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Chapter 1

Introduction

In this chapter, we first introduce some length scales which are very impor-
tant for transport studies in mesoscopic physics. In the second part of this
chapter, we present an overview of spintronics from the fundamental as well
as the application point of view. Since this thesis is based on the study of
spin dependent transport through carbon nanotubes, we discuss next, how
good carbon nanotubes are as a candidates for basic research in the field of
spintronics and what are the motivations to study spin polarized transport
through carbon nanotubes. We conclude this chapter with the outline of this
thesis.

1.1 Definition of Characteristic Lengths

To study transport in mesoscopic systems it is important to know what are
the criteria for an object to be mesoscopic and what are the important para-
meters that control electronic transport in these systems. Small conductors
whose dimensions are intermediate between the microscopic and the macro-
scopic scales are called mesoscopic. For an example, a carbon nanotube can
be considered as a mesoscopic conductor. Mesoscopic objects are much larger
than microscopic objects like atoms, but not large enough to be ohmic in na-
ture [1]. Usually, a conductor shows ohmic behavior if its dimensions are
much larger than each of the following characteristic length scales: (1) the
de Broglie wavelength, (2) the elastic mean free path and (3) the phase co-
herence length. Hence, it is important to be familiar with these characteristic
lengths in order to describe the electronic transport in mesoscopic systems.

Wavelength
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2 Introduction

The wavelength which is related to the kinetic energy of the electrons
is called the de Broglie wavelength. At low temperatures the contribution
to the current is mainly dominated by the electrons having an energy close
to the Fermi energy. Therefore, the Fermi wavelength is the relevant wave-
length. The contribution from the electrons far from the Fermi level is usually
neglected. The Fermi wavelength is given by

λf = 2π/kf =
√

2π/ns (1.1)

where kf is the Fermi wave vector which is proportional to the square root
of the electron density ns for 2-dimensional electron gas (2DEG) [1]. Hence,
the wavelength is inversely proportional to the square root of the electron
density. The de Broglie wavelength of electrons in metal is of the order of
∼ 1− 10Å and in typical semiconductors ∼ 10− 100nm.

In general, kf ≈ n
1/d
s , where d represents the dimension of the system.

Elastic mean free path

The elastic mean free path is the average distance travelled by an elec-
tron (or a hole) before changing its momentum after an elastic scattering
process. The momentum change is related to the scattering of the electrons
by impurities, lattice vibrations (phonons) or other electrons inside the lat-
tice. The scattering process which causes the electron to scatter from one
momentum state to another momentum state without changing its energy
is considered here. Since the electron energy is conserved the phase of the
electron wave-function is also conserved. Transport processes occurring at
length scale shorter or comparable to the elastic mean free path are sensitive
to quantum mechanical interference effects. [2]. The elastic mean free path
can be expressed as

lmfp = vfτm (1.2)

where vf is the Fermi velocity and τm is the momentum relaxation time
which is the time before an electron changes its momentum due to an elastic
scattering.

The elastic mean free path varies from metal to metal and is usually longer
in semiconducting materials than in metallic systems. In magnetic transition
metals it is usually of the order of few atomic planes: lmfp ∼ 10− 20Å [2]
and in high mobility semiconductors at low temperature lmfp ∼ 10− 100µm
.

Phase coherence length
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The phase coherence length is the average distance that an electron or
hole travels before undergoing any scattering events that changes its energy.
The quantum mechanical phase is not a conserved quantity in such scattering
events. Hence one should not expect quantum interference to take place in
a system with dimension exceeding the phase coherence length.

Usually, at low temperatures, the dominant source of phase relaxation is
electron-electron scattering, i.e. an electron is scattered by the fluctuating
potential that it feels due to the other electrons. When the phase relaxation
time τφ defined as the time over which the phase fluctuations reach unity
is shorter or of the order of the momentum relaxation time τm, the phase
coherence (or relaxation) length lφ can be expressed as

lφ = vfτφ (1.3)

which is often the case of high mobility semiconductors [1]. But in the
low-mobility semiconductors or polycrystalline metal films the momentum
relaxation time τm can be considerably shorter than the phase relaxation
time τφ. In these cases, motion of electrons over a phase relaxation time is
no more ballistic. And the electronic trajectory over a length of time τφ can
be visualized as the sum of a number (= τφ/τm) of short trajectories each
of length ∼ vfτm. This limit is called diffusive regime. The phase coherence
length is expressed in terms of the diffusion constant D as [1],

l2φ = Dτφ (1.4)

where D = v2
fτm/2. At low temperature the phase coherence length in typical

transition metal heterostructures is of the order of lφ ∼ 100− 200Å. [2] and
in conventional semiconductors lφ ∼ 40− 400 nm

Spin diffusion length

Up to now, all the length scales mentioned are the characteristic length
scales for electronic transport where only the electronic charge is relevant.
When the electronic spin state is under consideration, another important
length scale, the spin diffusion length lsd has to be considered. This char-
acteristic length scale defines the average distance that a spin can travel
before it flips [3]. The spin diffusion length is the direct result of diffusion
processes for magnetization and momentum, when the momentum relaxation
time is much shorter than the spin relaxation time (the time before an elec-
tron relaxes its spin) as it was for for the previous case. Introducing the spin
relaxation time τ↑↓ (τ↑↓ = T1) one can write,

l2sd = Dτ↑↓ (1.5)
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where D is the diffusion constant. Direct measurements of the spin dif-
fusion length in GaAs by optical pumping yielded a spin diffusion length
lsd ∼ 100µm [4].

1.2 Introduction to Spintronics

Spintronics is a revolutionary new class of electronics based on the spin de-
gree of freedom of the electron in addition to, or in place of, the charge and
is an emerging research field. In addition to the charge, an electron has an
intrinsic angular momentum called spin (S), and a magnetic moment directly
related to it. Spin is a purely quantum mechanical quantity which provides
an extra degree of freedom for the electron to interact with a magnetic field.
Therefore, adding the spin degree of freedom to conventional semiconductor
charge-based electronics adds more capability and functionality to electronic
devices. In 1922, Stern and Gerlach demonstrated the most direct experi-
mental evidence of the existence and of the quantized nature of the electron
spin (Sz = ±~/2) [5]. The quantization of spin of a free electron imposes
that the electron can only have two specific spin states, either a spin-up or
a spin-down state. This intrinsic binary nature suggests that the spin could
be used as the basic unit for quantum information storage and data process-
ing. The important property of spin (mainly in semiconductors with weak
spin-orbit interaction and also in materials having zero nuclear spin) is its
weak interaction with the environment and with other spins, resulting in a
long coherence or relaxation time, which is a very important parameter in
the field of spin-transport and quantum computing [6, 7].

These characteristics open the possibilities for developing devices that
could be more powerful for certain type of computations than conventional
electronic charge-based systems. However, for the successful incorporation of
spins into the currently existing semiconductor technology, one has to resolve
technical issues such as efficient spin injection, spin transport, control and
manipulation of spin and finally, the detection of spin polarized current [8].

The goal of spintronics is to understand the interaction between the par-
ticle spin and its solid-state environments in order to make useful devices
based on the acquired knowledge [9]. From the fundamental point of view,
spintronics includes the investigation of spin transport as well as of spin dy-
namics and spin relaxation in technologically advanced and efficient solid
state materials.

The basic and most important schemes for a spintronic device to be func-
tioning are: (1) to encode the quantum information in electronic spin as a
particular spin orientation, (2) to transport spins by the mobile electrons in
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its initial spin orientation for a relevant length and time scale without losing
it, and finally, (3) to detect the transported, undisturbed information at the
receiver terminal. One of the basic proposals based on the aforementioned
schemes ( (2) and (3)) was the spin field effect transistor proposed by Supriyo
Datta and Biswajit Das in 1990 [10]. The most important and interesting
part of this proposal is to control the electronic spins with an electric field
via the gate while it is travelling through the transport channel. The pro-
posal by Datta and Das led to an intense focus on realizing the spin injection
in semiconductor heterostructures. Due to the experimental difficulties in
spin injection, Datta-Das spin transistor is yet to be implemented in an effi-
cient way. On the other hand, the optimization of the electron spin lifetimes
and the detection of spin coherence are the major challenges in the field of
quantum computation.

Although there have been many provocative and stimulating ideas and
experiments, in the field of spin-polarized transport over the past 30 years
[11], the discovery in 1988, of the giant magnetoresistance (GMR) [12, 13]
in metallic multilayers was a breakthrough in the world of electronics [14].
GMR is the drastic change in electrical resistance of a multilayer formed by
alternating magnetic and non-magnetic materials when a magnetic field is
applied. The impact of the discovery of GMR was enormous mainly due to
two reasons: First, possible applications were found in the development of
new generation of devices and sensors based on the GMR effect with much
more sensitivity than the existing conventional technologies. Second, the
discovery of GMR drew the attention of the scientific community towards
the so far neglected spin property of electron in the field of electronics [11].

The current application of spintronics is mainly in the area of magnetic
sensors and magnetic storage systems like high density hard-disks based on
the GMR effect. In fundamental research, there is a renewed interest to study
spin dependent transport and spin dynamics in various electronic materials
to explore the fundamental properties of different solid state systems [15]. In
addition, recent advances in material fabrication made it possible to intro-
duce nonequilibrium spin in a novel class of systems, including ferromagnetic
semiconductors [16–18], high temperature superconductors [19–23] and car-
bon nanotubes [24–30] which leads to the question of how such a spin could
be utilized.

In conclusion, the exploitation of the spin polarization of charge carriers
opens a new avenue in the field of electronics. The ability to make increas-
ingly smaller electronic devices and to combine dissimilar materials within
the same device makes spin polarized effects more important [31]. Spintron-
ics is therefore not only a highly focused research field of the fundamental
physics, but it offers attractive application as well.
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1.3 Motivation to Study Spin Transport in Car-
bon Nanotubes

All recent technologies are aiming at reducing the device dimension hence a
real crisis awaiting to face the problem of miniaturization beyond certain limit
in silicon-based technology. An electronic circuit cannot continue to shrink
by orders of magnitude and provide corresponding increases in computational
power [32]. In this context, experimental results show that metallic single
wall carbon nanotubes (SWNTs) can carry up to 109 A/cm2, whereas the
maximum current densities for normal metals are ∼ 105 A/cm2 [33]. Hence
carbon nanotubes (CNT) are expected to offer intriguing possibilities in the
direction of miniaturization.

Experimental investigations on coherent spin transport through Co-con-
tacted CNTs showed that spin can be coherently transported over 130 nm
through the carbon nanotube [24]. It has also been shown that CNTs behave
as ballistic quantum conductors with long phase coherence lengths for the
charge carriers [34–36]. From these facts, one expects that CNTs are the
ideal candidates for achieving molecular scale spintronics [37].

CNTs are good model systems for the fundamental research in mesoscopic
physics. They can be considered as a natural realization of one dimensional
(1D) quantum wires [38]. In the 1D limit, where electron-electron interac-
tions are no more negligible, electronic transport can not be explained only
with the normal Fermi liquid theory Fermi liquid theory including interac-
tions leads to the introduction of Luttinger liquid theory to the transport of
CNTs in 1D limit. Hence in the 1D limit, one can expect to observe the pre-
dicted spin-charge separation i.e., the different velocities of spin and charge
excitations in Luttinger liquid, in CNT. Theoretical studies on spin transport
in Luttinger liquids [39,40] indicate that it is qualitatively different than the
spin transport in Fermi liquid as well as from charge transport in Luttinger
liquid.

Different experiments showed that CNT can behave like a quantum dot
(QD) at low temperatures [41, 42]. Using a local gate or back-gate one can
tune the energy levels of CNT-based QD. CNTs, contacted with ferromag-
netic electrodes, offer spin transport in CNT-based QD. Furthermore, a QD
is considered as an artificial atom with specific spin ground state. The total
spin of a QD depends on the number of electrons present in the dot. For an
even number of electrons, total spin is either 0 or 1 and for an odd number
of electrons total spin is 1/2. Therefore, incorporating spin polarized elec-
trodes to QD, physics becomes much more complex and interesting. Hence,
there are very interesting and important routes to explore spin transport in
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quantum dots using CNTs.
Finally, CNTs are easily grown with extremely small diameters (1 − 3

nm) and relatively long lengths up to few 100 microns, allowing them to
be integrated within ultra-high density circuits [43]. Also, gated nanotubes
behave as field effect transistors (FETs) [44] and single electron transistors
(SETs) [45]. Furthermore, since CNTs can be very long one can expect to
be able to manipulate and control the electron spin (by external parameters
like gate and/or source-drain bias, magnetic field, temperature and optical
excitation) while it travels through the nanotube in the FET or SET geom-
etry.

In conclusion, all these properties render carbon nanotubes an excellent
candidate for the study of fundamental physics as well as for the possible
industrial applications. There is plenty of room in the exploration of this
field, experimentally as well as theoretically. Motivated by all these facts, we
have explored some of this unrevealed physics in this thesis, by studying the
spin dependent transport through carbon nanotubes.

1.4 Outline of This Thesis

The main focus of this thesis has been to investigate spin transport through
carbon nanotubes and to understand the basic physics under different con-
ditions. The thesis has been planned in such a way that it should not only
serve the experimental works which have been performed in the last three
years but it should give some basic background to the reader who is not fa-
miliar with this field. The first part of the thesis is therefore mainly devoted
to the basic principles of spin polarized tunneling while the rest of the thesis
describes the experimental work.

Chapter 2 provides an introduction to the field of spin transport and
magnetism. The first part ( 2.1 - 2.3) of Chapter 2 serves the basic idea
about magnetic material and magnetism. the middle part ( 2.4 and 2.8)
offers the opportunity to get introduced with the concept of spin injection,
the details about tunneling magnetoresistance including the influences of
external parameters on it and the different spin relaxation mechanisms. The
last part ( 2.9) describes the spin polarized transport through quantum dots.

Chapter 3 describes the fabrication procedure of carbon nanotube-based-
magnetic devices. Chapter 4 is devoted to the properties of the PdNi contacts
on nanotubes. Contacting is one of the key issues for the device fabrication
particularly with ferromagnetic material. We show that one can achieve
efficient and reliable ferromagnetic contacts on nanotubes using the PdNi
alloy.
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Chapter 5 is the core of this thesis. It presents the most exciting results
obtained during the last couple of years. The experimental demonstration
of electric field control of spin transport is the main achievement reported
here. This chapter presents the results on coherent spin transport through a
CNT-based QD in the light of spin-dependent resonant tunneling, where the
resonant levels are controlled by an electric field via the gate.

Chapter 6 deals with the the effect of source-drain bias voltage and tem-
perature on spin transport through carbon nanotubes. Finally, Chapter 7,
summarizes and concludes this thesis. Possible future directions are also
addressed in this chapter.
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Chapter 2

Basic Theory of Spin Polarized
Electron Transport

In this chapter, an overview of fundamental Physics behind the spin depen-
dent electron tunneling in magnetic tunnel junctions (MTJs) is presented to
provide a basic background to the understanding of the works, performed
in this thesis. The first part ( 2.1 - 2.3) of this chapter is attributed to the
basics about magnetism and magnetic materials. The middle part ( 2.4 -
2.6) is included with the physics of spin injection along with the mechanism
of spin dependent tunneling through the ferromagnetic (FM)/normal (NM)
interfaces. Much attention is paid to the last and main section ( 2.7 - 2.10)
of this chapter, where the tunneing magnetoresistance (TMR) is being dis-
cussed explicitly in the view of recent experiments on MTJs. The dependence
of TMR on different physical parameters is also discussed in detail.

2.1 Introduction

Spin-polarized transport in magnetic multilayers is an emerging field of spin-
tronics. Although there have been many stimulating and exciting ideas as
well as experiments over the past 30 years [1], it is fair to mention that the
most important impetus to this field was the discovery of giant magnetore-
sistance (GMR) in 1988 [2]. GMR is the drastic change in the electrical
resistance of a multilayer formed by alternating magnetic and non-magnetic
materials when a magnetic field is applied. The main reason why GMR was
such an important milestone is that not only the interplay between transport
and magnetism was demonstrated but also that the spin degree of freedom
could be engineered and exploited in a controlled way. In other words, GMR
established that the longly neglected electron spin could be used in a similar

13
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way that the electron charge in an electronic device [3].
On the other hand, spin-polarized tunneling can be traced back to the

early 1970s, when the breakthrough experiments by Tedrow and Meservey
in 1971 [4] addressed the magnetic field dependence of tunneling spectra
between a superconducting Al film and the FM metal Ni. This was the
first evidence of spin conservation in electron tunneling. A more recent de-
velopment is spin dependent tunneling (SDT) in magnetic tunnel junctions
(MTJs), where two ferromagnetic (FM) metal films are separated by an insu-
lating tunneling barrier. Although the first observation of SDT wsa done in
MTJs [5]in 1975, it has only been reliably demonstrated in the last few years.
There has been an enormous increase of research in this field since the first
observation of large magnetoresistance at room temperature [6]. The large
Tunneling Magnetoresistance (TMR) effects possible in MTJs have attracted
much attention due to their potential applications in non-volatile Magnetic
Random Access Memories (MRAMs) and next-generation magnetic field sen-
sors (e.g., in hard disks).

However, the fundamental physics behind these devices is only beginning
to be understood. Complete understanding of the functioning of these devices
still remains a great challenge in this field. Complete control on electron spin
by means of any external force or energy is most desirable to the field of
spintronics.

2.2 Magnetic Materials and Magnetism

It has long been known that the electronic structure of materials consists of
two fundamental electronic states, corresponding to the two different spin
states of the electrons [7]. In most materials, i.e., that are not magnetic ma-
terials, the density of states (DOS), corresponding to these two different spin
states, are equal or equivalent. On the other hand, unequal DOS of spin-up
and spin-down states in magnetic materials is the origin of the magnetiza-
tion of the material and makes them attractive for using and manipulating
the spin degree of freedom of electrons in addition to the electronic charge.
The study of magnetic solid state systems is a subject of vast scope and
dazzling complexity. One of the reasons is that the origin of magnetism is
fundamentally quantum mechanical. Most magnetic effects result from the
quantum mechanical interactions of electrons with one another. Some of the
very simplest questions, that one can pose in the subject of magnetism, still
remain unsolved. In this section we will try to offer only a brief introduction
to this field.
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2.2.1 Magnetization

A solid, being introduced into an external magnetic fieldH, generally obtains
a magnetic moment m, which is connected to the magnetization M of the
material as

M =
m

V
(2.1)

where V is the volume of the solid. For the case of linear materials (e.g.
paramagnets), the magnetization M is proportional to the external field H,
hence the proportionality constant χ, given by

M = χH (2.2)

χ is a dimensionless quantity called the magnetic susceptibility. The variation
of the magnetic induction, B = µ0(H + M) with the applied magnetic field
is

B = µ0(1 + χ)H = µ0µrH, (2.3)

where µ0 = 4π×10−7 H/m is the permeability of free space and µr = 1 + χ
is the relative permeability.

The susceptibility and permeability of a material depend on its magnetic
characteristics. Table 2.1 shows an indication how they vary with the type
of material.

Type of material Susceptibility (χ) Permeability (µr)
Vacuum 0 1

Diamagnetic Small and negative . 1
Paramagnetic Small and positive & 1

Antiferromagnetic Small and positive & 1
Ferromagnetic Large and positive À 1
Ferrimagnetic Large and positive À 1

Table 2.1: Variation of susceptibility χ and permeability µ for different ma-
terials

.

In the periodic table, the ferromagnetic materials are some of the tran-
sition metals (Fe, Co, Ni) and the more heavy elements of lanthanide group
(Gd, Dy, Ho, Er). The most attractive materials for device implementa-
tion are the traditional transition metals and their alloys, mainly due to the
availability of well-established physical properties and technology.
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Material TC(K) magnetic
moment

(in µB/atom)
Fe 1043 2.22
Co 1394 1.715
Ni 631 0.605
Gd 289 7.5

MnSb 587 3.5
EuO 70 6.9
EuS 16.5 6.9

Table 2.2: Properties of some common ferromagnets. TC is the Curie tem-
perature of the material below which non-zero magnetization occurs hence
the material is ferromagnetic at T < TC . µB is the Bohr magneton.

2.2.2 Exchange Interaction

Exchange interactions lie at the heart of the phenomenon of long range mag-
netic order. This is nothing more than electrostatic interaction, which pro-
vides a mechanism where the electrostatic interaction energy of two electrons
can depend on the relative orientation of their magnetic moment. In other
words, it is the origin of the interaction which lines up the spins in a magnetic
system.

In this section we explain the exchange interaction qualitatively. We
consider a simple system with just two electrons, which have spatial coor-
dinates r1, r2 and spin coordinates s1, s2, respectively. Since interaction is
a consequence of the fact that the wave function of two electrons must be
antisymmetric under the exchange of all electron coordinates, space and spin,
one can write the wave function of the system as [8]:

ψ(r1, s1 : r2, s2) = −ψ(r2, s2 : r1, s1) (2.4)

Therefore, when the coordinates of both electrons are identical, i.e., r1 = r2

and s1 = s2, the wave function of the system vanishes. There is thus zero
probability of finding two electrons of the same spin and at the same point
in space. The antisymmetry of the wave function tends to keep electrons of
parallel spin apart so that the expectation value of the Coulomb repulsion
energy e2/4πε0 | r1 − r2 | is smaller for parallel spins than for antiparallel
spins. This is called exchange interaction and corresponding exchange energy
can be expressed as:

E12 = −2Js1.s2 (2.5)
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Where J is the exchange integral and defined by

J =
ES − ET

2
(2.6)

where ES and ET are the energy of singlet (antiparallel) and triplet (parallel)
states respectively. If the two electrons are in the same atom, the exchange
integral is usually positive hence, the triplet state is more stable than the
singlet state, which is consistent with Hund’s first rule.

2.2.3 Stoner Model for Ferromagnetism

Figure 2.1: Density of states showing spontaneous splitting of energy bands
without an applied magnetic field.

For the elementary ferromagnetic transition (3d) metals Fe, Co and Ni,
the magnetic moment per atom is about 2.2, 1.7 and 0.6µB respectively (see
table 2.2). This non-integral value can not be understood on the basis of
localized moments on atoms. It is therefore a strong evidence for magnetically
active electrons to have band-like properties in these ferromagnetic materials.
This is known as band ferromagnetism or itinerant ferromagnetism,
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where the magnetization is due to spin-split bands. In this section we will
explore the Stoner model which can be used to understand how bands in
some materials can become spontaneously spin-split.

The basic assumption in this model is that spin sub-bands are shifted
with respect to each other due to the presence of the exchange interaction.
Let us first assume that in the absence of an external magnetic field, energy
bands for spin-up and spin down electrons at the Fermi energy are separated
by 2δE, as shown in the fig. 2.1. This situation can be depicted more easily,
if we imagine that spin-down electrons with energies from EF − δE up to EF

after flipping their spins, have been placed in the spin-up band with energies
from EF up to EF + δE (figure 2.1). Then, the number of electrons moved
is n(EF )δE/2, where n(EF ) is the density of states at the Fermi energy and
δE is the increase in energy. The total energy change is n(EF )δE/2 × δE.
The total kinetic energy change ∆EK.E. is therefore,

∆EK.E. =
1

2
n(EF )(δE)2 (2.7)

Now, the number density of up-spin is n↑ = 1
2
(n + n(EF )δE) and the

number density of down-spin is n↓ = 1
2
(n − n(EF )δE). Hence the magneti-

zation is M = µB(n↑− n↓), assuming each electron has magnetic moment of
1µB. So the potential energy due to the molecular field is [9],

∆EP.E. = −
∫ M

0

µ0(λM ′)dM ′ = −1

2
µ0λM2 = −1

2
µ0µB

2λ(n↑ − n↓)2 (2.8)

where, λ is a constant which parameterizes the strength of the molecular
field as a function of the magnetization M. If now we define U as a mea-
sure of Coulomb energy, since molecular field is due to exchange interaction
which comes from Coulomb interaction, U can be written as U = µ0(µB)2λ,.
Therefore,

∆EP.E. =
−1

2
U(n(EF )δE)2 (2.9)

Hence the total change in energy ∆E is

∆E = ∆EK.E. + ∆EP.E. =
1

2
n(EF )(δE)2(1− Un(EF )) (2.10)

Spontaneous ferromagnetism is possible if ∆E ≤ 0 which implies that

Un(EF ) ≥ 1 (2.11)

which is known as Stoner criterion [9]. This condition for the ferromagnetic
instability requires that the Coulomb effects are strong and also that the
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density of states at the Fermi energy is large. If the spin-up and spin-down
bands are split by an energy ∆, where ∆ is the exchange splitting, in the
absence of any applied magnetic field, there is a spontaneous ferromagnetism.
If the Stoner criterion is not satisfied, spontaneous magnetization will not
occur. The Stoner model can be extended to include the effects of an external
magnetic field, which allows to determine the magnetic susceptibility χ. From
the above discussion we have seen that the magnetization produced by an
energy shift δE is, M = µB(n↑−n↓) = µBn(EF )δE. Thus in an external field
H (corresponding magnetic induction vector B), the total change in energy
∆E is,

∆E =
1

2
n(EF )(δE)2(1− Un(EF ))−MB

=
M2

2µB
2n(EF )

(1− Un(EF ))−MB
(2.12)

For the minimized ∆E,

M

2µB
2n(EF )

(1− Un(EF ))−B = 0 (2.13)

So, magnetic susceptibility χ is given by

χ =
| M |
| H | ≈

µ0M

B
=

2µ0µB
2n(EF )

1− Un(EF )
=

χP

1− Un(EF )
(2.14)

Where χP is the magnetic susceptibility for non-interacting electrons, if
the exchange interaction is neglected. The Coulomb exchange interaction
leads an enhancement of the magnetic susceptibility by a factor S = (1 −
Un(EF ))−1, which is known as Stoner enhancement, which diverges for
Un(EF ) = 1. For Un(EF ) < 1, the non-magnetic state is stable, whereas
for Un(EF ) > 1 the ferromagnetic state is stable. Ferromagnetic behavior is
favored , if the Coulomb exchange interaction energy U is large and (even
more important) if the density of states n(EF ) at Fermi energy is large [10].
The large Stoner factor S is responsible for the enhanced Pauli susceptibility
measured in the metals Pd and Pt, which can be thought as systems on the
verge of ferromagnetism.

2.3 Spin Polarization
We have seen in the previous section that the total magnetization is uniquely
defined as the difference between the number of spin-up and spin-down elec-
trons, but it tells us very little about the degree of spin polarization (P)
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Material Un(EF ) S = χ/χP

Na 0.41 1.71
Al 0.25 1.34
Cr 0.27 1.36
Mn 0.63 2.70
Fe 1.43 −2.34
Co 1.70 −1.43
Ni 2.04 −0.98
Cu 0.11 1.12
Pd 0.78 4.44
Pt 0.50 2.00

Table 2.3: Product of the density of states n(EF ), at the Fermi energy and the
Coulomb exchange interaction energy U , and corresponding Stoner enhance-
ment factor for the magnetic susceptibility S, obtained in density-fuctional
calculations [10,11] for some selected materials

.

of the ferromagnet (FM) in the electronic transport. It is important to be
able to measure the electronic spin polarization at the Fermi energy of the
ferromagnetic material, being used as the spin polarized electron source for
both scientific and technological reasons. But it is not an easy task to deter-
mine P at the Fermi energy because of the complex electronic structure of
FMs. For instance, we speak about typical transition metal FM, where two
components are contributing to the electronic structure of the FM: narrow
d bands, which contribute the main part in spin polarization due to the ex-
change interaction and broad s bands contributing to a lesser degree to spin
polarization due to the hybridization with the d bands [12]. It is important
to note that there are several different ways to define the spin polarization
of FMs, which depend on the particular experiments. In order to compare
the experimental data with suitable theory it is crucial to make sure that a
proper definition of spin polarization is used.

The most natural and common definition of spin polarization P is:

P =
n↑(EF )− n↓(EF )

n↑(EF ) + n↓(EF )
(2.15)

where n↑(↓)(EF ) is the density of states (DOS) of spin up (down) electrons at
the Fermi energy. The spin polarization expressed by the above equation is
limited by the fact that the electronic transport phenomena usually cannot be
explained only by the DOS alone. For transport experiments, the definition



2.3. Spin Polarization 21

of spin polarization as a function of spin-currents is expressed as:

P =
I↑ − I↓
I↑ + I↓

(2.16)

where, I↑(↓) is the spin-up(down) current. It is important to note that
Iσ(σ =↑, ↓) and P are not directly observable and must be calculated or
estimated from an indirect measurement [3]. The relevant physical quanti-
ties determining Iσ can be very different for different transport regimes and
for different experiments [12–14].

In the next part of this section we discuss the different definition of the
spin polarization related to different transport regimes.

2.3.1 Diffusive transport

In the diffusive transport regime, the phase coherence length (see Chapter 1)
is shorter than the device size and quantum interference is averaged out. The
transport is described by the classical Boltzmann transport theory [15] and
the current Iσ is simply proportional to (NF v2

F )στσ, where NF is the total
DOS at the Fermi energy, vF is the Fermi velocity and τσ is the relaxation
time for the spin σ. Assuming the same relaxation time τ for both spins one
can write the "Nv2" definition of the spin polarization as follows,

PNv2 =
n↑(EF )vF↑2 − n↓(EF )vF↓2

n↑(EF )vF↑2 + n↓(EF )vF↓2
(2.17)

From the above definition of P i.e., the Nv2 definition, it is clear that the
transport is not only governed by DOS but the Fermi velocity has an impor-
tant role also. This is particularly true for materials (e.g. Ni) which have
both heavy d -band electrons and light s-band electrons at the Fermi level
and the DOS is mainly contributed by the d -band electrons and the electric
transport is dominated by the first s-band electrons.

2.3.2 Ballistic Transport

In the ballistic limit, where the phase coherence length is much longer than
the size of the device, the transport is described by the Landauer formula [16–
18]. In this limit, the current and/or the conductance are simply proportional
to NF vF [19]. In the Landauer approach, the velocity of electron and the
density of states cancel each other, so the product of those two factors, NF vF

is just an integer proportional to the number of bands crossing the Fermi level
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in the direction of the transport [3]. Therefore, the ballistic definition of spin
polarization, PNv is given by

PNv =
n↑(EF )vF↑ − n↓(EF )vF↓
n↑(EF )vF↑ + n↓(EF )vF↓

. (2.18)

For point contact measurements, this definition of spin polarization is used
mostly because the point contact technique can measure the spin polarization
of currents, characteristic of ballistic transport when interfacial scattering in
the point contact is minimal [12].

2.3.3 Tunneling Spin Polarization

Spin dependent transport in magnetic tunnel junctions (MTJs) was first ob-
served by Jullière [5] almost three decades ago. The most widely used model
to describe this phenomena was also proposed by Jullière and was based
on the arguments of the experiments performed by Tedrow and Meservey
on tunneling between superconductor and ferromagnets [4]. From Jullière’s
model spin polarization is defined solely by the DOS of the spin-up and spin-
down electrons at the Fermi energy as it has been expressed in Eqn(2.15).
However, this is nearly impossible to measure this quantity in a transport
experiments and also it is generally not justified even for vanishing bias. In
reality, the density of states measured by tunneling is never the actual DOS
in the absence of a tunnel barrier, but always weighted by | T |2 , where T
is the tunneling matrix element. Therefore, the definition of tunneling spin
polarization can be written as

PT =
n↑(EF )| T↑ |2 − n↓(EF )| T↓ |2
n↑(EF )| T↑ |2 + n↓(EF )| T↓ |2

(2.19)

where Tσ are spin dependent tunneling matrix elements. This definition
of tunneling spin polarization can be used to describe more accurately the
results of Tedrow and Meservey for the polarization [12].

2.4 Basic Idea About Spin Injection
Spin injection is one of the most important concepts in the field of spintronics
since spin-dependent transport in semiconductor(SC)/normal metal (NM)
systems requires effective and efficient techniques for the electrical injection
of highly spin polarized currents for its successful applications. The first step
towards spin injection into the non-magnetic metal /semiconductor is to have
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Figure 2.2: (a) Conductivity mismatch is shown by simple resistor model
and (b) conductivity mismatch problem is solved by inserting tunnel barrier
at the interface.

a spin polarized current source. Ferromagnetic metals can be of first choice to
be considered as spin polarized current source since the electrical conductivity
of the majority spin (spin-up) electrons differs substantially from the same
of minority spin (spin-down) electrons, resulting in a spin-polarized electric
current.

The first step towards the realization of spin injection is to make an ohmic
contact between a FM and a SC/NM. Ohmic contact between metals and
semiconductors can be realized from a heavily doped semiconductor surface,
which increases the probability of spin-flip scattering hence the resulting spin-
polarization gets reduced [20]. Schmidt et al. have pointed out that there is
a fundamental obstacle regarding ohmic spin injection across ferromagnetic-
nonmagnetic interfaces [21]. From a fundamental point of view, it is very
difficult to transfer spins between two systems with different electronic prop-
erties. Generally, there is a huge difference in DOS at the Fermi level between
a common semiconductor and a magnetic transition metal, resulting in very
different conductivities for the two materials. We have presented this problem
in terms of a resistor model in the figure 2.2. Although there is a difference
between the spin-up and spin-down resistances, the spin independent part
of the total resistance is so large in the semiconductor that it drowns the
small spin dependent resistances of the magnetic metals. The only possi-
bility to get efficient spin injection is either to have a FM with 100 % spin
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polarization or to have large and different interface resistances for the two
spin directions so that the interface resistance dominates the transport as
shown in the figure 2.2. This last solution was pointed out in the theoretical
work by Rashba [22] and Fert and Jaffres [23], where they have proposed to
introduce spin-selective tunnel barrier in the interface of FM-SC systems.

The fundamental obstacle pointed out by Schmidt et al. was for diffusive
transport, when the resistivity of the SC is very high. However, in the bal-
listic regime, with a defect-free SC, scattering at the interface itself would be
the main source of high resistance without even the need of a tunnel barrier.
If then spin-selective interface scattering could be achieved, e.g., high trans-
mission for spin-up and high reflection for spin-down electrons, spin injection
would be possible [24,25].

2.4.1 Spin Accumulation

Figure 2.3: (a) Schematic representation of the spin-dependent DOS of the d -
bands in a ferromagnetic transition metal. (b) Free electron like DOS for the
nonmagnetic metal. (c) Spin accumulation: when a spin polarized current
is injected from the ferromagnet, splitting in the electrochemical potential
arises for spin-up DOS and spin-down DOS.

One of the important consequences of spin injection is spin accumulation.
As we have already discussed in the previous section, conductivities for the
spin-up and spin-down electrons are unequal in a ferromagnetic material,
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hence there is a net spin current (I↑− I↓) accompanied with the usual charge
current (I↑ + I↓). Therefore, spin injection from a FM into a NM/SC, i.e.,
electrons carrying the spin current (I↑ − I↓) cross the interface between FM
and NM, induces a magnetization ∝ (I↑ − I↓) at the interface within the spin
diffusion length. Because of the continuity of the electrochemical potential
for spin-up and spin-down electrons at the interface there will be a splitting in
the electrochemical potential for spin-up and spin-down electrons on the NM
side of the junction. This difference in electrochemical potential for spin-
up and spin-down electrons is called spin accumulation [26, 27]. Since the
conductivities for both spins are the same in NM/SC, far from the interface
on the NM/SC side, the current will be carried equally by both spin channels.
Now, since at the interface there is spin accumulation, some of the electrons
in the spin-up channel flip their spins to get into the spin-down channel to
reach at the steady state where the chemical potentials of both the channel
become equal. This spin accumulation extends over a distance of the order
of spin diffusion length [28]. The physics of spin accumulation is illustrated
in the figure 2.3(c).

2.5 Spin Field Effect Transistor

In 1990, Datta and Das proposed a new type of field effect transistor (FET)
which utilizes the spin of the electrons while travelling through a quasi one
dimensional channel without being scattered [29]. The spin FET is an elec-
tronic device where spin-polarized current could be created, manipulated
and detected by means of an electric field. Using FM materials as source
and drain, one can create a spin-polarized current, whereas spin manipu-
lation is done by the gate electrode. An electric field applied via the gate
electrode creates a conducting channel from source to drain in conventional
FET devices. In spin FET devices, the electric field applied via gate electrode
can also be used to control the orientation of the spin of electrons travelling
through the conducting channel.

To understand how an electric field can control the orientation of spins,
we have to look back at relativistic effects on the spin of the electrons [33].
When an electric field is applied perpendicularly to the transport direction,
an electron in its moving frame of reference feels an effective magnetic field
directed perpendicularly to both the electric field and the transport direc-
tion. Hence, the spin of the injected electron can precess about this effective
magnetic field while it is travelling through the conducting channel. This phe-
nomenon is similar to the spin-orbit interaction in an atomic system, where
electrons orbit around the nucleus in the presence of an electric field created
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by the positively charged nucleus. The underlying spin-orbit interaction in
spin FET devices is called Rashba effect or Rashba spin-orbit coupling [35].
The output current will be proportional to the projection of the spin orien-
tation of the electrons carrying current to the magnetization direction of the
FM drain electrode. Therefore, the source-drain current can be manipulated,
i.e. spin direction of the current carrying electrons can be rotated willingly,
by utilizing the Rashba spin-orbit effect via an applied electric field through
the gate electrode.

Figure 2.4: Schematic presentation of Spin Field Effect Transistor. (a)No
spin precession at zero gate voltage. (b) Rotation of spins at finite gate
voltage. Source-drain current depends on the magnetization direction of the
drain electrode. For a rotation of angle π, maximum (minimum) current re-
sults for the antiparallel (parallel) orientation of the magnetization of source
and drain electrodes respectively.

This basic principle of a spin FET is shown schematically in the fig-
ure 2.4. The spin precession and output current modulation are controlled
via the field effect by applying an external gate voltage. The phase difference
∆θ = 2m∗αL/~2 [29], where m∗ is the effective mass of an electron, L is the
distance between the source and drain electrodes and α is the spin-orbit inter-
action parameter which can be controlled by gate voltage. Hence, the phase
difference ∆θ of the spin precession between source and drain electrodes is a
function of gate voltage via Rashba spin-orbit interaction parameter α. For
example, in the case of 2-dimensional electron gas (2DEG), this spin-orbit
interaction parameter α is linearly dependent on the expectation value of the
electric field 〈E〉 and is given by [30],

α = b〈E〉 (2.20)
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Here the proportionality constant b is inversely proportional to the energy
gap and the effective mass [31].

As a model, the conception of Datta Das [29] for the spin transistor was
ideal, but there are many difficulties to implement it in reality. First, the
model of the Datta Das transistor considers 100 % spin polarized injector and
detector electrodes with a 100 % injection rate [34]. Second, the model has
been proposed for single channel transport, where intersubband mixing can
be neglected. For the first difficulty, one can use half metallic ferromagnets,
where almost 100 % spin polarization can be achieved (otherwise the problem
of efficient spin injection will remain unsolved, as we discussed in the previous
section). For the second, one can look into the expression of the phase
difference and it is interesting to note that the phase difference is independent
of subband index m and the wave vector k, i.e. it is the same for all subbands
and all energies ( but corrections due to intersubband mixing need to be
considered) [29].

Recently, there has been another proposal of spin field-effect transistor
based on the quantum interference effects in one-dimensional as well as two-
dimensional structures [32]. In this scheme, the relative conductance dif-
ference between parallel and antiparallel magnetization of the ferromagnetic
electrodes oscillates as a function of gate voltage due to quantum interference
effects. Quantum interference is a well-known phenomenon in mesoscopic de-
vices when the phase coherence length is larger than the size of the device.
In this proposal, the interference is adjusted by controlling the Fermi wave-
length in the semiconductor using a gate electrode in the field-effect transistor
geometry with magnetic source and drain.

In a semiconductor, due to the much lower carrier concentration, the con-
duction band bottom is usually found at a considerably higher energy com-
pared to a ferromagnet. Hence, the semiconductor layer can be regarded as a
potential step between the ferromagnets in ferromagnet/semiconductor/ferromagnet
structures. By using a gate electrode one can control the carrier concentration
and hence the potential barrier at the interface. Since the Fermi wavelength
depends on the potential barrier height it can be controlled via the gate elec-
trode. Due to the spin dependent transmission probabilities the conductance
will be different for parallel and antiparallel magnetization orientations and
the relative difference in conductance of both orientations changes with the
gate voltage. It has been shown theoretically in this proposal that this rel-
ative difference in conductance oscillates due to quantum interference which
is controlled by a gate voltage.
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2.6 Spin-polarized Electron Tunneling

Tunneling of electrons is a purely quantum mechanical phenomenon in which
an electron can be transmitted through a potential barrier of height greater
than the electron’s total energy, which is forbidden by classical physics. This
is an evidence of the wave-like nature of electrons in the quantum mechanical
picture, where the wave function of the electron can penetrate the region of
higher energy compared to the total energy of the electron. Hence, a high
barrier can be overcome by an incident particle of low energy [10]. A typical
example of tunneling for a square one-dimensional potential step of hight V0

and width d is shown in schematically shown in the figure 2.5, where the
incident particle energy E is lower than the barrier hight V0.

Figure 2.5: Schematic presentation of the tunneling effect.

In tunneling, when the number of electrons having one spin orientation
is more than the number with the other spin orientation, the constitut-
ing tunneling current is spin-polarized. This phenomenon is called spin-
polarized electron tunneling. Spin-polarized tunneling was discovered in
1970 by Tedrow and Meservey in a series of elegant experiments [4,36] using
ferromagnet-insulator-superconductor tunnel junctions. They used a FM as
spin-polarized electron source and measured the spin-polarization of conduc-
tion electrons in the FM using the Zeeman-split DOS in superconductor as
the spin detector [37]. A few years later, in 1975, Jullière demonstrated the
tunneling experiments in Ferromagnet-Insulator-Ferromagnet tunnel junc-
tion [5], another breakthrough in this field. In this case, FM was used as
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both the spin injector and the spin detector. We will discuss the details of
Jullière’s model in the next section.

2.7 Tunneling Magnetoresistance
One of the most interesting aspects of spin-dependent tunneling arises when
two FM materials, usually in the form of thin films, are separated by a thin
insulating layer, typically referred to as a magnetic tunnel junction (MTJ).
As we have already shown, in FM, the number of electrons with spin-up and
spin-down are not the same, and the magnetization direction in ferromagnetic
materials can be expressed as the spin orientation of the majority electrons.
When the magnetization of the two electrodes are parallel then majority spin
state or minority spin state will have the same spin orientation for both the
electrodes, whereas, for antiparallel orientation of the magnetization majority
spin state in one electrode is the minority spin state of the other electrode.
Hence, the corresponding resistances are different for parallel and antiparallel
magnetization orientation of the electrodes. This is the basis of tunneling
magnetoresistance (TMR). In this thesis, we use the definition of TMR as:

TMR =
∆R

R
=

RAP −RP

RP

(2.21)

RP (AP ) indicates the resistance when the magnetization of the two FM elec-
trodes are parallel (antiparallel).

2.7.1 Jullière’s Model

The most widely used and simplest model to describe spin-dependent tunnel-
ing was proposed by Jullière in 1975, based on his experiments on a Co-Ge-Fe
tunnel junction [5]. This model was established based on two important as-
sumptions. First, the spin of electrons is conserved in the tunneling process,
so that the tunneling of spin-up and spin-down electrons are two independent
processes. According to this assumption, tunneling occurs only for the elec-
trons with one spin orientation from the first FM electrode to the unoccupied
same spin state in the second FM electrode, so that the total conductance
is the sum of the conductances for the two independent spin-channels. If
the two FM electrodes are magnetized parallel (P), the electrons of majority
(minority) spin from the first electrode tunnel into the majority (minority)
spin state of second electrode but if the two electrodes are magnetized in
antiparallel (AP) orientation, then the majority (minority) spin electrons of
first electrode tunnel into the minority (majority) spin state of the second
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Figure 2.6: Tunneling current is decomposed into spin-up (red) and spin-
down (blue) contributions assuming energy and spin conservation during the
tunneling. Thickness of the arrows indicate the transmission amplitude which
depends on the DOS of the initial and final states for the each channel.
Hence, the total current and the resistance depend on the alignment of the
magnetization of the two FM electrodes.

electrode [38]. The second assumption is that the conductance for a par-
ticular spin orientation is proportional to the product of the DOS of that
particular spin of the two FM electrodes. Indicating the spin-up state as
majority spin state and the spin-down state as minority spin state, (accord-
ing to the above mentioned assumptions,) the conductance for parallel and
antiparallel alignment Gp and GAP can be written as:

GP ∝ n↑1n
↑
2 + n↓1n

↓
2 (2.22)

GAP ∝ n↑1n
↓
2 + n↓1n

↑
2 (2.23)

where n↑1(2) and n↓1(2) are the tunneling DOS of the first (second) FM electrode
at the Fermi energy, for majority and minority spin states respectively. With
the assumption that the tunneling matrix elements do not depend on the
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spin and energy of the tunneling electrons, the tunneling polarization P can
be written from the Eqn. (2.20) (with | T |2 as a constant) in terms of the
majority (n↑) and minority (n↓) DOS at Fermi energy as:

P =
n↑ − n↓

n↑ + n↓
,

n↑

n↓
=

1 + P

1− P
(2.24)

and,

GP −GAP

GAP

=
(n↑1n

↑
2 + n↓1n

↓
2)− (n↑1n

↓
2 + n↓1n

↑
2)

n↑1n
↓
2 + n↓1n

↑
2

=
2P1P2

1− P1P2

(2.25)

then from eqn.(2.22) and eqn.(2.26), the TMR can be written as:

TMR =
RAP −RP

RP

=
GP −GAP

GAP

=
2P1P2

1− P1P2

(2.26)

This is referred as Jullière’s model which expresses the TMR in terms of the
spin polarization P1 and P2 of the two FM electrodes. Usually, the resistance
(RP ) for parallel alignment of the magnetization of the FM electrodes is
smaller than the resistance (RAP ) for the antiparallel alignment, resulting in
positive TMR, called normal TMR effect. However an inverse or anomalous
TMR effect can also be possible if the tunneling matrix elements are spin
and/or energy dependent.

Jullière’s model is attractive due to its simplicity, and in many cases it can
explain the experimental observations. But since this model is very simple, it
is not surprising that for several experimental observations, there are many
limitations and difficulties to explain the results consistently in the framework
of this model. For example, it is not clear how to obtain the relevant values for
P1 and P2 from the above expression of TMR [10]. Polarizations determined
from TMR measurements using Jullière’s model [eqn.(2.27)] are sometimes in
strong disagreement with polarizations determined by other technique. This
reflects that the polarization of a material strongly depends on experimental
conditions. Furthermore, Jullière’s model does not include the band structure
effect on the tunneling as we can see it from the expression given in the eqn.
(2.27).

2.7.2 Slonczewski’s Model

In an extension of Jullière’s model, Slonczewski found theoretically that the
spin-polarization of FM electrode can be diminished and even sign of the
polarization can be changed due to discontinuous change of the potential at
the electrode-barrier interface [39]. Slonczewski described the FM electrodes
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with two simple free-electron like parabolic bands, shifted rigidly with respect
to one another by the exchange splitting, for up-spin and down-spin electronic
states. Considering a rectangular potential barrier between two identical
FM electrodes, he calculated the tunneling conductances as a function of
the angle between the magnetization vectors of the two FM electrodes by
solving the Schrödinger equation for the wave function of spin-up and spin-
down electrons. In the limit of a thick barrier, assuming the conservation of
the electron momentum parallel to the junction k‖, he found the tunneling
conductance as:

G(θ) = G0(1 + P 2
eff cos θ) (2.27)

where θ is the angle between the magnetic moments of the electrodes and
Peff is the effective spin polarization of tunneling electrons given by

Peff =

(
k↑ − k↓

k↑ − k↓

)
κ2 − k↑k↓

κ2 + k↑k↓
(2.28)

where κ =
√

(2m/~2)(U − EF ) is the constant of decay of the wave function
into the barrier of potential barrier hight U for k‖ = 0. k↑ and k↓ are the
Fermi wave vectors for up-spin and down-spin electrons respectively. For
free-electron like parabolic bands, k↑ ∝ n↑ and k↓ ∝ n↓ [40], hence, the
first factor in the above equation [eqn.(2.28)] represents the polarization P
in Jullière’s model and the second factor is new in this approach. Therefore,

Peff = P
κ2 − k↑k↓

κ2 + k↑k↓
(2.29)

The second term, (κ2 − k↑k↓)/(κ2 + k↑k↓) ranges between −1 to +1 since κ
ranges from 0 (low barrier hight) to∞ ( high barrier hight). From eqn.(2.29),
it follows that for high barrier, the effective polarization Peff reduces to
Jullière’s result but when the barrier is low Peff can even change its sign.

2.7.3 Magnetic Field Dependence of TMR

In order to observe the TMR effect in MTJs and/or in spin-valves one needs
to realize both parallel and antiparallel alignment of the magnetization of the
two FM electrodes experimentally. The simplest way to realize this phenom-
enon experimentally is to use FM electrodes with different coercive fields, so
that at some intermediate field between these two coercive fields of the two
FM electrodes, the antiparallel alignment can be realized. For example, two
different FMs (hard and soft), can serve this requirement or one can take the
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Figure 2.7: TMR vs. magnetic field for (a) a Ni80Fe20/Al2O3/Co MTJ and
(b) an exchange-biased MTJ, both measured for zero-bias at 10K (from [41]).
Vertical arrows refer to sweep direction.

same FM material for the two electrodes with different shapes to use the ad-
vantage of the shape anisotropy to provide the different coercive fields. The
typical behavior of TMR as a function of external magnetic field (at V=0)
for a Ni80Fe20/Al2O3/Co junction (from the reference [41]) is shown in fig-
ure 2.7(a).While sweeping the magnetic field from a high negative (positive)
value through zero field to high positive (negative) value, at field values, be-
tween the coercive fields of Ni80Fe20 and Co, an antiparallel alignment of the
magnetizations of these two FM electrodes AP1 (AP2) is reached between
∼ 0.5 and 1.5mT (∼ −0.5 and −1.5mT).

Another way to realize the parallel and antiparallel magnetization align-
ment is exchange biasing [38], where one of the magnetic electrode is in direct
contact with an antiferrimagnetic material (e.g., FeMn, NiO, IrMn etc.).
The exchange bias is one of the phenomena associated with the exchange
anisotrpy created at the interface between a FM material and an antiferro-
magnetic material [42]. Due to the presence of this exchange anisotropy at
the interface, the entire magnetization-field hysteresis loop shifts away from
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zero-field and it is centered at finite field. This is known as exchange bias-
effect. Figure 2.7(b) displays the typical behavior of TMR as a function of
magnetic field for an exchange biased MTJ at V=0. Note, here in this case,
upon sweeping the magnetic field from a negative value through zero to a
positive value, the free FM electrode switches at low positive field near zero
field and then the second exchange biased FM electrode switches at real-
tively higher field as it was for the previous case (figure 2.7(a)), but for the
reverse sweep direction, the exchange biased electrode switches first at posi-
tive field again before reaching to zero field, this is the difference between the
two cases. From the technological point of view, exchanged biasing is more
advantageous and desirable for greater magnetic stability [43].

Using shape anisotropy one can realize parallel and antiparallel alignment
of magnetization from the same FM material as both the electrodes. This is
discussed in Chpater 4.

2.7.4 Bias Voltage Dependence of TMR

The bias dependence of TMR is an effect which is of great importance from
the application as well as from the fundamental physics point of view [40].
First bias dependence of TMR was demonstrated experimentally by Jullière
[5], where he found that the TMR decreases rapidly with an increase of
bias. Jullière attributed this decrease in TMR due to increase in bias, to
the spin-flip scattering at the metal-barrier interfaces. Almost 20 years later,
Moodera et al. [6] confirmed this effect, i.e., the decrease in TMR at high
bias voltage, but they could not explain their experimental observations with
the simple Jullière model. Including Jullière’s experiment, many experiments
until today [44–51], consistently showing a decrease in TMR as a function
of bias voltage, are controversial from the view of physical understanding.
Also, in many of the above cases, sign reversal of TMR as a function of bias
has been observed. Hence, from a fundamental point of view, it is important
to understand the physical mechanism behind the behavior of TMR as a
function of bias voltage.

In order to explain this drop in TMR with bias, a theoretical explanation
was given by Zhang et al. [44] and Bratkovsky [52] in terms of inelastic
scattering by magnon excitations at the ferromagnet/insulator interface. In
the tunneling process from one electrode to the other, the tunneling electrons,
known as hot electrons, of an energy of eV above the Fermi energy (due to the
applied bias voltage of V ), lose their energy by emitting a magnon of energy
~ω ≤ eV (provided there are no other inelastic scattering events present)
and thereby flipping the electron spin. More magnons can be emitted with
increasing bias, resulting in the reduced TMR values. Moodera et al. [45]
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have suggested that magnon excitations at the interface are partly responsible
for their experimental observations on bias dependence of TMR. One year
later, Zhang and White [53] proposed another model, where they attributed
the bias dependence of TMR to the imperfect nature of the barrier. They
suggested that the drop in TMR with bias is due to the localized trap states
in the amorphous barrier. Therefore, according to them, one can expect to
improve the TMR and minimize the voltage dependence by using high quality
barriers with low defect state density. The effect of impurity in the barrier to
the bias dependence of TMR was supported experimentally by Jensen and
Moodera [54,55].

Another mechanism which could contribute to the bias dependence of
TMR, proposed by Davis and MacLaren [56], is related to electronic structure
of the FM. They assumed for each spin, tunneling from a single free electron
band through a simple square potential barrier. They considered that the
participating DOS is exchange split and is the source of spin-polarization.
Several contributions to the bias dependence of TMR were identified in this
model. Two primary contributions from electronic structure effects will be
addressed here: shifting of the chemical potential as a function of bias and the
change in the barrier shape due to the applied bias. Shifting of the chemical
potential with bias allows new states from both spin channels to be accessed
for tunneling, which causes a change in polarization of the tunneling states
as a function of bias. As bias increases, the imbalance between the majority
and minority spin states diminishes resulting in reduced spin polarization of
the tunneling states. Reduced polarization due to an applied bias can be
attributed to the drop of TMR with bias. On the other hand, the altered
barrier shape allows the higher energy states to tunnel more easily. Therefore,
unlike Jullière’s model [5], the tunneling matrix elements are both spin and
energy dependent.

In conclusion, the physics behind the bias dependence of TMR is not
fully understood. The bias dependence has been attributed mainly to the
following mechanisms: excitation of magnons at the ferromagnet/insulator
interface, imperfect barrier with trapped states, energy dependence of spin
polarization due to band structure effects.

2.7.5 Temperature Dependence of TMR

The experimentally observed TMR as a function of temperature (T) has al-
ways the trend of decrease in TMR with increase of T. To understand the
temperature dependence of TMR, one has to consider the related theories at
finite temperature. However, even with the best junctions, there is a signifi-
cant decrease of junction resistance with increase of temperature, irrespective
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of the type of the tunnel barrier and FM electrodes [40]. But even though
there is a temperature dependence of junction resistance at the non-magnetic
tunnel junctions, Shang et al. [58] first noticed that the temperature depen-
dence of the tunnel resistance for magnetic tunnel junctions greatly exceeds
that for non-magnetic junctions with nominally identical barriers. Several
explanations [57–61] were given there about the origin of the temperature
dependence of TMR. We discuss here the two principal mechanisms, which
can be attributed to the temperature dependence of TMR: A reduction of
magnetization M(T) in a FM due to the excitation of magnons at the inter-
face and a reduction in polarization due to spin-flip scattering of tunneling
electrons by the magnetic impurities in the barrier.

The contribution from the reduction of the magnetization in FM to the
temperature dependence of TMR is based on the assumption that the spin
polarization P is proportional to the magnetization M(T) in the ferromag-
nets [45]. Which means that one can expect the spin polarization to change
as a function of temperature exactly in the same way as magnetization varies
with temperature. This approach can be justified more rigorously by con-
sidering the temperature effect on the majority and minority spin bands of
an itinerant ferromagnet [57]. According to the band theory of itinerant
ferromagnets [62–66], energy bands for metallic FMs are spin-split at each
atomic site and at temperature T = 0 the direction of the spin quantiza-
tion axis (z-axis) along which the bands are split, is same for every atoms,
since only the ground state is important. But, at finite temperature, the
majority and minority spin-bands are locally split and corresponding local
spin quantization axis fluctuates from site to site because many other ther-
mally excited states in which the exchange field varies from atom to atom
are also contributing to the total magnetization. At low temperatures, long
wavelength magnons are the main contribution to temperature-induced fluc-
tuations [45]. Each thermally excited magnon tilts the magnetization vector
away from the z-axis. Hence the electrons having majority (minority) spin-
state at T = 0 can be expressed as the superposition of majority and mi-
nority spin-states at finite temperature with probability (1±M(T )/M(0))/2
respectively [57], where M(0) corresponds to the magnetization at T = 0.
It follows, P (T ) = [M(T )/M(0)]P hence, P (T ) ∝ M(T ). Therefore, the
polarization P(T) and the magnetization M(T) follow the same temperature
dependence, i.e. the well-known Bloch T 3/2 law, M(T ) = M(0)(1 − αT 3/2),
where α the material-dependent fitting parameter [67].

The other mechanism is the spin-flip scattering [59, 68] at the interface
from magnetic impurities. When an electron with specific spin-state un-
dergoes inelastic scattering from magnetic impurities, the orientation of the
spin may no longer be at the previous specific direction, which leads to a
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randomization in the spin orientation. The resulting spin polarization will
be reduced. The number of electrons contributing to the tunneling process
increases with the increase of temperature [69], resulting in a further drop in
effective spin polarization and hence in TMR.

Besides these, there is also an effect of inelastic scattering like electron-
phonon scattering which does not flip the spin but can reduce the TMR with
increasing temperature [70]. Thermal smearing can also contribute signifi-
cantly to the temperature dependence of TMR [61]. In addition to all these,
a spin-independent contribution, leading to the temperature dependence of
the junction resistance, adds to the reduction of TMR with temperature [58].

2.7.6 Coulomb Blockade Effects on TMR

In multiple tunnel junctions consisting of nanometer-sized metallic (magnetic
or non-magnetic) island, tunneling of electrons from the electrodes to the
island is strongly influenced by the Coulomb charging energy of the island.
Tunneling of an electron into such an island increases the electrostatic energy
of the island by the charging energy, EC = e2/2C, where e is the electronic
charge and C is the total capacitance of the island. Therefore, tunneling
is blocked unless the barrier is overcome by bias voltage or thermal energy
(Coulomb Blockade phenomenon). In a double tunnel junction device, the
charging effect of the island leads to the single electron tunneling (SET) rep-
resented by the Coulomb Blockade (CB) of electric current into the island.
One recent area of research in the field of spintronics is to study the inter-
play between spin-dependent tunneling and the Coulomb Blockade effect in
ferromagnetic granular systems, ferromagnetic double tunnel junctions and
single-electron transistor.

The interplay of spin-dependent tunneling and Coulomb charging effect
has been studied in past few years, both experimentally [71–78] and theo-
retically [79–87] by different groups. For ferromagnetic SET devices, it has
been predicted theoretically that the discrete charging energy can lead to
oscillations in TMR as a function of bias voltage [80]. Here the intrinsic spin
relaxation time on the island is sufficiently short (of the order of the time
between successive tunneling events or shorter) to neglect the spin accumu-
lation in the island.

On the other hand, another interesting prediction is an enhancement
of TMR in the Coulomb Blockade regime for ferromagnetic double tunnel
junctions [82,83]. At low temperature for a small island, where the Coulomb
Blockade is strong, sequential tunneling, in which tunneling events at each
junction occur independently, is supressed by the Coulomb Blockade for T ¿
EC , but coherent higher order tunneling (cotunneling) via a virtual state of
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the island is energetically favorable. Resistance for sequential tunneling is
proportional to the sum of the resistances of the two junctions, whereas, in the
case of cotunneling, the total resistance is proportional to the product of the
two junction resistance. Hence the ratio of the resistance for antiparallel and
parallel orientation of the magnetization of the ferromagnetic island and the
two ferromagnetic electrodes, in cotunneling regime, is equal to the square of
the ratio of the two resistances in sequential tunneling regime. Therefore, the
TMR for T ¿ EC is enhanced by [R(AP )/R(P )]

2 compared with R(AP )/R(P )

in the absence of the Coulomb Blockade [82], where R(AP ) and R(P ) are the
resistances for antiparallel and parallel alignment of the magnetization of the
island and the electrodes respectively.

When the intrinsic spin relaxation time is sufficiently long (much longer
than the time between two successive tunneling events), spin accumulations
in the island has to be taken into account, since it can enhance TMR, it can
also generate TMR with non-magnetic island. Many other effects as negative
differential resistance, sign reversal of TMR can be caused by spin accumu-
lation [87]. It has been predicated also that the spin accumulation caused by
cotunneling squeezes the Coulomb blockade region when the magnetizations
of the FM electrodes are antiparallel for a nonmagnetic island [85].

2.8 Spin Relaxation

Spin relaxation refers to the process which brings a nonequilibrium electronic
spin population to a spin equilibrium state. Since this nonequilibrium elec-
tronic spin in metals and semiconductors is used to carry the spin-encoded
information, which is one of the most important steps towards the field of
spintronics and possible future quantum computation, it is important to
know how long the spin can travel without losing its initial spin orientation
both in length as well as time scale. The determination of spin-flip rates is
extremely important for electronic applications, because if the spins relax too
rapidly, the distances travelled by spin-polarized currents will be too short
for practical applications [88]. In this section, we present the fundamental
spin relaxation mechanisms that can yield to the loss of spin polarization of
the current carrying the spin-encoded information.

In the absence of magnetic impurities (which can lead to spin-flip scat-
tering also), mainly four spin relaxation mechanisms of conduction electrons
in metals and semiconductors have been found to be dominant mechanisms.
These are the Elliott-Yafet, D’yakonov-Perel’, Bir-Aronov-Pikus, and the
hyperfine-interaction mechanisms.
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2.8.1 Elliot-Yafet Mechanism

Elliott [89] was the first person who realized that conduction electron spins
can relax via ordinary momentum scattering by phonons or non-magnetic im-
purities if the lattice ions induce spin-orbit interaction in the electron wave
function. Yafet [90] considered this lattice-ion-induced spin-orbit interac-
tion for band structure systems, which must be combined with the Elliott
processes to form a clear and consistent picture of phonon-induced spin re-
alxation [91]. The Elliott-Yafet mechanism is based on the fact that in real
crystals, Bloch sates are not spin eigenstates since the lattice-ion-induced
spin-orbit interaction mixes the spin up and spin down sates. It is clear
when we look into the expression of the spin-orbit interaction term in the
hamiltonian:

VSO =
~

4m2c2
(∆V × p) · σ (2.30)

where m is the free-electron mass, V is the spin-independent periodic lattice
potential, p is the linear momentum operator and σ are the Pauli matrices.
Hence, from the above expression of spin-orbit interaction, it is clear that the
single electron (Bloch) wave functions in a solid are no longer the eigenstate
of σz but rather a mixture of the Pauli spin-up |↑〉 and spin-down |↓〉 states.
If the solid posssesses a center of symmetry , the Bloch states of spin-up and
spin-down with the lattice momentum k and band index n can be written
as:

ψkn↑(r) = [akn(r) |↑〉+ bkn(r) |↓〉]eik·r (2.31)

ψkn↓(r) = [a∗−kn(r) |↓〉 − b∗−kn(r) |↑〉]e−ik·r (2.32)

Where r is the radius vector. As a consequence of time reversal symme-
try, these two Bloch states are degenerate provided there is inversion in the
symmetry group [89].

Due to the above mentioned spin-orbit interaction, an initially spin-up
(spin-down) states acquires a spin-down (spin-up) component with the am-
plitude b. Since the spin-orbit interaction is normally much smaller than
the distance between the bands, it can be treated as a perturbation, and
hence [91],

| b |≈ λSO/∆E ¿ 1 (2.33)

where ∆E is the energy distance between the band state under considera-
tion and the state with same momentum in nearest band. The spin-orbit
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coupling, λSO is the matrix element of VSO between the two states. Ac-
cording to Elliott, an ordinary spin-independent interaction with impurities,
boundaries, interfaces and phonons can connect electrons with up spins with
electrons of down spin states, which leads to spin relaxation [92]. The spin
relaxation rate is given by,

1/τs ≈ 〈b2〉/τm (2.34)

Where, τs is the spin relaxation time and τm is the momentum relaxation
time. The Elliott relation gives only a very rough estimation of τs, on the
other hand, the Yafet [90] relation connects the temperature dependence of
1/T1 with that of the resistivity ρ:

1/T1 ∼ 〈b2〉ρ(T ) (2.35)

where T1 is the time it takes for the longitudinal magnetization to reach
equilibrium and is called spin-lattice relaxation time. Now if we consider T1

as τs, then

1/τm ∼ ρ(T ). (2.36)

For very low temperature, with careful symmetry considerations, Yafet showed
that 1/T1 ∼ T 5. The Elliot and Yafet relations were experimentally tested
in different metallic systems [93,94].

2.8.2 D’yakonov-Perel’ Mechanism

The spin-orbit interaction in the systems, lacking inversion symmetry, lifts
the spin degeneracy, i.e., spin-up and spin-down electrons, having even the
same momentum state, have different energies. D’yakonov and Perel’ showed
that the lifting of the spin degeneracy in those systems leads to spin relaxation
[95,96]. Spin splittings induced by the inversion asymmetry can be described
by introducing a momentum dependent internal magnetic field B(k) around
which electron spins precess with Larmor frequency ω(k) = (e/m)B(k). The
interaction of the electron spin with this internal magnetic field causes flip-
ping of the electrons spins, hence, spin relaxation occurs. However, when an
electron is scattered from a momentum state k to k′ the electron spin starts to
precess around the axis given by B(k′) with an angle δφ = ωτm. Therefore
the precession direction and frequency of the electron spins fluctuate with
the fluctuating internal effective magnetic field due to the random scattering
from one momentum state to another momentum state (and so on). As a
result the spin phase follows a random walk: after time t, which amounts to
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t/τm steps of this random walk, the phase progresses by φ(t) ≈ δφ
√

t/τm.
By definition, τs is a time at which φ(t) = 1 [91], hence,

1/τs = ω2τm. (2.37)

The spin relaxation rate 1/τs is proportional to the momentum relaxation
time τp. Note, this is the opposite relation of that in Elliot-Yafet mechanism,
where spin relaxation rate 1/τs is inversely proportional to the momentum
relaxation time τp.

2.8.3 Bir-Aronov-Pikus Mechanism

In p-doped semiconductors, electron-hole exchange interaction acts on the
conduction electron spin as some effective magnetic field. When electron
spins precess about this field, spin relaxation takes place. This mechanism
was found by Bir, Aronov and Pikus [97], and hence, is called as Bir-Aronov-
Pikus Mechanism of spin relaxation. This mechanism is similar to that of
the D’yakonov-Perel’ mechanism since the precession angle and frequency
diffuses with the fluctuating field produced by electron-hole exchange in-
teraction. The spin-flip scattering probability depends on the sates of the
holes, i.e. whether the hole states are degenerate or non-degenerate, bound
or free, fast or slow. This mechanism is only relevant in semiconductors with
a significant overlap between electron and hole wave functions [91].

All the above mentioned mechanisms can coexist in particular systems
having p-doped materials which lack inversion symmetry. The Bir-Aronov-
Pikus Mechanism is dominant for heavily-doped systems at low temperature,
whereas, at higher temperature the D’yakonov-Perel’ mechanism is domi-
nant. Finally, In the Elliot-Yafet mechanism, spin relaxation occurs because
the wave function of one particular electron spin is having a component from
the other electron spin due to the spin-orbit coupling induced by lattice-ions.
In D’yakonov-Perel’ mechanism, spin relaxation occurs when the electron
spins presses about an effective randomly fluctuating magnetic field result-
ing from the lack of inversion symmetry and the spin-orbit interaction in
systems lacking inversion symmetry. In the Bir-Aronov-Pikus Mechanism,
electron spins flip due to a fluctuating local magnetic field originated from
electron-hole exchange interaction in p-doped semiconductors.

Besides these three mechanisms there can be also spin relaxation due to
the hyperfine interaction, which is the magnetic interaction between magnetic
moments of the electrons and nuclei since atomic nuclei have finite spins.
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2.9 Spin-polarized Transport Through Quan-
tum Dots

So far, mostly, we have spoken about single magnetic tunnel junctions. In
this section, we focus on the systems containing a mesoscopic double ferro-
magnetic junctions with a quantum dot as a spacer. The study of transport
through QDs with non-magnetic electrodes revealed many interesting phe-
nomena like resonant tunneling, Coulomb blockade, Kondo effects and so on.
When the non-magnetic electrodes are replaced by magnetic electrodes, then
obviously all those above mentioned phenomena will be much more rich from
the physics point of view, since one can expect to manipulate the spin degree
of freedom in addition to the charge degree. The physics of the transport
behavior is much more interesting and rich in quantum-dot spin valves than
in single magnetic tunnel junctions because there is a possibility to generate
a nonequilibrium spin accumulation on the QD, which can be controlled by
some measurable system parameters like, gate and bias voltage or temper-
ature, charging energy, asymmetry of the tunneling coupling and external
magnetic fields [98].

Theoretical works on spin-polarized transport through QD have been ex-
tensively performed and still it is one of the most important research projects
in this field, whereas very little knowledge is around from the experimental
observations. Most of the theoretical works are directed towards addressing
the following questions: (a) What is the effect of the Coulomb interaction on
the tunneling magnetoresistance (TMR)? (b) How conductance is modulated
by the spin precession in non-collinear FM-NM-FM systems? (c) What is the
origin of the mixing conductance at the FM-NM interfaces? (d) How spin-
dependent resonant tunneling influence TMR? It has been predicted that for
FM single electron tunneling devices, charging can enhance TMR [82,83] and
even can lead to an oscillation in TMR as a function of applied bias [80].

An interaction-driven spin precession has been found theoretically, in a
single-level QD attached to FM leads in the weak dot-lead coupling regime
[99]. Within a single-particle picture, transmission through the barrier re-
duces as the relative angle θ between the magnetization orientations of the
FM leads increases from 0 to π, this is commonly known as spin-valve effect.
In the absence of Coulomb Interaction, θ-dependent part of the transmission
is proportional to cos θ [39, 100, 101]. This spin-valve effect is predicted to
be reduced when a finite charging energy is present. At some finite bias spin
accumulation occurs in non-magnetic QD due to an imbalance in spin-up
and spin-down DOS in the FM leads. Since the leads are also spin-polarized
there will be an exchange interaction between the accumulated spins in the
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dot and the spins in the leads, which can be viewed as an effective magnetic
field about which the accumulated spins start to precess [98, 102]. This pre-
cession weakens the spin-valve effect by reducing the amount of accumulated
spin in the dot and changing its orientation related to the leads. On the
other hand, conductance gets enhanced due to the fact that the spin preces-
sion reduces the angle between the accumulated spin and the magnetization
of the collector electrode. Therefore, the functional form of the angular-
dependent linear conductance is affected and the cosine dependence valid for
a single magnetic tunnel junction is modified due to the precession of the
accumulated spin law in the presence of Coulomb interaction [98,99].

Another consequence of the above mentioned spin precession due to the
exchange interaction for noncollinear magnetization of the FM electrodes
is the contribution of a mixing conductance, which occurs at each FM/NM
interfaces. A theory based on the conservation of spin current, has been
formulated for spin dependent transport in devices involving ferromagnetic
electrodes with noncollinear magnetization [103]. It has been demonstrated
that spin transport can be understood in terms of four generalized conduc-
tances for each contact between a ferromagnet and normal metal. Two of
them are the real spin-dependent contribution from two separate spin-up
(G↑) and spin-down (G↓) channels and other two are the real and imaginary
parts of the mixing conductance (G↑↓) [104]. The spin-conductances G↑ and
G↓ have been used to describe spin-dependent transport for a long time. The
mixing conductance, which rotates the spins around the magnetization axis
of the FM, is a new concept, relevant for transport between noncollinear fer-
romagnets and is found to be enhanced by electron-electron interaction [105].

2.9.1 Spin-polarized Resonant Tunneling

Quantum dots are realized when electron motion is confined in all three
directions, on a length scale comparable to the Fermi wavelength [106]. There
is a close analogy between a standing electromagnetic wave between two
reflecting surfaces and an electron confined in a QD. An important result
of this strong confinement of the electron wave function in the dot is that
the energy spectrum of the electron is quantized into a discrete set of levels.
The quantized energy levels, εn(kn) are effectively formed under the quantum
interference condition,

2knL + 2φ = 2nπ (2.38)

where kn indicates the electron wave vector corresponding to the n-th energy
level along the transport direction , L describes the width of the QD, φ is the
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total phase changes of the electron wave functions induced by the reflection
at the interfaces and n is an integer number.

In general, changes in phase are the same for spin-up and spin-down
electrons due to the reflection at the interface between two normal metals.
But, the phase must be spin-dependent at the interface between normal metal
and FMs, since, depending on spin quantization axis of the FM electrodes,
wave functions for spin-up and spin-down electrons are reflected with different
phase at the interface. Hence, at the interface between normal metal and FM,
spin-up electron wave function and spin-down electron wave function acquire
different phases resulting in a spin-dependent phase change at the QD-FM
interface. Therefore the discrete energy levels (εσ) become spin-dependent
and can be expressed (in terms of electron wave vector) by the interference
condition

2kσ
nL + 2φσ = 2nπ (2.39)

where kσ is the wave vector and φσ is the total changes in phase of the electron
wave functions of spin direction σ(↑, ↓) respectively.

Quantum transport of electrons through discrete energy levels in quantum
dots is well-studied and also very much interesting subject from physics point
of view. Now, if one adds FM electrodes to inject spin-polarized current into
the dot and to detect it through the dot the interesting phenomenon like
spin-dependent resonant tunneling can be studied and this is of our interest
for this section. Near the resonance for each spin channel, the spin-dependent
transmission probability T σ(E) as a function of the incoming electron energy
E, is given by the Breit-Wigner formula [107],

T σ(E) =
Γσ

LΓσ
R

(E − Eσ
0 )2 + (Γσ

L + Γσ
R)2/4

(2.40)

where Γσ
L(R) = γL(R)(1 + σPL(R)), represents the spin dependent (σ = ±1)

couplings with spin independent part γL(R) for the left(right) FM leads with
the dot. Note, the polarization PL(R) can be both positive and negative. Eσ

0

is the spin dependent energy level and can be expressed as:

Eσ
0 = ε0 − εσ − eαVG (2.41)

where ε0 is the energy level corresponding to the spin independent tunneling,
εσ is the contribution to the energy level from the spin dependent phase at
the interface and α = CG/CΣ denotes the gate coupling strength with CG

as Gate capacitance and CΣ as the total capacitance of the QD. If the spin
polarization PL(R) ¿ 1, εσ can be expressed as:

εσ = κσ(PL + PR) (2.42)
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where κ is a fitting parameter.
According to the Landauer-Büttiker formula [108, 109], the tunnel con-

ductance is proportional to the transmission probability. Hence, tunnel con-
ductance per spin channel Gσ(E) as a function of electron energy E can be
written as:

Gσ(E) =
e2

h
T σ(E) (2.43)

and the total tunnel conductance is given by the sum of the conductances of
the two spin channels,

G(E) =
e2

h

∑
σ

T σ(E) (2.44)

Eqn.(2.43) represents the tunnel conductance for linear response at zero tem-
perature. Now if we apply a source-drain bias voltage symmetrically to the
both source and drain junctions, the conductance at zero temperature is
given by

G(VSD) =
e2

h

∑
σ

[T σ(E +
eVSD

2
) + T σ(E − eVSD

2
)] (2.45)

Finally, at finite temperature and for non-zero bias, the total conductance
can be written as [110],

G(VSD, T ) =
e2

h

∫
dE(− δf

δE
)
∑

σ

[T σ(E +
eVSD

2
) + T σ(E − eVSD

2
)] (2.46)

where the Fermi function f is given by

f =
1

exp[(E − EF )/kBT ] + 1
. (2.47)

EF is the Fermi energy and kB is the Boltzmann constant. The derivative
of the Fermi function with respect to the energy E in Eqn.(2.47), represents
the thermal broadening due to finite temperature.

Now for the simplicity, we will first consider the linear response (zero-bias
limit) conductance at zero temperature, which is given by the Eqn.(2.44). To-
gether with Eqn.(2.40), Eqn.(2.44) can be written for the tunnel conductance
with parallel magnetization of the two FM electrodes,

GP =
e2

h

[
Γ↑LΓ↑R

(E − E↑
0)

2 + (Γ↑L + Γ↑R)2/4
+

Γ↓LΓ↓R
(E − E↓

0)
2 + (Γ↓L + Γ↓R)2/4

]
(2.48)
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and for the antiparallel orientation of the magnetization,

GAP =
e2

h

[
Γ↑LΓ↓R

(E − E↑
0)

2 + (Γ↑L + Γ↓R)2/4
+

Γ↓LΓ↑R
(E − E↓

0)
2 + (Γ↓L + Γ↑R)2/4

]
.(2.49)

Here, ↑(↓) indicates the majority (minority) electron spin. Now two situ-
ations can be taken into account: (a) Off resonance, i.e., the energy E of
the tunneling electron is far from the resonant energy and (b) on resonance,
where E = E0. For the first condition, i.e., for the off-resonance condition,
conductance can be written as,

GP ∝ (Γ↑LΓ↑R + Γ↓LΓ↓R) and GAP ∝ (Γ↑LΓ↓R + Γ↓LΓ↑R). (2.50)

Now with Γσ
L(R) = γL(R)(1 + σPL(R)), GP and GAP can be expressed as,

GP ∝ [(1 + PL)(1 + PR) + (1− PL)(1− PR)] ∝ (1 + PLPR) (2.51)

and

GAP ∝ [(1 + PL)(1− PR) + (1− PL)(1 + PR)] ∝ (1− PLPR) (2.52)

Therefore, the TMR is given by

TMR =
GP −GAP

GAP

=
(1 + PLPR)− (1− PLPR)

(1− PLPR)
=

2PLPR

1− PLPR

(2.53)

which is similar to the Eqn.(2.26). Now for the second condition, i.e. on-
resonance when E = E0, GP and GAP can be expressed as,

GP ∝ Γ↑LΓ↑R
(Γ↑L + Γ↑R)2/4

+
Γ↓LΓ↓R

(Γ↓L + Γ↓R)2/4
, (2.54)

GAP ∝ Γ↑LΓ↓R
(Γ↑L + Γ↓R)2/4

+
Γ↓LΓ↑R

(Γ↓L + Γ↑R)2/4
. (2.55)

Now, if we consider about very asymmetric coupling, i.e., Γσ
L ¿ Γσ

R, then
Eqn.(2.54) and Eqn.(2.55) can be written as,

GP ∝ Γ↑L
Γ↑R

+
Γ↓L
Γ↓R

and GAP ∝ Γ↑L
Γ↓R

+
Γ↓L
Γ↑R

. (2.56)

Expressing Γσ
L(R) as a function of polarization of the leads PL(R), we get the

form of GP and GAP as a function of polarization,

GP ∝ 1 + PL

1 + PR

+
1− PL

1− PR

∝ 1− PLPR

1− P 2
R

(2.57)
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GAP ∝ 1 + PL

1− PR

+
1− PL

1 + PR

∝ 1 + PLPR

1− P 2
R

(2.58)

Hence, TMR is given by,

TMR =
GP −GAP

GAP

=
(1− PLPR)− (1 + PLPR)

1 + PLPR

= − 2PLPR

1 + PLPR

(2.59)

Figure 2.8: Schematic presentation of quantized energy levels in a Quantum
Dots. Left and right side indicate the resonance condition as bias voltage and
gate voltage change respectively, and middle one represents the off-resonance
condition.

Interestingly, Eqn.(2.59) shows that for the on-resonance condition with
asymmetric coupling, the TMR is negative. Also, it has been shown experi-
mentally, that resonant tunneling can invert the sign of the TMR [111,112].
Eqn.(2.41) shows that the resonant level can be tuned with gate voltage
so that one can easily achieve experimentally, the on-resonance and off-
resonance situations, and hence, TMR can be also tuned from positive to
negative value simply by shifting the energy level in the QD either by bias
voltage or by gate voltage figure 6.2.
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Figure 2.9: Conductance and corresponding TMR from resonant tunneling
model with γL = 0.1meV , γR = 0.6meV , P = 0.2, and α = 0.013 (a) κ = 0.0
and (b) κ = 0.1meV .

Figure 2.9 represents conductance and corresponding TMR as a func-
tion of gate voltage, calculated from the above-mentioned resonant tunneling
model. γL and γR have been chosen such that it will give asymmetric coupling
and from the figure it is clear that for this asymmetry TMR at resonance
appears to be negative. In the first case, we did not assume any spin splitting
of the energy levels due to the spin dependent phase change at the interface
and conductance as well as the TMR are symmetric. But in the second case,
when we assume a small splitting in energy due to the spin dependent phase
change at the interface, though the conductance shows symmetric behavior
around the resonance, the TMR shows very asymmetric behavior. So, the
dependence of energy levels on spin dependent phase change can be seen ex-
perimentally from the asymmetric TMR about the resonance. which is the
confirmation of the model.

Figure 5.5 shows the calculated TMR as a function of asymmetry for one
resonance. It is clearly seen from the figure how TMR changes from positive
value to a negative value with an increasing asymmetry.
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Figure 2.10: TMR as a function of asymmetry with same parameters as it is
in figure 2.9(a).

2.10 Conclusion
In conclusion, we have presented some basics physics related to the mag-
netism and spin transport in magnetic tunnel junction systems. We have
discussed the tunneling magnetoresistance effect in detail with its depen-
dence on different parameters like, bias voltage and temperature. We have
mentioned about the spin transport in magnetic double barrier junctions
also. In the end of this chapter we have discussed about the spin dependent
resonant tunneling in QD systems. Finally, we hope that this chapter pro-
vides some basic introduction to the field of spin dependent tunneling to the
readers.
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Chapter 3

Device Fabrication

In order to study the quantum effects and many other novel physics phenom-
ena at low dimension, the sample should be small enough, and hence comes
the challenge to make device in sub-micron or even in nanometer scale for
experimental investigation. In this chapter we emphasize on the preparation
of the device, particularly for transport measurements. The commonly used
methods to fabricate mesoscopic physics devices are also discussed.

3.1 Fabrication Steps

• Preparation of wafers

– cutting wafers into small pieces of size 1× 1 cm2

– cleaning the wafers : acetone bath, iso-propanol bath, UV ozone
cleaning and reactive ion etching (RIE) treatment

– spin coating e-beam resist (PMMA) on the surface of the wafer
and baking the resist

• Making mask of big pads ( to connect the bonding wire and the small
pads including electrodes of the NT device) and markers using e-beam
exposure

• Metallization of the structure

• Spreading multiwall carbon nanotubes (MWNTs) 1 on the surface of
the wafer and localizing them (NTs) under the SEM.

1Arc-discharge grown MWNTs are provided by László Forró.

59



60 Device Fabrication

• Resist spreading and making final mask for the specific contact on
nanotube by e-beam lithography

• Angle evaporation (40◦) of PdNi on the mask of the electrodes on NT
and followed by a normal evaporation of Pd as connecting wire to the
big pad

• Bonding the big pads of the device with aluminium wire into the chip
carrier

The sample is now ready to put inside the cryostat to study the transport
measurements. Note, the above steps are used to contact MWNT but in sin-
gle wall carbon nanotubes (SWNTs) we grow first the SWNT by the chemical
vapor deposition (CVD) method on a cleaned wafer then we follow all the
above mentioned steps (except the spreading of nanotubes) in a same se-
quence.

(c)(b)(a)

Figure 3.1: Electron micrograph of a typical device (a)Image of the big pads
including the bonding wire, (b) magnification of the selected area from (a)
showing the small connecting structure to the big pads, (c)image representing
ferromagnetic contact on SWNT.

3.2 Preparation of Wafers
All the measurements presented in this thesis are done on devices where
highly doped (p++) silicon wafer has been used as substrate. The wafers
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are capped with thermally grown silicon-dioxide of typical thickness 400 nm.
Since the substrate is highly doped we used this as a back-gate to control
the energy levels of the quantum dot formed by carbon nanotube devices at
low temperature. First, we cut the wafer into small pieces of approximate
size 1×1 cm2 where we fabricated around 16 devices. We cleaned the wafers
very carefully in several steps since the surface properties are known to have
influences on the transport measurements. After cutting the samples we blew
the wafer with N2 gas to remove any kind of dust particle from the silicon
itself. We cleaned the wafer then with acetone in ultrasonics bath for 15
minutes followed by the same steps with iso-propanol. After taking out from
the ultrasonic bath we dried the wafer by N2 gas and then exposed it to
UV ozone for 10 minutes. Finally, we used a Reactive Ion Etching (RIE)
machine (PlasmaLab 80 plus from Oxford) to etch few nanometers of silicon-
oxide from the up-surface with oxygen plasma for 30 seconds. Then only the
surface of the wafer was cleaned and ready to proceed with the next step
immediately.

While cleaning the wafers in several steps mentioned above, we prepare
e-beam resist by mixing PMMA ( Poly-methacrylate 950 K from allresist)
with Chlorobenzene in the proportion of 2:1. We stirred the resist with the
help of magnetic stirrer for about 30 minutes. Then, we spun coat the resist
on the surface of the cleaned wafers at 2000 rpm for 40 seconds. The resist
coated wafer was then baked for 35 minutes at 170◦C. Usually, with this
proportion of resist we got around 500-600 nm thick resist on the surface of
the wafers. Now the wafer was then ready for e-beam exposure.

3.3 Electron Beam Lithography

We used electron beam lithography as the key technique to made the mask
of desired shape and size with a resolution down to 30nm. We made mask
of big pads, markers as well as the electrodes of desired shape using e-beam
lithography. We used a Jeol JSM-IC848 SEM e-beam writer equipped with
Proxy software from Raith to make the mask for all the devices, contributing
the results in this thesis. The microscope was operated at an acceleration
voltage of 35kV and the current of exposure was selected according to the
size and writing field of the structure. Typically for the writing field of
200µm× 200µm, we used a beam current of 50 - 55pA with an area dose of
0.5 × 10−4 Cm−2 whereas for bigger structures like big pads of writing field
of 2000µm× 2000µm, we used higher beam current of about 18 - 20nA with
an area dose 30× 10−9 Cm−2.

The PMMA resist included by the area which has been exposed under the
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e-beam irradiation has a higher solubility than the unexposed one and hence
one can remove the PMMA from the exposed area only (see figure 3.2). In
this way, the mask was reproduced on the substrate. This removal step of
PMMA at some particular place by dissolving it into some particular solvent
is called the “developing process” and the solvent is used as “developer”. We
prepared the developer as a mixture of methyl-isobutyl-ketone (MIBK) and
isopropanol (IPA) with the proportion of 1 : 3. The whole developing process
contains the wafer to be dipped into the developer for 45 sec to remove the
PMMA resist from the irradiated place followed by a rinsing process of the
wafer by IPA for 15 sec.

Most of the devices presented in the thesis have mostly three types of
mask: big pads, markers and the small structure containing the electrodes
on the nanotube. The big pads are used to connect the device to the mea-
surement setup via the bonding into the chip carrier as shown in figure 3.1(a).
The markers are used to make a relative coordinate system about which the
selective nanotube can be localized. And the electrodes are used to inject
and detect current through the nanotube under consideration. At this stage
after the mask preparation, one has to put metal of particular interest on the
mask, the process is called the “metallization step”.

3.4 Making Contact on Nanotube by Metal-
lization

For the big pads and markers we used normal metal e.g. Au or Pd. However,
for the contacts on the nanotubes we use ferromagnetic metal to have a spin
polarized electron emitter and collector in order to study the spin transport
through carbon nanotubes. We use Pd1−xNix with x = 0.7 − 0.75. In this
section we describe the evaporation procedure used to make ferromagnetic
contact on nanotube.

We first make the target Pd1−xNix with x = 0.7 − 0.75 by melting Pd
and Ni of specific amounts (see Appendix) in our evaporator (Balzers Pfeffier
PLS 500 ) at base pressure < 10−7 mbar. While we melt the target we cool
the evaporation chamber by Meissner cooling in order to have better vacuum
condition. Now the target is ready for the metallization process.

Prior to the metallization process, we cut the wafers into smaller pieces
(approximately, 4×4 mm2) so that later on they would fit to the chip carrier
(size 5 × 5 mm2). It resulted in 4 small pieces each containing 4 devices.
Then we glued these pieces of wafer containing the NT devices using heat
sink compounds on the sample holder of the evaporator. At that stage, it
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Figure 3.2: Illustration of e-beam lithography to make mask and evaporation
to make metallic contacts on nanotube

is very important to glue the devices in such a way that the axis of the
electrodes stays perpendicular to the axis of rotation of the sample holder
(figure 3.3), since we used angle evaporation. Then, we put the sample holder
back to the chamber (with the samples) and the target materials PdNi as
the ferromagnetic target and Pd as normal target were placed in the specific
pockets. (Sometimes we also used Ti for outgassing to improve the chamber
and we kept shutter on to avoid Ti deposition on the masks). We closed the
chamber and started pumping for overnight to reach a good vacuum. When
the vacuum was good enough we started to cool the chamber by Meissner
cooling for about one hour and simultaneously we cooled the sample holder
using liquid nitrogen, until the substrate temperature became around 0◦C.
Meanwhile when the pressure went down to the order of 2 × 10−8 mbar
we started to degas both PdNi and Pd target before evaporation. Then we
rotated the sample holder with an angle of about 40◦ because we wanted
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to have ferromagnetic contact only on the mask of the electrodes, whereas,
we wanted normal metal (Pd) on the connecting part. The electrodes were
connected to the big pads via the connecting wire of thickness about 300
nm. Since we had a resist thickness of about 500 - 600 nm, it was possible to
avoid to put ferromagnetic material on the connecting wire mask by rotating
the angle of the sample holder with an angle of about 40◦. It is described
in figure 3.3. We first evaporated PdNi with an angle (40◦) evaporation
and then we evaporated Pd normal to the surface to connect the electrodes.
However while we evaporated Pd by normal evaporation it covered also the
FM electrodes and acted as a capped layer. After the evaporation we waited
until the substrate temperature increases up to room temperature and then
we vented the chamber and took out the samples.

Then, the most delicate part we performed the lift-off process. We put
the samples into acetone (Temperature 60◦C) and very slowly we shook to
dissolve the remaining resist i.e. to remove the metal thin film which stayed
on the resist part of the samples. Sometimes we took the help of a syringe
to proceed with this step. Finally, we cleaned the samples in IPA.

After the lift-off we checked the devices under the optical microscope and
then glued them on the chip carriers. After half an hour, when the back
sides of the wafers were sticking very well to the chip carriers, we bonded
them by using a bonding machine and Al wire as the bonding wire. Now
the samples were then ready for checking the device resistances. The devices
with reasonably good contact resistance were loaded into the cryostat for
desired transport measurements.

3.5 Growth of Single Wall Carbon Nanotube
In the case of multiwall carbon nanotube, we used nanotubes from a solution
of arc-discharged nanotubes dispersed in chloroform 2. However in the case of
single wall carbon nanotube (SWNT) devices, we grew SWNT by Chemical
vapor deposition (CVD) method. The different steps of CVD growth process
to grow SWNTs are summarized below.

• Preparation of stock solutions for the catalyst

1. 30mg of Al2O3 in the form of nanopowder of diameter 4 nm in
20ml of IPA

2. 93mg of Fe(NO3)3 in 20ml IPA

3. 27mg of MoCl2O2 in 20ml IPA
2The MWNTs were grown by László Forró, EPFL
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Figure 3.3: Illustration of angle evaporation to make ferromagnetic contacts
on nanotube

• preparation of catalyst by mixing 0.5 ml of stock solution 1, 0.5 ml of
stock solution 2, 0.5 ml of stock solution 3, in 18.5 ml IPA

• overnight sonication of the catalyst

• spreading of catalyst on the cleaned wafer by spin coating

• placing the wafer into the CVD chamber with Ar gas line open ( and
H2 and CH4 close)

• heating up the oven up to 900◦C

• opening the gas lines H2 and CH4

• Closing the Ar gas bottle and keeping the wafer into the CVD chamber
for 10 minutes

• opening Ar bottle followed by closing CH4 bottle

• cooling of the oven down to 550◦C

• taking out the sample after closing the H2 gas bottle.
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• presence of SWNT on the surface of the wafer

All the above mentioned steps were used to grow SWNT for the spin
transport measurements.



Chapter 4

Electrical Spin Injection in
Carbon Nanotubes with
Transparent Ferromagnetic
Contacts

In this chapter, we report on electrical spin injection measurements on Multi-
Wall Carbon Nanotubes (MWNTs) . We use a ferromagnetic alloy Pd1−xNix
with x ≈ 0.7 which allows to obtain devices with resistances as low as 5.6 kΩ
at 300K. The yield of device resistances below 100 kΩ, at 300K, is around
50%. We measure at 2K a hysteretic magneto-resistance due to the magne-
tization reversal of the ferromagnetic leads. The relative difference between
the resistance in the antiparallel (AP) orientation and the parallel (P) orien-
tation is about 2%.

4.1 Introduction

How the spin degree of freedom propagates and can be manipulated in low
dimensional devices is a question of both fundamental and technical interest.
On the one hand, proposals for a spin field-effect transistor (SpinFET) [1],
which can be considered as a generic spintronic scheme, rely on electrical
spin injection in 1-dimensional channels. On the other hand, spin transport
is expected to provide new information on the peculiar nature of an electronic
fluid, as electron-electron interactions are enhanced when the dimensionality
is reduced. Within the framework of the Luttinger liquid model, for example,
Balents and Egger showed theoretically that spin-charge separation modifies
qualitatively spin transport in quantum wires [2].
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Carbon nanotubes (NTs) can be considered as 1-dimensional or 0-dimensional
conductors, with important Coulomb interaction [3,4]. Spin transport is thus
a powerful tool for the study of their intrinsic properties. Interestingly, in
view of the conventional Elliot mechanism [5] for spin relaxation in metals,
one expects a relatively long spin relaxation length (several µm), because of
the expected low spin-orbit coupling. This makes carbon nanotubes poten-
tially attractive for device applications.

The main problem encountered in previous studies of electrical spin injec-
tion in NTs was to find ferromagnetic metals which can contact reliably the
NTs, with a low ohmic device resistance [6–8]. A low device resistance is not
a priori needed in a macroscopic spin valve, where the conductance is con-
trolled by the relative orientation of the magnetization of two ferromagnetic
electrodes around an insulating barrier. However, transparent ferromagnetic
contacts on NTs are essential for the study of spin dependent transport at
low temperatures to avoid quenching transport because of charging effects.

4.2 Experiment

4.2.1 Characterization of PdNi as Ferromagnetic Elec-
trodes

Giant paramagnetism is a well-known feature of Pd and few magnetic im-
purities added to its matrix can drive it into the ferromagnetic state [9].
Therefore, as Pd alone makes quasi-adiabatic contacts on NTs [11], ferro-
magnetic Pd alloys are expected to keep the same contacting properties as
Pd, provided the concentration of magnetic impurities is low enough. How-
ever, as the spin signal is proportional to P 2, P being the spin polarization
of the alloy [12], the concentration should not be too small to ensure that
the current which is driven in the MWNTs is sufficiently spin polarized. As
we will see below, the contacting properties of Pd1−xNix on NTs remain very
similar to pure Pd even in the case of high Ni concentration. Therefore, we
chose to use the alloy in the concentrated limit (x ≈ 0.7) to ensure high
enough spin polarization of the source-drain current.

Shape anisotropy is used for controlling the coercive field of the ferro-
magnetic contacts. This scheme allows to achieve contact resistances of, on
average, 30 kΩ at room temperature. The minimum devices resistance mea-
sured so far is 5.6 kΩ. The yield of devices with resistances below 100 kΩ,
at 300K, is around 50%. In the linear conductance regime, we find that
the resistance switches hysteretically when sweeping the magnetic field. The
relative difference between the resistance in the antiparallel (AP) orientation
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and the parallel (P) orientation is about 2%.
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Figure 4.1: (a). Temperature dependence of the magnetization of a thin film
of Pd0.3Ni0.7 of 600 Å coated by 400Å of Pd, obtained while evaporating
the contacts on the NT. The Curie temperature of the alloy is around 270
K. (b). Magnetic field dependence of the magnetization of the Pd0.3Ni0.7

film at T = 2.7 K. As expected, a hysteresis is observed. The saturation
magnetization is about 0.25 µB.

Figure 4.1 (a) and (b) shows the magnetic characterization of a thin film
of 600 Å of Pd1−xNix with x ≈ 0.7 under 400 Å of Pd. The magnetic field
dependence of the magnetization displays a hysteresis loop with a coercive
field of 50mT (the field is perpendicular to the layer). The magnetization
saturates at around 0.25 µB per atom and decreases rapidly above 270K.
Note that, although this is enough to study spin transport below 100K, the
Curie temperature and the saturation magnetization are 50% smaller than
the known bulk characteristics for this Ni concentration [9]. We think that
this might be due to partial oxidation of the Ni during evaporation. Evapo-
rating the alloy at a lower pressure could allow to achieve room temperature
ferromagnetic contacts. The Ni concentration in the Pd matrix is measured
on the same thin film by RBS.

4.2.2 Device Preparation

The MWNTs used in this work are grown by arc discharge [10] and stored
as a suspension in chloroform. The detailed fabrication procedure of making
ferromagnetic electrodes on CNTs is mentioned in Chapter 3. The Pd/PdNi
bilayer is evaporated at the same time on a bare substrate placed nearby in



70
Electrical Spin Injection in Carbon Nanotubes with Transparent Ferromagnetic

Contacts

Figure 4.2: A SEM picture of a device. The Pd0.3Ni0.7 electrodes have differ-
ent shapes, 14 µm× 0.1 µm and 3 µm× 0.5 µm for the bottom and the top
electrode respectively. They are spaced by 1 µm. The black arrows indicate
the direction of the magnetization in the AP or the P orientations.

order to characterize the alloy by SQUID magnetometry and RBS (Ruther-
ford Backscattering Spectrometry). For all the samples for which we could
study spin injection (6 samples), the spacing of the ferromagnetic pads was
either 1 µm or 500 nm. As shown in figure 4.2, the ferromagnetic electrodes
have different shapes. This is to achieve different coercive fields for the two
electrodes, by shape anisotropy, in order to produce a spin valve. Typical
dimensions are 14 µm × 0.1 µm and 3 µm× 0.5 µm for the left and the right
electrode respectively.

4.3 Results and discussions
Figure 4.3 shows the histogram of the device resistances. On the hundred of
NTs contacted so far, we could contact successfully 46 of them with a device
resistance below 100 kΩ. As shown on the histogram, the average device
resistance of these 46 samples is around 30 kΩ at 300K. The lowest device
resistance was found to be 5.6 kΩ at 300 K and the most probable one is
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Figure 4.3: Histogram of the contact resistances of PdNi on MWNTs at
300K. The mean resistance is 30 kΩ and the most probable one is 20 kΩ.

20 kΩ. All these resistances are measured for a gate voltage VG = 0.0V in the
linear regime. At 2K, the linear resistance remains typically below 100 kΩ
when sweeping the gate, which allows to study spin transport.

The dependence of the linear resistance dV/dI of a device versus an
applied magnetic field H for two different gate voltages VG = 2.00V and
VG = 0.00V is shown on figure 4.4. In order to take advantage of shape
anisotropy, the field is kept parallel to the axis of the ferromagnetic pads.
The overall behavior is a decrease of the resistance as one increases the mag-
netic field, as previously reported [13, 14]. In addition, for VG = 2.00V, the
resistance displays a hysteretic behavior. Around 0mT, it gradually increases
further upon reversing the sign of the magnetic field and switches to a lower
value around 100mT. As expected for a spin valve, the two curves dV/dI(H)
obtained when sweeping down or up match at high field and are roughly
mirror-symmetric. Therefore, when reversing the sign of the magnetic field,
the region between 0mT and 60mT corresponds to an antiparallel (AP) ori-
entation of the magnetization of the electrodes, whereas all the other regions
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Figure 4.4: Magnetic field dependence of the linear resistance at 1.85K as
a function of an in-plane magnetic field parallel to the axis of the ferromag-
netic electrodes, for gate voltages VG = 2.0V and VG = 0.0V. A hysteretic
behavior characteristic of a spin valve is observed for VG = 2.0V.

of field correspond to the parallel (P) orientation. We define the TMR as

TMR =
RAP −RP

RP

where RAP is the resistance in the AP orientation at 50 mT and RP is the
resistance in the P orientation at the same field. For VG = 2.0V, the TMR is
positive, around 2.05%. Even though the exact spin polarization of the alloy
is not known, one can roughly estimate it comparing the magnetization of
the actual alloy with that of pure Ni. Taking the known value for the spin po-
larization PNi of Ni [15], one obtains PPdNi ≈ µPdNiPNi/µNi ≈ 0.25 ∗ 23/0.6 =
9.58%. This spin polarization would yield a TMR of 1.85 % for a tunnel
junction within the simple Jullière’s model [12]. Although this amplitude
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is in reasonable agreement with our measurements, this comparison prob-
ably underestimates spin-dependent and/or energy dependent scattering in
the nanotube. For example, charging effects could be important. They are
indeed observed in the spin independent part of the R vs VG characteristic.

The resistance change of about 2% measured for VG = 2.0V could also
be accounted for by a change of about 50mT of local stray magnetic field
arising from the ferromagnetic pads contacting the nanotube. For ruling out
this spurious effect, one can define the sensitivity to external local magnetic
fields of the nanotube-device as the slope of the R vs H curve when there is
no magnetic switching. For VG = 2.0V, it is 0.037% per 1 mT (14 Ω/mT)
and for VG = 0.0V, it is 0.018% per 1 mT (6 Ω/mT). Thus, a change in
the stray fields of 50mT would indeed change the resistance at VG = 2.0
V of about 2% but would also change the resistance at VG = 0.0V by 1%.
However, as shown on figure 4.4, there is a hysteresis lower than 0.1% in the
R vs H curve for VG = 0.0V, whereas a hysteresis of of 2% is present for
VG = 2.0V. We can therefore rule out stray magnetic field effects from the
ferromagnetic pads, as they should be independent of the gate voltage. The
electronic current flowing through the tube is spin-polarized. Note also that
figure 4.4 shows that the TMR is gate controlled. This gate dependence is
presently not understood and will be studied in subsequent papers.

4.4 Conclusion
Making reliable ferromagnetic contacts on a carbon nanotube, the greatest
problem for spin injection into nanotubes is on the way to be solved by using
PdNi alloy. In this chapter, we have demonstrated reliable contacting and
spin injection in MWNTs with transparent contacts. Using a Pd1−xNix alloy
with x≈ 0.7, we can have device resistances as low as 5.6 kΩ at 300 K. At
2 K, we observe a TMR of about 2%. We think that this contacting scheme
will allow extensive studies of spin effects in NTs in the 0D or the 1D regime
and can be used in principle for device applications.
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Chapter 5

Electric Field Dependence of
Tunnelling Magnetoresistance on
Spin Transport through Carbon
Nanotubes

In this chapter, we present the results of TMR measurements in carbon nan-
otubes as a function of electrical gate voltage. We have used ferromagnetic
contacts to inject and detect spins in carbon nanotubes in a spin field-effect
transistor geometry. In the linear regime, the sign and the amplitude of the
relative difference between the resistance in the antiparallel and the parallel
magnetization configurations is tunable with the gate voltage. We attribute
this effect to resonant tunneling through the nanotube where the transmis-
sion probabilities of up and down spins are modulated differently.

5.1 Introduction

Spintronics is an approach to electronics where the quantum mechanical spin
degree of freedom is used to control the transport in electronic devices. One
of the basic building blocks of this field is the spin-valve, which is formed
if two ferromagnetic (F) metals are separated by a thin tunneling barrier.
In this device, the resistance (R) depends on the relative orientation of the
magnetizations of the F electrodes. In usual situations, R is larger in the
antiparallel (AP) than in the parallel (P) magnetization configuration [1].
The tunnel magneto-resistance TMR = (RAP −RP )/RP , defined as the rel-
ative difference between the resistance RAP in the AP configuration and the
resistance RP in the P configuration, is therefore positive. This holds as
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long as the tunnel matrix elements through the tunneling barrier are spin
and energy independent [2]. However, nothing forbids to have the opposite
situation if one of these two conditions is not fulfilled. Several theoreti-
cal proposals for spin field-effect transistors (SpinFETs) rely on the possi-
bility of spin and/or energy dependent transmission probabilities through
F/semiconductor/F nanostructures (F-Sm-F). In these devices, the TMR is
predicted to be tunable from positive to negative values as one modulates
the transmission probabilities for up and down spins differently, using the
electric field of a nearby gate electrode [3, 4].

Early work on spin transport in multi-wall carbon nanotubes (MWNTs)
with Co contacts showed that spins could propagate coherently over distances
as long as 300 nm [5]. A positive TMR of about +4% was found in [5], in
agreement with Jullière’s formula for tunnel junctions [6], whereas a negative
TMR of about −30% was reported later for MWNTs contacted with similar
Co contacts [7]. In these experiments, the nanotubes did not exhibit a quan-
tum dot (QD) behavior. However, it has been shown experimentally that
nanotubes contacted with non-ferromagnetic metals could behave as QDs or
Fabry-Perot resonators [8–11], in which one can tune the position of discrete
energy levels with a gate electrode. From this, one can expect to be able
to tune the sign and the amplitude of the TMR in nanotubes, in a similar
fashion as predicted originally for semiconductor heterostructures [3].

5.2 Experiments

We report here on TMR measurements of multi-wall and single-wall carbon
nanotubes contacted with ferromagnetic leads and capacitively coupled to
a back-gate. As a result of resonant tunneling, we observe a striking os-
cillatory amplitude and sign modulation of the TMR as a function of gate
voltage. Whereas single-particle resonances are resolved simultaneously in
the conductance and the TMR of SWNTs, they are averaged out in MWNTs
due to the reduced single-particle energy. Nonetheless, a TMR modulation
is observed, this time caused by beatings of single-particle states.

5.2.1 Method

We have fabricated reliable and relatively transparent ferromagnetic contacts
to MWNTs and SWNTs using the ferromagnetic alloy Pd1−xNix with x ∼
0.7 [12] (for details see Chapter.3). A typical sample geometry is shown
in the inset of figure 5.1. The separation between the contacts along the
nanotube amounts to L = 400 nm. The magnetic field H was applied in
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plane. No qualitative difference has been seen for the field direction parallel
and perpendicular to the long axis of the ferromagnetic electrodes. The
observed amplitude and the sign of the TMR depend on Vg, but not on the
high field magnetoresistance (see section 5.3.3). We extract the maximum
possible value for the TMR signal as indicated in the figure. The Pd1−xNix
electrodes have two different shapes, 10µm × 0.2µm and 3µm × 0.5µm to
achieve different coercive fields. We have studied and observed the TMR on 9
samples (7 MWNTs and 2 SWNTs) with various tube lengths L between the
ferromagnetic electrodes: L = 0.4, 0.5, 0.8, and 1µm. We present here the
results for one MWNT device and one SWNT device for which the spacings
between the ferromagnetic electrodes were L = 0.4 and 0.5µm, respectively.

5.3 Results and Discussion

5.3.1 Measurements on MWNT Device

We first discuss the results of the MWNT device. Figure 5.1 displays single
traces of the linear response resistance R as a function of magnetic field H at
1.85K for two sweep directions and four different gate voltages Vg. The mag-
netic field H was applied in plane perpendicularly to the long axis of the fer-
romagnetic electrodes shown in figure 5.1 (Inset). For all cases, the character-
istic hysteretic behavior of a spin valve appears. Upon sweeping the magnetic
field from −500mT to 500mT, the configuration is AP between 0mT and
100mT, whereas the configuration is always P for |H| ∈ [100mT, 500mT].
At Vg = −3.1V, the device resistance increases from 49.7 to 51.5 kΩ when
the sample switches from the P to the AP configuration. This yields a nor-
mal TMR of +2.9% [15]. In contrast, at Vg = −3.3V, the device resistance
switches from 30.5 kΩ in the P configuration to a smaller resistance of 29.5 kΩ
in the AP configuration, yielding a negative TMR of −3.5%. Therefore, the
sign of the TMR changes with the gate voltage, demonstrating a gate-field
tunable TMR.

Figure 5.2a displays the variation of the TMR in a large Vg window of
−5 . . . 2V at T = 1.85K. The TMR is observed to oscillate relatively regu-
larly between −5% and +6% on a gate-voltage scale of ∆V TMR

g ≈ 0.75V.
Taking the visible substructure of TMR modulation in regions without sign
change into account, yields a slightly smaller characteristic gate voltage scale
of ∆V TMR

g ≈ 0.4V.The characteristic gate voltage scale ∆V TMR
g of the ob-

served TMR modulation varies between 0.4 and 0.75V.
Two possible mechanisms may account for oscillations in spin transport:

quantum interference [3, 16] and gate-field induced spin-precession via the



80
Electric Field Dependence of Tunnelling Magnetoresistance on Spin Transport

through Carbon Nanotubes

-0.4 -0.2 0 0.2 0.4

30

33

48

54

57

60

63
TMR

+ 3.8%

+ 2.9%

- 3.1%

- 3.5%

Vg

0.0 V

-3.1 V

-5.0 V

-3.3 V

S = -2%/T

-0.2%/T

0.2%/T

-0.2%/T

H (T)

R
 (
k

Ω
)

P
d

N
i

P
d

N
i

Pd
Pd

NT

200 nm

H

TMR

Figure 5.1: TMR changes sign with gate voltage Vg. Inset: SEM picture
of a carbon nanotube contacted to ferromagnetic PdNi strips. Main panel:
Linear response resistance R as a function of magnetic field H at T = 1.85K
for different gate voltages Vg. The blue (red) arrow indicates the up (down)
magnetic field sweep direction, respectively. The observed amplitude and the
sign of the TMR depend on Vg, but not on the high field magnetoresistance
(see section 5.3.3).

Rashba spin-orbit interaction [17] proposed by Datta and Das [4]. In the
latter case, the spin orbit interaction yields a spin precession which is reflected
both in the TMR and the conductance. Egger and De Martino have shown
that subband mixing, which can be relevant in MWNTs, does not spoil in
principle the Datta-Das mechanism thanks to the particular structure of the
spin-orbit interaction in nanotubes [19]. To lowest order the spin-precession
would lead to TMR ∝ cos(2mLβReVg/~2), where L is the length of the
MWNT, m (e) the electron mass (charge), and βR the Rashba spin-orbit
parameter. However, the measured magnitude of ∆V TMR

g ∼ 1V for one TMR
period requires a large βR ∼ 5 · 10−13 m. Although a βR value of this order
of magnitude has been reported in semiconductor heterostructures [18], it is
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Figure 5.2: The TMR of the device shown in figure 1 oscillates with gate
voltage Vg. (a) TMR as a function of gate voltage Vg at T = 1.85K. (b,c)
were measured in a different cryostat at 300 mK : b non-linear differential
conductance dI/dV as a function of source-drain Vsd and gate voltage Vg in
a narrow Vg interval, corresponding to the addition of 6 electrons; and c the
linear conductance G over a much wider Vg interval.

unreasonably large for carbon nanotubes [19], because spin-orbit interaction
is in general small for carbon due to its low mass. Moreover, the g-factor
of electrons in carbon nanotubes has been verified to be close to 2 [10, 20].
We therefore conclude that the mechanism of TMR oscillations is related to
quantum interference. To substantiate this we compare next the TMR gate-
voltage scale ∆V TMR

g with the corresponding scale ∆V e
g for the addition of

single electrons.
To resolve single-electron states, the same sample was measured at lower

temperatures, i.e. at T = 300mK in a different cryostat which is not suit-
able for TMR studies (due to large magnetic field hysteresis of the 17 Tesla
magnet). A measurement of the differential conductance dI/dV as a func-
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tion of source-drain Vsd and gate voltage Vg at T = 300mK in a relatively
narrow Vg range is shown in figure 5.2b. It displays the diamond-like pattern
characteristic for single-electron tunneling in a QD. The visible diamonds
vary in size with addition energies ranging between 0.5 and 0.75meV, in
agreement with previous reports on MWNT QDs with non-ferromagnetic
leads [10,11]. Comparing with ∆V TMR

g , we see that the average gate-voltage
scale ∆V e

g = 25mV associated to single particle levels is however much
smaller than ∆V TMR

g ≈ 0.4V. The latter corresponding to the addition of
16 electrons rather than 1.

A gate-voltage scale which agrees with the TMR signal becomes visible, if
the conductance at low temperatures is monitored over a wider gate-voltage
range. This is shown in figure 5.2c. The single-electron conductance peaks
are strongly modulated in amplitude, leading to a rather regular beating
pattern with the proper gate-voltage scale of ∆Vg ≈ 0.4V. Note, the absolute
values of Vg cannot be compared with the TMR measurements in figure 5.2a,
because the sample was thermally cycled.

In order to see whether a band-structure effect may account for the beat-
ing we evaluate the respective energy-scales. Each beating is made up of a
bunch of ∼ 16 single particle peaks. Taking the measured addition energy,
which on average is 0.6meV, ∆V TMR

g corresponds to ∆E = 9meV. This
value is an upper bound for the gate-voltage induced shift in the chemical
potential of the nanotube, because the Coulomb energy has not been sub-
tracted. The mean spacing between one-dimensional subbands ∆Esb is given
by ~vF /d, where d is the diameter of the nanotube and vF the Fermi veloc-
ity. Even for a relatively large nanotube with d = 20 nm, ∆Esb amounts to
33meV, substantially larger than ∆E. This rules out a simple band structure
effect.

Beatings in the amplitude of single-electron resonances are often observed
in QD structures and attributed to weak disorder. Indeed, as seen in the
grayscale plot of figure 5.2b, the diamonds do not alternate regularly. In the
resonant tunneling model, one expects each single particle peak to contribute
negatively to the TMR at sufficiently low temperature. However, as we have
measured the TMR at T = 1.85K, where the single-particle resonances are
already averaged out strongly, the TMR is only sensitive to the average over
these peaks, yielding a modulation that follows the envelope function of the
single-electron peaks.

5.3.2 Measurements on SWNT Devices

In order to confirm the effect of resonant tunneling on TMR we now go to
the SWNT device. We have seen in the previous section that, for MWNT
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Figure 5.3: Linear conductance of SWNT device showing the resonant tun-
neling. (a) Linear conductance G over a wide range of gate voltage Vg from
−10V to 5V and (b) a selected region of the linear conductance G over
a gate voltage range from 2.6V to 3.2V to show the clear resonances in
conductance.

device, single particle resonant levels are averaged out at 1.85K. If we take a
SWNT device then the single particle resonant levels can be well resolved at
this temperature since the single particle addition energy is much higher in
SWNT than that in MWNT. It is then possible to measure the TMR at each
resonant level. Figure 5.3 displays the linear conductance as a function of
gate voltage Vg for a SWNT device with a contact separation of L = 500 nm
measured at T = 1.85K. While figure 5.3a represents the conductance for a
wide range of gate voltage, Vg from −10V up to 5V, figure 5.3b represents
the selected part from 2.6V to 3.2V as a magnified view. It shows clear
resonances in conductance as a function of gate voltage Vg. Here we observe
beatings (figure 5.3a) in the amplitude of conductance for the SWNT device
(as we have seen for the MWNT device figure 5.2c), but also it is possible to
measure TMR at each resonances since the resonant levels are well separated
and well resolved in this case (figure 5.3b) at 1.85K.

The final evidence that interference of single particle levels is the physical
origin for the observed TMR oscillations comes from the TMR measurements
on single-wall carbon nanotubes (SWNTs) at each single resonant level. Fig-
ure 5.4 displays the TMR and G as a function of Vg for the SWNT device
(linear conductance of which is shown in the figure 5.3). These are the cor-
responding measurements to those discussed above for a MWNT one. The
QD behavior is already observed at 1.85K, whereas this was only evident at
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0.3K in the MWNT device. This is consistent with the higher energy scale
(both single-electron charging energy and level spacing) for SWNTs as com-
pared to MWNTs. As seen in the grayscale plot of figure 5.4b, the typical
single-electron addition energy amounts to ∼ 5meV, whereas it was an order
of magnitude smaller in the MWNT device.

In figure 5.4a, the variation of the linear conductance G and the TMR
is simultaneously shown for two resonances (Individual magnetoresistance
curves as a function of magnetic field (H) are shown in Figure 5.6(a-c) for
three different gate voltage Vg, where we show positive as well as negative
TMR depending on Vg). On the first resonance, the conductance displays
a spurious switching which is followed by a shift in the gate voltage. Such
shifts, which are also observed in semiconducting QDs, are likely caused by
trap states in the oxide. They render the simultaneous measurement of G
and the TMR difficult. On this example, the number of gate switches were
low enough to allow for a meaningful comparison between the TMR and G.
First, we observe that the TMR changes sign on each conductance resonance.
Furthermore, we see that the line shape of the conductance resonances are
symmetric, whereas those of the TMR dips are asymmetric. The amplitude
of the TMR ranges from −7% to +17%, which is a higher amplitude than for
the MWNT. We think that this might be due to the higher charging energy
in SWNTs [21].

The transmission probability through a QD near a resonance can be de-
scribed by the Breit-Wigner formula [22]. If the QD is coupled to two con-
tinua with spin-dependent densities of states, the life-time of an electron on
the dot becomes spin dependent. Therefore, the width of the resonance is
different for carriers with up and down spins. The position in energy of an
eigenstate in a carbon-nanotube QD, which is a one-dimensional QD, is de-
termined by the round-trip phase acquired by an electron travelling in the
nanotube and reflecting at its boundaries. Because the phases φσ of the re-
flection amplitudes depend on spin σ if the reservoirs are ferromagnetic, the
eigenstates then depend on the relative orientation of the magnetization in
the leads. In case of a single-channel conductor with length L connected to
two ferromagnetic leads, the energy levels En acquire a spin-dependent part,
as seen from the resonance condition 2knL+φL

σ +φR
σ = 2πn, n ∈ Z. φL,R

σ de-
notes the phase change upon reflection of an electron with spin σ on the left
(L) or right (R) electrode. The spin-dependent Breit-Wigner transmission
probability for electrons at energy E with spin orientation σ can conveniently
be written as:

Tσ(E) =
Γσ

LΓσ
R

(E − Eσ
0 )2 + (Γσ

L + Γσ
R)2/4

(5.1)
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where Γσ
L(R) = γL(R)(1 + σPL(R)) denote the spin-dependent (σ = ±1) cou-

plings to the left (right) ferromagnetic lead, and Eσ
0 the spin-dependent en-

ergy levels of the dot. Note, that the polarization in the leads PL(R) are
measured relative to the spin quantization axis.

The sign change of the TMR can be predicted with Eq. (5.1), provided
the couplings to the leads are asymmetric (figure 5.5). Off resonance, i.e.
if |E − E0| À (Γσ

L + Γσ
R), Tσ is small and ∝ Γσ

LΓσ
R, yielding the normal

positive TMR of +2P 2/(1 − P 2) (we assume that |PL| = |PR| = P ). On
resonance, on the other hand, Tσ ∝ Γσ

R/Γσ
L, (if e.g. Γσ

L À Γσ
R), yielding an

anomalous negative TMR of −2P 2/(1 + P 2) (See Chapter 2). Figure 5.5
schematically represents the effect of asymmetry on the TMR by simple two
channels resistor model. The electric resistance of an asymmetric resonant-
tunnelling junction (we assume ΓR >> ΓL) is proportional to the asymmetry
A := ΓR/ΓL, where ΓR,L are the tunnelling rates to the right (R) and left
(L) electrode, respectively. If ferromagnetic contacts are used, ΓR,L become
spin-dependent. The rate is increased for the spin direction of the majority
carriers, whereas it is decreased for the minority ones. Because the electric
resistance is spin-dependent, the total resistance R corresponds to the parallel
circuit of R↑ and R↓. Whereas R↑ = R↓ in the parallel configuration, R↑ is
smaller and R↓ larger in the antiparallel configuration. Due to the dominance
of the smaller resistance in a parallel circuit, R is smaller in the antiparallel as
compared to the parallel case, corresponding to a negative TMR signal. This
mechanism has already been suggested to explain an observed anomalous
TMR in Ni/NiO/Co nanojunctions [16]. Unlike this earlier work, we are able
to follow the conductance and the TMR by tuning the energy level E0 with
the gate-voltage Vg and compare with the model. Whereas the negative TMR
can be understood following this line of argument, the explicit shape and in
particular the asymmetry in the TMR requires a spin-dependent energy level
Eσ

0 as we will show now. The eigenstate depends on the gate-voltage and on
the spin direction: Eσ

0 = E0−εσ−αeVg, where α is a constant proportional to
the gate capacitance and εσ the spin-dependent part of the energy level. Its
value and functional form is sensitive to the interface considered, as well as
to electron-electron interaction [23,24]. In the limit of small spin polarization
PL(R) ¿ 1, one may use the ansatz εσ = κσ(PL +PR). We treat κ as a fitting
parameter, which will be deduced from the experiment. κ determines the
asymmetry of the TMR signal.

The solid lines in figure 5.4 show fits to the measured conductance G and
the TMR using Eq. (5.1). As the two resonances are well separated in energy,
it is possible to fit them individually. In order to obtain the conductance
at finite temperature, we convolved Tσ with the derivative of the Fermi-
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Dirac distribution at 1.85K. The following parameters entered into the fits:
P = 0.2 [25] and κ = 0.32meV. γL,R differ for the two resonances: γL =
0.007 (0.014)meV and γR = 0.5 (0.85)meV for the left and (right) resonance
respectively. Using these parameters, a very good agreement between theory
and experiment is found. Convincing evidence for spin injection in QD is
deduced from the observed asymmetric line shape of the TMR in the SWNT
device. The spin imbalance expressed by εσ is substantial, amounting to
as much as ±0.13meV, which corresponds to an internal ‘exchange field’ of
B = 2.2T.

5.3.3 Effects of stray magnetic Field on the TMR mea-
surements

Although from the above discussion it is clear that the spin imbalance occurs
due to the spin injection and spin transport through the carbon nanotube,
still one should take into account the other effects which can affect the TMR
measurements. One of the important effects comes from the ferromagnetic
electrodes themselves as stray magnetic field. Here we address this effect on
the TMR measurements for our devices. The stray magnetic field due to FM
electrodes changes when the magnetization of the two electrodes change from
parallel (increase) to antiparallel (decrease) configuration. Due to this change
in stray-field, the net local magnetic field near the nanotube also changes
which can be also responsible for the hysteretic behavior of the magneto-
resistance. In order to rule out this simple stray-field effect, we compare the
high-field magneto-resistance S (defined as a % change of the resistance per
T) with the low-field hysteretic TMR signal. First, the magnitude of the
TMR signal is to a good approximation (to ±15% in the curves shown in
figure 5.1) constant, whereas the background may change by as much as an
order of magnitude. Moreover, the sign change of the TMR from a positive
value at Vg = −3.1V to a negative one at Vg = −3.3V is not accompanied
by a change in the background S. In fact, all possible sign combinations of
S and TMR have been observed. Hence, the low-field TMR signal cannot be
caused by the background magneto-resistance, which excludes a stray-field
effect from the reservoirs to the bulk nanotube as the source of the observed
hysteretic signal.

Finally, in order to ensure that the measured TMR is caused by a coherent
spin polarized current, we also have analyzed two devices with asymmetric
contacts. One contact is made from the ferromagnetic PdNi alloy of simi-
lar composition as it was used in the F-SWNT-F devices and the other from
the non-ferromagnetic metal Pd (see figure 5.6). Such a device should ideally
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display no hysteretic signal. In figure 5.6 we compare representative measure-
ments of the resistance R(H) as a function of the magnetic field H for SWNT
devices for which the two electrical contacts are either both ferromagnetic
(F-SWNT-F), or one normal and one ferromagnetic (N-SWNT-F). The elec-
trodes of the N-SWNT-F control devices had the same shape as those used
in the F-SWNT-F device and described in the method section. The contact
separation was 500nm and all measurements were taken at T = 1.85K. The
curves are shifted vertically for clarity. Curves (a-c) were from the SWNT
device described in the previous section. Curves (d,e) and the inset corre-
spond to one of the two N-SWNT-F control devices. The inset displays the
differential conductance dI/dV as a function of source-drain (Vsd) and gate
(Vg) voltage. Quantum dot behavior is observed with similar energy scales
as for the F-SWNT-F sample. As compared to the traces of the F-SWNT-F
device, no obvious hysteresis is visible in the N-SWNT-F device. Taking
the noise level into account, a hysteretic switching signal (if any) must be
smaller than 1− 1.5% (figure 5.6). Because this is up to 10 times smaller
than what we have observed in the F-SWNT-F device for similar conduc-
tances, any magnetic artefact arising from a single ferromagnetic contact
alone must be small, proving that we have observed a spin effect in transport
in the F-SWNT-F case.

5.4 Conclusion
We have demonstrated a gate-tunable spin field-effect behavior in carbon
nanotubes with PdNi-based ferromagnetic contacts. The TMR oscillates as
a function of a gate voltage between −5% and +6% for the MWNT and
between −7% to +17% for the SWNT device. In both cases, the observed
phenomenon can fully be accounted for in a resonant tunneling picture. Con-
vincing evidence for spin accumulation in a QD is deduced from the observed
asymmetric line shape of the TMR in the SWNT device. The spin-splitting
is substantial, amounting to as much as ±0.13meV, which corresponds to an
internal ‘exchange field’ of B = 2.2T.



88
Electric Field Dependence of Tunnelling Magnetoresistance on Spin Transport

through Carbon Nanotubes

5.0

2.5

0

-2.5

-5.0

V
s
d
 (

m
V

)

4.3 4.4 4.5 4.6 4.7
Vg (V)

d
I/
d
V

 (
e

2
/h

)

0
0

.1
0

.2
0

.3
0

.4
b

4.3 4.325 4.35 4.375 4.4
0

0.1

0.2

15

10

5

0

-5

-10

G
 (

e
2
/h

)
T

M
R

 (
%

)

1 2
experiment

theory

T = 1.85K

a

Vg (V)

Figure 5.4: The detailed evolution of the TMR signal for two single-particle
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ΓRΓL <<
R ~ A = asymmetry = ΓR / ΓL

a

b

antiparallel

parallel

Figure 5.5: Schematics explaining the observed sign change of the TMR on
resonance. (a) Depicts the case for antiparallel and (b) for parallel magne-
tization.
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Chapter 6

Energy Dependence of Tunneling
Magnetoresistance

In this chapter, we present the effects of bias voltage and temperature on the
tunnelling magnetoresistance (TMR) in ferromagnetically contacted carbon
nanotube (CNT) devices. Concerning the bias voltage dependence, experi-
ments performed on PdNi/CNT/PdNi double tunnel junctions showed that
both positive and negative values of TMR are possible. We show that the
TMR is strongly enhanced by the charging energy in the Coulomb Blockade
(CB) regime. A large negative TMR of up to −33% is observed at 2 K. For
both high bias voltage and high temperature the TMR reduces remarkably.

6.1 Introduction

Spin-polarized transport through ferromagnetic tunnel junctions has attracted
much attention due to its potential application in memory storage, magnetic
sensor technologies as well as quantum computing units since the observation
of large magnetoresistance at room temperature (RT) [1–4]. The tunneling
magnetoresistance (TMR) effect, which is commonly modulated by the rela-
tive orientation of the magnetization of the two FM electrodes is one of the
most important effects in magnetic tunnel junctions. The tunneling proba-
bility is higher for the parallel (P) orientation of the magnetization of the
electrodes than for the antiparallel (AP) orientation. From Jullière’s simple
non-interacting model [5], TMR can be defined as, TMR = (RAP −RP )/RP ,
where RAP and RP are the resistances in the antiparallel (AP) and parallel
(P) magnetization configuaration respectively.

One of the recent interesting areas of research in this field is the interplay
between spin dependent tunneling and the Coulomb Blockade (CB) [6]. Tun-
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neling of an electron into a small metallic island increases the electrostatic
energy of the system by the Coulomb charging energy Ec = e2/2C, where C
is the capacitance of the island, and, therefore, tunneling is blocked unless
the barrier due to this charging energy is overcome by a finite bias voltage
or by thermal energy [7]. From the theoretical prediction on the interplay
between CB and spin dependent tunneling (SDT) one can expect to observe
both an enhancement and an oscillatory bias dependence of the TMR [8,9].

It is an experimental challenge to realize a system where one can observe
these effects. Already there have been experimental demonstrations of CNT
quantum dots (QDs) with non-magnetic contacts [10, 11]. We use here a
CNT-based QD, contacted with FM (PdNi) leads to study the SDT. We
discuss in this chapter some results on SDT in CNT-based quantum dot
devices.

6.2 Experiments and Results

We performed TMR measurements as a function of bias voltage and temper-
ature for ferromagnetically contacted CNT devices. We have studied both
multiwall (MWNT) and singlewall carbon nanotube (SWNT) devices. We
observe hysteretic magnetoresistance (MR) behavior as a function of the
magnetic field. In the previous chapter (Chapter 5), we have shown that
depending on the applied gate voltage, the TMR can be positive or negative.
In this chapter we show that this can be true also for the applied bias volt-
age. We observe both positive and negative values of TMR as a function of
bias voltage for all of the devices we measured so far. Most of the time, bias
dependence of TMR for both MWNT and SWNT devices show an enhanced
TMR near zero bias. For MWNT we find an absolute value of TMR up to
6% whereas for SWNT a large negative TMR up to 33% is observed in the
CB regime. We discuss the results of sign change in TMR with respect to
bias for MWNT, in the light of a quantum interference phenomenon. On the
other hand, the enhanced TMR of the SWNT device provides an indication
that electron-electron interaction has to be taken into account in order to
understand the experimental results. Also the SWNT shows QD behavior
at 2K with a charging energy of an order of magnitude higher than that of
MWNTs at 2K.

The fabrication methods to make device with carbon nanotube contacted
by ferromagnetic material are explained in Chapter 3 and Chapter 4. We
use ferromagnetic alloy Pd1−xNix with x ∼ 0.7 [12] as our ferromagnetic
electrodes on the nanotube. A typical sample geometry is shown in fig-
ure 5.1. The Pd1−xNix electrodes have two different shapes, 10µm× 0.2µm
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and 3µm× 0.5µm to achieve different coercive fields.

6.2.1 Bias Dependence of TMR
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Figure 6.1: Hysteretic behavior of the resistance R as a function of magnetic
field H(T) for three different bias voltage VSD at T = 1.85 K. The blue lines
(red lines) indicate the up (down) magnetic field sweep direction. Arrows in-
dicate the antiparallel (AP) and parallel (P) orientation of the magnetization
of the electrodes.

In this section, we discuss how TMR changes with bias voltage for both
MWNT and SWNT. We present here results on bias dependence of TMR
for two MWNT devices and one SWNT device for which the spacings be-
tween the ferromagnetic electrodes were L = 0.8, 0.4, and 0.5µm, respec-
tively. Measurements were done using standard lock-in technique (excitation
of Vac = 200µV). Figure 6.1 presents the magnetoresistance measurements
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from a MWNT device as a function of magnetic field H for three different
bias voltages VSD. Each pair of curves display single traces of the resistance
R as a function of magnetic field H at 1.85K for two sweep directions. Mag-
netoresistance curves clearly show the characteristic hysteretic behavior of a
spin valve. However, switching of the FM elctrodes does not occur at the
same field and the hysteretic behavior is not symmetric. This is not clear
but we think that this is related to the complex nature of the Pd-based ferro-
magnetic alloy [13]. The antiparallel and parallel orientations are represented
by arrows in the figure. At bias voltage VSD = −4.5mV and −3.5mV, the
resistance in the AP configuration is higher than the resistance for the P
configuration, hence the TMR is positive. Whereas, at VSD = +4.5mV, the
situation is opposite, i.e. resistance in the AP configuration is less than the
resistance in the P orientation which results in a negative TMR. So, it is
clear that the TMR can be positive as well as negative as a function of bias
voltage VSD, as it is found for magnetic tunnel junctions [14,15].
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Figure 6.2: Bias dependence of TMR for a wider range for a MWNT device
with a contact separation of L = 0.4µm at 1.8K. (a) Differential conductance
(dI/dV) as a function of bias voltage. The red (blue) curve corresponds
to the dI/dV for the antiparallel (parallel) configuration respectively. (b)
Corresponding TMR (solid line) as a function of bias voltage VSD. Arrows
indicate the position of resonance and corresponding TMR. Black points
indicate the individual measurements of TMR at different VSD.

We have investigated the results of TMR measurements for a wider range
of bias voltage, for two MWNT and one SWNT devices. We sweep the
magnetic field from 0 to a field of about 70mT, where the magnetization
orientations are antiparallel (Note, the switching fields are not always the
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same, one has to be careful to stop sweeping field before the second electrode
switches its magnetization). Then we measure the differential conductance
as a function of bias voltage VSD at this orientation (AP). Next, we complete
the magnetic field sweep up to high-field and we stop at 70mT in magnetic
field, while sweeping back to zero-field. This time the magnetization of the
electrodes corresponds to a parallel configuration. We then measure the dif-
ferential conductance as a function of bias VSD. Then, we calculate the TMR
from the relative difference in the differential conductance from P to AP con-
figuration. Figure 6.2(a) displays the differential conductances for AP and P
configurations for a MWNT device. The corresponding TMR is shown in fig-
ure 6.2(b). One can see a peak in conductance near zero bias voltage, which
is shown by the arrow in figure 6.2(a). We see in the TMR curves in fig-
ure 6.2(b) that a pronounced dip in TMR with a negative value appears near
the bias region, which corresponds to the resonance peak in the conductance
curve. In figure 6.2(b), the individual points represent the TMR measured
separately at different VSD and the solid line represents the TMR extracted
from the dI/dV curves. From the above results of conductance and TMR, it
is clear that at conductance peak TMR goes to an enhanced negative value,
which is consistent with the measurements presented in Chapter 5, i.e. near
the resonance, TMR can be negative if the device has asymmetric coupling
to the leads. On the other hand, asymmetric coupling is very common in
carbon nanotube-based double tunnel junctions. Therefore, figure 6.2 can be
explained and understood by the quantum interference effects in the light of
resonant tunneling mechanism.

An obvious question is “what would be the TMR in the inverse case”,
i.e. in the case where there is a dip (antiresonnance) in conductance. If the
quantum interference is the main mechanism to relate TMR with conduc-
tance the inverse situation should be observable experimentally. Figure 6.3
shows the inverse situation. (a) shows differential conductance as a function
of bias voltage for another MWNT device. We see in the conductance curve
the presence of a dip in conductance near the zero-bias (shown by the arrow).
Corresponding TMR is presented in (b). Clearly, the situation is opposite,
since TMR is positive near the zero-bias where there is a dip in conductance.
Therefore, the measurements shown in figure 6.2 and figure 6.3 clearly in-
dicate that quantum interference is the main mechanism to control TMR
in these devices. Since in MWNTs there are many channels, interference
phenomenon is expected to be observed. Interference effects have been ex-
perimentally shown in carbon nanotube based devices [16,17]. However, one
should confirm the effects of quantum interference on TMR theoretically.

Now, we come to the measurements of a SWNT device. Figure 6.4 dis-
plays measurements of differential conductance (figure 6.4(a)) and TMR (fig-
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Figure 6.3: Results for MWNT device with a contact separation of
L = 0.8µm at 1.8K. (a) Differential Conductance (dI/dV) as a function
of bias voltage. Red (blue) curve presents dI/dV for the antiparallel (paral-
lel) configuration respectively. (b) Corresponding TMR as a function of bias
voltage VSD. Arrows indicate the position of antiresonance and correspond-
ing TMR.

ure 6.4(b)) as a function of bias voltage VSD for the SWNT (SNT-2) device.
Like in the previous case with MWNT (figure 6.3 (a)), there is a dip in
conductance near zero bias. However, there is an enhanced negative TMR
around the zero bias which is unlike the case with MWNT shown in fig-
ure 6.3(b). The amplitude of the TMR near zero-bias is larger than 30%. If
we compare this amplitude with Jullière’s formula (see Chapter 2), it gives a
polarization value larger than 40% which is much larger than what we expect
(15− 20%) in our ferromagnetic electrodes of Pd1−xNix alloy [12].

From the results on bias dependence of TMR for the SWNT device pre-
sented above, we come to two important points: First, the TMR is strongly
negative when there is a dip in conductance, which contradicts the simple
interference effect to control the TMR for the SWNT device. Second, the
amplitude of the TMR for SWNT device cannot be explained by Jullière’s
model and furthermore, it is about one order higher than that of the MWNT
device. Both quantum interference and Jullière’s model are completely non-
interacting picture. But for the SWNT device the effects of electron-electron
interaction has to be taken into account since the charging energy is much
higher in SWNT than in MWNT devices [18]. Also, as it is predicted theo-
retically [8,9,19] for FM islands, the charging energy can lead to an enhance-
ment of TMR, we think that charging effect should be considered in order to
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Figure 6.4: Bias dependence of the SWNT device with a contact separation
of L = 0.4µm at 1.8K. (a) Differential conductance (dI/dV) as a function
of bias voltage. Red (blue) presents dI/dV for the antiparallel (parallel)
configuration respectively. (b) Corresponding TMR as a function of bias
voltage VSD.

explain this large amplitude of TMR.
Finally, the measurements from all the above mentioned three devices

show an enhancement of TMR near zero bias and a decrease with high bias.
This is consistent with the measurements in magnetic tunnel junction [3, 5].
These measurements also show that TMR changes sign with bias voltage.
In order to have a clear understanding of the bias dependence of the TMR
measurements presented in this chapter, one has to work on an appropriate
theoretical model with interference effects including the interaction effects.

6.2.2 Temperature Dependence of TMR

In this section, we show the preliminary results of the effects of temperature
on TMR. Figure 6.5 displays the variation of TMR as a function of temper-
ature for a MWNT device having L = 0.8µm separation between the two
contacts. The individual points represent the experimental measurements
of TMR at different temperatures and the solid line is an exponential fit to
these experimental points. The inset shows the dependence of junction resis-
tance (R) on temperature. Both R and TMR show exponential decay with
temperature but in a different temperature scale.

The decrease of TMR with temperature can be expected from the view
of spin-flip scattering of the conducting electrons. Spin-flip scattering due
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Figure 6.5: (a) Temperature dependence of the TMR for a MWNT device
with a contact separation of L = 0.8µm. Red points display experimental
measurements and the solid line represents the exponential fit to the experi-
mental points. (Inset: temperature dependence of junction resistance R.)

to magnetic impurities reduces the magnetoresistance which saturates at low
temperature [20]. However, instead of observing a saturation in TMR at low
temperature we observe an anomalous increase of TMR below 4 K. There-
fore, the TMR behavior indicates that there is another mechanism which
enhances the TMR at low temperature, when spin-flip scattering can be ne-
glected. Figure 6.6 is the greyscale plot of the differential conductance as a
function of gate voltage Vg and bias voltage VSD at 300 mK. The greyscale
shows clear Coulomb diamonds and hence, the QD behavior at low temper-
ature. Therefore, one can expect that Coulomb Blockade effects may lead to
this anomalous increase in TMR at low temperature. Also the exponential
increase in junction resistance R with decreasing temperature might be the
effect of Coulomb Blockade at low temperature [21]. Therefore, taking into
account the temperature dependence of R and the QD behavior of the device
at low temperature, one may expect that the TMR behavior as shown in fig-
ure 6.5 might be a combination of Coulomb charging effect (dominant at low
temperature) with spin-flip scattering (dominant at high temperature).

Finally, we fit the experimental results with an exponential function
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βe(−kBT/Emr), where, Emr/kB = 2.3 K and β is a prefactor. If the assump-
tion that the temperature dependence of TMR is a combination of Coulomb
Blockade effect and spin-flip scattering, one may except a crossover in tem-
perature between these two effects. This crossover in temperature Tmr is
available from the fitting which gives Tmr = Emr/kB = 2.3 K. When T is
smaller than Tmr, mostly Coulomb Blockade effects contribute to the TMR
and for T higher than Tmr, spin-flip scattering effects at the interfaces (by
magnetic impurities in the barrier or by magnon excitations) [3, 22, 23] con-
tribute the dominant part to the TMR. The temperature Tmr = 2.3 K corre-
sponds to an energy of about 0.20 meV which is comparable to the charging
energy, 0.28 meV extracted from the greyscale plot in figure 6.6. However,
we cannot determine the spin-flip scattering length from this approach.

6.3 Conclusion

We have presented experimental results of the effects of bias voltage and
temperature on TMR. We have shown that TMR can be both positive and
negative as a function of bias. In the absence of electron-electron interac-
tions, the bias dependence of the TMR can be dominated by the quantum
interference effects, whereas in the presence of interaction, simple interference
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effects cannot describe the observed behavior. For a better understanding of
the bias dependence, more experimental and theoretical studies are needed.
We have presented our preliminary results on the temperature dependence
of TMR, which provide some direction to understand the effects of Coulomb
charging and spin-flip scattering on the TMR as a function of temperature.
It is obvious that one has to do more experiments with different lengths to
support the effects and also to calculate the spin-flip scattering length. Fi-
nally, temperature dependence gives a clear indication of spin injection into
the device.
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Chapter 7

Conclusion and Future Directions

7.1 Conclusion

Since their discovery, carbon nanotubes have been of growing interest in
mesoscopic physics for their novel electronic properties. However, in the field
of spintronics, carbon nanotubes had not been explored up to their best
performance. In this Thesis, we have presented a series of experiments to
investigate the spin polarized transport through carbon nanotubes.

The first part of this Thesis consists of an introduction to the field of
spin polarized transport, providing most of the necessary background for
understanding the experiments presented here. The rest of the Thesis is
based on the experimental part.

There, we have begun with the detailed procedure of device fabrication
as relevant for this Thesis. We have described different crucial and impor-
tant steps which one should perform carefully while fabricating the device.
Making reliable ferromagnetic contacts on carbon nanotubes appeared to be
one of the key issues towards spin injection into nanotubes. We have demon-
strated that one can achieve reliable ferromagnetic contacts on MWNTs as
well as on SWNTs using a Pd1−xNix alloy with x≈ 0.7.

The main achievement of this Thesis has been the demonstration of a
gate tunable spin field-effect behavior in carbon nanotubes with PdNi-based
ferromagnetic contacts. We have shown that the TMR can be controlled in
an oscillatory fashion from a positive value to a negative value using a gate.
The observed phenomenon of oscillations in TMR can fully be accounted for
in a resonant tunneling picture. Convincing evidence for spin imbalance in a
CNT-based QD has been deduced from the observed asymmetric line shape
of the TMR.

We have presented experimental results of the effects of a bias voltage
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on TMR. Like for a gate voltage, we have shown that TMR can also be
both positive and negative as a function of a bias voltage. We have observed
an enhanced negative TMR of more than 30% for a SWNT device. In the
absence of electron-electron interaction we have shown that the bias depen-
dence of the TMR is dominated by quantum interference effects, whereas in
the presence of interaction, simple interference effects cannot describe the
observed behavior. We have presented the preliminary results on the tem-
perature dependence of TMR, which shows an anomalous increase of TMR
at low temperature. The decrease of TMR at high temperature confirms the
spin injection into the nanotubes.

Finally, we have demonstrated the coherent spin transport controlled by
a gate (or bias) in carbon nanotubes based devices with PdNi ferromagnetic
contacts.

7.2 Future Directions

Analysis of this Thesis works direct us for further investigation for better
understanding. Following up of this Thesis, there are many possible experi-
ments which one should approach. Next steps in this field would be:

• The switching properties of the ferromagnetic electrodes should be
studied more extensively to have a better control on it.

• The bias dependence should be investigated in more extensive way and
theoretical model should be performed for clear understanding of the
experimental results.

• Temperature dependence of the TMR should be done in the QD regime
as well as in the quantum wire regime to observe the effect of Coulomb
Blockade and spin-flip scattering separately. One can estimate the
probable spin-flip scattering length in a CNT.

• Ideally, CNT-based QDs should show four-fold regular patterns with
different spin states in the differential conductance as a function of
bias voltage and gate voltage. One can incorporate the spin polarized
transport into this CNT-based QD physics in order to investigate the
effect of spin polarized current on the different spin state of the QD.
One can investigate also the higher order tunnneling processes in QD
coupled to ferromagnetic leads, e.g., spin polarized transport through
a QD in the Kondo regime at low temperature.
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• In order to measure the spin diffusion length, one can go for further
studies on the length dependence of TMR.

• Multi-terminal measurements on CNTs showed that one can have multi-
QDs using only one CNT with many contacts and gates. Multi-QDs
with spin polarized leads can be of interest in the field of spin-based
QD quantum computation. Hence, there are routes to explore spin
transport in single, double or multiple quantum dots (in a controlled
way) using CNT at different conditions, which will allow us to get an
insight into the detailed mechanism and physics with respect to spin
and charge in this type of systems.

To conclude, we believe that although we have performed several im-
portant steps towards the realization of a gate-tunable spin field-effect in
CNT-based QDs, it needs more detailed and extensive studies for a clear un-
derstanding of the physics consisting of the spin polarized transport through
a QD.
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Appendix A

Preparation of PdNi Target

One should know the exact amount of the materials Pd and Ni in order to
make the target of Pd1−xNix with x = 0.75, of desired volume. We make the
following calculation to estimate the amount of Pd and Ni for our desired
target. Lets assume XNi g and XPd g are the amount we take for Ni and Pd
respectively to make the target of Pd1−xNix with x = 0.75. Now, the number
of the atoms containing in those amount can be written as,

nNi =
N

MNi
×XNi (A.1)

nPd =
N

MPd
×XPd. (A.2)

Where N is the Avogadro number and MNi(Pd) denotes the atomic weight of
Ni (Pd). Now according to our desire,

nNi

nPd
=

0.75

0.25
= 3, (A.3)

and we can write from the Eqn. (3.1) and (3.2),

XNi

XPd
=

MNi

MPd

nNi

nPd
= 3× MNi

MPd
, (A.4)

therefore,

XNi = 3
MNi

MPd
×XPd. (A.5)

Now let say we want to have a target of volume about V cm3. Then,

V =
XNi

dNi
+

XPd

dPd
, (A.6)
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where dNi(Pd) is the density of Ni (Pd). Substituting XNi from Eqn.(3.5) into
the Eqn.(3.6) we get,

V =
1

dNi

3MNi

MPd
×XPd +

XPd

dPd
. (A.7)

Finally, we get,

XPd =
V

1
dPd

+ 3MNi
dNi×MPd

, (A.8)

and,

XNi = 3
MNi

MPd
×XPd. (A.9)

Now, taking the standard value of the atomic weights MNi = 58.69 gmol−1,
MPd = 106.42 gmol−1 and the densities, dNi = 8.9 gcm−3, dPd = 11.99 gcm−3

we can estimate the amount of Pd and Ni in the target of desired volume.
So if we want to have the volume of the target as V = 2 cm3, then,

XPd =
2

1
11.99

+ 3×58.69
8.9×106.42

= 7.42g (A.10)

and

XNi = 3× 58.69

106.42
× 7.42 = 12.27g. (A.11)

So, finally, one can make the Pd1−xNix target with x = 0.75 of volume about
2 cm3 with 7.42 g of Pd and 12.27 g of Ni.

Usually, we use Pd or Ni in wire shape and from those wires we try to
make something round shape by spiral binding of the wires together and
then it is in a shape to put in the evaporator (Balzers Pfeffier PLS 500 ). In
evaporator we melt metals at base pressure < 10−7 mbar. While we melt the
target we cool the evaporation chamber by meissner cooling in order to have
better vacuum condition. Now the target is ready for metallization process.
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