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I. SUMMARY 
 

 

The ErbB family of receptor tyrosine kinases play important role in normal physiological 

processes occurring during development; moreover, their deregulated expression has 

been implicated in human cancer. Cancer patients, whose tumors have alterations in 

ErbB1 or ErbB2, tend to have a more aggressive disease associated with parameters 

predicting a poor clinical outcome, including tumor metastases. For tumors to 

metastasize, the cells have to possess specific characteristics, including the ability to 

migrate and to invade the surrounding basal membrane. The role of the Neu/ErbB2 

receptor in cancer cell migration is the major topic of this thesis. 

The Neu/ErbB2 receptor is often overexpressed in different human tumors, including 

breast and ovarian tumors. Clinical and in vitro studies revealed that Neu/ErbB2 plays 

important functions in tumor cell motility. Upon ErbB receptors activation via ligand-

induced dimerization, receptors autophosphorylate specific tyrosines in the carboxy 

domain leading to activation of downstream signaling cascades, including the mitogen-

activated protein kinase (MAPK) and the phosphatidylinositol-3-kinase (PI3K) pathways. 

These pathways, which are known to be important for cell migration, are involved in 

actin cytoskeleton remodeling, leading to formation of lamellipodia and actin stress 

fibers. 

In this work we used T47D breast carcinoma cells expressing Neu/ErbB2 add-back 

mutants harboring none or only one of the five major autophosphorylation sites, to study 

the contribution of individual Neu/ErbB2 tyrosine autophosphorylation sites in cell 

migration. We showed that activation of MAPK and PI3K in T47D cell failed to induce 

efficient cell motility in the absence of the Neu/ErbB2 tyrosines 1201 or 1227 

phosphorylation. Moreover, we present evidence that efficient, long-term cell migration 

depends upon ongoing transcription and translation. Signaling downstream of tyrosine 

1201 and 1227 is required for de novo synthesis of RNA and protein involved in cell 

migration. Further investigation of the function of these two tyrosines led to the 

identification of a novel protein that specifically interacts with the phosphorylated 

tyrosine 1227. We called this new protein Memo for mediator of ErbB2-driven cell 
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motility. Memo does not bind directly to the phosphorylated tyrosine 1227 of the 

Neu/ErbB2 receptor, but very likely via the adaptor molecule Shc. Memo is required for 

ErbB2-driven breast carcinoma cell migration, because its downregulation leads to 

decreased motility of cells expressing the receptor with the tyrosine 1227. Interestingly, 

we found that Memo is not only required for migration downstream of the ErbB 

receptors, but it may be a general mediator of growth factor-induced breast carcinoma 

cell migration.  

Cell migration is a multistep process and we further defined at which step Memo is 

required. We found that upon Neu/ErbB2 activation, wild type cells, but interestingly 

also Memo-deficient cells form actin stress fibers and extend lamellipodia. However, 

Memo-deficient cells are not able to extend microtubules toward the cell cortex. There is 

increasing evidence that not only the actin cytoskeleton but also the microtubule 

cytoskeleton plays a crucial role for cell migration. For instance, microtubules are 

required for the polarization of the cells and also for the transport of proteins required for 

motility to the cell leading edge. Further studies have to be done to understand the exact 

role of Memo in microtubule outgrowth and its contribution to cell motility. 

In summary, the work presented in the thesis shows the identification of a novel protein, 

Memo, which is required for breast carcinoma cell migration. We propose that Memo 

controls cell motility by transmitting extracellular chemotactic signals to the microtuble 

cytoskeleton.  
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III. INTRODUCTION 
 

 

1. THE ERBB RECEPTOR FAMILY OF RECEPTOR TYROSINE 

KINASES  
Within a multicellular organism, cells are continuously exposed to a flow of different 

signals coming from the environment and from the neighboring cells. These signals have 

to cross the membrane and to be converted into intracellular signals in order to be 

correctly interpreted and to exert their pleiotropic effects. During evolution different 

devices have been developed in order to achieve this challenge. One of these is the 

presence of receptors on the surface of the cells, which are responsible for the capture of 

the signals. One class of receptors is the family of receptor tyrosine kinases (RTKs) that 

can be divided in different subfamilies, based on the sequence homologies and conserved 

structural features. The subfamily I is formed by the ErbB or epidermal growth factor 

(EGF) receptors and include four members: EGFR/ErbB1/HER1, ErbB2/Neu/HER2, 

ErbB3/HER3 and ErbB4/HER4. All members have in common a cysteine-rich 

extracellular ligand binding domain, a single hydrophobic transmembrane region and a 

cytoplasmic tail containing tyrosine kinase activity (Ullrich and Schlessinger, 1990). The 

signal-transducing tyrosine kinase activity of these receptors is inactive when they are in 

isolation. A number of different ligands activate the receptor by binding to the 

extracellular domain and inducing the formation of receptor homo- and heterodimers. 

Tyrosine residues on the receptors are cross- or autophosphorylated and serve as docking 

sites for signaling complexes which will then activate different signal transduction 

cascades (Olayioye et al., 2000; Yarden and Sliwkowski, 2001). 

 

 

1.1. ErbB receptors in evolution 
The EGFR signaling module has been highly conserved in evolution. In the nematode 

Caenorhabditis elegans, only one receptor, LET-2, and one ligand, LIN-3, are present 

(Aroian et al., 1990; Hill and Sternberg, 1992). This pathway plays a central during 
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development role in the determination of the fate of several types of cells. The first 

function identified was in vulval induction, which occurs when the LIN-3 ligand secreted 

by an anchor cell binds to LET-23 receptor on adjacent multipotent vulval precursor 

cells. These cells will assume a vulval fate, while the surrounding cells that did not 

receive the LET-23 activation will become part of the epidermis (Chang and Sternberg, 

1999).  

In the fruitfly Drosophila Melanogaster, while only one receptor, DER is present, the 

number of ligands is increased to five (Livneh et al., 1985). DER plays a multitude of 

roles during development, leading to a multitude of cell fate choices: cell division, cell 

survival or cell migration (Schweitzer and Shilo, 1997; Shilo, 2003). To ensure a tight 

activation of these processes, four activating ligands, Spitz (Rutledge et al., 1992), Keren 

(Reich and Shilo, 2002), Gurken (Neuman-Silberberg and Schupbach, 1993) and Vein 

(Schnepp et al., 1996), in conjunction with a negative-feedback loop generated by the 

inhibitory secreted ligand Argos  are present in the fly (Golembo et al., 1996).  

The four mammalian ErbB family members can be activated by multiple ligands, 

providing a higher specificity and expanded repertoire of potential responses, via the 

formation of various homo- or heterodimers. The ErbB receptors are expressed in a 

variety of tissues of epithelial, mesenchymal and neural origin and they play important 

roles during development in cell proliferation, differentiation and migration. In addition, 

deregulated expression of the receptors, especially of ErbB1 and ErbB2, is implicated in 

the formation of human cancers and is associated with an aggressive disease phenotype 

(Slamon et al., 1987; Hynes and Stern, 1994). 

 

 

1.2. ErbB receptor ligands 
In mammals, ErbB receptors are activated by a large family of ligands called EGF-related 

peptides (Riese and Stern, 1998). The structural motif shared by all ligands is the EGF-

like domain composed of six characteristically spaced cysteines, which will form three 

disulfide-linked bridges. This domain function as a receptor binding site and is alone 

sufficient for high affinity binding (Peles et al., 1993; Jones et al., 1999b). Most EGF-

related peptides are synthesized as transmembrane precursors that have to be 
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proteolitically cleaved in order to release the soluble form (Massague and Pandiella, 

1993). In mammals, it was shown that the ADAM (a disintegrin-like and 

metalloproteinase-containing protein) family of zinc proteases, endowed with 

metalloproteinase and disintegrin receptor-binding activity, are involved in the shedding 

of the membrane-anchored precursor form (Gee and Knowlden, 2003; Seals and 

Courtneidge, 2003). Moreover, other studies provide evidence that the matrix 

metalloproteinases MMP-3 and MMP-7 are able to cleave the precursor form of HB-EGF 

(Suzuki et al., 1997; Yu et al., 2002). Interestingly, in Drosophila melanogaster, three of 

the five DER ligands, Spitz, Keren and Gurken are also produced as transmembrane 

precursor molecules. Processing of these molecules is not carried out by 

metalloproteinases like the ADAMs, but by Rhomboids, which are seven-transmembrane 

serine proteases (Urban et al., 2002).  

The mammalian ErbB ligands can be divided into three groups according to the binding 

specificity (Figure 1).  

 

 
Figure 1: Binding specificity of the EGF-related peptide growth factors. 

 

The first group comprises EGF, TGF-α and amphiregulin (AR), which specifically bind 

to ErbB1 (Harris et al., 2003); the second group includes betacellulin (BTC), heparin-
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binding EGF (HB-EGF) and epiregulin (EPR), which bind both ErbB1 and ErbB4 (Harris 

et al., 2003). The third group comprises the neuregulins (NRGs). This group can be 

further subdivided in two subgroups based upon the binding of the NRG to ErbB3 and 

ErbB4 (NRG-1 and NRG-2) or only to ErbB4 (NRG-3 and NRG-4). The neuregulins are 

encoded by four different genes that can be alternative spliced leading to multiple NRG 

isoforms (Falls, 2003). NRG-1 is also known as neu differentiation factor (NDF), 

heregulin (HRG), acetylcholine receptor-inducing activity (ARIA) or glial growth factor 

(GGF), reflecting the biological system where the ligand was first described (Olayioye et 

al., 2000). Interestingly, despite the large number of ligands identified for ErbB1, ErbB3 

and ErbB4, no direct ligand for ErbB2 has been described yet (Klapper et al., 1999). 

However, results from different studies support the idea that ErbB2 functions mainly in 

complex with the other family members, acting as a co-receptor. Interestingly, ErbB2-

containing heterodimers are formed preferentially (Tzahar et al., 1996; Graus-Porta et al., 

1997) and are the most potent complexes concerning activation of signaling pathways 

(Beerli et al., 1995; Graus-Porta et al., 1995). 

 

 

1.3. ErbB receptor dimerization 
1.3.1. The extracellular domain 

Dimer formation between multiple ErbB family members is a process driven by ligand 

binding to the extracellular domain of the receptors. New data from the crystal structure 

of ErbB1 (Garrett et al., 2002; Ogiso et al., 2002), ErbB2 (Cho et al., 2003; Garrett et al., 

2003) and ErbB3 (Cho and Leahy, 2002) have provided a better understanding of the 

dimerization mechanism (Burgess et al., 2003).  

The ErbB receptor extracellular domain can be subdivided in four distinct subdomains, 

named I, II, III and IV. The subdomains I and III of ErbB1 have been identified as 

important in ligand binding, whereas the subdomain II of each receptor in the dimer 

forms a betahairpin arm and holds the body of the other, leading to a direct receptor–

receptor interaction. Interestingly, in the ErbB1 dimer formed by two 1:1 receptor:ligand 

complexes, the two ligands are distant from each other and bind only a single ErbB 

receptor, thus they are monomeric (Lemmon et al., 1997; Schlessinger, 2000). The 
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structure of ErbB2 reveals an activated conformation similar to that of the ErbB1 when 

complexed with a ligand, where the subdomains I and III are interacting, mimicking the 

bridging of the two domains by bound ligand in activated ErbB1 (Figure 2). Between the 

subdomains II and IV there is no interaction, since in ErbB2 three of the seven conserved 

residues important for stabilization of unactivated ErbB1 receptor are different, 

presumably reducing the strength of this interaction. These studies on the structure of 

ErbB2 explain the inability of the ErbB2 receptor to bind known ligands and why ErbB2 

can interact with other ErbB receptors in the absence of direct ligand binding. 

Interestingly, overexpression especially of ErbB2, appears to force the equilibrium 

toward spontaneous homodimer formation leading to activation in the absence of ligands 

(Samanta et al., 1994). This situation is often present in a variety of human cancers 

(Klapper et al., 2000). 

 

 

 

 

 

 

 

 

Figure 2: Model for NRG-induced heterodimerization of ErbB2 and ErbB3 (Burgess et 

al., 2003). 

 

ErbB3 structure is similar to the one of the inactive ErbB1. ErbB3 has impaired kinase 

activity due to substitutions in the kinase domain (Guy et al., 1994) and therefore, in 

order to signal ErbB3 has to form dimers with the other ErbB receptors. 

 

1.3.2. The intracellular domain 

Although the extracellular domain appears to be responsible for the majority of 

interactions leading to ErbBs dimerization, evidence suggests that the intracellular 

domain plays more than a passive role in dimerization. It was proposed that dimerization 
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of ErbB receptors may be influenced by electrostatic charge distribution near the 

membrane proximal regions and that proper orientation of the receptors is critical for 

dimerization (Murali et al., 1996). Moreover, results from one study proposed that the 

kinase domain is critical for dimerization (Chantry, 1995). 

 

 

1.4. Intracellular signaling 
The specificity and potency of intracellular signals are determined by the identity of the 

ligand and the dimer composition, but mainly by the multiple types of phospho-binding 

proteins that associate with the tail of each ErbB receptor in the dimer.  

Ligand binding drives receptor dimerisation, leading to activation of the intrinsic kinase 

domain and subsequent autophosphorylation of specific tyrosine residues (Lemmon and 

Schlessinger, 1994; Jiang and Hunter, 1999). The identity of the ligand, as well as the 

heterodimer partners, determines which are the sites phosphorylated, and therefore, 

which adaptor proteins bind to the receptors (Olayioye et al., 1998). The association of 

the adaptor molecules with the receptor’s phosphorylated tyrosines occurs through their 

Src-homology 2 (SH2) or phosphotyrosine binding (PTB) domains. Interestingly, the 

amino acid sequence adjacent to the phosphorylated tyrosine is also important for the 

binding of the docking proteins (SH2 domains recognize residues carboxy-terminal to the 

phosphorylated tyrosine, whereas PTB domains the amino-terminal ones) (Pawson and 

Scott, 1997; Yaffe, 2002). The Shc/Grb2-activated mitogen-activated protein kinase 

(MAPK) pathway is a downstream target of all ErbB receptors (Olayioye et al., 2000). 

Interestingly, not only the mammalian ErbB receptors, but also the Drosophila 

homologue DER and the C. elegans homologue Let-23 couple via Shc or Grb2 to the 

MAPK pathway (Diaz-Benjumea and Hafen, 1994; Moghal and Sternberg, 2003). In 

addition, the phosphatidylinosithol-3-kinase (PI3K) pathway is activated by all ErbB 

receptors, however the potency and kinetics of PI3K activation differs among the ErbB 

dimers probably because PI3K couple directly with ErbB3 and ErbB4, but indirectly with 

ErbB1 and ErbB2 (Prigent and Gullick, 1994; Soltoff and Cantley, 1996; Elenius et al., 

1999). Despite sharing some pathways, each receptor is coupled with a distinct set of 

signaling proteins (Table 1) (Olayioye et al., 2000).  
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ERBB1 ERBB2 ERBB3 ERBB4 

Grb2 

(Batzer et al., 1994) 

Grb2 

(Ricci et al., 1995; 
Dankort et al., 1997) 

Grb7 

(Fiddes et al., 1998) 

p85 

(Elenius et al., 1999) 
 

Nck  

(McCarty, 1998) 

Nck 

(Dankort et al., 
2001b) 

Shc 

(Prigent and Gullick, 
1994) 

Shc 

(Cohen et al., 1996) 

Crk  

(Hashimoto et al., 
1998) 

Crk 

(Dankort et al., 
2001b) 

p85 

(Prigent and Gullick, 
1994) 

 

Shc  

(Batzer et al., 1994) 

Shc 

(Ricci et al., 1995; 
Dankort et al., 1997) 

  

Dok-R  

(Jones and Dumont, 
1999) 

Dok-R 

(Dankort et al., 
2001a) 

  

PLCγ  

(Chattopadhyay et al., 
1999) 

p34 

(Dankort et al., 
2001a) 

  

PTB-1B  

(Milarski et al., 1993) 

p150 

(Dankort et al., 
2001a) 

  

SHP-1  

(Keilhack et al., 
1998) 

Chk 

(Zrihan-Licht et al., 
1998) 

  

Src  

(Stover et al., 1995) 

   

Abl  

(Zhu et al., 1994) 

   

Cbl 

(Levkowitz et al., 
1996)  

   

 

Table 1: Signaling proteins that associate directly with the ErbB receptors. 
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The principal process that turns off signaling downstream of the ErbB receptors is ligand-

mediated receptor endocytosis. The kinetics of this process depends on the dimers 

composition. In contrast to the other ErbB receptors, activated ErbB1 is rapidly 

internalized and targeted to lysosomes (Baulida et al., 1996). However, dimerization of 

ErbB1 with ErbB2 decreases the rate of endocytosis (Lenferink et al., 1998; Wiley, 

2003). Recent studies have shown a strong correlation between Cbl mediated 

ubiquitination of ErbB1 and accelerated degradation (Levkowitz et al., 1999; Yokouchi 

et al., 1999). This mechanism of negative regulation of ErbB1 is also present in the 

nematode C. elegans, where sli-1, the homologue of Cbl is involved in LET-23 

degradation (Jongeward et al., 1995). 

 

 

1.5. ErbB receptors crosstalk with other receptors 
The ErbB signaling network integrates not only the input from the multiple EGF-related 

peptides, but also from heterologous signals, such as hormones, neurotransmitters, 

lymphokines and stress inducers (Carpenter, 1999). Many of these transregulatory 

interactions are mediated by protein kinases that directly phosphorylate the ErbB 

receptors affecting their kinase activity or endocytic transport. The most extensively 

studied mechanism involves activation of ErbB by G-protein-coupled receptors (GPCRs) 

(Carpenter, 2000). Different groups showed that GPCR-dependent stimulation of the 

EGF receptor involve stimulation of membrane-bound metalloproteinase, which induce 

the extracellular release of the ErbB1 ligand heparin-bound-EGF (HB-EGF) (Fujiyama et 

al., 2001; Pierce et al., 2001; Asakura et al., 2002). A similar activation could also occur 

for other growth factors, such as the precursor of transforming growth factor-α (pro TGF-

α). This model of receptor tyrosine kinases transactivation is called triple-membrane-

passing-signaling (TMPS) since it involves three signaling steps traversing the membrane 

(Figure 3) (Prenzel et al., 1999; Wallasch et al., 2002). Transactivation by GPCRs has 

been shown for other receptor tyrosine kinases, such as ErbB2 and platelet-derived 

growth factor receptor (PDGF). Moreover, additional pathways of ErbB1 transactivation 

that do not involve activation of metalloproteinases have been identified. It was proposed  
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Figure 3: The triple-membrane-passing-signaling model (Wetzker and Bohmer, 2003). 

 

that the tyrosine kinases Src and Pyk mediate ErbB1 transactivation downstream of 

GPCR activation. Both kinases can interact with ErbB1 and Src is able to directly 

phosphorylate and activate ErbB1 (Luttrell et al., 1996; Biscardi et al., 1999; Keely et al., 

2000). Alternatively, GPCR activation might lead to the production of hydrogen 

peroxide, which inactivates phosphatases that negatively control receptor tyrosine kinase 

activity. 

  

 

1.6. ErbB receptors in mouse development 
The ErbB network is a key developmental signaling pathway throughout evolution. The 

function of specific ligands and individual ErbB receptors in mammalian development 

was studied using knockout and transgenic mice. 

ErbB1 and its ligands: Inactivation of ErbB1 is embryonic or perinatal lethal depending 

on the genetic background (Threadgill et al., 1995). The mice show defects in the 

development of many organs, including lung, skin, brain and gastrointestinal tract 

(Miettinen et al., 1995; Threadgill et al., 1995; Sibilia et al., 1998). Transgenic and in 
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vitro studies reveal a role for ErbB1 in promoting proliferation and differentiation of the 

epithelial component of those organs. Mice lacking transforming growth factor-α (TGF-

α) have abnormal skin, hair and eye development, but in contrast to ErbB1 deficient 

mice, they show no brain abnormalities (Luetteke et al., 1993; Mann et al., 1993). The 

limited phenotype of TGF-α knock out mice suggest that each ErbB ligand has a distinct 

functional role and tissue specificity during development. 

ErbB2, ErbB3, ErbB4 and the neuregulins: Mice defective in ErbB2, ErbB4 and 

NRG-1 die at embryonic day 10.5 due to defect in the cardiac traberculae formation, 

showing the importance of ErbB2/ErbB4 heterodimers in heart development (Gassmann 

et al., 1995; Lee et al., 1995; Meyer and Birchmeier, 1995). Mice lacking ErbB3 survive 

until embryonic day 13.5 and they suffer from valves heart malformation (Erickson et al., 

1997). Interestingly, mice lacking ErbB2, ErbB3 and NRG-1 have underdeveloped 

sympathetic ganglion chain, due probably to defective migration of neuronal progenitors 

from the neuronal crest (Britsch et al., 1998). Moreover, a genetic rescue of ErbB2 knock 

out mice heart development by myocardial expression of ErbB2 cDNA, reveals the 

important role of ErbB2/ErbB3 heterodimers in peripheral nervous system development 

(Woldeyesus et al., 1999). 

 

1.5.1 ErbBs in development of the immature mammary gland  

The mammary gland is an unusual organ because it undergoes postnatal development. In 

fact, female are born with a small ductal tree. Under the influence of systemic hormones, 

extensive ductal elongation and branching occurs at puberty and in adult animals. Further 

development in pregnancy includes continued ductal growth, formation of glandular 

structures and production of milk at parturition. Weaning induces involution, a program 

of cell death and remodeling to restore the gland to a prepregnancy-like state.  

Each ErbB receptor has a unique pattern of expression in this organ. In the mouse, ErbB1 

and ErbB2 are abundant prior to puberty and during subsequent developmental stages, 

whereas ErbB3 and ErbB4 display low levels prior to pregnancy (Schroeder and Lee, 

1998; Sebastian et al., 1998). All four ErbBs are expressed during pregnancy and 

lactation, but ErbB1 and ErbB2 are preferentially expressed in lactating ducts and alveoli, 

whereas ErbB3 and ErbB4 are more pronounced in alveoli (Schroeder and Lee, 1998). 
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ErbB1 and ErbB2 are phosphorylated and therefore active during puberty, late pregnancy 

and lactation (Sebastian et al., 1998). During pregnancy all four receptors are 

phosphorylated (Schroeder and Lee, 1998; Sebastian et al., 1998). These results suggest 

that ErbB1 and ErbB2 act at puberty, late pregnancy and lactation, whereas ErbB3 and 

ErbB4 are most active in pregnancy and lactation. 

Most ErbB1-/- mice die after birth, however the prolonged survival of a fraction of them 

made it possible to determine that they are impaired in postnatal ductal formation 

(Wiesen et al., 1999). These mice have a reduced proliferation of the mammary 

epithelium and stroma and they lose the periductal fibroblasts. 

Comparison of single or combined knockout for EGF, TGF-α and AR showed that AR is 

important for normal ductal development (Luetteke et al., 1999). The severity of the 

phenotype and the lack of a similar phenotype associated with loss of EGF or TGF-α 

identified AR as the foremost mammary regulator of ErbB1 at puberty (Luetteke et al., 

1999; Li et al., 2002). 

 

1.5.2. ErbBs and ErbB ligands in adult mammary gland development 

ErbBs are active during adult mammary development. Transgenic mice expressing a 

truncated dominant negative (DN) ErbB1 receptor under the control of the mammary 

gland specific mouse mammary tumor virus (MMTV) display reduced ductal side 

branching (Xie et al., 1997). Transgenic animals expressing a dominant negative MMTV-

truncated ErbB2 have significant defects in mammary developmental late in gestation 

and early postpartum, with failure of alveolar expansion and production of milk (Jones 

and Stern, 1999). Lactation problems and early postpartum immature phenotype are also 

seen in mice expressing MMTV-DN-ErbB4 (Jones et al., 1999a; Tidcombe et al., 2003). 

ErbB3 is expressed and active during pregnancy, but an ErbB3 loss-of-function 

phenotype in the mammary gland has not been described yet. 

Mammary organ culture experiments have suggested that NRG induces alveolar 

morphogenesis and lactational differentiation (Yang et al., 1995). Targeted disruption of 

NRG1α, but not NRG1β transiently reduces alveolar maturation and proliferation of the 

mammary epithelium late in pregnancy (Li et al., 2002).  
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The limited expression of ligands and activation of ErbB receptors during involution (the 

final developmental step) and the lack of effects on involution in ligands knockout, 

suggests that ErbBs do not contribute significantly to this developmental step. 

 

 

1.7. The ErbB2/Neu receptor 
ErbB2 is the second member of the ErbB family of receptor tyrosine kinases and is often 

overexpressed or amplified in different tumors. The human c-erbB2 gene was isolated 

from human genomic DNA library screened with a viral v-erbB hybridization probes 

under low stringency (Coussens et al., 1985; King et al., 1985; Semba et al., 1985). The 

human c-erbB2 is localized to bands q12-q22 of chromosome 17. Sequence analysis of 

the cDNA confirmed that the c-erbB2 gene was the human homologue of the rat neu and 

had significant homology with the erbB gene (Coussens et al., 1985; Yamamoto et al., 

1986). The extracellular portion of ErbB2 is 44% homologous to ErbB1 (Bargmann et 

al., 1986b) (Figure 4). The kinase domain is highly conserved within the ErbB family, 

whereas the carboxy-terminus residues show the highest sequence variation. 

 

 
Figure 4: Domain homology between ErbB1 and the other ErbB family members. 
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1.7.1 ErbB2 and Neu in cancer 

The rat neu oncogene was originally identified in cell lines derived from rat 

neuroectodermal tumors (Shih et al., 1981). Further studies showed that the neu 

oncogene is associated with a specific antigen designated p185 (Padhy et al., 1982; 

Schechter et al., 1984), a phosphoprotein that is associated to the plasma membrane 

(Padhy et al., 1982; Drebin et al., 1984). The sequence suggested that the normal version 

of p185 is related to erbB. A comparison of cDNA clones isolated from both normal and 

transforming alleles indicates that the difference between the oncogenic and the proto-

oncogenic form of neu is a single (T→A) point mutation resulting in an amino acid 

substitution (Val→Glu) at position 664 within the transmembrane domain of the receptor 

(Bargmann et al., 1986a). Although the oncogenic point mutation identified in the rat neu 

is not found in human tumors, a polymorphism at codon 655 of c-erbB2, which results in 

Val→Ile has been identified (Papewalis et al., 1991) and an association between the 

polymorphism and an increased risk of breast cancer was shown (Xie et al., 2000). The 

human protein is overexpressed in a number of adenocarcinomas as a result of c-erbB2 

gene amplification or protein overexpression. ErbB2 overexpression leads to the 

spontaneous formation of ErbB2 homodimers, which activate different downstream 

signaling pathways. Observation of c-erbB2 amplification was first described in human 

gastric tumors (Yamamoto et al., 1986), but also appears to be associated with non-small 

cell lung (Weiner et al., 1990), colon (Cohen et al., 1989), ovarian (Slamon et al., 1989) 

and pancreatic adenocarcinomas (Williams et al., 1991).  Overexpression of ErbB2 has 

been found in about 30% of invasive breast cancers (Slamon et al., 1987; Slamon et al., 

1989). ErbB2 overexpression correlates with tumor size, spread of the tumor to lymph 

nodes, high grade, high percentage of S-phase cells, aneuploidy and lack of steroid 

hormone receptors, implying that ErbB2 confers a strong proliferative advantage to tumor 

cells (Ross and Fletcher, 1998). Moreover, ErbB2 overexpression is associated with 

resistance to anti-estrogen therapy and poor patient prognosis (Borg et al., 1994). 

 

1.7.2. Role of ErbB2 in tumor and metastases formation  

Tumorigenesis is a multistep process that drives the progressive transformation of normal 

cells into highly malignant derivatives. During this progression the cells have to gain new 
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properties necessary for the malignant phenotype (Hanahan and Weinberg, 2000; Sledge 

and Miller, 2003). First, cancer cells have to acquire a proliferative potential that allow 

them to grow continuously and independently of growth signals. Moreover, the cells have 

to become insensitive to antiproliferative signals and should evade apoptosis. In addition, 

new blood vessels have to be formed in order to supply the tumor with oxygen and 

nutrients. The final step, metastases formation, is dependent on the capability of the cells 

to migrate and invade the surrounding tissue. ErbB receptors, as well as ErbB ligands, 

play distinct roles in each of these processes (Evan and Vousden, 2001; Green and Evan, 

2002; Holbro et al., 2003). 

Different studies have been done in order to better understand the role of the ErbB 

receptors in cell proliferation, angiogenesis and cell motility (Holbro et al., 2003). Since 

the central topic of this thesis is the role of ErbB2 in cell migration, only this aspect will 

be discussed in more details although if the knowledge is very limited. 

Studies with transgenic mice have revealed that mice bearing either an activated form of 

Neu (NeuT or c-Neu with mutations in the extracellular region proximal to the 

transmembrane domain) or the wild type proto-oncogene under the control of the mouse 

mammary tumor virus (MMTV) promotor, frequently develop mammary tumors and 

lung metastases (Muller et al., 1988; Bouchard et al., 1989; Guy et al., 1992; Siegel et 

al., 1994; Siegel et al., 1999). Metastases formation is very rapid in mice expressing the 

activated neu receptor, whereas the ones expressing the wild type proto-oncogene form 

metastasis only after a long latency. More studies using NeuT add-back mutants (mutants 

which have only one single tyrosine autophosphorylation site) were performed in order to 

better understand the role of the adaptor molecules, binding to specific NeuT sites, in 

cancer development and metastases formation (Dankort et al., 2001b). Interestingly, two 

mice strains expressing only the second or the forth of the five add-back mutants 

efficiently form mammary tumors, but only one of them develops lung metastases, 

suggesting that metastases formation is more complex than tumor formation. 

In vitro studies reveal that many types of tumor cells migrate or scatter in response to 

autocrine receptor activation (El-Obeid et al., 1997) or ErbB ligands treatment 

(Adelsman et al., 1999; Chausovsky et al., 2000; Spencer et al., 2000). Moreover, not 

only ErbB2 activation via a ligand but also ErbB2 overexpression is correlated with 
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increased cell motility and invasion by alterations in cell and cytoskeletal morphologies 

(De Corte et al., 1994; Adam et al., 1998; Grothey et al., 2000). 

In order to form metastases, carcinoma cells have to leave the primary tumor, process 

dependent on the ability of the cells to migrate. Afterward, they invade the surrounding 

basal membrane, process dependent on proteolysis, in order to reach and invade the blood 

vessels. Once in the blood, tumor cells circulate and they become trapped in the capillary 

of distant organs. At this point the cells will leave the blood stream and migrate into the 

organ. The cells start to proliferate in the target organ, forming the secondary tumor 

(Fidler, 2003). In vitro, HRG treatment of breast cancer cells was shown to induce the 

expression of the matrix metalloproteinase (MMP)-9 (Xu et al., 1997) and of the 

membrane associated urokinase-type plasminogen activator (uPA) and its receptor 

(Mazumdar et al., 2001), leading to an invasive phenotype. Clinical studies reveal that 

expression of MMP-2 and MMP-9 is associated with grade and stage of breast cancer 

(Monteagudo et al., 1990; Zucker et al., 1993; Kossakowska et al., 1996). Moreover, 

uPA expression and the ratio of uPA to the plasminogen activator inhibitor-1 (PAI-1) are 

associated with impaired survival and local relapse (Prechtl et al., 2000; Harbeck et al., 

2002). Inhibitors of MMP and uPA may have therapeutical potential, but clinical 

development has so far been limited due to toxicity (Bramhall et al., 2001; Hidalgo and 

Eckhardt, 2001; Shepherd et al., 2002). 

 

 

1.8. ErbB as target for cancer therapy 
The central role of ErbB2, but also of ErbB1 in the development of solid tumors and the 

detailed understanding of the underlying biochemistry has made the ErbB network a 

target for pharmacological intervention. Many different approaches have been taken.  

Immunological strategies: a humanized monoclonal antibody to ErbB2 (Herceptin) 

(Hudziak et al., 1989) has been approved for clinical use, both alone and in combination 

with chemotherapeutic agents (Baselga et al., 1998; Pegram et al., 1999). Herceptin 

induces ErbB2 downregulation and a proliferative block of the cells via induction of the 

cyclin-dependent kinase inhibitor p27Kip1 and the Rb-related protein p130 (Sliwkowski et 

al., 1999; Lane et al., 2000; Yakes et al., 2002). Furthermore, it has been shown that in 
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vivo, Herceptin elicits an antibody-mediated cytotoxicity through engagement of Fc 

receptors and that this process contributes to its anti-tumor activity (Clynes et al., 2000). 

The anti-tumor properties of Herceptin used alone and its increased efficacy when used in 

combination with cytotoxic agents have been confirmed using in vivo xenograft models 

(Baselga et al., 1998; Pegram et al., 1999). 

In vitro approaches: One way it is to block transcription or translation by triple-forming 

oligonucleotides, designer transcription factor, antisense oligonucleotides or specific 

ribozymes (Ebbinghaus et al., 1993; Noonberg et al., 1994; Juhl et al., 1997; Beerli et al., 

2000; Chiang et al., 2000; Roh et al., 2000). Another way is to interfere with the 

trafficking of the receptors to the cell surface using intracellular single-chain Fv 

fragments of antibodies (scFvs) (Beerli et al., 1994; Neve et al., 2000). An alternative 

approach is to affect receptor stability with e.g. geldanamycin (Basso et al., 2002). 

However for clinical use, the most promising and advanced strategies include reversible 

and irreversible low molecular weight inhibitors that compete with ATP in the receptor 

kinase domain. Inhibitors capable of discriminating between ErbB receptors and other 

kinases have been developed (Fry et al., 1998). The irreversible inhibitors bind to a 

conserved cysteine in the ATP-pocket, increasing selectivity of the inhibitor (Fry, 2003). 

At least five of these compounds are now being tested in human clinical studies (Baselga, 

2002; Khalil et al., 2003). 
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2. CELL MIGRATION 

Cell migration plays a central role in the development and maintenance of multicellular 

organisms. In embryogenesis, cellular migration is very important in morphogenic 

processes ranging from gastrulation to development of the nervous system (Locascio and 

Nieto 2001). However, migration is also essential in the adult organism for normal 

physiological processes as well as pathological ones (Locascio and Nieto, 2001; Franz et 

al., 2002). For example, during inflammation leukocytes have to migrate to the area of 

interest, where they mediate phagocytic and immune functions. Migration of fibroblasts 

and vascular endothelial cells is required during wound healing. In metastasis, tumor cells 

migrate from the initial tumor mass into the blood stream, which they will leave and 

finally migrate into the new site. 

 

 

2.1. The motility cycle of a cell 
Migration of cells over a substratum requires the coordination of several cellular 

processes which operate in a cycle. This cycle can be divided into five different steps 

(Figure 5): 

1. Extension of the leading edge 

2. Adhesion to the matrix  

3. Contraction of the cell body 

4. Release from the contact sites 

5. Recycling of the membrane receptors from the rear to the front of the cell 

Each of these steps is dependent upon one or more biochemical processes, which include 

protein and enzymatic components, extracellular-matrix receptors on the cell and 

physical forces. 

 

1. Extension of the leading edge: the critical element of the extension process is directed 

actin assembly (Cramer et al., 1994). The process of actin assembly must generate a 

protrusive force sufficient to extend the plasma membrane against compressive forces 

imposed by the environment, and by tension within the plasma membrane. The 

extensions formed are of two different types: flat, broad, sheet-like structures, called 
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lamellipodia, or thin, cylindrical, needle-like projections called filopodia. Cytoplasmic 

organelles are excluded from both of these structures, which contain actin and actin-

associated proteins (Schmidt et al., 1993). 

 
Figure 5: The five steps model of cell migration (Lauffenburger and Horwitz, 1996). 

 

2. Adhesion to the matrix: extension of the leading edge to new extracellular matrix 

(ECM) molecules will enable receptors to bind and to initiate the adhesion process. The 

adhesion receptors-ECM complexes stabilize newly extended cellular domains and 

permit the cell to exert forces on the substrate. At the molecular level, integrins are the 

best characterized receptors for ECM molecules playing a role in cell migration (Holly et 

al., 2000). Integrins are a family of heterodimeric transmembrane adhesion receptors that 

link ECM on the outside of the cell with the cell’s cytoskeleton (Hynes, 1992). 

Covalent modification of proteins by tyrosine phosphorylation is strongly implicated in 

the formation of adhesive structures. Upon adhesion to a substratum, a group of 

cytoskeletal-associated proteins are phosphorylated on tyrosines: focal adhesion kinase 

(FAK), paxillin and tensin are among the prominent and best characterized of these 

phosphoproteins that form the adhesive complexes (Lo et al., 1994; Schaller and Parsons, 

1994; Turner, 1994).  

Moreover, also members of the Rho GTPases are important in the formation of new 

adhesions and stabilization of existing ones (Hall, 1998). Rac and Cdc42 appear to be 

important in the formation of new protrusions and small focal complexes, required for 

 18



adhesion at the cell periphery. Rho induces the maturation of the small focal complexes 

into the larger and highly organized focal adhesions. 

Microtubules are regulators of focal adhesion and focal complex dynamics (Kaverina et 

al., 1999; Waterman-Storer and Salmon, 1999). Depolymerization of microtubules leads 

to a decrease in the turnover of focal complexes, which results in reduced cell spreading 

and formation of large peripheral focal adhesions. Adhesions dissociate upon direct 

contact with microtubules and the cell either retracts the edge or forms new protrusions. 

Thus, microtubules appear to regulate the turnover of focal adhesions by targeting them 

directly and delivering signals to promote their turnover, initiating either protrusion or 

retraction (Palazzo and Gundersen, 2002). 

 

3. Contraction of the cell body: at least two distinct types of force have to be generated 

independently by a motile cell. The first is the protrusive force required to extend 

membrane processes, lamellipodia and filopodia. Generation of this force is dependent on 

actin polymerization and not on myosin motor activity. The second force is a contractile 

force, needed to move the cell body forward. This force is dependent on active myosin-

based motors (Cramer, 1999; Katoh et al., 2001). Rac and Cdc42 appear to be important 

in regulating the contractile forces at the leading edge by modulating phosphorylation of 

the myosin light chain (MLC) (Bagrodia and Cerione, 1999) (Figure 5). 

 

 
Figure 5: Regulation of the contractile forces dependent on MLC. 
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 Phosphorylation of MLC by myosin light chain kinase (MLCK) promotes both their 

dimerization and their interaction with actin to drive contraction. Rho regulates the 

organization of actin into bundles, called stress fibers. Rho promotes tension through its 

action on MLC phosphorylation (Katoh et al., 2001). However, in this case, Rho activates 

Rho kinase, which in turn inhibits the myosin phosphates, maintaining MLCs in a 

contractile state. The resulting contractile forces organize the actin in fibers and cluster 

the integrins, leading to tightly bundled actin and focal adhesions. It appears that Rho 

kinase requires Dia proteins, members of formin homology family, for proper formation 

of stress fibers (Nakano et al., 1999; Watanabe et al., 1999). Dia may contribute to stress 

fibers formation through interaction with profilin, a G-actin binding protein which 

promote actin polymerization and organization of actin filaments into stress fibers 

(Watanabe et al., 1997; Alberts, 2001). 

 

4. Release from the contact sites: upon cell body contraction, an asymmetry in the 

adhesion process has to be generated for forward migration. At the cell rear, adhesions 

need to be released, whereas at the front the formation of adhesion has to be controlled. 

Focal contact disassembly occurs through several mechanisms. Actin binding and 

severing proteins such as gelsolin and cofilin, cap actin filaments and cause actin filament 

breakage, thereby promoting filament turnover (Wear et al., 2000). Phosphatases play 

important roles in rear release, for example by limiting the assembly of cytoskeletal 

proteins (Zeng et al., 2003). Migratory defects have been reported in cells lacking Src 

family kinases (Klinghoffer et al., 1999), FAK (Ilic et al., 1995; Sieg et al., 1999) and 

calpain (Huttenlocher et al., 1997), all focal adhesion components. The defects appear to 

be caused by an inhibition of focal adhesion turnover, because focal adhesion formation 

is not impaired. Moreover, focal contacts are further weakened through the proteolytic 

cleavage of adhesion receptors by sheddases (Moss and Lambert, 2002) and the 

accumulation of collagen fragments that are generated while the cell moves forward 

(Carragher et al., 1999). 

 

5. Recycling of membrane receptors: in order to maintain a continuous retrograde flow 

of integrins on the cell surface, migrating cells must reload receptor at the leading edge. 
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Two different models have been suggested to explain the recycling of these proteins. 

Integrins detach from the substrate and become internalized via the endocytic vesicles 

and transported toward the leading edge (Bretscher, 1996), or there is a forward transport 

of the protein in the plasma membrane (Kucik et al., 1989; Sheetz et al., 1990; Regen and 

Horwitz, 1992).  

 

 

2.2. The Rho GTPases: Rho, Rac and Cdc42 
Rho GTPases regulate many important processes in eukaryotic cells. They are principally 

known for their role in regulating the actin cytoskeleton organization, but they also 

participate in the regulation of cell polarity, microtubule dynamics, vesicular transport 

pathways and gene transcription (Etienne-Manneville and Hall, 2002). 

Rho GTPases cycle between an active GTP-bound conformation and an inactive GDP-

bound conformation. Guanine nucleotide exchange factors (GEFs) enhance the exchange 

of bound GDP for GTP, whereas GTPase-activating proteins (GAPs) increase the 

intrinsic rate of hydrolysis of bound GTP. In addition, the Rho GTPases are regulated 

further by guanine nucleotide dissociation inhibitors (GDIs), which can both inhibit 

exchange of GTP and hydrolysis of bound GTP preventing the interaction of the Rho 

GTPases with the plasma membrane. In the GTP-bound form they interact with 

downstream target proteins to induce cellular responses (Schmitz et al., 2000).  

The Rho GTPases Rho, Rac and Cdc42 regulate actin cytoskeleton polymerization, 

depolymerization and the activity of actin-associated myosins. These regulatory proteins 

are part of a hierarchical signaling cascade that initiate the formation of filopodia, 

lamellipodia, focal adhesion and stress fibers (Hall, 1998). Formation of filopodia and 

induction of polarization are regulated by Cdc42 (Kozma et al., 1995; Nobes and Hall, 

1995), while formation of lamellipodia and small adhesions is regulated by Rac, whose 

activation stimulates also membrane ruffling (Ridley et al., 1992). Finally formation of 

actin stress fibers and of focal adhesion, highly organized adhesive complexes containing 

termini of stress fibers, is regulated by Rho (Ridley and Hall, 1992). 

Moreover, recent evidence indicates that Rho GTPases might also affect the organization 

of microtubules (Waterman-Storer et al., 1999). It was shown that Rac activation 
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promotes growth of microtubules (Wittmann et al., 2003). Interestingly, previous work 

provide evidence that microtubule polymerization induces Rac activation (Waterman-

Storer et al., 1999). These results suggest that Rac and microtubules might constitute a 

positive feedback loop in which microtubules promote Rac activation, and Rac induces 

further microtubule growth reinforcing the polarization of migrating cells. Moreover, not 

only Rac, but also Cdc42 activation can mediate polarization of the microtubule network 

in migrating cells (Nobes and Hall, 1999). Microtubule depolymerization induces 

multiple cell morphological changes that include actin stress fiber formation and focal 

adhesion assembly, effects dependent on Rho activity (Liu et al., 1998; Krendel et al., 

2002). Further investigations reveal that microtubule depolymerization in fact, induces 

activation of Rho.  

 

 

2.3. The actin cytoskeleton in lamellipodia formation 
Actin and actin-related proteins (Arps) are major determinants of cell morphology in 

eukaryotic, but also prokaryotic cells. Assembly of actin filaments drives the locomotion 

of many cell types including nerve growth cones, fibroblasts and leukocytes. Expansion 

of a dense network of actin filaments underlying the plasma membrane provides 

sufficient force to push forward the leading edge (Svitkina et al., 1997). Actin 

polymerization also moves some cytoplasmic particles including endosomes (Merrifield 

et al., 1999), pathogenic bacteria and viruses (Dramsi and Cossart, 1998), as well as drive 

engulfment during phagocytosis (Aderem and Underhill, 1999; Chimini and Chavrier, 

2000). 

The actin filaments are double helical polymers of globular subunits all arranged head-to 

tail to give the filament molecular polarity. One end is called the barbed end and the other 

the pointed end. The barbed end is favored for growth and actin filaments in cells are 

strongly oriented with respect to the cell surface, barbed end outward (Small et al., 1978).  

Actin-based cellular motility can be explained by the treadmilling-type reaction (Figure 

6). The actin-monomer-binding protein profilin and, in eukaryotic cells, sequestering 

proteins such as thymosin-β4 maintain a pool of unpolarized ATP-actin subunits in the 

cells (Goldschmidt-Clermont et al., 1992; Vinson et al., 1998). Extracellular stimuli such 
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as chemotactic factors bind to the plasma membrane receptors activating intracellular 

signaling molecules including the Rho GTPases (Van Aelst and D'Souza-Schorey, 1997; 

Schmitz et al., 2000). Cdc42 binds and activates WASP/Scar family proteins, which are 

nucleation-promoting factors, by freeing them from autoinhibition (Bishop and Hall, 

2000; Higgs and Pollard, 2001; Ridley, 2001). Active WASP/Scar proteins bring together 

an actin monomer and an Arp2/3 complex (Machesky et al., 1999; Yarar et al., 1999; 

Higgs and Pollard, 2001), an assembly of seven subunits including two actin-related 

proteins (Arp2 and Arp3) (Machesky et al., 1994). The Arp2/3 complex sits on the 

“mother” filament and initiates the growth of a new “daughter” filament, polymerizing 

out from it at an angle of 70º (Mullins et al., 1998; Amann and Pollard, 2001). The new 

branch grows rapidly at its barbed end by addition of actin-profilin complexes stored in 

the cytoplasm. As it grows, it pushes the plasma membrane and the cell forward.  

 

 
Figure 6: Treadmilling model for protrusion formation at the leading edge (Pollard and 

Borisy, 2003). 
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The system is set up to terminate the growth of the filaments automatically, before they 

grow so long that they do not push effectively. Then, the network dissociate so that the 

components can be recycled for the next step of polymerization. First of all, the new 

filament is capped by capping proteins, terminating, therefore, the elongation step (Sun et 

al., 1999; Cooper and Schafer, 2000). Next, small proteins called actin-depolymerization 

factors (ADF)/cofilin bind to ADP-Pi-actin filaments and accelerate the dissociation of 

the gamma phosphate (Bamburg et al., 1999). Dissociation of phosphate promotes 

dissociation of branches from Arp2/3 complexes and binding of ADF/cofilin to ADP-

actin subunits. ADF/cofilin bound to filaments promotes severing of the filaments and 

dissociation of ADP-actin bound to ADF-cofilin (Blanchoin et al., 2000). Moreover, Rho 

family GTPases activate p21-activated protein kinase (PAK) or Rho-associated kinase 

(ROCK), which stimulate LIM kinase to phosphorylate ADF/cofilin (Edwards et al., 

1999; Bishop and Hall, 2000; Schmitz et al., 2000; Ridley, 2001). Phosphorylation 

inactivates ADF/cofilin prolonging the lifetime of newly formed actin filaments. 

Interestingly, activation of small GTPases stimulates not only the formation but also 

stabilization of new filaments. Finally, profilin, a nucleotide-exchange factor for actin, 

binds tightly to the actin-monomers, refilling the actin-monomer pool.  

 

 

2.4. The microtubule cytoskeleton 
Microtubules are dynamic structures that provide mechanical support for cell shape and 

act as tracks along which molecular motors move structures such as organelles, 

chromosomes or mitotic spindles around the cell. Moreover, microtubules remodeling is 

important in migrating cells, in order to establish and maintain cell polarity. Microtubules 

are hollow tubes composed of protofilaments of α- and β- tubulin dimers organized in a 

head-to-tail fashion. Tubulin polymerizes more quickly from the plus end, which is 

terminated by a β-subunit. The other, slow growing end, is terminated with an α-subunit 

and is called the minus end (Mitchison, 1993). In many cell types, the minus end of 

microtubules is embedded in a microtubule-organizing center (MTOC), whereas the plus 

end explores the cytoplasmic space. Microtubules have a dynamic behavior: individual 

microtubules alternate between periods of growth and shrinkage, a property called 
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dynamic instability (Mitchison and Kirschner, 1984; Desai and Mitchison, 1997). The 

transition from growth to shrinkage is called catastrophe, and the one from shrinkage to 

growth is called rescue. The energy to drive microtubule polymerization comes from 

GTP hydrolysis. Tubulin is a GTPase whose activity is stimulated by polymerization 

(Erickson and O'Brien, 1992). Evidence coming from the atomic structure of tubulin 

shows that the β-subunit pocket can bind GTP, but lacks residues crucial for hydrolysis. 

These residues are given by the α-subunit when it binds to the end of the microtubule, 

triggering GTP hydrolysis (Nogales et al., 1999). Microtubules at the growing end 

consist of sheets of protofilaments (Chretien et al., 1995; Arnal et al., 2000), whereas 

microtubules at the shrinking end are curled (Mandelkow et al., 1991; Arnal et al., 2000). 

Therefore, it seems that there is a structural transition associated with the switch between 

microtubule growing and shrinking. These structural changes are dependent on the GTP 

hydrolysis. In fact it was shown that GTP-tubulin form straight protofilaments that fit 

nicely into the wall of the microtubules, whereas in the GDP state the protofilaments are 

bent and they splay out from the microtubule lattice.  

 

2.4.1. Microtubule end-binding proteins 

GTP hydrolysis is known to occur very fast during microtubule polymerization and 

thermodynamic studies revealed that GDP-tubulin makes the microtubules very unstable. 

Some proteins were shown to modulate microtubule dynamics. These molecules are 

called microtubule-associated proteins or MAPs (Andersen, 2000). Two distinct classes 

of end-binding proteins have been described: the MCAKs (for mitotic centromere-

associated kinesins, also called Kin I kinesins) which bind microtubule ends and 

destabilize them; and the plus-end-binding or tracking proteins (+TIPs) (Schuyler and 

Pellman, 2001), which also bind to the growing end of the microtubules, but stabilize 

microtubule growth.  

MCAKs use energy from ATP in order to bind to the end of microtubules and they attach 

preferentially to the bend form of the tubulin dimer. MCAKs probably destabilize 

growing microtubules by inducing the formation of the curl, which then weakens the 

association of the terminal tubulin dimer, triggering its dissociation. 
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The prototype for +TIPs is CLIP-170 (Perez et al., 1999). CLIP-170 binds to the 

microtubule plus end during their elongation and probably dissociates as the microtubule 

closes into a tube. Since the discovery of CLIP-170, more plus-end-binding proteins have 

been identified (Sawin, 2000; Schuyler and Pellman, 2001). For example the CLASP 

(CLIP associated proteins) proteins target microtubule end by binding to CLIP-170 and 

CLIP-115 (Akhmanova et al., 2001). EB1 is also binding to tips of growing 

microtubules, where it stabilizes the polymer during mitosis preventing catastrophes 

(Tirnauer and Bierer, 2000). The adenomatous polyposis coli protein (APC) also 

accumulates at growing microtubule plus ends, specifically in protruding areas of the 

cells (Nathke et al., 1996; Mimori-Kiyosue et al., 2000).  +TIPs have at least three 

different functions. First, they play a role in the regulation of microtubule dynamic 

behavior, modifying the probability of microtubule elongation, shrinkage and pausing 

(Brunner and Nurse, 2000; Komarova et al., 2002a; Komarova et al., 2002b). Second, 

+TIPs are involved in anchoring microtubules to cellular structures such as cortical actin 

which allow protein delivery at the cell periphery (Behrens and Nurse, 2002; Fukata et 

al., 2002). Third, it was shown that +TIPs regulate dynein motor protein activity, which 

plays a role in the organization of the cytoskeletal architecture (Valetti et al., 1999; 

Vaughan et al., 1999). 

 

2.4.2 Molecular motors 

 Molecular motors trigger most forms of movement in the cells. These motors transport a 

variety of cargos, power cell locomotion, drive cell division and when combined in large 

ensemble allow organisms to move. There are three classes of cytoplasmic motors: 

myosins, dyneins and kinesins. These proteins have a globular domain at one end, 

followed by a rod. The globular domain serves as a so-called “motor domain” that slides 

against the tracks using energy from ATP hydrolysis. The motor domains of kinesins and 

dyneins have ATP-binding and microtubule binding sites. They repeat cycles of 

attachment, sliding on the microtubules in an ATP-dependent manner, and move along 

the microtubules. Outside the motor domains, proteins from the same family can be quite 

different. These variable domains are the binding sites for the molecules to be transported 

(cargos); the diversity enables the motor proteins to participate in a wide variety of 
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intracellular transport. There is evidence that these cytoplasmic motors are involved not 

only in transport of organelles and vesicles (Lafont et al., 1994; Kreitzer et al., 2000), but 

also of messenger RNA and macromolecular complexes (Schliwa and Woehlke, 2003). 

Molecular motors are very important in the segregation of the chromosomes and in the 

motility of the mitotic spindle and in the cell scission (Scholey et al., 2003). Moreover, 

there is increasing evidence that a growing number of diseases are linked to molecular 

motors (Hirokawa and Takemura, 2003; Schliwa and Woehlke, 2003).  

Microtubule-dependent motor proteins are used for long-distance transport, for example 

from near the nucleus to the plasma membrane, whereas actin-dependent motor proteins 

are used for short distances. Both microtubules and actin filaments have polarity, and 

each motor protein moves unidirectionally. Most of the members of the kinesin 

superfamily move to the plus end of microtubules, whereas members of the dynein 

superfamily move to the minus end. 

 

 

2.5. Microtubules, actin cytoskeleton and Rho GTPases interplay 
Migrating cells are polarized with the lamellipodia facing the direction of migration. 

Protruding activity at the leading edge and retrograde flow of integrins coupled to 

adhesion of the lamellipodia near the leading edge are thought to be the driving force for 

cell motility. As described above, these activities are dependent on directed actin filament 

assembly and on the microtubule cytoskeleton. Although some small, specialized cell 

types such as keratocytes and leukocytes do not required microtubules for motility 

(Zigmond et al., 1981; Euteneuer and Schliwa, 1984), microtubules are necessary for the 

persistent, polarized movement of larger cells such as fibroblasts or epithelial cells 

(Vasiliev, 1991). Depolymerization of microtubules stops cells migration and induces 

loss of cell polarity, so that ruffling activity normally restricted to the leading edge 

becomes reduced and redistributed to the entire cell (Vasiliev, 1991). Recent studies have 

shown that actin has a major influence on the organization of microtubules. There is 

evidence that microtubules are transported in the lamella of migrating cells and that this 

transport depends on actin (Waterman-Storer and Salmon, 1997).  Moreover, other 

studies showed that, in the lamella, microtubules are coupled to actin retrograde flow, 
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whereas in the cell body microtubules are coupled to the anterograde motion of actin 

(Gupton et al., 2002; Salmon et al., 2002). Microtubule association to actin movement 

results in a gradient of microtubule assembly states in the cell, with plus-end growth at 

the leading edge and minus-end shortening in the cell body, behind the lamella. Several 

hypotheses have been proposed to explain how cells use actin-microtubules interactions 

to generate movement. One hypothesis is that cell motility depends on the structural 

linkage of microtubules to actin retrograde flow, which creates and maintains a 

regulatory Rho GTPases signaling gradient that triggers migration (Wittmann and 

Waterman-Storer, 2001). Microtubule growth at the leading edge could induce Rac 

activity in the cell front to drive lamellipodia protrusion and focal complexes formation.  

Rac activation, in turn promotes further microtubule growth reinforcing the polarization 

of a migratory cell in the absence of extracellular signals (Wittmann et al., 2003). One 

candidate that can mediate Rac activation driven by microtubule growth in migrating 

cells is APC. APC localized at the microtubule plus end (Nathke et al., 1996) and binds 

Asef, which is a Rac-specific GEF that stimulate lamellipodia formation and cell 

migration (Kawasaki et al., 2003). Another candidate is IQGAP1, which binds Cdc42, 

Rac and actin, but also associates with growing microtubule plus end via CLIP-170 

(Fukata et al., 2002). Another hypothesis is that actin-microtubule interactions adjust 

toward the leading edge, which could then direct the delivery of signaling molecules or 

membrane components required for lamellipodia formation (Gundersen, 2002). It was 

shown that MTOC reorientation during cell migration is mediated by Cdc42 and the 

microtubule motor dynein (Etienne-Manneville and Hall, 2001; Palazzo et al., 2001). 

Microtubules are crosslinked to specific sites defined by Cdc42 in the actin cortex and 

dynein may pull the MTOC in front of the nucleus.  

Moreover, microtubules-actin interactions may mediate specific spatiotemporal 

regulation of focal contacts with the substrate to guide cell movement. In fact, it has been 

shown that during dynamic instability microtubules specifically target focal contacts and 

that the targeting frequency is inversely proportional to the focal contact lifetime 

(Kaverina et al., 1999; Krylyshkina et al., 2003). Further evidence illustrates that the 

microtubule motor kinesin may deliver putative factors that promote focal adhesion 

turnover (Krylyshkina et al., 2002). Furthermore, microtubule shortening could activate 
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Rho behind the lamellipodia to drive actomyosin contraction and to promote stabilization 

of a subpopulation of microtubules, protecting them from breakage and thus maintaining 

a polarized microtubule cytoskeleton (Ren et al., 1999). There are evidences that the Rho 

exchange factor GEF-H1 is regulated by an interaction with microtubules (Ren et al., 

1998; Krendel et al., 2002). GEF-H1 is inactivated by microtubules binding and 

microtubules depolymerization can activate Rho by increasing the amount of free, active 

GEF-H1. Microtubules could serve to sequester GEF-H1 in the vicinity of adhesion sites 

and thereby reduce Rho activity, promoting adhesion turnover (Krendel et al., 2002). 

Microtubules are probably guided to focal adhesions by structural links to adhesion-

associated actin filaments, but the identity of these crosslinking proteins is still unknown 

(Salmon et al., 2002; Krylyshkina et al., 2003).  
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Abstract 
 

The Neu/ErbB2 tyrosine kinase receptor has an important function in tumor cell motility, 

an essential characteristic of metastatic cells. In this study, we show that activation of a 

set of signaling molecules, including MAP kinase, phosphatidylinositol 3-kinase and Src, 

is required for Neu/ErbB2-dependent lamellipodia formation and for motility of breast 

carcinoma cells. Stimulation of these molecules, however, fails to induce efficient cell 

migration in the absence of Neu/ErbB2 Tyr1201 or Tyr1227 phosphorylation. We 

describe a novel mediator of ErbB2-driven cell motility (Memo) that interacts with a 

phospho-Tyr1227-containing peptide via the Shc adaptor protein. Upon Neu/ErbB2 

activation, Memo-defective cells form actin fibers and grow lamellipodia, but fail to 

extend microtubules toward the cell cortex. Our data suggest that Memo controls cell 

migration by relaying extracellular chemotactic signals to the microtubule cytoskeleton.  
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The Neu/ErbB2 receptor tyrosine kinase is often overexpressed in human tumors of 

diverse origins including breast and ovaries1,2. Clinical studies have revealed that cancer 

patients whose tumors have alterations in ErbB2 expression tend to have more 

aggressive, metastatic disease, which is associated with parameters predicting a poor 

outcome3. In accordance with the clinical data, transgenic mice expressing activated Neu 

under the control of the mouse mammary tumor virus long terminal repeat develop 

metastatic mammary tumors4-6. Data from in vitro studies provide evidence that 

Neu/ErbB2 plays an important role in cancer cell motility and extracellular matrix 

invasion7-10. The molecular basis underlying ErbB2-dependent cell motility and 

metastases formation, however, still remains poorly understood.  

Activation of ErbB2 via dimerization with other ligand-bound ErbB members 

results in phosphorylation of tyrosine residues in the cytoplasmic tail11,12. These 

phosphotyrosines serve as high affinity binding sites for molecules containing Src 

homology 2 (SH2) or phosphotyrosine binding (PTB) domains such as the Shc and Grb2 

adaptor molecules13,14 or the p85 subunit of phosphatidylinositol 3-kinase (PI3K)15. 

These docking proteins transduce proliferative, transforming or migratory signals to the 

cell nucleus via activation of, for example, the Ras/mitogen-activated protein kinase 

(MAPK) and the PI3K pathways16-19, both of which regulate different processes 

associated with cell migration, including formation of lamellipodia and actin stress 

fibers20,21. There is also evidence that p38 kinase and c-Src induce actin reorganization 

via phosphorylation of focal adhesion proteins22,23. The precise contribution of each 

pathway to ErbB receptor-regulated cell migration, however, remains to be determined. 

The purpose of our study was to investigate the role of individual ErbB2 

autophosphorylation sites in migration of human breast carcinoma cells. Our results show 

that Neu/ErbB2 lacking the five major autophosphorylation sites is impaired in 

stimulating migration and that two of the sites, Tyr1201 and Tyr1227, are fully able to 

restore the migratory phenotype of breast carcinoma cells. Moreover, we demonstrate 

that Memo, a newly identified protein which interacts with phosphorylated Tyr1227, 

mediates ErbB2-driven cell migration by controlling microtubule outgrowth. 
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Results 

Role of specific ErbB2 tyrosine residues in heregulin-induced migration. 

 

It has previously been shown that the T47D breast carcinoma cell line, which expresses 

moderate levels of the four ErbB receptors, is dependent upon ErbB2 activity for 

migration in response to EGF-related ligands8. We have now investigated the role of 

individual ErbB2 autophosphorylation sites in migration. For that purpose, ErbB2 was 

first functionally inactivated in T47D cells by expressing a single chain antibody (scFv-

5R) that traps human ErbB2 in the endoplasmic reticulum24, thus inhibiting its transfer to 

the plasma membrane, as confirmed by the absence of ErbB2 surface staining (data not 

shown, Appendix Figure 1), and preventing ligand-induced ErbB2 activation25. Migration 

of parental and scFv-5R-expressing cells (T47D-5R) in response to heregulin β1 (HRG) 

was measured in Boyden-like chambers. HRG binding to ErbB3 and ErbB4 leads to the 

formation of active ErbB2-containing heterodimers. HRG strongly stimulated migration 

of T47D cells, while T47D-5R cells were unable to migrate beyond basal levels (Fig. 1a), 

confirming the essential role of ErbB2 in EGF-related peptide induced migration8. 

T47D-5R cells were transfected with expression vectors encoding either wild type 

Neu, the rat homologue of ErbB2, or mutant Neu with a Phe residue substituted in each 

of the five autophosphorylation sites (termed NYPD for Neu tyrosine phosphorylation 

deficient) or Neu add-back mutants harboring only one of the five autophosphorylation 

sites, called YA, YB, YC, YD and YE, corresponding to Tyr1028, Tyr1144, Tyr1201, 

Tyr1227 and Tyr1253, respectively (nomenclature according to Dankort et al.13) (Fig. 

1b). Cells expressing similar levels of wild type or mutant Neu were selected (data not 

shown, Appendix Figure 2) and their migration in response to HRG was evaluated. Neu 

efficiently replaced ErbB2 in T47D-5R cells, as demonstrated by their restored migratory 

response to HRG (Fig. 1c). In contrast, NYPD-, YA-, YB- and YE- expressing cells 

showed strongly reduced migration in response to HRG. It should be noted that each Neu 

mutant, despite lacking autophosphorylation sites, can interact with and 

transphosphorylate the other HRG- bound ErbB receptors, which likely explains the 

ability of these cells to migrate in response to HRG beyond the basal levels observed in 

the T47D-5R cells (Fig. 1a).  
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Intriguingly, migration of YC- and YD-expressing cells was equivalent to that of 

Neu-expressing cells (Fig. 1c), indicating that these two tyrosine residues couple to 

signaling pathways required for efficient cell migration. To verify their proposed role, 

tyrosine phosphorylated or non-phosphorylated peptides, corresponding to the region of 

Neu including the YC or YD residues, were used to compete for binding of signaling 

molecules to Neu. Peptide-mediated delivery26 of a phospho-YC peptide into YC-

expressing cells prevented HRG-induced migration (Fig. 2a), while the non-

phosphorylated peptide did not interfere significantly with migration. Similarly, only the 

phospho-YD peptide efficiently inhibited migration of YD-expressing cells (Fig. 2b). 

Moreover, the phospho-YD peptide did not inhibit migration of YC-expressing cells (Fig. 

2c) and conversely phospho-YC peptide did not interfere with migration of YD-

expressing cells (Fig. 2d). These results not only confirm the requirement for 

phosphorylation of YC or YD tyrosine residues for cell migration, but also show that 

these two tyrosines recruit distinct signaling complexes.   

 

HRG induces morphogenetic changes in T47D and NYPD cells  

 

Cell motility can be viewed as a series of morphogenetic events based on remodeling of 

the actin cytoskeleton. Thus, we analyzed HRG-induced changes in cell morphology and 

cytoskeleton organization in migratory and non-migratory cells. HRG-treated T47D cells 

rapidly spread and formed membrane ruffles. Initially, cells extended lamellipodia in all 

directions, before showing a more polarized organization, paralleling the formation of 

actin stress fibers (Fig. 3a, upper panel). Surprisingly, NYPD cells, while greatly 

impaired in migration (Fig. 1c), displayed a normal morphogenetic response, extending 

and organizing lamellipodia after HRG treatment (Fig. 3a, lower panel). Lamellipodia 

formation is dependent on the activation of Rac, a member of the Rho GTPase family27.  

The kinetics of HRG-induced Rac activation was similar in T47D and NYPD cells: in 

both cell lines activity was transient, peaking 5 min after HRG addition (Fig.3b). These 

results are in accordance with the morphological results and provide further evidence that 

T47D and NYPD cells undergo comparable cytoskeletal rearrangements shortly after 

HRG treatment.  
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Cytoskeleton remodeling is widely used as a read-out for cell motility. The fact 

that HRG-triggered actin reorganization in T47D and NYPD cells was essentially 

identical, was in apparent contradiction with HRG’s differential effect on migration of 

these cell lines. To minimize variations due to assay conditions, we analyzed lamellipodia 

formation in the same dual-chamber setting used to measure cell migration. T47D cells 

show a rapid increase in lamellipodia, apparent within an hour of HRG treatment, 

followed by a plateau and a second slower increase after 6 hrs (Fig. 3c & d). 

Interestingly, lamellipodia formation during the early time points (up to 4 hrs) was 

similar in Neu cells and in NYPD cells, but was strikingly altered at later times (Fig. 3d). 

These results confirm that early morphological and molecular changes, occurring in 

response to HRG are similar in migratory and non-migratory cells. Furthermore, they 

suggest that migration of NYPD cells is affected at a stage independent of lamellipodia 

formation.   

 

Signaling pathways involved in ErbB2-dependent migration. 

 

Our data show that the phosphorylated YC and YD residues of Neu/ErbB2 are crucial 

mediators of efficient, HRG-induced cell migration. Pathways implicated directly, or 

indirectly, in ErbB2-induced cytoskeleton remodeling and/or cell motility have 

previously been identified. These include the Ras/MAPK, PI3K, p38MAPK and Src 

kinase-dependent pathways20-23. Using selective kinase inhibitors on Neu cells, we 

determined that blocking each of these pathways led to a strong inhibition of HRG-

induced migration (Fig. 4a). While each of these pathways is required for migration, it is, 

however, not sufficient. Indeed, stimulation of the MAPK, PI3K, p38MAPK (Fig. 4b) 

and Src (data not shown, Appendix Figure 3) pathways did not correlate with migration, 

since HRG activated each pathway as efficiently in, e.g., NYPD or YA cells, as in Neu 

cells (Fig. 4b). As mentioned previously, Neu mutants can transphosphorylate the other 

ErbB receptors (ErbB3 or ErbB4), which likely explain activation of the examined 

pathways.  

Interestingly, the kinase inhibitors also had a negative effect upon the low level of 

HRG-induced migration observed for NYPD cells, with blockade of the MAPK and PI3K 
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pathways having the strongest effect (Fig. 4c). Moreover, both inhibitors also prevented 

Neu and NYPD cells from forming lamellipodia in response to HRG (Fig. 4d). The 

severe loss of polarity of lamellipodia induced by inhibitors of these two pathways is 

likely to contribute to the loss of chemotaxis. Thus, activation of the MAPK and PI3K 

pathways is essential for early stages of migration, involving remodeling of the actin 

cytoskeleton. In contrast, we propose that phospho-YC or -YD provide links to novel 

signaling pathway(s) controlling stages of cell migration not directly connected to 

lamellipodia formation.  

 

Identification of signaling molecules binding to the YC and YD residues 

 

To search for novel proteins that might link phospho-YC and -YD to signaling pathways 

mediating ErbB2-dependent migration, tyrosine-phosphorylated peptides, corresponding 

to the regions of Neu including the YC or YD residues, were coupled to agarose beads 

and employed as affinity reagents. The corresponding non-phosphorylated peptides 

served as controls. We performed a large-scale systematic identification of proteins from 

T47D cell extracts that bound specifically to the phospho-, but not to the non-

phosphorylated peptides, by high-pressure liquid chromatography-tandem mass 

spectrometry (LC-MSMS).  

A number of proteins were identified, some of which have been reported to bind 

ErbB2/Neu, others being novel interactors. Previous studies have shown that the adaptor 

molecules Shc and Crk II associated with the phospho-YD and -YC residues, 

respectively4,13. We also identified these two proteins in the LC-MSMS screen, finding in 

addition that Shc bound both phosphorylated peptides. Furthermore, not only CrkII, but 

also the CrkI splice variant and the Crk-like protein bound the phospho-YC peptide. 

Phospholipase Cγ (PLCγ), which has not previously been reported to interact with either 

of these tyrosine residues, was found to associate with the phospho-YC peptide. Finally, 

an uncharacterized protein, CGI-27 or c21orf19-like protein, that we have named Memo 

(see below), associated specifically with the phospho-YD peptide. The binding specificity 

of each protein was confirmed in independent experiments using the phospho- and non-

phosphorylated peptides as affinity reagents, followed by Western analysis (Fig. 5a). We 
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next investigated the in vivo interaction of Memo with ErbB2. Due to its high levels of 

expression, ErbB2 is constitutively activated in SKBr3 cells (Fig. 5b, P-ErbB2). In co-

immunoprecipitation experiments, Memo associated with ErbB2 only when the latter was 

activated and not in cells treated with the ErbB2 kinase inhibitor PKI16628 (Fig. 5b). We 

investigated the localization of ectopically-expressed Memo in SKBr3 cells. Memo was 

present at the plasma membrane of control SKBr3 cells (Fig.5c, upper panel). PKI166-

mediated inhibition of ErbB2 activity led to decreased membrane staining, while upon 

addition of HRG, Memo was concentrated in specific ruffle-like areas of the plasma 

membrane (Fig.5c, upper panel). While immunolocalization using the Memo anti-serum 

was less sensitive and did not reveal membrane-bound Memo in control SKBr3 cells, it 

still showed recruitment of Memo to the plasma membrane upon addition of HRG 

(Fig.5c, lower panel).  

The sequence of Memo does not contain SH2 or PTB phosphotyrosine-binding domains, 

known to interact with phosphotyrosines. The fact that Shc also interacted with the 

phospho-YD site raised the possibility that Shc, which has both a PTB and an SH2 

domain, mediates the binding of Memo to phospho-YD. In immunoprecipitation 

experiments, ectopically expressed Memo was found to interact with Shc in SKBr3 cells 

(Fig. 5d). Moreover, both endogenous Memo and ErbB2 co-immunoprecipitated with 

Shc in T47D cells (Fig. 5e). Immunodepletion of endogenous Shc from reticulocyte 

lysates did not significantly affect the levels of in vitro transcribed Memo, present in 

large excess, yet binding of Memo to the phospho-YD peptide was strongly decreased 

(Fig. 5f). These results strongly suggest that the Shc adaptor protein is a mediator of 

Memo binding to the phospho-YD residue.   

 

Role of phosphoYC/phosphoYD-binding proteins in cell migration. 

 

The identified proteins were next tested for their role in ErbB2-dependent cell migration. 

The function of Shc and Crk in HRG-induced migration was tested using small 

interfering (si) RNAs to block their expression. Specific siRNA transfection of YC or YD 

cells led to a strong decrease in the level of Shc (and Crk, data not shown, Appendix 

Figure 4) relative to mock-transfected cells (Fig. 6a, inserts). In contrast to control cells, 

 62



migration of YC and YD cells with reduced expression of Shc (Fig. 6a) or Crk or 

decreased PLC activity (not shown, Appendix Figure 4) was strongly inhibited. 

Furthermore, siRNA-mediated knock-down of Shc and Crk levels or inhibition of PLC 

activity prevented Neu and NYPD cells from forming lamellipodia in response to HRG 

(Fig. 6b).  Taken together, the results show that Shc, Crk and active PLCγ are required 

for HRG-induced cell migration. However, in contrast to the proteins we are seeking, 

they are involved in lamellipodia formation.  

 

Memo, a mediator of ErbB2-driven cell motility 

 

The function of Memo, the novel protein identified as a specific phospho-YD binder, is 

unknown. Furthermore, its sequence does not provide any information on a potential role 

in migration. Thus, we tested Memo’s function using specific siRNA to knock-down its 

expression.  Quantitative PCR revealed that Memo mRNA expression was  ~ 80% lower 

in Memo siRNA transfected cells relative to cells treated with a control siRNA (Fig. 6c, 

insert). We have verified that the decrease in Memo RNA was paralleled by a decrease in 

Memo protein expression (data not shown, Appendix Figure 5). Importantly, loss of 

Memo strongly decreased migration of YD cells in response to HRG (Fig. 6c). Based 

upon these and the following results, it was named Memo for mediator of ErbB2-driven 

cell motility. 

Inhibition of Memo’s expression had a strong effect on HRG-induced migration 

of YD, but not YC cells, demonstrating that Memo acts specifically downstream of the 

YD tyrosine residue (Fig. 6e). In addition, Memo siRNA did not affect NYPD-expressing 

cells (Fig. 6e), whose migration is dependent on e.g. the MAPK and the PI3K pathways 

(Fig. 4). Importantly, HRG-induced formation of lamellipodia was not affected by a 

reduction in Memo levels (Fig. 6d), showing that, in contrast to the other identified 

signaling molecules, Memo is not involved in this step of cell migration. Based upon 

these results, we propose that Memo is a signaling molecule that links phosphorylated 

YD to stages of cell migration, independent of early cytoskeletal actin reorganization. 

Our data demonstrate that Memo is required for migration of YD cells. HRG-

induced migration of Neu-expressing cells (Fig. 6e) and parental ErbB2-expressing T47D 
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cells (Fig. 7a) was also dependent (by at least 50%) on Memo’s expression. Thus, in the 

context of the wild type receptor, YC-dependent signaling is not able to fully offset the 

loss of functional Memo.  

 The SKBr3 and MDA-MB-231 cell lines are frequently used as experimental 

breast tumor models. Constitutive activation of ErbB2 in SKBr3 cells promotes 

constitutive signaling of the MAPK and PI3K pathways29,30. Despite this, SKBr3 cells 

display only low migration in the absence of ligands. In contrast, MDA-MB-231 cells 

show high basal motility in the absence of ligands and display metastatic growth in 

animal models. SKBr3 and MDA-MB-231 cells with reduced Memo levels showed 

decreased HRG-induced migration (Fig. 7a). Moreover, reduction in Memo’s expression 

also lowered basal migration of MDA-MB-231 cells (Fig. 7a), which likely reflects the 

presence of autocrine activated ErbB2 in these cells (data not shown, Appendix Figure 6).  

Finally, we examined the role of Memo downstream of other tyrosine kinase 

receptors. Fibroblast growth factor (FGF) 2 and, to a lower degree, insulin and epidermal 

growth factor (EGF) stimulated T47D cell migration (Fig. 7b). SiRNA-mediated knock-

down of Memo did not affect insulin-dependent migration, but strongly reduced FGF2- 

and EGF-induced cell migration (Fig. 7b), indicative of a more widespread role for 

Memo in receptor tyrosine kinase-induced cell motility.  

 

Memo is required for ErbB2-dependent microtubule outgrowth 

 

Recent studies demonstrate the central role of the microtubule cytoskeleton for 

cell polarity and cell migration31. HRG induces the extension of microtubules from the 

centrosome to the cell periphery in T47D and SKBr3 cells (data not shown, Appendix 

Figure 7). However, when Memo’s expression was inhibited, the network of 

microtubules induced by HRG was strongly reduced (Fig. 8a). The number of T47D and 

SKBr3 cells showing showing microtubule outgrowth is reduced from around 80% in 

control cells to 20% in cells transfected with Memo siRNA (Fig. 8b). Furthermore, actin 

stress fibers appeared to be increased when microtubule outgrowth was prevented. 

Interestingly, the central microtubule network, which is present regardless of ErbB2 

activation, was not affected by the decrease in Memo’s expression. This data show that 
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Memo is required for the ErbB2-dependent elongation of microtubules toward the cell 

cortex.  

 
 
Discussion   

  

The results presented here demonstrate that Neu/ErbB2-induced cell migration depends 

on the cooperative action of many signaling molecules working in concert to regulate 

discrete steps of the process.  Ras/MAPK, PI3K, p38MAPK and Src-mediated signaling 

were all found to be indispensable for HRG-induced lamellipodia outgrowth and motility. 

In the absence of signaling pathway lying directly downstream of Tyr1201 and Tyr1227, 

however, their activation leads to only modest cell migration.  

In this respect, we have identified a new mediator of Neu/ErbB2 signaling, 

Memo, which interacts specifically with phospho-Tyr1227 and is required for breast 

carcinoma cell migration. Memo corresponds to the CGI-27/c21orf19-like hypothetical 

protein, which was identified by comparative gene identification using the C. elegans 

proteome as a template32, but was not attributed a function yet. It is conserved throughout 

evolution: proteins homologous to Memo exist in yeast, nematodes, drosophila and 

mammals. Its sequence shows no domain of identified function and does not provide 

information on how it might associate with phospho-Tyr1227. In fact, our results indicate 

that Memo binds to the phospho-Tyr1227 peptide via the Shc adaptor protein. 

Intriguingly, Memo does not bind to the phospho-Tyr1201 peptide, even though Shc 

does. This might be explained by the fact that Shc can associate with phosphorylated 

tyrosines using either the SH2 or the PTB domain19,33,34 and thus, could adopt different 

conformations allowing the recruitment of different signaling molecules. Whether 

binding of Memo to Shc depends on the domain by which Shc interacts with the 

phosphotyrosine remains to be determined. 

Unlike other investigated signaling molecules, Memo is not involved in stages of 

cell migration, such as lamellipodia formation, which are linked to remodeling of the 

actin cytoskeleton. We found that Memo is required for the extension of a microtubule 

network to the cell periphery. Microtubules grow out from the centrosome, their plus 
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ends exploring the cytoplasm through alternate phases of growth and shortening, a 

phenomenon termed dynamic instability. Microtubule dynamics can be modulated by two 

types of molecules; microtubule-associated proteins such as MCAK (mitotic centromere-

associated kinesins), which bind to microtubule ends and destabilize them; and plus-end 

binding proteins, which favor microtubule growth through binding to the growing end, 

allowing microtubules to reach their target destination35. HRG triggers the growth of 

microtubules from the centrosome to the cell cortex. This does not occur in the absence 

of Memo. Thus, Memo could be a linker between extracellular chemotactic cues and the 

microtubule cytoskeleton, allowing the stabilization of outgrowing microtubules and the 

maintenance of cell polarity. Whether Memo prevents microtubule destabilization or 

promotes microtubule extension is still under investigation. Wittman et al.36 recently 

described a population of central microtubules with little or no net growth. We also 

observed a population of stable central microtubules in both resting and ligand-activated 

cells. Interestingly, Memo is not required for the organization or maintenance of the 

central microtubules, indicating a specific role for Memo in stabilizing the most dynamic 

microtubules, extending toward the protruding membrane of migrating cells. 

Microtubules are also a key element for cell division. The fact that Memo is not required 

for microtubule organization in general, but specifically for microtubule outgrowth 

within lamellipodia, can explain why knocking down Memo’s expression does not 

interfere with breast carcinoma cell proliferation (RM and AB, unpublished observations, 

Appendix Figure 8).  

Both T47D and SKBr3 cells are capable of extending polarized lamellipodia in 

the absence of microtubule outgrowth. Similarly, nocodazole-treated cells do not grow 

microtubules, but are still capable of forming lamellipodia (RM and AB, unpublished 

observations, Appendix Figure 9) indicating that microtubule outgrowth is not required 

for early actin cytoskeleton remodeling. However, we have observed that in cells lacking 

Memo, while microtubule outgrowth is inhibited, the amount of actin stress fibers 

appears to be increased. It was previously shown that depolymerization of microtubules 

triggers the formation of stress fibers37. The Rho GTPase-exchange factor GEF-H1 was 

recently identified as a stress-fiber-inducing factor38; GEF-H1 stimulates Rho activity and 

stress fiber formation, only when it is not bound to microtubules. While the factors 
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leading to increased stress fibers when Memo is knocked down are not known, our 

observations highlight the dynamic interactions that take place between the actin and the 

microtubule cytoskeleton in migrating cells. Ongoing studies are aimed at understanding 

the role of Memo in the targeting of microtubules to cell cortical regions and how this 

contributes to cell polarization and directed cell motility. 

 

 

Methods 
 
Plasmid constructs, cell culture, cell transfection  
T47D, SKBr3 and MDA-MB-231 breast carcinoma cells were cultured in Dulbecco’s 
modified Eagle’s medium supplemented with 10% fetal calf serum (GIBCO Invitrogen 
AG, Basel, Switzerland). T47D-5R cells were obtained by infection of T47D cells with a 
pBabe-based retrovirus expressing the scFv-5R cDNA, as previously described24. The 
infected cells were selected in 1 mg/ml G418 (GIBCO) and clones were generated and 
tested for the absence of surface ErbB2 by FACS. Cells were then transfected with 
plasmids encoding Neu or Neu phosphorylation mutants13 with a wild-type 
transmembrane sequence (V664) using FuGene (Roche Diagnostics Corporation, 
Indianapolis, IN, USA) and selected in 1 µg/ml puromycin (Sigma, St. Louis, MI, USA). 
In order to obtain cells expressing similar amounts of Neu receptor, cells were sorted 
after surface staining with a Neu specific antibody (Oncogene, Darmstadt, Germany). 
Memo cDNA, obtained by RT-PCR using RNA of T47D cells as a template, was first 
cloned into pGEM-T Easy (Promega Corporation, Madison, WI, USA), then subcloned 
into pcDNA3-derivatives containing the Myc epitope to generate the N-terminally tagged 
fusion proteins Myc-Memo. Constructs were verified by sequence analysis and 
transfected into SKBr3 cells using FuGene. 
 
Migration assay 
Cell migration was tested using 8 µm-pore polycarbonate membrane Transwell chambers 
(Corning Costar Products, Acton, MA, USA) as described previously39. In brief, the 
bottom side of the membrane was coated with 25 µg/ml rat tail collagen I (Roche). Serum 
starved cells were plated in the top Transwell chamber. Medium with or without 1 nM 
HRG-β1 (R&D systems, Inc., Minneapolis, MN, USA) was added to the bottom chamber 
and cells were allowed to migrate for 24 hours. Non-migrated cells were scraped off the 
top of the membrane. Migrated cells were fixed in 4% formaldehyde and stained in 0.1% 
crystal violet. Cells were counted under a microscope in ten high power fields. Migration 
was expressed as cell number per mm2. In some instances, cells were pre-incubated for 
60 minutes with the UO126 MEK inhibitor (50 µM; Promega), the LY294002 PI3K 
inhibitor (50 µM; Calbiochem-Novabiochem Corporation, San Diego, CA, USA), the 
SB203580 p38 MAPK inhibitor (20 µM; Calbiochem), the CGP77675 Src inhibitor (2.5 
µM; kindly provided by M. Šuša and J. Green, Novartis, Basel, Switzerland) or the U-
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73122 PLC inhibitor (2 µM; Calbiochem). Cells were then allowed to migrate for 8 hours 
before counting. 
 
Immunoprecipitation and western blot 
Cells were lysed in NP-40 lysis buffer (50 mM Hepes pH 7.4, 150 mM NaCl, 25 mM β-
glycerol phosphate, 25 mM NaF, 5 mM EGTA, 1 mM EDTA, 1% NP-40, 10 µg/ml 
leupeptin, 10 µg/ml aprotinin, 10 µg/ml sodium vanadate and 100 µM 
phenylmethylsulfonyl fluoride) for 5 minutes on ice. For immunoprecipitation, equal 
amount of proteins were incubated for 1 hour with a Shc antibody from BD Transduction 
laboratories (Heidelberg, Germany) or an ErbB2-specific 21N polyclonal antiserum40. 
Immunocomplexes were collected with protein A-Sepharose (Sigma) and washed three 
times with lysis buffer and proteins were released by boiling in sample buffer. Proteins 
were blotted on polyvinylidene difluoride membranes (Millipore GmbH, Vienna, 
Austria) and probed with specific antibodies: P-p44/42, P-Akt/PKB and  P-p38MAPK 
from New England Biolabs (Beverly, MA, USA), Myc from Santa Cruz Biotechnology, 
Inc. (Santa Cruz, CA, USA), Shc, 21N antiserum, phosphotyrosine-specific mAb25 and 
affinity purified polyclonal antiserum directed against Memo (amino-acids 61 to 75). 
Proteins were visualized with peroxidase-coupled secondary antibodies using the 
enhanced chemiluminescence detection system (Amersham Pharmacia Biotech, 
Dübendorf, Germany). 
 
Rac activity assay 
Active Rac was detected using a glutathione-S-transferase (GST)-PAK- CRIB domain 
(CD) fusion protein (kindly provided by J. G. Collard, the Netherlands Cancer Institute, 
Amsterdam) as described previously41. Briefly, lysates from cells plated on collagen-
coated dishes were incubated with bacterially produced GST-PAK-CD fusion protein 
bound to glutathione-coupled Sepharose beads. Proteins bound to the fusion protein were 
analyzed by Western blotting using an anti-Rac1 antibody (Upstate biotechnology, Lake 
Placid, NY, USA). Aliquots from the cell lysates were taken in order to analyze total 
amount of Rac1. 
 
Immunofluorescence and actin staining  
Cells were grown on glass coverslips (Falcon, Le Pont De Claix, France) coated with 25 
µg/ml rat tail collagen I, serum starved overnight and stimulated with 1 nM HRG-β1 for 
different times. In some experiments the cells were pre-incubated for 60 minutes with the 
ErbB2 inhibitor, PKI166 (5 µM, kindly provided by P. Traxler, Novartis28). Cells were 
fixed in 4% formaldehyde in phosphate buffer saline (PBS) for 20 minutes, 
permeabilized in 0.2% Triton X-100 for 10 minutes, blocked with 1% bovine serum 
albumin in PBS for 20 minutes before addition of anti-Myc, anti-Memo or anti-α-tubulin 
antibody (kindly provided by W. Krek, ETH, Zürich) and the appropriate fluorophore-
labeled secondary antibody (Molecular Probes, Leiden, The Netherlands). DNA was 
counterstained with 0.25 mg/ml Hoechst No. 33342 (Sigma). Actin was stained for 45 
minutes with 2U/ml TRITC-labeled phalloidin (Sigma) or Alexa-Fluor 488 phalloidin 
(Molecular Probes). Images were recorded with an Axioskop Zeiss microscope coupled 
to a Sony 3CCD camera or an Olympus IX70 microscope linked to the DeltaVision 
workstation (Applied Precision, Issaquah, WA). 
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Purification of lamellipodia 
Proteins localized in lamellipodia were specifically purified using the method described 
by Cho et al.42. Briefly, cells were plated on 3 µm porous polycarbonate membrane 
Transwell chamber (Costar) coated on the bottom side with rat tail collagen I. The lower 
chamber contained medium with or without 1 nM HRG-β1. Cells were allowed to extend 
lamellipodia through the pores for different times. Cell bodies remaining on the upper 
surface were removed and the lamellipodia extending to the lower surface were recovered 
in lysis buffer. Protein concentration was measured using Bio-Rad Dc protein assay (Bio-
Rad Laboratories, Hercules, CA, USA).  
 
SiRNA and peptide transfection  
Cells were transfected with siRNA using Oligofectamine (GIBCO) according to the 
manufacturer’s instructions. The following 21-mer oligoribonucleotide pairs (obtained 
from Xeragon Inc., Huntsville, AL, USA) were used: for Shc (accession number 
HSU7377) nucleotide 236 to 25643, for Memo (CGI-27; accession number AF132961) 
nucleotide 460 to 480 and for control LacZ (from D. Cappellen, FMI, Basel; accession 
number M55068) nucleotide 4277 to 4297. Cells were plated for migration assays 3 days 
after siRNA transfection and allowed to migrate for 24 hours. Cell lysates were also 
prepared 3 and 4 days after transfection and analyzed by Western blotting using a specific 
anti-Shc antibody. For Memo, RNA was extracted using RNeasy Mini (Qiagen, Cologne, 
Germany) and quantitative radioactive PCR44 was performed using Memo specific 
primers (forward from nucleotide 90 to 111 and reverse from nucleotide 256 to 235).  

Peptides were delivered into cells using the Chariot peptide carrier26 (Active 
Motif, Rixensart, Belgium) according to the instruction manual. 16 aa-peptides spanning 
tyrosine residue 1201 of Neu (YC peptide) and tyrosine residue 1227 of Neu (YD 
peptide) were obtained from Neosystem (Strasbourg, France) in phosphorylated and non 
phosphorylated forms. Cells were plated for migration 30 minutes after peptide 
transfection and the assay was finished after 22 hours. 
 
Pull-down assay and mass spectrometry 
Phosphorylated and non-phosphorylated YC and YD peptides were coupled under 
anhydrous conditions to Affi-gel 10 agarose beads (Bio-Rad). Coupled beads were 
incubated with 0.5 mg (for Western blotting) or 12 mg (for mass spectrometry) T47D cell 
lysates. Proteins bound to the peptides were subjected to SDS-PAGE. For mass 
spectrometry the gels were stained with Coomassie Brilliant Blue R-250. Each lane of the 
gels was sliced and analyzed by LC-MSMS (LCQ Deca XP, Thermo Finnigan) and 
proteins identified by Turbo Sequest. Proteins identified by more than two peptides and 
binding specifically to the phosphorylated form of the peptides were selected for further 
analysis. Binding was confirmed by Western blotting using antibodies against CrkII and 
PLCγ (Santa Cruz) , Shc and Memo. In some experiments, Shc was immunodepleted 
from reticulocyte lysates expressing in vitro translated Myc-Memo using the anti-Shc 
antibody, before performing the pull-down assay. 
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Figure legends 
 

Figure 1 Tyr1201 (YC) and Tyr1227 (YD) are required for HRG-induced cell 

migration. a, Parental T47D and T47D lacking functional ErbB2 (T47D-5R) were 

assayed for their ability to migrate in response to HRG. A typical experiment is shown; 

bars represent the average number of cells migrated per mm2, error bars represent s.d. b, 

Schematic representation of Neu, NYPD and the add-back mutants used in this study; 

YA, YB, YC, YD and YE correspond to Tyr1028, Tyr1144, Tyr1201, Tyr1227 and 
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Tyr1253 of Neu, respectively. c, T47D-5R cells expressing the different Neu constructs 

were tested for their ability to migrate in response to HRG. 

 

Figure 2 Effect of YC- or YD-containing synthetic phosphopeptides on HRG-

induced cell migration. a-d, YC- and YD-expressing cells were transfected with YC, 

phosphorylated YC (pYC), YD or phosphorylated YD (pYD) peptides as indicated and 

migration of YC- and YD-expressing cells in response to HRG was analyzed. 

 

Figure 3 Neu and NYPD cells both form lamellipodia upon HRG stimulation. a, 

T47D and NYPD cells were treated for different times with HRG, then F-actin was 

visualized with TRITC-labeled phalloidin. b, Rac activity in HRG-stimulated T47D and 

NYPD cells was measured via pull-down of GTP-bound Rac1 using beads coupled to a 

GST-PAK-CD fusion protein (upper panels). The total amount of Rac1 is shown in the 

lower panels. c, Lamellipodia formed in response to HRG were collected from T47D 

cells plated on a 3 µm porous membrane Transwell chamber and their concentration was 

measured and plotted with time. d, The concentration of lamellipodia from HRG-treated 

Neu and NYPD cells was determined as in c. The average of two independent 

experiments is shown. 

 

Figure 4 Activity of the MAPK, PI3K and p38MAPK pathways is required, but is 

not sufficient for Neu/ErbB2 dependent cell migration. a, HRG-induced migration of 

Neu cells was tested in the presence of MEK, PI3K, p38 or Src inhibitors. b, Activation 

of the MAPK, PI3K and p38MAPK pathways in response to HRG was assayed in the 

NYPD- and add back mutant-expressing cells. Cell extracts were analyzed by Western 

blotting and membranes were probed with P-MAPK, P-PKB and P-p38 antibodies. c, 

HRG-dependent migration of NYPD cells was tested in the presence of MEK, PI3K, p38 

or Src inhibitors. d, Effect of MEK and PI3K inhibitors on HRG-induced lamellipodia 

formation in Neu and NYPD cells 

 

Figure 5 Memo interacts with ErbB2 Tyr1227 via the Shc adaptor molecule . a, 

Binding of Shc, CrkII, PLCγ and Memo to YC, pYC, YD and pYD peptides was 
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analyzed by peptide pull-down, followed by Western blotting with the respective 

antibodies. Whole cell extracts (W) were also loaded on the gel. b, Myc-Memo-

expressing SKBr3 cells were pretreated or not with the ErbB2 inhibitor PKI166. Cell 

lysates were immunoprecipitated with ErbB2, analyzed by Western blotting and the 

membrane probed with antibodies against Myc, phosphotyrosine or ErbB2. c, Memo 

cellular localization in Myc-Memo-expressing and untransfected cells was visualized 

using respectively an antibodies against Myc (upper panel) or Memo (lower panel) in 

control, PKI166- or HRG-treated SKBr3 cells. Arrows indicate the cell membrane. d,  

Myc-Memo-expressing SKBr3 cells were pretreated or not with PKI166, before Shc 

immunoprecipitation and probing with anti-Myc and anti-Shc antibodies. e, T47D cells 

were stimulated or not with HRG and cell extracts analyzed by immunoprecipitation of 

Shc and probing for ErbB2, Memo and Shc. f, Shc was immunodepleted from 

reticulocyte lysates expressing in vitro translated Myc-Memo and Myc-Memo interaction 

with the pYD peptide was tested in control and Shc-depleted lysates.  

 

Figure 6 Memo is required for ErbB2-driven cell motility, but not for lamellipodia 

formation. a, HRG-dependent migration of YC and YD cells was tested after Shc siRNA 

transfection. Protein extracts were collected 3 and 4 days (3d and 4d) after transfection. 

The effect of Shc siRNA on Shc expression was verified by Western blotting using a Shc 

specific antibody (insert). b, HRG-dependent lamellipodia outgrowth was visualized in 

Neu and NYPD cells in the presence of Shc or CrkII siRNA or a PLC inhibitor. c, HRG-

dependent migration of YD cells treated with control (LacZ) or Memo siRNA was 

analyzed. RNA was collected 3d and 4d after transfection and Memo mRNA was 

measured by quantitative PCR (insert). d, HRG-induced lamellipodia formation in YD 

cells was observed in the presence of control (LacZ) or Memo siRNA. e, Effect of Memo 

siRNA on HRG-induced migration of Neu, NYPD, YC and YD cells was measured.  

 

Figure 7 Memo is a mediator of growth factor-induced breast carcinoma cell 

motility. a, HRG-dependent migration of T47D, SKBr3 and MDA-MB-231 cells was 

tested after Memo siRNA transfection. b, Effect of Memo siRNA on migration of T47D 

cells in response to  HRG, FGF2, insulin and EGF. 
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Figure 8 Memo is required for ErbB2-dependent microtubule outgrowth. a, The 

actin and the microtubule cytoskeleton were visualized in HRG-stimulated T47D cells 

treated with control or Memo siRNA using Alexa-Fluor 488-phalloidin and an anti-α-

tubulin antibody, respectively. Arrows indicate the cell membrane. b, Microtubule 

outgrowth was evaluated in cells treated with HRG for 30 min, in the presence of control 

or Memo siRNA. For T47D cells n=321 and 347 for LacZ and Memo siRNA respectively 

and for SKBr3 cells n=348 and 256 for LacZ and Memo siRNA, respectively. 
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1.1. Appendix 
 

Figure 1. Surface staining of T47D and T47D-5R cells 
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Figure 2. Surface staining of wild type Neu or Neu add-back mutant expressing cells 
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Figure 3. Activation of Src in T47D and NYPD cells 
 

• Immunopreciptiation of the Src substrate cortactin followed by western blot for 
phosphotyrosine 
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Figure 4. Downregulation of CrkII and inactivation of PLC in YC cells: effects on 

cell migration 

 

• CrkII western blot of YC and YD cells transfected with mock or CrkII siRNA.  
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• Migration assay of YC and YD cells transfected with mock or CrkII siRNA. 
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• Migration assay of YC and YD cells treated with the U-73122 PLC inhibitor. 
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Figure 5. Memo protein levels 

 

Western blot of T47D cells transfected with LacZ or Memo siRNA with an antibody 

against Memo  
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Figure 6. Migration of MDA-MB-231 cells was tested with Memo siRNA and /or the 

ErbB2 kinase inhibitor PKI166 

 

0

10

20

30

40

50

60

LacZ Memo DMSO PKI LacZ/PKI Memo/PKI

M
ig

ra
tio

n 
(c

el
ls

/m
m

2 )

Control
HRG

 

 
Treatment of the MDA-MB-231 cells with PKI166 lowers the HRG-induced 

migration, but also the basal cell migration, which is dependent on the autocrine 

activated ErbB2 in these cells. Interestingly, the combination of PKI166 with the 

downregulation of Memo does not have an addictive effect, suggesting that Memo 

acts downstream of ErbB2. 
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Figure 7. Microtubule staining of T47D cells, which were stimulated with HRG for 

different times, using an anti-tubulin antibody  
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Figure 8. Proliferation of T47D, SKBr3 and MDA-MB-231 cells transfected or not 

with Memo siRNA in the presence or absence of HRG 
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Figure 9. Effect of nocodazole on lamellipodia formation of T47D cells  

 
Nocodazole mediated disruption of the microtubule network has no effect on the ability 

of the cells to form lamellipodia. Interestingly, long-term nocodazole treatment also leads 

to the disruption of the central microtubules, but has no consequence on the actin 

cytoskeleton remodeling. 
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Additional materials and methods 

 

Surface staining 

Cells were trypsinized and washed in PBS prior to staining. Approximately 106 cells were 

then resuspended in 500 µl of PBS containing 5 µg/ml of the ErbB2 mAb FSP77 

(Appendix Figure 1) or 1 µg/ml of the Neu mAb (Appendix Figure 2). After incubation 

on ice for 1 hour, cells were washed three times in PBS. Bound antibodies were stained 

for 1 hour with fluorescent-labeled anti-mouse secondary antibody (from Amersham 

Pharmacia Biotech). Finally, the cells were washed three times in PBS, resuspended in 

500 µl of PBS, and analyzed for their fluorescence with a Becton Dickinson FACScan. 

 

SiRNA transfection 

Cells were transfected with siRNA using Oligofectamine (GIBCO) according to the 

manufacturer’s instructions. For CrkII (accession number NM_016823) the 21-mer 

oligoribonucleotide pair from nucleotide 454 to 474 was used. For Memo (accession 

number AF132961) the following 21-mer were used: Memo1 from nucleotide 460 to 480, 

Memo2 from nucleotide 232 to 252 and Memo3 from nucleotide 701 to 721. Cells were 

plated for migration assays 3 days after siRNA transfection and allowed to migrate for 24 

hours. Cell lysates were also prepared 3 and 4 days after transfection and analyzed by 

Western blotting using a specific anti-CrkII antibody (Santa Cruz). 

 

Proliferation assay 

T47D, SKBr3 and MBA-MD-231 cells were transfected with LacZ or Memo siRNA as 

described before. Cells were trypsinized 3 days after siRNA transfection and counted. 

Same numbers of cells (2*105 for T47D and SKBr3 cells and 105 for MDA-MB-231) 

were plated in triplicate in the presence or not of 1nM HRG-β1. Cells were allowed to 

proliferate for 3 days and then were trypsinized and counted in a hemocytometer. 

(Appendix Figure 8) 
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Immunofluorescence of T47D cells after nocodazole treatment 

Cells were grown on glass coverslips coated with 25 µg/ml rat tail collagen I, serum 

starved overnight and pre-incubated for 18 hours or 20 minutes with nocodazole at 

concentrations of 5nM or 5µM, respectively (Sigma). The cells were then stimulated with 

1 nM HRG-β1 for different times. Cells were fixed in 4% formaldehyde in PBS for 20 

minutes, permeabilized in 0.2% Triton X-100 for 10 minutes, blocked with 1% bovine 

serum albumin in PBS for 20 minutes before addition of the anti-α-tubulin antibody and 

the Alexa Fluor 594 goat anti-rat secondary antibody. DNA was counterstained with 0.25 

mg/ml Hoechst No. 33342 (Sigma). Actin was stained for 45 minutes with 2U/ml Alexa-

Fluor 488 phalloidin (Molecular Probes). Images were recorded with an Olympus IX70 

microscope linked to the DeltaVision workstation (Applied Precision, Issaquah, WA). 

(Appendix Figure 9) 
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1.2.  Information about Memo 
 
 

Memo= mediator of ErbB2-driven cell motility 
(CGI-27 or c21orf19 like proteins) 

 
 
 
1.2.1. Characterization of Memo  
 

• Memo was discovered by comparative genome identification: 

The C. elegans proteome was used as scaffold to assist in novel human 

gene identification from human EST nucleotide databases 32.  

 

• Memo encodes a predicted protein of 297 residues (molecular weight 

33.7kD). 

 

• The human gene maps to chromosome 2 [2p23.2]. There are also two 

pseudogenes, one on chromosome 6 and the other one on chromosome 21. 

 

 

 

 
 

 

• The Memo gene contains 9 exons. 

 

• Regarding the protein structure, Memo has no domain of identified 

function. 
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1.2.2. Memo in the evolution 
 
 
Memo is very well conserved during evolution, from yeast to mammals. 
 
 
 
Sequence identity: 
 

Human 100% 
Mouse 99% 
Zebrafish 88% 
Drosophila 65% 
C. elegans 53% 
S. Pombe 42% 
S. cerevisiae 40% 
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1.2.3. Memo sequence alignment (alignment done with T-coffee):  
 

Symbol code: * Identical   Color code: BAD AVG GOOD 
    : Highly similar 

   . Poorly similar 
 
Human      MSNRVV---CREASHAGSWYTASGPQLNAQLEGWLSQVQSTKRPARAIIAPHAGYTYCGS 
Mouse      MSNRVV---CREASHAGSWYTASGPQLNAQLEGWLSQVQSTKRPARAIIAPHAGYTYCGS 
Zebrafish  MSNRMV---CREASHAGSWYTASGSQLNAQLEGWLSQAQSIAGPARAIIAPHAGYTYCGA 
Drosophila ----MS---ARRATHAGSWYTDSGAELSRQLDRWLGAADLSHGPARAIIAPHAGYTYCGA 
C. elegans MSLNGFGEHTRSASHAGSWYNANQRDLDRQLTKWLDNA-GPRITARALISPHAGYSYCGE 
 
Cons            * *:******. .  :*. **  **. .     .***:*:*****:***  
 
 
Human      CAAHAYKQVDPSITRRIFILGPSHHVPLSRCALSSVDIYRTPLYDLRIDQKIYGELWKTG 
Mouse      CAAHAYKQVDPSVTRRIFILGPSHHVPLSRCALSSVDIYRTPLYDLRIDQKIYGELWKTG 
Zebrafish CAAHAYKQVDPSITRRVFILGPSHHVPLSRCALSPAEVYRTPLYDLRIDQKVYADLWKTG 
Drospohila CAAFAYRQVSPVVVKRIFILGPSHHVRLRGCALSVAKKYRTPLYDLKIDAQINSELEKTG 
C. elegans TAAYAFKQVVSSAVERVFILGPSHVVALNGCAITTCSKYRTPLGDLIVDHKINEELRATR 
 
Cons   **.*::** .  ..*:******* * *  **::  . ***** ** :* ::  :*  *  
 
 
Human      MFERMSLQTDEDEHSIEMHLPYTAKAMESHKDEFTIIPVLVGALSESKEQEFGKLFSKYL 
Mouse MFERMSLQTDEDEHSIEMHLPYTAKAMESHKDEFTIIPVLVGALSESKEQEFGKLFSKYL 
Zebrafish  MFERMSLQTDEDEHSIEMHLPYTAKAMENHKDEFSIVPVLVGALSGSKEQEYGKLLSKYL 
Drosophila KFSWMDMKTDEDEHSIEMHLPYIAKVMEDYKDQFTIVPILVGSLNPEQEAQYGSLLSSYL 
C. elegans HFDLMDRRDEESEHSIEMQLPFIAKVMGSKR--YTIVPVLVGSLPGSRQQTYGNIFAHYM 
 
Cons   *. *. : :*.******:**: **.* . :  ::*:*:***:*  .::  :*.::: *: 
 
 
Human     ADPSNLFVVSSDFCHWGQRFRYSYYDE-SQGEIYRSIEHLDKMGMSIIEQLDPVSFSNYL 
Mouse     ADPSNLFVVSSDFCHWGQRFRYSYYDE-SQGEIYRSIEHLDKMGMSIIEQLDPVSFSNYL 
Zebrafish  ADPSNLFIISPDFCHWGQRFRYTYYDE-SQGEIYRSIEHLDKMGMGIIEQLDPISFSNYL 
Drosophila MDPTNLFVISSDFCHWGHRFSYTYYDS-SCGAIHKSIEKLDKQGMDIIESLNPHSFTEYL 
C. elegans  EDPRNLFVISSDFCHWGERFSFSPYDRHSSIPIYEQITNMDKQGMSAIETLNPAAFNDYL 
 
Cons   ** ***::*.******.** :: **  *   *:..* ::** **. ** *:* :*.:** 
 
 
Human     KKYHNTICGRHPIGVLLNAITELQ-KNGMN-MSFSFLNYAQSSQCRNWQDSSVSYAAGAL 
Mouse   KKYHNTICGRHPIGVLLNAITELQ-KNGMN-MSFSFLNYAQSSQCRSWQDSSVSYAAGAL 
Zebrafish KKYHNTICGRHPIGVLLNAVAELK-KNGID-MNFSFLNYAQSSQCRNWSDSSVSYAAGAL 
Drosophila RKYNNTICGRHPIGVMLGAVKALQ-DQGYDKMSFKFLKYAQSSQCQDIEDSSVSYASGSL 
C. elegans KKTQNTICGRNPILIMLQAAEHFRISNNHT-HEFRFLHYTQSNKVRSSVDSSVSYASGVL 
 
Cons  :* :******:** ::* *   :: .:.    .* **:*:**.: :.  *******:* * 
 
 

Human TVH-- Human:  Q9Y316   
Mouse TVH-- Mouse:  Q91VH6    
Zebrafish IVH-- Zebrafish: AAH44360 
Drosophila VFEM- Drosophila: Q9VG04 
C. elegans FVHPN C. elegans: Q22915 
 
Cons  ..  
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1.2.4. Memo RNA expression in different breast cell lines 
 

 

Memo

GAPDH
 

  1       2      3       4      5       6      7       8      9      10     11 

 

 

 

1 = HB2 human mammary epithelial cells 

2 = MCF10A human mammary epithelial cells 

3 = MCF7 human breast carcinoma cells 

4 = SKBr3 human breast carcinoma cells 

5 = BT474 human breast carcinoma cells 

6 = MDA-MB-231 human breast carcinoma cells 

7 = MDA-MB-361 human breast carcinoma cells 

8 = MDA-MB-453 human breast carcinoma cells 

9 = ZR 7.5.1 human breast carcinoma cells 

10 = T47D human breast carcinoma cells 

11 = SKBr3 RT- 
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1.2.5. RNA master blot analysis of Memo in human tissues (from Lai et 

al.32) 
 

 

 
 

 

The tissue distribution on the blot from left to right (1-8) in order was: 

A: whole brain; amygdala; caudate nucleus; cerebellum; cerebral cortex; frontal lobe; 

hippocampus; medulla oblongata.  

B: occipital pole; putamen; substantia nigra; temporal lobe; thalamus; subthalamic; 

nucleus; spinal cord. 

C: heart; aorta; skeletal muscle; colon; bladder; uterus; prostate; stomach.  

D: testis; ovary; pancreas; pituitary gland; adrenal gland; thyroid gland; salivary 

gland; mammary gland.  

E: kidney; liver; small intestine; spleen; thymus; peripheral leukocyte; lymph node; 

bone marrow 

F: appendix, lung, trachea, placenta.  

G: fetal brain; fetal heart; fetal kidney; fetal liver; fetal spleen; fetal thymus; fetal 

lung.  

H: yeast total RNA; yeast tRNA; E. coli rRNA; E. coli DNA; Poly r(A); human C0t 

DNA; human DNA; human DNA 
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1.2.5. Memo protein levels in different cells lines  

 

            1      2       3       4       5      6      7       8       9      10     11    12     13     14     15      16 

 

 

 

1 = T47D human breast carcinoma cells 

2 = MDA-MB-453 human breast carcinoma cells 

3 = LS174 TRI human colorectal cancer cells 

4 = HeLa human cervical cancer cells 

5 = MCF7 human breast carcinoma cells 

6 = MDA-MB-231 human breast carcinoma cells 

7 = BT-474 human breast carcinoma cells 

8 = DLDI TR7 human colorectal cancer cells 

9 = HB2 human mammary epithelial cells 

10 = Colon26 mouse colon cancer cells 

11 = MKN7 human gastric cancer cells 

12 = DU4476 human breast carcinoma cells 

13 = SKBr3 human breast carcinoma cells 

14 = NOG8 mouse mammary cells 

15 = HC11 mouse epithelial cells 

16 = Mouse embryonic fibroblasts (Mef) 
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2. ERBB2-DRIVEN LONG-TERM MIGRATION REQUIRES DE 

NOVO RNA AND PROTEIN SYNTHESIS 

 

Romina Marone, Nancy E. Hynes and Ali Badache 

 

Unpublished results 
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Introduction 

 
Extracellular ligands bind to specific receptors on the cell inducing their activation. The 

receptors, upon dimerization become phosphorylated and stimulate intracellular pathways 

leading to cellular responses, such as cell cycle progression, changes in metabolism, 

cytoskeletal architecture, protein trafficking, adhesion and migration, which may involve 

changes in gene expression. Induction of cell motility by multiple growth factors, 

including EGF-related peptides has been linked to different pathways, including the 

mitogen-activated protein kinase (MAPK) pathway or the phosphatidylinositol-3-kinase 

(PI3K) pathway (Pawson, 1995; Schlessinger, 2000; Yarden and Sliwkowski, 2001). 

Activation of these signaling cascades is known to initiate specific transcriptional 

programs in the nucleus, which involve proto-oncogenes such as fos, jun, and myc, 

members of the family of zinc-finger-containing transcription factors that includes Sp1 

and Egr1, signal transducers and activators of transcription (STATs) as well as Ets family 

members. Moreover, the Rho GTPases are known to regulate the expression of the 

transcription factor SRF (serum response factor) via their ability to induce actin 

polymerization (Hill et al., 1995). The coordinated action of two Rho effector targets, 

mDia and Rho kinase, is required to regulate SRF activity by affecting actin dynamics 

(Geneste et al., 2002). There is evidence that the levels of SRF activation correlate with 

the ratio of F-actin (polymerized actin) to G-actin (unpolymerized actin) (Sotiropoulos et 

al., 1999). A recent study has identified the transcription factor MAL as an actin binding 

protein, that functions as an SRF coactivator and whose translocation from the 

cytoplasma to the nucleus depends on its dissociation from actin monomers (Miralles et 

al., 2003). 

Because most of the migration studies look at short-term events, the contribution and 

importance of transcription or translation for cell migration is not very well understood. 

The intention of this study was to investigate the requirement of de novo RNA and 

protein synthesis for the migration of Neu or Neu add-back mutant expressing cells. Our 

results indicate that following HRG stimulation, post-translational events trigger 

moderate levels of migration. Efficient long-term migration requires de novo RNA and 
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protein synthesis, which is in turn dependent on signaling events activated downstream of 

the tyrosines YC and YD.  

 

   

 

Results 

 
We have analyzed HRG-induced cell migration of Neu and NYPD cells, expressing 

respectively, the wild type Neu receptor and the tyrosine-deficient Neu receptor, over a 

time course of 24 hours. Neu cells started to migrate within 2 hours of HRG treatment 

and the number of migrated cells increased up to 24 hours (Figure 1a). After 2 to 3 hours 

of HRG treatment the number of migrated NYPD cells was the same as the number of 

Neu cells. Starting at 4 hours, the migration of NYPD cells increased at a reduced rate in 

comparison to Neu cells, during the 24 hours time course. We have then investigated the 

possibility that efficient, long-term migration requires de novo RNA and protein 

synthesis, using 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole (DRB), an inhibitor of 

RNA polymerase II or cycloheximide (CHX), respectively. Migration of Neu cells upon 

HRG stimulation was strongly decreased in the presence of CHX (Figure 1b) or in the 

presence of DRB (Figure 1b). Likewise, migration of the YC (cells expressing the 

receptor with the tyrosine 1201) and YD (cells expressing the Neu receptor with the 

tyrosine 1227) cells was sensitive to both inhibitors (Figure 1c and data not shown). In 

contrast, migration of NYPD cells as well as YE cells was not affected by CHX or DRB 

treatment (Figure 1c and data not shown). Importantly, these two inhibitors reduced the 

migration rate of the Neu, YC and YD cells to that observed for the NYPD and YE cells 

(Figure 1c). To rule out that decreased migration was due to toxicity of the inhibitors, we 

separately analyzed the proliferation of the cells in the presence of the inhibitors, by 

counting the cells before and after the migration assay (data not shown). No differences 

in cell proliferation were detected between the control and the treated cells, suggesting 

that the doses used and the duration of the treatment are not toxic to the cells. 

Interestingly, the breast carcinoma cells SKBr3 also showed reduced migration upon 

treatment with CHX or DRB (Figure 1d). These results suggest that following HRG 
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stimulation, post-translational events trigger low levels of migration, whereas efficient 

long-term migration is dependent on de novo RNA and protein synthesis. We propose 

that activation of signaling pathways downstream of the YC and YD tyrosines is 

required, for induction of transcription and translation, these processes are deficient in the 

NYPD and YE cells. 

 

 

 
 

 

Figure 1: a, Migration of Neu and NYPD cells in response to HRG was assayed in the 

presence or absence of cycloheximide (CHX). b, Migration in response of HRG of Neu 

cells was measured after 24 hours in the presence or absence of CHX or DRB. c, HRG-

dependent migration of NYPD, YC, YD and YE was tested over 24 hours in the presence 

or absence of CHX. d, SKBr3 cells migration in response to HRG was assayed over 8 

hours in the presence or absence of CHX or DRB. 
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Memo, the new protein that we identified and described in chapter 1 of the results, acts 

downstream of the YD tyrosine and is not involved in early steps of cell migration such 

as lamellipodia formation. In order to investigate the possibility that Memo and induction 

of de novo protein synthesis are acting on the same pathway, we treated cells with 

cycloheximide and/or Memo siRNA. Cycloheximide treatment of YD cells or 

downregulation of Memo using siRNA in YD cells decreased migration to the same 

extent (Figure 2). Moreover, the combination of the two treatments does not have an 

additive effect on YD cell migration (Figure 2), suggesting that Memo requires de novo 

protein synthesis in order to trigger efficient, long-term cell migration.  

 

 
 

Figure 2: Effect of Memo siRNA on migration of YD cells treated with cycloheximide 

(CHX). 

 

Further studies have to be done in order to identify the transcriptional program triggered 

by the signaling pathways, which are induced specifically downstream of the YC or YD 

tyrosines. 

 

 

 

Discussion 

 
Our data demonstrate that de novo RNA and protein synthesis are required for migration 

of Neu, YC and YD cells as well as SKBr3 cells. Interestingly, the low migration levels 
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of NYPD and YE cells are not affected by the treatment with the two inhibitors. 

Migration of these cells depends on the activation of the MAPK and PI3K pathways (see 

figure 4c of results chapter I). In fact, treatment of the cells with a MAPK or a PI3K 

inhibitor further reduces their migration levels and also prevents lamellipodia formation, 

suggesting that activation of the MAPK and PI3K pathways is essential for early stages 

of migration. Probably, NYPD and YE cells are impaired in migration because they are 

not able to activate signaling pathways leading to transcription and translation of key 

genes required for efficient cell motility.  

In the literature there is increasing evidence that stimulation of cells with different growth 

factors leads to transcriptional activation of different genes required for cellular motility. 

In fact, it was shown that the increased migration seen in HRG-stimulated MCF-7 breast 

cancer cells was associated with transcriptional upregulation of the focal adhesion protein 

paxillin (Vadlamudi et al., 1999). Perhaps, increased levels of paxillin promote cell 

motility via regulation of the dynamic disassembly and subsequent reassembly of the 

focal adhesions. Another group provided evidence for a link between EGF signaling, the 

transcription factor AP-1 (activator protein-1) and cell motility (Malliri et al., 1998). 

They propose a model in which a subset of AP-1 target genes provides the molecular 

bridges between growth factor stimulation and activation of Rac and Rho, which in turn 

regulate morphological and motile responses. In addition, it was shown that constitutive 

expression of the transcription factor Fra-1 and Fra-2 increases DNA binding and 

functional activity of AP-1 (Kustikova et al., 1998). Fra-1 expression leads to an increase 

in random cell migration and in invasion. Moreover, other data reveal that the 

transcription of NFAT (nuclear transcription factor of activated T-cells) is induced by 

integrin clustering in the presence of chemoattractants, resulting in enhanced cell motility 

(Jauliac et al., 2002). 

We have shown that Memo binds to the phosphorylated YD and mediates migration by 

controlling the microtubule cytoskeleton outgrowth. Moreover, we also found that 

migration downstream of Neu, YC and YD cells is dependent on de novo protein 

synthesis. Interestingly, the NYPD cells are able to extend the microtubule network to the 

cell periphery upon HRG treatment, but the low level of migration of these cells is not 

dependent on de novo protein synthesis. Thus, we propose the hypothesis that both 
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microtubule outgrowth and synthesis of new proteins are required for cell motility. This 

proposition is supported by the fact that microtubules can act as tracks along which 

molecular motors transport their cargo molecules (Schliwa and Woehlke, 2003). 

Moreover, microtubules together with microtubule-associated proteins are required for 

ER-to-Golgi (Presley et al., 1997), as well as for Golgi-to-plasma membrane (Kreitzer et 

al., 2000) transport of secretory and plasma membrane proteins. Therefore, we can 

speculate that microtubules transport the newly synthesized proteins to the cell leading 

edge, triggering, as a result, efficient cell motility. 

Further studies have to be performed in order to identify which are the molecules 

required for efficient cell migration and to better understand the role of Memo and 

microtubules in the migratory process. 

 

 

 

Additional materials and methods 

 
Cell migration was tested using 8 µm-pore polycarbonate membrane Transwell chambers 

(Corning Costar Products, Acton, MA, USA) as described in chapter 1. In these 

experiments, cells were pre-incubated for 60 minutes with cycloheximide (10 µg/ml; 

from Sigma, St. Louis, MI, USA) or 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole (20 

µg/ml; from Fluka Chemie GmbH, Buchs, Switzerland). After the plating of the cells 

with medium with or without HRG, the cells were allowed to migrate in the presence of 

the inhibitors for different times before counting. 

For cell proliferation same number of cells were plated and treated with or without the 

inhibitors. The following day, cells were trypsinized and counted using a hemocytometer.  
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V. DISCUSSION 
 

 

Upon ligand binding, ErbB receptors form homo- and heterodimers triggering 

autophosphorylation on specific tyrosine residues in their cytoplasmic tail. These 

phosphorylated tyrosines provide docking sites for intracellular signaling molecules 

containing SH2 and PTB domains and consequently, signaling pathways are activated. 

The ability of the activated receptors to induce proliferation, migration, differentiation or 

transformation is dependent on the receptors’ intrinsic pattern of phosphorylatable 

carboxyterminal tyrosines. In order to identify the signaling pathways involved in 

Neu/ErbB2-dependent cell migration, we generated stable T47D breast carcinoma cell 

lines expressing Neu mutants. This was accomplished by functionally inhibiting the 

endogenous ErbB2 receptor using the human ErbB2-specific single chain antibody scFv-

5R (Beerli et al., 1994). Then, ErbB2 was substituted with wild type Neu, the rat 

homologue of ErbB2, or with Neu mutants harboring none (NYPD) or only one of the 

five major autophosphorylation sites (YA to YE) (Dankort et al., 1997). Using these cell 

lines, we were able to show that cell migration depends on the collaboration of different 

signaling pathways. In fact, the Ras/MAPK, PI3K, p38MAPK and Src-mediated 

signaling pathways are all required for lamellipodia formation, an early step in the 

migration process. Interestingly, we provide evidence that in the context of the 

Neu/ErbB2 receptor, the tyrosines 1201 or 1227 are necessary for breast carcinoma cell 

migration. In the absence of the signaling pathways activated downstream of these two 

tyrosines, cells display only modest motility. 

We performed affinity purification experiments in order to identify by mass spectrometry 

the signaling molecules interacting with the ErbB2’s tyrosines 1201 and 1227. Using this 

method we discovered a novel mediator of Neu/ErbB2-dependent cell migration: Memo. 

Memo is not involved in cell migration stages linked to remodeling of the actin 

cytoskeleton, such as lamellipodia formation, but is required for outgrowth of the 

microtubule cytoskeleton. Memo interacts specifically with the phospho-tyrosine 1227 

via the adaptor molecule Shc. Interestingly, Shc binds to the tyrosine 1201 as well, but 

Memo is not. The Shc adaptor protein contains both an SH2 and a PTB domain and could 
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therefore interact with the receptor’s phosphorylated tyrosines in different ways (Ricci et 

al., 1995; Dankort et al., 2001; Ravichandran, 2001). Interestingly, the amino acid 

sequence around the tyrosine 1201 is a perfect recognition code (hy-X-N-P-X-pY, where 

hy is an hydrophobic amino acid) for binding of PTB containing proteins (Pawson and 

Scott, 1997; Sudol, 1998), whereas the sequence around Tyr1227 is no recognition code 

for neither PTB nor SH2 containing proteins (Songyang et al., 1993). It is possible that 

Shc adopts different conformations upon receptor binding, allowing recruitment of Memo 

only when it is bound to Tyr1227. We are currently investigating the domains by which 

Shc interacts with tyrosine 1201 and 1227 respectively and also the regions of Shc and 

Memo, which are involved in the formation of the Shc/Memo complex. 

 

Memo corresponds to the CGI-27/c21orf19-like hypothetical protein, which was 

identified by comparative genome identification using the C. elegans proteome as 

scaffold (Lai et al., 2000). Memo is very well conserved throughout evolution; in fact 

Memo homologues exist in yeast, nematodes, drosophila and mammals. The sequence of 

Memo does not provide any information about the protein function, since it does not 

contain any characterized domain. We found that Memo is required for the extension of 

microtubules to the periphery. We took advantage of the fact that Memo is conserved in 

yeast, to get a hint of its function. A close look at the proteome of S. cerevisiae provided 

evidence that the S. cerevisiae Memo homologue (Accession Number YJR008w) 

interacts with the Arp1 protein (actin-related protein 1), also called centractin. Arp1 is the 

most abundant component of the dynactin (dynein activator) complex (Schroer, 1994; 

Karki et al., 2000). Another member of the complex is the cytoplasmic dynein, a motor 

protein which transport the cargoes along the microtubules (Schliwa and Woehlke, 2003). 

The functional interaction between cytoplasmic dynein and dynactin is critical for distinct 

cellular processes such as vesicle transport, mitotic spindle assembly and orientation 

(Echeverri et al., 1996; Roghi and Allan, 1999). Moreover, cytoplasmic dynein has been 

implicated in the interactions between microtubules and the cell cortex in different 

physiological contexts, e.g. microtubule cytoskeletal reorientation during wound healing 

(Etienne-Manneville and Hall, 2001; Palazzo et al., 2001). Interestingly, cytoplasmic 

dynein and dynactin subunits have been found associated with the growing microtubule 
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plus end and colocalize with CLIP-170 (Vaughan et al., 1999; Xiang et al., 2000). CLIP-

170 is a linker between membranes and microtubules and it stabilizes the microtubules 

during their growing phase (Howard and Hyman, 2003). These studies could help to 

explain the phenotype of the Memo knockdown cells. In fact, we found that these cells 

are impaired in migration, probably because of disrupted microtubule outgrowth and we 

speculate this lead to inefficient transport of the newly synthesized proteins to the cell 

leading edge. The dynactin complex, but also the kinesin are required for the ER-to-Golgi 

and the Golgi-to-plasma membrane transport of the secretory and the plasma membrane 

proteins (Presley et al., 1997; Kreitzer et al., 2000). However, one requirement for these 

molecular motors to work is an intact microtubule cytoskeleton, a structure that is 

disrupted in Memo knockdown cells. Moreover, Memo could play a role in the 

stabilization of the growing microtubules and a possible interaction with plus-end binding 

proteins such as CLIP-170 or with dynactin needs to be investigated. Interestingly, Memo 

is not involved in the control of the stable central microtubule network since 

downregulation of Memo expression in the cells does not disrupt this microtubule 

population. Microtubules, together with multiple mitotic motors are important during cell 

division, for processes such as mitotic spindle assembly and orientation or chromosome 

segregation (Scholey et al., 2003). Proliferation of breast carcinoma cells is not affected 

by Memo downregulation, probably because the central microtubule network is present in 

the Memo knock down cells. Therefore, it seems that cell division is not dependent on 

Memo, even though the dynactin complex plays crucial roles in this process. 

 

Cell migration plays important role in the development and maintenance of multicellular 

organisms.  Cell motility during development is fundamental to the establishment of the 

embryonic architecture, which depends on processes such as gastrulation, neural crest 

formation and also morphogenetic movements that shape the embryo (Locascio and 

Nieto, 2001; Franz et al., 2002). Our studies provide evidence that Memo is required for 

cell migration and therefore it could play a role during development. Moreover, results 

from different experiments show that Memo RNA and protein is expressed in human and 

mouse tissues as well as cell lines. However, nothing is known about the expression 
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pattern of Memo during development. Therefore, some experiments could be done in 

order to identify the expression of Memo during the different developmental stages.  

The ErbB receptors are important during development and targeted inactivation of 

components of the ErbB signaling network highlighted the importance of the receptor-

ligand interactions especially in mid-gestation inductive processes. Apparently, the ErbB 

network is primarily involved in mesenchyme-epithelial crosstalk and in neuronal effects 

on target cells, including muscle, astroglia, oligodendrocytes and Schwann cells (Britsch 

et al., 1998; Buonanno and Fischbach, 2001). NRG-1 is synthesized by mesenchymal or 

neuronal cells, which influence the differentiation, proliferation and migration of adjacent 

epithelial or non-neuronal cells, respectively. Evidence for the essential role of ErbB 

receptors in mid-gestation was provided by the embryonic lethality of ErbB2-, ErbB4- 

and NRG-1-deficient mice at around day 10 post-fertilization due to aberrant cardiac 

development (Gassmann et al., 1995; Lee et al., 1995; Meyer and Birchmeier, 1995). In 

addition to cardiac disorders, ErbB4 deficient mice displayed severe defects in the 

development of the cranial sensory ganglia due to aberrant migration of some neural crest 

cells and aberrant axon pathfinding into the adjacent mesenchyme. Moreover, it was 

shown that migration of neural crest cells to the mesenchyme lateral of the dorsal aorta, 

in which they differentiate into sympathetic neurons, depends on NRG-1, ErbB2 and 

ErbB3 (Britsch et al., 1998). All these data provide some evidence of the importance of 

the ErbB receptors and migration in development. It would be interesting to study the 

role of Memo during development, in order to understand in which developmental steps 

Memo is required.  

The ErbB receptors play central roles during mammary gland development, process 

dependent on cell proliferation, migration, differentiation and apoptosis. Data from 

transgenic mice reveal that ErbB1 KO mice have a normal mammary gland ductal tree at 

birth (Wiesen et al., 1999). A fraction of the ErbB1 KO mice survive after birth and this 

made it possible to determine that these mice, in the puberty have a reduced proliferation 

of mammary epithelium and stroma and a loss of periductal fibroblasts (Wiesen et al., 

1999). Moreover, the mammary tree of MHC (myosin heavy chain)-ErbB2-rescued 

ErbB2 KO animals is normal prior to birth (Stern, 2003). Mammary ductal development 

of the cardiac-rescued MHC-ErbB4 ErbB4 KO is also normal at birth, but during 
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pregnancy the mammary lobuloalveoli fail to differentiate correctly (Tidcombe et al., 

2003). We showed using breast carcinoma cells that Memo is required for cell motility, 

but not for cell proliferation. Therefore some experiments could be done to investigate 

the role of Memo during mammary gland development, especially during the invasion of 

the mammary epithelium into the mammary fat pad, where migration is required.  

Tumorigenesis is a multistep process and occurs as the result of uncontrolled cell 

division, contributing to initial tumor formation, which is followed by metastatic spread. 

The process of metastasis involves an intricate interplay between cell proliferation, 

adhesion, proteolysis, migration and angiogenesis. As cancer cells become metastatic, 

they activate signaling cascades that regulate gene expression, cytoskeletal 

reorganization, cell adhesion and survival (Fidler and Kripke, 1977; Poste and Fidler, 

1980; Kang et al., 2003). These changes allow them to become more invasive and 

migratory and to better survive in different microenvironments. Breast carcinoma cells 

metastasize often to bone and to visceral organs (Thomas et al., 1979; Price and Zhang, 

1990; Boyce et al., 1999; Yoneda et al., 2000; Liotta, 2001; Mundy, 2002). The human 

breast carcinoma cell line MDA-MB-231 is particularly appealing to explore Memo’s 

role in metastasis formation. The orthotopic metastasis model closely resembles the 

situation in breast carcinoma patients. In this model the human mammary tumor cells 

MDA-MB-231 are injected into the inguinal mammary fat pad of SCID (severe combined 

immunodeficiency) mice (Singh et al., 1997; Muller et al., 2001). The mammary cancer 

cells form tumors 7-10 days after injection and subsequently they develop bone and 

visceral metastasis 3-4 weeks after inoculation. Using this model it would be possible to 

study the role of Memo in the early steps of breast tumor formation and even more 

interesting, due to crucial role of Memo in migration, during the whole metastatic 

process. We showed that Memo is required for MDA-MB-231 cell migration, but not for 

proliferation in vitro. Using this model, it would be possible to verify the role of Memo 

for cell proliferation in vivo. In fact, tumor growth is dependent on cell division and in 

the animals it would be possible to measure the size of the mammary tumor, which reflect 

cell proliferation. In another model, the experimental bone metastasis model, the cells are 

directly introduced into the arterial circulation through the left ventricle of the heart in 

young female nude mice (Yoneda et al., 1994; Sung et al., 1997; Kang et al., 2003). The 
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carcinoma cells develop radiologically distinctive osteolytic bone metastasis 3-4 weeks 

after cell inoculation. This model is suitable to specifically study the events involved in 

the formation of bone metastasis. However, it has the disadvantage that it lacks the 

critical early steps occurring between tumor formation at the primary site and entry into 

the blood stream. Moreover, visceral organ metastases, which most patients already have 

developed at the time of detection of bone metastasis, are rarely formed. In this model, 

the cells in order to metastasize have to reach the bone via the blood circulation and 

ultimately to arrest in the capillary bed in bone. Afterward, they have to extravasate and 

to destroy the bone in order to form metastases. Extravasation is a process dependent on 

specific adhesion of the tumor cells to the blood vessel endothelial cells and on the 

subsequently migration of the cancer cells between the endothelial cells. Results from our 

experiments reveal that Memo is required for MDA-MB-231 cell migration. Therefore, 

this model appears to be appropriate for investigate the role of the Memo for migration 

during the bone metastasis process.  

 

 

In summary, some more work needs to be done to better comprehend the contribution of 

Memo during the cell migratory process. Moreover, the use of animal models could help 

to improve the knowledge regarding the function of Memo not only during tumor and 

metastases formation, but also during the animal developmental phases. 
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VI. ABBREVIATIONS 
 

+TIP Plus-end-binding protein  

ADAM A Disintegrin-like and metalloproteinase-containing protein 

ADF Actin-depolymerization factor 

AP-1 Activator protein-1 

APC Adenomatous polyposis coli 

AR Amphiregulin 

ARIA Acetylcholine receptor-inducing activity 

Arp Actin-related protein   

BTC Betacellulin 

CHX Cycloheximide 

CLASP CLIP associated protein 

DN Dominant negative 

DRB 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole 

ECM Extracellular matrix 

EGF(R) Epidermal growth factor (receptor) 

EPR Epiregulin 

ER Endoplasmic reticulum 

FAK Focal adhesion kinase 

FGF Fibroblast growth factor 

GAP GTPase-activating protein 

GDI Guanine nucleotide dissociation inhibitor 

GEF Guanine nucleotide exchange factor 

GGF Glial growth factor 

GPCR G-protein coupled receptor 

HB-EGF Heparin-binding EGF 

HRG Heregulin 

MAPK Mitogen-activated protein kinase 

MCAK Mitotic centromere-associated kinesin 

MHC Myosin heavy chain 
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MLC(K) Myosin light chain (kinase) 

MMP Matrix metalloproteinase 

MMTV Mouse mammary tumor virus 

MTOC Microtubule-organizing center 

NDF Neu differentiation factor 

NRG Neuregulin 

PAI-1 Plasminogen activator inhibitor-1 

PAK p21-activated protein kinase 

PDGF(R) Platelet-derived growth factor (receptor) 

PI3-K Phosphatidylinosithol-3-kinase 

PLCγ Phospholipase Cγ 

PTB Phosphotyrosine-binding 

ROCK Rho-associated kinase 

RTK Receptor tyrosine kinase 

SH2/3 Src-homology 2/3 

STAT signal transducers and activators of transcription 

TGF-α Transforming growth factor-α 

Tyr Tyrosine 

uPA Urokinase-type plasminogen activator 

VEGF Vascular endothelial growth factor 
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