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Summary 
 

The TOR proteins play a central role in the control of cell growth. TOR proteins are the 

founding members of the phosphatidylinositol-related kinase (PIKK) family of protein 

kinases. In S. cerevisiae there are two TOR proteins, TOR1 and TOR2. TOR1 and 

TOR2 regulate cell growth via a rapamycin-sensitive pathway controlling translation, 

transcription, nutrient uptake, ribosome biogenesis and autophagy. TOR2 also has a 

unique, rapamycin-insensitive function, which is the control of the actin cytoskeleton. 

Recently, it has been found that the TOR proteins exist in two distinct complexes, TOR 

complex 1 (TORC1) and TOR complex 2 (TORC2). While TORC1 mediates the 

rapamycin-sensitive pathway, TORC2 is responsible for the control of the actin 

cytoskeleton. TORC1 comprises three proteins, TOR1 or TOR2, KOG1 and LST8. 

TORC2 consists of five proteins, TOR2, AVO1, AVO2, AVO3 and LST8. Thus, these 

structurally and functionally distinct TOR complexes account for the diversity of TOR 

signaling in yeast. Here we focused on the characterization of TORC2. Our studies 

suggest that TORC2 exists in an oligomeric state and that AVO1 and likely AVO3 act as 

scaffold proteins required for the integrity of TORC2. We also found that AVO1 plays a 

role as an adaptor protein mediating efficient phosphorylation of substrates. LST8 in turn 

appears to modulate TOR2 kinase activity possibly by binding directly to the TOR2 

kinase domain. LST8 is common to both TORC1 and TORC2 and may therefore be 

important to respond to upstream signaling factors. 
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1. Introduction 
 

1. 1. Rapamycin and the discovery of TOR 
 
The macrolide rapamycin is produced by a strain of Streptomyces hygroscopius which 

was originally isolated from a soil sample collected from Rapa-Nui (Easter Island). 

Rapamycin possesses potent antifungal, immunosuppressant, and antitumor properties 

(Hidalgo and Rowinsky, 2000). Inside a cell rapamycin binds to FKBP12 (FK506-

binding protein). FKBP12 is a cytoplasmic petidyl-prolyl cis-trans isomerase that also 

binds FK506 (a potent immunosuppressant structurally related to rapamycin) (Heitman 

et al., 1991b; Schreiber, 1991). Disruption of FPR1, the gene encoding FKBP12 in 

yeast, revealed that FKBP12 is not essential for viability, and frp1 mutant cells were 

resistant to rapamycin toxicity (Heitman et al., 1991a; Heitman et al., 1991b). In 

addition, since rapamycin analogues could still bind and inhibit the isomerase activity of 

FKBP12 but could not act as immunosuppressants lead to the assumption that 

FKBP12 is not the target through which rapamycin inhibits cell growth (Bierer et al., 

1990). Rapamycin rather forms a complex with FKBP12, which then acts on another 

target essential for growth. To identify this target spontaneous, rapamycin-resistant 

yeast mutants were selected. Three genes were identified in the screen, FPR1 and two 

novel genes that were named TOR1 and TOR2 (target of rapamycin) (Heitman et al., 

1991a). While the mutations conferring rapamycin resistance in FPR1 were loss-of-

function mutations, the mutations in TOR1 and TOR2 were gain-of-function mutations. 

These dominant TOR1 and TOR2 alleles confer complete resistance to the antifungal 

activity of rapamycin because they are no longer bound by FKBP12-rapamycin (Chen 

et al., 1995; Choi et al., 1996; Lorenz and Heitman, 1995; Stan et al., 1994). 

 

The TOR proteins are highly conserved through eukaryote evolution. TOR was 

identified in all eukaryotes examined including Schizosaccharomyces pombe, 

Cryptococcus neoformans, Ashbya gossypii, Arabidopsis thaliana, Drosophila 

melanogaster, Caenorhabditis elegans and mammals. Interestingly, higher eukaryotes 

contain only a single TOR gene, whereas the fungi, S. cerevisiae, S. pombe and C. 

neoformans, have two TOR genes (Crespo and Hall, 2002). 
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1. 2. Domain structure of TOR 
 
The highly homologous (67%) TOR1 and TOR2 proteins are large proteins with a 

molecular mass of 280 kDa. Both proteins contain a region in their C-terminus that is 

structurally related to lipid kinases, especially to phosphatidylinositol 3-kinase (PI3K) 

and phosphatidylinositol 4-kinase (Cafferkey et al., 1994; Helliwell et al., 1994; Kunz et 

al., 1993). Based on this homology TOR has been grouped in a novel class of 

phosphatidylinositol (PI) kinases, the PI kinase-related kinases (PIKK) (Keith and 

Schreiber, 1995). The PIKK family includes the yeast MEC1, TEL1 and RAD3 proteins 

and the mammalian ATM (ataxia telangiectasia mutated), ATR (ataxia telangiectasia 

related) and DNA-PK (DNA-dependent protein kinase) (Abraham, 2001). PIKK family 

members are very large proteins and several members have been implicated to 

function in the cell cycle checkpoint function.  Despite their homology to PI kinases 

none of its members have been shown to exhibit lipid kinase activity, in fact PIKK are 

Ser/Thr kinases.  

 

The N-terminus of TOR contains two large blocks of up to 20 tandemly repeated HEAT 

repeats (named for Huntingtin, elongation factor 3, A subunit of protein phosphatase 

2A and TOR1) (Andrade and Bork, 1995). Each HEAT motif comprises approximately 

40 amino acids that form antiparallel α-helices (Groves and Barford, 1999; Perry and 

Kleckner, 2003). This structure provides a large exposed surface with a hydrophobic 

nature that can mediate protein-protein interaction. It has been demonstrated the HEAT 

repeats are important for protein-protein interaction and that the HEAT repeats of 

TOR2 are required for the localization of TOR2 to membranes (Chook and Blobel, 

1999; Kim et al., 2002; Kunz et al., 2000). The HEAT domain is followed by a FAT 

domain. This domain is found in all PIK-related kinases and is accompanied by a small 

FATC domain, which is located at the very C-terminus of the PIKKs. The FAT and 

FATC domains may serve as scaffold or as protein-protein interaction domain (Alarcon 

et al., 1999; Bosotti et al., 2000). Following the FAT domain is the FKBP-rapamycin-

binding domain (FRB), which is the direct binding target for the FKBP-rapamycin 

complex (Fig. 1.1.). 
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1. 3. TOR signaling in higher eukaryotes 
 
TOR plays a central role in the control of cell growth. Genetic studies of Drosophila 

TOR (dTOR) revealed that cells mutant for dTOR were reduced in size at all stages of 

the cell cycle leading to a fly with a reduced body size (Oldham et al., 2000; Zhang et 

al., 2000). In addition, TOR mutant animals had a growth arrest phenotype similar to 

flies that have been starved for amino acids suggesting that TOR controls cell growth in 

response to nutrients. 

 

What are the growth-related readouts of TOR? mTOR has been reported to control 

various readouts including translation, transcription, PKC signaling and autophagy 

(Fingar and Blenis, 2004). So far all the growth-related readouts of TOR in higher 

eukaryotes appear to be sensitive to rapamycin. Nevertheless, a recent report 

suggests that mTOR controls trafficking of amino acid transporters in a rapamycin-

independent manner indicating that mTOR also exerts rapamycin-insensitive functions 

(Edinger et al., 2003). Currently, the best characterized downstream effectors of mTOR 

are the translational regulators, p70S6K and 4E-BP1. 

 

 

1. 3. 1. Downstream effectors of mTOR 
 
p70S6K1  
p70S6K1 is activated by various extracellular signals. Activated p70S6K1 

phosphorylates the 40S ribosomal protein S6 leading to an upregulation of translation 

of a subset of mRNA that contain a terminal oligopyrimidine (TOP) tract at their 5’-end 

(Jefferies et al., 1997). These 5’TOP mRNAs encode components of the translational 

apparatus, such as ribosomal proteins and elongation factors, which are predicted to 

account for 15-20% of total cellular mRNA (Meyuhas, 2000). Therefore, it is thought 

that activation of p70S6K leads to general upregulation of translational capacity. 

 

p70S6K is activated by multiple phosphorylation events that are regulated by mTOR- 

and growth factor-dependent signaling pathways. At least eight phosphorylation sites 

have been implicated in the regulation of p70S6K. PDK1 (phospholipid-dependent 

protein kinase), a downstream kinase of the growth-factor dependent PI3K signaling 

pathway, phosphorylates Thr229, which is located in the activation loop of the kinase 
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domain (Alessi et al., 1998). Activation of p70S6K is dependent on the phosphorylation 

of Thr229 (Dennis et al., 1996). Phosphorylation of two other sites Ser371 and Thr389 

are also essential for p70S6K activation and are directly phosphorylated by mTOR in 

vitro (Burnett et al., 1998; Dennis et al., 1996; Pearson et al., 1995; Saitoh et al., 2002). 

Thr389 as well as Thr229 and Ser404 represent a motif in which the phosphorylated 

Ser or Thr is followed by a hydrophobic residue whereas Ser371 is flanked by Pro. 

p70S6K contains an additional four phosphorylation sites at the C-terminus (Ser 411, 

418, 421, and Thr424) exhibiting a Ser/Thr-Pro motif. These four sites lie in the 

autoinhibitory pseudosubstrate domain and they are not essential for kinase activity. In 

its inactive state the C-terminal  pseudosubstrate domain of p70S6K is thought to 

interact with the N-terminus and thereby inhibit the catalytic activity (Martin and Blenis, 

2002). Phosphorylation of the four sites in this domain appears to facilitate the 

phosphorylation Thr389, the mTOR phosphorylation site (Avruch et al., 2001). 

Phosphorylation of Thr389 has been proposed to create a binding site for PDK1, thus 

facilitating in the phosphorylation of Thr229 (Biondi et al., 2001). Therefore, it is thought 

that prior phosphorylation of p70S6K at the hydrophobic motif (Thr389) promotes 

phosphorylation of the activation loop (Thr229) by PDK1 required for activation of 

p70S6K. Treatment with rapamycin results in dephosphorylation and inactivation of 

p70S6K. Thr389 is the major rapamycin-sensitive phosphorylation site but Thr229 and 

Ser404 as well as two Ser/Thr-Pro sites (Ser371 and Ser411) are also 

dephosphorylated upon treatment with rapamycin (Han et al., 1995; Pearson et al., 

1995).  

 

Recently, a TOR signaling (TOS) motif has been identified at the N-terminus of p70S6K 

(Schalm and Blenis, 2002). The TOS motif consists of five residues and is 

characterized by an aromatic residue followed by alternating hydrophobic and acidic 

residues. A functional TOS motif is required for efficient phosphorylation and activation 

of p70S6K as mutation of the TOS motif mimics the effect of rapamycin on p70S6K 

phosphorylation. 

 

 

4E-BP1 
4E-BP1 (4E-binding protein) inhibits cap-dependent translation by binding to eukaryotic 

initiation factor 4E (eIF4E). eIF4E is the subunit of the tripartite eukaryotic initiation 

factor 4 (eIF4F) complex that recognizes the cap, m7GpppX (in which m is a methyl 
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group and X any nucleotide), which is present at the 5’end of mRNAs. The two other 

subunits of eIF4F are eIF4G and eIF4A. eIF4A is an RNA helicase which unwind the 

RNA. eIF4G is a scaffolding protein binding to eIF4E, eIF4A, eIF3, and the poly(A)-

binding protein, and thus bridges the 40S ribosome to the mRNA. Cap-dependent 

translation is regulated by the eIF4E-binding proteins (4E-BPs), which compete with 

eIF4G for binding to eIF4E. Binding of 4E-BP1 to eIF4E is regulated by 

phosphorylation. Hypophosphorylated 4E-BP1 binds to eIF4E, whereas 

hyperphosphorylated 4E-BP1 abolishes this interaction enabling eIF4E to associate 

with eIF4G. Thus, phosphorylation of 4E-BP1 allows the positioning of the translation 

machinery on the 5’ end of the mRNA (Gingras et al., 2001; Raught et al., 2001).  

 

The TOR signaling pathway, as well as the PI3K pathway are involved in the regulation 

of the 4E-BP1 phosphorylation (Gingras et al., 2001). Phosphorylation of 4E-BP1 

occurs in a hierarchical manner involving at least six phosphorylation sites, four of 

which are regulated by mTOR signaling and contain a Ser/Thr-Pro motif (Gingras et al., 

1999; Mothe-Satney et al., 2000). Phosphorylation of Thr37 and Thr46 is required for 

the subsequent mitogen-responsive phosphorylation of Thr70 and Ser65 and the 

subsequent release of eIF4E. While mTOR has been shown to directly phosphorylate 

Thr37 and Thr46 in vitro the kinase regulating Thr70 and Ser65 is unknown (Brunn et 

al., 1997; Burnett et al., 1998; Gingras et al., 1999). Since phosphorylation of Ser65 

and Thr70 is more sensitive to rapamycin than phosphorylation of Thr37 and Thr47 it 

has been proposed that phosphorylation of Ser65 and Thr70 might be regulated by a 

mTOR-dependent kinase or a mTOR-inhibited phosphatase (Gingras et al., 2001). 

 

Two domains in 4E-BP1 have been shown to be required for its efficient 

phosphorylation. In addition to the TOS motif located at the C-terminus (Schalm and 

Blenis, 2002), 4E-BP1 contains a domain at the N-terminus, that is composed of the 

four amino acids Arg-Ala-Ile-Pro, called RAIP motif (Tee and Proud, 2002). Recently, it 

has been reported that raptor, a protein that interacts with mTOR binds 4E-BP1 as well 

as p70S6K through their TOS motifs bringing these two substrates in proximity of 

mTOR kinase (Beugnet et al., 2003; Choi et al., 2003; Nojima et al., 2003; Schalm et 

al., 2003). Since raptor does not appear to mediate interaction of 4E-BP1 via the RAIP 

motif it has been suggested that by interaction with the RAIP motif other proteins may 

recruit proximal kinases to 4E-BP1 (Proud, 2004).   
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1. 3. 2. Regulators of mTOR, what is upstream? 
 
How is mTOR regulated and what is upstream of mTOR? Three major inputs have 

been implicated in mTOR signaling, all of which converge on the phosphorylation of 

mTOR target proteins p70S6K and 4E-BP1. First, mTOR activation is dependent on 

the growth factor signaling pathway. Second, mTOR appears to be regulated by 

nutrients, especially amino acids. Third, energy levels have been recently shown to be 

important for regulation of mTOR activity (illustrated in Fig. 1.2.). 

 

 

Growth factors 
The mTOR pathway responds to growth factors via the phophatidylinositol 3-kinase 

(PI3K) pathway. Binding of insulin or insulin-like growth factors (IGFs) to their receptors 

leads to receptor dimerimerzation and autophosphorylation which triggers recruitment 

and phosphorylation of insulin receptor substrates (IRS) to generate a docking site for 

PI3K at the membrane. PI3K bound to IRS converts phosphatidylinositol-4,5-phosphate 

(PIP2) in the cell membrane to phosphatidylinositol-3,4,5-phosphate (PIP3). The 

conversion of PIP2 to PIP3 is negatively controlled by the lipid phosphatase PTEN. 

Once generated PIP3 recruits PDK1 and Akt through their pleckstrin-homology (PH) 

domain to the membrane. Membrane-bound Akt in turn is phosphorylated and 

activated by PDK1 (Alessi, 2001). 

 

How does the growth factor pathway regulate mTOR activity? mTOR appears to be 

controlled by Akt and the Tuberous sclerosis proteins, TSC1 (hamartin) and TSC2 

(tuberin). TSC1 contains two coiled-coil domains, whereas TSC2 possesses in addition 

to a coiled-coil domain a region that is similar to the catalytic domain of GTPase 

activating proteins (GAP). Through interaction of their coiled-coil domains TSC1 and 

TSC2 form a complex (van Slegtenhorst et al., 1998). It has been shown that 

overexpression of TSC1-TSC2 blocks TOR signaling leading to the inhibition of 

p70S6K and 4E-BP1 phosphorylation. Further, TSC2 is phosphorylated by Akt in 

response to insulin which destabilizes TSC2 and results in the inactivation of TSC2 and 

the subsequent disruption of TSC1-TSC2 (Gao et al., 2002; Inoki et al., 2002; Manning 

et al., 2002; Potter et al., 2003; Tee et al., 2002). Therefore, TSC1-TSC2 appears to 

function downstream of Akt and upstream of mTOR to negatively regulate p70S6K and 

4E-BP1. However, Akt is also able to control mTOR through direct phosphorylation of 
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mTOR (Nave et al., 1999). The significance of this phosphorylation remains unclear 

since substitution of the phosphorylated Ser to Ala does not affect the ability of mTOR 

to activate p70S6K (Sekulic et al., 2000).  

 

How does TSC1-TSC2 regulate mTOR? Recently, it has been found TSC1-TSC2 

controls mTOR via Rheb (Ras homolog enriched in brain), a Ras-related small GTPase 

(Garami et al., 2003; Inoki et al., 2003a; Tee et al., 2003). Overexpression of Rheb 

enhances mTOR signaling towards p70S6K and 4E-BP1 and activates mTOR even in 

absence of growth factors or amino acids. On the other hand, the effect of Rheb on 

p70S6K and 4E-BP1 phosphorylation is blocked by overexpression of TSCs indicating 

that TSCs are involved in the activation of Rheb (Garami et al., 2003; Inoki et al., 

2003a; Tee et al., 2003). It has been demonstrated that TSC2 through its GAP domain 

stimulates the intrinsic GTPase activity of Rheb resulting in the conversion from active 

GTP-bound Rheb to inactive GDP-bound Rheb (Inoki et al., 2003a; Tee et al., 2003; 

Zhang et al., 2003). The activation of Rheb is dependent on insulin as evidenced by the 

fact that insulin treatment leads to an increase of GTP-bound Rheb likely through 

activation of the PI3K/Akt signaling pathway that phosphorylates and inhibits TSC2 

(Garami et al., 2003). Thus, the growth factor activated PI3K pathway impinges on 

mTOR via a pathway consisting of the proteins Akt, TSC1-TSC2 and Rheb. 

 

Phosphatidic acid (PA) generated by mitogen-stimulated phospholipase D (PLD) was 

shown to play a role in mTOR signaling since PA stimulates phosphorylation of p70S6 

and 4E-BP1 in an mTOR-dependent but PI3K-independent manner. PA may exert its 

effects by direct binding to the FRB domain in mTOR (Fang et al., 2001). The 

significance of PA in mTOR signaling however has to be elucidated. 

 

Nutrients 
Nutrients in the form of amino acids have been implicated in the regulation of mTOR 

signaling. Starvation for amino acids, in particular branched amino acids like leucine, 

results in a rapid dephosphorylation of p70S6K and 4E-BP1 (Hara et al., 1998; Wang 

et al., 1998; Xu et al., 1998). Readdition of amino acids restores p70S6K and 4E-BP1 

in an mTOR-dependent manner. Abundant leucine increases mTOR activity and the 

stimulatory effect of leucine on mTOR is not blocked by the PI3K inhibitor wortmannin. 

Additionally, leucine does not change the activities of PI3K and Akt indicating that 

leucine signals to mTOR by a mechanism that is independent of the growth factor 
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induced PI3K signaling pathway. How amino acids are sensed by mTOR is unknown. 

However, TSC1-TSC2 and Rheb have been implicated in the nutrient sensing process 

because overexpression of Rheb can bypass the need for amino acids to activate 

mTOR signaling and loss of TSC1-TSC2 renders cells resistant to amino acid 

starvation suggesting that mTOR may sense amino acids via TSC1-TSC2/Rheb 

signaling network (Gao et al., 2002; Saucedo et al., 2003). 

 

Energy 
A high rate of translation is coupled to a high energy demand. ATP depletion causes a 

decrease in p70S6K and 4E-BP1 phosphorylation resulting in the inhibition of 

translation. It was suggested that mTOR may sense ATP levels since it has a high KM 

(1mM) for ATP (Dennis et al., 2001). However, the ATP levels do not change 

drastically in a cell and the cellular concentration of ATP is higher than the predicted KM 

of ATP for mTOR. Therefore, small changes of the ATP concentration could not be 

sensed by mTOR (Proud, 2002). mTOR may sense the energy status of a cell through 

the AMP-activated protein kinase (AMPK) (Inoki et al., 2003b). AMPK is activated 

under low cellular energy conditions (high AMP/ATP ratio). Activated AMPK 

downregulates high energy demanding processes like protein synthesis and stimulates 

ATP generation processes, such as glycogenolysis. AMP as well as the drug AICAR, 

an AMP analogue are able the activate AMPK (Hardie and Hawley, 2001). Activation of 

AMPK by AICAR has been demonstrated to inhibit phosphorylation of p70S6K and 4E-

BP1 via the mTOR pathway (Kimura et al., 2003). Recently, it has been reported that 

activated AMPK directly phosphorylates TSC2 and that energy starvation-induced 

dephosphorylation of p70S6K is dependent on TSC2 (Inoki et al., 2003b). mTOR may 

therefore be regulated by AMP/ATP ratio via AMPK and TSC2. 

 

Another cellular component inorganic polyphosphate (poly P) has been implicated in 

the regulation of mTOR. Poly P are linear polymers of many hundreds of phosphates 

present in all organisms from bacteria to animals. In E. coli poly P is increased in 

response to starvation and stimulates degradation of ribosomal proteins by activation of 

the Lon protease (Kuroda et al., 2001). Poly P has been reported to stimulate mTOR 

activity in vitro and expression of yeast polyphosphatase in human cells leads to 

inhibition of the insulin or amino acid-stimulated phosphorylation of 4E-BP1 suggesting 

a role for poly P in mammalian cells (Wang et al., 2003). 
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1. 3. 3. TOR and control of cell growth 
 
Genetic studies in Drosophila revealed that the insulin receptor signaling pathway and 

the TOR signaling pathway play an important role in the control of cell growth. Loss-of-

function mutations of components that act positively in the pathway such as CHICO 

(the insulin receptor substrate homologue), dPI3K and dAkt results in smaller flies with 

fewer and smaller cells. Loss-of-function mutations of negative regulators, such as 

dPTEN or dTSCs result in enhanced growth and bigger flies. Importantly, mutation of 

dTOR or dS6K leads to smaller flies without affecting the cell number indicating that 

TOR controls the size of individual cells but not proliferation (Saucedo and Edgar, 

2002; Stocker and Hafen, 2000). 

 

How is growth coordinated in a multicelluar organism? It has been recently reported 

that in Drosophila the fat body, equivalent to the liver in mammals, plays an important 

role in responding to nutritional cues. In a genetic screen in Drosophila a mutation, slif 

(slim fast) was identified as affecting cell growth (Colombani et al., 2003). Slif encodes 

an amino acid transporter and loss-of-function slif mutant flies exhibited a phenotype 

that is similar to amino acid starved flies. Downregulation of slif specifically in the fat 

body resulted in the reduction of the larvae size suggesting that amino acid deprivation 

in the fat body alone affects growth of all larval tissues. Therefore, amino acid 

availability sensed in the fat body appears to trigger a response, which coordinates 

growth in all different tissues. TOR has been implicated to participate in the amino acid 

sensing mechanism in the fat body as inhibition of TOR resulted in phenotypes that are 

similar to those induced by downregulation of slif. In contrast, the PI3K signaling 

pathway was not involved in the amino acid sensing in the fat body. However, PI3K 

activity was inhibited in peripheral tissues in response to activation of the amino acid 

sensor mechanism in the fat body triggered by loss of slif function or inhibition of the 

TOR pathway in the fat body. How the fat body signals to other tissues is not known. 

Thus, nutritional conditions sensed in the fat body appear to trigger a humoral signal 

that regulates global growth of an organism. Since TOR is involved in the amino acid 

sensing mechanism in the fat body TOR does not only control cell-autonomous growth 

but also participates in the systemic growth control. 
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1. 4. TOR signaling in Saccharomyces cerevisiae 
 
Similar to TOR signaling in higher eukaryotes, the two TOR proteins in yeast, TOR1 

and TOR2 regulate cell growth in response to nutrients. Evidence that TOR in yeast 

integrates nutrient-derived signals will be discussed in this section. 

 

 

TOR has two functions 
Disruption of TOR1 and TOR2 individually or in combination results in different 

phenotypes. TOR1 disruption results in a slightly reduced growth rate at normal 

temperature but is lethal at high temperature (39°C) and sensitive to salt (Crespo et al., 

2001; Heitman et al., 1991a; Helliwell et al., 1994; Kunz et al., 1993). In contrast, 

depletion of TOR2 is lethal. Cells lacking TOR2 undergo a few cell divisions before 

arresting randomly in the cell cycle (Helliwell et al., 1998a; Kunz et al., 1993). The 

lethality of a TOR2 disruption cannot be suppressed by overexpression of TOR1. Cells 

lacking both TOR1 and TOR2 exhibit G1 cell cycle arrest like rapamycin-treated cells. 

These observations lead to the suggestion that TOR performs two functions. TOR1 and 

TOR2 perform a redundant, rapamycin-sensitive function in G1 progression, and in 

addition, TOR2 has an essential, unique function that TOR1 cannot perform. This 

unique function of TOR2 appears to be insensitive to rapamycin since rapamycin 

resistant TOR1 mutant alleles can support growth in the presence of rapamycin 

(Helliwell et al., 1998a; Kunz et al., 1993; Zheng et al., 1995). The functional difference 

between TOR1 and TOR2 was suggested to involve the HEAT repeats as the HEAT 

repeats of TOR1 and TOR2 are not interchangeable, whereas the catalytic domains of 

TOR1 and TOR2 are interchangeable (Helliwell et al., 1994).   

 

Below, the two TOR signaling branches in yeast are discussed. The rapamycin-

sensitive signaling branch accounts for the temporal control of cell growth, whereas the 

TOR2-unique signaling is rapamycin-insensitive and responsible for spatial control of 

cell growth. Within this thesis (Part 2) we show that these two signaling branches are 

controlled by two distinct TOR complexes. While TOR complex 1 (TORC1) mediates 

temporal control of cell growth via the rapamycin-sensitive branch, spatial control of cell 

growth is mediated by TOR complex 2 (TORC2) (Loewith et al., 2002) (illustrated in 

Fig. 1.3.). 

 

11



1. 4. 1. Temporal control of cell growth 
 
Growth of S. cerevisiae cells is temporally controlled. Synthesis of macromolecules 

occurs when nutrients are available. TOR signaling links nutrient availability to 

macromolecular synthesis and therefore mediates temporal control of cell growth. TOR 

positively regulates anabolic processes such as translation initiation, ribosome 

biogenesis and negatively regulates catabolic processes such as RNA degradation, 

autophagy and other degradative pathways (Schmelzle and Hall, 2000). Thus, TOR 

signaling ensures that under good nutrient conditions a high rate of translation is 

maintained, whereas under poor nutrients conditions cell growth arrests. 

 

 

Readouts of the rapamycin-sensitive TOR signaling branch 
 
Translation initiation 
Rapamycin treatment or TOR depletion causes a severe decrease in translation 

initiation and an arrest in the early G1 phase of the cell cycle (Barbet et al., 1996). The 

G1 arrest observed upon rapamycin treatment appeared to be a consequence of the 

translation defect since cap-independent translation of the G1 cyclin CLN3 suppresses 

the rapamycin-induced G1 arrest. TOR1 and TOR2 seem to activate translation 

initiation via the initiation factor eIF4E, the cap-binding subunit of the heterotrimeric 

initiation factor 4F (eIF4F) (Barbet et al., 1996; Danaie et al., 1999). Similar to the 

regulation of cap-dependent translation in mammals EAP1 blocks cap-dependent 

translation via competition with eIF4G thereby inhibiting recruitment of eIF4G to eIF4E. 

In addition, disruption of EAP1 confers partial resistance to rapamycin underscoring a 

role for EAP1 in TOR signaling (Cosentino et al., 2000).  

 

TOR also regulates translation initiation through GCN2 (Cherkasova and Hinnebusch, 

2003). In starved cells GCN2 is active and phosphorylates the α-subunit of translation 

initiation factor 2 (eIF2α) resulting in a reduction of general protein synthesis 

(Hinnebusch and Natarajan, 2002). However, through a specialized reinitiation 

mechanism involving short open reading frames (uORF) in the GCN4 mRNA leader, 

GCN4 is derepressed in response to starvation and eIF2α phosphorylation. GCN4 is a 

transcription factor regulating genes involved in amino acid biosynthesis. GCN2, the 

eIF2α kinase is activated by uncharged tRNAs that accumulate during amino acid 
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starvation and bind to a histidyl-tRNA synthetase-related (HisRS) domain in GCN2. 

Under favourable growth conditions kinase activation is prevented by intramolecular 

interactions between the kinase domain and the HisRS domain of GCN2. Activation of 

GCN2 requires release of the autoinhibitory structure by tRNA leading to 

autophosphorylation of the kinase (Hinnebusch and Natarajan, 2002). It has been 

recently reported that TOR controls phosphorylation of Ser577, a phosphorylation site 

that is affecting the activity of GCN2 (Cherkasova and Hinnebusch, 2003). Inactivation 

of TOR by rapamycin results in the dephosphorylation and activation of GCN2 leading 

to downregulation of general translation and activation of GCN4. 

 

 

Ribosome biogenesis 
Ribosome biogenesis is a highly energy-demanding process and therefore has to be 

regulated according to the growth conditions and availability of nutrients (Warner, 

1999). TOR controls ribosome biogenesis at both a transcriptional and a translational 

level (Powers and Walter, 1999). Inhibition of TOR by rapamycin or nutrient starvation 

results in a downregulation of RNAII-dependent transcription of ribosome protein genes 

as well as transcription of rRNA and tRNA by polymerase I and polymerase III. In 

addition, TOR also regulates processing of the 35S precursor rRNA. 

  

 

Protein traffic and degradation 
Yeast cells can use a variety of compounds as nitrogen or carbon sources. Transport 

of these nutrients across the cell membrane is essential for cell growth and viability. 

Amino acids are essential for cell growth since they constitute the building blocks for 

protein synthesis. Yeast contain two classes of amino acid permeases which are 

regulated according to the available nitrogen source (Sophianopoulou and Diallinas, 

1995). One class consists of the low affinity, broad specificity permeases, including the 

general amino permease GAP1. The other class contains high affinity, amino acid 

specific permeases, such as the tryptophan transporter TAT2. These two classes of 

permeases are regulated in an inverse manner: under starvation conditions GAP1 is 

upregulated and routed to the plasma membrane, while specific permeases like TAT2 

are degraded. TOR has been implicated in the turnover of amino acid permease as 

inhibition of TOR by rapamycin or nitrogen starvation leads to ubiquitinylation, vacuolar 

sorting and degradation of TAT2 (Schmidt et al., 1998). TOR controls the stability of 
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TAT2 via the protein kinase NPR1. NPR1 is a phosphoprotein whose phosphorylation 

is regulated in a TOR-dependent manner. Under favourable conditions TOR keeps 

NPR1 in a highly phosphorylated and inactive state. Upon TOR inhibition by rapamycin 

or nitrogen starvation NPR1 is rapidly dephosphorylated and activated. Active NPR1 

leads to the subsequent ubiquitinylation and degradation of TAT2 (Schmidt et al., 

1998). However, the substrate of NPR1 is not known. On the other hand, TOR 

regulates GAP1 inversely to TAT2. Upon TOR inactivation by rapamycin GAP1 is 

transcriptionally upregulated (Beck and Hall, 1999). GAP1 is also posttranslationally 

controlled by NPR1 as NPR1 is required for sorting to and stabilization of GAP1 at the 

plasma membrane under starvation conditions (De Craene et al., 2001; Vandenbol et 

al., 1990). It was proposed that TOR may negatively control sorting of GAP1 by 

keeping NPR1 in its phosphorylated and inactive state (Beck et al., 1999). 

 

 

Autophagy 
When starved yeast cells degrade their cytosol and organelles to ensure survival under 

these unfavourable growth conditions. This catabolic process is mediated by 

autophagy involving the enclosure of cytoplasm by a double membrane structure 

(autophagosome) and the subsequent delivery to the vacuole (Klionsky and Ohsumi, 

1999). TOR has been implicated in autophagy as inhibition of TOR by rapamycin 

induces autophagy (Noda and Ohsumi, 1998). TOR controls autophagy via APG13 

(Kamada et al., 2000). APG13 forms a complex with the protein kinase APG1 and 

formation of APG13-APG1 complex is required for autophagy. Under good nutrient 

conditions TOR maintains APG13 in a hyperphosphorylated form preventing the 

association with APG1 and thereby also autophagy. Starvation or treatment with 

rapamycin leads to a dephosphorylation of APG13, association of APG1 with APG13 

and induction of autophagy. 

 

 

Transcription 
TOR positively and negatively regulates transcription. Under favourable nutrient 

conditions TOR activates transcription of ribosomal protein, rRNA and tRNA genes 

(Powers and Walter, 1999). TOR also inhibits transcription of many nutrient or stress-

regulated genes mainly by maintaining several nutrient and stress-responsive 
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transcription factors in the cytoplasm (Beck and Hall, 1999; Cardenas et al., 1999; 

Hardwick et al., 1999; Komeili et al., 2000). 

 

GATA transcription factors GLN3 and GAT1 

GLN3 and GAT1 control genes which are involved in the uptake and the assimilation of 

alternative nitrogen sources (Magasanik and Kaiser, 2002). GLN3 and GAT1 reside in 

the cytoplasm in cells, which are grown in the presence of a good nitrogen source 

(glutamine, glutamate or ammonia). Upon shift to a poor nitrogen source (urea or 

proline) or upon TOR inactivation by rapamycin, GLN3 and its cytoplasmic anchor 

URE2 are dephosphorylated resulting in a dissociation of GLN3 from URE2. 

Subsequently, GLN3 translocates to the nucleus and induces the expression of its 

target genes (Beck and Hall, 1999).  

 

RTG1 and RTG3 

RTG1 and RTG3 regulate expression of tricarboxylic acid and glyoxylate cycle genes. 

Expression of these genes primarily leads to the synthesis of α-ketoglutarate, which is 

required for the de novo synthesis of amino acids such as glutamate and glutamine. 

Nitrogen starvation or inhibition of TOR by rapamycin leads to the nuclear translocation 

of RTG1/3 and the activation of their target genes (Komeili et al., 2000). TOR 

negatively controls the activity of RTG1 and RTG3 through the regulatory proteins 

RTG2 and MKS1 (Dilova et al., 2002; Liu et al., 2003). 

 

Zn-finger transcription factor MSN2 and MSN4 

MSN2 and MSN4 are redundant transcription factors which activate a large number of 

genes in response to many types of stress including carbon starvation (Gorner et al., 

1998; Smith et al., 1998). Additionally, MSN2/4 are negatively controlled by TOR. 

Under optimal growth conditions MSN2/4 are associated with the 14-3-3 proteins 

BHM1 and BMH2 and localized in the cytoplasm. Upon carbon-starvation or rapamycin 

treatment MSN2/4 are released from BMH1/2 and translocate to the nucleus (Beck and 

Hall, 1999). 
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Effector pathways of the rapamycin-sensitive TOR signaling branch 
 
The TOR effector pathways of the rapamycin-sensitive signaling branch, which 

mediates the temporal control of cell growth, are not known in all cases. Some of the 

readouts of the rapamycin-sensitive signaling branch involve the negative regulation of 

type 2A phosphatases by TOR. 

 

 

TOR regulates protein phosphatases 
Type 2A phosphatases (PP2A) are composed of a catalytic (C) and two regulatory 

subunits (A and B). While the catalytic subunit is broadly active the regulatory subunits 

determine the specificity towards a target protein as well as the subcellular localization 

of the phosphatase complex (Goldberg, 1999). The PPH21 and PPH22 catalytic 

subunits associate with the regulatory A subunit, TPD3, and one of two B subunits, 

CDC55 or RTS1 (Zabrocki et al., 2002). The PP2A-related phosphatase is composed 

of the catalytic subunit SIT4 which associates with one of four regulatory proteins, 

SAP4, SAP155, SAP185, SAP190 (Luke et al., 1996). TOR negatively controls SIT4 

and PP2A by promoting the association of the catalytic subunits PPH21/22 and SIT4 to 

TAP42 (Di Como and Arndt, 1996). Binding of the catalytic subunits to TAP42 prevents 

the association of the catalytic subunits with regulatory subunits leading to the inhibition 

of SIT4 and PP2A. TOR might regulate the association of TAP42 with PPH21/22 by 

phosphorylation of TAP42 (Jiang and Broach, 1999), whereas the binding of TAP42 to 

SIT4 seems to be indirectly controlled by TOR through the TAP42-interacting protein 

TIP41 (Jacinto et al., 2001). TOR maintains TIP41 in a phosphorylated form and 

thereby promotes the binding of TAP42 to SIT4. Upon TOR inactivation by rapamycin 

or under starvation conditions TIP41 is dephosphorylated and binds TAP42. As a 

consequence SIT4 is released from TAP42 and is activated. Activated SIT4 is able to 

dephosphorylate more TIP41 resulting in the amplification of the phosphatase activity.  

 

TOR controls several readouts via the TAP42-SIT4 effector pathway. The 

phosphorylation status and therefore also the activity of the transcription factors GLN3 

and GAT1, the protein kinase NPR1 and eIF2α kinase GCN2 are regulated in a SIT4-

dependent manner (Loewith and Hall, 2004). 
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TOR and RAS signaling pathway 
Similar to the TOR pathway the RAS/cyclic AMP (cAMP) pathway plays a major role in 

the control of growth in response to nutrients. The RAS signaling pathway consists of 

two redundant small GTPases RAS1 and RAS2 (RAS), which are activated by the 

guanine nucleotide exchange factor CDC25. In its activated state RAS activates 

adenylate cyclase (encoded by CDC35) leading to the production of cAMP. Protein 

kinase A (PKA) is composed of a catalytic subunit (redundantly encoded by TPK1, 

TPK2 and TPK3) and the regulatory subunit (encoded by BCY1). cAMP causes a 

release of TPK from BCY1 which activates the kinase. Similar to nutrient-depleted 

cells, inactivation of PKA causes a cell cycle arrest in G1, an accumulation of storage 

carbohydrates (glycogen and trehalose) and a downregulation of ribosome biogenesis. 

Downstream targets of PKA include enzymes involved in intermediary carbon 

metabolism, the transcription factors MSN2 and MSN4 and RIM15, a protein kinase 

involved in stationary phase induction (Thevelein and de Winde, 1999). 

 

Recently, the RAS/cAMP signaling pathway have been proposed to act as an effector 

pathway of the TOR signaling pathway (Schmelzle et al., 2004). It has been shown that 

activation of the RAS/cAMP pathway renders cells resistant to rapamycin-induced, 

SIT4-independent processes, such as nuclear translocation of MSN2, accumulation of 

glycogen, and downregulation of ribosome biogenesis. On the other hand, activation of 

the RAS/cAMP pathway did not affect rapamycin-induced processes regulated by 

SIT4, like the nuclear transport of GLN3 and the phosphorylation of NPR1. Thus, TOR 

appears to control rapamycin-sensitive readouts that are independent of SIT4 through 

the RAS/cAMP pathway. TOR may control the RAS/cAMP pathway via regulating the 

localization of the PKA catalytic subunits as TOR inactivation by rapamycin leads to the 

nuclear translocation and presumably inactivation of TPK1. However, the mechanism 

by which TOR regulates the RAS/cAMP pathway remains unclear as it has been also 

suggested that MSN2 is controlled in parallel by TOR and the RAS/cAMP pathway 

(Gorner et al., 1998; Gorner et al., 2002).  
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1. 4. 2. Spatial control of cell growth 
 
TOR does not only mediate the temporal control of cell growth but also the spatial 

control of cell growth. Growth of a daughter cell in yeast occurs at a discrete site (the 

bud site) on the surface of a mother cell. TOR2 regulates spatial control of cell growth 

via the organization of the actin cytoskeleton. Polarization of the actin cytoskeleton 

orients the secretory pathway to the bud and therefore ensures that newly synthesized 

proteins and other cellular constituents are targeted to the growth site. 

 

 

Organization of the actin cytoskeleton 
In yeast cells growth is polarized, occurring at a defined position at the cell surface. 

The structural basis for cell polarity is provided by the actin cytoskeleton. The yeast 

actin cytoskeleton is organized into at least three morphologically distinct structures: 

cortical patches, actin cables and a cytokinetic ring. Cortical patches are discrete 

cytoskeletal bodies whereas actin cables are long bundles of actin filaments. The 

distribution of actin patches and cables is polarized in a cell-cycle dependent manner. 

The polarity is established by actin cables forming a network that polarizes the cell 

towards the bud. Cortical patches are thought to maintain polarity by recycling 

components such as enzymes necessary for cell wall synthesis ensuring a proper cell 

wall assembly when growth is redirected through the cell cycle. The function of the 

actin cytoskeleton is to provide cell polarity that guides a variety of events, such as 

transport of vesicles from the Golgi and endosomal elements from the mother cell into 

the bud, organelle movement and positioning, mRNA anchorage, endocytosis and 

mitotic spindle orientation (Pruyne and Bretscher, 2000a; Pruyne and Bretscher, 

2000b). The actin cytoskeleton is also required to respond to environmental signals. 

The organization of the actin cytoskeleton is altered in response to nutrient availability, 

pheromone or change in osmolarity or temperature (Beck et al., 2001). 

 

The actin cytoskeleton is organized in a cell cycle dependent manner. During early G1 

actin cables and patches are randomly distributed in the cytoplasm whereas late in G1 

when the cell initiates a new cell cycle the actin cytoskeleton polarizes. Actin patches 

concentrate at the preselected bud site and actin cables orients towards the bud site. 

During bud emergence and maturation actin patches are located in the bud while actin 

cables orient from the mother cells into the bud of the daughter cell. At the end of bud 
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growth the polarization is lost and the actin patches and cable redistribute randomly in 

the mother and daughter cell. Prior to cytokinesis a ring consisting of F-actin is 

assembled at the bud neck, then contracts and disassembles after mitosis. Following 

cytokinesis the actin cytoskeleton is repolarized. Actin patches concentrate at the bud 

neck while actin cables orient towards the bud neck directing synthesis of new cell 

walls. The cell-cycle dependent polarization of the actin cytoskeleton is established by 

RHO-type GTPases (Beck et al., 2001; Schmidt and Hall, 1998). 

 

 

RHO-GTPases 
RHO-GTPases play a pivotal role in the organization of the actin cytoskeleton not only 

in S. cerevisiae but also in higher eukaryotes (Etienne-Manneville and Hall, 2002). Like 

all small G-proteins, RHO-GTPases cycle between an active, GTP-bound, and an 

inactive, GDP-bound, conformation. In its GTP-bound form the GTPase is able to 

recognize target proteins and thereby exert a signaling response.  Active GTPase 

returns to its inactive state through hydrolysis of GTP. The cycle between GTP-bound 

and GDP-bound form is regulated by three classes of proteins: GEFs (guanine 

nucleotide exchange factors), GAPs (GTPase-activating proteins) and GDIs (guanine 

nucleotide exchange inhibitors). The GEFs activate the GTPase by catalyzing the 

nucleotide exchange whereas the GAPs stimulate the hydrolysis of GTP leading to the 

inactivation of the GTPase. 

 

There are six RHO-GTPases in S. cerevisiae, CDC42, RHO1, RHO2, RHO3, RHO4 

and RHO5 (Chant, 1999). CDC42 plays a central role in controlling the polarization of 

the yeast cell during budding and mating. RHO1 and RHO2 are important for 

maintenance of the actin cytoskeleton polarization and cell wall activities during bud 

growth. Bud growth is also controlled by RHO3 and RHO4. 

 

 
TOR2 controls the organization of the actin cytoskeleton 
Cells disrupted for TOR2 exhibit a defect in the organization of the actin cytoskeleton 

and it has been reported that TOR2 signals to the actin cytoskeleton through activation 

of the small GTPase RHO1 (Schmidt et al., 1997; Schmidt et al., 1996). Deletion of 

SAC7, a GAP for RHO1, suppresses the growth defect of a tor2 mutant but not of a 

tor1 tor2 double mutant indicating that deletion of SAC7 only suppresses a defect in the 
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signaling branch that is specifically controlled by TOR2. Conversely, overexpression of 

ROM2, a GEF for RHO1, or overexpression of the small GTPases RHO1 and RHO2 

are able to restore the growth defect of tor2 mutant cells. TOR2 appears to regulate the 

GTPase switch via ROM2 as the GDP/GTP exchange activity of ROM2 toward RHO1 

is drastically reduced in a tor2 mutant (Schmidt et al., 1997). Thus, TOR2 activates 

RHO1 and RHO2 but the mechanism by which TOR2 controls the activity of ROM2 is 

not known. 

 

Activated RHO1 in turn regulates different effectors including PKC1, the 1,3-β-glucan 

synthase FKS1 and FKS2, the formin-family protein BNI1, the two-component signaling 

protein SKN7, and SEC7, a spatial landmark for exocytosis (Alberts et al., 1998; Guo et 

al., 2001; Schmidt and Hall, 1998). Suppressor studies in tor2 mutant strains using 

different RHO1 effectors indicated that TOR2 signals to the actin cytoskeleton via the 

RHO1 effector PKC1 (Helliwell et al., 1998b). PKC1 controls a mitogen-activated 

protein kinase (MAPK) cascade comprising BCK1 (MEKK), the redundant MKK1 and 

MKK2 (MEK), and MPK1 (MAPK). Activation of the pathway leads to the upregulation 

of genes that are involved in cell wall biogenesis (Heinisch et al., 1999). Further the 

PKC1-MAP kinase pathway have been implicated in the organization of the actin 

cytoskeleton (Helliwell et al., 1998b). First, rho1 mutant cells display an actin defect 

that is suppressed by overexpression of PKC1. Second, overexpression of components 

of the PKC1-MAP kinase cascade restored the actin defect of tor2 mutant cells. Thus, 

by controlling cell wall biosynthesis and the actin cytoskeleton the RHO1-PKC1-MAP 

kinase pathway maintains cell shape and integrity and is therefore also referred as cell 

integrity pathway. The cell integrity pathway is controlled by a variety of signaling 

events including cell wall sensing mechanisms via WSC1 and MID2, lipid signaling 

mediated by MSS4, and actin depolarization (Audhya and Emr, 2002; Harrison et al., 

2001; Heinisch et al., 1999). It has to be noted that the PKC1-MAP kinase pathway is 

required for entry of starved cells into stationary phase and viability in G0, a process 

that includes remodelling of the cell wall and that is also controlled by the rapamycin-

sensitive TOR signaling branch (Krause and Gray, 2002; Torres et al., 2002).  
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1. 4. 3. TOR controls cell growth in response to nutrients 
 
Several lines of evidence indicate that TOR controls cell growth in response to 

nutrients. First evidence that TOR may respond to nutrients came from the observation 

that inactivation of TOR by rapamycin results in an early G1 arrest, reduced protein 

synthesis and accumulation storage carbohydrates (glycogen), a phenotype 

characteristic for starved cells. Thus, inactivation of TOR appears to induce a 

starvation response (Barbet et al., 1996). The role of TOR in nutrient sensing was 

further supported by the findings that TOR controls autophagy, ribosome biogenesis as 

well as the activity of amino acid permeases via NPR1, all of which are regulated in 

response to nutrients (Noda and Ohsumi, 1998; Powers and Walter, 1999; Schmidt et 

al., 1998). Analysis of the genome-wide transcription program in rapamycin treated 

cells revealed that TOR controls transcription of nutrient-regulated genes (Cardenas et 

al., 1999; Hardwick et al., 1999). TOR regulates these genes through several 

transcription factors, including GLN3, GAT1, RTG1/RTG3 and MSN2/MSN4 (Beck and 

Hall, 1999; Komeili et al., 2000). Since GLN3, GAT1 and RTG1/RTG3 are regulated in 

response to the nitrogen source and MSN2/MSN4 in response to the carbon source it 

has been proposed that TOR signaling might respond to nitrogen and possibly carbon. 

How might TOR sense these nutrients? In particular the nitrogen source appears to 

play an important role in the TOR signaling as genes required for the import and 

metabolism of alternative nitrogen sources are strongly upregulated upon rapamycin 

treatment (Cardenas et al., 1999; Hardwick et al., 1999; Shamji et al., 2000). Yeast 

cells can use a variety of nitrogen sources. In order to use a compound as nitrogen 

source yeast cells have to convert this compound into glutamate or glutamine which 

serve as nitrogen donors. α-ketoglutarate derived from the TCA cycle is the precursor 

for glutamate while glutamine, the preferred nitrogen source, is synthesized out of 

ammonium and glutamate by glutamine synthetase (GS), encoded by GLN1(ter Schure 

et al., 2000). It has been reported that glutamine controls a subset of TOR-regulated 

readouts (Crespo et al., 2002). Chemical inhibition of GS leads to the depletion of 

glutamine and results in the activation of the TOR-controlled transcription factors 

GLN3, RTG1 and RTG3, whereas other TOR-regulated transcription factors, GAT1, 

MSN2, MSN4 and expression of ribosomal genes are not affected by glutamine levels. 

It was proposed that TOR might sense a variety of nutrients and accordingly trigger 

different responses (Kuruvilla et al., 2001; Shamji et al., 2000). Glutamine might be one 
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of these nutrients serving as an indicator of the nutritional status of a cell.  How TOR 

senses glutamine or other nutrients remains unknown. 

 

The TOR signaling pathway has been recently linked to the RAS/cAMP pathway 

underscoring a role of TOR in control of cell growth in response to nutrients (Schmelzle 

et al., 2004). Similar to the TOR signaling pathway the RAS/cAMP pathway is 

controlled by nutrient availability. While TOR is likely regulated in response to nitrogen, 

the RAS/cAMP pathway is controlled in particular by the presence of glucose which is 

sensed by G-protein-coupled receptor system consisting of GPR1 and its Gα protein 

GPA2 (Thevelein and de Winde, 1999). It was therefore suggested the RAS/cAMP 

pathway is controlled by different inputs: TOR may mediate the nitrogen-responsive 

input, whereas the glucose-responsive input is sensed by the GPR1/GPR2 system. 

 

Thus, similar to TOR in higher eukaryotes TOR in yeast controls cell growth in 

response to nutrients, but the mechanism by which nutrient levels or the quality of 

nutrients are sensed by TOR is not understood. Unlike higher organisms where TOR is 

controlled in addition to nutrients by growth factors, yeast cells lack a growth factor 

signaling pathway. It is thought that the TOR signaling pathway may represent an 

ancestral pathway developed in unicellular organisms that controls cell-autonomous 

growth in response to nutrients; the growth factor signaling pathway evolved in higher 

eukaryotes impinges on TOR to coordinate growth of different tissues (Jacinto and 

Hall, 2003).  
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2. Identification of TOR complexes 
 
TOR controls two signaling branches that can be genetically and functionally 

discriminated. TOR1 and TOR2 redundantly regulate translation, transcription and 

ribosome biogenesis in a rapamycin-sensitive fashion. TOR2 but not TOR1 regulates 

polarization of the actin cytoskeleton in a rapamycin-insensitive fashion. How specificity 

is achieved in the TOR signaling network was not understood. Since TOR is composed 

of multiple domains such as the HEAT repeats which could serve as potential protein-

protein interaction domains it was speculated that TOR might interact with other, so far 

unknown proteins. The biochemical purification of both TOR1 and TOR2 presented in 

the following article lead to the identification of two structurally and functionally distinct 

TOR complexes which account for the specificity of TOR signaling. My contribution to 

this work was the characterization of AVO1.  
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2. 2. Additional results 
 

AVO1 is not required for the rapamycin-sensitive TOR-sensitive function 
Previously, we showed that AVO1 is required for the rapamycin-insensitive TOR2-

unique signaling branch, the organization of the actin cytoskeleton. To test whether 

AVO1 is only involved in the TOR2-unique function, the effect of AVO1 depletion on the 

rapamycin-sensitive TOR signaling branch was examined. TOR controls the 

phosphorylation status and thereby the activity of NPR1 (Schmidt et al., 1998). Under 

favourable nutrient conditions TOR maintains NPR1 in a highly phosphorylated and 

inactive state. Upon TOR inactivation by rapamycin treatment NPR1 is 

dephosphorylated by SIT4 and activated. To check the effect of AVO1 on NPR1 

phosphorylation AVO1 was put under the control of a galactose-inducible and glucose-

repressible promoter and the phosphorylation status of NPR1 was detected by gel 

mobility shift. NPR1 phosphorylation was similar in wild-type cells or cells 

overexpressing AVO1 (Fig. 2.1; compare lane 1, 2 to lane 5, 6). NPR1 phosphorylation 

was similarly unaltered by depletion of AVO1 (Fig. 2.1.; compare lane 3, 4 to lane 7, 8). 

As in wild-type cells, NPR1 was phosphorylated under favourable growth conditions 

and dephosphorylated upon treatment with rapamycin. Thus, AVO1 is not required for 

the regulation of NPR1 suggesting that AVO1 does not play a role in the rapamycin-

sensitive TOR signaling branch.  

 
 
 
 
 
 
 
 
 

Figure 2.1. AVO1 does not affect the phosphorylation status of NPR1 

Wild-type (TB50a) or GAL1 promoter-AVO1 (RL23-1c) strains carrying HA-NPR1 (pEJ23, YEplac181::HA-

NPR1) were grown for 15 hr in either SGal/Gly-leu or SD-leu medium to log phase at 30°C and then either 

treated for 10 min with 100 ng/ml rapamycin or drug vehicle (90% ethanol, 10% Tween-20). Cells were 

harvested and lysed. Total cellular extracts (30 µg total protein) were fractionated on 7.5% SDS-PAGE, 

transferred to nitrocellulose, and probed with anti-HA antibody. 
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Is AVO1 a conserved protein? 
The components of the rapamycin-sensitive TORC1, KOG1 and LST8 are highly 

conserved from yeast to flies to humans. Similar to TOR1 and TOR2 in yeast, mTOR 

forms a complex with raptor (KOG1 in yeast) and mLST8 (Hara et al., 2002; Kim et al., 

2002; Loewith et al., 2002). Raptor and mLST8 seem to be important for the 

rapamycin-sensitive functions of mTOR, such as phosphorylation of 4E-BP1 and 

p70S6K. The components of the rapamycin-insensitive TORC2 do not have strong 

homologues in higher organisms. AVO1 displays a similarity to hSIN1, a human protein 

that was identified as a RAS suppressor in yeast (Colicelli et al., 1991). The overall 

identity of the two proteins is 19%. The two proteins are most similar in the C-terminus 

of AVO1, whereas the N-terminus of AVO1 is not conserved. hSIN1 exhibits a much 

smaller molecular weight (58kDa) compared to AVO1 (130kDa). Tissue blot analysis 

revealed that the expression level of hSIN1 was similar to that of mTOR (Loewith et al., 

2002). Both are highly expressed in muscle, heart, liver and kidney. To test a possible 

interaction between hSIN1 and mTOR, recombinant, tagged hSIN1 and mTOR were 

transfected into HEK-239 cells to perform coimmunoprecipitations. Myc- tagged hSIN1 

did not precipitate with HA- tagged mTOR in HEK-239 cells (data not shown). In 

collaboration with the group of Markus Rüegg (Biozentrum, Basel) a polyclonal 

antibody against hSIN1 was raised to check whether endogenous, untagged hSIN1 

could interact with mTOR. However, endogenous hSIN1 was not able to interact with 

mTOR by coimmunoprecipitation in HEK-239 leading to the conclusion that hSIN1 

does not interact with mTOR under the conditions we tested.  

 

 

 

2. 3. Discussion 
 
The additional data underscore the existence of two structurally and functionally distinct 

TOR complexes in yeast. AVO1, a member of TORC2 appears to be only required for 

the TOR2-unique signaling branch and did not affect the rapamycin-sensitive TOR 

signaling branch such as the phosphorylation status of NPR1 nor the expression of 

GLN3 and RTG1/3 target genes (Loewith et al., 2002). 

 

Whether AVO1 is a conserved protein is unclear. We failed to detect an interaction 

between the putative AVO1 homologue hSIN1 and mTOR by coimmunoprecipitation. 
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However, there is evidence that some protein-protein interactions of TORC in 

mammalian cells are rather unstable and very sensitive to detergents (Hara et al., 

2002; Kim et al., 2002). It is possible that our conditions are not suited to detect an 

association between hSIN1 and mTOR. It is also possible that the interaction between 

hSIN1 and mTOR is dependent on the cell type. Different TOR complexes could be 

formed depending on the function of mTOR in various tissues.  

 

Nevertheless, it has been recently found, that there is a homologue of AVO3 in 

mammalian cells indicating the existence of different and possibly rapamycin-

insensitive TOR complexes in mammalian cells which might also be important for the 

organization of the actin cytoskeleton (R. Loewith, E. Jacinto unpublished data). 
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3. Characterization of AVO1 and LST8 
 

3. 1. Introduction 
 
In yeast TOR exists in two complexes, TOR complex 1 (TORC1) and TOR complex 2 

(TORC2) as shown in the first part of this thesis. These two complexes, which contain 

both common and distinct proteins, account for the specificity of TOR signaling. 

TORC1 mediates the rapamycin-sensitive signaling branch, which regulates 

transcription, translation and ribosome biogenesis. TORC2 signaling is rapamycin-

insensitive and is required for the organization of the actin cytoskeleton. How TORC2 

controls the organization of the actin cytoskeleton is not completely known. As 

introduced in the general introduction (Part 1), TOR2 is thought to regulate actin via the 

control of the RHO1 GTPase switch (Helliwell et al., 1998b; Schmidt et al., 1997). Upon 

activation of RHO1 by its exchange factor ROM2, activated RHO1 interacts with, and 

activates PKC1. Activated PKC1 subsequently signals to actin by activation the MAP 

kinase cascade consisting of BCK1, MKK1/2 and MPK1. 

 

The yeast protein kinases YPK1 and YPK2, an essential pair of homologous kinases 

have been linked to the PKC1-controlled MAP kinase cascade (Schmelzle et al., 2002). 

YPKs are phosphorylated and thereby activated by the kinase pair PKH1 and PKH2 

(Casamayor et al., 1999). Apart from regulating the YPKs, the PKHs also activate 

PKC1 through direct phosphorylation (Inagaki et al., 1999). The PKH - YPK signaling 

pathway is suggested to act downstream of a sphingolipid-derived signal (Sun et al., 

2000). 

 

The PKHs are the yeast orthologues of the mammalian phosphoinositide-dependent 

kinase (PDK1). Mitogenically activated PDK1 has been reported to phosphorylate a 

conserved residue in the activation loop of several members of the AGC kinases 

(cAMP-dependent protein kinase (PKA), protein kinase G (PKG), protein kinase C 

(PKC)) (Vanhaesebroeck and Alessi, 2000). Among other AGC kinases PDK1 

activates p70S6K and serum- and glucocorticoid-induced kinase (SGK), the 

mammalian homologue of YPK1 and YPK2 indicating that the PKH-YPK pathway is 

conserved (Alessi et al., 1998; Park et al., 1999). 
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Here we study the role two TORC2 proteins AVO1 and LST8, mainly focusing on 

AVO1. Analyzing avo1 and lst8 mutants we confirm their positive function with TOR2 in 

the regulation of the actin cytoskeleton. 

 

 

3. 2. Results 
 
Growth and actin defects of avo1 and lst8 mutants are suppressed by activation 
of the RHO1-GTPase switch or the PKC1 MAP kinase cascade 
Previously, we have reported that activation of the RHO1 GTPase switch by 

overexpression of a RHO1 GEF ROM2, the RHO1-related GTPase RHO2, or activated 

alleles of PKC1, BCK1 or MKK1 restored the viability of an avo1 mutant strain (Loewith 

et al., 2002). We also found that deletion of SAC7, encoding a GAP for RHO1, 

suppressed the growth defect of avo1 (data not shown). We did not observe any 

suppression of avo1 mutants by overexpression of the TOR2-suppressors SUR1 or 

PLC1 nor by overexpression of other RHO1 effectors FKS1, encoding glucan synthase, 

BNI1, encoding the yeast formin or SKN7 (data not shown). Interestingly, 

overexpression of YPK2, encoding a kinase that has been previously implicated in the 

cell integrity pathway restored the growth defect of avo1 cells (data not shown). Since 

YPK2 is phosphorylated and activated by the PKH1 and PKH2 protein kinases, which 

have also been linked to PKC1, we tested whether overexpression of the PKHs could 

rescue an avo1 mutant. Overexpression of PHKs did not suppress avo1, possibly 

because the kinases are not in their activated state (data not shown).  

 
To study the essential role of LST8 a conditional LST8 mutant strain was created 

replacing the original LST8 promoter with a glucose-repressible and galactose-

inducible GAL1 promoter. Because tor2 and avo1 mutant cells are suppressed by 

activation of the RHO1 GTPase switch or by hyperactivation of the PKC1 effector MAP 

kinase pathway, we tested whether overexpression of components in these pathways 

were also able to suppress an lst8 mutant. Activation of the RHO1 GTPase switch by 

overexpression of ROM2 or RHO2 did not restore the growth defect of lst8 mutant 

cells, whereas mutation of SAC7 weakly suppressed the lethality of an lst8 mutant (Fig. 

3.1. and data not shown). Additionally, overexpression of MSS4 that encodes a 

phosphatidylinositol kinase, and is a strong suppressor of tor2 and avo1 did not rescue 

the lst8 mutant. As shown in Fig. 3.1. activation of the PKC1-MAP kinase cell integrity 
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pathway by overexpression of PKC1, BCK1, MKK1 and constitutively activated alleles 

thereof lead to a partial suppression of the growth defect of lst8 on glucose-containing 

media. Interestingly, a weak suppression of lst8 mutant cells was observed in cells 

overexpressing TOR2, a result not observed in avo1 cells. Surprisingly, the most potent 

multicopy suppressor of lst8 was YPK2, which restored the growth of lst8 cells to 

almost wild-type level. Thus, analysis of avo1 and lst8 multicopy suppressors 

underscores the positive role of AVO1 and LST8 in TORC2. The fact that LST8 is 

present in both complexes, in the rapamycin-sensitive TORC1 and in TORC2 might 

explain why the lethality of lst8 can only be partially suppressed by known TORC2 

suppressors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Growth defect of lst8 mutant cells is suppressed by activation of the 
PKC1 MAP kinase cascade and YPK2  

Wild-type (wt) (TB50a) and GAL1 promoter-LST8 cells transformed with empty vector, pRHO2, pPKC1, 

pPKC1*, pMKK1*, pMKK1, pBCK1*, pMPK1, pTOR2, pMSS4, or pYPK2 were streaked onto SGal/Gly-ura 

(galactose) and SD-ura (glucose) plates and incubated at 30°C. 
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Since AVO1 is required for organization of the actin cytoskeleton we tested if the 

identified growth suppressors could rescue the actin defect of avo1 mutant cells. The 

distribution of the actin cytoskeleton of wild-type cells was compared to avo1 mutant 

cells containing either empty control plasmid or a multicopy suppressor plasmid. Cells 

were grown under glucose conditions leading to the depletion of AVO1, and the 

distribution of the actin cytoskeleton was visualized by phalloidin staining. Wild-type 

cells exhibited a normal distribution of the cell cycle-dependent organization of the 

actin; in small-budded cells, the actin patches are concentrated at the bud and actin 

cables are oriented in the mother cell towards to bud (Fig. 3.2.). avo1 mutant cells 

containing an empty control plasmid failed to properly localize actin as indicated by a 

random distribution of actin patches in the mother cell of small-budded cells (Fig. 3.2.). 

In avo1 cells, overexpressing a constitutively active allele of PKC1 partially restored the 

defect in the actin organization. These cells concentrated actin patches in the growth 

site, however, we did not observe actin cables in the mother cell of small-budded cells 

(Fig. 3.2.). We also looked at the actin cytoskeleton in lst8 mutant cell overexpressing 

YPK2. However, as reported earlier the actin defect of lst8 mutant cells was not as 

pronounced as in avo1 mutant cells (Loewith et al., 2002) and we failed to detect a 

significant difference between lst8 mutant cells transformed with empty plasmid or with 

pYPK2 (data not shown). The finding that activated PKC1 partially suppressed the 

actin defect of avo1 mutant cells support an involvement of AVO1 in the PKC1-MAP 

kinase pathway. 

 

 

 

 

 

 

 

 

 

Figure 3.2. Actin defect of avo1 is suppressed by activation of the PKC1 MAP 
kinase cascade.  

Wild-type (TB50a) cells and GAL1 promoter-AVO1 (RL23-1c) transformed with empty plasmid or pPKC1* 

were pregrown in SGal/Gly (galactose) medium and shifted to YPD (glucose) medium for 15 hr, fixed, 

stained for actin with TRITC-phalloidin, and observed by fluorescence (actin, top panel) and Nomarski 

(bottom panel) microscopy. 
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AVO1 is required for full activation of MPK1 in response to heat shock 
To further confirm the role of AVO1 in the cell integrity pathway we examined the 

activation of the PKC1-controlled MAP kinase MPK1 in AVO1-deficient cells. MPK1 is 

activated by various stresses, such as heat shock treatment (Heinisch et al., 1999). We 

monitored the kinetics of heat stress-induced MPK1 activation in AVO1-depleted cells. 

Activation of MPK1 was detected using an antibody that specifically recognizes the 

activated, dually phosphorylated form of MPK1. In wild-type cells, heat-induction leads 

to a transient activation of MPK1. Maximal activation was reached 30 to 60 min after 

shift from 24°C to 39°C, while MPK1 phosphorylation levels returned to basal levels 

within 120 min after the shift. This transient MPK1 activation correlates with the 

previously reported transient actin depolarization upon heat shock (Delley and Hall, 

1999). The kinetics of MPK1 activation was similar in avo1 mutant cells, but the level of 

activation was decreased compared to wild-type cells (Fig 3.3.). Total MPK1 levels, 

determined by immunoblotting were similar in wild-type and avo1 cells at all time 

points. The residual activity of MPK1 observed in avo1 could be due to incomplete 

depletion of AVO1. The finding that MPK1 activation in response to heat shock was 

reduced in AVO1-depleted cells suggests that AVO1 plays a positive role in the cell 

integrity pathway. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3. AVO1 is required for full activation of MPK1 
Wild-type (wt) (TS99-5c) and GAL1 promoter-AVO1 (SW35-5c) cells expressing HA-tagged MPK1 were 

grown for 16 hr in glucose medium at 24°C (time 0). Cells were shifted to 39°C for the indicated times (30, 

60, 90, 120 min) and activated MPK1 was detected by immunoblotting using a specific antibody that 

recognizes dually phosphorylated MPK1 (phospho-MPK1, top panel). Expression of HA-tagged MPK1 was 

analyzed by immunoblotting using anti-HA antibody (bottom panel). 
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AVO1 interactors 

TOR2 controls the actin cytoskeleton by activation of the RHO-GTPase switch via the 

GEF ROM2 (Schmidt et al., 1997). The mechanism by which TOR2 regulates the 

ROM2 exchange activity is unknown. Therefore, we tested whether TOR2 might signal 

through its partner proteins, such as AVO1, to the GEF ROM2 and thereby regulate the 

activity of the GTPases RHO1 and RHO2. To check this possibility 

coimmunoprecipitation experiments with epitope-tagged versions of AVO1 and ROM2 

were performed: we did not detect an interaction between AVO1 and ROM2 (data not 

shown). Using a yeast two-hybrid assay we examined if AVO1 interacts directly with 

the GTPase RHO1, which could possibly lead to an activation of RHO1. However, we 

failed to detect an interaction between AVO1 and the wild-type RHO1, nucleotide-free 

RHO1 (RHO1-G22A), nor activated, GTP-trapped RHO1 (RHO1-Q68H) (data not 

shown). Therefore, using these approaches we could not detect any interaction 

between AVO1 and already known components that are possibly regulated by TORC2 

to organize the actin cytoskeleton. 

 

In order to identify novel interactors of AVO1, which could link AVO1 to the 

organization of the actin cytoskeleton a large-scale purification of AVO1, was 

performed. The purification procedure relied on a TAP (tandem affinity purification)- 

tagged version of AVO1 expressed at endogenous levels. The TAP tag combines two 

different tags, an IgG binding domain of Staphylococcus aureus protein A and a 

Calmodulin binding peptide, separated by a cleavage site that is recognized by the 

TEV protease (Puig et al., 2001). Purified proteins were resolved by SDS-PAGE and 

identified by mass spectrometry. A mock purification using untagged AVO1 was also 

performed to identify proteins that specifically interact with AVO1. AVO1 copurified only 

with the previously identified components of TORC2, namely TOR2, AVO2 and AVO3. 

LST8 which is also a component of TORC2 could not be detected in the purification 

because the LST8 comigrates with a contaminating protein also found in the mock 

purification (data not shown). 

 

In an additional attempt to identify AVO1 interacting proteins a yeast two-hybrid screen 

using full-length AVO1 as bait was performed. We reasoned that a yeast two-hybrid 

screen would allow the identification of unstable or transient interactors. Such weak 

protein-protein interactions are lost in a biochemical purification procedure since it 

involves several washing steps with quite high salt concentrations. Yeast cells 
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expressing the GAL4 DNA binding domain fused to the N-terminus of full length AVO1 

was transformed with a plasmid library containing the prey fused to the GAL4 

transcriptional activation domain. After selection and isolation of positive library 

plasmids, 13 candidates were retransformed into the yeast strain containing the AVO1 

bait plasmid to test the specificity of the positive plasmids. Two candidates were 

confirmed and sequenced. While the first clone contained only an intergenic region, the 

second clone contained sequence from AVO3 (1.6 kb starting from nucleotide 456). To 

confirm the interaction AVO3 (nt 456-2052) and AVO3 (nt 456-1266) was cloned in the 

prey vector of the yeast two-hybrid system. We observed an interaction between full-

length AVO1 and AVO3 (152-684) but not AVO3 (152-422) confirming the interaction of 

AVO1 with the N-terminal part of AVO3 by yeast two-hybrid (data not shown). The part 

of AVO1 responsible for the interaction with AVO3 is unknown as different AVO1 

versions (AVO1(1-420), AVO1(380-790), AVO1(690-1176)) failed to interact with AVO3 

by yeast two-hybrid assay suggesting that many binding regions are required for AVO1 

to associate with AVO3 (data not shown). Thus, AVO1 binds to a region in the N-

terminal part of AVO3 by yeast two-hybrid. 

 

 

AVO1 contains a conserved domain essential for its function 
AVO1 is a protein consisting of 1176 amino acids. Sequence analysis by SMART 

analysis (smart.embl-heidelberg.de) revealed that AVO1 does not contain any known 

domains or motifs. The weak RAS-interacting domain in the C-terminal part of AVO1 

identified in an earlier analysis could not be confirmed. Alignment with putative 

homologues indicated that the most conserved region lies in the C-terminal part of 

AVO1, in particular in a region between amino acid 735 and 764 (Fig. 3.4.D). Data 

base analyses revealed that this region is unique for AVO1 and its putative 

homologues as it is not found in other proteins. The N-terminal part of AVO1 does not 

share any similarities with its putative homologues. To identify regions that are required 

for the function of AVO1, deletion mutants of AVO1 were constructed and transformed 

into an avo1 strain containing AVO1 on an URA3-based plasmid. The growth 

phenotype of different AVO1 mutants was assayed after counterselection on  5-

fluorootic acid (5FOA) plates resulting in the loss of the URA3-based AVO1. Western 

blot analysis was performed to test whether all the mutant proteins are expressed (Fig. 

3.4.B). Deletion of the 420 amino acids at the N-terminus did not affect the functionality 

of AVO1, while deleting the 486 amino acids at the C-terminus resulted in a slight 
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growth phenotype (Fig. 3.4.A). However, cells expressing AVO1 (1-790) did not show a 

defect in the organization of the actin cytoskeleton (data not shown). Mutants that lack 

the most conserved region located between amino acid 735 and 764 were not able to 

restore viability of avo1 cells indicating that this region is important for the function of 

AVO1 (Fig. 3.4.C,D). Thus, C-terminal and N-terminal parts of AVO1 are not required 

for its function whereas a conserved domain between amino acid 735 and 764 is 

essential for the function of AVO1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. AVO1 contains a conserved domain essential for its function 
A) avo1 mutants expressing AVO1 from URA3-based plasmid (RL66-2d) were transformed with either 

empty plasmid, pAVO1(1-1176), pAVO1(421-1176), pAVO1(1-420), pAVO1(1-790), pAVO1 (∆647-793), 

pAVO1 (∆735-793), pAVO1 (∆776-793) and streaked onto selective plates lacking uracil and leucine (SD-

leu-ura) and onto plates containing 5-fluorootic acid (5FOA) to select against the URA3-based AVO1 

plasmid. 

B) Expression of the myc-, or HA-tagged constructs of AVO1 was checked by immunoblotting 
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C) Summary of the AVO1-constructs used in this study 

D) Sequence alignment of a conserved region in AVO1 (from amino acid 735 to 764). Sequences of the 

putative AVO1 homologues in Ashbya gossybii, Schizosaccharomyces pombe (S. pombe), mus musculus 

(mouse) and homo sapiens (human) are aligned. 
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3. 3. Discussion 
 
TORC2 consisting of the proteins TOR2, AVO1, AVO2, AVO3 and LST8 is required for 

the spatial control of cell growth, which is the organization of the actin cytoskeleton. 

TORC2 controls the cell cycle dependent organization of the actin cytoskeleton by 

activating the RHO1 GTPase via the exchange factor ROM2. Activated RHO1 signals 

to the actin cytoskeleton by binding to PKC1 leading to the activation of the cell 

integrity MAP kinase cascade.  Here we analyzed the phenotypes of avo1 and lst8 

mutant cells and characterized the AVO1 protein. We showed that upregulation of the 

RHO1 GTPase switch or the PKC1-MAP kinase cell integrity pathway suppressed the 

growth defect and partially rescued the actin defect of cells depleted for AVO1 or LST8 

confirming a role of these two proteins in the signaling branch controlled by TORC2. 

Previously identified suppressors of tor2 suppress an lst8 mutant very poorly, likely 

because LST8 has multiple cellular functions, as it is not only a member of TORC2 but 

also part of the rapamycin-sensitive TORC1. The phenotype of LST8-defecient cells 

might therefore be a complex overlap of different functions. Surprisingly, multicopy 

YPK2 restores growth of lst8 cells very efficiently suggesting that overexpression of 

YPK2 suppresses all essential functions of LST8. There is evidence for a relationship 

between the TORC2 signaling pathway and the PKH-YPK pathway because both 

pathways appear to impinge on the same readouts. First, PKHs are stimulated by 

sphingoid bases and TOR2 as well as AVO3 were identified as mutations that 

suppress csg2, a gene involved in sphingolipid biosynthesis (Dunn et al., 1998; Friant 

et al., 2001). Additionally, overexpression of SUR1, whose gene product also functions 

in sphingolipid biosynthesis, suppresses a tor2 mutant (Helliwell et al., 1998a). Second, 

similar to mutants of TORC2, ypk mutant cells display an actin defect and reduced 

activation of the MAP kinase MPK1. The lethality of ypk cells is also suppressed by 

activation of the RHO1 GTPase switch as well as by the activation of the PKC1-MAP 

kinase signaling cascade (Schmelzle et al., 2002). Third, in S. pombe overexpression 

of GAD8, the orthologue of YPKs, suppresses the sterility of tor1 mutant (Matsuo et al., 

2003). The phosphorylation of GAD8 is dependent on TOR1 and KSG1, the orthologue 

of PKHs. TOR1 appears to be responsible for the phosphorylation of the turn motif and 

the hydrophobic motif while KSG1 directly phosphorylates the Thr in the activation 

loop. A similar situation is found in higher eukaryotes where p70S6K is phosphorylated 

by PDK1, the PKH orthologue, at the activation loop and by mTOR at the hydrophobic 

motif (Alessi et al., 1998; Burnett et al., 1998). Similarly, bacterial expressed YPKs 
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appear to be phosphorylated in a TORC2-dependent manner in vitro supporting a 

model in which YPKs receives signals from the sphingolipid-stimulated PKHs and the 

nutrient-controlled TOR kinase (R. Loewith, W. Oppliger unpublished). Thus, TORC2 

might impinge on YPKs to control organization of the actin cytoskeleton. YPKs also 

perform different functions as ypk1 mutant cells exhibit a defect in translation (Gelperin 

et al., 2002). Given the fact that YPKs are involved in both translation and actin 

cytoskeleton organization, processes controlled by TORC1 and TORC2, respectively, 

could explain the efficient suppression of lst8 by multicopy YPK2. 

 

Although the suppression of lst8 by overexpression of TOR2 is very weak, the result 

might indicate that LST8 is an upstream factor for the TOR signaling pathway. Since 

LST8 is present in both TOR complexes it may act as an upstream regulator of TOR by 

receiving signals from nutrients. Further experiments are needed to prove this 

hypothesis (see also Part 4 of this thesis). 

 

We did not identify novel interacting proteins of TORC2 performing biochemical 

purifications and a yeast two-hybrid screen. Because TORC2 seems to be associated 

with membranes interaction of TORC2 to its substrates might be mediated through 

membranes  (Kunz et al., 2000; Wedaman et al., 2003). Such interactions are lost in 

our biochemical purification procedures and likely cannot be detected by yeast two-

hybrid. However, AVO1 appears to interact with the N-terminal part of AVO3 by yeast 

two-hybrid, but whether AVO1 interacts directly with AVO3 or through another protein 

is unknown. AVO3 contains six conserved regions that are essential for its function (R. 

Shioda, unpublished). The first conserved region at the N-terminus (350-480) of AVO3 

overlaps with the AVO1 interaction domain suggesting a role of this conserved region 

in mediating interaction with AVO1. 

 

Additionally, we identified a conserved region in AVO1 that is important for the function 

of AVO1. This region possibly meditates binding of AVO1 to TOR2 or other proteins in 

TORC2 or is required for proper folding of AVO1. We cannot exclude that there are 

other regions in AVO1 that are important for the functionality of AVO1. Further 

experiments need to be performed to test whether the AVO1 deletion mutants are still 

part of TORC2. Identification of AVO1 mutants associating with the complex but 

exhibiting a growth phenotype could be interesting for identifying downstream effectors 

of TORC2.   
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3. 4. Material and methods 
 
Strains and media 
The S. cerevisiae strains and plasmids used are listed in Table 3.1. and 3.2., 

respectively. All strains are isogenic derivatives of JK9-3da or TB50a. Rich media, YPD 

or YPGal/Gly, and synthetic complete media, SD or SGal/Gly, were as described 

previously (Beck et al., 1999; Sherman, 1991). For TOR2-, and AVO1-depletion 

experiments, cells from logarithmically growing SGal/Gly or YPGal/Gly cultures were 

inoculated into SD or YPD medium, respectively. Glucose cultures were shaken for 15 

hr before cells were harvested for analysis. 

 

Genetic techniques 
Restriction enzyme digests and ligations were performed according to standard 

methods. All enzymes and buffers were obtained commercially (Roche Diagnostics). 

Escherichia coli strains MH1 and DH5α were used for propagation and isolation of 

plasmids. Yeast transformation was performed by the lithium acetate procedure (Ito et 

al., 1983). PCR cassettes were used to generate gene deletions and modifications, as 

described (Longtine et al., 1998; Puig et al., 2001) 

 

Actin staining 
Logarithmically growing cells were fixed in formaldehyde (3.7%) and potassium 

phosphate buffer (100 mM; pH 6.5) and stained with tetramethyl rhodamine 

isothiocyanate (TRITC)-phalloidin (Sigma) to visualize actin, as described previously 

(Benedetti et al., 1994). 

 
Two-hybrid assays 

Yeast two-hybrid assays were performed as described in (James et al., 1996). PJ69-4a 

cells were sequentially with a bait plasmid (pGBD-based) expressing a GAL4-BD (DNA 

binding domain) fusion protein and a prey plasmid or a library (pGAD-based) 

expressing a GAL4 AD (activation domain) fusion protein, and selected for the HIS3 

reporter on SD-ade-leu-trp plates.  

 

MAP kinase assay 
Yeast strains expressing HA-tagged MPK1 and AVO1 under the control of the GAL1 

promoter were grown in YPGal/Gly. Per time point, 50 ml of YPD was inoculated, 
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grown at 24°C for 16 hr (to an OD600 of 0.4) and subsequently shifted to 39°C for the 

indicated time. Samples were chilled with crushed ice, harvested by centrifugation, 

washed with ice-cold water and stored at -80°C. The cells were resuspended in 0.5 ml 

lysis buffer (50 mM Tris, pH 7.5, 10% glycerol, 1% Triton X-100, 0.1% SDS, 150 mM 

NaCl, 50mM NaF, 1 mM sodium orthovanadate, 50 mM β-glycerol phosphate, 5 mM 

sodium pyrophosphate, 5 mM EDTA, 1 mM phenylmethylsulfonylfluoride, and 1 x 

Roche complete protease inhibitor cocktail) and lysed by vortexing 5 x 30 s with glass 

beads using a FastPrep machine (Savant Instruments). A total of 30 µg protein (for 

anti-activated MAPK detection) or 15 µg protein (for anti-HA detection) was loaded per 

lane for electrophoresis (10% acrylamide). After SDS-PAGE the proteins were 

eletroblotted to nitrocellulose. To detect the proteins the membrane was first incubated 

in blocking buffer (1 x TBS, 0.1% Tween-20, 5% milk) and then over night at 4°C with 

mouse anti-HA antibody (1:10000 diluted in blocking buffer) or rabbit anti-MAP kinase 

activated (New England Biolabs) (1:2000 diluted in blocking buffer). Primary antibodies 

were detected using the corresponding horseradish peroxidase-conjugated secondary 

antibodies (1:5000 dilution) with ECL reagents (Amersham Pharmacia Biotech).  

 

TAP purification 
TAP purification was performed as described in (Puig et al., 2001). Extracts were 

prepared from a 4 l culture expressing TAP-tagged AVO1 grown in YPD at 30°C to an 

OD600 of 0.8. Cells were chilled on ice for 30 min, collected by centrifugation, washed 

once in ice-cold water and lysed with a Bead Beater (Biospec products) in ~40 ml lysis 

buffer (1 x TBS, 10% glycerol, 0.5% Tween-20 plus inhibitors: 10 mM NaF, 10 mM 

NaN3, 10 mM p-nitrophenylphosphate, 10 mM sodium pyrophosphate, 10 mM β-

glycerophophate, 1 mM phenylmethylsulfonyl fluoride, 1 x Roche complete inhibitor 

cocktail). Extracts were precleared by 500 µl Sepharose CL 4B (Sigma), and 

processed according to (Puig et al., 2001) except that 0.5% Tween-20 was used as 

detergent and the proteins were not eluted from the calmodulin-beads but directly 

resuspended and boiled in 2 x SDS-PAGE sample buffer. 

 

Immunoprecipitation 
Protein extracts were prepared as described above. To immunoprecipitate epitope 

tagged protein 1 µl of either concentrated 12CA5 (anti-HA) or 9E10 (anti-myc) tissue 

culture supernatant was added and the tubes were rotated for 1 hr at 4°C. Afterwards 

20 µl protein G-sepharose slurry (Sigma) was added and the tubes were rotated for 
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additional 2 hr at 4°C. Beads were collected by centrifugation, washed four times with 1 

ml lysis buffer, and resuspended in 2 x SDS-PAGE sample buffer. After SDS-PAGE the 

proteins were electroblotted onto nitrocellulose, blocked in 5% milk in 1 x PBS 0.1% 

Tween-20, and incubated with primary antibody (12CA5 or 9E10 1:10000 in blocking 

solution) over night at 4°C. The membranes were washed and incubated for 1 hr at 

room temperature with anti-mouse horseradish peroxidase-conjugated secondary 

antibody. The tagged proteins were detected using ECL reagents (Amersham 

Pharmacia Biotech).   

 

 

 

 

 

Table 3.1. Strains  
 

Strain  Genotype 

 

JK9-3da MATa leu2-3,112 ura3-52 trp1 his4 rme1 HMLa 

JK9-3dα MATα leu2-3,112 ura3-52 trp1 his4 rme1 HMLα 

TB50a  JK9-3da HIS4 his3 

TB50α  JK9-3dα HIS4 his3 

PJ69-4a MATa trp1-901 leu2-3,112 ura3-52 his3-200 gal4∆ gal80∆ LYS2::GAL1-

HIS3 GAL2-ADE2 met2::GAL7-lacZ 

RL23-1c TB50a [kanMX4]-GAL1p-AVO1 

RL57-2d TB50a [kanMX4]-GAL1p-LST8 

TS99-5c TB50a MPK1-3HA-kanMX4 

SW35-5c TB50a [kanMX4]-GAL1p-AVO1 MPK1-3HA-kanMX4  

SW45-1b TB50a AVO1-TAP-KlTRP1 

SW71-3a TB50a [kanMX4]-GAL1p-LST8 sac7::kanMX4 

SW48-1b TB50a [kanMX4]-GAL1p-AVO1 sac7::kanMX4 

RL66-2d TB50a avo1::kanMX4 / pRL8-2-1: YEplac195::myc-AVO1 

SW57-1d TB50a rom2::kanMX4 AVO1-TAP-KlTRP1 / pAS115: YCplac33::3HA-

ROM2 
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Table 3.2. Plasmids 
 

Plasmids   Description  

 

pROM2 pAS30; ROM2 in YEplac195 (2µm, URA3), 

 (Schmidt et al., 1997) 

pRHO2   pC-186; RHO2 (2µm, URA3) (Madaule et al., 1987) 

pPKC1 pSH24; PKC1 in pSEY18 (2µm, URA3),  

 (Helliwell et al., 1998b) 

pPKC1*   PKC1R398P in YCp50 (CEN, URA3), (Nonaka et al., 1995) 

pBCK1*   BCK1-20 in pRS316 (CEN, URA3), (Lee and Levin, 1992) 

pMKK1   MKK1 in YEp352 (2µm, URA3) 

pMKK1* MKK1S386P in YCplac33 (CEN, URA3),  

 (Watanabe et al., 1995) 

pMPK1   MPK1 in YEp352 (2µm, URA3), (Kamada et al., 1995) 

pTOR2   pJK3-3; TOR2 in pSEY18 (2µm, URA3),  

    (Kunz et al., 1993) 

pMSS4   pSH22; MSS4 in pSEY18 (2µm, URA3), 

    (Helliwell et al., 1998a) 

pYPK2    pTS96; YPK2 in YEplac195 (2µm, URA3) 

pAVO1 (1-1176) pSW59; expresses myc-tagged AVO1 (1-1176) from 

AVO1 promoter. Cloned as 3.9-kb SalI fragment into 

YEplac181::AVO1promoterATG-myc (2µm, LEU2) 

pAVO1 (421-1176) pSW50; expresses myc-tagged AVO1(421-1176) from 

AVO1 promoter. Cloned as 2.6-kb SalI fragment into 

YEplac181::AVO1promoterATG-myc (2µm, LEU2) 

pAVO1 (1-420) pSW11; expresses HA-tagged AVO1 (1-420) from AVO1 

promoter. Cloned as 1.5-kb XbaI-PstI fragment into 

pHAC181 (2µm, LEU2) 

pAVO1 (1-790) pSW12; expresses HA-tagged AVO1 (1-790) from AVO1 

promoter. Cloned as 2.7-kb XbaI-PstI fragment into 

pHAC181 (2µm, LEU2) 
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pAVO1 (∆647-793) pSW33; expresses HA-tagged AVO1 (∆647-793) from 

AVO1 promoter. Cloned as 2.2-kb XbaI-SalI and 1.5-kb 

SalI fragment into pHAC181 (2µm, LEU2) 

pAVO1 (∆735-793) pSW32; expresses HA-tagged AVO1 (∆735-793) from 

AVO1 promoter. Cloned as 2.4-kb XbaI-SalI and 1.5-kb 

SalI fragment into pHAC181 (2µm, LEU2) 

pAVO1 (∆776-793) pSW29; expresses HA-tagged AVO1 (∆776-793) from 

AVO1 promoter. Cloned as 2.5-kb XbaI-SalI and 1.5-kb 

SalI fragment into pHAC181 (2µm, LEU2) 

pGBD::AVO1 pSW7; AVO1 cloned as 3.5-kb SmaI-SalI fragment into 

pGBD-C1 (ADH1 promoter; 2µm, TRP1) 

pGBD::AVO1(1-420) pSW8; AVO1 (nt 1-1260) cloned as 1.3-kb SmaI-PstI 

fragment into pGBD-C1 (ADH1 promoter; 2µm, TRP1) 

pGBD::AVO1(380-790) pSW9; AVO1 (nt 1140-2370) cloned as 1.2-kb BamHI-

PstI fragment into pGBD-C1 (ADH1 promoter; 2µm, 

TRP1) 

pGBD::AVO1(690-1176) pSW10; AVO1 (nt 2070-3528) cloned as 1.5-kb SalI-SalI 

fragment into pGBD-C1 (ADH1 promoter; 2µm, TRP1) 

pGAD::RHO1 pSW19; RHO1C206S cloned as 0.6-kb BamHI-BglII 

fragment into pGAD-C1 (ADH1 promoter; 2µm, LEU2) 

from pETE25 (Schmidt et al., 1997) 

pGAD::RHO1(Q86H) pSW20; RHO1Q86H C206S cloned as 0.6-kb BamHI-BglII 

fragment into pGAD-C1 (ADH1 promoter; 2µm, LEU2) 

from pETE27 (Schmidt et al., 1997) 

pGAD::RHO1(G22A) pSW21; RHO1G22A C206S cloned as 0.6-kb BamHI-BglII 

fragment into pGAD-C1 (ADH1 promoter; 2µm, LEU2) 

from pAS92 (Schmelzle et al., 2002) 

pGAD::AVO3 (152-684) pSW30; AVO3 (nt 456-2052) cloned as 1.6-kb ClaI-PstlI 

fragment into pGAD-C1 (ADH1 promoter; 2µm, LEU2) 

pGAD::AVO3 (152-422)  pSW31; AVO3 (nt 456-1266) cloned as 0.8-kb ClaI-PstI 

fragment into pGAD-C1 (ADH1 promoter; 2µm, LEU2) 
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4. Functional analysis of TORC2 
 
4. 1. Introduction 
 

TOR signaling complexes 
Previously, we identified two TOR complexes (TORC1 and TORC2) in yeast, and at 

least one of these (TORC1) is conserved in man. While TORC1 mediates the 

rapamycin-sensitive signaling branch, TORC2 signaling is rapamycin-insensitive and 

responsible for the control of the actin cytoskeleton. TORC1 consists of four proteins, 

TOR1 or TOR2, KOG1, TCO89 and LST8, and with the exception of TCO89, all of 

these proteins are evolutionarily conserved. TORC2 comprises seven proteins, TOR2, 

AVO1, AVO2, AVO3, LST8 and the recently identified BIT61 and BIT2 (Loewith et al., 

2002; Reinke et al., 2004).  

 

Raptor is the highly conserved mammalian orthologue of KOG1. It has a molecular 

mass of 150 kDa and was identified independently by three different groups (Hara et 

al., 2002; Kim et al., 2002; Loewith et al., 2002). At its N-terminus raptor and its 

orthologues contain a domain named RNC (raptor N-terminal conserved) consisting of 

three blocks with at least 67-79% sequence similarity. The RNC domain appears to be 

unique to raptor and its orthologues, as it is not found in other protein sequences in 

public databases. The RNC domain is followed by three HEAT repeats and the C-

terminal third of raptor contains seven WD40 repeats.  

 

mLST8 is a protein of 36 kDa and consists almost entirely of seven WD40 repeats (Kim 

et al., 2003; Loewith et al., 2002). The WD40 repeat is characterized by a set of 

conserved residues within a repeat length of around 40 amino acids. mLST8 shows 

sequence similarity to the β subunits of heterotrimeric G proteins. In analogy to the G 

protein β1 subunit that contains six WD40 repeats folding into a cylindrical β-propeller 

structure, mLST8 is thought to have a β-propeller structure. 

 

Raptor interacts with the N-terminal, HEAT repeats containing part of mTOR 

underscoring the function of HEAT repeats as mediators of protein-protein interactions 

(Kim et al., 2002). The association between raptor and mTOR involves multiple sites in 

raptor suggesting that mTOR and raptor make extensive contacts with each other. 

However, the mTOR-raptor interaction is very sensitive to detergents. A stable 
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association of both proteins can only be detected in buffer containing no detergents or 

0.3% CHAPS; lysis buffers with Triton X-100 or NP-40 as detergent eliminates the 

interaction (Hara et al., 2002; Kim et al., 2002).  

 

Raptor, like its orthologue in yeast KOG1, appears to be a positive regulator of TOR 

since raptor is required for the optimal phosphorylation of 4E-BP1 and p70S6K in 

nutrient-stimulated cells. The mechanism by which raptor modulates these downstream 

effectors is controversial. The first model, presented by the group of Sabatini, proposes 

a mechanism by which raptor and mTOR form a nutrient-sensitive complex and raptor 

both positively and negatively regulates mTOR function (Kim et al., 2002). Nutrients 

seem to affect the stability of mTOR-raptor complex. Deprivation of leucine or other 

nutrients such as glucose but not removal of growth factors leads to a stabilization of 

mTOR-raptor interaction and to a decrease in p70S6K phosphorylation, while 

readdition of nutrients reverses the effect. This inverse correlation between the stability 

of mTOR-raptor association and the phosphorylation of p70S6K lead to the suggestion 

that a strong interaction between raptor and mTOR results in an inhibition of the mTOR 

kinase activity. Apart from this negative regulation, raptor positively modulates mTOR 

as raptor downregulation by siRNA reduces p70S6K phosphorylation leading to a 

model in which raptor interacts with mTOR under all nutrient conditions but with 

different affinities. Under good nutrients conditions raptor forms a rather unstable 

complex with mTOR that is required for mTOR function. On the other hand, under 

nutrient-poor conditions mTOR-raptor complex is stabilized resulting in the inhibition of 

mTOR kinase activity. 

 

In contrast to this model the group of Yonezawa fails to detect a nutrient-sensitive 

interaction between raptor and mTOR (Hara et al., 2002). In addition, experiments in 

yeast indicated that TOR1 or TOR2 forms a stable complex with KOG1 independently 

of the nutritional state of the cell (Loewith et al., 2002). Raptor might rather function as 

a scaffold protein bringing mTOR kinase in proximity to its substrates. Consistent with 

this model raptor is able to bind to 4E-BP1 and p70S6K1. The binding of raptor to 4E-

BP1 increases if the rapamycin-sensitive phosphorylation sites in 4E-BP1 are changed 

to alanine and decreases if the same amino acids are mutated to glutamic acid 

indicating a preferential binding of raptor to the nonphosphorylated form of 4E-BP1.  

Reducing the amount of raptor by RNA interference results in a decrease in 4E-BP1 

phosphorylation underscoring the requirement of raptor for the phosphorylation of 4E-
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BP1 (Hara et al., 2002). The RAIP motif (in the N-terminus) and the TOS motif (in the 

C-terminus) are both required for the efficient phosphorylation of 4E-BP1 (Beugnet et 

al., 2003; Schalm and Blenis, 2002). Mutation of the TOS motif in 4E-BP1 abolishes 

the binding of 4E-BP1 to raptor indicating the requirement of a functional TOS motif in 

the assembly of mTOR-raptor-4E-BP1 complex (Schalm et al., 2003). Thus, the TOS 

motif seems to mediate the association between 4E-BP1 to raptor supporting the 

model in which raptor acts as a scaffold protein that presents the mTOR kinase to its 

downstream substrates.   

 

A second interactor of mTOR, mLST8 exerts a positive role on mTOR function (Kim et 

al., 2003). Unlike raptor, mLST8 binds to the mTOR kinase domain in a constitutive, 

detergent-, and nutrient-insensitive manner. Depletion of mLST8 using siRNA blocks 

the activation of p70S6K in response to growth factors and nutrients. On the other 

hand, overexpression of mLST8 stimulates mTOR activity towards p70S6K and 

enhances the association of raptor to mTOR, which is inconsistent with the model that 

strong binding of raptor would inhibit mTOR activity. While raptor does not affect the 

binding of mLST8 to mTOR, depletion of mLST8 destabilizes the interaction between 

raptor and mTOR implying a role of mLST8 in the formation of the mTOR complex. The 

function of raptor and mLST8 in the mTOR complex, especially in respect to the 

formation of a nutrient-sensitive complex remains controversial. 

 

 

 

TORC2 in yeast 
During my thesis I was interested in the function of the components that form TORC2. 

While the phenotypical analysis of TORC2 partners indicated that they perform a 

positive role in the rapamycin-insensitive TOR2-unique signaling branch, the molecular 

function and mechanism by which these proteins control the TOR2-unique branch 

remained to be elucidated.  

 

TORC2 contains at least five proteins, TOR2, AVO1, AVO2, AVO3 and LST8, and 

forms a stable complex. So far we were not able to identify other components of 

TORC2 or more transient interactors of the complex, which could serve as signaling 

molecules. Nevertheless, the group of Ted Powers identified an additional component 

of TORC2, named BIT61(Reinke et al., 2004). BIT61 is a nonessential protein and 

58



bit61 mutant cells do not show any obvious growth defect under different growth 

conditions. Database analysis revealed that BIT61 has a homologue in the yeast 

genome, YBR270C (named BIT2), which could be redundant to BIT61. Although BIT2 

interacts with TOR2, a double mutant of bit61bit2 behaves like a wild- type when grown 

under various growth conditions (Ryo Shioda, unpublished). The role of these two 

proteins in TORC2 is unknown. 

 

Recently, novel components of TORC2 signaling pathway have been identified. In a 

global yeast two-hybrid screen two uncharacterized proteins, YIL105C and YNL047C 

were identified as interactors of AVO2 (Uetz et al., 2000). Additionally, YIL105C was 

pulled out as a genetic interactor of MSS4 in a synthetic lethal screen (Audhya et al., 

2004). Sequence analysis revealed that YNL047C is 53% identical to YIL105C. 

Whereas the single deletion mutants are viable the double yil105c ynl047c mutant is 

lethal indicating a redundancy of the two proteins (Audhya et al., 2004). YIL105C and 

YNL047C were named SLM1 and SLM2, respectively. The SLM proteins contain a lipid 

binding PH domain and preferentially bind to PI4,5P2. They localize to the cell 

periphery and the localization is at least partly dependent on the lipid kinase MSS4 as 

the SLMs show an enhanced cytoplasmic localization in mss4 mutant cells. Thus, 

MSS4-generated PI4,5P2 is important for the recruitment of SLMs to the plasma 

membrane. Similar to mss4 mutant cells a temperature sensitive slm1ts slm2 exhibits a 

defect in the organization of the actin cytoskeleton at restrictive temperature. This actin 

defect is suppressed by overexpression of multicopy PKC1 but not by BCK1 or MKK1. 

Additionally, deletion of SAC7, which encodes a GAP for RHO1, could rescue the 

lethality of a slm1 slm2 double mutant. PKC1 could only restore viability of the 

temperature-sensitive slm1 strain when grown at 26°C but not under heat shock 

conditions implying that other RHO1 effectors may also be required. SLM1 and SLM2 

are able to interact with each other and are phosphoproteins. As predicted by the yeast 

two-hybrid analysis SLM1 coimmunoprecipitates with AVO2, although the interaction is 

very unstable leading to the suggestion that the SLM proteins might be substrates for 

TORC2 rather than stable components of TORC2. Indeed, TORC2 phosphorylates 

recombinant SLM1 and SLM2 in vitro (Audhya et al., 2004). This suggests that the 

SLMs are substrates of TORC2 through which TORC2 signals to the actin 

cytoskeleton. Thus, the SLM proteins seem to require two different signals to perform 

their function. One signal is generated by the lipid kinase MSS4 and leads to the proper 

localization of the two proteins. The second signal comes from TORC2 that 
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phosphorylates both proteins. Further work has to be performed to clarify the 

significance of the TORC2-mediated phosphorylation of the SLMs as well as their 

function in the organization of the actin cytoskeleton.    

 

TORC2 consisting of the proteins TOR2, AVO1, AVO2, AVO3 and LST8 is a stable 

complex (Loewith et al., 2002). The interaction of the different proteins is constitutive 

and is not sensitive to nutrient conditions. Phenotypic analyses revealed that TORC2 is 

important for the organization of the actin cytoskeleton. The function of the different 

proteins in the complex as well as the architecture of the TORC2 is unknown. Here we 

analyze the architecture of TORC2 as well as the function of components of TORC2 in 

yeast. We provide evidence that AVO1 and possibly AVO3 act as scaffold proteins 

important for the integrity of TORC2 and are required for efficient phosphorylation of 

downstream target proteins. LST8 appears to be involved in modulating the kinase 

activity of TOR2. 
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4. 2. Results 
 

TORC2 exists in an oligomeric form 
Gel filtration experiments indicated that TOR2 forms a stable complex of 2 M Da 

(Loewith et al., 2002). Summing the molecular weights of TOR2 and its partners results 

in a mass of 0.78 M Da (including BIT61 and BIT2) suggesting that TORC2 might exist 

in a multimeric state. To check whether the components of TORC2 can interact with 

themselves coimmunoprecipitation experiments were performed. As shown in Fig. 

4.1.A) every component of TORC2 tested is able to oligomerize suggesting that 

TORC2 exists in an oligomeric state. Most likely TORC2 dimerizes which would be 

consistent with the molecular weight observed by gel filtration.  

 

Under nitrogen starvation conditions TOR signaling is inhibited. The mechanism by 

which TOR is inhibited is unknown. Since nitrogen starvation does not affect the 

association of TOR2 with its partners, the activity of TORC2 could be regulated through 

its dimerization. To test this possibility TOR2 dimerization was analyzed in cells that 

were starved of nitrogen for 60 min. The interaction of TOR2 with itself was unaffected 

upon nitrogen starvation (Fig. 4.1.B). Thus, TORC2 exists in a dimeric or higher order 

state which is unaffected by nitrogen starvation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

61



 

 

 

 

 

 

 

 

 

 

Figure 4.1. TORC2 exists in an oligomeric form 
A) Lysates from cells expressing HA-TOR2 and myc-TOR2 (SW70 transformed with pAN54), AVO1-HA 

and AVO1-TAP (SW110), AVO3-HA and AVO3-myc (SW112) or AVO2-HA and AVO2-myc (SW111) were 

subjected to immunoprecipitation with anti-myc or pulldown with IgG-sepharose and probed with anti-myc 

or anti-ProteinA to check expression of myc- or TAP-tagged proteins (lane 4, expression 2) and with anti-

HA (lane 3, coIP) to test for coimmunoprecipitation. Expression of HA-tagged proteins was detected by 

immunoprecipitation with anti-HA and probed with anti-HA (lane 2, expression 1). As negative control 

lysates from cells expressing HA-TOR2 (SW70), AVO1-HA (RL69-1c), AVO3-HA (RL42-1c) or AVO2-HA 

(RL39-1a) were subjected to immunoprecipitation with anti-myc and probed with anti-HA (lane 1).   

 

B) Lysates from cells expressing HA-TOR2 and mycTOR2 (SW70 transformed with pAN54) grown in 

medium containing ammonium as nitrogen source (lane 2) or nitrogen starved for 1 hr (lane 3) were 

subjected to immunoprecipitation with anti-myc. Immunoprecipitates were probed with anti-HA to detect 

coimmunoprecipitated TOR2 (bottom panel, coIP). As negative control lysate from cells expressing HA-

TOR2 (SW70) transformed with empty plasmid were subjected to immunoprecipitation with anti-myc and 

probed with anti-HA (lane 1, bottom panel, coIP). The expression of HA or myc-tagged TOR2 detected by 

immunoprecipitation is shown in the top panel and middle panel, respectively. 
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AVO1 and AVO3 are important for the structural integrity of TORC2 
To study the contribution of TORC2 components to TORC2 architecture we shut off 

expression of TORC2 components and assayed complex integrity by looking at 

coimmunoprecipitation of the remaining components. Since all the proteins of TORC2 

except AVO2 are essential we depleted cells of an essential partner by replacing its 

own promoter with the GAL1 promoter and turning off its expression in glucose-

containing media. Interaction of TORC2 components was examined by comparing cells 

grown in galactose-media to cells depleted of a TORC2 component grown in glucose-

media. Cells depleted for a protein will also be referred as mutant cells. 

 

To investigate the role of AVO1 in the architecture of TORC2 possible interactions 

between the different TORC2 proteins were analyzed in avo1 mutants by 

coimmunoprecipitations. The expression levels of the analyzed proteins did not vary by 

changing the media from galactose to glucose. As shown in Fig. 4.2. depletion of AVO1 

affected the integrity of TORC2. AVO2 as well as AVO3 no longer interact with TOR2 

(Fig. 4.2.A,B) and were also not able to associate with each other (Fig. 4.2.C) when 

AVO1 was depleted. On the other hand, the association of TOR2 and LST8 was not 

dependent on the presence of AVO1 (Fig. 4.2.D). Because TOR2 and LST8 are both 

components of TORC1 coimmunoprecipitation of this two proteins could be misleading. 

To ensure that the interaction between TOR2 and LST8 in avo1 was not due to 

TORC1, cell extracts were depleted for TORC1 by precipitating KOG1, a component of 

TORC1. TAP-tagged KOG1 was precipitated by incubating the cell extract with IgG-

sepharose prior to the coimmunoprecipitation experiment. TOR2 still associated with 

LST8 in absence of AVO1 and TORC1 indicating that the major part of TOR2 is in 

TORC2 (data not shown). Thus, AVO1 appears to be important for the association of 

AVO2 and AVO3 to TORC2 and does not affect the interaction between TOR2 and 

LST8. Consistent with this result AVO2 and AVO3 interactions with LST8 were lost in 

avo1 mutant cells (Fig. 4.2.E,F). 
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Figure 4.2. AVO1 is required for AVO2 and AVO3, but not for LST8 to associate 
with TORC2 

Lysates from cells expressing GAL1 promoter-AVO1 and HA- or myc-tagged versions of two TORC2 

components were subjected to immunoprecipitations with anti-HA or anti-myc. Cells expressing AVO1 

grown in galactose medium (lane 1) were compared to AVO1-depleted cells grown for 15 h in glucose 

medium (lane 2). Immunoprecipitates were probed with anti-myc or anti-H, respectively to detect the 

coimmunoprecipitated partner protein (bottom panel). The expression level of the HA or myc-tagged 

TORC2 component is shown in the top panel and middle panel, respectively. 

 A) GAL1pAVO1 HA-TOR2 AVO2-myc (SW76-5b), B) GAL1pAVO1 HA-TOR2 AVO3-myc (SW68-3b), C) 

GAL1pAVO1 AVO3-HA AVO2-myc (SW73-4b), D) GAL1pAVO1 HA-TOR2 LST8-myc (SW75-10c), E) 

GAL1pAVO1 LST8-HA AVO2-myc (SW69-4d), F) GAL1pAVO1 LST8-HA AVO3-myc (SW74-11b) 
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In avo3 mutant cells the association of TOR2 and AVO2 was impaired (Fig. 4.3.A), 

while the interaction of TOR2 with LST8 was unaffected (Fig. 4.3.B). Likewise AVO3 

was required for AVO1 and AVO2 to interact (Fig. 4.3.C) and the interaction between 

AVO1 or AVO2 and LST8 was abolished in avo3 mutant cells (Fig. 4.3.D,E). Therefore 

the binding of AVO1 and AVO2 to TORC2 is dependent on the presence of AVO3 

suggesting that AVO2 binds through both AVO1 and AVO3 to TORC2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. AVO3 is required for AVO1 and AVO2, but not LST8 to associate to 
TORC2 

Lysates from cells expressing GAL1 promoter-AVO3 and HA- or myc-tagged versions of two TORC2 

components were subjected to immunoprecipitations with anti-HA or anti-myc. Cells expressing AVO3 

grown in galactose medium (lane 1) were compared to AVO3-depleted cells grown for 15 hr in glucose 

medium (lane 2). Immunoprecipitates were probed with anti-myc or anti-HA, respectively to detect the 

coimmunoprecipitated partner protein (bottom panel). The expression level of the HA or myc-tagged 

TORC2 component is shown in the top panel and middle panel, respectively. A) GAL1pAVO3 HA-TOR2 

AVO2-myc (SW72-5a), B) GAL1pAVO3 HA-TOR2 LST8-myc (SW77-5d), C) GAL1pAVO3 AVO1-HA 

AVO2-myc (SW65-11c), D) GAL1pAVO3 AVO1-HA LST8-myc (SW67-3b), E) GAL1pAVO3 LST8-HA 

AVO2-myc (SW78-3a) 
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Consistent with this model AVO3 interacted with TOR2 in an avo2 mutant (Fig. 4.4.A) 

and deletion of AVO2 did not disturb the association between TOR2 and LST8 (Fig 

4.4.B). On the other hand, we observed that removal of LST8 destabilized but did not 

completely abolish the TOR2-AVO3 or the TOR2-AVO2 interaction (Fig. 4.4.C,D). 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4. Effect of avo2, lst8 and tor2 on the integrity of TORC2 
A, B) AVO2 is not required for AVO1 and LST8 to interact with TOR2 
Lysates from wild-type (lane1) or avo2 mutant cells (lane 2) expressing HA- or myc-tagged versions of two 

TORC2 components were subjected to immunoprecipitations with anti-HA or anti-myc. Immunoprecipitates 

were probed with anti-HA to detect the coimmunoprecipitated partner protein (bottom panel). The 

expression level of the HA or myc-tagged TORC2 component is shown in the top panel and middle panel, 

respectively. 

A) HA-TOR2 AVO3-myc (SW62-7a),  avo2 HA-TOR2 AVO3-myc (SW102-8b), B) HA-TOR2 LST8-myc 

(SW63-1d), avo2 HA-TOR2 LST8-myc (SW103-2d) 

 

 

 

 

To examine whether AVO1 and AVO3 can interact independently of TOR2 forming a 

subcomplex, the association between AVO1, AVO2 and AVO3 was studied in TOR2-

depleted cells. As shown in Fig. 4.4.E,F the interaction between AVO1 and AVO3 was 

destabilized and AVO1 no longer bound to AVO2 in absence of TOR2 leading to the 

conclusion that TOR2 is required for the interaction of AVO1 to AVO2 and AVO3. 

Thus, AVO1, AVO3 and TOR2 appear to function as important structural elements of 

TORC2 and are required for AVO2 to bind to the complex. LST8 binds directly to TOR2 

(see below) independently of AVO1, AVO2 and AVO3 function. 
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C, D) Depletion of LST8 destabilizes the interaction between AVO3 and AVO2 

with TOR2  
Lysates from cells expressing GAL1 promoter-LST8 and HA- or myc-tagged versions of two TORC2 

components were subjected to immunoprecipitations with anti-HA or anti-myc. Cells expressing LST8 

grown in galactose medium (lane 1) were compared to LST8-depleted cells grown for 15 hr in glucose 

medium (lane 2). Immunoprecipitates were probed with anti-myc to detect the coimmunoprecipitated 

partner protein (bottom panel). The expression level of the HA or myc-tagged TORC2 component is shown 

in the top panel and middle panel, respectively. 

 C) GAL1pLST8 HA-TOR2 AVO3-myc (SW104-3c), D) GAL1pLST8 HA-TOR2 AVO2-myc (SW104-3c) 

 

E, F) AVO1 does not interact with AVO3 or AVO2 in cells depleted for TOR2 
Lysates from cells expressing GAL1 promoter-TOR2 and HA- or myc-tagged versions of two TORC2 

components were subjected to immunoprecipitations with anti-HA or anti-myc. Cells expressing TOR2 

grown in galactose medium (lane 1) were compared to TOR2-depleted cells grown for 15 hr in glucose 

medium (lane 2). Immunoprecipitates were probed with anti-myc to detect the coimmunoprecipitated 

partner protein (bottom panel). The expression level of the HA or myc-tagged TORC2 component is shown 

in the top panel and middle panel, respectively.  

E) GAL1pTOR2 AVO1-HA AVO3-myc (SW105-3d), F) GAL1pTOR2 AVO1-HA AVO2-myc (SW106-5a) 
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LST8 binds to the C-terminal part of TOR2 while AVO3 associates with the N-
terminal part of TOR2 
To determine which domains in TOR2 mediate the interaction between the different 

partner proteins coimmunoprecipitation experiments were performed. N-terminally 

tagged versions of TOR2 were expressed from high copy plasmids in strains containing 

epitope tagged TOR2 partner proteins. LST8 was able to interact with the C-terminal 

half of TOR2 containing the FAT, FRB and the kinase domain, but not with the N-

terminal half of TOR2 (Fig. 4.5.A). The binding of AVO1 and AVO3 to TOR2 appeared 

to be more complex because in cells expressing endogenous TOR2 we failed to detect 

an interaction of these two proteins with either the N-terminal or the C-terminal half of 

TOR2. Therefore, endogenous TOR2 was depleted using a strain that contains 

endogenous TOR2 under the control of the GAL1 promoter. In cells grown in glucose-

media we observed a weak interaction between AVO3 and the N-terminal half of TOR2 

consisting of the HEAT repeats but not with the C-terminal half of TOR2 (Fig. 4.5.B). 

However, using this approach we did not detect an interaction between AVO1 and the 

two TOR2 constructs suggesting that AVO1 might bind to TOR2 via multiple contacts 

with various domains of TOR2. Thus, AVO3 seems to associate with the HEAT repeats 

of TOR2, while LST8 avidly binds to the C-terminal half of TOR2. 
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Figure 4.5. Interaction domains of TOR2 with LST8 and AVO3 
A) LST8 binds to the C-terminal part of TOR2. 
Cells containing myc-tagged LST8 (RL59-2d) were transformed with pSW61 expressing the N-terminal half 

of HA-tagged TOR2 (amino acids 1-1390) and pSW62 expressing the C-terminal half of HA-tagged TOR2 

(amino acids 1290-2474). Lysates were incubated with anti-HA and subsequently probed with anti-myc to 

detect coimmunoprecipitated LST8 (bottom panel). 

B) AVO3 associates with the N-terminal part of TOR2 
Cells containing GAL1 promoter-TOR2 and myc-tagged AVO3 (SW94-1a) were transformed with pSW61 

expressing the N-terminal half of HA-tagged TOR2 (amino acids 1-1390) and pSW62 expressing the C-

terminal half of HA-tagged TOR2 (amino acids 1290-2474). Lysates were incubated with anti-myc and 

subsequently probed with anti-HA to detect coimmunoprecipitated TOR2 (bottom panel). 

 

 

 

 

 

LST8 controls TOR2 kinase activity and AVO1 functions as scaffold protein 
The coimmunoprecipitation experiments indicated that AVO1 as well as AVO3 are 

important structural proteins to maintain the integrity of the TORC2 without affecting the 

binding of LST8 to TOR2. To study the contribution of TORC2 components to kinase 

activity the activity of immunopurified TORC2 depleted of various partner proteins was 

determined in an in vitro kinase assay using as a substrate 4E-BP1 (a substrate of 

mammalian TOR). To control for specificity, activity from a mock purification was 

compared to the activity of immunopurified TOR2. We did not detect phosphorylation of 

4E-BP1 in the mock assay and obtained proteins of TORC2 but not TORC1 using 

immunopurified TORC2 demonstrating the feasibility of the assay (see also Fig. 5.2. in 
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Part 5 and data not shown). As a further control the phosphorylation status of 4E-BP1 

phosphorylation was analyzed using a kinase dead version of TOR2. Compared to 

wild-type TOR2, kinase dead TOR2 drastically reduced phosphorylation of 4E-BP1 

indicating that 4E-BP1 is phosphorylated in a TOR2-dependent manner (Audhya et al., 

2004).  

 

In vitro 4E-BP1 is unstructured and phosphorylated by a number of unrelated kinases. 

Therefore we consider 4E-BP1 to be a nonphysiological substrate for TOR2 in yeast, 

which allows studying the catalytic activity of TOR2 independently of the integrity of 

TORC2. To test linearity of the in vitro kinase assay time course experiments were 

performed. In wild-type as well as in cells depleted for AVO1 or LST8 the rate of 4E-

BP1 phosphorylation was linear up to 30 min incubation time (data not shown). The 

activity of TOR2 towards 4E-BP1 was determined by performing kinase reactions in the 

presence of different concentrations of 4E-BP1 and subsequent quantification of 4E-

BP1 phosphorylation. The phosphorylation was normalized to the amount of TOR2 

present in the kinase reaction determined by immunoblotting. The kinetic analysis is 

shown as a Lineweaver-Burk double reciprocal plot that allows the determination of the 

KM (Michealis-Menten constant; -1/X intercept) and the relative Vmax (maximal velocity; 

1/Y intercept ). The KM and relative Vmax of 4E-BP1 in avo1 mutants was not 

significantly changed compared to wild-type cells (Fig. 4.6.C). In lst8 mutant cells we 

observed a slight increase in the KM and a 2-fold decrease in relative Vmax compared to 

wild-type cells indicating that in the absence of LST8 the catalytic kinase activity of 

TOR2 is perturbed (Fig. 4.6.C). Because AVO1 depletion, which results in the 

disruption of TORC2 integrity, did not change the TOR2-mediated phosphorylation of 

4E-BP1 we conclude that AVO1 is not required for the regulation of TORC2 catalytic 

activity. Depletion of LST8 in contrast, suggests that LST8 modulates the kinase 

activity of TOR2. 
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Figure 4.6. LST8 controls TOR2 kinase activity  
In vitro kinase assays were performed using HA-TOR2 immunopurified from wild-type (SW70), GAL1 

promoter-AVO1 (SW84-1d) or -LST8 (SW100-1a) cells grown in glucose medium for 15 hr to deplete 

AVO1 or LST8. Purified HA-TOR2 was incubated with different concentrations of 4E-BP1 (from 0.15 - 0.45 

µM) in the presence of 32P-ATP. 

A) Phosphorylation (top panel) and amount of 4E-BP1 (bottom panel) 

B) Expression of HA-TOR2 purified from wt, avo1 and lst8 cells detected by immunoblotting  

C) Analysis of the normalized data shown as Lineweaver-Burk plot. X-axis represents the reciprocal value 

of 4E-BP1 concentrations in µM and Y-axis shows the reciprocal value of 4E-BP1 phosphorylation in 

arbitrary units.  X intercept defines -1/KM, and Y intercept 1/Vmax. 
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To investigate if the integrity of TORC2 affects the accessibility of in vivo substrates, 

kinase assays using recombinant SLM1 were performed. SLM1 was recently found to 

be a substrate of TORC2 (Audhya et al., 2004). To estimate the KM of the kinase 

reaction, various concentrations of bacterial expressed SLM1 were incubated with 

TORC2 purified from wild-type, avo2 or avo1 cells in the presence of 32P-ATP. 

Quantification of the phosphorylation and data analysis in the Lineweaver-Burk plot 

exhibited a 4-fold increase of the KM in avo1 but only a slight increase in avo2 cells 

when compared to the KM in wild-type cells (Fig. 4.7.C). The increased KM for SLM1 

without changing relative Vmax of the reaction indicates that the depletion of AVO1 

inhibits binding of SLM1 to the TOR2 kinase. Thus, AVO1 appears to act as scaffold 

and adaptor protein facilitating an efficient binding of substrates to TORC2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7. AVO1 functions as scaffold and adaptor protein 
In vitro kinase assays were performed using immunopurified TOR2 from wild type (SW70), avo2 (SW92-

5a) or GAL1 promoter-AVO1 (SW84-1d) containing cells grown in glucose medium for 15 hr to deplete 

AVO1. Immunopurified TORC2 was incubated with different concentrations of recombinant GST-SLM1 

(from 0.1 -  2.7 µM) in the presence of 32P-ATP. 

A) Phosphorylation (top panel) and amount of SLM1 (bottom panel) 

B) Expression of HA-TOR2 purified from wt, avo1 and avo2 cells detected by immunoblotting  

 

72



 

0

1

2

3

4

5

6

7

8

-1.5 -0.5 0.5 1.5 2.5

1/[SLM1]

1/
V

avo1

Wt

avo2

 

 

 

 

 

 

 

 

 

 

 

 

 
C) Analysis of the normalized data shown as Lineweaver-Burk plot. X-axis represents the reciprocal value 

of GST-SLM1 concentrations in µM and Y-axis shows the reciprocal value of SLM1 phosphorylation in 

arbitrary units.  X intercept defines -1/KM, and Y intercept 1/Vmax. 
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4. 3. Discussion 
 
Here we analyzed the architecture and the function of different components of TORC2. 

We showed that TORC2 exists in an oligomeric form and that AVO1 and AVO3 are 

scaffold and likely also adaptor proteins, whereas LST8 controls the catalytic activity of 

TOR2 protein kinase. 

 

The dimerization of TORC2 could be important for regulation of its activity. It has been 

recently reported that the activity of ATM, a kinase, that belongs like TOR to the 

phosphatidylinositide 3-kinase (PI3K)-related superfamily, is regulated by its 

dimerization (Bakkenist and Kastan, 2003). In its inactive state ATM exists as a dimer. 

Upon irradiation leading to autophosphorylation and activation of ATM, the ATM dimer 

is dissociated and active ATM monomers are able to phosphorylate their substrates. 

Although the regulation of TORC2 is different in the sense that TORC2 is dimerized in 

its active form dimerization could be an important regulatory mechanism. However, we 

did not see a change in the dimerization state of TOR2 under conditions where TOR 

signaling is inhibited. It remains to be elucidated which role the different partner 

proteins play in the dimerization of TORC2. 

 

Based on coimmunoprecipitation of TORC2 partner proteins in the absence of an 

individual partner we propose a model in which AVO1 and AVO3 bind at least partly to 

the HEAT repeats of TOR2 cooperatively mediating the binding of AVO2 and possibly 

BIT61, BIT2 (preliminary data) to the complex, whereas LST8 binds to the C-terminal 

half of TOR2 independently of AVO1, AVO2 or AVO3 (model Fig. 4.8.). AVO2 might 

serve as an adaptor protein for substrates, such as SLM1, as SLM1 copurifies with 

AVO2. Given the fact that AVO2 is a nonessential gene and does not exhibit any 

growth phenotypes under various conditions efficient phosphorylation of substrates 

must also occur in avo2 mutants. Likewise we did not observe a drastic change in the 

KM for SLM1 to TOR2 in an avo2 mutant. The protein-protein interactions occurring in 

TORC2 appear to be rather complex and the association of a given protein to TORC2 

may involve binding to different partner proteins through various domains, as the 

interaction between AVO1, AVO2 and AVO3 is impaired in the absence of TOR2. 

 

In in vitro kinase assays using 4E-BP1 and SLM1 as substrates for the TOR2 protein 

kinase we could discriminate different functions for AVO1 and LST8. We showed that 
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the TORC2-mediated phosphorylation of 4E-BP1, a nonphysiological substrate for 

TORC2, is independent of AVO1, but requires the presence of LST8 as indicated by 

the decrease in the relative Vmax for in the absence of LST8. Thus, LST8 seems to 

regulate the catalytic activity of TOR2, likely by direct binding to the TOR2 kinase 

domain. Importantly, the disruption of TORC2 observed upon AVO1 or AVO3 depletion 

did not disturb the interaction between TOR2 and LST8 suggesting that the integrity of 

TORC2 is not needed for TOR2 to be active. In this respect the destabilization of 

TORC2 in LST8-depleted cells did not account for the inhibition of the TOR2 kinase 

activity towards 4E-BP1 and might rather be a consequence of the inhibitory effect 

upon LST8 depletion. The finding that depletion of AVO1 resulted in a decreased 

affinity of TOR2 for SLM1 leads to the conclusion that AVO1 might act as an adaptor 

protein. Consistent with the coimmunoprecipitation experiments AVO1 and possibly 

AVO3 are important structural elements forming a stable complex with TOR2 and 

thereby provide the structural basis for binding and efficient phosphorylation of 

downstream factors.  

 

What is the function of LST8? LST8 was first identified in a synthetic lethal screen with 

sec13 and was shown to be required for transport of amino acid permeases, such as 

the general amino acid GAP1 from Golgi to plasma membrane (Roberg et al., 1997). 

However, the effect of LST8 on GAP1 sorting appeared to be indirect and a 

consequence of LST8 acting in the TOR signaling pathway (Chen and Kaiser, 2003). 

LST8 is a constituent of both TORC1 and TORC2 acting positively with TOR in either 

complex (Chen and Kaiser, 2003; Loewith et al., 2002). Therefore, LST8 might perform 

similar functions in TORC1 and TORC2. It has been reported that LST8 and TOR1 are 

localized at endosomal and Golgi membranes and LST8 could be important for the 

proper localization of TORCs. However, in lst8 mutants TOR1 still associated with 

internal membranes indicating that LST8 does not mediate localization of TOR1 to 

membranes (Chen and Kaiser, 2003). Our data suggest that LST8 bound to the TOR2 

kinase domain is required for TOR2 kinase activity which is consistent with the function 

of mLST8 in mammals (Kim et al., 2003). The mechanism by which LST8 regulates 

TOR2 kinase activity is not known but LST8 could be important for proper folding of the 

kinase domain or could compete with inhibitory factors for binding to the TOR2 kinase 

domain. 
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What is upstream of TORC2? In yeast TOR responds to nutrients, in particular to the 

quantity and quality of the nitrogen source. Through which mechanism the nutrient 

availability is sensed by TOR is unknown. Although TORC1 and TORC2 control 

different signaling processes within a cell, cell growth has to occur in a coordinated 

manner. Therefore both TOR complexes might respond to the same signal. Since 

LST8 is the only TOR-interacting protein present in both complexes it could be an 

important factor for sensing upstream signals. Data presented in Part 3 of this thesis 

indicate a function for LST8 upstream of TOR2 as overexpression of TOR2 weakly 

suppresses the growth phenotype of lst8 mutants. LST8 might therefore receive 

upstream signals and accordingly modulate the kinase activity of both TORC1 and 

TORC2. 

 

 

 
 

 
 

 

 

 

 

 
 

 

 

Figure 4.8. Model 
AVO1 and AVO3 act as scaffold and adaptor proteins maintaining the integrity of TORC2 and the 

association with downstream factors, like SLM1 and SLM2 to (TORC2). LST8 through binding to the C-

terminal part of TOR2 regulates kinase activity of TOR2. Oligomerization of TORC2 is not shown in this 

model. 
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4. 4. Materials and methods 
  
Strains, plasmids, and media 
The S. cerevisiae strains and plasmids used are listed in Table 4.1. and 4.2., 

respectively. All strains are isogenic derivatives of JK9-3da or TB50a. Rich media, YPD 

or YPGal/Gly, and synthetic complete media, SD or SGal/Gly, were as described 

previously (Beck et al., 1999; Sherman, 1991). Nitrogen starvation experiments were 

performed with synthetic media as previously described (Schmidt et al., 1998). For 

TOR2-, AVO1-, AVO3-, LST8-depletion experiments, cells from logarithmically growing 

SGal/Gly or YPGal/Gly cultures were inoculated into SD or YPD medium, respectively. 

Glucose cultures were shaken for 15 hr before cells were harvested for analysis. 

  

Genetic techniques 
Restriction enzyme digests and ligations were performed according to standard 

methods. All enzymes and buffers were obtained commercially (Roche Diagnostics). 

Escherichia coli strains MH1 and DH5α were used for propagation and isolation of 

plasmids. Yeast transformation was performed by the lithium acetate procedure (Ito et 

al., 1983). PCR cassettes were used to generate gene deletions and modifications, as 

described (Longtine et al., 1998; Puig et al., 2001). 

 

Immunoprecipitations and TAP pull-downs 
A 200 ml culture was grown in YPGal/Gly or YPD at 30°C for 15 hr to OD600 of 0.8, 

harvested by centrifugation and washed with cold water. The pellet was resuspended 

in 2 ml lysis buffer (1 x PBS, 10% glycerol, 0.5% Tween-20 plus inhibitors: 10 mM NaF, 

10 mM NaN3, 10 mM p-nitrophenylphosphate, 10 mM sodium pyrophosphate, 10 mM 

β-glycerophophate, 1 mM phenylmethylsulfonyl fluoride, 1 x Roche complete inhibitor 

cocktail). Cells were lysed by vortexing 5 x 30 s with glass beads using a FastPrep 

machine (Savant Instruments). Extracts were cleared with a 5 min, 2900 x g spin. An 

aliquot of extract containing 3 mg protein was adjusted to 1 ml with lysis buffer plus 

inhibitors. To immunoprecipitate the epitope tagged protein 1 µl of either concentrated 

12CA5 (anti-HA) or 9E10 (anti-myc) tissue culture supernatant was added and the 

tubes were rotated for 1 hr at 4°C. Afterwards 20 µl protein G-sepharose slurry (Sigma) 

was added and the tubes were rotated for additional 2 hr at 4°C. For TAP pull-downs 

20 µl IgG-sepharose 6 fast flow (Amersham Pharmacia Biotech) was added, and tubes 

were rotated for 3 hr at 4°C. Beads were collected by centrifugation, washed four times 
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with 1 ml lysis buffer, and resuspended in 2 x SDS-PAGE sample buffer. For 

coimmunoprecipitations the sample was split in half, one aliquot was used for 

expression control, the other half to detect the coimmunoprecipitated protein and 

subjected to SDS-PAGE. After electrophoresis the proteins were electroblotted onto 

nitrocellulose, blocked in 5% milk in 1 x PBS 0.1% Tween-20, and incubated with 

primary antibody (12CA5 or 9E10 1:10000 in blocking solution, or anti-ProteinA 1:5000 

in blocking buffer) over night at 4°C. The membranes were washed and incubated for 1 

hr at room temperature with the corresponding horseradish peroxidase-conjugated 

secondary antibody. The tagged proteins were detected using ECL reagents 

(Amersham Pharmacia Biotech). 

 

Purification of GST-tagged proteins 
XL-1 blue cells transformed with pGEX-4T::SLM1 were grown in 1 l LB/Amp at 37°C to 

an OD600 of 0.4 and expression of GST-SLM1 was induced by incubation with 0.4 mM 

isopropyl-β-D-thiogalactopyranoside (IPTG) for 3.5 hr at 37°C. Cells were lysed in lysis 

buffer (1 x PBS, 10% glycerol, 0.5% Tween-20, 1 mM phenylmethylsulfonyl fluoride, 1 

x Roche complete inhibitor cocktail) by sonication. Cleared extracts were incubated 

with 600 µl glutathione sepharose beads (Pharmacia) and rotated at 4°C for 3 hr. After 

washing with lysis buffer the protein was eluted with 10 mM reduced glutathione 

(Sigma) in 50 mM Tris-HCl (pH 8.0) and dialysed against 1 x PBS, 20% glycerol, 0.5% 

Tween-20. 

 

Kinase assays 
Cells expressing HA-TOR2 in different mutant backgrounds maintained on YPD and 

YPGal/Gly plates, respectively were inoculated into YPGal/Gly liquid media and 

cultured over night. Per strain (4 assays) 4 l of YPD were inoculated and grown at 30°C 

for 15 h to an OD600 of 0.8 and the chilled on ice for 30 min. Cells were collected by 

centrifugation, washed once in ice-cold water and lysed with a Bead Beater (Biospec 

products) in ~20 ml lysis buffer (1 x PBS, 10% glycerol, 0.5% Tween-20 plus inhibitors: 

10 mM NaF, 10 mM NaN3, 10 mM p-nitrophenylphosphate, 10 mM sodium 

pyrophosphate, 10 mM β-glycerophophate, 1 mM phenylmethylsulfonyl fluoride, 1 x 

Roche complete inhibitor cocktail).  The lysate was cleared with a 5 min, 2900 x g spin. 

Lysates were normalized to ~20 ml and ~300 mg protein per strain (4 kinase reactions) 

and passed over 200 µl Sepharose CL-4B (Sigma) : ProteinA-sepharose (Amersham) 

(3:1), which has been previously equilibrated in lysis buffer. To the flow through was 
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added 150 µl anti-HA crosslinked to Protein A-sepharose beads. This mixture was 

rotated for 3 hr at 4°C after which time the beads were collected in a column and 

washed with 30 ml lysis buffer. Antibody-beads were equally split amongst 5 tubes. To 

one aliquot 30 µl 2 x SDS-PAGE sample buffer was added and was used for western 

blotting. To the remaining aliquots either GST-LIT2 ranging from 0.1 - 2.7 µM or 4E-

BP1 (Stratagene) ranging from 0.15 - 4.05 µM in 50 µl kinase buffer (lysis buffer with 

20% glycerol). For time course experiments 30 µg GST-LIT2 or 1 µg 4E-BP1 was 

added. 6 µl of 10 x goodies (40 mM MnCl2, 100 mM dithiothreitol, 10 x Roche complete 

inhibitor cocktail - EDTA, 100 mM NaN3, 100 mM NaF, 100 mM p-

nitrophenylphosphate, 100 mM β-glycerophosphate) were added before the reaction. 

The kinase reaction was started with the addition of 4 µl ATP mix (1.2 mM ATP, 2.5 

µCi/ µl γ32P-ATP [3000 Ci/mmol] in kinase buffer. Tubes were mixed (1200 rpm) at 

30°C (incubation time for reactions with GST-LIT2: 20 min, incubation time for 

reactions with 4E-BP1: 10 min). The reactions were terminated with the addition of 15 

µl 5 x SDS-PAGE sample buffer. Samples were subjected to SDS-PAGE (5-20%) and 

radioactivity was quantified using GeneSnap software (SynGene). 

 

 

Table 4.1. Strains  
 

Strain  Genotype 

 

JK9-3da MATa leu2-3,112 ura3-52 trp1 his4 rme1 HMLa 

JK9-3dα MATα leu2-3,112 ura3-52 trp1 his4 rme1 HMLα 

TB50a  JK9-3da HIS4 his3 

TB50α  JK9-3dα HIS4 his3 

RL39-1a TB50a AVO2-3HA-kanMX4 

RL42-1c TB50a AVO3-3HA-kanMX4 

RL59-2d TB50a LST8-13myc-kanMX4 

RL69-1c TB50a AVO1-3HA-kanMX4 

SW62-7a TB50a HA-TOR2 AVO3-13myc-kanMX4 

SW63-1d TB50α HA-TOR2 LST8-13myc-kanMX4 

SW65-11c TB50a [HIS3MX6]-GAL1p-AVO3 AVO1-3HA-kanMX4 AVO2-13myc-

kanMX4 
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SW67-3b TB50α [HIS3MX6]-GAL1p-AVO3 AVO1-3HA-kanMX4 LST8-13myc-

kanMX4 

SW68-3b TB50a [HIS3MX6]-GAL1p-AVO1 3HA-TOR2 AVO3-13myc-kanMX4 

SW69-4d TB50a [HIS3MX6]-GAL1p-AVO1 LST8-3HA-kanMX4 AVO2-13myc-

kanMX4 

SW70  TB50a 3HA-TOR2 

SW72-5a TB50a [HIS3MX6]-GAL1p-AVO3 3HA-TOR2 AVO2-13myc-kanMX4 

SW73-4b TB50a [HIS3MX6]-GAL1p-AVO1 AVO3-3HA-kanMX4 AVO2-13myc-

kanMX4 

SW74-11b TB50a [HIS3MX6]-GAL1p-AVO1 LST8-3HA-kanMX4 AVO3-13myc-

kanMX4 

SW75-10c TB50a [HIS3MX6]-GAL1p-AVO1 3HA-TOR2 LST8myc-kanMX4 

SW76-5b TB50a [HIS3MX6]-GAL1p-AVO1 3HA-TOR2 AVO2-13myc-kanMX4 

SW77-5d TB50a [HIS3MX6]-GAL1p-AVO3 3HA-TOR2 LST8-13myc-kanMX4 

SW78-3a TB50a [HIS3MX6]-GAL1p-AVO3 LST8-3HA-kanMX4 AVO2-13myc-

kanMX4 

SW84-1d TB50a [HIS3MX6]-GAL1p-AVO1 3HA-TOR2  

SW92-5a TB50a 3HA-TOR2 avo2::kanMX4 

SW94-1a TB50a [HIS3MX6]-GAL1p-TOR2 AVO3-13myc-kanMX4 

SW100-1a TB50a [HIS3MX6]-GAL1p-LST8 3HA-TOR2  

SW102-8b TB50a avo2::kanMX4 3HA-TOR2 AVO3-13myc-kanMX4 

SW103-2d TB50α avo2::kanMX4 3HA-TOR2 LST8-13myc-kanMX4 

SW104-3c TB50a [kanMX4]-GAL1p-LST8 3HA-TOR2 AVO3-13myc-kanMX4 

SW105-3d TB50α [HIS3MX6]-GAL1p-TOR2 AVO1-3HA-kanMX4 AVO3-13myc-

kanMX4 

SW106-5a TB50a [HIS3MX6]-GAL1p-TOR2 AVO1-3HA-kanMX4 AVO2-13myc-

kanMX4 

SW108-4a TB50α [kanMX4]-GAL1p-LST8 3HA-TOR2 AVO2-13myc-kanMX4 

SW109-3d TB50a [HIS3MX6]-GAL1p-AVO1 3HA-TOR2 LST8-13myc-kanMX4 

KOG1-TAP-kanMX4 

SW110 TB50a/α AVO1-3HA-kanMX4 AVO1-TAP-KlTRP1 

SW111 TB50a/α AVO2-3HA-kanMX4 AVO2-13myc-kanMX4 

SW112 TB50a/α AVO3-3HA-kanMX4 AVO3-13myc-kanMX4 
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Table 4.2. Plasmids 
 

Plasmids Description 

 

pAN54  expresses myc-tagged TOR2 from TOR2 promoter, YCplac111::myc-

TOR2 (CEN, LEU2) 

pRL42-1 expresses GST-tagged SLM1 (YIL105c), pGEX-4T::SLM1 

pSW61  expresses HA-tagged TOR2 (1-1390) from TOR2 promoter. Cloned as 

4.7-kb BamHI-PstI fragment into YEplac195::CYC1 terminator (2µ, 

URA3) 

pSW62  expresses HA-tagged TOR2 (1290-2474) from TOR2 promoter. Cloned 

as 4.1-kb SacI-PstI fragment into YEplac195::TOR2 promoter ATG-3HA 

(2µ, URA3) 
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5. TOR and its role as protein kinase 

 

5. 1. Introduction 

 
TOR as protein kinase 
TOR is the founding member of phosphatidylinositol kinase-related kinases (PIKK) 

family of protein kinases (Keith and Schreiber, 1995). PIKKs share similarity to the 

kinase domain of phosphatidylinositol kinases (PIK), but none of them are believed to 

act as a lipid kinase. Rather, PIKKs are thought to act as Ser/Thr protein kinases. TOR 

too is a protein kinase as immunoprecipitated mTOR autophosphorylates (Brunn et al., 

1996; Chen et al., 1995) and is able to phosphorylate 4E-BP1 and p70S6K in vitro 

(Brunn et al., 1997; Burnett et al., 1998). The phosphorylation occurs in an mTOR-

dependent manner since mTOR containing a point mutation changing Asp2338 to Ala 

shows no kinase activity. This Asp residue is conserved in both protein and lipid 

kinases, where it is required for kinase activity (Hunter, 1995). Mutation of Asp2338 to 

Ala also inhibits mTOR autophosphorylation on Ser2481 (Peterson et al., 2000). 

 

In vitro mTOR has been reported to phosphorylate five sites in p70S6K, Ser371, 

Thr389, Thr421, Ser424, and possibly Ser411, with Thr389 being the preferred site 

(Burnett et al., 1998; Isotani et al., 1999; Saitoh et al., 2002). 4E-BP1 is phosphorylated 

at two sites by mTOR in vitro, Thr37 and Thr46 (Brunn et al., 1997; Fadden et al., 

1997; Gingras et al., 1999). The phosphorylation sites fall into two different groups. The 

hydrophobic motif, Thr389-Tyr, and the Ser/Thr-Pro motif found in all the other 

phosphorylation sites of p70S6K and 4E-BP1. Since there is no common recognition 

motif in the amino acid sequence of mTOR substrates, other structural determinates or 

accessibility of substrates to mTOR mediated by protein-protein interactions might also 

be important for an efficient phosphorylation of substrates. Nevertheless, an effect of 

so far unknown kinases or phosphatases which associate to mTOR or are regulated by 

mTOR can also not be ruled out. 

 

In yeast the function of TOR1 and TOR2 as protein kinases is unclear. Although TOR1 

and TOR2 are able to phosphorylate 4E-BP1 (Alarcon et al., 1999), direct substrates 

for the TOR kinases in yeast have not been reported until very recently (Audhya et al., 

2004). It is well established that TORC1 controls at least some of the rapamycin-

sensitive readouts via inhibition of phosphatases (Schmelzle and Hall, 2000). Under 
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good nutrient conditions TORC1 inhibits the phosphatase SIT4 by promoting its 

association with TAP42. Upon inhibition of TORC1, either by rapamycin or nitrogen 

starvation, catalytically active SIT4 is released from TAP42 promoting the 

dephosphorylation of its target proteins such as the protein kinase NPR1, the 

transcription factor GLN3 and the TAP42 interacting protein TIP41. TOR1 has been 

reported to control the association of SIT4 to TAP42 via direct phosphorylation of 

TAP42 (Jiang and Broach, 1999), however this result remains controversial. The 

protein TIP41 was identified in a yeast two-hybrid screen as an interactor of TAP42 

(Jacinto et al., 2001). TIP41 is a negative regulator of the TOR signaling pathway and 

mediates inhibition of the TOR signaling pathway by binding and inhibiting TAP42. 

Upon rapamycin treatment TIP41 is dephosphorylated in a SIT4-dependent manner 

leading to an enhanced binding of TIP41 to TAP42 and thereby inactivating TAP42 and 

amplifying SIT4 phosphatase activity. Since the phosphorylation status of TIP41 and 

NPR1 is regulated in a TOR-dependent manner it has been suggested that TOR might 

directly, or via a TOR-regulated kinase, control the phosphorylation of these proteins. 

Recently, the phosphorylation sites of NPR1 were identified (D. Bonenfant 

unpublished). NPR1 contains 22 rapamycin-sensitive phosphorylation sites and the 

motifs of these sites are similar to the rapamycin-sensitive sites in p70S6K and 4E-

BP1. However, in vitro kinase assays indicated that TOR1 does not directly 

phosphorylate NPR1 suggesting that another kinase phosphorylates NPR1 and TOR 

may control the phosphorylation status of NPR1 exclusively via the phosphatase SIT4. 
 

  
 

Analysis of phosphorylation sites  
Identification of phosphorylation sites is still challenging despite recent advances in 

methodology. The most commonly used technique to analyze a phosphoprotein 

involves in vivo or in vitro labelling with 32P-phosphate. The radiolabelled protein is then 

digested with a protease and the peptides are separated either by high performance 

liquid chromatography or by two-dimensional phosphopeptide mapping. The 

phosphorylation site is then determined by Edman sequencing. Alternatively, 

phosphorylation sites can also be traced by using mass spectrometric methods. The 

analysis of proteins by mass spectrometry involves proteolytic digestion of the protein 

of interest, which is followed by measuring the mass of the generated peptides. The 

different peptides are then identified by comparing the observed masses obtained by 
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mass spectrometry to the predicted masses based on the specificity of the protease 

that was used to digest the protein of interest. Singly phosphorylated peptides exhibit a 

mass that is 80 Da greater than the predicted mass from the peptide sequence since 

they contain an HPO4 group. The phosphorylation site in a phosphopeptide can be 

determined by fragmentation of the peptide in the collision cell of the mass 

spectrometer (Bonenfant et al., 2003a). A major problem of this method is the 

complexity of the data that increases with the molecular weight of the protein. In 

addition, electrospray ionization produces multiple signals for each peptide due to 

multiple charging. To reduce the complexity procedures have been developed to detect 

phosphopeptides in a selective manner. One of these methods involves the enrichment 

of phosphopeptides in a complex mixture by immobilized metal-affinity chromatography 

(IMAC) (Ficarro et al., 2002). IMAC beads selectively bind phosphopeptides which can 

be eluted from the beads with Tris-buffer (pH 8.0) or alkaline phosphatase treatment. 

The eluted peptide is then analyzed by mass spectrometry. 

 

 

Identification of substrates for a specific kinase 
There are different procedures to identify a substrate for a kinase of interest. One 

approach, called KESTREL (kinase substrate tracking and elucidation) is based on a 

kinase reaction using cell extracts and the kinase of interest in the presence of 32P-ATP 

(Knebel et al., 2001). Another assay makes use of ATP derivates that can only be used 

as substrates by mutated forms of the protein kinase of interest (Bishop et al., 2001). 

 

The major problem performing a kinase reaction with whole cell extract and the kinase 

of interest is the high background due to endogenous kinases that are present in the 

cell extract. In KESTREL the conditions of the kinase assay have been optimized 

resulting in a reduction of the background (Knebel et al., 2001). To maximize the 

sensitivity of the kinase reaction ATP-depleted cell extracts are incubated with a high 

concentration of the kinase of interest using 32P-ATP of high specific radioactivity. The 

incubation time is kept short and the use of MnATP instead of MgATP is preferred at 

least for kinases that can use both forms of ATP with similar efficiency. In addition, 

performing the kinase reaction with cell extract that is purified prior to the kinase 

reaction by a single step purification, such as ion-exchange chromatography minimized 

the signal to noise ratio. The substrates are detected by autoradiography and are 

further purified in order to be identified by mass spectrometry.  
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Another method was developed by the group of Kevan Shokat (Bishop et al., 2001). 

This approach allows the specific labelling of the substrates of a kinase of interest in 

the cell extract. The method is based on the mutation of a conserved bulky residue in 

the ATP-binding pocket of a given kinase to a glycine or alanine. Only this mutated 

kinase is then able to bind bulky ATP analogues that fit into the mutant-binding pocket 

but cannot bind to wild-type kinases. A kinase reaction can be performed using cell 

extract that contains a single analogue-sensitive kinase and the radiolabelled ATP-

analogue resulting in the specific labelling of the direct substrate of the kinase of 

interest, as only this modified kinase is able to use the ATP-analogue to phosphorylate 

its substrate. However, computer-based modelling of the active site of the kinase as 

well as elaborate chemical synthesis of the analogues is required for the design of the 

ATP-analogues. 

 

Here we focus on TOR and its role as a protein kinase in yeast. We tried to map TOR-

regulated phosphorylation sites in TIP41 as well as AVO1 and AVO3 by mass 

spectrometric methods. To gain further insight into TOR signaling we started to develop 

an assay to identify substrates for the TOR kinases. This work was done in 

collaboration with Paul Jenoe, Division of Biochemistry, Biozentrum, Basel. 
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5. 2. Results 
 
Phosphorylation of TIP41 
To map phosphorylation sites TIP41 was expressed as a GST-tagged fusion protein 

from a GAL1 promoter-containing plasmid in yeast cells. After 2 hours induction with 

galactose GST-TIP41 was purified via glutathione-affinity chromatography, and the 

protein was digested with either trypsin or endoprotease LysC. The generated peptides 

were analyzed by electrospray mass spectrometry (LC/MS) and compared to the 

predicted masses based on the specificity of the protease. Combining trypsin and LysC 

digestion 90% of the peptides were observed in the LC/MS analysis missing only one 

Ser or Thr containing peptide. Examining the spectra for the presence of peptides 

whose masses were increased by 80 Da (or multiples thereof), two candidates were 

found: peptide T39 and T40 (data not shown). Alternatively, the tryptic fragments of 

GST-TIP41 were subjected to IMAC (immobilized metal-affinity chromatography) 

selection. IMAC-beads charged with Fe3+ selectively bind phosphopeptides. The bound 

peptides were eluted from the IMAC-beads with Tris-buffer (pH 8.0) and analyzed by 

MALDI-TOF mass spectrometry. Three candidate phosphopeptides were identified: 

T39, T38-39, T40 (T38-39 represents an incompletely digested peptide) confirming the 

results obtained by LC/MS analysis (Fig. 5.1.). When elution from the IMAC-beads was 

performed in the presence of alkaline phosphatase, the mass of the three peptides 

decreased by 80 Da indicating that the peptides selected by IMAC are indeed 

phosphorylated (Fig. 5.1.). 
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Figure 5.1. IMAC phosphopeptide selection from tryptic digest of GST-TIP41.  
A) MALDI-TOF spectrum of T39 and T38-39 phosphopeptides eluted from IMAC beads in presence of 

Tris-buffer (pH 8.0) (upper spectrum) or in presence of alkaline phosphatase (AP) (lower spectrum).  

 

B) MALDI-TOF spectrum of T40 phosphopeptide eluted from IMAC beads in presence of Tris-buffer (pH 

8.0) (upper spectrum) or in the presence of alkaline phosphatase (AP) (lower spectrum) 
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To determine the precise phosphorylation sites the phosphorylated peptides T39 and 

T40 were analyzed by electrospray ionisation tandem mass spectrometry (LC-MS/MS). 

Ions of the specific peptide (T39 or T40) were selected in the first quadrupole of the 

mass spectrometer and subsequently subjected to fragmentation in the collision cell 

leading to the generation of ions from which the sequence of the peptide can be 

deduced. Phosphorylated fragment ions can be identified by a shift of 80 Da (or divided 

by the corresponding charge state of the fragment ions). Comparing the MS/MS 

spectra of the phosphorylated peptide with its unphosphorylated counterpart allows one 

to pinpoint the residue from which the mass shift occurred. We identified Thr55 and 

Ser79 as phosphorylation sites of TIP41 (data not shown). 

 

The function and the rapamycin-sensitivity of the two phosphorylation sites remain to 

be elucidated. However, the two phosphorylation sites identified possess a Ser/Thr-Pro 

motif that is similar to rapamycin-sensitive sites in p70S6K, 4E-BP1 and NPR1. Since 

mTOR is thought to directly phosphorylate p70S6K and 4E-BP1 we suggested that 

TIP41 is phosphorylated by the TOR kinases. To investigate this possibility in vitro 

kinase assays with TOR complex 1 (TORC1) and bacterial expressed GST fusion 

proteins of wild-type TIP41 and TIP41(81-355) lacking the N-terminal phosphorylation 

sites were carried out. No phosphorylation of wild-type TIP41 or TIP41(81-355) was 

observed leading to the conclusion that TIP41 is likely phosphorylated by a kinase 

other than TOR1/2 (data not shown). 

 

 

AVO1 and AVO3 are phosphoproteins 
AVO1 and AVO3 appear to be phosphorylated by TORC2 in vitro (R. Loewith, W. 

Oppliger unpublished). The other proteins of TORC2, BIT61 and AVO2 were 

phosphorylated to a minor extent, whereas LST8 was not phosphorylated (Fig. 5.2.A). 

To test whether phosphorylation of AVO1 and AVO3 is dependent on TOR2, kinase 

assays with a kinase dead version of TOR2 (TOR2-KD) were performed. 

Phosphorylation of AVO1 and AVO3 was decreased in a TOR2-KD strain indicating 

that TOR2 is responsible for in vitro phosphorylation of AVO1 and AVO3 (Fig. 5.2.B).  
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Figure 5.2. AVO1 and AVO3 are phosphorylated in a TOR2-dependent manner 
A) In vitro kinase assays were performed using immunopurified TORC2 from wild-type (SW70), avo2 

(SW92-5a) or GAL1 promoter-AVO1 (SW84-1d) containing cells grown in glucose medium for 15 hr to 

deplete AVO1. As a control mock purification of untagged strain (TB50a) was performed.  

 

B) In vitro kinase assays were performed using TORC2 purified from TAP-tagged AVO2 GAL1 promoter-

TOR2 (SW80-1d) transformed with either empty plasmid (lane 1, mock), pHA-TOR2 (lane 2) or pHA-

TOR2-KD (lane 3). Cells were grown for 16 hr in glucose medium to deplete endogenous TOR2. Upper 

panel: phosphorylation of AVO1 and AVO3, lower panel: expression of HA-TOR2 (lane 2) or HA-TOR2-KD 

(lane 3) detected by immunoblotting. 

 

 

 

To identify the TORC2-mediated phosphorylation sites of AVO1 and AVO3 we 

developed an assay in which the phosphorylation sites of AVO1 and AVO3 were 

labelled with 32P, subsequently isolated and analyzed by mass spectrometry. To label 

the phosphorylation sites of AVO1 and AVO3 TORC2 was purified with a TAP-tagged 

version of AVO2 and subjected to kinase reaction in the presence of 32P-ATP. After gel 

electrophoresis the radioactive AVO1 and AVO3 bands were cut and proteolytic 

cleaved by trypsin. The peptides were separated on a reverse-phase column and the 

amount of radioactivity was determined. The fractions containing high amount of 

radioactivity representing phosphorylated peptides were analyzed by MALDI-TOF 

mass spectrometry. We were not able to obtain reproducible results using this 

approach. The major problems were first the low abundance of AVO1 and AVO3 and 

second the low stoichiometry of the phosphorylation making it very difficult to identify 

phosphorylated peptides.  

(This part was done in collaboration with P. Jenoe, R. Loewith, W. Oppliger) 
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Approach to identify substrates of TOR2 
To identify substrates of TORC2 an approach similar to KESTREL was developed. To 

eliminate the background due to endogenous protein kinases we chemically digested 

yeast protein extract with cyanogenbromide (CNBr) to fragment and inactivate 

endogenous protein kinases. Yeast extracts were prepared in the absence of 

phosphatase inhibitors to ensure that potential substrates are present in an 

unphosphorylated from. SDS was included to solubilize membrane proteins. To remove 

SDS the proteins were precipitated by deoxycholate-TCA precipitation and 

subsequently digested with CNBr. Since methionine is a rare amino acid we expected 

to obtain relatively large peptides ensuring that the structural determinants for substrate 

recognition would be preserved. The CNBr digest was fractionated by reverse-phase 

chromatography. Separate fractions were incubated with purified TORC2 in the 

presence of 32P-ATP and subjected to electrophoresis on Tris-tricine gels. In a control 

experiment a mock kinase assay was performed to validate the specificity of the 

approach (Fig. 5.3.A). Radiolabelled bands specifically phosphorylated by TORC2 

demonstrate the feasibility of the approach (Fig. 5.3.B; band 1 to 5). Preliminary 

analysis of the radioactive band 5 by MALDI-TOF revealed that the band contained a 

mixture of several proteins consisting of heat shock proteins SSA1 and SSB1, the two 

ribosomal proteins RS9A and RS7B, pyruvate kinase PYK1, and the inorganic 

diphosphatase IPP1. However, further purification of the bands using chromatographic 

methods is required to clarify the identity of the labelled protein. 
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Figure 5.3. TORC2 in vitro kinase assays with a CNBr peptide library generated  

from wild-type strain (TB50a).  

TORC2 was purified from strain RL126-5d expressing TAP-tagged AVO2 and incubated with different 

fractions of a CNBr digest of yeast protein extract that was chromatographed on a reverse-phase column. 

A) Autoradiograph of kinase assays from mock purification (untagged strain) 

B) Autoradiograph of kinase assays from TORC2 purification. 

 

 

 

 

5. 3. Discussion 
 
To study the role of TOR as a protein kinase we analyzed the TOR-dependent 

phosphorylation sites of TIP41 by mass spectrometric methods. We identified two 

phosphorylation sites at the N-terminus of TIP41, Thr55 and Ser79. However, the 

stoichiometry of the phosphorylation appeared to be quite low and we had problems to 

confirm the phosphorylation sites when we analyzed TIP41 expressed from its own 

promoter instead of using TIP41 overexpressed from a galactose inducible plasmid. 

Whether or not the identified phosphorylation sites are rapamycin-sensitive, and also 

the in vivo role of these sites remain to be elucidated. TIP41 is a conserved protein, but 

the function of its homologue in higher eukaryotes has not been studied so far. The N-

terminal part of TIP41 that contains the identified phosphorylation sites is not 

conserved indicating that the phosphorylation sites are also not conserved. Which 
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kinase phosphorylates TIP41 remains unknown, as TORC1 did not directly 

phosphorylate TIP41 in vitro. Thus, TORC1 may only control phosphorylation of TIP41 

via SIT4 phosphatase whereas another kinase phosphorylates TIP41. A similar 

situation is observed in 4E-BP1 where rapamycin sensitivity of phosphorylation sites 

not always correlates with the ability of TOR to phosphorylate these sites in vitro 

(Gingras et al., 2001). It is therefore likely, that rapamycin-sensitive sites are not only 

directly phosphorylated by TOR but also controlled by TOR-regulated kinases or 

phosphatases.  

  

We encountered similar problems analyzing the phosphorylation of AVO1 and AVO3. 

The stoichiometry of the phosphorylation as well as the expression level of these 

proteins appeared to be too low to obtain reproducible results. Since AVO1 and AVO3 

were phosphorylated in a TOR2-dependent manner in vitro AVO1 and AVO3 might be 

direct targets of the TOR2 protein kinase. Phosphorylation of these two proteins might 

be important for downstream signaling events such as attachment of other substrates 

to TORC2. The significance of AVO1 and AVO3 phosphorylation and the in vivo role of 

these phosphorylations remain to be elucidated. 

 

To identify novel substrates for the TOR kinases we performed in vitro kinase assays 

using a yeast peptide library. We identified 5 bands that were phosphorylated in 

TORC2-dependent manner. One band was analyzed and as expected it contained a 

mixture of proteins which are highly expressed. It should be noted that no attempts 

were made to specifically isolate the radioactively labelled peptides that would reveal 

the identity of the labelled protein(s), but could be carried out by reverse-phase 

chromatography. However, identifying the inorganic diphosphatase IPP1 in the 

radiolabelled band is interesting, since it has been recently reported that 

polyphosphates may play a regulatory role in the activation of mTOR (Wang et al., 

2003). The developed assay appears to be feasible and can also be applied to identify 

substrates of other protein kinases. 
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5. 4. Material and Methods 
 
Strains, plasmids, and media 
The S. cerevisiae strains and plasmids used are listed in Table 5.1. and 5.2. 

respectively. All strains are isogenic derivatives of JK9-3da or TB50a. Rich media, YPD 

or YPGal/Gly, and synthetic complete media, SD or SGal/Gly, were as described 

previously (Beck et al., 1999; Sherman, 1991). For TOR2-, and AVO1-depletion 

experiments, cells from logarithmically growing SGal/Gly, SRaf/Gly or YPGal/Gly 

cultures were inoculated into SD or YPD medium, respectively. Glucose cultures were 

shaken for 15 hr before cells were harvested for analysis. 

  

Genetic techniques 
Restriction enzyme digests and ligations were performed according to standard 

methods. All enzymes and buffers were obtained commercially (Roche Diagnostics). 

Escherichia coli strains MH1 and DH5α were used for propagation and isolation of 

plasmids. Yeast transformation was performed by the lithium acetate procedure (Ito et 

al., 1983). PCR cassettes were used to generate gene deletions and modifications, as 

described (Longtine et al., 1998; Puig et al., 2001) 
 

Protein purification 
TB50a cells transformed with pGAL-GST-TIP41 (pSW63) were grown in SRaf/Gly-leu 

to an OD600 of 0.4. Expression of GST-TIP41 was induced by adding galactose (2% 

end concentration) and incubated for 2 hr at 30°C. Extracts prepared as described 

below were passed over a column packed with glutathione Sepharose 4B (Amersham 

Biosciences) which had been equilibrated with lysis buffer. After washing the column 

thoroughly with 100 mM Tris, pH 8.0, 150 mM NaCl, GST-TIP41 was eluted from the 

column with 100 mM Tris, pH 8.0, 150 mM NaCl containing 10 mM reduced glutathione 

(Sigma). The purity of the protein was checked by SDS polyacrylamide gel 

electrophoresis. The protein pool was divided into equal aliquots and stored at -20°C. 

Purification of bacterial expressed proteins was performed as described in part III. 

 

Peptide Nomenclature 
Peptides generated by trypsin cleavage are labelled with T. The peptides are 

numbered sequentially according to their position based on the N-terminal methionine 

of GST-TIP41. 
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Mass spectrometry 

Enzymatic digestions and LC-MS and LC-MS/MS was performed as described 

(Schneider et al., 1999). Selection of phosphopeptides and MALDI-TOF was performed 

as described (Bonenfant et al., 2003b). 

 

Generation of yeast peptide library 
Wild-type cells (TB50a) were grown in 50 ml YPD to OD600 of 0.6, collected by 

centrifugation and resuspended in 0.5 ml lysis buffer (100 mM Tris, pH 7.5, 150 mM 

NaCl, 0.1% SDS, 1 mM phenylmethylsulfonyl fluoride, 1 x Roche complete inhibitor 

cocktail). Cells were lysed by vortexing 5 x 30 s with glass beads using a FastPrep 

machine (Savant Instruments). Extracts were cleared with a 5 min, 2900 x g spin and 

dialysed with a Float-A-Lyzer (10000 Da MWCO, Spectrum Labs) against 100 mM Tris, 

pH 7.5, 150 mM NaCl, 0.1% SDS. Per 100 µl homogenate 2.2 µl Na-deoxycholate (10 

mg/ml) was added and incubated on ice for 30 min. Proteins were precipitated by 

adding 42 µl 20% TCA per 100 µl homogenate, 30 min on ice After centrifugation at 

12000 rpm for 5 min, SDS was extracted from the pellet with three 1 ml washes of 

acetone-acetic acid-triethylamine 90:5:5. Afterwards the pellet was dried in a speed vac 

(Konigsberg and Henderson, 1983). The protein pellet was solubilized in formic acid. 

Final concentration of formic acid was brought to 70% with water. To cleave the 

proteins an excess of white crystalline cyanogen bromide to between 2- and 100-fold 

molar excess over methionyl residues was added and incubated at room temperature 

for 24 h. The reaction was terminated by injecting it onto an RP-HPLC for desalting. 

RP-HPCL was performed using a Vydac 214TP52 column with a 60 min gradient 

consisting of 0.4 – 76% acetonitrile in 0.1% TFA at flow rate of 100 µl/min, collecting 

fractions every minute. 

 

Kinase assays 
SW80-1d cells transformed with either empty plasmid, pHA-TOR2 or pHA-TOR2-KD 

were inoculated into SRaf/Gly-trp liquid media and cultured over night. 5 l of SD-trp 

were subsequently inoculated to an initial OD600 of 0.008. Cultures were grown at 30°C 

for 16 hr (to an OD600 of ~1.0) and then chilled on ice for 30 minutes. Cells were 

collected by centrifugation, washed once in ice-cold water and lysed (7 x 30 sec) with a 

Bead Beater (Biospec products) in ~40 ml lysis buffer (1 x PBS, 10% glycerol, 0.5% 

Tween-20 plus inhibitors: 10 mM NaF, 10 mM NaN3, 10 mM p-nitrophenylphosphate, 

10 mM sodium pyrophosphate, 10 mM β-glycerophosphate, 1 mM 
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phenylmethylsulfonyl fluoride, 1 x Roche complete inhibitor cocktail). Glass beads (0.5 

mm) were washed with an additional 10 ml of lysis buffer with inhibitors and pooled 

lysates were cleared with a 5 min., 2900 x g spin. Lysates were normalized to ~50 ml 

and ~375 mg protein and passed over 125 µl of Sepharose CL-4B (Sigma) which had 

been previously equilibrated in lysis buffer. To the flow through was added 150 µl IgG-

Sepharose (Amersham Bioscience; prewashed with lysis buffer). This mixture was 

rotated for 2 hr at 4°C after which time the beads were collected in a column and 

washed with 45 ml lysis buffer. IgG beads from each of the three strains were then 

equally split to two 1.5 ml eppendorf tubes and all liquid was removed with a Hamilton 

syringe. To one aliquot from each of the three strains was added 30 µl 1 x SDS-PAGE 

sample buffer. These samples were used for western blotting. To the remaining beads 

were added 50 µl kinase assay buffer (lysis buffer with 20% glycerol) and 6 µl of 10 x 

goodies (40 mM MnCl2, 100 mM dithiothreitol, 10 x Roche Protease inhibitor cocktail - 

EDTA, 100 mM NaN3, 100 mM NaF, 100 mM p-nitrophenylphosphate, 100 mM β-

glycerophosphate). The reaction was started with the addition of 4 µl ATP mix (1.2 mM 

ATP, 2.5 µCi/µl γ32P-ATP [3000 Ci/mmol] in kinase buffer). Tubes were mixed (1200 

rpm) at 30°C and the reactions were terminated after 10 min with the addition of 15 µl 5 

x SDS-PAGE sample buffer. Samples were subjected to SDS-PAGE (5-20%) and 

radioactivity was quantified using GeneSnap software (SynGene). Kinase assays using 

TORC2 purified from TAP-tagged AVO2 strain (RL126-5d) were performed 

accordingly. Purification of HA-TOR2 by immuno-affinitiy was performed as described 

in Part 4. 

 

 

Table 5.1. Strains 
 

Strain  Genotype 

 

JK9-3da MATa leu2-3,112 ura3-52 trp1 his4 rme1 HMLa 

TB50a  JK9-3da HIS4 his3 

SW80-1d TB50a [HIS3MX6]-GAL1p-TOR2 AVO2-TAP-kanMX4 

RL126-5d TB50a AVO2-TAP-KlTRP1 

SW70  TB50a 3HA-TOR2 

SW84-1d TB50a [HIS3MX6]-GAL1p-AVO1 3HA-TOR2  

SW92-5a TB50a 3HA-TOR2 avo2::kanMX4 
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Table 5.2. Plasmids 
 

Plasmids   Description  

 

pHA-TOR2 expresses HA-tagged TOR2 from TOR2 promoter; 

pRS314::3HA-TOR2 (CEN, TRP1) (Jiang and Broach, 

1999) 

pHA-TOR2-KD expresses HA-tagged TOR2-kinase dead from TOR2 

promoter; pRS314::3HA-TOR2D2998E (CEN, TRP1) (Jiang 

and Broach, 1999) 

pGAL-GST-TIP41 pSW63; expresses GST-TIP41 under the control of the 

GAL1 promoter. Cloned as 1.1-kb BamHI-SalI fragment 

into YCplac111::GAL1 promoter-GST (CEN, LEU2). 

pGST-TIP41   pEJ122; pGEX-4T::TIP41 

pGST-TIP41(81-355) pSW36; TIP41 (nt 243-1065) cloned as 0.8-kb BamHI-

SalI fragment into pGEX-4T 
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6. Perspectives 
TOR is a major controller of cell growth in S. cerevisiae. TOR signaling is rather 

complex and includes regulation of many different pathways. The identification of two 

distinct TOR complexes, TORC1 and TORC2 begins to explain how specificity and 

diversity is achieved in TOR signaling. Given the fact that components of the TOR 

complexes stably interact with each other suggests that a major role of these proteins 

is to maintain structural integrity of the complex. Indeed, our data on TORC2 indicate 

that AVO1 and AVO3 are required for the stability of the complex and also function as 

adaptor proteins required for recruitment of substrates for TORC2.  

 

What are the substrates of the TOR kinases in yeast? The knowledge about 

downstream processes controlled by TOR has rapidly increased over the past few 

years. However, direct substrates of the TOR protein kinases have not been found until 

very recently in yeast (Audhya et al., 2004). We identified several candidate substrates 

of the TOR2 kinase. One possible substrate is YPK2 and it would be interesting to 

study the role of YPKs in TOR signaling. In analogy to the situation in higher 

eukaryotes and S. pombe, YPKs have already been implicated to act as potential 

substrates for TOR, however, how YPKs signal to downstream effector pathways such 

as the PKC1-MAP kinase cascade is not understood. Other putative substrates of 

TOR2 include proteins within TORC2, such as AVO1 and AVO3, which are both 

phosphorylated in a TOR2-dependent manner in vitro. The in vivo role of AVO1 and 

AVO3 phosphorylation is unknown. In this respect it would be interesting to map the 

phosphorylation sites of these two proteins. Mutation of the phosphorylation sites into 

phosphomimetic and non-phosphorylatable sites would clarify the significance of these 

phosphorylation events in vivo. Phosphorylation of AVO1 and AVO3 could create a 

docking site for substrates of TORC2. Applying a proteomic approach using yeast 

peptide library as described in Part 5 could lead to the identification of potential 

substrates for TORC1 and TORC2. 

 

How is TOR signaling regulated in response to nutrients? Our work suggests that LST8 

modulates TOR2 kinase activity, possibly through binding directly to the kinase domain 

of TOR2. Since LST8 is present in both complexes it is likely that LST8 also regulates 

kinase activity of TORC1. TORC1 and TORC2 might therefore respond to upstream 

signals through LST8, whereas specificity of downstream signaling events is 

determined by the different partner proteins of both complexes. 

97



7. Bibliography 
 

 
Abraham, R.T. 2001. Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev. 

15:2177-96. 

Alarcon, C.M., J. Heitman, and M.E. Cardenas. 1999. Protein kinase activity and identification of a toxic 
effector domain of the target of rapamycin TOR proteins in yeast. Mol Biol Cell. 10:2531-46. 

Alberts, A.S., N. Bouquin, L.H. Johnston, and R. Treisman. 1998. Analysis of RhoA-binding proteins 
reveals an interaction domain conserved in heterotrimeric G protein beta subunits and the yeast 
response regulator protein Skn7. J Biol Chem. 273:8616-22. 

Alessi, D.R. 2001. Discovery of PDK1, one of the missing links in insulin signal transduction. Colworth 
Medal Lecture. Biochem Soc Trans. 29:1-14. 

Alessi, D.R., M.T. Kozlowski, Q.P. Weng, N. Morrice, and J. Avruch. 1998. 3-Phosphoinositide-dependent 
protein kinase 1 (PDK1) phosphorylates and activates the p70 S6 kinase in vivo and in vitro. Curr 
Biol. 8:69-81. 

Andrade, M.A., and P. Bork. 1995. HEAT repeats in the Huntington's disease protein. Nat Genet. 11:115-
6. 

Audhya, A., and S.D. Emr. 2002. Stt4 PI 4-kinase localizes to the plasma membrane and functions in the 
Pkc1-mediated MAP kinase cascade. Dev Cell. 2:593-605. 

Audhya, A., R. Loewith, A.B. Parsons, L. Gao, M. Tabuchi, H. Zhou, C. Boone, M.N. Hall, and S.D. Emr. 
2004. Genome-wide synthetic lethal analysis identifies new PI4,5P2 effectors that function in 
regulation of actin organization. submitted to EMBO J. 

Avruch, J., C. Belham, Q. Weng, K. Hara, and K. Yonezawa. 2001. The p70 S6 kinase integrates nutrient 
and growth signals to control translational capacity. Prog Mol Subcell Biol. 26:115-54. 

Bakkenist, C.J., and M.B. Kastan. 2003. DNA damage activates ATM through intermolecular 
autophosphorylation and dimer dissociation. Nature. 421:499-506. 

Barbet, N.C., U. Schneider, S.B. Helliwell, I. Stansfield, M.F. Tuite, and M.N. Hall. 1996. TOR controls 
translation initiation and early G1 progression in yeast. Mol Biol Cell. 7:25-42. 

Beck, T., P.A. Delley, and M.N. Hall. 2001. Control of the actin cytoskeleton by extracellular signals. 
Results Probl Cell Differ. 32:231-62. 

Beck, T., and M.N. Hall. 1999. The TOR signalling pathway controls nuclear localization of nutrient-
regulated transcription factors. Nature. 402:689-92. 

Beck, T., A. Schmidt, and M.N. Hall. 1999. Starvation induces vacuolar targeting and degradation of the 
tryptophan permease in yeast. J Cell Biol. 146:1227-38. 

Benedetti, H., S. Raths, F. Crausaz, and H. Riezman. 1994. The END3 gene encodes a protein that is 
required for the internalization step of endocytosis and for actin cytoskeleton organization in 
yeast. Mol Biol Cell. 5:1023-37. 

98



Beugnet, A., X. Wang, and C.G. Proud. 2003. Target of rapamycin (TOR)-signaling and RAIP motifs play 
distinct roles in the mammalian TOR-dependent phosphorylation of initiation factor 4E-binding 
protein 1. J Biol Chem. 278:40717-22. 

Bierer, B.E., P.S. Mattila, R.F. Standaert, L.A. Herzenberg, S.J. Burakoff, G. Crabtree, and S.L. Schreiber. 
1990. Two distinct signal transmission pathways in T lymphocytes are inhibited by complexes 
formed between an immunophilin and either FK506 or rapamycin. Proc Natl Acad Sci U S A. 
87:9231-5. 

Biondi, R.M., A. Kieloch, R.A. Currie, M. Deak, and D.R. Alessi. 2001. The PIF-binding pocket in PDK1 is 
essential for activation of S6K and SGK, but not PKB. Embo J. 20:4380-90. 

Bishop, A.C., O. Buzko, and K.M. Shokat. 2001. Magic bullets for protein kinases. Trends Cell Biol. 
11:167-72. 

Bonenfant, D., T. Mini, and P. Jenoe. 2003a. Mass spectrometric analysis of protein phosphorylation. The 
Protein Protocols Handbook, edited by John M. Walker. 

Bonenfant, D., T. Schmelzle, E. Jacinto, J.L. Crespo, T. Mini, M.N. Hall, and P. Jenoe. 2003b. Quantitation 
of changes in protein phosphorylation: a simple method based on stable isotope labeling and 
mass spectrometry. Proc Natl Acad Sci U S A. 100:880-5. 

Bosotti, R., A. Isacchi, and E.L. Sonnhammer. 2000. FAT: a novel domain in PIK-related kinases. Trends 
Biochem Sci. 25:225-7. 

Brunn, G.J., C.C. Hudson, A. Sekulic, J.M. Williams, H. Hosoi, P.J. Houghton, J.C. Lawrence, Jr., and R.T. 
Abraham. 1997. Phosphorylation of the translational repressor PHAS-I by the mammalian target 
of rapamycin. Science. 277:99-101. 

Brunn, G.J., J. Williams, C. Sabers, G. Wiederrecht, J.C. Lawrence, Jr., and R.T. Abraham. 1996. Direct 
inhibition of the signaling functions of the mammalian target of rapamycin by the phosphoinositide 
3-kinase inhibitors, wortmannin and LY294002. Embo J. 15:5256-67. 

Burnett, P.E., R.K. Barrow, N.A. Cohen, S.H. Snyder, and D.M. Sabatini. 1998. RAFT1 phosphorylation of 
the translational regulators p70 S6 kinase and 4E-BP1. Proc Natl Acad Sci U S A. 95:1432-7. 

Cafferkey, R., M.M. McLaughlin, P.R. Young, R.K. Johnson, and G.P. Livi. 1994. Yeast TOR (DRR) 
proteins: amino-acid sequence alignment and identification of structural motifs. Gene. 141:133-6. 

Cardenas, M.E., N.S. Cutler, M.C. Lorenz, C.J. Di Como, and J. Heitman. 1999. The TOR signaling 
cascade regulates gene expression in response to nutrients. Genes Dev. 13:3271-9. 

Casamayor, A., P.D. Torrance, T. Kobayashi, J. Thorner, and D.R. Alessi. 1999. Functional counterparts of 
mammalian protein kinases PDK1 and SGK in budding yeast. Curr Biol. 9:186-97. 

Chant, J. 1999. Cell polarity in yeast. Annu Rev Cell Dev Biol. 15:365-91. 

Chen, E.J., and C.A. Kaiser. 2003. LST8 negatively regulates amino acid biosynthesis as a component of 
the TOR pathway. J Cell Biol. 161:333-47. 

Chen, J., X.F. Zheng, E.J. Brown, and S.L. Schreiber. 1995. Identification of an 11-kDa FKBP12-
rapamycin-binding domain within the 289-kDa FKBP12-rapamycin-associated protein and 
characterization of a critical serine residue. Proc Natl Acad Sci U S A. 92:4947-51. 

99



Cherkasova, V.A., and A.G. Hinnebusch. 2003. Translational control by TOR and TAP42 through 
dephosphorylation of eIF2alpha kinase GCN2. Genes Dev. 17:859-72. 

Choi, J., J. Chen, S.L. Schreiber, and J. Clardy. 1996. Structure of the FKBP12-rapamycin complex 
interacting with the binding domain of human FRAP. Science. 273:239-42. 

Choi, K.M., L.P. McMahon, and J.C. Lawrence, Jr. 2003. Two motifs in the translational repressor PHAS-I 
required for efficient phosphorylation by mammalian target of rapamycin and for recognition by 
raptor. J Biol Chem. 278:19667-73. 

Chook, Y.M., and G. Blobel. 1999. Structure of the nuclear transport complex karyopherin-beta2-Ran x 
GppNHp. Nature. 399:230-7. 

Colicelli, J., C. Nicolette, C. Birchmeier, L. Rodgers, M. Riggs, and M. Wigler. 1991. Expression of three 
mammalian cDNAs that interfere with RAS function in Saccharomyces cerevisiae. Proc Natl Acad 
Sci U S A. 88:2913-7. 

Colombani, J., S. Raisin, S. Pantalacci, T. Radimerski, J. Montagne, and P. Leopold. 2003. A nutrient 
sensor mechanism controls Drosophila growth. Cell. 114:739-49. 

Cosentino, G.P., T. Schmelzle, A. Haghighat, S.B. Helliwell, M.N. Hall, and N. Sonenberg. 2000. Eap1p, a 
novel eukaryotic translation initiation factor 4E-associated protein in Saccharomyces cerevisiae. 
Mol Cell Biol. 20:4604-13. 

Crespo, J.L., K. Daicho, T. Ushimaru, and M.N. Hall. 2001. The GATA transcription factors GLN3 and 
GAT1 link TOR to salt stress in Saccharomyces cerevisiae. J Biol Chem. 276:34441-4. 

Crespo, J.L., and M.N. Hall. 2002. Elucidating TOR signaling and rapamycin action: lessons from 
Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 66:579-91, table of contents. 

Crespo, J.L., T. Powers, B. Fowler, and M.N. Hall. 2002. The TOR-controlled transcription activators 
GLN3, RTG1, and RTG3 are regulated in response to intracellular levels of glutamine. Proc Natl 
Acad Sci U S A. 99:6784-9. 

Danaie, P., M. Altmann, M.N. Hall, H. Trachsel, and S.B. Helliwell. 1999. CLN3 expression is sufficient to 
restore G1-to-S-phase progression in Saccharomyces cerevisiae mutants defective in translation 
initiation factor eIF4E. Biochem J. 340 ( Pt 1):135-41. 

De Craene, J.O., O. Soetens, and B. Andre. 2001. The Npr1 kinase controls biosynthetic and endocytic 
sorting of the yeast Gap1 permease. J Biol Chem. 276:43939-48. 

Delley, P.A., and M.N. Hall. 1999. Cell wall stress depolarizes cell growth via hyperactivation of RHO1. J 
Cell Biol. 147:163-74. 

Dennis, P.B., A. Jaeschke, M. Saitoh, B. Fowler, S.C. Kozma, and G. Thomas. 2001. Mammalian TOR: a 
homeostatic ATP sensor. Science. 294:1102-5. 

Dennis, P.B., N. Pullen, S.C. Kozma, and G. Thomas. 1996. The principal rapamycin-sensitive p70(s6k) 
phosphorylation sites, T-229 and T-389, are differentially regulated by rapamycin-insensitive 
kinase kinases. Mol Cell Biol. 16:6242-51. 

Di Como, C.J., and K.T. Arndt. 1996. Nutrients, via the Tor proteins, stimulate the association of Tap42 
with type 2A phosphatases. Genes Dev. 10:1904-16. 

100



Dilova, I., C.Y. Chen, and T. Powers. 2002. Mks1 in concert with TOR signaling negatively regulates RTG 
target gene expression in S. cerevisiae. Curr Biol. 12:389-95. 

Dunn, T.M., D. Haak, E. Monaghan, and T.J. Beeler. 1998. Synthesis of monohydroxylated 
inositolphosphorylceramide (IPC-C) in Saccharomyces cerevisiae requires Scs7p, a protein with 
both a cytochrome b5-like domain and a hydroxylase/desaturase domain. Yeast. 14:311-21. 

Edinger, A.L., C.M. Linardic, G.G. Chiang, C.B. Thompson, and R.T. Abraham. 2003. Differential effects of 
rapamycin on mammalian target of rapamycin signaling functions in mammalian cells. Cancer 
Res. 63:8451-60. 

Etienne-Manneville, S., and A. Hall. 2002. Rho GTPases in cell biology. Nature. 420:629-35. 

Fadden, P., T.A. Haystead, and J.C. Lawrence, Jr. 1997. Identification of phosphorylation sites in the 
translational regulator, PHAS-I, that are controlled by insulin and rapamycin in rat adipocytes. J 
Biol Chem. 272:10240-7. 

Fang, Y., M. Vilella-Bach, R. Bachmann, A. Flanigan, and J. Chen. 2001. Phosphatidic acid-mediated 
mitogenic activation of mTOR signaling. Science. 294:1942-5. 

Ficarro, S.B., M.L. McCleland, P.T. Stukenberg, D.J. Burke, M.M. Ross, J. Shabanowitz, D.F. Hunt, and 
F.M. White. 2002. Phosphoproteome analysis by mass spectrometry and its application to 
Saccharomyces cerevisiae. Nat Biotechnol. 20:301-5. 

Fingar, D.C., and J. Blenis. 2004. Target of rapamycin (TOR): an integrator of nutrient and growth factor 
signals and coordinator of cell growth and cell cycle progression. Oncogene. 23:3151-71. 

Friant, S., R. Lombardi, T. Schmelzle, M.N. Hall, and H. Riezman. 2001. Sphingoid base signaling via Pkh 
kinases is required for endocytosis in yeast. Embo J. 20:6783-92. 

Gao, X., Y. Zhang, P. Arrazola, O. Hino, T. Kobayashi, R.S. Yeung, B. Ru, and D. Pan. 2002. Tsc tumour 
suppressor proteins antagonize amino-acid-TOR signalling. Nat Cell Biol. 4:699-704. 

Garami, A., F.J. Zwartkruis, T. Nobukuni, M. Joaquin, M. Roccio, H. Stocker, S.C. Kozma, E. Hafen, J.L. 
Bos, and G. Thomas. 2003. Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, 
is inhibited by TSC1 and 2. Mol Cell. 11:1457-66. 

Gelperin, D., L. Horton, A. DeChant, J. Hensold, and S.K. Lemmon. 2002. Loss of ypk1 function causes 
rapamycin sensitivity, inhibition of translation initiation and synthetic lethality in 14-3-3-deficient 
yeast. Genetics. 161:1453-64. 

Gingras, A.C., S.P. Gygi, B. Raught, R.D. Polakiewicz, R.T. Abraham, M.F. Hoekstra, R. Aebersold, and 
N. Sonenberg. 1999. Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism. Genes 
Dev. 13:1422-37. 

Gingras, A.C., B. Raught, and N. Sonenberg. 2001. Regulation of translation initiation by FRAP/mTOR. 
Genes Dev. 15:807-26. 

Goldberg, Y. 1999. Protein phosphatase 2A: who shall regulate the regulator? Biochem Pharmacol. 
57:321-8. 

101



Gorner, W., E. Durchschlag, M.T. Martinez-Pastor, F. Estruch, G. Ammerer, B. Hamilton, H. Ruis, and C. 
Schuller. 1998. Nuclear localization of the C2H2 zinc finger protein Msn2p is regulated by stress 
and protein kinase A activity. Genes Dev. 12:586-97. 

Gorner, W., E. Durchschlag, J. Wolf, E.L. Brown, G. Ammerer, H. Ruis, and C. Schuller. 2002. Acute 
glucose starvation activates the nuclear localization signal of a stress-specific yeast transcription 
factor. Embo J. 21:135-44. 

Groves, M.R., and D. Barford. 1999. Topological characteristics of helical repeat proteins. Curr Opin Struct 
Biol. 9:383-9. 

Guo, W., F. Tamanoi, and P. Novick. 2001. Spatial regulation of the exocyst complex by Rho1 GTPase. 
Nat Cell Biol. 3:353-60. 

Han, J.W., R.B. Pearson, P.B. Dennis, and G. Thomas. 1995. Rapamycin, wortmannin, and the 
methylxanthine SQ20006 inactivate p70s6k by inducing dephosphorylation of the same subset of 
sites. J Biol Chem. 270:21396-403. 

Hara, K., Y. Maruki, X. Long, K. Yoshino, N. Oshiro, S. Hidayat, C. Tokunaga, J. Avruch, and K. 
Yonezawa. 2002. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. 
Cell. 110:177-89. 

Hara, K., K. Yonezawa, Q.P. Weng, M.T. Kozlowski, C. Belham, and J. Avruch. 1998. Amino acid 
sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector 
mechanism. J Biol Chem. 273:14484-94. 

Hardie, D.G., and S.A. Hawley. 2001. AMP-activated protein kinase: the energy charge hypothesis 
revisited. Bioessays. 23:1112-9. 

Hardwick, J.S., F.G. Kuruvilla, J.K. Tong, A.F. Shamji, and S.L. Schreiber. 1999. Rapamycin-modulated 
transcription defines the subset of nutrient-sensitive signaling pathways directly controlled by the 
Tor proteins. Proc Natl Acad Sci U S A. 96:14866-70. 

Harrison, J.C., E.S. Bardes, Y. Ohya, and D.J. Lew. 2001. A role for the Pkc1p/Mpk1p kinase cascade in 
the morphogenesis checkpoint. Nat Cell Biol. 3:417-20. 

Heinisch, J.J., A. Lorberg, H.P. Schmitz, and J.J. Jacoby. 1999. The protein kinase C-mediated MAP 
kinase pathway involved in the maintenance of cellular integrity in Saccharomyces cerevisiae. 
Mol Microbiol. 32:671-80. 

Heitman, J., N.R. Movva, and M.N. Hall. 1991a. Targets for cell cycle arrest by the immunosuppressant 
rapamycin in yeast. Science. 253:905-9. 

Heitman, J., N.R. Movva, P.C. Hiestand, and M.N. Hall. 1991b. FK 506-binding protein proline rotamase is 
a target for the immunosuppressive agent FK 506 in Saccharomyces cerevisiae. Proc Natl Acad 
Sci U S A. 88:1948-52. 

Helliwell, S.B., I. Howald, N. Barbet, and M.N. Hall. 1998a. TOR2 is part of two related signaling pathways 
coordinating cell growth in Saccharomyces cerevisiae. Genetics. 148:99-112. 

Helliwell, S.B., A. Schmidt, Y. Ohya, and M.N. Hall. 1998b. The Rho1 effector Pkc1, but not Bni1, mediates 
signalling from Tor2 to the actin cytoskeleton. Curr Biol. 8:1211-4. 

102



Helliwell, S.B., P. Wagner, J. Kunz, M. Deuter-Reinhard, R. Henriquez, and M.N. Hall. 1994. TOR1 and 
TOR2 are structurally and functionally similar but not identical phosphatidylinositol kinase 
homologues in yeast. Mol Biol Cell. 5:105-18. 

Hidalgo, M., and E.K. Rowinsky. 2000. The rapamycin-sensitive signal transduction pathway as a target 
for cancer therapy. Oncogene. 19:6680-6. 

Hinnebusch, A.G., and K. Natarajan. 2002. Gcn4p, a master regulator of gene expression, is controlled at 
multiple levels by diverse signals of starvation and stress. Eukaryot Cell. 1:22-32. 

Hunter, T. 1995. When is a lipid kinase not a lipid kinase? When it is a protein kinase. Cell. 83:1-4. 

Inagaki, M., T. Schmelzle, K. Yamaguchi, K. Irie, M.N. Hall, and K. Matsumoto. 1999. PDK1 homologs 
activate the Pkc1-mitogen-activated protein kinase pathway in yeast. Mol Cell Biol. 19:8344-52. 

Inoki, K., Y. Li, T. Xu, and K.L. Guan. 2003a. Rheb GTPase is a direct target of TSC2 GAP activity and 
regulates mTOR signaling. Genes Dev. 17:1829-34. 

Inoki, K., Y. Li, T. Zhu, J. Wu, and K.L. Guan. 2002. TSC2 is phosphorylated and inhibited by Akt and 
suppresses mTOR signalling. Nat Cell Biol. 4:648-57. 

Inoki, K., T. Zhu, and K.L. Guan. 2003b. TSC2 mediates cellular energy response to control cell growth 
and survival. Cell. 115:577-90. 

Isotani, S., K. Hara, C. Tokunaga, H. Inoue, J. Avruch, and K. Yonezawa. 1999. Immunopurified 
mammalian target of rapamycin phosphorylates and activates p70 S6 kinase alpha in vitro. J Biol 
Chem. 274:34493-8. 

Ito, H., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali 
cations. J Bacteriol. 153:163-8. 

Jacinto, E., B. Guo, K.T. Arndt, T. Schmelzle, and M.N. Hall. 2001. TIP41 interacts with TAP42 and 
negatively regulates the TOR signaling pathway. Mol Cell. 8:1017-26. 

Jacinto, E., and M.N. Hall. 2003. Tor signalling in bugs, brain and brawn. Nat Rev Mol Cell Biol. 4:117-26. 

James, P., J. Halladay, and E.A. Craig. 1996. Genomic libraries and a host strain designed for highly 
efficient two-hybrid selection in yeast. Genetics. 144:1425-36. 

Jefferies, H.B., S. Fumagalli, P.B. Dennis, C. Reinhard, R.B. Pearson, and G. Thomas. 1997. Rapamycin 
suppresses 5'TOP mRNA translation through inhibition of p70s6k. Embo J. 16:3693-704. 

Jiang, Y., and J.R. Broach. 1999. Tor proteins and protein phosphatase 2A reciprocally regulate Tap42 in 
controlling cell growth in yeast. Embo J. 18:2782-92. 

Kamada, Y., T. Funakoshi, T. Shintani, K. Nagano, M. Ohsumi, and Y. Ohsumi. 2000. Tor-mediated 
induction of autophagy via an Apg1 protein kinase complex. J Cell Biol. 150:1507-13. 

Kamada, Y., U.S. Jung, J. Piotrowski, and D.E. Levin. 1995. The protein kinase C-activated MAP kinase 
pathway of Saccharomyces cerevisiae mediates a novel aspect of the heat shock response. 
Genes Dev. 9:1559-71. 

103



Keith, C.T., and S.L. Schreiber. 1995. PIK-related kinases: DNA repair, recombination, and cell cycle 
checkpoints. Science. 270:50-1. 

Kim, D.H., D.D. Sarbassov, S.M. Ali, J.E. King, R.R. Latek, H. Erdjument-Bromage, P. Tempst, and D.M. 
Sabatini. 2002. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the 
cell growth machinery. Cell. 110:163-75. 

Kim, D.H., D. Sarbassov dos, S.M. Ali, R.R. Latek, K.V. Guntur, H. Erdjument-Bromage, P. Tempst, and 
D.M. Sabatini. 2003. GbetaL, a positive regulator of the rapamycin-sensitive pathway required for 
the nutrient-sensitive interaction between raptor and mTOR. Mol Cell. 11:895-904. 

Kimura, N., C. Tokunaga, S. Dalal, C. Richardson, K. Yoshino, K. Hara, B.E. Kemp, L.A. Witters, O. 
Mimura, and K. Yonezawa. 2003. A possible linkage between AMP-activated protein kinase 
(AMPK) and mammalian target of rapamycin (mTOR) signalling pathway. Genes Cells. 8:65-79. 

Klionsky, D.J., and Y. Ohsumi. 1999. Vacuolar import of proteins and organelles from the cytoplasm. Annu 
Rev Cell Dev Biol. 15:1-32. 

Knebel, A., N. Morrice, and P. Cohen. 2001. A novel method to identify protein kinase substrates: eEF2 
kinase is phosphorylated and inhibited by SAPK4/p38delta. Embo J. 20:4360-9. 

Komeili, A., K.P. Wedaman, E.K. O'Shea, and T. Powers. 2000. Mechanism of metabolic control. Target of 
rapamycin signaling links nitrogen quality to the activity of the Rtg1 and Rtg3 transcription factors. 
J Cell Biol. 151:863-78. 

Konigsberg, W.H., and L. Henderson. 1983. Removal of sodium dodecyl sulfate from proteins by ion-pair 
extraction. Methods Enzymol. 91:254-9. 

Krause, S.A., and J.V. Gray. 2002. The protein kinase C pathway is required for viability in quiescence in 
Saccharomyces cerevisiae. Curr Biol. 12:588-93. 

Kunz, J., R. Henriquez, U. Schneider, M. Deuter-Reinhard, N.R. Movva, and M.N. Hall. 1993. Target of 
rapamycin in yeast, TOR2, is an essential phosphatidylinositol kinase homolog required for G1 
progression. Cell. 73:585-96. 

Kunz, J., U. Schneider, I. Howald, A. Schmidt, and M.N. Hall. 2000. HEAT repeats mediate plasma 
membrane localization of Tor2p in yeast. J Biol Chem. 275:37011-20. 

Kuroda, A., K. Nomura, R. Ohtomo, J. Kato, T. Ikeda, N. Takiguchi, H. Ohtake, and A. Kornberg. 2001. 
Role of inorganic polyphosphate in promoting ribosomal protein degradation by the Lon protease 
in E. coli. Science. 293:705-8. 

Kuruvilla, F.G., A.F. Shamji, and S.L. Schreiber. 2001. Carbon- and nitrogen-quality signaling to translation 
are mediated by distinct GATA-type transcription factors. Proc Natl Acad Sci U S A. 98:7283-8. 

Lee, K.S., and D.E. Levin. 1992. Dominant mutations in a gene encoding a putative protein kinase (BCK1) 
bypass the requirement for a Saccharomyces cerevisiae protein kinase C homolog. Mol Cell Biol. 
12:172-82. 

Liu, Z., T. Sekito, M. Spirek, J. Thornton, and R.A. Butow. 2003. Retrograde signaling is regulated by the 
dynamic interaction between Rtg2p and Mks1p. Mol Cell. 12:401-11. 

104



Loewith, R., and N.M. Hall. 2004. TOR signaling in yeast: temporal and spatial control of cell growth. Cell 
growth: control of cell size, Cold Spring Harbor Laboratory Press. 

Loewith, R., E. Jacinto, S. Wullschleger, A. Lorberg, J.L. Crespo, D. Bonenfant, W. Oppliger, P. Jenoe, 
and M.N. Hall. 2002. Two TOR complexes, only one of which is rapamycin sensitive, have distinct 
roles in cell growth control. Mol Cell. 10:457-68. 

Longtine, M.S., A. McKenzie, 3rd, D.J. Demarini, N.G. Shah, A. Wach, A. Brachat, P. Philippsen, and J.R. 
Pringle. 1998. Additional modules for versatile and economical PCR-based gene deletion and 
modification in Saccharomyces cerevisiae. Yeast. 14:953-61. 

Lorenz, M.C., and J. Heitman. 1995. TOR mutations confer rapamycin resistance by preventing interaction 
with FKBP12-rapamycin. J Biol Chem. 270:27531-7. 

Luke, M.M., F. Della Seta, C.J. Di Como, H. Sugimoto, R. Kobayashi, and K.T. Arndt. 1996. The SAP, a 
new family of proteins, associate and function positively with the SIT4 phosphatase. Mol Cell Biol. 
16:2744-55. 

Madaule, P., R. Axel, and A.M. Myers. 1987. Characterization of two members of the rho gene family from 
the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 84:779-83. 

Magasanik, B., and C.A. Kaiser. 2002. Nitrogen regulation in Saccharomyces cerevisiae. Gene. 290:1-18. 

Manning, B.D., A.R. Tee, M.N. Logsdon, J. Blenis, and L.C. Cantley. 2002. Identification of the tuberous 
sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-
kinase/akt pathway. Mol Cell. 10:151-62. 

Martin, K.A., and J. Blenis. 2002. Coordinate regulation of translation by the PI 3-kinase and mTOR 
pathways. Adv Cancer Res. 86:1-39. 

Matsuo, T., Y. Kubo, Y. Watanabe, and M. Yamamoto. 2003. Schizosaccharomyces pombe AGC family 
kinase Gad8p forms a conserved signaling module with TOR and PDK1-like kinases. Embo J. 
22:3073-83. 

Meyuhas, O. 2000. Synthesis of the translational apparatus is regulated at the translational level. Eur J 
Biochem. 267:6321-30. 

Mothe-Satney, I., D. Yang, P. Fadden, T.A. Haystead, and J.C. Lawrence, Jr. 2000. Multiple mechanisms 
control phosphorylation of PHAS-I in five (S/T)P sites that govern translational repression. Mol 
Cell Biol. 20:3558-67. 

Nave, B.T., M. Ouwens, D.J. Withers, D.R. Alessi, and P.R. Shepherd. 1999. Mammalian target of 
rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing 
effects of insulin and amino-acid deficiency on protein translation. Biochem J. 344 Pt 2:427-31. 

Noda, T., and Y. Ohsumi. 1998. Tor, a phosphatidylinositol kinase homologue, controls autophagy in 
yeast. J Biol Chem. 273:3963-6. 

Nojima, H., C. Tokunaga, S. Eguchi, N. Oshiro, S. Hidayat, K. Yoshino, K. Hara, N. Tanaka, J. Avruch, and 
K. Yonezawa. 2003. The mammalian target of rapamycin (mTOR) partner, raptor, binds the 
mTOR substrates p70 S6 kinase and 4E-BP1 through their TOR signaling (TOS) motif. J Biol 
Chem. 278:15461-4. 

105



Nonaka, H., K. Tanaka, H. Hirano, T. Fujiwara, H. Kohno, M. Umikawa, A. Mino, and Y. Takai. 1995. A 
downstream target of RHO1 small GTP-binding protein is PKC1, a homolog of protein kinase C, 
which leads to activation of the MAP kinase cascade in Saccharomyces cerevisiae. Embo J. 
14:5931-8. 

Oldham, S., J. Montagne, T. Radimerski, G. Thomas, and E. Hafen. 2000. Genetic and biochemical 
characterization of dTOR, the Drosophila homolog of the target of rapamycin. Genes Dev. 
14:2689-94. 

Park, J., M.L. Leong, P. Buse, A.C. Maiyar, G.L. Firestone, and B.A. Hemmings. 1999. Serum and 
glucocorticoid-inducible kinase (SGK) is a target of the PI 3-kinase-stimulated signaling pathway. 
Embo J. 18:3024-33. 

Pearson, R.B., P.B. Dennis, J.W. Han, N.A. Williamson, S.C. Kozma, R.E. Wettenhall, and G. Thomas. 
1995. The principal target of rapamycin-induced p70s6k inactivation is a novel phosphorylation 
site within a conserved hydrophobic domain. Embo J. 14:5279-87. 

Perry, J., and N. Kleckner. 2003. The ATRs, ATMs, and TORs are giant HEAT repeat proteins. Cell. 
112:151-5. 

Peterson, R.T., P.A. Beal, M.J. Comb, and S.L. Schreiber. 2000. FKBP12-rapamycin-associated protein 
(FRAP) autophosphorylates at serine 2481 under translationally repressive conditions. J Biol 
Chem. 275:7416-23. 

Potter, C.J., L.G. Pedraza, H. Huang, and T. Xu. 2003. The tuberous sclerosis complex (TSC) pathway 
and mechanism of size control. Biochem Soc Trans. 31:584-6. 

Powers, T., and P. Walter. 1999. Regulation of ribosome biogenesis by the rapamycin-sensitive TOR-
signaling pathway in Saccharomyces cerevisiae. Mol Biol Cell. 10:987-1000. 

Proud, C.G. 2002. Regulation of mammalian translation factors by nutrients. Eur J Biochem. 269:5338-49. 

Proud, C.G. 2004. mTOR-mediated regulation of translation factors by amino acids. Biochem Biophys Res 
Commun. 313:429-36. 

Pruyne, D., and A. Bretscher. 2000a. Polarization of cell growth in yeast. J Cell Sci. 113 ( Pt 4):571-85. 

Pruyne, D., and A. Bretscher. 2000b. Polarization of cell growth in yeast. I. Establishment and 
maintenance of polarity states. J Cell Sci. 113 ( Pt 3):365-75. 

Puig, O., F. Caspary, G. Rigaut, B. Rutz, E. Bouveret, E. Bragado-Nilsson, M. Wilm, and B. Seraphin. 
2001. The tandem affinity purification (TAP) method: a general procedure of protein complex 
purification. Methods. 24:218-29. 

Raught, B., A.C. Gingras, and N. Sonenberg. 2001. The target of rapamycin (TOR) proteins. Proc Natl 
Acad Sci U S A. 98:7037-44. 

Reinke, A., S. Anderson, J.M. McCaffery, J. Yates, 3rd, S. Aronova, S. Chu, S. Fairclough, C. Iverson, K.P. 
Wedaman, and T. Powers. 2004. TOR complex 1 includes a novel component, Tco89p 
(YPL180w), and cooperates with Ssd1p to maintain cellular integrity in Saccharomyces 
cerevisiae. J Biol Chem. 279:14752-62. 

106



Roberg, K.J., S. Bickel, N. Rowley, and C.A. Kaiser. 1997. Control of amino acid permease sorting in the 
late secretory pathway of Saccharomyces cerevisiae by SEC13, LST4, LST7 and LST8. 
Genetics. 147:1569-84. 

Saitoh, M., N. Pullen, P. Brennan, D. Cantrell, P.B. Dennis, and G. Thomas. 2002. Regulation of an 
activated S6 kinase 1 variant reveals a novel mammalian target of rapamycin phosphorylation 
site. J Biol Chem. 277:20104-12. 

Saucedo, L.J., and B.A. Edgar. 2002. Why size matters: altering cell size. Curr Opin Genet Dev. 12:565-
71. 

Saucedo, L.J., X. Gao, D.A. Chiarelli, L. Li, D. Pan, and B.A. Edgar. 2003. Rheb promotes cell growth as a 
component of the insulin/TOR signalling network. Nat Cell Biol. 5:566-71. 

Schalm, S.S., and J. Blenis. 2002. Identification of a conserved motif required for mTOR signaling. Curr 
Biol. 12:632-9. 

Schalm, S.S., D.C. Fingar, D.M. Sabatini, and J. Blenis. 2003. TOS motif-mediated raptor binding 
regulates 4E-BP1 multisite phosphorylation and function. Curr Biol. 13:797-806. 

Schmelzle, T., T. Beck, D.E. Martin, and M.N. Hall. 2004. Activation of the RAS/cyclic AMP pathway 
suppresses a TOR deficiency in yeast. Mol Cell Biol. 24:338-51. 

Schmelzle, T., and M.N. Hall. 2000. TOR, a central controller of cell growth. Cell. 103:253-62. 

Schmelzle, T., S.B. Helliwell, and M.N. Hall. 2002. Yeast protein kinases and the RHO1 exchange factor 
TUS1 are novel components of the cell integrity pathway in yeast. Mol Cell Biol. 22:1329-39. 

Schmidt, A., T. Beck, A. Koller, J. Kunz, and M.N. Hall. 1998. The TOR nutrient signalling pathway 
phosphorylates NPR1 and inhibits turnover of the tryptophan permease. Embo J. 17:6924-31. 

Schmidt, A., M. Bickle, T. Beck, and M.N. Hall. 1997. The yeast phosphatidylinositol kinase homolog TOR2 
activates RHO1 and RHO2 via the exchange factor ROM2. Cell. 88:531-42. 

Schmidt, A., and M.N. Hall. 1998. Signaling to the actin cytoskeleton. Annu Rev Cell Dev Biol. 14:305-38. 

Schmidt, A., J. Kunz, and M.N. Hall. 1996. TOR2 is required for organization of the actin cytoskeleton in 
yeast. Proc Natl Acad Sci U S A. 93:13780-5. 

Schneider, U., T. Mini, P. Jeno, P.A. Fisher, and N. Stuurman. 1999. Phosphorylation of the major 
Drosophila lamin in vivo: site identification during both M-phase (meiosis) and interphase by 
electrospray ionization tandem mass spectrometry. Biochemistry. 38:4620-32. 

Schreiber, S.L. 1991. Chemistry and biology of the immunophilins and their immunosuppressive ligands. 
Science. 251:283-7. 

Sekulic, A., C.C. Hudson, J.L. Homme, P. Yin, D.M. Otterness, L.M. Karnitz, and R.T. Abraham. 2000. A 
direct linkage between the phosphoinositide 3-kinase-AKT signaling pathway and the mammalian 
target of rapamycin in mitogen-stimulated and transformed cells. Cancer Res. 60:3504-13. 

Shamji, A.F., F.G. Kuruvilla, and S.L. Schreiber. 2000. Partitioning the transcriptional program induced by 
rapamycin among the effectors of the Tor proteins. Curr Biol. 10:1574-81. 

107



Sherman, F. 1991. Getting started with yeast. Methods Enzymol. 194:3-21. 

Smith, A., M.P. Ward, and S. Garrett. 1998. Yeast PKA represses Msn2p/Msn4p-dependent gene 
expression to regulate growth, stress response and glycogen accumulation. Embo J. 17:3556-64. 

Sophianopoulou, V., and G. Diallinas. 1995. Amino acid transporters of lower eukaryotes: regulation, 
structure and topogenesis. FEMS Microbiol Rev. 16:53-75. 

Stan, R., M.M. McLaughlin, R. Cafferkey, R.K. Johnson, M. Rosenberg, and G.P. Livi. 1994. Interaction 
between FKBP12-rapamycin and TOR involves a conserved serine residue. J Biol Chem. 
269:32027-30. 

Stocker, H., and E. Hafen. 2000. Genetic control of cell size. Curr Opin Genet Dev. 10:529-35. 

Sun, Y., R. Taniguchi, D. Tanoue, T. Yamaji, H. Takematsu, K. Mori, T. Fujita, T. Kawasaki, and Y. 
Kozutsumi. 2000. Sli2 (Ypk1), a homologue of mammalian protein kinase SGK, is a downstream 
kinase in the sphingolipid-mediated signaling pathway of yeast. Mol Cell Biol. 20:4411-9. 

Tee, A.R., D.C. Fingar, B.D. Manning, D.J. Kwiatkowski, L.C. Cantley, and J. Blenis. 2002. Tuberous 
sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of 
rapamycin (mTOR)-mediated downstream signaling. Proc Natl Acad Sci U S A. 99:13571-6. 

Tee, A.R., B.D. Manning, P.P. Roux, L.C. Cantley, and J. Blenis. 2003. Tuberous sclerosis complex gene 
products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating 
protein complex toward Rheb. Curr Biol. 13:1259-68. 

Tee, A.R., and C.G. Proud. 2002. Caspase cleavage of initiation factor 4E-binding protein 1 yields a 
dominant inhibitor of cap-dependent translation and reveals a novel regulatory motif. Mol Cell 
Biol. 22:1674-83. 

ter Schure, E.G., N.A. van Riel, and C.T. Verrips. 2000. The role of ammonia metabolism in nitrogen 
catabolite repression in Saccharomyces cerevisiae. FEMS Microbiol Rev. 24:67-83. 

Thevelein, J.M., and J.H. de Winde. 1999. Novel sensing mechanisms and targets for the cAMP-protein 
kinase A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol. 33:904-18. 

Torres, J., C.J. Di Como, E. Herrero, and M.A. De La Torre-Ruiz. 2002. Regulation of the cell integrity 
pathway by rapamycin-sensitive TOR function in budding yeast. J Biol Chem. 277:43495-504. 

Uetz, P., L. Giot, G. Cagney, T.A. Mansfield, R.S. Judson, J.R. Knight, D. Lockshon, V. Narayan, M. 
Srinivasan, P. Pochart, A. Qureshi-Emili, Y. Li, B. Godwin, D. Conover, T. Kalbfleisch, G. 
Vijayadamodar, M. Yang, M. Johnston, S. Fields, and J.M. Rothberg. 2000. A comprehensive 
analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature. 403:623-7. 

van Slegtenhorst, M., M. Nellist, B. Nagelkerken, J. Cheadle, R. Snell, A. van den Ouweland, A. Reuser, J. 
Sampson, D. Halley, and P. van der Sluijs. 1998. Interaction between hamartin and tuberin, the 
TSC1 and TSC2 gene products. Hum Mol Genet. 7:1053-7. 

Vandenbol, M., J.C. Jauniaux, and M. Grenson. 1990. The Saccharomyces cerevisiae NPR1 gene 
required for the activity of ammonia-sensitive amino acid permeases encodes a protein kinase 
homologue. Mol Gen Genet. 222:393-9. 

108



Vanhaesebroeck, B., and D.R. Alessi. 2000. The PI3K-PDK1 connection: more than just a road to PKB. 
Biochem J. 346 Pt 3:561-76. 

Wang, L., C.D. Fraley, J. Faridi, A. Kornberg, and R.A. Roth. 2003. Inorganic polyphosphate stimulates 
mammalian TOR, a kinase involved in the proliferation of mammary cancer cells. Proc Natl Acad 
Sci U S A. 100:11249-54. 

Wang, X., L.E. Campbell, C.M. Miller, and C.G. Proud. 1998. Amino acid availability regulates p70 S6 
kinase and multiple translation factors. Biochem J. 334 ( Pt 1):261-7. 

Warner, J.R. 1999. The economics of ribosome biosynthesis in yeast. Trends Biochem Sci. 24:437-40. 

Watanabe, Y., K. Irie, and K. Matsumoto. 1995. Yeast RLM1 encodes a serum response factor-like protein 
that may function downstream of the Mpk1 (Slt2) mitogen-activated protein kinase pathway. Mol 
Cell Biol. 15:5740-9. 

Wedaman, K.P., A. Reinke, S. Anderson, J. Yates, 3rd, J.M. McCaffery, and T. Powers. 2003. Tor kinases 
are in distinct membrane-associated protein complexes in Saccharomyces cerevisiae. Mol Biol 
Cell. 14:1204-20. 

Xu, G., G. Kwon, C.A. Marshall, T.A. Lin, J.C. Lawrence, Jr., and M.L. McDaniel. 1998. Branched-chain 
amino acids are essential in the regulation of PHAS-I and p70 S6 kinase by pancreatic beta-cells. 
A possible role in protein translation and mitogenic signaling. J Biol Chem. 273:28178-84. 

Zabrocki, P., C. Van Hoof, J. Goris, J.M. Thevelein, J. Winderickx, and S. Wera. 2002. Protein 
phosphatase 2A on track for nutrient-induced signalling in yeast. Mol Microbiol. 43:835-42. 

Zhang, H., J.P. Stallock, J.C. Ng, C. Reinhard, and T.P. Neufeld. 2000. Regulation of cellular growth by 
the Drosophila target of rapamycin dTOR. Genes Dev. 14:2712-24. 

Zhang, Y., X. Gao, L.J. Saucedo, B. Ru, B.A. Edgar, and D. Pan. 2003. Rheb is a direct target of the 
tuberous sclerosis tumour suppressor proteins. Nat Cell Biol. 5:578-81. 

Zheng, X.F., D. Florentino, J. Chen, G.R. Crabtree, and S.L. Schreiber. 1995. TOR kinase domains are 
required for two distinct functions, only one of which is inhibited by rapamycin. Cell. 82:121-30. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

109



Curriculum vitae 

 
Name     Stephan Wullschleger 

 

 

Date of Birth   December 29, 1974 

 

 

Place of Origin  Zofingen (AG), Switzerland 

 

 

June 1995   Matura, Kantonsschule Zofingen (AG), Switzerland 

 

 

October 1995 -  Diploma in Biology II (Biochemistry) 

March 2000   Biozentrum, University of Basel, Switzerland 

 

 

September 1998 -  Diploma thesis with PD Dr. Heinz Müller  

July 1999   Departments of Research and Gynecology 

    University Hospital of Basel, Switzerland 

  ‘Estrogen receptor regulation by heregulins in the breast 

cancer cell line MCF7’ 

 

 

July 2000 -   Ph.D. thesis with Prof. Michael N. Hall 

June 2004   Biozentrum, Division of Biochemistry 

    University of Basel, Switzerland 

‘Characterization of TOR complex 2 (TORC2) in 

Saccharomyces cerevisiae’ 

 
 
 
 

110



Publications 
 
 

 Loewith, R., Jacinto, E., Wullschleger, S., Lorberg, A., Crespo, J. L., Bonenfant, D., 

Oppliger, W., Jenoe, P., and Hall, M. N. (2002) 

 Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in 

cell growth control. Molecular Cell. 10 (3): 457-468 

 

 

 Wullschleger, S., Loewith, R., Oppliger, W., and Hall, M. N. 

 Characterization of AVO1, a component of TOR complex 2 (TORC2) 

 Manuscript in preparation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

111



Erklärung 

 
Ich erkläre hiermit, dass ich diese Dissertation ‘Characterization of TOR complex 2 

(TORC2) in Saccharomyces cerevisiae’ nur mit der darin angegebenen Hilfe verfasst 

und bei keiner anderen Fakultät eingereicht habe.  

 

 

 

 

 

 

Stephan Wullschleger 

 

 

 

 

 

 

112


	INAUGURALDISSERTATION
	Philosophisch-Naturwissenschaftlichen Fakultät

	Acknowlegments
	Table of contents
	Summary
	Acknowlegements

	Molecular Cell, 10, 457-468, 2002
	Curriculum vitae 110
	Publications 111
	Erklärung 112

	1. 1. Rapamycin and the discovery of TOR
	1. 2. Domain structure of TOR
	1. 3. TOR signaling in higher eukaryotes

	p70S6K1
	4E-BP1
	1. 3. 2. Regulators of mTOR, what is upstream?
	Nutrients
	Nutrients in the form of amino acids have been implicated in
	Energy
	1. 3. 3. TOR and control of cell growth


	1. 4. TOR signaling in Saccharomyces cerevisiae


	TOR has two functions
	1. 4. 1. Temporal control of cell growth
	Readouts of the rapamycin-sensitive TOR signaling branch
	Translation initiation
	Ribosome biogenesis
	Protein traffic and degradation
	Autophagy
	Transcription
	GATA transcription factors GLN3 and GAT1
	RTG1 and RTG3
	Zn-finger transcription factor MSN2 and MSN4
	Effector pathways of the rapamycin-sensitive TOR signaling b
	TOR regulates protein phosphatases
	TOR and RAS signaling pathway





	1. 4. 2. Spatial control of cell growth
	Organization of the actin cytoskeleton

	1. 4. 3. TOR controls cell growth in response to nutrients
	2. Identification of TOR complexes
	2. 2. Additional results

	AVO1 is not required for the rapamycin-sensitive TOR-sensiti
	Figure 2.1. AVO1 does not affect the phosphorylation status 
	2. 3. Discussion


	3. Characterization of AVO1 and LST8
	3. 1. Introduction
	3. 2. Results


	Growth and actin defects of avo1 and lst8 mutants are suppre
	Figure 3.1. Growth defect of lst8 mutant cells is suppressed
	PKC1 MAP kinase cascade and YPK2
	Wild-type (wt) (TB50a) and GAL1 promoter-LST8 cells transfor
	Figure 3.2. Actin defect of avo1 is suppressed by activation
	kinase cascade.
	3. 4. Material and methods
	Strains and media
	Genetic techniques
	Actin staining
	Two-hybrid assays


	MAP kinase assay
	TAP purification
	Immunoprecipitation
	Table 3.2. Plasmids



	4. Functional analysis of TORC2
	4. 1. Introduction
	TOR signaling complexes

	TORC2 in yeast
	4. 2. Results
	TORC2 exists in an oligomeric form
	AVO1 and AVO3 are important for the structural integrity of 
	TORC2
	A, B) AVO2 is not required for AVO1 and LST8 to interact with TOR2

	LST8 binds to the C-terminal part of TOR2 while AVO3 associa
	Figure 4.5. Interaction domains of TOR2 with LST8 and AVO3
	A) LST8 binds to the C-terminal part of TOR2.
	Cells containing myc-tagged LST8 (RL59-2d) were transformed 
	B) AVO3 associates with the N-terminal part of TOR2
	Cells containing GAL1 promoter-TOR2 and myc-tagged AVO3 (SW9
	LST8 controls TOR2 kinase activity and AVO1 functions as sca
	Figure 4.6. LST8 controls TOR2 kinase activity
	4. 3. Discussion
	Figure 4.8. Model



	4. 4. Materials and methods
	Genetic techniques

	Immunoprecipitations and TAP pull-downs
	Purification of GST-tagged proteins

	Kinase assays
	Table 4.2. Plasmids
	Genetic techniques




	Curriculum vitae
	Publications
	Erklärung
	Thesis-endversion-b.pdf
	INAUGURALDISSERTATION
	Philosophisch-Naturwissenschaftlichen Fakultät

	Acknowlegments
	Table of contents
	Summary
	Acknowlegements

	Molecular Cell, 10, 457-468, 2002
	Curriculum vitae 110
	Publications 111
	Erklärung 112

	1. 1. Rapamycin and the discovery of TOR
	1. 2. Domain structure of TOR
	1. 3. TOR signaling in higher eukaryotes

	p70S6K1
	4E-BP1
	1. 3. 2. Regulators of mTOR, what is upstream?
	Nutrients
	Nutrients in the form of amino acids have been implicated in
	Energy
	1. 3. 3. TOR and control of cell growth


	1. 4. TOR signaling in Saccharomyces cerevisiae


	TOR has two functions
	1. 4. 1. Temporal control of cell growth
	Readouts of the rapamycin-sensitive TOR signaling branch
	Translation initiation
	Ribosome biogenesis
	Protein traffic and degradation
	Autophagy
	Transcription
	GATA transcription factors GLN3 and GAT1
	RTG1 and RTG3
	Zn-finger transcription factor MSN2 and MSN4
	Effector pathways of the rapamycin-sensitive TOR signaling b
	TOR regulates protein phosphatases
	TOR and RAS signaling pathway





	1. 4. 2. Spatial control of cell growth
	Organization of the actin cytoskeleton

	1. 4. 3. TOR controls cell growth in response to nutrients
	2. Identification of TOR complexes
	2. 2. Additional results

	AVO1 is not required for the rapamycin-sensitive TOR-sensiti
	Figure 2.1. AVO1 does not affect the phosphorylation status 
	2. 3. Discussion


	3. Characterization of AVO1 and LST8
	3. 1. Introduction
	3. 2. Results


	Growth and actin defects of avo1 and lst8 mutants are suppre
	Figure 3.1. Growth defect of lst8 mutant cells is suppressed
	PKC1 MAP kinase cascade and YPK2
	Wild-type (wt) (TB50a) and GAL1 promoter-LST8 cells transfor
	Figure 3.2. Actin defect of avo1 is suppressed by activation
	kinase cascade.
	3. 4. Material and methods
	Strains and media
	Genetic techniques
	Actin staining
	Two-hybrid assays


	MAP kinase assay
	TAP purification
	Immunoprecipitation
	Table 3.2. Plasmids



	4. Functional analysis of TORC2
	4. 1. Introduction
	TOR signaling complexes

	TORC2 in yeast
	4. 2. Results
	TORC2 exists in an oligomeric form
	AVO1 and AVO3 are important for the structural integrity of 
	TORC2
	A, B) AVO2 is not required for AVO1 and LST8 to interact with TOR2

	LST8 binds to the C-terminal part of TOR2 while AVO3 associa
	Figure 4.5. Interaction domains of TOR2 with LST8 and AVO3
	A) LST8 binds to the C-terminal part of TOR2.
	Cells containing myc-tagged LST8 (RL59-2d) were transformed 
	B) AVO3 associates with the N-terminal part of TOR2
	Cells containing GAL1 promoter-TOR2 and myc-tagged AVO3 (SW9
	LST8 controls TOR2 kinase activity and AVO1 functions as sca
	Figure 4.6. LST8 controls TOR2 kinase activity
	4. 3. Discussion
	Figure 4.8. Model



	4. 4. Materials and methods
	Genetic techniques

	Immunoprecipitations and TAP pull-downs
	Purification of GST-tagged proteins

	Kinase assays
	Table 4.2. Plasmids
	Genetic techniques




	Curriculum vitae
	Publications
	Erklärung




