
Circadian and homeostatic modulation of sleep spindles in
the human electroencephalogram

Inauguraldissertation

zur

Erlangung der Würde eines Doktors der Philosophie

vorgelegt der

Philosophisch-Naturwissenschaftlichen Fakultät

der Universität Basel

von

Vera Knoblauch

aus Oberentfelden (AG)

Ausgeführt unter der Leitung von

Prof. Dr. Anna Wirz-Justice

Dr. Christian Cajochen

Abteilung Chronobiologie

Psychiatrische Universitätsklinik Basel

Basel, 2004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by edoc

https://core.ac.uk/display/18233425?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät auf Antrag von

Dissertationsleiterin: Prof. Dr. Anna Wirz-Justice

Fakultätsverantwortlicher: Prof. Dr. Heinrich Reichert 

Korreferent: PD Dr. Hanspeter Landolt 

Basel, den 10. Februar 2004

Prof. Dr. Marcel Tanner

Dekan 



Table of contents

Summary .................................................................................................................... 3

1. Introduction ........................................................................................................... 5

2. Homeostatic control of slow-wave and spindle frequency activity during

human sleep: effect of differential sleep pressure and brain topography ........... 33

3. Human sleep spindle characteristics after sleep deprivation............................... 63

4. Regional differences in the circadian modulation of human sleep spindle

characteristics ..................................................................................................... 87

5. Concluding remarks .......................................................................................... 114

Curriculum vitae ...................................................................................................... 121

List of publications .................................................................................................. 122

Acknowledgements ................................................................................................ 127



3

Summary

Sleep spindles are transient EEG oscillations of about 12-16 Hz. Together with slow

waves, they hallmark the human non-REM sleep EEG. Sleep spindles originate in

the thalamus and are suggested to have a sleep protective function by reducing

sensory transmission to the cortex. Other evidence points to an involvement of sleep

spindles in brain plasticity processes during sleep. Previous studies have shown that

sleep spindles are both under homeostatic (sleep-wake dependent) and circadian

(time of day-dependent) control. Furthermore, frequency-specific topographical

distribution of power density within the spindle frequency range has been reported.

The aim of this thesis was to assess homeostatic and circadian influences on

spectral spindle frequency activity (SFA) and spindle parameters in different brain

regions.

Healthy young volunteers participated in both a 40-h sleep deprivation (SD)

and a 40-h multiple nap paradigm. The recovery nights after the SD and the nap

protocol served to assess the effect of enhanced and reduced homeostatic sleep

pressure, respectively. The multiple nap paradigm revealed the modulation of sleep

spindles across the circadian cycle. Two different methodological approaches were

used to analyze the EEGs: classical spectral analysis (Fast Fourier Transform, FFT)

and a new method for instantaneous spectral analysis (Fast Time Frequency

Transform, FTFT), developed as a part of this thesis project in collaboration with Wim

Martens from TEMEC, The Netherlands.

Slow wave activity (SWA, spectral power density in the 0.75-4.5 Hz range) and

spindle frequency activity (SFA, spectral power density in the spindle frequency

range) in the high frequency range (13.75-16.5 Hz) were oppositely affected by the

differential levels of sleep pressure (Chapter 2). These effects strongly depended on

brain location. After SD, the SWA increase compared to the baseline night was most

pronounced in the beginning of the night and in the fronto-central region. Power

density in the high spindle frequency range was reduced in the centro-parietal brain

region. After the nap protocol, when sleep pressure was reduced, power density in

the SWA range was decreased at the beginning of the night. SFA was generally

increased after the nap protocol. The data indicate that the balance between SWA
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and high-frequency spindle activity may represent a sensitive marker for the level of

homeostatic sleep pressure.

The new method of FTFT revealed that spindle density was reduced after SD

(Chapter 3). This reduction was particularly apparent in the frontal derivation, and

most pronounced in the first half of the night. The reduction of spindle density with its

temporal and local specificity confirms the inverse homeostatic regulation of slow

waves and sleep spindles. Sleep spindles had a lower frequency and a higher

amplitude after SD. Within an individual spindle, frequency variability was reduced,

which indicates that sleep spindles were more stable and homogenous after SD. The

increase in spindle amplitude and the reduced intra-spindle frequency variability

suggests a higher degree of synchronization in thalamocortical neurons under high

homeostatic sleep pressure.

EEGs during the nap paradigm were analyzed to compare SFA and sleep

spindle characteristics during and outside the circadian phase of melatonin secretion

(the “biological night” and “biological day”, respectively) (Chapter 4). In naps

occurring during the phase of melatonin secretion, lower spindle frequencies were

promoted, indexed as a reduction in mean spindle frequency (i.e. slowing of sleep

spindles) and an increase in spindle amplitude and SFA in the low-frequency range

(up to ~14.25 Hz) paralleled by a reduction in the high-frequency range (~ 14.5-16

Hz). Furthermore, spindle density was increased, and intra-spindle frequency

variability reduced during the night. Thus, the circadian pacemaker is likely to

promote low-frequency, high amplitude and homogenous sleep spindles during the

biological night. The circadian modulation of sleep spindles may be a way by which

the circadian system modulates and times sleep consolidation. This circadian

modulation clearly depended on brain location such that it was maximal in the

parietal and minimal in the frontal derivation.

Taken together, the segregated analysis of different spindle parameters by the

new high-time and high-frequency resolution spindle analysis provides new insights

into sleep spindles and their regulation. Both homeostatic and circadian processes

affected sleep spindles characteristics in a topography-specific manner. These state-

dependent local aspects provide further evidence that sleep is a dynamic

phenomenon which reflects use-dependent recovery or reactivation processes.
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Chapter 1

Introduction

Sleep, sleep electroencephalography (EEG), and analysis of the sleep EEG

Sleep occupies one third of our lives, but many of its secrets have not yet been

revealed. On the behavioral level, sleep in mammals is mainly characterized by a

typical body posture, muscle relaxation, reduced responsiveness to external stimuli,

and rapid reversibility (Campbell and Tobler, 1984). Taken together, these

characteristics permit one to distinguish between sleep and quiet wakefulness or

between sleep and vegetative states such as hibernation or coma. On the level of

brain activity, neuronal activity patterns fundamentally differ between sleep and

wakefulness, and undergo substantial changes also within sleep itself. Much of what

is known today about brain activity during human sleep is due to the discovery

(Berger, 1929) and development of electroencephalography (EEG), a method by

which electrical activity in the cortex can be recorded by scalp electrodes. The

electroencephalogram displays the summated synaptic potentials at the cortical

surface, recorded by scalp electrodes (Lopes da Silva et al., 1986; Niedermeyer and

Lopes da Silva, 1987). The patterns in this voltage-vs.-time graph are commonly

called brain waves, whose frequency, amplitude and waveform can be quantified. In

addition to the electrophysiological potentials measured from the cortex (EEG), sleep

researchers also rely on electrophysiological muscle and eye potentials to determine

sleep stages (i.e. polysomnography).

A systematic method for visually scoring human EEG sleep was developed

more than 30 years ago to ensure standardised terminology (Rechtschaffen and

Kales, 1968). It differentiates between 3 major vigilance states: waking, rapid-eye-

movement (REM) sleep, and non-rapid-eye-movement (NREM) sleep. NREM sleep

is further subdivided into 4 stages: 1 to 4. Stage 3 and 4 together are referred to as

slow wave sleep (SWS). The scoring rules for wakefulness and NREM sleep are

mainly based on the frequency, amplitude and waveform of the EEG waves.
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Wakefulness is characterized by low-amplitude, high-frequency activity, while during

NREM sleep, high-amplitude, low-frequency waves predominate (Figure 1a). The

EEG during REM sleep is similar to the waking EEG, but the definition for REM sleep

additionally demands low muscle tone in the submental electromyogram (EMG) and

rapid movements in the electrooculogram (EOG).

Continuous recording of the sleep EEG reveals that the cortex alternates

between NREM and REM sleep in a cyclic manner. During normal nocturnal sleep,

NREM-REM sleep cycles with a duration of about 90-100 minutes. These ‘sleep

cycles’ are repeated 4-5 times during a normal 8-h sleep episode. The proportion of

different sleep stages in a sleep cycle changes across the sleep episode such that

the percentage of SWS is highest in the first sleep cycle and diminishes over

subsequent cycles, whereas the percentage of REM sleep and stage 2 sleep

increases from the first to the last cycle.

Quantification of the EEG on the basis of visual scoring is limited. The

difference between sleep stages is based on arbitrary, discrete criteria and therefore

does not properly reflect the continuous physiological mechanisms that underlie

changes in the EEG. Thus, other methods have been developed by which the EEG

signal can be analyzed. One of the most common methods to quantify EEG activity is

spectral analysis by means of the fast Fourier transform (FFT) (Dietsch, 1932). The

FFT, in essence, decomposes a waveform (e.g. EEG waves) into sinusoids of

different frequency and phase which sum to the original waveform. It identifies or

distinguishes the different frequency sinusoids and their respective amplitudes.

Thereby, the EEG signal is transformed from a time into a frequency domain. This

requires a stationary signal. EEG waves during sleep are not stationary, but by

analyzing short time windows (e.g. 4 s), a quasi-stationary signal can be obtained for

these short intervals. The length of the time window determines the slowest

detectable wave, and thereby frequency resolution. For the short time window,

spectral analysis calculates overall power density per frequency bin (i.e. µV2/Hz) by

combining incidence and amplitude. The resulting power spectrum depicts this power

as a function of frequency bin and thus expresses the contribution of each frequency

bin to the power of the total signal (Figure 1b).
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a b

Figure 1. EEG signals (a) and corresponding power spectra (b) during wakefulness, stage 2,
stage 4 and REM sleep in a young healthy adult. Power spectra represent the average of four 4-s
epochs and are plotted on a logarithmic scale. During wakefulness (eyes closed), the alpha rhythm
(8-13 Hz) in the EEG gives rise to a peak around 11 Hz in the power spectrum. Sleep spindles (see
inset for a expanded segment) occur preferentially during stage 2 are reflected in a peak in the
spindle frequency band (11-15 Hz). High amounts of slow waves during stage 4 give rise to high
power density in the slow wave range (< 4 Hz). REM sleep is dominated by activity in the theta
frequency band (4-8 Hz) (Adopted with permission from Aeschbach, 1995)
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NREM sleep oscillations: sleep spindles and slow waves

Synchronization of brain activity, i.e. the simultaneous activation of large population

of neurons, is a fundamental feature that discriminates NREM sleep from REM sleep

and wakefulness. Although wakefulness and REM sleep differ substantially at the

behavioral level (motor output is markedly suppressed during REM sleep), the EEG

during these two vigilance states is similar, and exhibits low spatio-temporal

coherence in the cerebral cortex. In contrast, the high-amplitude, low-frequency

activity during NREM sleep is synchronized over large cortical areas (Destexhe et al.,

1999).

Two essential types of synchronized oscillations that hallmark the EEG during

NREM sleep are slow waves and sleep spindles. Slow waves, or delta waves, are

low-frequency (0.75-4.5 Hz), high-amplitude (>75 µV) oscillations. The differentiation

between NREM stages 2-4 in human sleep scoring is mainly based on the

abundance of slow waves, and their increase is considered to represent increasing

sleep depth. Sleep spindles are transient (0.5-2 s) oscillations of about 12-15 Hz that

recur approximately every 3-10 s (Figure 1a, see also Figure 2 in Chapter 4). The

name “spindle” refers to their characteristic shape with progressively increasing, then

decreasing amplitude. Sleep spindles are more abundant in stage 2 than in SWS (De

Gennaro et al., 2000b; Dijk et al., 1993; Zeitlhofer et al., 1997).

Sleep spindles and their circadian and homeostatic regulation is the main topic

of this thesis. The following sections outline cellular mechanisms, regulation,

topographical distribution and putative functional significance of sleep spindles.

Homeostatic and circadian regulation of sleep

Sleep and wakefulness are regulated by the interaction of two processes, a

homeostatic and a circadian process (Borbély, 1982; Daan et al., 1984) (Figure 2).

The homeostatic process represents the sleep-wake-dependent need for sleep which

gradually increases the longer we stay awake. Homeostatic sleep regulation implies

that manipulations that increase sleep drive or sleep need (e.g. sleep deprivation)

ought to increase subsequent sleep intensity and/or duration. The circadian process

defines the influence of time of day on sleep, independent of the prior history of sleep
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Time of Day
8 13 18 23 4 9 14 19 24 5 9

Homeostatic process

Circadian process

Wakefulness Sleep Wakefulness Sleep

Figure 2. Schematic representation of the 2 major processes underlying sleep regulation. A
homeostatic pressure for sleep builds up during wakefulness and dissipates during sleep. The
circadian process modulates sleep timing, sleep propensity and structure in dependence of the
time of day. Modified from Borbély, 1982.
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or wakefulness. The homeostatic and the circadian process develop independently,

but their interaction determines the timing, duration, and quality of both sleep and

wakefulness.

Homeostatic process

A homeostatic pressure for sleep progressively builds up during waking and

dissipates during the following sleep episode. The level of homeostatic sleep

pressure at sleep onset directly depends on the duration of prior wakefulness. A

reliable marker for homeostatic sleep pressure is slow wave activity (SWA, spectral

power density in the 0.75-4.5 Hz range) during NREM sleep. It decreases throughout

the course of the sleep episode, independent of time of day (Weitzman et al., 1980),

and is augmented at the beginning of the night when wakefulness prior to sleep has

been extended (Borbély et al., 1981; Dijk et al., 1993). Conversely, reduction of sleep

pressure by an early evening nap results in reduced SWA in the beginning of the

subsequent night sleep (Werth et al., 1996b). This homeostatic regulation suggests

that slow-wave activity may be linked to some restorative aspect of sleep. However,

the mechanisms and functions of slow-waves homeostasis are still unclear.

Circadian process

Circadian rhythms, i.e. endogenous rhythms with a periodicity of about 24 hours, can

be observed in a variety of physiological and behavioral variables in humans, such as

core body temperature, heart rate, plasma hormone levels, performance, subjective

alertness, or sleep-wake behavior. Under normal conditions, circadian rhythms are

synchronized to the 24-h cycle of the environment. The most important synchronizer,

or ‘zeitgeber’, is the daily light-dark cycle. In the absence of external zeitgebers,

circadian rhythms ‘free run’, that is, they oscillate with their endogenous period,

which in humans is usually slightly longer than 24 hours (Aschoff and Wever, 1962;

Czeisler et al., 1999). In mammals, circadian rhythms are generated by a circadian

pacemaker located in the suprachiasmatic nuclei (SCN) of the hypothalamus (for a

review see Van Esseveldt et al., 2000). SCN lesions result in disruption of the
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circadian rest-activity / sleep-wake cycle and other circadian rhythms in rats (Stephan

and Zucker, 1972; Tobler et al., 1983; Eastman et al., 1984). Recently, enormous

progress in understanding the cellular and molecular basis of circadian rhythms has

been achieved. Genes driving molecular circadian oscillations, so called ‘clock

genes’ have been identified, first in Drosophila (Stanewsky, 2002), and later in

mammalian SCN cells. Many of these genes are expressed in an oscillating manner

on the transcriptional or translational level via autoregulatory feedback loops (see

Albrecht, 2002 and Reppert and Weaver, 2002 for reviews). In the last few years, the

detection of clock gene expression in extra-SCN tissues has expanded the original

view of a unique circadian pacemaker in mammals (for a review see Schibler and

Sassone-Corsi, 2002; Balsalobre, 2002; Schibler et al., 2003). According to current

concepts, the master clock in the mammalian SCN synchronizes a variety of

oscillators in peripheral tissues, such as liver, heart, and kidney. These peripheral

clocks, in contrast to the master clock, are not sensitive to light, but to different non-

photic entraining cues appropriate to their function, for example feeding for the liver

or activity for muscle.

The timing of human sleep strongly depends on circadian phase (Dijk and

Czeisler, 1995; Dijk et al., 1997). Circadian phase in humans can be measured by

the rhythm of core body temperature or pineal melatonin secretion. During

entrainment to the 24-h day, sleep is usually initiated approximately 6 hours before

and terminated approximately 2 hours after the nadir of the core body temperature

rhythm (Czeisler et al., 1992; Duffy et al., 1998). The circadian drive for sleep

(assessed by latency to sleep onset, sleep efficiency, subjective alertness) is highest

close to the minimum of the circadian rhythm of core body temperature, i.e. few

hours before to the usual time of awakening under entrained conditions, and is

lowest some hours before normal bedtime (Weitzman et al., 1974; Strogatz et al.,

1987; Dijk and Czeisler, 1994). This paradoxical circadian timing of sleep propensity

makes sense if one interprets its function to counteract both the increasing

homeostatic drive for sleep during towards the end of the normal 16-h waking day, as

well as the decrease in homeostatic drive for sleep towards the end of the nocturnal

sleep episode. This suggests that the interaction of the homeostatic and circadian

processes in sleep regulation helps to consolidate sleep and wakefulness in the

normal 8:16-h sleep-wake cycle (Dijk and Czeisler, 1994).
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Not only sleep timing, but also internal sleep structure depends on circadian

phase. REM sleep undergoes a strong circadian modulation with a maximal REM

sleep propensity in the morning hours, shortly after the core body temperature

minimum (Czeisler et al., 1980; Endo et al., 1981). Within NREM sleep, circadian

phase affects EEG activity in distinct frequency bands (Dijk and Czeisler, 1995; Dijk

et al., 1997; see below)

Experimental segregation of the circadian and homeostatic component

In the course of a sleep episode, elapsed time since sleep onset changes

simultaneously with circadian phase. Therefore, sleep is influenced by both the

homeostatic and circadian process at any given time. In order to segregate sleep-

wake dependent and circadian influences on sleep, sleep needs to be distributed

evenly across the 24-h cycle. In forced desynchrony protocols, study participants live

under an artificial non-24-h (typically 28 h) sleep-wake schedule for several weeks

(Dijk and Czeisler, 1995). A period of 28 hours is beyond the range of entrainment of

the human circadian pacemaker. The sleep-wake cycle is desynchronized from the

circadian pacemaker as followed by the circadian rhythms of plasma melatonin or

core body temperature. Thus, in the course of the experiment, sleep is initiated at

many different circadian phases with an almost constant prior wake time. Thus, for

each time point during sleep, circadian phase and time elapsed since sleep onset

can be computed. The circadian and sleep dependent component can then be

educed by averaging the data with respect to circadian phase and time elapsed since

sleep onset, respectively.

The homeostatic component of sleep regulation is often studied by

experimentally manipulating sleep pressure. In sleep deprivation protocols,

homeostatic sleep pressure is enhanced by an extension of the waking episode prior

to sleep. Comparison of the following recovery night with a baseline night reveals the

effect of homeostatic sleep pressure, provided that baseline and recovery night are

scheduled to begin at the same circadian phase. Most findings cited in the following

section about homeostatic and circadian regulation of sleep and sleep spindles come

from forced desynchrony or sleep deprivation studies.
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Homeostatic and circadian regulation of sleep spindles

After sleep deprivation, spindle density and spindle frequency activity (SFA, spectral

power density in the spindle frequency range) were reduced in the following recovery

night (Borbély et al., 1981; Dijk et al., 1993; De Gennaro et al., 2000b; Landolt et al.,

2000). Forced desynchrony experiments revealed that SFA as well as spindle

incidence, amplitude, frequency and duration all increase with the progression of

sleep at all circadian phases (Dijk and Czeisler, 1995; Dijk et al., 1997; Wei et al.,

1999). These findings indicate an inverse homeostatic relationship between slow

waves and sleep spindles. However, a more detailed inspection revealed that this

inverse relationship does not hold for the entire spindle frequency range: only high-

frequency-, but not low-frequency spindle activity was reduced after SD (15-Hz bin,

Borbély et al., 1981; 13.75-14 Hz, Dijk et al., 1993; 14.25-15 Hz, Landolt et al., 2000).

From EEG power spectra, it cannot be concluded whether this frequency-specific

effect is caused by a general slowing in the spindle frequency range, which would

decrease the incidence of high-frequency spindles, or if it represents a frequency-

specific change in the amplitude, i.e. a decrease in the amplitude of high-frequency

spindles, or both.

The strength of the circadian modulation is very different for slow waves and

sleep spindles. Forced desynchrony experiments reveal that SWA is only minimally

affected by circadian phase, whereas spindle frequency activity exhibits a high-

amplitude circadian rhythm (Dijk et al., 1997). This circadian rhythm is frequency-

specific: SFA between 12.25-13 Hz is highest at the peak of the circadian rhythm of

melatonin secretion, while SFA between 14.25-15.5 Hz reaches a minimum at this

circadian phase (Dijk et al., 1997) (Figure 3). Furthermore, a significant circadian

modulation has been found for spindle incidence, amplitude, frequency and duration

(Wei et al., 1999). This modulation is such that highest spindle incidence, longest

spindle duration and lowest spindle frequency coincide with the circadian phase at

which sleep normally occurs (Wei et al., 1999).

The mechanism by which the circadian pacemaker in the SCN influences

sleep spindles has not yet been revealed. Direct neuronal pathways from the SCN to

the thalamus may exist. Alternatively, the circadian signal could be mediated

indirectly, via other neuronal pathways and/or other outputs of the circadian system,

such as melatonin or core body temperature. Exogenous melatonin administered
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during the day when no endogenous secretion occurs, enhances SFA during daytime

sleep, thus mimicking a nocturnal profile in the power spectra. (Dijk et al., 1995). This

suggests that the circadian rhythm of melatonin secretion could be the signal by

which the pacemaker influences sleep spindles. A more detailed discussion of

putative pathways is given in Chapter 4.

Neurophysiology of sleep spindles

In vitro and in vivo studies carried out mainly in cats by the group of Steriade, have

revealed the cellular mechanisms underlying sleep spindles in mammals (for a

review see Steriade et al., 1993b). Sleep spindles are generated by a thalamo-

cortical network, which comprises the interplay between reticular thalamic,

thalamocortical, and cortical pyramidal cells. Studies in cats have located the site of

origin for spindle oscillations in the reticular nucleus of the thalamus (for references

see Steriade et al., 1993b). Isolation of the reticular nucleus from the rest of the

thalamus and cerebral cortex abolishes spindle oscillations in the thalamus and the

cortex, whereas neurons within the isolated reticular nucleus are still capable of

generating spindle oscillations. This capacity depends on the level of membrane

hyperpolarization. During wakefulness, the thalamus and cortex receive ascending

activation from brainstem nuclei. The removal of this activation at the transition from

wakefulness to sleep allows thalamocortical and thalamic reticular cells to undergo a

progressive hyperpolarization, which changes the firing pattern of these neurons from

the single spike mode to a rhythmic burst mode. When a certain hyperpolarization

level is achieved (between –55 and –65 mV in cats), rhythmic bursts with a frequency

of 7-14 Hz are generated in reticular neurons. Via GABA (γ-aminobuturic acid)-

containing inhibitory axons, these oscillations are imposed on other nuclei within the

thalamus and lead to the appearance of rhythmic inhibitory postsynaptic potentials

(IPSP) in thalamocortical neurons. These neurons fire rebound bursts of action

potentials at the offset of IPSPs; reticular and thalamocortical cells thus show an

inverse pattern during these oscillations. The bursts of action potentials in

thalamocortical cells converge onto reticular thalamic nuclei, thereby closing the loop

for rhythmic oscillation. From thalamic neurons, the bursts are also transferred via

thalamocortical projections to the cortex, where they induce excitatory postsynaptic
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potentials in cortical pyramidal cells. The sum of these potentials at the cortical

surface is represented as sleep spindles in the EEG (for a review see Steriade et al.,

1993b).

As for sleep spindles, the generation of slow wave oscillations depends on the

degree of hyperpolarization of thalamocortical cells. They occur at more negative

membrane potentials (between -68 and -90 mV in cats) by the interplay of several

cation currents. In this way, the progressive hyperpolarization after sleep onset first

leads to the appearance of spindle oscillations, which become replaced by slow wave

oscillations when deepening of sleep proceeds and thalamocortical neurons reach a

voltage range at which slow wave oscillations are triggered (for a review see Amzica

and Steriade, 1998).

For thalamic oscillations to be reflected in the EEG, a large number of neurons

has to oscillate synchronously in these frequency modes. In the absence of a

synchronizing mechanism, thalamic neurons would send incongruent signals to the

cortex. Such a mechanism is represented by cortically generated slow (< 1 Hz)

oscillations (Steriade et al., 1993a; Steriade et al., 1994; Contreras et al., 1996; Mölle

et al., 2002). They arise from a rhythmic alternation of the membrane potential

between a depolarized and a hyperpolarized voltage level and are widely

synchronized over various cortical areas. These oscillations are transmitted via

corticothalamic projections to the thalamus, where they govern the grouping and

synchronization of spindles and slow waves, leading to their simultaneous

appearance over widespread areas.

Functional significance of sleep spindles

The function of sleep spindles is still poorly understood. It is suggested that sleep

spindles may have a sleep-protecting function by gating synaptic transmission to the

cortex. The thalamus, where sleep spindles are generated, plays a key role in the

modulation and transmission of sensory stimuli from the periphery to the cortex.

During wakefulness, when the EEG is desynchronized, sensory information is

transferred through thalamic relay nuclei to cortical areas (Steriade et al., 1993b).

During sleep, oscillations in the thalamus are associated with synaptic inhibition and

reduced sensory transmission; the cortex is protected from arousing stimuli (Steriade
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et al., 1993b; Amzica and Steriade, 1998). Two studies in humans have investigated

event-related potentials elicited by auditory stimuli during spindle episodes and non-

spindle episodes in stage 2 and found stronger inhibition of information processing in

the presence of sleep spindles (Elton et al., 1997; Cote et al., 2000). Administration

of classical hypnotics, such as benzodiazepines, increases spindle frequency activity

and reduces SWA (Johnson et al., 1976; Borbély et al., 1985; Trachsel et al., 1990;

Brunner et al., 1991). This has led to the assumption that the sleep-facilitating action

of these drugs may be based on their ability to increase sleep spindles, and thereby

increase arousal threshold (Johnson et al., 1976).

Other studies point to an involvement of sleep spindles in synaptic plasticity

and memory processes. Memory consolidation is one of the proposed functions of

sleep, for which there is growing evidence from animal and human studies (for

reviews see Sejnowski and Destexhe, 2000; Peigneux et al., 2001). Sleep may

provide a state during which recently acquired information is reactivated and

consolidated in the absence of interfering external stimuli. The relationship between

sleep and memory is highly complex, since it varies both with different types of

memory (i.e. declarative and procedural) and different sleep states (REM sleep,

SWS, stage 2; reviewed by Peigneux et al., 2001). For declarative memory it is

suggested that new information is temporarily stored in the hippocampus, and

transferred during sleep to a more permanent store in the neocortex (Buzsàki, 1998;

Wilson and Mc Naughton, 1994). In rats, hippocampal and anatomically connected

cortical neurons, which have been activated during wakefulness, are reactivated

during NREM sleep, which supports this concept (Sutherland and Mc Naughton,

2000). There is evidence that sleep spindles are involved in the consolidation of

declarative memory. Spindle density increases in the night after a declarative

learning task, but not after a non-learning control task of equal cognitive demands

(Gais et al., 2002). Furthermore, recall performance is correlated with spindle

density. (Gais et al., 2002). Another study reported an increase in spindle density and

in the duration of stage 2 sleep after intensive maze learning (Meier-Koll et al., 1999).

Siapas et al. found a temporal correlation between hippocampal ripples (100-200 Hz

oscillations) and cortical spindles (Siapas and Wilson, 1998). The co-activation of

hippocampus and neocortex may be important for the hippocampal-neocortical

information transfer during memory consolidation. The underlying cellular

mechanisms are still largely unknown. A model has been proposed, according to
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which spindle oscillations facilitate permanent synaptic changes by triggering Ca2+

entry into cortical pyramidal cells. This massive and repeated (at a frequency of 7-14

Hz) Ca2+ entry would induce long-term synaptic changes (Sejnowski and Destexhe,

2000).

Local aspects of sleep

It is now generally accepted that sleep is not a unitary process over the whole brain,

but comprises local features. The most spectacular example in mammals is the

alternating unihemispheric sleep in dolphins (Oleksenko et al., 1992). In humans,

functional neuroimaging techniques, such as positron emission tomography (PET),

have revealed distinct regional patterns of neuronal activity during different vigilance

states stages, i.e. wakefulness, SWS and REM sleep (Maquet et al., 1997; Schwartz

and Maquet, 2002; for reviews see Maquet and Phillips, 1998; Maquet, 2000). SWS

is associated with a global decrease in cerebral blood flow, glucose metabolism, and

oxygen metabolism. A decrease in glucose metabolism that exceeds the global

decrease was found in the thalamus (Maquet et al., 1990; Maquet et al., 1992).

Studies in which EEG and neuroimaging techniques were combined revealed a

negative correlation between regional cerebral blood flow (rCBF) in the thalamus and

EEG slow wave- and spindle frequency activity (Hofle et al., 1997). The decrease in

rCBF in the thalamus may reflect the reduced excitatory input from the brainstem

activating system to thalamic neurons, as well as the GABAergic inhibition by

thalamic reticular neurons, associated with NREM sleep. Within the cortex, distinct

areas exhibit particularly low rCBF. These are probably the areas where a high

proportion of neurons is engaged in the synchronous sleep oscillations (Maquet,

2000). Topographical analysis of the human sleep EEG shows that power density in

distinct frequency bands exhibits specific regional distribution during NREM sleep.

Power density in the 1-4 Hz band (SWA) and in the 9-12 Hz band (alpha activity)

exhibit a frontal maximum, power density in the 5-8 Hz band (theta activity) is

maximal at the occipital area (Finelli et al., 2001). Spindle frequency activity and

spindle density are highest in the centro-parietal region (Zeitlhofer et al., 1997; De

Gennaro et al., 2000b; De Gennaro et al., 2000a; Finelli et al., 2001). However, when

analyzed with a higher frequency resolution, slow and fast spindles exhibit a clearly
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different topographical distribution (Gibbs and Gibbs, 1950; Scheuler et al., 1990;

Jobert et al., 1992; Zeitlhofer et al., 1997; Werth et al., 1997b; Anderer et al., 2001).

Sleep spindles with a frequency around 12 Hz are most abundant in the frontal brain

region, whereas sleep spindles with a frequency around 14 Hz have a centro-parietal

maximum. It is not yet clear whether this frequency-specific distribution reflects a

topography-dependent modulation of spindle frequency, or if it represents two

(functionally) different types of sleep spindles originating from distinct thalamic

sources, as suggested by some authors (Zeitlhofer et al., 1997; Anderer et al., 2001)

The above mentioned studies addressed topographical aspects of sleep

during normal baseline sleep. Previous studies have also shown that variations in the

level of sleep pressure do not affect EEG activity equally in brain regions (Werth et

al., 1996a; Cajochen et al., 1999; Finelli et al., 2001). Local aspects in the regulation

of SWA have recently gained attention. Power density in the 2-Hz bin is highest in

the frontal derivation at the beginning of the night; this frontal dominance declines

over consecutive NREM sleep episodes (Werth et al., 1997a). After sleep

deprivation, the largest increase in SWA occurs in the frontal EEG derivations

(Cajochen et al., 1999; Finelli et al., 2001). Thus, both indices of homeostatic sleep

pressure, the decline of SWA in the course of a baseline night, and the increase of

SWA after extended wakefulness, exhibit a frontal predominance. High-level

cognitive functions, such as self-observation, planning, prioritising and decision-

making, depend predominantly on the frontal lobes (see Muzur et al., 2002 and

Horne, 1993), and it is tempting to speculate that frontal brain areas accumulate a

higher need for sleep as a consequence of their intensive use during the daytime

(see Horne, 1992). Indeed, skills assigned to the prefrontal cortex have been shown

to be particularly impaired by a sleep deficit (for references see Muzur et al., 2002

and Horne, 1993). Studies in humans and rats have directly demonstrated that

activation of specific brain areas during wakefulness influences the neuronal activity

in these areas during subsequent sleep. Unilateral activation of the left sensory

cortex by vibratory stimuli administered to the right hand in humans induced a shift in

low-frequency EEG power density to the left hemisphere in the central derivation

overlying the somatosensory cortex in the first hour of sleep (Kattler et al., 1994). In

rats, cutting the vibrissae on one side, and thereby producing a unilateral sensory

input via intact vibrissae, resulted in a shift in low-frequency EEG power density

towards the hemisphere contralateral to the intact vibrissae during subsequent sleep
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(Vyazovskiy et al., 2000). Thus, in both studies, there was a shift of low-frequency

EEG power density to the regions that have been particularly activated during

preceding wakefulness. A recent study of 6-h continuos auditory stimulation during

wakefulness reported an increase in power density in the alpha and spindle

frequency range, as well as changes in the cortical coherence between the auditory

cortex and other cortical regions over a broad frequency range during subsequent

SWS (Cantero et al., 2002). The authors interpreted these changes in cortical activity

patterns during SWS as homeostatic mechanisms in response to an excessive use of

specific synapses associated to auditory processing.

But how do events during wakefulness influence brain activity during sleep?

This question is still not fully answered. It is assumed that activity within neuronal

groups during wakefulness leads to the production and accumulation of sleep

promoting substances, which thereafter modulate sleep propensity (Obal and

Krueger, 2003). Different candidates for such putative endogenous ‘sleep factors’

have been proposed, such as adenosine, interleukin-1 and growth hormones

(Borbély and Tobler, 1989; Krueger and Obal, 1993; Benington and Heller, 1995;

Krueger et al., 1999; Obal and Krueger, 2003). In a recent paper, Tononi and Cirelli

proposed a hypothesis that links sleep with synaptic homeostasis. According to this

hypothesis, local synaptic potentiation leads to an increase of SWA, and thus an

intensification of sleep, in these brain areas. SWA, in turn, is associated with synaptic

downscaling important for the maintenance of synaptic balance (Tononi and Cirelli,

2003).

Taken together, although the exact mechanisms remain to be established, a

considerable number of reports indicate that local activation of brain regions during

wakefulness results in sleep EEG changes in these regions. This supports the

hypothesis that local aspects of sleep regulation may reflect recovery or reactivation

processes in brain areas that have been particularly active during wakefulness

(Benington and Heller, 1995; Horne, 1993).

Most of these studies were concerned with local use-dependent aspects of

SWA topography. The significance of state-dependent changes in the topography of

sleep spindles is much less known.
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Methods used for the analysis of sleep spindles

FFT was applied to the EEG soon after its introduction, and spectral analysis remains

the most widespread signal processing method in sleep research. However, it has its

limits (for discussions see Geering et al., 1993; Ktonas and Gosalia, 1981). Since

spectral analysis quantifies overall power by combining incidence and amplitude for a

particular frequency band, it cannot differentiate between low-amplitude, high-

incidence EEG activity and high-amplitude, low-incidence EEG activity of a particular

frequency within the short time window (Ktonas and Gosalia, 1981). In particular,

transient EEG phenomena, such as sleep spindles, are not well characterized by

spectral analysis. Also, it does not discriminate synchronized spindle activity from

ongoing de-synchronized activity in the same frequency band. In Chapter 3 and 4, a

new method for spindle analysis is described in detail. The method, based on the fast

time frequency transform (FTFT), discriminates synchronized activity from

background noise and calculates amplitude and incidence of synchronized spindle

frequency activity with a high frequency (0.25 Hz)- and temporal (0.125 s)-resolution,

as well as yielding a series of different spindle parameters.

Objective and structure of the thesis

The general purpose of the present thesis was to gain a more comprehensive

understanding of the regulation of sleep spindles during human NREM sleep. It was

aimed to quantify the contribution of the homeostatic and circadian process with a

special focus on topographical aspects. For this, EEGs from 4 midline electrodes

along the antero-posterio axis were compared. A further main aim was to segregate

different spindle characteristics, such as incidence, density, frequency or amplitude,

in order to quantify the effect of circadian phase and sleep homeostasis for these

parameters. This extends conventional analysis of EEG spectral power density in the

spindle frequency range to give a more detailed and comprehensive description of

circadian and sleep-wake dependent modulation of sleep spindles. For these

purposes, in collaboration with Wim Martens from TEMEC, The Netherlands, a

method for the detection and analysis of sleep spindles has been developed,

validated and finally incorporated.
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To assess homeostatic and circadian influences on sleep, a study protocol

was designed that comprised a 40-h sleep deprivation (SD) and a 40-h multiple nap

schedule in a balanced crossover design (see Figure 1 in Chapter 2). With the SD

protocol, the effect of enhanced homeostatic sleep pressure on sleep parameters in

the subsequent recovery night could be assessed. The nap protocol served to

distribute sleep over the whole circadian cycle by simultaneously keeping

homeostatic sleep pressure low and relatively constant throughout the 40-h period.

Thereby, the influence of circadian phase on sleep could be quantified virtually free

from confounding homeostatic influences.

All data presented in this thesis were collected in the above described

experiment. Two chapters deal with the effect of differential levels of homeostatic

sleep pressure on sleep spindles: the comparison of the effects of enhanced and

reduced homeostatic sleep pressure on spectral SWA and SFA are reported in

Chapter 2, whereas in Chapter 3, the relative contribution of different spindle

characteristics to the observed changes in the EEG power spectra are quantified.

The circadian modulation of SFA and spindle characteristics analyzed during the nap

protocol are described in Chapter 4.
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Abstract

The impact of a 40-h sleep deprivation versus a 40-h multiple nap paradigm on

topographic and temporal aspects of electroencephalographic (EEG) activity during

the subsequent recovery sleep was investigated in 10 young volunteers in a

controlled "constant posture" protocol. The accumulation of sleep pressure with

extended wakefulness could be significantly attenuated by intermittent naps. The

differential sleep pressure conditions induced frequency- and topographic-specific

changes in the EEG slow wave range (0.5-5 Hz) and in the low- (LSFA, 12.25-13.25

Hz) and high- spindle frequency range (HSFA, 13.75-16.5 Hz) during nonREM sleep.

The observed increase of EEG slow wave activity (SWA) after high sleep pressure

was significantly more pronounced in the fronto-central (Fz, Cz) than in the parieto-

occipital (Pz, Oz) derivations. Low sleep pressure after the nap paradigm decreased

SWA without a frontal - but an occipital predominance. Spindle frequency activity

showed a dissimilar homeostatic regulation: HSFA was significantly decreased after

high sleep pressure and increased after low sleep pressure, exclusively in the centro-

parietal brain region (Cz, Pz). LSFA was significantly enhanced after both

manipulations. The data indicate that EEG activity, in particular frontal SWA and

centro-parietal HSFA, are under a clear sleep-wake-dependent homeostatic control

and imply a reciprocal relationship in the homeostatic regulation of SWA and HSFA,

which however shows different spatio-temporal aspects.
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Introduction

The electroencephalogram (EEG) during non-rapid eye movement sleep (NREMS) is

generally characterized by low frequency oscillations (1-7 Hz) and transient

oscillations in the spindle frequency range (SFA, 12-16 Hz). The dynamics of EEG

slow-wave activity (SWA, EEG power density in the range of 0.75-4.5 Hz) and SFA

have a clear mutual temporal relationship in the course of a nocturnal sleep episode

(Uchida et al., 1991; Aeschbach and Borbély, 1993; Dijk et al., 1993). Both SWA and

SFA are thought to be generated by a common thalamocortical mechanism, which

depends on the degree of hyperpolarisation of thalamocortical neurons (Steriade et

al., 1993; Mc Cormick and Bal, 1997). SWA and SFA during the human sleep cycle

are modulated by an interaction of two processes: a circadian process generated in

the suprachiasmatic nuclei (SCN) of the hypothalamus, and a sleep homeostatic

process representing the sleep-wake-dependent pressure for sleep (Daan et al.,

1984; Dijk and Czeisler, 1995). Forced desynchrony experiments and observations

during spontaneous desynchronisation between the sleep-wake cycle and the

circadian system have demonstrated that slow wave sleep (SWS) and SWA during

NREMS decrease throughout the course of sleep at all circadian phases (Weitzman

et al., 1980; Dijk and Czeisler, 1995). These data are in accordance with the

hypothesis that these low frequency EEG components during sleep are an

electrophysiological marker of the dissipation of homeostatic sleep pressure (Borbély

et al., 1981). Sleep-deprivation and nap experiments had previously demonstrated a

monotonic relationship between wake duration and SWA at the beginning of sleep

(Borbély et al., 1981; Dijk et al., 1993; Werth et al., 1996). Lesions of the SCN in

rodents do not abolish this increase of SWA in response to an extension of

wakefulness (Tobler et al., 1983). Thus, SWA during sleep is a reliable marker of the

sleep homeostatic process (Dijk et al., 1997).

The function of sleep spindles is to a large extent unknown. It has been

speculated that they may serve to prevent arousing stimuli from reaching the cortex

(Jankel and Niedermeyer, 1985; Steriade et al., 1993). A negative correlation

between regional cerebral blood flow (rCBF) in the medial thalamus and EEG spindle

activity during sleep has been reported and interpreted as reflecting the loss of

consciousness and sensory awareness during sleep (Hofle et al., 1997). After
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benzodiazepine intake, SWA is decreased, whereas the occurrence of sleep spindles

and SFA is enhanced (Johnson et al., 1976; Borbély et al., 198; Trachsel et al., 1990;

Brunner et al., 1991). This has led to the hypothesisthat the sleep-promoting action of

benzodiazepines may be based on their ability to enhance SFA (Johnson et al.,

1976), which in turn prevent sensory input signals being relayed to the cortex (Jankel

and Niedermeyer, 1985; Steriade et al., 1993), However, current concepts of sleep-

wake regulation still lack crucial understanding of the role of sleep spindles. There is

a general consensus that SFA is under both circadian and homeostatic control (Dijk

et al., 1997; Aeschbach et al., 1997). After sleep deprivation, SFA is reduced and

shows an inverse relationship to SWA and thus to sleep pressure (Borbély et al.,

1981; Dijk et al., 1993; Finelli et al., 2001). However, this reduction in SFA is limited

to the upper frequency range (15Hz-bin, Borbély et al., 1981; 13.75-14Hz, Dijk et al.,

1993), whereas low-frequency spindle activity is not affected. In a nap study, where

the duration of prior wakefulness varied from 2 to 20 hours, a significant decrease of

power density with increasing duration of prior wakefulness was observed in the 15

Hz-bin, but not in the lower SFA range (Dijk et al., 1987). These and other findings

indicate that there may be a frequency-dependent homeostatic control of SFA. Most

studies have used only one or two EEG derivations (C3, C4, or a fronto-occipital

bipolar derivation) to describe the effects of different sleep pressure levels on SFA

(Borbély et al., 1981; Dijk et al., 1987; Dijk et al., 1993; Dijk et al., 1997). However,

sleep spindles may not be a homogenous group of EEG waves: their frequency-

specific distribution over different brain locations was recognized as early as 1950

(Gibbs and Gibbs, 1950). This study reported that sleep spindles with a frequency

around 12 Hz exhibit an anterior dominance, whereas spindles with a frequency

around 14 Hz were most prominent in more posterior derivations. This frequency-

specific topographical distribution was later confirmed by several authors (Zeitlhofer

et al., 1997; Werth et al., 1997; Zygierewicz et al., 1999; Finelli et al., 2001).

However, a dose-response relationship between the amount of prior wakefulness

and its repercussions on frequency- and derivation-specific SFA during NREMS has,

to our knowledge, not been reported.

In the present study, EEG spectra during recovery sleep after 40h of either

total sleep deprivation or a 75/150-min sleep-wake (nap) schedule were compared.

The build-up of sleep pressure during scheduled wakefulness could be significantly

attenuated by intermittent naps (Knoblauch et al., 2001; Cajochen et al., 2001). We
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aimed at assessing the effect of differential levels of sleep pressure on the dynamics

of EEG power density along the antero-posterior axis, in particular in the slow wave-

and spindle frequency range. We hypothesized that the reciprocal homeostatic

regulation of SWA and SFA depends on brain location. We further hypothesized that

the response to differential sleep pressure conditions in the spindle frequency range

(12-16 Hz) is not uniform.

Methods

Subject Selection
Subjects were recruited via poster advertisements at the University of Basel. After

successfully completing a brief telephone screening, they received detailed

information on the study and 3 questionnaires: a morning-evening-type questionnaire

(Torsvall and Åkerstedt, 1980), the Pittsburgh Sleep Quality Index (PSQI), and an

extensive questionnaire covering sleep habits, sleep quality, life habits, physical

health and medical history. Subjects with self-reported sleep complaints (PSQI score

≥5) as well as extreme morning or evening types (score <12 or >23) were excluded

from participation. Other exclusion criteria were chronic or current major medical

illness or injury, smoking, medication or drug consumption, shift work within three

months or transmeridian travel within one month prior to the study, excessive

caffeine consumption and excessive physical activity.

Subjects who did not fulfill any of the above exclusion criteria were invited to

the laboratory and interviewed. They spent an adaptation night in the laboratory to

test his or her ability to sleep in a new environment and to exclude primary sleep

disorders (i.e. insomnia). A physical examination excluded medical disorders. All

subjects gave signed informed consent, and the study protocol, screening

questionnaires and consent form were approved by the Ethical Committee of the

Cantons Basel-Stadt and Baselland.

Subjects

Ten healthy subjects (six male, four female, age range 24-32 years, mean: 27.1 ± 2.3

s.e.m.) were studied. Female subjects started the study on day 1 to 5 after the onset
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of menstruation in order to complete the entire study block within their follicular

phase. Three female subjects used oral contraceptives. During the week preceding

the study (baseline week), subjects were instructed to maintain a regular sleep-wake

schedule (bed- and wake times within ± 30 minutes of self-selected target time). The

latter was verified by a wrist activity monitor (Cambridge Neurotechnologies , UK)

and sleep logs. They were also instructed to refrain from excessive physical activity,

caffeine and alcohol consumption. Drug-free status was verified upon admission via

urine toxicologic analysis (Drug-Screen Card Multi-6 for amphetamines,

benzodiazepines, cocaine, methadone, opiates and THC; von Minden Gmbh). All ten

subjects completed the study without any complaints.

Design
Subjects underwent two study blocks in a balanced crossover design: a sleep-

deprivation (SD) and a nap protocol (NP) (Figure 1). In either protocol, subjects

reported to the laboratory in the evening for an 8-h sleep episode . The timing of their

sleep-wake schedule was calculated in such a way that the sleep episode was

centered at the midpoint of each subject’s habitual sleep episode as assessed by

actigraphy during the baseline week. On the next afternoon (Day 1) electrodes and

thermosondes were attached. After a second 8-h sleep episode (baseline night) at

their habitual bedtime, a 40-h sleep deprivation under constant routine (CR)

conditions or a 40-h nap protocol under constant posture conditions (near recumbent

during wakefulness and supine during scheduled sleep episodes) was carried out (for

details of the CR method see (Cajochen et al., 1999b). In the NP, subjects completed

10 alternating cycles of 75 min of scheduled sleep and 150 min of scheduled

wakefulness. The light levels were <8 lux (typically 3-5 lux at the angle of gaze)

during scheduled wakefulness and 0 lux during scheduled sleep. The protocol ended

with a 8-h recovery sleep episode starting again at habitual bedtime. After a 1-4 week

interval, the subjects started their second study block.

Sleep recording and analysis
Sleep was recorded polysomnographically using the VITAPORT digital ambulatory

sleep recorder (Vitaport-3 digital recorder, TEMEC Instruments B.V., Kerkrade, The

Netherlands). Twelve EEGs, two electrooculograms (EOG), one submental

electromyogram (EMG) and one electrocardiogram (ECG) signal were recorded. All
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Figure 1. Overview of the protocol design. Subjects entered the lab for an 8-h nocturnal sleep episode
followed by a day to adjust to the <8 lux experimental conditions. After the second 8-h night (baseline,
BL), either a 40-h sleep deprivation or a 40-h multiple nap paradigm (ten 75/150-min sleep/wake
cycles) under constant posture conditions was carried out, followed by an 8-h recovery night (REC).
Black bars indicate scheduled sleep episodes (light levels: 0 lux), white bars indicate scheduled
episodes of wakefulness (light levels: <8 lux), hatched bars indicate controlled posture (semi-
recumbent during wakefulness and supine during scheduled sleep).

Sleep (0 lux)
Wakefulness  (<8 lux)
Constant Posture

 Time of Day (h)

Day 1

Day 2

Day 3

24 8 2416

Day 4

Time of Day (h)

Day 1
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Protocol (SD)

Nap Protocol (NP)

BL BL

REC REC
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signals were on-line digitized (12 bit AD converter, 610 µV/bit; storage sampling rate

at 128 Hz for the EEG) and digitally filtered at 30 Hz (4th order Bessel type anti-

aliasing filters, total 24 dB/Oct.) using a time constant of 1.0 s. The raw signals were

stored on-line on a Flash RAM Card (Viking, USA) and downloaded off-line to a PC

hard drive. EEG artifacts were detected by an automated artifact detection algorithm.

This algorithm was based on a instantaneous frequency analysis, which yields the

amplitude-envelope and the frequency of 8 band-filtered components instantaneously

at a rate of 8 per second. Low-frequency (as movement) artifacts, mid-frequency (as

ECG interference) and high-frequency (as EMG) artifacts are detected individually if

the respective instantaneous frequencies and amplitudes in the relevant frequency

bands are not within preset ranges (CASA, 2000 Phy Vision B.V., Kerkrade, The

Netherlands). The EEGs were off-line subjected to spectral analysis using a fast

Fourier transform (FFT, 10% cosine 4-s window) resulting in a 0.25 Hz bin resolution.

For data reduction, artifact-free 4-s epochs were averaged over 20-s epochs. Sleep

stages were visually scored on a 20-s basis (Vitaport Paperless Sleep Scoring

Software) according to standard criteria (Rechtschaffen and Kales, 1968). EEG

power spectra were calculated during NREMS in the frequency range from 0.5 to 32

Hz. Here, we only report EEG data derived from the midline (Fz, Cz, Pz, Oz)

referenced against linked mastoids (A1, A2) in the range of 0.5 - 25 Hz.

Statistics
The statistical packages SAS ® (SAS ® Institute Inc., Cary, NC, Version 6.12) and

Statistica ® (StatSoft Inc.(1995). STATISTICA for Windows) were used. Statistical

analyses did not reveal any significant difference between the two baseline nights,

neither for sleep stage measures nor for EEG power density in any of the frequency

bins. Therefore, for the sake of simplicity, the two baseline nights were pooled.

In order to analyze the time course of sleep stages and EEG power density in

the course of the sleep episodes, the 8-h sleep episodes were subdivided into 2-h

intervals after the first occurrence of stage two (i.e. sleep onset). This resulted in the

fourth 2-h interval being shorter than 2 hours and of variable length for each subject

and night. To correct for this, relative values for sleep stage variables (% of total

sleep time) are reported. Values of each interval were compared to values of the

corresponding intervals during the baseline night. In one case, artifacts considerably
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disturbed EEG recordings in interval 3 and 4. This subject was excluded for the time

course analysis of the visual scoring data.

In the topographical analysis of SWA, HSFA and LSFA, a first statistical

analysis with the four separate EEG derivations (Fz, Cz, Pz, Oz) did not yield

consistent significant interactions between cond * derivations. Therefore, derivations

were pooled in order to obtain consistent significant interaction in the ANOVA. The

frontal and central derivation (Fz+Cz) and the parietal and occipital derivation

(Pz+Oz) were pooled for SWA and LSFA, the frontal and occipital derivation (Fz+Oz)

and the central and parietal derivation (Cz+Pz) for HSFA.

One-, two- and three-way analyses of variance for repeated measures

(rANOVA) were performed. All p values derived from rANOVAs were based on

Huynh-Feldt’s (H-F) corrected degrees of freedom, but the original degrees of

freedom are reported. For post-hoc comparisons the Duncan’s multiple range test

and t-tests with correction for multiple comparisons (Curran-Everett, 2000) were

used.

Results

Sleep measures derived from visual scoring

Sleep during naps:

In order to test whether the subjects were able to sleep sufficiently during the NP

protocol, the amount of total sleep time (TST; NREM sleep + REM sleep + stage 1)

and relative sleep stages (percent of TST) during the baseline night (BL), throughout

the 40-h episode of the NP protocol and during the recovery night (REC) were

calculated for each subject and then averaged over subjects. Across the total of 12.5

hours scheduled sleep episodes (10 naps each of 75-min duration), TST did not

significantly differ from accumulated TST in the 8-h baseline sleep episode (459.27 ±

27.52 vs. 434.93 ± 8.98 min; F2,18 = 1.34, p = 0.28). However, the proportion of sleep

stages was different. The percentage of SWS was significantly higher than during

baseline (19.71 ± 1.73 vs. 15.99 ± 1.33 %, p<0.05), whereas REM sleep (REMS)
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Table 1: Sleep measures derived from visual scoring of the average baseline night and the
SD - and NP recovery night (mean ± s.e.m., n=10).
----------------------------------------------------------------------------------------------------

Baseline SD rec NP rec  
----------------------------------------------------------------------------------------------------
TST (min) 433.10 ± 9.12 457.37± 4.3 * 417.73 ± 13.64
SE (%) 90.28 ± 1.89 95.50 ± 0.90 * 87.03 ± 2.80
% MT 2.82 ± 0.43 2.20 ± 0.32     3.96 ± 0.96
% WALO 8.40 ± 2.10 2.86 ± 0.77 ° 12.10 ± 3.72
% arousal 11.23 ± 2.38 5.06 ± 1.05 * 16.06 ± 4.09
% stage 1 13.53 ± 1.51 7.09 ± 1.03 * 13.99 ± 1.53
% stage 2 49.31 ± 1.59 46.34 ± 1.61 * 52.22 ± 1.87 *
% stage 3 9.02 ± 0.48 13.18 ± 1.77 * 8.73± 0.73
% stage 4 7.02 ± 1.68 13.86 ± 2.72 * 5.15 ± 1.44
% SWS 16.04 ± 1.54  27.04 ± 1.66 * 13.87 ± 1.48 *
% NREMS 65.36 ± 1.37  73.38 ± 1.35 * 66.09 ± 1.30
% REMS 21.12 ± 1.12  19.53 ± 1.63 19.92 ± 1.64
SL1 (min) 9.63 ± 2.23 4.37 ± 0.90 * 19.37 ± 7.57
SL2 (min) 14.15 ± 2.44 6.60 ± 1.17 * 27.47 ± 7.04 *
RL (min) 73.02 ± 4.69  64.00 ± 7.75 72.93 ± 9.26
----------------------------------------------------------------------------------------------------

For sleep stages, relative values (percent of total sleep time) are shown. TST = total sleep
time (stage 1-4 + REMS), SE = sleep efficiency [(TST/time in bed)*100], MT = movement
time, WALO = wakefulness after lights off, arousal = WALO + MT, SL1 = latency to stage
one (min), SL2 = latency to stage two (min), RL = latency to REMS (min). For SL1, SL2
and RL, statistics were applied on log transformed values. An asterisk indicates significant
differences to the average baseline night (p<0.05), an open circle indicates a tendency
(p<0.1, Duncan’s multiple range test).
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percentage was significantly reduced (15.70 ± 1.92 vs. 21.59 ± 1.37 %, p<0.05,

Duncan’s multiple range test).

Details about the changes in sleep structure throughout the NP protocol are

summarized in (Knoblauch et al., 2001); spectral EEG changes will be reported

elsewhere.

Recovery nights:

Table 1 summarizes all-night sleep measures (% of total sleep time) for the average

baseline night and the SD - and NP recovery night. A one-way rANOVA with the

factor Condition (BL, SD, NP) yielded a significant variation in all measures (F2,18 >

6.0, p<0.03) except for REMS, movement time (MT) and latency to REMS. Post-hoc

comparisons revealed that TST, sleep efficiency (SE, [TST/time in bed]*100),

NREMS, SWS, stage 3 and stage 4 were significantly enhanced in the recovery night

following the SD protocol compared to the baseline night at the expense of stage 1

and 2 and the arousal index (WALO+MT) (for statistics see table 1). WALO

(wakefulness after lights off) tended to be reduced (p=0.06). Sleep latency to stage 2

and to stage 1 was significantly reduced. SWS in the recovery night after the NP

protocol. was significantly reduced whereas stage 2 was significantly enhanced, and

the latency to stage 2 was significantly longer (see Table 1).

Although there was no significant variation in all-night REMS, the time course

of REMS throughout the night was significantly different in the NP recovery night

compared to baseline. This was analyzed by a two-way rANOVA with the factors

condition (BL, SD, NP) and interval (2-h interval 1 – 4, see Methods section) which

yielded a significant interaction of these two factors (F6,48=3.53; p<0.01). Post-hoc

comparisons showed that REMS was significantly increased in interval 1 (p<0.05)

and tended to be decreased (p=0.06) in interval 4. REMS in the NP did not show the

usual overall increase across the night (p=0.48 for interval 1 to 2 and p=0.08 for

interval 1 to 4), as it did in BL (p<0.01).

EEG power spectra during NREM sleep: all-night absolute EEG power density
(0.5-25 Hz)
All-night absolute EEG power density in each frequency bin between 0.5 - 25 Hz for

the midline derivations (Fz, Cz, Pz, Oz) during NREMS is illustrated in Figure 2 for

the average baseline night (BL) and the SD - and NP recovery night. A two-way
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Figure 2. EEG power spectra during NREM sleep of the midline derivations (Fz, Cz, Pz, Oz) for
the average baseline night (BL, ▼) and the SD (●) and NP (○) recovery night. Mean values
(n=10) are shown for each 0.25 Hz-bin in the range of 0.5-25 Hz. The lowest panel shows F-
values (gray bars) of a two-way rANOVA with the factors derivation (Fz, Cz, Pz, Oz) and
condition (BL, SD, NP). Black bars near the abscissa represent frequency bins showing a
significant interaction of these two factors (p<0.05).
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rANOVA with the factors derivation (Fz, Cz, Pz, Oz) and condition (BL, SD, NP)

revealed a significant interaction in the following frequency bins: 0.5 - 5 Hz, 8.75 -

10.25 Hz, 12.25 - 13.25 Hz, 13.75 - 16.5 Hz, 24 - 24.5 Hz, 24.75 - 25.5 Hz (p < 0.05

for each frequency bin, bottom panel of Figure 2). Visual inspection of the curves

indicated a prominent spindle peak in the central, parietal and occipital derivation,

whereas it was less pronounced in the frontal derivation.

All-night SWA, low- and high spindle frequency activity
EEG power density in the 0.5-5 Hz- (SWA), in the 12.25-13.25 Hz- (low spindle

frequency activity, LSFA) and the 13.75-16.5 Hz-range (high spindle frequency

activity, HSFA) were each collapsed into bands. The frequency ranges for these

bands were chosen based on a significant interaction in the two-way rANOVA with

the factors derivation and condition (see Figure 2). SWA, LSFA and HSFA are

plotted for each derivation and night in Figure 3 (panel 1 to 3). A 2-way rANOVA with

the factors derivation and condition was performed and showed a significant

interaction of these 2 factors for SWA (F6,54=16.22; p<0.01), LSFA (F6,54=7.05;

p<0.01) and HSFA (F6,54=6.47; p<0.01). SWA: Post hoc comparisons indicated that

SWA significantly decreased from Fz to Cz to Pz to Oz in BL, SD and NP (Figure 3,

panel 1; p<0.01, Duncan’s multiple range test). Compared to BL, SWA was

significantly increased after SD (p<0.01, Duncan’s multiple range test) and not

significantly changed in NP (p>0.05) for all derivations.

LSFA:

LSFA was significantly enhanced after SD in all derivations (Figure 3, panel 2;

p<0.01, Duncan’s multiple range test) except for Fz (p=0.77). LSFA after NP showed

a significant increase in the more frontal derivations Fz (p<0.01) and Cz (p<0.05),

tended to be enhanced in Pz (p=0.09) and was not significantly changed in Oz

(p=0.77).

HSFA:

The SD and NP condition elicited opposite effects on HSFA: There was a significant

increase during the NP recovery night in Cz and Pz (p<0.01, Duncan’s multiple range

test) whereas in the SD recovery night HSFA was significantly decreased in Cz
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(Figure 3, panel 3; p<0.05). HSFA in the frontal and occipital derivation was not

significantly changed (p>0.05).

Topography of LSFA and HSFA:

For analyzing the different topographical distribution of LSFA and HSFA, values in

the frontal and central derivation and in the parietal and occipital derivation were

added together for LSFA ([Fz+Cz], [Pz+Oz]) and in the frontal and occipital derivation

and in the central and parietal derivation for HSFA ([Fz+Oz], [Cz+Pz] (see Methods)

HSFA exhibited a centro-parietal dominance in all conditions (Figure 3, panel 3,

p<0.05, Duncan’s multiple range test) and LFSA a fronto-central dominance (Figure

3, panel 2, p<0.05, Duncan’s multiple range test).

SWA-HSFA Ratio:

The lowest panel in Figure 3 depicts the logarithmic ratio between SWA and HSFA. A

2-way rANOVA with the factors derivation and condition was performed and showed

a significant interaction (F6,54=6.14; p<0.01). Post-hoc comparisons to baseline

showed that the ratio was enhanced in SD and reduced in NP in all derivations

(p<0.05, Duncan’s multiple range test). The ratio significantly decreased from Fz to

Cz to Pz and was significantly higher in Oz than in Pz for all conditions.

Time course of relative EEG power density (0.5-25 Hz)

In a next step, EEG power density during NREMS for each frequency bin and

derivation in the SD - and NP recovery night was expressed as a percentage of the

corresponding value of the averaged baseline night for each 2-h interval (Figure 4). A

two-way rANOVA with the factor condition (BL, SD, NP) x time (interval 1-4) and a

paired t-test corrected for multiple comparisons (NP vs BL, SD vs BL) was performed

for each derivation and frequency bin separately.
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Figure 4. Relative EEG power spectra during NREM sleep in the midline derivations (Fz, Cz, Pz, Oz)
for 2-h intervals after sleep onset (mean, n=10). For each frequency bin, values for the SD (●) and the
NP (○) recovery night are expressed relative to corresponding values of the averaged baseline night
(=100%). Triangles near the abscissa indicate frequency bins for which a significant difference to
baseline was found in the SD- (▲) and the NP (∆) protocol (p<0.05, paired t-test with correction for
multiple comparisons)
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SD recovery

Slow wave range (0.5-5 Hz):

There was a global increase in NREMS EEG power density over a broad frequency

range. The largest increase in the slow wave range occurred in interval 1 (1-5 Hz in

Fz, Cz and Pz, 0.75-5 Hz in Oz).

Theta range (5-8 Hz):

EEG power density in the theta range was significantly increased in most of the theta

bins in interval 1 and 2 for all derivations, in interval 3 for Fz, Cz, Pz and in interval 4

for Fz and Cz. Some theta bins in interval 3 and 4 for Oz were also significantly

increased.

Alpha range (8-12 Hz):

EEG power density was significantly increased in a broad part of the alpha frequency

range for all derivations in interval 1 and 2 and in the frontal and central derivation in

interval 3 and 4. A distinct peak in relative alpha activity appeared in the first 2

intervals in the frontal and central derivation.

Spindle frequency range (12-16 Hz):

A bimodal pattern emerged in the spindle frequency range. While spindle frequency

activity (SFA) was unchanged in interval 1, EEG power density in the upper spindle

frequency range was significantly decreased in interval 2 in Fz (14.25-14.5 Hz) and

Cz (14.25-14.75 Hz) and in interval 3 in Cz (14.25-15.25 Hz) and Pz (14.25-15 Hz). A

distinct peak in relative low spindle frequency activity emerged in Cz, Pz and Oz

during intervals 2 - 4. This increase was significant in interval 2 for Pz (13-13.25 Hz),

in interval 3 for Oz (13-13.5 Hz) and in interval 4 for Cz and Pz (13.25-13.75 Hz ).

Beta range (>16 Hz):

EEG power density between 16.25 and 25 Hz was significantly increased at the

beginning of the night in the fronto-central region (in interval 1 in Fz and Cz and in

interval 2 in Fz).
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NP recovery

Slow wave range (0.5-5 Hz):

EEG power density in the lower slow wave range (0.75 - 2.25 Hz) was significantly

decreased in interval 1 in all derivations (Fz: 1-1.25 Hz, Cz: 1-2.5 Hz, Pz: 1-1.25 Hz

and 1.75-2.25 Hz, Oz: 0.75-1 Hz). In the intervals 2 - 4, EEG power density in this

frequency range was not significantly changed. EEG power density in the higher SW

range (> 2.75 Hz) was significantly enhanced in interval 2 in Fz (3-3.25 Hz, 3.75-4

Hz, 4.25-5 Hz) and Cz (3-3.25 Hz, 4.5-5.5 Hz), and in interval 3 in Fz (1.5-5 Hz), Cz

(2.75-5 Hz) and Pz (3.5-5 Hz).

Theta range (5-8 Hz):

There was a significant increase in some frequency bins in the theta range in interval

2 (Fz and Cz) and in interval 3 (Fz, Cz and Pz).

Alpha range (8-12 Hz):

EEG power density was significantly increased in some of the bins, particularly in the

fronto-central region during interval 3.

Spindle frequency range (12-16 Hz):

EEG power density in the low- and high spindle frequency range showed similar

patterns after the NP protocol – either enhanced or unaffected - and did not show the

bimodal pattern observed after SD. The increase was significant in interval 1 for Fz

(12.25-15.5 Hz), for Cz (13.25-15.25 Hz, 15.75-16.25 Hz) and

for Pz (13.5-15 Hz), in interval 2 for Fz (12.25-16.5 Hz) and Cz (13.5-13.75 Hz, 14.5-

14.75 Hz, 15.75-16 Hz) and in interval 3 for Fz (12.25-12.5 Hz, 12.75-13.75 Hz).

Beta range (>16 Hz):

EEG power density above 16 Hz was not significantly affected by the NP for any of

the derivations.



51

Fz

0

50

100

150

200 SD
NP
BL

SW
A 

(µ
V2 /0

.2
5 

H
z)

 

0

50

100

150

200

0

50

100

150

200

2h-interval

1 2 3 4
0

50

100

150

200

Cz

Pz

Oz

*

*

*

*

*

*

*

*

°
*

*

*

Figure 5. Time course of SWA (0.5-5 Hz) during the averaged baseline night (BL, ▼),the SD (●) and
NP (○) recovery night in the midline derivations (Fz, Cz, Pz, Oz; mean ± s.e.m., n=10). Asterisks and
open circles indicate differences to corresponding baseline values (*p<0.05, ° p<0.1, Duncan’s
multiple range test)
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Time course of SWA
Figure 5 shows the time course of SWA (0.5-5 Hz) throughout the sleep episodes for

each derivation. A 2-way rANOVA with the factors condition x time (2-h interval 1 – 4)

yielded a significant interaction for all derivations (F6>10; p<0.05). Post-hoc

comparisons revealed that during recovery sleep after SD, SWA was significantly

enhanced in the 2-h interval 1 and 2 in all derivations (p<0.05, Duncan’s multiple

range test). In the NP recovery night, SWA was significantly reduced in the first 2-h

interval in all derivations except for Fz (Figure 5; p<0.05, Duncan’s multiple range

test). No significant change was observed in the remaining 2-h intervals.

Post-hoc comparisons indicated that the relative increase of SWA in interval 1

of the SD recovery night was more pronounced in the fronto-central than in the

parieto-occipital derivations ([Fz+Cz] > [Pz+Oz]), p<0.05, Duncan’s multiple range

test), whereas the decrease in the NP recovery night showed a parieto-occipital

dominance ([Fz+Cz]<, [Pz+Oz], p<0.05, Duncan’s multiple range test).

Discussion

We could confirm that SWA in the range from 0.5 to 5 Hz, and SFA in the high

frequency range (13.75-16.5 Hz) are oppositely affected by differential sleep

pressure conditions. The homeostatic regulation of SWA and SFA strongly depended

on brain location. After high sleep pressure (SD protocol), the rebound in SWA at the

beginning of the night yielded a clear fronto-central predominance, whereas the

decrease in SWA observed after low sleep pressure (NP protocol) showed a parieto-

occipital predominance. Centro-parietal HSFA was enhanced after low sleep

pressure and reduced after high sleep pressure. In contrast, low-frequency spindle

activity (LSFA) was increased after both manipulations. Therefore, EEG power

density within the range of SFA (12-16 Hz) exhibited a dissimilar homeostatic

regulation.

Taken together, frontal low EEG activity and centro-parietal high spindle

frequency activity were the bands with a clear homeostatic regulation, and therefore
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represent two distinct indexes of sleep pressure during human sleep. The balance

between these indexes (SWA/HSFA) represents a very sensitive marker of changes

in sleep homeostatic pressure.

Slow Wave Activity
The observed increases in SWA after high sleep pressure are in good accordance

with previous studies in which the effects of sleep deprivation on EEG power spectra

have been quantified (Borbély et al., 1981; Dijk et al. 1993). Furthermore, we could

confirm recent reports (Cajochen et al., 1999a; Finelli et al., 2001) that this increase

in SWA varies along the antero-posterior axis and shows a fronto-central

predominance. The reduction of SWA in the recovery night after the nap protocol,

particularly at the beginning of the night, is likely to be a result of the low level of

sleep pressure. The observed decrease in SWA, although smaller, is in good

accordance with a study in which the duration of prior wakefulness was reduced by a

single early evening nap (Werth et al., 1996). The observed changes in SWA

confirmed the visually scored SWS findings. Interestingly, the SWA reduction after

low sleep pressure did not display the corresponding frontal predominance. It may be

that the degree of sleep satiation obtained in the NP protocol was not strong enough

to elicit regional differences. However, the occipital predominance in the SWA

response after low sleep pressure may not support this hypothesis. Another

explanation may be that frontal cortical areas of the brain are particularly affected by

sleep deprivation, whereas after sleep satiation, the negative rebound in SWA is not

confined to frontal brain areas, and rather manifests itself in more occipital brain

regions. In other words, challenging the sleep homeostat by an extension of

wakefulness elicits ‘frontal deactivation’, whereas challenging the sleep homeostat by

a reduction of wakefulness does not result in ‘frontal activation’. PET studies have

demonstrated that the decline of regional cerebral blood flow (rCBF) during SWS is

most prominent in frontal cortical areas (Maquet et al., 1997; Hofle et al., 1997), and

rCBF in the anterior cingulate and orbitofrontal cortex are negatively correlated with

EEG SWA during sleep (Hofle et al., 1997). Nevertheless, how the frontal rCBF

decline during slow wave sleep is associated with the homeostatic regulation of SWS

remains to be elucidated.
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Spindle Frequency Activity
Previous studies have suggested that spindle frequency activity, particularly in the

high frequency range, may be under homeostatic control (Borbély et al., 1981; Dijk et

al., 1987; Aeschbach and Borbély, 1993; Dijk et al., 1993). Our present results are in

accordance with this hypothesis. The reduction of high spindle frequency activity

(HSFA) after sleep deprivation was rather small. However, the negative peak in the

shape of the generally enhanced relative spectra was outstanding. Besides the

differential qualitative response of SWA and HSFA to high sleep pressure, the time

course was also different. The increase of power density in the SWA range was most

salient in the first 2-h interval and dissipated thereafter. The reduction in the HSFA

range, on the other hand, only became evident after the second 2-h interval. This

delayed response to sleep deprivation in the high spindle frequency range has also

previously been described (Borbély et al., 1981; Dijk et al., 1993).

After the nap protocol, when sleep pressure was low, HSFA increased

markedly. This increase peaked in, but was not limited to the high-frequency range,

as it was for the decrease after sleep deprivation, but also covered the lower sigma

frequency range. There is evidence in the literature that homeostatic regulation may

be weaker for LSFA than for HSFA. LSFA did not increase with time awake in a nap

study, as did HSFA (Dijk et al., 1987; Dijk et al., 1993). The results of an increase

limited to the high SF range (13.25-15 Hz) in the course of a nocturnal sleep episode

(Aeschbach and Borbély, 1993) would fit the idea that the same underlying process

is present within a sleep episode (Borbély et al., 1981). However, in a forced

desynchrony study where sleep occurred at all circadian phases, low-, intermediate-,

and high-frequency SFA all increased with the progression of sleep which would

rather suggest homeostatic control of LSFA (Dijk et al., 1997). Here we report for the

first time a dissimilar homeostatic regulation of LSFA and HSFA after sleep loss.

Furthermore, we could show that the effects of differential levels of sleep

pressure on SFA depend on brain location. We found the previously reported centro-

parietal dominance of HSFA (Jankel and Niedermeyer, 1985; Jobert et al., 1992;

Zeitlhofer et al., 1997) and could show that here, HSFA was sensitive to different

levels of sleep pressure, but not in the frontal and occipital derivation. Our data

confirm analyses of scalp-recorded sleep spindles with topographically distinct slow-

and fast-spindle waves (Gibbs and Gibbs, 1950; Scheuler et al., 1990; Jobert et al.,

1992; Werth et al., 1997; Zeitlhofer et al., 1997; Zygierewicz et al., 1999).
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Theta and alpha activity
EEG theta and alpha activity was significantly increased after the nap protocol, an

effect usually seen after sleep deprivation, when sleep pressure is enhanced. The

decrease of SWS and SWA at the beginning of the recovery night indicates that the

subjects were indeed sleep satiated at the end of the nap schedule. The extent of

this sleep satiation was, however, less pronounced than the extent of the 40-h sleep

deprivation compared to baseline (note: TST was not significantly enhanced in the

nap protocol compared to baseline conditions, and the reduced sleep pressure at the

beginning of the recovery night may be due to the higher level of accumulated SWS

and the short duration of wakefulness prior to sleep). When sleep pressure was

considerably diminished by an evening nap, theta and alpha activity was reduced in

the first two NREM sleep episodes during post-nap nocturnal sleep (Werth et al.,

1996). This reduction in theta and alpha activity was not found after our NP protocol.

However, the increase of EEG activity in these frequency bands was hardly present

in the nonREM spectrum during the first 2-h interval, emerged slightly in interval 2

and more prominently in interval 3. This indicates that after an initial reduction of

sleep pressure, there might have been an intra-night build-up of sleep pressure

which led to a partial increase of EEG activity in the theta-, alpha- and slow wave

range in the latter part of the night.

Conclusion
Topographic analyses of the sleep EEG along the antero-posterior axis on the effects

of differential sleep pressure revealed brain locations which are highly responsive to

the process of homeostatic sleep regulation in a frequency-specific manner. Frontal

regions of the brain show strong homeostatic control in the SWA range of the EEG,

central-parietal brain regions in the high spindle frequency range. These data further

support the idea that some aspects of human sleep may be local in nature as was

previously demonstrated in animals (Oleksenko et al., 1992; Pigarev et al., 1997).

Studies both in humans (Kattler et al.,1994) and rats (Vyazovskiy et al., 2000) where

local cortical activation during wakefulness resulted in a local response in the EEG

power density in the corresponding area during subsequent NREM sleep imply that

the human sleep EEG exhibits use dependent characteristics as hypothesized by

Krueger and Obal (Krueger and Obal, 1993). Further studies are needed to firmly
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establish whether the observed local differences in SWA and HSFA in response to

differential sleep pressure are related to use-dependent phenomena.
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Abstract

Sleep spindles (12-15 Hz oscillations) are one of the hallmarks of the

electroencephalogram (EEG) during human non-rapid eye movement (non-REM)

sleep. The effect of a 40-h sleep deprivation (SD) on spindle characteristics along the

antero-posterior axis was investigated. EEGs during non-REM sleep in healthy young

volunteers were analyzed with a new method for instantaneous spectral analysis,

based on the Fast Time Frequency Transform (FTFT), which yields high-resolution

spindle parameters in the combined time and frequency domain. FTFT revealed that

after SD, mean spindle amplitude was enhanced, while spindle density was reduced.

The reduction in spindle density was most prominent in the frontal derivation (Fz),

while spindle amplitude was increased in all derivations except in Fz. Mean spindle

frequency and its variability within a spindle were reduced after SD. When analyzed

per 0.25-Hz frequency bin, amplitude was increased in the lower spindle frequency

range (12-13.75 Hz), whereas density was reduced in the high spindle frequency

range (13.5-14.75 Hz). The observed reduction in spindle density after SD confirms

the inverse homeostatic relationship between sleep spindles and slow waves

whereas the increase in spindle amplitude and the reduction in intra-spindle

frequency variability support the hypothesis of a higher level of synchronization in

thalamocortical cells when homeostatic sleep pressure is enhanced.
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Introduction

Sleep spindles (transient EEG oscillations in the 12-15 Hz range) are, besides slow

waves, the hallmarks of the human EEG during non-REM sleep. The mechanism

underlying these oscillations depends on the degree of hyperpolarization of

thalamocortical cells. At the transition from wakefulness to sleep, the membrane

potential of thalamocortical cells undergoes a progressive hyperpolarization, whereby

synaptic responsiveness is reduced, and the transfer of sensory information is

interrupted. When a certain hyperpolarization level is achieved, rhythmic bursts in the

frequency range of sleep spindles begin to appear in neurons of the nucleus

reticularis of the thalamus. These oscillations are transferred to other nuclei within

the thalamus and, via thalamocortical projections, to cortical cells. Further

hyperpolarization of the membrane potentials leads to oscillations in the frequency

range of slow waves. The sum of these oscillations at the cortical surface is

represented as sleep spindles and slow waves in the macroscopic EEG (for a review

see Steriade et al., 1993; Amzica and Steriade, 1998).

Spectral analysis of the non-REM sleep EEG by means of Fast Fourier

Transform (FFT) revealed frequency-specific modulation of spindle frequency activity

depending on circadian phase (Dijk et al., 1997; Knoblauch et al., 2003), homeostatic

sleep pressure (Borbély et al., 1981; Dijk et al., 1987; Dijk et al., 1993; Knoblauch et

al., 2002), pharmacological intervention (Borbély et al., 1985; Trachsel et al., 1990;

Brunner et al., 1991), and the scalp location of EEG leads (Scheuler et al., 1990;

Werth et al., 1997). Here, we focus on the effect of enhanced homeostatic sleep

pressure after sleep deprivation (SD) on spindle frequency activity and

characteristics along the antero-posterior axis. In previous reports, spindle frequency

activity was reduced in the recovery night after SD (Borbély et al., 1981; Dijk et al.,

1993; Knoblauch et al., 2002) and exhibited an increasing trend across non-REM

sleep episodes in the course of a night (Dijk et al., 1993; Aeschbach and Borbély,

1993; Werth et al., 1997). These results indicate an inverse homeostatic regulation of

slow wave- and spindle activity. The reduction of spindle frequency activity after SD

was limited to the higher spindle frequency range, whereas power density in the

lower spindle frequency range was not significantly affected (Borbély et al., 1981;

Dijk et al., 1993) or enhanced (Knoblauch et al., 2002). It is not known whether this
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frequency-specific effect in the power spectra is caused by a general slowing in the

spindle frequency range, which would shift the spindle frequency peak towards lower

frequencies, or if it represents a frequency-specific change in the amplitude, i.e. an

increase in the amplitude of low-frequency spindles and a decrease in the amplitude

of high-frequency spindles. These questions cannot be fully answered by spectral

analysis since spectral components over the considered time-window are averaged

and therefore, the mean amplitude and the number of waves within the time-window

cannot be segregated. Moreover, spectral analysis does not separate synchronized

spindle activity from background activity in the same frequency band.

To answer these questions, data from a 40-h sleep deprivation experiment,

from which FFT results from the first 10 subjects have previously been reported

(Knoblauch et al., 2002), were re-analyzed with a new method, the Fast Time

Frequency Transform (FTFT). This method discriminates synchronized activity from

background noise and calculates amplitude and incidence of synchronized spindle

frequency activity with a high frequency (0.25 Hz)- and temporal (0.125 s)-resolution,

as well as yielding a series of other spindle parameters. The aim of the present

analysis was to separate and quantify the relative contribution of spindle amplitude,

frequency, incidence and duration to the change in EEG power spectra after SD.

The impact of SD on sleep spindles has been studied before using methods

other than spectral analysis. Spindle density, detected visually (De Gennaro et al.,

2000a) or by transient pattern recognition (Dijk et al., 1993), was reduced after SD.

The latter method calculated a number of other spindle parameters and revealed no

significant change in spindle amplitude and frequency after sleep deprivation. In

contrast to these studies, we report regional differences in spindle incidence and

amplitude after SD on a high frequency (0.25 Hz)- and time (0.125 s)-resolution.

Methods

Study participants

Sixteen healthy volunteers (8 female, 8 male, age range 20-31 years, mean: 25.3 ±

0.9 s.e.m.) participated in the study. All participants were non-smokers, free from

medical, psychiatric and sleep disorders as assessed by screening questionnaires, a
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physical examination and a polysomnographically recorded screening night. Drug-

free status was verified via urinary toxicologic analysis. Female participants were

studied during the follicular phase of their menstrual cycle; four of them used oral

contraceptives. All participants gave signed informed consent. The study protocol,

screening questionnaires and consent form were approved by the local Ethical

Committee, and all procedures conformed with the Declaration of Helsinki.

Study design
The entire study comprised two protocol blocks, a sleep-deprivation (SD) and a nap

block, in a balanced crossover design with an off-protocol episode of 2-4 weeks in

between. Here, we report data from the SD block; data from the nap block have been

published elsewhere (Knoblauch et al., 2002; Knoblauch et al., 2003). Volunteers

reported to the laboratory in the evening and spent an 8-h night at their habitual

bedtime. The timing of their sleep-wake schedule was calculated such that the 8-h

sleep episode was centered at the midpoint of each volunteer’s habitual sleep

episode as assessed by actigraphy during the baseline week. After a second 8-h

sleep episode (baseline night) at their habitual bedtime, either a 40-h sleep

deprivation (under constant routine conditions) or a 40-h multiple nap protocol was

carried out (for details see Cajochen et al., 2001). Each study block ended with an 8-

h recovery sleep episode starting again at habitual bedtime.

Sleep recordings and analysis
Sleep was recorded polysomnographically using the VITAPORT digital ambulatory

sleep recorder (Vitaport-3 digital recorder, TEMEC Instruments B.V., Kerkrade, The

Netherlands). Twelve EEGs, two electrooculograms (EOG), one submental

electromyogram (EMG) and one electrocardiogram (ECG) signal were recorded. All

signals were filtered at 30 Hz (4th order Bessel type anti-aliasing low-pass filter, total

24 dB/Oct.), and a time constant of 1.0 s was used prior to on-line digitization (range

610 µV, 12 bit AD converter, 0.15 µV/bit; sampling rate at 128 Hz for the EEG). The

raw signals were stored on-line on a Flash RAM Card (Viking, USA) and downloaded

off-line to a PC hard drive. Sleep stages were visually scored on a 20-s basis

(Vitaport Paperless Sleep Scoring Software) from the C3 derivation according to

standard criteria (Rechtschaffen and Kales, 1968).
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EEG spectral analysis
EEGs were subjected to spectral analysis using a fast Fourier transform (FFT, 10%

cosine 4-s window) resulting in a 0.25 Hz bin resolution. EEG artifacts were detected

by an automated artifact detection algorithm. This algorithm was based on a

instantaneous frequency analysis, which yields the amplitude-envelope and the

frequency of 8 band-filtered components instantaneously at a rate of 8 per second.

Low-frequency (as movement) artifacts, mid-frequency (as ECG interference) and

high-frequency (as EMG) artifacts are detected individually if the respective

instantaneous frequencies and amplitudes in the relevant frequency bands are not

within preset ranges(CASA, 2000 Phy Vision B.V., Kerkrade, The Netherlands). For

final data reduction, the artifact-free 4-s epochs were averaged over 20-s epochs.

EEG power spectra were calculated during non-REM sleep in the frequency

range between 0.5 and 32 Hz from the midline derivations (Fz, Cz, Pz, Oz)

referenced against linked mastoids (A1, A2). Over the range of 0.5-25 Hz, mean

EEG spectra averaged over the entire group of 16 participants were very similar to

those of the first 10 participants previously published (Knoblauch et al., 2002).

Instantaneous spectral analysis of the EEG
The same digitized EEGs were subjected to instantaneous spectral analysis using

the Fast Time Frequency Transform (FTFT; Martens, 1992). For the EEG, the FTFT

calculates instantaneous amplitude, frequency and bandwidth in 8 frequency bands

from 0–4 Hz, 4–8 Hz, …. 28–32 Hz. Instantaneous bandwidth is computed from the

instantaneous frequency as the rectified first derivative with respect to time.

Therefore, the higher the frequency variability, the higher the bandwidth. Based on

the 4 Hz range of the filters, the temporal resolution of the above parameters is 0.125

s. Over a moving template of 1-s duration, thresholds are applied to amplitude,

frequency and bandwidth parameters to differentiate synchronized activity from

ongoing noise as well as to remove artifacts (Martens, 1999). The thresholds were

determined empirically on a learning-set of EEG recordings to yield the closest

possible agreement with visual scores. Incorporating the instantaneous bandwidth

helped to achieve a closer agreement than using only an amplitude threshold.

Finally, the optimized settings from the learning set were applied to this data set,

focusing on detected synchronized spindle activity. Spindles were detected from the

outcome of the 8 - 12 Hz and 12 - 16 Hz frequency band, but the frequency and
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bandwidth threshold for spindle detection was limited to the range of 11 - 16 Hz.

These thresholds again were determined empirically and compared with visual

scores. Furthermore, a duration limit (≥ 0.5 s and ≤ 2s) was applied to detected

spindles. As a result, we obtained the amplitude and frequency of each individual

spindle at a time-resolution of 0.125 s and a frequency resolution of 0.25 Hz. In other

words, for each 0.25 Hz frequency bin between 11 and 16 Hz, the time incidence

(corresponds to the number of 0.125-s epochs within the given frequency bin) and

the amplitude in these 0.125-s epochs was calculated. A further parameter was

spindle density (number of sleep spindles / 20-s epoch). Finally, for each individual

spindle, the following parameters were computed: duration, mean frequency, mean

amplitude, and standard deviation of frequency.

Statistics
The statistical packages SAS ® (SAS® Institute Inc., Cary, North Carolina, USA,

Version 6.12) and Statistica® (StatSoft Inc. 2000. STATISTICA for Windows, Tulsa,

Oklahoma, USA) were used. One-, two- and three-way analysis of variance for

repeated measures (rANOVA) were performed between the factors ‘derivation’ (Fz,

Cz, Pz, Oz), ‘night’ (baseline, recovery), ‘frequency bin’ (12-15.5 Hz), and ‘non-REM

sleep episode’ (non-REM sleep episode 1 to 4). All p values derived from rANOVAs

were based on Huynh-Feldt’s (H-F) corrected degrees of freedom, but the original

degrees of freedom are reported. For post-hoc comparisons, the Duncan’s multiple

range test was used.

One subject was excluded from time course analysis because EEG recordings

during non-REM sleep episode 3 and 4 contained considerable artifacts.

For EEG power density, spindle amplitude per 0.25 Hz and time incidence per

0.25 Hz in the range between 11-16 Hz (Figure 1), a three-way rANOVA with the

factors ‘derivation’, ‘night’ and ‘frequency bin’ was performed and yielded a significant

interaction between these three factors for EEG power density and time incidence,

but not for amplitude. The non-significant interaction for spindle amplitude was

presumably due to the prominent peak around 11.25-11.5 Hz. Because of the

relatively broad frequency range for spindle detection (11-16 Hz) in the present

analysis, this peak probably came about by short alpha intrusions. The rANOVA was

therefore limited to a more restricted frequency range, between 12-15.5 Hz.
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Table 1. Sleep variables derived from visual scoring for the baseline and recovery night (mean
± s.e.m., n=16).

-----------------------------------------------------------------------------------------------------------------------------
Baseline Recovery
TST (min) 438.13  ± 7.17 458.79  ± 3.38 **

SE (%) 91.31 ± 1.50 95.72 ± 0.69 **

% MT 3.04 ± 0.39 2.53 ± 0.42 **

% WALO 6.94 ± 1.68 2.19 ± 0.54 **

% stage 1 12.55 ± 1.41 6.50 ± 0.77 **

% stage 2 50.25 ± 1.33 46.53 ± 1.19 **

% stage 3 10.34 ± 0.65 13.66 ±1.24 *

% stage 4 6.88 ± 1.46 14.27 ± 2.04 **

% SWS 17.22 ± 1.65 27.93 ± 1.59 **

% non-REM sleep 67.48 ± 1.50 74.45 ± 1.09 **

% REM sleep 19.97 ± 1.03 19.06 ± 1.22

SL1 (min) 10.23 ± 2.25 3.94 ± 0.59 **

SL2 (min) 15.19 ± 2.33 6.33 ± 0.75 **

RL (min) 78.88 ± 5.95 73.60 ± 8.69

-----------------------------------------------------------------------------------------------------------------------------

Sleep stages are expressed as percent of total sleep time. TST = total sleep time (stage 1-4 +
REM sleep), SE = sleep efficiency [(TST/time in bed)*100], MT = movement time, WALO =
wakefulness after lights off, SL1 = latency to stage one (min), SL2 = latency to stage two
(min), RL = latency to REM sleep (min). For SL1, SL2 and RL, statistics were applied on log-
transformed values. Asterisks indicate significant differences between the baseline and
recovery night (*p<0.05, ** p<0.01, one-way rANOVA).
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Table 2. Three-way rANOVA with the factors derivation (D), night (N) and frequency bin (FB) for EEG
power density, spindle amplitude and time incidence per 0.25 Hz frequency bin from 12-15.5 Hz (F; p).

----------------------------------------------------------------------------------------------------------------------------------------
FFT FTFT FTFT

power spectra amplitude time incidence

----------------------------------------------------------------------------------------------------------------------------------------

Derivation F3,45 70.0; <0.001 67.8; <0.001 35.6; <0.001

Night F1,15 8.5; <0.05 7.3; <0.05 28.9; <0.001

Frequency bin F13,195 42.4 <0.001 42.9; <0.001 23.3; <0.001

D x N F3,45 6.6; <0.01 6.1; <0.01 3.4; <0.05

D x FB F39,585 38.7; <0.001 32.6; <0.001 15.8; <0.001

N x FB F13,195 2.1; 0.15 1.7; 0.20 2.6; 0.11

D x N x FB F39,585 7.7; <0.001 1.9; <0.05 3.0; <0.05

----------------------------------------------------------------------------------------------------------------------------------------

For EEG power density and spindle amplitude, statistics were performed on log transformed values.

Results

Visual scoring

Table 1 summarizes sleep variables derived from visual scoring for the baseline night

and the recovery night after SD. All variables differed significantly between the

baseline and recovery night, except for REM sleep duration (percent of total sleep

time) and latency to REM sleep (log-transformed; for statistics see Table 1).

EEG power density, spindle amplitude and time incidence per 0.25 Hz bin

In Figure 1, EEG power density derived from spectral analysis (top panels) is

illustrated along with the results from the FTFT, i.e. spindle amplitude and time

incidence per 0.25 Hz bin (middle and bottom panels, respectively), from the midline
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derivations during baseline and recovery sleep. Values are depicted from 11 to 16

Hz, statistics was performed on the 12-15.5 Hz range (see Methods). A three-way

rANOVA with the factors ‘derivation’, ‘night’ and ‘frequency bin’ yielded a significant

interaction between these three factors for EEG power density, amplitude, and time

incidence (for statistics see Table 2).

Spectral analysis (FFT): EEG power density
EEG power density was significantly increased after SD in the lower spindle

frequency range in Cz (12-12.25 Hz, 12.5–13.75 Hz), Pz (12.25-13.75 Hz ), and Oz

(12-13.75 Hz; Figure 1, top panels; p<0.05, Duncan’s multiple range test on log-

transformed values), whereas for Fz no such difference in the 12-15.5 Hz range was

found (Figure 1, top left hand panel).

Instantaneous frequency analysis (FTFT):

Amplitude per 0.25 Hz frequency bin
Similar to EEG power density, the amplitude of synchronized spindle frequency

activity per 0.25 Hz bin was increased in the low- and middle spindle frequency range

after SD in Cz, Pz and Oz, but not in Fz (Figure 1, middle panels). The increase was

significant between 12.75 and 13.75 Hz in Cz, between 12 and 13.5 Hz in Pz and

between 12.25 and 13 Hz and 13.25 and 13.75 Hz in Oz (p<0.05, Duncan’s multiple

range test on log-transformed values). In addition, there was another prominent peak

in the very low frequency range, between 11.25 and 11.5 Hz.

Time incidence per 0.25 Hz frequency bin
In contrast to EEG power density and spindle amplitude, time incidence per 0.25 Hz

bin in Cz, Pz and Oz was significantly reduced in the higher spindle frequency range

after SD, and not significantly changed in the lower spindle frequency range (Figure

1, bottom panels). The reduction was significant between 13.5 and 14.75 Hz in Cz,

between 13.75 and 14.5 Hz in Pz, and between 13.5 and 14.25 Hz in Oz (p<0.05,

Duncan’s multiple range test). Time incidence in the lower and middle frequency

range (up to 13.5 Hz) was not significantly changed in these derivations. In Fz, time

incidence was reduced over a broader frequency range (significant between 12.5 and

14.75 Hz).
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Figure 1. EEG power density (from FFT, top panels), amplitude (from FTFT, middle panels) and
frequency incidence (from FTFT, bottom panels) per 0.25-Hz bin between 11 and 16 Hz for the midline
derivations (Fz, Cz, Pz, Oz) during baseline night (BL, ○) and recovery night after SD (REC, ●) (mean
± s.e.m.; n=16). Horizontal lines near the abscissa indicate frequency bins for which a significant
difference between BL and REC was found (p<0.05, Duncan’s multiple test).
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Spindle parameters

In a next step, spindle density (number per 20-s epoch), amplitude, frequency,

duration, and intra-spindle frequency variability (standard deviation of intra-spindle

frequency) were calculated (Figure 2). A two-way rANOVA with the factors

‘derivation’ and ‘night’ was performed and revealed a significant effect of ‘derivation’

for all parameters, and a significant effect of ‘night’ for all parameters except for

spindle duration (p=0.07). The interaction between ‘derivation’ and ‘night’ was

significant for spindle density, amplitude, frequency, and intra-spindle frequency

variability (p<0.05; two-way rANOVA). For those parameters with a significant

interaction, post hoc comparison between baseline and recovery night revealed that

in the recovery night, spindle density, spindle frequency, and intra-spindle frequency

variability were significantly reduced in all four derivations, whereas spindle

amplitude was significantly increased in all derivations except in Fz (p<0.05;

Duncan’s multiple range test). In both nights, spindle density and amplitude were

highest in Cz and Pz. Additionally, spindle density was significantly higher in Pz than

in Cz in both nights, and spindle amplitude was significantly higher in Pz than in Cz in

the recovery night, but not in the baseline night. In both nights, spindle frequency

significantly increased from Fz to Cz to Pz and significantly decreased to Oz, and

intra-spindle frequency variability significantly decreased from Fz to Cz to Pz, and

significantly increased from Pz to Oz (p<0.05; Duncan’s multiple range test).

For spindle duration, the interaction between the factors ‘derivation’ and ‘night’

was not significant. When averaged across derivations, a one-way rANOVA with the

factor ‘night’ revealed that spindle duration tended to be longer in the recovery night

than in the baseline night (p=0.07, one-way rANOVA).

Dynamics of spindle parameters across non-REM sleep episodes
The same spindle parameters were calculated per non-REM sleep episodes (Figure

3). A three-way rANOVA with the factor ’derivation’, ‘night’ and ‘non-REM sleep

episode’ revealed no significant interaction between these three factors except for

spindle density (F[9,126]=3.54; p=0.002). For sake of clarity, only data from Fz and

Pz are reported in the following.
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Figure 2. Mean density (number of sleep spindles per 20-s epoch), frequency, duration, amplitude,
and intra-spindle frequency variability (standard deviation of intra-spindle frequency) of sleep spindles
along the midline during baseline night (BL, white bars) and recovery night after SD (REC, black bars)
(mean ± s.e.m.; n=16). Asterisks indicate a significant difference between BL and REC (p<0.05; one-
way rANOVA).
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Baseline night:

A one-way rANOVA with the factor ‘non-REM sleep episode’ was performed on these

parameters during the baseline night for Fz and Pz separately. All parameters

derived from Pz varied significantly across non-REM sleep episodes (F[3,42] at least

.>9; p at least <0.001). In Pz, spindle density and duration progressively rose over

consecutive sleep episodes (p<0.05; Duncan’s multiple range test), and also spindle

amplitude exhibited an increasing trend. An orthogonal-polynomial rANOVA yielded a

significant linear component for the above parameters (p at least <0.0001). This

linear increase was significant between non-REM sleep episode 1 and 2 and

between non-REM sleep episode 2 and 4. Spindle frequency showed a U-shaped

time course, which was corroborated by a significant quadratic component in the

rANOVA (F[1,14]=40.5, p<0.0001). It significantly decreased from a highest level in

non-REM episode 1 to non-REM episode 2 and increased from non-REM episode 3

to 4. Intra-spindle frequency variability was highest at the beginning of the night and

significantly declined from episode 1 to 2 (p<0.05, Duncan’s multiple range test), and

both a significant linear and quadratic component were present (p at least < 0.001).

In contrast to Pz, spindle amplitude and spindle frequency in Fz remained fairly

stable and did not show a significant variation across non-REM sleep episodes (p at

least > 0.16). The other spindle parameters such as spindle density, duration and

intra-spindle frequency variability showed similar time courses in Fz as for Pz, but on

different absolute levels (compare left and right-hand side panels in figure 3).

Effect of SD:

To assess whether the time course of spindle parameters in Fz and Pz were

changed after SD, a two-way rANOVA with the factors ‘non-REM sleep episode’ and

‘night’ was performed for Fz and Pz separately. For Pz, the factor ‘non-REM sleep

episode’ was significant for all parameters (p<0.05). The interaction between factors

‘non-REM sleep episode’ and ‘night’ was significant for spindle density (p<0.05) and

tended to be significant for intra-spindle frequency variability (p<0.06, two-way

rANOVA; Figure 3), indicating that SD affected the time course of these parameters.

Post hoc comparison revealed that compared to the baseline night, spindle density in

the recovery night was significantly reduced in episode 1 and 2 (p<0.05) and tended

to be reduced in episode 3 (p=0.06; Duncan’s multiple range test). There was no

significant interaction between ‘night’ and ‘non-REM sleep episode’ for the other
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Figure 3. Mean spindle density (number of sleep spindles per 20-s epoch), frequency, duration,
amplitude, and intra-spindle frequency variability (standard deviation of intra-spindle frequency) in Fz
and Pz during non-REM sleep episodes of the baseline (BL, ○) and recovery night (REC, ●) (mean ±
s.e.m.; n=15). Asterisks indicate significant differences to corresponding baseline values (p<0.05,
Duncan’s multiple range test).
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parameters. The factor ‘non-REM sleep episode’ yielded a significant main effect on

all spindle parameters derived from Pz. For none of the parameters derived from Fz a

significant interaction between the factors ‘non-REM sleep episode’ and ‘night’ was

found (p at least >0.1). This indicates that, in contrast to Pz, the time course of

spindle parameters derived from Fz was not significantly affected by SD. There was

only a significant main effect of the factor ‘night’ for sleep spindle density, and a

significant main effect of the factor ‘non-REM episode’ for spindle density, spindle

duration and intra-spindle variability.

Discussion

The present data confirm and further extend that sleep spindle characteristics are

significantly affected by the sleep homeostat. High resolution analysis of spindle

amplitude per 0.25 Hz bin revealed that the amplitude of sleep spindles was

enhanced in the lower spindle frequency range and not affected in the high frequency

range in the recovery night after SD. In contrast, the incidence of sleep spindle

activity per 0.25 Hz was reduced in the high spindle frequency range, and unchanged

in the lower spindle frequency range. Our results confirm previous reports of reduced

sleep spindle density after SD (Dijk et al., 1993; De Gennaro et al., 2000a). In

contrast to a previous report which found no change in spindle frequency after SD

using an other methodology (Dijk et al., 1993), here spindle frequency was

significantly reduced after SD. Within a spindle, frequency variability was reduced

after SD, indicating that spindles were more homogenous and stable. The

topographical analysis showed that intra-spindle frequency variability was highest in

Fz and decreased from Fz to Pz. Since alpha activity exhibits a frontal predominance

during non-REM sleep (Finelli et al., 2001b; for a review see Pivik and Harman,

1995), and the relatively broad frequency range for spindle detection (11-16 Hz) in

the present analysis partly overlaps with the alpha band, the high frequency

variability in Fz was probably due to short alpha intrusions into sleep spindles. The

peak between 11.25 and 11.5 Hz in spindle amplitude in Figure 1 (middle panels,

spindle amplitude per 0.25 Hz), which was most prominent in Fz, supports this

hypothesis.



79

Also the extent of the SD effect varied between derivations, as indicated by

the significant interaction between ‘derivation’ and ‘night’ for spindle density,

amplitude, frequency, and intra-spindle frequency variability. In particular, the

reduction in spindle density was most prominent in Fz, while spindle amplitude was

increased in all derivations except in Fz. In view of the mutual exclusivity of spindle

and slow wave oscillations on the level of single neurons (Nuñez et al., 1992) and on

the level of the EEG (De Gennaro et al., 2000b; Uchida et al., 1991), this finding fits

with the frontal predominance of the slow wave activity (SWA, EEG power density in

the 0.75-4.5 Hz range) increase after SD (Cajochen et al., 1999).

It has been shown before that frontal spindles have a lower frequency (around

12 Hz) than parietal spindles (around 14 Hz), and these findings were interpreted as

indication for the existence of two separate sleep spindles types (Gibbs and Gibbs,

1950; Zeitlhofer et al., 1997; Werth et al., 1997; Zygierewicz et al., 1999; Anderer et

al., 2001). Our data do not corroborate such a concept that frontally and parietally

scalp-recorded sleep spindles originate from two functionally distinct thalamic

sources. We think that differences between frontally and parietally scalp-recorded

sleep spindles rather represent a topography-dependent modulation of one single

type of spindle oscillations, whose origin can be traced back to the thalamic reticular

nucleus from where it disseminates to distant sites within the thalamus.

The reduction in spindle density, most pronounced in the first part of the night,

confirms the expected and previously described inverse relationship to slow waves

(Borbély et al., 1981; Dijk et al., 1993; Finelli et al., 2001b). This reciprocity between

slow waves and sleep spindles is based on their generating mechanism at the

cellular level. After sleep onset, the progressive hyperpolarization in thalamic and

cortical neurons leads to oscillations in the membrane potential in the frequency

range of spindles, and, with further hyperpolarization, in the frequency range of delta

waves (for a review see Amzica and Steriade, 1998). When sleep pressure is high,

this hyperpolarization seems to proceed faster. The more rapid rise of both spindle

and slow wave activity in the first minutes of recovery sleep after SD (Dijk et al.,

1993) supports this hypothesis. Since the degree of hyperpolarization is enhanced

after SD, more neurons would fire in the delta instead of the spindle mode. This

would explain the reduction of spindle density after SD.

The reduction in spindle density is not contradictory to the enhanced spindle

amplitude seen after sleep deprivation. The above described oscillations in thalamic



80

and cortical neurons are only reflected in the scalp-recorded EEG when a large

number of neurons synchronously oscillate in these frequency modes. With sleep

deepening, larger numbers of neurons are recruited to oscillate in the spindle or delta

mode, and their firing activity becomes more synchronized. Thus, while wakefulness

is characterized by low-amplitude oscillations of relatively low spatio-temporal

coherence, oscillations during sleep exhibit high temporal and spatial correlation

across wide regions of the cortex (Sejnowski and Destexhe, 2000). The size of the

neuronal population that oscillates in synchrony with a given frequency, is, on the

level of the macroscopic EEG, reflected in the amplitude of the wave with this

frequency (Amzica and Steriade, 1998). Both the increase of SWA (Borbély et al.,

1981; Dijk et al., 1993; Finelli et al., 2001b; Knoblauch et al., 2002) and the here

reported increase in spindle amplitude indicate that the recruitment of large neuronal

populations and their synchronization is reinforced after SD. The reduction in intra-

spindle frequency variability also supports this hypothesis of a higher level of

synchronization of thalamic and cortical oscillations under high sleep pressure.

Mean spindle frequency was reduced after SD. Our data indicate that a specific

reduction in the incidence of fast spindle components, rather than a uniform slowing

of spindles, underlies the frequency reduction. The reduction in the incidence of high-

frequency spindle elements calculated by the FTFT was not manifested in the FFT

power spectrum. This suggests that the power spectrum mainly represents changes

in spindle amplitude, while changes in spindle frequency and incidence are poorly

reflected. Additionally, the fact that FFT power spectra include background activity

within the spindle frequency range, while spindle FTFT discriminates synchronized

spindle activity from background noise, may also contribute to the discrepancy

between the results from the two methods.

Taken together, non-REM sleep EEGs from the recovery night after a 40-h

sleep deprivation were analyzed with two methods, the classical spectral analysis by

means of FFT, and the new instantaneous spectral analysis by means of FTFT.

Whereas the effect of SD on EEG power density in the spindle frequency range has

been described before (Borbély et al., 1981; Dijk et al., 1993; Finelli et al., 2001a;

Knoblauch et al., 2002), the present results from the FTFT provide additional, more

detailed information about the changes sleep spindles undergo when homeostatic

sleep pressure is enhanced, and thereby contribute to a more comprehensive

understanding of the homeostatic regulation of sleep spindles. The increase in
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spindle amplitude and the decrease in intra-spindle frequency variability support the

hypothesis of a higher degree of synchronization of oscillations in cortico-thalamic

circuitries under enhanced sleep pressure.
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Abstract

Electroencephalographic oscillations in the sleep spindle frequency range (11-16 Hz)

are a key element of human non-rapid eye movement sleep. In the present study,

sleep spindle characteristics along the anterior-posterior axis were analyzed during

and outside the circadian phase of melatonin secretion. Sleep

electroencephalograms were recorded during naps distributed over the entire

circadian cycle and analyzed with two different methodological approaches, the

classical Fast Fourier Transform in the frequency-domain and a new method for

instantaneous spectral analysis, the Fast Time Frequency Transform that yields high-

resolution parameters in the combined time-frequency-domain. During the phase of

melatonin secretion, spindle density was generally increased and intra-spindle

frequency variation reduced. Furthermore, lower spindle frequencies were promoted:

peak frequencies shifted towards the lower end of the spindle frequency range, and

spindle amplitude was enhanced in the low-frequency range (up to ~14.25 Hz) and

reduced in the high-frequency range (~ 14.5-16 Hz). The circadian variation showed

a clear dependence on brain topography such that it was maximal in the parietal and

minimal in the frontal derivation. Our data provide evidence that the circadian

pacemaker actively promotes low frequency sleep spindles during the biological night

with a parietal predominance.
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Introduction

Timing and structure of human sleep are regulated by the endogenous circadian

pacemaker located in the suprachiasmatic nuclei (SCN) of the hypothalamus (Dijk

and Czeisler, 1995b; Dijk et al., 1997). The strength of this circadian control is very

different for the two main electroencephalographic (EEG) oscillations during non-

rapid eye movement (NREM) sleep - slow waves and sleep spindles. Slow-wave

activity (SWA, EEG power density in the 0.75-4.5 Hz range) does not exhibit

substantial circadian modulation, while activity in the spindle frequency range (SFA,

EEG power density in the 11-16 Hz range) shows a clear circadian rhythm (Dijk and

Czeisler, 1995b; Dijk et al., 1997). This circadian rhythm is frequency-specific, such

that SFA in the 12.25-13 Hz range coincides with the peak, and SFA in the 14.25-

15.5 Hz range with the nadir of the endogenous rhythm of melatonin secretion (Dijk

et al., 1997). This inverse circadian phase relationship in low and high SFA has two

possible explanations. The frequency per se of sleep spindles could be modulated

(i.e. a general slowing of spindle frequencies during the night), or their amplitude

and/or duration may exhibit frequency-specific modulation. Indeed, a recent study

has demonstrated that frequency, amplitude as well as the duration of sleep spindles

during NREM sleep all varied significantly across the circadian cycle (Wei et al.,

1999).

The role of sleep spindles is to a large extent unknown. Spindle oscillations

originate in the thalamus, which is the major gateway for information flow to the

cortex (Steriade et al., 1993). Sleep spindles may reduce this sensory transmission

and thereby protect the cortex from arousing stimuli (Steriade et al., 1993). There is

also increasing evidence for an involvement of sleep spindles in synaptic plasticity

and memory processes (Siapas and Wilson, 1998; Gais et al., 2002; for a review see

Sejnowski and Destexhe, 2000).

Spectral analysis of the EEG, the method of choice in sleep research,

averages spectral components over the considered time-window and does not

discriminate synchronized spindle activity from de-synchronized activity in the same

frequency band. Therefore, it does not segregate the contribution of changes in

frequency from amplitude, nor can it yield time-incidence and time-duration in sleep

spindle frequency activity.
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It is not yet known whether a frequency-specific circadian modulation of

spindle amplitude exists, nor is it known whether circadian modulation of SFA

characteristics varies across brain locations. We hypothesized that EEG power

density, as well as spindle density (number per time epoch), amplitude and duration

show a frequency-specific circadian variation. Furthermore, we hypothesized that the

circadian variation of these spindle characteristics depends on brain topography

along the antero-posterior axis.

In order to test these hypotheses, we have applied two methodological

approaches to quantify the contribution of spindle amplitude, frequency and density

to the circadian as well as topographic modulation of SFA: classical spectral analysis

in the frequency-domain (by means of the Fast Fourier Transform, FFT) and a new

method for so-called joint time-frequency domain or instantaneous spectral analysis

(by means of the Fast Time Frequency Transform, FTFT).

Methods

Study participants

Seventeen healthy volunteers (9 female, 8 male, age range 20-31 years, mean: 25 ±

0.9 s.e.m.) participated in the study. All subjects were non-smokers, free from

medical, psychiatric and sleep disorders as assessed by screening questionnaires, a

physical examination and a polysomnographically recorded screening night. Drug-

free status was verified via urinary toxicologic analysis. Female subjects were studied

during the follicular phase of their menstrual cycle, five of them using oral

contraceptives. All participants gave signed informed consent, and the study

protocol, screening questionnaires and consent form were approved by the local

Ethical Committee.

Protocol
During the week preceding the study (baseline week), subjects were instructed to

refrain from excessive physical activity, caffeine and alcohol consumption and to

maintain a regular sleep-wake schedule (bed- and wake times within ± 30 minutes of

self-selected target time). The latter was verified by a wrist activity monitor

(Cambridge Neurotechnologies , UK) and sleep logs. The timing of their sleep-wake
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Time of Day (h)

24 8 2416

Day 1

Day 2

Day 3

Day 4

Sleep (0 lux)

Wakefulness (<8 lux)

Constant recumbent posture

Figure 1. Overview of the protocol design. After two nights and a day in the laboratory to
adapt, a 40-h short sleep-wake cycle paradigm (75/150-min) under constant posture was
carried out, followed by an 8-h recovery night. Black bars indicate scheduled sleep episodes
(light levels: 0 lux), white bars indicate scheduled episodes of wakefulness (light levels: <8
lux), hatched bars indicate controlled posture (semi-recumbent during wakefulness and
supine during scheduled sleep).
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schedule was calculated in such a way that the 8-h sleep episode was centered at

the midpoint of each subject’s habitual sleep episode as assessed by actigraphy and

sleep logs during the baseline week. After the baseline week, subjects reported to

the laboratory in the evening and spent an 8-h sleep episode, followed by 16 hours of

scheduled wakefulness to adjust to the <8 lux experimental conditions (Day 1; Figure

1). After a second 8-h sleep episode (baseline night), subjects underwent a 40-h

short sleep-wake cycle paradigm under constant posture conditions (near recumbent

during wakefulness and supine during scheduled sleep episodes) during which they

completed 10 alternating cycles of 75 min of scheduled sleep (light levels: 0 lux) and

150 min of scheduled wakefulness. The wake episodes were spent under constant

routine conditions (constant dim light levels <8 lux, constant posture, food and liquid

intake at regular intervals, no time cues; for details of the CR method see (Cajochen

et al., 1999). The protocol ended with a 8-h recovery sleep episode. Results from the

baseline and recovery night have been reported elsewhere (Knoblauch et al., 2002).

Sleep recordings and analysis
Sleep was recorded polysomnographically using the VITAPORT digital ambulatory

sleep recorder (Vitaport-3 digital recorder, TEMEC Instruments B.V., Kerkrade, The

Netherlands). Twelve EEGs, two electrooculograms, one submental electromyogram

and one electrocardiogram signal were recorded. All signals were filtered at 30 Hz

(4th order Bessel type anti-aliasing low-pass filter, total 24 dB/Oct.) and a time

constant of 1.0 s. was used prior to on-line digitization (range 610 µV, 12 bit AD

converter, 0.15 µV/bit; sampling rate at 128 Hz for the EEG). The raw signals were

stored on-line on a Flash RAM Card (Viking, USA) and downloaded off-line to a PC

hard drive. Sleep stages were visually scored on a 20-s basis (Vitaport Paperless

Sleep Scoring Software) according to standard criteria (Rechtschaffen and Kales,

1968) and all further quantitative spindle analyses were limited to sleep stage two.

EEG spectral analysis
All EEGs were subjected to spectral analysis using a fast Fourier transform (FFT,

10% cosine 4-s window) resulting in a 0.25 Hz bin resolution. In parallel, EEG

artifacts were detected by an automated artifact detection algorithm (CASA, 2000

PhyVision B.V., Gemert, The Netherlands). For final data reduction, the artifact-free

4-s epochs were averaged over 20-s epochs.
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EEG power spectra were calculated during stage two in the frequency range

from 0.5 to 32 Hz. Here, we report EEG data derived from the midline (Fz, Cz, Pz,

Oz) referenced against linked mastoids (A1, A2) in the range of 0.5 - 25 Hz.

EEG instantaneous spectral analysis
The same digitized EEGs were subjected to instantaneous spectral analysis using

the Fast Time Frequency Transform (FTFT) (Martens, 1992). For the EEG, the FTFT

calculates instantaneous amplitude, frequency and bandwidth in 8 frequency bands

from 0–4 Hz, 4–8 Hz, …. 28–32 Hz. Instantaneous bandwidth is computed from the

instantaneous frequency as the rectified first derivative with respect to time.

Therefore, the higher the frequency variability, the higher the bandwidth. Based on

the 4 Hz range of the filters, the resolution in time of the above parameters is 0.125 s.

Figure 2. Raw EEG signal (above) and the output of the Fast Time Frequency Transform (FTFT,
below) derived from Pz during a 20-s epoch of stage two sleep. The FTFT depicts synchronized
spindle activity, subdivides each spindle into 0.125-s epochs (each represented by a black
horizontal bar) and computes frequency and amplitude for each 0.125-s epoch separately. The
height of a horizontal bar reflects the mean amplitude (µV), the position relative to the horizontal
lines reflects the mean frequency within a 0.125-s epoch. The upper horizontal line is at 12 Hz, the
lower at 16 Hz.
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Over a moving template of 1-second duration, thresholds are applied to amplitude,

frequency and bandwidth parameters to differentiate synchronized activity from

ongoing noise as well as to remove artifacts (Martens, 1999). The thresholds were

determined empirically on a learning-set of EEG recordings to yield the closest

possible agreement with visual scores. Incorporating the instantaneous bandwidth

helped to achieve a closer agreement in comparison with using only an amplitude

threshold. Finally, the optimized settings from the learning set were applied to the

data set of this study. Here, we focus on detected synchronized spindle activity.

Spindles were detected from the outcome of the 8 - 12 Hz and 12 - 16 Hz frequency

band, but the frequency and bandwidth threshold for spindle detection were limited to

the range of 11 -16 Hz. These thresholds again were determined empirically and

compared with the visual score. Furthermore, a duration limit (≥ 0.5 s and ≤ 2s) was

applied for detected spindles. As a result, we obtained the amplitude and frequency

of each individual spindle at a time-resolution of 0.125 seconds. The frequency

resolution was 0.25 Hz. In other words, for each 0.25 Hz frequency bin between 11

and 16 Hz, the time incidence (corresponds to the number of 0.125-s epochs within

the given frequency bin) and the amplitude in these 0.125-s epochs was calculated.

Figure 2 depicts a raw EEG curve together with the output of the spindle FTFT. For

each 20-s epoch of stage two sleep, the mean time incidence and amplitude of

synchronized spindle frequency activity were computed per 0.25-Hz frequency bin

between 11 to 16 Hz. Furthermore, spindle density (number of sleep spindles / 20-s

epoch) was calculated. Finally, for each individual spindle, the following parameters

were computed: duration, mean frequency, mean amplitude, standard deviation of

frequency, frequency at onset and offset.

To compare spindle detection of this method with other spindle detection

techniques, spindle density in Cz was calculated during the baseline night of this

protocol. The value obtained (2.0176 n/20 s ± 0.23) was very similar to spindle

density in central derivations (C3, C4 or Cz) reported in other studies using

automated (Dijk et al., 1993; Wei et al., 1999) or visual (De Gennaro et al., 2000)

spindle detection algorithms. Furthermore, detected synchronized spindle activity

(Figure 2) was visually verified by one rater (V.K.). Since we have used a relatively

low amplitude threshold (3-5 µVolt template) and a relatively broad frequency range

(11-16 Hz), the algorithm detected a spindle density slightly higher than if visually

scored. The thresholds for spindle detection were deliberately set such that the
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algorithm yielded more spindles than when visually scored; this is particularly

important in the presence of delta waves where the human eye often misses

superimposed sleep spindles.

Salivary melatonin
Saliva was collected at ~30-min intervals during scheduled wakefulness. Saliva

samples were assayed for melatonin using a direct double-antibody radio-

immunoassay validated by gas chromatography-mass spectroscopy with an

analytical least detectable dose of 0.15 pg/ml and a functional least detectable dose

of 0.65 pg/ml (Bühlmann Laboratories, Schönenbuch, Switzerland; Weber et al.,

1997).

Classification of naps
Naps comprising a total stage two duration of less than 5 minutes were excluded

from the analysis. The first 75 minutes after lights off in the recovery night were

considered as an additional nap. For time course analyses, nap 4 and 10 were

excluded because too few subjects fulfilled these criteria of a stage two duration of at

least 5 min (5 and 3 subjects, respectively), whereas a total of nine subjects fulfilled

these criteria in the remaining naps.

The top left hand panel in Figure 3 illustrates the timing of the scheduled naps

across the protocol in relation to endogenous melatonin secretion. Naps were

classified into night naps and day naps depending on their occurrence during or

outside melatonin secretory phase. This was defined as follows: the 24-hour mean

melatonin concentration (between hours 5 and 29 of the 40-hour nap protocol) was

calculated for each subject as an individual threshold level. The mean overall

threshold was 9.1 ± 1.4 pg/ml (mean ± s.e.m.; n=17) and is indicated as a horizontal

line in the top left hand panel in Figure 3. A nap was rated as a night nap if the

melatonin concentration of the last saliva sample before the nap was above the

threshold, otherwise, it was rated as a day nap. There were on average 5.76 ± 0.39

day naps and 2.94 ± 0.2 night naps per subject. The duration of stage two sleep did

not significantly differ between day and night naps (F[1,16]=0.2; p=0.7).



96

Statistics
The statistical packages SAS® (SAS® Institute Inc., Cary, North Carolina, USA,

Version 6.12) and Statistica® (StatSoft Inc. 2000. STATISTICA for Windows, Tulsa,

Oklahoma, USA) were used. For day-night comparisons, averaged values across

daytime naps were compared with averaged values across nighttime naps. For time

course analyses, data derived from the spectral analysis were subjected to two-way

analyses of variance for repeated measures (rANOVA) with the factors Derivation

and Nap. For day-night comparisons, two-way rANOVAs with the factors Derivation

and Condition or three-way rANOVAs with the factors Condition, Derivation and

Frequency bin (for the time incidence and amplitude per 0.25 Hz bin) were used. All

p values derived from rANOVAs were based on Huynh-Feldt’s (H-F) corrected

degrees of freedom, but the original degrees of freedom are reported. For post-hoc

comparisons the Duncan’s multiple range test and t-tests with correction for multiple

comparisons (Curran-Everett, 2000) were used.

Results

Spectral analysis (FFT)

Time course
Figure 3 illustrates the timing of the scheduled naps across the protocol in relation to

endogenous melatonin secretion (top left hand panel) and the dynamics of EEG

power density across naps (relative stage two spectra of each nap, expressed as a

percentage of the mean of all naps) in the range of 0.5-25 Hz in Pz. In the insets, the

corresponding absolute spectra between 11 and 16 Hz are shown (spectra of the

individual nap together with the mean spectra of all naps). Successive naps (without

nap 4 and 10, see Methods) are plotted one below another in two columns, whereby

naps occurring at similar circadian times are placed next to each other. Visual

inspection reveals a prominent time-dependent modulation in the spindle frequency

range. A one-way rANOVA with the factor Nap was performed and revealed that

power density in most frequency bins between 9 and 21.75 Hz varied significantly

across naps (see symbols above the top right hand panel of Figure 3). On the other

hand, power density between 0.5 to 9 Hz, thus in the delta, theta and lower alpha
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98

range, as well as above 21.75 Hz did not exhibit a significant modulation over time.

For frequency bins with a significant rANOVA, post hoc comparisons between the

value for the individual nap and the mean of all naps were performed (Duncan’s

multiple range test on log transformed absolute values). In general, power density

was reduced in the lower spindle frequency range and enhanced in the higher

frequency range in naps 2, 3, 8 and 9, i. e. in naps occurring when melatonin was not

secreted. In naps occurring when melatonin was secreted (i.e. naps 5, 6 and 11),

power density was enhanced in the lower spindle frequency range and reduced in

the higher frequency range (see Figure 3 for frequency bins with a significant

difference from the mean). The absolute spectra in the insets help to illustrate that

the opposite day- and nighttime peaks in the low- and high frequency range come

about by a shift in the absolute power spectra towards lower frequencies during the

night.

Day-night difference
In a next step, the spectra of naps occurring during melatonin secretion (night naps)

were compared to the spectra of naps occurring outside melatonin secretion (day

naps; see Methods section). The left hand panel in Figure 4 shows mean absolute

EEG power density between 8 - 18 Hz during night and day naps. Visual inspection

reveals more power in the spindle peak during the night than during the day, and the

curves are shifted towards lower frequencies relative to the day spectra. For better

visualization of this day-night difference, the spectra of the night naps are expressed

as a percentage of the day nap spectra in the range from 0.5-25 Hz (Figure 4, right

hand panels). The interaction between Derivation (Fz, Cz, Pz, Oz) and Condition

(day, night) was significant in the following frequency ranges: 5.5-14.75 Hz, 16.5-

17.75 Hz and 18.5-19 Hz (p at least < 0.05; rANOVA).

There was a pronounced and significant nocturnal increase of EEG power

density in Cz, Pz and Oz in the following frequency ranges: between 11.25-14.25 Hz

in Cz, between 12.25-14.25 Hz in Pz, and between 13-14.25 Hz in Oz (p<0.05, day

vs. night; paired t-test corrected for multiple comparisons). In Fz, the increase

(significant between 11-12.75 and 13.25 -13.75 Hz) was less distinct and also

spanned to adjacent lower frequency ranges , i.e. the alpha and theta range (see

Figure 4). The increase was maximal in the 13.5-13.75 Hz bin and was significantly

higher in Pz than in Cz, Oz and Fz, as well as significantly lower in Fz than in the
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other three derivations (Derivation, F[3,48]=42.3, p<0.01, rANOVA; Duncan’s multiple

range test, p<0.0001). The nocturnal reduction of EEG power density in the higher

spindle frequency range (>14.75 Hz) did not depend on derivation (no significant

interaction between Derivation and Condition in the 14.75-16.5 Hz range).

Instantaneous frequency analysis (FTFT)

Spindle density and spindle parameters
Spindle density (number of spindles / 20-s epoch), duration, frequency, amplitude,

standard deviation of frequency (SD Frequency), frequency at onset, frequency at

offset, and the difference between frequency at onset and frequency at offset (∆

Frequency) were calculated (Figure 5). A two-way rANOVA with the factors Condition

and Derivation was performed for each of these variables (Table 1). The interaction

between these two factors yielded significance for spindle density, frequency and

duration. Post-hoc comparison revealed that spindle density was significantly higher

during the night than during the day in Pz (p<0.001, Duncan’s multiple range test),

whereas in Fz, no significant day-night difference was observed. Spindle frequency

was significantly lower during the night than during the day in both Fz and Pz (Figure

5, p<0.05, Duncan’s multiple range test). Spindle duration was shorter during the

night in Fz, and higher during the night than during the day in Pz (Figure 5, p<0.05,

Duncan’s multiple range test). The main factor Derivation was significant for all

variables, the main factor Condition for all variables except for spindle duration.

Spindle amplitude was significantly higher during the night than during the day and

significantly higher in Pz than in Fz. SD Frequency, a measure for intra-spindle

frequency variability, was significantly higher during the day than during the night and

significantly higher in Fz than in Pz (Figure 5). In both derivations and during both

conditions (day, night), onset frequency was significantly higher than offset frequency

(Variable x Derivation, F[1,16]=12.9, p<0.01, rANOVA; Variable x Condition,

F[1,6]=6.3, p<0.05, rANOVA; Duncan’s multiple range test, p<0.001, data not

shown), i.e. frequency within a spindle generally slowed down. The extent of this

frequency reduction (expressed as ∆ Frequency, the difference between onset and

offset frequency) was however significantly higher in Fz than in Pz and significantly

higher during the day than during the night (Figure 5). The smaller intra-spindle

downward frequency modulation during the night than during the day implies an
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unequal reduction of onset and offset frequency during the night. To test this, onset

and offset frequency at night were expressed as a percentage of onset and offset

frequency during the day (relative onset and offset frequency). In Fz, there was no

significant difference between the relative onset and offset frequency, whereas in Pz,

the onset frequency during the night was significantly more reduced than the offset

frequency (F[1, 16]=11.6, p<0.005, rANOVA).

Table 1. Two-way rANOVA with the factors Condition and Derivation for spindle density (n/20 s),

duration, frequency, amplitude, standard deviation of frequency (SD Frequency), onset frequency,

offset frequency, and difference between onset and offset frequency (∆ Frequency) of sleep spindles.

----------------------------------------------------------------------------------------------------------------------------------------
Condition Derivation Condition x Derivation
------------------------ ------------------------ ----------------------------------------

Variable F 1,16 (p) F 1,16 (p) F 1,16 (p)
----------------------------------------------------------------------------------------------------------------------------------------
Density 20.56 (<0.001)* 16.93 (<0.001) * 111.83 (<0.0001) *

Duration 0.01 (0.939) 25.12 (<0.001) * 12.29 (<0.01) *

Mean Frequency 81.76 (<0.001)* 132.92 (<0.001) * 5.38 (<0.034) *

Mean Amplitude 19.05 (<0.001) * 11.25 (<0.01) * 1.13 (0.303)

SD Frequency 30.39 (<0.001)* 72.12 (<0.001) * 3.16 (0.1)

Onset frequency 57.52 (<0.001)* 100.39 (<0.001) * 3.72 (0.072)

Offset frequency 54.18 (<0.001)* 135.27 (<0.001) * 0.36 (0.556)

∆ Frequency 6.26 (<0.05) * 12.92 (<0.01) * 2.26 (0.15)

----------------------------------------------------------------------------------------------------------------------------------------

p-values <0.05 were considered significant.
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Time incidence per 0.25 Hz frequency bin
The upper panels of Figure 6 depict the time incidence per 0.25 Hz bin in the 11-16

Hz range. A three-way rANOVA Derivation x Condition x Frequency bin revealed a

significant interaction between these factors (F[19, 304]=11.7; p<0.0001). There was

a pronounced day-night difference in time incidence in Pz. The curve was shifted

towards lower frequencies during the night, resulting in a significant increase in the

low and middle spindle frequency range and significant reduction in the upper

frequency range (p<0.05, Duncan’s multiple range test; see Figure 6 for exact

frequency ranges). In Fz, there was not such a shift between the curves, and they did

not differ significantly up to 14 Hz. A significant reduction, however, was found in the

upper frequency range (between 14-14.75 Hz) during the night (p<0.05, Duncan’s

multiple range test).

Amplitude per 0.25 Hz frequency bin
The amplitude per 0.25 Hz bin in the 11-16 Hz range is illustrated in the bottom

panels of Figure 6. The interaction between Derivation, Condition and Frequency bin

was significant (F[19,304]=5.1; p<0.0001, rANOVA). In both derivations, the night

curve was shifted towards lower frequencies relative to the day curve. The amplitude

at night was increased in the low frequency range and reduced in the higher

frequency range (for statistics see Figure 6). The peak amplitude, in the range

between 13.5 and 14.5 Hz, was less distinct in Fz, where a second peak in the very

low frequency range (between 11 and 12 Hz) occurred.

Discussion

The new combined high-time and high-frequency resolution spindle analysis showed

that density, frequency and amplitude of sleep spindles vary with the circadian phase

of endogenous melatonin secretion and revealed a shift of sleep spindles to lower

frequencies concomitant with a higher amplitude in this frequency range during the

night. Circadian modulation of sleep spindle characteristics was not uniform along the

antero-posterior axis, but showed a parietal maximum.



105

Furthermore, we show that during the biological night, sleep spindles were

more stable in terms of reduced intra-spindle frequency variability. We found a

general downward trend in frequency within sleep spindles: spindle frequency at the

end of the spindle was always lower than at the beginning, but this intra-spindle

downward frequency modulation was reduced during the night.

The shift towards lower frequencies during the subjective night (when

melatonin is secreted) comprised both time incidence and amplitude. This confirms

and extends previous data which demonstrated a tight temporal association between

the endogenous melatonin rhythm and the circadian profile of sleep spindle activity in

the low frequency range (12.25-13 Hz; Dijk et al., 1997). It is known that

administration of both a classical hypnotic such as a benzodiazepine or (to a lesser

extent) daytime melatonin both enhance spindle frequency activity particularly in the

low frequency range (12.25-14 Hz; Johnson et al., 1976; Borbély et al., 1985;

Trachsel et al., 1990; Brunner et al., 1991; Dijk et al., 1995). This has led to the

hypothesis that the frequency-specific circadian modulation of SFA is a mechanism

to reduce sensory sensitivity and thus favor sleep at the phase of normal sleep time

(Dijk and Czeisler, 1995a; Dijk et al., 1997). As yet, there are no experimental data

demonstrating a decrease in sensory throughput associated with reduced spindle

frequency which might support this hypothesis

We have evidence that the variation of sleep pressure across naps was only

moderate. SWA, a measure for the level of homeostatic sleep pressure during sleep,

did not show a substantial or significant variation over time (Figure 3). In addition,

frontal low EEG activity during wakefulness, a marker of the homeostatic buildup of

sleep pressure during wake, exhibited only small changes in the time course of this

protocol (Cajochen et al., 2001). These data demonstrates that we were successful

in keeping sleep pressure generally low during the 40 hours and supports the

assumption that, although the influence of homeostatic sleep pressure can not be

excluded completely, the effects reported here mainly reflect the influence of

circadian phase. Thus, our data further quantify the sleep spindle promoting action of

the circadian pacemaker. It is still unknown whether the spindle generating thalamo-

cortical network is directly influenced by the SCN via neuronal pathways, or rather

indirect, via other output variables of the circadian system. Direct projections from the

SCN to the thalamus (the paraventricular thalamic nucleus) have recently been

reported in rats (Novak et al., 2000). The SCN has indirect projections to the



106

ventrolateral preoptic nucleus (VLPO) via the dorsomedial hypothalamus (Chou et

al., 2002). The VLPO is crucial for NREM sleep promotion (Sherin et al., 1996) and

has reciprocal inhibitory connections with wake-promoting neurons in the basal

forebrain and brainstem nuclei (reviewed by Saper et al., 2001 and Pace-Schott and

Hobson, 2002). Among these, the pedunculopontine and laterodorsal tegmental

nucei (PPT-LDT) send direct cholinergic projections to the reticular thalamic nucleus

(Berendse and Groenewegen, 1990; Berendse and Groenewegen, 1991), which is

thought to play a key role in the regulation of thalamocortical transmission and to be

the initial site in the sleep spindle generating network (Steriade et al., 1993). This

could be one possible neuronal pathway for the circadian signal from the SCN to the

sleep spindle generating system in the thalamus. Alternatively, the circadian

modulation of sleep spindles may be mediated indirectly, via other output variables of

the circadian pacemaker, such as melatonin. There is, however, a debate on whether

the changes in the EEG power spectra that occur across the circadian cycle are

based on the concomitant changes in body (and brain) temperature, reflecting a non-

specific effect of temperature, rather than a sleep- regulatory mechanism under

circadian control (Deboer and Tobler, 1995; Deboer and Tobler, 1998). EEG

frequencies slow down with a temperature coefficient (Q10) of approximately 2.5

(Deboer and Tobler, 1995), thus low brain temperature at night could be responsible

for the shift of SFA in the power spectra towards lower frequencies. To test this

hypothesis, Dijk (1999) compared the EEG power spectra from two time points

during a forced desynchrony protocol, one in the morning and one in the evening,

where body temperature was nearly identical. Low spindle frequency activity was

markedly enhanced in the evening, after the evening increase of plasma melatonin

levels, as compared to the morning, where plasma melatonin levels were low.

Consequently, the circadian variation of EEG spindle frequency activity is unlikely to

be caused by changes in body temperature.

Our data demonstrate for the first time that the circadian modulation of sleep

spindle characteristics varies with brain location. The most marked difference in the

extent of circadian modulation is between frontal and parietal SFA. Frequency

differences in frontal and parietal spindles during nocturnal sleep have been

demonstrated before (Gibbs and Gibbs, 1950; Zeitlhofer et al., 1997; Werth et al.,

1997; Zygierewicz et al., 1999; Anderer et al., 2001; Finelli et al., 2001). Frontal

spindles were found to have a lower frequency (around 12 Hz) than parietal spindles
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(around 14 Hz) and these findings were interpreted as indication for the existence of

two separate types of sleep spindles. It is however still not known whether frontally

and parietally scalp-recorded sleep spindles originate from two functionally distinct

thalamic sources. Spindle oscillations presumably originate in the nucleus reticularis

of the thalamus, and are transferred via inhibitory GABAergic projections to

thalamocortical neurons in other thalamic nuclei (Steriade et al., 1993). As a result,

sleep spindles can be recorded from distant sites in the dorsal thalamus (Contreras

et al., 1997). Since the spindle generating network includes various reciprocal

connections between the thalamus and the cortex, the cortical distribution of sleep

spindles may probably reflect activities of corresponding nuclei within the dorsal

thalamus. Thus, differences, e.g. in frequency or in circadian regulation, between

frontally and parietally scalp-recorded sleep spindles, do not necessarily imply two

distinct spindle generators, but may represent a topography-dependent modulation of

one single type of spindle oscillations, whose origin can be traced back to the

thalamic reticular nucleus from where is dispersed to distant sites within the

thalamus. It remains to be elucidated whether this topography-dependent modulation

is related to distinct functional roles - such as memory consolidation and sleep

protection - of sleep spindles in these brain regions.

We have recently reported frequency-specific topographical changes within

the spindle frequency range after manipulation of sleep pressure (Knoblauch et al.,

2002). Thus, both circadian and homeostatic processes affect specific frequencies

within the spindle frequency range and this in turn depends on brain region. These

results emphasize the highly local and frequency-specific nature of sleep spindle

regulation.

Conclusions
The present data show that the close temporal association between the melatonin

secretory phase (“biological night”) and sleep spindle characteristics clearly depends

on brain topography. They provide further evidence for a brain-region-specific

modulation of sleep spindles, which is regulated by the endogenous circadian

pacemaker, and strengthens the potential role of sleep spindles as a mechanism by

which the SCN facilitates sleep consolidation.
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Chapter 5

Concluding Remarks

In this thesis, spindle activity and spindle characteristics were studied in a recovery

night after sleep deprivation, and in naps occurring either during the biological night

(the period of melatonin secretion) or -day. Whereas the night following sleep

deprivation represents a condition of high homeostatic sleep pressure, the biological

night can be considered as a state of high circadian pressure for sleep. Both

conditions substantially affect EEG spindle activity (Figure 1). By separately

analyzing distinct spindle parameters, our data provide more detailed insight into the

regulation of sleep spindles than can be obtained by spectral analysis alone.

Spindle density was reduced after SD, and enhanced during the biological

night compared to the day. The reduction of spindle density after SD confirms the

concept of an inverse homeostatic relationship of sleep spindles and slow waves

(Borbély et al., 1981; Dijk et al., 1993; Finelli et al., 2001a). This relationship is

probably based on the dependence on different levels of membrane potentials, which

implies an incompatibility of these two types of oscillations at the level of single

neurons (Nuñez et al., 1992; Steriade et al., 1991). Our data indicate that under high

homeostatic sleep pressure, the level of hyperpolarization in neuronal populations in

the thalamus and cortex is enhanced. A higher number of neurons is hyperpolarized

enough to fire in the slow wave-, instead of the spindle mode. Thus, the ratio

between sleep spindles and slow waves is a sensitive marker for homeostatic sleep

pressure (see also Figure 3 of Chapter 2).

Spindle amplitude was enhanced, and frequency variability within a spindle

reduced after SD and during the biological night. The amplitude of a wave with a

given frequency in the EEG reflects the size of the neuronal population that oscillates

in synchrony with this frequency (Amzica and Steriade, 1998). The increase in

spindle amplitude, together with the reduction in intra-spindle frequency variability,

indicates a higher level of synchronization under high sleep pressure both after sleep

deprivation and at the circadian phase for sleep.
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The circadian modulation of sleep spindles is such that spindle density is high

during the biological night. One proposed function of sleep spindles is to gate

sensory transmission through the thalamus to the cortex during sleep (Steriade et al.,

1993). The circadian modulation of sleep spindles with high spindle density during

the biological night may represent a mechanism by which the circadian pacemaker

reduces sensitivity to sensory input, and thus enhances sleep consolidation during

the normal sleep phase (Dijk et al., 1997). Slow wave activity, in contrast, is only

slightly affected by circadian phase (Dijk and Czeisler, 1995; Dijk et al., 1997). While

the sleep homeostat modulates SWA to adjust sleep depth to different levels of

homeostatic need, the circadian system seems to modulate sleep spindles to

consolidate sleep at the appropriate circadian time.

A common feature of homeostatic and circadian spindle modulation is the

reduction of spindle frequency both after sleep deprivation and during the biological
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Figure 1. Homeostatic and circadian modulation of spindle frequency activity. EEG power density
between 11 and 17 Hz during NREM sleep (stage 2-4) for the midline central derivation (Cz) during
the baseline (white symbols) and recovery (black symbols) night after SD (left), and for daytime
naps (white symbols) and nighttime naps (black symbols, right). Mean values, n=16.
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night. The significance of this phenomenon is unclear. It remains to be elucidated

whether low-frequency spindles are particularly effective in gating sensory throughput

to the cortex, and thereby in increasing sleep consolidation. The finding that both

benzodiazepines and daytime administration of melatonin enhance low-frequency

spindle activity in particular (Borbély et al., 1985; Brunner et al., 1991; Dijk et al.,

1995; Trachsel et al., 1990) would corroborate such a hypothesis.

Regional differences

The present thesis demonstrates that both homeostatic and circadian processes

affect spindle activity in different brain regions with different strength. After SD, the

reduction in spindle density was most pronounced in the frontal derivation. The

increase of SWA after SD also exhibits a frontal predominance (Cajochen et al.,

1999; Finelli et al., 2001b). This local accentuation of the inverse relationship

between slow waves and sleep spindles further supports the hypothesis that frontal

brain areas are particularly sensitive to sleep loss (see Introduction) and that also

locally, high sleep pressure is accompanied with a higher degree of

hyperpolarization.

The circadian modulation of sleep spindles was most pronounced in the

parietal, and less pronounced in the frontal derivation. Frontal and parietal sleep

spindles also differ in their frequency (Anderer et al., 2001; Gibbs and Gibbs, 1950;

Jobert et al., 1992; Scheuler et al., 1990; Werth et al., 1997; Zeitlhofer et al., 1997;

see Introduction). It remains unclear whether these differences between frontally and

parietally recorded spindles indicate different functional significance. The finding that

the increase in spindle density after a declarative learning task was most pronounced

in the frontal derivation (Gais et al., 2002) suggests that local features of sleep

spindle distribution could be related to activity in specific brain regions during the

preceding waking period, and/or that sleep spindles in frontal brain areas might be

particularly involved memory consolidation.

Taken together, the studies presented in this thesis demonstrate that both

homeostatic and circadian processes affect spindle activity in different brain regions

with different strength. This indicates that specific brain areas are sensitive to sleep

loss or to alterations in the phase relationships between the sleep-wake cycle and
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the circadian pacemaker, and emphasizes the local nature of sleep regulation. An

interesting goal for further studies would be to reveal if such state-dependent regional

aspects represent use-dependent processes and if they can be related to the

proposed functional relevance of sleep spindles, that is memory consolidation and

sleep protection.
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