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1. SUMMARY 
 
Fear conditioning, one of the most powerful and widely used methods to investigate the 

mechanisms of associative learning in animals, involves the pairing of an aversive 

stimulus such as a foot-shock (the unconditioned stimulus; US) with a neutral stimulus 

such as a tone (the conditioned stimulus; CS). The tone acquires aversive properties and, 

on subsequent exposure, will elicit a fear response. Behavioral and in vivo 

electrophysiological experiments indicate that NMDA receptor-mediated long-term 

potentiation (LTP) in the lateral amygdala (LA), a key structure for emotional learning, 

underlies the acquisition of Pavlovian fear conditioning.  

Neuronal activity in the LA is tightly controlled by local inhibitory interneurons. 

Interneurons exert their inhibitory effect by releasing the neurotransmitter GABA acting 

on ionotropic GABAA and metabotropic GABAB receptors. There is accumulating 

evidence suggesting a role for GABAA and GABAB receptors in regulating amygdala-

dependent fear and anxiety behavior. However, whereas the role of GABAA receptors for 

postsynaptic integration and gating of LTP induction is well documented, nothing is 

known about the role of GABAB receptors in the LA. 

GABABRs are G-protein-coupled receptors that are localized both pre- and 

postsynaptically. Postsynaptic GABABRs are coupled to inwardly rectifying K+ channels. 

Presynaptic GABABRs inhibit neurotransmitter release by decreasing Ca2+ influx at both 

GABAergic terminals and glutamatergic terminals. Functional GABAB receptors are 

generally thought to be heterodimers containing GABAB(1) and GABAB(2) subunits. The 

GABAB(1) subunit exists in two differentially expressed isoforms, GABAB(1a) and 

GABAB(1b), differing by the presence of two N-terminal “sushi” domains in the 

GABAB(1a) isoform. 

In the main study of the present thesis, using a combined electrophysiological and genetic 

approach in mice, I found that presynaptic GABAB heteroreceptors on glutamatergic 

cortical afferents are predominantly comprised of GABAB(1a) subunits, and critically 

determine associative properties of presynaptic cortical LTP. In the absence of functional 

presynaptic GABAB heteroreceptors, an NMDA receptor-independent, non-associative 
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form of presynaptic LTP is unmasked. Strikingly, the loss of associativity of cortico-

amygdala LTP is accompanied by a generalization of conditioned fear at the behavioral 

level. This indicates that the specificity of information processing in the LA can be set by 

activity-dependent presynaptic inhibition mediated by specific GABAB receptors. 

In contrast to synaptic plasticity at cortico-amygdala afferents, I found that at thalamic 

afferents, GABAB receptors facilitate LTP induction by a postsynaptic mechanism.  

Moreover, this effect could be attributed to GABAB(1b) containing receptors. Thus, in the 

LA specific subtypes of pre- and postsynaptic GABAB receptors control induction pre- or 

postsynaptic LTP in an afferent-specific manner. 

Taken together, the present findings indicate that GABAB receptors are playing a key role 

in controlling associative plasticity in the LA, and suggest that GABAB receptors could 

be a pharmacological target for treatment of psychiatric conditions like anxiety and post 

traumatic stress disorder.  

 
.  
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2. INTRODUCTION 
 

2. Overview 

  

In this introduction, I will go through the historical development and the early hypothesis 

about the formation of emotional memory. Later, I will outline the anatomical features of 

one of the key structures in fear memory formation, namely the amygdaloid nucleus, and 

its connectivity to other brain areas. Then I will discuss the different cellular mechanisms 

of synaptic plasticity implicated in fear memory formation. Finally, I will elucidate the 

important role of inhibition in the lateral amygdala. 

 

2.1. Fear emotion and memory formation 
 
Our memories are our identity. All information is stored in the brain by an unknown 

encoding mechanism. However, not all information is stored in the same intensity. The 

reason why some memories remain in our mind forever and others not, is embedded in 

the emotional information accompanying this memory formation. Whether it is a pleasant 

emotion or an aversive one, both reinforce memory formation in the brain. Here, I will 

focus only on the formation of fear memory on the brain. Fear associative learning in 

mammalian is organized into separate anatomically defined functional systems. The 

amygdala serves as the neuroanatomical hub of fear memory formation. Pathways that 

convey information about signals for biologically important events arrive at these hubs by 

circuitry that depends on stimulus modality and complexity. Within the amygdala, neural 

plasticity occurs because of convergence of these stimuli and the biologically important 

information they predict. This neural plasticity is the physical basis of associative 

memory formation 

 
2.1.1. Early thoughts about emotion 
 
Charles Darwin, in 1872, was the first who described that the expression of emotions in 

humans and animals is similar (Darwin 1872/1965). By comparing and analysing several 
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sketches and photographs of animals and people in different emotional states, he claimed 

that there are similarities in the expression of emotional state across species (Fig. 1). He 

also proposed that many emotional expressions in humans, such as tears when upset or 

baring the teeth when angry, are rudimentary patterns of action. Darwin`s second 

contribution was the proposal that a limited set of fundamental or ‘basic’ emotions are 

present across species and across cultures.  

Weiskrantz was the first to show that bilateral lesions of the amygdala were sufficient to 

induce the orality, passivity, strange dietary behavior and increased exploratory 

tendencies of the Kluver–Bucy syndrome in monkeys (Weiskrantz 1956). The removal of 

the amygdala also permanently disrupted the social behavior of monkeys; usually 

resulting in a fall in social standing (Rosvold and Delgado 1956). This line of research 

established the significant role of the amygdala as one of the most important brain 

regions for emotion memory formation. 

 

 
Figure 1) Drawings and photographs used by Darwin to illustrate cross-species similarities in 
emotion expression — in this case, anger/aggression. Adapted from (Dalgleish 2004) 
 

2.1.2. Fear conditioning and the amygdala  
 
 

Fear is one of the most crucial emotions for most animals and humans at least for 

survival. Animals and humans share similar mechanisms for fear learning, which seem to 

have been conserved throughout their evolution. Fear behavior could be simply observed 

in humans facial expressions. This is not the case in rodents; it is quite difficult to 

estimate the emotional state in mice by just observing their facial expressions. Pavlovian 

auditory fear conditioning, in which a neutral conditioned stimulus (CS) such as a tone is 
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paired with an unconditioned stimulus (US), typically a foot shock, results in long lasting 

changes in synaptic transmission in the lateral amygdala (LA) (LeDoux et al. 1984; 

Clugnet and LeDoux 1990). This behavioral paradigm was classically used to investigate 

the molecular mechanism underlying fear learning. The fear conditioning paradigm 

provides an applicable experimental model to study fear learning. Thus, emotional 

significances are attached to an initially biologically insignificant CS (tone) when such 

neutral stimulus is paired with an aversive US (foot shock) (Fig.2A). When these 

associations between CS and US are learned, an animal responds to the CS with a 

stereotypical defensive behavioral response, including freezing, increased heart rate, or 

startle (LeDoux 2000; Medina et al. 2002; Maren 2003). The CS can be unimodal, 

involving only a single sensory modality such as a sound, light, smell, or touch. 

Alternatively, it can be multimodal, involving several sensory modalities such as the 

context (i.e. the environment associated with the CS).  

A study by Bechara and colleagues (Bechara et al. 1995) described a patient with bilateral 

amygdala damage who failed to be fear-conditioned to aversive stimuli, but who could 

nevertheless report the facts about the conditioning experience. By contrast, another 

patient with hippocampal damage successfully acquired a conditioned fear response but 

had no explicit memory of the conditioning context — indicating that contextual 

information depends on the hippocampus. Functional magnetic resonance imaging 

(fMRI) in humans showed that upon exposure to a fearful facial expression, the amygdala 

was highly activated (Phillips et al. 1997; Glascher et al. 2004).  

Neural circuitries of fear conditioning were intensively investigated using lesion or 

selective inactivation of brain structures combined with behavioral observation. All these 

studies indicate that the amygdala is a key player in establishing the fear memory 

(Weiskrantz 1956; Armony et al. 1995; LeDoux 2000; LeDoux 2003). Anatomical 

tracing studies combined with single unit recordings in experimental animals suggest that 

LA is a site of convergence of somatosensory input conveying US and afferent inputs 

conveying CS of different sensory modalities (Pitkanen et al. 1997), where the 

association of learned information about CS and US apparently occurs during fear 

conditioning (Fanselow and LeDoux 1999). The neural circuitry of auditory fear 

conditioning, which uses tone as the CS, as well as its cellular and molecular mechanisms 
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are particularly well understood (LeDoux 2000; Maren 2000). The sound CS invade the 

LA by way of two main pathways: the thalamic input, consisting of a direct thalamo-

amygdala projection, originates in the medial geniculate nucleus (MGm) and in the 

posterior intralaminar nucleus (PIN) of the thalamus; and the indirect cortico-amygdala 

pathway, which extends from the auditory thalamus to the auditory cortex (TE3 area) and 

includes further projections that relay the auditory information from the cortex to the LA 

(Maren et al. 2001). It was demonstrated that at least one of these two pathways is 

essential for fear memory (Romanski and LeDoux 1992). (Fig. 2B) 

 

 
Figure 2) Auditory fear-conditioning. A, Scheme of the experiment during which a neutral tone 
(continuous or a series of short tones) is presented to an animal for several seconds, co-terminating with a 
foot shock. B, Neuronal circuitry involved in auditory fear conditioning. The amygdala nuclei can be 
roughly divided into two subsystems. These include the lateral (LA), basal (B), and accessory basal (AB) 
nuclei, which together form the basolateral complex, and the central nucleus (CeA). The basolateral 
amygdala, specifically the lateral nucleus, receives and integrates sensory information from a variety of 
sources. These include the medial and ventral divisions of the thalamic medial geniculate nucleus (MGm 
and MGv, auditory), primary auditory cortex (TE), the insular cortex (Ins), and the thalamic posterior 
intralaminar nucleus (PIN, somatosensory). Thus, the LA is a locus of sensory convergence and a site of 
the CS-US (conditioned stimulus–unconditioned stimulus) association within the amygdala. The 
information is then sent to the CeA, which through the divergent projections to the hypothalamus and 
brainstem areas mediates fear responses such as freezing and potentiatedacoustic startle. (Adapted from 
(Dityatev and Bolshakov 2005)) 
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2.1.3. The Amygdaloid complex: Structure and connectivity 

 

The amygdala (Latin, almond, from Greek amugdal) is an almond-shaped structure 

located within the temporal lobe and composed of ~13 nuclei. There are many different 

classifications and nomenclatures of these nuclei and sub-nuclei. I will use the most 

widely accepted nomenclature. The basolateral amygdala (BLA), comprises the lateral 

nucleus (LA), the basal nucleus (BL), and the accessory basal nucleus (AB), which is also 

known as the basomedial nucleus (Fig. 3). The central nucleus (CE), which is the output 

sub-nucleus of the amygdala, is separated from the BLA by clusters of GABAergic 

neurons, the intercalated cells (ITC) (Nitecka and Ben-Ari 1987; McDonald and 

Augustine 1993). ITC neurons receive inputs from the lateral and basal nuclei and project 

to the central medial nucleus. (Millhouse 1986; Pare and Smith 1993; Royer et al. 1999; 

Pare et al. 2003). In contrary to the hippocampus, the amygdala shows heterogeneity in 

structure with a non-layered anatomy (Fig. 3). The dorsolateral subnucleus is the primary 

input to the fear-conditioning circuitry. This was shown in a number of studies using 

anatomical tracing techniques and in vivo electrophysiological recordings (Romanski and 

LeDoux 1992; Pitkanen et al. 1997; LeDoux 2000). Thus, the dorsolateral division of the 

LA is the site in the amygdala with the shortest latency of auditory-evoked responses, 

indicating that this division receives the earliest information about auditory stimuli 

(LeDoux 2000). After the information is processed in the LA, the signal is transferred to 

other sub-nuclei of the amygdala, like the basomedial nucleus, which also receives 

incoming inputs from the hippocampus with encoded contextual information. BLA also 

receives projection from nociceptive receptors via brain stem. The output nucleus CE 

projects in turn to areas in the brain stem that control the autonomic system (heart rate), 

somatic motor centres (freezing), and endocrine system (stress hormone). All these 

systems are implicated in the expression of fear (LeDoux 2000; Maren 2001) (Fig. 3). 

The architectonic organization and connectivity of the amygdala have been extensively 

reviewed (De Olmos and Hardy H 1985; Alheid Gf and De Olmos J 1995; McDonald 

1998; Pitkanen 2000). 
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Tract tracing studies have revealed that amygdala nuclei have extensive intranuclear and 

internuclear connectivities (Krettek and Price 1978; Pitkanen 2000). These studies 

indicate that sensory information enters the amygdala through the basolateral nuclei, is 

processed locally, and then follows a predominantly lateral to medial progression to the 

centromedial nuclei which act as an output station (Rainnie et al. 1993). The LA sends 

extensive projections to the basal and accessory basal nuclei and the capsular part of the 

central nucleus (Pitkanen et al. 1995; Smith and Dudek 1996). There are extensive 

connections within and between the different nuclei of the amygdaloid complex. These 

connections indicate that there is extensive local processing of information entering the 

amygdala before it leads to the appropriate behavioral outcomes. These intranuclear and 

internuclear connections have mostly been studied using anatomical tract tracing 

techniques, coupled in some cases with electron microscopic examination of the synaptic 

specializations. However, physiological studies indicate that amygdala nuclei contain 

many types of cells that cannot be readily distinguished on anatomical grounds alone 

(Millhouse and DeOlmos 1983; Washburn and Moises 1992; Sah et al. 2003). 

Furthermore, reconstructed neurons in the lateral and basal nuclei show large dendritic 

trees. Neurons that have cell bodies in a particular nuclear subdivision (e.g., the 

dorsolateral subdivision of the lateral nucleus) may well have dendrites that extend into 

the next division (e.g., the medial subdivision of the lateral amygdala) (Rainnie et al. 

1993; Pare and Gaudreau 1996; Faber et al. 2001). This implies that inputs that 

anatomically terminate in a particular subdivision of these nuclei may well innervate 

neurons whose cell bodies are in a different subdivision. Thus, the physiological impact 

of these local connections and their implications for information processing remain 

elusive. 
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Figure 3.) Amygdala structure and connectivity A, An example of the amygdaloid region as it appears 
in acutely prepared coronal sections B, The area of the amygdala is enlarged to show the three main 
subdivisions of LA , BL, CE. The cs and us stimuli converge on single cells in the LA. From LA stimuli 
signal conveyed to CE and BL. Reciprocal connections connect BL with LA, and BL with CE. GABAerig 
intercalated cells separate between CE and BLA. C, Major areas that send auditory and contextual 
information to the amygdala obtained from tract-tracing studies. (Adapted from (Medina et al. 2002; 
Shumyatsky et al. 2002)) 
 
2.1.4. Fear conditioning and synaptic plasticity 
 
The most extensively studied and best-characterized sensory pathway is a direct 

projection from the medial geniculate nucleus of the thalamus to the dorsal portion of the 

lateral nucleus of the amygdala (LeDoux and Farb 1991). This pathway transmits 

auditory information CS to the amygdala, which is accompanied by the US. When the CS 

requires greater processing, polysynaptic projection to amygdala become necessary and 

the amygdala receives CS information from the cortex. For example, the apparatus or 

context cues present at the time of shock reach the BLA via the ventral angular bundle 

after processing by the hippocampus and entorhinal cortex (LeDoux et al. 1991; Maren 
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and Fanselow 1995) and also reach the lateral amygdala from the perirhinal and 

postrhinal cortex (Amaral and Insausti 1992).  

 

Fear not only produces behavior, it also changes the synaptic strength at synapses 

mediating the CS and US information. It was shown that fear conditioning induces long-

term potentiation (LTP) in the lateral nucleus of the amygdala (LA) (Clugnet and LeDoux 

1990; McKernan and Shinnick-Gallagher 1997), in the glutamatergic synapses (i.e., 

utilizing glutamate as neurotransmitter) (LeDoux 1993). This LTP was associative, in that 

it required concurrent pre- and postsynaptic activity, and it was synapse specific 

(Weisskopf et al. 1999). 

One candidate mechanism for these changes is LTP of excitatory synaptic transmission. 

LTP can be induced in the major sensory input pathways to LA both in vivo (Rogan and 

LeDoux 1995; Doyere et al. 2003) and in vitro (Chapman et al. 1990; Huang and Kandel 

1998; Weisskopf et al. 1999). Moreover, fear conditioning and LTP share similar 

biochemical mechanisms (Huang and Kandel 1998; Schafe and LeDoux 2000; Bauer et 

al. 2002; Rodrigues et al. 2004) 

The group of LeDoux showed that electrical stimulation of auditory input in the medial 

geniculate to lateral nucleus synapses induces LTP (Clugnet and LeDoux 1990). The 

individual cells of LA region respond to tones that might serve as an auditory CS and 

shocks that might serve as a US (Romanski and LeDoux 1992). Furthermore, LTP 

induction in this pathway produced by electrical stimulation increases the amygdala 

response to a tone (Rogan et al. 1997). Another study showed that after fear conditioning, 

cells within the amygdala show increased firing to the CS, suggesting that the CS input 

has been potentiated following conditioning (Quirk et al. 1997). Finally, (McKernan and 

Shinnick-Gallagher 1997) compared brain slices containing the auditory pathway from 

the auditory thalamus to the lateral nucleus taken from fear-conditioned and control 

animals and they found long-lasting increase in the synaptic efficacy of this pathway in 

the fear-conditioned animals. Fear-conditioned animals showed a presynaptic facilitation 

of AMPA-receptor-mediated transmission, directly measured in vitro with whole-cell 

recordings in lateral amygdala neurons (McKernan and Shinnick-Gallagher 1997). These 
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findings represent the first in vitro measures of synaptic plasticity resulting from 

emotional learning by whole animals. 

It was postulated that activity of N-Methyl-D-Aspartate (NMDA) receptor plays an 

important role in the formation of contextual fear learning as NMDAR antagonists 

injected into the hippocampus or genetic deletion of NMDA receptors from the CA1 

region of the hippocampus interfere with contextual fear conditioning (Young et al. 1994; 

Shimizu et al. 2000). Indeed, genetic manipulations that enhance NMDA receptor 

function can enhance contextual fear learning (Tang et al. 1999). During fear 

conditioning, theta rhythm activity generated by a tone, paired with shock, synchronizes 

in the hippocampus and the amygdala (Seidenbecher et al. 2003). Thus, it is clear that 

fear conditioning represents a strong interaction between the structures that encode the 

emotional, signalling, and contextual aspects of the learning. 

 

CS and US convergence in the LA leads to potentiation of the glutamatergic synapses 

activated by the CS, and this change must be occurring within the pre- and or 

postsynaptic neuron, or both (Quirk et al. 1995; Quirk et al. 1997). Presynaptic changes 

could take the form of greater neurotransmitter release per action potential arriving at the 

relevant synaptic terminals. Postsynaptic changes typically take the form of changes that 

make the postsynaptic cell more responsive to the same amount of neurotransmitter 

release. This could happen by insertion of more of �-amino-3-hydroxy-5-

methylisoxazole-4-propionic acid (AMPA) receptors that mediate the majority of 

excitatory glutamatergic transmission (Isaac et al. 1995; Liao et al. 1995). Finally, some 

forms of plasticity result in increased synaptic contacts through the growth of new 

dendritic spines (Muller et al. 2002). 

 



  Introduction          16 

 -16- 

2.2. Synaptic plasticity  

It is thought that memory formation is associated with synaptic weight change; by either 

the strengthening of the synaptic transmission or the decrease of the synaptic weight 

transmission. Synaptic plasticity could be classified, according to its duration, into: 

1- Short-term synaptic plasticity; changes happen as potentiation (STP) or depression 

(STD). They last from hundreds of milliseconds to a few minutes. 

2- Long-term plasticity; changes which last from hours to weeks either as enhancement 

of synaptic strength, long-term potentiation (LTP) or as depression (LTD). 

3- Late long-term plasticity; it includes persistent change within the synapses (synapses 

remodeling) that thought to be a form of consolidation of memory. 

In this chapter, I will explain the different forms of short- and long-term plasticity 

without going into details of synapses remodeling. 

 

2.2.1. Short-Term Plasticity 

According to their duration and kinetics, short-term enhancements are defined as 

facilitation, augmentation or post tetanic potentiation. Short-term synaptic enhancement 

are usually attributed to effects of a residual elevation in presynaptic Ca2+, acting on one 

or more molecular targets that appear to be distinct from the secretory trigger responsible 

for fast exocytosis and phasic release of transmitter to single action potentials (Fisher et 

al. 1997; Zucker and Regehr 2002). Depression is usually attributed to depletion of a 

readily releasable pool of vesicles, which follow a period of elevated activity. Short-term 

depression (STD) was shown to be induced in giant motoneuron of crayfish  with low 

frequency stimulation, 5-20 Hz, (Czternasty and Bruner 1975). Depression can also arise 

from feedback activation of presynaptic receptors by the release of retrograde messenger 

(e.g.NO; Endocannabinoid) (Zucker 1993; Rouach and Nicoll 2003). Many presynaptic 

terminals in the mammalian CNS possess high-affinity metabotropic receptors (i.e. G-

protein coupled receptors) that can be activated by neurotransmitters such as GABA, 

glutamate or adenosine. Moreover, many studies have demonstrated that glia may be 

involved in some forms of short-term plasticity (Araque et al. 2001; Haydon 2001). They 

have an established role in the clearance of the neurotransmitter and may participate in 

synaptic plasticity by controlling the speed and extent of such clearance (Danbolt 2001). 
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Regulation of short-term synaptic plasticity begins with the propagation of action 

potential (AP) to the presynapses. Consequently, this leads to a depolarization of the 

presynaptic terminals and activation. Of voltage gated Ca2+ channel. The following Ca2+ 

influx drives exocytosis and neurotransmitter release. 

Excitatory synapses release glutamate neurotransmitter. Glutamate is typically referred to 

as an excitatory neurotransmitter, which activates ion channels receptors (ionotropic) and 

G-protein coupled receptors (metabotropic). There are three major subclasses of 

ionotropic receptors; AMPA, NMDA and kainate receptors. Metabotropic glutamate 

receptors are also located at the presynaptic site, as autoreceptors (i.e., at the same 

synapses) modulating glutamate release by decreasing Ca2+ influx into the presynapses. 

Activation of postsynaptic glutamate receptors triggers an excitatory postsynaptic 

potential (EPSP). This EPSP leads to a membrane potential change caused by current 

flow through postsynaptic receptors that tends to move the membrane potential toward 

the action-potential threshold. 

Under physiological conditions presynaptic Ca2+ is regulated by a different key players 

like mitochondria, Ca2+ ATPase (ATP dephosphorylation enzyme), metabotropic 

glutamate receptors (mGlu) and metabotropic GABA receptors (GABAB). All these play 

important role in regulating the residual Ca2+ (for review see (Zucker and Regehr 2002) 

(Fig. 4). 

NMDA receptors are usually co-localized with AMPA receptors, but are not significantly 

activated at negative resting membrane potentials. This is because magnesium ions (Mg+) 

in the extracellular solution block the NMDA channel pore at negative membrane 

potentials. Only upon significant depolarization of the postsynaptic membrane Mg+ ions 

are expelled from the pore, allowing Ca2+ and sodium ions influx. The Mg+ blockade of 

NMDA receptor channels imparts a voltage dependence as well as a transmitter 

dependence to channel opening.  

The properties of postsynaptic receptors can also contribute to short-term plasticity. 

Desensitization of postsynaptic receptors, in which exposure to neurotransmitter results 

in receptors entering a non-responsive state, can reduce synaptic responses during 

repeated activation (Jones and Westbrook 1996; Sun et al. 2002; Zucker and Regehr 

2002) 
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Figure 4) Sites of regulation of short-term synaptic plasticity. (1) AP waveform, (2) Ca2+ channel 
activation, (3) facilitation trigger and the readily releasable pool, (4) residual [Ca2+]i, (5) reserve pool, (6) 
metabotropic autoreceptors, (7) ionotropic autoreceptors, (8) Ca2+-ATPase, regulating residual [Ca2+]i in 
augmentation, (9) mitochondrial regulation of residual [Ca2+]i in PTP, (10) postsynaptic receptor 
desensitization.(Zucker and Regehr 2002) 
 

2.2.2. Long-term plasticity  
 
Long-term plasticity changes take place either as an enhancement of synaptic strength, 

LTP, or a reduction, namely long-term depression (LTD), which can be homosynaptic 

(same synapses) (Wagner and Alger 1996) or heterosynaptic( different synaptic inputs) 

(Chen 2001). The long-lasting form of synaptic potentiation was first discovered in the 

hippocampus (Bliss and Lomo 1973) and can be induced when glutamate receptor 

activity at initially “weak” synapses is tetanized with high frequency stimulation. LTP 

has been observed in the three major excitatory synapses in the trisynaptic circuit of the 

hippocampus. In the hippocampus, the circuit is quite clear between several distinct 

areas: Cornu Ammonus (CA), such as CA-1 and CA-3, Dentate Gyrus (DG), Entorhinal 

cortex (ento) (Fig. 5). In this circuit, the perforant pathway projects from the pyramidal 

cells of the entorhinal area to the granule cells of the dentate gyrus. The mossy fiber 

pathway projects from the granule cells of the DG to the CA3 pyramidal cells; and the 

Schaffer collateral pathway projects from the CA3 pyramidal cells to the CA1 pyramidal 

cells (Insausti 1993). Hippocampal LTP can also be distinguished on the basis of their 
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dependence on NMDA receptors (Bliss and Collingridge 1993; Nicoll and Malenka 

1995), Both dentate LTP and CA1 LTP are initiated postsynaptically by the activation of 

NMDA receptors (Malenka and Bear 2004). It is quite certain that CA3 LTP is 

independent of NMDA receptors and is thought to be initiated presynaptically (Zalutsky 

and Nicoll 1990).  

 
Figure 5) Anatomy and synaptic connections of the hippocampus.illustrating the trisynaptic circuit The 
perforant pathway (pp), from the entorhinal cortex (ent) to granule cells of dentate gyrus (DG). The mossy 
fibre pathway (mf), from DG to CA3 pyramidal cells. The Schaffer collateral pathway (sc), from CA3 
pyramidal cells to CA1 pyramidal cells. 
 

2.2.3. Presynaptic long-term potentiation: hippocampal mossy fiber LTP 

Hippocampal CA3 pyramidal neurons display two different forms of LTP at two types of 

synaptic inputs from both the associational–commisural fibers and the mossy fiber 

pathway. It has been shown that although the induction of the associational–commisural 

pathway required the postsynaptic activation of NMDA receptors, membrane 

depolarization and calcium elevation, mossy fiber LTP did not require any of those 

effects to be induced (Zalutsky and Nicoll 1990). In addition, by studying paired-pulse 

facilitation (PPF) in mossy fibers, they showed that mossy fiber LTP is associated with a 

decrease in PPF (Zalutsky and Nicoll 1990). PPF is a form of synaptic plasticity observed 

in many synapses when two action potentials arrive at a presynaptic terminal separated 

by a short time interval (ten to hundred milliseconds) and characterized by a higher 

neurotransmitter release upon the arrival of the second action potential compared to the 

first one. It is accepted that synapses with a low probability of release (Pr) normally 
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present PPF, while synapses with a high Pr tend instead to have paired-pulse depression 

(Regehr and Mintz 1994). Mossy fiber LTP appears to involve a protein kinase type A 

(PKA) activation leading to long-lasting modulation of the presynaptic release 

machinery. These leads to an increased probability of transmitter release as well as 

presumably the recruitment of new or previously silent release sites (Tong et al. 1996) 

(Fig. 6). Like NMDAR-dependent LTP, new protein synthesis seems to be required for 

the late maintaining of mossy fiber LTP (Huang et al. 1994; Calixto et al. 2003). 

Although it is generally accepted that mossy fiber LTP expression is presynaptic, there 

are controversies regarding whether the induction is pre- or post-synaptic. In addition, the 

presynaptic protein adaptors Rab3A and RIM1� proteins play central role in this process, 

but much remain unknown about how they are modulated by PKA or perhaps other 

intracellular signaling cascades.  

 
Figure 6). Presynaptic Long-term plasticity mechanism Diagram of the putative signal 
transduction cascades mediating presynaptic mossy fiber LTP and LTD ( see text) (adapted from 
(Tzounopoulos et al. 1998)) 
 

2.2.4. Postsynaptic signal cascade of LTP induction and expression 

LTP in CA1, which is widely accepted to be postsynaptically triggered, is also NMDAR-

dependent. Activation of NMDA receptors leads to calcium influx and subsequent 

activation of PKC, CaMKII, and tyrosine kinases. (Collingridge et al. 1983; Malinow and 

Miller 1986; Malenka and Nicoll 1993). Similarly to LTP in CA1, many studies report 
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NMDAR-dependent LTP in the principal cells at the LA input afferents (Maren and 

Fanselow 1995; Huang and Kandel 1998; Weisskopf et al. 1999). Postsynaptic Ca2+ 

influx is not only mediated by NMDA receptor but also by voltage-dependent Ca2+ 

channels (VDCC) of the L-type. During induction of LTP, this Ca2+ influx leads to 

activation of different Ca2+/calmodulin-dependent protein kinases subtypes (CaMKII and 

CaMKIV). In addition, metabotropic glutamate receptors (mGluR) and or �-adrenergic 

receptors (�AR) stimulate protein kinase A (PKA) via activation of adenylyl cyclase and 

production of cAMP. PKA, CaMKII and mitogen-activated protein kinase (MAPK) may 

induce numerous changes in activity of neurotransmitter receptors and ion channels 

properties. PKA, CaMKII, and MAPK may also signal via phosphorylation of the 

transcription factor, cAMP response element- binding protein (CREB), that activates the 

transcription and protein synthesis which is necessary for long-term synaptic 

modifications and synapses formation (Zalutsky and Nicoll 1990; Malenka and Nicoll 

1993; Malenka and Bear 2004; Dityatev and Bolshakov 2005) (Fig. 7). The new proteins 

can be AMPA receptors that may be inserted into existing synapses (Malinow and 

Malenka 2002; Lüthi et al. 2004). Ras-related GTPases of the Rho family, such as RhoA 

and RhoB, are well-characterised mediators of morphological change in peripheral 

tissues via their effects on the actin cytoskeleton (Meng et al. 2003; O'Kane et al. 2003; 

O'Kane et al. 2004) 
 

2.2.5. The Hebb rule of synaptic plasticity  

Donald Hebb (1949) proposed that the efficacy of the synaptic transmission would be 

increased with the co-activation of pre- and post synaptic elements. This form of increase 

in synaptic efficacy could reflect the basis of learning. This suggestion was later enforced 

by the discovery of NMDAR-dependent LTP which needs the coincident activation of 

NMDA receptor by presynaptic EPSP and postsynaptic depolarization to remove the 

Mg2+ blockade in order to facilitate the induction of LTP. NMDA coincident activation 

was an attractive model for Pavlovian conditioning because a CS-generated glutamatergic 

input that at first weakly activates a synapse will be potentiated if the US causes the cell 

to fire within a temporally limited window. Thus, the cells that participate in this 

plasticity must receive both CS and US inputs. 
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Figure 7) Molecular mechanisms underlying the acquisition and consolidation of emotional learning and 
memory in the lateral amygdala (Rodrigues et al. 2004) (see text above) 
 
2.2.6. LTD, a different form of synaptic plasticity 

Now it is clear that “LTP” and “LTD” are not unitary phenomena. Their mechanisms 

vary depending on the synapses and circuits in which they operate. In the earliest reports 

about LTD (Lynch et al. 1977) it was shown that in CA1 region of the hippocampus in 

vitro, long-term potentiation inducing stimuli delivered to one pathway resulted in a 

reversible depression in the non tetanized pathway. The same heterosynaptic LTD was 

also demonstrated in the dentate gyrus in vivo (Levy and Steward 1979). The phenomena 

was established later on by studies conducted by many investigators and classified into 

homosynaptic LTD (i.e. depression only in the pathway receiving the induction protocol) 

and heterosynaptic LTD. An induction protocol (600-900 stimuli, 1 Hz) was used to 

induce LTD of basal transmission in the hippocampal CA1 region in vitro (Mulkey and 

Malenka 1992). The mechanism underlying the induction of LTD was shown to be 

dependent on Ca2+ influx through NMDAR, mGluR, VDCCs (Mulkey and Malenka 

1992; Nishiyama et al. 2000; Kemp and Bashir 2001), and the release of Ca2+ from the 
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intracellular stores induced by IP3 (Reyes and Stanton 1996; Miyata et al. 2000). The 

released intracellular calcium binds to calmodulin forming a complex, which activates 

calcineurin, protein phosphatase 2B (PP2B). Calcineurin then dephosphorylates and 

hence inactivates inhibitor 1. This removes the braking effect of inhibitor 1 on protein 

phosphatase 1 (PP1) allowing PP1 to become active, and dephosphorylates its substrates. 

This dephosphorylation process include AMPA receptors and CaMKII, which 

consequently decrease basal neurotransmission by removal of AMPA receptors or protein 

degradation (Lüthi et al. 1999; Kemp and Bashir 2001; Malenka and Bear 2004)(Fig. 8). 

 
Figure 8) Schematic illustration of the postsynaptic mechanisms involved in LTD. Abbreviations: AC, 
adenylate cyclase; AA, arachidonic acid; CaMKII, calcium–calmodulin dependent protein kinase II; 
CREB, cAMP response element binding protein; DAG, diacylglycerol; IP3, inositol triphosphate; KA, 
kainate receptor; mGlu, metabotropic glutamate receptor; MAP kinase, mitogen-activated protein kinase; 
PI, phosphatidyl inositol; PLC, phospholipase C, PKA, cAMP-dependent protein kinase; PKC, protein 
kinase C; PP1/2A, protein phosphatase 1/2A; and TKR, tyrosine kinase receptor. (Adapted from (Kemp 
and Bashir 2001)) 
 

2.2.7. Metaplasticity and the switch between LTP and LTD 

The term ‘metaplasticity’ refers to the changes in the fundamental properties of plasticity. 

The threshold for induction of either of LTP or LTD is changed. In many regions of the 

brain, the activity-dependent changes in synaptic strength depend on the frequency and 

timing of presynaptic stimulation and postsynaptic activity, as well as the history of 

activity at those synapses. The Bienenstock, Cooper and Munro (BCM) theory suggested 

that there is a sliding threshold for synaptic modification (Fig. 9).  
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Figure 9) Frequency-dependent synaptic plasticity.  Response to 900 pulses delivered at various 
frequencies (Adapted from (Dudek and Bear 1992))   
 
A typical experiment starts by measuring the strength of a group of synapses. This is 

done by firing a single action potential in some of the axons that enter this region. These 

axons make synapses with pyramidal cells and generate a graded excitatory postsynaptic 

potential (EPSP). The strength of the synapses is defined by the magnitude of the EPSP 

amplitude and slope. LTP or LTD is then induced by stimulating the axons to fire at high 

frequency (typically 100 Hz) or low frequency (typically 1 Hz), a stimulus referred to as 

tetanus. Then depending on the frequency, LTP or LTD can be induced. Another way is 

to pair postsynaptic action potential (AP ) with presynaptic EPSP so that potentiation is 

induced if a postsynaptic spike repetitively follows a presynaptic spike by a few 

milliseconds, whereas depression is induced if the temporal order of the spike pairing is 

reversed (Markram et al. 1997; Froemke and Dan 2002)  

The mechanism determining whether LTP or LTD will be induced is imbedded in the 

common intacellular cascade. Ca2+ concentration is crucial in both cases. Many studies 

(Lisman 1989; Sjostrom et al. 2001; Jedlicka 2002; Sjostrom and Nelson 2002) have 

suggested that LTP would be induced with high concentration of Ca2+ which bind to 

CaMKII leading to autophosphorylation and subsequent phosphorylation of AMPA 

receptors. In contrast, LTD would be induced with low concentration of Ca2+ that favors 

activation of PP2B leading to LTD as described above (Fig. 8). 
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2.3. Inhibition in the amygdala 
 
Fear is a basic evolutionally conserved emotion that triggers a set of defensive 

mechanisms for adapting to threatening events that is essential for survival. However, 

fear should not continue when the threatened stimulus is vanished. Therefore, it is crucial 

to establish a system to control this learning system to bring the system back to its basal 

level. Indeed, it was shown that most of pathological anxiety disorders are associated 

with impairment in the inhibitory system. Decreased levels of GABA have consistently 

been found in patients with depression, panic, and generalized anxiety disorders 

(Goddard et al. 2001). 

In vivo data demonstrated a powerful control through GABAergic inhibition over the 

activity of projecting principal cells (Lang and Pare 1997; Pape et al. 1998) which renders 

the role to the GABAergic interneurons in the control of excitation in this region. Indeed, 

GABAergic interneurons are thought to play a crucial role in information processing in 

the amygdala (Lang and Pare 1997; Mahanty and Sah 1998) and to participate to the 

regulation of epileptiform activity (Washburn and Moises 1992; Washburn and Moises 

1992) as well as fear and anxiety (Pesold and Treit 1995; Sanders et al. 1995). 

Converging fast excitatory postsynaptic responses from cortical and thalamic inputs were 

also found in interneurons of the LA (Szinyei et al. 2000). The cortical excitatory inputs 

onto interneurons in the lateral and basolateral nucleus of the amygdala were reported to 

be mediated by AMPA receptors, which show Ca2+ permeability that promote a particular 

form of LTP, whereas NMDAR-mediated signals were reported to be very small or 

negligible in these types of neurons (Mahanty and Sah 1998). On the contrary, 

experiments on LA interneurons using pressure application of NMDA showed that the 

respective receptors are functional in interneurons, although the mediating synaptic inputs 

were not identified (Danober et al. 2000) 

 

2.3.1. Interneurons in the amygdala 

The LA contains two main cell classes, in the LA, pyramidal neurons and nonpyramidal 

interneurons. The projection neurons in the LA are large pyramidal-like neurons with 

spiny dendrites that utilize glutamate as an excitatory neurotransmitter (McDonald 1982; 

Millhouse and DeOlmos 1983; Fuller et al. 1987). The nonpyramidal neurons in the LA 
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are spine-sparse interneurons that utilize GABA as an inhibitory neurotransmitter 

(Millhouse and DeOlmos 1983; Carlsen 1988). These subtypes of neurons are mostly 

round and smaller sized representing about 25% of the all population of LA neurons 

(McDonald and Augustine 1993). Classically, neurons were distinguished based on 

intrinsic membrane properties and firing patterns (Washburn and Moises 1992; Rainnie et 

al. 1993). Excitatory neurons have broad action potentials and show spike frequency 

adaptation. Inhibitory interneurons show high-frequency firing of action potentials with a 

distinct afterhyperpolarization after each spike, and no spike frequency adaptation (Fig. 

10).  

 
Figure 10) Pyramidal-like neurons and interneurons can be distinguished on electrophysiological grounds. 
Traces show recordings from typical pyramidal-like neuron and interneuron in the basolateral complex. 
Traces on the left are from a typical pyramidal-like neuron, and those on the right are from an interneuron. 
A: injection of a 400-ms depolarizing current injection in pyramidal neurons evokes action potentials that 
show spike frequency adaptation, while similar current injections into interneurons evoke a high-frequency 
train of action potentials that do not adapt. B: action potentials in interneurons have a shorter duration than 
in pyramidal cells (Adapted from (Sah et al. 2003))  
 

Although the BLA is a subcortical structure, the anatomy and physiology of its two major 

cell types, the pyramidal and nonpyramidal neurons, are very similar to their counterparts 

in the hippocampus and neocortex (McDonald 1992; Washburn and Moises 1992; 

Rainnie et al. 1993). Similar to cerebral cortex, subpopulations of interneurons in the LA, 

can be distinguished on the basis of their content of calcium-binding proteins and 

neuropeptides. Calcium binding proteins are parvalbumin [PV], calbindin [CB], and 
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calretinin [CR]) and neuropeptides are somatostatin [SOM], neuropeptide Y [NPY], 

vasoactive intestinal polypeptide [VIP], and cholecystokinin [CCK] (McDonald 1985; 

Kemppainen and Pitkanen 2000; McDonald and Mascagni 2001; McDonald and 

Mascagni 2002; Mascagni and McDonald 2003). Double-labeling studies suggest that 

there are at least four distinct subpopulations of interneurons in both the cortex and BLA 

in the rat (Kubota et al. 1994; Kubota and Kawaguchi 1997; Kemppainen and Pitkanen 

2000; McDonald and Betette 2001; McDonald and Mascagni 2001). 

 

2.3.2. Ionotropic GABAA receptors 

GABA ( -aminobutyric acid) is synthesized in inhibitory neurons from glutamate by the 

enzyme glutamic acid decarboxylase (GAD), and is transported into vesicles by a 

vesicular neurotransmitter transporter (VGAT). Upon activation of interneurons, they 

start to spike and consequentially release GABA neurotransmitter in the synaptic cleft. 

The effects of GABA then can be mediated by the activation of either ionotropic or 

metabotropic receptors, which can be localized either pre- or postsynaptically. GABA 

signals are terminated by reuptake of the neurotransmitter into nerve terminals and/or into 

surrounding glial cells by a class of plasma-membrane GABA transporters. Thereafter, 

GABA is metabolized by a transamination reaction that is catalysed by GABA 

transaminase (GABA-T). The metabolism of GABA occurs in both neurons and glial 

cells (for review see (Owens and Kriegstein 2002) (Fig. 11). 

The ionotropic receptors are GABAA and GABAC receptors. They are closely related 

pentameric receptors that conduct chloride ions. Whereas GABAA receptors are 

composed of combinations of several subunit types, GABAC receptors are composed of 

only single or multiple -subunits. Based on the presence of eight subunit families 

consisting of 21 subunits (�1-6, �1-4, �1–4, �, , �, �, �1-3), the ionotropic GABAA 

receptors display an extraordinary structural heterogeneity. It is thought that most 

functional GABAA receptors in vivo are formed upon co-assembly of �-, �-, and �-

subunits (Macdonald and Olsen 1994). 

Although GABA is best known for its hyperpolarizing action and its inhibitory effect on 

the neuron output, a depolarizing excitatory action has been also reported (Barker et al. 

1975; Gallagher et al. 1978; Gulledge and Stuart 2003). In addition, it was shown that 
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GABA has different action (excitatory) in immature CNS neurons than the normal 

inhibitory action in mature CNS neurons (Obata et al. 1978). This has been later clarified 

by the different developmental expression of Cl- transporters (Plotkin et al. 1997). 

 
Figure 11) Components of the GABA signalling pathway. a) Schematic diagram of the synthesis and 
transport of GABA at synapses. GABA is synthesized from glutamate by decarboxylase enzyme in 
interneurons terminals. The released GABA activates ionotropic and metabotropic GABA receptor. Glial 
cells remove GABA from synaptic cleft by GABA transporter. b) GABA receptors differ in subunit 
composition and assembly. (Adapted from (Owens and Kriegstein 2002)) 
 
2.3.3. Metabotropic GABAB receptors  

Pharmacological discrimination of GABAB receptors from GABAA receptors was first 

demonstrated by Bowery and colleagues in 1980, as receptors that are insensitive to the 

GABAA receptor antagonist bicuculline (Bowery et al. 1980). The development of drugs 
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similar to GABA; but can cross the blood-brain barrier introduced Baclofen. Baclofen 

shows specificity to GABAB receptors and was used for treatment of spasticity and 

skeletal muscle rigidity. GABAB receptors are abundant in the brain, where they are 

localized in many neuronal cell types including principle neurons and interneurons. 

Within the mammalian brain, the highest density of GABAB receptors is in the thalamic 

nuclei, the molecular layer of the cerebellum, the cerebral cortex, the interpreduncular 

nucleus, and the dorsal horn of the spinal cord (Bowery et al. 1987; Chu et al. 1990). 

Intracellular in vitro recordings obtained from the basolateral amygdala in rat brain slice 

preparations show that GABAB receptors are abundantly present and induce a slow 

inhibitory component (Rainnie et al. 1991; Asprodini et al. 1992; Karlsson et al. 1992; 

Washburn and Moises 1992). A recent immunohistochemical study showed that there are 

high levels of expression of GABAB receptors in the limbic system (McDonald et al. 

2004), which indicates a role in regulating emotional behavior.  

 

2.3.4. Molecular structure of GABAB receptor 

The GABAB receptor is composed of two subunits, GABAB(1) and GABAB(2); both show 

similarity to the family 3 heptahelix receptors. These proteins possess two domains, a 

seven alpha helix transmembrane core and an extracellular domain containing the agonist 

binding site (Kaupmann et al. 1997; Galvez et al. 2000). This binding domain is likely to 

fold like bacterial periplasmic binding proteins that are constituted of two lobes that close 

upon ligand binding (Kaupmann et al. 1998). The initial cloning studies from the rat brain 

revealed two isoforms of GABAB(1) subunit: GABAB(1a) and GABAB(1b) (Kaupmann et al. 

1997). These two isoforms are the most abundant GABAB receptor isoforms in the CNS. 

They show a dissimilarity in the extracellular domain. GABAB(1a) has 147 amino acids 

which are replaced by only 18 amino acids in GABAB(1b) (Isomoto et al. 1998; Peters et 

al. 1998; Martin et al. 2001). This dissimilarity results from the presence of an alternative 

transcription initiation site within the GABAB(1a) intron. GABAB(1a) and GABAB(1b) 

primarily differ by the presence of a pair of sushi repeats in the GABAB(1a) specifc 

domain (Bettler et al. 1998; Hawrot et al. 1998). These sushi repeats, also known as short 

consensuses repeats were originally identified in complement proteins as a module that is 

involved in protein-protein interactions. That is why it is speculated that GABAB(1a) is 
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targeted to or retained at specific subcellular location by means of interaction of its sushi 

repeats with proteins in the extracellular matrix or on the surface of the neighboring cells 

(Bettler et al. 2004). In the rat brain, GABAB(1a) is the prevalent isoform at birth, whereas 

the GABAB(1b) is more abundant in adult brain tissue. 

The absolute functional requirement for GABAB(1) and GABAB(2) heterodimerization was 

reported in many studies with GABAB(1) knockout mice which are devoid of GABAB 

receptor activity (Prosser et al. 2001; Schuler et al. 2001). Also in  the transfected cell 

expression systems, it was shown that only the heterodimer is a fully operative receptor 

(Ng et al. 1999; Margeta-Mitrovic et al. 2000). It appears that heterodimerization of the 

two GABAB receptor proteins occurs predominantly through association of the alpha 

helical portions of the two C termini, and that this association is essential for trafficking 

of the receptor (Pagano et al. 2001) (Fig.12). It further appears that the large N-terminal 

extracellular domain, in particular the GABAB(1) subunit, is the site for ligand binding 

whereas the GABAB(2) subunit is crucial for effectors coupling (Galvez et al. 2000; 

Galvez et al. 2000; Galvez et al. 2001). 

 
Figure 12) The GABAB receptor heterodimer. The two different subunits of GABAB receptor, the two 
isoforms GABAB(1a) and GABAB(1b)  differ in the N-termini with the sushi repeats GABAB(1) subunit 
contains ligand binding site whereas GABAB(2) subunit coupled to Gi/o protein. (Adapted from (Cryan 
and Kaupmann 2005)) 
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2.3.5. GABAB receptor-mediated signaling 

In many tissues, GABAB receptors are negatively coupled to adenylate cyclase activity 

(Simonds 1999). In some cases, they also enhance the cAMP formation caused by GS-

coupled receptors (Bowery 1993; Bowery et al. 2002; Calver et al. 2002). Both GABA 

and baclofen have been shown to inhibit forskolin-stimulated cAMP level (Wojcik and 

Neff 1984). The inhibition of adenylate cyclase shown to be sensitive to pertussis toxin, 

indicating that GABAB receptors inhibit cAMP formation through G proteins of the Gi/Go 

family (Kaupmann et al. 1997). 

Presynaptic GABAB receptors inhibit the release of GABA, or other neurotransmitters, as 

well as neuropeptides through inhibition of Ca2+ influx by decreasing Ca2+ channel 

conductance (Scholz and Miller 1991; Mintz and Bean 1993). This inhibition is mediated 

by the interaction of the �� subunits of the G-protein complex and the Ca2+ channel 

(Filippov et al. 2000). On the basis of electrophysiological and pharmacological criteria, 

mammalian neuronal Ca2+ channels have been classified as L, N, P/Q and T types. 

Individual channel types differ in their subunit composition. The rapid time course of 

GABAB receptor-mediated inhibition of N and P/Q type Ca2+ channels indicates a 

membrane-delimited pathway through the G protein �� subunits (Mintz and Bean 1993). 

Such presynaptic inhibition at GABAergic terminals was shown to be involved in the 

induction of long-term potentiation (Bowery et al. 2002). Interestingly, this presynaptic 

inhibition of neurotransmitter release is not only effective in the GABAergic synapses 

(autoreceptor) but also in the glutamatergic synapses (herteroreceptor) (Fig.13). 
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Figure 13) The GABAB receptor heterodimer and its localization in the brain. In the hippocampus, GABAB 
receptors are located presynaptically, postsynaptically and on extrasynaptic membranes. Extrasynaptic 
receptors are likely to be activated by ‘spill-over’ of GABA from adjacent synapses. (Adapted from (Cryan 
and Kaupmann 2005)) 
 

Postsynaptically, GABAB receptor agonists have been shown to hyperpolarize neurons by 

activating an outward K+ current. The activation of K+ channels is sensitive to pertussis 

toxin and blocked by Ba2+ and Cs2+. This indicates an involvement of G-protein in 

activation of inwardly rectifying K+ channels of the Kir3.0 family (formerly GIRK) 

(Luscher et al. 1997; Slesinger et al. 1997). Recent studies with Kir3.2 (subtype of GIRK 

channel) knockout mice provide strong evidence that native GABAB receptors couple to 

K+ channels assembled with Kir3.2. In Kir3.2 knockout mice, the outward K+ current 

evoked by baclofen is completely absent, whereas presynaptic GABAB receptor 

responses are unaltered (Luscher et al. 1997) Similarly, in weaver mutant mice, which 

carry a point mutation in the pore-forming region of the Kir3.2 channel, the amplitude of 

the GABAB receptor-activated K+ current is significantly attenuated (Slesinger et al. 

1997). 



  Introduction          33 

 -33- 

The activation of postsynaptic GABAB receptors requires a larger stimulus of the 

presynaptic terminals than necessary for activation of GABAA receptors, indicating that 

the GABAB response might be relevant under conditions of strong neuronal activity (Otis 

and Mody 1992). Activation of GABAA and GABAB receptors on the postsynaptic 

membrane generates a biphasic inhibitory postsynaptic potential (IPSP). The fast 

component of the IPSP (IPSPA) is mediated by GABAA receptors activation which shunts 

the transmembrane voltage to the equilibrium potential of chloride, thereby normally 

leading to a hyperpolarization of the neuron (Owens and Kriegstein 2002). The GABAB 

receptor-mediated IPSP (IPSPB) is slow in onset with a prolonged duration (Dutar and 

Nicoll 1988; Dutar and Nicoll 1988) 

 

2.3.6. GABABR-mediated inhibition in the LA 
 

GABAB receptor inhibitory inputs into the amygdala were initially investigated in 

epilepsy and kindling studies (i.e., over activation of certain brain area). It was shown 

that Baclofen suppressed the severity and duration of established kindled seizures and 

increased the intensity of postictal refractoriness. This suggests that Baclofen may be a 

useful antiepileptic agent (Wurpel et al. 1990). Another study showed that both 

bicuculline and phaclofen increased the spontaneous rate of firing of amygdaloid neurons 

(Mello et al. 1992). In the same year, Karlsson showed that synaptically-released GABA 

activates GABAB receptors and thereby exerts a depressant effect on kindling 

development (Karlsson et al. 1992). Moreover, it was shown that late inhibitory 

postsynaptic potential and the late hyperpolarizing response to GABA arise from a 

GABAB-mediated increase in potassium (Washburn and Moises 1992). Later on it was 

shown that paired-pulse depression of the NMDAR-mediated synaptic potentials in the 

amygdala is mediated by mechanism other than activation of a postsynaptic GABAB 

receptor and activation of K+ conductance (Huang and Gean 1994), suggesting 

presynaptic inhibition by GABAB receptors. 

Interestingly, it was shown that the activation of GABAA and GABAB receptors in the 

LA differentially regulate glutamatergic synaptic transmission in the auditory thalamo-

amygdala pathway (Li et al. 1996). Also Yamada and colleagues showed that the GABAB 
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receptor agonist baclofen markedly inhibited both EPSCs and IPSCs in a concentration-

dependent manner, and that the baclofen-induced inhibition was selectively abolished by 

the GABAB receptor antagonist CGP55845A. The paired-pulse ratio of EPSC and IPSC 

amplitude was increased by baclofen. Moreover, the effect of baclofen was mimicked by 

lowering the external Ca2+ concentration but not by glutamate and GABAA-receptor 

antagonists. In addition, the frequency but not the mean amplitude of miniature EPSCs 

and IPSCs was decreased by baclofen. Thus, activation of GABAB receptors by baclofen 

reduces the strength of excitatory and inhibitory transmission in the BLA by a 

presynaptic mechanism (Yamada et al. 1999).  

Moreover, in the same study they showed that repetitive conditioning stimulation applied 

to GABAergic synaptic inputs exerted an inhibitory action on glutamatergic excitatory 

transmission, and the stimulation-induced inhibition was abolished by CGP55845A. 

Furthermore, the paired-pulse ratio of EPSCs was increased during the stimulation- 

induced inhibition. The results in this study provided an evidence that synaptic activation 

of GABAB heteroreceptors elicits presynaptic inhibition of glutamatergic excitatory 

transmission in the BLA (Yamada et al. 1999)  

The BLA contains substantial amounts of GABAB(1) and GABAB(2) mRNA (Kaupmann 

et al. 1997; Bischoff et al. 1999; Durkin et al. 1999; Clark et al. 2000) and exhibits 

significant GABAB receptor binding (Bowery et al. 1987; Bischoff et al. 1999). This is 

consistent with electrophysiological studies which have shown that GABAB receptors 

presynaptically modulate glutamate and GABA release from axons in the BLA (Yamada 

et al. 1999; Szinyei et al. 2000) and postsynaptically mediate a slow, prolonged 

hyperpolarization of BLA neurons via activation of potassium channels (Rainnie et al. 

1991; Washburn and Moises 1992; Sugita et al. 1993).  

More recently, investigations with antibodies directed against the GABAB(1) subunit were 

used to study the neuronal localization of GABAB receptors in the rat BLA. GABABR 

immunoreactivity was mainly found in all cell types of the BLA with different intensity. 

Dual-labeling immunofluorescence analysis indicated that each of the four main 

subpopulations of interneurons exhibited GABABR immunoreactivity. Virtually 100% of 

large CCK+ neurons in the basolateral and lateral nuclei were GABABR +. In the 

basolateral nucleus 72% of somatostatin (SOM), 73% of parvalbumin (PV) and 25% of 
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VIP positive interneurons were GABABR +. In the LA 50% of somatostatin, 30% of 

parvalbumin and 27% of VIP positive interneurons were GABABR +. Electron 

microscopic (EM) analysis showed the staining of dendritic shafts and spines, most of 

which probably belonged to spiny pyramidal cells. Very few axon terminals were 

GABABR +. Thus, the distal dendrites of pyramidal cells, and varying percentages of 

each of the four main subpopulations of interneurons in the BLA, express GABAB 

receptors (McDonald et al. 2004). Thus, these receptors may play an important role in the 

physiology and pathophysiology of the BLA. 

 

2.3.7. GABAergic modulation of synaptic plasticity in the LA 

A previous study has shown that blockade of GABAergic inhibition in the region of the 

LA in rats elicits physiological changes associated with a defence reaction, which 

suggests that endogenous GABA acts tonically at GABAA receptors in the BLA to inhibit 

anxiety response (Sanders and Shekhar 1995). Moreover, Pare showed that interneuron 

intercalated cells located between the basal lateral amygdala and central nucleus are 

gating the flow of the information between the two nuclei (Pare et al. 2003; Pare et al. 

2004). These cell populations were also suggested to play an important role in extinction 

of fear memory (Royer and Pare 2002). Thus, inhibition is crucial in the LA circuit and 

firmly controlling the induction of synaptic plasticity within the LA and consequently the 

formation of fear memory.  

The relevance of GABAergic modulation in the LA was highlighted by Shumyatsky et al. 

(2002), showing gastrin-releasing peptide (GRP) and its receptor GRPR. GRP is 

specifically expressed in the LA and in regions sending synaptic projection to the LA, 

whereas GRP receptors are expressed by a subset of GABAergic interneurons in the LA. 

Application of GRP in vitro excites interneurons and increase GABA release onto 

pyramidal cells (Fig. 14). GRPR Knockout mice result in disinhibition of principal 

neurons and facilitates the induction of LTP in cortical inputs, which is accompanied by 

persistent great fear memory. Thus, this tight control of glutamatergic synapses in the 

neural circuitry of fear conditioning regulates the formation of fear memory in the 

amygdala. Indeed, other studies demonstrate fear conditioning–induced reductions in the 

amygdala expression level of 65-kD isoform of glutamate decarboxylase (GAD65), an 
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enzyme important for GABA synthesis, and concomitant reduction in GABA release 

(Pape and Stork 2003). Furthermore, a recent study (Chhatwal et al. 2005) showed that 

gephyrin protein needed to stabilize GABAA receptors at synapses was down regulated 

after fear conditioning, indicating a decrease in GABAA inhibition during formation of 

fear memory. 

Another system modulating GABAergic inputs in the amygdala is conducted by 

dopamine. The LA receives massive dopaminergic projections from the ventral tegmental 

area (VTA) (Nestler 2001). Application of dopamine in in vitro slices was shown to 

suppress feed-forward inhibition of principal cells or to facilitate inhibition of 

interneurons via activation of D2 receptors (Bissiere et al. 2003). This inhibition of D2 

receptors prevents enhancement of LTP by dopamine and blocks acquisition of fear 

memory (Greba et al. 2001). Thus, induction of LTP at the amygdala synapses may 

implicate co- activation of dopaminergic fibers projecting to the LA (Fig.14). 
 

 
Figure. 14) Regulation of inhibition in the LA. Activation of dopamine D2 receptors leads to the 
suppression of inhibitory inputs to principal neurons (PN) via two mechanisms. First, it suppresses feed-
forward inhibition by decreasing GABA release at synapses formed by local interneurons (IN) on principal 
cells. Second, it promotes inhibition of interneurons either via an increase of excitatory input to 
disinhibitory interneurons or by an increase in excitability of disinhibitory interneurons, or strengthening of 
interneuron-interneuron synapses. Gastrin-releasing peptide (GRP) is expressed by neurons projecting to 
the amygdala and principal cells within the amygdala. Activation of GRP receptors may excite interneurons 
mediating feed-forward and feedback inhibition and leading to stronger inhibition of principal cells. For the 
sake of simplicity, interneurons mediating disinhibition, feed-forward, and feedback inhibition are shown 
as distinct entities, although their functions may overlap.(Adapted from (Dityatev and Bolshakov 2005)) 
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2.3.8. The loss of inhibition and anxiety 

Although fear is crucial for survival, excessive or inappropriate fear can become an 

illness. Anxiety is a mental state that is elicited in anticipation of threat or potential 

threat. Excessive anxiety has been treated primarily with drugs that have calming 

properties, including alcohol, barbiturates, opiates, beta-blockers and benzodiazepines 

(Nemeroff 2003). Benzodiazepines are the most specific and effective, and are therefore 

widely used to treat both normal and pathological anxiety. Benzodiazepines increase the 

potency of GABA by modulating the function of GABAA receptors (Martin 1987). 

Therefore, it has been proposed that excessive excitatory neurotransmission is an 

important physiological hallmark of anxiety (McNaughton 1997). An increased brain 

activity in response to anxiety-provoking stimuli in the amygdala, parahippocampal gyrus 

and frontal cortex has been reported (Davidson et al. 1999). Studies on mice with 

genetically engineered GABAA receptors, which specifically lack the benzodiazepine-

binding site, showed that GABAA receptors, which contain �2 subunit, are primarily 

responsible for the anxiolytic effects of these drugs. These GABAA receptors are located 

in the hippocampus, cortex and amygdala, (Low et al. 2000). Furthermore, it has been 

shown that GABAB receptors are down regulated as a result of amygdala kindling, which 

could contribute to the enhancement of excitatory transmission in kindled animals 

(Asprodini et al. 1992; Karlsson et al. 1992). Together, all these studies indicate that the 

amygdala might be a site of increased excitatory neurotransmission in anxiety disorders. 
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3. The aim of the study 
 

We focused on GABABR-mediated modulation of synaptic plasticity in the LA. To 

clarify this kind of modulation, we need first to understand the mode of action and the 

physiological function of the GABAB receptor itself. Using knockout mice, we 

investigated whether GABAB(1) can participate in functional GABAB receptors in the 

absence of GABAB(2) subuint. Then we invistigated the localization of the two isomers 

GABAB(1a) and GABAB(1b) in the cortical and thalamic synapses. The subcellular 

localization of these two subunit isomers was never investigated in the LA. Via 

electrophysiological tools we tested whether they are differently distributed in the pre- 

versus postsynapstic loci. To investigate the effect of GABABR-mediated inhibition on 

the induction of LTP we established a subthreshold induction protocol. With this 

induction protocol, we explored the properties of synaptic plasticity at thalamic and 

cortical afferents. Then we used this induction protocol to elaborate the role of inhibition 

by GABAB receptor on the induction of homosynaptic LTP at thalamic and cortical 

afferents. Finally, in collaboration with behavioral specialist, we invistigated the 

relevance of GABABR- mediated modulation of synaptic plasticity on the mice behavior. 
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4. Materials and methods 
4.1. Mouse brain Slice Preparation 

Standard procedures were used to prepare 350 �m thick coronal slices from three to four 

week old male C57BL/6J mice following a protocol approved by the Veterinary 

Department of the Canton of Basel-Stadt. Briefly, the brain was dissected in ice-cold 

artificial cerebrospinal fluid (ACSF), mounted on an agar block and sliced with a 

vibratome at 4°C. Slices were maintained for 45 min. at 35°C in an interface chamber 

containing ACSF equilibrated with 95% O2/5% CO2 and containing (in mM): 124 NaCl, 

2.7 KCl, 2 CaCl2, 1.3 MgCl2, 26 NaHCO3, 0.4 NaH2PO4, 18 glucose, 2.25 ascorbate, and 

then for at least 45 min. at room temperature before being transferred to a superfusing 

recording chamber. In some preparation 2mM kynurenic acid was added to prevent 

glutamate toxicity.  

4.2. Electrophysiology 
In this study whole-cell patch-clamp recordings were obtained from projection neurons in 

the dorsolateral portion of the LA (Fig. 15) at 30°C–32°C in a superfusing chamber. 

Neurons were visually identified with infrared video microscopy using an upright 

microscope equipped with a x40 objective (Olympus). Patch electrodes (3-5 M	) were 

pulled from borosilicate glass tubing and were filled with a solution for each individual 

experiment as follows: 

Monosynaptic EPSCs-IPSCs (in mM): 140 CsCl, or 140 Cs-gluconate, 10 HEPES, 10 

phosphocreatine, 4 Mg-ATP, 0.3 Na-GTP, 20 KCl (pH adjusted to 7.25 with CsOH, 295 

mOsm). For current-clamp experiments CsCl was replaced by equiosmolar K-gluconate 

in the patch electrode. Isolated monosynaptic IPSC were recorded in the presence of the 

AMPA/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 20 

�M) and the N-methyl-d-aspartate (NMDA) receptor antagonist 3-((±)-2-

carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP; 10 �M). In current-clamp 

recordings, membrane potential was kept manually at −70 mV. Monosynaptic EPSPs 

exhibiting constant 10%–90% rise times and latencies were elicited by stimulation of 

afferent fibers with a bipolar twisted platinum/10% iridium wire (25 µm diameter). 
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Bipolar stimulating electrodes were placed on afferent fibres from the internal capsule 

(containing thalamic afferents) or from the external capsule (containing cortical afferents) 

(Fig.15).  

 

Figure.15) Placement of stimulating and recording electrodes (see text above). 

 

Disynaptic EPSC-IPSC recording: (in mM): 155 K-gluconate, 10 HEPES, 10 

phosphocreatine, 4 Mg-ATP, 0.3 Na-GTP , 0.5 KCl (pH adjusted to 7.25 with KOH, 280-

285 mOsm). LTP experiments were performed in the presence of NMDA receptor 

antagonist 3-((±)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP; 10 �M). 

LTP induction protocol 

To mimic the physiological activity of converging thalamic and cortical afferents during 

fear conditioning (Quirk et al. 1997; Rosenkranz and Grace 2002), both afferents were 

stimulated simultaneously or separately for 1.5 s at an average frequency of 30 Hz using 

two different stimulation protocols containing Poisson-distributed stimuli (Fig. 16). 

 

 

 



  Materials and methods       41 

 -41- 

 

 
Figure 16) Random stimulation protocol. A) Poisson-train stimulation used for LTP induction. Each train 
consisted of 45 stimuli at an average frequency of 30 Hz. B) The trace shows a typical postsynaptic 
response. Scale bars, 10 mV and 250 ms 
 

4.3. Data analysis  

Data were acquired and analyzed with: pClamp9.0 (Axon Instruments, Union City, CA, 

USA), Mini Analysis Program (Synaptosoft, Decatur, GA, USA), and the LTP Program 

(W. Anderson, University of Bristol, UK)1. Poisson-trains were generated using custom 

software obtained from N.Buchs (University of Bern, Switzerland). Data were recorded 

with an Axopatch200B, filtered at 2 kHz and digitized at 10 kHz. Series resistance was 

monitored throughout the experiments by applying a hyperpolarizing pulse, and if it 

changed more than 15%, the data were not included in the analysis.  

LTP was quantified for statistical comparisons by normalizing and averaging EPSP 

slopes during the last 10 min of experiments relative to 5–10 min of baseline. Depicted 

traces show averaged EPSPs or EPSCs for 2 min of baseline and 2 min of LTP (20–25 

min after pairing). All values are expressed as means s.e.m. Statistical comparisons were 

done with paired or unpaired Student's t-test as appropriate (two-tailed P < 0.05 was 

considered significant).  
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4.4. Behavioral experiments 

Adult male Balb/c mice were purchased from RCC, Novartis, Basel. The animals were 

individually housed in plastic cages with ad-lib access to food and water with a 12/12-h 

light/dark cycle. All studies took place during the light portion of the cycle. Mice were 

handled gently for 2-3 min/day during 5 days, to minimize nonspecific stress. Animal 

care, and behavioral tests were conducted in accordance with the Veterinary Authority of 

Basel-Stadt, Switzerland 

Fear conditioning and testing took place in two different context (Context A and B). 

Context A consisted of a square transparent Plexiglas box (27 cm side, 80 cm high) with 

a shock grid floor made of stainless steel rods. The whole system was placed inside a 

sound-attenuating and temperature-regulated cubicle. A speaker was positioned on the 

top of the cubicle. The shock grid was connected to a current generator and scrambler to 

provide a 1 s footshock. The conditioning box and the floor were cleaned with 70 % 

ethanol before and after each session. Testing was performed in context B, which consists 

of a circular transparent Plexiglas box (27 cm diameter, 80 cm high) placed inside a 

sound-attenuating and temperature-regulated cubicle. A speaker was positioned on the 

top of the cubicle. This context was washed with 1 % acetic acid before and after each 

session. To maximize discrimination between the two contexts, light intensity was 

reduced during fear conditioning. The behavior of each mouse was monitored and 

videotaped during all the phases of the experiment. To score freezing behavior we used 

an automatic infrared beam detection system placed on the bottom of the experimental 

chambers (Coulbourn Instruments, Allentown, PA) for which the threshold was set to 

detect 2 s epochs of freezing behavior. 

On the conditioning day, all mice were submitted to a discriminative fear conditioning 

protocol in which a 30 s tone CS+ (7.5 kHz, 80 dB) was systematically paired to a 1 s 

footshock US (0.6 or 0.9 mA, 7 CS+/US pairings; inter-trial interval: 20-180 s). The 

onset of the US coincided with the offset of the CS+. A second unconditioned 30 s tone 

CS- (3 kHz, 80 dB) was presented after each CS+/US association but was never 

reinforced (7 CS- presentations, inter-trial interval: 20-180 s). Conditioned mice were 

tested 24 hr later in context B with 4 presentations of the CS- and the CS+. Mice were 

allowed to explore the environment freely for 2 minutes before testing. During CS 
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presentation, a mouse was considered to freeze when it adopted a motionless posture, 

refraining from all but respiratory movements (Blanchard & Blanchard, 1969). Freezing 

was scored using a time-sampling procedure. mouse was determined to be freezing or not 

freezing by an experimenter who was blind to the experimental history of each mouse. 

In completion of the fear conditioning experiments, mice were submitted to a series of 

increasing strength 1-s foot-shocks in context A. (0.1 to 0.8 mA range, 0.1 mA steps). 

Nociception threshold was calculated by scoring the first noticeable flitching behavior 

and stress-induced vocalization of animals. 

4.5. Drugs 

KT2321, Rp-cAMPs and BAPTA-AM were initially dissolved in DMSO and then diluted 

to its final concentration in ACSF. DMSO concentration in ACSF was 0.1%. All 

lipophilic PKA inhibitors compound were pre-incubateed with the brain slice one hour 

before recording. BAPTA-AM was applied together with probenecid (1 mM) and 2-

hydroxypropyl-β-cyclodextran (0.7 mM) to prevent extrusion and to stabilize the 

chelator. BAPTA-AM, Rp-cAMPs, U73122, CPP, CNQX, (S)-(–)-sulpiride, (–)-

quinpirole, dihydrexidine, genistein, PP1, SKF38393, and SCH23390 were from Tocris-

Cookson (Bristol, UK), TTX from Latoxan (Valence, France). All other drugs were from 

Fluka/Sigma (Buchs, Switzerland).Baclofen, GS3732, CGP54484, and CGP were kind 

gift from Dr. Klemens , Novartis  
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5.1. Presynaptic induction of heterosynaptic associative 

plasticity in the mammalian brain 
 
Humeau Y, Shaban H, Bissiere S, Lüthi A. 
 
1Friedrich Miescher Institute, Maulbeerstrasse 66, CH-4058 Basel, Switzerland 
2Department of Pharmacology/Neurobiology, Biozentrum, University of Basel, 
Klingelbergstrasse 70, CH-4056 Basel, Switzerland 
 
Nature. 2003 Dec 18;426(6968):841-5 
 
This work was done in collaboration with Yann Humeau and Stephanie Bissiere. We 

investigated the associativity and interaction between thalamic and cortical afferents. I 

had the opportunity to participate with my data, by investigating the effect of increasing 

the time intervals between the two afferent stimulations. I could show that the change in 

EPSP slope at cortical afferent synapses was highest when the delay between the two 

trains was zero and declined with increasing this delay (Fig.21a). Moreover, the highest 

change was observed with ~30 Hz (Fig. 21b). I also did some investigations to check if 

the glutamate uptake blocker TBOA would allow LTP induction by stimulation of 

cortical afferents alone (Fig. 19d). Finally, I did experiments that showed NMDAR-

mediated current potentiation after applying LTPHA induction protocol but in the presence 

of AMPAR antagonist (Fig. 19c).  

 
Summary 
 

The induction of associative synaptic plasticity in the mammalian central nervous 

system classically depends on coincident presynaptic and postsynaptic activity. 

According to this principle, associative homosynaptic long-term potentiation (LTP) 

of excitatory synaptic transmission can be induced only if synaptic release occurs 

during postsynaptic depolarization. In contrast, heterosynaptic plasticity in 

mammals is considered to rely on activity-independent, non-associative processes. 

Here we describe a novel mechanism underlying the induction of associative LTP in 

the lateral amygdala (LA). Simultaneous activation of converging cortical and 

thalamic afferents specifically induced associative, N-methyl-D-aspartate (NMDA)-
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receptor-dependent LTP at cortical, but not at thalamic, inputs. Surprisingly, the 

induction of associative LTP at cortical inputs was completely independent of 

postsynaptic activity, including depolarization, postsynaptic NMDA receptor 

activation or an increase in postsynaptic Ca2+ concentration, and did not require 

network activity. LTP expression was mediated by a persistent increase in the 

presynaptic probability of release at cortical afferents. Our study shows the 

presynaptic induction and expression of heterosynaptic and associative synaptic 

plasticity on simultaneous activity of converging afferents. Our data indicate that 

input specificity of associative LTP can be determined exclusively by presynaptic 

properties. 

 

 

Bipolar stimulating electrodes were placed on afferent fibres from the internal capsule 

(containing thalamic afferents) (LeDoux 2000; Bauer et al. 2002) or from the external 

capsule (containing cortical afferents) (Huang and Kandel 1998) in coronal slices 

prepared from 3–4-week-old male C57BL/6J mice (Fig. 17a). Whole-cell current-clamp 

recordings were obtained from projection neurons in the dorsolateral portion of the LA 

(Fig. 17a). Low-frequency baseline stimulation in the presence of the GABAA receptor 

antagonist picrotoxin (100 µM) elicited monosynaptic excitatory postsynaptic potentials 

(EPSPs) of similar amplitudes and slopes at both afferent inputs (thalamic, 5.6 ±0.4 mV, 

1.07 ±0.11 mV ms-1; cortical, 5.7 ±0.4 mV, 1.04 ±0.11 mV ms-1; n = 13). To mimic the 

physiological activity of converging thalamic and cortical afferents during fear 

conditioning (Quirk et al. 1997; Rosenkranz and Grace 2002), both afferents were 

stimulated simultaneously for 1.5 s at an average frequency of 30 Hz using two different 

stimulation protocols containing Poisson-distributed stimuli ('Poisson-train'; Fig. 17b; see 

Methods). Simultaneous Poisson-train stimulation resulted in the induction of LTP at 

cortical (151 ±10% of baseline, n = 13, P < 0.01), but not at thalamic, afferent synapses 

(98 ±5%, n = 13, P > 0.05; Fig. 17c). Inverting the two stimulation patterns to assess 

stimulation protocol-specific effects did not affect the input-specific induction of LTP at 

cortical input synapses (cortical, 152 ±16% of baseline, n = 6, P < 0.05; thalamic, 106 

±12%, n = 6, P > 0.05). The induction of LTP was associative, in that stimulation of both 



  Results        46 

 -46- 

the thalamic and cortical afferents was required. Stimulation of either pathway on its own 

did not induce LTP at cortical afferents (cortical, 106 ±15% of baseline, n = 6, P > 0.05; 

thalamic, 101 ±8%, n = 5, P > 0.05; Fig. 17d), or at thalamic afferents (cortical, 100 ±8% 

of baseline, n = 7, P > 0.05; thalamic, 105 ±16%, n = 5, P > 0.05; see supplementary 

information), indicating that the stimulation protocols applied were below threshold for 

the induction of homosynaptic (Huang and Kandel 1998; Weisskopf et al. 1999) and 

heterosynaptic LTP at cortical afferents. 

 

 
Figure 17) Induction of LTPHA at cortical, but not at thalamic, afferent synapses by simultaneous Poisson-
train stimulation of thalamic and cortical afferents. a, Placement of stimulating and recording electrodes. b, 
Poisson-train stimulation used for LTP induction. Each train consisted of 45 stimuli at an average 
frequency of 30 Hz. The trace shows a typical postsynaptic response. Scale bars, 10 mV and 250 ms. c, 
Time course of synaptic changes after simultaneous Poisson-train stimulation (arrow) of cortical (filled 
circles) and thalamic (open circles) afferents. Scale bars, 2 mV and 50 ms. d, Time course of synaptic 
changes occurring at cortical afferent synapses upon Poisson-train stimulation (arrow) of either cortical or 
thalamic afferents alone. 
 

Associative LTP in the hippocampus (Bliss and Collingridge 1993) and the amygdala 

(Huang and Kandel 1998; Bauer et al. 2002) depends largely on the activation of NMDA 
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receptors and an increase in the postsynaptic Ca2+ concentration. Accordingly, 

heterosynaptic, associative LTP (LTPHA) at cortical afferents could not be induced in the 

presence of the competitive NMDA receptor antagonist 3-(( (±)-2-carboxypiperazin-4-

yl)-propyl-1-phosphonic acid (CPP) at 20 µM (control, 151 10% of baseline, n = 13; 

CPP, 88 8% of baseline, n = 9, P > 0.05; Fig. 18a). To assess whether NMDA receptor 

activation in conjunction with Poisson-train stimulation of cortical afferents was 

sufficient for the induction of LTPHA, we applied NMDA locally in the vicinity of the 

projection neuron from which we were recording by using a pressure application system. 

Whereas puff-application of NMDA in the absence of cortical afferent activity did not 

result in the induction of LTPHA (98 ±4% of baseline, n = 5, P > 0.05; Fig. 18b), 

combining the application of NMDA with Poisson-train stimulation of cortical afferents 

resulted in a potentiation of cortical afferent synapses (157 ±12% of baseline, n = 4, P < 

0.05; Fig. 18b). In contrast, pairing NMDA application with Poisson-train stimulation of 

thalamic afferents did not induce LTP at thalamic afferents (99 ±10% of baseline, n = 3, 

P > 0.05; Fig. 18b). 

To determine whether an increase in postsynaptic Ca2+ concentration was required for 

LTPHA induction we dialysed the postsynaptic neuron with the Ca2+ chelator BAPTA 

(10–50 mM). Surprisingly, postsynaptic dialysis with BAPTA did not prevent the 

induction of LTPHA (152 ±17% of baseline, n = 14, P < 0.05; Fig. 18c). Given that 

activation of NMDA receptors is required for the induction of LTPHA, this finding 

suggests that they are not located on the postsynaptic neuron or, alternatively, that they 

can signal in a Ca2+-independent way. To test these possibilities we dialysed the 

postsynaptic cell with the NMDA receptor open-channel blocker MK-801, and stimulated 

cortical and thalamic afferents while holding the postsynaptic cell at +30 mV (Berretta 

and Jones 1996). This procedure completely blocked postsynaptic NMDA receptors (Fig. 

18d). However, even the complete blockade of postsynaptic NMDA receptors did not 

interfere with the induction of LTPHA (134 ±9% of baseline, n = 4, P < 0.05; Fig. 18d). 

To test whether Ca2+ signalling was required, we next incubated the slices with BAPTA-

acetoxymethyl ester (BAPTA-AM; 50 µM), a membrane-permeant form of the Ca2+ 

chelator BAPTA. BAPTA-AM completely abolished LTPHA induction (86 ±8% of 

baseline, n = 7, P > 0.05; Fig. 18e). In conclusion, the induction of LTPHA was 
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independent of postsynaptic activity including depolarization, postsynaptic NMDA 

receptor activation and increase in intracellular Ca2+ concentration, but still required 

NMDA receptor activation and Ca2+ signalling. 

 
 

 
Figure 18) Induction of LTPHA does not depend on postsynaptic activity, but is dependent on NMDA 
receptor activation and Ca2+. a, Induction of LTPHA is blocked in NMDA receptor antagonist CPP (control, 
same data as in Fig. 1c). Filled circles, control; open circles, CPP. Scale bars, 2 mV and 50 ms. b, Left, 
averaged EPSPs from 2 min of baseline, after pressure application of NMDA (Puff), and 25 min after 
pairing of NMDA application with cortical afferent stimulation (Puff + stim.). Scale bars, 2 mV and 25 ms. 
Right, changes in EPSP slope induced by pressure application of NMDA alone, and in conjunction with 
Poisson-train stimulation of cortical or thalamic afferents. c, Induction of LTPHA is independent of increase 
in postsynaptic Ca2+. Scale bars, 2 mV and 50 ms. d, Left, intracellular dialysis with MK-801 blocks 
NMDA-receptor-mediated EPSCs recorded at +30 mV in the presence of NBQX. Traces show averaged 
NMDA EPSCs for the first and last five stimulations. Scale bars, 20 pA and 100 ms. Middle, MK-801-
induced blockade of NMDA-receptor-mediated EPSCs at cortical and thalamic afferents (pooled data). 
Right, LTPHA is not affected by blockade of postsynaptic NMDA receptors. Scale bars, 50 pA and 20 ms. e, 
Induction of LTPHA is blocked in the presence of BAPTA-AM. Scale bars, 2 mV and 50 ms. 
 
We considered the possibility that LTPHA induction might represent a network 

phenomenon involving NMDA receptors located on other neurons within the LA. We 

therefore sought to decrease network excitability strongly in the LA, a brain structure that 

is tightly controlled by GABA-mediated inhibition (Lang and Pare 1997; Szinyei et al. 

2000), by application of the GABAA receptor agonist muscimol (5 µM) during LTP 

induction. Indeed, heterosynaptic forms of plasticity mediated by network activity have 

been shown to be strongly reduced by activation of GABAA receptors (Abraham and 
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Wickens 1991; Scanziani et al. 1996). Muscimol clamped the membrane potential at or 

near the chloride equilibrium potential (Fig. 19a), thereby preventing action potential 

initiation in all neurons expressing GABAA receptors, including projection neurons and 

local inhibitory interneurons(Farb et al. 1995; Lang and Pare 1998). However, LTPHA 

induction was not affected by the presence of muscimol (146 ±14% of baseline, n = 6, P 

< 0.05; Fig. 19b), but we could not exclude the possibility that some unknown factor 

released by neurons not expressing GABAA receptors would be required for the induction 

of LTPHA. To investigate this further, we strongly suppressed network activity by 

application of the AMPA (�-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) 

receptor antagonist NBQX (2,3-dihydroxy-6-nitro-7-sulphamoyl-benzo(f)quinoxaline; 

20 µM). However, even when AMPA-receptor-mediated synaptic transmission was 

completely blocked, LTPHA could still be induced as monitored by NMDA-receptor-

mediated excitatory postsynaptic currents (EPSCs) recorded at +30 mV (122 ±8% of 

baseline, n = 7, P < 0.05; Fig. 19c). Thus, most parsimoniously, our data are consistent 

with the possibility that glutamate released by thalamic afferents might directly activate 

NMDA receptors located on presynaptic terminals of cortical afferents, a hypothesis 

supported by electron-microscopic studies indicating the presence of the NMDA receptor 

subunit NR1 on presynaptic terminals in the LA (Farb et al. 1995; Farb and Ledoux 

1999). 

If activation of NMDA receptors on presynaptic terminals of cortical afferents underlies 

the induction of LTPHA, this raises the question why Poisson-train stimulation of cortical 

afferents alone does not induce LTP. One possible explanation is that glutamate released 

at cortical afferents would be rapidly cleared by glutamate uptake. Indeed, we found that 

a single Poisson-train stimulation of cortical afferents was able to induce LTP in the 

presence of a low concentration of the glutamate uptake blocker TBOA (D,L-threo- -

benzyloxyaspartate; 20 µM; 133 ±9% of baseline, n = 5, P < 0.05; Fig. 19d). To assess 

whether the facilitation of LTP induction at cortical afferents in the presence of TBOA 

was due to the activation of presynaptic NMDA receptors by increased ambient 

glutamate levels, we checked whether TBOA affected the presynaptic properties of 

cortical afferents (see below) or spontaneous excitatory network activity. However, 

TBOA did not significantly affect paired-pulse facilitation (PPF) at cortical afferents 



  Results        50 

 -50- 

(control, 1.35 ±0.15; TBOA, 1.44 ±0.22; n = 3, P > 0.05) or the frequency of spontaneous 

EPSPs (control, 3.0 ±0.7 Hz; TBOA, 3.2 ±1.1 Hz; n = 5, P > 0.05). 

 

 
Figure 19) Network activity is not required for the induction of LTPHA. a, Average time course of the 
membrane potential (Vm) during muscimol application. b, Induction of LTPHA in the presence of muscimol. 
Time course of cortical EPSP slope after Poisson-train stimulation and in the absence of Poisson-train 
stimulation. Picrotoxin was used to terminate shunting induced by tonic GABAA receptor activation. Filled 
circles, pairing; open circles, no pairing. Scale bars, 1.3 mV and 2 ms. c, Induction of LTPHA in the 
presence of NBQX. The plot shows a time course of NMDA-receptor-mediated EPSCs at cortical afferents 
recorded at +30 mV. Scale bars, 20 pA and 100 ms. d, Induction of homosynaptic LTP at cortical afferents 
in the presence of the glutamate uptake blocker TBOA. Open circles, control; filled circles, TBOA. Scale 
bars, 3 mV and 25 ms. 
 

Given the induction mechanism of LTPHA, we reasoned that thalamic afferent stimulation 

should affect presynaptic function of cortical afferents in an NMDA-receptor-dependent 

manner. We therefore compared PPF (Hess et al. 1987) in response to double stimulation 

of cortical afferents (inter-stimulus interval 50 ms) before and after tetanic stimulation 

(45 stimuli at 30 Hz) of thalamic afferents. Tetanic stimulation of thalamic afferents 

resulted in a transient decrease in PPF at cortical afferents (82 ±6% of baseline, n = 7, P < 

0.05; Fig. 20a–c). In contrast, tetanic stimulation of cortical afferents did not affect PPF 

at thalamic afferents (104 4% of baseline, n = 5, P > 0.05; Fig. 20c). Furthermore, the 

decrease in cortical PPF after thalamic afferent stimulation was completely abolished by 

the NMDA receptor antagonist CPP (20 µM; 107 ±5% of baseline, n = 6, P > 0.05; Fig. 
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20a, c). These results indicate that repeated stimulation of thalamic afferents transiently 

increases the probability of release (Pr) at cortical afferents in an NMDA-receptor-

dependent manner and that the expression of LTPHA might involve a more persistent 

increase in Pr at cortical synapses. Indeed, LTPHA was associated with a persistent 

decrease in PPF (81 ±5% of baseline, n = 6, P < 0.05; Fig. 20d). Moreover, if LTPHA 

expression were mediated by an increase in Pr, we reasoned that it should be occluded at 

high initial Pr. Therefore; we increased Pr by increasing the extracellular Ca2+ 

concentration from 2 to 8 mM. This induced an increase in EPSP amplitude to 175 ±19% 

(n = 8, P < 0.05) and occluded the further induction of LTPHA after adjusting EPSP 

amplitude to control values (111 ±11% of baseline, n = 5, P > 0.05). Finally, using 

analysis of fluctuations of the postsynaptic response amplitude, we determined the 

quantal parameters modified upon induction of LTPHA (Humeau et al. 2002; Tsvetkov et 

al. 2002). The plot of 1/(c.v.) (Bliss and Collingridge 1993) (where c.v. is the coefficient 

of variation) against mean response amplitude shows that LTPHA induction fits best with 

an increase in Pr (Fig. 20e). Finally, because 1/(c.v.) (Bliss and Collingridge 1993) is 

independent of the quantal amplitude (q), we directly assessed possible changes in q by 

monitoring the amplitude of asynchronously released quanta in the presence of Sr2+ under 

control conditions and after the induction of LTPHA. The amplitude of stimulation-

induced miniature EPSCs at cortical afferents was not significantly affected by the 

induction of LTPHA (control, -6.7 ±0.2 pA; LTP, -7.4 ±1.1 pA; n = 4, P > 0.05). Because 

homosynaptic LTP at cortical afferent synapses has previously been shown to be 

mediated by a presynaptic increase in Pr (Huang and Kandel 1998; Tsvetkov et al. 2002), 

our results indicate that heterosynaptic LTPHA could share the same expression 

mechanism. Indeed, we found that the prior induction of homosynaptic LTP by pairing 

afferent stimulation at 2 Hz with postsynaptic depolarization (Huang and Kandel 1998; 

Tsvetkov et al. 2002), occluded the subsequent induction of LTPHA using Poisson-train 

stimulation (Fig.21d,e). However, in contrast to the induction of homosynaptic LTP, 

which depends on postsynaptic NMDA receptor activation and can be blocked by 

postsynaptic BAPTA (30 mM; 103 ±10% of baseline, n = 5) (Huang and Kandel 1998; 

Tsvetkov et al. 2002), LTPHA is induced and expressed presynaptically. 
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Figure 20) Heterosynaptic, NMDA-receptor-dependent increase of release probability at cortical afferents 
after stimulation of thalamic afferents. a, Top, stimulation protocols. Bottom, EPSCs recorded in response 
to paired-pulse stimulation (50-ms inter-stimulus interval) of cortical afferents before (point 1) and 10 s 
after (point 2) tetanic stimulation of thalamic afferents in control conditions or in the presence of CPP. 
Dashed lines represent the initial amplitude (point 1) of the first response before thalamic stimulation. Scale 
bars, 40 pA and 20 ms. b, Average time course of PPF changes at cortical afferent synapses after tetanic 
stimulation of thalamic afferents. c, PPF changes at thalamic and at cortical afferents after tetanic 
stimulation of the other input. d, Average time course of cortical EPSP slope (filled circles) and PPF (open 
circles) after induction of LTPHA. Scale bars, 2.5 mV and 75 ms. e, Variance analysis of EPSP amplitude 
fluctuations illustrating that LTPHA expression fits best with an increase in the probability of release (p). 
 

The physiological relevance of LTPHA for fear learning is supported by two observations. 

First, thalamic and cortical afferents to the lateral amygdala are simultaneously active 

during fear conditioning and can interact (LeDoux 2000; Doyere et al. 2003). Second, 

electrophysiological experiments in vivo show that postsynaptic hyperpolarization does 

not completely abolish LTP induced by pairing of sensory stimulation with foot-shocks 

(Rosenkranz and Grace 2002)suggesting that LTP induction independent of postsynaptic 

activity does occur in vivo. The physiological stimulation patterns used in this study 

suggest that LTPHA might be induced on subthreshold activity elicited by simultaneous 

sensory input by means of thalamic and cortical afferents. LTPHA might therefore serve as 

a priming mechanism to increase the impact of selective cortical afferents on the 

subsequent induction of homosynaptic hebbian plasticity at neighbouring synapses, 

which requires stronger afferent activity and/or the induction of postsynaptic action 
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potentials (Markram et al. 1997; Huang and Kandel 1998; Weisskopf et al. 1999; Blair et 

al. 2001; Bissiere et al. 2003) 

Our study indicates that the input specificity of associative LTP can be entirely 

determined by presynaptic properties. Heterosynaptic associative modifications of 

synaptic efficacy add a level of complexity to the classical hebbian forms of synaptic 

plasticity, and open a new perspective for understanding integrative processes between 

converging afferent pathways in the mammalian central nervous system. 

 

Methods 

Coronal slices from 3–4-week-old male C57BL/6J mice were prepared as described 

(Bissiere et al. 2003). Slices were maintained for 45 min at 35 °C in an interface chamber 

containing artificial cerebrospinal fluid equilibrated with 95% O2/5% CO2 and 

containing (in mM): 124 NaCl, 2.7 KCl, 2 CaCl2, 1.3 MgCl2, 26 NaHCO3, 0.4 

NaH2PO4, 10 glucose, 4 ascorbate; and then kept for at least 45 min at 21–25 °C before 

being transferred to a superfusing recording chamber. Whole-cell recordings were 

performed at 30–32 °C. Neurons were identified visually with infrared videomicroscopy. 

Patch electrodes (3–5 M	) were normally filled with a solution containing (in mM): 120 

potassium gluconate, 20 KCl, 10 HEPES, 10 phosphocreatine, 4 Mg-ATP, 0.3 Na-GTP, 

pH 7.25, 295 mOsM. All experiments were performed in the presence of picrotoxin 

(100 µM) unless indicated otherwise. Monosynaptic EPSPs exhibiting constant 10–90% 

rise times and latencies were elicited by stimulation of afferent fibres with a bipolar 

twisted platinum/10% iridium wire (25 µm diameter). LTP was quantified for statistical 

comparisons by normalizing and averaging EPSP slopes during the last 10 min of 

experiments relative to 5–10 min of baseline. Depicted traces show averaged EPSPs or 

EPSCs for 2 min of baseline and 2 min of LTP (20–25 min after pairing). All values are 

expressed as means ±s.e.m. Statistical comparisons were done with paired or unpaired 

Student's t-test as appropriate (two-tailed P < 0.05 was considered significant). For details 

on experimental conditions and analysis see Supplementary Information. 
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Supplementary Methods 

Data were acquired and analyzed with: pClamp9.0 (Axon Instruments, Union City, CA, 

USA), Mini Analysis Program (Synaptosoft, Decatur, GA, USA), and the LTP Program 

(W. Anderson, University of Bristol, UK)1. Poisson-trains were generated using custom 

software obtained from N.Buchs (University of Bern, Switzerland). Data were recorded 

with an Axopatch200B, filtered at 2 kHz and digitized at 10 kHz. Series resistance was 

monitored throughout the experiments by applying a hyperpolarizing pulse, and if it 

changed more than 15%, the data were not included in the analysis. Amplitudes of 

postsynaptic responses can be described as the binomial distribution of three parameters2 

(n: number or active release sites; Pr: average release probability; q: amplitude of 

miniature postsynaptic responses). Accordingly, mean EPSP amplitude EPSPmean = 

n*Pr*q and the variance of the fluctuations in EPSP amplitude is Var = n*Pr*[1 - Pr]*q2. 

EPSPmean and Var were determined from EPSPs recorded during expression of LTPHA. 

The factor 1/CV2 = EPSPmean2/Var was calculated. 1/CV2 = n*Pr/(1 – Pr). This 

expression is independent of q, evolves linearly when n is changed and is a curve when Pr 

is changed. Computed reference lines are drawn in Fig. 20e. Mean amplitude (Amean) 

and CV2 values were obtained by analysis of 10 min epochs (80 events) before, and 20 

min after induction of LTPHA.  

LTP was quantified for statistical comparisons by normalizing and averaging EPSP 

slopes during the last 10 min of experiments relative to 5–10 min of baseline. Depicted 

traces show averaged EPSPs or EPSCs for 2 min of baseline and 2 min of LTP (20–25 

min after pairing). All values are expressed as means s.e.m. Statistical comparisons were 

done with paired or unpaired Student's t-test as appropriate (two-tailed P < 0.05 was 

considered significant).  

Experimental conditions: For experiments using pressure application of NMDA (Poisson 

stimulation for 1.5 s; average frequency: 30 Hz; each pulse was 20 psi; duration 6 ms), a 

patch pipette (containing 1 mM NMDA and 20 µM glycine in extracellular perfusion 

medium) was placed near the postsynaptic cell. Experiments using pressure application of 
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NMDA were performed in the presence of 10 mM postsynaptic BAPTA to prevent 

depolarization-induced plasticity. When applied externally, BAPTA-AM was initially 

dissolved in DMSO and then diluted to its final concentration in ACSF. DMSO 

concentration in ACSF was 0.1%. BAPTA-AM was applied together with probenecid (1 

mM) and 2-hydroxypropyl-β-cyclodextran (0.7 mM) to prevent extrusion and to stabilize 

the chelator. Control experiments showed that DMSO, probenecid, and cyclodextran did 

not affect LTP induction at the above concentrations. Application of BAPTA-AM 

initially reduced synaptic release by 32 ± 6% (n = 7). However, after synaptic responses 

had stabilized and stimulation intensity had been adjusted to evoke an EPSP of similar 

amplitude than under control conditions, BAPTA-AM did not significantly affect 

baseline synaptic transmission during the time course of an LTP experiment (11 ± 15% 

decrease during the experiment; n = 3; P > 0.05).  

Induction of associative LTP in the lateral amygdala (LA): The induction of associative 

synaptic plasticity in the mammalian central nervous system classically depends on 

coincident presynaptic and postsynaptic activity (Gustafsson 1990; Bliss and Collingridge 

1993). According to this principle, associative homosynaptic long-term potentiation 

(LTP) of excitatory synaptic transmission can be induced only if synaptic release occurs 

during postsynaptic depolarization(Gustafsson 1990; Bliss and Collingridge 1993). In 

contrast, heterosynaptic plasticity in mammals is considered to rely on activity-

independent, non-associative processes (Bailey et al. 2000; Nishiyama et al. 2000).  

The changes in EPSP slope at cortical afferent synapse was highest when the delay 

between the two train is zero and decline with increasing this delay (Fig. 21a)  

The highest change was also observed with ~30 HZ (Fig.21 b), and by using 30 HZ tetani 

and changing the number of stimuli within the tetani; the highest changes observed was 

with around 45 stimuli (Fig.21c). Induction of LTPHA was occluded by prior induction of 

homosynaptic LTP induced by pairing postsynaptic depolarization with afferent 

stimulation at 2 Hz (Fig.21d, e). 
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Figure 21) (a) Summary graph illustrating changes in EPSP slope at cortical afferent synapses induced by 
combined Poisson-train stimulation of cortical and thalamic afferents with various delays between the start 
of the cortical and thalamic train (-3.5 s: n = 10; -1.5 s: n = 5;  0 s: n = 13;  1.5 s: n = 5;  3.5 s: n = 7;  5.5 s: 
n = 12). (b) Changes in EPSP slope at cortical afferent synapses induced by combined tetanic stimulation 
of cortical and thalamic afferents at various frequencies (10 Hz: n = 5; 20 Hz: n = 8;  30 Hz: n = 7;  40 Hz: 
n = 5). (c) Changes in EPSP slope at cortical afferent synapses induced by combined stimulation of cortical 
and thalamic afferents with tetani containing increasing numbers of stimuli at 30 Hz (15 stim.: n = 3; 30 
stim.: n = 4;  45 stim.: n = 4;  60 stim: n = 3). (d, e) Induction of LTPHA (tet. 2) is occluded by prior 
induction of homosynaptic LTP induced by pairing postsynaptic depolarization with afferent stimulation at 
2 Hz (tet. 1; filled symbols; n = 5). Controls (open symbols) illustrate the induction of LTPHA using 
combined Poisson-train stimulation of cortical and thalamic afferents without prior induction of 
homosynaptic LTP (n = 9). P* < 0.05, P** < 0.01.  
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5.2. GABAB(1a) heteroreceptors modulate associative properties 

of presynaptic LTP and learning 
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1Friedrich Miescher Institute, CH-4058 Basel, Switzerland, 2UPR2356, CNRS, F-67084 

Strasbourg, France, 3Novartis Institutes for Biomedical Research, Novartis Pharma AG,  

CH-4002 Basel, Switzerland,  4Pharmazentrum, Department of Clinical-Biological 
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This work was done in collaboration with Yann Humeau who contributed some 
electrophysiological experiments. Cyril Herry and Stephane Ciocchi did the behavioral 
investigations. Genotyping was done by Gilles Sansig. 

5.2.1. Summary 

Classical fear conditioning in rodents, a simple form of associative learning, is 

thought to induce N-methyl-D-aspartate (NMDA) receptor-dependent long-term 

potentiation (LTP) at thalamic and cortical sensory afferents converging on 

projection neurons in the lateral amygdala (LA). LTP at cortical afferents can be 

induced presynaptically by associative co-activation of thalamic and cortical 

afferents in vitro. We show here that the associativity of cortical afferent LTP  is 

regulated by presynaptic GABAB heteroreceptors. Using whole-cell recordings from 

LA projection neurons in acute mouse brain slices we found that pharmacological 

GABAB receptor blockade facilitated the induction of homosynaptic, non-associative 

cortical afferent LTP independent of simultaneous thalamic afferent activity and 

NMDA receptor activation. Moreover, by taking a genetic approach in mice, we 

demonstrate that presynaptic inhibition at cortico-amygdala afferents is specifically 

mediated by GABAB(1a) receptors. Strikingly, this facilitation of non-associative LTP 

induction was accompanied, at the behavioral level,  with a generalization of 

conditioned fear to non-conditioned stimuli. Thus, our findings indicate that the 
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specificity of information processing in the LA is controlled by presynaptic 

inhibition mediated by specific GABAB receptors. 

5.2.2. Introduction 

Induction of associative NMDA receptor-dependent LTP in the LA is thought to underlie 

the acquisition of classical fear conditioning in rodents (LeDoux 2000; Maren and Quirk 

2004; Rumpel et al. 2005). Projection neurons in the LA receive converging thalamic and 

cortical sensory afferents that are simultaneously active during sensory experience 

(LeDoux 2000). While LTP at thalamic afferents is induced and expressed 

postsynaptically (Weisskopf et al. 1999; Bissiere et al. 2003; Humeau et al. 2005; 

Rumpel et al. 2005), we have recently shown that associative co-activation of thalamic 

and cortical afferents induces presynaptic LTP at cortical afferents involving the 

heterosynaptic activation of presynaptic NMDA receptors (Humeau et al. 2003). Thus, by 

means of presynaptic NMDA receptors, cortical afferents are able to detect and integrate 

coincident activity of neighboring excitatory inputs. Given that postsynaptic integration 

of excitatory transmission in the LA is tightly controlled by local GABAergic circuits 

(Sugita et al. 1993; Li et al. 1996; Lang and Pare 1997; Bissiere et al. 2003) this raises the 

question whether presynaptic integration is also subject to inhibitory control. 

Presynaptic GABAergic inhibition of excitatory synaptic transmission can be mediated 

by ionotropic GABAA receptors (Kullmann et al. 2005) and metabotropic GABAB 

receptors (Thompson et al. 1993). In the LA, GABAA receptor-mediated inhibition plays 

a major role in postsynaptic integration (Sugita et al. 1993; Li et al. 1996; Lang and Pare 

1997). Accordingly, induction of postsynaptic LTP at thalamic afferents is facilitated by 

GABAA receptor blockade (Bissiere et al. 2003). Presynaptic LTP at cortical afferents, 

however, is insensitive to GABAA receptor-mediated inhibition (Humeau et al. 2003), 

suggesting that presynaptic GABAA receptors do not play a major role at cortico-

amygdala afferents. Indeed, there is accumulating evidence suggesting a role for GABAB 

receptors in regulating amygdala-dependent fear and anxiety behavior (Cryan and 

Kaupmann 2005). However, whereas the role of GABAB heteroreceptors for presynaptic 

inhibition and integration at glutamatergic synapses is well documented in other brain 
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areas (Thompson et al. 1993; Dittman and Regehr 1997; Vogt and Nicoll 1999), nothing 

is known about their role in the LA. 

Functional GABAB receptors are generally thought to be heterodimers containing 

GABAB(1) and GABAB(2) subunits (Schuler et al. 2001; Bettler et al. 2004; Gassmann et 

al. 2004). The GABAB(1) subunit exists in two differentially expressed isoforms, 

GABAB(1a) and GABAB(1b) differing by the presence of two N-terminal “sushi” domains 

in the GABAB(1a) isoform (for review see: (Bettler et al. 2004)). In the LA, GABAB 

receptors are expressed at moderate to high levels (Bischoff et al. 1999; Fritschy et al. 

1999; McDonald et al. 2004), and can be activated by afferent stimulation in vitro and in 

vivo (Sugita et al. 1993; Li et al. 1996; Lang and Pare 1997). These studies, however, 

focused on the activation of postsynaptic GABAB receptors that modulate synaptic 

transmission by activating postsynaptic inwardly rectifying Kir3-type K+ channels giving 

rise to a slow inhibitory postsynaptic potential (Luscher et al. 1997).  To study the role of 

GABAB heteroreceptors in presynaptic integration at cortical afferents to the LA we have 

used a combined pharmacological and genetic approach in mice. We find that presynaptic 

GABAB heteroreceptors, predominantly comprised of GABAB(1a) subunits, critically 

determine associative properties of presynaptic cortical LTP. In the absence of functional 

presynaptic GABAB heteroreceptors, an NMDA receptor-independent, non-associative 

form of presynaptic LTP is unmasked. Strikingly, the loss of associativity of cortico-

amygdala LTP is accompanied by a generalization of conditioned fear at the behavioral 

level. This indicates that the specificity of information processing in the LA is controlled 

by presynaptic inhibition mediated by specific GABAB receptors. 

5.2.3. Methods 

Electrophysiology. Standard procedures were used to prepare 350 �m thick coronal 

slices from three to four week old male C57BL/6J or BALB/c mice following a protocol 

approved by the Veterinary Department of the Canton of Basel-Stadt (Humeau et al. 

2003). Briefly, the brain was dissected in ice-cold artificial cerebrospinal fluid (ACSF), 

mounted on an agar block and sliced with a Dosaka vibratome (Kyoto, Japan) at 4ºC. 

Slices were maintained for 45 min at 35ºC in an interface chamber containing ACSF 
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equilibrated with 95% O2/5% CO2 and containing (in mM): 124 NaCl, 2.7 KCl, 2 CaCl2, 

1.3 MgCl2, 26 NaHCO3, 0.4 NaH2PO4, 18 glucose, 4 ascorbate, and then for at least 45 

min. at room temperature before being transferred to a superfusing recording chamber.    

Whole-cell recordings from LA projection neurons were performed at 30-32ºC in a 

superfusing chamber. Neurons were visually identified with infrared videomicroscopy 

using an upright microscope equipped with a x40 objective (Olympus). Patch electrodes 

(3-5 M	) were pulled from borosilicate glass tubing and normally filled with a solution 

containing (in mM): 120 K-gluconate, 20 KCl, 10 HEPES, 10 phosphocreatine, 4 Mg-

ATP, and 0.3 Na-GTP (pH adjusted to 7.25 with KOH or CsOH, respectively, 295 

mOsm). For voltage-clamp experiments K-gluconate was replaced by equimolar Cs-

gluconate. All experiments were performed in the presence of picrotoxin (100 �M) unless 

indicated otherwise. In current-clamp recordings membrane potential was kept manually 

at –70 mV (not corrected for junction potentials). Data were recorded with an 

Axopatch200B, filtered at 2 kHz and digitized at 10 kHz. In all experiments, series 

resistance was monitored throughout the experiment by applying a hyperpolarizing 

current or voltage pulse, and if it changed by more than 15%, the data were not included 

in the analysis. Data were acquired and analyzed with ClampEx9.0 and ClampFit9.0 

(Axon Instruments, CA). Monosynaptic EPSPs or EPSCs exhibiting constant 10-90% rise 

times and latencies were elicited by stimulation of afferent fibers with a bipolar twisted 

platinum/10% iridium wire (25 �m diameter). LTP was induced by delivering Poisson-

distributed 45 stimulations at an average frequency of 30 Hz (Humeau et al. 2003). LTP 

was quantified for statistical comparisons by normalizing and averaging EPSP slopes 

during the last 5 min of experiments relative to 5 min of baseline. Depicted traces show 

averaged EPSPs for 2 min of baseline and 2 min of LTP (25-30 min after pairing). All 

values are expressed as means ± s.e.m. Statistical comparisons were done with paired or 

unpaired Student’s t-test as appropriate (two-tailed P < 0.05 was considered significant). 

Behavior.  Adult male wild-type and mutant BALB/c mice were individually housed in 

plastic cages with ad-lib access to food and water with a 12/12-h light/dark cycle. All 

studies took place during the light portion of the cycle. Mice were handled gently for 2-3 

min/day during 5 days, to minimize nonspecific stress. Fear conditioning and testing took 

place in two different contexts (Context A and B). The conditioning and testing boxes 
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and the floor were cleaned with 70% ethanol, or 1% acetic acid before and after each 

session, respectively. To score freezing behavior an automatic infrared beam detection 

system placed on the bottom of the experimental chambers (Coulbourn Instruments, 

Allentown, PA) was used. The animals were considered freezing if no movement was 

detected for 2 s. Mice were submitted to a discriminative fear conditioning protocol in 

which a 30 s tone conditioned stimulus (CS+)(7.5 kHz, 80 dB) was systematically paired 

to a 1 s foot-shock (unconditioned stimulus; US) (0.9 mA, 7 CS+/US pairings; inter-trial 

interval: 20-180 s). The onset of the US coincided with the offset of the CS+. A second 

non-conditioned 30 s tone (CS–; 3 kHz, 80 dB) was presented after each CS+/US 

association but was never reinforced (7 CS– presentations, inter-trial interval: 20-180 s). 

Conditioned mice were tested 24 h later in context B with 4 presentations of the CS– and 

the CS+. To determine pain sensitivity mice were submitted to a series of increasing 

strength 1 s foot-shocks in context A (0.1 to 0.8 mA range, 0.1 mA steps). Nociception 

threshold was calculated by scoring the first noticeable flinching behavior and stress-

induced vocalization. 

Reagents.   BAPTA, BAPTA-AM, CPP, and NBQX were from Tocris-Cookson (Bristol, 

UK). CGP55845A and GS3732 were a gift from Novartis Pharma AG (Basel, 

Switzerland). All other drugs were from Fluka/Sigma (Buchs, Switzerland). 

5.2.4. Results 

GABAB receptor blockade facilitates non-associative homosynaptic LTP. Whole-cell 

current clamp recordings from projection neurons showing spike frequency adaptation 

upon depolarizing current injection were obtained in the dorsal subdivision of the LA 

(Weisskopf et al. 1999; Bissiere et al. 2003).  Stimulation of afferent fibers from the 

internal capsule, containing thalamic afferents (Weisskopf et al. 1999), or from the 

external capsule, containing cortical afferents (Huang and Kandel 1998; Tsvetkov et al. 

2002) elicited monosynaptic excitatory postsynaptic potentials (EPSPs) of similar 

amplitudes and slopes at both inputs. Simultaneous stimulation of cortical and thalamic 

afferents with a single Poisson-train (45 stimuli at an average frequency of 30 Hz) 

resulted in the pathway-specific induction of LTP at cortical afferent synapses (cortical: 
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157 ± 14% of baseline, n = 11, P < 0.05; thalamic: 101 ± 10% of baseline, n = 11, P > 

0.05)(Fig. 22B)(Humeau et al. 2003). Under these conditions, cortical LTP was 

associative since Poisson-train stimulation of cortical afferents alone (ie in the absence of 

concomitant thalamic afferent stimulation) did not result in long-lasting changes in 

synaptic efficacy (105 ± 11% of baseline, n = 10, P > 0.05)(Fig. 22C)(Humeau et al. 

2003). The requirement for associative interactions between cortical and thalamic afferent 

activity during LTP induction was obviated by the application of the specific GABAB 

receptor antagonist CGP55485A. In the presence of CGP55845A (10 �M) homosynaptic 

LTP could be induced in a non-associative manner by a single train delivered to cortical 

afferents (153 ± 15% of baseline, n = 6, P < 0.05)(Fig. 22C). Like heterosynaptic, 

associative LTP induced by co-stimulation of both inputs, homosynaptic LTP at cortical 

afferents was associated with a decrease in paired-pulse facilitation (PPF; 73 ± 6% of 

baseline, n = 10, P < 0.05)(Fig. 22D) suggesting a presynaptic expression mechanism 

(Humeau et al. 2003). To directly test whether homosynaptic, non-associative LTP was 

mediated by the same expression mechanism we performed occlusion experiments. Prior 

induction of homosynaptic LTP in the presence of a GABAB receptor antagonist 

completely occluded the subsequent induction of heterosynaptic, associative LTP (n = 

8)(Fig. 22E). In the reverse experiment, homosynaptic LTP was partially occluded by 

prior induction of associative LTP (n = 5)(Fig. 22F) indicating that associative LTP 

induction requiring NMDA receptor-dependent interactions between thalamic and 

cortical afferents (Humeau et al. 2003) was more specific and only induced at a subset of 

the activated inputs. Thus, these experiments show that GABAB receptor-mediated 

inhibition serves as a constraint for the induction of homosynaptic, non-associative LTP 

at cortical afferents, thereby making concomitant thalamic input a necessary requirement 

for LTP induction. 
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Figure.22)   GABAB receptor blockade enables the induction of homosynaptic, non-associative LTP at 
cortical afferents to the lateral amygdala. (A) Placement of stimulation and recording electrodes. (B) Time 
course of synaptic changes after simultaneous tetanic stimulation of cortical and thalamic afferent fibers. 
Heterosynaptic, associative LTP is induced at cortical, but not at thalamic afferents (n = 11). (C) A single 
tetanus delivered to cortical afferents only does not induce LTP (n = 10). In the presence of the GABAB 
receptor antagonist CGP55845A (10 �M) homosynaptic, non-associative LTP is induced by the same 
protocol (n = 6). (D) Induction of homosynaptic LTP (filled circles) is associated with a decreased paired-
pulse ratio (PPR; open circles; n = 10). (E) Prior induction of homosynaptic LTP occludes subsequent 
induction of heterosynaptic LTP (n = 8). (F) The converse experiment reveals a partial occlusion of LTP by 
prior induction of heterosynaptic LTP (n = 5). Scale bars: 4 mV/20 ms. 
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Mechanisms of presynaptic LTP induction.  Since the induction of heterosynaptic, 

associative LTP depends on the activation of presynaptic NMDA receptors by glutamate 

released from thalamic afferents, and since efficient glutamate uptake prevents NMDA 

receptor activation by tetanic stimulation of cortical afferents alone (Humeau et al. 2003), 

one might predict that homosynaptic LTP should be NMDA receptor-independent. 

Indeed, application of the competitive NMDA receptor antagonist CPP (20 �M) did not 

prevent induction of homosynaptic LTP (159 ± 18% of baseline, n = 7, P < 0.05)(Fig. 

23A). LTP could even be induced in the presence of the non-specific glutamate receptor 

antagonist kynurenate (3 mM) (191 ± 27% of baseline, n = 4, P < 0.05)(Fig. 23B). This 

potentiation was not caused by a rebound after washing out kynurenate, since synaptic 

transmission returned to baseline levels if no tetanic stimulation was applied (105 ± 17% 

of baseline, n = 3, P > 0.05)(Fig. 23B). To test if postsynaptic Ca2+ signaling was 

required for the induction of homosynaptic LTP, recorded neurons were loaded with the 

Ca2+ chelator BAPTA (30 mM). This BAPTA concentration completely abolishes 

postsynaptic LTP induction at thalamic inputs (Humeau et al. 2005). Homosynaptic LTP 

at cortical inputs, however, was resistant to postsynaptic BAPTA perfusion (157 ± 19% 

of baseline, n = 6, P < 0.05)(Fig. 23C) indicating a presynaptic induction mechanism. 

Consistent with this model, we found that, unlike thalamic LTP (Bissiere et al. 2003), 

homosynaptic cortical LTP could be induced in the absence of the GABAA receptor 

antagonist picrotoxin (148 ± 17% of baseline, n = 6, P < 0.05). To determine if 

homosynaptic cortical LTP was Ca2+-dependent, we bath applied BAPTA-AM (50 �M), 

a membrane-permeant form of BAPTA. Stimulation strength was set to compensate for 

the BAPTA-AM induced reduction in baseline EPSP amplitude. Under these conditions, 

BAPTA-AM completely abolished LTP induction (96 ± 10% of baseline, n = 6, P < 

0.05)(Fig. 23D) indicating a requirement for presynaptic Ca2+ signaling during 

homosynaptic LTP induction.  
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Figure 23)   Induction of homosynaptic LTP at cortical afferents is independent of  NMDA receptor 
activation and postsynaptic Ca2+. (A) Homosynaptic cortico-amygdala LTP is independent of NMDA 
receptor activation (n = 7). (B) Complete blockade of glutamatergic transmission by kynurenate (3 mM) 
does not interfere with homosynaptic LTP induction (n = 4; filled symbols). In the absence of tetanic 
stimulation synaptic responses recover to baseline levels after wash-out of kynurenate (n = 3; open 
symbols). (C) LTP induction is not affected by postsynaptic perfusion with BAPTA (30 mM; n = 6). (D) 
Application of the membrane-permeant BAPTA-AM (50 �M) completely blocks LTP induction (n = 6). 
Scale bars: 3 mV/20 ms. 
 

Since NMDA receptors could not be the source of presynaptic Ca2+ entry, and since L-

type voltage-dependent Ca2+ channels (L-VDCCs) have been previously shown to play a 

role during induction of LTP at thalamic (Weisskopf et al., 1999; Bauer et al., 2002; 

Shinnick-Gallagher et al., 2003; Humeau et al., 2005) and cortical afferents (Tsvetkov et 

al., 2002; Humeau et al., 2005), we bath applied verapamil (50 �M), a L-VDCC 

antagonist. Verapamil prevented the induction of homosynaptic cortical LTP (98± 11.6% 

of baseline, n = 6, p > 0.05; Fig. 24A), indicating a role for presynaptic L-VDCCs during 

LTP induction and/or expression. 

Previous reports have demonstrated postsynaptic induction of homosynaptic cortical LTP 

by much stronger induction paradigms, such as repeated high-frequency tetanic 
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stimulations (Huang and Kandel 1998; Huang et al. 2000), or pairing protocols (Tsvetkov 

et al. 2002; Humeau et al. 2003; Tsvetkov et al. 2004; Humeau et al. 2005). 

Postsynaptically induced LTP, however, occludes further induction of presynaptic LTP 

by simultaneous thalamic and cortical afferent stimulation (Humeau et al. 2003), and 

requires activation of protein kinase A (PKA) (Huang and Kandel 1998; Huang et al. 

2000). To test if presynaptically induced homosynaptic cortical LTP converged on the 

same signal transduction pathways we applied the adenylate cyclase (AC) activator 

forskolin (50 �M). Forskolin application increased excitatory synaptic transmission at 

cortical afferents (197 ± 16.8% of pre-drug baseline, n = 6, p < 0.05; Fig. 24B). 

Consistent with a forskolin-induced increase in the presynaptic release probability 

(Kaneko and Takahashi 2004), the increase in EPSP amplitude was associated with a 

decrease in PPF (71  ± 6.8% of pre-drug baseline, n = 6, p < 0.05; Fig. 24B). Forskolin-

induced potentiation of synaptic transmission completely occluded induction of 

homosynaptic cortical LTP (101 ± 6.5% of baseline, n = 6, p < 0.05; Fig. 24B), 

suggesting a rise in presynaptic cAMP during LTP induction. To directly test this idea, 

we applied the non-hydrolysable cAMP analogue Rp-cAMPS (100 �M). In slices pre-

treated for 45 min. with Rp-cAMPS cortical LTP could not be induced (104 ± 8.6% of 

baseline, n = 7, p > 0.05; Fig. 24C). This effect could not be attributed to an action of Rp-

cAMPS in the postsynaptic cell since intracellular perfusion with the membrane-

impermeable analogue Rp-8-OH-cAMPS (5 mM) did not interfere with LTP induction 

(143 ± 7.1% of baseline, n = 6, p < 0.05; Fig. 24C). Finally, to assess whether the Rp-

cAMPS effect was due to blockade of PKA we tested if the PKA inhibitor KT5720 (2 

�M) also blocked LTP. In the presence of KT5720 homosynaptic cortical LTP was 

completely abolished (99.5  ± 9.4% of baseline, n = 8, p > 0.05; Fig. 24D). These results 

suggest that presynaptically induced homosynaptic cortical LTP involves the activation 

of presynaptic AC and PKA eventually resulting in an increase probability of release. 

 



  Results        67 

 -67- 

 
Figure 24)   Induction of homosynaptic LTP at cortical afferents activates the cAMP/PKA signal cascade 
pathway. (A) Cortical EPSP is not potentiated in the presence of L-type Ca2+ blocker (Verapamile) 100 
�M, n=6. (B) Forskolin-induced potentiation of Cortical EPSP is associated with a decrease in PPF (n = 7). 
Forskolin-induced potentiation occlude homosynaptic LTP (C) Blockade of presynaptic PKA block 
induction of presynaptic LTP at cortical afferents (n = 4; open symbols) whereas blockade of postsynaptic 
PKA doesnot occlude induction of LTP (n = 5; filled symbols). (D) The PKA catalytic subunit blocker 
(KT5720) abolish LTP induction (30 mM; n = 6).  
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GABAB(1a) receptors mediate presynaptic inhibition at cortical afferents.  Although 

we could not find any evidence for a postsynaptic contribution to the induction of 

homosynaptic LTP in the presence of a GABAB receptor antagonist, this does not 

conclusively demonstrate a role for presynaptic as opposed to postsynaptic GABAB 

receptors. Since it is not possible to pharmacologically discriminate between pre- and 

postsynaptic GABAB receptors, we took a genetic approach using mice deficient for the 

GABAB(1) subunit isoforms GABAB(1a) and GABAB(1b) (Jarrell et al. 1987). Recent 

experiments carried out in the CA1 area of the hippocampus revealed that presynaptic 

heteroreceptors on glutamatergic terminals are exclusively comprised of GABAB(1a) and 

GABAB(2) subunits, whereas postsynaptic GABAB receptors appear to be predominantly 

comprised of GABAB(1b,2) heterodimers (McDonald et al. 2004; Vigot 2005). To test the 

contribution of GABAB(1a) vs. GABAB(1b) containing receptors to presynaptic inhibition at 

cortico-amygdala afferents, we assessed the effect of the GABAB receptor agonist 

baclofen (50 �M) on EPSCs elicited by cortical afferent stimulation. Whereas baclofen-

induced inhibition of excitatory synaptic transmission was only slightly reduced in 

GABAB(1b)
–/ – mice (wild-type: 86 ± 2% inhibition, n = 20; GABAB(1b)

–/ –:  75  ± 3% 

inhibition, n = 16, P < 0.01)(Fig. 25A,B), GABAB(1a)
–/ – mice exhibited a strongly 

decreased presynaptic inhibition (27 ± 4% inhibition, n = 18; P < 0.001)(Fig. 25A,B). 

Consistent with earlier findings in the CA1 area of the hippocampus (Schuler et al. 2001) 

baclofen had no effect on synaptic transmission in GABAB(1)
–/ – animals (-1 ± 11% 

inhibition, n = 5; P < 0.001)(Fig. 25B). In all genotypes presynaptic inhibition induced by 

activation of adenosine receptors was not affected (Fig. 25A). This demonstrates that 

GABAB(1a)
–/ – mice largely lack functional GABAB receptors on cortical afferent 

terminals. 

In contrast to the predominant role of GABAB(1a) subunits in presynaptic inhibition of 

excitatory synaptic transmission, postsynaptic inhibition mediated by the induction of an 

outward current (at -50 mV) activation of GIRK-type K+ channels was equally reduced in 

GABAB(1a)
–/ – and GABAB(1b)

–/ – animals (wild-type: 61 ± 8 pA, n = 21; GABAB(1)
–/ –: 2 ± 

6 pA, n = 5, P < 0.01; GABAB(1a)
–/ –: 37 ± 5 pA, n = 20, P < 0.05; GABAB(1b)

–/ –: 34 ± 6 
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pA, n = 16, P < 0.05)(Fig. 26C). Again, adenosine-induced postsynaptic activation of 

GIRK currents was not affected in all genotypes (data not shown).  

We next analyzed inhibitory synaptic transmission elicited by local stimulation within the 

LA in the presence of ionotropic glutamate receptor antagonists. While activation of 

GABAB autoreceptors on interneurons was completely abolished in GABAB(1)
–/ – mice 

(wild-type: 83 ± 7% inhibition, n = 5; GABAB(1)
–/ –:  0  ± 1% inhibition, n = 6, P < 0.001), 

presynaptic inhibition on interneurons was not different from wild-type animals in 

GABAB(1a)
–/ – and in GABAB(1b)

–/ – mice (GABAB(1a)
–/ –: 79 ± 6% inhibition, n = 5; 

GABAB(1b)
–/ –: 86 ± 3% inhibition, n = 8). This indicates that GABAB(1a)- and GABAB(1b)-

mediated presynaptic inhibition on GABAergic terminals is either redundant, or that 

GABAB(1a) subunits are able to compensate for the loss GABAB(1b)  subunits and vice 

versa. Taken together, these results show that GABAB(1a)
–/ –

 and GABAB(1b)
–/ –

 mice can be 

used as a tool to discriminate between pre- and postsynaptic GABAB receptor-mediated 

inhibition at cortical afferents to the LA. 

To address the question if the facilitation of homosynaptic LTP induction in the presence 

of a GABAB receptor antagonist was due to the blockade of presynaptic heteroreceptors 

on cortical afferents we induced LTP in GABAB(1a)
–/ –

  and GABAB(1b)
–/ –

 mice in the 

absence of CGP55485A. Since GABAB(1a)
–/ –

  and GABAB(1b)
–/ –

 mice are only viable in 

the BALB/c background, we first verified the pharmacological findings in wild-type 

BALB/c animals. Like in C57BL/6J mice CGP55845A (10 �M) facilitated the induction 

of homosynaptic LTP in BALB/c animals (wild-type: 105 ± 4% of baseline, n = 18, P > 

0.05; wild-type + CGP55845A: 150 ± 15% of baseline, n = 10, P < 0.05). Consistent with 

a predominant role of GABAB(1a) –containing receptors in presynaptic inhibition at 

cortical afferents, we found that homosynaptic LTP induction was facilitated in 

GABAB(1)
–/ – and in GABAB(1a)

–/ –
 , but not in GABAB(1b)

–/ –
 mice (GABAB(1)

–/ –: 153 ± 

17% of baseline, n = 5, P < 0.05; GABAB(1a)
–/ –: 130 ± 8% of baseline, n = 18, P < 0.01; 

GABAB(1b)
–/ –: 90 ± 11% of baseline, n = 13, P > 0.05)(Fig. 25D,E). LTP induction in 

GABAB(1a)
–/ – animals could not be significantly enhanced by application of CGP55485A 

(139 ± 15% of baseline, n = 4, P > 0.05), demonstrating that blockade of GABAB(1a)-
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containing receptors largely underlies pharmacological facilitation of homosynaptic LTP. 

Finally, in line with the results using pharmacological GABAB receptor blockade, LTP 

was consistently associated with a decrease in PPF (GABAB(1)
–/ –: -25 ± 6% PPF change, 

n = 5, P > 0.05; GABAB(1a)
–/ –: -13 ± 3%, n = 18, P < 0.01; GABAB(1b)

–/ –: 2 ± 6%, n = 13, 

P > 0.05). In conclusion, using mice deficient for the GABAB(1) isoforms GABAB(1a) and 

GABAB(1b) we were able to dissociate pre- and postsynaptic GABAB receptor function at 

cortical afferents to the LA. Our experiments show that presynaptic GABAB(1a)-

containing heteroreceptors are critical in determining the associative properties of cortical 

afferent LTP. 
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Figure 25)  GABAB(1a) receptors mediate presynaptic inhibition at cortical afferents. (A) Baclofen-
induced presynaptic inhibition at cortical afferents is strongly reduced in GABAB(1a)

–/ – mice (middle) as 
compared to wild-type (top) or GABAB(1b)

–/– animals (bottom). The effect of adenosine (100 �M) is 
similar in all genotypes. (B) Top: Summary graph illustrating the predominant contribution of GABAB(1a)-
containing receptors to baclofen-induced presynaptic inhibition. Presynaptic inhibition is completely 
absent in GABAB(1)

–/ – mice. (C) Baclofen-induced postsynaptic K+ currents are completely absent in 
GABAB(1)

–/ – mice (n = 5), and equally reduced in GABAB(1a)
–/ –  (n = 20) or GABAB(1b)

–/ –  animals (n = 
16). (D) Induction of homosynaptic LTP in the absence of CGP55845A is facilitated in GABAB(1a)

–/ – (n = 
18), but not in GABAB(1b)

–/ –  animals (n = 13). (C) Summary graph illustrating the facilitation of 
homosynaptic LTP induction in wild-type BALB/c animals in the presence of CGP55845A (n = 10). In 
the absence of CGP55845A, LTP induction is facilitated in GABAB(1)

–/ – (n = 5) and GABAB(1a)
–/ – (n = 

18), but not in GABAB(1b)
–/ –deficient mice (n = 13). Scale bars: 3 mV/10 ms. 
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Generalization of conditioned fear in GABAB(1a)–deficient mice.  To assess the 

behavioral impact of altered presynaptic inhibition and facilitation of non-associative 

LTP induction we subjected GABAB(1a)
–/ – animals to an auditory fear conditioning 

paradigm. Given that previous studies have implicated the cortico-amygdala pathway in 

stimulus discrimination and generalization of conditioned fear ((Jarrell et al. 1987; 

Armony et al. 1997), but see:(Klausberger et al. 2003)) mice were trained using a 

differential fear conditioning paradigm where only one of two tones , the CS+ (7.5 kHz, 

30 s, 80 dB), but not the CS– (3 kHz, 30 s, 80 dB), was paired to the unconditioned 

stimulus (US; 0.9 mA, 1.5 s). Training consisted of seven CS+-US pairings with 7 

interleaved CS- presentations. When tested 24 hrs later, wild-type animals exhibited clear 

discrimination between the CS+ and the CS– (n = 6; P < 0.05)(Fig. 26A). In contrast, 

GABAB(1a)
–/ – mice showed indistinguishable freezing behavior in response to the CS+ 

and the CS– (n = 6; P > 0.05)(Fig. 26A). It is unlikely that the increased freezing in 

response to the CS- was caused by a general increase in stress or anxiety levels in 

GABAB(1a)
–/ – mice because the animals did not freeze more than wild-type mice when 

they were exposed for the first time to a novel context (n = 5; P > 0.05)(Fig. 26A). 

Moreover, GABAB(1a)
–/ – mice exhibited no difference in the threshold for the US to 

induce rapid movements or vocalization (n = 5; P > 0.05)(Fig. 26B).  Thus, in parallel to 

the loss of accociativity of cortical afferent LTP, GABAB(1a)
–/ – mice exhibit a striking 

deficit in associative stimulus discrimination at the behavioral level.  
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Figure 26) Generalization of conditioned fear in GABAB(1a)

–/ – mice. (A) GABAB(1a)
–/ – mice exhibit 

normal freezing levels to CS+ presentations (24 h after conditioning), but a complete absence of stimulus 
discrimination as evidenced by equally high freezing levels during CS– presentations (n = 6 for each 
genotype). (B) GABAB(1a)

–/ – mice exhibit no difference in the threshold of foot-shock-induced movements 
or vocalization (n = 4 for each genotype). 
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5.2.4. Discussion 

Our present results show that associativity of presynaptic LTP at cortico-amygdala 

afferents not only depends on presynaptic NMDA receptor activation, but also requires 

presynaptic GABAB heteroreceptor-mediated inhibition to prevent induction of 

homosynaptic, non-associative plasticity. In the absence of presynaptic GABAB receptor 

function, an NMDA receptor-independent, non-associative form of presynaptic LTP is 

unmasked. This may suggest that the level of GABAB receptor-mediated presynaptic 

inhibition, and hence associativity of presynaptic cortical LTP, may be determined by the 

activity of local inhibition. Thereby, changes in inhibitory transmission associated with 

distinct patterns of network activity (Nicoll and Malenka 1995) will result in a shift of the 

relative threshold for the induction of homo- vs. heterosynaptic LTP. Thus, cortical 

afferent boutons are endowed with presynaptic ionotropic and metabotropic receptor 

complements allowing the detection and integration of concomitant excitatory and 

inhibitory activity in a heterosynaptic manner. Similar properties have been reported for 

other types of synapses in the brain exhibiting presynaptic long-term plasticity, such as 

hippocampal mossy fiber synapses (Linden and Ahn 1999; Schmitz et al. 2003), or 

parallel fiber-Purkinje cell synapses in the cerebellum (Dittman and Regehr 1997), 

suggesting that heterosynaptic modulation of plasticity thresholds, a form of 

metaplasticity, may be a general feature of presynaptic plasticity underlying many forms 

of integrative computation. 

Interestingly, presynaptic LTP at all these synapses requires activation of cAMP/PKA-

dependent signaling (Nicoll and Malenka 1995; Huang and Kandel 1998; Linden and 

Ahn 1999). It remains to be shown, however, at which level induction of heterosynaptic 

and homosynaptic forms of presynaptic LTP converge at cortico-amygdala synapses.  

Potentially, presynaptic GABAB receptor-mediated inhibition could influence LTP 

induction threshold at multiple levels, such as direct inhibition of Ca2+ channels, 

activation of K+ channels, or by multiple downstream effects triggered by the lowering of 

presynaptic cAMP levels (Bettler et al. 2004).  
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Using mice deficient for the GABAB(1a) and GABAB(1b) isoforms, we found that 

presynaptic heteroreceptors on cortico-amygdala boutons predominantly contain the 

GABAB(1a) isoform. A segregation of GABAB(1a) and GABAB(1b) to pre- and postsynaptic 

compartments has been previously suggested based on layer-specific localization of 1a 

and 1b receptors in the cerebellum (Billinton et al. 1999), a hypothesis that has been 

directly confirmed by recent electrophysiological analysis of pre- and postsynaptic 

GABAB receptor-mediated inhibition in the CA1 area of the hippocampus of GABAB(1a) 

and GABAB(1b)
–/ – mice (Vigot 2005). It is not clear, why presynaptic heteroreceptors 

should be specifically of the GABAB(1a) subtype, since 1a and 1b isoforms do not exhibit 

any difference in their intracellular domains coupling to downstream signaling, but rather 

differ in terms of alternative N-termini with the presence of a pair of sushi repeats in the 

GABAB(1a)-specific domain. Sushi repeats are thought to be involved in extracellular 

protein-protein interactions (Bettler et al. 2004), suggesting that GABAB(1a) receptors 

might be specifically retained in the presynaptic compartment by means of interactions 

with these sushi repeats. 

The differential contribution of GABAB(1a)- and GABAB(1b)-containing receptors to pre- 

and postsynaptic inhibition, and the finding that GABAB autoreceptor-mediated 

inhibition is not affected in GABAB(1a)
–/ – or GABAB(1b)

–/ – mice, allowed us to specifically 

address the role of presynaptic heteroreceptors in vivo. Consistent with previous reports 

demonstrating a role for cortical pathways in stimulus discrimination during Pavlovian 

conditioning (Jarrell et al. 1987; Armony et al. 1997), but see: (Klausberger et al. 2003), 

we found that GABAB(1a)-deficient mice exhibit a striking generalization of conditioned 

fear to non-conditioned stimuli. While it has been shown that conditioned changes in 

tone-evoked single-unit activity in the LA discriminate between conditioned and non-

conditioned stimuli (Collins and Pare 2000), our data do not exclude that GABAB(1a)-

containing receptors play an important role for stimulus discrimination in a brain area 

upstream from the amygdala such as the auditory cortex or the auditory thalamus. 

Nevertheless, the modulation of associative properties of cortico-amygdala LTP by 

presynaptic GABAB heteroreceptors offers an attractive mechanism by which 

concomitant homosynaptic thalamic and heterosynaptic cortical afferent plasticity could 
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contribute to determine stimulus-discrimination during Pavlovian conditioning 

paradigms. Moreover, by modulation of inhibitory network activity, activation of distinct 

neuromodulatory input, associated with specific behavioral states, may modulate the 

degree of fear generalization appropriate for specific behavioral demands under certain 

conditions.  
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In this work, I did most of the electrophysiological investigations. Some experiments are 
contributed by Yann Humeau. Behavior analysis was performed by Cyril Herry and 
Stephane Ciocchi.  
 
5.3.1. Summary 
 

Synaptic plasticity in the lateral amygdala (LA) is believed to underlie the formation 

and storage of fear memory. The activity in the LA excitatory cells is under firm 

control of inhibitory inputs. GABAB receptors are abundant in LA and were shown 

to modulate synaptic plasticity in the hippocampus. Here we show that the blockade 

of GABAB receptors facilitates the induction of long term potentiation (LTP) at 

thalamic afferents to LA. This LTP was NMDAR-dependent and needs postsynaptic 

Ca2+ influx. To discriminate between pre- and postsynaptic GABAB receptor-

mediated effect, we used mice deficient in either one of the two isoforms GABAB(1a) 

and GABAB(1b). These two subunit isoforms are believed to be localized differentially 

at the subcellular level. Genetic knockout of the GABAB(1a) isoform revealed no LTP 

facilitation at the thalamic afferents, whereas GABAB(1b) knockout mice exhibited 

LTP facilitation specifically at thalamic afferents. Again this homosynaptic LTP at 

thalamic afferents in GABAB(1B) -/- mice required postsynaptic Ca2+ influx. 

Moreover, disynaptic IPSCs recorded from GABAB(1a) knockout mice revealed LTP 

facilitation only at the cortical afferents whereas GABAB(1b) knockout mice revealed 
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LTP facilitation only at the thalamic afferents. Behavior analysis of GABAB(1b)  -/- 

mice shows a clear deficit in fear memory formation. Thus, GABAB receptors 

modulate synaptic plasticity at both inhibitory and excitatory LA synapses and 

thereby play important role in fear memory formation in the LA. 

 

5.3.2. Introduction 
Classical Pavlovian conditioning (Pavlov; 1927) is widely used as a model system for 

understanding how the brain associates and stores information about fear experiences. In 

fear conditioning paradigms a subject (mouse) is exposed to the unconditioned stimulus 

(US), a noxious stimulus, such as footshock, in concurrence with conditioned stimulus 

(CS), a neutral stimulus, such as tone or light. After training the tone (on next occurrence) 

acquires aversive properties and will trigger fear responses. In rodents, such responses 

include freezing behavior observed by complete arrest of the movements. The neural 

basis of fear conditioning points to the amygdala as a key player in processing and 

storage of emotional memory (Davis 1994; Fanselow and Kim 1994; LeDoux 1994; Lang 

et al. 2000; LeDoux 2000). Sensory information about stimuli that are harmful enter the 

amygdala by way of the LA (LeDoux et al. 1990). The LA, in turn, projects to other 

amygdala areas (Pitkanen et al. 1997), which control defence responses (Dalgleish 2004; 

Dityatev and Bolshakov 2005) 

Activity-dependent Hebbian plasticity at cortical and/or thalamic afferents to LA 

projection neurons is generally thought to underlie Pavlovian fear conditioning (LeDoux 

2000; Maren 2001; Tsvetkov et al. 2002). The most intensively studied and best-

characterized sensory pathway is a direct projection from the medial geniculate nucleus 

of the thalamus to the dorsal portion of the LA of the amygdala (LeDoux and Farb 1991). 

It was shown that fear conditioning induces LTP at the glutamatergic synapses in the LA 

of the amygdala (Clugnet and LeDoux 1990; McKernan and Shinnick-Gallagher 1997). 

In vivo data demonstrated a powerful control through GABAergic inhibition over the 

activity of projecting cells in the LA (Lang and Pare 1997; Pape et al. 1998). 

Furthermore, the ability to induce LTP in excitatory cells in vitro depends on the strength 

of the local inhibitory network (Marsicano et al. 2002; Shumyatsky et al. 2002; Bissiere 

et al. 2003). Indeed, GABAergic interneurons are thought to play a crucial role in 
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information processing in the amygdala (Lang and Pare 1997; Mahanty and Sah 1998; 

Bissiere et al. 2003). Converging fast excitatory postsynaptic responses from cortical and 

thalamic inputs were also found in interneurons of the LA (Mahanty and Sah 1998; 

Mahanty and Sah 1999; Szinyei et al. 2000). Furthermore, heterosynaptic LTP of 

inhibitory interneurons were recently observed in the LA (Bauer and LeDoux 2004). 

GABA is the predominant inhibitory neurotransmitter in the mammalian nervous system, 

which upon release from interneuron activates two types of receptors. GABAA receptors 

are ligand-gated ion channels that mediate fast synaptic inhibition (Bowery et al. 1987; 

Macdonald and Olsen 1994). GABAB receptors are coupled to G-proteins and exert their 

inhibitory action by activating postsynaptic inwardly rectifying Kir3-type K+ channels 

and by inactivating presynaptic voltage-gated ca2+ channels (Wojcik and Neff 1984; 

Bowery et al. 1987; Slesinger et al. 1997; Marshall et al. 1999).  

In hippocampal neurons, pre- and postsynaptic GABAB receptor-mediated synaptic 

inhibition has been shown to play a crucial role during the induction of homosynaptic 

LTP (Olpe and Karlsson 1990; Olpe et al. 1993; Perkel and Nicoll 1993). 

Immunohistochemical studies showed that GABAB receptors are strongly present in the 

LA (Fritschy et al. 1999; McDonald et al. 2004). Moreover, electrophysiological studies 

showed that GABAA and GABAB receptors differentially regulate glutamatergic synaptic 

transmission in the auditory thalamo-amygdala pathway (Rainnie et al. 1991; Li et al. 

1996). Here, we are investigating the role of pre- and postsynaptic GABAB receptors 

during the induction of synaptic plasticity at the thalamic afferent to the LA.  

 

5.3.3. Methods 

Electrophysiology. Standard procedures were used to prepare 350 �m thick coronal 

slices from three to four week old male C57BL/6J or BALB/c mice following a protocol 

approved by the Veterinary Department of the Canton of Basel-Stadt (Humeau et al. 

2003). Briefly, the brain was dissected in ice-cold artificial cerebrospinal fluid (ACSF), 

mounted on an agar block and sliced with a Dosaka vibratome (Kyoto, Japan) at 4ºC. 

Slices were maintained for 45 min at 35ºC in an interface chamber containing ACSF 
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equilibrated with 95% O2/5% CO2 and containing (in mM): 124 NaCl, 2.7 KCl, 2 CaCl2, 

1.3 MgCl2, 26 NaHCO3, 0.4 NaH2PO4, 18 glucose, 4 ascorbate, and then for at least 45 

min. at room temperature before being transferred to a superfusing recording chamber.    

Whole-cell recordings from LA projection neurons were performed at 30-32ºC in a 

superfusing chamber. Neurons were visually identified with infrared videomicroscopy 

using an upright microscope equipped with a x40 objective (Olympus). Patch electrodes 

(3-5 M	) were pulled from borosilicate glass tubing and normally filled with a solution 

containing (in mM): 120 K-gluconate, 20 KCl, 10 HEPES, 10 phosphocreatine, 4 Mg-

ATP, and 0.3 Na-GTP (pH adjusted to 7.25 with KOH or CsOH, respectively, 295 

mOsm). For voltage-clamp experiments K-gluconate was replaced by equimolar Cs-

gluconate. All experiments were performed in the presence of picrotoxin (100 �M) unless 

indicated otherwise. In current-clamp recordings membrane potential was kept manually 

at –70 mV (not corrected for junction potentials). Data were recorded with an 

Axopatch200B, filtered at 2 kHz and digitized at 10 kHz. In all experiments, series 

resistance was monitored throughout the experiment by applying a hyperpolarizing 

current or voltage pulse, and if it changed by more than 15%, the data were not included 

in the analysis. Data were acquired and analyzed with ClampEx9.0 and ClampFit9.0 

(Axon Instruments, CA). Monosynaptic EPSPs or EPSCs exhibiting constant 10-90% rise 

times and latencies were elicited by stimulation of afferent fibers with a bipolar twisted 

platinum/10% iridium wire (25 �m diameter). LTP was induced by delivering Poisson-

distributed 45 stimulations at an average frequency of 30 Hz (Humeau et al. 2003). LTP 

was quantified for statistical comparisons by normalizing and averaging EPSP slopes 

during the last 5 min of experiments relative to 5 min of baseline. Depicted traces show 

averaged EPSPs for 2 min of baseline and 2 min of LTP (25-30 min after pairing). All 

values are expressed as means ± s.e.m. Statistical comparisons were done with paired or 

unpaired Student’s t-test as appropriate (two-tailed P < 0.05 was considered significant). 

Behavior.  Adult male wild-type and mutant BALB/c mice were individually housed in 

plastic cages with ad-lib access to food and water with a 12/12-h light/dark cycle. All 

studies took place during the light portion of the cycle. Mice were handled gently for 2-3 

min/day during 5 days, to minimize nonspecific stress. Fear conditioning and testing took 

place in two different contexts (Context A and B). The conditioning and testing boxes 
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and the floor were cleaned with 70% ethanol, or 1% acetic acid before and after each 

session, respectively. To score freezing behavior an automatic infrared beam detection 

system placed on the bottom of the experimental chambers (Coulbourn Instruments, 

Allentown, PA) was used. The animals were considered freezing if no movement was 

detected for 2 s. Mice were submitted to a discriminative fear conditioning protocol in 

which a 30 s tone conditioned stimulus (CS+)(7.5 kHz, 80 dB) was systematically paired 

to a 1 s foot-shock (unconditioned stimulus; US) (0.9 mA, 7 CS+/US pairings; inter-trial 

interval: 20-180 s). The onset of the US coincided with the offset of the CS+. A second 

non-conditioned 30 s tone (CS–; 3 kHz, 80 dB) was presented after each CS+/US 

association but was never reinforced (7 CS– presentations, inter-trial interval: 20-180 s). 

Conditioned mice were tested 24 h later in context B with 4 presentations of the CS– and 

the CS+. To determine pain sensitivity mice were submitted to a series of increasing 

strength 1 s foot-shocks in context A (0.1 to 0.8 mA range, 0.1 mA steps). Nociception 

threshold was calculated by scoring the first noticeable flinching behavior and stress-

induced vocalization. 

Reagents.   BAPTA, BAPTA-AM, CPP, and NBQX were from Tocris-Cookson (Bristol, 

UK). CGP55845A and GS3732 were a gift from Novartis Pharma AG (Basel, 

Switzerland). All other drugs were from Fluka/Sigma (Buchs, Switzerland). 

 

5.3.3. Results 
Pre- and postsynaptic inhibition by GABAB receptors in the LA  

To detect functional GABAB receptors in the LA, we recorded EPSCs evoked by 

stimulating the external capsule (cortical afferents) or the internal capsule (thalamic 

afferents). Pharmacological activation of GABAB receptors by applying the specific 

GABAB agonist Baclofen (50 µM) reduced EPSCs amplitude in both thalamic (54.2 ± 

5.3% inhibition; n = 5; p < 0.001) and cortical (52.2 ± 4.1% inhibition; n = 5; p < 0.001). 

The decrease of EPSCs amplitude is thought to be due to activation of presynaptic 

GABAB receptors located at glutamatergic terminals (Kombian et al. 1996; Takahashi et 

al. 1998). This response to GABAB receptor was antagonized by application of the 

specific GABAB receptor antagonist CGP55845A indicating activation and blockade of 
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presynaptic GABAB heteroreceptors (Schuler et al. 2001) (Fig. 27A). Furthermore, 

synaptic activation of GABAB receptor by three subsequent pulses at 20 Hz and 

application of CGP55845A decreased the pair pulse ratio (PPR). This  indicates 

presynaptic mechanism of inhibition (Fig. 27B). Postsynaptic GABAB receptors are 

known to activate a Kir3-mediated K+ conductance in CA1 pyramidal neurons (Luscher 

et al. 1997; Schuler et al. 2001). That GABABR-activated K+ conductance underlies the 

late IPSP (Luscher et al. 1997).  Indeed, activation of GABAB receptors by baclofen 

elicited outward current that is antagonized by CGP55845A application. Moreover, this 

outward current can be elicited with synaptic activation of postsynaptic GABABR by 

endogenous GABA (Fig. 27C, D).  

 
Figure 27) GABAB receptor-mediated inhibition in the LA A,B: Presynaptic inhibition of excitatory 
synaptic  transmission. A: Application of the GABAB agonist baclofen (50 µM) decreases EPSC amplitude 
at cortical and thalamic afferent synapses. B:  Application of the GABAB antagonist CGP55458A (10 µM) 
increases glutamate release as monitored by a decrease in the paired-pulse ratio, scale bar: 100pA, 100 ms. 
C, D:  Postsynaptc inhibition. C: Application of baclofen (50 µM) activates an outward current in 
postsynaptic LA pyramidal cells. D: This current can be activated synaptically upon repetitive stimulation. 
It is completely blocked by CGP55458A (10 µM; inset). 
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Facilitation of postsynaptic LTP induction upon GABAB receptor blockade 
 
To investigate the impact of GABABR inhibitory inputs, we tested synaptic plasticity at 

thalamic and cortical afferents. In agreement with a previous report (Bissiere et al. 2003), 

thalamic afferent EPSP was not potentiated under intact GABAA receptors but blocked 

GABABRS, (EPSP slope:102.8 ± 5.3% of the baseline, n = 6 p < 0.001). Surprisingly, 

cortical afferent was significantly potentiated; (EPSP slope: 182.8 ± 25.8% of the 

baseline, n =6 p < 0.001) (Fig. 28A).  

Our previous study showed that upon simultaneous subthreshold stimulation of both 

thalamic and cortical afferents a heterosynaptic LTP was induced only at the cortical 

afferents (Humeau et al. 2003). Indeed, homosynaptic LTP induction was not possible in 

both inputs when only GABAA receptors are blocked by picrotoxin (100 µM) (Fig. 28B). 

Blockade of GABAB receptors by CGP55845A facilitated the induction of homosynaptic 

LTP (induced by 45 stimulations at 30 Hz) at thalamic afferents synapses (Fig. 28B). The 

EPSP slope was potentiated (EPSP slope: 155 ± 6.1% of the baseline, n=11; p < 0.001) 

compared to control condition (EPSP slope 103 ± 4.3% of the baseline, n=11; p < 0.001).  

This form of LTP at thalamic afferents was associated without any significant change in 

paired-pulse facilitation suggesting that it was not mediated by presynaptic mechanisms 

(n = 8; P < 0.05) (Fig. 28C). These findings suggest a postsynaptic expression 

mechanism. To test the mechanism of induction, we applied the NMDAR antagonist CPP 

(20 µM) or perforated the postsynaptic cell with the Ca2+ chelator BAPTA (30 µM) (Fig. 

28D, E). CPP blocked LTP at thalamic afferents, (EPSP slope: 101 ± 5.1% of the 

baseline, n = 7; P < 0.05) and postsynaptic perfusion with BAPTA blocked the induction 

of LTP, (EPSP slope 103 ± 4.6% of the baseline, n = 9; P < 0.05). These results would 

suggest that thalamic homosynaptic LTP required postsynaptic NMDA activation and 

postsynaptic Ca2+ influx 
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Figure 28) Blockade of GABAB receptor facilitates the induction of  homosynaptic LTP. 
A: Blockade of GABABRs but not GABAARs by leaving out PTX and application of the specific GABABRs 
antagonist CGP55845A facilitates LTP induction only at cortical but not thalamic afferents in wild-type 
BALB/c mice. B: Blockade of GABABRs and GABAARs by CGP55845A and PTX facilitates the induction 
of LTP (induced by 45 stimulations at 30 Hz) at thalamic afferents synapses. C: Induction of LTP is 
associated with no change in paired-pulse facilitation at thalamic afferents. D: The NMDA receptor 
antagonist blocks LTP at thalamic afferents. E: postsynaptic perfusion with the Ca2+ chelator BAPTA blocks 
the induction of homosynaptic LTP at thalamic scale bar: 5 mV, 50msec.  
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Presynaptic inhibition in GABAB(1a) -/- mice is impaired 

To investigate whether pre- or postsynaptic GABABRs mediated-inhibition are 

suppressing the induction of homosynaptic LTP we used transgenic mice. These mice 

where genetically modified so that the GABAB(1) subunit or one of its isomer variant 

GABAB(1a) and GABAB(1b) were knocked out. In previous work we have shown that 

presynaptic inhibition in GABAB(1a)-/- mice are impaired in cortical afferents. To 

investigate if we could obtain the same result at thalamic afferents, evoked EPSCs were 

recorded in the LA by stimulating the internal capsule. It was shown that the amplitude of 

the EPSCs were reduced upon activation of GABAB heteroreceptors or A1 adenosine 

receptors that inhibit glutamate release (Schuler et al., 2001). Accordingly, in slices from 

wild-type mice, both baclofen (100 µM) and adenosine (100 µM) evoked the expected 

depression of the EPSCs, (baclofen: 87.0 ± 2.5% inhibition, n = 21; p < 0.01 , adenosine: 

86.5 ± 5.8% inhibition, n = 21; p < 0.01). Surprisingly, at thalamic afferents baclofen 

induced inhibition was strongly reduced in slices from GABAB(1a) -/- mice compared to 

adenosine induced inhibition, (baclofen: 41.5 ± 3.6% inhibition, n = 18; p < 0.001, 

adenosine: 85.5 ± 2.9% inhibition, n = 18; p < 0.001)( Fig. 29A). 

In GABAB(1) -/- mice, baclofen induced inhibition of glutamate synaptic transmission was 

completely abolished, (baclofen: 1.7 ± 12.7% inhibition, n = 6; p < 0.01), adenosine: 71.6 

± 8.6% inhibition, n = 6; p < 0.01). This demonstrates that GABAB(1a) -/- mice largely 

lack functional GABAB heteroreceptors at thalamic terminals, whereas adenosine 

receptors are still operational and inhibit glutamate release (Fig. 29B). The response to 

baclofen was only slightly reduced in GABAB(1b) -/- mice, (baclofen: 77.2 ± 2.5% 

inhibition, n = 22; p < 0.01, adenosine: 89.3 ± 3.6% inhibition, n = 22; p < 0.01). The 

activation of GABAB autoreceptors on interneurons attenuated IPSCs recorded from LA 

projection neurons of wild-type mice, IPSCs amplitude; (baclofen: 83.7 ± 7.0% 

inhibition, n = 5; p < 0.001). In contrast, baclofen was unable to inhibit IPSCs in 

GABAB(1) -/- mice, IPSCs; ( baclofen: -0.2 ± 1.4% inhibition, n = 6; p < 0.01). 

GABAB(1a)-/- and GABAB(1b) -/- mice were similar to wild type mice, GABAB(1a)
-/- mice 

IPSCs; (baclofen: 79.5 ± 6.1% inhibition, n = 18, p < 0.001), GABAB(1b) 
-/- mice IPSCs; 

(baclofen: 86.1 ± 2.9% inhibition, n = 22, p < 0.001). This suggests that LA interneurons 

express GABAB autoreceptors which might be heterodimerized from any of both isomers, 
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GABAB(1a) -/- or GABAB(1b) -/- with GABAB(2) subunit. Presynaptic inhibition of 

glutamatergic transmission by baclofen (50 µM) is impaired in GABAB(1a)-/- mice which 

indicates that a high proportion of presynaptic GABAB heteroreceptors at thalamic 

afferents are mostly heterodimerized from GABAB(1a) isomer with GABAB(2) subunit. 

 

 
Figure 29) Presynaptic inhibition impairment in GABAB(1a)-/- mice at thalamic afferents. A:  Presynaptic 
inhibition of glutamatergic transmission by the GABAB receptor agonist baclofen (50 µM) is impaired in 
GABAB(1a)-/- mice. Graphs show amplitudes of EPSCs evoked by thalamic afferent stimulation. 
Adenosine-induced inhibition was not different.. B: top, Both pre- and postsynaptic GABAB-mediated 
inhibition is completely abolished in global GABAB(1) knock-outs. bottom, Presynaptic inhibition of 
inhibitory transmission (IPSCs) was not affected ( (n) are indicated in the bars) 
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Input-specific facilitation of LTP induction at glutamatergic synapses in GABAB(1a) -

/- and GABAB(1b) -/- mice 

To test whether the facilitation of LTP induction at thalamic inputs is due to pre, or 

postsynaptic GABAB receptors, LTP was induced in both knockout mice. 

If homosynaptic LTP at thalamic afferent is facilitated by blockade of presynaptic 

GABAB receptors, then we expect facilitation of LTP induction in GABAB(1a) -/-mice but 

if it is postsynaptic GABAB receptors, then we expect facilitation of LTP induction in 

both genotypes. Surprisingly, thalamic LTP induction was facilitated only in GABAB(1b)  -

/- (in the absence of CGP55845A)(Fig. 30B). Wild type mice; (EPSP slope: 100.9 ± 4.8% 

of the baseline, n = 11; p < 0.001), and with CGP55845A; (EPSP slope: 153.9 ± 20.7% of 

the baseline, n = 11; p < 0.001). In GABAB(1b)  -/- mice, the EPSP slope was potentiated; 

(EPSP slope: 148.2 ± 10.5% of the baseline, n = 19; p < 0.001), whereas in GABAB(1a) -/- 

mice, the EPSP slope was not significantly changed; (EPSP slope: 105.8 ± 4.3% of the 

baseline, n = 21; p < 0.001). In mice with deleted GABAB(1) subunits (including the two 

isomers), similar potentiation was shown (EPSP slope: 141.0 ± 4.6% of the baseline, n = 

6; p < 0.001)(Fig. 30C). Furthermore, this form of LTP in GABAB(1b) -/- mice is 

associated with no change in PPR (Fig. 30D). This is Consistent with our previous results 

that we observed in wild type mice where we observed facilitation of thalamic LTP in the 

presence of GABAB antagonist is associated with no change in PPR. Interestingly, this 

thalamic LTP in GABAB(1b) -/- mice was also dependent on postsynaptic Ca2+ influx. 

While it was abolished by perforating BAPTA (30 mM) in the intracellular solution, 

(EPSP slope: 108.0 ± 4.2% of the baseline, n = 6; p < 0.001) (Fig. 30E). This suggests 

that an increase in the postsynaptic Ca2+ concentration is required for the LTP induction 

mechanism  

 



  Results        88 

 -88- 

 
Figure 30) Input-specific facilitation of LTP induction GABAB(1a) -/- and GABAB(1b) -/- mice A: Blockade 
of GABAB receptors by application of the specific GABAB receptor antagonist CGP55845A facilitates LTP 
induction at thalamic afferents in wild-type BALB/c mice. B: LTP at thalamic afferents is facilitated in 
GABAB(1b)  -/- but not in GABAB(1a) -/- animals in the absence of CGP55845A. C: Summary graph 
illustrating input-specific facilitation of LTP induction in GABAB(1a)-/- and GABAB(1b) -/- animals. D: No 
changes in PPR associated with LTP in all genotypes. E: LTP at thalamic afferents in GABAB(1b) -/- mice is 
abolished by intracellular BAPTA. scale bars: 5 mV, 50 ms.  
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Input-specific facilitation of LTP induction in disynaptic inhibitory inputs in 

GABAB(1a) -/- and GABAB(1b) -/- mice 

Stimulation of thalamic or cortical afferents produces an IPSP in excitatory cells 

mediated by GABAA and GABAB receptors (Li et al. 1996; Lang and Pare 1998; 

Stutzmann and LeDoux 1999; Szinyei et al. 2000). LTP can be induced at thalamic 

excitatory synapses, to test the effect of induction of LTP at thalamic afferent on the feed-

forward inhibition conducted by interneurons. To see the change of inhibitory inputs due 

to induction of LTP onto thalamic synapses, we recorded disynaptic GABAergic IPSC in 

LA excitatory neurons. By holding the projection neuron on a depolarized membrane 

potential (-50 mV) and stimulating thalamic and/ or cortical afferents. This elicited a 

clear EPSC followed by an IPSC (Fig. 31A). In wild type mice, disynaptic IPSCs were 

not changed from the baseline after applying the same induction protocol, (thalamic IPSC 

amplitude: 101.5 ± 5.8% of the baseline, n = 8, p < 0.001, cortical IPSC amplitude: 105.8 

± 8.3% of the baseline, n = 8, p < 0.001). GABAB(1a) -/- mice showed a clear LTP 

facilitation only at the cortical disynaptic IPSC (IPSC amplitude:175.4 ± 11.8% of the 

baseline, n = 8 p < 0.001), but not in thalamic (IPSC amplitude:102.6 ± 9.3% of the 

baseline, n = 8, p < 0.001)(Fig. 31B). In contrast, GABAB(1b)  -/- mice showed significant 

LTP facilitation only in the thalamic disynaptic IPSC; (IPSC amplitude: 195.4 ± 17.3% of 

the baseline, n = 9, p < 0.001), but not in thalamic disynaptic IPSC; (IPSC 

amplitude:105.6 ± 6.8% of the baseline, n = 9 p < 0.001) (Fig. 31). 
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Figure 31) Disynaptic IPSCs input-specific facilitation of LTP induction in GABAB(1a)-/- and GABAB(1b)  -
/- mice A: IPSCs are not potentiated in both afferents in wild type mice. B: LTP induction of IPSCs at 
cortical afferents is facilitated in GABAB(1b)  -/- but not in GABAB(1a)-/- animals in the absence of 
CGP55845A. C: LTP induction of IPSCs at thalamic afferents is facilitated in GABAB(1b) -/- but not in 
GABAB(1a) -/- mice in the absence of CGP55845A. D: C: Summary graph illustrating disynaptic input-
specific facilitation of LTP induction in GABAB(1a)-/- and GABAB(1b) -/- mice. scale bars: 5mv, 50 ms. 
 

Deficits in cued fear conditioning in GABAB(1b) -/- mice  

The above results suggest that in GABAB(1b)  -/- mice, the thalamic inhibitory and 

excitatory synapses are specifically changed resulting in lower threshold for induction of 

LTP. To investigate the impact of this input-specific facilitation of LTP on emotional 

behavior, GABAB(1b) -/- mice were tested for auditory fear conditioning, a paradigm 

which widely used to test fear memory formation and the behavioral read-out of synaptic 

plasticity change. Animals were exposed either to tone (CS+); paired with shock; or to 

different tone (CS-); without footshock, 24 hours after training session mice were tested 

for fear memory formation (see Methods). In GABAB(1b) -/- mice we found a clear 

impairment in cued fear conditioning. Pairing of tone with footshock elicited fear 



  Results        91 

 -91- 

response in wild type mice that can be measured as percent of freezing. GABAB(1b) -/- 

mice showed less freezing behavior (n=9; P<0.05) relative to wild-type mice (Fig. 32A). 

To test whether GABAB(1b)  -/- have different pain sensitivity than wild type, we repeated 

the whole set of experiments with a higher intensity footshock (0.9 mV). High intensity 

footshock, however, did not change the GABAB(1) -/- mice behavior in response to the 

CS+ or CS- (n=9, P<0.001) (Fig. 32B). Furthermore, we investigated the pain threshold of 

the mice by applying different footshock intensities and observed the first movement or 

the vocalization of the mice when reaching the pain threshold (Fig 32C). In our 

experiment, GABAB(1b)  -/- and wild type mice showed similar pain sensitivity (Fig 32C). 
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Figure 32) GABAB(1b) -/- mice exhibit specific deficits in fear learning A: Cued fear conditioning is 
impaired in GABAB(1b) -/- (n=9; P<0.05) mice relative to wild-type BALB/c animals (n=7). GABAB(1b) -/- 
mice cannot discriminate between the CS+ (7.5 kHz, 80 dB tone) paired with the footshock) and the CS- (3 
kHz, 80 dB; unpaired). B: Higher shock intensity ( 0.9 mv) does not change the response to either CS+ or 
CS-. C: Control of pain sensitivity of GABAB(1b) -/- mice. Right; flinching is similar to Wild type mice; 
Left; vocalization after footshock in GABAB(1b) -/- mice is similar to wild-type mice. 
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5.3.4. Discussion 
 
Pavlovian auditory fear conditioning results in long-lasting changes in synaptic 

transmission in the LA. In this experimental paradigm a neutral conditioned stimulus 

(CS) such as a tone is paired with an unconditioned stimulus (US), such as footshock 

(Quirk et al. 1995; McKernan and Shinnick-Gallagher 1997; Rogan et al. 1997; Collins 

and Pare 2000; Repa et al. 2001). Because inhibition was shown to play a critical role in 

fear memory formation (Li et al. 1996; Lang and Pare 1997), we focused on inhibition 

conducted by GABAB receptors. Many studies showed that GABABR-mediated 

inhibition regulates synaptic transmission in the LA (Asprodini et al. 1992; Li et al. 1996; 

McDonald et al. 2004). We first investigated the functionality of GABABRs in the LA. 

Our results show that GABABRs are functioning at thalamic and cortical synapses (Fig. 

27). GABABRs blockade facilitates the induction of LTP at thalamic afferents, although a 

weak subthreshold protocol was used, which does not induce LTP in control conditions 

(Fig. 28B). Thus, under physiological conditions GABAB receptors would increase the 

threshold for the induction of LTP at thalamic afferent. 

Our results show that homosynaptic LTP at thalamic synapses was blocked by an 

NMDAR antagonist (Fig. 28D). Moreover, incorporation of Ca+2 chelator in the patch 

pipette prevents the induction of LTP, suggesting that elevation of postsynaptic Ca2+ 

concentration is involved in the induction mechanism. This indicates a postsynaptic 

induction mechanism. Furthermore, this LTP was associated with no change in paired-

pulse ratio, indicating that a presynaptic mechanism is not involved.  

Is this facilitation of thalamic LTP due to the blockade of pre- or postsynaptic 

GABABRs? Many studies showed a possible discrimination between pre- versus 

postsynaptic GABABR-mediated inhibition (Lambert and Wilson 1993; Phelan 1999; 

Yamada et al. 1999). In all these studies the specificity of the used pharmacological 

drugs, were questionable. Therefore, we used molecular tools to discriminate between 

pre- and postsynaptic GABAB receptor. Studies using Western blotting and 

immunohistochemistry with isoform-specific antisera showed that there is differential 

subcellular localization pointing at a pre- versus postsynaptic localization for GABAB(1a) 

and GABAB(1b), respectively (Kaupmann et al. 1998; Bischoff et al. 1999). In our 

previous study we showed that presynaptic GABABR- mediated inhibition at cortico-
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amygdala afferents is specifically mediated by GABAB heteroreceptor composed of 

predominantly GABAB(1a) isoforms dimerized with GABAB(2) subunit. Here we showed 

that at thalamic synapses GABAB(1a) isoforms are predominantly presynaptically 

localized, whereas GABAB(1b) isoforms are mostly postsynaptically localized (Fig. 29). 

Our results show that presynaptic GABABR-mediated inhibition was strongly reduced in 

GABAB(1a) and postsynaptic inhibition was partially reduced in both genotypes (Fig. 29). 

This indicates some compensatory mechanism in the postsynaptic site. To explore the 

impact of this different inhibitory strength in knockout mice, we investigated the 

induction of LTP at thalamic afferents in both genotypes. GABAB(1a) -/- mice did not 

show facilitation of LTP induction in thalamic afferent, similar to control condition in the 

absence of CGP55845A (Fig. 30). This indicates that presynaptic inhibition at thalamic 

afferent is not affecting the induction of LTP in the projecting neurons, which is in 

agreement with result showed in (Fig. 28). Thus, thalamic LTP is most likely 

postsynaptically induced and expressed. Indeed, other studies showed that LTP at 

thalamic afferents is induced and expressed postsynaptically (Weisskopf et al. 1999; 

Bissiere et al. 2003; Humeau et al. 2005; Rumpel et al. 2005). This would suggest that 

any change in postsynaptic GABAB inhibitory input would specifically facilitate the 

induction of LTP only in thalamic afferents. Surprisingly, facilitation of the induction of 

LTP at thalamic afferents was specifically in GABAB(1b) -/- mice and not in GABAB(1a) -/- 

mice (Fig. 31). In our previous study we showed that postsynaptic GABAB-mediated 

inhibition by the induction of outward K+ current was equally reduced in GABAB(1a) -/- 

and GABAB(1b) -/- mice. The reason why this thalamic homosynaptic LTP was induced 

only in GABAB(1b) -/- and not GABAB(1a) -/- is not clear and needs more future 

investigations. A possible explanation to this paradoxical discrepancy is that GABAB(1b) 

subunit would be specifically coupled to other effectors (e.g., mGluR, ATF, PKA, PKC ) 

(Calver et al. 2002; Bettler et al. 2004) than GABAB(1a) and by that specifically modulate 

postsynaptic LTP induction at thalamic afferents. Alternatively, GABAB(1b) receptors 

could be localized postsynaptically more close to the synaptic input than GABAB(1a) 

receptors so that they have stronger control of the synaptic inputs. This differential 

synaptic localization at the postsynaptic cell could not be observed in our experiments set 
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as we applied high concentration of baclofen (100�M) that activate all GABABR 

subtypes irrespective of its location. 

Homosynaptic LTP at thalamic afferents in GABAB(1b) -/- mice was abolished by 

incorporation of  BAPTA in the postsynaptic neuron (Fig. 31). Similar to thalamic 

afferents LTP induced in wild type mice in the presence of CGP55485A. Further 

experiment would be needed to test if this LTP also needs postsynaptic NMDA receptor 

activation.  

It is well established that stimulation of thalamic or cortical afferents produces an IPSP in 

excitatory cells mediated by GABAA and GABAB receptors (Sugita et al. 1993; Li et al. 

1996). Thus, stimulation of either thalamic or cortical inputs would also stimulate 

inhibitory feed-forward inhibition. Recording disynaptic IPSCs from a projecting neuron 

showed a facilitation of LTP induction only at cortical afferents in GABAB(1a) -/- mice 

and specifically at thalamic afferents in GABAB(1b) -/- mice similar to the input specific 

facilitation at excitatory synapses (Fig. 30, 32). A previous study (Bissiere et al. 2003) 

reported a feed-forward inhibition at the thalamic afferents that can be modulated by 

dopamine receptors. Also, a recent study (Bauer and LeDoux 2004) reported that isolated 

GABAergic IPSPs between inhibitory and excitatory neurons could be potentiated. 

Additionally, endocannabinoid-dependent LTD was also reported in other previous study 

in isolated IPSPs (Marsicano et al. 2002). Whether potentiation of the disynaptic IPSCs 

occurs at excitatory inputs onto interneuron or at interneuron axons onto projecting 

neurons, is less clear. Further experiments would be required to investigate the site of 

synapses potentiation.  

This input-specific facilitation of LTP induction in glutamatergic and GABAergic 

synapses would certainly affect the formation of fear memory. Behavioral analysis of 

GABAB(1b) -/- mice revealed impairment in associating CS with US (Fig. 32). Although 

we tried even stronger footshock intensity to examine if the GABAB(1) -/- mice have 

different pain perception, the results were similar with the lower intensity footshock (Fig. 

32). Future experiments should reveal if GABAB(1b)  -/- mice do freeze by US other than 

footshock (e.g., fox odour). 

In our previous study we observed generalization of conditioned fear in GABAB(1a) -/- 

mice. Here, we observed fear learning deficit in GABAB(1b) -/- mice, presumably due to 
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the recorded invitro facilitation of postsynaptic LTP induction at thalamic afferents. The 

loss of postsynaptic GABAB-mediated inhibition in the thalamic afferents would decrease 

the threshold for LTP induction in the postsynaptic cell. Induction of associative NMDA 

receptor-dependent LTP in the LA is thought to underlie the acquisition of classical fear 

conditioning in rodents (LeDoux 2000; Maren and Quirk 2004; Rumpel et al. 2005). 

Associative LTP induction protocol at thalamic afferents requires pairing presynaptic 

activation with postsynaptic depolarization (Humeau et al. 2002; Bissiere et al. 2003; 

Humeau et al. 2003). Furthermore, it was reported that GABABR-mediate inhibition of 

the NMDA component of synaptic transmission in the rat hippocampus (Morrisett et al. 

1991) and rat amygdala (Huang and Gean 1994). 

Here we report homosynaptic LTP at thalamic afferents that can be induced 

postsynaptically at lower LTP induction threshold. This lowering of LTP induction 

threshold would lead to wide-ranging activation in the whole LA network irrespective of 

the input afferents. This is possibly why GABAB(1b) -/- mice show impairment in fear 

learning as homosynaptic LTP would be unspecifically facilitated and occlude further 

induction of LTP during fear learning. However, we can not exclude the loss of 

GABAB(1b)R-mediated inhibition in other amygdala nuclei than LA that would also lead 

to impairment in fear learning like the BL or the output nuclei CE. Moreover, other brain 

area up- and/or downstream from the amygdala could be also affected specifically in 

GABAB(1b) -/- mice that would affect the fear learning process. 

The diversity of these memory effects makes it difficult to identify a common 

mechanism. The widespread distribution of GABABRs in the brain and the numerous 

modulatory effects on various synapses leave ample room for speculations.  

Taken together, here we show that GABAB(1b) receptors are mostly postsynaptically 

localized and mediate postsynaptic inhibition that keep NMDAR from the activation 

threshold and by that facilitate its function as associative detector of network activity. 

The loss of this postsynaptic GABABR-mediated inhibition leads to unspecific induction 

of LTP and impairment of fear learning. 

Although GABA-mediated neurotransmission has long been known to have a crucial role 

in anxiety, data on the specific role of GABAB receptors are limited and variable (Millan 
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2003). A recent study showed that GABAB(1) -/- mice are more anxious than their wild 

type counterparts in several anxiety-related tests such as the light–dark box and staircase 

test (Mombereau et al. 2005). Interestingly, the anxiolytic-like effects of benzodiazepines 

are markedly diminished in GABAB(1)-/- mice (Mombereau et al. 2004; Mombereau et al. 

2004).  

Our data indicate that activation of GABAB receptors might reduce anxiety. Indeed, the 

specific GABABR agonist baclofen clinically demonstrated reversal effect on anxiety 

associated with alcohol withdrawal (Addolorato et al. 2002), post-traumatic stress (Drake 

et al. 2003), panic disorder (Breslow et al. 1989) and traumatic spinal-cord lesions 

(Hinderer 1990). More recently, the positive modulator GS39783 has been shown to be 

active in several animal models of anxiety (Cryan et al. 2004; Mombereau et al. 2004; 

Cryan and Kaupmann 2005). Therefore, more studies, focusing on behavioral and 

electrophysiological responses of GABAB receptor activation in LA, are needed. 

Inhibitory inputs firmly control the activity of projecting LA principal cells (LeDoux 

2000). The neuronal population in LA, however contains about 5-10 % interneurons, 

which have a lower spike threshold and show no spike frequency adaptation, so that 

strong stimulation of afferent inputs to LA produces a predominantly hyperpolarizing 

response in excitatory cells (Rainnie et al. 1991; Lang and Pare 1997). Moreover, IPSPs 

truncate evoked and spontaneous EPSPs in excitatory neurons. This suggests that IPSP 

potentiation would lead to change in the input–output functions of LA principal cells 

(Lang and Pare 1997; Gaiarsa et al. 2002).  

 

In conclusion, we show that postsynaptic GABAB receptors control the threshold for the 

induction of LTP at thalamic afferents. This potentiation of synaptic transmission at 

thalamic afferents requires postsynaptic Ca2+ elevation and NMDA receptors activation. 

Finally we assume that localization of GABAB(1b)  subunit isomer in the postsynaptic site 

would probably play a key role in regulating fear memory formation. 
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In this paper I have done the electrophysiological investigations in the hippocampal 

slices. I could detect atypical electrophysiological GABAB responses in hippocampal 

slices of GABAB(2)
-/- mice (Fig 37). I have showed the loss of presynaptic GABAB 

functions in GABAB(2)
-/- mice (Fig37). Specifically, I have demonstrated that GABAB(2) 

-/- 

mice lack functional GABAB heteroreceptors on Schaffer collateral terminals (Fig. 37). 

Moreover, I have showed that hippocampal interneurons lack GABAB autoreceptors in 

GABAB(2) 
-/- mice (Fig. 37). I have investigated this atypical GABABR response in 

GABAB(2) -/- mice and I have showed that GABAB receptors inhibit instead of activate 

K+ channels in GABAB(2)
-/- mice (Fig. 38) 

 

5.4.1. Summary 

GABAB receptors mediate slow synaptic inhibition in the nervous system. In transfected 

cells, functional GABAB receptors are usually only observed after coexpression of 

GABAB(1) and GABAB(2)
 subunits, which established the concept of heteromerization for 

G-protein-coupled receptors. In the heteromeric receptor, GABAB(1) is responsible for 

binding of GABA, whereas GABAB(2)
 is necessary for surface trafficking and G-protein 
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coupling. Consistent with these in vitro observations, the GABAB(1) subunit is also 

essential for all GABAB signaling in vivo. Mice lacking the GABAB(1) subunit do not 

exhibit detectable electrophysiological, biochemical, or behavioral responses to GABAB 

agonists. However, GABAB(1) exhibits a broader cellular expression pattern than 

GABAB(2), suggesting that GABAB(1) could be functional in the absence of GABAB(2). We 

now generated GABAB(2)-deficient mice to analyze whether GABAB(1) has the potential 

to signal without GABAB(2) in neurons. We show that GABAB(2)
-/- mice suffer from 

spontaneous seizures, hyperalgesia, hyperlocomotor activity, and severe memory 

impairment, analogous to GABAB(1)
-/- mice. This clearly demonstrates that the lack of 

heteromeric GABAB(1,2)
 receptors underlies these phenotypes. To our surprise and in 

contrast to GABAB(1)
-/- mice, we still detect atypical electrophysiological GABAB 

responses in hippocampal slices of GABAB(2)
-/- mice. Furthermore, in the absence of 

GABAB(2), the GABAB(1) protein relocates from distal neuronal sites to the soma and 

proximal dendrites. Our data suggest that association of GABAB(2) with GABAB(1) is 

essential for receptor localization in distal processes but is not absolutely necessary for 

signaling. It is therefore possible that functional GABAB receptors exist in neurons that 

naturally lack GABAB(2)
 subunits. 

 

5.4.2. Introduction 
 

 GABA, the predominant inhibitory neurotransmitter in the mammalian nervous system, 

signals through ionotropic GABAA and metabotropic GABAB receptors. GABAB 

receptors are coupled to G-proteins and modulate synaptic transmission by activating 

postsynaptic inwardly rectifying Kir3-type K+ channels and by controlling 

neurotransmitter release (Bowery et al. 2002; Calver et al. 2002; Bettler et al. 2004) 

Molecular studies on GABAB receptors provide compelling evidence for 

heteromerization among G-protein-coupled receptors (GPCRs) (Marshall et al. 1999); 

(Mohler et al. 2001). Most experiments with cloned GABAB(1)and GABAB(2) subunits 

expressed in heterologous cells and sympathetic neurons (Filippov et al. 2000) indicate 

that individual subunits are functionally inert unless they are co-expressed. GABAB 

receptors therefore appear different from other heterodimeric GPCRs in which individual 
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subunits are functional when expressed alone (Bouvier 2001). In the GABAB heteromer, 

the GABAB(1) GABAB(1) subunit binds GABA and all competitive GABAB ligands 

(Kaupmann et al. 1998), whereas the GABAB(2) subunit is responsible for escorting 

GABAB(1) to the cell surface and for activating the G-protein (Margeta-Mitrovic et al. 

2000; Margeta-Mitrovic et al. 2001); (Calver et al. 2001); (Galvez et al. 2001); (Pagano 

et al. 2001); (Robbins et al. 2001). Two GABAB(1) isoforms, GABAB(1a) and GABAB(1b), 

arise by differential promoter usage (Kaupmann et al. 1997); (Bettler et al. 2004). Thus 

far, the data support the existence of two predominant, yet pharmacologically 

indistinguishable, GABAB receptors in the nervous system, the heteromeric GABAB(1a), 2 

and GABAB(1b), 2 receptors GABAB(1)-/- mice do not exhibit detectable GABAB responses 

in a variety of experimental paradigms, demonstrating that GABAB(1) is not only essential 

for GABAB signaling in vitro but also in vivo (Prosser et al. 2001); (Schuler et al. 2001); 

(Queva et al. 2003). However, no in vivo experiment addressed whether GABAB(1) can 

assemble functional GABAB receptors by itself or in association with a protein other than 

GABAB(2). In support of a separate role, GABAB(1) exhibits a more widespread cellular 

distribution than does GABAB(2) ((Kaupmann et al. 1998; Clark et al. 2000; Ng and Yung 

2001; Burman et al. 2003; Kim et al. 2003; Kulik et al. 2003; Li et al. 2003). 

Furthermore, at odds with a strict requirement of GABAB(2) for plasma membrane 

delivery, GABAB(1) was originally cloned by surface expression in mammalian cells 

(Kaupmann et al. 1997). Additionally, GABAB(2) occasionally yields electrophysiological 

or biochemical responses when transfected alone into heterologous cells (Kaupmann et 

al. 1997; Kaupmann et al. 1998)It is therefore conceivable that GABAB(1) is functional 

either alone or in combination with an unknown protein. However, it remains unclear 

whether sporadic endogenous expression of GABAB(2) in heterologous cells is responsible 

for the surface expression and the responses that were seen when GABAB(1) was 

transfected alone. To clarify whether GABAB(1) can participate in functional GABAB 

receptors in the absence of GABAB(2) subunit-with collaboration with Bettler B. group- 

GABAB(2) knockout mice was generated.  

Methods 
Generation and analysis of GABAB(2)

-/- mice: GABAB(2)
-/- mice were generated in the 

BALB/c inbred strain using a newly established BALB/c embryonic stem (ES) cell line. 
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A targeting construct was designed containing a neomycin resistance cassette (pRay-2; 

GenBank accession number U63120 ) flanked by 4.5 and 1.8 kb of genomic GABAB(2) 

DNA that was amplified from a C57BL/6 bacterial artificial chromosome. Homologous 

recombination was confirmed by Southern blot analysis (Fig. 33A, B). Selected ES cell 

clones were microinjected into C57BL/6 blastocysts. Chimeric males were crossed with 

BALB/c females, resulting in an F1 generation of inbred BALB/c GABAB(2)
+/- mice. 

GABAB(2)
+/- mice were viable and fertile and allowed the generation of GABAB(2)

-/- mice 

in the F2 generation. The probes used in Northern blot analysis (Fig. 33C) hybridize to 

exons 4-8 and exons 11-15 upstream (5' probe) and downstream (3' probe) of the deletion, 

respectively (Martin et al. 2001). For in situ hybridization (Fig. 33D), antisense 

oligonucleotides corresponding to nucleotides 2039-79 and 1810-54 of the rat GABAB(1a) 

(GenBank accession number Y10369 ) and GABAB(2) (GenBank accession number 

AJ011318) cDNAs, respectively, were used. The probes were radiolabeled with 

[35S]dATP (NEG0345H; NEN, Boston, MA) using terminal deoxynucleotidyl transferase 

(Promega, Madison, WI). For immunoblot analysis (Fig. 33E, F), polyclonal antibodies 

directed against the C terminus of GABAB(2)
 (AB5394; Chemicon, Temecula, CA), the C 

terminus of GABAB(1)
 (antibody 174.1) (Malitschek et al., 1998), the N terminus of 

GABAB(2) (antibody N22) (Kaupmann et al., 1998), and mouse calreticulin (ab4; Abcam, 

Cambridge, UK) were used. Monoclonal antibodies were used to detect PSD-95 

(postsynaptic density protein-95) (MAB1598, Chemicon) and syntaxin (Sigma, St. Louis, 

MO). Blots were exposed to HRP-conjugated secondary antibodies [NA9340 (Amersham 

Biosciences, Little Chalfont, UK); A5545 and A0168 (Fluka, Buchs, Switzerland)] and 

developed using the ECL chemiluminescent detection system (RPN2016; Amersham 

Biosciences). Brain membrane preparations, ligand binding assays, and receptor 

autoradiography were performed as described previously (Olpe and Karlsson 1990; 

Kaupmann et al. 1997). Synaptic plasma membranes were isolated from the P2 pellets of 

brain lysates by combined flotation-sedimentation density-gradient centrifugation (Jones 

and Matus 1974). [3H]CGP62349 (80 Ci/mmol), [3H]CGP54626 (40 Ci/mmol), 

[125I]CGP71872 (2000 Ci/mmol), and [125I]CGP64213 (2000 Ci/mmol) were purchased 

from ANAWA (Wangen, Switzerland). [35S]GTP�S (1000 Ci/mmol) was obtained from 

Amersham Biosciences. Nonradio-active GABAB receptor ligands were from Novartis 
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(Basel, Switzerland). [35S]GTP S binding was performed with 20 µg of membrane 

protein, 0.2 nM [35S]GTP�S, and test compounds in 96-well Packard (Meridian, CT) Pico-

Plates as described previously (Urwyler et al., 2001). 

 

 
Figure 33). Characterization of GABAB(2)

-/- mice. A, Top, GABAB(2) locus encompassing exons 8-11, 
encoding part of the N-terminal and the transmembrane (TM) domains 1 and 2. Bottom, GABAB(2) allele 
after homologous recombination with a targeting construct containing a neomycin resistance cassette (neo) 
flanked by 4.5 and 1.8 kb of genomic DNA (bold lines). Exons 9 and 10 (3.5 kb, black boxes) are deleted. 
The Southern blot probe used in B is indicated. H, HindIII; E, EcoRI; B, BamHI. B, Southern blot analysis 
of EcoRI cut genomic DNA from wild-type (+/+), GABAB(2)

+/- (+/-), and GABAB(2)
-/- (-/-) mice. C, Top, 
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Northern blot analysis of total brain RNA hybridized with GABAB(2) cDNA probes upstream (5' probe) and 
downstream of the deletion (3' probe). The probes hybridize to a band just above the 28 S ribosomal RNA 
(arrow) in wild-type and GABAB(2)

+/-, but not in GABAB(2)
-/-, mice. Bottom, Blots from top panels stained 

with methylene blue, demonstrating equal loading of RNA. Ribosomal RNA bands (18 and 28 S) are 
labeled. D, In situ hybridization analysis of GABAB(1) (1, top) and GABAB(2) (2, bottom) transcripts of 
sagittal sections from adult wild-type and GABAB(2)

-/- brains. E, Immunoblot analysis of brain extracts from 
adult mice using antibodies directed against C-terminal and N-terminal epitopes of GABAB(2) and 
GABAB(1). Antibodies to PSD-95 control for equal loading. GABAB(1a) (1a) and GABAB(1b) (1b) proteins 
are indicated. F, Immunoblot analysis demonstrating the presence of GABAB(1) protein in synaptic plasma 
membranes (SPM) purified from the P2 pellet (P2) of brain extracts of wild-type and GABAB(2)

-/- mice. 
Antibodies to calreticulin show that the synaptic plasma membrane fraction is free of ER proteins. Equal 
loading of samples was controlled with anti-syntaxin antibodies. To detect putative truncated GABAB(2) 
proteins, we used 15% SDS-PAGE and N-terminal GABAB(2) antibodies. In all other immunoblot 
experiments, we used 10% SDS-PAGE. 
 

Immunohistochemistry: Immunoperoxidase staining was performed in brain sections of 

adult mice using guinea pig antisera against GABAB(2) (1:5000; AB5394; Chemicon) 

and GABAB(1) (1:3000; AB1531; Chemicon). Mice were deeply anesthetized with 

Nembutal (50 mg/kg) and perfused through the ascending aorta with 4% 

paraformaldehyde in 0.15 M phosphate buffer. Brains were postfixed for 3 hr, processed 

for antigen retrieval using microwave irradiation (Fritschy et al. 1998), cryoprotected in 

sucrose, and cut at 40 µm with a sliding microtome. The immunoperoxidase staining was 

performed using diaminobenzidine as chromogen (Fritschy et al. 1999). Tissue from 

different genotypes was processed together to minimize variability attributable to the 

staining procedure. Sections were analyzed by light microscopy (Axioskop; Zeiss, Jena, 

Germany) and photographed with a high-resolution digital camera.  

Electrophysiology: Transverse hippocampal slices (350-µm-thick) from 3- to 4-week-old 

mice were prepared. Slices were maintained for 45 min at 35°C in an interface chamber 

containing saline equilibrated with 95% O2 and 5% CO2 and containing the following (in 

mM): 124 NaCl, 2.7 KCl, 2 CaCl2, 1.3 MgCl2, 26 NaHCO3, 1.24 NaH2PO4, 18 glucose, 

and 2.25 ascorbate. Slices were then kept for at least 45 min at room temperature before 

being transferred to a superfusing recording chamber. Whole-cell recordings from CA1 

pyramidal cells were performed at 30-32°C using infrared videomicroscopy to visualize 

cells. Patch electrodes (3-5 M	) were filled with a solution containing the following (in 

mM): 140 Cs-gluconate, 10 HEPES, pH 7.25, 10 phosphocreatine, 5 QX-314-Cl, 4 Mg-

ATP, and 0.3 Na-GTP (295 mOsm). For measurements of postsynaptic holding currents 

(at -50 mV, in 0.5 µM TTX), Csgluconate was replaced by equimolar K-gluconate, and 
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QX-314 was omitted. Synaptic currents were elicited every 15 sec using a bipolar 

platinum-iridium electrode (diameter, 25 µm). EPSCs were measured at -70 mV in the 

presence of picrotoxin (100 µM). IPSCs were measured at 0 mV in the presence of 

kynurenic acid (2 mM). All experiments assessing presynaptic GABAB receptor function 

were performed in the presence of BaCl2 (200 µM) to prevent the activation of 

postsynaptic Kir3 channels. BaCl2
 did not affect the EPSC or IPSC amplitudes. Current-

voltage (I-V) relationships were assessed by ramp-command protocols (from -40 to -140 

mV, 250 msec duration) before and after the application of agonists, and the agonist-

induced I-V relationship was derived by subtraction. Data were recorded with an 

Axopatch 200B (Axon Instruments, Union City, CA), filtered at 2 kHz, and digitized at 

10 kHz. Data were acquired and analyzed with the LTP Program (W. Anderson, 

University of Bristol, Bristol, UK) (Anderson and Collingridge, 2001) or with pClamp8.0 

(Axon Instruments). All membrane potentials were corrected for the experimentally 

measured liquid junction potential of 11 mV for the internal K-gluconate solution. Slope 

conductance was determined between -140 mV and the reversal potential. Series 

resistance was monitored throughout the experiments by applying a hyperpolarizing 

pulse, and, if it changed >15%, the data were not included in the analysis. All values are 

expressed as means ± SEM. Statistical comparisons were done with paired or unpaired 

Student's t test as appropriate, at a significance level of 0.05. GABAB receptor ligands 

were from Novartis. Non-GABAergic drugs were from Fluka. 

 

Electroencephalogram measurements: Electroencephalogram (EEG) measurements were 

performed as described previously (Schuler et al. 2001; Kaupmann et al. 2003). The 

behavior of the mice, which were individually housed in wooden observation cages, was 

monitored with a video system. EEGs were amplified using an isolated four-channel 

bipolar EEG amplifier (EEG-2104; Spectralab, Maharashtra, India), recorded on a thermo 

recorder (MTK95; Astro-Med, West Warwick, RI), and stored on disk.  

 

Measurement of core body temperature, locomotor activity, rotarod, and memory 

performance: Rectal temperature was determined to the nearest 0.1°C as described 

previously (Schuler et al. 2001; Kaupmann et al. 2003). Statistical analysis was 
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performed using repeated-measures ANOVA, followed by Fisher's least significant 

difference test when appropriate. Locomotor activity was recorded using a color video 

camera, surveying the open field, and analyzed using EthoVision 1.90 software (Noldus 

Information Technology, Wageningen, The Netherlands). To assess rotarod performance, 

mice were trained to stay on the rotarod (12 rpm) for 300 sec over two separate sessions 

the day before the experiment. During the test day, the length of time each mouse 

remained on the cylinder ("endurance time"; maximal score of 300 sec) was measured 

immediately before (time 0) and 1, 2, and 4 hr after the application of L-baclofen (12.5 

mg/kg) or vehicle (0.5% methylcellulose). The dose of baclofen that shows maximal 

effects on rotarod performance was determined in previous studies (Schuler et al. 2001). 

Memory performance in the passive avoidance test was performed as described 

previously (Venable and Kelly 1990; Schuler et al. 2001).  

 

Nociceptive tests: Heat or mechanical nociceptive stimuli were used in the 

antinociceptive tests as described previously (Schuler et al. 2001). The hotplate (Eddy 

and Leimbach 1953), tail-flick (D’Amour FE 1941), and the paw-pressure tests (Randall 

and Selitto 1957) are well established techniques to assess acute pain. The tail flick is a 

reflex response to a noxious thermal stimulus applied to the tail and is generally held to 

represent a spinal reflex response, whereas the hotplate response to a noxious thermal 

stimulus to the plantar surface of the paws is thought to involve supraspinal sites.  

 

5.4.3. Results 
 

Previous experiments showed that only GABAB(1)
-/- mice generated in the inbred BALB/c 

genetic background are viable (Prosser et al. 2001; Schuler et al. 2001; Queva et al. 

2003). We therefore ablated the GABAB(2) gene in BALB/c ES cells (Fig. 33A). Southern 

blot analysis confirms deletion of exons 9 (81 bp) and 10 (151 bp), encoding part of the 

N-terminal extracellular and the first transmembrane domain of GABAB(2) (Fig. 33B). 

BALB/c GABAB(2)
-/- mice are viable, occur at a Mendelian ratio, and do not express 

detectable GABAB(2) mRNA, as shown by Northern blot analysis using hybridization 

probes flanking the GABAB(2)
 gene deletion (Fig. 33C). This demonstrates that any 
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truncated mRNA produced from the 5' part of the GABAB(2) gene is highly unstable. The 

complete lack of GABAB(2) mRNA is confirmed by in situ hybridization (Fig. 33D). 

Hence, GABAB(2)
-/- mice do not express any full-length or truncated GABAB(2) protein, as 

shown by immunoblotting using antibodies directed against extreme C- or N-terminal 

epitopes (Fig. 33E). Immunoblot analysis further reveals that GABAB(2)
+/- mice express 

less GABAB(2) protein than wild-type mice. A densitometric analysis of in situ 

hybridizations from several brain sections reveals that GABAB(1) mRNA expression in 

GABAB(2)
-/- mice is not significantly changed when compared with wild-type littermates 

(Fig. 33D). However, immunoblot analysis indicates an ~50 and 90% reduction of 

GABAB(1) protein in GABAB(2)
+/- and GABAB(2)

-/- mice, respectively (Fig. 33E). This is 

reminiscent of the almost complete absence of GABAB(2) protein previously seen in 

GABAB(1)
-/- mice and yet again demonstrates that the two subunits cross-stabilize each 

other (Prosser et al. 2001; Schuler et al. 2001; Queva et al. 2003). Despite this 

considerable downregulation, we clearly detect GABAB(1) protein in synaptic plasma 

membrane preparations of GABAB(2)
-/- mice (Fig. 33F). This indicates that in vivo some 

GABAB(1) protein exits the endoplasmatic reticulum (ER) in the absence of the GABAB(2) 

subunit. 

Redistribution of GABAB(1) in GABAB(2)
-/- neurons 

The regional and cellular distribution of GABAB subunits was investigated using 

antibodies recognizing GABAB(2) or the common C terminus of GABAB(1a) and 

GABAB(1b) (Fig. 34). A comparison of GABAB(2)-immunoreactivity (IR) and GABAB(1)-

IR in adjacent sections of wild-type mice reveals a mostly overlapping distribution 

throughout the brain, with strong staining in cerebellum, thalamus, and hippocampal 

formation (Fig. 34A). In GABAB(2)
+/- mice, GABAB(2)-IR is reduced in all brain regions, 

whereas GABAB(1)-IR remains similar to wild-type mice. In GABAB(2)
-/- mice, a partial 

expression of GABAB(1)-IR is still seen in most brain regions, contrasting with the 

complete loss of GABAB(2) expression. At higher magnification, GABAB(1)-IR in 

GABAB(2)
-/- mice exhibits a strikingly different cellular distribution than in wild-type 

mice, as illustrated for the hippocampal formation (Fig. 34B). The homogeneous, diffuse 

staining of the neuropil is almost reduced to background level, whereas the cell body 

layers, which normally are weakly labeled in wild-type mice, now appear very prominent. 
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In addition, some scattered hippocampal interneurons are more evident in GABAB(2)
-/- 

than in wild-type mice. The GABAB(1)-IR prominently outlines the soma and the 

proximal dendrites of these isolated interneurons, shown at higher magnification in 

Figure 34C. Similar results were observed throughout the brain, with an apparent 

accumulation of GABAB(1)-IR in the soma and proximal dendrites and a corresponding 

reduction of neuropil staining (data not shown). This staining was specific because no 

GABAB(1)-IR was detected in brain sections from GABAB(1)
-/- mice, which were used as a 

control (data not shown). It is impossible to conclusively determine whether the 

GABAB(1)-IR seen in GABAB(2)
-/- mice is partly associated with the plasma membrane or 

not. However, the strong GABAB(1)-IR in proximal dendrites of scattered interneurons, as 

shown in the hippocampal formation (Fig. 34B,C) and the biochemical (Fig. 33F) and 

electrophysiological data (see below) (see Fig. 37) all suggest that this is the case. 

Altogether, our immunohistochemical analysis suggests that GABAB(1) fails to efficiently 

localize at distal neuronal sites in the absence of GABAB(2). 
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Figure 34) Alteration of GABAB receptor-IR in GABAB(2)

-/- brains. A, Effect of GABAB(2) gene deletion on 
the distribution of GABAB(2)-IR (2) and GABAB(1)-IR (1), as visualized in color-coded parasagittal sections 
from adult wild-type (+/+), GABAB(2)

+/- (+/-), and GABAB(2)
-/- (-/-) mice. The color scale is indicated. The 

reduced expression of GABAB(2) in GABAB(2)
+/- mice and the complete loss of expression in GABAB(2)

-/- 
mice are evident throughout the brain (top). GABAB(1)-IR is retained in GABAB(2)

+/- mice and partly 
reduced in GABAB(2)

-/- mice, in which it exhibits an altered cellular distribution, as seen in the hippocampus 
(bottom). The residual GABAB(1)-IR in GABAB(2)

-/- mice is not caused by nonspecific binding of the 
secondary antibodies, which are the same for GABAB(1) and GABAB(2). The specificity of the GABAB(1) 
antiserum was also tested in GABAB(1)

-/- mice, in which no specific staining was observed (data not shown). 
B, Color photomicrographs of the hippocampal formation stained for GABAB(1) in adult wild-type and 
GABAB(2)

-/- mice. The pronounced increase of IR in the CA1-CA3 pyramidal cell layer and in the dentate 
gyrus granule cell layer (DG) contrasts with the strong reduction in the dendritic layers [stratum oriens (so), 
stratum radiatum (sr), stratum lucidum (sl), and molecular layer (ml)]. C, Enlargement of the framed areas 
in B. Numerous interneurons, which are primarily hidden in sections from wild-type mice because of the 
homogeneous staining, appear more strongly labeled in GABAB(2)

-/- mice but with a normal distribution and 
morphology. Scale bars: A, 2 mm; B, 200 µm. 
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Radioligand binding studies in GABAB(2)
-/- mice 

All known competitive GABAB ligands bind exclusively to the GABAB(1) subunit 

(Kaupmann et al. 1998; Kniazeff et al. 2002). We therefore used antagonist radioligand 

binding to analyze GABAB(1) binding sites in GABAB(2)
-/- mice. Saturation binding 

experiments at brain membrane preparations with [125I]CGP64213 failed to detect 

significant numbers of GABAB(1) binding sites in GABAB(2)
-/- mice (Fig. 35A). The failure 

to detect antagonist radioligand binding at neuronal membranes from GABAB(2)
-/- brains 

precludes agonist displacement studies. We were therefore unable to determine whether 

GABAB agonist affinity is lower in GABAB(2)
-/- mice, as one would expect from previous 

recombinant work showing that GABAB(2) increases agonist affinity at GABAB(1) by 

100-fold (Marshall et al. 1999). More sensitive detection systems, such as 

[125I]CGP71872 photoaffinity labeling (Fig. 35B) and [3H]CGP62349 autoradiography 

(Fig. 35C,D), reveal low but significant numbers of GABAB(1) binding sites in GABAB(2)
-

/- mice. Photoaffinity labeling detects both GABAB(1a) and GABAB(1b) in GABAB(2)
-/- 

tissue (Fig. 35B), in agreement with the immunoblot analysis (Fig. 33E). 
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Figure 35) GABAB(1) binding sites in GABAB(2)

-/- brains. A, Saturation isotherms for [125I]CGP64213 
antagonist binding to cortex membranes. No significant binding is detected in membranes from GABAB(2)

-/- 
mice. The number of binding sites is reduced in GABAB(2)

+/- versus wild-type mice. The maximal number 
of binding sites (Bmax) for wild-type and GABAB(2)

+/- mice are 1.4 ± 0.12 and 0.7 ± 0.05 pmol/mg protein, 
respectively; Kd values were 1.1 ± 0.06 and 0.9 ± 0.05 nM, respectively (mean ± SEM; n = 3). B, 
Autoradiograms of brain extracts from wild-type (+/+), GABAB(2)

+/- (+/-), and GABAB(2)
-/- (-/-) mice, 

labeled with the photoaffinity antagonist [125I]CGP71872 (0.5 nM) and analyzed by SDS-PAGE. Exposure 
for 8 d (8d exp.) reveals low amounts of labeled GABAB(1a) (1a) and GABAB(1b) (1b) proteins in GABAB(2)

-

/- brains. C, GABAB(1) subunit autoradiography. Sagittal cryostat sections were incubated with the GABAB 
antagonist [3H]CGP62349. Nonspecific binding was determined in the presence of an excess of 100 µM 
unlabeled L-baclofen. Tritium-sensitive x-ray films were exposed for 24 hr and developed using a Cyclone 
Storage Phosphor screen (PerkinElmer Life Sciences, Boston, MA). D, Quantitative analysis of 
[3H]CGP62349 receptor autoradiography. Individual brain regions (n = 3) were counted using the MCID 
software package (Imaging Research, St. Catharines, Ontario, Canada). The differences in radioligand 
binding between the three genotypes are significant (two-sided Dunnett test; p < 0.001 for combined 
analysis of all brain regions). A-C, Representative experiments, which were repeated three times. 
 

We next used [35S]GTP�S binding to investigate whether the residual GABAB(1) protein 

in GABAB(2)
-/- mice participates in functional receptors (Fig. 36). The [35S]GTP�S 

binding assay preferentially detects receptors that are coupled to G i/o-type G-proteins, 

the main effectors of native GABAB receptors. We did not detect any significant GABA- 

or baclofen-induced [35S]GTP S binding in GABAB(2)
-/- cortical (Fig. 36) or hippocampal 
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(data not shown) membrane preparations. This indicates that the GABAB(1) protein 

expressed in GABAB(2)
-/- mice is either not coupled to G i/o

 or not present in sufficient 

amounts to generate detectable [35S]GTP S binding. In GABAB(2)
+/- cortical membranes, 

baclofen and GABA elicit <50% of the [35S]GTP S binding seen with wild-type 

membrane preparations (Fig. 36), consistent with the reduced expression levels of 

GABAB(1) and GABAB(2) proteins (Figs.33E,35). 

 
Figure 36) [35S]GTP S binding to cortex membranes. No significant GABA-stimulated (filled symbols, 
filled lines) or baclofen-stimulated (Bac; open symbols, dotted lines) [35S] GTP S binding is detected in 
GABAB(2)

-/- membranes. [35S]GTP S binding to membranes from GABAB(2)
+/- mice is significantly reduced 

compared with wild-type mice. Values are normalized to the maximal response obtained with wild-type 
mice. 
 

Loss of presynaptic GABAB functions in GABAB(2)-/- mice 

Electrophysiology provides a more sensitive means than [35S]GTP�S binding for 

detecting functional GABAB receptors expressed by individual neurons. We therefore 

used whole-cell patch-clamp recording to examine GABAB(2) 
-/- mice for the presence of 

GABAB
 heteroreceptors and autoreceptors on excitatory and inhibitory terminals, 

respectively. We first studied excitatory synaptic transmission in the hippocampus (Fig. 
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37A, B). Stimulation in the Schaffer collateral-commissural fibers induces EPSCs in CA1 

pyramidal neurons. The amplitude of these EPSCs is reduced by the activation of 

GABAB heteroreceptors or A1 adenosine receptors that inhibit glutamate release (Schuler 

et al., 2001). Accordingly, in slices from wild-type mice, both baclofen and adenosine 

evoke the expected depression of the EPSCs (baclofen, 74.0 ± 3.2% inhibition, n = 4, p < 

0.01; adenosine, 85.5 ± 5.3% inhibition, n = 4, p < 0.01). However, only adenosine has an 

effect in slices from GABAB(2) 
-/- mice (baclofen, 0.9 ± 12.6% inhibition, n = 8; 

adenosine, 82.1 ± 7.3% inhibition, n = 6, p < 0.001).  

This demonstrates that GABAB(2) 
-/- mice lack functional GABAB heteroreceptors on 

Schaffer collateral terminals, whereas adenosine receptors are still operational and inhibit 

glutamate release. We next analyzed inhibitory synaptic transmission in the presence of 

ionotropic glutamate receptor antagonists (Fig. 37C, D). Activation of GABAB 

autoreceptors on interneurons attenuates IPSCs recorded from CA1 pyramidal neurons of 

wild-type mice (55.3 ± 5.8% inhibition; n = 7; p < 0.001). In contrast, baclofen is unable 

to inhibit IPSCs in GABAB(2) 
-/- mice (-0.5 ± 3.9% inhibition; n = 6), although the µ-

opioid receptor agonist [D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO) is still 

effective in both genotypes (wild-type, 46.5 ± 4.5% inhibition, n = 7, p < 0.001; 

GABAB(2) 
-/- mice, 58.1 ± 3.7% inhibition, n = 5, p < 0.001). These latter experiments 

show that hippocampal interneurons lack GABAB autoreceptors in GABAB(2) 
-/- mice.  
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Figure 37) Lack of baclofen-induced presynaptic inhibition in CA1 pyramidal cells of GABAB(2)

-/- mice. A, 
Excitatory synaptic transmission. Monosynaptic EPSC peak amplitudes plotted versus time and 
representative traces from wild-type (top, filled circles) and GABAB(2)

-/- (bottom, open circles) mice. Both 
baclofen (50 µM) and adenosine (100 µM) significantly depress the EPSC amplitude in wild-type mice, 
whereas baclofen and CGP55845A (2 µM) have no effect on the EPSC amplitude in GABAB(2)

-/- mice. The 
effect of adenosine is similar in both genotypes. Traces are averages of 10 consecutive sweeps. Calibration: 
40 msec, 100 pA. B, Summary graph showing the lack of baclofen-induced presynaptic inhibition of 
excitatory synaptic transmission in GABAB(2)

-/- mice (wild-type, n = 4; GABAB(2)
-/-, n = 8). Adenosine-

induced inhibition is similar in both genotypes (wild-type, n = 4; GABAB(2)
-/-, n = 6). C, Inhibitory synaptic 

transmission. Monosynaptic IPSC peak amplitudes plotted versus time and representative traces from wild-
type (top, filled circles) and GABAB(2)

-/- (bottom, open circles) mice. Both baclofen (50 µM) and the µ-
opioid agonist DAMGO (1 µM) significantly depress the IPSC amplitude in wild-type mice, whereas 
baclofen and CGP55845A (2 µM) have no effect on the IPSC amplitude in GABAB(2)

-/- mice. The effect of 
DAMGO was similar in both genotypes. Traces are averages of 10 consecutive sweeps. Calibration: 100 
msec, 200 pA. D, Summary graph showing the lack of baclofen-induced presynaptic inhibition of 
inhibitory synaptic transmission in GABAB(2)

-/- mice (wild-type, n = 7; GABAB(2)
-/-, n = 6). DAMGO-

induced inhibition was similar in both genotypes (wild-type, n = 7; GABAB(2)
-/-, n = 5). **p < 0.01; ***p < 

0.001. 
. 



  Results      114 

 -114- 

 

GABAB receptors inhibit instead of activate K+ channels in GABAB(2)-/- mice  

Postsynaptic GABAB and adenosine receptors activate a Kir3-mediated K+ conductance 

in CA1 pyramidal neurons (Luscher et al. 1997; Schuler et al. 2001). The GABAB 

receptor-activated K+ conductance underlies the late IPSP (Luscher et al. 1997). 

Accordingly, at a holding potential of -50 mV and in physiological [K+]ext, baclofen 

elicits an outward current in CA1 pyramidal cells of wild-type mice (116.2 ± 26.7 pA; n = 

5; p < 0.05) (Fig. 38A, B) that is blocked by the GABABR antagonist CGP55845A (2 µM; 

93.4 ± 12.5% inhibition; n = 4). Surprisingly, but consistent with the strong GABAB(1)-IR 

observed on the soma and proximal dendrites, a baclofen-induced current is also seen in 

CA1 pyramidal neurons of GABAB(2) 
-/- mice. However, baclofen elicits an inward instead 

of the typical outward current (-19.2 ± 4.5 pA; n = 9; p < 0.01) (Fig. 38A, B). This inward 

current can be blocked by the GABABR antagonists CGP55845A (2 µM; 99.4 ± 2.7% 

inhibition; n = 8) (Fig. 38A) and CGP62349(4 µM; 87.5 ± 8.3% inhibition; n = 5), the 

ligand that was used for autoradiographic detection of GABAB(1). Whereas the baclofen-

induced outward current in wild-type mice is associated with a decrease in the input 

resistance (-93.3 ± 25.8 M	; n = 5; p < 0.05), the inward current in GABAB(2) 
-/- mice is 

associated with an increase in input resistance (35.2 ± 12.1 M	; n = 9; p < 0.05). 
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Figure 38a. Baclofen inhibits a postsynaptic K+ conductance in CA1 pyramidal cells of GABAB(2)

-/- mice. 
A, Holding current (at -50 mV) plotted versus time for wild-type (top, filled circles) and GABAB(2)

-/- 
(bottom, open circles) mice. Whereas both baclofen (50 µM) and adenosine (100 µM) induce an outward 
current in wild-type mice, baclofen induces an inward current in GABAB(2)

-/- mice. Baclofen-induced 
effects were blocked by application of the GABAB receptor antagonist CGP55845A (2 µM) in wild-type as 
well as in GABAB(2)

-/- mice. B, Summary graph illustrating the baclofen-induced inward current at -50 mV 
in GABAB(2)

-/- mice. Baclofen-induced currents: wild-type, n = 5; GABAB(2)
-/-, n = 9. Adenosine-induced 

currents: wild-type, n = 5; GABAB(2)
-/-, n = 4. C, Current-voltage relationship of the baclofen-induced 

conductance in wild-type (black trace) and GABAB(2)
-/- (gray trace) mice. Currents were obtained by 

calculating the difference between the I-V curves before and after addition of baclofen. Whereas a current 
with a positive slope conductance is induced by baclofen in wild-type mice, a current with negative slope 
conductance is induced in GABAB(2)

-/- mice. D, Current-voltage relationship of the adenosine-induced 
conductance in wild-type mice (black trace) is not different from GABAB(2)

-/- mice (gray trace). E, Baclofen 
induces the closure of K+ channels in GABAB(2)

-/- mice. Raising extracellular [K+] concentration shifts the 
reversal potential of the baclofen-induced current. 
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Figure 38b. Baclofen inhibits a postsynaptic K+ conductance in CA1 pyramidal cells of GABAB(2)

-/- mice. 
F, The baclofen-induced conductance change is mediated by G-protein activation. In the presence of 
intracellular GDP�S (1 mM for 25 min), both the baclofen-induced (control, n = 5; GDP�S, n = 5) and 
adenosine-induced (control, n = 4; GDP�S, n = 5) currents are inhibited in GABAB(2)

-/- mice. G, Changes in 
the holding current (at -50 mV) in response to baclofen (Bacl.) after preincubation with adenosine. H, 
Summary graph illustrating that the effects of adenosine and baclofen are not fully additive. In wild-type 
neurons (+/+), the effect of a combined application of adenosine and baclofen is lower than the sum of the 
individual effects [Adenosine + Bacl. (calculated)]. In GABAB(2)

-/- (-/-) neurons, the effects of adenosine 
and baclofen are not fully additive. Application of baclofen does not obliterate the adenosine response. I, 
Left, Summary graph illustrating postsynaptic conductance changes induced by baclofen in wild-type (n = 
5), GABAB(2)

+/- (n = 10), and GABAB(1)
-/- (n = 4) mice. The conductance changes were blocked by 

application of the GABAB(1) receptor antagonist CGP55845A (2 µM; wild-type, n = 4; GABAB(2)
-/-, n = 

8). Adenosine-induced conductance changes are not different between genotypes (wild-type, n = 4; 
GABAB(2)

-/-, n = 4; GABAB(1)
-/-, n = 3). *p < 0.05; **p < 0.01. 

 

 

 

 

 

 

 

 



  Results      117 

 -117- 

 

Adenosine-induced currents are similar in wild-type and GABAB(2) -/- mice (wild-type, 

67.0 ± 11.1 pA, n = 5, p < 0.01; GABAB(2) -/-, 51.2 ± 3.8 pA, n = 4, p < 0.01) (Fig. 38A, 

B). The current-voltage relationship of baclofen-induced currents reveals a positive slope 

conductance in wild-type mice (3.0 ± 0.7 nS; n = 5; p < 0.05) (Fig. 38C, I), whereas a 

negative slope conductance is induced in GABAB(2) -/- mice (-2.3 ± 0.5 nS; n = 10; p < 

0.01) (Fig. 38C, I). Consistent with the baclofen-induced increase in input resistance, a 

negative slope conductance indicates that baclofen application leads to the closure of ion 

channels in GABAB(2) -/- mice. The baclofen-induced conductance changes in wild-type 

and in GABAB(2) -/- mice are completely blocked by the GABAB(1) antagonist 

CGP55845A (2 µM; wild-type, -0.2 ± 0.4 nS, n = 4, p < 0.05; GABAB(2) -/-, -0.01 ± 0.06 

nS, n = 8, p < 0.001) (Fig. 38I). Adenosine-induced conductance changes are similar in 

wild-type (conductance, 4.83 ± 0.91 nS; n = 4; p < 0.01; Vrev, -94.5 ± 1.2 mV; n = 4) and 

GABAB(2) -/- (4.63 ± 0.83 nS; n = 4; p < 0.01; Vrev, -93.5 ± 2.5 mV; n = 4) mice (Fig. 

38D, I). The reversal potential of the baclofen-induced current in GABAB(2) -/- cells is 

shifted by raising the extracellular [K+] from 2.7 mM (Vrev, -96.7 ± 3.6 mV; n = 10; 

calculated Vrev for K+, -99.5 mV) to 20 mM (Vrev, -47.6 ± 7.4 mV; n = 6; calculated Vrev 

for K+, -45.8 mV) (Fig. 38E), indicating that a closure of K+ channels underlies the 

baclofen-induced conductance change in GABAB(2) 
-/- neurons. Barium at a concentration 

of 300 µM
 completely occludes the baclofen-induced channel closure in wild-type and 

GABAB(2) 
-/- CA1 pyramidal cells (data not shown). It is therefore conceivable that the 

GABAB receptors in GABAB(2) 
-/- CA1 neurons and the GABAB(1,2) receptors in wild-type 

CA1 neurons both couple to Kir3 channels but with opposite effects on channel activity. 

A large body of in vitro data supports that, within the heteromeric GABAB(1,2) receptor, 

the now-missing GABAB(2) subunit is absolutely necessary for G-protein coupling 

(Galvez et al. 2001; Margeta-Mitrovic et al. 2001; Robbins et al. 2001; Duthey et al. 

2002; Havlickova et al. 2002). We therefore investigated whether the baclofen-induced 

closure of K+ channels in GABAB(2) 
-/- cells is mediated by G-proteins or not. We 

recorded postsynaptic responses in the presence of GDP�S, which prevents G-protein 

activation. Intracellular dialysis of CA1 pyramidal cells from GABAB(2) 
-/- mice with �S 

(1 mM for at least 25 min) specifically blocks the induction of postsynaptic currents by 
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baclofen (control, -19.2 ± 4.5 pA, n = 5; GDP�S, 0.1 ± 3.9 pA, n = 5, p < 0.01) (Fig. 33F) 

or adenosine (control, 51.2 ± 3.8 pA, n = 4; GDP�S, 2.1 ± 4.9 pA, n = 5, p < 0.05) (Fig. 

38F), demonstrating that the baclofen-induced conductance change in GABAB(2) 
-/- CA1 

pyramidal cells is G-protein mediated. It is conceivable that the baclofen-induced 

inhibition of a K+ current is the consequence of a dominant-negative effect. For example, 

GABAB(2) activation in GABAB(2) 
-/- neurons may sequester G-proteins that are normally 

associated with other GPCR-activating K+ channels. Such a baclofen-dependent 

sequestering of G-proteins would reduce K+ currents and could underlie the inward 

current observed in GABAB(2) 
-/- neurons. We investigated whether baclofen can cross-

inhibit the adenosine response by first applying adenosine to CA1 pyramidal cells, 

followed by a combined application of adenosine and baclofen (Fig. 38G, H). In both 

wild-type and GABAB(2) 
-/- neurons, the effects of adenosine and baclofen are not fully 

additive, indicating that adenosine and GABAB receptors share G-proteins and/or effector 

K+ channels. However, the cross-inhibitory effect was not larger in GABAB(2) 
-/- than in 

wild-type neurons. Although the outcome of these experiments does not completely 

exclude sequestering, it clearly does not support it. The fact that the baclofen-induced 

current is blocked by GDP�S also argues against a passive sequestering of G-proteins and 

shows that activation of G-proteins is necessary to trigger the inward current (Fig. 38F). 

Others and we reported previously a complete loss of postsynaptic baclofen responses in 

GABAB(2) 
-/- mice (Prosser et al. 2001; Schuler et al. 2001). We therefore reinvestigated 

GABAB(2) 
-/- mice for baclofen-induced responses under identical experimental conditions 

as used for the analysis of GABAB(2)-/- mice (Fig. 38I). Consistent with our previous 

findings, we do not observe any postsynaptic conductance changes induced by baclofen 

in GABAB(1)
-/- mice. Therefore, exclusively GABAB(2) 

-/- mice express residual functional 

GABAB receptors.  

Lack of behavioral responses to baclofen in GABAB(2)
-/- mice 

In addition to inducing electrophysiological responses, baclofen may also cause 

detectable behavioral responses in GABAB(2)
-/- mice. We therefore studied well known 

physiological responses to baclofen in GABAB(2)
-/- mice. First, we investigated whether 

baclofen still induces delta waves in the EEG, as shown previously for wild-type mice 

(Schuler et al. 2001; Kaupmann et al. 2003). Twenty minutes after baclofen application 
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(10 mg/kg, i.p.), delta waves appeared in the EEG of wild-type mice but not in the EEG 

of GABAB(2)
-/- mice (Fig. 39). Ten hours after baclofen administration, the EEG of wild-

type mice reverted to normal. No significant EEG changes were observed in GABAB(2)
-/- 

mice during the entire duration of the experiment. This indicates that the baclofen-

induced electrophysiological responses in GABAB(2)
-/- mice (Fig. 39) do not result in 

detectable changes of electrical activity at the network level. 

 

Figure 39). Lack of baclofen-induced delta waves in GABAB(2)
-/- mice. A, Effect of L-baclofen (10 mg/kg, 

i.p.) on the EEG of freely moving wild-type (+/+) and GABAB(2)
-/- (-/-) mice. The EEG of wild-type and 

GABAB(2)
-/- mice were similar 10 min before baclofen application (-10 min). Twenty minutes after baclofen 

application, delta waves were observed in the EEG of wild-type, but not of GABAB(2)
-/-, mice (+20 min). 

Single spikes appeared sporadically in the EEG of wild-type mice (+40 min), followed by delta waves that 
lasted for several hours (+7 hr). Ten hours after baclofen application, the EEG traces of wild-type and 
GABAB(2)

-/- mice were again similar (+10 hr). B, Quantification of baclofen-induced delta waves in the 
EEG of wild-type and GABAB(2)

-/- mice. The percentage of delta waves of the total power amplitude was 
calculated over periods of 10 min. Three to four mice per genotype were analyzed.  
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We next investigated whether GABAB receptors in GABAB(2)
-/- mice are able to mediate 

the well known muscle-relaxant effect of baclofen. Baclofen induces muscle relaxation in 

wild-type but not in GABAB(2)
-/- mice, as shown by the inability or ability, respectively, of 

the mice to stay on the rotarod during a 5 min period (Fig. 40A). Similarly, GABAB(2)
-/- 

mice demonstrate a lack of baclofen-induced hypothermia (Fig. 40B). Together, these 

data indicate that residual GABAB receptors in GABAB(2)
-/- mice are unable to influence 

muscle relaxation or body temperature. 

 

Figure 40) Lack of baclofen-induced motor impairment and hypothermia in GABAB(2)
-/- mice. A, No 

baclofen-induced impairment of rotarod endurance is observed in GABAB(2)
-/- mice (n = 7-10). In contrast, 

wild-type mice (+/+) show a marked reduction in rotarod performance after baclofen application (p < 0.05; 
Fisher's post hoc tests). The vehicle-treated control groups stayed on the rotarod during the entire 
experiment (300 sec) at all time points examined. Thus, in the graph, the data points for the wild-type 
vehicle control (black dots) are hidden behind the data points for the GABAB(2)

-/- vehicle control (white 
dots). At all time points after baclofen application (1, 2, and 4 hr), the GABAB(2)

-/- group (white triangles) 
differed significantly from the wild-type control group (black triangles) (p < 0.05; Fisher's post hoc tests). 
All data points represent mean ± SEM values. B, Baclofen induces a potent reduction in body temperature 
in wild-type mice (black triangles) compared with the vehicle control group (black dots) (p < 0.05; Fisher's 
post hoc tests), whereas it is without effect on basal temperature in GABAB(2)

-/- mice (n = 7-10). However, 
GABAB(2)

-/- mice (white dots) exhibit a slight but significantly reduced basal temperature compared with 
wild-type littermates (black dots) (p < 0.05; Fisher's post hoc tests). All data points represent mean ± SEM 
values. 
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GABAB(2)
-/- mice exhibit spontaneous epileptiform activity, hyperlocomotor activity, 

hyperalgesia, and impaired passive avoidance learning 

We reported previously that adult GABAB(1)
-/- mice exhibit pronounced spontaneous 

epileptiform activity (Schuler et al. 2001). We therefore investigated whether adult 

GABAB(2)
-/- mice are epileptic and recorded continuous EEG in freely moving animals 

using implanted electrodes. GABAB(2)
-/- mice displayed several episodes of spontaneous 

seizures per day. The analysis of three GABAB(2)
-/- mice over a 96 hr period revealed an 

average of 3.75 (0, 11, 3, 1), 0.5 (1, 0, 0, 1), and 2.0 (3, 2, 2, 1) seizures per day. The 

recorded seizures were exclusively of the clonic type. This is in contrast to GABAB(1)
-/- 

mice, in which additionally absence-type and spontaneous tonic-clonic seizures occurred 

with low frequency (Schuler et al. 2001). Epileptiform activity was never observed in 

wild-type littermates (n = 3).  

GABAB(1)
-/- mice exhibit a sporadic hyperlocomotor phenotype when exposed to a new 

environment (Schuler et al. 2001). We similarly studied the locomotor activity of 

GABAB(2)
-/- mice using the Ethovision recording system. During a 1 hr observation 

period, GABAB(2)
-/- mice moved over a significantly larger distance with significantly 

increased speed compared with wild-type and heterozygous littermates (Fig. 41A). These 

experiments demonstrate that functional GABAB receptors in GABAB(2)
-/- mice do not 

rescue the hyperlocomotor phenotype seen with GABAB(1)
-/- mice, which completely lack 

functional GABAB receptors. 
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Figure 41. Behavioral analysis of GABAB(2)
-/- mice. A, Hypolocomotor activity in GABAB(2)

-/- mice. 
During a 1 hr observation period, GABAB(2) knock-out mice (-/-) moved over significantly longer distances 
(left histogram) with significantly greater speed (right histogram) than heterozygous (+/-) and wild-type 
(+/+) control mice. n = 7-8 per genotype; mean ± SEM; *p < 0.05. B, Response latencies of wild-type (+/+), 
heterozygous (+/-), and GABAB(2) knock-out (-/-) mice in the hotplate test assessed at 55°C. GABAB(2)

-/- 
mice show significantly reduced paw-lick latencies compared with wild-type and heterozygous control 
groups. n = 19-20 per genotype; mean ± SEM; ***p < 0.001. C, Response latencies of wild-type (+/+), 
heterozygous (+/-), and GABAB(2) knock-out (-/-) mice in the tail-flick test assessed at infrared intensity 14. 
GABAB(2)

-/- mice show significantly reduced tail-flick latencies compared with wild-type and heterozygous 
control groups. n = 19-21 per group; mean ± SEM; *p < 0.05. D, Paw-withdrawal thresholds for wild-type 
(+/+), heterozygous (+/-), and GABAB(2) knock-out (-/-) mice in response to a mechanical stimulus. 
Withdrawal thresholds of the left hindpaw were assessed for each genotype. GABAB(2)

-/- mice show a 
significantly reduced withdrawal threshold compared with wild-type and heterozygous control groups. n = 
19-21 per group; ***p < 0.001. Nociception tests were analyzed with Tukey's honestly significant difference 
test. In all tests, there were no significant differences in the behavior of wild-type or heterozygous mice. E, 
Impaired passive avoidance learning in GABAB(2)

-/- mice. Step-through latencies of wild-type (+/+) and 
GABAB(2) knock-out (-/-) mice into the dark (shock) compartment on the training day (white bars) and in 
the retention test (black bars). GABAB(2)

-/- mice were slower to enter on training day but faster in the 
retention test compared with the wild-type control mice. Wild-type, but not GABAB(2)

-/-, mice show 
significantly longer latencies to enter the dark compartment in the retention test compared with the training 
trial, which is taken as an index of memory of the initial experience. n = 6-11 per group; mean ± SEM; ***p 
< 0.001 versus training; #p < 0.05 versus genotype; ##p < 0.01 versus genotype. 
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GABAB agonists exhibit antinociceptive properties in models of acute and chronic pain 

(Patel et al. 2001). These properties are likely mediated by supraspinal and spinal GABAB 

receptors (Malcangio et al. 1991). Consistent with these pharmacological findings, 

GABAB(1)
-/- mice exhibit pronounced hyperalgesia, suggesting that GABAB receptors 

exert a tonic control over nociceptive processes (Schuler et al. 2001). We used the 

hotplate (Fig. 41B), tail-flick (Fig. 41C), and paw-pressure (Fig. 41D) tests to measure 

acute pain behaviors in GABAB(2)
-/- mice. Similar to the GABAB(1)

-/- mice, GABAB(2)
-/- 

mice exhibit hyperalgesia in all three tests, showing significantly reduced response 

latencies or withdrawal thresholds when compared with wild-type or heterozygous 

littermate mice. In all three tests, we did not observe significant differences in the 

behavior of wild-type or heterozygous mice.  

GABAB antagonists are reported to have profound effects on memory processing. They 

can either enhance (Getova and Bowery 1998; Nakagawa et al. 1999; Staubli et al. 1999) 

or attenuate (Brucato et al. 1996) cognitive performance in a variety of learning 

paradigms in mice and rats. We reported previously that GABAB(1)
-/- mice exhibit a 

severe impairment of passive avoidance learning (Schuler et al., 2001). We therefore 

investigated the memory performance of GABAB(2)
-/- mice (Fig. 41E). GABAB(2) -/- mice, 

in contrast to wild-type mice, show no increased latency in entering the darkened shock 

compartment in the retention trial that followed the training trial. This indicates that 

GABAB(2)
-/- mice exhibit an impairment of passive avoidance learning, similar to 

GABAB(1)
-/- mice. We further observed that GABAB(2)

-/- mice show increased latencies to 

enter the darkened shock compartment on the training trial compared with wild-type 

littermate mice (p < 0.01). This excludes the possibility that GABAB(2)
-/- mice have a 

tendency to enter the dark compartment more quickly, independent of the training 

experience. 
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5.4.4. Discussion 

Pharmacological and behavioral analyses of GABAB(2)
-/- mice indicate that deletion of the 

GABAB(2) subunit is sufficient to abolish all well known responses to GABAB agonists, 

such as [35S]GTP�S binding (Fig. 36), muscle relaxation (Fig. 40A), hypothermia (Fig. 

40B), and EEG delta wave induction (Fig. 39). These findings are paralleled by a loss of 

typical electrophysiological GABAB responses in the GABAB(2)
-/- hippocampus (Figs. 37, 

38). These results are analogous to the results obtained with GABAB(1)
-/- mice and suggest 

that all classical GABAB responses relate to heteromeric GABAB(1,2) receptors. The 

heteromeric nature of predominant native GABAB receptors is further emphasized by the 

substantial downregulation of GABAB(1) protein in GABAB(2)
-/- mice (Fig. 33E). An 

analogous requirement of GABAB(1) for stable expression of GABAB(2) was observed in 

GABAB(1)
-/- mice (Prosser et al. 2001; Schuler et al. 2001; Queva et al. 2003).  

Strikingly, the remaining GABAB(1) protein in GABAB(2)
-/- neurons accumulates in 

distinct cellular compartments than in wild-type neurons. Throughout the GABAB(2)
-/- 

brain, we observed a redistribution of the GABAB(1)-IR from the neuropil to the soma 

(Fig. 35 and data not shown). We also noticed some scattered hippocampal interneurons 

that are more evident in GABAB(2)
-/- than wild-type brains (Fig. 35B,C). The GABAB(1)-

IR prominently outlines the soma and proximal dendrites of these cells. This is 

reminiscent of the strong somatic GABAB(1)-IR observed in a subset of GABAergic 

hippocampal interneurons lacking GABAB(2)-IR (Fritschy et al. 1999; Sloviter et al. 1999; 

Kulik et al. 2002). Presumably, both a genetically induced and a natural lack of GABAB(2) 

expression leads to a relocation of GABAB(1) protein to the soma and proximal dendrites. 

Because GABAB(2) is important for exit of GABAB(1)
 from the ER, most of the somatic 

GABAB(1)-IR likely reflects protein that fails to exit the ER. However, some of the 

GABAB(1)-IR on the soma and proximal dendrites may also represent GABAB(1)
 protein at 

the cell surface. This is supported by biochemical (Fig. 33F) and electrophysiological 

(Fig. 38) data that reveal GABAB(1) expression in synaptic membranes and functional 

receptors in the somatodendritic compartment of CA1 pyramidal neurons, respectively. 

Besides being important for G-protein coupling and export from the ER (Margeta-

Mitrovic et al. 2000; Calver et al. 2001; Galvez et al. 2001; Pagano et al. 2001; Robbins 
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et al. 2001), GABAB(2) may therefore also be necessary for the targeting of GABAB(1,2) 

receptors to the distal zones of neuronal processes.  

Whether a physiologically relevant signaling underlies the electrophysiological GABAB 

responses that we observe in CA1 neurons of GABAB(2)
-/- mice is unclear. It is possible 

that these GABAB responses are a consequence of the knock-out situation, in which 

GABAB(1)
 is expressed in the absence of its usual dimerization partner. An abnormal 

intracellular accumulation of GABAB(1) protein in GABAB(2)
-/- pyramidal cells may 

overload the ER-retention machinery, thereby allowing some GABAB(1) to escape to the 

cell surface and to couple to G-proteins. Consistent with this possibility, GABAB(1) was 

originally expression cloned using [125I]CGP64213 binding on the surface of live COS-1 

cells (Kaupmann et al. 1997), showing that some GABAB(1) protein can overcome ER 

retention in the absence of GABAB(2). In further support of this possibility, no GABAB 

responses were detected in CA1 pyramidal neurons of mice expressing a C-terminally 

truncated version of the GABAB(2)
 protein (A. Calver, personal communication). 

Apparently, the truncated GABAB(2) protein dimerizes with GABAB(1) in the ER, 

generating a dominant-negative situation that impedes transit of GABAB(1) protein 

through intracellular compartments.  

Normally, postsynaptic GABAB receptors activate a K+ conductance underlying the late 

IPSP (Luscher et al. 1997). However, in GABAB(2)
-/- mice, baclofen induces a G-protein-

dependent inward current instead of the expected outward current, most likely reflecting 

the closure of K+ channels (Fig. 38). Barium at 300 µM occludes the baclofen-induced 

current inhibition seen in GABAB(2)
-/- mice (data not shown). Kir3 channels could 

therefore not only be the cause of the typical outward current seen in wild-type neurons 

(Luscher et al. 1997) but could also be responsible for the atypical inward current seen in 

GABAB(2)
-/- neurons. The GABAB(1) antagonists CGP55845A (Fig. 38A,I) and CGP62349 

(see Results) block the baclofen-induced inward current seen in GABAB(2)
-/- CA1 

pyramidal cells. A radioactive version of the antagonist used in electrophysiology, 

[3H]CGP62349, specifically recognizes residual GABAB(1) protein in the GABAB(2)
-/- 

brain (Fig. 35C). Moreover, the inward current is not observed in GABAB(1)
-/- CA1 

pyramidal cells (Fig. 38I). Together, this suggests that the baclofen-sensitive current is 

triggered by receptors incorporating GABAB(1). Baclofen-sensitive currents were seen in 
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the majority of GABAB(2)
-/- CA1 neurons analyzed, indicating that the neuronal 

environment reliably assists functioning of GABAB(1) in the absence of GABAB(2). It 

remains unclear why the GABAB(1)-mediated electrophysiological responses in 

GABAB(2)
-/- CA1 neurons are opposite to those recorded in wild-type CA1 neurons. We 

addressed whether activation of GABAB(1) in GABAB(2)
-/- neurons takes on a dominant-

negative effect by sequestering G-proteins that normally activate Kir channels. We did 

not observe increased cross-inhibition of the adenosine response by baclofen in 

GABAB(2)
-/- as opposed to wild-type neurons, rendering sequestering unlikely (Fig. 

38G,H). Further arguing against a passive sequestering of G-proteins, the baclofen-

induced inward current in GABAB(2)
-/- neurons is blocked by GDP�S (Fig. 38F). Some G-

proteins are reported to inhibit rather than to activate Kir3 channels (e.g., by 

phospholipase C-mediated phosphatidylinositol-4, 5-biphosphate hydrolysis or PKC 

activation) (Schreibmayer et al. 1996; Sharon et al. 1997; Lei et al. 2000; Blanchet and 

Luscher 2002; Mao et al. 2004). Similar to what is now observed, metabotropic glutamate 

receptors not only activate but also inhibit K+ channels, presumably by coupling to 

distinct G-proteins (Sharon et al., 1997). For example, they were shown to be able to 

suppress a barium-sensitive K+ current in CA3 pyramidal cells (Lüthi et al. 1997) and to 

downregulate Kir3 channels in Xenopus oocytes (Sharon et al. 1997). It is therefore 

conceivable that the somatic redistribution of GABAB receptors (Fig. 35) in GABAB(2)
-/- 

neurons leads to a promiscuous coupling to G-proteins that are not normally associated 

with heteromeric GABAB(1,2) receptors. This would explain why no significant 

[35S]GTP�S binding is detectable in neuronal membranes from GABAB(2)
-/- mice (Fig. 36) 

because this assay preferentially detects Gi/o-proteins that are typically associated with 

native GABAB(1,2) receptors. A promiscuous coupling to G-proteins in neurons may also 

explain why we never observed GABAB responses opposite to those of heteromeric 

GABAB(1,2)
 receptors when GABAB(1) was functional by itself in transfected cells 

(Kaupmann et al. 1997; Kaupmann et al. 1998). There is compelling in vitro evidence to 

show that, in the heteromer, the GABAB(2)
 subunit is necessary to engage and activate G-

proteins (Galvez et al. 2001; Margeta-Mitrovic et al. 2001; Margeta-Mitrovic et al. 2001; 

Robbins et al. 2001; Duthey et al. 2002; Havlickova et al. 2002). GABAB(1)
 may therefore 

also function in association with another, yet unknown GPCR subunit, which couples to 
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G-proteins other than GABAB(2). In that respect, a GABAB receptor-related protein has 

been identified (Calver et al. 2003). However, in heterologous cells, this protein does not 

appear to participate in typical GABAB signaling. Furthermore, because "Family C" 

GPCRs preferentially assemble homodimers, the existence of homodimeric GABAB(1) 

receptors cannot be excluded (Bouvier 2001). It is possible that homodimeric GABAB(1) 

receptors couple to G-proteins other than heterodimeric GABAB(1,2) receptors. Moreover, 

they may exhibit a constitutive activity that can be inhibited by agonists. Of note, it was 

reported that chimeric GABAB receptors with two GABAB(1) extracellular domains 

exhibit an increased basal activity and, for unknown reasons, respond to GABA agonists 

with inhibition rather than activation of Kir3 channels (Margeta-Mitrovic et al. 2001). 

Similar observations were made in a related study (Galvez et al. 2001).  

It is not ruled out that the baclofen-induced inward current is also present in wild-type 

CA1 pyramidal cells, in which it would be masked by simultaneous larger outward 

currents activated by heteromeric GABAB(1,2) receptors. Unfortunately, because we lack 

ligands that distinguish molecular subtypes of GABAB
 receptors, genetic manipulation is 

currently the only means to functionally dissociate native GABAB assemblies with and 

without a GABAB(2) subunit. Regardless of whether the baclofen-induced current seen in 

GABAB(2)
-/- CA1 neurons is a consequence of the knock-out situation or not, the 

observation of a functional GABAB receptor in the absence of GABAB(2)
-/- may be 

important. An increasing number of studies suggest that various cellular populations in 

the nervous system express GABAB(1) without GABAB(2)
 (Billinton et al. 2000; Calver et 

al. 2000; Clark et al. 2000; Ng and Yung 2001; Burman et al. 2003; Kim et al. 2003; 

Kulik et al. 2003; Li et al. 2003; Straessle et al. 2003). Our results imply that neurons that 

naturally lack a GABAB(2) 
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6. Discussion 

6.1. Pre- and postsynaptically GABABR-mediated inhibition in the LA 
 
In this study we have investigated the GABABR-mediated inhibition at cortical and 

thalamic afferents converging on projection neuron in the LA. EPSC evoked by 

stimulating cortical or thalamic afferents were reduced by application of baclofen (Figs. 

25, 27, 29). This baclofen-induced inhibition of glutamatergic transmission is thought to 

be mediated by activation of presynaptic GABAB receptors located on glutamatergic 

terminals (Kombian et al. 1996; Takahashi et al. 1998). Moreover this baclofen-induced 

inhibition was antagonized by the specific GABAB receptor antagonist CGP55845A. 

Interestingly, upon application of CGP55845A the EPSCs amplitude increased back to a 

level slightly higher than that of the baseline, which may indicate that GABABRs were 

tonically activated (Fig. 27A). GABABRs were also synaptically activated by three 

subsequent pulses at 20 Hz that activate GABAB receptor by stimulating feed forward 

inhibitory inputs. (Fig. 27D). Synaptic activation of GABAB receptors can be 

demonstrated by applying CGP55845A, which led to a decrease in the pair pulse ratio 

indicating presynaptic inhibition mechanisms. GABAB receptors are not only present 

presynaptically at thalamic and cortical afferents, but also postsynaptically in the LA 

projection neurons. Postsynaptic GABAB receptors can be activated pharmacologically 

by applying baclofen which leads to an increase in a K+ conductance as seen by the 

recorded outward current (Fig. 27C). Moreover, synaptic activation of postsynaptic 

GABABRs was also observed by stimulating the thalamic or cortical afferents with three 

pulses stimulation inducing outward current with slow kinetics typically for activation of 

GABABRs (Fig. 27D). 

Our results are consistent with previous investigation done in LA and other brain areas. It 

was showed that the responses of LA neurons are tightly regulated by inhibitory 

processes, which largely limit orthodromic spiking (Lang and Pare 1997) and may 

explain their virtual lack of spontaneous activity in unanesthesized cats (Pare and 

Gaudreau 1996). This inhibition is necessary to counterbalance strong excitatory inputs, 

which are revealed only when selectively activated with low intensity stimulation of LA 

afferents (Lang and Pare 1997).  
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In vitro studies have shed some light on the mechanisms underlying these inhibitory 

processes. LA neurons were demonstrated to have both GABAA- and GABAB-mediated 

IPSPs (Sugita et al. 1992; Sugita et al. 1993), which result primarily from the action of 

local interneurons (Le Gal LaSalle et al. 1978). GABAA- and GABAB-mediated IPSPs 

were shown to have distinct time courses and reversal potentials (Sugita et al. 1992; 

Sugita et al. 1993) that were similar to those found in other amygdaloid nuclei (Nose et 

al. 1991; Rainnie et al. 1991; Washburn and Moises 1992) and elsewhere in the nervous 

system (Hirsch and Burnod 1987; Dutar and Nicoll 1988; Soltesz et al. 1988; McCormick 

1989). Thus, the GABAA IPSPs ( IPSPB) in the LA were shown to be mediated by a Cl  

conductance, reversed around 70 mV, had rapid times to peak (10-35 ms), and had short 

durations (50 ms). In contrast, GABAB IPSPs were found to be generated by a K+ 

conductance, reversed around 90 mV, had long times to peak (120-170 ms), and had 

long durations (350-1,500 ms) (Sugita et al. 1993). Unlike GABAA receptor-mediated 

IPSPs, which at rest provide inhibition primarily via membrane shunting because of a 90–

140 nS conductance change, IPSPB produces inhibition via a peak 10- to 20- mV 

membrane potential hyperpolarization that is accompanied by a macroscopic peak 

conductance change of only 13–19 nS (Deisz and Prince 1989) (single channel 

conductance of 5– 6 pS) (Premkumar et al. 1990). This hyperpolarization is substantial 

enough to significantly reduce the probability of action potential firing and restrict 

NMDA receptor-mediated glutamatergic synaptic transmission by maintaining the 

voltage-dependent magnesium block of the NMDA receptor channel (Morrisett et al. 

1991; Davies and Collingridge 1996). It should be noted, however, that the effectiveness 

of IPSPB to inhibit strong synaptic inputs is far less than its ability to restrict weak 

synaptic inputs. Thus, in effect IPSPB enhance the neuronal signal to noise ratio by 

filtering out background noise. 

In BLA neurons, GABABRs have been shown to occur preferentially along the distal 

dendrites, whereas GABAAR-mediated inhibition dominate somatically (Washburn and 

Moises 1992). Within the mammalian brain, the highest density of GABAB binding sites 

is in the thalamic nuclei, the molecular layer of the cerebellum, the cerebral cortex, the 

interpeduncular nucleus, and the dorsal horn of the spinal cord (Bowery et al. 1987; Chu 

et al. 1990). The BLA contains substantial amounts of GABAB(1) and GABAB(2) mRNA 
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(Kaupmann et al. 1997; Bischoff et al. 1999; Durkin et al. 1999; Clark et al. 2000) and 

exhibits signifiant GABABR binding (Bowery et al. 1987; Bischoff et al. 1999).  

Previous immunocytochemical studies of GABABR localization in the brain have only 

briefly addressed the general levels of GABABR immunoreactivity in the nuclei of the 

BLA (Margeta-Mitrovic et al. 1999). A recent study with an antibody that recognizes the 

main isoforms of GABAB(1) showed that many cell types in the BLA exhibit 

immunoreactivity for the GABAB(1) subunit. The highest concentration of perisomatic 

GABAB(1) is found in interneurons. Most of the large CCK interneurons express high 

levels of GABAB(1). Lower percentages of the three other interneuronal subpopulations 

(PV, SOM, and VIP cells) express GABAB(1), and the concentrations of GABAB(1) are 

apparently lower than in the CCK interneurons. In most pyramidal projection neurons, 

there is little or no GABAB(1) immunoreactivity in the perisomatic region, but 

ultrastructural observations indicate that there are many GABAB(1)+ spiny dendrites in the 

neuropil, most of them probably belong to pyramidal cells. There is a high concentration 

of GABAB receptors along the dendrites of pyramidal neurons and particular 

subpopulations of interneurons in the BLA. Thus, the distal dendrites of pyramidal cells, 

and varying percentages of each of the four main subpopulations of interneurons in the 

BLA, express GABABRs (McDonald et al. 2004). 

This is in agreements with electrophysiological studies which have shown that GABABRs 

presynaptically modulate glutamate and GABA release from axons in the BLA (Yamada 

et al. 1999; Szinyei et al. 2000) and postsynaptically mediate a slow, prolonged 

hyperpolarization of BL and LA neurons via activation of potassium channels (Rainnie et 

al. 1991; Washburn and Moises 1992; Sugita et al. 1993).  

In our studies we have observed tonic activation of GABABRs in both pre-and 

postsynaptic GABABRs (Fig. 28). Previous studies showed that presynaptic GABABRs 

which present on the terminals of the sensory afferents in the rat dorsal lateral geniculate 

nucleus and in the ventrobasal thalamus are tonically activated by endogenous GABA 

(Emri et al. 1996). In this study they showed that the endogenous GABA level is not 

sufficient for a tonic activation of postsynaptic GABABRs (Emri et al. 1996). Moreover, 

other studies showed that GABABR antagonist CGP55845A not only blocked the 

baclofen-mediated decrease in mIPSC frequency, but also produced an increase in the 



  Discussion        131 

 -131- 

mIPSC frequency compared with control (Le Feuvre et al. 1997). Application of 

CGP55845A alone produced large increase in the mIPSC frequency which indicates that 

GABAB autoreceptors are present on the GABAergic terminals within the thalamic 

sensory nuclei and that these receptors can be tonically activated by the ambient GABA 

(Le Feuvre et al. 1997). Furthermore, it was shown that GABABR-antagonist application 

elicited a marked potentiation of Ca2+ transients mediated by glutamatergic 

neurotransmission, suggesting that tonic synaptic GABA release exerts an inhibitory tone 

on glutamate receptor-mediated Ca2+ transients via GABABRs activation (Obrietan and 

van den Pol 1999). In addition, in the presence of TTX to block action potential-mediated 

neurotransmitter release, stimulation with exogenously applied glutamate triggered a 

robust postsynaptic Ca2+ rise that was dramatically depressed (>70% in cortical neurons, 

>40% in hypothalamic neurons) by baclofen. This suggests both a pre- and postsynaptic 

component for the modulatory actions of the GABABRs. These results indicate an 

important role for the GABABRs as a modulator of the excitatory actions of glutamate 

(Obrietan and van den Pol 1999). A similar study also showed that Adenosine receptor 1 

(A1) and GABAB antagonists increased the amplitude of evoked IPSCS (eIPSCs) in a 

supra-additive manner, suggesting a tonic activation of these receptors by ambient 

adenosine and GABA (Hugel and Schlichter 2003). A more recent study suggested that 

signaling pathways that regulate cAMP levels in neurons may have profound effects on 

the tonic synaptic inhibition by modulating the availability of GABABRs (Fairfax et al. 

2004). 

In summary, we showed that GABABRs are present in the pre- and postsynaptic cells at 

thalamic and cortical afferents in the LA. Moreover, we noticed that endogenous ambient 

GABA possibly activates GABAB receptors. At the presynaptic glutamatergic terminal 

GABAB receptors are inhibiting glutamate release acting as heteroreceptors. At 

presynaptic GABAergic terminals, GABABRs inhibit GABA neurotransmitter release 

acting as autoreceptors. At the postsynaptic site GABAB receptor activation evokes an 

outward current by modulating K+ conductance. Taking together, it appears that GABAB 

receptors play an important role in the synaptic transmission in the LA, by exerting pre- 

and postsynaptic inhibition at the thalamic and cortical afferent synapses in the LA 
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6.2. GABAB heteroreceptor-mediated inhibition at thalamic and cortical 

afferents is impaired in GABAB(1a) -/- mice 

In this study, we show that baclofen-induced inhibition of excitatory synaptic 

transmission is strongly reduced in GABAB(1a) -/- mice whereas it is only slightly reduced 

in GABAB(1b) -/- mice (Figs.25, 29). Moreover, baclofen-induced inhibition of excitatory 

synaptic transmission is completely vanished in GABAB(1) -/- mice suggesting that 

baclofen does not effect synaptic transmission in GABAB(1) -/- mice (Figs. 25, 29). In all 

genotypes presynaptic inhibition induced by activation of adenosine receptors is not 

affected (Figs. 25, 29). This demonstrates that GABAB(1a) -/- mice largely lack functional 

GABAB heteroreceptors on thalamic and cortical afferent terminals.  

Interestingly, while activation of GABAB autoreceptors on interneurons is completely 

abolished in GABAB(1) -/- mice, presynaptic inhibition on interneurons is not different 

from wild-type animals in GABAB(1a) -/-and in GABAB(1b) -/- mice (Figs. 25, 29). This 

suggests that GABAB(1b) -/- mediated presynaptic inhibition on GABAergic terminals is 

either redundant, or that GABAB(1a) subunits are able to compensate for the loss 

GABAB(1b) subunits and vice versa. Postsynaptic inhibition mediated by the induction of 

an outward current (at -50 mV) via activation of GIRK-type K+ channels is equally 

reduced in GABAB(1a) -/- and GABAB(1b) -/- mice (Fig. 25). However, adenosine-induced 

postsynaptic activation of GIRK currents was not affected in all genotypes (Figs. 25, 29). 

This suggests that postsynaptic GABAB receptors are containing both GABAB(1a) and 

GABAB(1b) isomers. Thus, the two GABAB subunits isoforms R1a and R1b are differently 

distributed in the subcellular synapses so that GABAB(1a) is predominantly localized in 

the presynaptic site and GABAB(1b) is postsynaptically localized. 

Our results are in agreement with a recent study done in the hippocampus (Vigot 2005). 

Many studies investigated GABAB(1) splice variants and identified different splice 

variants of the GABAB(1) subunit (Kaupmann et al. 1997; Isomoto et al. 1998; Pfaff et al. 

1999; Calver et al. 2000; Schwarz et al. 2000; Wei et al. 2001; Wei et al. 2001). Studies 

using Western blotting and immunohistochemistry with isoform-specific antisera showed 

that there is differential subcellular localization pointing at a pre- versus postsynaptic 
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localization for GABAB(1a) and GABAB(1b), respectively (Kaupmann et al. 1998; Bischoff 

et al. 1999). During postnatal maturation, the expression of the two splice variants is 

differentially regulated with GABAB(1a) being preponderant at birth (Fritschy et al. 1999). 

In adult brain, GABAB(1b) immunoreactivity is predominant, and the two isoforms largely 

accounted for the pattern of GABABR binding sites in the brain (Fritschy et al. 1999). 

Another, in situ hybridization studies of mRNA for the GABAB(1a)
 and GABAB(1b) splice 

variants revealed that they are distributed differentially in brain (Liang et al. 2000). 

Studies with rat and human cerebellum and spinal cord indicate that GABAB(1a) is 

associated with presynaptic receptors, whereas GABAB(1b) is located predominantly at 

postsynaptic sites, at least in cerebellum (Kaupmann et al. 1998; Billinton et al. 1999; 

Bischoff et al. 1999; Princivalle et al. 2000; Towers et al. 2000). Elsewhere in the brain, 

however, the GABAB(1b) protein is in presynaptic terminals and the GABAB(1a) at 

postsynaptic sites (Benke et al. 1999; Princivalle et al. 2001). In the dorsal horn of the rat 

spinal cord, the density of GABAB(1a) is low, whereas in the dorsal root ganglia, which 

contain cell bodies of the primary afferent fibres, GABAB(1a) is the predominant 

proportions and GABAB(1b)  is much less expressed (Towers et al. 2000). Similarly, in rat 

and human cerebellum, GABAB(1a)
 mRNA is detected over the granule cells, which send 

their excitatory fibres into the molecular layer to innervate the Purkinje cell dendrites 

(Kaupmann et al. 1998; Billinton et al. 1999; Bischoff et al. 1999). In contrast, 

GABAB(1b) mRNA is associated with the Purkinje cell bodies, which express GABAB 

receptors on their dendrites in the molecular layer postsynaptic to the GABAergic stellate 

cells. However, the contrary arrangement has also been observed elsewhere in the brain. 

For example, GABAB(1a) subunits appear to be postsynaptic on cell bodies in the 

thalamocortical circuits (Princivalle et al. 2001). Thus, it is not possible to generally 

assign a functional role or cellular location to specific GABAB receptor subunit splice 

variants (Poorkhalkali et al. 2000; Princivalle et al. 2001). In this study we observed that 

presynaptic inhibition at both cortical and thalmic afferents is specifically mediated by 

GABAB receptors containing the R1a subunit. This in agreement with previous 

immunohistochemical studies (Fritschy et al. 1999; Poorkhalkali et al. 2000; Fritschy et 

al. 2004), and recent experiments carried out in the CA1 area of the hippocampus 

revealed that presynaptic heteroreceptors on glutamatergic terminals are exclusively 
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comprised of GABAB(1a) and GABAB(2) subunits (Gassmann et al., 2004; Vigot et al., 

2005) (Fig. 42).  

Our data indicate that presynaptic heteroreceptors on glutamatergic terminals are 

comprised of GABAB(1a) and GABAB(2) subunits. In contrast, presynaptic autoreceptors 

on GABAergic terminal are seem to be comprised of GABAB(1b) containing GABABRs 

and/or GABAB(1a) containing GABABRs . Additionally, postsynaptic GABABRs are also 

comprised of GABAB(1b) containing GABABRs and/or GABAB(1a) containing GABABRs.  

6.3 GABAB-mediated modulation.of homosynaptic and heterosynaptic 

LTP at cortical afferents 

At cortical afferents, presynaptic NMDAR-dependent LTP can be induced by associative 

co-activation of thalamic and cortical afferents (Humeau et al. 2003). This form of 

associative heterosynaptic LTP is presynaptically expressed and depends on presynaptic 

NMDAR activation and subsequent Ca2+ influx. Upon stimulation of cortical or thalamic 

afferents indvidually, homosynaptic LTP can not be induced in the presence of intact 

GABABR-mediated inhibition (Figs. 22, 28). This suggests that GABABR-mediated 

inhibition suppress the induction of homosynyaptic LTP. We also show that GABAB(1a)-/-

, but not GABAB(1b)-/- mice, exhibit facilitated induction of cortical afferent LTP (Fig. 

25). This non-associative homosynaptic LTP at cortical afferents is completely 

presynaptic, as the induction is independent of postsynaptic activity and the expression is 

accompanied by decrease in the PPF (Figs. 22, 24). Thus, presynaptic LTP at cortical 

afferents can be induced by either stimulation of both converging afferents leading to 

heterosynaptic associative LTP expression, or by blocking GABABRs and stimulation of 

cortical afferents leading to homosynaptic nonassociative LTP expression (Fig. 22). In 

both forms, LTP induction would lead to Ca2+ entry in the presynapses or Postsynaptic 

cells. Thus, Ca2+ in turn might activate Ca2+ sensitive adenyle cyclase that trigger cAMP, 

PKA signal cascade leading to phosphorylation process that act for the expression of LTP 

(Linden and Ahn 1999; Huang et al. 2000; Schafe and LeDoux 2000)(Fig. 42).  

Our data suggest that homosynpatic LTP has a higher threshold for induction than 

heterosynaptic LTP, due to a presynaptic GABABR-mediated inhibition.  
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Associative learning is thought to be mediated mostly by NMDA receptors as detectors 

of associativity (Tang et al. 1999; Blair et al. 2001). Homosynpatic LTP at cortical 

afferents seems to be nonassociative since it is NMDAR-independent. In contrast, 

associative heterosynaptic LTP at cortical afferents is NMDAR-dependent. Both forms of 

LTP need Ca2+ entry through either NMDARs (heterosynaptic) and/or L-VDCC 

(homosynaptic). L-VDCC could be activated due to depolarization of the presynapses or 

inhibited by GABAB receptor direct modulation. It has been reported that GABABRs can 

regulate an L-type calcium channel, and thus neurotransmitter release, in the axon 

terminals of tiger salamander bipolar cells (Maguire et al. 1989). Likewise, GABAB 

receptors inhibit N-, L-, P- and Q-type high voltage-activated Ca2+ currents (Dolphin et 

al. 1990; Scholz and Miller 1991; Mintz and Bean 1993) through a direct membrane-

delimited mechanism thought to involve the interaction of Go � subunits with the Ca2+ 

channel itself (Campbell et al. 1993). The role of ß� subunits, if any, in this inhibitory 

effect is unclear. 

The facilitation of homosynaptic LTP at cortical afferents in GABAB(1a) -/- mice could be 

due to the loss of GABAB-mediated presynaptic inhibition at cortical afferents, which 

would lead to decrease in the LTP induction threshold at cortical terminals. Interestingly, 

presynaptic LTP at cortical afferents requires the activation of cAMP/PKA-dependent 

signaling similar to the mechanism modulating hippocampal mossy fibers LTP (Linden 

and Ahn; Schmitz et al.). 

At the behavioral level, GABAB(1a) -/- mice showed generalized fear response to CS- (Fig. 

26). Behavioral analysis showed that GABAB(1a) -/- mice exhibit indistinguishable 

freezing behavior in response to the pairing of cued audio stimulus CS+ with the foot 

shock and the unpaired CS-. While these data clearly show that GABAB(1a)-/- mice 

perform poorly in a discriminatory fear conditioning task, we cannot exclude that 

GABAB(1a)-/- containing receptors play an important role for stimulus discrimination in a 

brain area upstream from the amygdala such as the auditory cortex (for review see: 

Weinberger, 2004). 

Our invitro investigation showed that homosynaptic LTP at cortical afferents is 

associated with a loss of associativity between thalamic and cortical afferent activation. 
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This loss of associativity could be the reason why GABAB(1a)-/- mice exhibit this striking 

deficit in associative stimulus discrimination at the behavioral level. The loss of 

heterosynaptic GABABR-mediated inhibition leads to a decrease in the LTP induction 

threshold at the cortical afferents. This in turn would lead to unspecific potentiation of all 

signals conveyed to the LA through the cortical afferents. Indeed, the cortico-amygdala 

pathway was suggested to be implicated the in stimulus discrimination and generalization 

of conditioned fear ( Jarrell et al. 1987, Saha et al. 1993, LeDoux 1994; but see: Armony 

et al. 1997).  

 

 
Figure 42) GABABR cellular distribution and different modulation of synaptic LTP, GABAB (see text 
above) 
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6.4. Homosynaptic LTP at thalamic afferents is postsynaptically 

induced 

We showed that LTP induction at thalamic afferents is facilitated by blockade of 

GABABRs (Fig. 28B). In contrast to cortical LTP, thalamic LTP requires NMDAR 

activation and postsynaptic Ca2+ entry (Fig. 28D, E). We did not observe any change in 

PPR after induction of thalamic LTP (Fig. 28C). This suggests that a presynaptic 

mechanism is not involved in thalamic LTP. In agreement with previous results (Bissiere 

et al. 2003), we did not notice any facilitation of LTP in the presence of intact GABAAR-

mediated inhibition when GABABRs were blocked (Fig. 28A). This suggests that 

GABAAR-mediated inhibition is strongly regulating the induction of postsynaptic LTP at 

thalamic afferents. In contrast to GABAB(1a) -/- mice, GABAB(1b) -/- mice showed 

facilitation of homosynaptic LTP only at thalamic afferent and not at cortical afferent 

(Fig. 30). Facilitation of thalamic LTP was observed not only at the glutamatergic 

synapses, but also at disynaptic GABAergic inputs onto projection neurons (Fig. 31). The 

reasons why blockade of GABABRs or knocking out GABAB(1b) but not GABAB(1a) 

subunit facilitates postsynaptic LTP induction only at thalamic afferent is an open 

question. The possible reasons for postynaptic facilitation of homosynaptic LTP at 

thalamic afferents could be due to the observation that dendritic spines contacted by 

thalamic and cortical afferents exhibit different morphologies (Humeau et al. 2005). In 

contrast to cortical afferents, thalamic afferents have significantly larger spine heads. 

Moreover, �-1E containing R-VDCCS are preferentially located at thalamic afferent 

synapses. Thus, postsynaptic LTP would be favored at thalamic synapses whereas 

presynaptic LTP is favored at cortical afferents. Therefore, upon the loss of GABABR-

mediated inhibition, either by pharmacological blockade or genetic modification of 

GABAB(1b) isoforms, elevation of postsynaptic excitability would facilitate the induction 

of postsynaptic LTP selectively at thalamic afferetns. The reason why this homosynaptic 

LTP was induced at thalamic afferents specifically in GABAB(1b) -/- and not GABAB(1a) -/- 

is not clear and needs more future investigations. A possible explanation to this 

paradoxical discrepancy is that GABAB(1b) subunit would be specifically coupled to other 

effectors (e.g., mGluR, ATF, PKA, PKC ) (Calver et al. 2002; Bettler et al. 2004) than 

GABAB(1a) and by that specifically modulate postsynaptic LTP induction at thalamic 
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afferents. Alternatively, GABAB(1b) containing GABABRs could be localized 

postsynaptically more close to the synaptic input than GABAB(1a) receptors so that they 

have stronger control of the synaptic inputs. This differential synaptic localization at the 

postsynaptic cell could not be observed in our experimental set as we applied high 

concentration of baclofen (100�M) that acitvates all GABABR subtypes irrespective of 

their synaptic location. 

At the behavioral level, GABAB(1b) -/- mice showed deficit in fear learning (Fig32), 

presumably due to the unspecific facilitation of LTP induction at thalamic afferents. The 

loss of postsynaptic GABABR-mediated inhibition at the thalamic afferents could lead to 

imbalance between postsynaptic inhibition and excitation. This would postsynaptically 

facilitate the induction of LTP at thalamic afferents.  

According to the Hebb rule, the efficacy of the synaptic transmission would be increased 

with the co-activation of pre- and postsynaptic elements. NMDAR-dependent LTP needs 

the coincident activation of NMDAR by presynaptically released glutamate and 

postsynaptic depolarization. NMDAR-mediated coincidence detection is an attractive 

model for Pavlovian conditioning because a CS-generated glutamatergic input that 

weakly activates a synapse will be potentiated if the US causes the cell to fire within a 

temporally limited window. Thus, the cells that participate in this plasticity must receive 

both CS and US inputs. Our data suggest that facilitated LTP at thalamic afferents in 

GABAB(1b) -/- mice a would occlude further induction of LTP during fear learning. Thus, 

the facilitated potentiation of synaptic transmission at thalamic afferents could impair 

fear memory formation. 

In other studies it was shown that baclofen induces EEG slow waves that have been 

associated with reduced memory performance (Jones-Gotman et al. 1994; Schuler et al. 

2001). In contrast, GABABR antagonists exhibit a wide range of memory-enhancing 

effects in a variety of learning situations (Mondadori et al. 1996). It was proposed that 

GABAB receptor antagonists facilitate cholinergic transmission, given the known 

memory-enhancing effects of cholinergic substances in animals (Mondadori et al. 1996). 

Likewise, it was stressed that the known modulatory effects of GABAB antagonists on 

glutamatergic synapses could produce similar effects (Mondadori et al. 1996). On the 
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other hand, memory-impairing effects of GABAB antagonists are also reported 

(Castellano et al. 1993; Brucato et al.), as well as memory-improving effects of baclofen 

(Castellano et al.; Saha et al.). The diversity of these memory effects makes it difficult to 

identify a common mechanism. The widespread distribution of GABABRs in the brain 

and the numerous modulatory effects on various synapses leave ample room for 

speculations.  

Taken together, here we show that GABAB(1b) receptors are mostly postsynaptically 

localized and mediate postsynaptic inhibition keeping NMDAR far from the activation 

threshold and by that facilitate its function as associative detector of the network activity. 

The loss of this postsynaptic GABABR-mediated inhibition leads to unspecific induction 

of LTP and consequently deficit in fear learning. 

 

6.5. Intrinsic properties of GABAB receptors  

We have also investigated GABAB(2)-/- mice for GABAB function via 

electrophysiological invistigations and found a clear abolition of all well known 

responses to GABAB agonists except for an atypical inward rectifying K+ current. 

Pharmacological and behavioral analyses of GABAB(2) -/- mice indicate that deletion of 

the GABAB(2) subunit is sufficient to impair GABAB functions such as [35S]GTP�S 

binding, muscle relaxation, hypothermia, and EEG delta wave induction ( Figs. 

36,39,40). These findings are paralleled by a loss of typical electrophysiological GABAB 

responses in the GABAB(2) -/- hippocampal neurons (Figs. 37, 38). These results are 

analogous to the results obtained with GABAB(1) -/- mice suggesting that GABABRs are 

mainly comprised of heteromeric GABAB(1) and GABAB(2) subunits. Our results imply 

that neurons that naturally lack a GABAB(2) subunit nevertheless have the potential to 

express functional GABABRs. Unfortunately, it is currently impossible to identify such 

cells for electrophysiological recordings. This, together with the finding that the GABAB 

receptors seen in GABAB(2) -/- mice do not appear to be involved in classical GABAB 

functions, makes it currently difficult to address the possible physiological role of such 

receptors. GABAB receptors mediate slow synaptic inhibition in the nervous system, via 

G-proteins signal transduction cascade, modulating postsynaptic inwardly rectifying 
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Kir3-type K+ (Bowery et al. 2002; Calver et al. 2002; Bettler et al. 2004). Molecular 

studies on GABABRs provided many evidences for heteromerization (Marshall et al. 

1999); (Mohler et al. 2001). In the GABAB heteromer, the GABAB(1) subunit binds 

GABA and all competitive GABAB ligands (Kaupmann et al. 1998), whereas the 

GABAB(2) subunit is responsible for escorting GABAB(1) to the cell surface and for 

activating the G-protein (Margeta-Mitrovic et al. 2000; Calver et al. 2001; Galvez et al. 

2001; Margeta-Mitrovic et al. 2001; Pagano et al. 2001; Robbins et al. 2001). The 

regional distribution of individual GABAB(1) and GABAB(2) protein subunits is similar to 

that of the wild-type receptor, but in some brain areas such as the caudate-putamen, 

GABAB(2) is not detectable, even though GABAB(1) and the native receptor are present 

(Durkin et al. 1999; Margeta-Mitrovic et al. 1999; Clark et al. 2000). In addition, there 

appears to be very little GABAB(2) mRNA, relative to GABAB(1) mRNA, in the 

hypothalamus (Jones and Westbrook 1996; Clark et al. 2000). These findings, along with 

those suggesting that GABAB(1) and GABAB(2) subunit expression is not regulated in 

tandem (McCarson and Enna 1999), support the existence of additional, yet unidentified, 

GABAB receptor subunits. 

Taken together, here we show that loss of the R2 subunit would lead to loss of all typical 

GABABR functions. Nevertheless, we recorded an atypical K+ current in the GABAB(2) -

/- hippocampal slices. We conclude that association of GABAB(2) with GABAB(1) is 

essential for receptor localization and distal processes but is not absolutely necessary for 

signalling, so that there is a possible existence of functional GABABR in neurons lacking 

GABAB(2) subunits 

 

6.6. Relevance of the GABABR-modulation of synaptic plasticity in LA 
in anxiety treatment 
Fear conditioning is associated with increases in the coherent oscillations in the BLA and 

the rhinal/hippocampal region at the theta frequency (Pare et al. 2002; Chapman et al. 

2003; Pape and Stork 2003). This rhythmic activity in the amygdalohippocampal network 

appears to be responsible for facilitating NMDA-dependent LTP in the BLA and the 

hippocampus (Maren and Fanselow 1995; Pape and Stork 2003). The depression of 

NMDA-mediated EPSPs by GABABR-mediated inhibition in the BLA, during fear 
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conditioning-induced theta freequency, may act as a filter to ensure that only strong, 

emotionally salient stimuli produce synaptic plasticity.  

By increasing inhibition on inputs not actively involved in CS-US integration, plasticity 

of interneurons may therefore serve to reduce activity and plasticity at those synapses and 

thus increase the signal-to-noise ratio of CS processing. Inhibitory transmission in LA 

may also play a role in the extinction of fear memories. The medial prefrontal cortex 

(mPFC) is thought to inhibit amygdala output during fear extinction (Morgan et al. 1993; 

Milad and Quirk 2002; Sotres-Bayon et al. 2004). Thus, modulation of the inhibitory 

network in the amygdala affects not only fear learning but also extinction (Marsicano et 

al. 2002; Shumyatsky et al. 2002). The impact of GABABR-mediated inhibition was also 

illustrated in the epilepsy research field where it was shown that blockade of GABAB 

receptors accelerates amygdala kindling development (Karlsson et al. 1992). 

Most of pharmacological treatment for anxiety disorders involves activation of inhibition 

either by targeting GABAA or 5-HT1A receptors (Nemeroff 2003). Recent study showed 

that GABAB(1) -/- mice are more anxious than their wild type counterparts in several 

anxiety-related tests such as the light–dark box and staircase test (Mombereau et al. 

2005). Moreover, it was shown that the anxiolytic-like effects of benzodiazepines are 

markedly diminished in GABAB(1)-/- mice (Mombereau et al. 2004; Mombereau et al. 

2004). Furthermore, more recently, the positive modulator GS39783 has been shown to 

be active in several animal models of anxiety (Cryan et al. 2004; Mombereau et al. 2004; 

Cryan and Kaupmann 2005). 

It is noteworthy that despite GABABRs inhibitory role, it is also clear that the membrane 

hyperpolarization afforded by IPSPB can be ‘excitatory’ in certain brain regions (Crunelli 

and Leresche 1991). Thus, in the thalamus, for example, IPSPB provides a mechanism for 

deinactivating T-type Ca2+ channels in GABAergic thalamocortical neurones. Following 

activation of an IPSPB, the inactivation of T-type Ca2+ channels that exists at resting 

membrane potentials is removed such that when the IPSPB terminates and the membrane 

potential returns to resting levels or just depolarized to these levels, a T-type Ca2+ current 

is generated that causes a burst of action potentials (Crunelli and Leresche 1991). 

Furthermore, there is increasing evidence for multiple protein ‘signalosome’ complexes 

centred around the GABAB receptor, possibly linking the receptor subunits with 
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components of the relevant signalling pathways, structural and transport elements of the 

cellular architecture, and even other related receptors and/or ion channels (Calver et al. 

2002). Consistent with this, it has recently been shown that in rat cerebellum the GABAB 

receptor is associated with membrane lipid rafts, specific cholesterol-rich microdomains 

situated within the plasma membrane that have been suggested to act as assembly 

platforms for cell signalling complexes (Becher et al. 2001). Therefore, it is entirely 

conceivable that the receptor diversity observed for the GABAB receptor in invivo could 

be explained not only by the existence of novel receptor subunits, but by differences in 

the receptor environment and the associated proteins available to interact with the known 

receptor subunits. 

Studies in the cortex suggest that GABABRs on pyramidal cells and interneurons are 

mainly activated when many GABAergic neurons fire simultaneously, in association with 

rhythmic oscillations, including theta oscillations (Mott et al. 1999; Scanziani 2000). This 

results in spillover of GABA into the extracellular space where it may activate 

extrasynaptic receptors. Interestingly, it was established that bursts of stimulation at the 

theta rhythm (4–8 Hz) are optimal for the induction of NMDAR-mediated LTP in the 

hippocampus (Larson et al. 1986). Moreover, the slow inhibition mediated by dendritic 

GABABRs is optimally timed to suppress NMDAR-mediated EPSPs in both pyramidal 

neurons and interneurons in this region (Morrisett et al. 1991; Mott et al. 1999). Similar 

modulation of NMDAR-mediated EPSPs by GABABR-mediated inhibition has also been 

seen in the BLA (Huang and Gean 1994), where it was found that maximal depression 

was observed at a stimulus interval of 200 ms (i.e., the interval associated with the theta 

rhythm).  

In vivo data demonstrated a powerful control through GABAergic inhibition over the 

activity of projecting principal cells (Lang and Pare 1997; Pape et al. 1998) which renders 

the role to the GABAergic interneurons in the control of excitation in this region 

GABAergic activity was shown to be modulated by different neuromodulatory system. 

For example, gastrin-releasing peptide (GRP) and its receptor (GRPR) was shown to be 

specifically expressed in the LA and in regions sending synaptic projections to the LA, 

whereas GRP receptors are expressed by a subset of GABAergic interneurons in the LA. 

(Shumyatsky et al. 2002). Application of GRP in vitro excites interneurons and increases 
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GABA release onto pyramidal cells (Fig. 43). Another system modulating GABAergic 

inputs in the amygdala is conducted by dopamine. The LA receives massive 

dopaminergic projections from the ventral tegmental area (VTA) (Nestler 2001). 

Application of dopamine in in vitro slices was shown to suppress feed forward inhibition 

of principal cells and facilitate inhibition of interneurons via activation of D2 receptors 

(Bissiere et al. 2003) (Fig. 43). Additionally, endocannabinoid-dependent LTD of 

isolated IPSPs was also reported in another previous study in isolated IPSPs (Marsicano 

et al. 2002). Here we add modulation of the feed forward inhibition by presynaptic 

GABABR of cortical afferents to LA. Whether potentiation of the disynaptic inhibition 

occurs at inhibitory synapses onto principle cell, or at excitatory inputs onto interneurons 

(Fig. 43) is still not clear. Further experiments would be required to investigate the site of 

synaptic plasticity. 

. 

 

Figure 43) Modulation of GABAergic inhibitory input by different modulatory system, Dopamine 
modulates feed forward inhibition in the thalamic afferents, GRP modulates interneurons activity, 
GABABR modulates excitatory inputs onto interneurons 
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6.7. Outlook and future experiments 
 
Individuals suffering from anxiety experience an unpleasant emotional state defined by 

psychological and physiological responses to the anticipation of real or imagined danger. 

The treatment for anxiety disorders involves pharmacological targeting of GABAAR 

using benzodiazepines or allosteric modulators of GABAARs, or 5-HT systems using 5-

HT1A receptor agonists and selective 5-HT reuptake inhibitors (SSRIs) (Nemeroff 2003). 

All these approaches have drawbacks because they have many unwanted side-effects, 

including tolerance, sedation, cognitive impairments and ethanol interactions, and, 

generally, besides the 5-HT receptor ligands onset of action is slow (Nemeroff 2003). 

Additional classes of GABAARs modulators, the neurosteroids, have been limited use as 

anesthetics, and have been proposed as potential therapeutic agents for anxiety disorders. 

However, the poor bioavailability, solubility, and side effect profiles of these compounds 

have limited their application in humans. 

In this study, we show that GABAB play key role in modulating synaptic plasticity in the 

LA. It is thought that fear emotion is associated with synaptic plasticity in the LA, so that 

would suggest GABABR as a target for treatment of anxiety disorder. Further 

experiments would be required to explore the tonic activation of GABABRs in the LA. 

Moreover, further studies are needed to characterize the anxiolytic potential of positive 

modulators of GABABRs which would have potential advantages like not having side-

effects as benzodiazepines. 
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7. List of abbreviations 
-/+ Heterozygote-knockout 
-/- Homozygote-knockout 
A Amper 
5-HT 5-hydroxytryptamine (serotonin) 
AC Adenylyl Cyclase 
ACSF Artificial Cerebrospinal Fluid 
AMPA �-amino-3-hydroxy-5-methylisoxazole-4-propionic acid 
AMPAR �-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor 
APV DL-2-amino-5-phosphononalerate 
ATP Adenosine Triphosphate  
BaCl Barium Chloride 
Baclofen L- Lioresal (generic name) 
BAPTA 1,2-bis-(o-aminophenoxy)ethane-N,N,N ,N -tetraacetic acid 
BAPTA-AM 1,2-bis-(o-aminophenoxy)ethane-N,N,N ,N -tetraacetic 

acid-acetomethoxyester 
BL Basal Nucleus of the Amygdala 
BLA Basolateral Amygdala 
Bpc Basal Nucleus Magnocellular Subdivision 
CaCl2 Calcium Dichloride 
CaMKII Calcium/ Calmodulin Dependent Protein Kinase II  
CAMP cyclic 3',5'-adenosine monophosphate 
CeA Central Nucleus of the Amygdala 
Cl- Chloride ione 
CNQX 6-cyano-7-nitroquinoxaline-2,3-dione sodium salt 
CO2 Carbondioxide 
CPP (R)-4-(3-phosphonopropyl)piperazine-2-carboxylic acid 
CPPene 3-(2-carboxypiperazin- 4-yl)-1-propenyl-1-phosphonic acid 
CS Conditioned Stimulus 
DAG Diacylglycerol 
DMSO Dimethyl sulfoxide 
DRIP DA Receptor Interacting Proteins 
e.c. External Capsule 
GABA Gamma-aminobutyric acid 
GABABR Gamma-aminobutyric acid receptor subtype B 
GDP�S guanosine 5’-2-O-(thio)diphosphate 
Gi Inhibitory Guanine nucleotide binding Protein 
G-protein   Guanine nucleotide binding proteins 
Gs Stimulatory Guanine nucleotide binding Protein 
GTP Guanosine Triphosphate 
HEPES N-(2-hydroxyethyl)piperazine-N’-(2-ethanesulfonate) 
IP3 Inositol triphosphate 
IPSC Inhibitory Postsynaptic Current 
LA Lateral Amygdala 
Ladl Lateral Amygdale Dorsolateral Subdivision 
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Lam Lateral Amygdale Medial Subdivision 
Lavl Lateral Amygdale Ventrolateral Subdivision 
L-VDCC Low Voltage Depndent Calsium Channel 
LTD Long term depression 
LTP Long term Potentiation 
Mcd Lateral Amygdale Dorsal Subdivision 
Mcv Lateral Amygdale Ventral Subdivision 
mIPSC Miniature Inhibitory Postsynaptic Current 
mPFC Medial Prefrontal Cortex 
NaH2PO4 Monobasic Sodium Phosphate 
NaHCO3 Sodium Bicarbonate  
NMDA N-Methyl-D-Aspartate 
NMDAR N-Methyl-D-Aspartate Receptor 
Osm Osmolar 
PIP2 Phosphoinositol bi-Phosphate 
Pir Piriform Cortex 
PKA Protein Kinase A 
PKC Protein Kinase C 
PP1 4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]-

pyrimidine 
PTK Protein Tyrosine Kinase 
PTX Picrotoxin 
Rp-cAMPs Adenosine- 3', 5'- cyclic monophosphorothioate 
s.t. Stria Terminalis 
sIPSC Spontaneous Inhibitory Postsynaptic Current 
Src Rous Sarcoma Virus Transforming Oncogene 
STP Short term potentiation 
STD Short term depression 
TTX Tetrodotoxin 
US Unconditioned Stimulus 
VGCC Voltage Gated Calcium Channels 
VTA Ventral Tegmental Area 
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