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Summary

Plasmodium falciparum malaria is the world’s most important parasitic disease and a ma-
jor cause of morbidity and mortality in Africa. However figures for the burden of malaria
morbidity and mortality are very uncertain, since reliable maps of the distribution of
malaria transmission and the numbers of affected individuals are not available for most
of the African continent. Accurate statistics on the geographical distribution of different
endemicities of malaria, on the populations at risk, and on the implications of given levels
of endemicity for morbidity and mortality are important for effective malaria control pro-
grams. These estimates can be obtained using appropriate statistical models which relate
infection, morbidity, and mortality rates to risk factors, measured at individual level, but
also to factors that vary gradually over geographical locations.

Statistical models which incorporate geographical or individual heterogeneity are com-
plex and highly parameterized. Limitations in statistical computation have until recently
made the implementation of these models impractical for non-normal response data, sam-
pled at large numbers of geographical locations. Modern developments in Markov chain
Monte Carlo (MCMC) inference have greatly advanced spatial modelling, however many
methodological and theoretical problems still remain. For data collected over a fixed num-
ber of locations (point-referenced or geostatistical data) such as malaria morbidity and
mortality data used in this study, spatial correlation is best specified by parameterizing
the variance-covariance matrix of the outcome of interest in relation to the spatial con-
figuration of the locations (variogram modelling). This has been considered infeasible for
a large number of locations because of the repeated inversion of the variance-covariance
matrix involved in the likelihood. In addition the spatial correlation in malariological data
could be dependent not only on the distance between locations but on the locations them-
selves. Variogram models need to be further developed to take into account the above
property which is known as non-stationarity.

This thesis reports research with the objectives of: a) developing Bayesian hierarchical
models for the analysis of point-referenced malaria prevalence, malaria transmission and
mortality data via variogram modelling for a large number of locations taking into account
non-stationarity and misalignment, while present in the data; b) producing country specific
and continent-wide maps of malaria transmission and malaria prevalence in Africa, aug-
mented by the use of climatic and environmental data; c) assessing the magnitude of the
effects of malaria endemicity on infant and child mortality after adjusting of socio-economic
factors and geographical patterns.

A comparison of the MCMC and the Sampling-Importance-Resampling approach for
Bayesian fitting of variogram models showed that the latter was no easier to implement,
did not improve estimation accuracy and did not lead to computationally more efficient es-
timation. Different approaches were proposed to overcome the inversion of large covariance
matrices. Numerical algorithms especially suited within the MCMC framework were im-
plemented to convert large covariance matrices to sparse ones and to accelerate inversion.
A tesselation-based model was developed which partition the space into random Voronoi
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tiles. The model assumes a separate spatial process in each tile and independence between
tiles. Model fit was implemented via reversible jump MCMC which takes into account the
varying number of parameters arised due to random number of tiles. This approach facil-
itates inversion by converting the covariance matrix to block diagonal form. In addition,
this model is well suited for non-stationary data. An accelerated failure time model was
developed for spatially misaligned data to assess malaria endemicity in relation to child
mortality. The misalignment arised because the data were extracted from databases which
were collected at a different set of locations.

The newly developed statistical methodology was implemented to produce smooth maps
of malaria transmission in Mali and West- and Central Africa, using malaria survey data
from the Mapping Malaria Risk in Africa (MARA) database. The surveys were carried
out at arbitrary locations and include non-standardized and overlapping age groups. To
achieve comparability between different surveys, the Garki transmission model was applied
to convert the heterogeneous age prevalence data to a common scale of a transmission
intensity measure. A Bayesian variogram model was fitted to the transmission intensity
estimates. The model adjusted for environmental predictors which were extracted from
remote sensing. Bayesian kriging was used to obtain smooth maps of the transmission
intensity, which were converted to age-specific maps of malaria risk. The West- and Central
African map was based on a seasonality model we developed for the whole of Africa. Expert
opinion suggests that the resulting maps improve previous mapping efforts. Additional
surveys are needed to increase the precision of the predictions in zones were there are large
disagreement with previous maps and data are sparse.

The survival model for misaligned data was implemented to produce a smooth mortality
map in Mali and assess the relation between malaria endemicity and child and infant
mortality by linking the MARA database with the Demographic and Health Survey (DHS)
database. The model was adjusted for socio-economic factors and spatial dependence. The
analysis confirmed that mothers education, birth order and preceding birth interval, sex
of infant, residence and mothers age at birth have a strong impact on infant and child
mortality risk, but no statistically significant effect of P. falciparum prevalence could be
demonstrated. This may reflect unmeasured local factors, for instance variations in health
provisions or availability of water supply in the dry Sahel region, which could have a
stronger influence than malaria risk on mortality patterns.
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Zusammenfassung

Plasmodium falciparum Malaria ist die weltweit bedeutendste parasitäre Krankheit und
Hauptursache der hohen Sterberate in Afrika. Aktuelle Schätzungen malariabedingter
Krankheits und Sterbehäufigkeit in Afrika sind allerdings ungenau, weil verlässliche
Karten, welche die geographische Verteilung der Krankheit und der davon Betroffenen
aufzeigen, nicht vorhanden sind. Damit Projekte zur Eindämmung von Malaria effizient
durchgeführt werden können, ist es jedoch notwendig über eine genaue Statistik der An-
zahl betroffener Menschen, sowie der Auswirkung von lokalem Malariavorkommen auf
das Sterblichkeits- und Krankheitsrisiko, zu verfügen. Geeignete Schätzverfahren setzen
Infektions-, Sterblichkeits- und Krankheitsrate in Beziehung zu Risikofaktoren. Bei diesen
Faktoren kann es sich entweder um lokale Umweltfaktoren handeln, oder aber um Merk-
male, die individuell für jede untersuchte Person gelten.

Statistische Modelle welche geographische oder individuelle Einflussfaktoren
berücksichtigen sind komplex und wurden in der Malariaforschung bisher kaum eingesetzt.
Dies gilt insbesondere für die Analyse nicht-normalverteilter, grossräumig erhobener
Daten. Erst die moderne Errungenschaft der Markov chain Monte Carlo (MCMC)
Methode vermochte die Schätzung für solche Daten signifikant verbessern, obwohl auch
damit noch immer methodologische Probleme verbunden sind. Für Stichproben die an
bestimmten, genau definierten Orten erhoben wurden (geostatistische Daten), wird die
räumliche Abhängigkeit bevorzugt mit einer speziell parametrisierten Kovarianzmatrize
modelliert (Variogrammodellierung). Diese Modellierung ist jedoch nicht mehr möglich,
falls die Stichprobe an sehr vielen verschiedenen Orten erhoben wurde, weil dann
die Grösse dieser Kovarianzmatrize eine numerische Analyse verunmöglicht. Bei der
MCMC Methode muss die Kovarianzmatrize wiederholt invertiert werden. Dies ist bei
grossen Matrizen zeitintensiv und kann zu einer nicht vernachlässigbaren Kummulation
von numerischen Fehlern führen. Hinzu kommt, dass die räumliche Abhängigkeit von
Malariadaten nicht bloss von der Distanz zwischen zwei Stichproben abhängt, sondern
möglicherweise auch von deren absoluter Lage (nicht-stationäre Daten), was neuartige
statistische Verfahren benötigt.

Die Forschung in Zusammenhang mit dieser Doktorarbeit hatte folgende Ziele: a) Ent-
wicklung von bayesschen hierarchischen Methoden um geostatistische Malaria-Häufigkeits,
Übertragungs- und Sterblichkeitsdaten mittels Variogrammodellierung zu analysieren,
wobei auf das Problem der Nicht-Stationarität und die grosse Anzahl der Stichprobenorte
eingegangen wird; b) Erstellen von Karten für den Afrikanischen Kontinent um die
Häufigkeit und Übertragungsraten von Malaria, unter Berücksichtigung von Klima- und
Umweltfaktoren, darzustellen; c) Schätzung der Wirkung die ein bestimmtes Malaria-
risiko auf die Säuglings- und Kindersterblichkeit ausübt, unter Berücksichtigung sozio-
ökonomischer und räumlicher Aspekte.

Ein Vergleich von MCMC mit der Sampling-Importance-Resampling Methode für
bayessches Schätzen von Variogrammen zeigte, dass die zweite Methode weder einfacher
anzuwenden war, noch zu besseren Schätzern führte. Zudem war die Berechnung mit
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dieser Methode nicht effizienter. Verschiedene Verfahren wurden vorgeschlagen um die In-
version grosser Kovarianzmatrizen zu erleichtern. Dies beinhaltete numerische Algorithmen
um grosse Kovarianzmatrizen zu dünn besetzten Matrizen zu transformieren, was sich in
Zusammenhang mit der MCMC Methode besonders gut eignet. Ein Partitionierungsver-
fahren, das den Raum in Voronoi Kacheln zerlegt, wurde entwickelt. Dabei wurde ein
separater räumlicher Prozess für jede Kachel gebildet und Unabhängigkeit zwischen den
Kacheln postuliert. Dieses Modell wurde mittels Reversible Jump MCMC (RJMCMC)
geschätzt. Da die Kovarianzmatrize im Partitionierungsverfahren block-diagonale Struktur
besitzt, wird die Matrizeninversion erleichtert. Diese Methode eignet sich zudem um nicht-
stationäre, räumliche Daten zu analysieren. Des Weiteren wurde ein Überlebensmodell
entwickelt für die Analyse räumlicher, nicht-ausgerichteter Datensätze, um den Effekt, den
das Malariarisiko auf die Kindersterblichkeit ausübt, abzuschätzen. Die Nicht-Ausrichtung
der Daten rührt daher, dass die beiden Datensätze, von welchen die Mortalitätsrate, re-
spektive das Malariarisiko extrahiert wurden, an verschiedenen Orten erhoben wurden.

Die neu entwickelten Methoden wurden angewendet um Karten der Übertragungs-
rate von Malaria für Mali sowie West- und Zentralafrika zu erstellen. Die zugrunde
liegenden Daten stammen aus der ”Mapping Malaria Risk in Africa” (MARA) Daten-
bank, einer Sammlung von beliebigen Erhebungen an unterschiedlichen Orten und nicht-
standardisierten, überlappenden Altersgruppierungen. Um die verschiedenen Erhebung-
en vergleichen zu können wurde das Garki Modell angewendet, das alterspezifische Häu-
figkeitsdaten in ein einheitliches Malaria Übertragungsmass konvertiert. Ein bayessches
Variogrammodel wurde für die errechneten Übertragungsraten geschätzt, wobei Umwelt-
faktoren aus Fernerkundungsdaten berücksichtigt wurden. Bayessches Kriging wurde ange-
wandt um Karten der Übertragungsintensität von Malaria herzustellen. Diese wurden
schliesslich zu alterspezifischen Häufigkeits-Karten transformiert. Die hergestellten Karten
für West- und Zentral Afrika basieren auf einem eigens entwickelten Saisonalitätsmodell.
Expertenmeinungen zeigen, dass diese Schätzungen bestehende Karten verbessern. Aller-
dings werden weitere Erhebungen nötig sein um die Genauigkeit in jenen Gebieten zu
erhöhen, wo grössere Abweichungen im Vergleich zu früheren Karten bestehen, oder wo
wenig Stichproben erhoben wurden und deswegen wenig Datenmaterial vorhanden ist.

Das Überlebensmodell mit nicht-ausgerichteten Daten wurde verwendet um eine
Sterblichkeitskarte für Mali zu produzieren und um die Säuglings- und Kindersterblichkeit
in Abhängigkeit des Malariarisikos zu modellieren. Dafür wurden die MARA Datenbank
und die ”Demographic and Health Survey” (DHS) Datenbank kombiniert. Das Modell
berücksichtigte sozio-ökonomische Faktoren und räumliche Abhängigkeiten. Die Analyse
bestätigte, dass die Schulbildung der Mutter, die Geburtenfolge, die Länge des vorhergehen-
den Geburtintervalls, das Geschlecht des Kindes, der Wohnort sowie das Alter der Mutter
bei der Geburt des Kindes einen statistisch signifikanten Einfluss auf die Säuglings- und
Kindersterblichkeit haben. Jedoch konnte kein Zusammenhang zwischen der Sterblichkeit
und dem Auftreten von P. falciparum festgestellt werden. Es ist denkbar, dass in den un-
tersuchten Gebieten unberücksichtigte Faktoren, wie die Gesundheitsversorgung oder die
Verfügbarkeit von Wasser, einen stärkeren Einfluss auf das Sterblichkeitsrisiko ausüben,
als Malaria.
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CHAPTER 1

Introduction: Biology and epidemiology of malaria

1.1 The malaria parasite in the human

Malaria is a vector born disease caused by protozoan parasites of the genus Plasmo-
dium. There are four malaria parasite species in humans, namely P. falciparum, P. vivax,
P. malariae and P. ovale. Parasites are transmitted from person to person by female
mosquitoes of the genus Anopheles. Different species appear in different regions. The
transmission can be seasonal, depending on the dynamics of the vector population.

The life cycle of the parasite is depicted in figure 1.1. It starts with the inoculation of
the parasite into the human blood by the bite of a female Anopheles mosquito. Within
half an hour, the sporozoites reach the liver and invade the liver cells. Within the liver
cells, the trophozoites start their intracellular asexual division. At the completion of this
phase, thousands of erythrocytic merozoites are released from each liver cell. The time
taken for the completion of the tissue phase is variable, depending on the infecting species;
(5–6 days for P. falciparum). The merozoites invade the red blood cell (RBC), and then
develop through the stages of rings, trophozoites, early- and mature schizonts; each mature
schizont consists of thousands of erythrocytic merozoites. These merozoites are released
by the lysis of the RBC and immediately invade uninfected red cells.

This whole cycle of invasion - multiplication - release - invasion takes about 48 hours in
P. falciparum infections. The contents of the infected cell that are released with the lysis
of the RBC stimulate the Tumor Necrosis Factor and other cytokines, which results in the
characteristic clinical manifestations of the disease. A small proportion of the merozoites
undergo transformation into gametocytes. Mature gametocytes appear in the peripheral
blood after a period of 8–11 days of the primary attack in P. falciparum, they rise in number
until three weeks and decline thereafter, but circulate for several weeks. The gametocytes
enter the mosquito when it bites an infected individual.
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Figure 1.1: The life cycle of malaria.

1.2 The malaria parasite in the vector

Human malaria is transmitted by mosquitoes of the genus Anopheles. Out of the 360
species there are about 45 with the ability to transmit malaria of humans. Anopheles
live worldwide, but the transmission of malaria occurs predominantly in tropical and sub-
tropical zones (figure 1.2). Free of Anopheles, always means free of malaria, but not
vice-versa.

When, after the blood meal, the malaria parasite enters the mosquito, the gametocytes
continue their development (Sporogony). The male and female gametes fuse and form into
a zygote. This transforms into an ookinete which penetrates the gut wall and becomes an
oocyst. The oocyst divides asexually into numerous sporozoites which reach the salivary
gland of the mosquito, where they can be transmitted when the mosquito next takes a
blood-meal. The sporogony in the mosquito takes about 10–20 days dependent on air
temperature and thereafter the mosquito remains infective for 1–2 months, if it survives.
There is no sporogony at a temperature below 15◦C.

Only the female mosquito takes a blood meal (male Anopheles feed on nectar) which
is necessary for the development of eggs. Two to three days after the blood meal, which
is taken during the night or at dawn, the female anopheline lays around hundred eggs.
During her life of several weeks, she can therefore produce more than 1,000 eggs. The eggs
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Figure 1.2: Countries with endemic malaria transmission (WHO, 2000).

are always laid on water surface, with preference for swamps or shallow water. They may
also breed in water containers or tree holes. The oval eggs are one millimeter long and
require about two weeks to develop into adult mosquitoes. They fly only short distances
of a few kilometers. Their preferred location is close to human houses.

There are behavioral differences between mosquito species, which are important for
the study of the geographical distribution of the vector. The most important Anopheles
species in Africa are members of the A. gambiae complex and A. funestus. Five species
of the A. gambiae complex are vectors of malaria and two of them (A. gambiae s.s. and
A. arabiensis) are the most widely distributed throughout sub-Saharan Africa. A. arabi-
ensis predominates in drier and A. gambiae s.s. in more humid areas. Their preferred
breeding sites are sunlit temporary pools or rice fields. A. arabiensis feeds on humans and
animals while A. gambiae s.s. feeds on humans predominantly, prefers indoor locations for
biting and resting, and has a higher vectorial capacity than other species. Two salt water
species of the A. gambiae complex (A. melas and A. merus) are found in West- and East
Africa, respectively where A. merus feeds mainly on animals and A. melas bites humans or
animals. Another major vector of malaria in many parts of tropical and sub-tropical Africa
is A. funestus of the A. funestus group. It feeds mainly on humans and rests and bites
indoors. It breeds in semi-permanent and permanent water with vegetation and swamps
and is associated with all-year malaria transmission.
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1.2.1 Vector ecology

The short fly range and the preferred locations for hosting and breeding are responsible
for large local differences in the geographical distribution of the anopheline. The effect the
environment has on the malaria vector is further determined by rainfall and temperature
which affect mosquito survival and the duration of the parasite life cycle in the vector.

Temperature

Temperature influences the survival of the parasite during its life-cycle in the Anopheles
vector. All species have the shortest development cycle around 27–31◦C which lasts from
8 to 15–21 days depending on species. The lower the temperature, the longer the cycle.
Below 19◦C for P. falciparum, the parasites are unlikely to complete their cycle and hence
to further propagate the disease. Temperature also modifies the vectorial capacity of the
Anopheles. Optimal temperature values, ranging from 22◦C to 30◦C, lengthen the life-span
of the mosquitoes and increase the frequency of blood meals taken by the females, to up
to one meal every 48 hours. Higher temperatures also shorten the aquatic life cycle of the
mosquitoes from 20 to 7 days and reduce the time between emergence and oviposition, as
well as the time between successive ovipositions.

Temperature affects also the vector. In tropical climate the Anopheles eggs hatch within
2–3 days of laying, whereas for colder temperatures it can require 2–3 weeks. At minimum
temperatures near the freezing point, African vector populations are effectively obliterated
and at very high temperatures of above 40◦C, the Anopheles die (Craig et al., 1999).
As a consequence of all the temperature requirements malaria transmission becomes less
frequent at high altitudes. Near the equator there are no Anopheles above 2,500 meters
altitude and in the other regions there are none above 1,500 meters altitude.

Rainfall and humidity

Rainfall and humidity impact to a great extend the living conditions of the Anopheles
(Thomson et al., 1996). Temporal ponds, created by increasing rainfall, are responsible
for ideal vector breeding conditions. However rainfall can also destroy existing breeding
places: Heavy rain can change breeding pools into streams, impede the development of
mosquito eggs or larvae, or simply flush the eggs or larvae out of the pools (Ribeiro et al.,
1996; Craig et al., 1999). Conversely exceptional drought conditions can turn streams into
pools. The appearance of such opportunistic mosquito breeding sites sometimes precede
epidemics. The interaction between rainfall, evaporation, runoff, and temperature modu-
lates the ambient air humidity which in turn affects the survival and activity of Anopheles
mosquitoes. Mosquitoes can survive if relative humidity is at least 50 or 60 percent. Higher
values lengthen the life-span of the mosquitoes and enable them to infect more people. As
a proxy for humidity and rainfall, the vegetation index is shown to be a successful indicator
(Thomson et al., 1997).
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1.3 Malaria mortality, morbidity and immunity

The incubation period for P. falciparum malaria (the time between the inoculation of the
parasite and the first medical symptoms) is around 8–15 days. The main symptoms in all
malaria forms are (periodic) fever outbreaks. The most severe form of malaria morbidity
is cerebral malaria, which is characterized by coma with detectable parasitemia, and it
is accompanied by the obstruction of capillaries in the central nervous system. Cerebral
malaria is a severe complication of clinical malaria in areas with a malaria transmission
of 10–20 infectious bites per year. Other major complications are severe anaemia, acute
renal insufficiency or failure, hepatic or pulmonary problems, jaundice and gastrointestinal
symptoms such as abdominal pain, nausea, vomiting, diarrhea or constipation (Gilles and
Warrell, 1993).

Acquired immunity is developed after repeated infections. Adults can tolerate parasites
without developing symptoms. Infants are protected due to maternal antibodies in the first
3–6 months of life. Until they have built their own immunity, they are vulnerable to clinical
malaria episodes. Infant mortality in high endemic malaria regions is high (Kalipeni, 1993;
Smith et al., 2001). Pregnancy leads to suppression of immunity. High parasitemia is
observed during the first pregnancy and is decreasing for further pregnancies (Brabin,
1983; McGregor, 1984; Steketee et al., 2001). The malaria infection of the mother is a
major reason for abortion and stillbirth and reduces the survival chances of a newborn
(McCormick, 1985; Bouvier et al., 1997).

1.4 Measures of malaria endemicity and transmission

Malaria prevalence is the most widely available measure of endemicity. Prevalence data are
obtained by community surveys of individuals who are tested for the presence of parasites
in their blood. The acquiring of partial immunity in older children and adults in endemic
malaria areas leads to age-dependence of this measure. Prevalence is only an indirect
measure of the amount of malaria transmission, because malaria infections may persist for
varying length of time. A direct transmission measure is the incidence of the disease, that
is the number of new cases of malaria diagnosed per unit time and person. Incidence data
can be biased when collected in health centers, because it may reflect patients’ access to
these centers. They also depend on accurate estimates of the population at risk.

The most common entomological measure of malaria transmission is the entomological
inoculation rate (EIR), which is defined as the number of sporozoite positive mosquito
bites per person and time unit (typically year) and is the product of the anopheline den-
sity, the human biting rate and the sporozoite index (the number of infective mosquitoes)
(Macdonald, 1957; Hay et al., 2000). The human biting rate can be measured by human
bait catches or mosquito traps.

One of the best documented studies on malaria transmission was conducted in 1971–
1973 in the Garki area of Northern Nigeria (Molineaux and Gramiccia, 1980). Using
the Garki data, a mathematical model was formulated (Dietz et al., 1974) that makes
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predictions of the age-specific prevalence of P. falciparum in humans as a function of the
vectorial capacity. It can be used to link several measures of transmission (including the
vectorial capacity and the entomological inoculation rate) and the malaria prevalence.

1.5 Measures of malaria mortality

There are basically four ways to measure mortality attributable to malaria: from clinical
records, when the cause of death is identified; from observing the rise in mortality during
malaria epidemics; from observing the fall in mortality when malaria is brought under
control; or by calculating the mortality necessary to maintain the observed level of the
sickling gene in a balanced polymorphism (Molineaux, 1985).

Clinical records in Africa hardly ever include post-mortem series and, more seriously,
introduce bias because they are only derived from tertiary-care facilities and very rarely
include young children and infants. The fact that most people die outside the hospital and
the limitation of paediatric beds in Africa make clear that information on death certificates
are a poor measure of malaria mortality (Snow and Marsh, 1998).

Interactions between malaria and other diseases in areas of high malaria endemicity
make it difficult to quantify the mortality attributable to malaria. Malaria may be a
relevant risk factor for many deaths even when it is not the immediate cause (Molineaux,
1985). Moreover, low birth weight is an important risk factor for infant mortality and it is
known to arise because of both prematurity and intrauterine growth retardation resulting
from malaria infection of the mother during pregnancy (Steketee et al., 2001). Molineaux
(1985) emphasized that is as important to look at the relationship of malaria endemicity
with all-cause mortality as it is to look at its relationship with malaria specific deaths.

1.6 Spatial epidemiology of malaria

Spatial epidemiology is the study of the spatial/geographical distribution of the incidence
of disease and its relationship to potential risk factors. The origins of spatial epidemiology
go back to 1855 with the seminal work of Snow on cholera transmission. He mapped
the cholera cases together with the locations of water source in London, and showed that
contaminated water was the major cause of the disease. Spatial analysis in the nineteenth
and twentieth century was mostly employed by plotting the observed disease cases or rates
(Howe, 1989). Recent methods make use of computer based cartographic methods, satellite
derived data and modern statistical methods and allow an integrated approach to address
both tasks; inference on the geographical distribution of a disease and its prediction at new
locations.

Spatial epidemiological tools applied in malaria research can identify areas of high
malaria transmission and assess potential environmental and other risk factors which can
explain variation in space. Elucidating the relation between environment and malaria
allows prediction of the impact environmental changes have on malaria risk, including
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the effect of global warming and of man made interventions (dams, change in agriculture,
urbanization, etc.). The understanding of environmental aspects of malaria is important
for effective malaria interventions, which not only focus on the parasite directly, but also
on the mosquito vector and its living conditions. Maps of malaria distribution provide
estimates of the disease burden and assist in the evaluation of intervention programs.

1.6.1 GIS and remote sensing

Advances in computer cartography and the development of Geographic Information System
(GIS) brought a new impetus to the field of spatial epidemiology. GIS is a computerized
database management system for the capture, storage, retrieval, analysis and display of
spatially referenced (geo-referenced) data. It classifies data coming from disparate sources
into map layers, then linking these layers by spatially matching them, querying and ana-
lyzing them together to produce new information and hypotheses. In order to use survey
information in GIS, the data must be geographically identified (geolocated). This is often
accomplished by using the Global Positioning System (GPS) (August et al., 1994; Logsdon,
1992; Wells, 1988).

A general introduction to GIS and its use in tropical and malaria epidemiology is
given by Robinson (2000). Fully descriptive malaria research using GIS software is done
by Hightower et al. (1998). Omumbo et al. (1998) use GIS to quantify the relation be-
tween occurrence of anopheline and environmental variables and Carter (2000) use GIS
to investigate in the geographical relation between malaria risk and its vector breeding
sites. Schellenberg et al. (1998) spatially link malaria incidence to households using GIS,
to investigate the relation between malaria related hospital admission rates and distance
to hospital. A similar approach was chosen by van der Hoek et al. (2003) to investigate
the malaria risk in relation to the distance between household locations and rivers. GIS
has been used in combination with environmental data by Rogers et al. (2002) to predict
entomological inoculation rates and the occurrence of different species of the A. gambiae
complex in Africa. Suitability maps of malaria transmission in Africa based on climatic
models using GIS have been produced by Snow et al. (1998) for Kenya and by Craig et al.
(1999) for the whole of Africa.

The relation between malaria risk and environmental indices derived by remote sensing
is described by Connor et al. (1998) and Thomson et al. (1996, 1997). These authors
describe remote sensing databases which are publicly available and are proven to give useful
contribution to malaria research. Hay et al. (2002) analyzed long-term meteorological data
from four sites in high-altitude in East Africa and concluded that claimed associations
between local malaria resurgence and regional changes in climate are overly simplistic.

1.6.2 Spatial statistical methods

Many analysis of remote sensed data in relation to malaria make little, no, or limited use
of field data and few of them have allowed for the geographical structure of the data.
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Geographical data are correlated in space. Data in close geographical proximity is
more likely to be influenced by similar factors and thus affected in a similar way. In the
case of malaria, spatial correlation is present at both, short and large scales, reflecting the
transmission of malaria infection by the mosquitoes which fly over short distances and the
effects of environmental factors which determine mosquito survival over large areas.

Standard statistical methods assume independence of observations. When using this
methods to analyze spatially correlated data, the standard error of the covariate parame-
ters is underestimated and thus the statistical significance is overestimated (Cressie, 1993,
pp.20–21). This was demonstrated in a malaria application by Thomson et al. (1999).

Spatial statistical methods incorporate spatial correlation according to the way geogra-
phical proximity is defined. Proximity further depends on the geographical information,
which can be available at areal level or at point-location level. Areal unit data are aggre-
gated over contiguous units (countries, districts, census zones) which partition the whole
study region. Proximity in space is defined by their neighboring structure. Point-referenced
or geostatistical data are collected at fixed locations (households, villages) over a continu-
ous study region. Proximity in geostatistical data is determined by the distance between
sample locations.

Bayesian methods have been applied extensively in recent years for modelling both,
areal unit and geostatistical data because they allow flexible modelling and inference and
provide computational advantages via the implementation of Markov chain Monte Carlo
(MCMC) methods (Gelfand and Smith, 1990). The spatial structure is commonly intro-
duced in a hierarchical fashion via the prior distribution of area of site-specific random
effects, although spatial dependence can be built directly on Gaussian response data. The
choice of prior distributions or spatial models depend on the type of spatial data.

In areal data, simultaneously autoregressive (SAR) models (Whittle, 1954), conditional
autoregressive (CAR) models (Clayton and Kaldor, 1987) and modifications (Besag at
al., 1991; Sun et al., 2000)) have been suggested as prior specifications in the Bayesian
approach. In geographical mapping of disease and mortality rates spatially autoregressive
models are employed assuming Poisson count data (Bernardinelli and Montomoli, 1992;
Clayton et al., 1993; Waller et al., 1997). Smith et al. (1995) applied these models in
malaria epidemiology to map the malaria vector density in a single village and Kleinschmidt
et al. (2001b) have implemented CAR models for mapping malaria incidence rates data.
Vounatsou et al. (2000) and Gelfand et al. (2003) extended CAR models for multinomial
response data with application to geographical mapping of allele and haplotype frequencies.

Geostatistical models introduce spatial correlation in the correlation matrix of location-
specific random effects which model a latent Gaussian spatial process (Cressie, 1993; Diggle
et al., 1998). In case of isotropy, the covariance between any two sites depends only on
the distance between them. Typical covariogram functions are the exponential, Gaussian,
Cauchy, spherical and Bessel (Ecker and Gelfand, 1999). Under the assumption of station-
arity, which postulates that the spatial correlation is a function of distance and independent
of location, the covariance determines the well known variogram. Despite the usefulness of
stationary spatial models, in many applications including those in malaria epidemiology,
the spatial structure changes with the location especially over large geographical areas.
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Modelling alternatives to take into account non-stationary spatial covariance include
the spatial deformation approach (Sampson and Gottorp, 1992), kernel convolution ap-
proach (Higdon et al., 1998) and the spectral approaches (Nychka et al., 2002; Fuentes et
al., 2002). An issue of practical concern is that the computation of the prior distribution
of random effects requires the inversion of the covariance matrix of the spatial process.
Moreover, implementation of the usual iterative model fit requires repeated inversions of
this matrix which for large number of locations is not feasible within practical time con-
straints. Gelfand et al. (1999) suggested replacing matrix inversion with simulation using
importance sampling. Christensen et al. (2002) suggest speeding MCMC implementation
via Langevin-Hastings updates. Kim et al. (2002) use piecewise Gaussian processes to
model non-stationary Gaussian permeability data. They overcome matrix inversion by
partitioning the space in random tesselations and assuming separate spatial processes in
the tiles and independence between the tiles of the tesselation.

In geostatistics, spatial prediction is referred to as kriging. Matheron (1963) coined this
term in honor of the South African mining engineer D. G. Krige. Bayesian kriging (Diggle
et al., 1998) allows estimation of the prediction error, a feature which is not possible in
classical kriging estimators.

Geostatistical methods have occasionally been applied to disease mapping. Carrat
and Valleron (1992) give an introduction to kriging for epidemiologists. A Bayesian spa-
tial model using MCMC has been employed by Alexander et al. (2000) and applied to
individual-level counts of the nematode Wucheria bancrofti, a parasite of humans which
causes lymphatic filariasis. There is only little research done in using kriging in malaria
mapping. Ribeiro et al. (1996) mapped the vector density in a single village, by fitting a
standard regression model and applying classical kriging on the model residuals. A similar
approach was revisited by Kleinschmidt for mapping malaria prevalence in Mali (Klein-
schmidt et al., 2000) and for the whole of West Africa (Kleinschmidt et al., 2001a). The only
approach so far for mapping malaria prevalence using Bayesian kriging has been presented
by Diggle et al. (2002). These authors applied MCMC to map malaria in The Gambia but
use only few surveys. The purpose of their analysis was thus rather the demonstration of
the methodology. It needs to be further discussed how this approach can be extended to
larger malariological dataset and such with non-stationary spatial structure.

1.7 Objectives of the thesis

The main objectives of this research were to a) develop Bayesian variogram models for the
analysis of point-referenced prevalence and mortality data collected over a large number
of locations and b) to validate and implement the developed models in the area of spatial
malaria epidemiology in order to produce smooth maps of malaria transmission in Africa
and assess relations between child mortality and malaria endemicity. The specific objectives
in statistical methodology were

• assessment of existing geostatistical methods in modelling malaria data collected
over a large number of locations. The methods were evaluated in terms of ease of



10

implementation, estimation accuracy and computational efficiency. This is addressed
in chapter 2;

• development of geostatistical survival models for mapping mortality data. The anal-
ysis is reported in chapter 3;

• modelling geostatistical misaligned data for assessing the impact of site-specific
malaria endemicity on child mortality collected at different set of locations. This
is the topic of chapter 4;

• development of models for non-stationary, geostatistical malaria prevalence data.
These models are describes in chapter 8;

• evaluating numerical algorithms to improve computation of geostatistical models
using MCMC. This is addressed in chapter 7;

• development of models for mapping malaria transmission. The maps are presented
in chapters 5 and 6.

The developed statistical methods were applied on data extracted from the MARA/ARMA
and DHS databases in order to

• identify factors related with geographical differences in infant mortality risk in Mali
and assess the effect of malaria endemicity on infant mortality;

• evaluate the impact of site-specific malaria endemicity on child mortality rate in Mali;

• produce smooth maps of malaria transmission and age-specific malaria risk in Mali
allowing for the effect of environmental factors;

• map malaria transmission in West- and Central Africa adjusted for age, seasonality
and environmental factors.
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Abstract

Non-Gaussian point-referenced spatial data are frequently modelled using generalized linear
mixed models (GLMM) with location-specific random effects. Spatial dependence can be
introduced in the covariance matrix of the random effects. Maximum likelihood-based or
Bayesian estimation implemented via Markov chain Monte Carlo (MCMC) for such models
is computationally demanding especially for large sample sizes because of the large number
of random effects and the inversion of the covariance matrix involved in the likelihood.
Sampling-Importance-Resampling (SIR) has been proposed to overcome matrix inversion.
In this study, we review three fitting procedures, the Penalized Quasi Likelihood method,
the MCMC and the SIR method. We assess these methods in terms of estimation accuracy,
ease of implementation and computational efficiency using a spatially structured dataset
on infant mortality from Mali. The objective of data analysis was to assess the effect of
maternal and socio-economic parameters on infant mortality and produce a smooth map
of mortality risk in Mali.
Keywords: geostatistics; infant mortality; kriging; Markov chain Monte Carlo; penalized
quasi likelihood; risk mapping; sampling-importance-resampling.

2.1 Introduction

Point referenced spatial data arise from observations collected at geographical locations
over a fixed continuous space. Proximity in space introduces correlations between the ob-
servations rendering the independence assumption of standard statistical methods invalid.
Ignoring spatial correlation will result in underestimation of the standard error of the pa-
rameter estimates, and therefore liberal inference as the null hypothesis is rejected too
often. A wide range of analytical tools within the field of geostatistics have been developed
concerning with the description and estimation of spatial patterns, the modelling of data
in the presence of spatial correlation and the kriging, that is the spatial prediction, at
unobserved locations.

Statistical inference of point referenced data often assumes that the observations arise
from a Gaussian spatial stochastic process and introduce covariate information and possibly
trend surface specification on the mean structure while spatial correlation on the variance-
covariance matrix, Σ of the process. Under second order stationarity, Σ determines the
well-known variogram. When isotropy is also assumed, the elements of Σ are modelled
by parametric functions of the separation between the corresponding locations. For non-
Gaussian data, the spatial correlation is modelled on the covariance structure of location-
specific random effects introduced into the model and assumed to arise from a Gaussian
stationary spatial process.

For Gaussian data, the generalized least squares (GLS) approach can be used itera-
tively to obtain estimates β̂ of the regression coefficients conditional on the covariance
parameters. The covariance parameters θ can be estimated conditional on β̂ by fitting the
semivariogram empirically or by maximum likelihood or restricted maximum likelihood
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methods (Zimmerman and Zimmerman, 1991).
Statistical estimation for non-Gaussian data is based on the theory of generalized li-

near mixed models (GLMM). A common approach is to integrate out the random effects
and proceed with maximum likelihood based approaches for estimating the covariate and
covariogram parameters. This integration can be implemented numerically (Anderson and
Hinde, 1988; Preisler, 1988; Lesaffre and Spiessens, 2001) when dimensionality is low or via
approximations. Breslow and Clayton (1993) showed, that for known covariance parame-
ters, the Laplace approximation leads to the same estimator for the fixed and random effects
as the one arising by maximizing the penalized quasi-likelihood (PQL). Implementation
of this approach requires iterating between iterated weighted least squares for estimating
the fixed and random effects and maximizing the profile likelihood for estimating the co-
variance parameters. An extension of the PQL procedure is discussed by Wolfinger and
O’Connell (1993). The PQL approach is implemented in some statistical packages due to
its relative simplicity, however it provides biased estimates when the number of random
effects increases (McCulloch, 1997; Booth and Hobert, 1999) or when the data are far from
normal.

The generalized estimating equation methods developed by Liang and Zeger (1986) and
Zeger and Liang (1986) estimate covariate effects under the assumption of independence,
but correct their standard error to account for the spatial dependence. The method is
unable to estimate the spatial random effects. The EM algorithm (Dempster et al., 1977)
has been implemented in model fit by treating the spatial random effects as ”missing”
data. The intractable integration of the random effects which is required in the E-step
is overcome by simulation, such as Metropolis-Hastings algorithm (McCulloch, 1997) or
importance sampling/rejection sampling method (Booth and Hobert, 1999). For spatial
settings, particular Pseudo-Likelihood approaches have been established which capture
solely the site to site variation between pairs or groups of observations (Besag, 1974). For
the special case of a binary outcome, Heagerty and Lele (1998) have proposed a thresholding
model using a composite likelihood approach.

A drawback of the maximum likelihood-based methods employed in geostatistical
modelling is the large sample asymptotic inference. For a spatial stochastic process
{Y (u);u ∈ D}, with D ⊂ R2 the asymptotic concept can be applied either to the sam-
ple size within a fixed space D (infill asymptotics) or to the space D (increasing domain
asymptotics). In the latter, observations are spaced far enough to be considered uncor-
related. The results can differ, depending on the type of asymptotics used (see Tubilla,
1975).

Bayesian hierarchical geostatistical models implemented via Monte Carlo methods avoid
asymptotic inference as well as many computational problems in model fitting and predic-
tion. Diggle et al. (1998) suggest inference on the posterior density via Markov chain Monte
Carlo (MCMC). This iterative approach requires repeated inversions of the covariance ma-
trix of the spatial process, which is involved in the likelihood. The size of this matrix
increases with the number of locations. Inversions of large matrices can drastically slow
down the running time of the algorithm and cause numerical instabilities affecting the accu-
racy of the estimates. To overcome this problem Gelfand et al. (1999) suggest non-iterative
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simulation via the Sampling-Importance-Resampling (SIR) algorithm (Rubin, 1987). The
quality of SIR hinge on the ability to formulate an easy-to-draw-from importance-density,
which comes as close as possible to the true joint posterior distribution of the parameters.

In this article, we review three fitting procedures; the maximum likelihood-based PQL
method, MCMC and the SIR. We assess these methods in terms of estimation accuracy,
ease of implementation and computational efficiency using a spatially structured dataset
on infant mortality from Mali collected over 181 locations. A description of the dataset
and the applied questions which motivated this work are given in section 2.2. Section 2.3
describes the model as well as the three fitting approaches. Section 2.4 provides imple-
mentation details and presents the results. A discussion on the ease of implementation of
each approach and a comparison of the inferences obtained is given in section 2.5.

2.2 Data

The data which motivated this work were collected within the Demographic and Health
Surveys (DHS) program. The aim of the program is to collect and analyze reliable de-
mographic and health data for regional and national family and health planning. Data
are commonly collected in developing countries. DHS is funded by the U.S. Agency for
International Development (USAID) and implemented by Macro International Inc. The
standard DHS methodology involves collecting complete birth histories from women of
childbearing age, from which a record of age and survival can be computed for each child.
The data are available to researchers via the internet (www.measureDHS.com).

Birth histories corresponding to 35,906 children were extracted from the data of the
DHS-III 1995/96 household survey carried out in Mali. Additional relevant covariates
extracted were the year of birth, residence, mothers education, infant’s sex, birth order,
preceding birth interval and mothers age at birth. Using location information provided by
Macro International, we were able to geo-locate 181 distinct sites by using digital maps
and databases, such as the African data sampler (World Resources Institute, 1995) and
the Geoname Gazetteer (GDE Systems Inc., 1995). The objective of data analysis was to
assess the effect of birth and socio-economic parameters on infant mortality and produce
smooth maps of mortality risk in Mali. These maps will help identifying areas of high
mortality risk and assist child mortality intervention programs.

2.3 Generalized linear mixed model for point-

referenced spatial data

Let Yij be a binary response corresponding to the mortality risk of child j at site si, i =
1, . . . , n taking value 1 if the child survived the first year of life and 0 otherwise, and let
X ij be the vector of associated covariates. Within the generalized linear model framework
(GLM), we assume Yij are i.i.d. Bernoulli random variables with E(Yij) = πij and model
predictors as g(πij) = X t

ijβ where g(·) is a link function such as logit in our mortality risk

http://www.measuredhs.com
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application. However the spatial structure of the data renders the independence assumption
of Yij invalid, leading to narrower confidence intervals for β and thus to overestimation of
the significance of the predictors.

One approach to take into account spatial dependence is via the generalized linear mixed
model (GLMM) reviewed by Breslow and Clayton (1993). In particular, we introduce the
unobserved spatial variation by a latent stationary, isotropic Gaussian process U over our
study region, D, such that U = (U1, U2, . . . , Un) ∼ N(0,Σ), where Σij is a parametric
function of the distance dij between locations si and sj. Conditional on the random term
Ui, we assume that Yij are independent with E(Yij | Ui) = πij. The Ui enters the model on
the same scale as the predictors, that is

g(πij) = X t
ijβ + Ui (2.1)

and captures unmeasured geographical heterogeneity (small scale variation).
A commonly used parameterization for the covariance Σ is Σij = σ2ρ(φ; dij) where

σ2 is the variance of the spatial process and ρ(φ; dij) a valid correlation function with a
scale parameter φ which controls the rate of correlation decay with increasing distance. In
most applications a monotonic correlation function is chosen i.e. the exponential function
which has the form ρ(φ; dij) = exp(−φdij). Ecker and Gelfand (1997) propose several other
parametric correlation forms, such as the Gaussian, Cauchy, spherical and the Bessel.

A separate set of location-specific random effects, W = (W1, . . . ,Wn)t is often added in
equation (2.1) to account for unexplained non-spatial variation (Diggle et al., 1998), where
Wi, i = 1, . . . , n are considered to be independent, arising from a normal distribution,
Wi ∼ N(0, τ 2). The τ 2 is known in geostatistics as the nugget effect and introduces a
discontinuity at the origin of the covariance function, Σij = τ 2δij + σ2ρ(φ; dij). δij is the
Kronecker delta and takes the value of one if i = j and zero otherwise. A large number of
repeated samples at the same location make the nugget identifiable, otherwise its use in
the model is not justifiable since the extra-binomial variation is already accounted for by
the spatial random effect.

2.3.1 Parameter estimation

The above GLMM is highly parameterized and maximum likelihood methods fail to es-
timate all parameters simultaneously. The estimation approach starts by integrating out
the random effects and estimating the other parameters using the marginal likelihood∫
p(Y |U ,β, σ, φ) p(U |σ, φ)dU . However, this integral has analytical solution only for

Gaussian data. For non-Gaussian data the integrand can be approximated using a first-
order Taylor series expansion around its maximizing value, after which the integration is
feasible. This approach, known as the Laplace approximation, results in the penalized
quasi-likelihood (PQL) estimator (Breslow and Clayton, 1993), which was shown in vari-
ous simulation studies to produce biased results (Browne and Draper, 2000; Neuhaus and
Segal, 1997). Breslow and Lin (1995) determined the asymptotic bias in variance com-
ponent problems for first- and second-order approximations in comparison to McLaurin
approximations.
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Following the Bayesian modelling specification, we need to adopt prior distributions
for all model parameters. We chose non-informative Uniform priors for the regression
coefficients, i.e. p(β) ∝ 1, and vague inverse Gamma priors for the σ2 and φ parameters:
p(φ) ≡ IG(a1, b1) and p(σ2) ≡ IG(a2, b2). Bayesian inference is based on the joint posterior
distribution p(β,U , σ2, φ|Y ) ∝ L(β,U ; Y )p(β)p(U |σ2, φ)p(σ2)p(φ), where p(U |σ2, φ) is
the distribution of the spatial random effects, that is p(U |σ2, φ) ≡ N(0,Σ).

Markov chain Monte Carlo estimation

Diggle et al. (1998) suggest Markov chain Monte Carlo and in particular Gibbs sampling
for fitting GLMM for point-referenced data. The standard implementation of the Gibbs
algorithm requires sampling from the full conditional posterior distributions which in our
application have the following forms:

p(βk|β−k,U ,Y ) ∝
n∏

i=1

ni∏
j=1

exp(X ijkβk · Yij)

1 + exp(X t
ijβ + Ui)

(2.2)

p(Ui|U−i, σ
2, φ,Y ) ∝

n∏
i=1

ni∏
j=1

exp(UiYij)

1 + exp(X t
ijβ + Ui)

|Σi|−
1
2 ×

exp(−1

2
(Ui −Σ−i,iΣ

−1
−i U−i)

2(Σi)
−1) (2.3)

p(φ|U , σ2) ∝ |Σ|−
1
2 exp

(
−1

2
(U tΣ−1U + b1/φ)

)
φ−(a1+1) (2.4)

p(σ2|U , φ) ∼ Inverse Gamma(a2 +
n

2
, b2 +

1

2
U tRU) (2.5)

where β−k = (β1, . . . , βk−1, βk+1, . . . , βK)t, U−i = (U1, . . . , Ui−1, Ui+1, . . . , Un)t, Σ−i,i =
Σt

i,−i = Cov(U−i, Ui), Σ−i = Cov(U−i,U−i), Rkl = ρ(φ; dkl) and Σi = σ2−Σi,−iΣ
−1
−i Σi,−i.

Samples from p(σ2|U , φ) can be drawn easily as this is a known distribution. The condi-
tionals of the other parameters do not have standard forms and a random walk Metropolis
algorithm with a Gaussian proposal density having mean equal to the estimate from the pre-
vious iteration and variance derived from the inverse second derivative of the log-posterior
could be employed for simulation.

The likelihood calculations in (2.3) and (2.4) require inversions of the (n− 1)× (n− 1)
matrices, Σ−i, i = 1, . . . , n and the n × n matrix Σ, respectively. Matrix inversion is an
order 3 operation, which has to be repeated for evaluating the conditional distribution of
all n random effects Ui and that of the φ parameter, within each Gibbs sampling iteration.
This leads to an enormous demand of computing capacity and makes implementation of the
algorithm extremely slow (or possibly infeasible), especially for large number of locations.

Sampling-Importance-Resampling

Gelfand et al. (1999) propose Bayesian inference for point-referenced data using non-
iterative Sampling-Importance-Resampling (SIR) simulation. They replace matrix in-
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version with simulation by introducing a suitable importance sampling density g(·) and
re-write the joint posterior as

p?(β,U , σ2, φ|Y ) =
p(β,U , σ2, φ|Y )

g(β,U , σ2, φ; Y )
· g(β,U , σ2, φ; Y ) (2.6)

They construct the importance sampling density (ISD) by

g(β,U , σ2, φ; Y ) = gs(β|U ; Y )gs(U |σ2, φ)gs(σ
2, φ) (2.7)

which is easy to simulate from and then re-sample from g(β,U , σ2, φ|y) according to the
importance weights

w(β, σ2, φ,U ) =
p(β,U , σ2, φ|Y )

g(β,U , σ2, φ; Y )
. (2.8)

The density gs(σ
2, φ) of the ISD could be taken as a product of independent inverse Gamma

distributions gs(σ
2)gs(φ). It is however preferable to adopt a bivariate distribution which

accounts for interrelations between the two parameters and thus it approximates closer
the p(σ2, φ | Y ). We considered a bivariate t-distribution on log(σ2) and log(φ) with
low degrees of freedom and mean around the maximum likelihood estimates of log(σ2)
and log(φ). The spatial random effects can be simulated from a multivariate normal
distribution, gs(U |σ2, φ) ≡ N(0, σ2ρ(φ, ·)). This step requires matrix decomposition of
σ2ρ(φ, ·), repeatedly at every iteration. This is an operation of order 2 and the most
expensive numerical part of the simulation from the ISD. The density gs(β|U ; Y ) can be a

normal distribution, gs(β|U ; Y ) ≡ N(β̂U , Σ̂β), with β̂U equal to the regression coefficients

estimated from an ordinary logistic regression with offset U and Σ̂β equal to the covariance

matrix of β̂U .
When the ISD approximates well the posterior distribution, one expects that the stan-

dardized importance weights are Uniformly distributed. When this not the case, the ISD
would give rise to very few dominant weights leading to an inefficient and wrong sampler.
A possible remedy would be to embed the Sampling-Importance-Resampling simulation
in an iterative scheme which refines the initial guesses of the ISD and allows after few
iterations more uniform weights.

Point estimates of the parameters should preferably be calculated from the importance
weights using all sampled values, rather than from the re-sampled values, what leads to
smaller bias. For example the mean and variance of βi is estimated by βi =

∑
k wkβ

(k)
i /∑

k wk and
∑

k wk(β
(k)
i − βi)

2/
∑

k wk respectively, where β
(k)
i is the kth sampled value of

βi from the ISD.

2.3.2 Spatial prediction

Modelling point-referenced data is not only useful for identifying significant covariates but
for producing smooth maps of the outcome by predicting it at unsampled locations. Spatial
prediction is usually refereed as kriging.
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Let Y 0 be a vector of the binary response at new, unobserved locations s0i, i = 1, . . . , n0.
Following the maximum likelihood approach, the distribution of Y 0 is given by:

P (Y 0 | β̂, Û , σ̂2, φ̂) =

∫
P (Y 0 | β̂,U 0)P (U 0 | Û , σ̂2, φ̂) dU 0 (2.9)

where β̂, σ̂2 and φ̂ are the maximum likelihood estimates of the corresponding parameters.
In PQL, Û is derived as part of the iterative estimation process (Breslow and Clayton,
1993). P (Y 0 | β̂, U0) is the Bernoulli-likelihood at new locations and P (U 0 | Û , σ̂2, φ̂) is
the distribution of the spatial random effects U 0 at new sites, given Û at observed sites
and is normal

P (U 0 | Û , σ̂2, φ̂) = N (Σ01Σ
−1
11 Û ,Σ00 −Σ01Σ

−1
11 Σ10) (2.10)

with Σ11 = E(UU t), Σ00 = E(U 0U
t
0) and Σ01 = Σt

10 = E(U 0U
t). The mean of the

Gaussian distribution in (2.10) is the classical kriging estimator (Matheron, 1963).
The Bayesian predictive distribution of Y 0 is given by:

P (Y 0 | Y ) =

∫
P (Y 0 | β,U 0)P (U 0 | U , σ2, φ)×

P (β,U , σ2, φ | Y ) dβ dU 0 dUdσ2dφ (2.11)

P (β,U , σ2, φ | Y ) is the posterior distribution of the parameters and obtained by the Gibbs
sampler or the SIR approach. Simulation-based Bayesian spatial prediction is performed
by consecutive drawing samples from the posterior distribution, the distribution of the
spatial random effects at new locations and the Bernoulli-distributed predicted outcome.
In SIR, drawing is performed from the set of all sampled parameters with weighting given
in equation (2.8).

The maximum likelihood predictor (equation 2.9) can be interpreted as the Bayesian
predictor (equation 2.11), with parameters fixed at their maximum-likelihood estimates. In
contrast to Bayesian kriging, classical kriging does not account for uncertainty in estimation
of β and the covariance parameters.

2.4 Results

A generalized linear mixed model was fitted to the infant mortality data in Mali using
the three estimation approaches discussed in section 2.3, PQL, MCMC and SIR together
with the ordinary logistic regression (GLM) which did not account for spatial dependence.
The purpose of the analysis was to assess the effect of maternal and socio-economic factors
on infant mortality, produce a smooth map of mortality risk in Mali and compare the
results obtained from the above procedures. Univariate analysis based on the ordinary
logistic regression revealed that the following variables should be included in the model:
child’s birthday, region type, mother’s degree of education, sex, birth order, preceding birth
interval and mother’s age at birth.
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Model Initial Final sample size No. of batches Iterations Thinning∗ Time per
sample size from posterior and size to convergence 1,000 iterations

MCMC 50,000 1,720 - 7,000 25 7 hrs 14 min
SIR 400,000 1,600 800 batches with 0 0 1 hr 23 min

500 values (2
draws per batch)

∗ Minimum lag at which autocorrelation was not significant.

Table 2.1: Comparison of the computational costs for the Bayesian, simulation based ap-
proaches.

Figure 2.1: Distribution of the weights in the Sampling-Importance-Resampling (SIR) pro-
cedure.

We fitted the non-spatial logistic model (GLM) in SAS (SAS Institute Inc., Cary, NC,
USA) using Proc Logistic. The spatial model with the PQL estimation method was also
fitted in SAS using the %GLIMMIX-macro (see appendix). This macro is based on the
approach of Wolfinger and O’Connell (1993) and does subsequent calls of Proc Mixed to
iteratively estimate mixed models for non-normal data. It is supported by a collection of
spatial correlation functions, such as the exponential, Gaussian, linear, power and spherical.
In our application, we have chosen the exponential function. MCMC and SIR estimation
were implemented in software written by the authors in Fortran 95 (Compaq Visual Fortran
v6.6) and run on an Unix AlphaServer 8400. For small number of locations the freeware
software WinBUGS (www.mrc-bsu.cam.ac.uk/bugs) can also be used to obtain MCMC
based estimates. Proc Mixed for normal data supports Bayesian modelling by allowing spe-

http://www.mrc-bsu.cam.ac.uk/bugs
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cification of prior distributions for the parameters and MCMC. However, this possibility
is currently available only for variance component models and not for spatial covariances,
which holds for the %GLIMMIX macro, too.

Convergence of the PQL approach to the global mode of the likelihood was highly
dependent on the starting values. We suggest running the procedure with several starting
values by using the parms-command. Computationally, the PQL is fast in comparison to
the simulation-based procedures, MCMC and SIR, but it runs quickly out of workspace
for a larger dataset. A comparison of the computational time required for the MCMC and
SIR algorithms is given in table 2.1. MCMC estimation was applied using a single chain.
Convergence was assessed using the Geweke (1992) criterion. The algorithm converged after
7,000 iterations. A final sample from the posterior distribution of size 1,720 was obtained
by sampling every 25 iterations after convergence was reached. The SIR algorithm required
extensive fine tuning in order to derive good estimates. We ran the sampler several times
and adjusted the degrees of freedom and mean parameter in the bivariate t-distribution
gs(σ

2, φ), according to those values leading to large weights. Instead of resampling from
the whole sequence of parameters according to their weights, we obtained better results by
dividing the generated parameters into batches and drawing an equal number of samples
with replacement from every batch. The implementation of the SIR algorithm was found
to be difficult. Despite the effort applied to improve the SIR estimator, the derived weights
show a highly skewed distribution, with a few dominating values (figure 2.1).

Figure 2.2: Variogram cloud of the residuals in a non-spatial model.
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Table 2.2 gives the parameter estimates obtained by the four approaches. The fixed
effect coefficients β show no fundamental difference in their point estimates between the
competing models, with the exception of the intercept coefficient. The PQL estimate of the
intercept is higher than that from the other estimators. The standard error of β estimated
from GLM is narrower than in the spatial models, as we were expecting. Discrepancies
between the fitting approaches are observed in the estimates of the covariance parameters
σ2 and φ. The posterior density of σ2 obtained from MCMC was found to be highly skewed
to the left. PQL overestimates φ suggesting a lower spatial variation than the Bayesian
approaches. This confirms known results about bias in the PQL estimates especially for
the covariance parameters σ2 and φ due to the bad quality of the first-order approximation
of the integrand. The SIR estimates are similar to those obtained from MCMC.

Figure 2.3: Semivariogram estimators: Classical semivariogram estimator by Matheron
(circles), Robust version by Cressie and Hawkins (triangles), MCMC (long dashed line),
SIR (short dashed line) and PQL (line) fit.

Figure 2.2 shows three plots of the semivariogram cloud based on the Anscombe re-
siduals obtained after fitting the GLM model. The semivariogram cloud is a plot of half
the squared difference of the residuals versus the distance between their sample locations.



Chapter 2. Fitting spatial generalized linear mixed models 23

The mean of the squared differences at each lag gives an estimator of the semivariogram.
The three plots correspond to the 5 percent, 50 percent and 95 percent quartile of the
squared difference of the residuals. The semivariogram cloud shows high variability and an
increasing trend from the origin indicating lag-dependent variation. For a stationary spa-
tial process, the semivariogram relates to the covariance of the random effects. Therefore
we expect high variability in the covariance parameters.

Figure 2.3 depicts different semivariogram estimators. The classical estimator by Ma-
theron (1963) was calculated by γ̂(h) = 1

|N(h)|

∑
N(h)

(Z(si)− Z(sj))
2, where Z(si) is the

Anscombe residual at location si, N(h) = {(si, sj) :‖si − sj ‖= h ± ε} and |N(h)| is its
cardinality. This estimator is sensitive to outliers and a robust version was proposed by
Cressie and Hawkins (1980), which is displayed in figure 2.3, too. The MCMC, SIR and
PQL based estimators were calculated by replacing the estimates of σ2 and φ obtained
from the three approaches in γ(h) = σ2(1− exp(−φ h)). The MCMC and SIR estimators
appear to be between the two other empirical semivariogram estimators. Since we have
omitted the nugget term, they pass through the origin. Nevertheless, their values fit nicely
into the graph. The PQL estimate does not capture the correlation present at large lags.
It represents the classical semivariogram estimator well, but it is far off the robust version.

Figure 2.4: Observed mortality in 36,906 infants from the DHS surveys conducted in the
years 1995 and 1996 at 181 distinct locations in Mali.

Regarding our application, figure 2.4 displays the locations of the DHS surveys and the
observed infant mortality risk in Mali. The risk factors which were found to be statistically
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significant related to infant mortality (table 2.2) confirm findings made by other authors.
The negative association between maternal education and mortality has been described
by Farah et al. (1982) and Cleland and Ginneken (1989). Higher education may result in
higher health awareness, better utilization of health facilities (Jain, 1988), higher income
and ability to purchase goods and services which improves infants health (Schultz, 1979).

The observed time trend, with higher infant survival for more recent years, was found
not statistically significant. Longer birth intervals and low birth order reduce the risk of
infant death. Mortality was related to the residency and sex of the infant with girls and
urbanites being at lower risk of dying during the first year of life. The impact mothers age
has on infant mortality shows the typical J-shape (Kalipeni, 1993) with lowest risk for age
around thirty. The higher risk in young women may be explained by not fully developed
maternal resources and that in older women by the effect of ageing. The MCMC-based
estimate of the φ parameter revealed strong spatial correlation which reduces to less than
5 percent for distances longer than 75km.

Figure 2.5: Predicted spatial random effects from the infant mortality model using MCMC.
The darker the shading, the lower the survival.

Predictions of the child mortality risk using the MCMC approach were made at 600,000
new locations on a regular grid, covering the whole area of Mali south of 18 degrees latitude
north. Since the covariates are infant-specific and can not be extrapolated for the new
locations, we predict the random effects only. The map of predictions is displayed in figure
2.5. The map indicates a higher infant mortality risk mainly in the Northern part of the
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Niger delta. This region has low population density and water availability is seasonal.
The many lakes in this region are preferred breeding sites for the malaria mosquito. Low
mortality is predicted in North-Western Mali at the border to Mauritania and Sénégal.
In this region, the population is more active in migrating to other countries for business
purposes, bringing money to the region. Health facility coverage is also reflected in the
predictive map, where the coverage is low in the Northern Niger delta and high in the
North-East.

2.5 Discussion

Generalized linear mixed models for large point-referenced spatial data are highly parame-
terized and their estimation is hampered by computational problems. Reliable estimation
methods that can be applied in standard software or algorithms that can accurately esti-
mate the model parameters within practical time constraints do not exist. In this paper
we compared a few recent developments using a real dataset on infant mortality in Mali.

The advantage of the PQL method is that it can be applied in standard statistical
software package. However estimates are biased especially those for the covariance para-
meters. The algorithm depends highly on the starting values and can easily converge to a
local mode. For medium to large number of locations implementations of this algorithm is
impeded by computer memory problems.

Bayesian methods can provide flexible ways of modelling point-referenced data, give
unbiased estimates of the parameters and their standard error and have computational
advantages for problems larger than the ones the maximum likelihood methods can handle.
However, for very large number of locations, an implementation may be infeasible due to
long computing time. The SIR runs considerably faster than MCMC, but it requires tedious
tuning. Finding an ISD which approximates well the posterior distribution is difficult to
develop and application-specific. Rigorous methods for evaluating the suitability of the
ISD do not exist. This increases the possibility of drawing misleading inference.

MCMC is the most practical and, when it comes to prediction, accurate approach todate
for fitting geostatistical problems. However, it is computationally intensive, especially for
dataset with large number of locations. More research is required in ways of improving
the convergence of the algorithm and the inversion of large matrices. Gilks and Roberts
(1996), Mira and Sargent (2000) and Haran et al. (2003) have proposed general MCMC
algorithms for improving convergence. Rue (2000) and Pace and Barry (1997) have applied
innovative numerical methods using sparse matrix solvers for fitting areal data. In future,
similar approaches need to be adapted and assessed for modelling point-referenced spatial
data.
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Appendix 2.A PQL estimation

The %GLIMMIX macro in SAS provides PQL estimates for non-normal geostatistical mo-
dels. The macro fits a GLMM model of the form g(πi) = X t

iβ + ZiU + Ri, where Zi

links the ith observation to its sample location. This is done by defining a variable (here
called: LOCATION), that takes only distinct values for separate locations. There are two
possibilities to include spatial correlation. Either U is set to zero and the spatial structure
is incorporated in R = (R1, . . . , Rn)t using the repeated statement. Alternatively, the
vector U is taken to be multivariate normal with spatial covariance, which is introduced
via the random statement. The Ri’s are then considered to be independent and model
the nugget effect. The two coding possibilities are shown below. The performance can
substantially differ between the two approaches, depending on the size of the dataset and
how the computing system allocates memory.

The listing below gives the %GLIMMIX code for our application. The SAS statements
are set lowercase. The dataset used is called InfantMortality and includes the binary
outcome Y and 18 predictors X1 to X18. The coordinates are called LAT and LONG and
LOCATION is the identifier of the distinct locations.

Code 1:

%glimmix(data=InfantMortality,

procopt= ord covtest,

stmts=%str(

model Y = X1-X18 / cl solution notest /* outp=PREDICTED */;

repeated / subject=intercept /* local */ type=sp(exp)(LAT LONG);

/* parms (0 to 5 by 0.5) (1 to 50 by 5) (0.05 to 2.05 by 0.25) */;

),

error=binomial,

link=logit,

options= pql);
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Code 2:

%glimmix(data=InfantMortality,

procopt= ord covtest,

stmts=%str(

model Y = X1-X18 / cl solution notest /* outp=PREDICTED */;

random LOCATION / type=sp(exp)(LAT LONG);

/* parms (0 to 5 by 0.5) (1 to 50 by 5) (0.05 to 2.05 by 0.25) */;

),

error=binomial,

link=logit,

options= pql);

An explanation on the options can be found in the SAS Proc Mixed online help. It needs
to note, that the range parameter φ estimated by %GLIMMIX corresponds to 1/φ compared
to our model. A nugget effect can be added in the repeated statement by including the
local statement. If the dataset includes outcome with missing data, %GLIMMIX can predict
its value. The predictions are written in a new dataset (here called PREDICTED), specified
via the statement outp=PREDICTED in the model option section. It is advised to check
convergence of the algorithm rigidly. We recommend to try several initial values for the
PQL maximization. This is done via the parms statement, followed by a sequence of initial
values.
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3 Faculté de Médicine de Pharmacie et d’Otondo-Stomatologie, Université du Mali, Bamako
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Abstract

A spatial analysis was carried out to identify factors related with geographical differences
in infant mortality risk in Mali by linking data from two spatially structured databases;
the Demographic and Health Survey (DHS) of 1995–96 and the Mapping Malaria Risk in
Africa (MARA) databases in Mali. Socio-economic factors measured directly at individual
level, and site-specific malaria prevalence predicted for the DHS locations by a spatial
model fitted to the MARA database, were examined as possible risk factors. The analysis
was carried out by fitting a Bayesian hierarchical geostatistical logistic model to infant
mortality risk, by Markov chain Monte Carlo. It confirmed that mother’s education, birth
order and interval, sex of infant, residence and mother’s age at birth had a strong impact
on infant mortality risk in Mali. The residual spatial pattern of infant mortality showed
a clear relationship with well known foci of malaria transmission, especially the inland
delta of the Niger river. No effect of estimated parasite prevalence could be demonstrated.
Possible explanations include confounding by unmeasured covariates, and sparsity of the
source malaria data. Spatial statistical models of malaria prevalence are useful for indi-
cating approximate levels of endemicity over wide areas and hence for guiding intervention
strategies. However at points very remote from those sampled it is important to consider
prediction error.
Keywords: bayesian hierarchical model; geostatistical data; infant mortality risk; kriging;
malaria transmission.

3.1 Introduction

Malaria is an important cause of mortality in children in Africa, but the relationship
between malaria transmission intensity and child mortality remains controversial (Bradley
et al., 1991; Molineaux, 1985; Payne et al., 1976; Smith et al., 2001; Snow and Marsh,
1998). A review of published studies of malaria specific mortality show some evidence that
the highest mortality may be at intermediate transmission intensities (Snow and Marsh,
1995). Rates of hospitalization with severe malaria in African children appeared to be
highest at intermediate levels of transmission.

A difficulty with mortality studies is that the verbal autopsies used to assign a cause of
death are not very reliable (Snow and Marsh, 1998). Many deaths in malaria endemic areas,
assigned to other causes, are related to malaria infection (Molineaux, 1985). Moreover, low
birth weight is an important risk factor for infant mortality and is known to arise because
of both prematurity and intrauterine growth retardation resulting from malaria infection
of the mother during pregnancy (Steketee et al., 2001). It follows that malaria may be a
relevant risk factor for many deaths even when it is not the immediate cause. Hence it is
as important to look at the relationship of malaria endemicity with all-cause mortality as
it is to look at its relationship with malaria specific deaths.

Smith et al. (2001) linked published all-cause mortality rates and Entomological Ino-
culation Rates (EIR) across Africa and found an increase in infant mortality rate (IMR)
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with EIR, but no clear trend with the child (12–59 month) mortality rate. Major short-
comings of the study were the small number of sites compared and the fact that they
were a convenience sample. Geographical variation in factors independently affecting both
malaria transmission and mortality (such as water availability) introduce ecological con-
founding. Analysis linking site specific mortality data with local malaria indices, that make
appropriate adjustment for these ecological confounders, are clearly needed.

There are a few data sets which allow these type of analysis. The databases we have
used for this study are the MARA (Mapping Malaria Risk in Africa) and the DHS (Demo-
graphic and Health Surveys) database. The MARA database consists of surveys recording
malariological information, with over 10,000 collected data points all over Sub-Saharan
Africa, to date. It is currently the most comprehensive database on malariological surveys
in Africa (MARA/ARMA, 1998). The DHS (Demographic and Health Surveys) database,
coordinated by Macro Systems Inc., provide nationally representative household surveys
worldwide with large sample sizes of between 5,000 and 30,000 households, typically. It
monitors indicators in the areas of demography, health, and nutrition.

We linked the two databases using their site-specific data and developed a geostatisti-
cal model which enabled us to investigate spatial patterns of infant mortality risk, assess
its determinants and carry out an ecological analysis to examine the relationship between
infant mortality risk and malaria. We demonstrated the methodology by applying the
technique to data collected from Mali. The savanna and Sahel zones of the country repre-
sent an appropriate setting for implementing such a methodology, because of the tendency
for living conditions to become generally more difficult in the more northerly, drier areas,
while malaria transmission is generally expected to be more intense in the wetter, southern
areas. Therefore we can not properly assess the effect of malaria transmission on infant
mortality without adjustment for potential confounders. We believe our approach of link-
ing the two databases to carry out an ecological analysis of infant mortality risk to be
novel. Instead of a district specific approach (Rip et al., 1986; Kalipeni, 1993) we modelled
the data at individual level, using a site dependent correlation structure, to estimate the
various effects without relying on data that are aggregated by administrative boundaries,
which would have lead to a loss of information. This approach provides estimates of the
effects of various factors including malaria endemicity, taking into account confounding
and spatial correlation. In addition, it allows us to produce maps of infant mortality risk
adjusted for socio-economic factors.

3.2 Methods and materials

3.2.1 Data sources

MARA/ARMA is an international collaboration initiated to provide a database and an
atlas of malaria in Africa, by collating both published and unpublished results of mala-
riological surveys. Data on malaria endemicity were obtained from a model fitted to the
MARA database by Kleinschmidt et al. (2000). This was a spatial logistic model of malaria
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prevalence in children > 1 and ≤ 10 years of age using the results of prevalence surveys
conducted between 1965 and 1998 at 101 different locations in Mali. This age group was
chosen because it has the highest prevalence and shows the clearest distinction between
regional malaria endemicity patterns. In addition, most of the surveys were conducted for
this age range and thus allowed inclusion of most of the data. The model included tem-
perature, rainfall (Hutchinson et al., 1996), normalized difference vegetation index (NDVI)
obtained from satellite data collected by the NOAA/NASA (National Oceanic and Atmo-
spheric Administration) Pathfinder AVHRR (Advance Very High Resolution Radiometer)
Land Project and distance from the nearest water body. The MARA survey sites are
shown in figure 3.1. We used predictions of this model to obtain estimates of malaria pre-
valence at the DHS sample sites (figure 3.2). To avoid the linearity assumption between
malaria prevalence and infant mortality we converted these estimates to the following ca-
tegories corresponding to different degrees of endemicity: 0–0.24, 0.25–0.49, 0.50–0.74, and
0.75–1.00.

Figure 3.1: Observed malaria prevalence in 34,800 children 1 to 10 years old from the
MARA surveys conducted in Mali between 1965 and 1998 at 101 locations. Rivers and
lakes indicated in grey.

The DHS database is the most comprehensive database on child survival in Africa,
compiled by a survey program in 23 countries funded by the United States Agency for
International Development and coordinated by Macro International Inc. The aim of these
surveys is to provide data for a range of monitoring and impact evaluation indicators within
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Figure 3.2: Estimated malaria prevalence at the 183 infant mortality sample locations in
Mali obtained from the model of Kleinschmidt et al. (2000).

the population, health, and nutrition sector. Birth histories since 1960 corresponding to
35,906 infants were extracted from the DHS survey carried out from November 1995 to
April 1996 in Mali. Additionally, year of birth, residence, mother’s education, infant’s
sex, birth order, preceding birth interval and mother’s age at birth were extracted. Using
location information provided by Macro International we were able to geolocate the 183
distinct survey sites shown in figure 3.2 by using digital maps and databases, such as the
African data sampler (World Resources Institute, 1995) and the Geoname Gazetteer (GDE
Systems Inc., 1995).

3.2.2 Statistical analysis

Logistic regression models were fitted to infant mortality, using SAS v8.2 (SAS Institute
Inc., Cary, NC, USA) to identify significant socio-economic, demographic and birth related
covariates. The variables chosen were those analyzed by Coulibaly et al. (1996) in their
report which summarizes the results of the 1995–1996 DHS survey in Mali in relation to
mortality. Mother’s age at birth and the date of birth of the child were included in all
models. In addition, the following variables which showed a significant bivariate association
with infant mortality were selected for the subsequent spatial multivariate analysis: region-
type, mother’s education, sex, birth order and preceding birth interval.
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Bayesian hierarchical models were fitted to estimate the amount of spatial heterogene-
ity in infant mortality as well as associations between risk factors and infant mortality
in the presence of spatial correlation. Ignoring this correlation would result in underes-
timation of the variance of the effects of risk factors (Cressie, 1993). We used logistic
models with village-specific random effects to assess geographical heterogeneity and the ef-
fects of different covariates. Some covariates used were at individual level (socio-economic,
demographic, birth-related covariates) and some were at village-level (malaria prevalence
category). Malaria prevalence was not observed at the locations of the mortality data, but
was estimated using the model by Kleinschmidt et al. (2000). These estimates were catego-
rized because explanatory analysis revealed a non-linear relation between infant mortality
and malaria prevalence. The cut-offs were chosen according to the frequency distribution
of mortality data and on epidemiological considerations. Spatial correlation was modelled
by assuming that the random effects are distributed according to a multivariate normal
with a variance-covariance matrix related to the variogram of the spatial process (Diggle
et al., 1998). We used Markov chain Monte Carlo (Gelfand and Smith, 1990; Smith and
Roberts, 1993) to estimate the model parameters. Simulation-based Bayesian kriging was
also applied to produce smoothed maps of mortality risk and of the variance of the map
estimates (Gelfand et al., 1999). The Deviance Information Criterion (DIC) (Spiegelhalter
et al., 2002) was applied to assess the effect of malaria prevalence on infant mortality. The
smaller the DIC values the better the fit of the model. Further details of this modelling
approach are given in the appendix. The analysis was implemented using software written
by the authors in Fortran 95 (Compaq Visual Fortran v6.1) using IMSL numerical libraries
(Visual Numerics, Inc., Houston, Texas, USA).

3.3 Results

The median malaria prevalence estimated for the 183 locations was 49 percent ranging
from 4 percent to 82 percent. 16.9 percent of the 35,906 infants sampled died before
completing their first year of life. This is untypically high compared to the current census
based estimates of 12.3 percent (World Health Organization, 2000). However in the DHS
data, observations are retrospective over forty years, and there is an indication that infant
mortality was higher in earlier years, although not statistically significant. Of those who
died, 53.4 percent were male and 77.6 percent were living in rural parts of the country.
Infant mortality was higher for mothers younger than 20 years (21.4 percent) and firstborn
children (20.8 percent). Infant mortality was higher (17.5 percent) for mothers with no
formal education than mothers with secondary or higher education (8.0 percent).

Three spatial Bayesian models were fitted. A baseline model (0) included no covariates
but an overall constant and site-specific random effects. Model 1 was an extension of the
baseline model by including year of birth, socio-economic and demographic variables as
potential risk factors. Model 2 included the same parameters as model 1 but adjusted for
levels of malaria endemicity. In addition, a Bayesian non-spatial analogue of model 2 was
fitted for comparative purposes. Parameters estimates obtained from Models 1, 2 and the
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Crude data Nonspatial Model 1 Model 2
No of births IMR per 1,000 OR 95% CI OR 95% CI OR 95% CI

Year of birth
1960–1965 299 230.8 1.16 0.89, 1.56 1.16 0.88, 1.56 1.16 0.89, 1.56
1966–1971 1766 239.0 1.41 1.15, 1.79 1.42 1.09, 1.85 1.42 1.12, 1.79
1972–1977 4200 186.4 1.14 0.93, 1.41 1.15 0.90, 1.49 1.15 0.91, 1.42
1978–1983 7709 172.8 1.09 0.92, 1.35 1.08 0.84, 1.40 1.09 0.86, 1.34
1984–1989 11087 163.2 1.05 0.88, 1.30 1.05 0.81, 1.35 1.06 0.85, 1.30
1990–1996 10845 152.6 1 1 1

Residence
Rural 25615 183.9 1 1 1
Urban 10291 132.1 0.68 0.64, 0.72 0.74 0.69, 0.80 0.73 0.68, 0.80

Mother’s education
Secondary or higher 1416 79.8 0.54 0.42, 0.73 0.55 0.43, 0.74 0.55 0.42, 0.73
Primary 3563 149.3 0.95 0.80, 1.11 0.95 0.79, 1.15 0.96 0.80, 1.13
None 30927 175.4 1 1 1

Sex
Female 17718 159.6 1 1 1
Male 18188 178.3 1.15 1.10, 1.20 1.15 1.10, 1.21 1.16 1.10, 1.21

Birth order
Firstborn 7680 208.3 1 1 1
2nd or 3rd 11746 158.6 1.10 1.02, 1.17 1.10 1.01, 1.20 1.10 1.01, 1.21
4th to 6th 10851 154.3 1.17 1.06, 1.29 1.15 1.05, 1.31 1.17 1.06, 1.30
7th or higher 5629 165.7 1.34 1.20, 1.52 1.35 1.17, 1.52 1.34 1.17, 1.55

Preceding birth interval
Below 2 Years 18149 213.8 1 1 1
2-4 Years 15231 131.8 0.59 0.56, 0.62 0.58 0.53, 0.63 0.59 0.54, 0.63
Above 4 Years 2526 88.7 0.40 0.36, 0.44 0.40 0.35, 0.47 0.39 0.32, 0.46

Mother’s age at birth
Younger than 20 years 9070 213.9 1 1 1
20–29 Years 19087 156.6 0.79 0.75, 0.83 0.78 0.72, 0.83 0.78 0.73, 0.83
30–39 Years 7163 146.2 0.73 0.67, 0.78 0.72 0.65, 0.80 0.72 0.65, 0.80
40–49 Years 586 160.4 0.82 0.69, 1.02 0.81 0.66, 1.01 0.83 0.66, 1.02

Malaria Endemicity
0.0–0.15 9951 157.8 1 1
0.16–0.35 5159 185.3 0.96 0.88, 1.04 0.97 0.87, 1.09
0.36–0.64 16824 170.9 0.88 0.83, 0.94 0.89 0.78, 1.10
0.65–1.0 3972 168.4 0.85 0.77, 0.92 0.92 0.80, 1.08

σ2 0.88 0.21, 3.82 0.88 0.20, 3.56
φ 0.04 0.007, 0.24 0.05 0.008, 0.30
DIC 31794.21 31682.64 31755.73

σ2 is an estimate of the geographical variability and φ the smoothing parameter (see
appendix). DIC is a measure of model fit for the comparison of models, with smaller
values of DIC indicating superior fit.

Table 3.1: Infant mortality estimates in Mali for the DHS data 1995–96 in combination
with malaria risk extracted from the MARA/ARMA database.

non-spatial model are shown in table 3.1. Estimates of the odds ratios indicate that in
the non-spatial analysis infant mortality was related to estimated malaria prevalence after
adjusting for the other risk factors. After taking into account the spatial correlation which
was present in the infant mortality risk data, the effect of malaria transmission was no
longer significant. In fact, the point estimates of the Odds Ratios change little, however
the confidence intervals become wider, confirming the importance of taking into account
spatial correlation when analyzing geographical data (Cressie, 1993). Model comparison
revealed that the model with the smallest DIC value and therefore with the best fit to be
the spatial model 1 which does not include malaria risk.

The fixed effects parameters of the best fit Model 1 showed well-known patterns and
confirmed most of the results obtained from the crude data summaries (table 3.1). In
particular, non-first born children are at higher risk than their first-born siblings (OR=1.10,
95 percent confidence interval: 1.01,1.20 for second or third born, OR=1.35, 95 percent
confidence interval: 1.17,1.52 for seventh or higher in birth order). The discrepancies
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between model-based estimates and observed frequencies in the estimates of the parameters
for birth order and preceding birth interval can be explained by the high correlation of the
two variables, which introduces confounding. The model allows adjustment for confounders
and provides estimates of the effects of one factor in the presence of the other. Infants born
to mothers with no education are at higher risk than those born to mothers with secondary
education or higher (OR=0.55, 95 percent confidence interval: 0.43,0.74). Mortality was
related to the sex of the infant with boys being at higher risk of dying during the first year
of life than girls (OR=1.15, 95 percent confidence interval: 1.10,1.21). On the other hand,
longer birth intervals reduce the risk of infant death (OR=0.40, 95 percent confidence
interval: 0.35,0.47 above 4 years vs. less than two years). Infants born to older mothers
and in urban areas have higher chances of surviving to their first birthday and there is an
indication that infants born in recent years have better survival chances.

The parameters σ2 and φ (table 3.1) measure the variance of the spatial process and the
rate of correlation decay (smoothing parameter), respectively. Our dataset indicates a small
value of φ with posterior median of 0.04 (95 percent credible interval: 0.007,0.24) suggesting
a strong spatial correlation because this parameter measures the range of the geographical
dependency, which is defined as the minimum distance at which spatial correlation between
locations is below 5 percent. In our exponential setting it can be calculated as 3/φ = 75
degrees of longitude and latitude. This implies a non-vanishing correlation between all
sampled points and results in very smooth maps for the predicted random effects.

Figure 3.1 displays the distribution of malaria surveys. The figure shows that most of
the surveys were carried out in the south and south-west of the country. There are very few
surveys in the center around the Niger river and no surveys in the north of Mali. Model
predictions of malaria risk at the DHS locations (figure 3.2) indicate a low malaria risk zone
north of the Niger which contradicts empirical evidence of high transmission, suggesting
that the lack of data leads to imprecise estimates in this part of the country which may
distort the relationship between malaria endemicity and infant mortality. The unadjusted
map of infant mortality risk (figure 3.3), obtained by the predictions of the Bayesian model,
reveals that the highest infant mortality rates are found in the central and central-east part
of the country around the Niger river. Distinct foci of high mortality can be identified in the
regions of Nara, Banamba, Dioila, Kadiolo, Kolondieba and Kenieba. Figure 3.4 represents
the variation in infant mortality which is not explained by socio-economic differences (on a
logit scale). This map is a measure of our estimate of the geographical variation of risk of
infant mortality, independent of the particular socio-economic circumstances of the mother.
It therefore reflects the marginal burden of infant mortality that is due to ecological factors
such as malaria transmission intensity and other diseases at map locations. A component
of this may be residual socio-economic factors that our co-variate data did not fully account
for. In this map we can distinguish three zones of high risk; the one in the central and
central-east border with Burkina Faso, a zone of South Mali which covers the regions from
Nara and Diema to Kolondieba and Bougouni, and a zone in the south-west in the region
of Kenieba. Estimates of the variance of the residual spatial variation (figure 3.5) show
lower variance in estimates near locations with observed mortality.
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Figure 3.3: Smoothed map of the infant mortality rate (per 1,000) in Mali based on the
baseline model without covariates.

3.4 Discussion

This analysis demonstrates the use of Bayesian geostatistical models in assessing risk factors
and producing smooth maps of infant mortality risk from spatially correlated disease data
on individuals, such as those available from DHS’s. Results confirmed strong geographical
differences in mortality risk and the importance of a number of risk factors such as maternal
education and age, birth order and interval, sex and residence. Year of birth appeared
not to be significantly associated with mortality during the first year of life, except of
the period 1966–1971 in which a statistically significant increase in infant mortality was
observed. There were no differences in infant mortality between the four categories of
malaria endemicity defined using the model by Kleinschmidt et al. (2000), suggesting that
the geographical distribution of malaria is not a major determinant of the pattern of
infant mortality in Mali. This finding was not supported by the non-spatial analysis, since
accounting for spatial correlation results in more precise estimates of the standard error
and widens the confidence limits of the estimated odds ratios.

The risk factors which were found to be related to mortality are already well known.
The negative association between maternal education and mortality has been previously
described by Farah et al. (1982). Higher education may result in higher health awareness,
better utilization of health facilities (Jain, 1988), higher income and ability to purchase
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Figure 3.4: Map of Mali showing the spatial random effects at the log-odds scale for the
socio-economic-adjusted model.

goods and services which improves infants health (Schultz, 1979), longer birth intervals
and possibly higher maternal ages (Cleland and Ginneken, 1989).

While several studies have investigated the relationship between malaria transmission
and child mortality, this is the first study to our knowledge which attempts to assess
this relationship taking into account the geographical variation which is present for both
parameters after adjusting for socio-economic confounders. In this analysis, we consider
malaria prevalence as a measure of malaria transmission. There are alternative indicators
of transmission intensity which have been used to study the effects of malaria on mortality,
however the relationship between these indicators has not been fully investigated. The
most usual measure is the entomological inoculation rate (EIR), which is the product of
the vector biting rate times the proportion of mosquitoes infected with sporozoite-stage
malaria parasites. Beier et al. (1999) reports that EIR is only weakly related to malaria
prevalence. To our knowledge no studies have been carried out on the best measure of
transmission to study mortality.

We have estimated for the first time the geographical distribution of the burden of
infant mortality in Mali in addition to that which can be attributed to socio-economic dif-
ferences. It is plausible that a large measure of this burden is due to the effect of malaria
on infant mortality, even though we were not able to demonstrate this directly. The lack
of a relationship between malaria risk and infant mortality could reflect unmeasured local
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Figure 3.5: Map of Mali showing the variance of the residual spatial variation of the infant
mortality risk (at logit scale) adjusted for socio-economic variables.

factors, for instance variations in health provisions or availability of water supply in the dry
Sahel region, which could have a stronger influence than malaria risk on infant mortality.
Such unmeasured covariates with spatial structure could also explain the residual spatial
correlation in the data. Information missing from the database regarding malaria control
measures taken at different locations, could also confound the analysis. Methodological
problems related to the compilation of survey datasets, such as the MARA database con-
stitute a further limitation to our analysis. The surveys, for example, were carried out at
different seasons, and include different age groups at the various locations. It may well be
that in areas with seasonal malaria the effect on mortality would be stronger than in areas
with perennial malaria. The model for malaria prevalence of Kleinschmidt et al. (2000) did
not take into account seasonal variation, although malaria transmission in Mali is known
to be highly seasonal (Tanser et al., 2002).

An additional problem with the database is the sparsity of the surveys in the central-
east part of the country. In this analysis we used a subset of the data in order to deal with
the different age grouping of the surveys at the various locations. Currently we are working
on alternative approaches which overcome the limitations of heterogenous age grouping,
without omitting data.

An additional methodological problem is the misalignment of the DHS and MARA
surveys in time and space. Our analysis is based on the assumption that spatial patterns
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of infant mortality and malaria risk are relatively stable in time. Although this assumption
can be questioned, statistical analysis of the temporal changes of malaria prevalence over
the last forty years at country level (Snow et al., 1997), showed no significant patterns.
In addition, our analysis of infant mortality rates indicates a statistically significant time
trend only for the early years of 1966–1971, but it is quite stable for the last twenty years,
when over 80 percent of all cases are recorded. To overcome geographical misalignment,
we estimated malaria prevalence at the DHS locations using the spatial malaria model of
Kleinschmidt et al. (2000). Although we believe that this modelling approach gives a good
estimate of the general pattern of malaria prevalence in Mali and of overall populations
at risk, we cannot be confident in local malaria predictions, especially in areas remote
from sampled locations. In particular, the paucity of sampling points in areas of very
high infant mortality, especially in the Niger delta, may have resulted in poor predictions
in these areas. We propose to address this problem, by compiling the databases from a
larger area of West Africa, and analyzing only data points where misalignment is minimal.
Despite these limitations, our study has demonstrated considerable potential of spatial
statistical methods for analyzing the DHS data. To our knowledge this is the first analysis
of infant mortality employing geostatistical models. The methods presented are valuable
both for producing smoothed (covariate adjusted) maps of mortality risk and assessing
covariate effects. Such maps are particularly helpful to identify high mortality areas for
most efficiently allocating limited resources in child survival programs.
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Appendix 3.A Statistical model

Let Yij be a binary response corresponding to the survival status of child i at site sj, j =
1, . . . , n taking value 1 if the child is alive after the first year and 0 otherwise, and let X ij

be the vector of associated covariates. Following the modelling framework of Diggle et
al. (1998), we introduce the unobserved spatial variation by assuming a latent stationary
Gaussian process U(s) over our study region, D, such that U = (U(s1), U(s2), . . . , U(sn)) ∼
N(0,Σ), where Σij is a parametric function of the separation vector si−sj. Conditional on
U and the regression coefficients β, the Yij are independent Bernoulli variates with survival
probabilities pij given by logit(pij) = X ijβ+U(sj). We assume an isotropic spatial process
with Σij = σ2ρ(si−sj;φ) and an exponential correlation function ρ(si−sj;φ) = exp(−φdij)
where dij measures the Euclidean distance between the sites si and sj.

To complete the Bayesian model specification, we need to adopt prior distributions
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for the model parameters. We chose noninformative Uniform priors for the regression
coefficients, i.e. β ∝ 1, and the following vague priors for the σ2 and φ parameters:
σ2 ∼ Inverse-Gamma(a1, b1) and φ ∼ Gamma(a2, b2), with a1 = 0.01, b1 = 0.01, a2 = 2.01,
b2 = 1.01. The model was fitted using Markov chain Monte Carlo and in particular Gibbs
sampling (Gelfand and Smith, 1990). The posterior distribution of σ2 then is conjugate
Inverse-Gamma. From the non-standard one-dimensional conditional distributions of all
components of β, U such as φ, we sampled by employing a random walk Metropolis algo-
rithm having a Gaussian proposal density with mean equal the estimate from the previous
iteration and variance derived from the inverse second derivative of the log-posterior. We
run a single chain sampler with a burn-in of 5,000 iterations with convergence assessed by
inspection of ergodic averages of selected model parameters. The chain thereafter sampled
every 60th iteration until a sample size of size 2,000 has been attained.

For model comparison we utilize the Deviance Information Criterion (DIC), as recently
proposed by Spiegelhalter et al. (2002). For a vector of parameters θ, it is defined by
DIC= 2D−D(θ), withD(·) being the deviance statisticD(θ) = −2 log p(y | θ)+2 log f(y).
D is the posterior expectation of D and θ the posterior expectation of θ, with both of them
easily estimated from outputs of the MCMC sampler. Smaller values of the DIC indicate
better fitting models.

To produce a smooth map of mortality risk we use Bayesian kriging (Cressie, 1993;
Gelfand et al., 1999). In particular, we obtain estimates of the mortality risk, Y 0 =
(Y (s01), Y (s02), . . . , Y (s0l)) at any unsampled location s0 = (s01, s02, . . . , s0l) by the pre-
dictive distribution

P (Y 0 | Y ) =

∫
P (Y 0 | β,U 0)P (U 0 | U , σ2, φ)×

P (β,U , σ2, φ | Y ) dβ dU 0 dUdσ2dφ (3.1)

where the distribution of U 0 at new sites given U at observed sites is normal

P (U 0 | U , σ2, φ) = N (Σ01Σ
−1
11 U ,Σ00 −Σ01Σ

−1
11 Σ10) (3.2)

with Σ11 = E(UU t), Σ00 = E(U 0U
t
0), Σ01 = Σt

10 = E(U 0U
t) and p (Y (s0i) | β, U(s0i)) ∼

Ber(p(s0i)), with logit(p(s0i)) = x(s0i)β + U(s0i). Equation (3.1) is the expectation
E[P (Y 0 | β,U 0)P (U 0 | U , σ2, φ)] over the posterior distribution P (β,U , σ2, φ | Y ), which
is identified by the Gibbs sampler. Numerically this expectation is approximated by the
average

1

r

r∑
k=1

P (Y
(k)
0 | β(k),U

(k)
0 )P (U

(k)
0 | U (k), σ2(k), φ(k)), (3.3)

where (β(k),U (k), σ2(k), φ(k)) are samples drawn from the posterior P (β,U , σ2, φ | Y ). For
mapping purposes, predictions were made for 600,000 pixels covering on a regular grid the
whole area of Mali south of 18 degrees latitude north.
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Abstract

A Bayesian accelerated failure time model for spatially point referenced data was developed
to assess the impact of site specific malaria endemicity on child mortality in Mali. The
data on malaria endemicity were collected at sites different than the ones of the survival
data. We solve this spatial misalignment problem by fitting a spatial logistic model to the
malaria prevalence data and then predicting the malaria prevalence at the sites where the
survival data were available, using Bayesian kriging. The estimation error of the malaria
endemicity is taken into account in the survival model as a measurement error in the
covariate. The fitting of the mortality data and the prediction of the malaria covariate
were built within a single Bayesian hierarchical model. Markov chain Monte Carlo was
used to estimate the model parameters. No significant effect of location specific malaria
risk on child mortality was found.
Keywords: accelerated failure time model; bayesian hierarchical model; geostatistics; kri-
ging; malaria; Markov chain Monte Carlo; misalignment.

4.1 Introduction

The effectiveness of malaria control in Africa in reducing child mortality depends not
only on the extent to which malaria endemicity is reduced but also on the relationship
between endemicity and mortality. A number of meta-analysis have recently reported
on the relationship of malaria-specific mortality rates in children to the level of malaria
exposure, however the results are not conclusive (Smith et al., 2001; Snow and Marsh,
2002). This is mainly due to methodological problems such as inconsistencies between
studies in case definitions and in the systems for monitoring mortality, ecological bias, and
small number of published studies on malaria specific mortality rates. One approach, which
has not been fully explored, is to analyze site specific overall mortality data available from
demographic and health surveys (DHS) across Africa with local malaria indices taking into
account geographical variation in both malaria transmission and mortality.

In this work we developed a survival model for spatial point referenced data to assess
the impact of site specific malaria endemicity on child survival in Mali. The data on
malaria endemicity and infant survival were obtained from the Mapping Malaria Risk in
Africa (MARA/ARMA, 1998) and the Demographic and Health Survey (DHS, Mali 1996)
databases respectively. The two databases are misaligned, as the sites at which the malaria
surveys were carried out do not match with the sites of the DHS survey and thus the malaria
endemicity covariate is available at different locations than the survival outcome.

Gotway and Young (2002) provide a recent review of statistical approaches dealing with
the spatial misalignment problem. Mugglin et al. (2000) developed Bayesian methodology
for misaligned areal units data. The spatial dependence in their approach is modelled
via Markov random field models. Gelfand et al. (2001) discuss spatial misalignment be-
tween point-referenced datasets within the context of Bayesian spatial prediction (Le and
Zidek, 1992; Handcock and Stein, 1993; Gaudard et al., 1999), however they do not con-
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cern with modelling misaligned covariates. Banerjee and Gelfand (2002) developed a fully
Bayesian approach for modelling misaligned geostatistical data. Their work is based upon
a multivariate stationary Gaussian process model, which takes into account the covariance
structure between the outcome and the misaligned covariates and presumes a common
degree of smoothness for both outcome and covariates. Furthermore, it does not allow for
the covariate to depend on other predictors or inclusion into the model of aligned covari-
ates. In the malaria-child mortality application, it is unreasonable to assume a common
smoothness parameter for both the malaria risk and the infant mortality rates. In addition
the malaria endemicity relates to environmental and climatic predictors.

In our approach, we predict the misaligned malaria risk covariate at the locations where
the child survival outcome is observed and then fit the survival model, incorporating the
prediction error as a measurement error in the covariate. The prediction of the malaria
covariate and the fitting of the survival data are built in a single Bayesian hierarchical
model. We employed variogram modelling via Bayesian inference (Diggle et al., 1998) due
to the flexibility in the model fit via Markov chain Monte Carlo (MCMC). Furthermore
MCMC inherently estimates the uncertainty in model parameters avoiding the asymptotic
inference problem which lies in the distinction between increasing-domain versus infill
asymptotics (Cressie, 1993).

Spatial lifetime models are considered by Crook et al. (2003), who analyzed areal sur-
vival data by restructuring them as binary longitudinal and fitting a binary regression with
a probit link function. The authors adopted Markov random field priors for the spatially
structured random effects. Banerjee at al. (2003) fitted the Cox proportional hazards model
with a Weibull baseline hazard and assumed Gaussian random field priors for the spatially
structured frailties. Our contribution is to extend this work in the case of the accelerated
failure time model for point-referenced data in the presence of misaligned covariates.

The remainder of this article is structured as follows: In section 4.2 we present the
child survival and the malaria prevalence which motivated this work. In section 4.3 we
describe the accelerated failure time model for geostatistical data and extend the model in
the presence of misaligned covariates. We discuss the results of our application in section
4.4. We conclude with final remarks in section 4.5.

4.2 Data

Data on child survival are available from the Demographic and Health Survey program
(DHS, Mali 1996) conducted by Macro International Inc. (Coulibaly et al., 1996). The
database includes nationally representative household surveys intended to provide data
for a range of monitoring and impact evaluation indicators within the population, health,
and nutrition sector. Birth histories corresponding to 35,906 children were extracted from
the DHS database, collected during a survey carried out from November 1995 to April
1996 in Mali. The women’s questionnaire contains information about their social (e.g.
education, ethnicity) and economical (e.g. access to sanitation) being, among others, such
as the information about their children’s dates of birth and death. There is no information
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available about the cause of the child’s death. The sample sites were geo-located to add
coordinates for every observation. The data we analyzed were collected at 181 distinct
villages.

Figure 4.1: Southern, non-Sahara region of Mali with rivers and lakes plus larger towns,
where most of the larger malaria surveys took place.

Data on malaria endemicity were obtained from the Mapping Malaria Risk in Africa
(MARA) database (MARA/ARMA, 1998) which is the most comprehensive geo-referenced
database of all available published and unpublished malariometric survey data in 44 African
countries. These surveys record the presence of Plasmodium falciparum in blood smears.
For this analysis, we extracted 153 survey prevalence data carried from 95 distinct villages
in Mali, including children in the range of one to ten years old from 1965 up to 1999.

The environmental and climatic factors which we used to predict malaria endemicity
were obtained from remote sensing. The normalized Vegetation Index (NDVI) was ex-
tracted from the NOAA/NASA Pathfinder AVHRR Land Project and considered as a
measure of greenness. The temperature and rainfall data were obtained from the topo-
graphic and climate database for Africa (Hutchinson et al., 1996).

The MARA data for Mali and the topographic and climate database for Africa have
been used by Kleinschmidt et al. (2000) to produce smooth maps of malaria risk. In a
recent publication (Gemperli et al., 2004) we analyzed the relation between malaria risk
and infant mortality in Mali using the same datasets. The two analyzed datasets were
spatially misaligned, what was not taken into account.
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4.3 Model specification

4.3.1 Spatial accelerated failure time model

Let s = (s1, s2, . . . , sm)t, si ∈ D ⊂ Rd be the set of locations with the observed mortality
data, Tj(si) the time to death for infant j at location si, Xj(si) a row-vector of associated
covariates and Z(si) the malaria prevalence covariate at the logit-scale which we consider
for the time being, that it is observed at si. Assuming a Weibull distribution for Tj(si)
with shape and scale parameters, λj(si) and γ, respectively, the survival function is given
by S(Tj(si)) = exp(−λj(si)Tj(si)

γ). We introduce spatial correlation via location-specific,
spatially structured frailties φ(si) and model covariates and random effect as a linear term
into ηj(si) = X t

j(si)α1+Z(si)β+φ(si) where λj(si) = exp(−γηj(si)). The hazard function
of this model is given by h(Tj(si) | Xj(si), Z(si), φ(si)) = γTj(si)

γ−1λj(si). A normal prior
is adopted for the coefficients α1 and β and an inverse gamma prior is selected for γ.

We incorporate the spatial structure on φ by assuming a latent stationary Gaus-
sian isotropic spatial process over D such that [φ | σ2

φ, δφ] ∼ N (0,Σφ) where (Σφ)ij =
σ2

φρ(d(si, sj); δφ) and ρ(·) is a valid (non-negative definite) correlation function in R2.
d(si, sj) is the Euclidean distance between si and sj, δφ a correlation scale parame-
ter capturing the scale of correlation decay with distance and σ2

φ corresponds to the
sill of the spatial process. For the current example we chose the exponential form
ρ(dij; δφ) = exp(−d(si, sj)/δφ) as the correlation function. More general forms are dis-
cussed in Handcock and Wallis (1994) and Diggle et al. (1998). To complete Bayesian
formulation of the model we specify an inverse gamma prior distributions for the variance
parameters σ2

φ and a gamma distribution for the parameter δφ.
In our model specification, the spatial random effect alters the hazard mul-

tiplicatively by the factor exp(−γφ(si)). Alternatively, Bolstad and Manda
(2001) consider an exchangeable gamma frailty φ(si) with mean one, which acts
multiplicatively on the hazard function, i.e. h(Tj(si) | Xj(si), Z(si), φ(si)) =
φ(si)γTj(si)

γ−1 exp
(
−γ(X t

j(si)α1 + Z(si)β)
)
. Henderson et al. (2002) define gamma frail-

ties and incorporate the spatial dependence by a multivariate Gaussian distribution on the
mean parameter of the Gamma distribution. In this paper, the spatial correlation structure
is included at a log-Gaussian scale in the hazard. The fixed and the random effects are
then expressed at the same scale, rendering the analysis of interdependence more reliable.
Assuming that the Tj(si) are independent conditional on the covariates and spatial random
effects, we have

[T (s) | X(s), Z(s),φ(s), γ] =
∏
i,j

[Tj(si) | Xj(si), Z(si), φ(si), γ]

and the posterior distribution of the model will be

[φ(s), σ2
φ, δφ,α1, β, γ | T (s),X(s), Z(s)] =

[T (s) | X(s), Z(s),φ(s),α1, β, γ][φ | σ2
φ, δφ][α1, β, γ, σ

2
φ, δφ]
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The above model assumes that all covariates are observed, but in the mortality appli-
cation, the malaria prevalence covariate is observed at a different set of locations. To align
the locations of the malaria covariate with those of the mortality data we fit a spatial bino-
mial model on the observed malaria prevalence considering environmental and ecological
factors as predictors and then predict malaria at the mortality locations. The fitting of
the mortality data and the prediction of the malaria covariate can be encompassed within
a single Bayesian hierarchical model formulation.

4.3.2 Spatial accelerated failure time model with misaligned co-
variates

Let s
′
= (s

′
1, s

′
2, . . . , s

′
n)t be the set of locations with the observed malaria data which are

different than the locations s. Let also N(s
′
i) be the number of children screened dur-

ing a particular survey at site s
′
i and Y (s

′
i) be the number of those found positives to

malaria parasites. We assume that Y (s
′
i) are conditionally independent given the p(s

′
i),

that is [Y (s
′
) | N(s

′
), p(s

′
)] =

∏
i[Y (s

′
i) | N(s

′
i), p(s

′
i)] where [Y (s

′
i) | N(s

′
i), p(s

′
i)] ∼

Bn
(
N(s

′
i), p(s

′
i)
)

and introduce the location-specific environmental covariates Ψ(s
′
i) and

spatial random effects ω(s
′
i) on the logit scale via logit(p(s

′
i)) = Ψt(s

′
i)α2 + w(s

′
i), where

Z(s
′
i) =logit(p(s

′
i)). Spatial correlation is captured in the w(s

′
) by adopting a multivariate

Gaussian process as described for the survival model, that is [w(s
′
) | σ2

w, δw] ∼ N (0,Σw
′ )

where (Σw′ )i′j′ = σ2
w exp(−d(s′i, s

′
j)/δw). Similarly with the prior specification of the mor-

tality covariance parameters, we assume an inverse gamma prior distributions for σ2
w, a

gamma distribution for the parameter δw, and a normal prior for the coefficient parameter
α2.

Let Ψ(s) = (Ψ(s1),Ψ(s2), . . . ,Ψ(sm))t and Z(s) = (Z(s1), Z(s2), . . . , Z(sm))t be the
vectors of the malaria-related environmental covariates and predicted malaria covariate
in the logit scale at the mortality locations s, respectively. Then Z(si) = Ψt(si)α2 +
w(si) where the w(s) = (w(s1), w(s2), . . . , w(sm))t is the vector of malaria random effects

predicted at the mortality locations s. Conditional on w(s
′
) =

(
w(s

′
1), w(s

′
2), . . . , w(s

′
m)

)t

and the covariance parameters of the malaria spatial process, the w(s) have a Gaussian
distribution and therefore the predicted malaria covariate Z(s) at the mortality locations
s will be also Gaussian[

Z(s) | w(s
′
), σ2

w, δw,Ψ(s)
]
∼ N

(
Ψt(si)α2 + Σw′wΣ−1

w′ w(s
′
),Σw − Σw′wΣ−1

w′ Σww′

)
.

where (Σw′w)ij = (Σww′ )ji = σ2
w exp(−d(s′i, sj)/δw), (Σw)ij = σ2

w exp(−d(si, sj)/δw),
(Σw′ )ij = σ2

w exp(−d(s′i, s
′
j)/δw).

The posterior distribution [θ | T (s),X(s), Y (s
′
), N(s

′
), Z(s

′
)] of the accelerated model

taking into account the misaligned covariates can be factored as follows:

[T (s) | X(s), Z(s),φ(s),α1, β, γ][Z(s) | α2,w(s
′
), σ2

w, δw,Ψ(s)][w(s
′
) | σ2

w, δw]×

[Y (s
′
) | N(s

′
), Z(s

′
)][φ(s) | σ2

φ, δφ][α1,α2, β, γ, σ
2
φ, δφ, σ

2
w, δw]
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where θ denotes the parameter vector θ = (Z(s),α1,α2, β, γ,φ(s), σ2
φ, δφ,w(s

′
), σ2

w, δw)t.
The above posterior distribution will from now on be denoted as the joint form. Its

parameters are estimated via Gibbs sampling. Alternatively, we can write the posterior
distribution as the product of three factors, which are the posterior of the survival-model
parameters, the posterior of the malaria-model parameters and the predictive distribution,
that links the two posteriors:

[φ(s),α1, β, γ | T (s),X(s), Z(s)][Z(s) | α2,w(s
′
), σ2

w, δw,Ψ(s)]×

[α2,w(s
′
), σ2

w, δw | Y (s
′
), N(s

′
),Ψ(s

′
)]

As an addition to the joint form, parameter estimation can be accomplished by running
a separate Gibbs sampling for all three factors in the above posterior distribution. In this
approach Z(s) is interpreted as the predicted malaria risk at the mortality locations s, de-
rived using environmental covariates. The parameter α2 specifies the effect environmental
factors have on malaria risk, α1 gives information on the effect of individual covariates on
mortality and β measures the impact malaria risk has on mortality. Those interpretations
are lost if the parameters are estimated using the joint form. α1 no longer only fits the
environmental factors to the malaria risk, but is also the parameter optimizing the pre-
diction of Z(s). If Z(s) is not kept fixed in the survival model, it forms a compromise
between location specific frailty in the survival model and the malaria predictor from the
malaria model. Its estimate, such as that of α1, is affected by the difference in sample size
between the malaria and the mortality data.

In the separate formulation, the malaria risk affects the mortality, but not vice-versa.
In the joint model, however, the mortality does also affect the malaria risk. This can be
realistic in various ways. A high mortality among health professionals and among people
who take care of children can result in neglected protection and treatment.Moreover, if the
mortality is very high, the disease can no longer spread out and its risk is diminishing. But
this latter possibility of a situation where mortality affects the disease risk is certainly not
the case for malaria, which has a very low case-fatality rate.

Predictions of the mortality outcome T (s0) at a new set of locations s0 can be made
using the posterior predictive distribution which is given by

[T (s0) | X(s0),Z(s0),φ(s0),α1, β, γ][Z(s0) | w(s
′
), σw, δw,Ψ(s0)]×[φ(s0) | φ(s), σφ, δφ]×

[θ | T (s),X(s), Y (s
′
), N(s

′
), Z(s

′
)].

[Z(s0) | w(s
′
), σw, δw,Ψ(s0)] is the predictive distribution of malaria risk at the new

locations and derived in the same way as for the mortality locations. φ(s0) and φ(s) have
a joint distribution, which is Gaussian, and the conditional [φ(s0) | φ(s), σφ, δφ] can be
easily obtained.

4.4 Application

The environmental covariates, which enter the malaria model are those found to be sta-
tistically related at a significance level of 0.2 in an univariate non-spatial analysis. These
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are the vegetation index (NDVI), the distance to the nearest water source, the average
maximum temperature between March and May and the length of rainy season specified
by number of month with more than 60mm rainfall.

Univariate non-spatial analysis has lead to the following significant variables to adjust
for in the forthcoming multivariate survival setting: Region type, mothers education degree,
sex, birth order, preceding birth interval and mothers age at birth. Child’s birthday year
appeared to be not significantly related to mortality, however was considered in the model
to measure time-trends over decades.

The model parameters were estimated using Markov chain Monte Carlo and in par-
ticular Gibbs sampling. The conditional distribution of the parameters σ2

φ and σ2
w are

conjugate inverse gamma from which we can easily draw samples. All the other parame-
ters do not have a conditional distribution of standard form, and a Metropolis-Hastings
step was performed for sampling. We adopt a Gaussian proposal for the covariate para-
meters and a gamma proposal distribution for the parameters δw and δφ. The proposal
distributions were chosen with mean equal to the parameter estimate from the previous
iteration. The variance of the proposal was adaptively adjusted during the convergence
period to achieve an average acceptance rate in the Metropolis-Hastings sampler of around
0.4.

The Gibbs sampler was used to estimate the model parameters in both possible ways
described in section 4.3.2. The model with malaria risk handled without measurement
error, plus the joint Gibbs sampling approach are both presented to allow a complete
discussion of the analysis. Since we believe, that they both do not lead to the model-
interpretation we are interested in (see section 4.3.2), the estimated parameters are only
discussed in terms of the separate model with measurement error.

The Gibbs sampling was implemented with a single chain. After convergence, which was
assessed using the Raftery-Lewis criterion (Raftery and Lewis, 1992), we collected samples
every 60’th iteration reducing the autocorrelation to almost zero. The total running time
was 124 hours CPU time on an AlphaServer GS80 with 8 processors and code written in
Fortran 95.

The parameter estimates of the spatial malaria model in table 4.1, indicate a significant
effect of temperature, rainfall and vegetation to the malaria risk. Surprisingly, the distance
to water covariate appears not to be related with the malaria prevalence. This could be
due to limitations of the data, because the malaria surveys were carried out throughout
the year during non-standardized and overlapping periods and therefore accounting for
seasonality was not possible. On the other hand is the geographical appearance of water
bodies known to be highly seasonal in Mali. The vegetation (NDVI) parameter estimates
has the highest precision, reflecting the effort put into extracting this factor.

The 181 locations of the MARA surveys and the 95 locations of DHS surveys are
displayed in figure 4.2. There was a relatively balanced spread of both surveys over the
southern Savannah area of Mali, although more malaria surveys were carried out around
high populated areas (Bamako, Mopti, Sikasso, see figure 4.1), than the DHS surveys. The
figure shows also the estimates of malaria prevalence obtained from Bayesian kriging. The
variability of prediction generally is low, even for remote locations (inter-quartile range of
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Variable Median 5% Quantile 95% Quantile
Intercept -99.22 -100.24 -98.42
Temperature 16.22 15.95 16.39
Rainfall 2.25 1.68 3.09
Water 0.02 -0.09 0.15
Vegetation 0.57 0.51 0.63
σ2

w 0.84 0.65 1.10
δw 0.033 0.015 0.059

Table 4.1: Posterior parameter estimates for β, σw and δw from the spatial logistic malaria
model which was used to predict malaria risk at new locations. All environmental-variables
are taken at the log-scale.

predicted prevalence is at maximum 0.3). This is explained by the low spatial correlation in
the malaria prevalence data estimated by the correlation decay parameter δw and the high
precision of the covariate coefficients. In fact δw was estimated to be 0.033. In our setting
with the exponential spatial correlation function this translates to a minimum distance
where correlation drops below 0.05, of around 10.8 kilometers (95 percent CI: 5.0–19.5
kilometers).

Parameter estimates of the survival model are given in table 4.2. The effect of malaria
endemicity on child survival was found not statistically significantly related. The spatial
correlation in the mortality data is higher than that in the malaria prevalence. In particular,
δ = 0.52 which implies that the minimum distance where correlation drops below 0.05, is
169.3 kilometers (95 percent CI: 95.9–377.3 kilometers). On the other hand, the estimate
of the spatial variance parameter σφ in the survival model (σφ = 0.08 with 90 percent CI:
0.06–0.12) is lower than in the logistic model (σw = 0.84 with 90 percent CI: 0.65–1.10).

Prediction of random effects in the survival data were carried out, using Bayesian
kriging at resolution of 596 × 1,005 equally spaced locations. The individual-specific, socio-
economic covariates at new locations X(s0) are not known in our study and prediction
performed for the spatial random effects only. Estimates of those predictions together with
their standard error are mapped in figure 4.3. Figure 4.3a shows high survival in Southern
and Mid-Southwest Mali and low survival in the seasonally flooded area of the Niger delta
in the north-east. The standard deviations of the predicted values (figure 4.3b) reflect the
distribution of the survey locations.

4.5 Discussion

We have developed a Bayesian accelerated failure time model for geostatistical data to
assess the impact of site-specific malaria endemicity on child survival in Mali. The data
on malaria endemicity were collected at sites different from those of the survival data. We
solve this spatial misalignment problem with a Bayesian hierarchical model, where a spatial
random effect in the malaria prevalence and environmental covariates are introduced to



52

Separate Model Joint Model
No Measurement Error Measurement Error Measurement Error

Frequency Median 95% CI Median 95% CI Median 95% CI
Year of birth

1960–1965 264 1.16 (0.96,1.42) 1.15 (0.96,1.37) 1.07 (0.75,1.51)
1966–1971 1563 1.12 (1.03,1.22) 1.11 (1.03,1.20) 1.19 (0.97,1.44)
1972–1977 3809 0.92 (0.86,0.99) 0.91 (0.86,0.98) 1.02 (0.84,1.24)
1978–1983 7091 0.87 (0.83,0.94) 0.87 (0.82,0.92) 0.98 (0.83,1.17)
1984–1989 10214 0.90 (0.85,0.95) 0.90 (0.85,0.95) 0.90 (0.78,1.07)
1990–1996 12081 1 1 1

Residence
Rural 24702 1 1 1
Urban 10320 0.70 (0.65,0.75) 0.79 (0.74,0.85) 0.78 (0.66,0.93)

Mothers education
None 30014 1 1 1
Primary 3544 0.81 (0.75,0.88) 0.89 (0.84,0.95) 0.79 (0.65,0.96)
Secondary or higher 1464 0.44 (0.38,0.52) 0.43 (0.37,0.50) 0.54 (0.34,0.81)

Sex
Female 17522 1 1 1
Male 17500 1.04 (1.01,1.08) 1.09 (1.06,1.13) 1.08 (0.97,1.19)

Birth order
Firstborn 7088 1 1 1
2nd or 3rd 11579 1.34 (1.25,1.43) 1.33 (1.26,1.41) 1.30 (1.09,1.52)
4th to 6th 10745 1.34 (1.25,1.44) 1.33 (1.25,1.42) 1.37 (1.11,1.66)
7th or higher 5610 1.26 (1.15,1.39) 1.25 (1.16,1.37) 1.31 (1.00,1.70)

Preceding birth interval
Below 2 Years 16757 1 1 1
2–4 Years 15493 0.74 (0.71,0.78) 0.74 (0.70,0.77) 0.79 (0.70,0.89)
Above 4 Years 2772 0.35 (0.37,0.43) 0.39 (0.36,0.44) 0.39 (0.28,0.53)

Mothers age at birth
Younger than 20 years 8439 1 1 1
20–29 Years 18703 0.83 (0.79,0.88) 0.84 (0.80,0.89) 0.76 (0.66,0.89)
30–39 Years 7257 0.86 (0.80,0.94) 0.86 (0.80,0.95) 0.85 (0.66,1.08)
40–49 Years 623 0.99 (0.84,1.18) 1.00 (0.83,1.20) 0.61 (0.33,1.12)

Malaria Endemicity
0.0–0.30 9141 1 1 1
0.31–0.45 9113 0.68 (0.58,0.80) 0.78 (0.59,1.06) 0.78 (0.51,1.11)
0.46–0.6 4160 0.61 (0.51,0.74) 0.89 (0.72,1.16) 0.83 (0.44,1.42)
0.61–1.0 12608 0.62 (0.53,0.72) 0.89 (0.79,1.03) 0.73 (0.56,1.11)

γ 0.544 (0.535,0.553) 0.544 (0.535,0.552) 0.560 (0.537,0.585)
σ2

φ 0.07 (0.05,0.10) 0.08 (0.06,0.12) 0.06 (0.05,0.13)
δφ 0.57 (0.36,1.04) 0.52 (0.29,1.15) 0.55 (0.29,1.08)

Table 4.2: Posterior estimates of the hazard ratio for child survival in Mali. The frequencies
for the malaria endemicity predictor are based on the median predicted values.
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Figure 4.2: Malaria surveys were undertaken at the locations indicated by dots with dot-
size proportional to the number of samples. The shading is drawn proportional to the
observed prevalence. At the locations indicated by a star, the survival data are observed
and the malaria risk is predicted via Bayesian kriging. The kriging variance is expressed
by the stars size and its mean by the shading.

bridge the child mortality and the malaria risk data.

The malaria data has high spatial variation and low spatial interdependence, whereas
the child survival data has low spatial variation and high spatial interdependence. The
environmental predictors which are spatially related, were able to capture the spatial cor-
relation present in the malaria risk data. The estimated hazard ratios for the fixed effects
in the child survival model are close to those obtained from similar studies and reports
(Ibrahim et al., 1996; Uchudi, 2001; Cleland and Ginneken, 1989). However the inclusion
of spatial effects has reduced the statistical significance of the socio-economic predictors
on child mortality. This is the first work which takes account of spatial correlation in
analyzing these data and the standard error of estimates are assumed to be appropriately
inflated by the introduction of spatial random effects.

The analysis appears to indicate that malaria endemicity is not related to child survival
in Mali after adjusting for socio-economic, maternal factors and malaria exposure. The
malaria risk appears to be higher in the more humid areas in the south which are relatively
less poor and lower in the northern dry sub-saharan areas which are more affected by
poverty due to the climatic conditions. Child survival also appears to be higher in Southern
Mali. The wide low-survival region in the north-east is the flood plain of the river Niger,
which is a preferred breeding sites of malaria mosquitoes due to many shallow temporal
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a) Mean of prediction of spatial random effects from the survival model
with categories - from white to black - of below -0.15, -0.15 to -0.05,
-0.05 to 0, 0 to 0.05 and 0.05 to 0.15

b) Standard Deviance of prediction of spatial random effects from the
survival model with categories - from white to black - of below 0.002,
0.002 to 0.01, 0.01 to 0.02, 0.02 to 0.04 and 0.04 to 0.06

Figure 4.3: Distribution of spatial random effects of the child survival model.
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ponds in a hot area and therefore the river brings a high risk in a poor area.
The lack of relationship may also reflect unmeasured local factors, such as variations

in health provisions or availability of water supply in the dry Sahel region, which could
have a stronger influence than malaria risk on child mortality. Information missing from
the database regarding malaria control measures taken at different locations, could also
confound the analysis. An important limitation in the analysis of malaria prevalence data
is that those data are obtained from surveys carried out at different locations with non-
standardized and overlapping age-groups and seasons. We are currently working on using
malaria transmission models to convert observed prevalence data to other transmission
indicators adjusted for age and seasonality.
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Abstract

Geographical mapping of the distribution of malaria is complicated by the limitations of
the available data. The most widely available data are from prevalence surveys, but these
are generally carried out at arbitrary locations and include non-standardized and overlap-
ping age groups. To achieve comparability between different surveys, we propose the use
of transmission models, in particular that of the Garki model, to convert heterogeneous
age prevalence data to a common scale of estimated entomological inoculation rates (EIR),
vectorial capacity, or force of infection. We have applied this approach to the analysis
of survey data from Mali extracted from the mapping malaria risk in Africa (MARA)
database. We use Bayesian geostatistical models to produce smoothed maps of the EIR
estimates obtained from the Garki model allowing for the effect of environmental covari-
ates. Using again the Garki model, we converted kriged EIR values to age-specific malaria
prevalence. The approach makes more efficient use of the available data than do previous
malaria mapping methods, and produces highly plausible maps of malaria distribution.
Keywords: entomological inoculation rate; kriging; malaria; Markov chain Monte Carlo;
parasite prevalence.

5.1 Introduction

Reliable maps of the prevalence or transmission intensity of malaria are urgently needed,
especially in endemic areas of sub-Saharan Africa. Such maps are fundamental for estimat-
ing the scale of the problem, and hence of the resources needed to combat malaria. They
provide benchmarks for assessing the progress of control and indicate which geographical
areas should be prioritized.

Malariological measures that might be mapped include categories of endemicity (e.g.
unstable, mesoendemic, holoendemic); vector-based measures (vector densities, vectorial
capacity, entomological inoculation rate (EIR); incidence of disease; or the force of infection.
However, although malaria endemicity can vary widely over only short distances, most
of these measures have been studied only in a few widely separated localities, and in
general the measurements available from distinct sites differ. The most widely available
malariological measures are point prevalence data, assessed by microscopy. Estimates
of malaria prevalence at unsampled locations can be made by incorporating information
from environmental covariates (Hay et al., 2000). The precision of such estimates can be
further improved by using spatial smoothing or geostatistical methods (Diggle et al., 2002;
Kleinschmidt et al., 2000, 2001a,b).

Spatial statistical models have already made substantial contributions to the modelling
of malaria risk (Diggle et al., 2002; Kleinschmidt et al., 2000, 2001a,b; Ribeiro et al., 1996;
Thomas and Lindsay, 2000), and Bayesian geostatistical methods have demonstrated their
value for this application in the work of Diggle et al. (2002) (see also Thomson et al., 1999)
for mapping childhood malaria risk in the Gambia and in Gemperli et al. (2004) for relating
infant mortality to malaria risk. Spatial statistical models have also been used to produce
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malaria maps of the whole of West Africa (Kleinschmidt et al., 2001a) and specifically of
Mali (Kleinschmidt et al., 2000). All these analysis modelled directly the prevalence data
without taking into account age-dependence of the malaria risk.

Malaria prevalence data are usually reported by age group, but with different age-
groupings used in different series of surveys. Direct mapping of age-prevalence data there-
fore involves choosing a target age-group (with some flexibility in the choice of age-category
boundaries), and discarding data for other age-groups and for sites where data for the tar-
get age-group are not available.

We propose to replace this subjective and inefficient procedure by using a mathemati-
cal model to convert a set of heterogeneous malariological indices onto a common scale
for mapping purposes. Mathematical models, such as that of the Garki project (Dietz et
al., 1974), can be used to predict the relationships between different measures of malaria
transmission and endemicity and the shape of the age-prevalence relationship. Statistical
fitting of the Garki model can therefore be used to obtain estimates of any malariological
parameter predicted by the model as a function of whatever community-based malariolo-
gical data are available for a site. We recently used this approach to obtain an interval
estimate of the EIR on the island of Pŕıncipe from the age-prevalence curve for Plasmodium
falciparum malaria (Hagmann et al., 2003).

We have now applied this approach to an assemblage of age-prevalence data from Mali.
The data were extracted from the Mapping Malaria Risk in Africa (MARA/ARMA, 1998)
database, the most comprehensive database on malaria in Africa, containing survey data
since early sixties. Using the Garki model, we translated the raw prevalence data from
each MARA survey into an (interval) estimate of the EIR. We then followed Bayesian
geostatistical methods to generate smoothed maps of the EIR, allowing for the effects of
environmental covariates.

We have used estimates from the fitted model to produce smooth EIR maps for Mali
via Bayesian kriging. Using again the Garki model we have also converted the kriged EIR
values to estimates of malaria prevalence in children under-5 years of age and in children
2–10 years of age and produced maps of these parameters.

5.2 Methods and materials

5.2.1 Data sources

Data on malaria prevalence were extracted from the MARA/ARMA database
(MARA/ARMA, 1998). This is the most comprehensive database compiled by an in-
ternational collaboration initiated to provide a database and an atlas of malaria in Africa
by collating both published and unpublished results of malariological surveys since 1965.
We selected data from 164 surveys carried out in 147 locations in Mali between 1965 and
1998 covering various ranges of age groups (table 5.1). Entomological inoculation rates
(EIR) were estimated by fitting the Garki model on the malaria survey data. A geostatis-
tical model was fitted to EIR estimates to produce smooth maps of malaria transmission.
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The maps were adjusted for environmental and climatic covariates. In our analysis, we con-
sidered the same covariates used by Kleinschmidt et al. (2000) to produce smooth maps
of malaria prevalence fitted directly to MARA prevalence data, that is the average maxi-
mum temperature from March to May, the length of rainy season defined as the number
of month with more than 60mm rainfall, the distance from the nearest water source, and
the normalized difference vegetation index (NDVI).

Age Number Number of Positives
categories of Surveys blood slides (Malaria Prevalence)
2 to 9 52 2787 1842 (66.1%)
5 to 9 & 10 to 14 15 3176 1786 (56.2%)
0 to 44 12 2488 230 (9.2%)
0 to 1 & 2 to 4 & 5 to 9 12 8842 4084 (46.2%)
0 to 1 & 2 to 4 & 5 to 9 & 10 to 15 11 2722 1528 (56.1%)
1 to 2 & 3 to 5 & 6 to 10 10 8284 3883 (46.9%)
0 to 1 & 2 to 4 & 5 to 9 & 10 to 14 9 3616 912 (25.2%)
5 to 9 9 1435 468 (32.6%)
0 to 12 6 360 160 (44.4%)
1 to 15 4 2715 736 (27.1%)
6 to 14 4 923 108 (11.7%)
0 to 15 3 800 481 (60.1%)
2 to 15 & 16 to 70 3 582 207 (35.6%)
0 to 1 & 2 to 9 2 129 66 (51.2%)
0 to 5 & 6 to 10 2 279 121 (43.4%)
1 to 9 2 712 93 (13.1%)
2 to 9 & 10 to 10 2 346 215 (62.1%)
8 to 14 & 15 to 19 & 20 to 29 & 30 to 39 & 2 2023 1063 (52.5%)

40 to 49 & 50 to 59
0 to 1 & 2 to 4 & 5 to 9 & 10 to 14 & 15 to 19 1 110 72 (65.5%)
1 to 4 & 5 to 9 & 10 to 14 & 15 to 24 & 25 to 34 & 1 476 308 (64.7%)

35 to 44 & 45 to 54 & 55 to 64
2 to 9 & 10 to 60 1 251 124 (49.4%)
6 to 9 1 300 77 (25.7%)

Table 5.1: Age range of the MARA surveys.

Data on temperature and length of rainy season were obtained from the ”Topographic
and Climate Data Base for Africa” Version 1.1 by Hutchinson et al. (1996). The database
includes spatial estimates of monthly values averaged over years for the whole continent
of Africa at a resolution of 0.05 degrees of longitude and latitude. The base data is col-
lected from diverse research agencies and contains measurements between 1920 to 1980,
averaged for at least five years. Daily maximum temperature is recorded at 1,499 sta-
tions and rainfall at 6,051 stations in Africa. The predictions are created using thin-plate
splines (Hutchinson, 1991), where the standard errors are reported to lie below 0.5 degrees
centigrade for the temperature and between 5 and 15 percent for the rainfall data.

The NDVI values were extracted from the NOAA/NASA Pathfinder AVHRR Land
Project database (Agbu and James, 1994) which records daily observed emitted and re-
flected radiations in different channels of the electromagnetic spectrum, sent by a satellite
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on a spatial resolution of 8 kilometers. To reduce distortion due to clouds and atmospheric
contaminants, we used as a composite measure the maximum value over ten days since
clouds reduce the reported NDVI value. The NDVI is derived from the reflectance rate of
two (visual and near-infrared) channels. It is shown to be highly correlated with vegetation
parameters (Justice et al., 1985) and used as a proxy for. Its values range from -1 to 1 with
negative values standing for no-vegetation, which is not found in our study. In contrast to
the other predictors used, the NDVI was able to express temporary variability.

5.2.2 Statistical analysis

Fitting the Garki model

We used the mathematical model of the Garki project to convert the observed prevalence
at each location to estimated EIR values. The model comprises a set of linked difference
equations describing transitions among seven categories of host distinguished by their in-
fection and immunological status. This can be used to make predictions of the age-specific
prevalence of P. falciparum in humans as a function of transmission measures, including
the vectorial capacity, the entomological inoculation rate or the force of infection. To esti-
mate the Y values of (EIR) from community parasitological survey data, the equilibrium
age-prevalence curves for the Garki model were estimated for different values of the EIR,
using a golden section search routine to locate the maximum likelihood estimate (Press et
al., 1988). Asymptotic 95 percent confidence estimates were obtained by numerical esti-
mation of the Fisher’s information. Further details of the models used are reported in the
appendix.

Spatial modelling of EIR

We assumed that the logarithmic transformed EIR estimates, Yj, for location j are normally
distributed, having a mean which is a function of the covariates Xj. We model the spatial
dependency by assuming that the covariance of the EIR values at two locations, say i and
j decreases with their distance dij, that is Σij = Cov(Yi, Yj) = σ2 exp(−dij/ρ) where σ2

is the spatial variance and ρ is a parameter describing the degree of correlation decay. In
addition, the variance of EIR at each location i is specified by Σii = Var(Yi) = τ 2 + σ2

where τ 2 models the remaining non-spatial variation in EIR which is not explained by
the covariates. Under the assumptions of second order stationarity the covariance matrix
Σ determines the well known exploratory tool in geostatistics, the variogram. The τ 2

corresponds to the nugget parameter, the σ2 estimates the partial sill and the ρ, is related
to the range, that is the minimum distance that the spatial correlation is less than 5 percent
which is 3ρ.

We choose Bayesian methods in model fit and prediction (kriging) because they allow
estimation of the precision of model parameters and kriged EIR values without depend-
ing on asymptotic inference which can not be uniquely defined in the case of spatial data
(Cressie, 1993, p. 350). We estimate the model parameters using Markov chain Monte
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Variable Median 5% Quantile 95% Quantile
Intercept -13.46 -32.85 8.17
Distance to Water

4 to 40km -1.44 -2.18 -0.71
more than 40km -1.07 -2.57 0.42

Duration of rainy season 0.31 -0.37 1.00
Temperature? 0.34 -0.20 0.82
NDVI† 9.73 -2.14 21.16
σ2 3.341 2.733 4.153
ρ‡ 9.795 2.170 28.163
τ 2 2.743 0.883 6.868

? Average maximum temperature March to May in degrees Celsius
† Normalized Difference Vegetation Index
‡ In distance units of latitude and longitude divided by 9

Table 5.2: Estimates of coefficients and covariance parameters in the regression model on
the natural logarithm of the annual entomological inoculation rate EIR.

Carlo methods. Further details of this modelling approach are given in the appendix. The
analysis was implemented using software written by the authors in Fortran 95 (Compaq Vi-
sual Fortran v6.6) using IMSL numerical libraries (Visual Numerics, Inc., Houston, Texas,
USA).

5.3 Results

Parameter estimates are summarized in table 5.2. The only environmental covariate signi-
ficantly related to transmission intensity was the distance from the water, indicating high
transmission in the areas within 4km away of the water source. The duration of rainy sea-
son, NDVI and temperature were not statistically significant related to the EIR. Estimates
of the ρ suggest a strong spatial correlation reflected in the high median range distance,
defined as the minimum distance between two points with correlation below 5 percent, of
356km (90 percent confidence interval: 78km, 1,023km). This corresponds to a median
correlation of 65 percent for points 50 kilometers apart. In the survey data, 92.50 percent
of all distances between pairs of locations are within the distance of the median range of
356km.

In addition the EIR show high variability estimated by τ 2. Maps of predicted EIR
estimates are shown in figure 5.1. The map depicts a clear north-south and east-west
pattern of transmission, ranging from disease free regions in the Saharan desert to high-
prevalence areas in the south and west parts of Mali. The map is able to predict the
high transmission areas along the Niger river, and in the Niger-delta which brings large
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a) Mean Prediction

b) Prediction Error. Survey locations are indicated by circles with diameter proportional to
the natural logarithm of the estimated annual EIR.

Figure 5.1: Spatial prediction of the entomological inoculation rate (EIR) in Mali.
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water masses to otherwise low endemic areas. It can also identify distinct foci of high EIR
around water sources. Estimates of the prediction error are shown in map 5.1b. The small
prediction error in the regions around Bamako, Nioro and Mopti reflects the high density
of surveys carried out in those regions. In contrast predictions in the north part of the
country are not reliable because of the sparse malaria surveys in the Saharan desert.

Figure 5.2: Relationship between malaria prevalence and entomological inoculation rate as
estimated by the Garki model for two age categories (neglecting effects of seasonality).

Figure 5.2 displays the relation between the malaria prevalence and the transmission
intensity which was estimated via fitting the Garki model to the malaria survey data. This
model allows us to estimate this relation by age. We have chosen two age groups, those
younger than 5 years old and those in the age range of 2 to 10 years old. The figure
shows that at high levels of transmission, children younger than 5 years old tend to be
at higher risk than older children. The opposite is observed at areas of low transmission.
Maps of malaria prevalence for the two age groups of children are shown in figure 5.3.
These maps were calculated by converting the EIR values to malaria prevalence using the
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a) Under five years old

b) Two to ten years old

Figure 5.3: Spatial prediction of age specific malaria prevalence in Mali derived after trans-
forming the predicted entomological inoculation rate.
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EIR-prevalence relation of figure 5.2. The middle level of transmission in the districts of
Koulikoro and Ségou in Central-West Mali contributes to higher malaria risk in the under
5 years old group than the 2 to 10 years old one. This corresponds to the change point in
the prevalence-EIR relation for the chosen age categories at that level of transmission.

5.4 Discussion

The transmission model-based approach has the advantage, that it is age-adjusted and
makes use of all the survey data available (as we did not have to discard any surveys
because of inappropriate age groups). In principle this approach can exploit whatever
population-based malariological data are available.

The transmission model-based approach also makes it possible to tailor the outputs
of the mapping exercise to the specific needs of users, who may be interested in specific
age-groups of hosts or predictions of malariological indices which are rarely measured in
the field, as illustrated by our maps of malaria transmission intensity in Mali as well as of
age-specific prevalence.

In contrast to earlier geostatistical malaria models, we fitted the Bayesian spatial model
to the log transformed EIR values, a continuous outcome with an approximately normal
distribution, estimated by fitting the Garki model to the available age-prevalence data.
The Bayesian approach allows flexible model fitting and estimation and mapping of the
prediction error. The method also allowed us to generate maps of the prediction error,
demonstrating which geographical areas need further field investigation if the maps are to
be uniformly reliable.

The maps we have produced broadly correspond to the known distribution of malaria
in Mali and in particular indicate high transmission of malaria in the areas around the
main rivers, the Niger and Sénégal. However, a specific difficulty

arises in modelling the relationship between malaria and distance to water bodies in
West Africa. Undeniably the presence of water bodies and flooding in low-rainfall zones
leads to malaria transmission in areas that would otherwise be malaria free and in general,
mosquito numbers are highest near to water, especially areas prone to flooding. However
recent studies in Niono in Mali (Dolo et al., 2000) have found that the highest malaria risk
can be several kilometers away from the main Anopheline breeding sites. This may reflect
a greater tendency of people exposed to very high mosquito densities to adopt protective
measures, together with the lower average age of mosquitoes close to sites of emergence.
In Mali, the center of the inland delta of the Niger is not considered to be zone of highest
risk (Doumbo, 1992) and in the model of Kleinschmidt et al. (2000), the river system
did not appear to strongly influence malaria distribution. Locations within 4km of the
nearest water body were estimated to have lower risk than locations 4–40km from water.
In the map of malaria across West Africa (Kleinschmidt et al., 2001a) broad zones of lower
malaria risk close to rivers were estimated.

Most malaria surveys include people from areas of several square kilometers, so surveys
close to water bodies may include some people from the riverbank and others from several
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kilometers away. It is therefore not obvious what relationship with distance to water to
expect. The exact relationship between proximity to rivers and malaria appears to be very
sensitive to which datapoints are included and to the details of the model, especially when
there are very few datapoints in the critical areas of the river flood plains. It may also be
that the lack of adjustment for age in the earlier models biased some of the covariate effects.
Because we were able to include data from 164 surveys rather than just the 101 analyzed
by Kleinschmidt et al. (2000) we have some confidence that the present model provides
an improved estimate of the broad geographical pattern of malaria, though possibly not of
local variation within this.

We chose to use the Garki model to estimate EIR from age-prevalence curves because
in its original development it was designed to accurately reproduce this relationship in
field data from the savannah zone of Nigeria (Molineaux and Gramiccia, 1980). The
Nigerian field site was in many ways similar to Southern Mali, and hence the model is
likely to be most accurate for the range of conditions seen in our study. However the
flexibility in the outputs is bought at the price of making many approximations. Like
all mathematical models, the Garki model is a simplification. Some elements of it could
probably be improved by using recent insights from molecular epidemiology studies and
advances in statistical computation.

The main simplification inherent in our application to Malian data is that, following
other exercises in empirical mapping of malaria (Kleinschmidt et al., 2000) we have ignored
the seasonal patterns, although both the acquisition of the data, and the transmission of
malaria itself were seasonal. Seasonality in transmission is an important consideration in
the interpretation of the EIR map (figure 5.1a), because when many inoculations occur
over a short period of time the proportion resulting in erythrocytic infections is reduced
(Beier et al., 1994; Charlwood et al., 1998). Clustering of inoculations in the transmission
season thus means that the average force of infection is lower than would result from
the same number of entomological inoculations spread over the whole year. The Garki
model does capture this phenomenon, but only if a seasonal input of vectorial capacity is
assumed. Since, in the present analysis, we have assumed a constant vectorial capacity for
each location the true EIR values in Mali must be higher than those we have estimated.

The prevalence maps (figure 5.3) are less affected by seasonality, because the trans-
formation back to a scale of prevalence corrects the bias introduced by assuming uniform
yearly transmission. Moreover, prevalence is known to show much less seasonality than
does EIR (Molineaux and Gramiccia, 1980; Charlwood et al., 1998; Smith et al., 1993).
For comparisons of malaria risk at regional level, and in zones where there is consider-
ably variation in the degree of seasonality, it will, however, be essential to correctly allow
for seasonality in the estimation of transmission parameters from age-prevalence data. In
further developments of our model-based approach to malaria mapping we propose to use
maps of seasonality in transmission as an input to the modelling procedure, in order to
correct for the biases in EIR estimates.
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Appendix 5.A The Garki model

The mathematical model of the Garki project makes predictions of the age-specific preva-
lence of P. falciparum in humans as a function of the vectorial capacity, C. It comprises
a set of linked difference equations describing transitions among seven categories of host
distinguished by their infection and immunological status. Two compartments, comprising
proportions x1 and x3, of the population account for the uninfected individuals, two for
those with prepatent infections (x2 and x4), and the remaining three, comprising propor-
tions y1, y2, and y3, represent those with blood-stage infections.

The model consists of an algorithm for predicting the proportion of human population
at each age in each of these compartments and is defined by a set of difference equations
(equations 1-7) that specify the change in each of these proportions from one time point
to the next (i.e. ∆x1 = x1(t+ 1)− x1(t)).

∆x1 = δ + y2R1(h)− (h+ δ)x1 (5.1)

∆x2 = hx1 − (1− δ)N + h(t−N)x1(t−N)− δx2 (5.2)

∆x3 = y3R2(h)− (h+ δ)x3 (5.3)

∆x4 = hx3 − (1− δ)N + h(t−N)x3(t−N)− δx4 (5.4)

∆y1 = (1− δ)N + h(t−N)x1(t−N)− (α1 + δ)y1 (5.5)

∆y2 = α1y1 − (a2 +R1(h) + δ)y2 (5.6)

∆y3 = α2y2 − (1− δ)N + h(t−N)x3(t−N)− (R2(h) + δ)y3 (5.7)

The meanings of the additional symbols are given in table 5.3. For simplicity the time
points to which the proportions and the force of infection refer to are only indicated in the
above equations when they differ from t.

To complete specification of the model, h, the force of infection, must be specified as
a function of the vectorial capacity C. From the definition of C, it follows that each bite
on an infective individual will result in C new inoculations, N days later (where N is
the duration of sporogony). Since a proportion y1(t) of the population is infective; the
entomological inoculation rate E is E(t) = C(t−N)y1(t−N).
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To ensure that the model reproduces the observed saturation in the force of infection as
E increases, h(t) is assumed to be related to E(t) via the equation h(t) = g(1−exp(−E(t)))
where g then represents the upper limit of the force of infection, and is hence a parameter
measuring host susceptibility. The problems of superinfection and acquired immunity
are addressed by specifying the recovery rates, R1, and R2 as functions of h, using the
relationship R = h/ (exp (h/r)− 1) where r is the recovery rate for single clone infections.
Non-immunes are assumed to recover at rate R1, calculated from this equation by setting
r = r1. Immunes recover at rate R2, calculated by setting r = r2 where r2 > r1. In addition
to this difference, the acquisition of immunity prevents transmission from the human host
to the mosquito.

Symbol Meaning Default value
δ Human birth and death rates 36.5 per 100-year
α1 Rate at which non-immunes move into the non-infective category 0.002 per day
α2 Rate at which non-immunes recovering from infection move

into the immune category 0.00019 per day
h Force of infection (Rate of infection of susceptibles) to be estimated
N Duration of pre-patent period 15 days
r1 Recovery rate for individual clones (non-immune) 0.0023 per day
r2 Recovery rate for individual clones (immune) 10r1

R1(h) Recovery rate from infection in non-immunes y2 (as a function of h) to be estimated
R2(h) Recovery rate from infection in immunes y3 (as a function of h) to be estimated
g Maximum value of force of infection 0.097 per 5 days
q1 Detectability of parasites in infectives (y1) 1
q2 Detectability of parasites in non-immunes (y2) 1
q3 Detectability of parasites in immunes (y3) 0.7

Table 5.3: Quantities appearing in the Garki model.

In order to examine the fit of the model to real parasite prevalence data, three de-
tectability parameters, q1, q2, and q3 are required to allow for imperfect detection of para-
sitaemia in each of the three infected classes (table 5.3). The overall observed prevalence
is then z(t) = q1y1(t) + q2y2(t) + q3y3(t). Predicting the age-specific parasite rate for any
given vector C(t) then involves a two-stage process. Initially the model (1)-(7) is simulated
starting with arbitrary values of x1 to x4 and y1 to y3, until equilibrium is reached. The in-
put, C(t), may be constant, or may vary cyclically. Following the original implementation
we use time intervals of five days. It is therefore natural to consider the input to follow a
365 day (73 time intervals) repeating cyclical pattern, and hence convergence is judged to
have been achieved when each of x1 to x4 and y1 to y3 is equal to the value attained 73
time units previously. The life history of a cohort of individuals born into the non-immune
susceptible category is then simulated by running the model with x1 initialized to be 1,
δ set to 0, and C(t) set to the equilibrium values. To incorporate effects of the season of
birth, a series of such cohorts are simulated with birthdates spread uniformly throughout
the year.
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Appendix 5.B The geostatistical model

Let Yj be the logarithmic transformation of the EIR estimates, at location j = 1, . . . , n.
We assume that Yj are normally distributed, having a mean which is a function of the
covariates Xj at j. We model the spatial dependency by assuming that the covariance
of the EIR values at two locations, say i and j, decreases with their distance dij, that
is Σij = Cov(Yi, Yj) = σ2Rij(ρ) with Rij = exp(−dij/ρ) where σ2 is the spatial variance
and ρ is a parameter describing the degree of correlation decay. In addition, the variance
of EIR at each location i is specified by Σii = Var(Yi) = τ 2 + σ2 where τ 2 models the
remaining non-spatial variation in EIR which is not explained by the covariates. The
likelihood function of the EIR is multivariate normal, that is Y ∼ MVN(X tβ,Σ) where
Σ = τ 2In + σ2R(ρ) and In is the unity matrix of dimension n.

To complete Bayesian formulation of the model, we specify prior distributions for the
model parameters, β, ρ, σ2 and τ 2. In particular, we adopt independent normal non-
informative priors for the regression coefficients βk, βk ∼ N (0, 106), inverse Gamma priors
for the variance parameters, σ2 ∼ IG(a1, b1) and τ 2 ∼ IG(a2, b2) and a Gamma prior for
the ρ parameter where ρ ∼ Ga(a3, b3) with hyper-priors a1 = a2 = 2.01, b1 = b2 = 1.01
and a3 = b3 = 0.01. Following the Bayesian paradigm, the full posterior distribution takes
the form, [

β, ρ, σ2, τ 2 | Y
]
∝ det(τ 2In + σ2R(ρ))−1/2×

exp

(
−1

2
(Y −X tβ)t(τ 2In + σ2R(ρ))−1(Y −X tβ)

) [
β, ρ, σ2, τ 2

]
.

We estimate the parameters of the model using Markov chain Monte Carlo (MCMC)
and in particular Gibbs sampling (Gelfand and Smith, 1990). Implementation of the Gibbs
sampler requires simulating from the conditional posterior distributions of all parameters.

The full conditional posterior distribution of β is a normal distribution and it is straight-
forward to simulate from. The conditional posterior distributions of σ2, τ 2 and ρ have
non-standard forms. We sampled from these distributions, by employing a random walk
Metropolis algorithm having a Gaussian proposal density with mean equal the estimate
from the previous iteration and variance derived from the inverse second derivative of the
log-posterior.

To estimate the unobserved logarithm of EIR at a set of new locations s01, s02, . . . , s0l we
use Bayesian kriging. Let Y 0 = (Y (s01), Y (s02), . . . , Y (s0l)) denote the values to predict.
Then the predictive distribution

P (Y 0 | Y ) =

∫
P (Y 0 | Y ,β, σ2, τ 2, ρ)P (β, σ2, τ 2, ρ | Y ) dβdτ 2dσ2dρ (5.8)

is numerically approximated by the average 1/r
∑r

k=1 P (Y 0 | Y ,β(k), σ2(k), τ 2(k), ρ(k)).
β(k), σ2(k), τ 2(k) and ρ(k) are samples drawn from the posterior P (β, σ2, τ 2, ρ | Y )
and P (Y 0 | Y ,β, σ2, τ 2, ρ) = N (X t

0β + Σ01Σ
−1
11 (Y − X tβ),Σ00 − Σ01Σ

−1
11 Σ10), when

Σ01 = Σt
10 = Cov(Y 0,Y ), Σ11 = Var(Y ) and Σ00 = Var(Y 0).
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Abstract

We have produced maps of malaria transmission in West and Central Africa from a
database comprising all malaria prevalence data for these regions that we could geolo-
cate (the Mapping Malaria Risk in Africa (MARA) Database). The malaria surveys were
carried out at different seasons, and were reported using different age groupings of the hu-
man population. To allow for this we used the Garki malaria transmission model to convert
the malaria prevalence data at each location to a single estimate of transmission intensity
E, making use of a seasonality model based on Normalized Vegetation Index (NDVI),
temperature and rainfall data. We fitted a Bayesian hierarchical variogram model to the
E estimates, adjusting for environmental predictors extracted from remote sensing and
applied Bayesian kriging to obtain smooth maps of malaria transmission intensity. The
predicted E values were then for mapping purposes converted to age-specific estimates of
malaria risk using again the Garki model. The resulting maps have been validated by
expert opinion and confirmed known patterns of malaria transmission.
Keywords: entomological inoculation rate; kriging; malaria; Markov chain Monte Carlo;
parasite prevalence; vectorial capacity.

6.1 Introduction

Plasmodium falciparum malaria is the most important parasitic disease of humans, with
most of its burden of morbidity and mortality in Africa. A frequently quoted estimate
of its impact is that there are around 1 million deaths and 220 million clinical episodes
annually that are directly attributable to malaria in Sub-Saharan Africa (Snow et al.,
1999). These figures are very uncertain however, since empirical maps of the distribution
of malaria transmission and the numbers of affected individuals are not available for most
of the African continent. Reliable maps of the geographical distribution of malaria are
urgently needed for accurate estimation of disease burden, to identify geographical areas
which should be prioritized in terms of resource allocations and for assessing the progress
of intervention programs.

A number of malaria distribution maps are available for Africa based on climatic and
other environmental predictors of malaria transmission (Craig et al., 1999; Snow et al.,
1999; Rogers et al., 2002), however they make little or no use of the data of field surveys
of malaria prevalence, which form much the largest body of relevant information. The
Mapping Malaria Risk in Africa MARA/ARMA (1998) project was established in 1996 to
provide estimates of the distribution of malaria in Africa. It is a collaborative network of
key African scientists and institutions with the aim of providing an atlas of malaria for
evidence-based and targeted malaria control in Africa. To date results of well over 10,000
malaria prevalence surveys have been collated from published and unpublished sources into
a single, electronically accessible repository representing the most comprehensive database
on malaria prevalence in Africa.

The MARA database has been used to produce malaria risk maps for Kenya (Snow et
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al., 1998) and Mali (Kleinschmidt et al., 2000). A different data compilation has been used
to construct an empirical malaria map for The Gambia (Diggle et al., 2002). Kleinschmidt
et al. (2001a) used the MARA database to produce a regional map for the whole of sub-
Saharan West Africa. These maps make use of both the prevalence data and relevant
environmental data obtained from remote sensing and GIS databases. However there are
a number of problems related to the limitations of using available data. In particular,
compilations of prevalence data need to make use of data from surveys carried out at
different seasons with non-standardized and overlapping age groups of the population. This
constraint of the data makes it difficult to allow for seasonality and the age dependence of
the malaria prevalence (Gemperli et al., 2003b). Most analysis of MARA data have chosen
a target age-group and discarded data for other age-groups and for sites where data for
the target age-group was not available. This usually results to waste of a large amount of
data and thus estimates of malaria transmission for some geographical regions with sparse
data are imprecise.

Mathematical models of malaria transmission provide an approach for converting a
set of heterogeneous malariological indices onto a common scale for mapping purposes.
The Garki model (Dietz et al., 1974) is a dynamic compartment model which considers
basic characteristics of immunity to malaria and the dynamics of the interactions among
humans, mosquitoes and malaria. Given entomological measures of transmission intensity
as input, the model predicts age-specific prevalence. Conversely, it can be used to predict
transmission from age-specific prevalence. Gemperli et al. (2003b) have used this model to
convert the MARA prevalence data from Mali to a measure of entomological inoculation
rates which in turn can be used for mapping purposes. However, that analysis treated
malaria transmission as constant throughout the year; this leads to biases in the estimation
of transmission rates as the length of transmission season varies between locations.

In this paper we produce age-specific maps of malaria risk for West and Central Africa,
using an extension of the approach of Gemperli et al. (2003b) that allows for the seasonality
in malaria transmission between locations. We base our estimates of seasonality on a
seasonality map that makes use of temperature, rainfall and the Normalized Difference
Vegetation Index (NDVI), based on an augmented version of the model of Tanser et al.
(2000). Using both the seasonality map and the Garki model we estimate the transmission
intensity (E) for each location from the age-specific malaria prevalence values. Then we
fit a Bayesian geostatistical model on the E using as covariates a number of environmental
and ecological variables obtained from Remote Sensing (RS) and Geographical Information
Systems (GIS). We then produce smooth maps of E for the whole of West and Central
Africa using Bayesian kriging. We back-transform this map to maps of age-specific malaria
prevalence by re-applying the Garki model.
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6.2 Methods and materials

6.2.1 Datasets

This analysis was based on datasets which were obtained from different sources and
databases. Details on the data we used are given below.

Malaria data

The malaria prevalence data were extracted from the version of the MARA/ARMA (1998)
database available in mid 2002. In addition, we included 2,760 datapoints which were
extracted by literature research in MEDLINE. The augmented database contained 7,738
age-specific prevalence for West and Central Africa, collected during 2,371 surveys, carried
out at 1,220 distinct locations. In this analysis, we only included surveys conducted in rural
regions after the year 1950 and discarded data obtained from locations without transmission
throughout the year. The final data set we analyzed was collected at 976 distinct locations
over 1,846 surveys and comprised 294 different (overlapping) age categories (figure 6.1).

Climatic, environmental and population data

The temperature and rainfall data were obtained from the ”Topographic and Climate Data
Base for Africa” Version 1.1 by Hutchinson et al. (1996). The database reports predicted
values based on thin-plate splines interpolation (Hutchinson, 1991) which was applied to
data collected by various research agencies at 1,499 stations for temperature and at 6,051
stations for rainfall, between 1920 and 1980, averaged over at least five years. We calculated
monthly estimates of temperature and rainfall by averaging over the years with available
data.

The NDVI data were extracted from satellite information conducted by the
NOAAA/NASA Pathfinder AVHRR Land Project (Agbu and James, 1994). This database
records daily emitted and reflected radiations in five channels of different wavelengths of
the electromagnetic spectrum at a spatial resolution of eight kilometers. The NDVI is cal-
culated as the ratio of the contrast between the first two channels (0.58–0.68 and 0.73–1.10
micrometer wavelength). This ratio is shown to be highly correlated with other measures
of vegetation (Justice et al., 1985) and used as a proxy of vegetation and soil wetness. In
order to reduce distortion effects due to clouds and atmospheric contaminants, the maxi-
mum value for every month was considered. Monthly NDVI values for each location were
derived by averaging the maximum monthly values for the eleven year period from 1985
to 1995.

Monthly estimates of soil water storage index (SWS) were obtained using the procedure
given by Droogers et al. (2001). The SWS describes the amount of water that is stored
in the soil within the plant’s root zone. Data on population density was derived from
the ”African Population Database” (Deichman, 1996) and corresponds to the number of
persons at a resolution of 3.7 by 4.8 square-kilometers.
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The landuse classifier was extracted from the landuse/landcover database which is
maintained by the United States Geological Survey and the NASA’s distributed active
archive center, that describes global land cover characteristics. We have chosen the 24
categories classification scheme which is described by Anderson et al. (1979) and regrouped
it to 6 broad categories (water, very low transmission, under-average transmission, average
transmission, higher-than average transmission and high transmission), using knowledge
of the vector abundance in the different landuse types. Subsequently, the proportions of
the six classes of landuse were calculated in a buffer area around the actual location. The
size of the buffer was calculated by fitting models on the logarithmic transformed E values
with various buffer size as predictors. It was found that the best fitted model arose for a
buffer of 20×20 kilometers.

Factor Resolution Source
Temperature 5km2 Hutchinson et al. (1996)
Rainfall 5km2 Hutchinson et al. (1996)
NDVI 8km2 NASA AVHRR Land data sets;

(Agbu and James, 1994)
Landuse 1km2 USGS-NASA;
Water bodies 1km2 African Data Sampler;

World Resources Institute (1995)
Soil Water Storage Index 5km2 Droogers et al. (2001)
Agro-ecological Zone Vector Coverage FAO (1978)
Population Density 3.7×4.8 km2 Deichman (1996)
Transmission Seasonality 5km2 Calculated using criterions in table 6.2

Table 6.1: Spatial databases used in the analysis.

Permanent rivers and lakes were extracted from the ”African Data Sampler” (World
Resources Institute, 1995) while the nearest Euclidean distances of points on a grid of
1km resolution were calculated using the Idrisi software (Clark Labs, Clark University).
Additionally to the ”distance-to-water” variate, we estimated a ”content-of-water” effect
by calculating the proportion of water contained in a buffered area of 20×20 kilometers.

We divided the whole West and Central Africa in four agro-ecological zones (AEZ)
which were determined as a function of precipitation, evaporation and availability of water
stored in the ground, according to the procedure described in FAO (1978). A list of the
environmental variables and the databases from which they were extracted is given in table
6.1.

For those environmental factors for which monthly values could be assigned (the min-
imum and maximum temperature, rainfall, the NDVI and the soil water storage index),
summary statistics were calculated for each location for those months predicted by the
seasonality map as having malaria transmission. The summary statistics computed were
the total, the mean and the coefficient-of-variation.
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Description Climatic Effect Rule
Frost Minimum Annual Temperature > 5◦C
Vector Survival Mean Monthly Temperature∗ > 19.5◦C + annual

standard deviation
Catalyst month Annual Maximum Rainfall > 80mm
Availability of breeding sites NDVI‡ or Rainfall† > 0.35 or > 60mm

∗: Average of minimum and maximum temperature. Moving average from two previous
months and the current one.
†: Moving average from two previous months and the current one.
‡: NDVI value from preceding month.

Table 6.2: Criteria for suitability of stable P. falciparum malaria transmission. A month
is suitable for transmission when all rules are fulfilled for the current month or for the
immediate preceding and following months. The table extends the seasonality model by
Tanser et al. (2000) by including the NDVI effect.

6.2.2 Seasonality model

The seasonality map of malaria transmission (figure 6.2) is an amended version of the
map of Tanser et al. (2000). Tanser’s original map makes use only of temperature and
rainfall data to define suitability. In order to ensure that irrigated low rainfall areas were
classified as suitable for transmission, we defined a region and month as suitable for stable
malaria transmission when either it met the criteria set by Tanser et al. (2000) or when
it met those criteria excluding the rainfall of 60mm but the NDVI values were higher
than 0.35 (Hay et al., 1998). For each location and month we therefore calculated 1) the
moving average over the current and the previous two months of the mean of minimum and
maximum temperature 2) the moving average of the monthly temperatures of the current
and previous two months and 3) the NDVI value of the previous month. In addition
we calculated for each location the minimum and maximum annual temperatures. These
criteria are presented in table 6.2.

6.2.3 Malaria transmission model

For each location, the raw MARA/ARMA prevalence data were converted to estimates of
malaria transmission intensity (E) by fitting the Garki model (Dietz et al., 1974) using
maximum likelihood (appendix 6.A). The Garki model is a dynamic compartmental model
adjusted to field data from Northern Nigeria. It translates the age-dependence in the
relation between malaria transmission and malaria prevalence into a set of curves. Each
curve corresponds to a specific age and length of transmission season. Given entomological
measures of transmission intensity, the model predicts age-specific prevalence. Conversely,
it can be used to predict transmission from age-specific prevalence. E is a measure of
entomological inoculation rate and it can be biased especially for large values of prevalence.
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This is because the prevalence curve has an upper bound and observed prevalence above
this bound are subject to error when converted to entomological inoculation rate. The
standard error of the E point estimates were obtained by calculating numerically, the
Fisher’s information.

6.2.4 Geostatistical model

A Bayesian linear geostatistical model was fitted on the E values taking into account a
number of environmental predictors. In particular, the logarithm of the point estimate of
E was assumed to be normally distributed, with mean being a non-linear function of the
covariates. The spatial dependency among the log-E values Yj for locations j = 1, . . . ,m
was modelled using the exponential correlation function Cov(Yj, Yk) = σ2 exp(−djk/ρ) for
j 6= k and Var(Yj) = σ2 + τ 2ωj, where djk is the Euclidean distance between the locations
of observation Yj and Yk. ωj is a weight introduced to account for uncertainty in estimates
derived from the Garki model and equal to the reciprocal of the variance of the estimated
log-E. The parameter σ2 captures the variation attributable to spatial dependency and
τ 2 the remaining variation. The decay of spatial variation as a function of the distance
between sample points is expressed by the parameter ρ. Markov chain Monte Carlo was
applied for model fitting. Bayesian kriging was employed to produce a smooth map of the
E in West and Central Africa. The smoothed E map was back-transformed to age-specific
maps of malaria risk in children using the Garki model. Details on the spatial Bayesian
model and kriging are given in appendix 6.B.

Before fitting the spatial model, a number of possible predictors of E such as NDVI,
rainfall, minimum/maximum temperature, soil water storage index, distance from nearest
water source, population density, proportion of water, agro-ecological zone, year of survey
and length of transmission season were screened univariately to select those which were
statistically significantly related to E. Some of these covariates were used in earlier spatial
malaria risk models by Kleinschmidt et al. (2000, 2001a); Thomson et al. (1999) and Diggle
et al. (2002), however the proportion of water, land-use classifier, soil water storage index
and the climatic suitability indicator were not considered in previous models.

We fitted various multiple, non-spatial models to identify the best subset of predictors
and their best (possibly non-linear) functional form based on the bias-corrected Akaike’s
information criterion AICC (Hurvich and Tsai, 1989) which was used to assess model fit.
The functional forms of predictors which we screened include polynomials up to second
order, interaction terms of first order, logarithmic, inverse and exponential forms with
different parameterizations and combinations of those. Only one parameter was found to
enter the best model non-linearly. For ease of application, this parameter was fixed at its
optimal estimate to end up with a purely linear model.

The non-spatial analysis of the E was carried out in The SAS System (SAS Institute,
Cary, NC). The software used for fitting the Bayesian model was written by the authors in
Fortran 95 (Compaq Visual Fortran v6.6) using using standard numerical libraries (NAG,
The Numerical Algorithms Group Ltd.).
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6.3 Results

The univariate non-spatial analysis indicated that the following environmental factors were
related to the E: year of survey, NDVI, distance from water, length of season, rainfall, soil
water storage index, agro-ecological zone, minimum and maximum temperature. In section
6.2.1, we mentioned that temporal variables such as NDVI, rainfall and temperature whose
values change from month to month were summarized for each location by total, mean,
and coefficient of variation (CV) over the months with stable transmission during the year.
Univariate analysis revealed that the mean leads to a better model fit than the total and
the CV. No statistically significant univariate relation was found between the logarithm of
E and either the land-use or population density.

Variable Median 95% Confidence Interval
Intercept 1.296 (0.970, 1.637)
Year∗ 0.048 (0.0056, 0.0908)
Log(NDVI)†×Water proximity 2.107 (0.406, 3.821)
Water proximity -0.875 (-1.477, -0.278)
Log(Length of Season)×

Log(NDVI)† -0.381 (-0.753, -0.0155)
1/Rainfall∗ 0.0538 (0.0051,0.1031)
Maximum Temperature∗ 0.072 (-0.0866, 0.236)
Maximum Temperature∗×

Log(Length of Season)) -0.048 (-0.150, 0.047)
Maximum Temperature2∗ -0.093 (-0.152, -0.040)
τ 2 41.98 (38.475, 47.804)
σ2 0.398 (0.310, 0.495)
ρ 0.294 (0.156, 0.472)

∗ : Standardized variables.
† : Shifted to be strictly positive.
Water proximity = exp(−Distance to the closest waterbody in meters/1500).
The predictors NDVI, rainfall and maximum temperature are the annual mean-values
over those months estimated to be suitable for stable malaria transmission. The NDVI is
increased by one, prior to taking the logarithm.

Table 6.3: Parameter estimates for the environmental covariates.

The best fitted model included NDVI and length of season on a logarithmic scale.
The distance to water entered the model scaled as an exponential function. The scaling
factor was chosen to optimize model fit. The relation with rainfall was best described by
a reciprocal transformation. The parameter estimates obtained after fitting the spatial
Bayesian model are presented in table 6.3. The results indicate an increase of 0.049 in the
log-E every 14 years. Rainfall was also associated with transmission. Particularly in that
higher amounts of rain lead to higher transmission intensities. The minimum temperature,
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a) NDVI and Distance to Water b) NDVI and Distance to Water

c) Maximum monthly temperature (in degrees
decigrades)

d) Maximum monthly temperature (in degrees
decigrades)

Figure 6.3: Contour plots indicating the effect of environmental factors on E estimated from
the spatial Bayesian model. Short season corresponds to two months malaria transmission
per year. Long season indicates perennial transmission.
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agro-ecological zone and the soil water storage index were not retained in the multivariate
model.

The interactions in the model capture the differences in the effects of environmental
factors on E in the climatic zones. Some of these interactions which were estimated by the
model are graphically depicted in figure 6.3. The higher the NDVI values, the higher the
transmission except at locations far away from water and with perennial (long) malaria
transmission (figure 6.3b). The distance to water is negatively associated with transmission
for regions with high NDVI above 0.6 (figures 6.3a–6.3b). Malaria transmission increases
as the maximum monthly temperature increases. It reaches a peak at around 32 degrees
Celsius and then it reduces with higher temperatures (figures 6.3c and 6.3d). The above
relation is not statistically significantly associated with the length of transmission sea-
son (table 6.3), in a spatially adjusted model, but the length of transmission season is
significantly negatively associated to log-E in interaction with the NDVI.

The spatial correlation present in the data is measured by the parameter ρ which
corresponds to the minimum distance between locations with correlation below 5 percent.
This distance is estimated to be 87 kilometers (95 percent confidence interval: 45km,
141km). This large value probably arises because of large scale spatial effects due to
unobserved ecological factors. The spatial correlation for locations 3 kilometers apart
(mosquito flight range) is 90 percent and decreases to 81 percent for locations 6 kilometers
apart. The spatial variation is very small (σ2 = 0.388) compared to the residual non-spatial
variation (τ 2 = 42.02).

We were not able to fit the Garki model to data for locations where there is no single
month of stable malaria transmission. In our data, we had 42 such locations in southern-
Sahara regions, mainly in Mauritania (figure 6.1). The 69 surveys carried out at these
locations were omitted from the analysis, which implicitly assumes that malaria is epidemic
at these locations. The raw prevalence at 6 of these locations was zero and at 28 of these
it was low (below 0.1). The recorded prevalence at 12 of these locations was between 0.1
and 0.25, and two sites in southern Mauritania close to the river Sénégal had prevalence
values of 0.39 and 0.58.

The map with spatially predicted E values was converted to age-specific prevalence
maps using the relationships assumed in the Garki model. The relation between the malaria
prevalence and the transmission intensity for different lengths of transmission season and
for two age groups (younger than five years old and 1 to 10 years old) is shown in figure 6.6.
At high levels of transmission, children younger than five years old tend to be at higher risk
than children 1 to 10 years old. The opposite is observed at areas of low transmission. In
addition, as the length of transmission season increases the prevalence increases for areas
with the same estimate of E.

The map of log-E for West- and Central Africa (figure 6.4) shows high transmission for
most of sub-Saharan West Africa. The lowest transmission in that part of the continent
was observed in the north-west of the Ivory Coast, the province of Sissili and most of the
east part of the Poni province in Burkina Faso, the south-east region of Borgon in Benin,
the south and central-east of Cameroon and the north of the Plateau region of Nigeria.
Additionally there are large areas along the Atlantic Ocean estimated to have relatively low



F
ig

u
re

6.
4:

P
re

d
ic

te
d

lo
g(
E

)
(M

ed
ia

n
)

fo
r

W
es

t-
an

d
C

en
tr

al
A

fr
ic

a.
S
am

p
li
n
g

lo
ca

ti
on

s
ar

e
sh

ow
n

b
y

ci
rc

le
s.



F
ig

u
re

6.
5:

V
ar

ia
n
ce

of
p
re

d
ic

te
d

lo
g(
E

)
fo

r
W

es
t-

an
d

C
en

tr
al

A
fr

ic
a.



Chapter 6. Mapping malaria transmission in West- and Central Africa 85

malaria transmission, such as the northern part of Sénégal, Guinea, Liberia and the region
around Abidjan in Ivory Coast. Central Africa is estimated to have a low level of malaria
transmission with few focal regions of high transmission around Bambari and Bossangoa
(Central African Republic), South Gabon, South Republic of Congo and a few nodes in
the Democratic Republic of Congo (Yamfu-Nunga, Dilolo, Kamina, Lubumbashi, Kabalo).
Prediction in the northeastern part of the map is considered not reliable because of the
sparse malaria surveys conducted in this region (figure 6.1).

Figure 6.6: Estimated prevalence-E relationship for different length of malaria season and
two age-groups, 1 to 10 years old (solid line) and less than five years old (dashed line).
The length of season in units of months is attached to every curve.

The maps of malaria prevalence for the two age groups are shown in figures 6.7 and
6.8. A band of relatively high malaria prevalence was predicted for the West African
Sudan-Savanna zone, including the Northern Guinea Savanna (see Kleinschmidt et al.,
2001a, for the definition of the zonation). Some larger regions of relatively low levels of
prevalence were estimated in the forest zone and in most of Central Africa. Exceptions
of high prevalence in the forest zone are found in the south of Ghana, Togo, Benin and
Nigeria on a coastal strip between Accra and Lagos, and for South Guinea at the border
to Liberia.
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The two prevalence maps for the different age groups show only slight differences in the
spatial distribution of prevalence, but for children one to ten the prevalence is estimated
uniformly remarkably higher than for children under five years old.

6.4 Discussion

In this study, the Garki model was employed in a novel way to convert malaria prevalence
data extracted from the MARA database to malaria transmission intensity for each survey
location. In our recent work (Gemperli et al., 2003b), we used the Garki model to draw
maps of malaria transmission and prevalence for Mali. However, we did not consider the
seasonality in the malaria transmission and assumed that transmission season was the
same at all locations. In this analysis, we have employed a modified approach which takes
into account the length of transmission season at each location and thus the seasonality in
the relation between transmission intensity and age-prevalence curves. Our model requires
as inputs the length of transmission season for each location which was calculated by
a modified version of the seasonality map of Tanser et al. (2000). A Bayesian variogram
model was applied on the malaria estimates to obtain smooth maps of malaria transmission
intensity for West and Central Africa adjusted for environmental covariates which were
obtained from remote sensing.

Seasonality in transmission is an important, but neglected, consideration in malaria
mapping, both because the season at which the data were collected may be important, and
because the malaria maps themselves may be season specific. At very high transmission
levels, malaria prevalence is generally not very seasonal (Smith et al., 1993), but at low
transmission levels, surveys carried out in the dry season generally have much lower preva-
lence than wet season surveys. Many surveys are deliberately carried out during the peak
transmission season, and this introduces a bias in the maps unless it is allowed for. Sea-
sonality also affects the relationship between prevalence and inoculation rates, since when
many inoculations occur over a short period of time the proportion resulting in erythro-
cytic infections is reduced (Beier et al., 1994; Charlwood et al., 1998). The Garki model
adjusts automatically for this effect when a seasonal input of vectorial capacity is assumed.
However it would have been preferable to use a seasonality model that predicted quanti-
tative variation in transmission between months, rather than simply classifying them into
months of transmission/no transmission. Moreover, there is a clear need for empirical maps
of seasonality based on fitting models to local data on seasonality of either entomological or
clinical indices. Despite our attempt to augment the seasonality map using NDVI data, it
has clearly failed to correctly assign areas of endemic transmission in Southern Mauritania,
and probably also in other areas where rivers flow north into dry zones.

The Garki model enabled us to convert malaria prevalence data collected from surveys
from non-standardized age groups of the population to an age-independent transmission
measure. Previous mapping efforts attempted to overcome the problem of age-adjustment
by discarding inappropriate age groups. This resulted in a vast waste of available malaria
data. The model can then be further applied to obtain age-specific prevalence. The
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mapping of outputs of malaria transmission models provides a general framework to derive
malaria prevalence estimates for any desired age group. It can be also used to derive
other measures of transmission, different from the E, which are not measured in the field.
However, the Garki model was developed on field data from the savannah zone of Nigeria
(Molineaux and Gramiccia, 1980). It needs to be verified how accurately it can be adapted
for other regions in West- and Central Africa, with different environmental conditions and
malaria endemicity.

The Bayesian variogram modelling approach takes into account the spatial dependence
present in the data in a flexible way. The method calculates inherently the standard error of
the parameter estimates as well as the prediction error without relying on approximations
or asymptotic results. Maps of the prediction error indicate the confidence we can have on
the model predictions for the study area.

In a previous study to map malaria in West Africa, Kleinschmidt et al. (2001a) modelled
interactions between the environmental predictors and agro-ecological zones by a separate
analysis for each ecological zone. The resulting map showed discontinuities around the bor-
ders of the zones, which were further smoothed. This additional step applied after kriging
made inference on the prediction error unfeasible. To avoid the separation into geographi-
cal zones, we considered interaction amongst the environmental predictors which capture
space-varying functional relationships between the predictors and malaria transmission.
This approach produces no discontinuities and avoids arbitrary geographical partitioning.
Our modelling approach goes further beyond that of Kleinschmidt et al. (2001a), because,
we could include all survey information, irrespective of their age group, and the Bayesian
model applied allowed correct adjustment for estimation uncertainty and prediction error.

A comparison of our estimated malaria prevalence maps with those produced by Klein-
schmidt et al. (2001a) for West-Africa reveals similar patterns, but the predicted prevalence
in our map shows fewer regions with prevalence above 70 percent or below 30 percent. Both
maps identify the same areas with high malaria prevalence (border of Sénégal-Mali-Guinea,
North Ivory-Coast, Togo, North Nigeria, West Cameroon) and with low malaria prevalence
(Guinea-Bissau, South-East Burkina Faso, Central Nigeria, and Central-North and North
Cameroon). There are discrepancies between the two maps in the region of Central Nige-
ria which the map of Kleinschmidt et al. (2001a) shows to be a high risk area and in the
border region between Burkina Faso and Mali and in South Guinea which was found to
be a low risk area by Kleinschmidt et al. (2001a). Our map estimates much lower malaria
prevalence for the whole country of Ghana (with the exception of the coastal strip). The
two areas, Central Ghana and Central Nigeria, where the two maps depict their largest
differences are also regions where the sampling density is relatively low (see figure 6.1).
More surveys in this two regions are needed to assess the quality of the maps and help to
improve them.

Surveys conducted in urban areas were omitted in our analysis. Thus, the produced
maps may depict too high a malaria estimate for large urban areas (especially in Nigeria).
In order to estimate the population at risk, based on our malaria risk map, a separate
prevalence estimate for urban areas is required.

The MARA data includes surveys conducted as early as the 1950’s. In our analysis,
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we adjusted for temporal changes in E by a linear trend term for the year of the survey.
This implies that we allow a linear increase or decrease of malaria prevalence with time
in the whole map irrespective of location. Changes in malaria endemicity levels, however,
may occur due to drug resistance of parasites, eradication programs (residual spraying
with insecticides) or urbanization and may be location-dependent and not linear in time.
The assumptions of a linear temporal evolution and a constant geographical structure of
malaria transmission needs to be verified by fitting spatio-temporal models to account for
non-linear trends in malaria risk and space-time interactions.
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Appendix 6.A Garki model

The Garki model (Dietz et al., 1974) is a mathematical model of malaria transmission which
can be used to predict age-specific malaria prevalence as a function of the vectorial capacity
C. C is defined to be the number of potentially infective contacts induced by the mosquito
population per infectious person per day. The Garki model describes transitions among
seven categories of hosts distinguished by their infection and immunological status, (figure
6.9). The proportions x1 and x3, account for uninfected individuals, and x2 and x4 are
compartments with prepatent infections. y1, y2, and y3, represent proportions of humans
with blood-stage infections. The model predicts the proportion of human population at
each age in each of the compartments. It is defined by a set of linked difference equations
that specify the change in each of these proportions from one time point to the next. Let ∆
be the change in proportion from one time point to the next one i.e. ∆x1 = x1(t+1)−x1(t),
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then the equations are defined as below:

∆x1 = δ + y2R1(h)− (h+ δ)x1

∆x2 = hx1 − (1− δ)N + h(t−N)x1(t−N)− δx2

∆x3 = y3R2(h)− (h+ δ)x3

∆x4 = hx3 − (1− δ)N + h(t−N)x3(t−N)− δx4

∆y1 = (1− δ)N + h(t−N)x1(t−N)− (α1 + δ)y1

∆y2 = α1y1 − (a2 +R1(h) + δ)y2

∆y3 = α2y2 − (1− δ)N + h(t−N)x3(t−N)− (R2(h) + δ)y3

Figure 6.9: States and transitions in the Garki model.

The meanings of the additional symbols are given in table 6.4. The time points to
which the proportions and the force of infection (h) refer to, are only indicated in the
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above equations when they differ from t. h is the probability per unit time, that a given
susceptible individual becomes infected. Here it is defined as a function of C.

Symbol Meaning Default value
δ Human birth and death rates 36.5 per 100-year
α1 Rate at which non-immunes move into the non-infective category 0.002 per day
α2 Rate at which non-immunes recovering from infection move

into the immune category 0.00019 per day
h Force of infection (Rate of infection of susceptibles) to be estimated
N Duration of pre-patent period 15 days
r1 Recovery rate for individual clones (non-immune) 0.0023 per day
r2 Recovery rate for individual clones (immune) 10r1

R1(h) Recovery rate from infection in non-immunes y2 (as a function of h) to be estimated
R2(h) Recovery rate from infection in immunes y3 (as a function of h) to be estimated
g Maximum value of force of infection 0.097 per 5 days
q1 Detectability of parasites in infectives (y1) 1
q2 Detectability of parasites in non-immunes (y2) 1
q3 Detectability of parasites in immunes (y3) 0.7

Table 6.4: Quantities appearing in the Garki model.

In order to account for seasonal variation, C is considered to depend on the month
and its suitability for malaria transmission, as estimated in table 6.2. Each bite on an
infective individual will result in C new inoculations after N days, where N is the duration
of sporogony. Dependent on the proportion of the population being infective, the E is
defined as E(t) = C(t−N)y1(t−N).

h(t) is assumed to be related to E(t) via h(t) = g(1 − exp(−E(t))), which introduces
an upper limit in the force of infection, when E increases. g specifies this upper limit
and is interpreted as a parameter measuring host susceptibility. The recovery rates R1

and R2 are defined as R = h/ (exp (h/r)− 1), where r is the recovery rate for a single
clone infection. Non-immunes are assumed to recover at rate R1, calculated from this
equation by setting r = r1. Immunes recover at rate R2, calculated by setting r = r2 where
r2 > r1. q1, q2, and q3 are introduced to allow for imperfect detection of parasitaemia
in each of the three infected classes y1, y2 and y3. Hence, the prevalence is estimated by
z(t) = q1y1(t) + q2y2(t) + q3y3(t).

The Garki model was developed to make predictions of the age-specific prevalence in
humans as a function of C. We reversed the calculations and estimated E from the observed
prevalence data, by using the golden section search routine (Press et al., 1988) to identify
the E which fits better to the observed prevalence data. In particular starting with an
arbitrary value of E (and for the given C(·) at the survey location) we estimated the age-
dependent prevalence curve z(·) via simulating the model with arbitrary starting values of
x1 to x4 and y1 to y3, until equilibrium was reached. The golden search routine searches
for values of E which minimize the deviance goodness of fit (of the binomial likelihood)
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between the observed prevalence and the estimated z(·) by the Garki model. We run the
simulation with a time interval of 5 days. C(·) varies seasonal, depending on the estimated
seasonality map (table 6.2). The effect of season of birth was accounted for by assuming
uniformly random birthdates throughout the year. The starting values we have chosen are
shown in table 6.4.

Appendix 6.B Spatial statistical model

Let Yj denote the logarithm of E at location sj, j = 1, . . . ,m. We assumed that Yj is
normally distributed and introduce spatial dependency between two measures Yj and Yk

by defining a spatial exponential covariance Cov(Yj, Yk) = σ2 exp(−djk/ρ) for j 6= k. djk

is the Euclidean distance that separates Yj and Yk, σ
2 quantifies the amount of spatially

structured variation and ρ the spatial dependency. A parameter τ 2 is introduced to measure
non-spatial variation at the origin and to add extra variability to those values with imprecise
estimates from the Garki model. The variance in Yj is then given by Var(Yj) = σ2 + τ 2/ω,
where wj is a weight, formed by the reciprocal of the variance of the log-E estimate at
location sj from the Garki model. The mean of Yj is modelled via a parametric function
µ(xj,β) of the covariates xj and a parameter vector β.

The model for Y = (Y1, . . . , Ym)t is written in matrix notation as Y ∼
N (µ(X,β), σ2R(ρ) + τ 2W ). (R)jk = exp(−djk/ρ) and W is the weight matrix with
elements Wjj = 1/wj and Wjk = 0 for j 6= k. The specification above holds if all m
locations are distinct. In case of n > m observations Y1, . . . , Yn at m distinct locations, an
m× n incidence matrix Z is formed with Zji = 1 if observation i is observed at location j
and Zji = 0 otherwise. Then Y ∼ N (µ(X,β), σ2ZtR(ρ)Z + τ 2ZtWZ).

The following prior distributions are adopted for the parameters involved in the model:
β ∼ N (0, bβI), σ2 ∼ IG(aσ2 , bσ2), τ 2 ∼ IG(aτ2 , bτ2) and ρ ∼ G(aρ, bρ). G(·) indicates the
Gamma and IG(·) the Inverse-Gamma distribution. The hyperpriors are fixed to bβ = 100,
aσ2 = aτ2 = 2.01, bσ2 = bτ2 = 1.01 and aρ = bρ = 0.01. This leads to a prior mean of one
for all the covariance parameters and a large variance of 100.

Parameter are estimated using Markov chain Monte Carlo (MCMC) (Gelfand and
Smith, 1990). The joint posterior distribution of the parameters is simulated using Gibbs
sampling, what requires to generate random numbers from the conditional distribution of
the parameters individually. For µ(X,β) linear, the conditional distribution of β is nor-
mal and easy to sample from. The conditional distribution of the covariance parameters
σ2, τ 2 and ρ, are identified to have no standard forms and are sampled using a random
walk Metropolis-Hastings algorithm having a log-Gaussian proposal density with mean
equals the estimate from the previous iteration and variance iteratively altered to reach an
acceptance rate of 0.4.

The log-E can be predicted at new locations s01, . . . , s0l, once the spatial correlation
between locations is estimated and the environmental covariates Xnew at the new locations
are known. The algorithm for Bayesian kriging iteratively draws independent values from
the predictive distribution. At iteration r, the algorithm starts by drawing values from
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the joint posterior distribution of τ 2, σ2 and ρ, which is given empirically as the output of
the Gibbs sampler described above. The sampled values are used to form the covariance
matrix Σ(r) = σ2(r)R(ρ(r)) + τ 2(r)W . R(ρ(r))jk = exp(−djk/ρ

(r)), with djk the Euclidean
distance between location sj and location sk. There are three matrices formed this way.

Σ
(r)
old is build by including only the old locations s1, . . . , sm, Σ

(r)
new takes only new locations

s01, . . . , s0l and Σ
(r)
old-new describes covariances between old and new locations. That is, the

m× l matrix (Σ
(r)
old-new)jk includes locations s1, . . . , sm for j and locations s01, . . . , s0l for k.

For new locations the weights in the diagonal of W are set to one.
Subsequently the parameter β(r) is drawn form its posterior distribution to form the

vector µ(Xnew,β
(r)). Finally, a single vector from the predictive distribution of Y 0 is drawn

from a multivariate normal with mean µ(Xnew,β
(r)) + Σ

(r)t
old-newΣ

(r)−1
old (Y − µ(Xold,β

(r)))

and variance Σ
(r)
new −Σ

(r)t
old-newΣ

(r)−1
old Σ

(r)
old-new.

The map with predicted log-E is back-transformed to age-related prevalence by apply-
ing the relations estimated by the Garki model. The back-transformation considers the
location specific season-length.
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Abstract

Models for geostatistical data introduce spatial dependence in the covariance matrix of
location-specific random effects. This is usually defined to be a parametric function of
the distances between locations. Bayesian formulations of such models overcome asymp-
totic inference and estimation problems involved in maximum likelihood-based approaches
and can be fitted using Markov chain Monte Carlo (MCMC). The MCMC implementation
however requires repeated inversions of the covariance matrix which makes the problem
computationally intensive, especially for large number of locations. In the present work,
we propose to convert the spatial covariance matrix to a sparse matrix and compare a
number of numerical algorithms especially suited within the MCMC framework in order
to accelerate large matrix inversion. The algorithms are assessed empirically on simulated
datasets of different size and sparsity. We conclude that the band solver applied after or-
dering the distance matrix reduces the computational time in inverting covariance matrices
substantially.

Keywords: band system solver; Bayesian model; generalized linear mixed model; geostatis-
tics; Gibbs-Poole-Stockmeyer algorithm; incomplete factorization; Markov chain Monte
Carlo; quotient-minimum-degree algorithm; sweep operator.

7.1 Introduction

Models for geostatistical data are embedded within the framework of generalized linear
mixed models (GLMM). Geographical dependence is introduced via the covariance struc-
ture of location-specific random effects which is specified to be a parametric function of the
distances between locations. Under the assumption of stationarity, the covariance matrix
determines the variogram and the GLMM is also known as variogram model. Maximum
likelihood-based estimation has major shortcomings. Asymptotic inference is not uniquely
defined (Cressie, 1993) and the competing approaches may lead to different results (Tubilla,
1975; Stein, 1999). When the aim of modelling is kriging, that is prediction at un-sampled
locations, the parameter uncertainty in maximum likelihood estimation is not fully ac-
counted for and the standard error of predicted values underestimates the true variability
(Prasad and Rao, 1990; Zimmerman and Cressie, 1992; Booth and Hobert, 1998).

Diggle et al. (1998) formulated the variogram model as a Bayesian hierarchical model
and provided full Bayesian inference using Markov chain Monte Carlo (MCMC) estima-
tion. However MCMC estimation is hampered by the repeated inversions of the covariance
matrix of the random effects which for large number of locations can be infeasible within
practical time constraints. To overcome the computational problems that arise from the
inversion of large covariance matrices, Gelfand et al. (1999) suggested a non-iterative esti-
mation procedure implemented via Sampling-Importance-Resampling (SIR) (Rubin, 1987).
In contrast to MCMC-based sampling, SIR is not generally applicable and needs to be tai-
lored to every spatial model and dataset (Gemperli and Vounatsou, 2003).
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Christensen et al. (2000) adopted the modelling approach of Diggle et al. (1998) and
proposed speeding up the computation of MCMC by jointly updating the whole vector of
random effects using the Metropolis-Langevin algorithm instead of updating each random
effect separately within an MCMC iteration. There are also a number of approaches aiming
to improve MCMC in general and not specifically for fitting variogram models. There are
methods which accelerate the convergence time (Liu, 2003) or reduce correlations between
the parameters and autocorrelation in the samples drawn from the Markov chain by over-
relaxation or centering (Gelfand et al., 1996). Other sampling schemes reduce the number
of rejections made by the Metropolis-Hastings algorithm within Gibbs sampling (Green and
Mira, 2002; Liu et al., 2000). None of these techniques overcome or improve the process of
matrix inversion, but they make it possible to sample significantly shorter chains to reach
the same accuracy.

In a series of papers Kelley and Barry (1997a,b) and Rue (2000) suggested methods to
accelerate conditional autoregressive spatial models for areal data using the sparseness of
the proximity matrix. In areal data settings, a proximity matrix with zero values for all
areas which do not share a common border can be easily defined. This can be also adapted
for variogram modelling by choosing appropriate covariance matrices. There are valid
spatial covariance definitions with zero value for all covariances defined at lag distances
higher than a specific parameter, called the range (Cressie, 1993). The sparseness is not
a priori defined for these models but it depends on the range parameter. Barry and Pace
(1997) demonstrated the computational advantages in solving the kriging equations using
sparse spatial covariance matrices.

A sparse covariance matrix does not necessarily facilitate matrix inversion, since the
factor of a sparse matrix may no longer be sparse. In most cases, incomplete factorization
(Markowitz, 1957) can ensure also sparsity of the matrix factor. Incomplete factorization is
primarily intended for use as a preconditioner in an iterative approach and it is well suited in
the Gibbs sampling framework. This is because iterative methods can be computationally
more efficient than non-iterative ones when starting values are good. Within the Gibbs
sampling framework good starting values for the incomplete factorization can be obtained
from the previous Gibbs sampling iteration.

In this work, we assess various numerical algorithms for fast matrix inversion within
Markov chain Monte Carlo (MCMC) estimation of variogram models. In section 7.2.1 we
present the Bayesian formulation of the model and in 7.2.2 we discuss the computational
steps within MCMC which can delay model fit. In section 7.3 we review algorithms for
fast inversion of large matrices to speed up the MCMC computations. These algorithms
include methods for sparse matrices, iterative solvers and other more specialized methods.
The computational speed of the suggested algorithms is empirically assessed on simulated
datasets of different size and sparsity in section 7.4. Simulations were run for MCMC
schemes updating either each location-specific random effect separately or the whole vector
as a block. We provide final concluding remarks in section 7.5.
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7.2 Variogram model

7.2.1 Bayesian formulation

To describe the basic model, let Y (s) = (Y (s1), Y (s2), . . . , Y (sm))t be the response data
observed at the set of locations s = (s1, s2, . . . , sm)t where si ∈ D ⊂ R2, i = 1, . . . ,m
and let X(si) be the vector of covariates associated with location si for j = 1, . . . , ni.
Following the generalized linear mixed models framework of Diggle et al. (1998), we in-
troduce location-specific random effects φ(s) = (φ(s1), . . . , φ(sm))t and assume that con-
ditional on φ(si), the Y (si) are independent with E(Y (si) | φ(si)) = µ(si). Covariates
and spatial random effects are modelled on g(µ(si)) where g(·) is the link-function and
g(µ(si)) = X t(si)β + φi. For simplicity, we drop s in the subscripts and write Y , Yi,
X i, φ and φi instead of Y (s), Y (si), X(si), φ(s) and φ(si), respectively and introduce
X = (X t

1, . . . ,X
t
m)t.

Spatial dependence is captured by the location-specific random effects. It is assumed
that they model a latent stationary and isotropic Gaussian spatial process over the study
region, D, such that π(φ | σ2, δ, τ 2) ≡ N(0,Σ), where Σij is a parametric function of the
distance between the corresponding locations si and sj, that is Σij = σ2%(‖ si − sj ‖2

; δ) + τ 21{i=j} where ‖ · ‖2 denotes the Euclidean distance. %(·) corresponds to a valid
correlation function, σ2 measures the spatial variance, δ quantifies the rate of correlation
decay and τ 2 captures non-spatial variation. The exponential form %(‖ si − sj ‖2; δ) =
exp(− ‖ si − sj ‖2 /δ) is the most commonly used correlation function. Alternative forms
are proposed by Cressie (1993). Under the assumption of stationarity, Σ determines the
variogram and the parameters σ2, δ and τ 2 are directly related to the sill, range and nugget
parameters of the variogram (Ecker and Gelfand, 1997).

A Bayesian formulation of the variogram model requires specification of prior distribu-
tions for the parameters, β, σ2, δ and τ 2. Typically we assume a non-informative distri-
bution, such as a uniform or a normal with large variances, for the covariate coefficients
β and inverse Gamma distributions for σ2, δ and τ 2. Inference is based on the posterior
distribution p(β,φ, σ2, δ, τ 2 | Y ) ∝ L(Y | β,φ)π(φ | σ2, δ, τ 2)π(β)π(σ2)π(δ)π(τ 2) where
L(Y | β,φ) is the likelihood and π(·) denote the prior distributions of the parameters.
This model is highly parameterized especially for large number of locations and model fit
is only feasible via Markov chain Monte Carlo.

7.2.2 Markov chain Monte Carlo computations

The Gibbs sampling algorithm is the most common Markov chain-based simulation algo-
rithm (Gelfand and Smith, 1990). Its standard implementation requires sampling from the
one-dimensional conditional distributions of all parameters, iteratively until convergence.
Variations of the algorithm include sampling from multivariate conditional distributions of
block of parameters, however these distributions have rarely known forms and sampling is
not straightforward.
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In the variogram model specified above, the one-dimensional conditional distributions
of the φi, i = 1, . . . ,m, parameters have the following form:

p(φi|φ-i,β, σ
2, δ, τ 2,Y ) ∝ p(φi|φ-i, σ

2, δ, τ 2) · L(Yi | φi,β).

The first term on the right hand side is a univariate normal having mean E(φi |
φ-i, σ

2, δ, τ 2) = Σi,-iΣ
−1
-i,-iφ-i and variance Var(φi | φ-i, σ

2, δ, τ 2) = σ2 + τ 2 −Σi,-iΣ
−1
-i,-iΣ-i,i,

with Σ = E(φφt), φ-i = (φ1, . . . , φi−1, φi+1, . . . , φm)t, Σ-i,-i = E(φ-iφ
t
-i) and Σt

-i,i = Σt
i,-i =

E(φiφ
t
-i). The Metropolis-Hastings algorithm can be used to simulate from the above con-

ditional distribution. This requires computer intensive matrix inversions to calculate the
term ct

i = Σi,-iΣ
−1
-i,-i. The (m − 1) × (m − 1) matrix Σ-i,-i is inverted m times during one

iteration of the Gibbs Sampler. This step is time consuming, since inversion is an oper-
ation of order 3, and it can substantially suffer from numerical errors. The inversion is
calculated via the solution of the linear system Σ-i,-i · ci = Σ-i,i. It is computed commonly
by first decomposing Σ-i,-i into its Cholesky factors Σ-i,-i = QiQ

t
i and then using forward

and backward substitution in Qixi = Σ-i,i and Qt
ici = xi.

As an alternative to updating φ componentwise, we could update the whole vector as a
block using Metropolis-Hastings. Liu et al. (1994) discuss the advantages of block updating
in the parameters, however it is difficult to find a good multivariate proposal distribution
which is easy to simulate from and resembles the conditional distribution of φ. Neal
(1996) proposes the Hamiltonian dynamics and provides a general method for constructing
multivariate proposal distributions. A special case of the Hamilton method is the Langevin
diffusion Metropolis-Hastings algorithm which has been applied by Christensen et al. (2000)
for updating the spatial random effects of variogram models. The Langevin algorithm
constructs a multivariate Gaussian proposal distribution with mean µφ(t) and variance

a2 · Im and simulates φ(t)? ∼ N(µφ(t) , a2 · Im) at a Gibbs iteration t where,

µφ(t) = φ(t−1) +
a

2
∇ log p(φ(t−1); Y )

and a is a constant which should be adjusted according to the acceptance rate. p(φ; Y ) is
the full conditional distribution of φ which has the form

p(φ; Y ) = p(φ | β, σ2, δ, τ 2,Y ) ∝ π(φ | σ2, δ, τ 2) · L(Y | φ,β).

At iteration t the φ(t−1) is updated by φ(t)∗ with probability

min

 p(φ(t)?; Y )

p(φ(t−1); Y )

exp
(
− 1

2a2

∑m
i=1(φ

(t−1)
i − µφ(t)?)

2
)

exp
(
− 1

2a2

∑m
i=1(φ

(t)?
i − µφ(t−1))2

) , 1


Computation of p(φ; Y ) and in particular of π(φ | σ2, δ, τ 2) requires inversion of the m×m
matrix Σ.

The conditional distribution of σ2, δ and τ 2 includes also terms with Σ−1. It is pro-
portional to

det(Σ)−
1
2 exp(−1

2
φtΣ−1φ)π(σ2)π(δ)π(τ 2)
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where Σ is a function of σ2, δ and τ 2. The Cholesky decomposition of Σ is required to
solve the bilinear form φtΣ−1φ, and to calculate the determinant of Σ. When Q is the
Cholesky factor of Σ, then det(Σ) =

∏m
i=1 Q2

ii and φtΣ−1φ = xtφ where x is computed
by forward and backward substitution of the systems Qz = φ and Qtx = z.

7.3 Algorithms for fast matrix inversions

The most computationally intensive part in the implementation of MCMC is the calculation
of the quantities Σi,-iΣ

−1
-i,-i, i = 1, . . . ,m and φtΣ−1φ which involve the inversion of the

(m−1)× (m−1) and m×m matrices Σ-i,-i and Σ respectively. Next we present numerical
algorithms which have been used for speeding the inversion of large matrices.

7.3.1 Sweeping

The E(φi | φ-i, σ
2, δ, τ 2) and Var(φi | φ-i, σ

2, δ, τ 2) involved in the implementation of the
Metropolis-Hastings algorithm, can be computed by applying the sweep operator (Good-

night, 1979). For each parameter φi, i = 1, . . . ,m the matrix A
(t)
i = (a

(t)
i,jk) is built, where

A
(0)
i =

Σ-i,-i Σ-i,i −φ-i

Σi,-i σ2 + τ 2 0
−φt

-i 0 0


and a

(t)
i,ss = 1

a
(t−1)
i,ss

, a
(t)
i,js = −a

(t−1)
i,js

a
(t−1)
i,ss

, a
(t)
i,sk =

a
(t−1)
i,sk

a
(t−1)
i,ss

and a
(t)
i,jk = a

(t−1)
i,jk − a

(t−1)
i,js a

(t−1)
i,sk

a
(t−1)
i,ss

, t, s =

1, . . . , (m − 1), t = s and j, k = 1, . . . , (m + 1), j, k 6= s. The conditional mean E(φi |
φ-i, σ

2, δ, τ 2) and variance Var(φi | φ-i, σ
2, δ, τ 2) are immediately available by the a

(m−1)
i,m(m+1)

and a
(m−1)
i,mm respectively.

Sweeping can also be used to calculate φtΣ−1φ. In this case

A(0) =

(
Σ φ
φt 0

)
and φtΣ−1φ = φt(a

(m)
1(m+1), . . . , a

(m)
m(m+1))

t.

7.3.2 Sequential decomposition

We propose to compute the matrix Σi,-iΣ
−1
-i,-i required for the update of φi by re-using

quantities calculated during the update of φi−1 for i = 2, . . . ,m. Let

Σ-i,-i =

(
Σ1,...,i−1;1,...,i−1 Σ1,...,i−1;i+1,...,m

Σt
1,...,i−1;i+1,...,m Σi+1,...,m;i+1,...,m

)
be the matrix Σ without the ith row and column and Q1,...,i−1;1,...,i−1 be the Cholesky
factor of Σ1,...,i−1;1,...,i−1, a matrix with the first i− 1 rows and columns of Σ with Q1,1 =
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√
(Σ1,1) =

√
σ2 + τ 2. During the update of φi we augment Σ1,...,i−1;1,...,i−1 to Σ1,...,i;1,...,i

such as

Σ1,...,i;1,...,i =

(
Σ1,...,i−1;1,...,i−1 bi,1

bt
i,1 σ2 + τ 2

)
and bi,1 = Σ1,...,i−1;i. The Cholesky factor Q1,...,i;1,...,i of Σ1,...,i;1,...,i is computed by updating
the Q1,...,i−1;1,...,i−1 by

Q1,...,i;1,...,i =

(
Q1,...,i−1;1,...,i−1 0

ωi

√
σ2 + τ 2 − ωt

iωi

)
where wi is the solution of Q(i−1)wi = bi,1. Then the Cholesky factor of Σ-i,-i will be

Q-i,-i =

(
Q1,...,i;1,...,i 0

W t QW
i+1

)
where QW

i+1 is the Cholesky factor of Σi+1,...,m;i+1,...,m − W tW and W is the solution of
Q1,...,i;1,...,iW = Σ1,...,i−1;i+1,...,m. To calculate the Σi,-iΣ

−1
-i,-i, we solve the linear system Σ-i,-i·

ci = Σ-i,i, using forward and backward substitution in the equations Q1,...,i−1;1,...,i−1x1 =
bi,1, QW

i+1x2 = bi,2 − W tx1 and (QW
i+1)

tci,2 = x2, Qt
1,...,i−1;1,...,i−1ci,1 = x1 − Wx2 where

bi,2 = Σi+1,...,m;i and ci = (ct
i,1, c

t
i,2)

t.
Sequential decomposition has the advantage that the size of the matrix

Σi+1,...,m;i+1,...,m − W tW decreases for larger i and its Cholesky factor QW
i+1 is derived

faster. The method cannot be used for calculating φtΣ−1φ.

7.3.3 Sparse solvers

Data observed at locations which are very far apart will have negligible spatial dependence.
Fixing the spatial correlation to zero for distances beyond the range of the spatial process
will result in sparse symmetric matrices which can be inverted faster using sparse matrix
methods. One example of such a valid correlation structure is the spherical form:

%(dij; δ) =

{
1− 3dij

2δ
+ 1

2
(

dij

δ
)3 dij ≤ δ

0 dij > δ

or the less frequently used cubic type:

%(dij; δ) =

1− (
dij

δ
)2

[
7− dij

δ

[
35
4
−

(
dij

δ

)2
(

7
2
− 3

4

(
dij

δ

)2
)]]

dij ≤ δ

0 dij > δ

where dij =‖ si − sj ‖2. An alternative nonparametric method which allows setting small
covariances to zero was presented by Hall et al. (1994) and applied in variogram modelling
by Bjørnstad and Falck (2001).
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The factorization of sparse matrices however tends to introduce additional non-zero
entries, and these so-called fill-ins result in partially lost sparsity. Fill-ins increase the
storage space,increase the number of operations to perform and contribute to error propa-
gation. A solution to reduce fill-ins is to reorder the matrix Σ-i,-i (or Σ) by multiplying
it with a permutation matrix P i (or P ) which is chosen to reduce the number of fill-ins.
A general reordering algorithm does not exist, but heuristic solutions (quotient minimum
degree QMD algorithm, multiple minimum degree algorithm) efficiently reduce the number
of fill-ins (George and Liu, 1981). An alternative approach to minimize fill-ins is to find a
permutation matrix which transforms the covariance matrix to a band diagonal form. The
advantage of the band diagonal matrix over the general reordering is that the Cholesky
factor is guaranteed to have the same bandwidth as the original matrix and thus the same
sparsity outside the diagonal band. There are various methods which can be used for band-
width minimization such as the (reverse) Cuthill-McKee algorithm (Cuthill and McKee,
1969) or its modification known as the Gibbs-Poole-Stockmeyer (GPS) algorithm (Lewis,
1982; Gibbs et al., 1976).

Using sparse matrix solvers or band-solvers, we can invert say Σ-i,-i by solving ΣPerm
-i,-i ·

ci = P iΣ-i,i to obtain ci where ΣPerm
-i,-i = P iΣ-i,-iP

t
i. The band Cholesky factorization

takes for m � p around m(p2 + 3p) flops (floating point operations) and m square roots
operations in comparison to the non-banded version which requires m3/3 flops (Golub and
Van Loan, 1996). The solution of the linear system ΣPerm

-i,-i ·ci = P iΣ-i,i takes m(p2+7p+2)
flops and m square roots operations, instead of 2m2 for the dense linear system solver. The
square root computation can be avoided using the LDLt technique where ΣPerm

-i,-i = LDLt,
Ly = P iΣ-i,i, Dz = y, and Ltci = z, which takes m(p2 + 8p + 1) flops and no square
root calculations. In case of a small bandwidth p this can lead to a reduced computational
effort.

Many variations of the sparse or band matrix solvers can be employed for inverting Σ-i,-i.
For example, the permutation can be applied directly on Σ instead of Σ-i,-i and then we
can extract the ΣPerm

-i,-i from ΣPerm where ΣPerm = PΣP t. This reduces the computational
time required for calculating P i separately for each Σ-i,-i. Another simplification would be
to permute the distance matrix D = {dij} once instead of the Σ matrices at every MCMC
iteration. This must be done in a way, that produces off-diagonal corner elements of D as
large as possible. The resulting covariance may not have minimal bandwidth, but band
solvers can still be used without the need for numerically expensive bandwidth minimizer
search routines. The data (locations) could be ordered according to the first principal
component of latitude and longitude.

7.3.4 Iterative solvers

The inversion of the covariance matrices which are involved in the implementation of
Gibbs sampling can be obtained by iterative solvers. The advantage of this approach is
that iterative methods require less memory and arithmetic operations than direct methods
especially when starting values are good. The Gibbs sampling framework is suitable to
the iterative solver approach as the initial values for the solver can be chosen to be the
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estimates of the previous Gibbs iteration.

One such algorithm solves the linear system Σ-i,-i · ci = Σ-i,i, by iteratively minimiz-
ing the function φ(ci) = 1

2
ct

iΣ-i,-ici − ct
iΣ-i,i, using the conjugate gradient method (CGM)

(Hestenes and Stiefel, 1952) or a Lanczos type method (Paige and Saunders, 1975). For
positive-definite matrices the CGM is considered more efficient than the Lanczos type
method. Faster convergence can usually be achieved by using a preconditioner, which
transforms the linear system in order to obtain a well conditioned matrix to invert. Pre-
conditioning is typically based on incomplete factorizations (Barrett et al., 1994), which
discards fill-in elements arising in the Cholesky factors. The accuracy of the factorization
is controlled by the amount of fill-ins to be discarded. The algorithm can also be applied
to invert Σ.

An alternative iterative linear solver approach was presented by Harville (1999) who
inverts large matrices using Gibbs sampling. Let Γ be the inverse of Σ, x = (x1, . . . , xm−1)

t

and x-k = (x1, . . . , xk−1, xk+1, . . . , xm−1)
t, such that x ∼ N (0,Γ) where Γk,j = E(xkxj),

Γk,-k = E(xkx-k) and Γ-k,-k = E(x-kx
t
-k). It follows that the conditional distribu-

tions [xk|x-k] are normal distributions such that [xk|x-k] ∼ N (Γk,-kΓ
−1
-k,-kx-k,Γk,k −

Γk,-kΓ
−1
-k,-kΓ-k,k). Taking into account the relations Γk,k − Γk,-kΓ-k,-kΓ-k,k = Σ−1

k,k and

Γk,-kΓ-k,-k = −Σ−1
k,kΣ-k,k (see for example Harville, 1997, p. 99), [xk|x-k] can be written as

[xk|x-k] ∼ N (−Σ−1
k,kΣk,-kx-k,Σ

−1
k,k) or [xk|x-k] ∼ N (−Σ−1

k,k

∑
j 6=k Σk,jxj,Σ

−1
k,k), respectively.

Gibbs sampling can be applied to simulate Γ where Γk,j is estimated by s−1
∑s

t=1 x
(t)
k x

(t)
j

and x(t) are samples obtained after convergence of the algorithm and s is the size of the
sample drawn from the posterior. Using Gibbs sampling outputs, we can solve the linear
system Σ-i,-i · ci = Σ-i,i by taking

ĉi,k = s−1

s∑
t=1

x
(t)
k

m−1∑
j=1

x
(t)
j ui,j.

where ĉi,k is an estimate of the k-th element of ci and ui,j is the j-th element of Σ-i,i.
Harville (1999) proposes ways of reducing the variance of the estimator of Γk,j, however it
becomes computationally more expensive to obtain Γ.

7.4 Simulation results

We assess the performance of the above methods on simulated geostatistical data. We have
chosen three levels of sparsity of the spatial covariance matrix (10 percent of zero entries,
40 percent and 80 percent) and three different numbers of locations (300, 600 and 1,000).
For each sparsity level and number of locations we simulated two datasets with normal
(study I) and Poisson (study II) response variables respectively as well as four covariates.
Details on the simulated data are given in the appendix.
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7.4.1 Study I

In this study the response data was simulated from a normal distribution, that is Y ∼
N(µ, τ 2Im). We follow closely the model specification of section 7.2.1, and take µ =
X tβ + φ and φ ∼ N(0,Σ). In our first stage normal model, the τ 2 parameter in the
variance of Y corresponds to the nugget effect and thus Σ models only the spatial variance,
that is Σij = σ2%(‖ si − sj ‖2; δ). We adopt the spherical correlation function for %(‖
si − sj ‖2; δ) discussed in section 7.3.3 and assume a vague normal prior distribution
for β. The full conditional posterior distribution of φ is multivariate normal, therefore
sampling the whole vector φ is straightforward. In this study, we choose however to
update the components φi, i = 1, . . . ,m separately and sample them from the corresponding
conditional distributions p(φi|φ-i,β, σ

2, δ, τ 2,Y ) which are also normal with mean (ψi(yi−
X iβ)+τ 2Σi,-iΣ

−1
-i,-iφ-i)/(ψi+τ

2) and variance ψiτ
2/(ψi+τ

2) where ψi = σ2−Σi,-iΣ
−1
-i,-iΣ-i,i.

Our objective was to compare the algorithms discussed earlier for inverting the ma-
trices Σ-i,-i. In particular, we compared the computational efficiency of the following al-
gorithms: Inversion without acceleration; SWEEP operator (section 7.3.1); Sequential
factorization (section 7.3.2); Band solvers on pre-ordered data (section 7.3.3); Band solver
using the GPS-algorithm at every Gibbs iteration (section 7.3.3); Band solver using the
GPS-algorithm once per Gibbs iteration (section 7.3.3); QMD-algorithm to reduce fill-ins
(section 7.3.3); Gibbs-sampling inversion (section 7.3.4) and iterative solver using incom-
plete Cholesky factorization (section 7.3.4).

Figure 7.1: Processing time for the algorithms: Ordinary MCMC (A); Band-solver with
ordered distance matrix (B); Band solver with GPS once per Gibbs iteration (C); Band
solver with GPS for every random effect (D); Incomplete factorization (E1, E4, E5) with
tol=0.1, 0.04 and 0.005 respectively, Sweeping (F) and QMD-algorithm (G). Simulated
response data from normal distributions with sparsity 10 percent, 40 percent and 80 percent
over 300 locations.

The code to perform the Gibbs sampling simulations was written in Fortran 95
and made use of the numerical libraries of the Numerical Algorithms Group (NAG).
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It was run on a AlphaServer 8400 with eight processors and three gigabytes of me-
mory. Iterative linear system solvers using the sparseness and incomplete Cholesky fac-
torization are supported by the NAG routines F011. Permutations for fill-in or band-
width reduction were implemented in SPARSPAK available under www.psc.edu/∼burk-
ardt/src/sparspak/sparspak.html which uses TOMS libraries 508 and 509 from ACM
Collected Algorithms (CALGO). More modern fill-in minimizers are implemented in the
METIS (www-users.cs.umn.edu/∼karypis/metis/) routine METIS NodeND. Band solvers
are included in the NAG routines group F07.

The CPU-time for running all the different algorithms, for a sample size of 300 locations
at various levels of sparsity is summarized in figure 7.1. The algorithm which applies a
band-solver to the spatially-ordered dataset is seen to be the fastest solution (Sampler B).
The re-ordering of Σ at every Gibbs iteration (Sampler C) results in a computationally
less efficient algorithm in comparison to ordering the distance matrix once before applying
MCMC. However, both band-solvers (B and C) are faster than ordinary MCMC (Sampler
A) especially for high level of sparsity. The re-ordering of the covariance matrix for every
single component φi i = 1, . . . ,m, is clearly very slow (Sampler D). Similarly, sweeping
(Sampler F) and the QMD algorithm (Sampler G) do not substantially profit from sparsity
and perform badly.

Figure 7.2: Iterative solver using incomplete Cholesky factorization for three different fill-in
tolerance levels, 0.1 (black), 0.04 (gray) and 0.005 (empty). Simulated response data from
normal distributions over 300 and 600 locations.

We have applied the iterative solver via incomplete Cholesky factorization algorithm
using the NAG routine F11JAF. The routine reduces fills-in by replacing the elements aij

of the factor matrix to zero if | aij |<tol
√
| aiiajj |, where tol is a pre-specified tolerance

parameter. We have chosen three tolerance levels of 0.005 (Sampler E5), 0.04 (Sampler E4)

http://www.psc.edu/~burkardt/src/sparspak/sparspak.html
http://www.psc.edu/~burkardt/src/sparspak/sparspak.html
http://www.acm.org/calgo/
http://www-users.cs.umn.edu/karypis/metis/
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and 0.1 (Sampler E1), respectively. The algorithms show good performance, if applied on a
highly sparse covariance matrix. Although the incomplete-factorization sampler performs
only slightly better than a crude, non-improved algorithm (Sampler A) in this example,
the performance is clearly superior for larger sample sizes and high degree of sparsity as
shown in figure 7.2. It also appears that the fill-in tolerance parameter tol does not affect
much the computational time.

The iterative, incomplete-factorization sampler is the only non-exact inversion algo-
rithm assessed in this study. A comparison of the estimates of the parameters of the
geostatistical model fitted using the various solvers with the true values which generated
the data, revealed no discrepancies. In addition the time-to-convergence which was assessed
using the Raftery-Lewis convergence criterion (Raftery and Lewis, 1992) was similar in all
compared algorithms.

The sequential decomposition algorithm of section 7.3.2 was seen to be not competitive
in comparison to other improved algorithms and therefore no longer mentioned in this
assessment. Similar holds for the Gibbs-sampling inversion algorithm of section 7.3.4,
which is proposed for inverting very large covariance matrices. This algorithm requires
extensive tuning of the number of iterations, the burn-in time and the thinning. The
choice of this tuning-parameters influences the computing speed, but does not reduce it to
a competing level for matrices with size up to 1,000 we considered in this study.

Figure 7.3: Comparison of ordinary MCMC algorithm (black) with those enhanced by three
different band-solvers with ordered distance matrix (dark gray), with the GPS algorithm
once per Gibbs iteration (light gray) and with the GPS algorithm in every random effect
update (empty bar). Simulated response data from a normal distribution over 300, 600
and 1,000 locations.

The band-solvers which rely on sparse matrix techniques are compared in figure 7.3.
A re-ordering of the covariance matrix for every φi i = 1, . . . ,m, is seen to be very slow
(empty bar). Ordering the distance matrix before implementing MCMC leads to faster



Chapter 7. Strategies for fitting large, geostatistical data using MCMC 107

computations than ordering the covariance matrix in each MCMC iteration. The gain in
speed increases with the sparsity level and it is independent of the sample size.

7.4.2 Study II

In the previous simulation study we compared empirically the performance of the various
algorithms for inverting Σ-i,-i when the response data are normally distributed. The normal
distribution of the spatial random effects is conjugate and it leads to conditional posterior
distributions of known forms only in the case of the normal first stage model. In this study,
we simulated data Y (s) from a Poisson distribution and assessed the benefit of implement-
ing matrix inversion with the band-solvers when sampling of the whole vector of φ at once
was performed. We followed again the same model specification described in section 7.4.1,
where Y (s) ∼ Po(exp(µ)) and µ = X tβ + φ. For the non-normal data we have in this
model, the nugget effect τ 2 can be only specified in the covariance matrix of φ as described
in7.2. Instead of updating the parameter φ component-wise, we update the whole vector as
block. The conditional distribution of φ is given by p(φ; Y ) = L(Y ; φ,β)×p(φ | σ2, δ, τ 2)
where p(φ | σ2, δ, τ 2) ≡ N(0,Σ) and L(Y ; φ,β) ∝

∏m
i=1(X

tβ + φi)
Yi exp(−(X tβ + φi)),

which has not standard form. We sampled from this distribution using the Langevin-
Hastings algorithm, discussed in section 7.2.2 and we compared the speed of updating φ
using the ordinal Langevin-Hastings without acceleration in the inversion of Σ and that of
Langevin-Hastings with the band solver applied on the ordered distance matrix which was
shown to be the fastest algorithm in the evaluation of study I (section 7.4.1). The score
vector required for computing the mean of the multivariate normal distribution according
to the Langevin-Hastings algorithm is: ∇ log p(φ; Y ) =

∑
i Yi − exp(X t

iβ + φi)−Σ−1φi.

Figure 7.4: Comparison of the ordinary Langevin-Hastings algorithm (black) and the
Langevin-Hastings with band solver applied on the ordered distance matrix (gray). Simu-
lated data from a Poisson distribution over 300 and 1,000 locations.

Figure 7.4 displays results of the comparison for simulated datasets over 300 and 1,000
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locations and with three levels of sparsity (10 percent, 40 percent and 80 percent, re-
spectively). The results show that the sparse version saves 33.6 percent processing time
for 300 locations and 38.4 percent for 1,000 locations in comparison to the ordinary the
Langevin-Hastings sampler when the distance matrix has 80 percent sparsity. For very
low sparsity of 10 percent the reduction in processing time is 7.1 percent and 7.9 percent
for 300 and 1,000 locations, respectively. Therefore there is a computational advantage
in implementing the algorithm together with the band solver especially for large datasets.
Langevin-Hastings however requires extensive tuning by the user to achieve a reasonable
Metropolis-Hastings acceptance ratio. This is controlled by the parameter a (see section
7.2.2) and it was found that small changes in a greatly affect the acceptance rate.

7.5 Discussion

In this article, we describe several algorithms to invert the large covariance matrices in-
volved in fitting Bayesian geostatistical models. We relied on ideas from several authors
(Barry and Pace, 1997; Rue, 2000) using sparse matrix techniques for areal data and ex-
tended those to models for geostatistical data. Using simulation studies, we tried to find
out what can be gained by an improved procedure in terms of computer-processing speed
and how much time will be spent by the researcher to implement an improved algorithm.
In terms of computing speed, the results are extensively discussed. The algorithms are
comparable in terms of time and effort to implement, however it was more difficult to
implement those algorithms with the slower computational speed.

The sparse structure of geostatistical covariance matrices makes the computation via
sparse linear system solvers efficient in MCMC estimation. A simple reordering of the
dataset by latitude and longitude and the choice of a specific correlation function with
zero correlation beyond the range already saves a substantial amount of CPU-time. Single
random effect updating is seen to be not competitive with the block update of random
effects, as demonstrated by the Langevin-Hastings sampler. Although the block updating
strategy makes the largest contribution to computational speed, the sparsity of the dataset
should further be considered. A sparse solver can be embedded in the block sampler without
much effort and reduces the computational time substantially.

With the exception of the iterative solver of section 7.3.4, all other algorithms are exact,
therefore neither the accuracy of the results nor the time to the MCMC convergence are
affected. In fact we controlled the length of burn-in time, autocorrelation and time to
convergence. In all examples, mixing was good, resulting in a negligible burn-in period
and vanishing autocorrelation, even at small lag. The parameter were always estimated
correctly and there were no differences in the estimates between the various samplers.

In applications to real geostatistical data, the aggregation of near locations needs to
be considered. This reduces the computational burden, proportionally to the number of
spatial random effects. It can further prevent instabilities in the computation, because a
correlation matrix with some very small distances can be substantially ill-conditioned. Only
if all distances are at a similar scale, the range parameter δ, can be accurately estimated.
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Appendix 7.A Details on simulated datasets

The locations of the points in the simulated datasets were chosen to form an elliptic shape,
with higher density of points in its center. For m locations, this was achieved by specifying
n >> m points on a spiral with latitude(i) = γi cos(i) and longitude(i) = γαi sin(i),
i = 1, . . . , n. Then a random subset of m points was chosen to form the final locations.
We believe this design comes close to spatial sampling structures seen in field studies.

The distance matrix and spherical correlation function matrix for all locations was
calculated based on a fixed value of the range parameter δ. The sparsity is evaluated by
counting the number of zero values in the correlation function. To achieve the desired
sparsity of 10, 40 and 80 percent, the parameter γ was adjusted iteratively to find the
appropriate spatial design with the exactly desired sparsity-percentage.

For every location, we simulated an intercept and four covariates. They were all drawn
from a normal distribution with specified mean and variance. We simulated σ2 and τ 2

from a Gamma distribution and multiplied the correlation function by σ2 and added τ 2 to
compute the covariance. The spatial process was simulated from a multivariate normal with
mean zero and spatial covariance matrix, which was computed by multiplying a vector of
independent random normal variates by the Cholesky factor of the covariance matrix. For
the study in section 7.4.2, the response variable was simulated from a Poisson distribution
with mean parameter (in the log scale) set to be equal to the regression equation defined
by the covariates and the spatial process.
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Abstract

Variogram models are based on stationary spatial processes. The stationarity assumption
may not be justifiable when data are collected over wide areas because local characteristics
could introduce a location-dependence in spatial correlation. Moreover fitting variogram
models for non-Gaussian data involves repeated inversions of the spatial covariance matrix.
For large number of locations, inversion may be slow and model fit infeasible within time
constraints. To avoid the assumption of stationarity and facilitate the inversion of the
covariance matrix, we developed a variogram model which is based on random Voronoi
tesselations. In particular, we partition the area in subregions (tiles) and assume a se-
parate stationary spatial process in each tile and independence between tiles. We follow
a hierarchical modelling specification and obtain full Bayesian inference using reversible
jump Markov chain Monte Carlo computation. The methodology is applied to describe
variation in malaria endemicity in Mali, using data from the Mapping Malaria Risk in
Africa (MARA) database.
Keywords: bayesian inference; geostatistics; malaria risk mapping; non-stationarity; re-
versible jump Markov chain Monte Carlo; variogram model; Voronoi tesselation.

8.1 Introduction

Plasmodium falciparum malaria remains the most important parasitic disease of humans.
Its transmission is influenced by interactions between the parasite, the mosquito vector,
the human host and the environment. Sub-Saharan Africa carries most of the burden of
malaria disease with nearly one million deaths and 300–500 million clinical cases every year.
Mapping the endemicity in different areas is essential for accurate estimation of disease
burden, for purposes of resource allocation and for assessing intervention programs.

A widely used measure of malaria endemicity is the parasite prevalence estimated from
human populations by surveys carried out at various locations. The most comprehen-
sive database on malaria transmission is the Mapping Malaria Risk in Africa (MARA)
database which includes malaria prevalence data since 1950 at over 10,000 locations in
Sub-Saharan Africa, extracted from articles published in scientific journals, ministry re-
ports and from unpublished work done by research institutions. Malaria prevalence data
collected at survey locations are typically binomial geostatistical data. The geographical
proximity introduces correlation between the observations which violates the independence
assumption of standard statistical methods. Spatial dependence is present at short scales
due to the transmission of malaria infection by the mosquitoes which fly over short dis-
tances as well as at large scales due to the effects of environmental factors which influence
mosquito survival and thus malaria transmission.

Geostatistical models can introduce spatial correlation in the variance-covariance ma-
trix Σ of location-specific random effects via a latent Gaussian spatial process. Under
second order stationarity, Σ determines the variogram. For isotropic processes, the ele-
ments of Σ are specified by parametric functions of the distance between the corresponding
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locations. Maximum likelihood-based estimation has major shortcomings. In particular,
the asymptotic inference is not uniquely defined (Cressie, 1993; Stein, 1999), prediction at
un-sampled locations (kriging) does not fully account for the parameter uncertainty, and
the standard error of predicted values underestimates the true variability (Prasad and Rao,
1990; Zimmerman and Cressie, 1992; Booth and Hobert, 1998). Diggle et al. (1998) for-
mulated the variogram model as a Bayesian hierarchical model and provided full Bayesian
inference using Markov chain Monte Carlo (MCMC) computation. However MCMC im-
plementation requires repeated inversions of the covariance matrix of the spatial process
which for large number of locations can be infeasible within practical time constraints.

Few maps of malaria risks have been produced based on field prevalence data, partly
because of lack of readily available statistical software to fit non-Gaussian, geostatistical
data collected over large number of locations. Thomson et al. (1999) model malaria preva-
lence amongst children in the Gambia. They estimate spatial variation from the residual
of a regression model to obtain asymptotically valid inference about marginal regression
parameters. Spatial variation is only handled as nuisance parameter and it does not allow
smooth spatial interpolation. Kleinschmidt et al. (2000) use kriging on the residuals of a
logistic regression model to get a smooth malaria prevalence map in West Africa, but they
do not account for estimation uncertainty in the regression parameters and spatial random
effects. Fully Bayesian inference have been adopted by Diggle et al. (2002) who predict
childhood malaria risk in the Gambia and by Gemperli et al. (2003b) who use malaria
transmission models to map age-specific malaria risk and other transmission measures in
Mali.

All geostatistical modelling of malaria so far has been based on the assumption of a
stationary spatial process implying that the spatial correlation is a function of the distance
and independent of location. This assumption cannot be justified when mapping malaria
risk over wide areas since local characteristics related to human activities, landuse, environ-
ment and vector ecology influence spatial correlation differently at the different locations.
Moreover, the degree of precision in which malaria surveys can be ”geolocated” is likely
to vary over the map. Geostatistical methods for modelling non-stationary data have
received little attention. Sampson and Gottorp (1992) and Damian et al. (2001) relax
stationarity by using thin-plate splines for space transformation to reach stationarity on
the deformed plane. Recent approaches use a Gaussian white noise kernel convolution to
build the non-stationary process where either a kernel (Higdon et al., 1998) or a Gaussian
process (Fuentes et al., 2002) was formed as a smooth function of the locations. Another
approach is to partition the space into random tiles and estimate for every tile either a
constant, as done by Ferreira et al. (2002), or an independent Gaussian stationary process,
as demonstrated by Kim et al. (2002). Kim et al. (2002) use Gaussian data with conjugate
priors and show an application on permeability data.

In this paper, we extend the work of Kim et al. (2002) and model non-Gaussian malaria
prevalence data using random tesselations. The number and locations of the tiles are un-
known and we assume an independent spatial process in each tile. This approach effectively
addresses non-stationarity as well as computational problems in inverting large covariance
matrices since the covariance matrix is reduced to a block-diagonal form. This model has
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a variable number of parameters and estimation can be handled via a reversible jump
Markov chain Monte Carlo sampler (RJMCMC) (Green, 1995). In section 8.2 we describe
the malaria data and the environmental predictors derived from remote sensing or local
stations. The Bayesian model formulation together with implementation details is given in
section 8.3. The results of the application on mapping malaria risk in Mali are presented
in section 8.4. The computational efficiency of the proposed approach is assessed on simu-
lated data in section 8.5. A discussion with final remarks and suggestions for future work
is given in section 8.6.

Figure 8.1: Sampling locations in Non-Saharan Mali with dot size related to the number
of tested persons and its shading indicating the observed parasite ratio.

8.2 Data

The data which motivated this work were extracted from the ”Mapping Malaria Risk in
Africa” (MARA/ARMA, 1998) database. This is a unique database on malariological data
in Africa collated from published and unpublished surveys carried out during the last 50
years in 44 countries in Africa. Todate, it contains malaria prevalence data over 10,000
locations. In this work, we analyzed prevalence data from malaria surveys carried out at
89 sites in Mali on children between 1 to 10 years old. The size of the surveys varied from
43 to 3,774 children. Children with presence of Plasmodium falciparum in blood smears
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were considered as malaria positive. The distribution of the sampling locations in Mali is
shown in figure 8.1.

Additional data on environmental predictors were collated from different sources. We
used the same predictors as Kleinschmidt et al. (2000) who analyzed malaria endemicity
in the same region. These include the distance to the nearest water source, the average
maximum temperature between March and May, the length of rainy season specified by
number of month with more than 60mm rainfall and the Normalized Difference Vegetation
Index (NDVI). Data on rainfall and temperature were obtained at 5km resolution from the
”Topographic and Climate Data Base for Africa” maintained by Hutchinson et al. (1996).
NDVI data were obtained from the NOAA/NASA Pathfinder AVHRR Land Project (Agbu
and James, 1994) at 8km resolution. We used the ten days composite NDVI values to avoid
cloud-distortion and for each location we calculated an average NDVI over the eleven years
period 1985–1995.

8.3 Model Specification

8.3.1 Stationary spatial process

Let Ni be the number of children screened during a particular survey at site si ∈ D ⊂
R2, i = 1, . . . ,m, Yi be the number of those found positive to P. falciparum parasitaemia
and X i = (Xi1, Xi2, . . . , Xip)

t be a vector of associated environmental covariates observed
at si. Following the modelling framework of Diggle et al. (1998), we introduce unobserved
spatial variation by assuming a latent spatial process φ = (φ1, φ2, . . . , φm)t over the study
region, and assume that conditional on φi the Yi are independent random variables from a
binomial distribution Yi ∼ Bn(Ni, pi) with parameter pi measuring the malaria prevalence
at si such as logit(pi) = X t

iβ
t + φi and β = (β1, . . . , βp)

t.
Furthermore we assume that φ comes from an isotropic stationary Gaussian process

over D with E(φi) = 0 and Cov(φi, φj) = Σij = σ2η(‖si − sj‖ ; ρ) + δijτ
2, where η(·) being

a valid (non-negative definite) correlation function in R2 and ‖si − sj‖ is the Euclidean
distance between si and sj and δij the Kronecker delta. The parameter ρ measures the
rate of correlation decay and it is known as the range parameter of the spatial process.
We chose an exponential correlation function η(‖·‖ ; ρ) = exp(−‖·‖ /ρ) because it is simple
and leads to a nice epidemiological interpretation for ρ being one third of the minimum
distance where the spatial correlation between locations falls below 0.05.

To complete the Bayesian model formulation, we adopt a vague normal prior distri-
bution π(β) for β with a pre-defined, large variance and inverse gamma priors for the
parameters of the covariance matrix σ2, ρ and τ 2. Bayesian inference is based on the joint
posterior distribution of all parameters given by:

p(φ,β, σ2, ρ, τ 2; Y ,N ) ∝ L(Y ,N ; β,φ)det(Σ)−1 exp(−1

2
φtΣ−1φ)π(β)π(σ2)π(ρ)π(τ 2)

where L(Y ,N ; β,φ) corresponds to the binomial likelihood, Y = (Y1, Y2, . . . , Ym)t and
N = (N1, N2, . . . , Nm)t. We estimate parameters using Gibbs sampling, where the full
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conditional distributions do not have standard forms. Calculation of the conditional dis-
tribution of φ as well as that of ρ, σ2 and τ 2 involve inversion of the m × m covariance
matrix Σ which can slow down estimation, especially for large a number of locations m.

8.3.2 Non-stationary spatial process

The assumption of stationarity made in section 8.3.1 implies that spatial correlation be-
tween locations of the same distance remains the same throughout the region. This may
not be true when we study large areas because local characteristics can influence spatial
correlation differently in different parts of the map. In this work, we relax the assumption
of stationarity, by partitioning the whole region in subregions or tiles and assume a separate
stationary spatial process for each tile and independence between regions. Partitioning is
based on Voronoi tesselation and it is random, allowing thus the data to choose the number
and locations of the tiles.

Let Tk, k = 1, . . . , K be a subregion after partitioning the whole space into K regions
and let ξk be the centroid of the Voronoi tile Tk. We define the tile Tk conditional on the
size K of the partition as the set of all locations si ∈ Tk, such that d(si, ξk) < d(si, ξl)
∀l 6= k, where d(·) is a distance measure (i.e. Euclidean distance). We re-arrange the
vector of location-specific random effects φ, such that φ = (φt

1, . . . ,φ
t
K)t where φk is

the sub-vector corresponding to the locations within Tk. In each tile Tk, we assume a
Gaussian stationary process with covariance matrix Var(φk) = Σk, that is φk ∼ N(0,Σk)
and (Σk)ij = Cov(φk,i, φk,j) = σ2

kη(‖si − sj‖ ; ρk) + δijτ
2
k for si, sj ∈ Tk. We further assume

independence between tiles, that is Cov(φk,φl) = 0 for k 6= l. Thus Var(φ) = Σ becomes
a block diagonal matrix Σ = diag(Σ1, . . . ,ΣK).

The number and centroids of the partition are random and thus K and ξ = (ξ1, . . . , ξK)t

are unknown parameters of the geostatistical model. We adopt a prior distribution for K
which has the form, π(K) ∝ αK−1, α ∈ (0, 1] and the hyperparameter α is pre-defined.
This corresponds to a geometric distribution and is chosen in order to penalize large values
of K (Cappé, 2002). For the parameter ξ we choose a uniform prior over the area of
interest A which is π(ξ) ∝ 1{ξ ∈ AK}. Small tiles with few sampling locations will lead to
imprecise estimates of the corresponding random effects and spatial process parameters.
In this case, estimation is driven by the priors rather than the data.

By combining the likelihood and prior distribution, the posterior will be

p(φ,β, K, ξ,σ2,ρ, τ 2; Y ,N ) ∝ L(Y ,N ; β,φ)
K∏

k=1

[
det(Σk)

−1
]
exp(−1

2

K∑
k=1

φt
kΣ

−1
k φk)

π(β)
K∏

k=1

π(σ2
k)

K∏
k=1

π(ρk)
K∏

k=1

π(τ 2
k ).

where σ2 = (σ2
1, . . . , σ

2
K)t, τ 2 = (τ 2

1 , . . . , τ
2
K)t and ρ = (ρ1, . . . , ρK)t. Parameter estimation

is employed using Markov chain Monte Carlo (MCMC) conditional on the tesselation.
Birth- and death-steps are added to allow moves between models of varying number of
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tiles and they are estimated by reversible jump MCMC (Green, 1995) in order to guarantee
reversability of the moves. Additionally we consider a step which updates the tesselation
form conditional on the number of tiles. The sampling strategy is illustrated in the next
section and a summary is given in the appendix.

Reversible Jump MCMC Computations

For a given tesselation with K tiles and the centroids ξ | K, we proceed by suggesting one
of four moves: 1) Keep the number of tiles K and their centers ξ | K at the current values
and use Gibbs-Sampling to simulate from the conditionals of the rest of the parameters
(Stay); 2) Keep K but choose one element ξk from ξ to move to a new location (Shift); 3)
Add a new centroid ξK+1 and increase K by one (Birth); 4) Reduce K by one by deleting
a centroid ξk (Death). Stay, shift, birth and death steps are chosen with pre-specified
probabilities QS, QH , QB and QD respectively.

The shift, birth and death steps alter the tesselation and change the dimension
of the parameter space. The RJMCMC facilitates dimension-changing transitions by
including a dimension-matching parameter and a function which deterministically re-
lates the parameters between spaces of different dimensions in successive MCMC itera-
tions. Thus, in the birth step at a given iteration t, we propose the new parameters
θ

(t)
K+1 = (σ

2(t)
k+1, τ

2(t)
k+1, ρ

(t)
k+1, ξ

(t)
k+1)

t for the new tile (K + 1) as a weighted average of the
parameters from the old tesselation, that is:

σ
2(t)
K+1 =

u
(t−1)

σ2

m(t)

K∑
k=1

w
(t)
k σ

2(t−1)
k , τ

2(t)
K+1 =

u
(t−1)

τ2

m(t)

K∑
k=1

w
(t)
k τ

2(t−1)
k , ρ

(t)
K+1 =

u
(t−1)
ρ

m(t)

K∑
k=1

w
(t)
k ρ

(t−1)
k , ξ

(t)
K+1 = uξ

The w
(t)
k are weights defined as the number of locations which are in tile Tk in iteration

t − 1 and fall into TK+1 in iteration t and m(t) =
∑K

k=1w
(t)
k . The weights w(t) and sum

of weights m(t) are dependent on the current tesselation structure and therefore have to
be calculated at every birth- or death-step. u(t−1) = (u

(t−1)

σ2 , u
(t−1)

τ2 , u
(t−1)
ρ , u

(t−1)
ξ )t is the

dimension matching parameter which links the two parameter spaces via the function

gt−1,t(β
(t−1),φ(t−1),θ

(t−1)
1...k ,u

(t−1)) = (β(t),φ(t),θ
(t)
1...k,θ

(t)
k+1)

where θ
(t)
1...k = (θ

(t)
1 , . . . ,θ

(t)
k ). The parameters u

(t−1)

σ2 , u
(t−1)

τ2 , u
(t−1)
ρ are simulated from a log-

normal distribution b(·) with mean equal to one and large variance. A new centroid ξ
(t)
K+1 is

drawn with probability 1/m
∑m

i=1 h(ξ
(t)
K+1 − si) and constructed by putting normal kernels

h(·) around the sample points si : i = 1, . . .m. This prevents the sampling of tile-centroids
too far from the data locations and it increases the performance of the sampler in relation
to a uniform proposal over the area A.

A birth step, once proposed, is accepted with probability αbirth = min(1, Rbirth) where

Rbirth =
p(β(t),φ(t),θ

(t)
1...k,θ

(t)
k+1; Y ,N )QDd(θ

(t)
k+1)

p(β(t−1),φ(t−1),θ
(t−1)
1...k ; Y ,N )QBb(u(t−1))

∣∣∣∣∣∂gt−1,t(θ
(t)
1...k,θ

(t)
k+1)

∂(θ
(t−1)
1...k ,u

(t−1))

∣∣∣∣∣
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b(u(t−1)) is the probability to sample the new vector u(t−1) and d(θ
(t)
k+1) the pro-

bability that θ
(t)
k+1 is removed in a death step. The jacobian

∣∣∣∣∂gt−1,t(θ(t)
1...k,θ(t)

k+1)

∂(θ(t−1)
1...k ,u(t−1))

∣∣∣∣
used in the reversible jump Metropolis-Hastings ratio takes the simple form

1
m(t)3 (

∑K
k=1w

(t)
k σ

2(t−1)
k )(

∑K
k=1w

(t)
k τ

2(t−1)
k )(

∑K
k=1 w

(t)
k ρ

(t−1)
k ). This design has the advantage

that the parameters of a new tile are drawn using information from the previous tesselation
instead of being drawn from an arbitrary distribution.

A death step is accepted with probability αdeath = min(1, Rdeath) where Rdeath is the
reciprocal of Rbirth except that the indices t and t− 1 switch places.

A proposal ξ
(t)
k in the shift move ξ

(t−1)
k → ξ

(t)
k is drawn from a bivariate normal, centered

at ξ
(t−1)
k , where k is selected uniformly from {1, . . . , K}. Although a shift move may lead

to a considerable change in the tesselation structure, the parameters σ
2(t−1)
k , τ

2(t−1)
k and

ρ
(t−1)
k , k = 1, . . . , K are not altered in iteration k. The new tile and all its neighboring

tiles, inherit all the information from its parent tile. This approach is therefore more likely
to accept shifts to new tile centroids not too far from the old location. The transition
probability for a shift move is αshift = min(1, Rshift) where

Rshift =
p(β(t),φ(t),θ

(t)
1...k; Y ,N )

p(β(t−1),φ(t−1),θ
(t−1)
1...k ; Y ,N )

8.3.3 Prediction

Prediction of malaria risk at unsampled locations can be obtained by Bayesian kriging. In
particular, estimates of malaria prevalence Y 0 = (Y01, Y02, . . . , Y0l)

t are obtained at a new
set of locations s0 = (s01, s02, . . . , s0l)

t by the predictive distribution

p(Y 0 | Y ,N ) =

∫
p(Y 0 | β,φ0)p(φ0 | φ,σ2,ρ, τ 2, ξ, K)×

p(β,φ,σ2,ρ, τ 2, ξ, K | Y ,N )dβdφ0dφdσ
2dρdτ 2dξdK (8.1)

where p(β,φ,σ2,ρ, τ 2, ξ, K | Y ,N ) is the posterior distribution and φ0 is the vector of
random effects at s0. The distribution of the random effects φ0 given φ is normal

p(φ0 | φ,σ2,ρ, τ 2, ξ, K) ≡ N (Σ01Σ
−1
11 φ,Σ00 −Σ01Σ

−1
11 Σ10)

with Σ11 = E(φφt), Σ00 = E(φ0φ
t
0), Σ01 = Σt

10 = E(φ0φ
t) and p(Y 0 | β,φ0) =∏l

i=1 p(Y0i | β, φ0i) where p (Y0i | β, φ0i) ∼ Be(π0i), with logit(π0i) = X t
0iβ + φ0i and

X0i is the vector of environmental covariates at location s0i. Equation (8.1) is the
expectation E[p(Y 0 | β,φ0)p(φ0 | φ,σ2,ρ, τ 2, ξ, K)] over the posterior distribution
p(β,φ,σ2,ρ, τ 2, ξ, K | Y ,N ), which is estimated by the Gibbs sampler. Numerically
this expectation is approximated by the average

1

r

r∑
q=1

[
l∏

i=1

p(Y
(q)
0i | β(q), φ

(q)
0i )

]
p(φ

(q)
0 | φ(q),σ2(q),ρ(q), τ 2(q), ξ(q), K(q)),
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where (β(q),φ(q),σ2(q),ρ(q), τ 2(q), ξ(q), K(q)) are samples drawn from the posterior
p(β,φ,σ2,ρ, τ 2, ξ, K | Y ,N ). In the case of a stationary model, K is equal to 1 and the
parameter ξ is not required.

8.4 Application

The spatial logistic model described in section 8.3 was applied to the malaria prevalence
data from Mali. We use the Metropolis-Hastings algorithm to sample from the conditional
distributions for all model parameters. Normal proposal distributions were used to
simulate from the one-dimensional conditional distributions of β and φ parameters.
Gamma proposal distributions were chosen for the elements of the parameter vectors σ2,
τ 2 and ρ. The mean of the proposal distributions were taken to be the values of the
corresponding parameters drawn in the previous Gibbs iteration and the variance was
iteratively adapted during the Gibbs implementation to optimize the Metropolis-Hastings
acceptance probabilities.

We ran a single chain for 100,000 iterations. The starting values for the fixed effect
parameters β were set equal to the estimates from an ordinary logistic model. The φi, i =
1, . . . ,m were initiated with zero. For the tile specific parameters σ2, τ 2 and ρ random
numbers between 0.1 and 1 were given. We started the Gibbs sampler with 3 tiles and
with randomly chosen centroids. The move probabilities QS, QB, QD, QH of the RJMCMC
were chosen equal to 0.4, 0.15, 0.15 and 0.3, respectively. The parameter α in the prior
distribution of K was set to one in order not to penalize a large value of K. All Metropolis-
Hastings acceptance probabilities were between 0.28 and 0.72 (birth: 0.28; death: 0.35).
Convergence in the log-likelihood was assessed by the Raftery-Lewis diagnostic (Raftery
and Lewis, 1992) and was reached after 5,000 iterations. After convergence, samples from
the posterior distribution were extracted during the stay move. To avoid autocorrelation
in the samples, we have considered only every 19th of those values, and so obtained a final
sample of size 2,000 from the joint posterior distribution.

Variable Median 5% Quantile 95% Quantile
Intercept -64.3326900 -64.8159800 -63.7351100
Maximum temperature1 10.3490400 10.2341300 10.4330600
Rainfall1 2.0309500 1.8081000 2.1641700
Water 0.0875700 0.0094600 0.2012900
Vegetation1 0.4446000 0.2830400 0.6029000

1 Average of monthly values during malaria transmission season.

Table 8.1: Posterior estimates of the fixed effect parameters β, with corresponding covariate
at the log-scale.

Table 8.1 presents posterior estimates of the environmental covariates. As anticipated,
the higher the average of maximum monthly temperature during the transmission season,
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the higher the malaria risk. Similarly a positive association was found between malaria
risk and the average amount of rainfall and vegetation during the malaria transmission
period. The distance from the nearest permanent water source is also related to malaria
transmission. The risk of malaria appears to be less in areas closer to water. The same
result was found by Kleinschmidt et al. (2000) who analyzed the MARA data from Mali.

Figure 8.2: Frequency of the number of tiles.

Figure 8.2 depicts the posterior frequency distribution of the number of tiles parame-
ter K. The most frequent tesselation favors two tiles, suggesting two separate spatial
processes. Figure 8.3 displays summaries of the posterior distribution of the spatial covari-
ance parameters σ2, τ and ρ. For each location on the map, the posterior distribution of
the covariance parameters was obtained by the average of the tile-specific posterior distri-
butions of the corresponding parameters. The range of ρ varies over the map from 0.038
to 2.74, indicating that the spatial correlation reduces to less than 5 percent at distances
which vary from 1.14 to 82.2 kilometers. The spatial correlation is high in the densely
populated area in Central-South Mali around Bamako (figure 8.3) with a smaller peak of
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high correlation in the Niger delta region in the north (rho 95 percent) where conditions
are known to be suitable for mosquito breeding sites. The spatial variance σ2 ranges over
the map from 0.002 to 2.4. It is high in the western part (sigma 95 percent) and low in
the east part (sigma 5 percent). The non-spatial variance τ 2 is large in the central-west
region (tau 95 percent) reflecting partly sparse and small surveys (figure 8.1). The areas
with lowest non-spatial variation are those around Bamako where many and large surveys
took place.

A smooth map of malaria risk in sub-saharan Mali is shown in figure 8.5a. The map
is based on predictions over a regular grid of 40,000 locations. The malaria risk appears
to become lower as we move from west towards east and from north towards south. The
discontinuities in the malaria risk along the North-South directions parallels those of the
length of the rainy season. The prediction error of the malaria prevalence in the logit
scale is depicted in figure 8.5b. The error is larger at locations remote from the sampling
locations in the Sahara-desert, in the North of the study area. Predictions have lower
variance at locations near the sampling locations, such as around Nioro (North-West),
Bamako (Central-South) and those close to the river Niger (Ségou, Mopti).

8.5 Assessing the computing performance on simu-

lated data

We assessed the computing performance of the tesselation model on simulated geostatis-
tical binomial data with 50, 100 and 200 locations, randomly chosen over a grid. We
partitioned the grid in tiles with approximately equal number of locations and generated
location-specific random effects from Gaussian distributions with spatial covariance ma-
trices having different parameters between tiles. For each size of the dataset, we have
chosen 10 tesselations with 1 to 10 tiles, respectively. In total we simulated 30 datasets,
each included two covariates. For every location, we generated the survey size N from a
Uniform distribution U(10, 600). The binomial proportion was obtained on the logit scale
as the sum of the covariates- and random-effects.

Table (8.2) shows the processing time for 1,000 iterations, for each dataset. The
duration is reported relative to the baseline, which is the processing time required for
the data set with 50 locations and one tile. The baseline time was 23.27 CPU-seconds
for 1,000 iterations computed on a Pentium 4 PC with a 1.4 GHz processor and 386
MB RAM. The results demonstrate that the larger the number of tiles the smaller the
computing time. In particular, a tesselation with 2 tiles reduces the computing time
by 75 percent or 82 percent for data over 50 and 200 locations, respectively. This is
because the numerical inversion of the covariance matrix of the spatial process for a
dataset with m locations requires 1

3
m3 + 2m2 flops (Golub and Van Loan, 1996). A

partition to K tiles converts the matrix to a block diagonal from, with blocks of size
mj by mj, j = 1, . . . , K where mj is the number of locations in the jth tile Tj. Thus

the inversion of the block-diagonal covariance matrix requires 1
3

∑K
j=1m

3
j +2

∑K
j=1m

2
j flops.
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a) Median

b) Variance

Figure 8.5: Predicted malaria prevalence.
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Relative CPU-time in %

Tiles 50 locations 100 locations 200 locations

1 100.00 850.25 12711.41
2 36.70 222.54 2293.01
3 22.31 116.69 1056.85
4 19.45 74.89 621.86
5 15.46 61.41 317.89
6 11.78 46.99 253.18
7 11.66 41.02 214.78
8 10.08 33.44 177.53
9 9.06 30.71 155.18

10 9.19 30.42 139.01

Table 8.2: Comparison of the computing performance for simulated dataset of different
sizes. The baseline time is 23.27 CPU seconds for 1,000 iterations for a dataset with 50
locations and no partition (one tile) computed on a PC Pentium 4 with 1.4 Ghz.

8.6 Discussion

We have developed a geostatistical model for non-Gaussian response data which takes into
account non-stationarity and facilitates model fit implemented via MCMC. The model
divides the area in tiles and assumes a separate stationary spatial process in each subregion
and independence between tiles. The assumption of independence converts the spatial
covariance matrix to block diagonal form facilitating matrix inversion as the blocks have
small size. The number and configuration of the tiles is random. The parameters of the
model are estimated via RJMCMC. Maps of the distribution of the spatial covariance
parameters can be produced by averaging the covariance parameters over all partitions.
Model prediction can be obtained in a similar way. Averaging over the partitions prevents
from estimating discontinuities in the predicted map.

A difficulty in the implementation of RJMCMC is the specification of proposal values
for covariance parameters of new tiles introduced in birth moves. This is because there is no
information about those parameters from previous MCMC iterations as these parameters
did not exist. In our application the posterior distribution of all involved covariance para-
meters was rather widespread and we ended up with good Metropolis-Hastings acceptance
rates. Finding good proposal distributions for new parameters derived in birth moves is
a topic of current research in RJMCMC computation (Green and Mira, 2002; Rotondi et
al., 2002; Brooks et al., 2003). However, more work is required to adapt general strategies
to tesselation-based variogram models.

Further research is also needed in order to fully understand the behavior of the model.
Applying it on simulated data derived from known tesselation designs would reveal whether
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the model is able to capture correctly the different spatial processes. Model comparison
between a stationary variogram model and a model which is based on random tesselations
will show if parsimony is preferred over complexity.

The tesselation-based variogram model was applied in mapping malaria prevalence data
in Mali. The non-stationary feature present in malaria data observed over large areas was
never addressed previously. Local characteristics such as human activities, land use or
malaria interventions can alter spatial correlation in different parts of the region. It is
more likely to think of a mixture of spatial processes affecting large areas rather than a
single process. Ignoring non-stationarity may partly explain differences between the various
malaria maps produced so far. Proper modelling of the spatial process will lead to more
accurate parameter estimation and prediction.

The random tesselation approach allows the data to decide on the number of tiles and
thus the spatial processes. As long as we have large amount of data, inference are driven by
the data rather than the prior specification. Maps of the spatial covariance parameters can
be useful for control interventions. Regions where the spatial correlation reduces rapidly
over short distances may indicate local unmeasured factors which influence malaria risk.
Without additional information the model will not be able to find causal explanations. It
will only identify the areas which have geographical dependencies over larger or shorter
distances.
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Appendix 8.A RJMCMC sampler specification

Let K be the number of tiles at iteration t − 1. Start iteration t by choosing one of the
four moves, stay (S), birth (B), death (D) or shift (H) with probabilities QS, QB, QD, QH ,
respectively.
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If S
• Employ a Gibbs sampling iteration, conditional on the tesselation (K(t−1)

and ξ(t−1)), to update the parameters β(t−1), φ(t−1) and θ
(t−1)
1...K .

• Set K(t) = K(t−1) and ξ(t) = ξ(t−1).
If B

• Sample a new centroid ξ
(t)
K+1 and new parameters θ

(t)
K+1.

• Accept θ
(t)
K+1 and ξ

(t)
K+1 with probability αbirth and set K(t) = K(t−1) + 1, if

rejected set K(t) = K(t−1).
• Set β(t) = β(t−1) and φ(t) = φ(t−1).

If D
• Remove a tile Tk by choosing k from a Uniform distribution over the set

{1, . . . , K} and delete the corresponding centroid ξ
(t−1)
k from ξ(t−1).

• Accept the death step with probability αdeath and set
K(t) = K(t−1) − 1 and

ξ(t) = ξ
(t−1)
−k , where ξ

(t−1)
−k = (ξ

(t−1)
1 , . . . , ξ

(t−1)
k−1 , ξ

(t−1)
k+1 , . . . , ξ

(t−1)
K )t.

if rejected set K(t) = K(t−1) and ξ(t) = ξ(t−1).
• Set β(t) = β(t−1) and φ(t) = φ(t−1).

If H

• Choose randomly a centroid ξ
(t−1)
k to move to a new location ξ

′(t)
k .

• Accept the move with probability αshift and set

ξ
(t)
j = ξ

(t−1)
j , ∀j 6= k and ξ

(t)
k = ξ

′(t)
k .

if rejected set ξ(t) = ξ(t−1).

• Set K(t) = K(t−1), β(t) = β(t−1), φ(t) = φ(t−1) and θ
(t)
1...K = θ

(t−1)
1...K .
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CHAPTER 9

Conclusions

Motivated by epidemiological questions, novel statistical methods have been developed in
this thesis for: 1) modelling non-Gaussian, large, geostatistical data; 2) modelling spatial
survival data with misaligned covariates; 3) modelling non-stationary spatial data; 4) im-
proving computational efficiency in fitting large geostatistical data. These methods have
been applied to address important epidemiological questions, such as 1) mapping malaria
prevalence data collected over a large number of locations and during different surveys;
2) assessing relationships between environmental factors and malaria endemicity; 3) as-
sessing relations between malaria endemicity and child or infant mortality. The data for
these analysis were extracted from established databases, i.e. the Mapping Malaria Risk in
Africa (MARA/ARMA, 1998) database with survey information on malaria prevalence and
the Demographic and Health Survey (DHS) database with mortality and socio-economic
factors.

A detailed discussion on the findings was given in each chapter previously. Here we
provide a summary of the main contributions and an outlook and recommendations for
future research.

The statistical methods for geostatistical data developed in this thesis have contributed
to: a) facilitating estimation of large, non-Gaussian geostatistical data; b) combining spa-
tial information collected at non-matching locations; c) estimating geostatistical survival
models; d) estimating geostatistical models with error-in-covariates; e) estimating and pre-
dicting non-stationary, non-normal spatial data.

In chapter 2, Bayesian methods for estimating non-normal geostatistical models are
compared with maximum likelihood based techniques. This assessment confirmed the
advantages of the Bayesian approach implemented via MCMC estimation. This approach
was followed in the remainder of the thesis.

The main limitation in using MCMC estimation for non-normal, geostatistical data is
the processing time required for inverting spatial covariance matrices for large number of
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locations. To overcome this drawback, a number of numerical techniques appropriate for
MCMC were investigated (chapter 7). This problem was further addressed via a tesselation-
based geostatistical model (chapter 8), which partitions the region in random tiles and
assumes a separate spatial process in each subregion and independence between tiles. This
converts the spatial covariance matrix to block diagonal and reduces the size of the matrices
to be inverted. The model allows in addition modelling of non-stationarity a feature which
is likely to be present in mapping malaria data. There are other modelling approaches to
account for non-stationarity (Fuentes et al., 2002; Higdon et al., 1998) but they do not
facilitate the computation of the MCMC sampler.

Further research is needed in ways of summarizing the outputs of the tesselation-based
variogram model. A visual presentation of the shape, size and configuration of the tiles
would add information about the areas of the map with similar spatial dependencies.
However the tesselations are random and summaries from the posterior distribution of the
tesselation structure are not straightforward to obtain. Extensions of the model could
allow for spatial interaction between neighboring tiles. This could be done by introducing
tile-specific random effects modelled by conditional autoregressive models.

Country specific malaria maps have been obtained by Ribeiro et al. (1996), Klein-
schmidt et al. (2000, 2001b) and Diggle et al. (2002). A map of malaria prevalence for
West Africa has been produced by Kleinschmidt et al. (2001a). Continent wide maps of
malaria transmission based on climate data only are available by the work of Craig et al.
(1999) and Rogers et al. (2002). Although these mapping efforts have described malaria
endemicity patterns, the derived maps have some drawbacks. They are either based on
few sample points and cover a small area only, or they make use of a crude statistical
techniques, without proper adjustment for prediction error.

The most complete work so far, from a methodological point of view, is comprised in
the map of Kleinschmidt et al. (2001a). These authors combine climate information with
local malariological measurements to produce smooth maps of malaria risk for West Africa.
The map was divided into segregated zones and a separate model was fitted for every zone.
This procedure better respects local characteristics, than fitting a single model for the
whole area. But the separation of West Africa into four ecological zones seems arbitrary
and non-smooth. Additionally, the post-processed smoothing along the edges of this zones,
as suggested by Kleinschmidt et al. (2001a), hampers the calculation of prediction error.

The number of available malariological and environmental information for Africa has
increased a lot during recent years and repeated updates of the maps are desired. The
age dependency of malaria prevalence lead many researchers following the approach of
leaving out surveys which do not report prevalence for a specific age-range (often 2 two
10 years old). The various documented surveys are not standardized by age of the study
participants, and the procedure of omitting whole surveys with ineligible age categories,
can results in a low sample size for the analysis. It should be the aim of a study to include
as much as possible of the available data, by combining the information among distinct
age categories.

The thesis makes an number of novel contributions to malaria mapping. Smooth maps
of malaria transmission and prevalence have been produced for Mali (chapter 5) and for
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West- and Central Africa (chapter 6). The maps were adjusted for environmental factors
derived from remote sensing. An innovation in our work was the spatial modelling of para-
meters of malaria transmission models. This enabled us to overcome problems related to
the data themselves. The surveys although report age-specific prevalence data, the age ca-
tegories varied between locations making age-adjustment problematic. Previous attempts
to map these data excluded all surveys with overlapping age groups. Using the Garki
transmission model (Molineaux and Gramiccia, 1980), the prevalence data were converted
to an estimate of entomological inoculation rate E. Smooth maps of E were converted to
age-specific malaria risk maps using the age-dependent relation between prevalence and
the E measure, described in the Garki model.

The Mali map assumed a constant transmission season for the whole country. For the
West and Central Africa map a climatic suitability model was developed which allowed to
estimate the length of transmission at each location. Seasonality was taken into account
when the prevalence data converted to the E measure.

In this thesis, several maps of Mali are produced showing similar measures of malaria
risk, based on different malariological and environmental datasets. Moreover, they are
produced using distinct statistical techniques. Disparities are likely to by present because
of the varying handling of the age groups or due to edge effects, when comparing local maps
to maps produced on a larger scale. To assess the various proposed statistical methods,
they need to be applied to the same dataset. Then a crossvalidation will reveal the best
strategy when it comes to prediction. It further needs to be assessed, why different models
found different relation between the distance to water bodies and malaria risk.

The produced maps in this thesis are found to be highly plausible when discussing
them with local experts. Comparison with existing maps showed many areas with similar
malaria patterns as well as a few zones with important disagreements. The disagreements
could partly be explained by the different methodologies and different data used by the
researchers. Additional field surveys will be required in areas with sparse data and large
disagreement between our map and that of Kleinschmidt et al. (2001a). Large undersam-
pled zones are found in the Democratic Republic of Congo, in the Central Africa Republic
and in Nigeria, where especially the central part of Nigeria is an area of big differences
between the two produced maps. A Nigerian MARA coordinator is currently examine data
from the grey literature to help complete this part of the database.

entering data on forms, at the moment.
In this thesis malaria maps are drawn on a high resolution with environmental covariates

on a resolution between one and eight kilometers and spatial smoothing on a resolution
of one kilometer (chapters 5, 6 & 8). This resolution allows to pinpoint small regions to
identify its predicted malaria risk. The methods quantify the risk even at remote locations,
where no data are available or surveys are difficult to conduct. The maps help in the
evaluation of health service provision, allow identification of appropriate malaria control
tools and enable rational budgeting and timing of malaria control measures.

The established relations between environmental factors and malaria risk could predict
changes in malaria risk in the presence of climatic changes of ecological transformations
(i.e. building of dams, change in landuse). On the other hand the maps allow identification
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of high risk areas, where man made interventions (i.e. drainage) could effectively reduce
malaria transmission.

Spatial prediction can be further improved by the use of newly available remote sensing
data. The European Space Administration (ESA) launched the Envisat satellite in March
2002. Envisat is the most powerful earth observation satellite and has begun making the
most complete set of observations of our planet so far. In May 2002 NASA launched the
Aqua satellite, which collects information about earth’s water cycles, including water vapor
in the atmosphere, clouds and precipitation. Once this data are available to researchers
they may improve the predictive ability of the spatial malaria models.

The rainfall and temperature data used in this thesis were estimates from local stations
and do not possess yearly differences. In order to derive temporal weather data, several
researchers have suggested to estimate temperature and rainfall from satellite information
(Thomson et al., 1996; Connor et al., 1998). It is possible to derive estimates of rainfall
by measuring the cloud-top temperatures, which is measured by satellites. At a certain
threshold temperature, the clouds will precipitate out into rainfall. By measuring the
length of time a cloud is at this critical threshold temperature, known as the cold-cloud
duration (CCD), it is possible to estimate the actual amount of rainfall (Milford et al.,
1996). A complication is that this threshold temperature is depending on the location
and a specific rainfall model only locally applicable. The land surface temperature (LST)
can be estimated from the thermal channels measured by satellites (Franca and Cracknell,
1994; Prata et al., 1995; Coll and Caselles, 1997). This estimate may substantially differ
from ambient (air) temperature and the relationship between these two indices is not
straightforward. Both indices, the cold cloud duration and the land surface temperature are
supposed to be highly correlated to the NDVI (Davenport and Nicholson, 1993; Thomson
et al., 1996). Hay et al. (1998) uses these two indices together with the NDVI to model
malaria season in Kenya and found only the NDVI to be an important predictor.

For information on water bodies, we used coordinates of rivers and lakes indicated
as perennial in the African data sampler (World Resources Institute, 1995). Ideally that
information should be available on a temporal base, too, what can be accomplished with a
model which brings together water runoff, evaporation and precipitation such as landscape
features (Patz et al., 1998). But the development of soil-wetness models is complex. The
same holds true for population density estimates. In principle malaria risk should be related
to population density, but the database we have used to model this (Deichman, 1996) could
not confirm this assumption. We anticipate that a number of improved estimates will be
available in the near future.

The maps for West- and Central Africa presented in chapter 6 are based on a seasonality
model (Tanser et al., 2002; Hay et al., 1998) which defines the months suitable for stable
malaria transmission for every location. The seasonality criterion based on the NDVI
was developed based on data for Kenya only, and its generalization for West Africa is
in question. Furthermore, make current malaria seasonality models only use of climate
data and do not take into account clinical malaria data. There is an increasing amount of
malaria incidence data available in Africa. Currently the MARA database contains malaria
incidence mostly for Southern Africa. In areas where these data are available, they could
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be used to improve the seasonality map.
The Garki model (Dietz et al., 1974) was used in chapters 5 and 6 to convert malaria

prevalence data at each location to an estimate of transmission intensity. The Garki model
was developed on field data from the savannah zone of Nigeria (Molineaux and Gramiccia,
1980). It is not clear how accurate are the predictions of this model in other regions
in West- and Central Africa which have different environmental conditions and different
levels of malaria endemicity. There is ongoing research in developing improved malaria
transmission models. Parameters of those models could be used to improve the existing
malaria maps. As an alternative, direct modelling of age-specific malaria risk could be
accomplished. Such age-period-cohort models are complicated by the fact, that not only
smoothing between locations, but also between age-categories need to be modelled (Lagazio
et al., 2003).

The produced maps in this thesis were based on the assumption of no temporal changes
in the spatial patterns of malaria. This assumption, although widely assumed in malaria
mapping (Snow et al., 1997), is unlikely to hold true and needs justification. A second
underlying assumption in the maps presented in chapters 5 and 6 is that of spatial station-
arity. In stationary spatial models the spatial correlation in malaria risk is thought to be
dependent on the distance between survey locations, but not on location. In chapter 8 a
novel statistical approach for modelling non-stationary, geostatistical data was introduced.
The model was applied to map malaria prevalence in Mali. Kleinschmidt et al. (2001a)
separated West Africa into four ecological zones, following the directives of FAO (1978).
These authors fitted for every zone a different model with distinct environmental factors,
what results in a partly non-stationary model. An application of completely non-stationary
spatial models for continent wide data, without reliance on an arbitrary, non-smooth space
separation has not yet been done but is likely to improve the existing maps. The model
presented in chapter 8 allows for non-stationarity in the spatial process only and does
not handle varying influence of the environmental factors over space. In chapter 6, space-
varying coefficients are modelled via interaction effects. It still needs to be assessed, if a
model with non-stationary spatial variation and space-varying covariates can be combined,
using the tesselation approach of chapter 8, to produce a smooth continent wide map.

The effectiveness of malaria control in Africa, in reducing child and infant mortality
depends not only on the extent to which malaria endemicity is reduced but also on the rela-
tionship between endemicity and mortality. The relationship of malaria-specific mortality
rates in infants and children has been compared to the level of malaria exposure by Smith
et al. (2001) and Snow and Marsh (2002). These studies analyzed only a small number of
published estimates of mortality, at a few specific locations and were not properly adjusted
for ecological confounding.

A problem in relating malaria risk to death is that malaria may be a relevant risk
factor for many deaths even when it is not the immediate cause (Molineaux, 1985). To
account for this and the fact that verbal autopsies used to assign a cause of death are not
very reliable (Snow and Marsh, 1998), we looked at the relationship of malaria endemicity
with all-cause mortality in Mali. Local malaria indices were compared with overall infant
mortality (chapter 3) and with overall child mortality (chapter 4). We analyzed mortality
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data available from the demographic and health surveys (DHS) of 1995/96 and linked them
to malaria prevalence from the MARA (MARA/ARMA, 1998) database. The estimates
were adjusted for environmental factors in malaria risk, socio- and maternal factors in
mortality as well as for geographical variation. The results did not clarify the relationship
between mortality and malaria risk in Mali. No statistically significant relation was found
and possible explanations were provided in chapters 3 and 4.

A main complication with the data was that the malaria prevalence and the mortality
risk were not measured at the same locations. To overcome this spatial misalignment
problem, the malaria risk was predicted at the locations with observed mortality data.
This approach introduced additional uncertainty into the estimates due to the sparsity of
the malaria data. The question regarding the relation between malaria and mortality may
not be answered adequately without reducing this uncertainty.

In the analysis of child and infant mortality, a subset only of the existing malaria data
was used in order to overcome the problem of age-heterogenous reported prevalence at
the different locations. Future analyzes could utilize all available malaria data by using
malaria transmission models to convert the prevalence data to a common age category as
demonstrated in the chapters 5 and 6.

The spatial misalignment between locations with malaria prevalence and those with
mortality data introduced extra variability in our model. To overcome this limitation, it
is suggested to compile databases from a larger area of West Africa and analyze only data
points were misalignment is minimal.
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Databases used in the present work

A.1 The Mapping Malaria Risk in Africa database

The MARA/ARMA collaboration was initiated to provide an Atlas of malaria for Africa,
containing relevant information for rational and targeted implementation of malaria
control and was launched with its first workshop in 1996. Its main product is the MARA
database with, to date, over 10,000 collected data points all over Sub-Saharan Africa.
Malariological information is collected from published and unpublished sources, through
literature searches and country visits. This data is entered into the MARA/ARMA
database and checked via a double-entry validation system. Five regional centers, at
existing institutions, are responsible for gathering malaria data in their region.

The MARA/ARMA initiative is non-institutional and runs in the spirit of an open
collaboration. A group of dedicated African scientists, based at institutions across the
continent, work co-operatively towards achieving the overall objectives. The Swiss Tropical
Institute regularly makes contributions to the running data collection process by reporting
data found in literature search or by presenting own survey results.

Detailed mapping of malaria risk and endemicity has never been done in Africa. Accu-
rate estimates of the burden of malaria at regional or district level remain largely unknown.
In the absence of such data it is impossible to rationalize allocation of limited resources for
malaria control. The MARA/ARMA initiative intends not only to collect the data used for
malaria mapping, but to foster scientific discussion on the topic, coordinate eduction and
develop methodological work. Spatial statistical methods for use in the MARA/ARMA
collaboration are to a great extent either developed or supervised by the Swiss Tropical In-
stitute. Additionally, the Swiss Tropical Institute is an influential contributor of education
in spatial statistical methods, with clear focus in malaria mapping for Africa.
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As a result MARA/ARMA has provided the first continental maps of malaria distri-
bution and the first evidence-base burden of disease estimates. There is currently hardly
any major document on malaria in Africa that does not make use of MARA maps and the
BOD figures produced by MARA/ARMA are now universally used.

A.2 The Demographic and Health Survey database

The U.S. Agency for International Development’s (USAID) Bureau for Global Programs,
Field Support and Research, Center for Population, Health and Nutrition (PHN Center)
supports a 10-year results package entitled Monitoring and Evaluation to Assess and use
Results (MEASURE). The strategic objective of MEASURE is to improve and institu-
tionalize the collection and utilization of data by host countries for program monitoring
and evaluation of and for policy development decisions. MEASURE activities support
family planning, reproductive health, maternal health, child survival, and HIV/AIDS/STI
control/prevention through data collection, analysis, and evaluation designed to improve
program performance and to better understand program impact in these areas. As a key
participant in this new MEASURE program, Demographic and Health Survey (DHS+)
is specifically charged with the task of collecting and analyzing reliable demographic and
health data for regional and national family planning and health programs. The DHS+
approach to data collection emphasizes integration, coordination, and cost-effectiveness.
The Demographic and Health Surveys program is funded by USAID and implemented by
Macro International Inc.

Historically the Demographic and Health Surveys (DHS) program is established 1984
at the Institute for Resource Development, Inc. (IRD), a subsidiary of the Westinghouse
Electric Company. The DHS combines the qualities of the WFS and the CPS and adds
important questions on maternal and child health and nutrition. The program can be sub-
divided into the phases DHS I (1984–1989), DHS II (1988–1993) and DHS III (1992–1999).
In 1989 the Institute for Resource Development, Inc. was acquired by Macro International
Inc. The name DHS has been changed to DHS+ in 1997 to reflect a new mandate under
the MEASURE program. MEASURE DHS+ incorporates traditional DHS features with
expanded content on maternal and child health.

To date, the DHS+ program has provided technical assistance for more than 100 surveys
in Africa, Asia, the Near East, Latin America, and the Caribbean.

MEASURE DHS+ seeks to increase the utilization of population, health, and nutrition
data for the monitoring and evaluation of programs. This is achieved through building of
data collection systems in developing countries through formal and on-the-job training in
research design and implementation, sampling, data processing, analysis, and dissemina-
tion.

Demographic and Health Surveys (DHS) are nationally representative household sur-
veys with large sample sizes of between 5,000 and 30,000 households, typically. DHS sur-
veys provide data for a wide range of monitoring and impact evaluation indicators in the
areas of population, health, and nutrition. The core questionnaire for MEASURE DHS+
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emphasizes basic indicators and flexibility. It allows for the addition of special modules
so that questionnaires can be tailored to meet host-country and USAID data needs. The
standard DHS survey consists of a household questionnaire and a women’s questionnaire.
A nationally representative sample of women ages 15–49 are interviewed. The household
questionnaire contains information on the following topics:

• Household listing: For every usual member of the household and visitor, information
is collected about age, sex, relationship to the head of the household, education, and
parental survivorship and residence.

• Household characteristics: Questions ask about the source of drinking water, toilet
facilities, cooking fuel, and assets of the household. There are additional questions
about the use of bednets in the household.

• Nutritional status and anemia: The height and weight of women age 15–49 and young
children are measured to assess nutritional status. For the same individuals, the level
of hemoglobin in the blood is measured to assess the level of anemia.

It further comprises a large women’s questionnaire with information on many topics, such
as: Reproductive behavior and intentions; Contraception; Antenatal, delivery, and post-
partum care; Breastfeeding and nutrition; Children’s health; Status of women; AIDS and
other sexually transmitted infections; and Husband’s background.

The various types of survey conducted by Macro Inc. can be broadly subdivided into:

Demographic and Health Surveys (DHS) Nationally representative large sur-
veys as described above.

Interim Surveys Shorter questionnaires than DHS with
focus on key performance monitoring
parameters

Baseline/Follow-up Surveys Subnational surveys designed to cover
a limited number of indicators for spe-
cific projects; less standardized.

Service Provision Assessments (SPA) Surveys conducted in health facilities
and communities to obtain informa-
tion about the health and family plan-
ning services available in a country.

Geographic Data Collection Collection of geographic locations
(Latitude/Longitude), started in 1996,
for the communities of the DHS.

Additional Surveys Country specific surveys designed to
obtain specialized information from a
population subgroup. May be required
to link surveys.
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A.3 The NOAA/NASA pathfinder AVHRR land data

sets

The NOAA/NASA Pathfinder AVHRR Land data sets contain global, land surface parame-
ters derived from the Advanced Very High Resolution Radiometers (AVHRR) on the ”af-
ternoon” NOAA operational meteorological satellites (NOAA-7, -9, -11). The Pathfinder
Program, initiated by NOAA and NASA, produces long-term data sets processed in a
consistent manner for global change research. The data cover the period from July 1981
through the present.

There are three types of data provided by the Pathfinder AVHRR Land production
system. These are the Daily, 10-Day Composite, and Climate data sets.

The Daily Data Set contains global, 8km data mapped to an equal area projection.
Geophysical parameters contained in the data set include: Normalized Difference Vegeta-
tion Index (NDVI), cloud and quality-control flags, solar and scan geometry, reflectances
derived from the AVHRR channels 1 and 2, brightness temperatures derived from the
AVHRR channels 3, 4, and 5, and date and hour of observation. NDVI is a ratio of the
contrast between the responses of the two reflective channels. Data over oceans, large
inland water bodies, and in areas of twilight are derived directly from the AVHRR level
1B orbital data. There is one file per day for the entire Pathfinder processing period (June
25, 1981, to present). The Daily Data Set is useful for studies of many terrestrial variables
(e.g., vegetation, temperature, snow cover) as well as for producing a variety of composite
data sets, but each day a significant portion of the Earth’s surface is covered by clouds.

The Composite Data Sets are 10-day composites of the same geophysical parameters as
the Daily Data, and these data are mapped to the same global, 8km, equal area projection
as the Daily Data. To minimize the effects of clouds and atmospheric contaminants, the
composite selects the observation for each 8km x 8km bin within a 10 day period that has
the fewest clouds, as identified by the highest NDVI value. Only data within 42 degrees
of nadir are used in the composite to minimize spatial distortion and bidirectional effect
biases at the edge of a scan. There are three composites per month. The first composite
of each month is for days 1 through 10, the second is for days 11 through 20 and the third
is for the remaining days.

A Composite Data Set is useful for studies of temporal and interannual behavior of
surface vegetation and for developing surface background characteristics for use in climate
modelling. The NDVI of the Composite Data Set was primarily used in the current work.
Sometimes it was further processed or aggregated.

The Climate Data Set contains global NDVI data derived from mean Channel 1 and 2
reflectances. They are equal angle data at 1 degree latitude by 1 degree longitude resolution
for each 8- to 11-day composite period. These data are derived from the Composite Data,
and there are 36 climate data files for each year. This data set is intended primarily for use
in Global Climate Models (GCM), Simple Biosphere Models, and other global time series
studies.

The nominal orbit parameters for the NOAA-series satellites (NOAA-7, -9, -11) are:
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Launch Date 6/23/81 (NOAA-7), 12/12/84 (NOAA-9), 9/24/88 (NOAA-11)
Orbit Sun-synchronous, near-polar
Nominal Altitude 833 kilometers
Orbit Inclination 98.8 degrees
Orbital Period 102 minutes
Equator Crossing Time 14.30 (NOAA-7), 14.20 (NOAA-9), 13.40 (NOAA-9) LST
Nodal Increment 25.3 degrees

The NOAA-series satellites carry the AVHRR instruments. The orbital period of about
102 minutes produces 14.1 orbits per day. Because the daily number of orbits is not an
integer, the suborbital tracks do not repeat daily, although the local solar time of the
satellite’s passage is essentially unchanged for any latitude. The 110.8 degrees cross-track
scan equates to a swath of about 2700 km. This swath width is greater than the 25.3
degrees separation between successive orbital tracks and provides overlapping coverage
(side-lap).

The spectral band widths and Instantaneous Field of View (IFOV) of the AVHRR
instrument are given in the following table:

Channel Wavelength (micrometer) IFOV (milliradian)
1 0.58–0.68 1.39
2 0.73–1.10 1.41
3 3.55–3.93 1.51
4 10.3–11.3 1.41
5 11.5–12.5 1.30

A more detailed, comprehensive description of the NOAA series satellites, the AVHRR
instrument, and the AVHRR GAC 1B data can be found in the ”NOAA Polar Orbiter
Data User’s Guide” (Kidwell, 1991), which can be obtained from NOAA’s National Envi-
ronmental Satellite Data and Information Service (NESDIS).

All Pathfinder AVHRR Land data are stored in the Hierarchical Data Format (HDF)
(Brown et al., 1993). HDF allows data (scientific data and metadata) to be implemented
in several ways including Scientific Data Sets (SDS) and 8-bit Raster Image (RIS8) data
sets. The SDS implementation has more flexibility in including metadata and allows data
of a variety of word sizes (8- to 64-bit data).

Detailed information on data organization and interpretation is available in the
”NOAA/NASA Pathfinder AVHRR Land Data Sets User’s Manual” (Agbu and James,
1994).

The Daily Data Set contains data mapped to the Goode Interrupted Homolosine equal
area projection (Steinwand et al., 1992). The table below shows the Daily Data Set struc-
ture and lists the parameter names, units, and field widths in bits. To obtain geophysical
values from the data, take the value in the data, subtract the offset, and multiply by the
gain.
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Parameter Unit Field Width Offset Gain
(bits)

NDVI - 8 128 .008
CLAVR Flag? - 8 1 1
Quality Control Flag] - 8 1 1
Scan Angle Radians 16 10481.98 .0001
Solar Zenith Angle Radians 16 10 .0001
Relative Azimuth Angle Radians 16 10 .0001
Ch1 Reflectance % 16 10 .002
Ch2 Reflectance % 16 10 .002
Ch3 Brightness Temp. Kelvin 16 -31990 .005
Ch4 Brightness Temp. Kelvin 16 -31990 .005
Ch5 Brightness Temp. Kelvin 16 -31990 .005
Day of Year DDD.HH 16 10 .01

? Note: The table below shows the CLAVR flag values and the conditions that relate
to them.

Value Condition
0 No decision
1–11 Cloudy
12–21 Mixed
22–30 Clear

] The table below shows the Quality Control flag values and the conditions that relate
to them.

Value Condition Condition
0 Normal
1 Channel 1, 2 Ozone values unavailable, so climatology

processing nonstandard was used
2 Channel 3, 4, 5 Calibration coefficients unavailable

processing nonstandard
4 Filled data gap A data gap resulting from forward transform

used in binning has been filled with
adjacent pixel

8 Range Check failure Calculated values were outside the range of
values

16 NOAA QC flag set See ”NOAA Polar Orbiter Data User’s Guide”
(Kidwell, 1991)

The Composite Data are implemented as HDF SDS with the same 8km x 8km di-
mensions as the Daily Data. But the Climate Data, also implemented as HDF SDS, has
dimensions of 1 degree by 1 degree. In the Daily, Composite, Climate, and Ancillary Data
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a binary flag value of 1 indicates ocean data, a value of 2 indicates the interrupted space
in the equal area projection, and 0 indicates land or missing data over land.

Additionally there is the Pathfinder Ancillary File which contains land/sea flags, eleva-
tion (meter), and bin center latitude (degree) and longitude (degree), for global 8km bins
that have all been coregistered to the same 8km equal area projection as the daily and
composite data.

The production and distribution of this data set are being funded by NASA’s Mission
To Planet Earth Program. The data are not copyrighted, however it is obligatory to
acknowledge the source for publications.

A.4 A topographic and climate data base for Africa

The ”Topographic and Climate Data Base for Africa” Version 1.1 (Hutchinson et al., 1996)
contains gridded values of elevation (DEM) and monthly mean climate for the African
continent at a spatial resolution of 0.05 degrees of longitude and latitude. The climate
consists of monthly mean and annual mean values of rainfall, daily minimum temperature
and daily maximum temperature.

The DEM and the climate grid files were created using spatial analysis and interpolation
techniques developed by the Center for Resource and Environmental Studies (CRES) at
the Australian National University.

The climate grids were obtained by first fitting topographically dependent climate sur-
faces to point climate data using procedures in the ANUSPLIN package (Hutchinson, 1991;
Hutchinson and Gessler, 1994). The surfaces were then interrogated using elevations from
the DEM using the ANUCLIM package (McMahon et al., 1995).

Both elevation and climate data were subjected to comprehensive error detection and
correction procedures based on ANUDEM and ANUSPLIN. Accurate geocoding (longi-
tude, longitude and elevation) of climate station data was completed by CRES for many
stations.

Monthly mean values of rainfall, daily minimum temperature and daily maximum tem-
perature at a sufficient spatial density to support reliable spatial interpolation were com-
piled. In addition to data already obtained by CRES from miscellaneous sources, monthly
climate data were acquired from research agencies including CIMMYT, FAO, East Anglia
Climate Research Unit, CSIRO Division of Forestry, Texas A&M University and from the
national meteorological services of Djibouti, Gambia, Ghana, Kenya, Malawi, Morocco,
Nambia, Rwanda, Seychelles, Sudan, Tanzania, Uganda and Zaire.

Data were collected over all available years of record to maximize spatial coverage,
subject to the condition that rainfall averages were for at least five years or record. Most
data were collected between about 1920 and 1980 for both temperature and rainfall, so the
fitted climates grids can be interpreted as estimates of standard means for the period 1920
to 1980.

The number of accurately geocoded stations for which monthly mean climate data were
obtained were as follows:
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Climate Variable Number of Stations
Daily minimum temperature 1,504
Daily maximum temperature 1,499
Rainfall 6,051

The error of the climate grids depends mainly on the accuracy of the underlying climate
surfaces. In using the DEM to calculate the climate grids, the stated errors in the DEM
of up to a few hundred meters make only a minor additional contribution to errors in the
climate grids. The standard errors of the temperature are about 0.5 degrees centigrade.
The standard errors of the rainfall grids range between about 5 and 15 per cent, depending
on data density and the spatial variability of the actual monthly mean rainfall.
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