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Chapter 1

Introduction

1.1 Molecular electronics

The possibility to use molecules as building blocks for artificial devices
was first foreseen by R. Feynman in 1959 [1]. However, these suggestions
have been elusive to realize experimentally for several decades. Instead,
the electronic miniaturization followed a more approachable route through
applications of bulk semiconductor materials. The constant scaling of the
dimensions is the driving force behind the continuously improving silicon
technology which will unavoidably lead to molecular or even atomic dimen-
sions, where the processing used on micrometer range will cease to be an
optimum choice. The ultimate miniaturization of logic circuits would be
the use of single molecule, which would act as electronic switch and stor-
age element [2]. In contrast to well established silicon based technology,
molecular electronics aim to contact an individual molecule or small arrays
of identical and perfectly ordered molecules. Due to extreme difficulties to
contact and manipulate these objects, research was limited to theoretical
work, initiated by Aviram et al. [3] in 1974. In the last decade, the invention
and development of scanning probe microscopes [4] and many advances in
micro and nanotechnology have allowed the observation and manipulation
of a single molecule [5]. Tremendous progress in this field has been crowned
by the discovery of Cgg [6] and six years later of carbon nanotube (CNT) [7].

Exploring nanometer* size systems conceptually could be divided in two
main approaches, namely top-down and bottom-up. In the top-down ap-
proach a desired system is designed from bulk material by structuring (op-
tical lithography, electron beam lithography, evaporation techniques, etc.)
the building blocks of nanosystems into a mesoscopic device (probe, inter-
connections, gates, etc). The main disadvantage of this approach is the

*nano= 10—?
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limitation of the processing techniques in spatial resolution. For example,
electron-beam lithography (EBL) enables structuring with a resolution of
~ 10 — 50 nm, which is one order of magnitude bigger than the typical size
of molecules 1 — 2nm. Nevertheless, commercial availabilities, high relia-
bility and simple integration with standard measurement set-up makes this
approach widely used in the research of nanosystems. Although, the basic
concept of this approach is well established, still new techniques emerge,
e.g. the break junction technique [8].

The bottom-up approach is well known in chemistry. This method omni-
scient to nature, could be in a simple way understood as the self-organization
of a desired structure given by the initial conditions. However, these objects
still must be connected to the outside world by the macroscopic structures
patterned with a top-down approach. The advantage of this approach is its
extensive parallelism.

Although, the first steps in research of nanosystems have been done by
the top-down approach, the bottom-up approach is getting more then ever
involved in nanoscience. Today’s research on nano-size objects compiles
both approaches. This is best seen in the carbon nanotube (CNT) research,
where CNTs to some extent can be grown and oriented at a specific location
and then prepared for electronic transport measurements with a top-down
approach. Ultimately, it is expected that the commercial implementation
of molecular electronics will be done solely with the bottom-up approach.

Difficulties which we are facing during the fabrication and investiga-
tion of these systems are well compensated with interesting physics found
at nanoscale dimensions and their great potential for numerous applica-
tions in many different fields. Because of their small size it is expected
that these systems show pronounced quantum phenomena. Developments,
primarily due to the theoretical Landauer-Bittiker [9] formalism and the
observation of the Hall effect with a quantization of conductance in a two
dimensional electron gas (2DEG) attracted immense interest in mesoscopic
transport [9, 10]. Although, experimentally ballistic transport and quantum
dot physics with Coulomb blockade and the Kondo effect have been already
well established in 3- and 2D systems new exciting physical phenomena like
Luttinger liquid behavior stayed modestly explored. CNTs are considered
as an ideal low dimensional system where this and many other theoretically
predicted phenomena can be tested. For example, the control of the spin
degree of freedom in a quantum dot (CNT) [11] or the injection of entan-
gled electrons from a superconductor to a low dimensional system (CNT)
has been proposed as a building block for a quantum computer [12].

Despite of the many challenges which are in front of us, molecular elec-
tronics shows an outstanding potential for long-term future applications
especially in information technology because of the ultimate density of logic
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and memory functions, their low fabrication costs and power consumption.
On the other hand, interesting physics found during the last decade in
nanoscale systems foresee bright future to this field. In this thesis, we will
give insight into this exciting field through our work undertaken on carbon
nanotubes.

1.2 Carbon nanotubes

Carbon nanotubes (CNTs) have been discovered by S. Iijima in 1991 [7].
This work was motivated by a previously discovered family of macro-molecules
called fullerenes. The best known member of the fullerenes family is Cgg [6].
They are composed only of carbon atoms arranged in a three-dimensional
cage structure. Carbon nanotubes are fullerenes which are extended in one
dimension acquiring a cylindrical shape. Fig. 1.1a shows TEM images of
multi-wall carbon nanotubes (MWNTs). In 1995, Smalley and coworkers
have made an important progress by synthesizing single-wall carbon nan-
otubes (SWNTSs) in large amounts [13]. The geometry of SWNT can be
imagined as one layer of graphite (so-called graphene) rolled in a seam-
less cylinder with a typical diameter of 1 — 2nm as illustrated in Fig. 1.1b.
MWNT is a multiple, concentrically arranged set of SWNTs with an inter-
layer spacing of 3.4 A and a typical diameter of 10 — 20nm. The lengths of
the two types of tubes can be up to hundreds of microns or even centimeters.
Theoretical calculations and pioneering experimental investigations showed
that in many respects CNTs are an exceptional material. Strong cova-
lent bonds between carbon atoms and their high symmetry, make CNTs
a very flexible and strong material. For instance, their Young’s modulus
is estimated to be around 1TPa [14], which is the highest yet reported.
Their high flexibility, together with high aspect ratio qualifies them as an
ideal candidate for the tips in scanning force microscopes [15] and nano-
electromechanical resonators in the GHz regime. Some of the challenges
considering this subject will be discussed in Chapter 5.

Carbon nanotubes have attracted most of the attention by the possibil-
ity to use them in nanoelectronics [16]. Band structure calculations showed
(see below) that SWNTs can be either metallic or semiconducting. Unlike
in other molecules, CNT’s exceptional mechanical characteristics suppress
Peierls instability, enabling metallic like behavior. With a diameter between
1 —3nm, a SWNT is considered the smallest conducting wire to date. On
the other hand, semiconducting SWNTs can act as a room temperature
field effect transistor (FET) [17]. For performing electronic transport mea-
surements, it was early anticipated that CNTs should be assembled and
integrated in nanocircuitry, rather than randomly and massively produced.
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graphene sheet SWNT

Figure 1.1: (a) A TEM image of MWNTs (adopted from Ref. [7]. (b) A hexag-
onal graphene sheet can be wrapped onto itself to form a nanotube.

Crucial progress in this direction has been made by Dai and coworkers [18].
They have used the chemical vapor deposition (CVD) method to grow for
the first time individual SWNT i4n situ on silicon wafer from lithographi-
cally patterned catalyst islands. This method opened the possibility to grow
SWNTs at specific locations and to integrate them in mesoscopic devices
with well established structuring of the contacts and gate(s). Even more
important, this simple and inexpensive method enabled many laboratories
around the world to pursue the production and transport measurements
of CNTs. Although, several different methods for the production of CNT's
exists today, yet none of them fully controls their quality, diameter or chi-
rality. Despite of the enormous work undertaken in the last decade, mass
production and processing are still serious obstacles towards the realiza-
tion of many proposed applications. In addition, it will not be possible to
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integrate CN'Ts in nanocircuitry without a reliable selection between semi-
conducting and metallic SWNTs. An important step in this direction has
been done by Krupke et al. [19], where SWNTs have been separated due to
their different polarization upon an applied electrical field.

Because of breathe-taking pace in this field, at this stage we will just
summarize some of the main subjects of current research. From a fundamen-
tal point of view CNT has been established as a prime model nanosystem
for studying low dimensional (1D,0D) solids. Theoretical and experimental
work has been focused on the relationship between their atomic structure
and electronic (mechanical) properties. Because of their small size, at low
temperature CNT exhibit a number of interesting quantum phenomena like:
single electron charging [20], quantum interference [21], Luttinger liquid be-
havior [22] and Kondo physics [23]. From an applied point of you, thus far
individual CNTs or an assemble has been utilized to build functional device
prototypes. Ensembles of CNTs have been used for field emission based flat
panel displays [24]. Individual CNTs have been used as chemical and biolog-
ical sensors [25, 26], nanotweezers [27] and in lithium based batteries [28].
Promising application of CNT as a FET, qualify it as a central element
for the future miniaturized electronic devices. Recent investigations have
shown that FETs made with semiconducting SWNTs can exceed the mobil-
ities of the best semiconductors [29]. Also several other geometries beyond
simple FET have already been explored like p-n [30], p-n-p [31] devices and
nanotube/nanotube junctions [32].

Taking the above mentioned into account, it is not surprising that at this
moment CNTs are of central importance for nano-science and form strong,
interdisciplinary link between physics, material science and chemistry.

1.3 Carbon nanotube band structure

We will perform a calculation of the SWNT band structure starting from a
simple tight-binding model for a two dimensional (2D) sheet of graphene.
In Fig. 1.2a and b are illustrated a hexagonal lattice of a graphene sheet
in real space and within the first Brillouin zone in reciprocal space, with
corresponding lattice vectors in real (dy,d2) and reciprocal space (51,1;2).
The unit cell of the graphene sheet contains two carbon atoms and is em-
phasized with grey color in Fig. 1.2a. Each of the carbon atom has four
valence electrons, where three of them make sp? bonds forming o orbitals.
However, the transport properties are determined by the fourth electron
which makes p, bond and occupies a 7 orbital.

Using the tight binding approximation [33], one can obtain the dispersion
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1st Brillouin zone

) 4

Eh,

Figure 1.2: (a) Lattice of graphene. The primitive lattice vectors @i and d2
and the unit-cell (shaded) are shown. There are two carbon atoms (black dots)
per unit-cell, denoted by 1 and 2. (b) The reciprocal lattice of graphene with
the 1st Brillouin zone (shaded). b, and by are the primitive lattice vectors. (c)
The graphene bands computed from Eq. 1.1. The Fermi level is located at the
six corner points (two are marked K and K') where the valence and conduction
bands touch.

relation for a 2D graphene sheet:

1/2
k ks ke
Egraphene = i’Yo{l +4cos (\/323’&) cos ( 2a) + 4 cos? (761)} )

where 7 is the nearest-neighbor C-C overlap integral and a = v/3ag, where
ao denotes the nearest neighbor distance ag = 1.42A. Fig. 1.2¢ depicts the
dispersion relationship calculated from Eq. 1.1.

The two resulting bands, namely a bonding and an anti-bonding one,
are the consequence of two carbon atoms per unit cell. There are six points
where the two bands cross and they coincide with the corners of the first
Brillouin zone. Because of the same number of states in the first Brioullin
zone as in real space and two carbon atoms per unit cell, at 7= 0K only
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the anti-bonding states are occupied, with a Fermi energy lying exactly at
the position where the two bands cross. The two-dimensional graphene is
therefore expected to be a semi-metal.

Single-wall carbon nanotubes can be formed if we roll-up a graphene
sheet into a seamless cylinder (Fig. 1.3a). How the graphene sheet is rolled
up in a SWNT, can be described with a chiral vector C =nd + mds, where
n and m are integers. Finally, a SWNT is formed by joining the parallel
lines which are defined by the starting (O) and ending (A) point of the
chiral vector C. Such a tube is referred as (n,m) SWNT. There are three
distinct geometries of SWNTs: armchair, zig-zag and chiral (Fig. 1.3b).

Figure 1.3: (a) The hexagonal graphene sheet can be wrapped onto itself to form
a nanotube. (b) The classification of nanotubes (from top to bottom): armchair,
zig-zag, chiral.

The electronic properties of a SWNT can be calculated if we impose
periodic boundary conditions on the wave function along its circumference,
where k becomes quantized in the following way:

C-k=2nq, (1.2)

where ¢ € Z is an integer. In the case of an armchair SWNT (n,n), the
periodic boundary conditions yields allowed values for the wave vector in
circumferential direction according to: nk‘yao\/g = 2mq. Discreteness of the
k, values, leads to a one dimensional (1D) dispersion relation in the following
form:

Eip = :I:’Yo{l + 4 cos (qg) cos (k;a) + 4 cos? (%)}1/2. (1.3)

The one dimensional dispersion relation is plotted in Fig. 1.4a and b for
armchair (10, 10) and zig-zag (10,0) SWNTSs. Let us first discuss the case
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when the k, values are aligned with the special corner points K of the
Brillouin zone. In this case the SWNT behaves as a metal. For armchair
SWNT (10, 10) there are in total twenty dispersion relations in the valence
and twenty in the conduction band. Only, the k, = 0 (¢ = n) band and the
two outermost bands are non degenerate. At low energies, we expect two
modes with a linear dispersion relation to determine the electronic transport
properties for a metallic SWNT. However, for different chiral vectors the
boundary conditions on k around the circumference of a SWNT are not as
simple as in the case of armchair or zig-zag SWNT. This situation can be
visualized by the rotated orientation of quantized k, values in reciprocal
space (upper inset of Fig 1.4b). In specific cases it is possible that none of
the allowed k, values cross the K points, which results in an energy gap,
i.e. semiconducting properties. Now we see that the chirality of a SWNT
determines its electronic proprieties (e.g. it is metallic or semiconducting
character).

(10,10)  Ely, (10,0)  Epyy, ]
1st. BZ 5B
S 2
7SR\ 2620\ 020\ a2\
SN N AR
N7z 7

A\\¢/ - \\}\VI{//A \}V:

Figure 1.4: One dimensional dispersion relations for two different CNTs. Shaded
region correspond to 1st. Brillouin zone. The states indicated with red color are
occupied Er = 0. (a) An armchair (10,10) nanotube is a metal. (b) A zig-zag
(10,0) is a semiconductor. Insets: the projections of the allowed k states onto the
first Brioullin zone of graphene corresponding to (a) and (b).

In the vicinity of the Fermi energy, the one-dimensional band structure
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for a SWNT with arbitrary chiral vector can be approximated by:

EjfTes :i%;F \/(m;n +q)2+ (%)2, (14)

where d denotes the SWN'T diameter and k| is the component of the k-vector
along the tube axis. From this simple relation one can see that SWNTs
have metallic properties when m — n = mod(3) and the dispersion relation
is then linear. On the other hand, when m — n # mod(3) the SWNTs are
semiconducting with an energy gap inversely proportional to their diame-
ter. As a consequence, 1/3 of SWNTs with all possible chiralities should
be metallic and 2/3 semiconducting. At low energies (| E — Ep |< 1eV),
the conduction bands for a metallic SWNT are linear with dispersion re-
lation F = +hvpk|, where vp = 8.51 X 10° m/s denotes the Fermi velocity
and h = 2wh, is the Planck’s constant. The dispersion relation at low ener-
gies, for a metallic (9,0) and a semiconducting (10,0) SWNT are shown in
Fig. 1.5a and b, respectively. Note, that for a metallic SWNT the subband
spacing between the Fermi energy (Er = 0) and the neighboring higher
subband is inversely proportional to d' and it does not contribute to trans-
port at small energies. However, higher subbands can play an important
role in large diameter CNTs, for example MWNTs.

a) E/E, , (9,0) b) EE (10,0
1
0.5 ] S
0.4 02 02 04, 0.4 02 _____
0.5 né 5
/
15 5

Figure 1.5: Dispersion relation for CNTs (9,0) and (10,0) at small energies,
calculated from Eq. 1.4. (a) Metallic carbon nanotube. Since the subband spacing
is of the order 1eV, only subbands with linear dispersion relation participate in
transport at low energies (in red). (b) A carbon nanotube is a semiconductor,
due to semiconducting gap E,, which is inversely proportional to the diameter of
CNT and equal to Ey = 2Ey/3, where Ey = 2hvr/d.

The main theoretical predictions for the SWNT band structure derived

TFor a SWNT (10,10) the subband gap is about 0.6y = 1.7€V.



10 1 Introduction

above, have been indeed experimentally confirmed by scanning tunneling
microscopy (STM) on SWNTSs with various chiralities [34]. This method is
especially useful for this kind of experiment because it allows the simulta-
neous probing and comparison between, the electronic density of states and
the real-space atomic structure.

Finally, the discussion so far has been restricted to an isolated SWNT.
Theoretical and experimental studies have shown that the intertube cou-
pling in a bundle of SWNTs [35] has a relatively small effect on their band
structure. However, most of the bundles of SWNTs show metallic behav-
ior, because one single metallic nanotube is sufficient to short-cut all the
semiconducting ones.

1.4 Transport properties in carbon nanotubes

Let us now discuss the peculiar transport properties of a metallic SWNT
near the Fermi energy (low energy excitation). In the first approximation,
the dispersion relation near the Fermi energy is linear as seen in Fig. 1.5a.
Two modes are present at krp and —kp with positive and negative slope
(right and left movers). In the absence of scattering, the Landauer-Biittiker
formalism predicts a conductance of

G=2-2-¢°/h, (1.5)

for a metallic SWNT (orbital and spin degeneracies included). However,
scattering in real systems is always present due to defects or phonons which
reduces this ideal conductance. Let us first consider scattering by impurities.

Scattering from impurities is elastic and it can change the electron mo-
mentum. If we look again at the dispersion relation in the vicinity of +kp,
it is evident that scattering is potentially possible for example from state
1 to states 2, 3 and 4 as shown in Fig 1.6a. Since the right and left mov-
ing states are build from the orthogonal molecular orbitals in a metallic
SWNT, interband scattering is suppressed e.g. between states 1 and 2.
Additionally, potential scattering to the states 3 and 4 requires a large
change in momentum and for long-range disorder it is suppressed. There-
fore at low temperature where scattering from impurities should dominate,
metallic SWNTs are expected to have long mean free paths (I, > 1 um).
However, for semiconducting SWNTs the interband scattering is allowed,
due to the fact that the states are build from mixed orbitals (bonding and
anti-bonding) [36]. In this case, it is expected that the transport through
the semiconducting SWNT is more sensitive to disorder (long range) where
back-scattering processes are now allowed (Chapter 3.)

For the discussion of phonon scattering we have to distinguish between
scattering by acoustical and optical phonons. To scatter from an acoustical
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Figure 1.6: (a) Impurity scattering processes in a metallic SWNT. Position 1
(full circle) indicates an initial state of an electron. Potential final scattering to
states 2,3 and 4 (open circles) is suppressed due to the unique band structure
of SWNT. (b) An acoustic phonon scattering process in a metallic SWNT. This
scattering at room and low temperatures can scatter electron from initial state
1 only to final state 2 (solid arrow) and it is forbidden between states 1 and 3,4
(dashed arrow).

phonon one has to provide energy Eqpn, = hvprkpy. Scattering by an acous-
tical phonon to state 3 and 4 is not possible, because such process requires
a large change in the electron moment of Ak = k,;, = 2kr (Fig. 1.6b). This
would correspond to a phonon energy of F,p, ~ 100meV which is much
higher than kpT even at room temperature, where kg is the Boltzmann
constant. However, scattering to state 2 is suppressed due to 1D nature of
a SWNT. A quantitative analysis shows that the resistance due to scattering
by acoustical phonons in 1-D systems should be proportional to tempera-
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ture RY" ~ T [37]. Note the striking difference compared with a 3D metal
(copper) where the phonon scattering length is order of 10’s of nm, with
Rph ~ T5
3D :
At room temperature, for a small excess electron energy (eVsq < 100 meV)
scattering from the optical phonons in CNT can be neglected, since there
are no unoccupied states at energies

Efinal = Einitial — Eopha (16)

where E,,;, is the energy of the optical phonon. For large biases, i.e. at
high electrical field electrons in a CNT can acquire sufficient energy to
emit optical phonons. In that case electrons immediately backscatter as
schematically illustrated in Fig. 1.7a. A steady state is approached when the
electrons moving in forward direction have an energy F,,; higher than the
backward moving ones. This leads to a saturation current of approximately
25 uA, for E,pn =~ 160meV [38]. Experimental details on scattering from
optical phonons in a CNT will be discussed in the following chapter.

a) _ b)

E E
1
2
Ak
«4-- Er(A
< an T F( )an
3 E eV,
oph -
- Er(B)
1| Ak 2'

Figure 1.7: (a) Optical phonon emission occurs in non-linear regime, after which
electron is backscattered. (b) An electron-electron scattering process in a metallic
SWNT. In this case, electrons in the initial states labelled by 1 and 1’ can be
scattered to the states 2 and 2.

Finally, we will discuss electron-electron scattering. Electron-electron
scattering must fulfill energy and momentum conservation. Because of the
large density of states in 3D metals the same number of electrons will be
scattered in forward and backward direction. That is why this mechanism
can be neglected considering the resistance in normal metals. However this
situation is drastically changed in low dimensional systems as in SWNTs.
It is easy to see in Fig. 1.7b that forward moving electrons in states 1 and
1’ can be scattered in states 2 and 2’, conserving energy and momentum.



Chapter 2

Suitability of carbon nanotubes
grown by chemaical vapor
deposition for electrical devices

Using carbon nanotubes (CNTs) produced by chemical vapor deposition, we
have explored different strategies for the preparation of carbon nanotube
devices suited for electrical and mechanical measurements. Though the
target device is a single small diameter CN'T, there is compelling evidence for
bundling, both for CNTs grown over structured slits and on rigid supports.
Whereas the bundling is substantial in the former case, individual single-
wall CNTs (SWNTs) can be found in the latter. Our evidence stems from
mechanical and electrical measurements on contacted tubes. Furthermore,
we report on the fabrication of low-ohmic contacts to SWNTs. We compare
Au, Ti and Pd contacts and find that Pd yields the best results.

The present work is structured in two main sections. The first is devoted
to our results on carbon nanotubes (CNTs) grown by chemical vapor depo-
sition (CVD) emphasizing on the problem of CNT bundling, which occurs
during growth. The second section discusses our results on the contacting
of CVD-grown tubes using the metals Au, Ti and Pd.

2.1 Supported and suspended carbon nanotubes pre-
pared by CVD

The full control and understanding of structural and electronic properties
of carbon nanotubes remain a major challenge towards their applications in
nanoelectronics. Today, there exists several different production methods of
carbon nanotubes (CNTs). Among them, chemical vapor deposition (CVD)
emerged [39, 40, 18] as the most prominent one for the investigation of the

13
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14 electrical devices

electronic and electromechanical properties of CNTs. The most important
advantages of the CVD method are that CN'Ts can be grown at specific loca-
tions on the substrate and at lower temperatures with simpler equipments
as compared to the arc discharge and laser ablation methods. However,
CNTs grown with this method vary in a quality and display a rather large
dispersion in diameter which might be a sever problem for potential appli-
cations. Following the published recipes, we found that CVD grown CNTs
differ dramatically if they are grown supported on a substrate or suspended
over structured slits. This suggests that the nanotube-substrate interaction
plays an important role in the final product in addition to growth parame-
ters and catalysts.

2.1.1 Growth method

Two types of catalysts are used for the growth of CNTs. The first catalyst,
which we will name catalyst 1, is similar to that described in Ref. [40]. The
catalyst suspension consists of 1mg iron nitrate seeds (Fe(NOj3)s-9H50)
dissolved in 10ml of isopropanol. The other catalyst, which we will call
in the rest of the paper catalyst 2, has been prepared similar to that de-
scribed in Ref. [18]. To 15ml of methanol, 15mg alumina oxide, 20 mg
Fe(NO3)3-9H20 and 5mg MoOs(acac), are added. Both suspensions are
sonicated for 1 hour, stirred overnight and sonicated every time for at least
20 min before deposition on the substrate [41]. A drop of the suspension is
placed on a bare substrate surface or on a substrate with predefined struc-
tured areas by electron-beam lithography (EBL) or optical lithography in
the corresponding resist. After spinning at 2000r.p.m for 40sec, the sub-
strate is baked at 150 °C for 5min, followed by lift-off. The CVD growth
of CNTs is performed in a quartz-tube furnace between 750 — 1000 °C at
atmospheric pressure using different gases. For catalyst 1 we used a mix-
ture of either ethylene or methane with hydrogen and argon with respective
flow rates of 2, 400, and 600 cm®/min [42]. For the catalyst 2, we have
used a mixture of methane and argon with respective flow rates of 5000 and
1000 cm? /min [42]. During heating and cooling of the furnace, the quartz
tube is continuously flashed with argon to reduce the contamination of the
CNTs and to avoid burning them once they are produced.

2.1.2 Results and Discussion

Carbon nanotubes which are grown at the same temperature but with the
two mentioned catalysts on thermally oxidized silicon substrates show sim-
ilar characteristics. In both cases there is a profound temperature depen-
dence. At relatively low temperatures (750-850 °C) predominantly individ-
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Figure 2.1: SEM images of CNTs grown from catalyst 1. In (a) the CNTs were
grown on a Si/SiO2 substrate at T=800 °C. The arrows point to visible branches.
(b) Typical CNT network, grown over structured slits at 7=750°C. Note, that
CNTs can bridge very large distances.

ual MWNTs or ropes of SWNT's are obtained with high yield. At intermedi-
ate temperatures (850-975°C) individual SWNTs are grown with a typical
diameter of 2nm or thin bundles of SWNTs, but with less yield than at
lower temperatures. At high temperatures (>1000°C), the substrate and
the CNTs are often found to be covered with an additional material, which
is most likely amorphous carbon. Carbon nanotubes used in transport mea-
surements have been solely produced at the intermediate temperature range.
Fig. 2.1a shows a scanning electron microscope (SEM) image of CNTs grown
from catalyst 1 on a Si/SiOy substrate.

For the purpose of mechanical and electromechanical studies, CNT's
have been grown over structured slits patterned in SigNy, an example of
the outcome is shown in Fig. 2.1b. It is expected that for sufficiently
long CNTs thermal vibrations should be readily observed with transmission
and scanning-electron microscopy (TEM and SEM) [43, 44]. This holds
only, however, for ‘small’ diameter tubes, because the vibration amplitude
is strongly reduced with increasing diameter d according to (~ 1/d?). Only
individual SWNTs are expected to show a substantial vibration amplitude
which could be observed in SEM. We suggest this as a simple check to dis-
tinguish individual from bundled SWNTs. Fig. 2.1b shows a representing
SEM image of suspended CNTs spanning over long distances (L >1 um).
None of the visible ‘strings’ display observable vibrations. This is not sur-
prising considering the observed CNT branches. Clearly, in this case the
CNTs must be bundled. This bundling increases the wider the slit is result-
ing into complex (but marvellous looking) spider webs. Further details on
the search for vibrating suspended tubes can be found in chapter 5. We ar-
gue that in the absence of a support and at the relatively high temperature
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CNTs may meet each other during growth. The likelihood is increased if
growth proceeds in ‘free’ space over a large distance. Once they touch each
other they stick together due to the van der Waals interaction leading to
a bundle. This is also supported with TEM investigation of CNTs grown
over SisN, membranes. In Fig. 2.2a and b TEM images of CNT bundles
are shown.

Figure 2.2: (a) and (b) TEM images of CNT bundles grown over SizN4 mem-
branes (courtesy of J. Furer).

In contrast, the growth on a substrate is different, as the tubes interact
with the substrate rather than with each other. Hence, bundling is expected
to be reduced. This is confirmed in SEM images, provided the catalyst
density is low. However, there are bundles as well, which is evident from
the observed branches visible in the SEM image of Fig. 2.1a (arrows). Even
at locations where bundling is not apparent, one can still not be sure that
such a nanotube section corresponds to a single-wall tube. Usually this
is checked by measuring the height in AFM, but this can be misleading
too, because the diameters of CVD-tubes can vary a lot, over 1 — 5nm as
reported by Ref. [45]. We confirm this with our own measurements. Further
insight into the question of bundling of CVD-grown CNTs can be obtained
from electrical characterizations, which we report next.

2.1.3 Carbon nanotube devices

We have produced CNT devices on chip following two strategies. In the
first method the substrate is covered with a layer of polymethylmethacry-
late (PMMA) in which windows are patterned by electron-beam lithogra-
phy (EBL). Next, the catalyst is spread from solution over these patterned
structures, after which the PMMA is removed with acetone, leaving iso-
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Figure 2.3: (a) Phase image recorded by tapping mode AFM, showing CNTs
grown from the patterned catalyst islands and bridging between islands. (b)
Topography image of an individual SWNT grown between the catalyst islands
recorded by tapping mode AFM. Inset: Height measurement on the line cut (white
line) for the SWNT shown in (b). The height measurements yield for the diameter
d = (1.2 £ 0.2) nm for this particular tube.

lated catalyst islands (5 x 10 um?) on the surface. The substrate with the
catalyst is then transferred to the oven where CVD growth of CNTs is per-
formed. From the catalyst islands, CNTs grow randomly in all directions,
but because of the relatively large distance between the islands (5 um) just
one or a few CNTs bridge them usually. An atomic force microscope (AFM)
image in phase mode with several CNTs growing from the catalyst islands
is shown in Fig. 2.3a. An individual SWNT bridging the catalyst islands
is shown in Fig. 2.3b. Metal electrodes (Au, Ti, Pd) are patterned over
the catalyst islands with EBL, followed by evaporation and lift-off. The
alignments during the EBL structuring have been done corresponding to
chromium markers [46]. SEM and AFM images of contacted individual
CNTs are shown in Fig. 2.4a and b.

In the second method we spread the (diluted) catalyst over the entire
substrate at low concentration. The density is chosen such that at least one
CNT grows inside a window of size 10 x 10 um?. After the CVD process
a set of recognizable metallic markers (Ti/Au bilayer) are patterned, again
by EBL, see Fig. 2.4c. Using AFM in tapping mode, a suitable CNT with
an apparent height of less than 3nm is located with respect to the markers.
In the final lithography step, electrodes to the selected CNT are patterned
by lift-off.
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Figure 2.4: (a) SEM image of a SWNT contacted with a Ti/Au bilayer. (b)
AFM image recorded in tapping mode of a contacted individual SWNT. (c) SEM
image of a set of Ti/Au markers which are used to register the contact structure
to the SWNTs selected before by AFM.

2.1.4 Room temperature characterization

Once the samples are made, it is common practice to distinguish semi-
conducting and metallic CNTs by the dependence of their electrical con-
ductance (G) on the gate voltage (V;), measured at room temperature
(T ~ 300K). This, however, cannot be considered as a proof that an indi-
vidual SWNT has been contacted, because it is not well understood how the
linear response conductance is altered if more than one tube is contributing
to electrical transport. Even if measurements were performed on ropes of
SWNTs, the measured signatures agreed quite well with the behavior ex-
pected for a SWNT [47, 48, 23]. This has been attributed to a dominant
electrode-CNT coupling to one nanotube only. This scenario may be true
in exceptional cases, but one would expect that the majority of measure-
ments should display signatures that arise from the presence of more than
one tube. We have recently observed Fano resonances which we attribute
to the interference of a SWNT which is strongly coupled to the electrodes
with other more weakly coupled ones (see chapter 4.).

Assuming that all chiralities have equal probability to be formed in
growth, 2/3 of the SWNTs are expected to be semiconducting and 1/3
metallic. From the measured response of the electrical conductance to the
gate voltage (back-gate), =~ 60 % of the devices display metallic (the con-
ductance does not depend on the gate voltage) and = 40 % semiconducting
behavior. Based on our assumption the larger fraction of metallic gate re-
sponses points to the presence of bundles or multishell tubes. If there are
on average 2 or 3 tubes per bundle, which are coupled to the electrodes
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approximately equally, the probability to observe a semiconducting charac-
teristic would amount to (2/3)% =44 % or (2/3) = 30%. Hence, we can
conclude that the bundle size is very likely small and close to 2 on average.

Figure 2.5: Typical I — V characteristics at high bias voltage for CNT sam-
ples with a contact spacing of 1um. The insets show R = V/I versus V and
fits to Eq. 2.1 for positive and negative V (lines). (a) The extracted mean
value for the saturation current for this device is Ip = 24.3 £ 1.2 uA which sug-
gests transport through an individual SWNT. (b) A higher saturation current of
Iop = 59.3 + 2.1 pA is found in this device suggesting transport through 2—3 CNT
shells.

A powerful method to characterize contacted CNT's is to perform trans-
port measurements in the nonlinear transport regime (high bias). As pre-
viously reported by Yao et al. [38] the emission of zone-boundary or optical
phonons is very effective in CNTs at high fields. This effect leads to a sat-
uration of the current for an individual SWNT at ~ 25 uA. High bias I/V
characteristics are shown in Fig. 2.5. Fig. 2.5a corresponds to an individual
SWNT. The saturation current can be extracted from the relation for the
electrical resistance R = V/I [38]

R:R0+V/Io, (2.1)

where Ry is a constant and Iy is the saturation current. The dependence
of R(V) versus the bias voltage V is shown in the insets of Fig. 2.5 with
corresponding fits to Eq. 2.1. Because the saturation current is relatively
well defined, its measurement allows to deduce the number of participating
CNTs. Whereas Fig. 2.5a corresponds to a single SWNT, two nanotubes
seem to participate in transport in the example shown in Fig. 2.5b. This
result is consistent with the one above and points to the presence of more
than one tube. This saturation-current method works for SWNTs but also
for multi-wall CNTs [49]. One can therefore not distinguish whether one
deals with two tubes in a rope or with one double-wall CNT.
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2.2 Low-ohmic contacts

It is well known that physical phenomena explored by electrical trans-
port measurements (especially at low temperatures) dramatically depend
on the transparency between the contacts and the CNT. At low energies,
the electronic transport through an ideal metallic single-wall carbon nan-
otube (SWNT) is governed by four modes (spin included). In the Landauer-
Biittiker formalism [50] the conductance can be written as

G = T-4e*/h, (2.2)

where T is the total transmission probability between source and drain
contacts. For low transparent contacts (T << 1) the CNT forms a quan-
tum dot (QD) which is weakly coupled to the leads. Charge transport is
then determined by the sequential tunnelling of single electrons (Coulomb
blockade regime). If the transmission probability is increased (for which
better contacts are required), higher-order tunnelling processes (so called
co-tunnelling) become important which can lead to the appearance of the
Kondo effect. This phenomenon was first reported by Nygard et al. [23].
At transparencies approaching T ~ 1 we enter the regime of ballistic trans-
port where residual backscattering at the contacts leads to Fabry-Perot like
resonances [21]. Good contacts with transparencies close to one are indis-
pensable for the exploration of superconductivity [51], multiple Andreev
reflection [52] or spin injection [53] in CNTs. Nevertheless, modest progress
has been made so far on the control of the contact resistances between CNT's
and metal leads. Annealing is one possible route, as proposed by the IBM
group [54] and we confirm their results here. We compare in the following
Ti, Au and Pd contacts.

2.2.1 Comparison between Ti, Au and Pd contacts

In the ideal case of fully transmissive contacts, a metallic SWNT is expected
to have a conductance of G = 4e?/h (two modes), which corresponds to a
two-terminal resistance of 6.5k(2. In case of contacts made by Ti, Ti/Au or
Cr on as grown SWNTs, most of the devices show resistances in the range
between 100k to 1 M. In contrast, Au contacts are better, because the
measured resistances range typically between 40k and 100k(). Even for
the highest conductive sample the transmission probability is rather small
and amounts to only T = 0.16 (per channel).

To lower the contact resistances we added an annealing step to the pro-
cess, which was motivated by the work of R. Martel et al. [54]. We have
performed annealing on more than 50 samples in a vacuum chamber fitted
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Figure 2.6: Comparison of the two-terminal resistance R at room temperature
of CNT devices which were contacted with different metals: (a) Ti, (b) Au and
(c) Pd. Post-annealing has been done in vacuum (< 10™°mbar) in case of Ti and
Au. In (a) and (b) the evolution of R for a large number (= 55) of samples as a
function of annealing temperature is displayed in the form of a histogram. The
representation for Pd (c) is different: the conductance G = 1/R of 10 samples
are compared, out of which only one has a resistance R > 50k{2, corresponding
to G < 0.5¢*/h.

with a heating stage at a back-ground pressure of < 10~®mbar. The resis-
tance is first recorded on as prepared devices. Then, they are annealed with
temperature steps of 100°C for 5min starting at 500°C. The results for
titanium and gold contacts are shown in Fig. 2.6a and b, respectively.

In agreement with previous work [54] we find a pronounced resistance
decrease for Ti contacts, if annealed at 800°C. It was suggested by R.
Martel et al. [54] that the origin of the resistance decrease is the formation
of titanium carbide (Ti,C) at temperatures over 700°C. In contrast to
Ti contacts, we do not observe a dramatic change in the sample resistance
versus annealing temperature in case of Au contacts. This suggests that
unlike Ti on carbon no chemical reactions take place between Au and carbon
even at temperatures as large as 800 °C. We have also compared annealing
in vacuum with annealing in hydrogen within the same temperature window
(not shown). The outcome in terms of resistance change is comparable to the
vacuum results provided that T' < 700 °C. At temperatures above ~ 700°C
the majority of the devices display a short to the back-gate. We think that
the reducing atmosphere is very effective in partially etching the SiOs at
these high temperatures.

Finally, we have also studied as-grown Pd contacts, which were recently
reported to lead to contacts that are lower ohmic than Au [45]. In our own
work (Fig. 2.6c) we have indeed found independently of Javey et al. [45]
that palladium makes excellent contacts to CNTs. There is no need for an
additional post-growth treatment. Metallization of CNT devices with Pd is
the preferred method, because it yields low-ohmic contacts without an ad-
ditional annealing step. Careful transport studies of Pd contacted SWNTs
show Coulomb blockade, Kondo physics and Fano resonances (chapter 4.).
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The observed resonances suggest that even in nanotubes, which look at
first sight ideal, interference with additional transport channels may ap-
pear. The only plausible explanation for this observation is the existence of
other tubes, hence a bundle or multishell nanotube.

2.3 Conclusion

Many applications of carbon nanotubes (CNTs) require to reproducibly
place and contact single small diameter tubes. This is important, for exam-
ple, for the realization of mechanical resonators, for field-effect transistors
with reproducible characteristics and for fundamental studies of electron
transport. One approach is to start from a powder of CNTs which is ob-
tained, for example, in arc-discharge or laser-evaporation. Because these
methods yield bundles of dozens of tubes, individual CNTs can only be ob-
tained by rigorous ultrasonics and separation in an ultracentrifuge in the
presence of a surfactant. If the ultrasonic step is too rigorous, the CNTs
are cut into short pieces. Spreading and contacting of single tubes is pos-
sible. However, one has to bear in mind that these CNTs are covered by
a surfactant which is likely to affect the fabrication of low-ohmic contacts.
Moreover, the surfactant may carry charge which dopes the CNTs. In con-
trast to this approach, chemical vapor deposition (CVD) yields tubes in a
very direct way immediately on the chip and without a surfactant, which
makes this approach very attractive. Whereas a profound comparison of the
quality in terms of the number of defects between these two major classes of
CNTs is not yet established, the degree of bundling can be compared today.
If grown by CVD on a surface at relatively high temperature and with a low
catalyst density, apparently single-wall CNTs can be grown, though with
a much larger spread in diameter as compared to e.g. the laser method.
Although, the tubes appear to be single, as judged from SEM and simple
tapping-mode AFM in air, we find in a number of different experiments clear
signs for the presence of more than one tube. Measured saturation currents
are often larger than the value expected for a single tube. Suspended tubes,
even if no bundling is apparent in SEM in the form of branches, do not
thermally vibrate as expected for a typical SWNT (chapter 5). And finally,
the presence of interference effects in transport (Fano resonances) point
to additional transport channels that are likely due to additional shells or
tube (chapter 4). The results presented in this work show however, that the
number of tubes can be small, e.g. 2-3. This gives hope that with refined
catalysts, the controlled production of single tubes should be possible. In
addition, we have demonstrated that relatively low-ohmic contacts can be
achieved either with Ti, if an additional annealing step is used, or by Au
and Pd without any additional treatment. Out of these three materials, Pd
yields the best contacts (lowest contact resistance).



Chapter 3

Ambipolar field effect
transistor on as-grown
single-wall carbon mnanotubes

3.1 Electrical properties of semiconducting carbon nan-
otubes

Semiconducting behavior in carbon nanotubes was first reported by Tans
et al. [17] in 1998. Figure 3.1 shows a typical measurements of the current
(a) and conductance (b) of a semiconducting single-wall carbon nanotubes
(SCSWNT) as the gate voltage V, applied to the conducting substrate is
varied. For positive Vj, current is suppressed and it raises gradually for
negative Vg, finally saturating at large negative V; due to the contact resis-
tance between SCSWNT and metallic electrodes. Such transport character-
istic imply several important conclusions. First of all, semiconducting and
metallic SWNTs can be distinguished due to their different V;, dependance
at room temperature. Second, SCSWNTs are p-type at V; = 0 (hole medi-
ate transport in ON state) and third, they can act as a room temperature
unipolar field effect transistor (FET). The fact that SWNT can be used as
a FET with performances comparable or better than those known from sili-
con technology [29], opened unprecedent theoretical and experimental work
in this field of the carbon nanotube research. Beside numerous technologi-
cally opened questions i.e. how to assemble SWNT FETs into a large-scale
integrated circuits, finding that SCSWNT behaves as a p-type FET have
become a central issue of the research on SCSWNT in the last couple of
years. The importance to reveal the origin of this phenomenon lays in the
fact that it would give a better understanding on how to improve SWNT
FETs performances and build more complicated nano-scale logic circuits.

23
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Although, enormous research have been done to date, this is still an open
issue. Several scenarios have been proposed to explain the hole doping in a
SCSWNT. Here, we will just mentioned two of them, to which most of the
recent research has been devoted.

Experiments have shown [55, 25, 56] that changing a CNT’s chemical
environment can change the doping of CNTs. Strong evidence to this is
large hysteresis observed in air, with shifts of several volts in threshold volt-
ages during V; cycling. Further investigation showed that the handling of
the CNT devices may in addition change the device performance dramat-
ically. For example, exposure to ultra-violet radiation can drive off, most
likely oxygen, lowering p doping in a SCSWNT. Adsorbate doping could be
sever problem for the application of SCSWNT's in commercial devices where
high reproducibility is mandatary [29]. On the other hand, sensitivity of a
CNT to chemical environment gives possibility to use them as a chemical
sensors [25].
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Figure 3.1: (a) Typical I versus V; characteristic for the unipolar SCSWNT
FET. (b) Conductance as a function of the gate voltage for the same device.

The formation of Schottky barriers (SBs) has been suggested as a pos-
sible origin for the hole doping in SCSWNTs [57, 58, 59, 54]. It is well
known that Schottky barriers (SB) form when a metal and a semiconductor
is brought into contact due to differences in their work functions [37]. Simi-
larly, a SB is expected to be formed between a SCSWNT and metallic elec-
trodes. Because of the typically higher work function of CNTs (= 4.5eV) as
compared to metallic electrodes such as Ti *(~ 4.3 eV), p-type conduction is
expected for a SCSWNT. Although, SB have been extensively measured by
several groups from low to room temperature, the obtained values for SBs

*Note, that for Au work function is &~ 5.3 eV and n-type behavior would be expected.
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are not conclusive, actually they have been found to vary over several or-
ders of magnitude (1-300 meV) [58]. However, it has been appreciated that
different production and processing of the samples can have an important
influence on the final characteristic. For example, different growth methods
of CNTs can lead to different contact resistances which might hindered the
true role of the SBs. A step forward in revealing the origin and control of
this phenomena has been done recently by the realization of the ballistic
carbon nanotube field effect transistor with palladium contacts [45].

The exclusiveness of p-type SWNT FETs did not persist for long time.
In the year 2000, first n-type unipolar FET has been achieved with a con-
trolled chemical doping using alkali metals [60, 61, 62]. Additionally, this
work has inspired the creation of p-n junction [30] and p-n-p devices [31].
Recently, an ambipolar field effect action on a SWNT have been accom-
plished with several different methods. We will address this subject in the
following section.

3.2 Ambipolar field effect transistor

Though as-grown SWNTs are p-type, n-type unipolar conductance has been
demonstrated by either chemical doping [63] or an annealing treatment in an
inert environment [64]. It remains, however, challenging to realize as-grown
ambipolar SWNT FETs with conventional back-gates. Ambipolar SWNT
FETs have been demonstrated on large-diameter SWNTs (3 — 5nm) [65],
and recently also on small-diameter SWNTs (1 —2nm) by using strong-
coupling gates [66]. Here we report on electric transport measurements
of as-grown SWNTs which display ambipolar FET action. The transport
characteristics of a CVD grown SCSWNT at room temperature are shown
in Fig. 3.2a and b. A dramatic dependance of the current (a change by
several orders of magnitude) through the device is observed upon varying the
gate voltage. For large V; (both positive and negative) the conductance is
approximately constant and much larger than for the interval vV, = 1...10'V.
We assign this reduction of conductivity to the semiconducting gap. Due
to a finite conductance observed on both sides of the gap (p- and n-type
conduction), this device demonstrates an ambipolar action, i.e. it behaves
as an ambipolar SWNT FET.

Although, with some repetition from previous chapters, in the rest of
the section we will present mainly the low temperature measurements on
an ambipolar SWNT FET, which has been published in Nanotechnology,
(2003) [67].
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Figure 3.2: The current (a) and the conductance (b) dependance on the gate
voltage. Ambipolar FET action is achieved on as grown SWNT.

3.2.1 Experiment

SWNTs are synthesized by chemical vapor deposition (CVD) following the
method of Hafner et al. [40]. In all our studies we used SWNTs having
diameters of 2nm or less, as inferred from AFM height measurements. Our
devices are prepared on highly doped (p < 0.02Qcm) and thermally oxi-
dized (400nm) Si wafers. The substrate is used as back-gate in electrical
measurements of the final devices which are obtained as follows: The sub-
strate is covered with a layer of polymethylmethacrylate (PMMA) in which
windows (5 x 10 um?) are patterned by electron beam lithography. Then,
a catalyst suspension consisting of 1mg iron nitrate seeds (Fe(NO3)3) dis-
solved in 10ml of isopropanol is poured into the predefined trenches. The
PMMA is then removed in acetone, leaving isolated catalyst islands on the
surface. The CVD growth is performed in a quartz-tube furnace at 800°C
and atmospheric pressure using a gas mixture of ethylene, hydrogen and
argon with respective flow rates of 2, 400, and 600 cm®/min. During heat-
ing and cooling of the furnace, the quartz tube is continually flashed with
argon to avoid contamination of the tubes. The as-grown SWNTs are then
contacted in a conventional lift-off process with two metal electrodes per
SWNT, spaced 1pum apart. As electrode material a bilayer of Ti (2nm)
and Au (60nm) is used, leading to contact resistances of ~ 40k at room
temperature. Fig. 3.3a illustrates schematically a SWNT device. An atomic
force microscopy (AFM) picture is displayed in Fig. 3.3b. The diameter of
the nanotubes is determined from the measured height using AFM in tap-
ping mode.



8.2 Ambipolar field effect transistor 27

(a)
Ti/Au pads 1pm

Nanotube L—ﬁ

. -
SiO,

Figure 3.3: (a) Scheme of a SWNT device contacted by two Ti/Au electrodes.
The Si substrate is used as back-gate. (b) Atomic force microscopy (AFM) image
of a SWNT bridging between the two electrodes.
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3.2.2 Results and Discussion

Once the samples are made, semiconducting and metallic tubes are distin-
guished by the dependence of their electrical conductance G on the gate
voltage V, measured in a wide temperature range of 0.3...300K. Fig. 3.4
shows a measurement of the linear conductance G(Vj) for a semiconducting
SWNT at moderate temperatures of T' = 40 and 60 K, respectively. Starting
from V,; = =10V, G decreases with increasing Vj indicating p-type behavior,
while above V; = 4V, G increases indicating n-type behavior. In between
these two regions the conductance is low, which suggests carrier depletion.
This low conductance region corresponds therefore to the gap [65, 68]. The
charge-neutrality point for this sample lies at V;, = 2.5 V. It varies in general
between V, = —2.5eV and 2.5eV. Our finding demonstrates that as-grown
SWNT can be ambipolar transistors.

G(Vy) is slightly lower at 40K than at 60K. If the temperature is
lowered further, the linear-response conductance is suppressed further to
eventually become very small. This is caused by Coulomb interaction, which
first results into a power-law suppression of G with T' [69, 70] and at low-
temperatures to the emergence of Coulomb blockade. The latter is observed
and will be discussed afterwards.

The two-terminal resistance R of a carbon-nanotube device has two
parts: the resistance arising from the contacts and a finite mobility (re-
sistivity) of the NT. The relative magnitude is currently discussed. One
prominent school of scientist assigns the major part of R to Schottky barri-
ers at the contacts impeding transport and provide some evidence in favor
of it [57, 58, 71, 59, 72]. However, the discussed devices have resistances
in the range of 1..100 M(2, i.e. are rather high-ohmic. The device, which
we show in Fig. 3.4, has a lower resistance of order 0.1 MQ). Assuming that
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Figure 3.4: Two-terminal (linear) conductance G as a function of gate-voltage
V, for a semiconducting SWNT at moderate temperatures of 7' = 40 and 60K,
respectively. The peaks in G are attributed to van Hove singularities in the one-
dimensional DOS. A respective fit to the T'= 40 K data is shown as a solid curve
(shifted vertically for clarity).

the conductance of this devices is limited by scattering within the NT, the
mobility p can be estimated taking a linear approximation of G(V}) (dashed
lines in Fig. 3.4). This yields a relatively high average carrier mobility of
p =~ 800 cm?/Vs. The mobility can be related to the 1d diffusion coefficient
D = vpl via D = pEp /e, where Er is the Fermi energy, vp ~ 10°m/s the
Fermi velocity, and [ the scattering mean-free path. Taking the approx-
imation Er ~ 0.5eV yields D ~ 0.4m?/s and [ ~ 40nm. Note, that this
estimate results in lower bounds for p, D, and [, because of (the unknown)
contribution to the total resistance from the contacts.

G(V,) is not strictly linear, but shows several pronounced humps, sug-
gestive of van Hove singularities (VHS) in the density-of-states (DOS) of
the 1-dimensional (1D) bandstructure of NTs. The conductance G is pro-
portional to the 1d DOS Njp, both in case of tunneling and low-ohmic
contacts, provided the band structure moves rigidly with the gate voltage
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(no Fermi-level pinning). The proportionality coeflicient is then determined
by the tunneling coupling parameter or the diffusion coeflicient, respectively.
To test this scenario, we have modelled G(V,) by G(V,)  Nip(E(Vy)) and
display a fit to the curve at T'= 40K at the p-side in Fig. 3.4 (shifted verti-
cally for clarity). There are three fitting parameters: the energy broadening
d, the gate capacitance C, and the prefactor between Nip and G. § is deter-
mined to be § = 0.13eV. This is reasonable if we compare with the inverse
scattering time, given by vph/l =~ 0.1eV. C, determines the horizontal scale
of the plot and the prefactor the diffusion coefficient (or the tunneling cou-
pling, if tunneling contacts are assumed to dominate the resistance). We
will discuss these scaling parameters (in particular the gate coupling) later,
after having introduced the low-temperature measurements.

In fitting the measurement we have used a regular sequence of 1d sub-
bands with threshold energies of E/Ey = 1,2,4,5.... The respective van
Hove peaks are marked by arrows in Fig. 3.4. Note, that the first VHS is
hardly visible and that the peak spacing on the gate-voltage axis is modi-
fied. The latter apparent change is caused by the non-linear Er vs V; de-
pendence. We have obtained this dependence assuming that a gate-voltage
change leads to charging of the gate capacitance C, connected in series with
the electrochemical capacitance of the NT [55]. The latter is given by the
density-of-states. To first order (averaging over van Hove singularities) we
obtain Ep o /V.

We now turn to low-temperature measurements 7' < 4 K. Figure 3.5
shows G(V;) and a greyscale representation (inset) of the differential con-
ductance dI/dV as a function of V, and applied transport voltage Vsq of
a SWNT device at T'=2K. The large white zone in the middle of the
greyscale plot corresponds to a non conducting region related to the semi-
conducting gap. The drawn thick lines at the edges are guides to the eye.
Their vertical extensions intersect around Viq = 0.6 eV, which is a direct
estimate of the gap energy. On both sides of the gap Coulomb blockade dia-
monds (CBD) of varying size are observed (we refer to the term ‘diamond’,
although the blockade region is not composed of a series of neat diamonds).
Though the addition energy E,q4q (sum of single-electron charging energy
and level spacing) is seen to fluctuate in between 2.5mV and < 20meV,
there is a general trend, indicated by the thin curved lines. Close to the
gap Egqq is large and decays to smaller value for lower (higher) V; on the p
(n) side. This is not expected for an ideal (defect-free) semiconducting NT
for the following reason: At the onset of the conduction or valence band,
the 1D DOS is expected to be large (VHS), since the band dispersion is
parabolic to first approximation. If the NT can be considered as a single
quantum dot extending from one contact to the other, the 0D level spacing
0F should be very small, i.e. §E = 0 to first approximation. Provided the
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Figure 3.5: Linear conductance G as a function of gate voltage V, (main plot)
and greyscale representation of the differential conductance dI/dV as a function of
Vg and applied source-drain voltage Viq (inset) at 2K for a SWNT device. White
regions correspond to zero and dark regions to high conductances (maximum
0.3 €?/h). The semiconducting gap is clearly visible as a large non-conducting
region in the inset. Coulomb oscillations peaks are observed on the p (left) and n
(right) side of the semiconducting gap.

added charge can spread homogeneously along the whole tube, a constant
charging energy U, is expected. Hence, we would expect a constant addition
energy in case of an ideal defect-free tube, right at the edge of the gap. The
observed discrepancy can be resolved (to some degree) if disorder is taken
into account. Disorder will distribute the states over some energy interval
leading to the observed broadening of the VHS, see Fig. 3.5 Moreover, this
results in a smooth onset of the DOS and consequently in a relatively large
0D level-spacing dE. Disorder also (partially) localizes the wavefunctions,
leading to both increased d E and U,.

Next, we focus on the region far away from the gap where ideally the
0D wavefunctions are extended, i.e. one quantum dot, and where the con-
stant interaction model should yield a good approximation to single-electron
charging effects. The charging energy is then given by the capacitances de-
termined by the geometry of the device. Fig. 3.6 presents three greyscale
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plots of the differential conductance dI/dV, 3.6a and b for one semiconduct-
ing NT and 3.6¢ for another metallic NT with identical contact spacing. The
latter is shown as reference. Fig. 3.6a and b correspond to conduction in the
p and n region, respectively. Both have been measured around |V| ~ 10V.
If we compare with the metallic reference, the Coulomb blockade (CB) ‘dia-
monds’ are less regular in the semiconducting case, in particular they most
of the time do not close. Importantly, however, they are similar in all re-
spects on the n and p side. The irregularity of the CB and the fact that the
gap most often does not close implies that the NT does not act as a sin-
gle quantum dot. The low maximum conductance of < 0.025 e? /h observed
in the linear conductance in Fig. 3.5 supports this finding. Following the
line pattern of conductance onset at finite V4, the addition energy E,qq is
given by the difference between adjacent maxima and minima of Vy,. Hence,
F,qq varies in between =~ 2...5meV, as does the additional gap. This sug-
gests that the N'T's are split up into two, at most three dots in series. The
CB-pattern on the n-side seems to show a beating pattern repeating after
~ 6 — 7 added charges. A strong beating pattern on the n-side has been
observed before [68] and has been attributed to the formation of a small
quantum dot in the vicinity of one of the contacts.

The analysis of CB diamonds permits to extract the factor « [73] which
measures the effectiveness of the coupling capacitance between the tube and
the gate, i.e., a« = Cy/C = U./AV,. Here, C, is the gate capacitance, C' the
total capacitance (gate plus contacts), U. = e¢?/C the charging energy, and
AV, the single-electron period in gate voltage. We estimate the charging
energy from the averaged value of the addition energy of a set of Coulomb
diamonds. This results in U, ~2.5 meV within a gate-voltage period of
AV, =12mV, from which we deduce a ~ 0.2. Note, that this is a very
high coupling efficiency for a nanotube whose gate-electrode is as much as
400 nm away.

Provided the constant-interaction model is valid in the semiconducting
gap, we can predict the gap size, apparent in V. The gap in energy space
is given by Egqp = 4hwp/3d, yielding 0.7eV (the diameter d is taken to be
d = 1.2nm) [74]. Since the charging energy is negligibly small, Ey4q = Eyqp-
Multiplying with the ratio AV, /U, yields for the gap-size AV,_4q, = 3.4V,
in reasonable agreement with the observed AV,_gqp =4V in Fig. 3.4, or
AVy_gap = 5V in Fig. 3.5. From o and U, we obtain for the capacitances
Cy~12.8aF and C = 60aF. Cy is in reasonable agreement with the esti-
mated geometrical capacitance Cyeometry = 2mLereg/In[2L/d] (L and d are
the length and the radius of the nanotube, respectively), yielding 29 aF.
The factor of 2 difference most likely originates from the partial screening
by the contacts.

The value of a found here is one of the largest values reported so far [64].
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As a reference to our study on semiconducting SWNTs, we have investi-
gated metallic tubes of similar length too. Contrary to semiconducting NT's
regular Coulomb blockade diamonds are observed in metallic SWNTSs (see
Fig. 3.6¢). At the edges of each diamond, parallel and sharp lines are visible
reflecting excited states of the nanotube quantum dot. The charging energy
and the single electron level spacing are found to be 3meV and 1 meV, re-
spectively. The latter is in good agreement with the contact separation of
L ~ 1 pm. This strongly suggests, that metallic SWNTs behave like single
quantum dots, unlike semiconducting SWNTs. In addition, the coupling to
the gate v ~ 0.2 — 0.3 is equally large and corroborate the universal aspect
of the high gate efficiency independent of the nature of the tubes.

Let us finally compare the horizontal axis (the gate voltage) of Fig. 3.4
(T =40,60K) with Fig. 3.6 (I' = 2K). The low-temperature data allows
to count the added charge accurately. There are 30 electrons added in the
gate-voltage interval shown in Fig. 3.6a and b, leading to ~ 100 electrons
per 1 V. This capacitance value is obtained at a relatively high gate volt-
age of [Vy| = 9.5 — 10 V. Referring to Fig. 3.4 and applying our assumption
that the structure in G is due to the energy-dependence of 1D subbands,
we conclude that 4 subbands need to be occupied at this gate voltage. The
number of states per unit gate voltage at this Fermi-level (i.e. gate volt-
age) position can be calculated and amounts to ~ 5103 V~!. Hence, we
encounter a factor of 50 discrepancy! It may seem tempting to suggest an-
other cause for the apparent oscillation of G(Vj), namely Coulomb-blockade
oscillations. The period of CB oscillation of 3.5V would correspond to a
very large single-electron charging energy of U. ~ 0.4eV. If this were the
case, G would be strongly suppressed already at T' = 60 K, not to mentioned
at 2K. Note, that the differential conductance is not suppressed if only a
small source-drain voltage of a few mV is applied (see Fig. 3.5 (inset)), but
is large of order 0.3 e?/h. Therefore, Coulomb blockade can be disregarded
as cause for the oscillation of G(V) in Fig. 3.4. Since CB can be disregarded
and because the 1D DOS in the fit of Fig. 3.4 reproduces the measurement
very well, we think that the high-temperature data does reflect the 1d DOS.
To get the number of states right, the resistance must be limited by a short
section of the tube of length 1pm/50 = 20 nm, which in addition must be
located close or possibly even under the contacts in order to screen the
Coulomb interaction. At lower temperature this short tube section is not
visible in transport, because the resistance is then dominated by the CB of
the whole NT. Apparent oscillations in G(V;) of SWNTs were assigned to
the energy dependent 1D DOS by Liu et al. [75]. However, no quantitative
comparison with the expected DOS was performed. Moreover, the observed
10 ‘peaks’ requires to fill 10 SWNT subbands, which is very unlikely. It
seems to us that their result might have the same origin as our.
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Figure 3.6: Differential conductance (dI/dV’) plots as a function of V; and Viq.
White corresponds to dI/dV = 0, and black to the maximum conductance of
0.3€?/h. (a) and (b) have been measured on one semiconducting SWNT in the p
region (a) and n region (b) at 2 K. As a reference a similar plot of another metallic
SWNT measured at 0.3K is shown in (c). While excited states can clearly been
seen in (c), they appear to be absent in (a) and (b). Furthermore, while (c)
displays a regular Coulomb blockade (CB), it is irregular in (a) and (b). In all
cases strong coupling to the gate is inferred.
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3.3 Conclusions

In conclusion, we have shown that CVD-grown SWNTs, used as-grown, can
display high coupling strength to a back-gate. The strong coupling enables
to sweep the Fermi-level continuously from p to n-side, so that these field-
effect transistors are ambipolar. At intermediate temperatures the overall
two-terminal resistance R appears to be determined by a short tube seg-
ment close to the contacts, leading to the appearance of 1d DOS effects
(van Hove singularities) in the linear conductance G versus gate voltage V.
In contrast, at low-temperature the average resistance R is higher and de-
termined by the whole nanotube, notably by single-electron charging. The
observed fluctuating addition energy points to disorder which (partially)
splits the tube in 1 — 3 segments. As the maximum number of dots < 3
at a contact separation of L =1 pum, it appears that single quantum dots
should be feasible at smaller contact separations (L < 300nm). We empha-
size that G can be swept from the p to the n side even at T'= 2K with no
apparent barrier. As inferred from non-linear transport any barrier must be
smaller than < 2meV. Similarly low barriers were also observed in the work
of Martel et al. [58]. These authors argue that the barriers originate from
the metal-nanotube contact and are Schottky barriers which are expected
to be large, i.e. of order 0.3eV. The observed conductance at low tem-
perature can only be reconciled with large Schottky barriers, if the barriers
are so short that tunneling through them is permitted. The band-bending
within a SWNT at the metallic contacts have been studied theoretically by
Léonard and Tersoff [76, 77]. It is concluded that the depletion region can
be sufficiently short (< 5A) to permit sizable electron tunneling, provided
the doping fraction (or carrier density) of the NT is sufficiently large, i.e.
f 21073, As an estimate, the carrier density at V;, = 10V corresponds to
a of charge fraction of f ~ 1073, which is in favour of short barriers. Simi-
lar doping density were inferred from electrochemical gating experiments of
MWNTs [55].



Chapter 4

Single-wall carbon nanotubes
as quantum dots

In the past decade, transport measurements have emerged as a primary tool
for exploring the electrical properties of structures on the nanometer scale.
Due to their unique electronic bandstructure, much attention has been fo-
cused on carbon nanotubes (CNTs) [35]. For metallic single wall carbon
nanotubes (SWNTs) just two spin degenerate one-dimensional (1D) modes
should govern their transport properties at low energies, which makes them
interesting model systems to explore the physics in reduced dimensions [16].

Due to the finite length, given by the lithographically fabricated contacts
on opposite sides of the CNT (two-terminal device with source and drain
contacts), the one-dimensional CNT will be turned into a quantum dot [47]
at low temperatures (typically at ~ 10K), i.e. into a zero-dimensional object
with a discrete level spectrum. The confinement is formed by the finite back-
reflection at the edges of the contacts. The level spacing § E is determined by
the contact separation L and is inversely proportional to it. This particle in
the box-model holds provided the level-broadening I" and the temperature
are both smaller than dF. T" describes the life-time broadening proportional
to the coupling strength to the leads.

Until now, three transport regimes have been identified in SWNTs: A)
single-electron tunneling [78, 79, 73, 80], which is dominated by the on-
site Coulomb repulsion expressed by the energy term U, = e2/C, where
C' is the total capacitance; B) the regime of correlated electron transport,
in which higher-order tunneling processes, so-called co-tunneling [81], are
appreciable, leading to the emergence of the Kondo effect [82, 83]; and
C) the open SWNT for which Coulomb interaction may be neglected and
the residual gate-dependence of G can be described as in a tunable Fabry-
Perot resonator [21]. A) holds for low, B) for intermediate and C) for high
transparent contacts.

35
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As in atoms, eigenstates in quantum dots (QDs) may be degenerate due
to symmetries and together with the spin degeneracy and Pauli principle
lead to the formation of electronic shells. Indeed, striking shell patterns
have been observed in QDs [84, 85]. The eigenstates (Bloch-states) at the
Fermi energy of graphene (two-dimensional sheet of graphite) is two fold de-
generate. The two wave functions correspond to the two carbon sublattices
(the unit-cell is composed of two C-atoms). This degeneracy is preserved in
CNTs and should therefore lead to two degenerate orbitals in a finite-length
nanotube in 0D. Together with the spin degeneracy, the shells are expected
to be four-fold degenerate. This shell pattern has recently been observed
by Buitelaar and coworkers [86] in multi-wall carbon nanotubes (MWNTSs)
and by Liang et al. in SWNTs [87]. Within one shell the ground-state spin
was shown to follow the sequence S=0—1/2 — 0 — 1/2 in the former
work, whereas a possible triplet ground state for two added electrons was
suggested by the latter authors, i.e. the sequence S=0—1/2 -1 — 1/2.

Here we focus on CVD-grown metallic carbon nanotubes (CNTs). We
will first introduce the concept of QDs and Coulomb blockade. In this regime
(low transparency), at low temperatures we observe characteristic features
of single-electron tunneling. At intermediate transparency the Kondo effect
emerges. In this regime, we examine the four-fold shell pattern in great
detail and demonstrate that the half-filled ground state (i.e. 2 electrons
added to an empty shell) is either the spin singlet with S = 0 or the six
possible states are effectively degenerate due to a level broadening exceeding
the orbital mismatch and exchange energy.

We will also present deviations from the expected shell filling when the
orbital degeneracy is lifted. Furthermore measurements on several samples
show striking gaps around zero bias. These gaps can not be accounted for
within simple shell filling model. This anomaly is at present not understood.

In the final section, we present a sample where the coupling is so high
that the levels start to overlap. Unlike the results observed in previous
work [21], in which a weak periodic conductance modulation was found,
we observe sharp resonances superimposed on a slowly varying background.
These latter resonances can be understood as an interference effect and are
known as Fano resonances [88, 89].

The SWNT devices

Single wall carbon nanotubes (SWNTs) have been grown from patterned
catalyst islands by the chemical vapor deposition method on Si/SiOs sub-
strates as described in Chapter 2. The degenerately doped silicon, termi-
nated by a 400 nm thick SiO5 layer, is used as a back-gate to modulate the
electrochemical potential of the SWNT electrically contacted with a source
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and drain terminal. The contacts are patterned by electron-beam lithog-
raphy (EBL) using polymethylmethacrylate (PMMA) as resist, followed
by metallization and lift-off. Once the samples are made, semiconducting
and metallic SWNTs are distinguished by the dependence of their electri-
cal conductance G on the gate voltage V; measured at room temperature
(T =~ 300K).

Detailed electrical characterization of the devices has been performed
at low temperature in a *He system at 300mK. We measure the electri-
cal current I with a low noise current to voltage amplifier as a function of
source-drain (Vsq) and gate (V) voltage and determine the differential con-
ductance G g := 901 /0V,q numerically. Finally, the collected data G¢(Vsa, Vy)
are represented in a two-dimensional grey-scale representation in which the
grey-scale corresponds to the magnitude of G4. The linear-response conduc-
tance G := I /Vyq with Viq — 0 is measured at a small but finite source-drain
voltage of 40 uV. The electric circuit diagram for a quantum dot (CNT)
is illustrated in Fig. 4.1. Details about device fabrication and transport
measurements are described in appendix A.

Voo

Figure 4.1: Electric circuit diagram for a quantum dot (CNT), with source and
drain electrodes. Each contact between a QD with the source or drain electrode
can be characterized by a RC junction. The gate voltage V; couples only capaci-
tively to the QD through the capacitance Cy.
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4.1 Coulomb blockade

4.1.1 Introduction

Quantum dots (QDs) are small droplets of electrons, confined in three spa-
tial directions. Energy and charge quantization result from this confine-
ment. Because of the striking similarity with atoms, they are also named
"artificial” atoms. The analogy between 'real’” and ’artificial’ atoms has been
exploited, both theoretically and experimentally. The main difference is in
the energy scale. It is few orders of magnitude bigger for 'real’ atoms. As
in atomic systems, the electronic states in QDs are sensitive to Coulomb in-
teraction. Once a carbon nanotube is attached to the leads with tunneling
barriers it can behave as a QD. The scheme of a nanotube QD coupled with
to two metallic leads (source-drain) is illustrated in Fig. 4.2a. The metallic
electrodes impose boundary conditions on the k values along a CNT. This
will lead to discrete values of the allowed wave-vector which results in en-
ergy quantization. The quantization of energy due to spatial confinement
is shown in Fig. 4.2b for the two lowest energy lying subbands in a metallic
SWNT. When the tunneling barriers are sufficiently high, electronic trans-
port at low temperature is determined by two main effects: single-electron
charging and the energy level quantization. Low temperature transport
measurements, can provide detail information on the level structure and
the underlying symmetry (shell structure). We will show that energy spec-
tra found in a nanotube QD can be explained assuming a simple constant
interaction model for Coulomb blockade regime [90].

a) Ep
/g\ CNT /0\ \\

B ™ ~RI gl
=T N

Y=

N

Figure 4.2: Schematic illustration of uncorrelated sequential electron tunneling
through a nanotube QD. (b) Energy level quantization §F in a metallic SWNT
due to spatial confinement along the nanotube.
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4.1.2 Coulomb blockade theory

There are several excellent reviews on theoretical and experimental aspects
of the Coulomb blockade (CB) phenomenon in mesoscopic devices [9, 78,
79, 73, 80]. In this section we will just briefly discuss the conditions when
the Coulomb blockade regime is relevant and derive the main energy scales
for a SWNT QD.

A CNT device that is connected via tunnel barriers to source and drain
electrodes resemble a QD. Because of on-site Coulomb repulsion, the addi-
tion of an electron to a QD implies an energy change of U, = ¢?/C, where
C' is the total capacitance of the QD. This is known as a constant interac-
tion model (CIM) of CB, where all electrostatic interaction on the QD is
described by macroscopic and constant capacitance C' [9].

The Coulomb blockade regime is relevant only when the number of elec-
trons (N) on a QD is a well defined integer. This situation occurs when
the tunnel barriers between a CN'T and the contacts are sufficiently opaque
that random changes of NV are forbidden. From Fig. 4.1 it follows that the
tunnel barriers are characterized by the capacitances Cs, Cy and resistances
R, Ry to the corresponding leads. The condition that quantum fluctuation
in the number of electrons on a QD is small, is satisfied if R > Rg = h/e?,
where R = R, + Rq is the resistance of the whole CNT device and Rq is
the so-called quantum resistance [9, 78, 79].

The possibility to observe the Coulomb blockade effects is determined
primarily by the capacitance of the QD device. The total capacitance of a
metallic SWNT which forms a QD is given by (Fig. 4.1) C' = Cs + Cq + C,.
As a first approximation, Cy can be estimated from the geometrical capac-
itance of a SWNT. For a metallic SWNT embedded in a dielectric €,., the
gate capacitance is given by Cy = 2mwege, L/In(2L/d) [91], where d and L are
respectively diameter and length of a SWNT. For typical values: ¢, = 4.4
[92], L ~ 1pum and d = 1.5nm one obtains Cy ~ 35aF and a charging en-
ergy U. ~ 5meV. This simple estimate shows that the CB regime should
be easily accessible at low temperatures (T < 60 K).

Except for the quantization around the circumference of a CNT, the
finite length (contact spacing) of a CNT impose an additional quantization
along it physical axes. The energy level spacing due to the spatial con-
finement JF is determined by the length L of CNT and the Fermi velocity
vp = 8 x 10°m/s. For a "particle-in-a-box” approximation, the level spac-
ing derived from the linear dispersion relation for a metallic SWNT has the
following form [17]
hUF
4L’

where h is the Planck’s constant and it is assumed here that orbital degen-

5F = (dE/dk)Ak/2 = (4.1)
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eracy is lifted.

The energy level filling in a QD can be described with the so-called ad-
dition energy AFE. In the case when all degeneracies are lifted, the addition
energy is simply given by the sum of the charging energy and the level
spacing,

AE =U.+E. (4.2)

From Eq. 4.2, it follows that CB regime can be described with just two
energy scales, U, and JE. This is the main result which follows from the
constant interaction approximation for CB. We will extensively use this
approximation in the discussion of our experimental data. However, this
assumption will be refined when we take into the account orbital and spin
degeneracies in CNTs.

Full spectroscopy on a QD in the CB regime can be obtained if kT < U,,
0F. This is the so-called quantum regime of CB, where the electron trans-
port occurs through an individual quantum level. Due to resonant tunnel-
ing [9] conductance G in the linear response (Vy4 — 0) displays the so-called
Coulomb blockade peaks upon varying V,. This can be understood follow-
ing the illustrations in Fig. 4.3(a~c). The transport through a QD can be
alternated by tuning V,;. The addition energy gap (AE) forbids electrons to
jump on and off the QD (4.3a). By changing Vj, the electrostatic potential
of the QD (¢n) can be changed in such a way that one of the states now
lies between pg and pp allowing electron to jump from the source to the
drain electrode via the dot (4.3b). The current will flow until the chemical
potential of the QD is changed again, leaving the QD witha N +1or N — 1
electrons (4.3c). The continuous change of V; leads to periodic CB-peaks
which appear at discrete gate voltages (4.3d). The period of CB-peaks is
given by [73]

C e oF

AVy = ngAE— C, t e

where we have defined the factor a = Cy/C < 1. The factor a converts a

change in the gate voltage to a change in the electrochemical potential on

a QD. In simple words, it describes the strength of the coupling between a
QD and a gate.

The characteristics of the CB-peaks is now discussed. For an asymmetric
double barrier structure, at T' = 0, the full width at half maximum (FWHM)
of the resonance I', is given by the sum of the coupling to left I'; and
right T, leads [9]. At finite temperature, the Fermi distribution of electrons
in the reservoirs yields thermally broadened peaks [73]. The peak in the
conductance in the CB regime can be expressed by [79],

_ —2 ea(vg - Vgres)
= ——cos _
kT UpT

(4.3)

Gpeak(‘/g) (44)
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Figure 4.3: Schematic diagram of a quantum dot in the Coulomb blockade
regime. Influence of the gate voltage on the transport through a QD is discussed.
The quantum dot has discrete, spin degenerate, energy levels. Two tunnel barriers
isolate the QD from the source and drain reservoirs with chemical potentials pg
and pp, respectively. (a) The quantum dot has N electrons and the gap energy
between highest populated level and the first unoccupied one is AE. For small
source-drain bias, transport through the QD is forbidden. (b) Energy levels can
be moved with changing electrochemical potential of the QD. Once an energy level
is lying between pus and pp, a single electron transport occurs. In this case, the
number of electrons on the QD alternate between N and N — 1 making transport
through QD possible. (c) If the chemical potential on the QD is changed even
further, the level is no more in the bias window and transport ceases, leaving the
QD with N — 1 electrons. (d) Conductance versus gate voltage characteristic for
the SET effect corresponding for the situation from (a-c).

where V[ determine the peak position for resonant tunneling. Eq. 4.4
reflects the derivative of the Fermi function in metallic leads and has FWHM
of AVgFWHM = 3.5kpT/ea. From Eq. 4.4 it is evident that CB-peak in this
regime should scale as Gy ~ 1/T, where G is the maximum conductance
of the CB-peak. At the lowest temperatures for the tunneling through a
single electron level, Gy is expected to saturate (order of e?/h) and peak
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width should saturate to value of the energy level width I'.

An increase of the bias voltage can also induce a change in the electron
number on a QD. For a sufficiently large difference between the Fermi en-
ergies in the leads (Ep; — Epo > U.), one or more energy levels in the QD
become available that SET can occur. This situation with the corresponding
I — V4 characteristic is illustrated in Fig. 4.4a-d.
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Figure 4.4: Schematic diagram of a quantum dot in the Coulomb blockade regime
upon a change in the bias voltage. (a) For small source-drain bias (eViq), the
electron transport is not allowed because there is no available level in the bias
window. (b) Applying a large eVsq the bias window extends to include the first
unoccupied level in the QD. (c) Further increase in bias enables one to probe
directly the level spacing in the QD. (d) Conductance versus bias voltage for the
SET effect.

4.1.3 Experiments in the Coulomb blockade regime

The samples presented in this section are contacted with Ti/Au bilayer,
where the contact separation amounts to L ~ 1um. In Fig. 4.5a a low
temperature measurements is shown of a metallic SWNT in the Coulomb
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blockade regime. In the plotted V, range (AV, = 2V) more than hun-
dred CB-peaks appear. The conductance dependence versus temperature
(T £ 10K), is shown for several CB-peaks in Fig. 4.5b. One can see that
the CB-peaks are getting more pronounced with decreasing temperature.
Their hight increases and width reduces. This already suggests that reso-
nant tunneling occurs through a single energy level. A continuum of energy
levels would lead to a constant, temperature independent maximum con-
ductance [78].

a) b)

Figure 4.5: (a) Conductance G versus Vy at T=300 K (dashed line) and T=2.3 K
(full lines). Pronounced CB-peaks are observed at low temperature. (b) The low
temperature dependance of the conductance vs. Vj for several CB-peaks.

For a more quantitative analysis we will concentrate on the temperature
dependance of a single CB-peak shown in Fig. 4.6a. The conductance of
the CB-peak increases while its FWHM decreases if the temperature is
lowered. The measured data are represented by symbols and solid curves
are fits to Eq. 4.4. The fitting parameters are Gy, T and a. At the lowest
temperature (T~ 300 mK) a very high conductance (G ~ e2/h) is observed,
proving that we indeed observe tunneling through a single quantum level.
Since the contact separation for this device is L = 1 pum we conclude that the
mean-free path in the measured SWNT is [ > 1 ym. This is in agreement
with theoretical calculation and previous experimental observations [93, 66].

In Fig. 4.6b, the maximum conductance of the CB-peaks is plotted ver-
sus inverse of the temperature. The full line represents a linear fit which is
expected from relation 4.4. Additional information can be obtained from the
temperature dependance of the CB-peaks width. The FWHM of CB-peak
is obtained from fits to a Breit-Wigner type of curve (Lorenzian), which
describes tunneling through a single resonant level. In Fig. 4.6¢c the mea-
sured data for the width of CB-peak are plotted versus temperature and



44 4 Single-wall carbon nanotubes as quantum dots

158 160 162 164 166 168 170 172 174

Vg(mV)
2.0 b) " II\_/!easu;_edGGowT 6| u Measured A\F}SM
inear fit Gy 51 —— Linear fit AV,~3.5k. Tleo.
1.5 9 B
< —
% >
= 1.0 - :E C)
%) . £53
<
0.51 5]
0.0 " .
[ |
0.
0005101520 25303540 000510 1.5 20 2.5 3.0 3.5 4.0 4.5
1K) T(K)

Figure 4.6: (a) Linear conductance of a SWNT QD as a function of the gate
voltage and temperature. The symbols represent the measured data and the solid
lines are fits to Eq. 4.4. (b) The conductance maximum of the CB-peaks (Gg)
versus 1/T. (c¢) The temperature dependance of FWHM of the CB-peak. The
solid lines are linear fits to Eq. 4.3. From the fitting a coupling to the gate o =~ 0.3
is extracted.

the full line is a linear fit to Eq. 4.4. The FWHM reduces linearly with low-
ering the temperature, as expected for the thermally broadened CB-peak
(see Eq. 4.4). However, at the lowest temperature, we observe a saturation
in the CB-peak width. This most likely reflects the intrinsic broadening
of the quantum level I'. From the linear fit of temperature dependance of
the FWHM CB-peak, one can also extract the coupling to the gate, a. We
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obtain o = 0.3 assuming that the measured and electronic temperatures are
equal. Note that this value indicates a very efficient coupling to the gate
(maxz = 1), which is also evidenced in a small period of CB-peaks as a func-
tion of the gate voltage (AV, ~ 15meV). Once we know o and AV, we can
estimate the addition energy using Eq. 4.2, AE =~ AV, - o = 4.5meV. This
is in fair agreement with the addition energy estimated from the contact
spacing AFE ~ 6 meV.

Although, the gate dependence in the linear transport regime provides
essential information about a QD, full spectroscopy can be obtained by
acquiring a grey-scale plot, where differential conductances are represented
as a function of both V; and V4. The Coulomb blockade regime in a
grey-scale plot shows up as a diamond like structure (Coulomb blockade
diamonds) [9]. A typical grey-scale plot for yet another sample with the
same contact separation as before is shown in Fig. 4.7. The important
energy scales are indicated in the figure.

Inside the Coulomb blockade diamonds, no current flows through the
device. The trace in the gate near zero bias is shown in Fig. 4.7b,
where the finite conductance is recovered at degeneracy points as previ-
ously explained. The non-linear regime can be explored by fixing the
gate voltage (for example in the middle of the Coulomb blockade dia-
mond) and taking traces of dI/dVygq versus Viq. For small bias voltage
(Vsa < U./e), the current through the device is blocked. However, at finite
bias (Vsq > U./e) the current starts to flow i.e. the off set of the Coulomb
blockade diamond directly reflects the charging energy. The I — V4 char-
acteristic corresponding to this situation is shown in Fig. 4.7c as a black
curve. From the grey-scale plot, the conversion factor « is easily deduced:
a =U./eAV, = 0.3. This is in excellent agrement with the value obtained
from the analysis of individual Coulomb blockade peaks as previously de-
scribed. In this way we can determine the conversion factor o without
knowing the specific values of the capacitances in our system. Moreover,
in the non-linear regime (eVyq > U,), one can probe the excited states of a
QD. As illustrated in Fig. 4.4, every time when a new level enters the bias
window, one more channel is available for transport through the QD. In this
case current makes step-like jumps which appear in the differential conduc-
tance as sharp peaks. The additional lines outside the Coulomb blockade
diamond in Fig. 4.7a correspond to such conditions. These excited states
directly give access to the energy level spacing in the QD (as indicated in
Fig. 4.7a). From the grey-scale plot the average level spacing is estimated
to be 0F =~ 1meV. Inserting in Eq. 4.1 the length of the device L = 1 um,
the level spacing of 6F = 0.8meV is obtained. The agreement with the
measurements is good. This suggests that the QD is defined by the contact
separation (edge-to-edge).
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Figure 4.7: (a) A grey-scale plot of the differential conductance dI/dVsq for a
SWNT with contact separation L ~ 1 um at T'= 2K. The charging energy, the
energy level spacing and the conversion factor o« can be deduced as indicated in
the plot. (b) The linear response for the same region in Vj as in (a). (c) I — Viq
characteristics for the specific gate voltages indicated in (a).
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4.2 The Kondo effect

We have seen in the previous section that tunneling barriers which are
formed at the contacts determine the transport phenomena at low temper-
atures. In the Coulomb blockade regime electrons tunnel one by one. This
is the lowest order of perturbation theory. However, when the transparency
between the contacts and a QD is increased, higher-order tunneling pro-
cesses i.e. cotunneling can play an important role. For QDs with large
tunnel barriers at the contacts, such processes are hindered, because the
simultaneous tunneling of two electrons is proportional to T?. When the
transparency between the contacts and a QD is increased, the Heisenberg
uncertainty relation allows the electron on the dot to tunnel to one of the
leads and to be replaced by another electron from the leads via virtual state
on a QD (although, the energy level of the electron ¢q is well below the
Fermi energies in the leads). The time scale for such cotunneling process
is ~ h/U.. One can distinguish two cotunneling regimes: elastic and in-
elastic cotunneling processes. Elastic tunneling does not change the energy
on a QD and is mainly responsible for transport off-the resonance at low
bias (for example inside Coulomb blockade diamond). Inelastic cotunneling
processes leaves a QD in an excited state. The condition to observe this
process is eViq > A.,, where A, is the lowest on-site excitation energy.
Note, that these processes are very general and do not depend on the num-
ber of electrons or the total spin of a QD [81]. However, when the spin on
a QD is finite, spin-flip cotunneling processes add up coherently leading to
the appearance of a narrow peak in the density of states (DOS) right at the
Fermi level at sufficiently low temperatures. This is the Kondo effect.

4.2.1 Phenomenology of the Kondo effect

The Kondo effect was introduced about forty years ago to explain the resis-
tivity minimum at low temperatures observed in nobel metals with a minute
fraction of magnetic impurities [94]. The detailed microscopic theory ex-
plains this effect as follows: when the temperature T decreases below the
so-called Kondo temperature Tk, the localized magnetic impurity starts to
interact strongly with surrounding electron cloud, which finally results in
a singlet many-body ground state (as illustrated in Fig. 4.8a), reaching its
maximum strength at T=0K. The increase in the sample resistance is ex-
plained as a consequence of magnetic impurity acting as scattering center
for conducting electrons. This is illustrated in Fig. 4.8b with characteristic
logarithmic increase of the resistance below Tk [94].

The unambiguous experimental detection of the Kondo effect in quan-
tum dots structured in 2DEG [82, 95] and recently in CNTs [23] revived
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the interest for this phenomenon. In contrast to the CB regime which only
probes the electrons confined on a QD, the Kondo effect incorporates co-
herently delocalized electrons in the leads. The Kondo effect in QDs has
different behavior compared to traditional Kondo effect mentioned above.
The main phenomenological difference is that the resistivity increases for
metals with magnetic impurities while in a QD the Kondo effect leads to
increase in the conductance for temperatures below Tk as illustrated in
Fig. 4.8c.

This effect can be described in an elegant way, by the use of the Anderson
impurity model with single localized state. In the Anderson model, elec-
trons on the quantum dot are described as a single localized state, coupled
by tunneling barriers to two electron reservoirs. The electron in this state
has an energy €p. The state has Lorenzian broadening with a full width at
half maximum (FWHM) defined as I', which characterizes the contact bar-
riers with their finite tunneling rates I'/h =T';/h + ', /h. As we mentioned
previously, open contacts (larger T') allow higher order tunneling processes
to occur. In the case when the total spin on a QD has non-zero value co-
tunneling events will lead to spin-flipping processes. In that case, a narrow
peak in the density of states (DOS) appear right at the Fermi level, forming
the so-called Kondo resonance. This is illustrated in Fig. 4.8d. Appearance
of the resonance in the DOS will enhance the electron transport through
the QD, leading to increase in the conductance.

A detail quantitative description shows that the new ground state of the
Kondo system can be described by the Kondo temperature Tk which can
be expressed by three QD parameters [96, 97]:

Tx = \/UTereo(cotUe) /Ul jop o (4.5)

For T' > Tk the singlet ground states is destroyed and conductance is at-
tenuated. Out of equilibrium, when a bias voltage V4 is applied the Kondo
peak splits into two peaks, each one pinned to the chemical potential of the
metallic leads [98]. In this situation, the electrons at the Fermi level in the
higher energy lead can no longer resonantly tunnel into the enhanced DOS
in the lower energy lead, which suppress the conductance. A magnetic fields
alters the Kondo effect in the following way. The unpaired localized electron
state splits in an applied magnetic field into the so-called Zeeman doublet.
This also splits the Kondo resonance in the DOS into two resonances below
and above the Fermi energy in the leads.

In QDs the Kondo phenomenon can be studied with many tunable pa-
rameters which are elusive in magnetic alloys. The spin on the QD is tunable
by changing the chemical potential for example by a nearby gate electrode,
the voltage difference can be applied to the leads exploring non-equilibrium
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Figure 4.8: (a) The spins of the conduction electrons screen a localized magnetic
impurity. (b) The resistance versus temperature for different metals. Ideal metal
(for example gold) is shown with dashed line where at low temperatures resistance
reduces to constant value. With solid line R-T characteristic is shown for a metal
with magnetic impurities. Note the increase in the resistance below the Kondo
temperature. (c) The conductance versus temperature for the Kondo effect in a
QD with finite spin (S = 1/2) is shown with dashed line. Unlike, for the ”bulk”
Kondo effect (solid line) which decreases, the Kondo effect in a QD with localized
spin leads to increase in the conductance below Tx. (d) Schematics of a QD with
one electron in the single-particle level at energy £¢ and broadening I'. The Kondo
state emerge as a consequence of the spin-flip cotunneling processes in the density
of states at the Fermi level.
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phenomena. Control of the Kondo effect in magnetic field is especially
appealing in CNT QDs, where only Zeeman term contributes. Moreover,
studying the Kondo effect for higher spin states i.e. S =1 is possible in
CNT QDs because of their unique band structure (two degenerate orbital
levels) [23, 87].

4.2.2 Observation of the Kondo effect

The condition for observing the Kondo effect is a good coupling of the QD
to the leads (T ~ 0.5) and T, < Tk. To satisfy the first condition we have
used palladium for the metallization of the electrodes which are attached to
the CNT. As we have mentioned before palladium makes excellent contacts
to CNTs. The samples presented in this section have the contact separation
of L ~ 300nm. High conductive (G ~ 2¢%/h), metallic SWNTSs are chosen
by the electrical characterization at the room temperature (Chapter 2). The
low temperature measurements have been preformed in a 3He system with
a base temperature of T~ 300 mK to fulfill the second condition.

In the non-linear regime the Kondo effect manifests itself as a high con-
ductive peak around zero bias. When T' < Tk, the FWHM of the Kondo
resonance is roughly given by 2kpTk [95]. This is one way to extract Tk.
The traces in bias for two measured Kondo ridges are shown in Fig. 4.9 (full
lines), together with fits (dashed lines) with the extracted Ty values. The
other signature of the Kondo effect is the logarithmic increase of G with de-
creasing temperature. In the Kondo regime, conductance G is expected to
approach the unitary limit Gy = 2¢2?/h for T — 0. Approaching the unitary
limit by decreasing the temperature, G should follow a universal scaling
form, which can be approximated by an empirical form [97, 99],

G(T) = Go/(1 + (2% — 1)(T/Txk)?)*, (4.6)

where s = 0.22 for spin S = 1/2 on the dot. The temperature dependence
(open circles) for the same Kondo ridges as in Fig. 4.9a are shown in
Fig. 4.9b. The solid curves are fits to Eq. 4.6, where Gy and Tk are used as
fitting parameters. This is yet another way to extract Tx. If we compare
Tk extracted from the differential conductance and the temperature depen-
dence the agreement is good. Unfortunately, the base temperature in our
fridge (T'=300mK) is not low enough to observe a clear saturation of the
conductance at the Kondo ridges. The obtained values for G from the fit,
(Go =~ 1.57¢2/h for the first Kondo ridge and G ~ 1.65¢%/h for the second
one) suggests an asymmetry of the contacts which will reduce the maximum
conductance according to the resonant tunneling result Gy o I',.T';/T.
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Figure 4.9: (a) dI/dVsq versus Viq for the two Kondo ridges taken at
T =300mK. The dashed lines are fits to the measured data. The width of
the Kondo ridges is proportional to 2kpTx. Extracted Kondo temperatures to
corresponding curves are shown on the plots. (b) The temperature dependance of
the maximum conductance for the Kondo ridges in (a). The solid curves are fits
to Eq. 4.6. Corresponding Kondo temperatures are indicated.

Up to now, we have discussed the Kondo effect for S=1/2. As for the
QD with S=1/2, the triplet state S=1 can also be screened by cotunneling
processes. Since two orbital states should be degenerate in energy for a
SWNT, expected degeneracy is the four-fold (including spin) and higher
order spin state e.g. S=1 in principal can be formed for an even number of
electrons. In the next section we report on the observation of the different
shell filling in a metallic SWNT.
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4.3 Shell pattern of a SWNT quantum dot

In this section, we will focus first on one set of measurements which we will
analyze in great detail. This set of data is shown in Fig. 4.10. Fig. 4.10a
shows the linear-response conductance G as a function of gate voltage V.
Fig. 4.10b and c display the corresponding grey-scale plots of the differential
conductance G4 in zero magnetic field and B = 5T, respectively. White
corresponds to low and black to high conductance.

The observed patterns correspond to a quantum dot with a relatively
strong coupling to the contacts. Signatures of the latter are high conduc-
tance ridges, observed at zero bias (Viq =~ 0) and B = 0, caused by the
Kondo effect. This effect is a many-electron effect and requires a relatively
high tunneling coupling to the leads in order to be appreciable at temper-
atures where the measurements take place. As required [82, 83], we find
that G increases if the temperature is lowered below ~ 4K to saturate at
the lowest temperature close to the unitary limit of G = 2¢2/h. The char-
acteristic energy scale, i.e. the Kondo temperature Tk, has been deduced
from the temperature dependence of G in ridge 3 (not shown) and found
to be Tk ~ 2K. The conductance enhancement due to the Kondo effect is
observed at zero source-drain voltage if B = 0. In a magnetic field, how-
ever, the conductance enhancement is reduced and a splitting of the peak
conductance to finite source-drain voltages is expected [82, 98]. This split-
ting is visible in Fig. 4.10c which was measured in a field of 5T. That the
linear-response conductance G is suppressed in a magnetic field is clearly
seen in Fig. 4.10a in which the solid (dashed) curve correspond to B = 0
(B=5T).

Because the many-electron effects (Kondo effect) are suppressed in mag-
netic field, we can use the linear-response conductance measurement in
magnetic field (dashed curve in Fig. 4.10a) to assign the charge states of the
quantum dot with reference to the single-electron tunneling picture. A tran-
sition from a ground state with N electrons in the dot to one with N+1 gives
rise to a peak in the conductance, whereas G is suppressed in between. This
pattern is nicely seen in the dashed curve of Fig. 4.10a, in which transitions
have been labelled. Evidently, these conductance peaks form a repeating
pattern in clusters of four. This pattern is the generic shell pattern of an
ideal CNT quantum dot [86, 87]. It is caused by the four-fold degeneracy
of 0D-eigenstates, two of which stem from spin and the other two from the
so-called K — K’ orbital-degeneracy of graphene [35]. The four-fold pattern
can be regarded as a measure of the quality of the SWNTs. It is not ob-
served in all SWNTs and even if observed it is not usually present over the
whole gate voltage range. But it can repeat over several shells, not just two
as shown in Fig. 4.10. The degeneracy may be lifted by disorder and by
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Figure 4.10: (a) Linear response conductance G as a function of back-gate volt-
age V; of a SWNT device with contact separation L ~ 300nm (edge-to-edge of
reservoirs), measured at 7=300 mK and in a magnetic field of B = 0 (solid curve)
and B =5T (dashed curve). A clear clustering in four peaks is observed (pro-
nounced in magnetic field), which suggests a single-electron shell pattern with
four-fold degeneracy. Charge states corresponding to a filled shell (inset) are
labelled as 0 or 4. (b,c) Corresponding grey-scale plots of the differential con-
ductance dI/dVyq (darker more conductive) at B =0 (b) and B=5T (c) as a
function of gate Vy and source-drain voltage V4. In the first shell, high conduc-
tance Kondo ridges (visible at Viq ~ 0) are observed for charge states 1 and 3,
whereas they appear for states 1/, 2, and 3’ in the second shell. The Kondo ridges
clearly split in the applied magnetic field.
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the contacts which may couple differently to the two orbital states. As has
been pointed out be Oreg et al., the four fold pattern may be absent even
in a ‘perfect’ SWNT because the two orbital states can respond differently
to the electrostatic gate-field if inhomogeneous [100].

Let us continue to analyze our data in terms of the constant-interaction
model [90]. In order to assign the states only two parameters are needed:
the single-electron charging energy U, = e¢2?/C and the single-electron level
spacing 0 E. Note, that 6 F measures the energy difference between a filled
shell to a state with one additional electron. This is sketched in the inset
of Fig. 4.10a. To add an electron one has to provide an ‘addition energy’
composed of charging energy U, plus level-spacing 0 F, the latter only if the
electron must be added into a new shell. Since AFE is proportional to the
gate-voltage difference between adjacent conductance peaks, the labelling
of states in terms of charge N in Fig. 4.10a should be understandable.
N = 0 mod 4 corresponds to a ground state with a filled shell. Due to
the large addition energy, the conductance is strongly suppressed for a filled
shell, giving rise to the diamond-like white areas (denoted by A, B and C) in
the grey-scale plots. Adding electrons to the filled shell one by one (peaks in
G, dashed curve of Fig. 4.10a), we reach the state N = 4 which corresponds
again to a filled shell.

In the following, the ground states will be labelled by N = 0...3 for the
first quartet and N = (0...3' for the second, where N = 4 = 0. Relying on
the constant interaction model, the ratio between the average level spacing
and charging energy amounts to E /U, = 1 in our data. It is seen, however,
that U, is constant to a good approximation, but that § F varies. For the
respective diamonds A, B and C, the level spacing 6 F amounts to =~ 7, 5,
and 3meV, respectively. Theoretically, the level-spacing of an ideal SWNT
is given by 0E = hvp /2L, where vp = 8 x 10°m/s is the Fermi velocity
and L the length of the tube that determines the 1D cavity [35]. Taking
the nanotube length L measured from the edges of the contacts, which for
this sample amounts to L ~ 300 nm, the equation predicts a level-spacing of
0F ~ 5.5meV in good agreement with the experimental values of 3 — 7 meV.
The data in Fig. 4.10 yields for the charging energy U, = 5.3 £+ 0.5 meV and
a gate-conversion factor of a := Cy/C of 0.08.

Focusing on the high-conductance Kondo ridges at zero bias voltage, we
see in Fig. 4.10 a ridge at charge states N = 1 and N = 3, whereas G
is suppressed at half-filling, i.e. at N = 2. The situation is different for
the second quartet, where Kondo ridges are observed for all three states
N =1, 2 and 3. This phenomenon was reported before by Liang et al. [87].
Whereas a spin-1/2 Kondo effect is expected for N = 1 (one electron)
and N = 3 (one hole), the situation at half-filling, i.e. at N = 2 is less
obvious. The observed Kondo-effect was assigned to a spin-1 triplet state in
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Ref. [87]. In the following we re-examine this assignment. To do so, we have
to go beyond the ‘free’ electron model and consider among other things the
exchange interaction. There are three additional parameters: First, it has
been pointed out that the orbital degeneracy need not to be exact [86, 87].
The orbital mismatch is denoted by 6. With regard to on-site charging
energy the doubly occupancy of one orbital is a bit higher in energy as
compared to placing each of the two electrons in a separate orbital. This
parameters has been introduced by Oreg et al. [100] and is denoted by dU.
Finally, placing the two electrons in different orbitals gives rise to a spin-
dependent exchange energy term, which according to Hund’s rule favors
the triplet state, i.e. the state with spin S = 1. This parameter is denoted
by J. These parameters have been extracted, both for MWNTs [86] and
SWNTs [87] and the analysis of our data confirm the previously obtained
values. The importance of the parameters in descending order is §, J and
60U as the least important one. The former work by Buitelaar et al. reports
0 ~ 0.2 and J < 0.09 and the latter work by Liang et al. reports § = 0.3,
J ~ 0.1 and 6U < 0.1 (all numbers are measured in units of level spacing
0F). We neglect 6U because it is small and typically much smaller than
the bare level broadening I', which - as we will emphasize - matters as well.
Since the Kondo effect is the dynamic screening of the local spin by exchange
with a sea of electrons, it is tempting to assign the Kondo ridge for N = 2 to
a spin-1 (triplet) ground state. However, with regard to the just mentioned
parameters, this appears to be unlikely, because J < §, favoring a spin-0
ground state [100].

Let us first contrast the possible states at N = 1 and N = 2 for the
case of degenerate orbitals (6 = 0) and without exchange (J = 0), shown in
Fig. 4.11a, with the case of a finite level mismatch and a finite exchange en-
ergy, shown in Fig. 4.11b. In the first (maybe too naive) model of Fig. 4.11a,
the degeneracy equals 4 at N = 1 and clearly Kondo physics can emerge.
At N = 2 the degeneracy is even larger, amounting to 6 and second-order
elastic spin-flip processes are energetically allowed so that Kondo physics
can emerge as well. Here, two states are paired-electron states and the
other four may be labelled as one singlet state with spin S = 0 and three
triplet states with S = 1, denoted as S and T states. The Kondo effect
may be expected to be even enhanced in this case due to the larger number
of states [101]. This scenario corresponds to the Kondo effect for which
the singlet and triplet states are degenerate. This has been realized experi-
mentally in semiconducting quantum dots by tuning the states with either
magnetic or electric fields [101, 102, 103]. Once we go over to the more real-
istic model shown in Fig. 4.11b, assuming that exchange and level mismatch
are non-zero and of comparable magnitude, the N = 1 states remains ‘nor-
mal’ in the sense that only the lowest lying orbital need to be considered.
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At half-filling, i.e. at N = 2, there are however two possibilities [100]: if
exchange dominates (J > ¢), the ground state is the spin triplet (T) state,
whereas if the opposite holds, the ground state is a paired electron (PE)
residing on the lowest orbital state. The energy difference between the T
and PE states is given by A = § — J [104]. Although the Kondo effect is (in
principle) possible for the triplet, there is no Kondo effect possible for paired
electrons. Note, that unlike previous discussions, there are three cases to
consider at half-filling. Two may give rise to Kondo and one does not. To
have an abbreviation at hand we denote the three N = 2 states with ST
(degenerate ground state), PE (paired electron ground state) and T (triplet
ground state). As mentioned above, the Kondo ridge at N = 2 has been
assigned to the triplet state [87]. Though this is tempting at first sight,
there is no necessity. In fact, this assignment is unlikely, first because J
is measured to be small (usually smaller than §) and secondly, the Kondo
temperature Tk for triplet Kondo is predicted to be much smaller than Tk
for S =1/2-Kondo [105] (an estimate will follow below).
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HD = FPHEDHEFDHEFH N=2
(_T_—) H‘TF:S N=1

(b) (_T_-T-) T (3 states) ifJ>5
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Figure 4.11: Ilustration of the state-filling scheme for one (N =1) and two
(N = 2) excess electrons. In (a) the level-mismatch § and the exchange energy
J are zero, whereas these parameters are non-zero in (b). PE denotes a paired-
electron state, S (T) the singlet (triplet) two electron state. The Kondo-effect may
arise in three cases: obviously for the spin-1/2 with one excess electron (N = 1)
and if N = 2 for the spin-1 triplet state, but also for the case for which 6 = J =0,
i.e. when the singlet and triplet states are degenerate (ST state).

We now look at the excitation spectra for N = 1,3 and N = 2 in
zero field. This is shown in Fig. 4.12(a-c), where (a) and (b) correspond
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to odd filling (N = 1,3) and (b) to half-filling (N = 2). The energy A
of the first excited state at fixed NV relative to the ground state is given
by the level mismatch §, both for V =1 and N = 3, ie. A3 = 6.
This is illustrated in the respective insets on the right. The first excited
states show up as a conductance peak at finite Vg4, corresponding to the
excitation energy. This is a so-called inelastic co-tunneling process. We
obtain from the measurement A; = 0.92meV and As = 0.85meV. Hence,
the level mismatch is given by 0.89 +0.4meV. For the N = 2 case we
have to distinguish two possibilities: if J > §, the ground state is the
triplet (T) and the excited state the paired electron (PE) state, yielding
Ag =J — 4. If on the other hand J < §, the states are reversed, yielding
Ay =0 — J. In general, Ay = |6 — J|. From the experiment (Fig. 4.12¢) we
deduce As = 0.88meV. We stress that we measure on one and the same
shell so that we can use the parameter §, measured for the N = 1, 3 case, also
for the N = 2 case. Comparing the numbers, leaves open two possibilities:
either the exchange parameter is quite small, i.e. J ~ 0 (taking the possible
errors into account J < 0.1meV), or it is quite large J 2 1.65 meV. If the
latter would be true, it would be a remarkable coincidence that we find
|60 — J| ~ § with J ~ 26. Moreover, the ratio J/6E > 0.3 would be quite
remarkable with regard to previous measurements. On the other hand,
comparable values for J have theoretically been predicted, however only
for small diameter tubes. For example, J/JE was estimated to be > 0.22
and > 0.44 for a (10,10) and (5,5) tube, respectively [100]. However, the
diameter d of CVD-grown NTs is known to vary substantial and in particular
we find that d 2 2nm (chapter 2.), from which one would theoretically
predict an exchange parameter of order J/§F ~ 0.1, which disagrees with
the finding above. If J were indeed as large as 29, and therefore J > 4, the
triplet state would be the ground state at half-filling, i.e. at N = 2 and
N = 2'. The Kondo effect at half-filling must then be assigned to the S = 1
Kondo effect. To explain the absence of the Kondo effect for NV = 2 and its
presence for N = 2’, one would have to argue that the Kondo temperature
is smaller than 300 mK at N = 2, whereas it is larger at N = 2’. Pustilnik
et al. [106] showed that the Kondo temperature Tg—' for the triplet state
is smaller than Tk 1/, for the spin-1/2 case. More precisely, Tk 1 can be

estimated according to kpTx 1 = (kBTK$1/2)2 /OE. The average width of
the zero-bias resonances at N = 1,3 in the left quartet is measured to
be 0.35meV, yielding as a prediction Tk ; ~ 0.25K. In the right quartet
the same procedure yields for N = 1’,3’ a mean width of 0.8 meV, from
which one predicts Tk 1 ~ 1.5 K. Hence, the comparison with the measuring
temperature does not exclude S = 1 Kondo, as Tk, S 0.3K in the left
quartet and Tk 1 > 0.3K in the right one. However, the ratio Ty 1/Tx 1/2
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measured in the right quartet is inconsistent with theory which predicts
Tk,1/2/0E. The former is evaluated to 0.8...1.6, whereas the latter is at
most 0.3. In simple terms, the appearance of the two resonances at N = 1/
and N = 2’ with essentially one and the same width (1.1 and 0.9 meV,
respectively), makes triplet-Kondo quite unlikely.

In magnetic field the states further split due to the Zeeman energy given
by +gupB/2, where pup is the Bohr magneton and g the so-called g-factor.
g has been measured in related electrical measurements on carbon nanotube
quantum dots and found to agree with the free electron value of g = 2 [86,
47, 107]. Due to the Zeeman-splitting the excitation spectrum changes. At
N =1 and for small magnetic fields (with regard to the level mismatch), the
spin-1/2 Kondo resonance is expected to split [86], evolving into inelastic co-
tunneling with an excitation energy given by Az = gupB. Because of the
relatively large width of the zero-bias resonances, this shift is hardly visible
for small magnetic fields in the experiment. That is why we have chosen
a relatively large field of 5'T. This field yields for the Zemann excitation
energy 0.58 meV, taking g = 2. Note, however, that there is a second excited
state given by the level mismatch § =~ 0.9 meV. If we analyze the non-linear
differential conductance as a function of V4, we see two excitation lines
(one at positive and one at negative bias), which are markedly broadened,
suggesting an overlap of two excitation features, see Fig. 4.12a (grey overlaid
graph). The onset of the excitation peaks agrees with the Zeeman energy
(arrows from below). This analysis is of particular importance in the N = 2
case, because it allows us to distinguish the PE from the T ground state
unambiguously, see Fig. 4.13. If the ground state is the paired-electron state,
the first excitation occurs at energy Ags =6 — Ay — J ~ § — Ay (because
J &~ 0) and the second lies at d. In contrast, if the ground state is the
spin-1 triplet state the first two excited states have energy A = J+ Az — 9§
~ 0+ Az and J+ Ay =~ 20 + Az (because J &~ 26 in this case). This
is shown (approximately to scale) in the illustrations of Fig. 4.13b and c,
respectively. Based on the field-dependence of the excitation spectrum we
can predict the position of the excitation peaks for the two cases. In the
measurement, shown in Fig. 4.13a, the upper black arrows point to expected
excitations if the ground state is the paired-electron (PE) state, whereas the
upwards pointing open arrows correspond to the expected excitations for the
triplet (T) ground state. It is obvious that the agreement with the PE state
is much better. The excitation peaks at zero field do not move out to larger
energies expected for the T ground state, but rather shrink. In particular
there are clear low-energy shoulders visible which agree quite reasonably
with the expected lowest energy excitation energy for the PE ground state.

Taking all arguments together, this makes a convincing case for the
ground state at half-filling, i.e. for N = 2, which is the paired-electron
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Figure 4.12: Non-linear differential conductance dI/dVsq4 as a function of Vg at
Vg = const deduced from the data shown in Fig. 1b at zero magnetic field. (a)
and (b) correspond to the states N = 1 and N = 3, whereas (c) correspond to the
half-filled shell N = 2. All three dI/dV,q cuts have been placed in the middle of
the charge state. The visible excitation peaks occur at energy A and are due to
inelastic co-tunneling through the excited state. The relevant states are illustrated
in the respective insets on the right. The grey curve in (a) has been measured in
a magnetic field of 5T. Arrows point to Az = gupB = 0.58 meV using g = 2.

state. Moreover, the exchange energy must be very small. How do we then
have to explain the pronounced Kondo ridge at N = 2/, visible in Fig. 4.10b
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Figure 4.13: (a) Non-linear differential conductance dI/dViq as a function of
Vsa taken from the data shown in Fig. 4.10b at a fixed gate-voltage corresponding
to N = 2. The thick (thin) curve was measured in a magnetic field of B=5T
(B=0T). (b) and (c) illustrate the magnetic-field dependence of the first two
excited states at N = 2. The two cases are drawn approximately to scale using
the fact that J is either ~ 0 (PE ground state) or ~ 2§ (T ground state) deduced
from the data of Fig. 4.10 and Fig. 4.11.

?7 As we have pointed out when discussing Fig. 4.10, there are two cases at
half-filling that allow for Kondo: spin-1 Kondo in case of the triplet state
or the degenerate ground state, i.e. the ST-state. Based on our previous
discussion the former can be excluded, so that the only remaining possibility
requires degenerate orbitals. We know that the orbitals are not exactly
degenerate. The level mismatch, as deduced from the N = 1 — 3 states
amounts to ¢ ~ 0.9 meV, which is quite appreciable. Due to the relative
large width of the zero-bias conductance peaks at N = 1’...3' we are not
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able to deduce the level mismatch on the second shell along the same lines
as before for the first shell. Though it is possible that ¢ is smaller in the
second shell, it is unlikely zero. We emphasize, however, that it is crucial
to compare the level mismatch with the level width, due to the tunneling
couplings I'y and T'y to the respective contacts. If § < T', where I' := 'y +Ty,
the two orbital states cannot be distinguished and are in effect degenerate.
We know from other measurements on carbon nanotubes (and will show a
dramatic example latter on) that I" may vary a lot with gate voltage. Our
picture of the half-filled state is correct, if we can show that I' is smaller
than § within the first shell, but larger within the second. There are several
ways to deduce I'. One possibility is to deduce it from the width of the
excitation features at fixed N, another one is to analyze the transitions at
finite bias at the edge of the Coulomb-blockade (CB) diamonds. For the left
shell the excitation spectra for states N = 2 and N = 3 (see Fig. 4.12) yield
I' = 0.7meV, whereas a cut at V; = 3.1V, corresponding to the transition
0« 1, yields I' = 0.9 meV. Because we cannot resolve excitation features in
the right shell, we have to rely on transitions at the edge of CB-diamonds.
We deduce I' & 3meV at 0/ «» 1’ and I’ = 1.9meV at 3’ «» 4’. Clearly I' < §
for the left shell and I" > § for the right one in support of our statement. To
conclude this part, we can say that the Kondo effect at N = 2’ is not a triplet
Kondo, but arises because I' is larger than the level mismatch, resulting in
a ground state in which the paired-electron, the singlet and triplet states
are effectively degenerate. Our data is only consistent with a very small
exchange exchange term of J/0E < 0.02. Such a small value can only be
reconciled with theory [100] if either the tube has a large diameter of order
< 10nm or the interaction is locally screened, possibly by the presence of
other nanotubes forming a bundle.

Examination of the measured data shows that for the Kondo resonances
labelled with 1’ and 3’ in Fig. 4.10b, the positions of the maximum con-
ductance are situated at non-zero bias. This is shown in Fig. 4.14. This
phenomenon has been observed in semiconducting quantum dots and was
termed the anomalous Kondo effect by Simmel et al. [108]. It was suggested
by these authors that the effect is due to asymmetric and energy-dependent
coupling strengths I'y and I'; to the two reservoirs. The effect has thereafter
been confirmed theoretically in a single-impurity Anderson model [109]. The
authors show that the peak conductance is shifted provided that I'y # Ty,
but an energy dependence of I's 4 is not required. We stress here, how-
ever, that the Anderson model introduces an additional model-dependent
asymmetry in condition that U — oo, which is not realized in a real quan-
tum dot. At half-filling, there is particle-hole symmetry where electrons
(holes) can be exchanged via both the bare state at energy €y and the one
at ¢g + U. In this case, no shift of the Kondo peak is expected even if
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Figure 4.14: The Kondo resonance is observed to be offset with respect to the
bias voltage V4 for the mixed-valence state with filling 1/4 (N =1') and 3/4
(N = 3'), whereas it is centered at Vig = 0 at half-filling. (a) shows the respec-
tive differential conductance at constant gate voltage corresponding to part (b),
which reproduces the second shell of Fig. 4.10b. Arrows emphasize an additional
asymmetry, discussed in the text.

I's # I'y. Extrapolating G(T) to the unitary limit G(0) at zero tempera-
ture (not shown) using the standard expression to fit the Kondo effect, i.e.
G(T) = G(0)/ [1+ (21 — 1)(T/TK)2]2 [110], we obtain for the ridge at
charge state N = 3 a zero temperature conductance of G(0) = 1.68 ¢2/h,
out of which the I ratio is estimated to be ~ 2. Hence, there is an asymme-
try of magnitude comparable to Ref. [108]. Our statement, that the shift of
the Kondo peak to finite bias is absent at half-filling is beautifully reflected
in the data of Fig. 4.14. Due to the four-fold symmetry, half-filling corre-
sponds to charge state N = 2’ and indeed, this peak has its maximum at
Vsqa = 0. The other two resonances are shifted oppositely, one to Vig > 0
(N =1') and the other to V4 < 0 (N = 3'). The shift amounts to 0.22 meV.
These shifts are comparable in magnitude to the ones seen by Schimmel et
al., although they have observed only unipolar shifts. Finally we remark
that the transitions to the Coulomb-blockade diamonds, i.e. 2/ « 1’ and
3’ +» 4/ are asymmetric with respect to the Vg4, see arrows. Cross-sections
at constant gate-voltage through these transitions allow to deduce the re-
spective I'’s and their ratio: v := I's/T’y. We point out, that this asymmetry
is a consequence of the level degeneracy. Consider tunneling at finite bias
into the N = 1’ state. Because there is a four-fold degeneracy the effective
in-tunneling rate is enhanced by a factor of 4. In contrast, this phase-space
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argument does not hold for the out-tunneling rate. The respective current
steps are then given by (4e/h)I';T'y/(I's + 4I'4) for one bias polarity (e.g.
Vsa > 0) and (4de/h)TsTq/(4Ts +T'y) for the other polarity, where the factor
4 counts the degeneracy. It is clear from these two relations that the cur-
rent steps are only different for the two polarities if v # 1. The two current
steps, measured for the transition 3’ «» 4/, amount to = 20 and ~ 30nA,
yielding for the I'-ratio v ~ 2 (in agreement to what we have deduced be-
fore in a different way) and T's &~ 1.4meV and I'y = 0.7meV, so that the
total level broadening is approximately I' &~ 2meV. Also the latter value is
in agreement with the previously mentioned width of the transition, which
we measured to be I' =~ 1.9 meV.

4.3.1 Two-fold degeneracy

The observation of four-fold degeneracy reflects the band structure of an
ideal SWNT. We have just shown that the orbital degeneracy in a SWNT is
not complete i.e. the orbital mismatch (§) is finite. This is not surprising,
since the hybridization with the contacts or scatterers inside a nanotube
can lower the symmetry of the system [86, 87]. Furthermore, because of
poor control during the fabrication at nanometer scale it is expected that
0 vary randomly in different CNT devices. In the case of large § the band
degeneracy can be completely lifted, where the single-electron levels repel
each other (0F ~ U,.). However, the spin degeneracy is expected to be still
preserved. This is known as the two-fold degeneracy.

Schematics of the shell filling in a QD with two-fold degenerate levels is
illustrated in Fig. 4.15a. In the CB regime, the two-fold degeneracy reflects
in a grey-scale plot, as an alternating sequence of small and large Coulomb
blockade diamonds. Starting from an even filling number, AE = U, 4+ §FE
for the first added electron (large CB diamond) and U, for the second one
(small CB diamond). This is represented in Fig. 4.15b for the sample with
the contact (Ti/Au) separation of ~ 1 um. Note that from the difference
between large and small diamonds, the energy level spacing can be directly
deduced, 0 =~ 2meV. The size of the small diamonds reflects the charging
energy U. ~ 2.5meV. In addition, the observation of the excited states,
imply coherent transport through a single resonant level.

Since, the two-fold degeneracy reflects the fundamental property of the
single orbital state in a QD (Pauli principal) it is expected to be readily
observed. Surprisingly, deviations exist also in this case. The set of CB-
peaks is shown in Fig. 4.16a. The spacing of CB-peaks versus gate voltage
position is shown in Fig. 4.16b. A change in a period of the CB-peaks
directly reflects the energy level spacing. For this gate voltage region, the
two-fold degeneracy is present to some extent. However, for V; > —0.3V,
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Figure 4.15: (a) A schematic illustration of the shell filling for an odd and an
even number of electrons on a QD. (b) A grey-scale plot for a metallic SWNT
contacted with Ti/Au bilayer, L ~ 1 um taken at T'= 300 mK. The alternation
in a size of the Coulomb blockade diamonds is assigned to spin degeneracy of the
single electron level. In this case, the spin ground state on the QD has a sequence
S$=1/2—-0—-1/2—-0.
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the addition energy does not follow the expected alternating pattern for
two degenerate states. We emphasize that this is just a typical example
and our other measurements show similar or even more random behavior.
At this moment, the origin of this deviations are not fully understood. We
believe that most probably the presence of disorder in/on CNT induce the
potential which perturbed electron states in the QD, leading to the absence
of the expected two-fold degeneracy. Moreover, a non-uniform gate potential
profile can rise various spin flip processes, where the intuitive scheme of the
shell filling can be altered [47, 100].
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Figure 4.16: (a) Conductance G versus gate voltage V, in the linear response
regime, for a SWNT QD. (b) The spacing between CB peaks versus the same
gate region as in (a). To some extent the two-fold degeneracy can be observed
from the alternation of the CB-peaks spacing. However, a random change in the
spacing for Vy; > —0.3 most likely originate from the imperfection of the device.

4.3.2 Deviations from the expected shell filling

In the last part of this section, we will point to further deviations which can
not be accounted for within the simple shall filling pattern. Fig. 4.17 dis-
plays the dependance of the linear-response (a) and differential conductance
(b) of another sample contacted with Pd. The contact separation amounts
to L ~ 0.8 um. The linear-response conductance is bound by 2e?/h suggest-
ing that we measure individual SWNT. Four-fold clustering in the electron
addition spectrum is observed for more then five shells (4 — E), correspond-
ing to 20 electrons. Due to the three times larger length of this device as
compared to the one in Fig. 4.10 the energy scale is reduced by approxi-
mately a factor of three. The level-spacing amounts to dE ~ 1 — 1.5 meV
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and the charging energy to U, =~ 1meV. As with the data of Fig. 4.10 the
Kondo effect may appear at half-filling (o) or may be absent (), which ac-
cording to the previous discussion would correspond to the PE and S ground
state, respectively. There are differences, however. The most dramatic one
occurs in shell D for the three electron state (filling 3/4), marked with O.
Instead of the expected spin-1/2 Kondo, the conductance is actually sup-
pressed. This is seen as a pronounced white bubble. Because the Kondo
effect is present for the one electron state (filling 1/4), this implies breaking
of particle-hole symmetry. This effect is quite surprising and has not been
reported before. We do not have a convincing explanation but mention one
possibility. The three electrons at N = 3 may like to form a high-spin state
with total spin S = 3/2. However, this requires three different orbitals, but
there are only two in an ideal tube. It may be that the nanotube is not
perfect, rather a bundle or a multi-shell tube, which may provide additional
orbitals. We think that this scenario is unlikely, because we have previously
shown that the exchange in CNTs is small, and it is particularly small if
the interaction is screened by other tubes. It may be caused by a magnetic
defect due to residual catalyst particles, which may enhance the exchange
energy.

Similar gap-features are sometimes seen over the entire grey-scale plot.
We show in Fig. 4.18 a short section taken out of an extensive differential
conductance grey-scale plot of another sample. The contacting material is
Au in this case and the contact separation amounts to L ~ 1 ym. The con-
tact transparencies are lower here and typical two terminal conductances
are of order 0.1e%/h. Consequently, the main features in the differential-
conductance are Coulomb blockade (CB) diamonds. The generic four-fold
shell structure is not apparent. It is masked by the charging energy which
dominates here. The observed addition energy amounts to AE ~ 5meV.
We stress that the dI/dVyq measurements of Fig. 4.18a extend over more
than 17 electrons without any noticeably change. The linear-response con-
ductance (Fig. 4.18c) shows a very regular set of high conductance peaks at
the transition between neighboring charge states with peak values approach-
ing 0.8 2 /h. The spacing between these CB-oscillation peaks is surprisingly
constant, amounting to AV, =73 £5mV.

We present this measurement here, because of the presence of a striking
gap-structure, which is seen inside of all CB diamonds and which might be
related to the gap which we have mentioned before, i.e. the feature labelled
O in Fig. 4.17b. Two dI/dV,q cross-sections at constant V, are presented
in Fig. 4.18b. We find that the size of the gap A, varies a bit in different
charge state and is estimated to be A, ~ 0.7meV (0.3...0.9meV). Ad-
ditional suppression may be caused, if the nanotube is split by a strong
scattering center into two segments in series. In this case, however, a regu-
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Figure 4.17: (a) Linear response conductance plotted as a function of the gate
voltage V; and (b) differential conductance dI/dVsq (darker more conductive)
plotted as a function of V; and Viq for an another SWNT device with length
L ~ 800nm contacted by palladium. The shell pattern of four electrons each
extends over 5 shells (A — E). The Kondo effect occurring at half-filling is marked
with a, while 3 corresponds to the singlet ground state. O points to an anomaly,
a strong gap-feature arising for a three electron state. The non-linear dI/dViq
through the middle of this state is shown in (c).

lar periodic CB-oscillation pattern is not expected, because single-electron
transport requires that two charge states are degenerate in both segments
simultaneously. While this maybe possible occasionally, it would be sur-
prising if the levels would move in both segments with gate voltage exactly
equally. We therefore are convinced, that this scenario is wrong. Also a
possible parallel conductance through two (or more) different tubes can
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Figure 4.18: (a) Differential-conductance plot of a SWNT device with con-
tact separation I ~ 1 um at T=300mK (maximum conductance = e?/h, black).
Coulomb blockade diamonds are clearly seen. In addition gaps appear near zero
bias. (b) dI/dVsq as a function of Viq and at constant V, along the corresponding
lines, shown in (a). Conductance plotted as a function of the gate voltage. The full
line represent measurement taken at Vsq = 0 while dashed line at Vg = 1.5mV.
The shaded region correspond to (a).

be excluded, because this should appear in the grey-scale-plot as a bare
superposition of two CB-patterns. Moreover, the observed grey-scale plot
cannot be modelled as a regular CB-pattern multiplied by a gap-feature in
the vicinity of Viq ~ 0. This is evident from the Fig. 4.18c which shows
G(Vy) at Vsq =0 (full curve) and at Vyg = 1.5mV (dashed curve). In the
shaded region, corresponding to Fig. 4.18a, the suppression is only active
in between the CB-oscillation peaks, whereas the peaks themselves are not
suppressed, suggesting that the 0D orbitals extend from source to drain.
The low-conductance ‘bubbles’ are therefore confined to the CB-region of
the nanotube and this new effect is observable in transport through a single
carbon nanotube. This does not mean that there is only one single-walled
carbon nanotube present. The device may still consist of a small bundle or
a multishell tube, of which only one tube is effectively coupled to the reser-
voirs. In addition, the presence of magnetic impurities in the form of catalyst
particles cannot be excluded, so that the observed gaps may originate from
magnetic interactions with these particles. The Kondo effect which results
in a high conductance resonance can be described as an anti-ferromagnetic
exchange between the leads and the quantum dot. It is tempting to sug-
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gest that the opposite scenario, namely ferromagnetic exchange with, for
example, a magnetic particle, may suppress the conductance [99]

4.4 The Fano effect

In this section we analyze the high-G regime, where the transition from
a quantum dot to a weak link appear on the same CNT upon varying
Vy. Nonetheless, sharp resonances appear superimposed on the background
which varies slowly with gate voltage. The resonances are identified by their
lineshape as Fano resonances. We think that the interfering channel, leading
to these Fano resonances, have to be found in other tubes (within a single
bundle), which are weakly coupled to the reservoirs.

4.4.1 Introduction

The Fano resonance (FR) is a universal physical phenomenon which has
historically been discovered as asymmetric line profiles in spectra of rare
gases [111]. This effect has successfully been interpreted by U. Fano in
terms of the interference between an auto-ionized state and the contin-
uum [112]. FRs have for example been observed in the spectroscopy of
atoms and molecules [111], in electron, neutron and in Raman scattering
[113, 114, 115].

Generally speaking, the interference of a resonant state (the resonant
channel) with a continuum (the non-resonant channel) gives rise to Fano
line shapes. An illustration is shown in Fig. 4.19a. This phenomenon can
also naturally arise in coherent electrical transport through nanostructures.
Indeed, Madhavan et al. [116] observed Fano line shapes in the differential
electrical conductance dI/dV vs. V, while tunneling with a scanning tun-
neling microscope through an impurity atom on a metal surface. The first
observation of FRs in mesoscopic devices has been reported by Gores et
al. in a single-electron transistor fabricated into a gated two-dimensional
electron gas [89]. Recently, several groups reported the observation of FRs
in multi-wall carbon nanotubes (MWNTSs). Kim et al. [117] observed the
FR on crossed MWNTSs, while Yi et al. [118] reported on FRs measured in
MWNT bundles. Furthermore, Fano resonances have been measured on an
individual MWNT [119]. However, similar observations have not yet been
reported for SWNTs.

Following the notion of U. Fano [112], the energy-dependent conductance
G(FE) of a Fano resonance observed in a transport measurement can be
described in the following form [89]:

(e +q)?

G = Gnon'r‘es Gres T 1
(€) + 21

, (4.7)
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Figure 4.19: (a) Schematic view of a Fano system consists of a resonant channel
through, e.g. a quantum dot (QD), and a non-resonant channels. (b) Normalized
Fano line shapes calculated from Eq.4.7 for several asymmetry ¢ parameters. (c)
A scheme of two SWNTs connected to the left (L) and right (R) leads. Due to
different coupling strength the zero-dimensional states of each SWNT acquires a
different width expressed by I'1 2. The two interfering channels may be due to
two ‘individual’ SWNTs of a bundle or may represent the two transport channels
of one and the same SWNT.

where Gonres and Gres denote incoherent and coherent contributions to
the conductance. The detuning of the energy F from the center of the res-
onance Ej is described by the dimensionless parameter € = 2(E — Ey)/T,
where I' denotes the width of the resonant state. ¢ is the so-called asymme-
try parameter. Its magnitude is proportional to the ratio of the transmission
amplitudes of the resonant and non-resonant channel. In the original Fano
work [88], ¢ was introduced as a real parameter, in general however, it
must be treated as a complex quantity [120, 121, 122]. In the limit ¢ — oo,
resonant transmission dominates which leads to symmetric Breit-Wigner
resonances, see Fig. 4.19b. In the opposite limit ¢ — 0, the resonant trans-
mission appears as an anti-resonance, i.e. a symmetric dip. In all other
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cases e.g. ¢ = 1, asymmetric line shapes are obtained. These asymmetric
line shapes are characteristic for the Fano effect and that is why one refers
to them as Fano line-shapes.

Since the Fano resonance is the result of an interference effect, its line
shape is sensitive to the phase difference between the two transmission path-
ways. Fano resonances can therefore provide essential information on de-
phasing in mesoscopic systems [123, 121, 122]. In this respect it has the
same power as all other two-path ineterference experiments, for example
the Aharonov-Bohm experiment [124].

Here we report on the observation of Fano resonances in electrical trans-
port measurements on CVD-grown SWNTs, which were contacted by two
macroscopic Pd electrodes, serving as source and drain contacts. We discuss
the possible origin of the Fano resonances along the theoretical modelling.

4.4.2 Observation of Fano resonances in SWNTSs

Fig. 4.20a shows the differential conductance in the form of a grey-scale
plot for the same carbon nanotube (CNT) of Fig. 4.10, but now for a wider
gate voltage range. The corresponding dependence of the linear response
conductance on gate voltage V; is displayed in Fig. 4.20b. For large posi-
tive gate voltages (V; 2 4V) a clear Coulomb blockade pattern is observed.
As the gate voltage is reduced cotunneling effects start to dominant, form-
ing Kondo resonances within the well known four-fold shell pattern. This
behavior indicates that the coupling of the CNT to the reservoirs can be
increased substantially upon decreasing the gate voltage as discussed in the
previous section. Reducing the gate voltage further and hence increasing
the transparency to the contact blurs the Coulomb blockade diamonds. This
signals the transition from a quantum dot to an open wire, which occurs if
the life-time broadening I' approaches the level spacing é F which is of the
same order than the charging energy U.. In the limit I' >> U,, interaction
can be neglected. The overall transparency is then expected to approaches
unity, which for a single nanotube with four channels relates to an upper
bound in conductance of G = 4e?/h. Because of residual backscattering at
the contacts, a weak periodic conductance modulation is expected. This has
been observed recently in SWNTSs at a mean transparency of T' = 0.7 [21]
and was termed the Fabry-Perot interference effect. The mean net trans-
parency in our device approaches T' = 0.5 for the lowest gate voltage.
Instead of a smooth continuation from the cotunneling to the Fabry-
Perot regime, sharp resonances appear below V; = 2V. The two resonances
visible in Fig. 4.20a (labelled 1 and 2) are identified by their asymmetric line
shapes as Fano resonances. To show this, the measured gate dependence
of the linear conductance for the two resonances is magnified in Fig. 4.21
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Figure 4.20: (a) Grey-scale representation of the differential conductance
(dI/dVsq) versus bias (Vsq) and gate voltage (V4), and (b), the corresponding
linear response conductance versus gate voltage. Due to the strong dependence
of the tunneling coupling to the leads on gate voltage, several physical phenom-
ena are observed together. These are from right to left: Coulomb blockade, the
Kondo effect and Fano resonances, corresponding to regimes of low, intermediate
and high tunneling coupling. Note, that the conductance dramatically increases
for V; < 3V reaching a maximum value of G ~ 4e®/h as expected for an ideal
metallic SWNT.
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Figure 4.21: Comparison of the measured (symbols) linear response conductance
G for the resonances labelled 2 (a) and 1 (b) in Fig. 4.20a with the Fano formula
Eq. 4.7 (sloid curves). AV :=V, — Vgo7 where Vg0 denotes the gate voltage at the
center of the resonance: Vg0 = 1.9, 1.54V for resonance 1 and 2. The extracted
values from the fits to the Fano equation are: ¢ = —1.0 £0.16, —0.63 4+ 0.05 and
I' =0.25+0.05, 0.49 + 0.08 meV for resonance 1 and 2, respectively.

(symbols) and shown together with fits (solid curves) of Eq. 4.7 using the
appropriate factor to convert gate voltage in energy (i.e. eCy /Cs). Here,
we compare two parameters that are obtained from the fitting procedure,
I' and q. T equals ~ 0.25 and =~ 0.5meV for resonance 1 and 2, respec-
tively. Before, we have analyzed I' in the cotunneling regime and found
values ~ 2meV. Hence, the width of the two new features is substantially
smaller than the width of the broadened nanotube levels. This difference
gets even larger if we take into account that I' grows further if one proceed
from the cotunneling regime at V;, ~ 3.5V to the ‘open’ regime at V; ~ 2V.
Both fits yield an asymmetry parameter ¢ close to unity, i.e. ¢ = —1 and
q = —0.65 for resonance 1 and 2, respectively. An asymmetry parameter
with a magnitude close to 1 corresponds to asymmetric line-shapes that
are characteristic for Fano resonances, see Fig. 4.19b. We note that both
resonances have comparable ¢ parameters of order 1 and that the change
in conductance is for both cases large and of order e?/h. The Fano fit
is very good for resonance 2 and it is reasonable for resonance 1. In the
latter case the deviation are getting appreciable away from the resonance.
Referring to the greyscale plot in Fig. 4.20a we see that this resonance is
superimposed on a low-conductance and strongly blurred Coulomb block-
ade diamond. The assumption of the Fano description that the background
contributes to the interference with a constant non-energy dependent term
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is only approximately valid here. These two resonances will be analyzed
further below.

The emergence of Fano resonances in single-wall carbon nanotubes is
exciting and we have therefore measured this sample again, now lowering
the gate voltage even further. This measurement is shown in Fig. 4.22. A
complex pattern of resonances appears (arrows). We find resonances, anti-
resonances and asymmetric Fano lines shapes. All features resemble Fano
resonances for different ¢ values. Although the overall pattern looks quite
irregular at first sight, regular structures can be identified: In the first place
one can identify ‘inverted’ Coulomb diamonds (indicated with white arrows)
and secondly, all resonances have slopes which are quite comparable to the
one in the Coulomb blockade regime suggesting that the nanotube itself is
the source of the resonant state. The latter is also suggested by the fact
that in the whole gate-voltage range the differential conductance reaches
the maximum conductance for a single SWNT of 4e2/h, but never exceeds
it.

Vsg(mV)

G(e¥lh)

050 1.00 1.50 2.00 2.50 3.00
Vy(V)

Figure 4.22: (a) Differential conductance (dI/dVsq) versus bias voltage (Vsq) and
gate voltage (V). Dark correspond to high (maximum= 4e?/h) and white to low
conductance. Fano resonances are indicated with the arrows. (b) Corresponding
linear response conductance G.
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4.4.3 Discussion and Modelling

The origin of the interfering paths, necessary for the Fano effect, in meso-
scopic devices is often unclear [89, 125]. In carbon nanotubes the first
account of Fano resonances have been reported for crossed MWNTs [117].
Because these authors have not observed similar resonances in single tubes,
they assigned the origin of the Fano resonance to the particular geometry
of two crossed tubes. In further accounts of Fano resonances in MWNTs,
the origin has been assigned to either an additional carbon nanotube [118]
acting as the non-resonant background or to defects in the nanotube [119].

Our experiment is the first for single-walled carbon nanotubes (SWNT's)
and the origin is puzzling as well. We point out, that an individual SWNT
contains two channels (not counting spin), leading to the peculiar shell pat-
tern of CNTs discussed before. In principle, this is enough for interference to
occur. Assume that the two nearly degenerate eigenstates are coupled with
different strength to the source and drain contacts, one with large coupling
and the other with a weak one. Then, there is a broad and a narrow channel
that can interfere and give rise to Fano resonances. This is schematically
shown in Fig. 4.19c, where SWNT; and SWNT5 refer to the two orbital
channels. This problem has recently been studied theoretically in the limit
of vanishing interaction [126]. Two quantum dot states are coupled to the
reservoirs with different coupling parameters. The calculation shows that
even for similar coupling strength the two-dot ground state consists of a
narrow and a wide orbital. This is the result of hybridization leading to a
symmetric bonding and an asymmetric antibonding state. The latter has
a node at the contacts resulting in weak coupling to the leads and there-
fore a small effective width I'. If all coupling terms are exactly the same,
the life time of the antibonding states become infinite large. This never
happens in practice, so that one can expect intrinsic Fano resonances in
SWNTs. This is for sure the most attractive scenario. However, it is obvi-
ous that Fano resonances can also occur for two separate individual SWNTs,
provided they are geometrically located within the phase-coherence length.
Otherwise, a pure superposition of two individual conductance patterns are
expected and not an interference effect. The problem of the interference
between two quantum dot states has recently also been addressed using the
scattering-(S)-matrix approach [127, 128]). These authors also derive the
correspondence between the Green’s function and S-matrix approach.

In the case of intrinsic Fano resonances (FRs) the regular periodic pat-
tern, which is evident in our measurement in the Coulomb blockade and co-
tunneling regime, see Fig. 4.21a, should evolve into a periodic pattern of FRs
at higher tunneling coupling. Although this looks promising in Fig. 4.21a,
the FR pattern is rather irregular and certainly not periodic in Fig. 4.22a.
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We therefore think that we do not observe intrinsic Fano resonances in a
single tube but rather the interference of two (or possibly more) nanotubes.
Our anlaysis of the CNT groundstate, for example the very low value of the
exchange energy, has already hinted towards the close proximity of others
tubes, which can screen the short-range interaction. It is therefore plausible
that the interfering channels are embedded in a bundle of SWNTs. This
would immediately make clear why the Fano resonances shift with gate and
bias voltage in magnitude comparable to what is observed for the states in
the Coulomb blockade regime.

Because we have measured both the gate and bias dependence we can
extend our analysis of the Fano resonances further and try to fit the dif-
ferential conductance in the vicinity of the resonance. Below, we will do
this for the two resonances 1 and 2. We model the problem as two interfer-
ing channels in the Landauer-Biittiker formalism [124]. The transmission
amplitude through the resonant channel is described by ¢, = /T,i/(e + 1),
where € = 2(E — Ey)/T". The square modulus of this function corresponds
to a simple Lorenzian. The transmission amplitude for the non-resonant
channel is a constant ¢, = /T,,e*®, where the phase ¢ has been introduced.
Assuming spin degeneracy, the conductance at zero temperature is given by
G(e) = 2¢2/h - Ty (€) with the total transmission probability Ty = | &, + t, |*.
We obtain for T}

T,=T, + L{TT + 2T, T (cos(e) + esin(q’)))}. (4.8)

1+ €2
The differential conductance can then be obtained from

oI
8‘/5(1

_ eQ/h{Tt(eVSd/2 —aV,) + Ty(—eVig/2 — avg)}, (4.9)

where o := C,/Cy, denotes the gate-coupling strength as before.

We first discuss the symmetry of Eq. 4.9 and the fitting procedure. The
transmission amplitudes through the resonant and non-resonant channel are
chosen such that the linear conductance is a Lorenzian for ¢ = 0, whereas
it has a Fano line shape (¢ = £1) for ¢ = £7/2. Far from the resonance
(€ — 00) the conductance asymptotically approaches the value of 2¢2/h - T;,.
For ¢ = +m/2, the total transmission probability is Ty=(T),, + 1) at reso-
nance. Note, that the dI/dVyq vs. Vy4 characteristic will not have mirror
symmetry for positive and negative gate voltages in general.

The following fitting procedure has been adopted: First, we fit the gate
dependence of the linear conductance by changing the phase. Then, the
dI/dVyq curves vs V4 are fitted for specific gate voltages close to the res-
onance. The phase is fixed, whereas T,,, T, o and I" are free parameters.



4.4 The Fano effect 77

Thereafter, the gate dependance is plotted again using the average param-
eters from the fits found from the non-linear regime. These average param-
eters are used to calculate the grey-scale plots.
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Figure 4.23: Comparison between the measured differential conductance of the
Fano resonance 2 (see Fig. 4.22a) and fits to Eq. 4.9. In (a) the solid curve
represents the best fit taking into account only the linear response conductance,
whereas the dashed curve is calculated from average parameters deduced by fit-
ting the non-linear differential conductance dI/dVsq vs. Viq for a set of gate-
voltages, shown in (b). The curves are vertically offset by e?/h for clarity. For
a) the whole set of parameters are given in the figure, whereas we only represent
the deduced transmission probabilities for the non-resonant 7T, (full circle) and
resonant 7). (open circle) channel of part (b) in (c¢). The calculated differential
conductance (e) is compared with the measured one (d). The parameters are
T, =13,T, =03, =025meV, ¢ = /2 and a = 0.02.

For both resonances this procedure yields a phase close to m/2 which
agrees reasonably with the asymmetry parameter of ¢ ~ 1 deduced before.
The fitting has been preformed for four Fano resonances indicated with
white arrows in Fig. 4.22a, but we present only the results for the resonances
1 and 2. We start with resonance 2, which is a particularly nice example.
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Fig. 4.23a shows the gate dependence and Fig. 4.23b the bias dependence for
four different gate voltages. The solid curve in Fig. 4.23a corresponds to the
fit obtained from the linear conductance, whereas the dashed one shows the
resonance using the average parameters deduced from the bias-dependence.
We find for I" values of 0.25 — 0.3 meV which is a bit less than before and
a consistent gate-coupling parameter of a = 0.02. The different values for
T, and T, are plotted in Fig. 4.23c. The spread of =~ 4+0.15 can be seen
as a measure of the accuracy of this procedure. Up to this error T,, = 1.3
and T, = 0.3. The average parameters are used to calculate the dI/dVy,
greyscale plot, which is shown together with the measurement in Fig. 4.23d
and e. A reasonable agreement is found. The model clearly captures the
main features and accounts for the correct energy scales. The transmission
probability of the resonant channel of T, = 0.3 relates to a conductance
of 0.6e%/h, which is quite a substantial value. Whether this resonance is
measured at the unitary limit could only be answered with temperature
dependent measurement, which we have not preformed. However, this re-
duced value as compared to the unitary limit of 2e2/h could simply reflect
asymmetric couplings to the leads.

We now turn to resonance 1. As we have pointed out before, the agree-
ment is less good here. This is due to the underlying blurred Coulomb
blockade structure, which results in a sizable suppression of the conduc-
tance on one side of the resonance (left side), see Fig. 4.22a. The result
of the same procedure is shown in Fig. 4.24. Fig. 4.24a displays the gate
dependence of the linear conductance. The solid curve corresponds to the
fit of the linear conductance vs gate voltage, whereas the dashed curve has
been calculated from the average parameters deduced from dI/dVq vs. Viq.
Because of the mentioned suppression for AV, < 0, the differential conduc-
tance has only been fitted in the non-linear regime for three positive AV,
This is shown in Fig. 4.24b, where we see that the fits match (apart from
the asymmetry) the measurements quite well. Due to the strongly vary-
ing background a sizeable disagreement appears between the two fits in
Fig. 4.24a. However, we think that this can be fully accounted for, by the
background. The obtained parameters ¢, a and I' compare very well with
the ones deduced before in Fig. 4.21b: ¢ = 7/2, « = 0.02, and T" = 0.2 meV.
Not surprisingly the two fitting procedure yield somewhat different values
for T, and T,,. T,, = 1 and T, ~ 1.2 in one case and T,, ~ 0.6 and T, ~ 0.25
in the other.

Important for the following is the observation of an excitation line
which appears at negative bias voltage in the measurement and is visible in
Fig. 4.24b (arrows), as well as in the greyscale plot (inset). If we stick
to the assumption that the cause of the Fano resonances is another tube,
the deduced excitation energy of §F = 0.6 + 0.1 meV should then corre-
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spond to the level spacing of that nanotube. This is quite a small value
as compared to the measured level spacing of JE ~ 5meV in this tube,
which agrees very well with the particle in a box model assuming spin and
orbital degeneracy. If we assume only spin degeneracy for this small en-
ergy excitation feature, the underlying nanotube should have a length of as
much as L = 2.5 ym. This appears to be impossible, since the electrodes are
spaced by only 300 nm. However, already in early work on carbon nanotubes
(CNTs) two types of characteristics have been found [22]: Contacting tubes
by evaporating metals over the tubes yielded ‘end-contacted’” CNTs [36],
whereas CNTs lying on metal electrodes usually displayed a weaker cou-
pling to the contacts and yielded ‘bulk-contacted’ tubes [36, 20]. Moreover,
the single electron level spacing 0 F was found to agree with the contact
separation from edge to edge in the first case, whereas the whole CNTs
appeared to contribute, as apparent from small values of §F, in the latter.
The states leading to Fano resonances in our measurements are also much
weaker coupled to the leads. This is seen in the relative small " values
deduced from the Fano resonances. Hence, the underlying resonant channel
may very well be a weakly coupled SWNT which resides in one and the
same bundle. This model is very likely because bundling in nanotubes is an
ubiquitous phenomenon. It is strong in arc-discharge and laser-evaporated
tubes, but it also occurs in CVD-grown CNTs (Chapter 2). There is, how-
ever, a remaining problem. If two tubes can contribute to transport, the
maximum conductance does not have to be bound to 4e?/h. Future work
will have to clarify this issue.

We next compare the gate-coupling parameter for the Fano resonance
(FR) and the cotunneling regime. For the former we have obtained
a = 0.02 + 0.005, whereas a = 0.08 & 0.01 for the latter. This is a signifi-
cant difference amounting to a factor of four. The difference supports our
picture as we explain now. Assume that there are indeed two tubes con-
tributing to the conductance in a small bundle. The gate-capacitance C,; can
be assumed to be roughly equal, while the capacitances to the leads should
be strongly different. The weakly coupled tube, which electrically appears
to be much longer than the contact separation, should have much larger
source and drain capacitances. The four-times smaller « relates into a four-
times larger total capacitance, and hence, into a four-times smaller charging
energy. The cotunneling regime of this tube yields U. = 5.3 meV, so that
the weakly coupled tube should have a charging energy of U, ~ 1.3 meV.
Togther with the level spacing of §E = 0.6 meV yields an addition energy of
AFE =~ 1.9meV. This relatively small addition energy explains the structure
of the Fano resonances at V; /2 1.2,0.8 V which are shaped in a diamond-like
pattern with an energy scale corresponding to the reduced addition energy,
see Fig. 4.22a. However, at even smaller gate voltage of V, ~ 0.5V an-
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Figure 4.24: Comparison between the measured differential conductance of the
Fano resonance 1 (see Fig. 4.22a) and fits to Eq. 4.9. In (a) the solid curve
represents the best fit taking into account only the linear response conductance,
whereas the dashed curve is calculated from average parameters deduced by fitting
the non-linear differential conductance dI/dVsq vs. Viq for a set of (only) positive
gate-voltages, shown in (b). The curves are vertically offset by e?/h for clarity.
For a) the whole set of parameters are given in the figure, whereas the parameters
for the three fits in (b) are: B: T, = 0.85, T, = 0.9, ' = 0.25meV, ¢ = 7/2,
and o = 0.027; O0: T, = 1, T, = 1.2, ' =0.25meV, ¢ = /2, and o = 0.02;
O: T, =11,T, =14, T'=025meV, ¢ = 7/2, and o = 0.017. The observed
asymmetry in bias voltage originates from different coupling of the resonant states
to the leads. The inset in (b) shows the measured differential conductance. An
excited state is visible for Viq < 0, both in the greyscale plot and the dI/dV;q(Vsa)
(arrows).

other ‘Fano-diamond’ appears with obviously a larger addition energy, but
also a larger coupling parameter. Hence, the interfering tube either evolves
with increasing tunneling coupling from a weakly coupled ‘long’ tube to a
stronger coupled end-contacted one, or yet other tubes start to participate
in the interference.

With regard to the phases, which were obtained by fitting resonance 1
and 2, we mention that there is nothing peculiar about the value of ¢ = 7/2.
The same fitting procedure has also been performed for Fano resonances
(FRs) labelled in Fig. 4.22a with 3 and 4 (not shown). Here we obtain the
following parameters: T,, = 0.8, T,, = 0.2, and I' = 0.23 meV for FR 3 and
T, =0.73, T, = 0.2, and I = 0.23meV for FR 4, while the phase is now
negative amounting to ¢ = —m/2. o = 0.02 is consistent with the previous
value and the same for both resonances. In addition, if we go further out
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to even smaller gate voltages other phase values appear.

Finally, we briefly address the evolution of the Fano resonances (FRs)
at larger source-drain voltage Viq. We observe that most of the reso-
nances vanish at |Vsq| 2 2.5meV. This can easily be understood by not-
ing that additional transport channels open up if Vyq > dE. In particular
if Vog > AFE =~ 2meV the resonant channel can involve excited levels for a
fixed charge state and even different charge states. Because different phases
are likely, the Fano resonance is smeared out. A peculiar FR is observed
at V; ~ 1.3V in Fig. 4.22a (dashed arrow). This resonance starts with a
large gate-coupling a around zero source-drain voltage Vg4 and evolves into
a smaller coupling parameter « for larger V4. This apparent curving, which
can also take up the reversed order, is currently not understood.

4.5 Conclusion

We have shown that a SWNT can act as a QD. Tunneling contacts are often
formed between a CNT and metal electrodes driving the behavior of a QD
at low temperatures to the CB regime. The large number of electrons on a
CNT QD greatly simplifies the description of the system. Our experimental
observations are in good agreement with the constant interaction model
of CB. The deduced values for the charging energy and the level spacing
suggest that the transport occurs through an individual SWNT and that
the contact separation defines the size of the QD.

When the transparency of the contacts is increased cotunneling pro-
cesses play dominant role in transport through a QD. The consideration
of such higher-order processes is important for the proposed operation of
single electron transistor, since these effects ultimately determine the ac-
curacy of single charge transfer. In detail, the Kondo effect has been in-
vestigated in a QD formed from a metallic SWNT. We have confirmed the
main predictions expected for the Kondo effect in the QDs: the logarith-
mic temperature dependance, the conductance resonance at zero bias and
its splitting in a magnetic field. We observe the expected four-fold shell
pattern for an ideal SWNT together with Kondo physics at intermediate
transparency G ~ 2¢2/h and a transition to the open regime in which the
maximum conductance is doubled and bound by G4, = 4€?/h. Except
for the canonical example of Kondo S=1/2, we have analyzed the ground
state of CNTs at half-filling, i.e. for N = 2 added electrons to one shell,
and demonstrate that this state is either the singlet or a state for which
the singlet and triplet are effectively degenerate, allowing in the latter case
for the appearance of the Kondo effect at N = 2. The results presented
here shows that many-electron phenomena as the Kondo effect as well as
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the control of the single, localized spin are highly relevant for molecular
nano-structures [83].

For the high transparency Fano resonances are observed. In a good
approximation, the observed Fano resonances can be modelled as a simple
interference between the resonant and non-resonant channels. Our measure-
ments suggest that both channels correspond to individual SWNTs within
a same bundle. The resonant and non-resonant channels are discriminated
with different coupling to the leads. Although, the modelling seems to
explain main observations, there are several issues which urge for the fur-
ther investigations. For example, the dephasing in a CNTs due to Fano
resonances should be possible to quantify, which is essential for the imple-
mentation of e.g. a spin transport in CNTs.

Finally we would like to emphasize even though some of the samples show
nice consistency with the expected theory (for example constant-interaction
model of Coulomb blockade), this is far away to be always the case. Compli-
cated, less regular structure are often observed. At this stage, the transport
research on CNTs relay on mass production of the samples where few of
them are usually handful. Because of a poor control during the fabrication
of the samples most of the crucial information are not known. The issues
like: imperfection in a grown CNT, defects produced during their process-
ing, contaminations, where and how nanotube makes contact to the leads,
charged trapped on a substrate, etc; are still open questions. In this respect
each CNT device is unique, which can to some extent explain discrepancies
between the theoretical predictions and experimental observations. One
such example is striking gap structure observed around zero bias, for sev-
eral samples in different transport regimes (sequential electron tunneling
and cotunneling). On the other hand, it is still not well understood when
and how important is 1D nature of SWNT (the Luttinger liquid model) in
the interpretation of its transport properties. Recently, some evidences for
Luttinger liquid behavior have been presented [22, 32]. In our opinion fur-
ther research is needed to experimentally address this issue in the controlled
manner.



Chapter 5

Intrinsic thermal vibrations of
suspended doubly clamped
single-wall carbon nanotubes

In this chapter, we report on the observation of thermally driven mechan-
ical vibrations of suspended doubly clamped carbon nanotubes, grown by
chemical vapor deposition (CVD). Several experimental procedures are used
to suspend carbon nanotubes. The vibration is observed as a blurring in
images taken with a scanning electron microscope. The measured vibration
amplitudes are compared with a model based on linear continuum mechan-
ics.

5.1 Carbon nanotubes as high frequency resonators

Carbon nanotubes (CNTs) form a material with unique mechanical prop-
erties [43, 44, 129, 130, 131]. The high Young’s modulus and low specific
weight qualify single-wall carbon nanotubes (SWNTs) as ultimate mechan-
ical resonators. Similar to lithographically patterned SiC beams, whose res-
onance frequency has recently crossed the border from MHz to GHz [132],
it would be highly desirable to integrate CNTs into nanoelectromechani-
cal systems (NEMSs) and to electrically excite the mechanical vibration
modes [133]. A first step in this direction has been the observation of elec-
trically driven mechanical vibrations of multi-wall carbon nanotubes [44].
Nanometer-sized resonators oscillate at high frequencies, but simultaneously
have small vibration amplitudes, which are difficult to measure. At cryo-
genic temperatures, the resonant adsorption of an external electromagnetic
field could successfully be measured using superconducting elements at-
tached to a freely suspended CNT [134]. At room temperature a tunnelling
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probe in the form of, for example, an STM tip would be a versatile detector.
Integrating a sensitive measuring transducer with a CN'T nanomechanical
oscillator is however challenging. In a first step, it would be desirable if
the mechanical vibrations could be imaged directly. Here, we report on the
observation of thermal vibrations of suspended doubly clamped SWNTs,
imaged by scanning electron microscopy (SEM), which is schematically il-
lustrated in Fig. 5.1.

Vibrating SWNT
A / / _
y

SiO,

V7 /74

Figure 5.1: A schematic illustration of vibrating doubly-clamped SWNT. Blur-
ring in the middle is expected for a sample observed with a SEM.

Thermally driven excitations of multi-wall carbon nanotubes (MWNTSs),
clamped at one end only, were first investigated by Treacy et al. [43]. The
mechanical oscillation appeared in the images, which were collected with
a transmission electron microscope (TEM), as a blurring that increased
towards the free end of the MWNTs.

5.2 Doubly clamped SWNT

In order to see whether a similar experiment is possible with doubly clamped
SWNTs, we will first estimate the expected amplitude in thermal equilib-
rium at room temperature. A schematics with coordinate system is shown
in Fig. 5.2a. Assuming that linear continuum mechanics is a good approx-
imation, the equation of motion for the vertical displacement £ is given
by [135]

0%¢ YT\ 0%
a2 + (p_A> P 0. (5.1)

Here, p is the mass density, A the cross-sectional area, Y the Young’s mod-
ulus, and I = 7d*/64 the moment of inertia, which depends only on the
diameter d. Applying the boundary conditions for doubly clamped beams,
i.e. £ =0and & = 0 at the two boundaries, the spectrum of eigenfrequencies
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is obtained:
g | YI
wW; = —
L2\ mdpaq

(i=1,2,3...), (5.2)

where L is the suspended length, ps4 is the surface mass density of a graphite
sheet (7.7-10""kgm™2) and 3; = 4.73, B = 7.85, and 33 = 11.0 for the
first three modes.

The equipartition theorem predicts that each vibration mode carries the
energy kpT in thermal equilibrium at temperature T', where kp is the Boltz-
mann constant. Together with the appropriate solutions of Eq. (5.1), one
obtains an expression for the variance of the maximum deflection amplitude,
which for the fundamental frequency (i = 1) occurs in the middle:

kpTL?

2 =< ¢2(L)2) >= ——
oy =< &(L/2) > YT

(5.3)

where y; = 192 [136]. Table 5.1 summarizes the eigenfrequencies and the
thermal vibration amplitudes at room temperature of a ‘typical’ SWNT with
diameter d = 1.5nm and Young’s modulus Y = 1 TPa for different (practi-
cally feasible) suspension lengths L = 0.2 — 5 ym. This table demonstrates
that thermal vibration amplitudes can be of appreciable magnitude, of order
~ 10nm (L = 1pum). Since state-of-the-art scanning electron microscopes
have resolutions well below 10 nm, thermal vibration should appear on SEM
images.

Table 5.1: Characteristic quantities of a suspended SWNT (d = 1.5nm,
Y =1TPa). The eigenfrequencies and maximum thermal amplitudes are cal-
culated using relations (5.2) and (5.3), respectively.

L(pm)  w(MHz) o1 (nm)

0.2 4600 0.8
0.5 740 3.4
1 185 9.3
3 21 48.3
5 7.4 104

There are already many reports on the fabrication of suspended CNTs. For
example, SWNTs were grown between distant silicon towers [137, 138],
spread over metal posts [139], or grown over solid terraces [140] and etched
trenches [131]. Though devices with suspension lengths of L = 5 ym were
realized and imaged with SEM, the thermal vibration has surprisingly not
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yet been reported, although it should readily have shown up in respective
SEM images, provided the reported SWNTs were single SWNTs. In the
work of Dai and coworkers [137, 138, 140], the SWNTs were coated with
a metal layer to increase the contrast in the SEM, whereas others have
explicitly reported on suspended ropes of SWNTs or MWNT [130, 139],
which are inherently stiffer.

5.3 Sample fabrication

Carbon nanotubes are synthesized by chemical vapor deposition (CVD) as
previously reported [141]. We would like to emphasize that not all grown
CNTs are individual SWNTs. This will be explained further in the text.
To account for the possible influence of substrate during imaging in SEM,
we have suspended CNTs using three different methods.

Method I, shown in Fig. 5.2b, is based on the work of Nygard et al. [142].
The CNTs are grown on thermally oxidized (400 nm) Si substrates. Electri-
cal contacts are patterned by electron-beam lithography (EBL), followed by
evaporation (Ti/Au) and lift-off. The SiOs is etched in buffered HF [143].
To stop etching, the sample is heavily rinsed in water followed by iso-
propanol. With this method we find it possible to suspend CNTs over
distances up to 1 um. For larger lengths, the surface tension of the etchant
tends to pull the CNT down to the substrate.

D<E2(x)=1/2 > ¢

: f S
Ti/Au Ti/Au S Sio, Sio,
SiO2 <

(©) Method I 3 i

0 nm

Si0, S
(d)Method llT#4 3;3N4
e T

150 nm

Figure 5.2: Schematic drawings of doubly clamped vibrating SWNT which are
suspended by different methods. (a) top view, (b-d) side views.

In method II, shown in Fig. 5.2c, the CNTs are grown across predefined
trenches. We start with a Si substrate with layers of 800 nm of SiOs and
200 nm of SigNy. Slits of width 1 — 5 pm and length 10 yum are first etched



5.4 Results 87

into the top SizNy layer using a CHF3-based plasma etching process [144].
Next, the slit is further wet-etched into SiO, and the Si substrate using
HF and KOH [145], respectively. This results in deep trenches ~ 3.5 um, a
prerequisite for CNTs to bridge the trenches in the CVD growth process.

In method III, shown in Fig. 5.2d, slits are defined in SigN, membranes
of thickness 150 nm and lateral size 0.5 mm following a similar procedure as
in method II.

The key difference between the three methods is the depth of suspension.
It is 400 nm, 3.5 pm, and oo for methods I-I11, respectively. The samples are
imaged with SEM (Philips XL30 FEG) at room temperature. To generate
an image, a focused electron beam is raster scanned.

5.4 Results

To deduce the vibration amplitude quantitatively two assumptions have to
be made: 1) the intensity profile of the electron beam centered at coordinate
(z,y) has a Gaussian distribution and 2) the measured intensity of secondary
electrons reflects the (time-averaged) probability P(z,y) = P,(£) to find the
CNT at position (z,y) convoluted with the intensity profile of the primary
beam. 1) is a convenient assumption and 2) should hold, because scanning in
SEM is slow as compared to the vibration of the CNT. The latter results in a
blurring of the CNT in SEM images. The examples of a vibrating suspended
CNTs are shown in Fig. 5.3a and b. The vibration is observed as a blurring,
which is largest in the middle. In contrast, the CNT appears sharp at the
edges of the trench, limited by the finite resolution of the SEM. To deduce
the vibration amplitude, more precisely the variance o?(z) = (£2(x)), we
note that P,(§) is Gaussian and determined by Boltzmann statistics. The
deconvolution is simple because of assumption 1). We only need to extract
o%(z) from the intensity distribution of the SEM image perpendicular to
the CNT and subtract ¢2(0). To do so, we average the intensity profile in
Az slices as shown in Fig. 5.3c and fit it to a Gaussian. Such an analysis
was first done for MWNT cantilevers by Krishnan et al. [43].

Figure 5.3c shows a SEM image of a suspended doubly clamped vibrat-
ing CNT fabricated by method I. The free suspension length is relatively
short, i.e. L =~ 650nm. Applying the analysis procedure mentioned above,
the maximum rms vibration amplitude is determined to be ¢ = 27 £ 5nm.
We have also analyzed o as a function of z and compare the result with
analytical curves for the first three eigenmodes in Fig. 5.3d. The agreement
between the measured points and the theoretical curves is reasonably good.
Matching between experiment and theory is improved if the first and second
modes are taken into account, each of which carries kT energy. Contri-
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Figure 5.3: (a) and (b) SEM images of a vibrating SWNT grown over a trench.
A strong blurring is clearly visible (indicated by arrows), which is a consequence
of intrinsic thermal vibrations. (c¢) Another vibrating SWNT, whose root-mean-
square displacement along x is plotted in (d). Circles are measured points and
the curves represent fits.

butions from higher order modes decay very rapidly and can be neglected.
Note, there is one fitting parameter Y'd*, which will be discussed below.

Figure 5.4a shows another CNT grown over SisN4, membrane. Here, the
suspension length is rather large, i.e. L =~ 6.2 um. Correspondingly, the
observed blurring is much larger. The maximum rms vibration amounts to
o =80+ 5nm. Applying Eq. (5.3) and assuming the typical high Young’s
modulus value of SWNTs of Y'=1 TPa the diameter of this CNT is estimated
to be d =2 4+ 0.5nm.

The SEM image displayed in Fig. 5.4b shows three suspended CNTs.
Though grown in one run, only one CNT seems to vibrate, namely the mid-
dle one. This, at first sight surprising result, points to a variability of CNTs
that are grown during one and the same process. The only parameter in
our experiment, which is not predetermined, is Y'd*, see Eq. (5.3). Though
different values for the Young’s modulus were reported, we suspect that the
diameter d is the cause for the variability, because it enters in the fourth
power. The absence of visible vibrations for the upper and lower CNT in
Fig. 5.4b suggests that these have a larger diameter. They may be multi-
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Figure 5.4: (a) SEM image of long (L~ 6.2 um) vibrating SWNT grown over a
slit in a SizN4 membrane. In (b) three CNTs are imaged simultaneously. Only
the middle one is vibrating. A white circle indicates branching of the lower CNT
into two CNTs.

wall nanotubes or ropes of tubes. In fact, the lower one must be a rope,
because a clear branching is observed at the right end (highlighted by a
circle). Having looked through a large number of samples, the fraction of
vibrating tubes is very small (a few %). This is a clear indication that not
all of the grown CNTs are SWNTs.

Table 5.2: Properties of some vibrating CNTs. L is the suspended length, o
the measured maximum rms vibration, Y'd* obtained using Eq. 5.3, Y1.6 Youngs’
modulus assuming d = 1.6nm (see text), and di; the CNT diameter assuming
Y =1TPa.

L o Yd* Yis dq Method

(yum) (nm) (GPa(nm)?*) (GPa) (nm)

0.55 25 117 18 0.58 I
0.63 27 150 23 0.62 I
1.35 16 4221 644 1.4 11T
4.05 85 4038 616 14 11
4.30 90 4311 658 1.45 11
6.25 80 16754 2556 2.0 111

We summarize the measured rms vibration of several CN'Ts in table 5.2. De-
termined are L and o(L/2). Using Eq. (5.3), we obtain an estimate for Y'd*,
which is given in the third column. What is immediately noticed is the large
spread in Y'd* of more than two orders of magnitude. Unfortunately, we are
not able to unambiguously deduce the Young’s modulus Y and diameter d,
independently. We have tried to measure the diameter using atomic-force
microscopy (AFM). Due to surface roughness and the strong d* dependence,
the error bar is too large to deduce Y with an acceptable accuracy. For the
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discussion we instead rely on an average diameter for SWNTs, which we
have obtained from electrical measurements of contacted semiconducting
CNTs [67]. We have analyzed the band-gap, which is inversely proportional
to the diameter d, of more than 10 semiconducting SWNTs and obtained
as an average d = 1.6 = 0.3nm. We note, that taking this diameter, the
estimated Young’s modulus (column 4 in table 5.2, denoted by Yj ) has
an accuracy of ‘only’ 75%. Well graphitized CNTs have a large Young’s
modulus. For example, Y = 1.4 4+ 0.4 TPa was reported for SWNTs grown
by laser ablation [43], whereas 1 TPa was found in simulations independent
of helicity and number of shells [146]. In column 5 of table 5.2 we there-
fore also list the diameter d;, which we deduce from the measured Yd*,
assuming Y = 1TPa. d; is varying between 0.58 to 2.0nm. Since we have
never observed SWNTs with diameters < 1nm in TEM, the first two CNTs
(row 1 and 2), both belonging to samples prepared by method I, cannot
have a large Young’s modulus Y ~ 1 TPa. Taking d to be 1.6 nm leads to
a modulus of only Y; ¢ = 20 GPa. Because method I uses HF-etching, it
is possible that the NT’s are affected during this process step. It is also
possible that the under-etching changes the clamping conditions (boundary
conditions) at the edges. In contrast to method I, the as-grown CVD CNTs
of methods IT and III yield consistent results, which are in agreement with
a large Young’s modulus of 1 TPa and with the diameter, which we have
deduced by electrical measurements. Though we observe ropes and small
diameter MWNTs (only a few number of shells) in TEM, their diameter is
typically larger than 2nm. This strongly suggests that the CNTs of row
3 — 6 in table 5.2 are single-wall carbon nanotubes.

To our knowledge there are no reports on the Young’s modulus of CVD-
grown SWNT. Though we are not able to accurately determine Y, our
results suggest that CVD-grown SWNT's can have a large modulus of order
Y =~ 1TPa. The exception are wet-etched CNTs, for which our data sug-
gest Y < 1 TPa. Small Young’s modulus have previously been reported for
CVD-grown MWNTs [147].

5.5 Conclusion

In conclusion, we have demonstrated that it is possible to observe thermally
driven vibrations of suspended doubly clamped SWNTs in SEM. From the
measured rms vibration amplitude, the Young’s modulus Y of CVD-grown
SWNTs has been estimated. Only a small fraction of suspended CNT's are
seen to vibrate, although they are suspended over a comparable length and
grown at the same time. This suggests that the majority of grown tubes
are not single SWNTs, but rather ropes and MWNTs, a finding, which
is supported by TEM. We suspect that this is the reason why thermal
vibrations of SWNTs has not already been observed before.



Chapter 6

Summary

Single-wall carbon nanotubes after a decade of research show fascinating
properties with a promising prospective for possible applications. Their
nanometer size and micrometer lengths make them an ideal material for
research in nanotechnology. Contrary to most of the molecules, experiments
in different scientific areas have been possible due to their robust, chemical
inert characteristics (Chapter 1).

We have successfully produced CNTs by CVD method. It has been
shown that this method is well suited for the investigation of their electrical
and mechanical properties. The main advantages of the CVD technique
is that CNTs can be grown at specific location with flexibility to routinely
implement them for different investigation purposes. Their electronic trans-
port properties have been explored by fabricating the contacts by EBL or
optical lithography in straightforward manner. In this thesis, investigation
has been focused on CNT’s electronic transport properties from room to
low temperature. Although their main characterization at room tempera-
ture (the gate dependance and high bias characteristics) does not depend
dramatically on the contact resistance, low temperature measurement re-
veal the importance of the contact resistance and their correlation with the
observed phenomena. We have found that problem of the contact resistance
can be overcome by annealing of the devices contacted with Ti or using Pd
as metallic electrodes on as grown CNT (Chapter 2).

Ambipolar field-effect transistor action has been demonstrated on as-
grown semiconducting SWNTs (Chapter 3). The observed ambipolar FETs
can be tuned with a back-gate from p- to n-type conduction through the
semiconducting gap. We have attributed high tunability of our devices to
hydrogen presence during the CVD grow, which probably reduce trapped
charges in a Si/SiO substrate, making coupling to the gate more effective.
Electron and hole transport in the Coulomb blockade regime have been in-
vestigated in detail. A strong sensitivity on disorder has been observed in
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semiconducting SWNTs, which effectively brake the nanotube in small sec-
tions ~ 40 nm forming multi-dot system. However, for sufficient doping i.e.
by the gate voltage, localized states can be populated, where the transport
occurs through an individual orbital. Moreover, doping of the tube section
to higher subbands has been demonstrated.

Detailed, two terminal transport measurements at low temperature have
been performed on the metallic SWNT devices (Chapter 4). Spectroscopy
on a SWNT QD can be performed by measuring the conductance as a func-
tion of the gate and bias voltages. For low transparent contacts, a SWNT
behaves as a quantum dot where the transport phenomena are dominated
by the single-electron charging effect (Coulomb blockade). For high trans-
parent contacts, the four-fold degeneracy is observed with the Kondo effect.
We have discussed several possible shell filling scenarios in SWNTs. In de-
tail, the ground state of CNTs at half-filling, i.e. for N = 2 added electrons
to one shell, is analyzed. We demonstrate that this state is either the sin-
glet or a state for which the singlet and triplet are effectively degenerate,
allowing in the latter case for the appearance of the Kondo effect at N = 2.
For even higher transparency Fano resonances are observed. The origin of
these resonances are identified as an interference between the resonant and
non-resonant channels within a bundle of SWNTs.

Finally, as grown CNTs have been suspended with three different meth-
ods to explore their mechanical properties (Chapter 5). We have shown that
thermal vibrations are readily observed in SEM if the suspended length of
a SWNT is sufficient (2 1pm). Good agrement is found between thermal
vibration derived for an elastic beam in continuum mechanics, with corre-
sponding Young’s modulus in TPa range. However, for the SWNTs sus-
pended by wet etching Young’s modulus seems to be smaller (~ 20 GPa).
The possible interpretations are that wet etching severely damage CNT or
that the boundary conditions are different than in the cases for the growth
over predefined trenches and SizN4 membranes. Our investigation showed
that possible implementation of CNTs as nano-electromechanical resonators
urges for careful design of the experiments with desirable control of their
physical properties (diameter).

In this thesis, we have demonstrated that transport investigation in
CNTs show pronounced quantum effects with fascinating possibilities to
explore the fundamental phenomena which has been elusive in other sys-
tems (S-QD-S, spin injection in low dimensional systems, Luttinger liquid,
etc). In that respect, the exploration of CNTs opened a new chapter in
material science and nanotechnology, as important milestone for the future
investigation of molecular based devices.



Appendix A

Device fabrication and
measurement set-up

The fabrication of nanotube devices presents main practical challenge in
the experimental studies of these systems. To preform different kinds of
experiments wide range of processing techniques have been used which are
analogous to semiconductor nanostructuring. In this chapter we will de-
scribe how we have implemented a CNT device fabrication, with emphasize
on structuring techniques which enables us to preform transport measure-
ments on CNTs connected to external electronic circuits. Moreover, the
transport measurement set-up from room to low-temperature is described.

A.1 Electron beam lithography and evaporation

All devices used in electronic transport measurements have been made on
silicon wafer, capped with a silicon-dioxide layer with typical thickness of
400nm. The silicon substrate is degenerately doped (p + +) to conduct at
low temperatures (T' < 1K) where it can be effectively used as a back-gate.

The PMMA resist (Poly-methacrylate 950 K from Allresist) for EBL
is used with typical thickness between 500 — 600 nm. The resist is first
spun on the substrate and then baked for 45 minutes at T=175°C. The
desired electrodes, markers or catalyst deposition patterns are structured
with EBL technique. Our system consists of a JEOL (model JSM:IC848)
equipped with Proxy software. The microscope is operated at 35keV ac-
celeration voltage. Used electron beam (e-beam) current depends on the
size of the written structures. For the structures with a writing field of
200 um x 200 um or less, a beam current of 45 pA is used, while for bigger
structures typically 18.5nA are used. The size of the writing field A de-
pends on the magnification settings on the microscope, M, in the following
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Figure A.1: Illustration of EBL lithography, followed by evaporation and lift-off.
(a) Desired pattern is structured by EBL, where PMMA is exposed by e-beam at
specific positions. (b) The pattern is developed in appropriate solvent. (¢) Metal
is evaporated onto the substrate. (d) Remaining resist is dissolved in acetone,
leaving the metal electrodes only at the positions which have been patterned by
EBL.

way:

A x M = 50000. (A.1)

For example, a typical writing field of 200 x 200 um? the appropriate mag-
nification is 250.

Exposed structures can be developed (PMMA is removed) due to the
fact that the areas of PMMA resist which have been exposed to e-beam
irradiation have higher solubility then unexposed ones. The structured pat-
terns are developed by dipping the wafer in appropriate solvent. As solvent
we use methyl-isobutyl-ketone (MIBK) diluted in 2-propanol (IPA) in 1:3
volume ratio, for 45 sec, followed by rinsing the wafer in IPA for additional
45sec. The substrate with developed structures is then transferred to evapo-
ration chamber (Balzers Pfeffier PLS 500) with base pressure < 10~7 mbar.
It rotating stage with multiple target pockets enable us to deposit different
metals during the same evaporation process without breaking the vacuum.
Once the desired metals are evaporated, the substrate is transferred to ace-
tone to dissolve the resist and subsequently it is rinsed in IPA. With this the
so-called lift-off technique metal deposited in predefined patterns remains,
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forming now the desired electrode pattern. In Fig. A.1 different procedures
are schematically illustrated for the fabrication of metallic electrodes on a
Si/Si09 substrate. SEM (Philips XL30 FEG) images of different patterns
made by EBL followed by evaporation are shown in Fig. A.2.

Cr
markers

50 um

" Big alignment
markers

Small alignment
markers

50 um
A Magn Det WD Exp 50 pm
0 684x SE 1941 samplel

Figure A.2: The SEM images of different structures patterned by EBL during the
preparation of the SWNT devices. (a) Catalyst islands and Cr alignment markers.
(b) Catalyst pads covered with metallic electrodes. (c) Contacts with different
alignment markers. Big Cr markers serve for rough alignment and small ones for
precise alignment (200nm). With EBL, contacts can be written corresponding
to the alignment markers. (d) A sample glued on a chip carrier. Bonding pads
are connected by an Al wire (d = 50 um) to the pads on the chip. A back-gate is
connected by silver-paint followed by bonding on one of the chip pads.

Up to now the influence of the e-beam irradiation on CNT devices has
not been fully understood. We found that EBL processing does not seem to
influence dramatically the final characteristics of the CNT devices. Never-
theless, the exposure of prepared devices to e-beam irradiation can dramat-
ically degrade their characteristics. Fig. A.3 shows the change in a metallic
CNT conductance characteristic before and after the exposure to e-beam
irradiation near the contacts.
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Figure A.3: Dependance of the conductance versus the gate voltage for a CNT
device. E-beam is irradiated by SEM at acceleration voltage of 15keV in vicinity
of the physical contact between CNT and a lead.

A.2 Electronic set-up and cryostat

Once the samples are structured on the substrate they are cut in individ-
ual devices by a diamond knife and glued onto a commercially available
chip carrier. The electrodes are connected to the pads on the chip by an
ultrasonic bonding machine.

At room temperature, samples are characterized in a test box. The test
box consist of a chip holder with 25 BNC connections. All the devices are
measured in two-terminal DC (voltage bias) set-up as illustrated in Fig. A.4.
The source electrode is biased with a voltage V4 and current I is measured
via a low noise current to voltage amplifier. The output voltage from the
current amplifier is recorded by a digital voltmeter connected via DAQ card
to PC. Furthermore, a voltage V, is applied to the gate (substrate). The
acquisition of data and control of the input parameters in the experiments
are acquired with a PC equipped with Lab-View software.
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Figure A.4: A schematic diagram of the electronic set-up used for low tempera-
ture DC transport measurements on CNT devices. Sample is biased by an applied
voltage (Vsq) through a voltage divider (100:1). Simultaneously, voltage V; is ap-
plied to the back-gate. Current through the sample is amplified and converted to
voltage by a current to voltage amplifier. Finally, out-put voltage is recorded by
a digital voltmeter.

For a simple characterization at low temperature (T' 2 4.2 K) a dip stick
is used which is inserted into a helium transport dewar. The sample can be
brought to equilibrium at higher temperatures by raising the holder above
the helium level. The temperature is measured by a thermometer mounted
on the sample holder.

For the studies at lower temperature a He system (from Cryogenics) is
used with a base temperature around 300 mK. Since the vapor pressure of
3He is much smaller than that of *He, pumping on the *He space leads to
lower temperatures than pumping on “He. Once *He is condensed, pump-
ing is preformed by cooling charcoal adsorbate pump below 20 K. Since
this is a commercial system operated by well known principles we will just
mention that the condensation to the base temperature typically has taken
1 — 2 hours, while the base temperature is preserved around 20 hours. The
reduction of electrical noise in the system is filtered by thermocoax at low
temperature and ceramic 7 filters at room temperature. A photograph of
our 3He system is shown in Fig. A.5.
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Figure A.5: (a) Insert of low temperature *He cryostat. Here, the tube of the
isolation vacuum has been removed. (b) *He cryostat with measurement rack.
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Superconducting contacts to
SWNTs

Exploration of the superconductivity and the proximity effect in nanosize
systems attracted enormous theoretical attention [12]. The injection of en-
tangled Copper pairs via superconducting contacts attached to a QD is con-
sidered as an excellent candidate for the creation of non-local spin entangled
pairs, which could be used as a building block for a quantum computer.

We have taken an endeavor to explore superconductivity in SWNTs.
Except for the above mentioned reason, this step has been motivated by
the controversial observation of intrinsic superconductivity in bundles of
SWNTs [148] and proximity effect in individual SWNTs [51].

Recently, our group has reported the observation of resonant multiple
Andreev reflections in a MWNT QD coupled to superconducting leads
[149, 52]. The lithographically defined leads were evaporated over the
MWNT, 45 nm of Au followed by 135nm of Al. The gap energy A,; for Al
is 0.18 meV, corresponding to T, = 1.17K. However, this value is usually
reduced to Ay ~ 0.1meV due to an intermediate Au layer [150]. Below the
T, of Al/Au bilayer a sharp drop of the resistance is observed indicating
Andreev reflection effect. Resonant multiple Andreev reflections (MAR)
appear inside the superconducting gap (A) due to proximity effect. For the
observation of MAR processes, good contacts between QD and supercon-
ducting leads are necessary since they are proportional to T2, where T is
the transmission probability. Moreover, on-site Coulomb repulsion reduces
Andreev processes even further. Favorable condition for the observation of
MAR in a QD is that the life time broadening I' of the levels in the QD
should be comparable with Ag;, and that the charging energy U, is smaller
than the superconducting gap U, < Ag;. Although, we were aware of the
fact that U, > A, in a SWNT, we have tried to make transport measure-
ments on the SWNTs contacted with an Al/Au bilayer. As explained in
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the chapter 2, we found that the devices contacted with Au behave at low
temperature as QDs in CB regime. In some of our devices we have seen
increase in the conductance below T' = 1 K as shown in Fig. B.1a. However,
we have not found evidence of MAR effects probably because the transmis-
sion between contacts and SWNT was too low. The observed increase in
conductance is most likely due solely to Al transition to superconducting
state in the leads.

We have also tried to use different superconducting materials as leads,
namely In and Nb. The reason for this is their higher superconducting tran-
sition temperature In (7, = 3.41K), Nb (T, ~ 9.25K), where CB effects are
expected to be smaller (chapter 4.). The device made by evaporated In con-
tacts on a SWNT is shown in Fig. B.1b. The granularity of In contacts,
have been the main obstacle for achieving good contacts to CNTs. We have
tried to solve this problem with a Ti adhesion layer followed by Al and In
evaporation, nevertheless reliable contacts have not been achieved. From
the other side, because of high melting temperature of Nb, it was very unre-
liable to realize metallic interconnections for structures patterned with EBL.
Well developed methods for structuring Nb in the semiconductor research
have been useless for our purposes considering that any reactive ion oxygen
etching destroys CNTs. However, using optical lithography it is possible
to make Ti contacts followed by a Nb layer. In this case, contacts have
been found to be low transparent, suggesting that mainly Ti-CNT interface
determine over all conductance of our devices as explained in chapter 2.

0.85 1 e B + gy
)0_80 1 Au/Al contacts b)ge® ®®ln
0.75 1 N Tae
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0.65 1
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Figure B.1: (a) Dependance of the conductance versus temperature for a SWNT
device contacted with Al/Au bilayer. Increase in the conductance around 7' ~ 1 K
is attributed to superconducting transition of the electrodes. (b) A SEM image
of a CNT contacted with In. Granular In leads have been the main obstacle to
implement reliable contacts in CNT devices.
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