuge Tubes 8 x 34 mm (Beckman) 
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Protein association with F-actin was investigated by in vitro co-sedimentation of the protein 
with F-actin during high-speed centrifugation. G-actin purified as described previously 
(Steinmetz et al., 2000) was obtained from Dr. C.A. Schoenenberger, Biozentrum, Basel, 
Switzerland. 
These assays were performed in centrifugation tubes using a batch volume of 100 µl. First, F-
actin was pre-assembled from purified rabbit skeletal muscle actin (50 µl, 10 µM) in G-buffer 
by addition of KCl to a final concentration of 100 mM and incubated for 45 min at RT. Then 
50 µl of purified Cor1L+C (final concentration: 5 µM) in P-buffer was added and the mixture 
was incubated for further 45 min at RT. The mixture was then centrifuged (100 000 x g, 30 
min, RT) and the obtained supernatant and pellet were analyzed by Coomassie Blue-stained 
SDS-PAGE. To control for sedimentation, G-actin, F-actin and CorL+C samples were also 
subjected to ultracentrifugation at the same time.  
 

2.15. Synthesis of activated lipid substrates and protein modification   
 
2.15.1. Preparation of the cholesterol-methyl-β-cyclodextrin inclusion complex 
 
Materials 
 
- cholesterol, 98% pure (Avanti Polar-Lipids, Inc.) 
- methyl-β-cyclodextrin (Sigma)  
 
The synthesis of the cholesterol-methyl-β-cyclodextrin complex was performed as described 
before (Klein et al., 1995). In brief, 30 mg cholesterol was dissolved in 2-propanol and added 
in small aliquots to a stirred solution of 1 mg methyl-β-cyclodextrin (5 % w/v) on a water 
bath (80°C). Stirring was continued until everything was dissolved. After removal of solvents 
by freeze-drying, the cholesterol-methyl-β-cyclodextrin complexes were stored at room 
temperature. 
 
2.15.2. Synthesis of succinimidyl carbonate (SC)-farnesol 
 
Materials 
 
- trans, trans-farnesol, 96% (Sigma) 
- N,N′-disuccinimidyl carbonate (DSC) (Sigma) 
- 4-(dimethylamino)-pyridine (DMAP) (Sigma) 
- dioxane and acetone were dried by filtration over Al2O3 (Fluka, type 5016A, basic) 
- silica gel (Uetikon, 40-60 mesh) 
 
Activation of farnesol with N,N′-disuccinimidyl carbonate (DSC) was performed as 
previously described (Zalipsky et al. 1992; Miron and Wilchek, 1993). The reaction was 
performed under water-free conditions using dry reaction vessels and dry solvents.  
Following solutions were prepared: 
- 500 µl of farnesol (=1 mmol) were added to 5 ml dry dioxane 
- 2.5 g DSC (= 8 mmol) were dissolved in 15 ml dry acetone 
- 0.97 g DMAP (= 8 mmol) were dissolved in 10 ml dry acetone 
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With stirring, first the dissolved DSC was added to the farnesol / dioxane solution, and then 
DMAP solution was added drop by drop. The reaction was allowed to proceed under argon 
overnight at RT with continuous stirring. Completion of reaction was determined by thin layer 
chromatography. Material precipitated during the reaction was filtered out using a glass-fiber 
filter pad, and solvent was evaporated. To the remaining yellowish solution 10 volumes of 
dichloromethane were added, and subsequently loaded onto a silica gel column and then 
eluted with dichloromethane/petrol ether starting with a 8:2 mixture, then 9:1, 9.5:05 and 
10:0. Flow-through was collected in 5 ml glass tubes and fractions were analyzed by thin-
layer chromatography for the presence of SC-farnesol. Fractions containing SC-farnesol were 
pooled, the solvent was evaporated and product was analyzed by nuclear magnetic resonance 
(NMR).  
 
2.15.3. Synthesis of NHS esters of fatty acids 
 
Materials 
 
- fatty acids were obtained from Sigma 
- N-hydroxysuccinimide (NHS) (Perbio) 
- dicyclohexyl carbodiimide (DCC) (Sigma) 
- ethyl acetate was dried by filtration over Al2O3 (Fluka, type 5016A, basic) 
 
Synthesis of the NHS ester of fatty acids was performed according to Huang et al., (1980) 
with some modifications. Reaction was performed under water-free conditions using dry 
reaction vessels and dry solvents.  
3 mmol NHS were dissolved in 30 ml ethyl acetate and then mixed with 3 mmol of fatty acid. 
After addition of 3 mmol DCC dissolved in 10 ml ethyl acetate to the NHS/fatty acid solution, 
the mixture was incubated overnight at RT under a argon blanket and if needed under light 
exclusion. After completion of the reaction, checked by TLC, the formed insoluble 
dicyclohexyl urea was removed by filtration using a glass fiber filter pad and the solvent was 
evaporated. The products were further purified by re-crystallization. This was done by 
dissolving the activated fatty acids in a minimal volume of hot ethanol and immediately 
filtering the solution through a filter funnel containing a fluted glass fiber pad, both of which 
have been warmed to the same temperature as the ethanol solution. The filtrate was incubated 
overnight at RT to allow re-crystallization. Excess solvent was removed afterwards from the 
re-crystallized solid by filtration, the product was dried under vacuum and analyzed by TLC. 
The NHS esters of the unsaturated fatty acids were not re-crystallized to avoid decomposition, 
as they are not stable.   
 
2.15.4. Palmitoylation of ovalbumin and horseradish peroxidase 
 
Materials 
 
- palmitic acid-N-hydroxy succinimidester (NHS-palmitic acid) (Sigma) 
- palmitoylation buffer: 20 mM sodium phosphate, 150 mM NaCl, 2% deoxycholate pH 8.5 
- PD 10 column (Amersham, Bioscience) 
- phenyl superose column (HR 10/10, Pharmacia Biotech) 
- buffer A: 1.7 M (NH4)2SO4  50 mM sodium phosphate pH 7.0 
- buffer B: 50 mM sodium phosphate 
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Palmitoylation was performed following the method previously described (Huang et al., 
1980). In brief, 5-30 mg proteins were dissolved in 1 ml palmitoylation buffer. A 20 molar 
excess of NHS-palmitic acid was dissolved in 100 µl dioxane and together with 300 µl 
DMSO slowly added to the protein solution. After an overnight incubation, the reaction was 
stopped by addition of 1/100 volume of 1 M lysine and free NHS-palmitic acid was removed 
by gel filtration (PD 10 column). To separate palmitoylated from non-palmitoylated protein, 
hydrophobic interaction chromatography (HIC) was performed following the palmitoylation 
reaction. Proteins were loaded onto a phenyl superose column under high salt condition (20% 
buffer B) allowing exclusively the binding of palmitoylated protein. To elute column bound 
palmitoylated protein the salt concentration was gradually reduced (100% buffer B in 20 
min). Palmitoylated proteins were analyzed by mass spectrometry. 
 
2.15.5. Coupling of NHS-activated lipids to peptides 
 
To modify the model peptide NH2-GSGSGSK(Acetyl) with the synthesized NHS activated 
lipids, a 1 mg/ml peptide solution in DMF was prepared and mixed to an equal volume of 
DMF containing a twenty molar excess of NHS activated lipid. After addition of one equimol 
of triethylamine, which served as base, the mixture was incubated overnight at 4°C. 
Subsequently the solvent was evaporated and peptides resuspended in 80% acetonitril/0.1% 
TFA for further analysis by mass spectrometry.  
 
2.15.6. FITC labeling of ovalbumin and palmitoylated ovalbumin 
 
Materials 
 
- Oregon Green-NHS (Molecular Probes) 
- PD 10 column (Amersham, Bioscience) 
 
Ovalbumin or palmitoylated ovalbumin was dissolved in PBS and a five molar excess of 
Oregon Green-NHS in DMSO was added to the protein solution. The reaction was performed 
at RT for 2 hours under rotation. Finally the free Oregon Green-NHS was removed by gel 
filtration (PD10 column). 
 

2.16. Analytical methods 
 
2.16.1. Nuclear magnetic resonance anaylsis (NMR) 
 
NMR spectra were recorded on a Bruker Avance DMX-500 (500MHz) spectrometer. 
Assignment of 1H and 13C spectra was performed using 2D methods (COSY and HSQC). As a 
solvent, CDCl3 was used.  
 
2.16.2. Mass spectrometry – sample preparation 
 
Covalent attachment of lipid tails to proteins and peptides was confirmed in mass 
spectrometry by detection of an appropriate shift in molecular mass of the peptide /protein 
after modification. To that end, control and modified peptides or proteins were analyzed by 
MALDI-TOEF or by ESI LC-MS.  
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Futhermore, mass spectrometry analysis was performed to confirm the identity of 
recombinantly expressed proteins. To that end, SDS-PAGE of protein samples were stained 
by 30-40 min incubation in 50% methanol, 7.5 % acetic acid, 0.1 (w/v) Coomassie Blue 
G250. After destaining of the gel with 20% methanol, 7.5 % acetic acid, the protein band of 
interest was excised and an in-gel tryptic digest was performed. Generated peptides were 
analyzed by ESI LC-MS and obtained peptide fragments compared with entries in databases 
to identify the protein. 
Mass spectra were recorded on a Bruker Reflex III instrument (Bruker Daltonik) (MALDI-
TOF) or on a Finnigan TSQ7000 (ESI LC-MS). 
 
2.16.3. Static light scattering (SLS) 
 
Static light scattering (SLS) experiments were performed at the Paul Scherrer Institut, 
Villingen, Switzerland using a miniDAWN TriStar with Optilab rex refractometer (Wyatt) 
coupled to a Superdex 200 10/30 gel filtration column on an Agilent 1100 Series HPLC. 100 
µl of 1 mg/ml protein solutions were injected on the column equilibrated in 20 mM Tris pH 
7.4, 150 mM NaCl. Molecular weights were calculated using the Wyatt Astra version 4.90.08 
software package. 
 
2.16.4. Thin layer chromatography (TLC) 
 
Materials 

- 5 x 10 cm TLC pre-coated plates silica gel (Merck, Ca.No. 105719) 
- solvent A: chloroform : petrol ether (40-60°C): 8:2  
- solvent B: dichloromethane : petrol ether (40-60°C): 8:2 
- Iodine chamber:   TLC chamber with few iodine crystals 
- Mostain:    800 ml 10% H2SO4, 40 g (NH4)6Mo7O24 x 4H2O,  
    0.8 g Ce(SO4) x 4H2O 
- NHS- stain, solution A: 10% (w/v) hydroxylamine in 0.1 N NaOH 
           solution B: 5% (w/v) FeCl3 in 1.2 N HCl 
 
Synthesis of NHS activated lipids was followed by thin layer chromatography. To that end 5-
10 µl of the reaction mixture or the eluted chromatography fractions were spotted onto a TLC 
plate, dried and placed into a pre-equilibrated TLC-chamber containing solvent A (NHS esters 
of fatty acids) or solvent B (SC-farnesol). After the solvent front had reached the top of the 
plate, the plate was taken out and dried.  
For staining of the plate with iodine, the plate was placed into a chamber saturated with iodine 
vapour, which has a high affinity for unsaturated and organic compounds. As iodine staining 
is reversible, plate was immediately photocopied afterwards.  
Staining with Mostain (cerium molybdate stain) was performed as follows. The TLC plate 
was dipped once in Mostain solution, immediately placed in a 120°C oven and baked for 5-10 
until samples turned dark-blue. 
Visualization of the NHS group after TLC was performed as previously described (Huang et 
al., 1980). To that end, the TLC plate was incubated first in NHS staining solution A and after 
2 min in solution B, whereby the NHS-groups stain red.  
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3.1. Abstract  
 
Cross-presentation, which is crucial for the generation of immunity against virus-

infected and tumour cells requires exogenous antigens to be internalized into antigen-

presenting cells followed by translocation to the cytosol by unknown mechanisms. One 

important entry route for such antigens is macropinocytosis. We describe here that 

cholesterol is essential for cross-presentation of antigens loaded via macropinocytosis 

into antigen presenting cells. Modification of antigens by palmitoylation to target 

antigens to cholesterol-enriched plasma membrane domains resulted in a dramatically 

increased T-cell activation. These results define cholesterol as an essential factor for 

cross-presentation and suggest that specific modification of antigens to increase their 

affinity for cholesterol may be utilized to enhance immunity. 

 

3.2. Introduction  
 

Generation of an immune response occurs through the activity of the molecules encoded in the 

major histocompatibility complex (MHC). These molecules come in two forms, the MHC 

Class I and MHC Class II molecules, whose function is to present foreign peptides to CD8+ 

and CD4+ T-cells, respectively. MHC class II molecules are synthesized in the endoplasmic 

reticulum and form a complex with an invariant chain which targets the MHC class II 

complex to post-Golgi endosomal/lysosomal organelles, the so-called MHC class II 

compartments (Amigorena et al., 1994; Tulp, et al., 1994; West et al., 1994). Within these 

organelles, they assemble with peptides derived from exogenous antigens (Cresswell et al., 

1996; Pieters, 1997; Trombetta and Mellman, 2005). Such antigens are internalized via 

endocytosis and degraded in endosomal/lysosomal organelles (Watts, 1997). These 

intracellularly formed MHC class II-peptide complexes are then transported to the cell surface 

for presentation to CD4+ (helper) T-cells (Germain, 1994).  

 

MHC class I molecules, in contrast, are synthesized in the endoplasmic reticulum, assemble 

with beta 2-microglobulin and remain in the endoplasmic reticulum until they become loaded 

with antigenic peptides (Townsend et al., 1989). Antigenic peptides loaded onto MHC class I 

molecules are derived from antigens residing in the cytosol, such as viral proteins as well as 

tumor derived antigens (Koopmann et al., 1997). These cytosolic antigens are degraded by the 
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proteasome, a cytosolic multiprotease complex, into peptides (Monaco 1995; Baumeister et 

al., 1998), which are subsequently translocated into the endoplasmic reticulum in an ATP-

dependent manner by the TAP transporter (Spies et al., 1990; Androlewicz et al., 1993). 

Assembly of antigenic peptides with the MHC class I/beta 2-microglubulin complex in the ER 

triggers their transport to the cell surface where they can activate CD8+ (killer) T-cells 

(Townsend et al., 1989). This dichotomy between the MHC class I and class II pathways 

ensures the efficient and selective killing of virally infected or tumour cells, while generating 

a help response in the case of bacterial infections (Pieters, 1997; Watts and Powis, 1999). In 

addition, restricting MHC class I presentation to endogenous antigens prevents healthy cells 

from becoming targets for killing by CD8+ T-cells (Ackerman, 2004). 

 

An important step in the generation of an immune response is the activation of naïve T-cells, 

which occurs through their stimulation by dendritic cells (Cella et al., 1997; Banchereau and 

Steinman, 1998; Heath and Carbone, 2001). Dendritic cells sample peripheral tissue for the 

presence of antigens, and migrate to lymphoid organs where antigenic peptides captured in the 

periphery can be presented to naïve T-cells (Banchereau and Steinman, 1998). For the 

generation of CD4+ T-cells, antigens are captured within the endocytic pathway, and during 

migration to the secondary lymphoid organs the dendritic cells mature and increase the 

expression of MHC class II-peptide complexes at the cell surface in order to efficiently induce 

T-cell activation (Cella et al., 1997; Pierre et al., 1997; Boes et al., 2002). How CD8+ T-cells 

can be activated against antigens present in the periphery has been less well defined. For 

generation of CD8+ T-cells, antigens captured in the periphery by professional antigen-

presenting cells have to acquire access to the MHC class I pathway. It is now becoming clear 

that a pathway does exist both in dendritic cells and macrophages to deliver exogenously 

captured antigens to the MHC class I processing compartments referred to as cross-

presentation (Bevan, 1976; Heath and Carbone, 2001; Rock et al., 1990; Reis e Sousa and 

Germain, 1995). Cross-presentation is crucial for the establishment of immunity against virus-

infected and tumour-transformed cells as well as for the induction of tolerance (den Haan and 

Bevan, 2001; Heath and Carbone, 2001). The precise mechanisms involved in transfer of 

exogenous antigens to the MHC class I processing and presentation machinery are still unclear 

(Guermonprez and Amigorena, 2005; Ackerman and Cresswell, 2004).  

 

One internalization route used by macrophages and dendritic cells in particular to sample 

exogenous antigens to be cross-presented is macropinocytosis (Ackerman et al., 2005; 
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Ackerman et al., 2003; Watts and Powis, 1999; Norbury et al., 1997; Norbury et al., 1995; 

Brossart and Bevan, 1997; Sallusto et al., 1995). Macropinocytosis refers to the uptake of 

non-particulate material through the formation of 0.5-2 µm diameter vesicles in an actin-

dependent process (Steinman and Swanson, 1995). Macropinosome formation starts at the cell 

periphery by extension of a large planar membrane ruffle (lamellipodium) that folds back to 

form the macropinosome (Cardelli, 2001; Amyere et al., 2000; Araki et al., 1996; Rupper et 

al., 2001). In macrophages and dendritic cells, formation of macropinosomes is a constitutive 

activity, which can be further enhanced by treatment with growth factors and activators of 

protein kinase C such as phorbol esters. Also in other cell types, macropinocytosis can be 

induced, although the significance of such macropinocytic events for internalization processes 

in these cells is unclear (Steinman and Swanson, 1995; West et al., 1989; Grimmer et al., 

2002). Both induced and constitutive macropinosome formation is dependent on the activity 

of phosphatidylinositol (PI)-3-kinase (Araki et al., 1996; Amyere et al., 2002) and the activity 

of Rho family member Rac 1 (Ridley et al., 1992; West et al., 2000). Whereas activation of 

GTPase Rac 1 and its subsequent signaling to downstream effectors such as WAVE 2, an 

activator of the Arp2/3 complex (Miki et al., 1998; Miki et al., 2000) or p21 activated kinases 

(PAK) (Dharmawardhane et al., 2000) is required for the rearrangement of the actin 

cytoskeleton, activated phosphatidylinositol (PI)-3-kinase seems to be necessary for the 

completion of macropinosome formation (Araki et al., 1996). Macropinosomes remain 

separate from conventional endosomes (Hewlett et al., 1994) although fluid phase markers 

internalized via macropinocytosis may eventually reach lysosomes (Racoosin and Swanson, 

1993). 

Antigens internalized into antigen-presenting cell via macropinocytosis gain access to the 

MHC class I processing pathway (Norbury et al., 1995; den Haan and Bevan, 2001;  

Ackerman et al., 2005) but the mechanisms involved in transfer of macropinocytosed antigens 

to the cytosol remain unknown. As a first step towards defining the molecular events involved 

in the transfer of exogenous antigens to the MHC class I processing and presentation pathway, 

the delivery of a model antigen, ovalbumin, to the class I presentation pathway was analyzed 

in here.  
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3.3. Results 
 

3.3.1. Contribution of cholesterol to macropinosome formation 
 
To gain insight into the delivery process of exogenous antigens to the MHC class I 

presentation pathway, different professional antigen-presenting cells were incubated with 

FITC labeled Dextran, a marker for macropinosomes (Sallusto et al., 1995; Swanson, 1989; 

Norbury et al., 1995). Both J774 cells and bone marrow derived macrophages as well as bone 

marrow derived dendritic cells contained large numbers of macropinosomes (figure 3.1.A,B). 

As macropinosomes provide a port of entry to deliver components into the cell, similar to 

endosomes, the relationship of these organelles with other endocytic compartments was 

examined.  

To that end, macrophages that had internalized FITC-Dextran via macropinocytosis were 

analyzed for the presence of different markers of the endosomal/lysosomal pathway, including 

clathrin and lysosomal associated membrane glycoprotein-1 (LAMP-1), none of which co-

localized with macropinosomes. However, when cells were incubated with the cholesterol-

binding compound filipin (Bornig and Geyer, 1974; Drabikowski et al., 1973; Gatfield and 

Pieters, 2000), all macropinosomes strongly labeled with filipin (figure 3.1.B). This suggests 

that cholesterol is an important component of macropinosomes in macrophages and dendritic 

cells.  

To analyze the contribution of cholesterol to macropinosome formation, the plasma membrane 

of macrophages and dendritic cells was depleted for cholesterol by pharmacological treatment 

with lovastatin and methyl-β-cyclodextrin (Klein et al., 1995; Simons et al., 1998; Gatfield 

and Pieters, 2000). Living cells were observed under the microscope and macropinosome 

formation was monitored using time lapse video microscopy and thirty minute video 

sequences of control and cholesterol depleted cells were recorded. As shown in figure 3.2., 

whereas membrane ruffling (marked by white arrowheads) occurred both in control as well as 

in cholesterol-depleted cells, macropinosome formation (marked by black arrowheads) was 

abolished in cells depleted for cholesterol.  
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Figure 3.1. Distribution of macropinocytosed FITC-Dextran in macrophages and dendritic cells. 
 
A. Macrophages (J774A.1 cells) were incubated with FITC-Dextran for 7 min, fixed and stained 
for clathrin (upper panels) and LAMP-1 (lower panels) using anti-clathrin (secondary reagent: 
anti-mouse IgG1-TXR) and anti-LAMP-1 (secondary reagent: anti-rat IgG-568) antibodies. 
B. J774A.1 macrophages (upper panels), bone marrow derived macrophages (middle panels) and 
bone marrow derived dendritic cells (lower panels) were incubated for 12 min with FITC-Dextran, 
fixed and labeled for cholesterol with filipin. Arrowheads point at macropinosomes. Bar: 10 µm. 
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Figure 3.2. Effect of cholesterol-depletion on macropinocytosis analyzed by time-lapse video microscopy.  
 
J774A.1 cells (right panels), bone marrow (BM) derived macrophages (middle panels), or bone marrow 
(BM) derived dendritic cells (left panels) were cholesterol-depleted (depleted) or left untreated (control) and 
placed under a 37oC thermoregulated and CO2 equilibrated microscope and subsequently 30 min video 
sequences were recorded.  Shown are images at the times indicated. Examples of membrane ruffles are 
marked by white arrowheads, macropinosomes are marked by black arrowheads. Bar: 10 µm.  
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To directly analyze internalization of the fluid-phase marker FITC-Dextran, control or 

cholesterol-depleted cells were incubated with FITC-Dextran for 12 min, fixed and observed 

under the fluorescence microscope. After cholesterol-depletion, internalization of FITC-

Dextran in macrophages and dendritic cells was strongly reduced, in contrast to control cells 

(figure 3.3.).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Cholesterol is an important component of the plasma membrane where it has a key role in 

organization of membrane lipid domains that serve as platforms for cell signalling, protein 

organization and protein sorting.  

Figure 3.3. Effect of cholesterol-depletion on macropinocytosis analyzed by internalization of the fluid-
phase marker FITC-Dextran.  
 
A. Control (left) or cholesterol depleted (right) J774A.1 macrophages (upper panels), bone marrow derived 
macrophages (middle panels), both stimulated with PMA or dendritic cells (lower panels) were incubated 
with FITC-Dextran for 12 min, fixed and analyzed by fluorescence microscopy. Bar: 10 µm. 
B. For quantitation, cells (n= 150) were scored for the presence of internalized FITC-Dextran. Shown are 
mean values (+/- SD, n = 50) from three experiments.  
 
 

 

 



          Chapter 3 

 75 

To exclude the possibility that the impairment of cholesterol-depleted cells to exhibit 

macropinocytosis is due to an overall defect in common cellular processes, the influence of 

cholesterol-depletion on protein biosynthesis as well as on phagocytosis was examined.  

 

To study protein synthesis, control and cholesterol-depleted cells were metabolically labeled 

for one hour with 35S-methionine and cysteine, washed and lysed. Proteins from the lysates 

were precipitated with trichloroacetic acid and the amount of radioactivity incorporated into 

newly synthesized proteins was determined. As shown in figure 3.4.A, the rate of 35S 

incorporation in J774A.1 and BM macrophages after cholesterol-depletion was only slightly 

affected, whereas in cholesterol depleted BM dendritic cells protein biosynthesis was reduced 

around 40% compared to non-treated cells. 

 

Phagocytosis was examined by measuring the uptake of FITC-labeled latex beads in control 

and cholesterol-depleted cells. To that end, cells were incubated with latex beads for one hour 

at 37ºC, chased for a further 30 min, washed and analyzed by flow cytometry to quantify 

phagocytosis. 

As shown in figure 3.4.B, cholesterol depletion of J774A.1 cells and BM macrophages did not 

significantly interfere with the ability of these cells to internalize material via phagocytosis, 

which is consistent with earlier reports (Gatfield and Pieters, 2000). The same was observed 

using BM dendritic cells. Also cholesterol-depleted BM dendritic cells were able to 

internalized FITC-labeled latex beads to a similar extent as control BM dendritic cells 

suggesting that cholesterol depletion did not affect phagocytosis.  

Together these results show that the removal of plasma membrane cholesterol blocked 

macropinocytosis without severely inhibiting other cellular processes such as protein 

biosynthesis or phagocytosis in antigen-presenting cells. 
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To test whether macropinosome formation can be restored when cholesterol is re-added, 

cholesterol-depleted cells were incubated with methyl-β-cyclodextrin-cholesterol complex for 

one hour. Macropinocytic activity was measured afterwards by internalization of FITC-

Dextran. Shown in figure 3.5., treatment of cholesterol-depleted cells with methyl-β-

cyclodextrin-cholesterol led to the replenishment of cholesterol (figure 3.5.A) fully restoring 

macropinocytic activity of the cells (figure 3.5.B). 

Figure 3.4. Effect of cholesterol-depletion on protein synthesis and phagocytosis. 
 
A. Control (grey bars) and cholesterol-depleted (white bars) J774A.1 macrophages (left), bone marrow 
derived macrophages (middle) or bone marrow derived dendritic cells (right) were metabolically labeled 
for 1 hour with [35S]  methionine and cysteine, washed and lysed in TX-100 containing lysis buffer. 
Proteins from the lysate were TCA precipitated and the incorporated radioactivity determined in a liquid 
scintillation counter. 
B. Control (grey bars) and cholesterol-depleted (white bars) J774A.1 macrophages (left), bone marrow 
derived macrophages (middle) or bone marrow derived dendritic cells (right) were allowed to internalize 
FITC-labeled beads for 1 hour at 37°C, chased for 30 min and washed to remove non-internalized 
material. Phagocytosis was quantified by flow-cytometry analysis and it is displayed as mean fluorescence 
intensity. Phagocytosis is corrected for background adherence occurring at 4°C and is expressed as 
percent phagocytosed beads compared with control macrophages.  
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These results show that macropinosome formation in macrophages and dendritic cells is a 

cholesterol-dependent process.  

 

3.3.2. Role for cholesterol in cross-presentation 
 

Given the role of cholesterol in macropinocytosis, the involvement of cholesterol in cross-

presentation was investigated. For that purpose we made use of the model antigen ovalbumin. 

Ovalbumin labeled with FITC, when added to macrophages, was efficiently internalized into 

macropinosomes (figure 3.6.A/B). Conversively, internalization of FITC-ovalbumin in 

cholesterol-depleted cells was greatly reduced. 

 

 

 

 

 

 

 

Figure 3.5. Effect of cholesterol re-addition to cholesterol-depleted macrophages. 
 
A. Cholesterol-depleted (upper panels) and cholesterol-depleted J774A.1 macrophages and bone marrow 
derived macrophages treated for 1 hour with cholesterol:methyl-β-cyclodextrin complex (6 mg/ml) to 
allow re-insertion of cholesterol (lower panels) were fixed and labeled for cholesterol with filipin. Bar: 10 
µm. 
B. Control (dark grey bars), cholesterol-depleted (white bars) or cholesterol-replenished J774A.1 
macrophages and bone marrow derived macrophages (light grey bars) were incubated for 12 min with 
FITC-Dextran. After fixation, quantitation was performed by scoring cells (n=100) for the presence of 
internalized FITC-Dextran. Shown are mean values (+/- SD) from three experiments. 
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To analyze cross-presentation, control or cholesterol-depleted macrophages were incubated 

with ovalbumin for three hours, washed, and the cell surface display of the ovalbumin derived 

MHC class I SIINFEKL epitope was measured using CD8+ T-cells obtained from OT-1 mice 

(see materials and methods). The capacity of the ovalbumin-loaded macrophages to stimulate 

OT-1 T-cells was quantified by measuring T-cell proliferation, which is a direct result of T-

cell activation initiated by the recognition of the appropriate antigen on the surface of the 

antigen-presenting cell.  

Whereas control macrophages stimulated T-cell proliferation, depletion of macrophages for 

cholesterol resulted in a severely reduced T-cell activation (figure 3.7.A). To analyze whether 

cholesterol depletion compromises the ability to present the SIINFEKL peptide per se, 

untreated and cholesterol depleted macrophages were pulsed with SIINFEKL peptide that 

does not require internalization prior to presentation to T-cells. As shown in figure 3.7.B., 

both in control or cholesterol-depleted macrophages MHC class I presentation of exogenously 

added SIINFEKL peptide was comparable. Ovalbumin was indeed presented after cross-

Figure 3. 6. Effect of cholesterol-depletion on the internalization of ovalbumin. 
 
A. Macrophages (top panels: J774A.1, bottom panels: bone marrow derived macrophages) left untreated 
(control) or depleted for cholesterol (depleted) were incubated with 0.1 mg /ml FITC-ovalbumin for 12 
min, fixed, and analyzed by fluorescence microscopy. Bar: 10 µm. 
B. Quantitation was carried out after fixation. Values represent the percentages of cells having 
internalized FITC-ovalbumin (+/- SD from triplicates; n=50).  

 



          Chapter 3 

 79 

presentation, as the inclusion of the proteasome inhibitor lactacystin, or fixation of the 

macrophages with paraformaldehyde abolished T-cell proliferation (figure 3.7.C, D). 

From these results it can be concluded that cholesterol has a crucial role in cross-presentation 

of exogenous antigens by modulating their uptake and/or their translocation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7. Effect of cholesterol depletion on cross-presentation of ovalbumin  
 
A, D. Bone marrow derived macrophages were left untreated (dark grey bars) or depleted (white bars) for 
cholesterol and incubated with ovalbumin (10 mg/ml) (A,C) or SIINFEKL peptide (10 mM) (B) for three 
hours. In C, macrophages were treated with lactacystin. In D, macrophages were fixed with 
paraformaldehyde prior to addition of ovalbumin (5 mg/ml). Cells were washed and T-cells specific for the 
SIINFEKL epitope isolated from OT-1 mice were added. T-cell proliferation was measured after three 
days as described in materials and methods. 
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3.3.3. Modulation of internalization and cross-presentation of proteins by 

palmitoylation 

 
The finding that macropinosomes are cholesterol-rich structures, lead us to explore the 

possibility that enhancement of the affinity of antigens for cholesterol improves 

internalization. One modification that targets proteins to cholesterol-enriched sites in the 

plasma membrane is palmitoylation (Wolfen et al., 1997; Melkonian et al., 1999; Zacharias et 

al., 2002). As a model protein, the behaviour of horseradish peroxidase (HRP) after 

modification by palmitoylation was investigated. Horseradish peroxidase was internalized into 

macrophages via macropinocytosis and internalization was inhibited following cholesterol 

depletion (figure 3.8.). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8. Internalization of horseradish peroxidase (HRP) 

A. Control (left panel) or cholesterol-depleted (right panel) BM derived macrophages were incubated for 
one hour with HRP (5 mg/ml) and chased for 4 hours followed by fixation. The internalized HRP was 
visualized as described in methods. Bar: 10 µm. 
B. Control (dark grey bar) or cholesterol-depleted (white bar) BM derived macrophages were incubated 
for one hour with horseradish peroxidase (2 mg/ml). After washing, cells were lysed and the amount of 
internalized HRP in the lysate was determined as described in methods. Shown are the mean values (+/- 
SD) from three experiments. 
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To modify horseradish peroxidase by palmitoylation, HRP was incubated for 20 hours with 

the NHS ester of palmitic acid (figure 3.9.). After palmitoylation, the product was purified by 

hydrophobic interaction chromatography (figure 3.10.A). Mass spectrometry analysis showed 

a mass shift of 239 Da upon palmitoylation consistent with the addition of one palmitic acid 

residue. (figure 3.10.B). Incubation of macrophages with palmitoylated-HRP resulted in 

efficient internalization of HRP, whereas non-modified horseradish peroxidase was barely 

detectable at the same concentration (figure 3.10.C). Thus, palmitoylation leads to an 

enhanced uptake of exogenous proteins via macropinocytosis. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.9. Palmitoylation of horseradish peroxidase (HRP) – Reaction scheme 
 
Palmitoylation procedure of HRP. HRP was incubated with NHS-activated palmitic acid for 20 hours. 
Afterwards the unreacted NHS-palmitic acid was removed by gel filtration and palmitoylated protein was 
purified with hydrophobic interaction chromatography. 
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Figure 3.10. Palmitoylation of HRP 
– Purification, Analysis and 
Internalization 
 
A. Hydrophobic interaction 
chromatography (HIC) profile. 
Loading of HRP onto a Phenyl 
Superose column (HR 10/10, 
pharmacia) was performed at 
high-salt concentration (1.4 M 
(NH4)2SO4 in 50 mM sodium 
phosphate pH 7.0) allowing the 
exclusive binding of palmitoylated 
HRP whereas unmodified HRP 
did not bind and could be 
recovered in the wash fractions. 
Elution of palmityolated HRP was 
achieved by decreasing the salt 
concentration. 
B. Mass spectrometry analysis 
(MALDI-TOF) of control HRP 
(left panel) and palmityolated 
HRP (purified by HIC) (right 
panel). A mass shift of 239 Da was 
detected corresponding to the 
attachment of one palmitic acid 
chain to the protein. 
C. J774A.1 macrophages were 
incubated for one hour with 0.5 
mg/ml HRP (left panel) or 
palmityolated HRP (right panel), 
fixed and permeabilized. 
Internalized HRP was visualized 
as described in materials and 
methods. Bar: 10 µm. 
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Given the dependence of cross-presentation on cholesterol, we analyzed whether modification 

of the antigen by palmitoylation could modulate cross-presentation. To that end, ovalbumin 

was palmitoylated as described and the capacity of macrophages to internalize and cross-

present palmitoylated ovalbumin was examined. As shown in figure 3.11.A/B, internalization 

of FITC labeled palmitoylated ovalbumin was three to four times increased compared to non-

modified FITC-ovalbumin.  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

To analyze the effect of palmitoylation on cross-presentation, macrophages were pulsed with 

different concentrations of ovalbumin or palmitoylated ovalbumin. As shown in figure 3.12., 

T-cell proliferation of the SIINFEKL epitope was greatly enhanced for palmitoylated 

ovalbumin as compared to SIINFEKL presentation after internalization of the same 

concentrations of ovalbumin. The enhanced T-cell proliferation was due to internalization and 

processing of the palmitoylated ovalbumin, as palmitoylated SIINFEKL peptide was far less 

 

Figure 3.11. Effect of palmitoylation on internalization of ovalbumin. 
 
A. Bone marrow derived macrophages were incubated with 0.1 mg/ml ovalbumin (upper panels) or 
palmitoylated ovalbumin (lower panels) that was labeled with FITC for 12 min, followed by fixation and 
analysis by fluorescence microscopy. Bar: 10 µm.  
B. Quantification of internalization was performed using flow cytometry. After incubation with FITC 
labeled ovalbumin (white bars) or palmitoylated ovalbumin (dark grey bars) for 20 min at 37°C, bone 
marrow derived macrophages were fixed and protein internalization analyzed by flow cytometry. Shown 
are mean values (+/- SD) from three experiments. 
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potent in the stimulation of T-cell proliferation (figure 3.12.B), consistent with an earlier 

report (Andrieu et al., 2000). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Together these results show that modification of ovalbumin by palmitoylation increases its 

ability to be internalized via macropinocytosis, be processed intracellularly and presented on 

MHC class I molecules to T-cells. 

 

3.4. Discussion  
 

Initiation of the immune response against infectious organisms occurs through the 

presentation of antigenic peptides by professional antigen presenting cells, such as 

macrophages and dendritic cells. Elimination of viruses occurs largely through the activity of 

cytotoxic T-cells that become activated after presentation of viral antigens on MHC class I 

Figure 3.12. Effect of palmitoylation on cross-presentation of ovalbumin 
 
A. Bone marrow derived macrophages were incubated for three hours with ovalbumin (white bars) or 
palmitoylated ovalbumin (dark grey bars). Cells were washed and T-cells specific for the SIINFEKL 
epitope isolated from OT-1 mice were added, and T-cell proliferation was measured as described in 
methods.  
B. Bone marrow derived macrophages were incubated with 10 mM of SIINFEKL peptide or 
palmitoylated SIINFEKL peptide for 3 hours. 
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molecules. In recent years it is becoming clear that these MHC class I restricted antigens not 

only derive from endogenously synthesized proteins but that also exogenous proteins are a 

source for antigenic peptides presented via MHC class I (den Haan et al., 2001; Ackerman et 

al., 2005; Rodriguez et al., 1999). This ‘cross-presentation’ of exogenous antigens ensures the 

generation of an immune response when an antigen-presenting cell is not infected by a virus 

itself and is thought to be important in the establishment of an immune response against 

tumours. In professional antigen presenting cells such as macrophages and dendritic cells, one 

mechanism to internalize antigens for cross-presentation occurs via macropinocytosis (Watts 

and Amigorena, 2000). This work shows that internalization of antigens into macrophages and 

dendritic cells via macropinocytosis requires the presence of cholesterol. Furthermore, 

modification of the model antigen ovalbumin with palmitoylation dramatically increased 

cross-presentation. These results suggest that modification of antigens to increase their affinity 

for cholesterol may be exploited to enhance the activation of CD8+ T-cells. 

 

What role does cholesterol play in macropinosome formation? Phagocytosis is not affected in 

cholesterol-depleted macrophages (Gatfield and Pieters, 2000) and therefore cholesterol is not 

necessary for the membrane curvature during the process of macropinosome formation. 

Interestingly, in the epidermoid carcinoma cell line A431 the localization of Rac 1 is 

dependent on the presence of cholesterol at the plasma membrane (Grimmer et al., 2002). 

Cholesterol-depletion of A431 cells prevents plasma membrane localization of Rac 1 upon 

phorbol ester treatment thereby blocking membrane ruffling and macropinosome formation. In 

macrophages and dendritic cells, depletion of cholesterol abolished macropinosome formation 

but does not affect membrane ruffling which is known to be independent of Rac 1 (West et al., 

2000). Therefore, cholesterol depletion may inhibit macropinosome formation by blocking 

plasma membrane localization of Rac1 also in professional antigen presenting cells such as 

macrophages and dendritic cells. 

 

Besides a role for cholesterol in the internalization process of soluble antigens into 

macropinosomes it is likely that there is an additional role for cholesterol in the cytosolic 

translocation of these antigens to allow cross-presentation. This is based on our finding that 

while internalization of palmitoylated antigen was increased ~ 4-fold, presentation of 

ovalbumin-derived peptide was increased up to ~ 200 fold when the palmitoylated form of 

ovalbumin was administered. Cross-presentation of ovalbumin is dependent on the 

functioning of the proteasome, suggesting that translocation to the cytosol is required, but 
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exactly how antigens are entering the cytoplasm for processing and presentation on MHC 

class I molecules remains unclear. 

 

Several models to explain MHC class I presentation of exogenous antigens have been put 

forward. First, antigens could be internalized through different forms of endocytosis, 

including phagocytosis and macropinocytosis, followed by antigen degradation within such 

organelles and antigenic peptide loading on recycling MHC class I molecules. Second, 

antigens could be transferred to the cytosol where the proteolytic activity of the proteasome 

would generate antigenic peptides to be translocated into the endoplasmic reticulum followed 

by presentation on endoplasmic reticulum resident MHC class I molecules (Ackerman et al., 

2004; Guermonprez and Amigorena, 2005).  

Cross-presentation is blocked when antigen-presenting cells are incubated in the presence of 

proteasome inhibitors (Kovacsovics-Bankowski and Rock, 1995; Norbury et al., 1995). As 

proteasomes are not known to reside within endocytic organelles, this suggests that cytosolic 

translocation of the antigen has to occur in order to generate the appropriate peptides. How do 

protein antigens acquire access from endosomal organelles such as phagosomes and 

macropinosomes to the cytosol? One recently proposed possibility involves the same 

machinery that is responsible for translocation of misfolded proteins from the endoplasmic 

reticulum, namely the Sec61 translocon. Interestingly, in Dictyostelium discoideum several 

resident endoplasmic reticulum proteins are necessary for phagocytosis (Muller-Taubenberger 

et al., 2001). More recently, based on the localization of resident endoplasmic reticulum 

proteins within phagosomes (Gagnon et al., 2002), it has been proposed that phagosomes 

intersect with the endoplasmic reticulum. The endoplasmic reticulum could thereby provide 

most of the processing and presentation components required for MHC class I restricted 

antigen presentation (Guermonprez et al., 2003; Houde et al., 2003; Ackerman et al., 2003; 

Ackerman et al., 2005). 

 

Whether or not molecules of the Sec61 translocation complex are involved in transport of 

antigenic peptides generated by the proteasome as well as import of antigens into the cytosol 

is unknown. Interestingly, cholesterol renders the Sec61 translocon machinery unable to 

recognize and/or initiate translocation of nascent polypeptide chains (Nilsson et al., 2001). As 

import of antigens from macropinosomes to the cytosol is topologically similar to retro-

translocation, cholesterol may play a role in ensuring cytosolic import of substrates, while 

blocking the activity of the Sec61 complex for passage of nascent chains. 
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The requirement for cholesterol in delivering exogenous antigens to the MHC class I 

processing and presentation pathway could be utilized to enhance the immune response 

against defined antigens. As shown here, palmitoylation of ovalbumin to increase its affinity 

for cholesterol (Melkonian et al., 1999; Zacharias et al., 2002) dramatically enhanced the 

capacity of antigen presenting cells loaded with this modified antigen to stimulate T-cells. 

This is in contrast to the capacity of palmitoylated peptides that do require internalization and 

processing to trigger T-cell activation, which is similar to or even lower then the non-modified 

peptides (Andrieu et al., 2000). The increase in T-cell stimulatory capacity far exceeded the 

enhanced internalization of palmitoylated ovalbumin, suggesting that cholesterol plays an 

important role in the actual translocation process. 

 

The potential of palmitoylation to enhance the immunity against exogenous antigens could be 

used for vaccine development against viruses and tumours (Benmohamed et al., 2000). This 

approach might especially be useful when using protein antigens which, compared to peptides, 

have a greatly increased stability in vivo. 
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4.1. Abstract  
 

Palmitoylation of ovalbumin increases the delivery of this protein into the MHC class I 

presentation pathway in antigen-presenting cells, thereby improving the ability of these 

cells to activate CD8+ T-cells (Chapter 3). To understand the role of palmitoylation in 

cross-presentation, the effect of different lipid modifications was investigated. In this 

chapter experiments are described to chemically modify proteins with lipid moieties. 

Furthermore it was investigated whether palmitoylation can be used as a general method 

to improve cross-presentation of soluble proteins to possibly lead to a better vaccine 

development against viruses and tumours.  

 

4.2. Introduction   
 

The establishment of immunity against many intracellular pathogens and cancer cells is 

dependent on the generation of a cellular immune response. In particular, it requires the 

induction of MHC class I restricted cytotoxic CD8+ T-cells (CTLs). As activation of naïve 

CTLs can only be performed by professional antigen-presenting cells (APCs) (Bernhard et al., 

2002), vaccinations for viral infections and cancer immunotherapies must target these 

professional antigen-presenting cells to be successful.  

Inefficient targeting to professional APCs might be one reason why immunization with small 

peptides of 8-11 residues, which do not need further processing for association with the MHC 

class I (Wiesmüller et al., 1995) are poor in the induction of CTLs (Deres et al., 1989; 

Bourgault et al., 1994; van Endert et al., 2001). Therefore different transport techniques such 

as lipsomes, bacteria or virosomes were used which allowed the direct transport of exogenous 

materials into the cytoplasm of the APCs (Bungener et al., 2002; Schoen et al., 2004; Daemen 

et al., 2005).  

The delivery of antigens to the MHC class I processing pathway can also be achieved via a 

physiological route, as professional APCs possess the unique ability to cross-present 

exogenous antigens. Methods, which would allow the specific targeting of antigens into the 

cross-presentation pathway could be therefore attractive for new vaccine design.  

Using palmitoylated soluble ovalbumin, we could show that internalization of the protein in 

macrophages as well as subsequent cross-presentation was strongly enhanced (Chapter 3). 

Palmitoylation is a posttranslational modification, which is described to promote the 
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association of proteins with cholesterol-enriched microdomains, the so-called lipid rafts 

(Brown and Rose, 1992; Simons and Ikonen, 1997; Wolven et al., 1997; Melkonian et al., 

1999; Zacharias et al., 2002). Given the cholesterol dependence of cross-presentation of 

soluble antigens (chapter 3), targeting of antigens to rafts might therefore facilitate cross-

presentation. To further test this hypothesis, the effect of other lipid moieties on cross-

presentation was decided to be studied. Furthermore we investigated whether palmitoylation 

of soluble proteins can be used as a general means to provide antigens for the cross-

presentation pathway. 

 

4.3. Results  
 

4.3.1. Synthesis of activated lipids for protein modification  
 
For studying the role of lipid modification on cross-presentation, different lipids (summarized 

in table 4.1.) were chosen on the basis of their ability to promote or to inhibit the association 

with cholesterol-enriched microdomains (Wolven et al., 1997; Galbiati et al., 1999; 

Melkonian et al., 1999; Zacharias et al., 2002).  

Introduction of the lipid modification into the proteins was performed chemically by reaction 

of the protein with N-hydroxysuccinimide (NHS) activated lipids (Chapter 3, figure 3.9). 

NHS esters containing compounds are highly reactive towards amine nucleophiles, and upon 

release of the NHS leaving group, generate acylated products. In protein molecules, NHS-

ester groups primarily react with the α-amine at the N-terminus and the ε-amines of lysine 

side chains. In a first step, the activated NHS lipids were synthesized.  

 
4.3.1.1. Activation of farnesol with succinimidyl carbonate (SC) 
 
Activation of trans, trans-farnesol was performed according to a method previously used for 

the derivatization of polyethylene glycol (PEG) (Miron and Wilchek, 1993). Like PEG, 

farnesol is an alcohol containing no carboxyl group for attachment of a NHS group. However 

reaction of the hydroxyl group with an anhydride compound allows the introduction of a 

carboxyl group. In the method of Miron and Wilchek, the reaction was performed with the 

anhydride N′,N′-disuccinimidyl carbonate (DSC). DSC has the advantage that the carboxyl 

group, which is introduced is already coupled to a NHS group.  

The synthesis of succinimidyl carbonate (SC) farnesol was performed as summarized in figure 

4.1. Farnesol was incubated with disuccinimidyl carbonate in the presence of the catalyst,  
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4-(dimethylamino)-pyridine (DMAP), overnight at room temperature and the generated SC-

farnesol was purified afterwards by silica gel chromatography as described in materials and 

methods.  

 
 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

The identity of succinimidyl carbonate derivative of farnesol was confirmed by nuclear 

magnetic resonance spectroscopy (NMR) analysis. Each peak in the 1H- and 13C-NMR 

spectrum (figure 4.2.) could be assigned to the corresponding H or C-atom of the product, 

showing that SC-farnesol was successfully synthesized.  
 

Figure 4.1. Activation of farnesol with succinimidyl carbonate (SC) – reaction scheme 
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Figure 4.2. Synthesis of succinimidyl carbonate (SC)-farnesol – NMR-analysis 
 
Spectra were recorded on a Bruker Advance DMX-500 (500Hz) spectrometer. Assignment of the 1H- and 
13C-NMR spectra was performed with the help of 2D methods (COSY and HSQC). Chemical shifts are 
expressed in ppm.  
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4.3.1.2. Synthesis of lipid N-hydroxysuccinimide (NHS) ester 
 
Synthesis of the NHS esters of saturated and unsaturated fatty acids (listed in table 4.1.) was 

performed as previously described (Huang et al., 1980). To that end, the fatty acids were 

incubated with N-hydroxysuccinimide (NHS) in the presence of the catalyst dicyclohexyl 

carbodiimide (DCC) overnight at room temperature (figure 4.3.).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The NHS ester of stearic acid and myrisitic acid were further purified by re-crystallization as 

described in materials and methods. As unsaturated fatty acids are very sensitive towards light 

and oxygen, re-crystallization of these acids was not performed to avoid saturation. 

Coupling of the NHS group to the lipids was analyzed by thin layer chromatography (TLC) 

combined with a staining for NHS-groups. As shown in figure 4.4. for the modification of 

myristic acid, coupling of the NHS-group to the fatty acid was successful as indicated by the 

positive NHS stain of the modified fatty acid.  

 

 

Figure 4.3. Synthesis of NHS ester of myristic acid – reaction scheme 
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In conclusion, as listed in table 4.1., for all fatty acids the corresponding NHS esters could be 

successfully synthesized. Subsequently NHS activated fatty acids were used for modification 

of peptides and proteins. 

 
4.3.2. Coupling of activated lipids to peptides and proteins  
 
To test the coupling efficiency, the activated lipids were incubated either with a short peptide 

containing a primary amino group (NH2-GSGSGSK[Acetyl]) or with horseradish peroxidase 

as described in materials and methods. Successful coupling was assessed by mass 

spectrometry by detection of the appropriate shift in the molecular mass, as shown in figure 

4.5. for myristoylation of GSGSGSK(Acetyl).  

 

Figure 4.4. Thin layer chromatography analysis. 
 
Thin layer chromatography (TLC) of myristic acid and NHS-myristate. Samples were separated with 
chloroform /petrol ether mixture (8:2). Staining of the NHS group (left panel) was performed as described 
in material and methods, for loading control the sample were visualized with iodine (right panel).  
. 
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The results for all coupling reactions are summarized in table 4.1. Saturated fatty acids 

(myristic and stearic acid) could be coupled to peptides giving raise to the desired product 

with a yield of 50% as quantified by mass-spectrometry (electron spray ionization). However, 

modification of horseradish peroxidase with the saturated fatty acids was not successful for 

unknown reasons.  

Whereas modification of peptides with unsaturated fatty acids was achieved, unsaturated fatty 

acids were unstable and became oxidized over time resulting in the accumulation of by-

products. Therefore, it was not possible to obtain protein modified with unsaturated fatty acids 

for further investigations.  

Coupling of SC-farnesol to the peptide or protein resulted in the formation of a product with a 

three fold lower molecular mass than expected. Although the SC-farnesol, according to NMR 

analysis, was pure, it cannot be excluded that the lower mass shift resulted from the reaction 

with contaminations still present in the SC-farnesol fraction.  

 
Figure 4.5. Mass spectrometry analysis  
 
Mass spectrometry analysis (MALDI-TOF) of control and modified NH2-GSGSGSK[Acetyl]  peptide. 
Mass shift of 211 Da indicates the attachment of one myristic acid to the peptide. The three peaks seen in 
the spectra of the control peptide represent the peptide (620 kDa), its sodium (642 kDa) and its potassium 
salt (658 kDa). In the case of the modified peptide only the two latter ones were detected.  
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Table 4.1. Summary of synthesis of activated lipids 

 

 
Substrate 

 
Synthesis of 
NHS ester 
derivates 

 
Coupling to peptide 

NH2-GSGSGSK(Acetyl) 
(analyzed by Mass spec) 

 

 
Coupling to HRP 

(analyzed by Mass spec) 

 
trans, trans-Farnesol 

 

 
 

 
 

Yes 

 
 
 

expected mass shift: Δ250 Da 
measured mass shift:  

 Δ65-72Da 

 
 
 

expected a mass shift: Δ250 Da 
measured mass shift:  

Δ 65-72Da 

 
Tetradecanoic acid  

(myristic acid) 

 
 

 
 

Yes 

 
 

expected mass shift: Δ211 Da 
measured mass shift: Δ211 Da 

 
 

 
 

no mass shift 

 
cis-9-Hexadecanoic acid  

(palmitoleic acid) 

 

 
 

Yes 

 
 

expected mass shift: Δ237 Da 
measured mass shift: Δ237 Da 
(NHS-substrate was not stable) 

 
 

 
 

NHS-substrate was not stable 
 

 
Octadecanoic acid  

(stearic acid) 

 

 
 

Yes 

 
 

expected mass shift: Δ267 Da 
measured mass shift: Δ267 Da 

 
 

 
 

no mass shift 

 
cis, cis-9,12-Octadecanoic acid 

(linoleic acid) 

 
 

 
 

Yes 

 
 

expected mass shift: Δ263 Da 
measured mass shift: Δ263 Da 
(NHS-substrate was not stable) 

 
 

 
 

NHS-substrate was not stable 

 

 

In summary, the chemical modification of proteins with lipid tails was only partially. Thus, 

the initial question about the influence of different lipid modifications on cross-presentation 

could not be further addressed using this approach. 
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4.3.3. Palmitoylation of exogenous proteins: A general method to improve cross-

presentation?  

 
As cross-presentation of soluble ovalbumin is significantly improved by palmitoylation 

(described in Chapter 3), the question was raised whether palmitoylation could be used as a 

general method to increase cross-presentation of soluble proteins.  

To address this question, cross-presentation of the influenza virus matrix protein (IM) in a 

human system was studied. In humans, several cytotoxic T-cells clones specific for epitopes 

of this viral protein have been identified (Gotch et al., 1987; Vitiello et al., 1996; Tamura et 

al., 1998; Tourdot et al., 2001), among them the HLA-A2-restricted immunodominant 58-

GILGFVTLV-66 (IM58-66) peptide. Furthermore, it was shown that the influenza matrix 

protein is cross-presented by dendritic cells, which have acquired the antigen from apoptotic 

and necrotic virus-infected cells (Larsson et al., 2001).  

 
4.3.3.1. Expression and purification of influenza matrix protein  
 
To study cross-presentation, a truncated form of the influenza virus matrix protein (referred to 

IM 1-164) containing a mutated nuclear localization sequence (NLS), was expressed in E. coli 

and purified as described in materials and methods (Arzt et al., 2004). The mutation in the 

NLS region (95-101aa) significantly increases the protein solubility (Elster et al., 1997). As 

the mutated region does not flank the IM58-66 epitope, it should not influences the presentation 

of this epitope used for detection of cross-presentation of IM (1-164). 

 
4.3.3.2. Cross-presentation of unmodified influenza matrix protein 
 
Cross-presentation of IM (1-164) was measured as follows. Immature dendritic cells 

generated from peripheral blood monocytes (PBMC) of an HLA-A0201 positive healthy 

donor were pulsed with IM (1-164) or control antigens for 24 hours in the presence of LPS. 

After removal of non-internalized and non-bound antigens, T-cells (CD4+ and CD8+) isolated 

from peripheral blood of the same donor were added and co-cultured for seven days. The 

induction of IM58-66 specific CD8+ T-cells within the culture was determined by flow 

cytometry using HLA-A0201/IM58-66 PE-tetramer binding and anti-CD8 staining.  
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As shown in figure 4.6., no HLA-A0201/IM58-66 tetramer specific positive CD8+ T-cells could 

be detected when dendritic cells were pulsed with the control protein ovalbumin (right panel, 

lower row), or with the control peptide ras (right panel, upper row). In contrast, incubation of 

the dendritic cells with the IM (1-164) led to expansion of the HLA-A0201/IM58-66 tetramer 

positive cells within the CD8+ T-cell population. Around 8% of all CD8+ T cells show specific 

tetramer binding (left panel, lower row). Pulsing dendritic cells with an equimolar amount of 

IM (58-66) peptides, which can directly bind to surface MHC class I and do not need 

intracellular processing, resulted in a similar expansion of HLA-A0201/IM58-66 tetramer 

positive CD8+ T-cells (left panel, upper row). These results show that the soluble IM (1-164) 

protein can be efficiently cross-presented. 

Figure 4.6. Cross-presentation analysis of influenza matrix protein derived antigens. 
 
Immature denritic cells derived from PBMC from a healthy donor were incubated with 2.5 µg/ml IM (58-
66) [GILGFVTLTV] , 2.5 µg/ml ras (4-12), 50 µg/ml purified IM (1-164) or 125 µg/ml ovalbumin for 24 
hours in the presence of LPS. After removal of the exogenous antigens, CD14- cells (CD4+ and CD8+ T-
cells) purified from the PB of a healthy donor were added and co-cultured with the antigen pulsed 
dendritic cells for further 7 days. At day 4, 5, and 6 Il-2 (10 U/ml) was added. The percentages of IM (58-
66) specific CD8+ T-cells in the cultured cell population were quantified by flow cytometry using HLA-
A0201/IM58-66 PE tetramer (y-axis) and FITC labeled anti-CD8 antibody (x-axis). Results from one 
representative experiment are shown. 
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4.3.3.3. Palmitoylation of influenza matrix protein 
 
To study the influence of palmitoylation on the cross-presentation of IM (1-164), 

palmitoylation of IM (1-164) was performed as described in materials and methods. The 

degree of palmitolyation was determined by mass spectrometry analysis. As seen in figure 

4.7.B, a mass shift of ∼ 1,9 kDa was detected comparing control and palmitoylated IM (1-

164), which corresponds to the attachment of up to eight palmitic acid moieties.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

However, during palmitoylation IM (1-164) precipitated and no soluble protein could be 

recovered after a high-speed centrifugation (20 000 x g, 5 min) in the supernatant (figure 

4.7.A.). As it was not possible to obtain soluble palmitoylated IM (1-164), no further 

investigations could be performed.  

 

Figure 4.7. Palmitoylation of influenza matrix 
protein (1-164). 
 
A. Purified IM (1-164) (left panel) was 
palmitoylated as described in materials and 
methods. After a high-speed centrifugation 
(5 min, 20 000 x g) supernatant and pellet 
(middle and right panel) were analyzed by 
Coomassie Blue-stained  SDS-PAGE.   
B. Mass spectrometry analysis (MALDI-
TOEF) of control (upper panel) and 
palmitoylated influenza matrix protein 
(lower panel). A mass shift of approximately 
1600-2100 Da was detected corresponding to 
the attachment of 6-8 palmitic acid chains to 
the protein.  
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Analysis of a further antigen, the melanoma-associated antigen MART-1, could also not be 

completed as palmitoylation of recombinant expressed MART-1 resulted in an insoluble 

protein. 

In summary, improving cross-presentation of a soluble protein by palmitoylation is not 

suitable for all proteins as palmitoylation increases the hydrophobicity of proteins, which can 

affect protein solubility. 

 

4.4. Discussion  
 

Activated fatty acids were synthesized in order to modify ovalbumin with different lipid tails 

via a chemical approach. Although the synthesis of the NHS-lipids was successful, it was not 

possible to obtain lipidated protein for further analysis. This was due to inefficient coupling of 

the lipids to the proteins as well as to the instability of some of the lipids and undesired side 

reactions during the coupling reaction. 

Further investigations may overcome these technical difficulties by considering an alternative 

activation of the lipids or a different coupling strategy. Although this may prove exceeding 

technically challenging, the potential benefits of improved immunization protocols may justify 

time and effort spent. 

 

What role does palmitoylation play in cross-presentation? Peptide epitopes covalently linked 

to palmitic acid moieties have been used for some time for immunization against intracellular 

infectious agents. Compared to non-modified peptides, these lipopeptides have been shown to 

be highly immunogenic both in animal models as well as in humans inducing CTL immune 

responses (Deres et al., 1989; Livingston et al., 1997; Vitiello et al., 1995; Mortara et al., 

1999; Pialoux et al., 2001). Less is known about their mode of action. They were originally 

designed to mediate direct entry into the cytoplasm through the plasma membrane (Martinon 

et al., 1992; Thiam et al., 1999). But now it is becoming evident, that some are endocytosed 

by the APC prior to their transport into the cytoplasm, which nevertheless could occur 

passively mediated by the palmitic acid moieties (Andrieu et al., 2000; Andrieu et al., 2003). 

Together these reports suggest a possible role of palmitic acid for the delivery of antigens into 

the MHC class I processing pathway. Thereby the mode of action of palmitic acid moities in 

peptides and proteins may be different, as latter ones cannot diffuse through membranes. 
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Whether in our case the action of the lipid tail helps to concentrate the protein at the plasma 

membrane where it can be taken up more easily or whether targeting to specific membrane 

domains can explain the improved cross-presentation needs further investigations.  

 

Targeting of exogenous antigens into the MHC class I processing pathway, an aim of many 

vaccines, is necessary for the development of an efficient immune response against viruses 

and cancer. Given the enhanced T-cell stimulation when palmitoylated antigen were used as 

described in Chapter 3, palmitoylation might offer a way to improve delivery of soluble 

protein antigens into the MHC class I pathway, which was so far only applied to peptides. The 

use of intact proteins would offer several advantages over peptide for immunization. Proteins 

are normally more stable than peptides and contain several T-cell epitopes allowing activation 

of a broader range of T-cells simultaneously.  

Similar to the use of peptides, lipid modification of proteins could be performed chemically by 

coupling palmitic acid residues to primary amino groups of the protein as we and others have 

shown (Huang et al., 1980). In contrast to enzymatic modification, chemical modification has 

the advantage that a consensus sequence is not needed and can therefore, in principle, be 

performed independent of a primary sequence. However, attachment of a hydrophobic tail 

such as palmitic acid can severely affect protein solubility. Whereas proteins such as 

ovalbumin and horseradish peroxidase remained soluble after palmitoylation perhaps due to 

their high degree of glycosylation, modification of the influenza matrix protein and the 

melanoma-associated antigen MART-1 resulted in insoluble protein. Thus, palmitoylation as a 

means for delivery of proteins into the cross-presentation pathway is not suited for every 

protein. Improving protein solubility or using different chemical coupling strategies might 

overcome the difficulties.   
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5.1. Abstract  
 

Coronin 1 is a member of the coronin protein family specifically expressed in leukocytes 

and accumulates at sites of rearrangements of the F-actin cytoskeleton. This chapter 

describes that interaction of coronin 1 with the plasma membrane and with the 

cytoskeleton occurs via two distinct domains. Association with the F-actin cytoskeleton 

was mediated by trimerization of a stretch of positively charged residues within a linker 

region between the N-terminal WD repeat-containing domain and the C-terminal coiled 

coil. Interaction of coronin 1 with the plasma membrane required the presence of the N-

terminal WD repeat-containing domain. The capacity of coronin 1 to link the leukocyte 

cytoskeleton to the plasma membrane may serve to integrate outside-inside signaling 

with modulation of the cytoskeleton. 

 

5.2. Introduction  
 

Coronin 1 is predominantly expressed by leukocytes (Suzuki et al., 1995; Ferrari et al., 1999; 

Nal et al., 2004) and is a member of the WD repeat protein family termed coronins, which are 

collectively defined as F-actin-associated proteins widely expressed in the eukaryotic 

kingdom (de Hostos, 1999; Rybakin et al., 2005). In Dictyostelium discoideum, coronin co-

localizes with F-actin filaments at crown-shaped phagocytic cups and macropinosomes (de 

Hostos et al., 1991; de Hostos et al., 1993; Maniak et al., 1995; Fukui et al., 1999). 

Dictyostelium deleted for coronin displays a strong reduction in cell locomotion, phagocytosis, 

macropinocytosis and cytokinesis indicating that in this slime mold coronin is functionally 

involved in F-actin-based motility-related processes (de Hostos et al., 1993). In S. cerevisiae, 

the single coronin isoform Crn1p was found to localize to cortical F-actin patches in an actin-

dependent manner (Heil-Chapdelaine et al., 1998). In vitro, Crn1p can nucleate and crosslink 

F-actin filaments and bind to microtubules (Goode et al., 1999). Recently, yeast Crn1p was 

proposed to promote the formation of actin filament networks based on its interaction with the 

Arp2/3 complex (Humphries et al., 2002). Unlike the Dictyostelium coronin-null mutant, a S. 

cerevisiae Crn1p-null-mutant does not show any phenotype in actin-dependent processes 

(Heil-Chapdelaine et al., 1998) suggesting that in this organism coronin does not perform an 

essential function in regulating the actin cytoskeleton. While single cell eukaryotes have one 

coronin gene, data base searches have revealed the existence of several coronins in humans 
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and mice (denoted coronins 1 to 7) (Okumura et al., 1998; de Hostos, 1999; Rybakin et al., 

2004). 

 

In leukocytes, coronin 1 concentrates at sites of rearrangement of the cytoskeleton. In 

macrophages, coronin 1 accumulates during phagocytosis at the cytosolic face of phagosomes. 

Expression of dominant-negative coronin 1 constructs and RNAi downregulation of coronin 1 

in macrophages suggested a role of coronin 1 in early steps of phagosome formation by 

promoting actin polymerization (Yan et al., 2005). During phagosome maturation coronin 1 

dissociates from the phagosome in a process controlled by phosphorylation (Itoh et al., 2002). 

By actively retaining coronin 1 at the phagosomal membrane, pathogenic mycobacteria can 

prevent lysosomal delivery allowing these bacteria to survive within the cell (Ferrari et al., 

1999; Gatfield and Pieters, 2000). In neutrophils, coronin 1 interacts with a cytosolic subunit 

of the NADPH oxidase complex (Grogan et al., 1997). In lymphocytes, coronin 1 assembles 

at the immunological synapse formed during activation of T cells (Nal et al., 2004). Together 

these studies suggest that coronin 1 may have a function in the modulation of cytoskeletal 

rearrangements during leukocyte-specific processes. 

 

Based on sequence comparison among members of the coronin family in different species, 

three conserved domain structures were identified by us and others (de Hostos, 1999). Figure 

5.1. shows a schematic drawing of the proposed domain structure for coronin 1. 

The approximately 400 residue long N-terminal domain contains five highly conserved WD 

(tryptophan-aspartate) repeats reminiscent of the ones found in the β-subunits of G proteins 

(Neer et al., 1994; Lambright et al., 1996; Sondek et al., 1996). Like in the G-protein, 

secondary structure prediction suggests that N-terminal domain of the coronin 1 folds into a 

seven-bladed β-propeller whereby each blade (marked in figure 5.1. as B1-B7) is formed by 

4-antiparallel β-sheets.  

The most C-terminally located 30-40 residues are strongly predicted to fold into a α-helical 

coiled coil structure. For the Xenopus coronin homologues (Xcoronins), as well as coronin 3, 

the coiled coil has been shown to mediate the formation of higher molecular weight 

complexes (de Hostos, 1999; Asano et al., 2001; Spoerl et al., 2002) whose exact 

oligomerization states are not fully clear. Using size exclusion chromatography, analytical 

ultracentrifugation and electron microscopy it was shown in our lab, that coronin 1 occurs in 

vivo as a homotrimeric complex whose formation is mediated by the coiled coil domain.  
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The N-terminal domain is connected via a unique linker with the coiled coil domain. This 

linker region has no predicted secondary structure, it varies greatly in length (50-200 amino 

acids) and sequence among coronin homologues (de Hostos, 1999).  

 

 

 

 

 

 

 

 

 

 

Besides this sequence information and their classification as actin-associated proteins, little is 

known about the structure-function relationship of the different coronins in mammals (Suzuki 

et al., 1995; Spoerl et al., 2002; Oku et al., 2003).  

 

This chapter describes experiments aimed to delineate the role of the single coronin 1 domains 

in the interaction with the F-actin cytoskeleton and the plasma membrane. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.1. Schematic representation of the proposed domain organization of coronin 1.  
 
The N-terminal domain containing the seven predicted propeller blades is shown in light grey, the linker 
domain is shown in white, and the C-terminal coiled-coil domain is shown in dark grey.  
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5.3. Results  
 

5.3.1. Subcellular localization of coronin 1 upon expression in HEK293 cells 
 
Immunofluorescence and biochemical studies of the subcellular localization of coronin 1 in 

leukocytes revealed that coronin 1 interacts both with the plasma membrane as well as with 

the F-actin cytoskeleton (Gatfield et al., 2005). As coronin 1 consists of three domains, this 

raised the questions about the role of the individual coronin 1 domains in this interaction.  To 

avoid interference with endogenously expressed coronin 1, studies were performed in the 

human embryonic kidney (HEK) 293 cells, which do not express endogenous coronin 1 

(figure 5.4.A). First of all it was tested whether coronin 1 displays a similar subcellular 

localization upon expression in HEK293 cells as coronin 1 in leukocytes.  

To that end, coronin 1 containing a C-terminal hemagglutinin tag (Cor1-HA, see figure 5.5.) 

was expressed in HEK293 cells. Twenty-four hours after transfection, the cells were fixed, 

permeabilized and stained for coronin 1, for the F-actin cytoskeleton and for a plasma 

membrane associated protein, the Na/K-ATPase.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.2. Subcellular localization of coronin 1 after expression in HEK293 cells. 
 
Cor1-HA transfected HEK293 cells were stained with anti-coronin 1 antiserum (left panel), anti-Na/K-
ATPase (second left panel, upper row) or phalloidin (second left panel, lower row). The right panel shows the 
corresponding Nomarski image. Bar: 10 µm. 
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Analysis by immunofluorescence microscopy revealed a plasma membrane localization of 

Cor1-HA (figure 5.2., upper row) upon expression in HEK293 cells. Furthermore Cor1-HA 

co-localizes with the cortical F-actin cytoskeleton (figure 5.2., lower row) indicating that 

plasma membrane binding might be actin-dependent.  

To further analyze the subcellular distribution 

of Cor1-HA in HEK293 cells, cell 

fractionation was performed. Cor1-HA 

expressing HEK293 cells were homogenized 

in sucrose-containing buffer, and membrane 

and cytosolic fractions were prepared. 

SDS-PAGE of membrane and cytosol fractions 

followed by immunoblotting using anti-

coronin 1 antiserum and anti-Na/K-ATPase 

antibody revealed that the Cor1-HA proteins 

distributed between membrane (Na/K-ATPase 

positive) fraction and cytosolic fraction 

(Figure 5.3.). This membrane-cytososl 

distribution of Cor1-HA is similar to the 

distribution of endogenous coronin 1 in J774 

mouse macrophages seen before (Gatfield et 

al., 2005). To analyze the cytoskeletal 

association of Cor1-HA, the cytoskeleton of 

HEK293 cells was isolated by cell lysis in  

1% TX-100 / 80 mM PIPES and low speed centrifugation (3000 x g, 2 min).  

Immunoblotting of pellet and supernatant showed that ~ 50 % of all coronin molecules were 

found in the sedimented detergent-insoluble fraction (figure 5.4.B). This partial TX-100 

insolubility of Cor1-HA is in contrast to endogenous coronin 1 in J774 mouse macrophages 

where coronin 1 is completely insoluble in cytoskeletal isolation buffer (Gatfield et al., 2005). 

Treatment of the Cor1-HA transfected HEK293 cells for 30 min with 20 µM of the F-actin 

depolymerising drug latrunculin B, prior to isolation of the cytoskeleton, resulted in the 

simultaneous release of actin and Cor1-HA into the supernatant (figure 5.4.B). We conclude 

that as in J774 cells, the TX-100 insolubility of Cor1-HA in HEK293 cells is due to 

association of Cor1-HA with the F-actin cytoskeleton. 
 

 

Figure 5.3.  Biochemical analysis of coronin 1 
interaction with HEK293 cell membranes.  
 
The postnuclear supernatant of a Cor1-HA 
transfected HEK293 cell homogenate was 
separated into membrane fraction and cytosol 
(100 000 x g, 30 min) and analyzed for the 
presence of coronin 1 and the Na/K-ATPase 
by SDS-PAGE and immunoblotting.  
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In summary, these results show that Cor1-HA expressed in HEK293 cells displays a similar 

subcellular localization as endogenously expressed coronin 1 in J774 cells. Therefore this 

system is well suited to further investigate F-actin cytoskeleton and plasma membrane 

association of coronin 1 in intact cells. 

 

Coronin 1 consists of three domains, a N-terminal β-propeller domain connected via a linker 

with the C-terminal coiled coil. To determine which domains of coronin 1 are responsible for 

mediating of the F-actin cytoskeleton and the plasma membrane interaction, truncated forms 

of coronin 1 were expressed in HEK293 cells and their ability to interact with the F-actin 

cytoskeleton as well as with the plasma membrane was examined. 

 

Figure 5.4. Biochemical analysis of coronin 1 localization in the detergent-insoluble fraction of HEK293 cells 
transfected with Cor1-HA. 
 
A+B. HEK293 cells mock transfected (A) or transfected with Cor1-HA expression construct (B) were lysed 
in cytoskeleton isolation buffer containing 1% Triton X-100 and directly subjected to low speed 
centrifugation (3000 x g, 2 min, see materials and methods). Subsequently, the detergent-insoluble pellets 
and the supernatants were analyzed by SDS-PAGE and immunoblotting for detection of coronin 1 and 
actin. 
For depolymerization of the F-actin cytoskeleton HEK293 Cor1-HA cells were treated for 30 min with 20 
µm latrunculin B.  
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5.3.2. Role of the coiled coil domain of coronin 1 in the interaction with the F-

actin cytoskeleton 

 
Analysis of endogenous coronin 1 in macrophages by size exclusion chromatography and by 

electron microscopy revealed that coronin 1 occurs in vivo as a homotrimeric complex 

(Gatfield et al., 2005).  For the Xenopus coronin homologues (Xcoronins), as well as for 

coronin 3, it was shown that the coiled coil mediates the oligomerization (de Hostos, 1999; 

Asano et al., 2001; Spoerl et al., 2002). To analyze the role of the C-terminal coiled coil of 

coronin 1, a hemagglutinin tagged coronin 1 mutant lacking the coiled coil domain was 

constructed (referred to as Cor1-ΔCC-HA, figure 5.5.A) and expressed in HEK293 cells. First 

the oligomerization state of Cor1-ΔCC-HA upon expression in HEK293 cells was determined 

using size exclusion chromatography. Therefore cytosol isolated from Cor-1-HA and Cor1-

ΔCC-HA transfected HEK293 cells was separated on a Superdex200 column, and the 

presence of coronin 1 in the single fractions was analyzed by immunoblotting. As shown in 

figure 5.5.B, whereas full length Cor1-HA (upper panel, figure 5.5.B) migrated at a position 

corresponding to a molecular weight of 160kDa, Cor1-ΔCC-HA could be detected in fractions 

corresponding to a molecular weight of 50kDa (lower panel, figure 5.5.B). This result 

suggested that Cor-1-HA occurs in HEK293 cells as a trimer and furthermore that 

trimerization is mediated by the coiled coil domain. Next it was tested whether deletion of the 

coiled coil domain affects the interaction of coronin 1 with the F-actin cytoskeleton.  

Isolation of the TX-100 insoluble F-actin cytoskeleton fraction of Cor1-HA or Cor1-ΔCC-HA 

transfected HEK293 cells and subsequent immunoblotting using coronin 1 antiserum revealed 

that Cor1-ΔCC-HA is completely soluble in the TX-100 cytoskeleton isolation buffer (figure 

5.5.C) indicating that Cor1-ΔCC-HA cannot associate anymore with the F-actin cytoskeleton. 

Thus interaction of coronin 1 with the F-actin cytoskeleton is dependent on the presence of the 

coiled coil.  
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Figure 5.5. Functional analysis of the coiled coil domain of coronin 1. 
 
A. Schematic representation of coronin 1 deletion mutant used in this study. 
B. HEK293 cells were transiently transfected with the indicated constructs, and after 24 hours, the cytosol 
was solubilized in 2% octylglucopyranoside and subjected to size exclusion chromatography on a Superdex 
200 column. The presence of transcriptionally active coronin 1 constructs was analyzed using 
immunoblotting following SDS-PAGE of the fractions indicated. The positions of proteins of known 
molecular weight (Mr) are indicated. 
C. Biochemical analysis of F-actin association of coronin 1. HEK293 cells transiently transfected with 
Cor1-HA or Cor1-ΔCC-HA were lysed in cytoskeleton isolation buffer containing 1% Triton X-100 and a 
detergent-insoluble fraction was obtained by low speed centrifugation (see methods). Subsequently, 
detergent-insoluble pellets and supernatants were analyzed by SDS-PAGE and immunoblotting using an 
anti-coronin 1 antiserum. 
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To analyze whether the coiled coil is responsible for the association with the F-actin 

cytoskeleton, a Cor1-(430-461)-HA construct compromising the coiled coil domain was 

generated. As this construct failed to be expressed in HEK293 cells (data not shown), the 

coiled coil domain of coronin 1 was fused to the C-terminus of an enhanced green fluorescent 

protein (EGFP) and after expression in HEK293 cells the TX-100 solubility of this fusion 

protein was determined. EGFP and EGFP fused to an unrelated coiled coil of the extracellular 

protein matrilin 4 (figure 5.6. A) were used as a control. The matrilin 4 coiled coil was chosen 

because it mediates trimerization but as an extracellular matrix protein does not interact with 

F-actin (Frank et al., 2002).  

As can be seen in figure 5.6 B, whereas most of the EGPF protein and the EGFP-CCmatrilin4 

fusion protein could be recovered in the supernatant (figure 5.6. B, left and right panel), a 

significant part of the EGFP-CCcoronin1 protein was found in TX-100 insoluble cytoskeletal 

fraction. 

To investigate whether this increased TX-100 insolubility of the EGFP-CCcoronin1 fusion 

protein was due to F-actin cytoskeleton association mediated by the coiled coil domain, 

EGFP-CCcoronin1 expressing HEK293 cells were treated with latrunculin B prior to isolation of 

the F-actin cytoskeleton. Treatment with latrunculin B completely released actin into the 

supernatant, but had no effect on the supernatant-pellet distribution of EGFP-CCcoronin1 

indicating that the TX-100 insolubility of EGFP-CCcoronin1 was not the result of an association 

with the F-actin cytoskeleton. 

From these results it can be concluded that the coiled coil domain is necessary for the 

interaction of coronin 1 with the F-actin cytoskeleton, but it is not sufficient for this 

interaction. 
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Figure 5.6. Role of the coiled coil domain of coronin 1 in the interaction with the F-actin cytoskeleton. 
 
A. Schematic representation of enhanced green fluorescent (EGFP) fusion proteins used in this study.  
B. HEK293 cells were transiently transfected with expression constructs for EGFP, for the EGFP-
CCcoronin1 or for the EGFP-CCmatrilin4 fusion proteins. Twenty-four hours after transfection HEK293 cells 
were lysed in cytoskeleton isolation buffer containing 1% Triton X-100 and directly subjected to low 
speed centrifugation (3000 x g, 2 min). Subsequently, the detergent-insoluble pellets and the supernatants 
were analyzed by SDS-PAGE and immunoblotting using an anti-GFP antibody.  
C. Isolation of TX-100 insoluble fractions from control and latrunculin B treated HEK293 cells transiently 
transfected with EGFP-CC fusion protein.  
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5.3.3. Role of the N-terminal β-propeller domain of coronin 1 in the interaction 

with the F-Actin cytoskeleton 

 
We next investigated whether the N-terminal β-propeller domain of coronin 1 participates in 

the interaction with the F-actin cytoskeleton.  

As expression of a HA-tagged Cor1 β-propeller in HEK293 cells was not successful 

investigations were performed with coronin 1 proteins lacking the N-terminal β-propeller 

domain  (referred in figure 5.7 as to Cor1L+C-HA). 

 

 

 
 
 
 
 

To check whether deletion of the N-terminal β-propeller interfered with the proper 

oligomerization of the protein, Cor1L+C-HA expressed in HEK293 cells was subjected to size 

exclusion chromatography (figure 5.8.A.). As shown in figure 5.8.A, Cor1L+C-HA migrated at 

a position corresponding to a molecular mass laying between 60 and 80 kDa. The molecular 

mass of Cor1L+C-HA monomer is 12 kDa, suggesting an oligomerization state of a pentamer 

or a hexamer instead of a trimer. Besides, as the gel filtration was performed with total 

cytosol, there is the possibility that Cor1L+C-HA interacts with other proteins resulting in a 

high molecular mass complex.  

However as migration in a gel filtration column is shape dependent, it does not allow always a 

precise determination of the molecular mass. Therefore, recombinant Cor1L+C (figure 5.7., 

lower row) which was purified from E. coli was investigated by static light scattering (SLS). 

Using SLS the molecular mass of the Cor1L+C was determined to be 34.4 kDa showing that the 

recombinant Cor1L+C protein indeed occurred as a trimer.  

As the recombinant Cor1L+C protein shows the same migration behaviour in size exclusion 

analysis (figure 5.8.B) like the Cor1L+C-HA, it was concluded that also Cor1L+C-HA forms 

trimers upon expression in HEK293 cells and is therefore suitable for further analysis.  

 

Next, the association of Cor1L+C-HA with the F-actin cytoskeleton was investigated by 

determination of the TX-100 solubility of Cor1L+C-HA construct expressed in HEK293 cells. 

Figure 5.7.  Schematic representation 
of Cor1-HA, Cor1L+C-HA and Cor1L+C. 
 
The linker and coiled-coil domain 
(L+C) comprise the amino acid 
sequence from 357 to 461. 
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As summarized in figure 5.9.A, deletion of the N-terminal β-propeller resulted in the complete 

TX-100 solubility of Cor1L+C-HA protein. 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The availability of the recombinant Cor1L+C made it possible also to investigate the F-actin 

association in vitro using a F-actin co-sedimentation assay. In contrast to monomeric actin, 

polymerized actin can be sedimented by high-speed centrifugation allowing the co-

sedimentation of proteins, which bind to F-actin. To test whether recombinant Cor1L+C can 

interact with F-actin, the protein was incubated for 45 min with polymerized actin, 

subsequently the F-actin was pelleted by ultracentrifugation and then supernatant and pellet 

were analyzed by Coomassie Blue-stained SDS-PAGE. As seen in figure 5.9.B, Cor1L+C could 

not be detected in the pellet fraction, indicating that the linker-coiled coil domain is not 

sufficient for the F-actin interaction. 

Figure 5.8. Oligomerization of Cor1L+C 
 
A. Size exclusion chromatography analysis of cytosol from Cor1L+C-HA expressing HEK293 cells. Cytosol 
was isolated twenty-four hours after transfection and subjected to size exclusion chromatography on a 
Superdex 200 column. The eluted fractions were assayed for the presence of Cor1L+C-HA by SDS-PAGE 
and immunoblotting The positions of proteins of known molecular weight (Mr) are indicated.  
B. Size exclusion chromatography analysis of recombinant expressed coronin 1 linker-coiled coil domain 
(Cor1L+C). Cor1L+C was purified from E. coli as described in material and methods and subjected to size 
exclusion chromatography on a Superdex 200 column. The eluted fractions were analyzed by Coomassie 
Blue-stained SDS-PAGE.  
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Together these results suggest that the linker domain and the C-terminal coiled coil are not 

sufficient for the association of coronin 1 with the F-actin cytoskeleton. 
 
5.3.4. Involvement of coronin 1 linker domain in the association with the F-actin 

cytoskeleton 

 
To determine a function for the linker region in cytoskeletal binding, a mutant coronin 1 was 

constructed, (Cor1-Δ361-422), lacking the complete linker domain. However, expression of 

this construct in HEK293 cells leads to coronin 1 aggregation, as revealed by size exclusion 

chromatography (figure 5.10.) and therefore this construct was not suited for further analysis.  

As this linker region contains a stretch of positively charged amino acid residues that may be 

responsible for such cytoskeletal interaction (Tang et al., 1996; Wohnsland et al., 2000), a 

Cor1-Δ400-416-HA construct was produced in which these residues are deleted (figure 5.11.). 

This construct was correctly oligomerized upon expression in HEK293 cells (figure 5.11.B). 

Figure 5.9. Interaction of Cor1L+C with the F-actin cytoskeleton.  
 
A. HEK293 cells were transiently transfected with expression constructs for Cor1-HA and Cor1L+C-
HA.Twenty-four hours after transfection the TritonX-100 insoluble fractions were isolated and analyzed 
by SDS-PAGE and immunoblotting using an anti-coronin 1 antibody. 
B. Co-sedimentation assay of Cor 1L+C with F-actin. F-actin (5µM) was incubated with Cor1L+C (50 µM) for 
45 min at room temperature, centrifuged for 30 min at 100 000 x g to pellet F-actin and pellets (P) and 
supernatants (S) were analyzed by Coomassie Blue-stained SDS-PAGE. 
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When the cytoskeletal association was analyzed by isolation of TX-100 insoluble 

cytoskeleton, this mutant was retrieved in the soluble fraction (figure 5.11.C, right panel), 

indicating that F-actin cytoskeleton association of this coronin 1 mutant was lost. Furthermore 

it supported the previous results showing that neither the N-terminal β-propeller region nor 

the coiled coil alone are sufficient for mediation of coronin 1 interaction with the F-actin 

cytoskeleton. 

Summarizing these results, it can be concluded that the stretch of positively charged residues 

within the linker domain is the actual site of cytoskeletal association. To be functional, this 

site requires clustering which is achieved by trimerization of the molecules through the coiled 

coil domain. The function of the N-terminal β-propeller domain is less clear, but it might be 

 
 
Figure 5.10. Interaction of Cor1L+C with the F-actin cytoskeleton.  
 
A. Schematic representation of coronin 1 deletion mutant Cor1-Δ(361-422)-HA. 
B. Size exclusion chromatography analysis of cytosol from Cor1-HA and Cor1-Δ(361-422)-HA expressing 
HEK293 cells. Cytosol was isolated twenty-four hours after transfection and subjected to size exclusion 
chromatography on a Superdex 200 column. The eluted fractions were assayed for the presence of 
Cor1L+C-HA by SDS-PAGE and immunoblotting. The positions of proteins of known molecular mass (Mr) 
are indicated.  
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important for keeping the molecule in a conformation, which supports the clustering of the 

positively charged amino acids (see also figure 5.15.). 
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

Figure 5.11. Involvement of coronin 1 linker in the association with the F-actin cytoskeleton  
 
A. Schematic representation of coronin 1 deletion mutant Cor1-Δ400-416-HA.  
B. Size exclusion chromatography analysis of cytosol from Cor1-Δ400-416-HA expressing HEK293 cells. 
Size exclusion chromatography was performed as described previously.  
C. HEK293 cells transiently transfected with Cor1-HA or Cor1-Δ400-416-HA were lysed in cytoskeleton 
isolation buffer containing 1% Triton X-100 and a detergent-insoluble fraction was obtained by low speed 
centrifugation (see materials and methods). Subsequently, detergent-insoluble pellets and supernatants 
were analyzed by SDS-PAGE and immunoblotting using an anti-coronin 1 antiserum.  
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5.3.5. Association of coronin 1 with the plasma membrane 
 
In HEK293 cells transfected with coronin 1, as well as in macrophages, coronin molecules 

interact with the plasma membrane (figure 5.2 /5.3.). 

To analyze the region of coronin 1 required for plasma membrane association, HEK293 cells 

were transfected with cDNA constructs encoding Cor1-HA, Cor1-ΔCC-HA or Cor1-Δ400-

416-HA. Cells were then homogenized, membrane and cytosolic fractions were prepared as 

described previously and analyzed by immunoblotting using an anti-HA antibody.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.12. Association of coronin 1 with the plasma membrane.  
 
A. Immunofluorescence analysis of coronin 1 and Na/K-ATPase localization in HEK293 cells expressing 
Cor1-ΔCC-HA or Cor1-Δ400-416-HA. Twenty-four hours after transfection cells were fixed, 
permeabilized and stained for coronin 1 and Na/K-ATPase using an anti-coronin 1 antiserum and anti-
Na/K-ATPase antibody. Bar: 10 µm.  
B. The post nuclear supernatants of HEK293 cells transfected with Cor1-HA, Cor1-ΔCC-HA or Cor1-
Δ400-416-HA expression constructs were subjected to subcellular fractionation  
(100 000 x g, 30 min). Membrane and cytosolic fractions were analyzed for the presence of coronin 1 by 
SDS-PAGE and immunoblotting with an anti-HA antibody.  
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The coronin 1 molecules lacking the coiled coil or lacking the cytoskeleton binding site in the 

linker region were distributed in a similar manner as wild type coronin 1 between membranes 

and cytosol (figure 5.12.B). Furthermore, immunofluorescence analysis of Cor1-ΔCC-HA or 

Cor1-Δ400-416-HA expressing HEK293 cells (figure 5.12.A) stained with anti-coronin 

antiserum and anti-Na/K-ATPase antibody revealed co-localization of coronin 1 and the 

plasma membrane associated Na/K-ATPase. 

Together these data suggest that the coiled coil domain and the stretch of positively charged 

amino acids within the linker region are not required for plasma membrane association.  

To test whether coronin 1 plasma membrane binding is mediated by the N-terminal β-

propeller domain, the subcellular localization of Cor1L+C-HA protein in HEK293 cells was 

analyzed. Both the immunofluorescence (figure 5.13.A) as well as the biochemical analysis 

(figure 5.13.B) clearly showed that deletion of the N-terminal β-propeller domain resulted in 

the loss of coronin 1 plasma membrane binding indicating that coronin 1 binds to the plasma 

membrane by its N-terminal β-propeller domain. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5.13. Role of the N-terminal β-propeller domain of coronin 1 in plasma membrane binding. 
 
A. Immunofluorescence analysis of Cor1-HA (upper panels) and Cor1L+C-HA (lower panels) localization in 
HEK293 cells. Twenty-four hours after transfection, HEK293 cells were fixed, permeabilized and stained 
with an anti-HA antibody (secondary reagent: goat-anti-mouse-Ig2b-Texas red) and phalloidin-488. Bar: 
10 µm 
B. The post nuclear supernatants of HEK293 cells transfected with Cor1-HA, or Cor1L+C-HA expression 
constructs were subjected to subcellular fractionation (100 000x g, 30 min). Membrane and cytosolic 
fractions were analyzed for the presence of coronin 1 by SDS-PAGE and immunoblotting with an anti-HA 
antibody. 
 

 



Chapter 5 

 127 

How does coronin bind to the plasma membrane? The co-localization of coronin 1 with the 

cortical actin (figure 5.2.) raised the question whether plasma membrane binding is dependent 

on F-actin association. To that end, HEK293 cells transfected with Cor1-HA, Cor1-ΔCC-HA 

or Cor1-Δ400-416-HA were treated with latrunculin B for 30 min, fixed and stained for 

hemagglutinin and F-actin. As shown in figure 5.14., the cortical coronin 1 staining remained 

unaffected while the actin cytoskeleton was efficiently depolymerized as indicated by a lack 

of phalloidin fluorescence. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

These observations demonstrate that coronin 1 association with the plasma membrane is 

independent of F-actin. 

 

5.4. Discussion  
 

The ability of a multicellular organism to defend itself against the invasion of pathogens is 

based on its capability to produce an effective and appropriate immune response against the 

pathogen. During generation of an host immune response immune cells have to fulfil a variety 

of functions, many of them are dependent on processes, which require the reorganisation of 

the F-actin cytoskeleton, including phagocytosis and macropinocytosis, cellular movement, 

formation of immunological synapse and T-cell activation (Meiri et al., 2004; Fenteany et al., 

2004; Das et al., 2002; Vincente-Manzanares et al., 2003). 

 

Figure 5.14. Association of coronin 1 with the plasma membrane is independent of the F-actin cytoskeleton.  
 
Immunofluorescence analysis of coronin 1 and F-actin localization in latrunculin B-treated HEK293 cells. 
Cells were transfected with the indicated constructs and after 24 hours were treated with 20 µM 
latrunculin B (30 min) or left untreated. Cells were fixed with formaldehyde followed by saponin 
permeabilization and stained for coronin 1 and F-actin using anti-HA (secondary reagent: goat-anti-
mouse-AlexaFluor-488), and phalloidin-Texas red. Bar: 10 µm. 
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Coronin 1 is a member of the coronin family of actin-binding proteins, which is specifically 

expressed in cells of the immune system. Therefore it may have a specific function in 

immunological processes where the actin cytoskeleton is involved. To better understand how 

coronin 1 exhibits its function and to get insight how this is related to its structure, the 

interaction of coronin 1 with the F-actin cytoskeleton and the plasma membrane was studied 

in this chapter. By analysing the subcellular localization of wildtype and truncated coronin 1 

proteins expressed in HEK293 cells, which do not contain endogenous coronin 1, it was 

possible to dedicate a function to each coronin 1 domain as summarized in figure 5.15.   
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

 
5.4.1. Interaction of coronin 1 with the F-actin cytoskeleton 
 
In vivo interaction of coronin 1 with the F-actin cytoskeleton is dependent on the presence of 

all three domains (figure 5.15.). The actual interaction site with the F-actin cytoskeleton was 

identified as a short stretch of positively charged amino acids (400-416 aa) located in the 

linker region. The ability of positively charged peptides or basic amino acids stretches within 

a protein to interact with the F-actin cytoskeleton has been shown before (Tang et al., 1996; 

Wohnsland et al., 2000), nevertheless a single stretch of positively charged amino acids was 

not sufficient to mediate the interaction of coronin 1 with the F-actin cytoskeleton. Coronin1 

has to trimerize to interact with the F-actin cytoskeleton, indicating that clustering of the basic 

amino acids within the linker region is required. Clustering of actin binding sites may allow 

coronin 1 to cross-link F-actin filaments leading to the generation of F-actin bundles or three-

Figure 5.15. Function of coronin domains in association with the plasma membrane and the F-actin 
cytoskeleton. 
 
Coronin 1 is a parallel homotrimeric protein consisting of three globular N-terminal β-propellers (dark 
grey) assembled via the C-terminal coiled coil (dark). Association of coronin 1 with the cytoskeleton occurs 
via a stretch of positively charged residues in the linker region (light grey) and is dependent on 
trimerization and the presence of the N-terminal β-propeller. The F-actin independent binding to the 
plasma membrane is mediated via the N-terminal globular β-propeller domain.  
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dimensional actin networks. Interestingly, coronin 3 has been shown to bundle actin in vitro 

(Spoerl et al., 2002), but this was not dependent on the oligomerization state of coronin 3. 

However, a number of coronin homologues also contain in their linker domain a region 

enriched with positively charged amino acid, similar to that found in coronin 1, suggesting 

that all these molecules interact with the F-actin cytoskeleton in a similar manner. 

 

 

 

 

 

The F-actin association of coronin 1 depends furthermore on the presence of the N-terminal β-

propeller domain as deletion of this domain abolished coronin 1 interaction with the F-actin 

cytoskeleton both in vivo and in vitro. About the function of this domain in F-actin 

cytoskeleton interaction it can so far only be speculated. It might help to keep the molecule in 

a certain three-dimensional conformation allowing the stretches of basic amino acids to be in 

proximity to one another or it might be important in vivo for localization of coronin 1 to 

locations in the cell where it can interact with actin.  

In contrast to a previous report (Oku et al., 2003), which located two F-actin binding site in 

the N-terminal β-propeller domain of coronin 1, we could not find any evidence that these 

regions interact with the F-actin cytoskeleton in vivo. This might be due to the different 

approaches chosen for investigation. Oku et al. used truncated proteins of the N-terminal β-

propeller domain to study in vitro F-actin co-sedimentation. As truncation might interfere with 

the proper folding of the β-propeller in vitro, the accessibility of the mapped binding sites to 

actin might be completely different in vivo. 

How does coronin 1 interact with the F-actin cytoskeleton is not known so far. It can occur 

directly (Oku et al., 2003) or indirectly by binding to F-actin filaments via Arp 2/3 complexes. 

So it was shown in S. cerevisiae that the C-terminal part including the linker region and the 

coiled coil domain of Crn1p can bind and modulate Arp2/3 activity in vitro (Humphries et al., 

2002; Rodal et al., 2005). 

To better understand the role of coronin 1 in the interaction with the F-actin cytoskeleton 

further in vitro studies with recombinant coronin 1 protein, which could not be obtained so far, 

are necessary. 

 
 

mCor1: 356-SDLFQEDLYPPTAGPDPALTAEEWLGGRDAGPLLISLKDGYVPPKSRELRVNRGLDSARRRATPEPSGTPSS-472 
mCor2: 356-SDLFQDDLYPDTAGPEAALEAEDWVSGQDANPILISLREAYVPSKQRDLKVSRRNVLSDSRPASYSRSGASTATAVTDVPSGNLAGAGEA-446 
mCor3: 354-SDLFQDDLYPDTAGPEAALEAEEWFEGKNADPILISLKHGYIPGKNRDLKVVKKNILDSKPAANKKSEFSCAPKKPTDTAS-434 
mCor5: 356-SDSYQEDIYPMTPGTEPALTPDEWLGGINRDPVLMSLKEGY---K-KSSKVVFKAPIREKKSVVVNGIDLLENVPPRT-430 
mCor6A: 358-SDLFQDDLYPDTPGPEPALEADEWLSGQDAEPVLISLKEGYVPPKHRELRVTKRNILDVRPPASPRRSQSAS-429 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Aligment of linker sequence of murine coronins 
 

Figure 5.16. Sequence alignment of mouse coronin linker domains. 
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5.4.2. Interaction of coronin 1 with the plasma membrane 
 
Besides interaction with the F-actin cytoskeleton, coronin 1 binds to the plasma membrane. As 

shown in this chapter, the globular N-terminal β-propeller domain of coronin 1 mediates this 

binding. In contrast to coronin 3 (Spoerl et al., 2002), plasma membrane association of 

coronin 1 does not depend on the oligomerization state. Furthermore it is F-actin independent 

as deletion of actin-binding site (construct Cor1-Δ400-416-HA) as well as disruption of the F-

actin cytoskeleton by latruncilin B treatment does not interfere with the plasma membrane 

interaction of coronin 1. It is not yet known how coronin 1 binds to the plasma membrane. 

Possible binding partners might include lipid moieties (Gatfield and Pieters, 2000) or integral 

or peripheral proteins which may interact with WD40 repeats of the N-terminal β-propeller 

domain. 

In addition, it is unclear how the subcellular localization of coronin 1 is controlled. Regulation 

of membrane and cytoskeletal association via a switch in the coronin 1 oligomerization state is 

unlikely because trimers are the only detected species in macrophages but it may be regulated 

by phosphorylation (Itoh et al., 2002).  

 
5.4.3. What is the function of coronin 1 in immune cells? 
 
Signaling through many receptors found on immune cells can trigger rapid rearrangement of 

the actin cytoskeleton. Among these are lymphocyte antigen receptors, phagocytic receptors 

as well as cell adhesion molecules (Allen and Aderem, 1996; Fischer et al., 1998; Fuller et al., 

2003; Gruenheid and Finlay, 2003). Plasma membrane-cytoskeletal linkers connect 

extracellular signals from these receptors with the intracellular remodelling of the F-actin 

cytoskeleton. Like many plasma membrane-cytoskeletal linker molecules such as filamin 

(platelets), myosin1 (non-muscle cells), ezrin (epithelial cells) and dystrophin (muscle cells) 

coronin 1 contains two isolated binding sites for the plasma membrane and for the F-actin 

cytoskeleton indicating that it may fulfil a similar function (Rafael et al., 1996; Jontes and 

Milligan, 1997; Stossel et al., 2001; Schafer, 2002; Ivetic and Ridley, 2004). 

Such a role for coronins as integrators of cellular structural components has also been 

suggested before for S. cerevisiae Crn1p (Heil-Chapdelaine et al., 1998) which has binding 

sites for the actin cytoskeleton and microtubules. By linking the plasma membrane to the 

underlying actin cytoskeleton in immune cells, coronin 1, either via direct or indirect binding 

to transmembrane receptors, may facilitate the integration of extracellular signals with F-actin 

remodelling.  
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The function of the immune system lies within pathogen recognition and the subsequent 

clearance of the pathogens from the body. This requires constant monitoring of the extra- and 

intracellular space for the presence of foreign materials. In the case of an infection, the 

immune system can immediate disarm pathogens (innate immunity) or, in the later phases of 

the infection, can induce a more pathogen specific immune response (adaptive immunity). 

Antigen-presenting cells play a central role in the induction of an adaptive immune response 

as they are crucial for sampling, processing and presentation of antigens to naïve T-cells. Only 

upon recognition of the appropriate antigen, T-cells become activated and differentiate into 

effector T-cells. The two subsets of T-cells, the CD8+ and the CD4+ T-cells together ensure 

the elimination of both intracellular as well as extracellular pathogens. Whereas CD8+ T-cells 

after activation destroy infected cells, CD4+ T-cells mediate the host defense against 

extracellular microbes in concert with phagocytic cells and antibody producing B-cells.  

The work presented in this thesis focuses on processes involved in the presentation of 

exogenous antigens whereby a role of cholesterol in these processes was defined. In addition, 

it was investigated how coronin 1 mediates the interaction between the plasma membrane and 

the cytoskeleton in antigen-presenting cells.   

 

In the first part (Chapters 3 and 4) antigen internalization and processing was studied, 

addressing the issue of how exogenous antigens can gain access to the MHC class I processing 

pathway. This pathway, termed cross-presentation, was for a long time thought to be limited 

to endogenous cytosolic antigens. One way used by antigen-presenting cells to sample 

antigens for this cross-presentation is via macropinocytosis, an actin-dependent process 

resulting in the uptake of non-particulate material. 

 

We found that in macrophages and dendritic cells, macropinosomes are cholesterol-rich 

structures. Removal of cellular cholesterol by pharmacological treatment led to a four-fold 

decrease in the uptake of fluid-phase markers. Time-lapse microscopy revealed that in 

cholesterol-depleted cells the formation of macropinosomes was impaired. Re-addition of 

cholesterol to cholesterol-depleted cells restored their macropinocytic activity indicating that 

cholesterol is required for macropinosome formation. In addition, inhibition of 

macropinosome formation interfered with the ability of macrophages to cross-present 
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exogenous antigens. In cholesterol-depleted macrophages, the model antigen ovalbumin could 

no longer be delivered into the MHC class I pathway.  

 

The involvement of cholesterol in sampling of soluble antigens for cross-presentation raised 

the question of whether it is possible to specifically target exogenous antigens for MHC class I 

presentation by increasing their affinity to cholesterol. To achieve this, ovalbumin was 

chemically modified by palmitoylation. The covalent attachment of palmitic acid moieties to 

proteins is known to intracellularly promote the association of proteins with cholesterol-

enriched plasma membrane domains. When ovalbumin was modified with palmitic acid, an 

enhanced internalization of ovalbumin in bone marrow-derived macrophages and an improved 

cross-presentation of this exogenous antigen was detected.  

Defining a role of the palmitic acid moiety in cross-presentation can be performed by studying 

the effect of other lipid moieties on internalization and cross-presentation. Chapter 4 describes 

an attempt to introduce lipid tails into proteins via a chemical approach. Due to technical 

difficulties in the synthesis of activated lipids, needed for this protein modification, the 

question of specificity could not be addressed, and further investigations will be needed to 

perform the analysis. 

The delivery of antigens into the MHC class I presentation pathway to induce a CTL response 

is necessary for the generation of immunity against many intracellular pathogens as well as 

against cancer and therefore vaccination strategies aim to enhance cross-presentation. The 

usage of palmitoylation as a general means to improve the MHC class I delivery of soluble 

proteins might have the potential for development of new vaccines, but as our results show, it 

is not suitable for every protein due to decreased solubility of palmitoylated proteins.  

 

The second part of this thesis investigated the interaction of coronin 1, an actin-associated 

protein of the coronin 1 family, with the plasma membrane and the F-actin cytoskeleton.  Due 

to its distinct expression pattern restricted mainly to leukocytes, coronin 1 could play a role in 

the regulation of cytoskeleton remodelling during an immune response by connecting 

extracellular signals with intracellular events.  

Similar to other members of this family, coronin 1 possesses three domains; an N-terminal 

domain containing 5 WD40 repeats, predicted to form a seven bladed β-propeller, a short 

linker domain and a C-terminal coiled coil.  In chapter 5 we show how each of the single 

coronin 1 domain contributes to binding of coronin 1 to the plasma membrane binding and to 
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the F-actin cytoskeleton. The F-actin interaction site was mapped in the linker region 

consisting of a stretch of positively charged amino acids. Interaction with the F-actin 

cytoskeleton via this site was dependent on the oligomerization state of coronin 1. Only upon 

trimerization of coronin 1 that was mediated by the coiled coil, association with the F-actin 

cytoskeleton could be observed. In addition, also the N-terminal β-propeller domain was 

shown to be necessary for cytoskeletal interaction. Furthermore, the β-propeller is the domain 

via which coronin 1 interaction with the plasma membrane is mediated. Together the results 

present a first step towards understanding how coronin 1 functions inside the cell.  
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Appendix I: Abbreviations 
 

aa     amino acid 
ampr     ampicillin resistance 
AP-1     activator protein 
APC     antigen-presenting cell 
APS     ammonium persulfate 
Arp2/3     actin related protein 
ATP     adenosintriphosphate 
BCA     bicinchoninic acid 
BM     bone marrow 
BMDC     bone marrow derived dendritic cells 
BMM∅     bone marrow derived macrophages 
bp     base pair 
BSA     bovine serum albumin 
CC     coiled coil 
CD     clusters of differentiation 
CLIP     class II linked invariant chain peptide 
CLAAP      chymostatin, leupeptin, aprotinin, antipain, pepstatin 
Cor1     coronin 1 
COSY      correlation spectroscopy 
cpm     counts per minute 
crn1p     coronin like protein 
CTL     cytotoxic T-cell 
CTLA     cytotoxic T-cell associated     
kDA     kiloDalton 
DAB     diaminobenzidine 
DC     dendritic cells 
DCC     dicyclohexyl carbodiimide 
dH2O     distilled water 
DNA     deoxyribonucleic acid    
DMAP     4-(dimethylamino)-pyridine 
DMEM     Dulbecco's modified Eagle's medium   
DMSO     dimethylsulfoxide  
DRiPs     defective ribosomal products 
DSC     N′,N′-disuccinimidylcarbonate 
DTT     dithiothreitol 
E. coli     Escheria coli 
EBSS     Eagle′s balanced buffered saline 
ECL     enhanced chemiluminescence 
EDTA     ethylendiamine tetraacetate 
EGFP     enhanced green fluorescent protein 
ER     endoplasmatic reticulum 
ERAD     ER-associated degradation 
ERAP     ER aminopeptidase 
ERp57     ER protein 57 
ESI     electron spray ionization 
FACS     fluorescence assisted cell sorting 
FCS      fetal calf serum 
FF     fast flow 
FITC     fluorescein-isothiocyanate 
FP     filter paper 
FPLC     fast performance liquid chromatography 
GFP     green fluorescence protein 
GM-CSF    granulocyte-macrophage colony-stimulating factor 
GTPase     guanosintriphosphatase 
HA     hemagglutinin 
Hac     acetic acid 
HB     homogenization buffer 
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HBBS     Hank′s balanced buffered saline 
HEK293     human embryonic kidney cell 293 
HEPES     hydroxyethylpiperidine-ethanesulfonic acid 
HIC     hydrophobic interaction chromatography 
hDC     human dendritic cells 
HLA     human leukocyte antigen 
HMG     hydroxymethylglutaryl 
HP     high performance 
HPLC     high performance liquid chromatography 
HR     high resolution 
HRP     horseradish peroxidase 
HSQC     Heteronuclear Single-Quantum Coherence 
kanr     kanamycin resistance 
IPTG     isopropyl-beta-D-thiogalactopyranoside 
INF     interferon  
Ig     immunglobulin 
Ii     invariant chain 
IL     interleukin 
IM     influenza matrix protein 
IMDM     Iscoves Modified Dulbecco′s Medium 
ITAM     immunoreceptor tyrosine-based activatory motif 
LatB     latrunculin B 
LAMP     lysosomal associated glycoprotein  
LB      Luria-Bertani 
LC-MS     liquid chromatography/mass spectrometry 
LMP    latent membrane protein  
LPS    lipopolysaccharide 
M     mol/l 
MACS     magnetic cell sorting 
MALDI     Matrix Assisted Laser Desorption Ionization 
MART-1    Melanoma-associated antigen recognized by T cells 
MAT     matrilin 
MIIC     MHC class II compartment 
MCD     methyl-β-cyclodextrin 
MECL-1    multicatalytic endopeptidase complex 
MEM     Minimum Essential Medium 
MHC     major histocompatibility complex 
Mr     molecular weight 
MW     molecular weight 
m/z      mass / charge 
NADPH     nicotin-amide-adenine dinucleotide phosphate 
NEB     New England Biolabs 
neor     neomycin resistance 
NF-AT     nuclear factor of activated T-cells 
NFκB     nuclear factor κB 
NHS     N-hydroxysuccinimide 
NLS     nuclear localization sequence 
NMR     nuclear magnetic resonance  
ODxnm     optic density at x nm 
O/N     overnight 
PAGE     polyacrylamide gel electrophoresis  
PAK     p21 activated kinase 
PAMPs     pathogen-associated molecular patterns   
PB     peripheral blood 
PBMC     peripheral blood monocytes 
PBS     phosphate buffered saline  
PBST     phosphate buffered saline with Tween 
PE     phycoerythrin 
PEG     polyethylene glycol 
PFA     paraformaldehyde 
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pH     potentia hydrogenii 
PI3K     phosphatidylinositol-3-kinase 
PIPES     piperazine-1,4-bis(2-ethanesulfonic) acid 
PMA     phorbol-1.2-myrisate,1.3-acetate 
pMHC     peptide: MHC complex 
PMSF     phenylmethylsulfonylfluoride    
PNS     post nuclear supernatant 
ppm     parts per million 
PPR     pattern recognition receptor 
rad     radiation absorbed dose 
RNA     ribonucleic acid 
RNAi     RNA interference 
rpm     revolutions per minute 
RT     room temperature 
SAP     shrimp alkaline phosphatase 
SAP+     Saponin/PBS/BSA 
SB     sample buffer 
SC     succinimidyl carbonate 
SD     standard deviation 
SDS     sodium dodecylsulfate 
SLS     static light scattering 
SMAC     supramolecular activation cluster 
SP     sulfopropyl 
TAP     transporter associated with antigen processing 
TACO     tryptophane aspartate containing coat protein 
TBE     Tris-Borate-EDTA 
TCA     trichloroacetic acid 
TCR     T-cell receptor 
TEMED     N,N,N`,N`-tetramethylenethylendiamine 
TFA     trifluoroacetic acid 
TLC     thin layer chromatography 
TOF     time of flight  
Tris     tris(hydroxymethyl)aminomethane 
TXR     texas red 
U     unit 
US     unique short  
UV     ultra violet 
V   volt 
WASP     Wiskott-Aldrich syndrome protein 
WD     tryptophan-aspartase 
X-Gal     5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside 
ZAP 70     ζ-associated protein-70
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