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Summary 
 

Five years ago, an unexpected discovery opened a whole new paradigm of biology – RNA 

interference (RNAi). From the simple notion that dsRNA, when introduced into various organisms, 

can specificly inhibit expression of homologous endogenous gene, the RNA interference has 

expanded into a wide range of gene regulatory pathways of great biological importance. At the 

same time, RNAi started to be widely used as powerful experimental tool for probing gene function 

in almost any organism. The research on RNAi is moving forward at high speed, both at the 

mechanistic level and as a tool. Genetic and biochemical studies in various systems have revealed 

much information about the mechanism of RNAi. It is now well established that dsRNAs is 

processed by a nuclease Dicer into short dsRNAs varing in length from 21 to 25 nt, named siRNAs, 

which in turn are incorporated into the RNA induced silencing complex (RISC) to target mRNA 

degradation. Identification of siRNAs led to the discovery of a whole new class of regulatory small 

RNAs of similar size, named microRNAs (miRNAs), which have diverse biological functions. 

Hundreds of miRNAs were cloned, and their functions are being investigated. The single stranded 

miRNAs are also processed by Dicer from miRNA precursors and incorporated into a complex 

similar, if not identical, to RISC. In animals, miRNAs imperfectly base-pair with mRNA leading to 

translational repression. Dicer, a central protein of the RNAi and miRNA pathways is a focus of the 

study presented in this thesis. A full length human Dicer cDNA was cloned and protein 

overexpressed in the baculovirus system and purified. Its processing activity was demonstrated 

using both dsRNA and pre-miRNAs as substrates. Detailed study of the RNase III-like activity of 

Dicer, its biochemical properties and a model of its function are described in two experimental 

chapters of this thesis. 

This thesis is divided into three major chapters followed by a short general discussion. 

Chapter 1 contains a general introduction to RNA interference. It describes a history of RNAi 

discovery, summarizes what is known about the RNAi mechanism in general, and also about the 

species-specific differences. The mechanistic aspects of the miRNA pathway are also described. 

An overview of all important proteins involved in RNAi is presented. Finally, a summary of RNAi as 

a tool for reverse genetics is provided. 

Chapter 2 describes the characterization of the purified recombinant human Dicer protein. In 

vitro experiments showed that the purified protein cleaves dsRNAs into ~22 nucleotide siRNAs. 

This was a first direct evidence that Dicer indeed has RNase III-like nuclease activity. Accumulation  
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of processing intermediates of discrete sizes, and experiments performed with substrates 

containing modified ends, indicated that Dicer preferentially cleaves dsRNAs at their termini. 

Binding of the enzyme to the substrate could be uncoupled from the cleavage step by omitting 

Mg2+ or performing the reaction at 4oC. Activity of the recombinant Dicer, and of the endogenous 

protein present in mammalian cells extracts, was stimulated by limited proteolysis, and the 

proteolysed enzyme became active at 4oC. Cleavage of dsRNA by purified Dicer and the 

endogenous enzyme was ATP independent, in contrast to results obtained in Drosophila and C. 

elegans. Additional experiments suggested that if ATP participates in the Dicer reaction in 

mammalian cells, it might be involved in the product release needed for the multiple turnover of the 

enzyme.  

Chapter 3 describes the mutagenesis study of the human Dicer RNase III domains, which 

revealed that Dicer contains a single compound catalytic center. Both RNase III domains in Dicer 

contribute to the dsRNA cleavage reaction. The Dicer mutagenesis study was initiated whether a 

model of dsRNA cleavage originating from an X-ray structural study of the Aquifex aeolicus RNase 

III also applies to Dicer. Mutants containing changes in residues implicated in the catalysis in both 

Dicer RNase III domains were prepared to study their effect on RNA processing. Our results were 

in conflict with the bacterial Rnase III model and all speculated Dicer model. We have further 

mutated the catalytic residues of the E. coli RNase III and tested their effect on processing of 

different substrates. The results are consistent with those obtained with Dicer mutants. More 

specifically, our results indicate that instead the two catalytic centers proposed previously, both 

enzymes contain only one catalytic center, generating products with 2-nt 3’ overhangs. Together 

with other data, a new model was proposed according to which Dicer functions as an intra-

molecular dimer of its two RNase III domains, assisted by the flanking RNA binding domains, PAZ 

and dsRBD. 

 



 
 

 
 
Chapter 1  
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RNA interference (RNAi), a conserved biological response to double-stranded RNA (dsRNA), 

mediates resistance to both endogenous parasitic and exogenous pathogenic nucleic acid, and 

regulates the expression of protein-coding genes. Over the past five years, the way in which cells 

respond to dsRNA by silencing homologous genes has revealed a new regulatory paradigm in 

biology. We are only beginning to appreciate the mechanistic complexity of this process and its 

biological ramifications. Meanwhile, RNAi has already begun to revolutionize experimental biology 

in organisms ranging from unicellular protozoans and fungal to mammals. 

 

1.1 Discovery of RNA interference 
 

The discovery of RNAi came out of a desire to use antisense approaches to probe gene 

function in Caenorhabditis.elegans. Guo and Kemphues tried to determine the function of par-1 

gene by injecting antisense par-1 RNA into worms (Guo and Kemphues, 1995). Although the 

antisense approach resulted in the expected phenotype, a serious paradox was raised by the 

observation that sense RNA injected as control also had an identical phenotype. The key 

breakthrough came when Fire and Mello asked whether injection of both the sense and the 

anitsense strands into worms might give an additive effect. Shockingly, the mixture of sense and 

antisense strands silenced expression of a target gene roughly tenfold more efficiently than either 

strand alone. Interpreting this dsRNA-induced effect as a new phenomenon, the authors named 

the process RNA interference (RNAi)(Fire et al., 1998)  

The ability of dsRNA to affect gene expression was already well known in mammals (Hunter et 

al., 1975). The key difference between this response and RNAi was their respective specificity: the 

former inhibited gene expression globally via activating a protein kinase, whereas RNAi had a 

specific effect on gene expression. One of the first indications that RNAi was a novel biological 

phenomenon was the potency of its effect. Injecting the worm with only a few molecules of dsRNA 

per cell was sufficient to almost completely silence the expression of a specific gene. Furthermore, 

the effect seemed to be systemic. Injection of dsRNA into the gut of the worm caused silencing 

throughout the animal, and also in the F1 progeny.  

From this discovery emerged the notion that a number of previously characterized, homology-

dependent gene-silencing mechanisms might share a common biological root. Couple of years 

earlier, Richard Jorgensen had engineered transgenic petunias to alter pigmentation (Jorgensen et 

al., 1996). However, introducing exogenous transgenes did not deepen the flower colour as 
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expected. Instead, flowers showed variegated pigmentation with some lacking pigment altogether. 

This indicated that not only were the transgenes themselves inactive, but also that the added DNA 

sequence somehow affected expression of the endogenous gene. This phenomenon was called 

co-suppression (Jorgensen et al., 1996; Que and Jorgensen, 1998). Following this, many similar 

events of co-suppression were reported (Birchler et al., 1999). Since all cases of co-suppression 

resulted in the degradation of endogene and transgene RNAs after nuclear transcription had 

occurred, the phenomenon was also named as posttranscriptional gene silencing (PTGS). Besides 

those cases mentioned above, homology-driven RNA degradation also occurs during the 

propagation of viral genomes in infected plants (English et al., 1996). Viruses can be either the 

source, the target, or both the source and the target of silencing. PTGS mediated by viruses 

(VIGS) can occur with RNA viruses, which replicate in the cytoplasm, and also with DNA viruses, 

which replicate in the nucleus. While reports of PTGS in plants were piling up, homology-driven 

gene silencing phenomena were also observed independently in fungal systems, which in 

Neurospora crassawas were called quelling (Cogoni et al., 1996).  

What is clear in retrospect is that all those homology dependent gene-silencing reactions 

involve generation of dsRNA. In plant systems, dsRNA that is introduced from exogenous sources 

or that is transcribed from engineered inverted repeats is a potent inducer of gene silencing. 

Genetic and biochemical studies have now confirmed that RNAi, PTGS and quelling share similar 

mechanisms, and that the biological pathways underlying dsRNA-induced gene silencing exist in 

many, if not most, eukaryotic organisms. 

 
1.2 Overview of the mechanism of RNAi 
 
Since the discovery of RNAi, important insights have been gained in elucidating its mechanism. 

The early understanding was derived from both genetic and biochemical studies. Genetic screens 

were carried out in the fungus Neurospora crassa (Cogoni and Macino, 1997), the nematode 

C.elegans (Tabara et al., 1999), and the plant Arabidopsis thaliana (Fagard et al., 2000) to search 

for mutants defective in quelling, RNAi or PTGS, respectively. Analyses of these mutants led to the 

identification of proteins involved in gene silencing and also revealed that a number of essential 

enzymes or factors are common to these processes. Meanwhile, intensive in vitro biochemical 

studies were carried out by using Drosophila melanogaster extracts. As the various pieces of the 

RNAi machinery are being discovered, the mechanism of RNAi is emerging more clearly. A two 
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steps model is proposed from combination of several in vivo and in vitro experiments (Fig 1). The 

first step, referred to as the RNAi initiating step, involves the processing of dsRNA into discrete 21 

to 25 nucleotide RNA fragment by a RNA nuclease named Dicer. In the second step, these small 

RNA fragments join a multinuclease complex, which degrades the homologous single-stranded 

mRNAs. Data from different systems suggested that this model is the core biochemical mechanism 

of homology-dependent gene-silencing responses. However, the varied biology of dsRNA-induced 

silencing – for example, the heritable and systemic nature of silencing in C. elegans compared to 

apparently cell-autonomous, non-heritable silencing in Drosophila and mammals – suggested that 

this core machinery probably has adapted to meet specific biological needs in different organisms. 
 

1.2.1 The initiation step 
 

When Fire and Mello first discovered RNAi, they had originally proposed that some derivative 

dsRNA would guide the identification of substrates for RNAi. The first clue in the hunt for such 

'guide RNAs' came from a study of silencing in plants. Hamilton and Baulcombe sought antisense 

RNAs that were homologous to genes being targeted by co-suppression. They found a 25-

nucleotide RNA that appeared only in plant lines containing a suppressed transgene, and found 

that similar species appeared during virus-induced gene silencing too (Hamilton and Baulcombe, 

1999). More direct evidence about the initiation step came from biochemical studies in Drosophila. 

When dsRNA induced sequence-specific silencing was shown to work in Drosophila embryos 

(Kennerdell and Carthew, 1998), Tuschl et al (1999) tested weather Drosophila embryo extracts, 

previously used to study translational regulation, might be competent for RNAi. Incubation of 

dsRNA in these cell-free lysates from Drosophila syncytial blastoderm embryo reduced their ability 

to synthesize luciferase from a synthetic mRNA. This in vitro system is able to reproduce many of 

the features of RNAi (Tuschl et al., 1999). When dsRNA radiolabeled in either the sense or the 

antisense strand was incubated with this lysate in a standard RNAi reaction, 21- to 23- nucleotide 

RNAs were generated with high efficiency. Single-stranded labeled RNA of either strand was not 

converted to 21- to 23-nucleotide products. Such small RNAs were termed as short interfering 

RNAs (siRNA), and the formation of siRNAs did not require the presence of corresponding mRNAs 

(Zamore et al., 2000). Soon, siRNAs were identified in all tested systems in which RNAi and 

related phenomena exist, and it became a signature of this family of silencing pathways. 
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Biochemical characterization showed that siRNAs are 21–23-nt dsRNA duplexes with 2–3-nt 3' 

overhangs and 5'-phosphate and 3'-hydroxyl groups (Zamore et al., 2000). This structure is 

characteristic of an RNase III-like enzymatic cleavage pattern. This finding led to the identification 

of the highly conserved family of RNase III enzymes which "dice" dsRNA, so the protein was 

named Dicer. Dicer was first demonstrated to be needed for processing dsRNA into siRNAs in 

Drosophila (Bernstein et al., 2001). Similar experimental studies were also carried out in C. 

elegans (Knight and Bass, 2001), and genetic evidence from C. elegans and Arabidopsis has also 

shown that Dicer acts in the RNAi pathway (review in Hannon, 2002). However, in these systems 

where Dicer was shown to be necessary for the siRNA generation, it was not known whether it was 

also sufficient. The direct proof of Dicer cleavage activity came from the work presented in this 

thesis and also reported by others. Purified recombinant human Dicer protein was shown to be 

responsible for cleavage of dsRNAs in vitro (Provost et al., 2002; Zhang et al., 2002). 

Biochemical experiments conducted in Drosophila embryo lysates and cultured S2 cells 

showed that the initiation step is ATP dependent. The rate of siRNA formation from dsRNA has 

been shown to be six times slower in the Drosophila extract depleted for ATP by treatment of 

hexokinase and glucose (Nykanen et al., 2001). Dicer immunoprecipitates from Drosophila as well 

as S2 cell extracts and from C. elegans extract required ATP for the production of siRNAs 

(Bernstein et al., 2001; Ketting et al., 2001). In addition, a recent paper also demonstrated that 

purified recombinant Drosophila Dicer needed ATP for dsRNA cleavage reaction in vitro (Liu et al., 

2003). This ATP requirement by Dicer is unique among endonucleases. It is attributed to the 

presence of an ATP-dependent RNA ‘helicase’ domain at the Dicer’s N-terminus. However, it is still 

unclear what is a role of ATP during production of siRNAs from dsRNA. Since experiments 

described in Chapter 2 of this thesis, involving use of mammalian cell extracts and the 

overexpressed recombinant Dicer, do not show any ATP requirement for the cleavage reaction 

(Billy et al., 2001; Zhang et al., 2002), differences might exist between the early steps of Drosophila 

and mammalian RNAi pathways. 

 

1.2.2 The effector step 

 

From studies in the Drosophila system, a protein-RNA effector nuclease complex was isolated 

and shown to be responsible for recognizing and destroying the target mRNA. This complex was 

named RISC (RNA induced silencing complex), and the first identified component of RISC was the 
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siRNA, which presumably identifies its mRNA through Watson–Crick base-pairing (Hammond et 

al., 2001a). In Drosophila, Zamore and colleagues have shown that RISC is formed in embryo 

extracts as a precursor complex of 250-Kd; this becomes activated upon addition of ATP to form a 

100-Kd complex that can cleave substrate mRNAs (Nykanen et al., 2001). The cleavage of mRNA 

substrate is apparently endonucleolytic, and occurs only in the region homologous to the siRNA. 

Experiments with the 5’-end radiolabeled target RNAs performed to map the sites of cleavage 

triggered by dsRNA demonstrated that each siRNA directs the endonucleolytic cleavage of the 

target RNA at a nucleotide across from the center of the guide siRNA strand.  

RISC purified from Drosophila S2 cells is a 500-Kd ribonucleoprotein complex with slightly 

different characteristics (Hammond et al., 2001b). In embryo extracts, RISC* (the 100-Kd active 

RISC species) cleaves its substrates endonucleolytically. However, cleavage products are never 

observed even with the most highly purified RISC preparations from S2 cells, suggesting the 

presence of an exonuclease in this enzyme complex. Therefore, the complex formed in vivo 

probably contains additional factors that account for observed differences in size and activity. 

Alternatively, RISC purified from S2 cells may become activated — perhaps changing size and 

subunit composition — upon incubation with ATP.  

The first identified protein component of RISC was AGO2, which co-purified with RISC from S2 

cells (Hammond et al., 2001a). AGO2 belongs to Argonaute gene family - a large, evolutionarily 

conserved gene family found in most eukaryotic genomes. In a later section, this family of proteins 

will be discussed in detail. Argonaute proteins were linked to RNAi also by genetic studies in C. 

elegans (Grishok et al., 2001; Tabara et al., 1999). Two mutants identified in C. elegans, rde1 and 

rde4, are required for initiation of silencing in a parental animal. However, neither function was 

required for systemic silencing in F1 progeny. RDE1 is an Argonaute family protein and RDE4 is a 

small dsRNA-binding protein. Both proteins can interact with the C. elegans Dicer (Tabara et al., 

1999). Similarly, in Neurospora, mutations in the Argonaute family member qde-2 eliminate 

quelling, but do not alter accumulation of siRNAs (Catalanotto et al., 2002). Additional protein 

components of RISC were identified. Two RNA binding proteins, the Vasa intronic gene VIG and 

dFMR proteins, were found in the RISC complex isolated from Drosophila (Caudy et al., 2002) 

together with Tudor-SN (tudor staphylococcal nuclease, TSN), a protein containing five 

staphylococcal/micrococcal nuclease domains and a tudor domain (Caudy et al., 2003). dFMR is a 

homologue of the human fragile X mental retardation protein (FMRP, further discussion of FMRP 

will be in a later section). A novel ribonucleoprotein complex from the Drosophila lysate was also 
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isolated, which contains dFMR1, AGO2, a Drosophlia homologue of p68 RNA helicase (Dmp68), 

and two ribosomal proteins, L5 and L11, along with 5S rRNA (Ishizuka et al., 2002). The nuclease 

which cuts the mRNA in RISC is certainly one of the important yet-to-be-identified components 

required for the effector step. Finally, the cleaved mRNAs are likely degraded by exoribonucleases. 

The RISC component TSN was demonstrated to have non-sequence-specific nucleases activity 

and cleave both RNA and DNA. It was proposed that the degradation of the mRNA processed by 

RISC is carried out by this enzyme (Caudy et al., 2003). 

RISC

dsRNA

DICER

RISC
mRNA

Cleavage

siRNAsmicroRNA

pre-miRNA

mRNA degradation

mRNA
3’UTR

Repression of translation

translation

pri-miRNA
Drosha

RISC

Figure 1. RNAi pathways. Dicer processes dsRNA or pre-miRNA to generate 
siRNA or miRNA, which will form RISC to target the mRNA via mRNA degradation 
or translational repression.  

1.2.3 Amplification and spreading of silencing 
 

One of the most intriguing aspects of RNAi in C. elegans is its ability to spread throughout the 

organism, even when triggered by a few molecules of dsRNA (Fire et al., 1998). Similar systemic 

silencing phenomena have been observed in plants, in which silencing could spead the whole plant 

or even be transferred to a naive grafted scion (Palauqui et al., 1997), but were not found in flies 

and mammals.  

For systemic silencing to occur, it requires firstly a system to pass a signal from cell to cell, and 

an additional strategy for amplifying the signal. A phenomenon termed 'transitive RNAi' has 

provided some useful clues. Transitive RNAi refers to the movement of the silencing signal along a 

particular gene. In C. elegans, targeting the 3' portion of a transcript results in the production of 

siRNAs homologous to the targeted region and suppression of the gene. In addition, siRNAs 
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complementary to regions of the transcript positioned upstream from the targeted area also 

accumulate. If these siRNAs are complementary to other mRNAs, these mRNAs are also targeted 

(Sijen et al., 2001a). In various systems, a class of proteins, similar in sequence to a tomato RNA 

dependent RNA polymerase (RdRP), was identified as required for RNAi (Cogoni and Macino, 

1999; Mourrain et al., 2000a; Schiebel et al., 1998). Involvement of this class of proteins in RNAi 

might explain how the transitive RNAi works. Genetic studies led to a simple model for transitive 

RNAi in which siRNAs might prime the synthesis of additional dsRNA by RdRPs. In the later 

section, RdRPs in various organisms will be discussed in more detail. As discussed in a previous 

section, the fact that RDE-1 and RDE-4 are required only for the initiation of RNAi in parental C. 

elegans, adds an additional layer of complexity to the model. Perhaps exogenous dsRNAs are 

recognized initially in manner that is distinct from recognition of secondary dsRNA, which may be 

produced by RdRPs. For example, the proposed function of RDE-4 in delivering dsRNA to Dicer 

could be substituted for secondary dsRNAs by another hypothetical protein. Alternatively, Dicer 

could exist in a stable complex with an RdRP, making dsRNA delivery unnecessary. The 

requirement for RdRP homologue RRF-1/RDE-9 throughout the C. elegans soma — and the 

similar requirement in plants — also suggests that most RNAi in these systems is driven by 

secondary siRNAs produced through the action of RdRPs (Simmer et al., 2002). 

However, other possibilities also exist. In plants, transitive RNAi spreads in both 3'→5' and 

5'→3' directions (Vaistij et al., 2002), which is inconsistent with the simple notion of siRNAs priming 

dsRNA synthesis. Instead, one can imagine that genomic loci may serve as a reservoir for 

silencing. In some systems, it is known that exposure to dsRNA can produce alterations in 

chromatin structure, which could lead to the production of 'aberrant' mRNAs that are substrates for 

conversion to dsRNA by RdRPs. This model would permit bi-directional spread, as such an 

expansion of altered chromatin structure is an established phenomenon. Moreover, a similar model 

could explain co-suppression that is occasionally triggered by single-copy, dispersed transgenes. 

Finally, this model would be consistent with transitive effects that have been observed for both 

transcriptional and post-transcriptional silencing in Drosophila, which operate in the absence of any 

homology in the transcribed RNA, and thus differ from 'transitive RNAi' in C. elegans (Pal-Bhadra 

et al., 1999; Pal-Bhadra et al., 2002). However, support for a genome-based amplification model 

remains elusive, as does the nature of the 'aberrant' RNAs that trigger siRNA formation. Although 

these models suggest mechanisms for the cell-autonomous amplification of the silencing signal, 

the character of the signal that transmits systemic silencing in plants and animals is unknown. Two 
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candidates are siRNAs themselves and long dsRNAs, perhaps formed via the RdRP-dependent 

amplification. 

In plants, there are two types of transmission. The first is short-range, cell-to-cell transmission. 

Plant cells are intimately connected through cytoplasmic bridges known as plasmodesmata. 

Movement of RNA and proteins via these cell–cell junctions is well known, and it is likely that either 

long dsRNA or siRNAs could be passed through these connections. Furthermore, the silencing 

signal must also be passed over a longer range through the plant vasculature (Voinnet et al., 

1998). In this regard, studies of a viral silencing inhibitor, Hc-Pro, have provided evidence against 

siRNAs being critical for systemic silencing in plants. Hc-Pro expression in a silenced rootstock 

relieves silencing and inhibits siRNA production, but a systemic signal can still be passed from this 

rootstock to an engrafted scion lacking Hc-Pro expression (Mallory et al., 2002).  

A protein was identified in C. elegans that is required for systemic silencing (Winston et al., 

2002). The sid-1 gene encodes a transmembrane protein that may act as a channel for importing 

of the silencing signal. Expression of sid-1 is largely lacking from neuronal cells, perhaps 

explaining initial observations that C. elegans neurons were resistant to systemic RNAi. In a later 

section, this protein will be discussed in detail. 

 
1.2.4 RNAi in Mammalian cells 

dsRNA >30bp

activation

PKR 2’,5’-OASInterferon
activation

eIF2 eIF2
P

Inhibition of
translation

ATP 2’,5’ A

Rnase L
inactive

Rnase L
active

mRNA
degradation

Figure 2. Nonspecific response to dsRNA in mammalian somatic cells
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It has been known for years that the exposure of mammalian cells to dsRNA, regardless of its 

sequence, triggers a global repression of protein synthesis. In most mammalian somatic cells, 

dsRNA activates protein kinase PKR, which catalyzes phosphorylation of target molecules, such as 

the translation initiation factor eIF2α, what in turn inhibits translation. PKR is also involved in the 

regulation of NF-kB, which has a key role in interferon induction. Interferon and dsRNA also 

activate 2’,5’-oligoadenylate (2',5'-OAS) synthetase, leading to the production of 2’,5’-

oligoadenylates with 5’-terminal triphosphate residues. This subsequently induces activation of 

general RNA degradation protein RNase L (for review, see Barber, 2001). PKR and 2’,5’-OAS are 

essential for the apoptotic response to dsRNA that has been demonstrated in knock-out mice (Der 

et al., 1997; Zhou et al., 1997) (Figure 2). This response to dsRNA caused many investigators to 

doubt that RNAi will function in mammalian systems, following first reports of RNAi in C. elegans 

and Drosophlia. However, since long dsRNA do not cause nonspecific effects when injected to 

oocytes and early embryos, RNAi might operate at these early stages of development. The initial 

reports about RNAi in mouse indeed showed RNAi in early embryos and oocytes and they 

demonstrated that it can be efficiently used as a gene knock down tool. (Svoboda et al., 2000b; 

Wianny and Zernicka-Goetz, 2000). In addition, many important proteins involved in RNAi are 

present in mammals, especially the dsRNA processing enzyme Dicer. This implied that RNAi might 

exist in somatic mammalian cells besides the apoptotic response of dsRNA. A deeper 

understanding of the RNAi mechanism in somatic cells was allowed by bypassing the apoptotic 

response to dsRNA. siRNAs are too short to trigger the PKR/2’,5’OAS pathway in somatic cells but 

can be used to induce RNAi (Elbashir et al., 2001). Although the RNAi mechanism in mammals 

has not yet been analyzed in great detail, there is some experimental evidence that the RNAi 

pathway in mammals is conserved and in principle very similar to that of Drosophila and C. 

elegans. Gene silencing by siRNA in mammals, like in other systems, is achieved via sequence-

specific mRNA degradation. Biochemical studies were carried using HeLa cell S100 extracts, and a 

mammalian RISC was isolated from it (Martinez et al., 2002) (mammalian RISC will be discussed 

in a later section in detail). The human dicer family member is capable of generating siRNA from 

dsRNA substrates, and Dicer activity has been detected in several cell lines including embryonic 

carcinoma cells, embryonic stem cells, CHO-K1, mouse embryonic filbroblasts and HeLa cells 

(Billy et al., 2001; Yang et al., 2001), as well as mouse oocytes and preimplantation embryos. In 

fact, siRNA can induce an RNAi effect in mammalian cell lines as efficiently as in oocytes and early 

embryos (Elbashir et al., 2001; Harborth et al., 2001). Although the RNAi response in mammalian 
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systems appears not as robust as in C. elegans or Drosophila, it can be efficiently used as a tool to 

analyze gene function and inactivation method. 

 

1.3 Biological functions of RNAi 
 
The ability of dsRNA to induce gene silencing is a response that has been conserved 

throughout eukaryotic evolution. This  indicates that RNAi might be biologically important. An often 

proposed function of RNAi is a generalized defence mechanism against unwanted nucleic acids, 

either in the form of viruses or in the form of parasitic DNA sequences in the genome. 

Considerable evidence shows RNAi as a protective mechanism against parasitic DNA sequences 

such as transposons and the RNA sequences of plant viruses. Many genomes contain highly 

repetitive sequences, including transposons, which normally reside in heterochromatin. 

Derepression of transposons could also disrupt the heterochromatic state and provide homologous 

sequences for recombination between non-homologous regions of chromosomes. In this way, 

transposon activation could result in large scale destabilizaion of the genome. DNA methylation 

and transcriptional gene silencing are mainly responsible for keeping the transposition frequency at 

a minimum (for review, see Martienssen and Colot, 2001). However, PTGS/RNAi also provides 

additional protection against the genomic instability caused by transposons. Mutations in the C. 

elegans mut-7 gene increase the transposition frequency in the germ line and down-regulate RNAi 

as well, implicating RNAi in the control of transposons (Ketting et al., 1999). In Trypanosoma 

brucei, siRNA products of an RNA interference event were cloned and sequenced. By sequencing 

over 1300 siRNA-like fragments, abundant 24-26 nt fragments homologous to the ubiquitous 

retrotransposon INGI and the site-specific retroposon SLACS were observed (Djikeng et al., 2001).  

In plants, PTGS has been widely linked to RNA virus resistance mechanisms. In fact, plant 

RNA viruses are both inducers and targets for PTGS and gene-silencing-defective mutants of 

plants show increased sensitivity to viral infection. Evidence also support the view that a dsRNA 

intermediate in virus replication acts as an efficient initiator of PTGS in natural virus infections 

(reviewed in Baulcombe, 1999). The decisive support for  PTGS as an anti-virual mechanism has 

come from reports that plant viruses encode proteins that are suppressors of PTGS 

(Anandalakshmi et al., 1998; Brigneti et al., 1998; Voinnet et al., 2000). These suppressors have 

evolved to protect viral RNA genomes from the degradative PTGS machinery of host plants. 

Different types of viral suppressors have been identified through the use of a variety of silencing 
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suppression assays . Suppressors HC-PRO, P1, and AC2 prepresent a group that is able to 

activate GFP expression in all tissues of previously silenced GFP-expressing plants. HC-PRO 

reduces target mRNA degradation and is thus responsible for reduced accumulation of siRNAs 

(Llave et al., 2000; Mallory et al., 2002). The second type of suppressors includes movement 

proteins, e.g. p25 of potato virus X, which is involved in curbing the systemic aspect of transgene-

induced RNA silencing (Voinnet et al., 2000). The third type includes cytomegalovirus 2b protein, 

which is involved in systemic signal-mediated RNA silencing (Ding et al., 1996). The 

cytomegalovirus 2b protein is nucleus localized and also inhibits salicylic acid-mediated virus 

resistance (Lucy et al., 2000). These findings not only provide the strongest support that PTGS 

functions as a natural, antiviral defense mechanism, but also offer valuable tools for dissecting the 

biochemical pathways of PTGS. Although RNAi occurs in mammals and mammalian cell cultures, 

its role in animal virus protection is not clear. In mammals, dsRNA induces RNAi as well as 

interferon-mediated non-specific RNA degradation and other non-specific responses leading to the 

blockage of protein synthesis and cell death. Thus, mammals seem to have evolved multiple 

mechanisms to detect and target dsRNA and to fight viruses.  

 

1.3.1 Gene regulation by miRNA 
 
Apart from the function of RNAi as a defence mechanism, an additional role for RNAi pathways 

in the normal regulation of endogenous protein-coding genes was suggested through the analysis 

of animal and plant RNAi mutants. Defects in C. elegans RNAi genes ego1 and dcl-1 cause 

specific developmental errors (Grishok et al., 2001; Knight and Bass, 2001) and the Dicer 

homologue in Arabidopsis, CAF1, is required for embryo development (Jacobsen et al., 1999). 

Mutations in the Argonaute-1 gene of Arabidopsis also cause pleiotropic developmental 

abnormalities and mutations of this family of gene in Drosophila impact normal development. In 

particular, mutations in the Drosophila Argonaute-1 have drastic effects on neuronal develoment 

(Kataoka et al., 2001) and piwi mutants have defects in both germline stem-cell proliferation and 

maintenance (Cox et al., 1998). This genetic evidence illustrates the role of RNAi machinery as a 

controller of development-related genes. The real excitement came when the link between the two 

previously known small regulatory RNAs, lin-4 and let-7, and RNAi machinery was discovered. This 

fueled an already intensive search for endogenously encoded small RNAs that might function via 

the RNAi pathway. Soon, hundreds of similar small RNAs, named as microRNA (miRNA) were 
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cloned in various organisms. An evolutionarily conserved system of the RNA-based gene 

regulation is emerging as a new paradigm for control of gene expression during development. 

 

1.3.1.1 stRNAs in C.elegans  
 

More than a decade ago, two interesting genes, lin-4 and let-7 were discovered in C. elegans 

through genetic screens for mutants that lacked the ability to control the timing of specific cell fate 

switches during development (Lee et al., 1993). When these genes were cloned, they were found 

to encode two unrelated 21-22 nucleotide RNAs. Since northern blot analysis has shown that these 

genes are temporally regulated, for example let-7 product starts to accumulate in the L3 stage and 

then increases to high levels in subsequent L4 and adult stages, they were originally referred to as 

small temporal RNA (stRNA).  Both these RNAs are believed to act by base pairing with mRNA 3’ 

untranslated regions (UTRs) of one or more target genes in the developmental timing pathway. By 

mechanisms that are not fully understood, this interaction leads to the translation repression of the 

target genes. 

Let-7-like RNAs can be found in diverse animals, including humans, demonstrating that these 

tiny RNAs are not peculiar to worms. Because they are different from any non-coding RNAs 

described previously, in their size and activity on mRNAs, lin-4 and let-7 represent a new class of 

RNAs. stRNAs are 21-22 nucleotides long single stranded RNA, which are processed from longer 

stem-loop precusor around 70 bp. Although siRNAs are double stranded, the size similarity of 

siRNAs and stRNAs led the proposition that stRNAs might also be processed by Dicer from its 

precursor. Indeed, Dicer can generate mature stRNA from synthetic precursors in vitro (Hutvagner 

et al., 2001; Ketting et al., 2001) and Dicer null worms accumulate both lin-4 and let-7 precursors 

with a corresponding loss of mature stRNAs (Ketting et al., 2001; Knight and Bass, 2001). 

Similarly, in HeLa cells, depletion of Dicer by RNAi causes a buildup of pre-let-7 and a loss of 

mature let-7 (Hutvagner et al., 2001). These results linked the stRNA and RNAi pathway by the 

central enzyme Dicer. Furthermore, two members of the Argonaute gene family in worms, ALG-1 

and ALG-2, are essential for stRNA-mediated regulation. This finding strengthens the hypothesis 

that stRNAs might act through the RNAi pathway on their regulatory targets (Grishok et al., 2001).  

 
1.3.1.2 Discovery of new gene regulators - miRNAs 
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Soon after the link between stRNA and RNAi machinery was found, three groups uncovered 

nearly 100 new similar genes encoding short (21-24 nucleotides) non-coding RNAs, now termed 

microRNAs (miRNAs) (Lagos-Quintana et al., 2001; Lau et al., 2001; Lee and Ambros, 2001). One 

lab came upon them unexpectedly while searching for the endogenous products of the RNAi 

reaction. The other two groups each suspected that C. elegans will have more than the two 

stRNAs already known to control development. Some of the new miRNA encoding genes are 

conserved in worms, flies and humans. Because of their sequence diversity, regulated expression, 

and resemblance to lin-4/let-7, these miRNAs are likely to regulate the expression of protein-

encoding genes. More of such RNAs from animals and also plants have been subsequently 

identified through computational and cloning approaches. The vast majority of the miRNA genes 

were found at intronic regions or between genes. Occasionally they occur in clusters, some so 

spaced by close as to suggest that the tandemly arranged miRNAs are processed from a single 

transcript to allow coordinate regulation.  

After these three reports, a fourth group described about 40 more miRNAs, a few of which 

were identical to those reported in the earlier articles (Mourelatos et al., 2002). These new miRNAs 

were identified from immunoprecipitations of Gemin3 and Gemin4, two core components of the 

Survival of Motor Neurons (SMN) complex. The SMN complex has important roles in the 

assembly/restructuring and function of diverse ribonucleoprotein (RNP) complexes, including 

spliceosomal small nuclear RNPs (snRNPs) (Fischer et al., 1997; Meister et al., 2001; Pellizzoni et 

al., 1998), small nucleolar RNPs (snoRNPs) (Jones et al., 2001), heterogeneous nuclear RNPs 

(hnRNPs) (Mourelatos et al., 2001) and transcriptosomes (Pellizzoni et al., 2001). The link between 

the SMN complex and siRNA/miRNA-mediated silencing became apparent when it was discovered 

that components of the SMN complex associate also with miRNAs and a member of the Argonaute 

family of proteins. These studies add yet another link between RNAi and the endogenous miRNAs. 

 
1.3.1.2.1 Stepwise biogenesis of miRNA 

 

By analogy with stRNAs, it was believed that miRNAs are processed from a stem-loop 

precursor by Dicer, but it turns out that the miRNA biogenesis is more complex than originally 

thought. Recently, studies in human cell lines showed that miRNAs are transcribed as long primary 

transcripts (pri-miRNAs) whose maturation occurs through sequential processing events (Lee et 

al., 2003; Lee et al., 2002b) (Fig.1). First, in the nucleus, the pri-miRNAs are processed by Drosha, 
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a member of the RNase III family of enzymes, into a stem-loop of about 70 nucleotides named pre-

miRNAs. The pre-miRNAs are exported to the cytoplasm by Exportin-5 (Exp5), which binds 

correctly processed pre-miRNAs directly and specifically (Lund et al., 2004; Yi et al., 2003). 

Secondly, in the cytoplasm, Dicer processes the pre-miRNAs into mature miRNAs. Since both 

RNase III enzymes are found in C. elegans, Drosophila, mice and humans, the stepwise 

processing of miRNAs is likely to be conserved, at least in animals. Stepwise processing might be 

beneficial in terms of efficiency and accuracy of processing. In addition, stepwise processing and 

compartmentalization might allow a fine regulation of miRNA biogenesis at multiple steps.  

 

1.3.1.2.2. Structure of miRNAs 

 

Although miRNAs are derived from dsRNA hairpin precursors, typically only a single strand of 

the precursor stem, corresponding to mature miRNA accumulates in the cell. The pre-miRNAs 

appear to be processed as an approximately 70-nucleotide precursor hairpins containing a 4-15 

nucleotide loop. Sometimes the 21-23 nucleotide miRNA forms a perfect duplex within the hairpin, 

but more often, multiple bulges disrupt the perfect 21-23 nucleotide duplex. Similar to other RNase 

III enzymes, Dicer can process complex hairpin structures that can contain multiple mismatches in 

the helical stem (Hutvagner et al., 2001). Little is known about the structural determinants 

necessary for processing of miRNAs into approximately 21-nucleotide RNAs. Studies performed on 

RNase III enzymes in other organisms have shown that dsRNA cleavage relies on 

antideterminants in the double-stranded stem (bacterial RNase III), or sequence determinants in 

the terminal loop of the stem-loop RNA structure (yeast RNase III) (Chanfreau et al., 2000; Wu et 

al., 2001; Zhang et al., 1997). However, comparison of many miRNAs that are likely to be 

processed by Dicer did not so far reveal any obvious features that might guide Dicer recognition or 

processing. 

 

1.3.1.3 Targets of miRNAs 
 

Significantly, when the miRNA is base-paired to the mRNA, it does not exhibit perfect 

complementarity: this situation is in contrast to siRNA-mediated degradation (Hutvagner and 

Zamore, 2002). In the existing models for the base-paring, typically 50-85% of the miRNA residues 

are base-paired to the mRNA 3’ UTR. Because the complimentarity between miRNAs and target 
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mRNAs is not perfect, it is difficult to predict candidate targets using bioinformatics searches. 

However, computational methods were developed by various groups to predict miRNA targets in 

Drosophila and mammals. Several hundreds targets were predicted and some of them were also 

confirmed experimentally. In both Drosophila and mammals, predicted target genes were enriched 

in transcription factor but also encompassed broad range of other functional gene classes (Enright 

et al., 2003; Lewis et al., 2003; Stark et al., 2003). In Drosophila, two 3’ UTR sequence motifs, the 

K box (cUGUGAUa) and the Brd box (AGCUUUA), have been implicated as miRNA target. They 

are partially complementary to several reported miRNAs and, in addition, these sequences are 

known to mediate negative posttranscriptional regulation (Lai et al., 1998; Lai and Posakony, 

1997). It is interesting to note that among the miRNAs and their known cognate targets, only the 5’- 

most stretch of miRNA nucleotides is usually perfectly paired to the target sequence.. 

 

1.3.1.3.1 miRNAs in animals 
 

Estimates place the total number of distinct C. elegans and vertebrate miRNA genes at about 

150 and 250, respectively (Ambros et al., 2003; Lim et al., 2003a; Lim et al., 2003b), indicating that 

miRNAs are a major class of regulatory molecule in animals. About 30% of the C. elegans miRNAs 

are close in sequence to insect and/or vertebrate miRNA, suggesting that a large fraction of 

miRNAs could play evolutionarily conserved developmental or physiological roles. 

In the case for the miRNAs lin-4 and let-7 (Lee et al., 1993; Reinhart et al., 2000), up-regulation 

of lin-4 RNA in the second larval stage represses the expression of LIN-14 and LIN-28, two key 

regulators of early larval developmental transitions in C. elegans (Figure 3). The role for lin-4 and 

let-7 as temporal regulators of development in other animals is supported by the phylogenetic 

conservation of their temporal patterns of up-regulation. In Drosophila, let-7 and the lin-4 homolog 

mir-125 are up-regulated in concert at the onset of metamorphosis (Bashirullah et al., 2003; Lagos-

Quintana et al., 2002; Sempere et al., 2003). In Drosophila and some vertebrates, the let-7 and 

mir-125/lin-4 genes are closely linked and therefore may be co-regulated. Perhaps the distinct 

roles for lin-4 and let-7 at different developmental stages in C. elegans represent an adaptation of a 

more widely conserved collaboration between these two miRNAs. Like worm LIN-28 protein, 

vertebrate LIN-28 homologues are also down-regulated during development. Moreover, the mouse 

and human lin-28 3’ UTRs contain predicted lin-4 complementary sites, suggesting that the lin-

4/lin28 regulatory relationship may also be conserved (Moss and Tang, 2003). 
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Recent screens for Drosophila mutants that exhibit growth defects identified the bantam locus, 

which encodes a miRNA that functions to repress apoptosis and promote cell proliferation in the 

developing fly (Brennecke et al., 2003). Bantam miRNA seems to be expressed broadly, and 

represses the translation of the mRNA for Hid, a key activator of programmed cell death. Bantam is 

related to mir-80-82 of C. elegans, suggesting that the mir-80 family might control developmental 

cell death and/or cell proliferation in the worm (Figure 3). In a screen for Drosophila genes that 

oppose the cell death activator Reaper, mutations in the mir-14 miRNA gene were identified that 

also affected aspects of fat metabolism (Xu et al., 2003). Given the importance of these cellular 

processes in animals, and the conservation of a large proportion of miRNAs across species 

boundaries, miRNAs are likely to have broad significance in a wide range of developmental 

processes in animals. 

lin-4
LIN-14

LIN-28

L1 events

Later events

bantam
Hid

X?

apoptosis

proliferation

Figure 3. Proposed developmental roles for lin-4 and bantam in C. elegans and 
Drosophlia, respectively. Lin-4 miRNA expression at the end of the worm L1 larval 
stage results in down-regulation of LIN-14 and LIN-28 protein synthesis, controlling 
the transition from L1 to later developmental events. Bantam miRNA in cells of the 
fly larva acts through the repression of Hid, and probably other targets, to control  
apoptosis and cell proliferation, respectively.

 
 

1.3.1.3.2 miRNAs in Plants  
 

The search for miRNA was also extended to plants. There are hundreds of plant miRNAs 

identified by various groups (Llave et al., 2002; Park et al., 2002; Reinhart and Bartel, 2002). 

Detailed analysis of a subset of these small single-stranded RNAs showed that they have all of the 

hallmarks of miRNAs: they range in size from 20 to 24 nt and are derived from the stem region of 

endogenously encoded stem-loop structures, generally larger and more complex than the pre-
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miRNAs observed in animals. Moreover, their production requires the activity of the the 

Arabidopsis Dicer homolog, DCL1. Candidate target genes had also been identified in plants. In 

contrast to C. elegans, the plant mRNAs generally contained a single target site, often located in 

the open reading frame, with a high degree, in not perfect, complementarity to the miRNA. This led 

to the proposal that plant miRNAs mediate an siRNA-like target cleavage, rather than translational 

inhibition (Tang et al., 2003). 

Now, miRNA-mediated transcript cleavage in plants has been demonstrated. The Carrington 

group examined the Arabidopsis mirRNA29 having perfect complementarity to the targets from the 

SCAECROW family of transcription factors and also five other miRNAs (Kasschau et al., 2003). 

They detected mRNA cleavage products and determined that the 5’ end of these fragments 

corresponded to the site of miRNA:mRNA complementarity. Their results also showed that miRNA-

directed target cleavage can tolerate some mismatches. The Zamore group also found an 

endogenous miRNA that cleaved the PHAVOLUTA (PHV) and PHABULOSA (PHB) transcripts 

(Tang et al., 2003). Interestingly, the miRNA did not cleave PHV contaning a single point mutation, 

and the same sequence change is responsible for a dominant phv mutation in Arabidopsis. 

Demonstration of the role of miRNAs in plants can also come through another route – analysis 

of genes required for miRNA formation or activity. Null alleles of dcl1 result in arrest before the 

heart stage of embryogenesis and cause overproliferation of cells in the suspensor. A hypomorphic 

allele that removes the carboxy-terminal dsRNA-binding domain of Dicer causes narrow, 

occasionally filamentous, leaves and floral organs, and a loss of determinacy in the central region 

of the floral meristem (Schauer et al., 2002)). The Arabidopsis AGO1 gene is required for, among 

other events, establishing polarity in lateral organs. Ago1 mutant plants have pointed, unexpanded 

cotyledons, narrow rosette leaves, radicalized cauline leaves, narrow sepals and petals, and 

unfused carpels; similar to dcl1 mutants, they lack axillary meristems. Hypomorphic ago1 alleles 

have serrate leaves and delayed flowering (Bohmert et al., 1998a). 

 
1.3.1.4 Shared pathway of siRNAs and miRNAs 
 

Hela cell S100 extracts which recapitulate siRNA-directed target cleavage in vitro were used to 

dissect mammalian RNAi pathway. Using these extracts, several components of the mammalian 

RISC have been identified, including the Argonaute homologs eIF2C1 and eIF2C2 , the putative 

RNA helicase Gemin3, and Gemin4, a protein of unknown function (Hutvagner and Zamore, 2002; 
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Martinez et al., 2002). Like the RISC detected in Drosophila embryo lysates, the mammalian RISC 

mediates cleavage of the target RNA near the center of the anitsense siRNA strand. The 

mammalian RISC is similar to the miRNP complex identified by Dreyfuss and colleagues and 

mentioned earlier (Mourelatos et al., 2002).  

The demonstration that an endogenous miRNA was a component of a functional RISC led to 

the proposal that only a single complex exists to mediate the diverse functions of small RNAs 

(Hutvagner and Zamore, 2002) (Fig.1). This model proposes that small RNA functional diversity is 

achieved not by multiple effector complexes, but by a single complex that can carry out at least two 

types of posttranscriptional regulation: target cleavage and translational repression. Which type of 

regulation occurs is proposed to be determined solely by the degree of complementarity between 

the small RNA guide and its target. Additional support from this model comes from studies which 

show that siRNA can mediate translational control when cleavage is blocked by a lack of 

complemenarity with the target RNA at the center of the siRNA guide (Doench et al., 2003). 

Recently, an additional complex similar in composition to that of Drosophila RISC has been 

identified in mammalian cells in which RNAi has been initiated by transfection with siRNAs (Caudy 

et al., 2003). This complex includes siRNAs and miRNAs, an Argonaute family member 

(eIF2C1/hAgo-1), the mammalian homolog of VIG, the Fragile X mental retardation protein, and the 

mammalian homolog of the RISC-associated micrococcal nuclease family member, named TSN. 

This complex is present in low amounts in naive cells, but it can be induced to assemble by 

transfection with siRNAs. Furthermore, it is related in composition to a similar complex that 

cofrationates with siRNAs and participates in miRNA-mediated repression in C. elegans (Caudy et 

al., 2003). In RNP complexes purified from adult worms and eggs, miRNAs were present in the 

complexes that also contained the C. elegans homologs of VIG and the nuclease TSN. In addition, 

depletion of VIG and TSN by RNAi prevents the proper down-regulation of a lin-41 3’UTR reporter 

gene that normally occurs at the L4 to adult transition. This lin-41 downregulation is dependent on 

a proper function of let-7, suggesting that VIG and TSN proteins not only have a role in mRNA 

degradation as found in Drosophlia, but also are important for the function of the let-7 miRNA 

pathway. As an additional example of miRNAs associated with proteins originally identified in 

degradation complexes, let-7 is present in immunoprecipitates from human cells using antibodies 

against PAI-RBPI, the human VIG homolog and p-100, the TSN homolog. These 

immunoprecipitates also contain FMRP, suggesting that complexes present in human cells are 

similar to those identified in fly cells. The precise relationship of this complex to the Gem3/Gem4-
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containing particle previously characterized in HeLa cells remains unclear. However, it is possible 

that these are the same or closely related complexes that differ only in their association with 

accessory factors. 

 
1.3.2 Other biological pathways involving small RNAs 
 

In addition to all biological functions of RNAi already discussed above, stunning new 

discoveries of more biological pathways involving small RNAs have been reported in the span of 

the last two years. It starts to be clear that the small RNAs work not only at the posttranscriptional 

stage but also leave their marks on the genomes to repress the gene transcription activity or 

selectively remove portions of the genomes, especially of protozoans. Broadly speaking, the 

siRNAs have different biochemical effects on the chromatin: DNA methylation, as revealed mostly 

in plant systems; heterochromatin formation; and programmed elimination of DNA. The discoveries 

of such epigenetic changes have ignited a revolution not only in the field of gene regulation but 

also in gene maintenance and gene evolution. 

 

1.3.2.1 RNA-dependent DNA methylation 
 
A role for RNA in guiding de novo cytosine methylation of homologous DNA sequences was 

first discovered in viroid infected plants and subsequently also in non-infected plants systems(Sijen 

et al., 2001b). When the dsRNA degradation mediated PTGS occurs in plants, the genomic DNA 

regions homologous to dsRNA are often found methylated at almost all the sensitive cytosine 

residues and the corresponding part of the genome, especially the promoter region might become 

transcriptionally silent. The initiator of the RNA-dependent DNA methylation transcription gene 

silencing (TGS) could be either the transgene-derived dsRNA or the consequent siRNA (Jones et 

al., 2001; Jones et al., 1999; Vaistij et al., 2002). Depending on the sequence information of the 

dsRNA, RNA-dependent DNA methylation was found to occur at the open reading frame or the 

promoter region of the genome (Aufsatz et al., 2002; Matzke et al., 2001). If methylation occurred 

only at the open reading frame, TGS did not result. However, RNA-dependent DNA methylation at 

the promoter sequences induced TGS, which, unlike PTGS, was stable and heritable (Hannon, 

2002). In the events of RNA-dependent DNA methylation, the chromodomain containing DNA 

methylases act either alone or in combination with other proteins, such as piwi domain-containing 
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proteins, to form complexes with the siRNAs and cause sequence-specific RNA-dependent DNA 

methylation, finally resulting in TGS (Aufsatz et al., 2002). 

Evidence of cross talk between PTGS and TGS has been obtained from the mutational 

analysis of Arabidopsis and Drosophila. Two types of Arabidopsis mutants, ddm1 and met1 were 

isolated from a screen of mutations causing a reduction in global methylation of the genome. The 

locus DDM1 encodes an SNF2/SW12-like chromatin-modeling protein, whereas MET1 is a major 

DNA methyltransferase. Both of these mutants exhibit marked reduction in PTGS activity, as 

measured by the accumulation of transgene transcripts (Vaucheret and Fagard, 2001). Although 

the patterns of reduction are different with these mutants, their studies highlight the strong 

correlation between PTGS and TGS. In Drosophila, polycomb protein-dependent TGS is also 

affected by mutations in PIWI, family of proteins required for RNAi (Pal-Bhadra et al., 2002). Other 

evidence includes the Argonaute4 gene of Arabidopsis, which controls both locus-specific siRNA 

accumulation and DNA methylation (Zilberman et al., 2003); the Arabidopsis SDE4 locus, which is 

of unknown biochemical function but is responsible for retroelement TS SINE-specific siRNA 

formation (Hamilton et al., 2002); and the Arabidopsis rts1 mutation, which causes about 50% 

reduction in target promoter DNA methylation. However, not all TGS mutations affect the PTGS 

pathways and vice versa, suggesting that the two pathways diverge at some point (Vaucheret and 

Fagard, 2001). RNA-dependent DNA methylation has been reported only in plants until now. It is 

unknown whether it also occurs in animals. 

 

1.3.2.2 Heterochromatin silencing 
 
Generally, in eukaryotic systems, histone modifications make the chromatin structure inert to 

transcription by heterochromatin formation. In almost all organisms heterochromatin formation 

requires that histone H3 of the chromatin to be deacetylated and then methylated at lysine 9. The 

SET domain of a special group of histone methyltransferases carries out this function. This 

methylated lysine is subsequently bound by a heterochromatin binding protein HP1. The bidning of 

the chromodomain containing HP1 to histone H3 methylated on Lys9 is highly specific and of very 

high affinity (Bannister et al., 2001; for review, see Richards and Elgin, 2002). This binding may be 

followed by multimerization of HP1 and complex formation with other chromatin-remodeling 

proteins. As a result of this multicomplex formation, the chromatin becomes condensed and locked 

in a transcriptionally repressed heterochromatic state. Once formed, the heterochromatin spreads 
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over a large distance due to cooperative protein-protein interactions of chromatin-remodeling 

factors, the components of which have not been fully identified yet. However, heterochromatic 

formation is initiated at places containing repeated DNA sequences. 

Recent research of RNAi mechanism in Schizosaccharomyces. pombe surprisingly revealed 

the connection between RNAi and heterochromatin formation (Reinhart and Bartel, 2002). A Dicer 

and an Argonaute homolog are found in the genome of S. pombe, implying that siRNAs, miRNAs, 

or another class of small RNAs might play an important role in fission yeast. Like in other 

organisms, endogenous small RNAs with the features of Dicer cleavage products, i.e.,~22-nt RNAs 

with 5’-phosphate and 3’-hydroxyl groups were cloned from S. pombe. Surprisingly, small RNA 

matching the S. pombe centromeric repeats were found. The majority of the centromeric RNAs are 

from the dh repeat, an element that can confer heterochromatic silencing on another locus and is 

sufficient for centromere function along with the centromeric central core. These small RNAs do not 

appear to be miRNAs since transcription of their genomic sequences would not produce step-loop 

structures akin to those of the miRNA precursors. Instead, the small RNAs are reminiscent of 

siRNAs, corresponding to transcripts generated from both DNA strands of the repeat region. 

Involvement of RNAi machinery in heterochromatic silencing was further demonstrated by the 

experiments using deletion of Dicer, argonaute, and RNA-dependent RNA polymerase genes in S. 

pombe. These deletions result in the aberrant accumulation of complementary transcripts from 

centromeric heterochromatic repeats. This is accompanied by transcriptional de-repression of 

transgenes integrated at the centromere, loss of histone H3 lysine 9 methylation, and impairment 

of centromere function. Centromeric repeats that are transcribed at low levels and produce dsRNA 

are sufficient to induce heterochromatin formation at an ectopic site in S. pombe, and this 

recruitment of repressive chromatin is strictly dependent on the RNAi machinery (Volpe et al., 

2002). A mechanism by which repeated sequences and RNAi trigger silent chromatin assembly is 

unknown. Possibly, it involves base-pairing of homologous DNA sequences. The connection 

between RNAi and heterochromatin assembly has suggested a model for the RNA-mediated 

epigenetic structuring of eukaryotic genomes. Double-stranded RNA is believed to be processed 

into small RNAs, which in turn provide specificity for targeting histone-modifying activities and 

epigenetic modification of the genome through homology recognition. 

 

1.3.2.3 DNA elimination 
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The most dramatic effect of siRNA-mediated heterochromatin formation followed by 

chromosomal DNA elimination and rearragnement has been recorded in the ciliated protozoan T. 

pyriformis (Mochizuki et al., 2002; Taverna et al., 2002). Among unicellular organisms, T. pyriformis 

is unique because of its nuclear dimorphism. The two nuclei, the micronucleus and macronucleus, 

serve different functions. During conjugation, the micronucleus gives rise to the macronucleus, and 

this transition is accompanied by chromosome rearrangements in which specific regions of DNA 

are eliminated. A gene TWI1, the T. pyriformis homologe of piwi is required for DNA elimination. 

Small RNAs were also found to be specifically expressed prior to chromosome rearrangements 

during conjugation, and these RNAs were not observed in TWI1 knockout cells. These results 

suggested that these small RNAs might function to specify sequences to be eliminated by a 

mechanism similar to RNAi. 

These S. pombe as well as T. pyriformis data show how dramatic the epigenetic consequences 

for the genome could be following the formation of siRNA molecules in cells. The RNAi/miRNA 

machinery is reported to control many important features of cellular biology, namely stem cell 

maintenance (Cox et al., 1998), cell fate determination (Bohmert et al., 1998b), nonrandom 

chromosome segregation (Schmidt et al., 1999). It is not difficult to imagine that we might witness 

RNAi related signals also participate in other chromosomal functions. 

 

1.4 Proteins involved in RNAi 
 
1.4.1 Dicer 

 

Among all the proteins identified as involved in RNAi, Dicer is the most important. It occupies 

the central position in the siRNA and miRNA pathways by generating the effector molecules. Dicer 

belongs to the RNase III ribonuclease family. These nucleases cut specificly dsRNA and generate 

dsRNA products with 5’-phosphate and 3'-hydroxyl groups, and two nucleotide 3’ overhang termini. 

This enzyme family can be subdivided to three classes, based upon domain structure (Figure 4). 

Bacterial RNase III, representing sub-family I, contains a single catalytic domain and a dsRNA-

binding domain (dsRBD). The E. coil RNase III promotes maturation of ribosomal RNAs (rRNAs), 

tRNAs, and mRNAs, and can also initiate mRNA degradation. Drosha nuclease sub-family 

contains two catalytic and dsRBD domains and N-terminal Pro-rich and RS-rich domains (Drosha 

will be discussed in the next section). A third sub-family, which also contains two catalytic domains 
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and, in addition, helicase, PAZ, and DUF283 motifs, is the Dicer family. As discussed earlier, Dicer 

is involved in the initiation step of RNAi, generating siRNAs or miRNAs, and the two RNase III 

domains are mainly responsible for the cleavage activity.  

Dicer is evolutionarily conserved and exists in all eukaryotes studied to date except budding 

yeast. There is one gene encoding Dicer in human, mouse, and C. elegans, two in Drosophila, and 

at least four in Arabidopsis. It appears that Dicers from different organisms and also different 

Dicers in the same organism might function differently. In Drosophila, Dicer shows ATP 

dependence for dsRNA cleavage (Bernstein et al., 2001), which is rather unique for the RNase III 

family enzymes. However, we have shown that mammalian Dicer cleaves dsRNA without ATP 

dependence (Zhang et al., 2002). In Drosophila S2 cell extracts, siRNA production is associated 

most strongly with one of the two Drosophila Dicers (Dicer-2) but not the other (Dicer-1) (Liu et al., 

2003). In plants, there are two classes of siRNAs generated by Dicer, short ones of about 21-22 

nts and longer ones which are about 24-25 nts (Hamilton et al., 2002). It is assumed that different 

Dicers generate these different length products.  

ATPase/helicase PAZ RIIIa

RIIIa

RIIIb

RIIIb

RIII

*

*

*

*dsRBD

Dicer

Drosha

bacterial
RNase III

DUF283

Pro-rich RS-rich

Class I

Class II

Class III

Figure 4  . Schemes of the RNase III superfamily proteins. Three classes of RNase III
family proteins represented by human Dicer, human Drosha and eubacterial RNase 
III. Individual protein domains are indicated in different colors.

 
Besides RNase III domains, the function of other domains of Dicer is not well known. There is 

still no demonstration helicase activity in Dicer preparations. It is possible that this activity is 

involved in unwinding of the siRNA and transfer of its single strand to RISC (Schwarz et al., 2003). 

The PAZ domain was originally assumed to be responsible for a protein-protein interaction with 

Argonaute proteins, which also contain this domain. However, our data showed that these are the 
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PIWI domain of AGO and RNase III domain of Dicer, which are responsible for this interaction. The 

structure of the PAZ domain from Argonaute proteins in Drosophila was recently solved, and it 

revealed that PAZ is a nucleic acid binding domain (Lingel et al., 2003; Song et al., 2003b; Yan et 

al., 2003) (the PAZ domain structure will be discussed in a later section about Argonaute proteins, 

and in Chapter 3). Bioinformatic studies have revealed that some Dicer molecules have extremely 

divergent PAZ domains or are even devoid of it, e.g. the Arabidopsis DCL4. More recently, we 

have prepared mutants in the PAZ domain of human Dicer and found that this domain is involved 

in the dsRNA processing (Chapter 3). Dicer knock out mouse has recently been generated, and 

shown to be embryonic lethal, probably due to its involvement in biogenesis of miRNAs, which 

regulate development (Bernstein et al., 2003). 

Recently, the crystal structure of the RNase III catalytic domain has been established and a 

model of the dsRNAs cleavage proposed (Blaszczyk et al., 2001). In this model, the enzyme 

functions as a dimer and the two antiparallel RNase III catalytic domains contribute to two 

compound catalytic centers. Sequences of one of the Dicer RNase III domains reveal deviations 

from the catalytic consensus in the bacterial RNases III. Since introduction of these alterations into 

bacterial RNase III resulted in defects in the enzyme function, the catalytic centre of the second 

RNase III domain of Dicer might be non-functional. Based on the bacterial RNase III structure and 

a model of its function, the antiparallel alignment of Dicer RNase III domains on a dsRNA substrate 

was proposed to produce four compound catalytic centers, with two of them being inactive due to 

the alterations of essential amino acids. In this way, cleavage would occur at 22-bp intervals rather 

than 10-bp as in the bacterial enzyme. This seemingly right model was challenged by mutagenesis 

studies of the recombinant Dicer, which are presented in this thesis Chapter 3. Based on our work, 

a single compond catalytic center model is proposed for both bacterial RNase III and human Dicer 

(see Chapter 3 and figures within). 

 

1.4.2 Drosha (mammalian RNase III) 
 

As mentioned above, members of the second class of RNase III proteins, comprised of Drosha 

and homologs, contain two RNase III domains, a dsRBD, and a long N-terminal segment. The N-

terminal part of human and mouse Droshas contains two domains thought to be involved in 

protein-protein interactions, namely a proline rich region (PRR) and a serine-arginine-rich (RS) 

domain. RS domains are commonly found in RNA metabolism/splicing factors (Graveley and 
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Maniatis, 1998). Drosha homologs have been identified in flies, worms, humans and mice, but not 

yet in plants. The human Drosha has been reported to function in processing of highly structured 

ribosomal RNA precursors, much like the E. coli RNase III. The degree to which a panel of 

antisense RNAs against human Drosha decreased its expression correlated very well with an 

increase in the 32S and 12S ribosomal precursors (Wu et al., 2000). As mentioned earlier, Drosha 

has emerged as an important player in the maturation of miRNAs. MiRNAs are transcribed as long 

primary miRNAs (pri-miRNA). Drosha clips pri-miRNA in the nucleus into shorter, ~70-nt pre-

miRNAs. The pre-miRNAs are then exported from the nucleus and processed by Dicer into mature 

~22-nt miRNAs (Lee et al., 2003). Thus, Drosha processes two distinct types of substrates with 

hairpin-like secondary structures: pre-rRNAs and pri-miRNAs. 

  

1.4.3 Argonaute family 
 

Argonaute proteins were first identified in Arabidopsis mutants that produced altered leaf 

morphology. They constitute a large, evolutionarily conserved gene family (Bohmert et al., 1998a). 

Argonaute proteins are ~100-kD highly basic proteins characterized by the presence of two 

homology regions, the PAZ domain and the Piwi domain, the latter being unique to this group of 

proteins. Argonaute proteins can be separated, based on their sequence, into two subclasses: 

those that resemble Arabidopsis AGO1, and those that more closely resemble Drosophila piwi. 

Argonaute family genes have been isolated from several organisms in screens for mutants that 

are deficient in RNAi and related phenomena. These genes include C. elegans rde-1 (Tabara et 

al., 1999), Arabidopsis AGO1 (Bohmert et al., 1998a) and Neurospora QDE2 (Fagard et al., 2000). 

Disruption of the S. pombe single Argonaute gene leads to the loss of silencing of heterochromatic 

repeats at the centromere (Reinhart and Bartel, 2002). The Drosophila piwi mutation also affects 

transcriptional gene silencing (Pal-Bhadra et al., 2002). In addition, a Tetrahymena piwi-related 

gene, TWI1, is required for DNA elimination (Mochizuki et al., 2002). Still other Argonaute proteins 

have been implicated in developmental control, and recent studies suggest that silencing and 

developmental functions may be linked. However, in some cases, genetic studies have indicated 

exclusive roles in either silencing or developmental control, keeping open the possibility that 

Argonaute proteins may exert some of their biological functions through processes unrelated to 

RNAi. Mutants of the best characterized C. elegans Argonaute gene, rde-1, are strongly resistant 

to RNAi but are developmentally normal (Tabara et al., 1999). Two other family members, alg-1 



Introduction 

 27 

and alg-2 functionally overlap and show strong developmental phenotypes, but are dispensable for 

RNAi in the soma (Grishok et al., 2001).  

Drosophila contains four characterized Argonaute proteins (piwi, aubergine/sting, dAgo1 and 

dAgo2) plus one predicted from the genomic DNA (dAgo3). Piwi, aubergine, dAgo1 and dAgo2 

have been implicated in RNAi-like silencing phenomena. dAgo1 was shown to be required for 

efficient RNAi in Drosophila embryos (Williams and Rubin, 2002). Piwi has been shown to be 

necessary for PTGS and some aspects of transcriptional gene silencing (Pal-Bhadra et al., 2002). 

Strains with mutations in piwi, aubergine/sting, and Ago1 also exhibit developmental phenotypes 

(Kennerdell et al., 2002; Morel et al., 2002; Smulders-Srinivasan and Lin, 2003). The fourth 

Argonaute protein in Drosophila, dAgo2, has been shown to be necessary for RNAi as a 

component of the RISC complex (Hammond et al., 2001a). No dAgo2 mutants have yet been 

reported, so it remains unknown whether dAgo2 is involved in the developmental control. 

The first mammalian Argonaute protein to be studied in any detail was the rabbit eIF2C, which 

was identified as a component of a protein fraction that enhances translation (Cikaluk et al., 1999). 

However, it should be noted that no solid evidence exists for this protein playing a role in 

translation. There are 7 Argonaute proteins in human and eight in mouse. Both mouse and human 

have three proteins that fall into the Piwi subfamily. Humans have four genes that fall into the Ago1 

subfamily. Mouse has one additional Ago1 family gene, which may have an orthologous human 

gene that has not yet become apparent in the current human gene register. Human EIF2c1/hAgo1, 

also known as GERp95 for its association with Golgi and ER, was also identified in a screen for 

genes involved in Wilms’ tumors. Human EIF2C2/hAgo2 was shown to reside in a complex with 

Gemin3, an RNA helicase that joins the growing number of helicases implicated in RNAi, and 

Gemin4, a protein of unknown function (Mourelatos et al., 2002).  

The structure of PAZ domain of Argonaute family proteins has been recently solved. Two 

groups solved the PAZ domain structure of Drosophlia Ago1 and Ago2 by NMR (Lingel et al., 2003; 

Yan et al., 2003) and one by the crystallization of Ago2 (Song et al., 2003b). The PAZ domain 

contains a variant of the OB (oligonucleotide and oligosaccharide-binding)-fold, a structure that is 

implicated most frequently in single-stranded nucleicacid binding. To investigate whether the PAZ 

domain binds nucleic acid directly, all three groups studied its binding to single- and double-

stranded siRNAs and DNA. Although there is some discrepancy about the species of nucleic acid 

that preferentially binds to PAZ domains, it is clear that all observed interactions are of low affinity, 

with dissociation constants in the micromolar range. The study of Ago1 reported that the PAZ 
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domain interacts with RNA preferentially over DNA (Lingel et al., 2003; Yan et al., 2003). One Ago2 

study agreed with this finding (Song et al., 2003b), while the other finds that both single and 

double-stranded DNA bind with the affinity equal to RNA (Yan et al., 2003). Although none of the 

solved structures contained RNA, the binding site is predicted to involve highly conserved residues 

in an inter-subdomain cleft. Mutational studies confirmed that this cleft contains aromatic residues 

critical for RNA binding. All three studies demonstrated that binding is independent of nucleic acid 

sequence. Because critical residues and the binding surface are conserved, it is possible that PAZ 

domains of all members of the Argonaute and Dicer family proteins adopt a similar fold with a 

nucleic acid binding function. 

The binding assay and UV cross-linking experiments of the Ago PAZ domain with siRNA 

supported the notion that PAZ domain could be functioning in end-recognition the 3’-overhang of 

siRNA. The apparent end-sensing ability of the Ago PAZ domain led to the speculation that the 

PAZ domain of Dicer could function in end-recognition through a direct interaction with one or more 

characteristic terminal structures of siRNA or dsRNA. The PAZ domain is found only in Dicer and 

Argonaute proteins. These proteins function at two steps that must distinguish genuine siRNAs 

from other RNAs in the cell. Although RISC contains single stranded siRNAs, it has not yet been 

determined whether RISC also transiently associates with double stranded siRNAs. In either case, 

some components of RISC must be able to detect the chemical structure of bona fide 

intermediaries in the pathway. The PAZ-containing Argonaute proteins, shown to be core 

components of RISC complexes, are suitable candidates for this function. 

 

1.4.4 R2D2 and Rde-4 

 

R2D2 is a very recently identified protein which links the initiation and effector phases of RNAi 

in Drosophila S2 cell extracts (Liu et al., 2003). This protein cofractionated with the dsRNA 

processing activity from S2 cell extracts through multiple chromatographic steps. R2D2 is a 36 kDa 

protein with two dsRNA binding domains. It forms a stable complex with Dicer-2 in S2 cells. 

Significantly, R2D2 displays 33% sequence similarity to the Dicer-associated C. elegans protein 

RDE-4, which was originally identified genetically as an RNAi factor that is important for the 

initiation but not the maintenance of RNAi.  

Purified recombinant Dicer-2 catalyzed siRNA production with equal efficiency in the presence 

or absence of R2D2. In contrast, gel-shift and UV crosslinking assays revealed that the Dicer-
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2/R2D2 complex but not Dicer-2 alone associates stably with siRNAs; furthermore, siRNA binding 

by the Dicer-2/R2D2 complex was nearly abolished by mutation in the dsRNA binding domains of 

R2D2. The apparent role of R2D2 in siRNA retention after processing provided the first indication 

that R2D2 controls siRNA fate rather than its production, prompting the idea that R2D2 participates 

in channeling siRNAs into the RISC complex. This was further proven by the effect of Dicer-

2/R2D2 complex on the effector step of RNAi. The siRNA production machinery could be crudely 

but effectively separated from RISC complexes by the polyethylene glycol (PEG) precipitation. 

Addition of Dicer-2 alone to the RISC-containing PEG supernatant stimulated only weakly the RISC 

activity in response to a long dsRNA trigger. However strong stimulation was observed upon 

addition of the Dicer-2/R2D2 complex. Mutation of the R2D2 dsRNA binding domains abolished the 

stimulation of RISC activity. Importantly, similar effects were observed when pre-cleaved siRNAs 

were used to trigger RISC activity, indicating that RISC does not efficiently utilize siRNAs in the 

absence of R2D2. Ago2, the RISC component, is not efficiently coselected with biotinylated 

siRNAs unless functional Dicer-2/R2D2 complex is present. The clear implication of these findings 

is that R2D2 helps to mediate the transition between initiation and effector phases of RNAi. 

Although R2D2 is similar to RDE-4, their roles may be slightly different. Rde-4 is found in a 

complex with Dicer1, Argonaute protein Rde-1, and an additional DexH-box helicase. The 

proposed function of Rde-4 in C. elegans is the recognition and presentation of exogenous dsRNA 

triggers to Dicer. Rde-4 seems to interact only with foreign trigger dsRNA, not endogenous 

miRNAs or siRNAs. Mutations in Rde-4 substantially reduced the amount of siRNAs derived from 

an injected dsRNA trigger. This defect in RNAi could be partially bypassed by a direct injection of 

siRNAs (Parrish and Fire, 2001). 

 

1.4.5 RNA dependent RNA polymerase 

 
In both plants and C. elegans, RNAi/PTGS requires proteins similar in sequence to a tomato 

RNA-directed RNA polymerase (RdRP) (Schiebel et al., 1998). In Arabidopsis, RdRP homologue 

SDE1/SGS2 is required for transgene silencing, but not for virally induced gene silencing (Dalmay 

et al., 2000; Mourrain et al., 2000b). This may suggest that SDE1/SGS2 act as an RdRP, since 

viral replicases could substitute for this function in VIGS. In Neurospora, RdRP homologues QDE-1 

is required for efficient quelling (Cogoni and Macino, 1999). EGO-1, one of the C. elegans RdRP, is 

essential for RNAi in the germline of the worm (Smardon et al., 2000), and another RdRP 
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homologue, RRF-1/RDE-9, is required for silencing in the soma. All RdRP proteins could be 

involved in amplifying the RNAi signal. However, only the tomato and Neurospora enzymes have 

been demonstrated to posses RNA polymerase activity, and biochemical studies are required to 

establish definitively the role of these proteins in RNAi (Cogoni and Macino, 1999a). These genetic 

studies have led to a model for transitive RNAi in which siRNAs might prime the synthesis of 

additional dsRNA by RdRPs. Although RdRP activity has been reported in Drosophila embryo 

extracts (Lipardi et al., 2001), there is no obvious RdRP homolog found in the fly genome. 

Additionally, numerous experiments demonstrated that there is no transitive RNAi in flies and 

RdRP is not required for RNAi in Drosophila extracts (Roignant et al., 2003; Schwarz et al., 2002). 

 

1.4.6 RNA and DNA helicases 
  

Through genetic studies in various organisms, many RNAi related proteins are identified as 

DNA or RNA helicases. In Chlamydomonas. reinhardtii , a RNAi-resistant mutants, mut6, was 

isolated and the gene encodes a protein which is a memeber of the DEAH box RNA helicase 

family protein (Wu-Scharf et al., 2000). The quelling-defective mutant in Neurospora, qde3, was 

cloned and the sequence encodes a 1,955-amino acid protein. This protein shows homology with 

the family of RecQ DNA helicases, which includes the human proteins for Bloom syndrome and 

Werner syndrome (Cogoni and Macino, 1997). In C. elegans, two mutants involved in RNAi are 

also revealed to have 3'-5' exonuclease domain (mut7) (Tijsterman et al., 2002) or ATPase with 

RNA-binding and helicase activities (smg2) (Domeier et al., 2000). Helicases also had been 

identified in plants (sde3 in Arabidopsis) (Dalmay et al., 2000). Although possible roles in RNAi for 

some of these protiens were proposed, e.g. MUT6 might involved in the degradation of 

misprocessed aberrant RNAs (Wu-Scharf et al., 2000), their functions are mostly unknown and 

further biochemical experiments are needed to reveal their exact roles in RNAi. 

 

1.4.7 FMRP 
 

Fragile X syndrome is a common form of inherited mental retardation caused by the loss of 

FMR1 expression. The FMR1 gene encodes an RNA-binding protein (FMRP, Fragile X mental 

retardation protein) that associates with translating ribosomes and acts as a negative translational 

regulator. In  Drosophila, the dFXR (Drosophila Fragile-X-related), the fly homolog of FMRP, binds 
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to and represses the translation of an mRNA encoding the microtuble-associated protein Futsch. In 

Drosophlia, two labs independently discovered the link between RNAi and dFXR. One group 

discovered dFXR in association with the purified RISC complexes (Caudy et al., 2002), whereas 

the second group identified Ago-2 in attempts to purify proteins that associate with endogenous 

dFXR (Ishizuka et al., 2002). Consistent with this reciprocal interaction, antibodies to dFXR 

immunoprecipitate RISC activity (Caudy et al., 2002). In addition to Ago-2, Ishizuka et al. (2002) 

found that dFXR co-purified with the Drosophlia homolog of the p68 RNA helicase (Dmp68), two 

ribosomal proteins, L5 and L11, along with 5S ribosomal RNA. Both RISC and the dFXR protein 

bind RNA, but the complexes were RNase resistant, suggesting that the proteins are interacting 

directly, rather than being associated via interaction with cellular RNAs present in the extract. The 

two studies disagreed on the requirement of dFXR for RNAi. Caudy et al. found that depletion of 

dFXR by RNAi suppresses RNAi slightly, whereas Ishizuka et al. did not observe any effect. These 

conflicting results might indicate that dFXR is probably an accessory factor, rather than an 

essential component of RISC. Not only siRNAs but also miRNAs are present in complexes with 

dFXR.  

The Fragile X family of RNA-binding proteins contain two KH domains and an RGG box, all of 

which bind RNA. Many RNAs have been found to interact with FMRP (Brown et al., 2001; Brown et 

al., 1998), including its own message. Both SELEX (systematic evolution of ligands by exponential 

enrichment) experiments (Darnell et al., 2001) and a directed analysis of the FMRP binding to its 

message (Schaeffer et al., 2001) indicate that the RGG box selectively binds the G-quartet 

structures. However, the RNAs resulting from the SELEX experiments are not only potential G-

quartets, but also short hairpins with a 14-bp stem. Some mutations that disrupt binding also 

disrupt this stem loop, and not the potential G-quartet. Thus, some type of secondary structure, 

perhaps a hairpin, might also be important for the recognition of target RNAs by FMRP. 

Although there is a single Fragile X family member in Drosophila, mammals have three Fragile-

X-related proteins – FMRP, FXR1P and FXR2P. These proteins are closely related in sequence 

and are expressed in most tissue types. In addition to mental retardation, individuals with Fragile X 

syndrome have a number of other phenotypes, suggesting that the Fragile X protein family may be 

important for gene regulation in a number of cell types and not just in the brain. Fragile X family 

members associate with polyribosomes in an RNA-dependent manner (Khandjian et al., 1996). 

The I304N point mutation in the FMRP KH domain is associated with disease (De Boulle et al., 

1993) and disrupts the binding of FMRP to polysomes (Feng et al., 1997; Tamanini et al., 1999). 
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The analogous mutation in Drosophila also disrupts dFXR association with ribosomes (Caudy et al. 

2002).  

 

1.4.8 Transmembrane Protein (Channel or Receptor) 
 

The systemic spread of gene silencing from one tissue to another has been well established in 

C. elegans and plants. To investigate the mechanism of systemic RNAi, Winston et al. (2002) 

constructed and used a special transgenic strain of C. elegans (HC57). They identified a systemic 

RNA interference-deficient (sid) locus required to transmit gene silencing between cells, using the 

green fluorescent protein (GFP) as a marker. Of the 106 sid mutants belonging to three 

complementation groups (sid1, sid2, and sid3), they isolated and characterized sid1 mutants. The 

sid1 mutants had no readily detectable mutant phenotype other than failure to show systemic 

RNAi. Interestingly, these mutants also failed to transmit the effect of RNAi to the progeny. The 

SID1 polypeptide is predicted to be a 776-amino-acid membrane protein consisting of a signal 

peptide and 11 putative transmembrane domains. Based on the structure of SID1, it was 

suggested that it might act as a channel for the import or export of a systemic RNAi signal or might 

be necessary for endocytosis of the systemic RNAi signal, perhaps functioning as a receptor. No 

homologue of sid1 was detected in Drosophila, which is consistent with the apparent lack of 

systemic RNAi in this organism. However, the presence of SID homologues in humans and mice 

might hint at the systemic characteristics of RNAi in mammals.  

  

1.5 RNAi as a tool  
 
The excitement connected with the discovering RNAi is not only due to the phenomena itself. 

RNAi has revolutionized all aspect of biological sciences by offering an excellent new way to knock 

down genes in various organisms for studying their functions. As a powerful new tool of reverse 

genetics, RNAi has a potential to allow systematic analysis of gene expression. Especially in 

mammals, the advance with siRNA-directed knock-downs has sparked a revolution in somatic cell 

genetics, allowing the inexpensive and rapid analysis of gene function. In addition, it also offers 

possibilities for a therapeutic gene silencing. 

 

1.5.1 Silencing by long dsRNA 
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Long dsRNA was used in C. elegans, Drosophila, plants, and other organisms for probing gene 

function. It is experimentally very simple to introduce dsRNA into worm or Drosophila cells. In C. 

elegans, injection into the intestine or pseudocoelom (body cavity) is almost as efficient as injection 

into the germ line. Even feeding worms with bacteria that express dsRNA, or soaking worms in 

dsRNA solutions have been applied with success (Timmons and Fire, 1998). Testing the function 

of individual genes by RNAi has now extended to analysis of nearly all worm predicted genes. 

Similar strategies are being pursued in other organisms. DNA-vector-mediated mechanisms to 

express long dsRNA were also tested. The constructs make use of an RNA polymerase II (pol II) 

promoters to drive the expression, what allows inducible, tissue- or cell- type specific RNA 

expression.  

 
1.5.2 Silencing by siRNA 
 

Using siRNAs to trigger gene silencing was first explored in mammalian cells to bypass their 

nonspecific responses to long dsRNA. Based on experimental analyses, siRNAs are now being 

optimized for systematic exploration of the function of genes in various organisms. In brief, the 

application of siRNA for gene silencing involves a careful consideration of the following variables: 

(i) selecting the target siRNA sequence in the gene; (ii) synthesis of siRNAs versus construction of 

plasmids encoding siRNAs; (iii) optimizing transfection of siRNAs or plasmids expressing siRNAs 

in the target cells; and (iv) monitoring the efficacy of gene silencing. 

 

1.5.2.1 Selection of siRNA 
 
Different siRNAs synthesized against different regions of the same target mRNA will show 

different silencing efficiencies (Holen et al., 2002). To promote efficient gene silencing by siRNA, 

the consideration of the siRNA sequence is crucial. A number of groups have analyzed parameters 

for optimizing siRNA-induced gene silencing, and these include the length, secondary structure, 

sugar backbone, and sequence specificity of the siRNA duplex. The efficacy of these parameters 

has been tested on several occasions for induction of RNAi in Drosophila and human cells 

(Elbashir et al., 2001; Schwarz et al., 2002). No consensus on choosing the siRNA sequence has 

evolved, but recommendations offerred are the following. A general rule is that the sequence of 

one strand should be AA(N19)TT, where N is any nucleotide, i.e., these siRNAs should have a 2-
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nucleotide 3' overhang of uridine residues. For synthetic siRNA, it is suggested to be 21 

nucleotides long and have 5'-phosphate and 3'-hydroxyl group for efficiency. The GC content of the 

siRNAs should be kept between 30 and 70%. Computer programs were developed to offer helpful 

guidelines to select potential siRNA sequences and determine whether these selected sequences 

match mRNA sequences other than those of intended target, e.g. by Lin (Jack Lin's siRNA 

sequence finder; www.Ic.sunysb.edu/stu/shiklin/rnai.html) and by Ambion (www.ambion.com) 

Compared to antisense or ribozyme technology, the secondary structure of the target mRNA does 

not appear to have a strong effect on silencing. Due to the paucity of information on the selection of 

siRNAs and their structures, these general guidelines are only suggestive and do not guarantee 

the silencing effect. Recently, new studies revealed the asymmetry in the assembly of the RISC. 

The RISC assembly is governed by an enzyme that selects which strand of an siRNA is loaded into 

RISC. This strand is always the one whose 5' end is less tightly paired to its complement. For 

miRNAs, it is the miRNA strand of a short-lived, siRNA duplex-like intermediate that assembles into 

a RISC complex, casusing miRNAs to accumulate in vivo as single-stranded RNAs. The authors 

suggested that for designing siRNAs it is important to place the 5' end of the antisense siRNA 

strand in a mismatch or G:U base pair. The designed duplexes resemble double-stranded miRNA 

intermediates and produce highly functional siRNAs (Khvorova et al., 2003; Schwarz et al., 2003). 

 

1.5.2.2 Generation of siRNA 
 

The 21-nucleotide siRNAs can be chemically synthesized with appropriately protected 

ribonucleoside phosphoramidites by a conventional synthesizer and thus are widely available 

commercially. However, the use of chemically synthesized siRNA in RNAi has been restricted 

because of the high synthesis cost. The in vitro T7 RNA polymerase synthesized siRNAs were also 

tested (Donze and Picard, 2002). Several groups have also used either the E. coli RNase III 

(Calegari et al., 2002; Yang et al., 2002) or the recombinant human Dicer (Kawasaki et al., 2003; 

Myers et al., 2003) to cleave the in vitro transcribed long dsRNA into siRNAs that can be 

transfected into mammalian cells. This approach allows generation of siRNAs with multiple 

specificities to the target and overcomes the siRNA selection ambiguity without activating an 

interferon response.  

 

1.5.2.2.1 DNA-vector-mediated RNAi 
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The high cost of synthesizing siRNAs and their transient effect have compelled investigators to 

explore alternative strategies to generate a continuous supply of a battery of siRNAs. Several 

groups have devised strategies introducing plasmids with the ability to make siRNAs in vivo (Yang 

et al., 2002; Yu et al., 2002). DNA-based plasmid vectors have been designed by cloning siRNA 

templates downstream of an pol III promoter. Pol III promoters (either human or mouse U6 snRNA 

or human RNase P [H1] RNA promoters) were used to drive expression of short RNAs, because 

they precisely initiate and terminate RNA transcription (Goomer and Kunkel, 1992). Although U6 

and H1 promoters contain the same set of cis-acting-elements, the H1 promoter has a more 

compact organization. The U6 promoter has a requirement for a guanosine in the +1 position, 

whereas the H1 promoter is more permissive. RNA pol III recognizes a simple cluster of four or 

more T residues as a termination signal that accurately and efficiently terminates transcription in 

the absence of other elements. Although most expression systems use either the U6 or H1 

promoter, Kawasaki and Taira (2003) recently described an expression system that uses the 

tRNAVal promoter. 

Two approaches have been developed for expressing siRNAs. In the first, sense and antisense 

strands constituting the siRNA duplex are transcribed from separate promoters (Lee et al., 2002a; 

Miyagishi and Taira, 2002), and in the second, siRNAs are expressed as fold-back stem-loop 

structures (referred to as shRNAs) that give rise to siRNAs after cleavage of the loop by cellular 

endonucleases (Brummelkamp et al., 2002; Paddison and Hannon, 2002). The shRNA approach is 

the most commonly used now. 

 

1.5.2.2.2 Virus-vector-mediated RNAi 
 

Virus-based high-efficiency siRNA delivery systems are also being developed. Two types of 

retrovirus vectors have been used as gene delivery systems: oncoretrovirus vectors that are based 

on the Moloney murine leukemia virus (MoMuLV) or the murine stem cell virus (MSCV), and 

lentivirus vectors that are derived from HIV-1. In one study, a U6 expression cassette was 

incorporated into the long terminal repeat (LTR) of the MoMuLV-based vector, pBabe-puro. Owing 

to the activity of the reverse transcriptase, which duplicates the LTR, the proviral form contains two 

copies of the LTR and therefore two copies of the U6 expression cassette. Expression of shRNA 

against the tumour suppressor p53 silenced p53 stably and resulted in an expected phenotype 



Introduction 

 36 

(Paddison et al., 2002). The H1 expression cassette was also incorporated into a self-inactivating 

MSCV vector and successfully targeted endogenous genes. Compared to oncoretrovirus vectors, 

lentiviruses have two distinct characteristics that make them more effective gene delivery vectors. 

Unlike oncoretrovirus vectors, HIV-1 based lentivirus vectors can infect both actively dividing and 

non-dividing, post-mitotic cells (Naldini et al., 1996a; Naldini et al., 1996b). In addition, 

oncoretroviruses undergo proviral silencing during development, which leads to decreased or 

abrogated gene expression (Svoboda et al., 2000a). Lentivirus-based vectors are resistant to this 

silencing and therefore can be used to generate transgenic animals. Human peripheral blood T 

lymphocytes that were infected with a lentivirus vector expressing a shRNA against the HIV-1 

coreceptor CCR5 showed a 10-fold decrease in CCR5 expression and, when challenged with a 

CCR5-tropic HIV-1 virus, resulted in a 3-7 fold reduction in HIV-1-infected cells (Qin et al., 2003). 

Although lentivirus vectors hold promise as vehicles for gene therapy, the development of 

leukaemias in two patients that were undergoing retroviral-based therapy for X-linked severe 

combined immunodeficiency indicates that better control must be achieved before lentiviruses can 

be used to deliver hairpin RNAs for therapeutic purposes.  

 

1.5.2.2.3 Other systems 
 

Most of the siRNA expression vectors produced to date use pol III regulatory units, which do 

not allow tissue-specific siRNA expression. However, Shiagawa and Ishiid (Shinagawa and Ishii, 

2003) reported a pol II promoter-based plasmid encoding dsRNA that could eventually express 

siRNA in a tissue-specific manner. In their novel scheme, a pDECAP vector was used, which 

expressed a long dsRNA corresponding to the ski gene (encoding a transcriptional repressor) in 

the form of a hairpin. The engineered hairpin RNA expressed from a cytomegalovirus promoter 

lacked the 7-methylguanosine cap structure at its 5' end and a poly(A) tail at its 3' end. The 

transcript of such a design did not exit the nucleus which prevented the interferon pathway-

mediated nonspecific antiviral response. The double-stranded transcript was diced in the nucleus, 

and the siRNAs were subsequently released into the cytoplasm to mediate the gene-specific 

silencing. The silencing was specific, since the level of a related control protein, SNO, remained 

unaffected. The same vector was also used to create ski knock-down mice, the phenotype of which 

was similar to that of ski knock-out embryos, which exhibited defects in neural tube and eye 

formation. Later generations of such vectors may use more tissue-specific cis-acting elements in 
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the employed promoter to stringently knock down gene functions in animals. Although the pDECAP 

vector system looks very promising, these findings still require independent confirmation. Nuclear 

fragmentation of dsRNA to siRNAs also needs rationale explanation. To date, no evidence exists 

that Dicer localizes to the nuclear in mammalian cells. With the advent of vector-mediated siRNA 

delivery methods, it is now possible to make transgenic animals that can silence gene expression 

stably. This can be done by standard transgene technology or by the infection of embryonic stem 

cells or blastocysts with lentivirus vectors (Hasuwa et al., 2002; Lois et al., 2002).  

The rapid injection of large volumes of a physiological solution containing siRNA into the tail 

vein of postnatal mice, which was originally described for delivery of plasmid DNA to various 

organs, has also been used to silence gene expression in various mouse tissues. The study 

showed that injected siRNAs are stable and that they remain sufficiently concentrated to produce 

an expected gene silencing (Song et al., 2003a). 

 

1.5.2.3 Transfection of siRNA and detection of Gene Silencing 
 

An attempt to understand a gene's function in diverse organisms necessitates optimization of 

protocols for efficient delivery of siRNAs into cells. A number of transfection reagents are being 

employed for transfecting siRNA into different cell lines. Lipofectamine 2000 and Oligofectamine 

(Invitrogen) are being routinely used for siRNA delivery. Few newer transfection reagents such as 

TransIT-TKO (Mirus) and Ambion's Siport Amine and Siport, have also been used successfully in 

cultured cell lines. Electroporation has been used to transfect siRNAs in cell lines as well as in 

parasites such as Trypanosoma brucei and Plasmodium falciparum (McRobert and McConkey, 

2002; Shi et al., 2000). In adult mice, naked siRNAs have been delivered by hydrodynamic 

transfection methods to combat hepatitis C virus infection in liver (McCaffrey et al., 2002). The 

preferred way to detect specific gene knock-down by RNAi is to study the depletion of the target 

protein by immunofluorescence and Western blotting with the specific antibody. In addition, the 

Northern blot analysis and knockdown phenotype can also be used to detect the effects of siRNA. 

If the gene is essential, cellular growth is delayed or arrested. 
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The aim of this work was the characterization of the activity of the purified human Dicer, a key 

enzyme involved in RNAi pathway, as well as getting a further insight into the exact cleavage mode 

of its RNase III domains. 

Our initial data represent a comprehensive characterization of the purified human Dicer 

(chapter 2). A procedure for purifying the N- and C-terminally His6-tagged recombinant proteins 

was established; it consists of a successive fractionation on Cobalt-containing resin and Ni/NTA 

beads. Dicer processing activity was tested in an in vitro assay using radiolabeled dsRNAs and 

optimized conditions. Many reaction requirements and properties of Dicer are similar to those 

established for the RNase III from E.coli and yeast. All the enzymes require divalent cations for 

cleavage of the substrate, but not for its binding. Surprisingly, pre-incubation of the recombinant 

Dicer protein with Proteinase K and some other proteases stimulated its activity. Activity of the 

endogenous Dicer present in IPs of P19 cell extracts was also stimulated by pre-incubation with 

Proteinase K. These data suggest that access to the catalytic center of Dicer is perhaps regulated 

by other domains of the protein, but understanding of the mechanism underlying the effect of 

proteolysis on Dicer activity requires further experimentation.  

Cleavage of dsRNA by purified human Dicer was neither stimulated by addition of ATP, nor 

affected by the addition of an excess of non-hydrolysable ATP analogues. Likewise, treatments 

eliminating any residual ATP had no effect on Dicer activity. These results are consistent with data 

obtained with immunoprecipitates prepared with anti-Dicer Abs from cell extract of mouse P19 and 

human HeLa cells. Therefore, ATP appears not to have much effect on dsRNA cleavage in the 

mammalian system. Previous experiments carried out in Drosophila and C. elegans demonstrated 

that processing of dsRNA to siRNAs is strongly stimulated by the addition of ATP and it has been 

proposed that the helicase/ATPase domain of Dicer may promote translocation of the enzyme 

along the dsRNA, or a structural rearrangement of the substrate required for the cleavage. Hence 

there is a discrepancy between the results obtained in mammalian and lower metazoan systems. 

Two possible explanations can be offered for this difference. According to the first, ATP plays a 

role in increasing the efficiency of siRNA formation in all metazoa by promoting a structural 

rearrangement of the enzyme and/or product release rather than being required for the cleavage 

itself. With mammalian cell extracts and purified human Dicer, as used in this work, siRNA yields 

may be ATP independent because these preparations lack some other RNAi reaction components, 

possibly present in extracts of Drosophila and C. elegans. This explanation would be consistent 

with the apparent low catalytic efficiency of the mammalian enzyme. A second possibility is that  
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mechanisms of dsRNA cleavage by Dicer are fundamentally different in mammals and lower 

metazoa. For example, Drosophila and C.elegans enzymes might cleave dsRNA by a processive 

mechanism requiring ATP hydrolysis, while the mammalian Dicer might function distributively and 

independently of ATP. Comparison of properties and factor requirements of purified Dicer proteins 

from C.elegans, Drosophila and mammals should help to distinguish between these alternatives.  

Another interesting property revealed from this study is that Dicer preferentially cleaves off 

siRNAs from dsRNA at termini. Such property of Dicer may have physiological significance. It might 

prevent accidental cleavage of extended hairpins located in internal regions of mRNAs and other 

cellular molecules. However, as investigated in this work, Dicer is also able to initiate processing, 

though less effectively, at internal sites of dsRNA substrates.  

The X-ray structure of the bacterial RNase III has been recently established, and a model of 

how this enzyme binds to dsRNA and processes it into ~ 11 bp products was proposed. Since 

Dicer belongs to the class 3 enzymes of the RNase III superfamily, the bacterial RNase III structure 

and its activity model suggested a possible mechanism of dsRNA cleavage by Dicer. Moreover, a 

model was proposed to explain the size difference between the products of RNase III (~11-bp) and 

Dicer (~22-bp). Taking advantage of the in vitro processing assay with a purified Dicer, it was 

possible for us to investigate the mechanism dsRNA cleavage by Dicer. To address this problem, 

the proposed catalytic residues in the two Dicer RNase III domains, as based on the bacterial 

RNase III model, were mutated either singly or in combinations. Surprisingly, a different picture 

was revealed by the analysis of our mutants, clearly showing that Dicer works differently than 

expected. These findings raised the question weather Dicer and bacterial Rnase III might process 

dsRNA by differently mechanisms. Alternatively, the proposed model of the dsRNA cleavage by 

bacterial RNase III could simply be wrong. To resolve this issue, mutagenesis was performed on 

the E .coli RNase III. The obtained results are consistent with those obtained with Dicer mutants. 

Taken together, all these data suggest that the previously proposed model is not correct.  

Based on the results of RNase III and Dicer mutagenesis, and other findings reported in 

Chapter 3, we propose new models for the substrate cleavage by both enzymes. In the bacterial 

RNase III model, the dsRNA substrate is rotated by approximately 30 degrees with regard to its 

position in the old model of Blaszczyk et al. (2001). In the new model, two residues previously 

assigned as important for the catalysis were found to have no role in the cleavage. Based on the 

results of the mutagenesis, an intra-molecular dimer model is proposed for Dicer. In this model, 

Dicer RNase IIIa and RNase IIIb domains contribute together to one compound catalytic center.  
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Further support for this model is coming from the results of gradient sedimentation which showed 

that Dicer behaves as a monomer rather than a dimer.  

We provided in this thesis a comprehensive study of the biochemical properties of the Dicer 

dsRNA processing activity. However, there are still many questions remaining. For example, how 

does Dicer measure the distance from the dsRNA end to generate 20-bp product. With the newly 

revealed structure of the PAZ domain of the Argonaute protein, the answer of this question might 

be that the Dicer PAZ domain is responsible for the length measurement. The oligonucleotide 

binding fold-like PAZ domain in Dicer might contribute to substrate recognition. To address this 

issue, mutations in the Dicer PAZ domain were generated. Mutations of four conserved amino 

acids were shown to have strong inhibitory effect on the dsRNA cleavage activity of Dicer. 

However, the mutants still cleave dsRNA at the 20-bp distance from the terminus as the wild-type 

protein. Additional work on the Dicer PAZ domain is needed. Moreover, it is possible that other 

domains of Dicer, in addition to PAZ, contribute to the end recognition by Dicer. We noticed that 

the Dicer RNase IIIa domain is much longer than RNase IIIb and other typical RNase III catalytic 

domains. Therefore, it is possible that this domain also contributes to the determination of ~20-bp 

end to the cleavage site distance. 

Function of Helicase and DUF283 domain still remains unknown. The double stranded 

siRNAs must be unwound at a certain stage of the reaction to generate a single-stranded siRNA, 

which will target the mRNA degradation and the helicase domain of Dicer is an obvious candidate 

for this step. So far we could not demonstrate ATPase activity in Dicer preparations, suggesting 

that this domain and its function is possibly regulated by additional factors. 

Dicer exists in almost all eukaryotic organisms, but there are differences between proteins 

from various systems, for example, the ATP requirement discussed above. Another interesting 

example of the differences comes from Dictyostelium discoideum: the putative homolog of Dicer is 

devoid of the ATPase/helicase domain, and in contrast, a domain with a homology to the Dicer 

ATPase/helicase domain is present in the RdRP-like protein. This suggests that ATP is required 

downstream of the dsRNA cleavage reaction in Dictyostelium, consistant with our findings for the 

human Dicer. Moreover, in some organisms like plants and Drosophila, two or more Dicers were 

identified. It was shown genetically and biochemically that different Dicers might play different 

roles; e.g. in Drosophila, only Dicer2 seems to be responsible for siRNA generation. 

Characterisation of different Dicers might provide further information about different biological  
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pathways involving RNAi machinery and might help to understand organism-specific differences in 

RNAi.  

Although the two steps of RNAi were extensively studied, the connection in between these 

steps is still far from clear. Dicer, perhaps with assistance of other factors, must transfer the 

siRNAs to the RISC complex. Probably the PAZ domain shared by Dicer and the RISC associated 

Ago proteins plays a role in this hand over, but most likely additional factors are also needed, such 

as a newly identified Dicer interacting protein R2D2, which bridges Dicer and RISC in Drosophila.  

As the research of RNAi is progressing, and many different biological pathways are showing 

connection with the RNAi machinery, Dicer emerges as a key protein for RNAi and miRNA 

reactions. Dicer is a very complex and dynamic enzyme, interacting also with many other cellular 

proteins, including key RISC proteins of the Argonaute family. Further studies of Dicer interacting 

proteins and different complexes, and knock out Dicer in various organisms and tissues will be very 

information about RNAi machinery and biological role of RNAi. 

Besides Dicer, many other protein factors were identified as involved in RNAi. Genetic and 

biochemical studies indicate that these proteins work together as a complex network to achieve 

RNA interference and related reactions. Since every single of these factors holds a piece of the 

jigsaw of RNA interference, it is of a great need to study the function of every individual protein or 

protein family, as well as to reveal the connection between these factors. 
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