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Chapter 1

Introduction

Even though the phenomenon of magnetic ordering in solids was already known to the
ancient Greek1, the microscopic understanding of why certain materials show magnetic
order dates from this century. In particular, even though some form of magnetic do-
mains was already expected by Weiss when he formulated his theory of Ferromagnetic
ordering in 1907 [1], direct experimental evidence of their existence was only provided
in 1931 by measurements of v. H�amod and Thiessen [2] and Bitter [3]. In these experi-
ments, the domain structure was determined by the imaging of small magnetic particles
that decorate regions with high magnetic stray �elds. This decoration is due to the in-
teraction force between these particles and the sample stray �eld. Interestingly enough,
the reason why the domains were formed was still unclear, and was only clari�ed in
1935 by Landau and Lifschitz.

The phenomenon of Superconductivity on the other hand, was discovered much
more recently in 1911 by Kamerlingh Onnes. After its discovery, it took until 1933, when
Meissner and Ochsenfeld found that superconductors are ideal diamagnets, repelling
the magnetic 
ux from their inside, even if the �eld is applied before the superconductor
becomes superconductive. Again, the existence of domains was �rst predicted from the
theory published by Landau in 1937, but it took until the �fties before the �rst magnetic

ux structures in superconductors were imaged, again using the decoration technique
[4]. Thus, even though the theoretical understanding of the domains in ferromagnets
and superconductors evolved almost simultaneously, the �rst direct observation of the
latter took 23 years longer, which was probably due to the experimental di�culties of
studying superconductors.

Magnetic force microscopy (MFM) is a relatively new technique for imaging these
magnetization structures. It combines the properties of the decoration technique (the
contrast formation is due the magnetic interaction between the stray �eld of the sam-
ple and a small magnetic particle) with the properties of the scanning force microscopy
technique developed by Binnig, Quate and Gerber [5] (measuring the interaction be-

1Thales of Miletus, the �rst person to be active in the �eld of Phil. II, is generally credited to be
the �rst to have studied electricity and magnetism around 600 BC. Independent from whether this
is true or not, it is a fact that the names of both electricity and magnetism are derived from the
ancient Greek language: The term electricity is derived from the greek word for amber, ������o�, a
substance in which electrostatic charging was observed, the term magnetism is derived from the greek
name M�
�����, an area in northern Greece where magnetic stones were found.

1



2 CHAPTER 1. INTRODUCTION

tween the particle and the sample as a function of position through the de
ection of
a cantilever beam). The �rst MFM measurements were made on ferromagnets [6, 7].
Again, the �rst observation of magnetization structures in superconductors took some-
what longer, until 1994 [8]. Nowadays with time and e�ort, the experimental di�culties
of working with MFM at low temperatures have been diminished by the development of
better instruments and improved measurement methods. The measurements presented
in this thesis were made with such an instrument, the design of which is discussed in
chapter 2.

Compared to other types of magnetic imaging,2 the advantages of the MFM tech-
nique are a high spatial resolution imaging and relatively low requirements for sample
preparation. Another, unique property of the MFM is that it can be used as a tool for
determining the response of the sample to a local applied �eld and for modifying the
sample. One of the main disadvantages of the MFM until now has been the di�culty
to interpret the measured signal. In recent years, the improvement in the quality of
the instrument and the subsequent improvement of the measurement quality has al-
lowed the development of procedures that allow the quantitative interpretation of the
measured contrast. The methods developed for quantitative evaluation of the MFM
measurements as part of this thesis-work are described in more detail in chapter 3.

The application of the MFM method to the analysis of ferromagnetic materials is
described in chapter 4. A point of interest in the research of these materials is the
in
uence of the interfaces between ferromagnetic and other materials on the magnetic
properties of the sample. Here, this in
uence was studied using Cu/Ni/Cu/Si(001)
sandwich structures, because they show a particularly interesting dependence of the
preferred orientation of the magnetization on the thickness of the nickel layer.

Finally, the application of the MFM method to the study of superconductors is
described in chapter 5. In addition to the imaging of the magnetic structures occurring
in the superconductor, the use of the MFM to study the response of the superconductor
to a local applied �eld is discussed.

2see for example the overview in [9]



Chapter 2

Instrument

The experiments in this work were performed with a low{temperature scanning force
microscope and its prototype, operated at room{temperature. These instruments were
developed and built in the group of Dr. H.J. Hug. Although the design and operation of
the instrument has already extensively been described in the literature [10, 11], some of
the aspects of the operation of the instrument will be repeated and somewhat expanded
on here. This is done to clarify the aspects of scanning force microscopy that are directly
relevant to the contrast formation mechanism in magnetic force microscopy. First some
of the general properties of scanning force microscopes are discussed in section 2.1
and then the di�erent operation modes in which measurements can be made with these
instruments are discussed in section 2.2. Finally, the desired properties of the probe{tip
and the cantilever it is mounted on, are discussed in section 2.3.

2.1 General Properties of Scanning Force Microscopes

At the core of any scanning force microscope is a 
exible cantilever beam, with a tip
mounted on its end. During the measurement, the de
ection signal of this cantilever is
used to determine the interaction between the tip and the sample. To obtain an image
of the tip{sample interaction, the tip position is scanned relative to the sample. In this
section, he tip{sample positioning system is discussed �rst, then a general description
of the imaged interaction is given.

2.1.1 Tip{Sample Positioning

The instruments used for the measurements, presented in this thesis, has the ability
to change the relative tip{sample position by several means. A piezo{tube scanner is
used for positioning of the sample with respect to the spatially �xed cantilever with
nanometer{scale precision. During scanning, the non-linearities of the tube scanner are
compensated using feed{forward compensation [11], to ensure that the measured grid{
points are equidistant, and at reproducible positions. In addition to the piezo{tube,
two piezo motors are used for changing the tip{sample position with micrometer{scale
precision. One motor moves the sample closer or further away from the tip, the other
motor moves the cantilever parallel to the sample. To simplify the description of the
tip{sample positioning, it is assumed that only the tip moves, and the the sample is

3



4 CHAPTER 2. INSTRUMENT

on a �xed position. Then, a coordinate system can be de�ned as shown in �gure 2.1.
The y{direction is parallel to the projection of the cantilever axis on the sample, +y is
the direction along the cantilever, away from the tip. The z{direction is perpendicular
to the sample surface, +z is the direction away from the sample. The x{direction is
obtained from the cross product of the y{ and z{direction. According to this de�nition,
the fast scan direction in the instrument (left to right in the images) is usually the
x{direction, whereas in the often used Nanoscope III, the fast scan direction is usually
the y{direction. For the quantitative interpretation of the contrast in MFM (section
3.2, it is important to take into account that the cantilever is not exactly de
ected in
the z{direction, but in the direction of of the surface{normal to the cantilever, n. In
the instrument, the angle, �, between the cantilever normal and the z{direction is -12o.

z

yx

θ
n

Mtip

B 
      

(x,y)z,tip

d

M        (x,y)sample

Figure 2.1: Stray �eld of the tip and coordinate system.

Tests of accuracy of the positioning system were previously described in the thesis
work of Bruno Stiefel [10]. To estimate the magnitude of the signal error due to the
remaining position errors, two consecutive measurements were made under identical
conditions with the prototype instrument, one of which is shown in Fig. 2.2a. The
elapsed time between these measurements is approximately 11 minutes. The di�erence
between these measurements is shown in Fig. 2.2b.1 The root-mean-squared (rms) error
between the two, after subtracting the noise (see section 2.1.2), is 0.12 Hz, which is 2%
of the displayed range of values in Fig. 2.2a. Analysis of the di�erence between these
images shows that it is mainly caused by a relative position shift of less than half a
pixel, being less than 0.2% of the scan range. The stability of the tip{to{sample distance
was also tested. The distance was determined by the following experimental procedure.
After the acquisition of MFM data the scan is stopped. After waiting one minute, the
sample is slowly approached towards the tip until the cantilever snaps into contact
with the sample. Then the sample is approached further until the cantilever de
ection
has the same value as it had at the start of the approach. The total displacement is
assumed to be the tip{to{sample distance. From repeated measurements it is found
that the drift between the start and the end of the measurement (8.5minutes) is of
the order of 1 nm. The errors in the position of the measured grid points may be
due to drift of the microscope by thermal expansion, and thermally activated piezo{

1Note the di�erence in the frequency shift scales



2.1. GENERAL PROPERTIES OF SCANNING FORCE MICROSCOPES 5

creep. However, it is hard to separate between the two. Casual observations on the low
temperature instrument show that the lateral position of the tip remains approximately
constant over a temperature range of 70K, and that the tip{sample distance is virtually
constant at low temperatures. This suggests that piezo{creep is the main cause for the
lateral position errors. On the other hand, the constant tip{sample distance is not
necessarily due to reduced creep, but may also be due to a more stable temperature of
the microscope.

-3

-2

-1

0

1

2
[Hz]
δfa)

1µm
-0.6

-0.4

-0.2

[Hz]
δf

0

0.2

0.4

1µm

b)

Figure 2.2: Measurements used for estimating magnitude of the signal error due to
typical position errors.
a) MFM data acquired on a Cu/200 nmNi/Cu/Si(001){�lm at a tip{to{sample distance
of 52 nm.
b) Di�erence between the MFM measurement shown in panel a) and a second one,
obtained under (nominally) identical conditions.

2.1.2 The Tip{Sample Interaction

For the description of the tip sample interaction, the cantilever is usually modeled as

exible beam, clamped at one end. The dimensions of the beam are the width, w, its
thickness, d and its length, l. Such a beam has several oscillation modes, each with
its own resonance frequency. However, it is usually su�cient to model the cantilever
oscillations in the neighborhood of one resonance frequency. In the neighborhood of the
�rst resonance, the cantilever behaves as a mass{spring oscillator. The spring constant,
cL of the spring can be calculated using [12]:

cL =
E w d3

4 l3
; (2.1)

with E the Young modulus of the beam material (for Si, E = 1.25 1011 [N/m2]). The
free resonance frequency of the cantilever, f0 is computed using:

f0 =
1:8731042 d

4
p
3� l2

s
E

�
(2.2)

=
1:8731042

4
p
3�

r
cL
m

(2.3)

with � the speci�c density of the beam material (for Si, � = 2.33 103 [kg/m3]), and m
the mass of the beam (= w l d �). Using these equations, one can determine the spring
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constant of the cantilever from measurements of its free resonance frequency if the
thickness of the cantilever is not known:

cL = 59:305

s
�3

E
f30 l

3w : (2.4)

The frequency response of the de
ection dn in the direction of the lever normal vector
n to the normal component of the force Fn as a function of frequency f is given by:

dn(f) =
1=cL

1 + if=(f0Q)� (f=f0)2
Fn(f) ; (2.5)

with Q the quality{factor of the oscillator, which is determined by the damping of the
cantilever. If a (constant) force derivative acts on the tip, the resonance frequency, fres,
is shifted in frequency:

fres
f0

=

s
1� 1

cL

dFn
dn

� 1� 1

2cL

dFn
dn

(2.6)

The error made by the approximation of the square root is usually negligible. In an
MFM experiment, the change in resonance frequency is seldom more than 1% of the
resonance frequency in which case the error in the derivative is 1 10�4 times the force
constant. However, if the frequency shift is this large, it is likely that the force derivative
varies over the oscillation amplitude. In this case, the relation between force derivative
and frequency shift becomes much more complicated, as is the case in most true{
atomic{resolution experiments [13].

The accuracy of the measured interaction is limited by the accuracy of the de
ec-
tion detection and by the noise caused by thermal excitation of cantilever. Of these
sources, the thermal noise presents the more fundamental limit to the sensitivity of
the measurement. The spectral power density of the thermal noise in the displacement,
Sdd(f), can be found using equation 2.5 and the equipartition theorem [14]:

Sdd(f) =
4�kBT

Qf0cL

1

(1� (f=f0)2)2 + (f=(f0Q))2
[m2/Hz] ; (2.7)

with kB the Boltzmann constant, and T the absolute temperature. The relation between
the displacement noise and the measurement noise is given in section 2.2.

2.2 Measurement Modes

There are several modes of operation of the instrument for detecting the tip{sample
interaction. These measurement modes can roughly be divided into static and dynamic
operating modes. In the static modes, the force acting on the tip is measured through
the static de
ection of the cantilever, in the dynamic modes, the force derivative acting
on the tip is measured through the change in the dynamic behavior of the cantilever,
as described by equation 2.5. Both modes can further be subdivided into the constant
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interaction modes and the variable interaction modes. In the variable interaction modes,
the interaction is simply measured as a function of position, whereas in the constant
interaction modes, a feedback loop to the z-position of the tip keeps the interaction
at a preset value. Initially, the constant interaction modes were also used in MFM
measurements. However, these measurements are di�cult to interpret, and therefore
most MFM measurements made nowadays do not use z{feedback.2

2.2.1 Static Modes

In the static mode, the measured de
ection of the cantilever is proportional to the force
on the tip. In the used instrument, the de
ection is measured using a �ber{optical
interferometer [15]. The �ber{optic interferometer allows two methods for measuring
the cantilever de
ection. The �rst method is the direct measurement of interferometer
signal. However, the relation between signal and de
ection is non-linear because the
signal varies sinusoidally with the cantilever{de
ection. Moreover, the relation between
the signal and the de
ection becomes ambiguous for a de
ection larger than one eighth
of the wavelength of the interferometer light, due to the sinusoidal variation. The second
method circumvents these problems by the use of a feedback loop. This feedback loop
keeps the distance between the reference mirror and the cantilever constant. In the
�ber{optic interferometer, the reference mirror is the �ber end, which can be moved by
a piezo. Thus, the feedback signal to the �ber{piezo is proportional to the cantilever
de
ection. This method was used to perform the static measurements in this thesis.

The force sensitivity of the static mode, Fmin;static, determined by the thermal
vibrations of the cantilever can be calculated using equation 2.7. The low{frequency
rms amplitude noise is found by inserting f = 0, multiplying the noise density with the
measurement bandwidth, B, and taking the square root. The force noise is then equal
to:

Fmin;static =

s
4kBTcLB

2�Qf0
: (2.8)

An example of a static measurement is shown in �gure 2.3 c). It was made in air
using the prototype instrument on the second MFM reference sample produced for
the Concerted Action on Magnetic Storage Technology (CAMST) project [16] using a
cantilever with a tip produced by electron beam induced deposition of carbon at the
University of Twente (see section 2.3 for a full description of the cantilever ).

2.2.2 Dynamic Modes

In the dynamic modes, several methods are used to determine the force derivative from
the dynamic behavior of the cantilever. The simplest method to implement is measure-
ment of the change in the oscillation amplitude of the cantilever when it is excited by
a sinusoidal signal with a constant amplitude and a frequency slightly below or above
the free resonance frequency of the cantilever. However, this method is prone to mea-
surement artifacts due to other causes for changes in the detected amplitude, such as

2The measurement modes are often incorrectly named by commercial manufacturers of scanning
probe instruments. For example, they often use the term contact mode for the static modes, and non-

contact mode or even MFM mode for the dynamic modes.
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a)

0.5µm

c)

0.5µm

b)

0.5µm

Figure 2.3: Imaging properties of the static and dynamic measurement modes.
a) dynamic measurement in vacuum on the CAMST II sample.
b) simulation of a static measurement using the measurement data shown in panel a).
c) static measurement made in air on almost the same position as the measurement in
panel a)

drift in the de
ection detection system and changes in damping of the oscillation. Fur-
thermore, the maximum measurement speed is inversely proportional to the Q{factor
of the cantilever. Thus, it is not possible to perform high{sensitivity measurements at
a reasonable speed. A faster and more robust method detects the phase shift between
the excitation signal and the cantilever de
ection, when the cantilever is excited at
a the free resonance frequency of the cantilever. This method has the disadvantage
that the range in which the phase shift is proportional to the frequency shift becomes
very small for cantilevers with a high Q{factor. These problems are circumvented in
the third method, that uses FM{detection. This method employs a feedback of the
cantilever de
ection to the cantilever excitation to create an oscillator with a stable
oscillation amplitude. If the phase shift of the feedback is approximately 90o, the os-
cillation frequency is equal to the resonance frequency of the cantilever. In addition to
the resonance frequency, changes in the second dynamic property of the cantilever, the
Q-factor, can also be detected in the FM-dynamic mode. This is realized by measuring
the amplitude of the excitation signal that is needed to keep the oscillation amplitude
at a preset value. This excitation amplitude signal can be used to detect non-reversible
interactions between the tip and the sample.

Albrecht et al. found the minimal detectable force derivative in the FM-dynamic
mode using equation 2.7 [17]:

dFn
dn

jmin =
1

Arms
�
s
4kBTcLB

2�Qf0
; (2.9)

with Arms the root{mean{squared vibration amplitude of the lever. An example of an
FM{detection measurement is shown in �gure 2.3a. It was made with the same tip on
approximately the same position as the static measurement, but now in vacuum, with
Arms = 7nm and a measurement bandwidth of approximately 100 Hz.

From equation 2.9, one could conclude that the vibration amplitude should be made
as large as possible, to obtain a small signal to noise ratio. However, this equation only
holds as long as the force derivative acting on the tip is approximately constant. The
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error made by this approximation will increase with increasing vibration amplitude,
because the force derivative acting on the tip generally decreases with the tip{sample
distance. If one wishes to apply the quantitative interpretation method of the MFM
measurements presented in this thesis, the vibration amplitude must be chosen so, that
the error caused by the constant derivative approximation is insigni�cant. If this is
not the case, the quantitative interpretation of dynamic measurements becomes more
di�cult [13]. To demonstrate the e�ect of increasing the vibration amplitude, a series of
measurements were made at a constant average distance to the sample with increasing
vibration amplitude (�gure 2.4). As the vibration amplitude increases from the 2 nm
to 10 nm, the noise decreases, but the signal remains the same. For larger vibration
amplitudes, the signal starts to increase, and the resolution of the image improves.
For vibration amplitudes larger than 40 nm, topography artifacts occur in the image.
Although the image resolution improves for larger vibration amplitudes, increasing the
vibration amplitude is not a good approach if one wishes to obtain a better resolution.
A more suitable method for obtaining a better resolution is to decrease the vibration
amplitude and the tip{sample distance, until topography artifacts occur (�gure 2.4e).
Nevertheless, the signal{to{noise ratio of the large vibration amplitude remains higher
for long wavelengths, which may be useful in some cases. A more quantitative evaluation
of the advantages of large amplitude MFM measurements is given in [18].

0.5µm

a), 2 nm c), 20 nm δf
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Figure 2.4: The e�ect of a increase of vibration amplitude on the image. As the ampli-
tude is increased from 2 to 40 nm (panel a-d), the image contrast changes and the noise
decreases. A better resolution can be obtained by decreasing the vibration amplitude
to 2 nm and then decreasing the tip{sample distance (panel e). The measurements were
made on the CAMST II sample using a cantilever with a Twente{type EBID tip.
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2.2.3 Comparing the Static and Dynamic Modes

When comparing the images of measurements obtained in the static and the dynamic
mode in �gure 2.3, the �rst \advantage" of the dynamic mode becomes apparent: the
images of the measurements obtained in the dynamic mode have a sharper contrast
to the human eye, because the responsivity maximum lies at a higher frequency. To
demonstrate that measurements made in the static mode and measurements made
in the dynamic mode basically contain the same information, the relation derived in
section 3.2.4 can be used. There it is shown that in magnetic force microscopy, the
force can (approximately) be calculated from the force derivative in Fourier space. The
Fourier components of the static image are calculated from those of the dynamic image
by dividing them by 2�=�, with � the wavelength of the �eld variation. This procedure
was applied to create �gure 2.3b.

Since both measurements contain the same information, the advantage of one mode,
compared to the other must lie in the sensitivity of these modes. Using equations 2.8
and 2.9, one �nds that the ultimate sensitivity of the dynamic mode is superior to
the static mode for � < 2�Arms [16]. Thus, for an Arms of 7 nm, the sensitivity of the
static mode should be superior for stray �eld variations of a wavelength down to 40 nm.
Of course, this comparison can not be made for the shown measurements, because the
noise is a factor 3 to 5 lower for measurements made in vacuum due to an increase of the
Q{factor. One might expect, that a static measurement made in vacuum would have
a factor 3 to 5 lower noise than the shown static measurement. In practice however,
the thermal noise limit is not reached in the static mode. One reason for this is that
the noise of the detection system is large at low frequencies. This is due to laser noise
with a 1=f{like behavior of the power spectrum and to drift. Moreover, the noise in the
detected de
ection actually increases in vacuum. It is assumed that this additional noise
is due a decreased damping of low{frequency mechanical vibrations of the instrument.
Because this increase does not occur at high frequencies, the dynamic operation modes
are the most suitable for MFM measurements in vacuum and for displacement sensors
with high low{frequency noise.

2.3 Levers and Tips for Magnetic Force Microscopy

As in any type of scanning probe microscopy, the probe plays an essential role in the
quality of the MFM measurements. In the MFM, this probe consists of a magnetic tip,
mounted on a cantilever. In the following, the properties of the probes are discussed,
separated in properties of the lever, non{magnetic properties of the tip and magnetic
properties of the tip.

2.3.1 Cantilever Properties

The cantilever must have a high force sensitivity, well de�ned mechanical constants and
an as small as possible coupling between vibrational and torsional oscillation modes. As
was discussed in section 2.2, the measurement sensitivity is proportional to

p
cL=Qf0.

Inserting equations 2.1 and 2.3, and assuming Q is independent of the cantilever geom-
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etry, the sensitivity, S is given by:

S / 4

s
6:06675 102�Ew2d4

l2
: (2.10)

Thus, a long thin wire is ideal for obtaining a high sensitivity. However, wires have
a strong coupling between vibrational and torsional vibration modes, low Q-factors,
irreproducible mechanical characteristics, and are hard to use in a �ber{optic interfer-
ometer [19]. Therefore, it is more attractive to make the thickness of the cantilever as
small as possible, and leave its width relatively large. To produce such cantilevers, one
must resort to microfabrication techniques. The measurements presented in this thesis
were made using commercial triangular SiNx cantilevers produced by Park Scienti�c
Instruments (now Thermomicroscopes) [20] and Si Pointprobe cantilevers produced
by Nanosensors [21]. The backsides of the SiNx cantilevers were coated with 20 nm
of aluminum at the end of the cantilever, to obtain su�cient re
ection for the inter-
ferometric displacement detection. In general, commercially available SiNx cantilevers
have a better ratio of cL=f0, whereas the Si levers have a higher Q{factor. However,
in the experiments described here, the high Q{factor of the Si cantilevers could not
be exploited due to damping in the magnetic coating of the cantilever. This gives the
SiNx cantilevers a slightly better sensitivity at room temperature (Table 2.1). How-
ever, this problem can be solved in future experiments by using masks during the
evaporation of the di�erent layers. More importantly, SiNx cantilevers are unsuitable
for low{temperature experiments because their de
ection was observed to be too sensi-
tive to changes in temperature. This temperature sensitivity may be due to the strain
in the cantilever caused by the di�erent thermal expansion coe�cients of the SiNx layer
and the pyrex substrate. Another disadvantage of the SiNx cantilevers is their less well{
de�ned spring constant, which is due to variations of the thickness of the cantilever.
Moreover, the spring constant is more di�cult to determine from measurements of the
resonance frequency, because the SiNx cantilever have a triangular geometry, which can
only approximately described as two parallel beams.

2.3.2 Geometrical Tip Properties

The tip apex should be as small as possible, to make it less sensitive to forces of non-
magnetic origin (eg. electrostatic forces, van{der{Waals forces). However, because mag-
netic tips can not be microfabricated at the moment, a non{magnetic microfabricated
tip must be coated with a magnetic material. A further requirement of the tip is that
it must be as long as possible and have a constant diameter. Thus, the requirements
for MFM tips are actually much the same as for tips used in true{atomic{resolution
experiments, where one would like to have a single atom at the end of the tip, and as
little material as possible to support it [13]. In general, the microfabricated Si{tips ap-
proach this ideal much better than the SiNx tips. To improve the SiNx tips, a super{tip
is grown on top of the microfabricated tip by electron beam induced deposition (EBID)
of carbon or hydrocarbons [22, 23]. The two types of tips are shown in �gure 2.5.
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5µm

b)

300 nm

a)

Figure 2.5: a) An electron beam induced deposition (EBID) tip, grown on top of a
pyramid tip on a SiNx cantilever, coated from the side with 10.7 nm Fe and 15 nm Au.
b) Microfabricated Si tip, coated from the side with 7.3 nm Fe and 12 nm Au.

2.3.3 Magnetic Tip Properties

As will be explained in more detail in chapter 3, the magnetization of the ideal MFM
tip is �xed, and the magnetic 
ux emanating from the tip should be small enough to
prevent modi�cation the sample. On the other hand, the 
ux density should be large
in a small area close to the end of the tip, to obtain high resolution and sensitivity. The
maximum obtainable 
ux density is limited by the magnetic material of the coating,
therefore a compromise must be found to obtain a high 
ux density in a relatively
small area, and a low large area 
ux. The optimum balance between 
ux density and
total 
ux must be determined for each sample. Three parameters can be varied in this
optimization: the shape of the non-magnetic tip, the material of the magnetic coating
and its thickness. The optimum shape for the non-magnetic tip is clearly has a small size
in the x{ and y{direction. Furthermore, the tip radius should not vary with z, because
this will give rise to \useless" 
ux (
ux that is spread over a large area) [19, 24]. Such
tips have the additional advantage that it is hard to modify their magnetization state
due to a combination of their magnetic shape anisotropy (see section 4.1.1) and the
apparent di�culty to nucleate a domain wall in the tip. It is to be expected that the
EBID{tips better approximate this ideal than the microfabricated Si tips, which will
be demonstrated in section 3.4. To limit the amount of \useless" 
ux, only one side
of the tip is coated with magnetic material by oblique evaporation in a high vacuum
environment (base pressure in the 10�7mBar range). Furthermore, iron was used as
magnetic material, to obtain a high magnetic moment per volume. A disadvantage of
using iron is that it must be protected against oxidation by a protective coating if the
tip is not prepared and used in a UHV environment. This increases the size of the tip
and the distance between the magnetic part of the tip and the sample is increased by a
few nanometers.3 The use of cobalt as the magnetic coating material might circumvent
these slight problems. Another problem of the use of iron is that the optimal coating
thickness for some samples is so thin (< 4 nm), that it becomes di�cult to fabricate
reproducible magnetic layers in high{vacuum. In such a case, the use of nickel for the
magnetic layer may be a solution, because nickel has an approximately 3.5 times lower
saturation magnetization than iron, and therefore the magnetically equivalent nickel

3As will be shown in section 3.2, this will reduce the image resolution, as it decreases with distance.
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layer is 3.5 times thicker than the magnetically equivalent iron layer.
The properties of the probes used in this thesis are summarized in table 2.1. The

�rst experiments with EBID tips were made with tips produced at the University of
Twente by Leon Abelmann. Later, it was possible to produce EBID tips in Basel with
the help of Daniel Mathys of professor Guggenheim's group. All tips were coated at
an angle of 30 degrees to the cantilever normal, n, using thermal evaporation. Coating
thicknesses were measured in the evaporation direction. The actual thickness of the
coating on the tip is approximately as little as half the measured thickness, due to the
canted orientation of the cantilever, and the canted orientation of the tip surfaces. For
the iron coated tips, a gold layer was evaporated over the iron, to prevent its oxidation.
The force derivative sensitivity in the dynamic mode, dFn;min=dn, was estimated by
measuring an \empty" image, as was suggested in [25]. For all MFM data presented in
this thesis, the measurement bandwidth was 100 Hz and the rms oscillation amplitude
of the cantilever was 7 nm, unless explicitly stated otherwise.

cantilever magnetic magnetic Au
type coating coating coating cL f0 dFn;min=dn

material [nm] [nm] [N/m] [kHz] [�N/m]

Twente EBID Co 20.0 - 0.03 16.3 1.5
Basel EBID Fe 10.7 15 0.03 16.5 1.5
Si Fe 7.3 12 0.2 12.3 3.0

Table 2.1: Properties of the cantilevers used in this thesis
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Chapter 3

Contrast Formation in Magnetic
Force Microscopy

The possible contrast mechanisms in magnetic force microscopy are generally well un-
derstood qualitatively (see section 3.1). However, the magnitude of the contrast is
seldom evaluated in the literature, and when it is evaluated, there is rarely a good
agreement between theoretical predictions of the magnitude of the contrast and the
contrast in the measurements. However, quantitative predictions of the magnitude of
the contrast are desirable for several purposes:

� to predict whether certain experiments can be performed

� to be able to interpret the image, if several contrast mechanisms occur simulta-
neously

� to analyze the micromagnetic magnetization state of the sample, in addition to
its domain structure

Most of the present proposed procedures for the computation of the contrast are
rather complex and/or time consuming [26, 27]. To save calculation time, the evalu-
ation of the contrast is often limited to a \typical" scan{line of the measured image.
In this case, the domain structure should neither change too much in the direction
perpendicular to the direction of the scan{line, nor should it change too much close to
the end of the scan line. This approximation is not always applicable, because domain
boundaries often twist and turn (as is the case for most measurements presented in this
thesis), and because the magnetic interactions have a long range, and deviations at a
considerable distance from the scan{line may in
uence the signal. Therefore, if one is
interested in evaluating more complicated domain structures, a fast method is needed
that can calculate the contrast of the whole measurement.

A simple method for the quantitative evaluation of whole MFM images was proposed
by Mansuripur and Giles [28], and demonstrated by Sch�onenberger and Alvarado [29].
It was shown that in many cases, the image contrast can be elegantly computed in
Fourier space. The methods described in section 3.2 expand the applicability of this
method. One of the main improvements is a more practical, and probably more accurate,
procedure for the calibration of the measured signal and the stray �eld of the tip.

15
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This procedure is presented section 3.3. To demonstrate the necessity of using such a
calibration procedure, the contrast of the calibrated tips is compared to some simple
models of the contrast mechanism in section 3.4. Finally, the calibration of the MFM
is used to compare the stray{�eld sensitivity of the MFM to that of other scanning
stray{�eld measurement methods in section 3.5.

3.1 Contrast mechanisms

The image contrast is determined by the change in the force or force derivative exerted
on the tip, when it is scanned over the sample. The magnitude of the measured inter-
action depends on the distributions of the sample stray �eld and the tip magnetization
distribution. When the magnetization distribution of the tip, and the stray �eld of
the sample are modi�ed by one another, the measured interaction may depend on the
tip{sample position and on the history of the tip{sample position. Depending on the
extent of modi�cation of the tip magnetization and the sample stray �eld, the contrast
formation processes in magnetic force microscopy can be divided in three categories [9]:

Negligible modi�cation As long as the magnetization of the tip, and the distribution
of the stray �eld of the sample do not change with the tip{sample position, the
measured contrast can be described as a linear operation on the stray �eld of the
sample.

Reversible modi�cation The distribution of the stray �eld of the sample or the
magnetization of the tip can change with the tip{sample position. As long as all
changes in the system are reversible, the measured contrast is a function of the
tip{sample position only.

Hysteretic, or Irreversible modi�cation The distribution of the stray �eld of the
sample, or the magnetization of the tip are changed irreversibly during the scan.
The observed contrast does not only depend on the actual tip{sample position,
but on the history of the tip{sample position.

To simplify the prediction of the contrast, the discussion of the contrast mechanisms is
limited to those cases in which there is negligible modi�cation of the tip. One reason
for doing this, is that this approach appears to be a valid approximation for explain-
ing the measurements presented in this thesis, as is demonstrated in paragraph 3.2.5.
Furthermore, the practical use of the mechanisms that allow modi�cation of the tip is
very limited, although it can not always be avoided. It has been argued that an ide-
ally soft magnetic tip, i.e. a tip with a magnetization proportional to the stray �eld,
would be more suitable for imaging soft magnetic samples, because it would modify
the sample magnetization to a lesser extent. However, such a tip is di�cult to produce
in practice, due to the inherent shape anisotropy of the tip, which causes it to have a
preferential magnetization direction. The contrast due to reversible changes in the tip
magnetization is then due to a small deviation from the preferential direction, which
is added to the contrast due to the average tip magnetization. Understandably, this
makes quantitative analysis of the contrast more complicated. Another possibility to
obtain a tip magnetization that is proportional to the stray �eld of the sample, is the
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use of superparamagnetic tips. Such a tip is so small, that thermal excitations of the tip
magnetization are strong enough to reverse the tip magnetization, and the time average
of its magnetization is proportional to the applied �eld. However, such tips have not
been demonstrated in practice. Finally, the case of hysteretic tip modi�cations is quite
useless for magnetic force microscopy.

If one now considers the modi�cation of the sample stray �eld, each of the modi�-
cation cases can be applied to obtain information on di�erent properties of the sample.
In the following, some of the properties that can be obtained are discussed for several
sample types.

3.1.1 Negligible Sample Modi�cation

To determine whether the sample modi�cation is negligible, one can use the test given
in section 3.2.5. When imaging ferromagnetic samples, the modi�cation of the sample
is generally negligible for samples with a su�ciently large coercive �eld. How high
this coercive �eld must be is unclear, because it is a measure for how sensitive the
sample is to a homogeneous �eld, whereas the �eld of the tip is very inhomogeneous.
It is reasonable to expect that the modi�cation of the sample is still small when the
maximum tip �eld is of comparable size to the coercive �eld of the sample. As will be
shown in chapter 4.2.1, the �eld measurements can, using certain assumptions, be used
to reconstruct the magnetization of the sample. In addition to determining the domain
pattern, the reconstruction can be applied to determine the magnetization structure
within the domains, or inside the domain walls.

When imaging type{II superconductors, the imaging of the �eld of strongly pinned
vortices is an example of the negligible modi�cation case, as long as the vortices are
not moved too much. It should be possible to determine the local penetration depth
and perhaps the correlation length of the superconductor from the magnetic �eld mea-
surements. An evaluation of the vortex contrast in (type{II) high{Tc superconductors
is presented in section 5.1.2.

The imaging of current patterns in \normal" conductors may also be modi�cation
free, as long as the Hall e�ect caused by the tip is small. This is the case in conductors
with a small width, or in Hall sensors in the presence of a relatively large external �eld.
The Fourier-space computation of the contrast of a current pattern limited to the sample
plane was described for the purpose of analyzing scanning SQUID1 measurements [30]
of in�nitely thin samples. The description was later extended to thick �lms for the
evaluation of magneto{optical measurements on superconductors [31, 32]

3.1.2 Reversible Sample Modi�cation

When imaging magnetic samples, the modi�cation of the sample produces an additional
signal that depends on the magnetic anisotropy and exchange strength of the sample.
For small changes of the sample magnetization, the contrast can be calculated using
the model of Abraham and McDonald[33], which is a variant of the well known ��

method [34]. However, if the perturbation of the magnetization becomes large, or the
magnetic exchange energy of the sample can not be neglected, the response of the

1Superconducting QUantum-Interference Device
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sample becomes non{linear. Then this model can not be used anymore, and evaluation
of the image contrast must be performed using much more complicated micromagnetic
calculations.

When imaging superconductors, the Meissner repulsion in the London limit is a
linear, reversible interaction. Thus, the MFM signal over a superconductor may vary
as the Meissner repulsion varies. The penetration depth of the superconductor can be
determined from the distance dependence of the Meissner force. This was demonstrated
for the simple case where the Meissner force does not depend on the lateral position of
the tip as described in [35] and section 5.1.1.

3.1.3 Irreversible Sample Modi�cation

The subject of irreversible modi�cation using MFMs is largely unexplored. On magnetic
samples, nucleation of magnetic domains has been reported [36], but no evaluation of the
involved forces was made. A change in the damping of the tip vibration close to domain
boundaries was reported by Gr�utter et al. [37], but the explanation of the contrast [38]
is doubtful because the measurements were made in the constant force gradient mode.
In this mode, the distance between the tip and sample is varied during the measurement
to keep the magnetic signal constant. Because this distance change typically occurs near
the domain boundaries, the change in damping may well be due to the distance change.
In superconductors, the nucleation of vortex bundles was demonstrated [39, 40], but the
interaction forces involved were not measured. In principle, it should also be possible
to study the nucleation of superconducting domains in the neighborhood of the critical
�eld.

3.2 Calculation of the Contrast for the Negligible Modi-
�cation Case

In this section the calculation of the measured contrast from the magnetic stray �eld of
the sample is discussed. The computation of the stray �eld for various sample types is
left to chapters 4 and 5. As long as the magnetization of the tip is not modi�ed by the
stray �eld of the sample, the magnetic force on the tip, F, can in principle be calculated
in direct space using:

F(t) = �0

1Z
�1

Hsample(x
0; y0; z0; t)

� r0 � �Mtip(x
0 � x(t); y0 � y(t); z0 � z(t))dx0 dy0 dz0 (3.1)

Here, the vector (x; y; z) represents the position of the tip relative to the sample, r �
(@=@x; @=@y; @=@z) is the nabla operator,Mtip(x

0; y0; z0) is a function that describes the
magnetization of the tip, with the origin of the (x0; y0; z0) coordinates at the tip apex,
andHsample the magnetic stray �eld of the sample, with its origin at the sample surface.
In the case of reversible modi�cation, the t{dependence of the �eld of the sample can
be replaced by a dependence on the position of the tip, (x; y; z). In the case of negligible
modi�cation of the sample, the dependence of the sample stray �eld on the coordinate
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of the tip can be left out as well, and the force is given by a 3{dimensional correlation
integral:

F(x; y; z) = �0

1Z
�1

Hsample(x
0; y0; z0)

� r0 � �Mtip(x
0 � x; y0 � y; z0 � z)dx0 dy0 dz0 (3.2)

In the remainder of this section, only this type of contrast formation is discussed. It
will be shown, that in this case, 2{Dimensional Fourier analysis is an e�cient tool for
the calculation of the tip{sample interaction.

3.2.1 Magnetostatic Fields in Fourier Space

Before deriving the force experienced by the tip in Fourier space, it is useful to dis-
cuss the Fourier transform itself, and derive some properties of magnetostatic �elds in
Fourier space. First, the de�nition of the Fourier transform used in this thesis must be
given, as many, slightly di�erent de�nitions of the Fourier transform exist (see [41, 42]).
Here, the Fourier transform pair is de�ned as:

G(k) =

1Z
�1

g(r)e�ik�rdx dy (3.3)

g(r) =
1

4�2

1Z
�1

G(k)eik�rdkx dky ; (3.4)

with r = (x; y) and k = (kx; ky). The function G in Fourier space has the units of the
spectral density of g. In accordance to general practice, the same name and symbol
will be used for quantities in direct space and in Fourier space in spite of the di�erent
units. To distinguish between the two, the coordinates (x; y) are used for dimensions
in direct space, whereas (kx; ky) are used for dimensions in fourier space.

In practice, the continuous Fourier transforms can only be approximated, because
the integral of the Fourier transform is taken over in�nite, continuous space, whereas
the measurements, are made at a discrete number of points, Nx �Ny in a �nite space
with an area lx� ly. For the actual calculations, one must approximate the continuous
transform by the discrete transform pair:

G(m;n) = lxly
1

NxNy

X
o;p

g(o; p) exp

 
�2�i(mo+ np)

NxNy

!
(3.5)

g(o; p) =
1

lxly

X
m;n

G(m;n) exp

 
�2�i(mo+ np)

NxNy

!
(3.6)

Details on the implementation of the discrete Fourier transform can be found in [42, 43].

It is useful for the calculation of the force on the tip to derive some properties of
the magnetic �eld of the sample in Fourier space:



20 CHAPTER 3. CONTRAST FORMATION

� The area above the sample is current free and does not contain time{varying
electrical �elds, therefore the rotation of the stray �eld is zero (r�H = 0). The
stray �eld can then be expressed as the gradient of a magnetic scalar potential,
�M : H = �r�M . To calculate the magnetic scalar potential, it is useful to de-
�ne magnetic charges, in correspondence to electrostatics. The magnetic volume
charge density, �M and the magnetic surface charge density, �M , are de�ned as:

�M � �rM (3.7)

�M � (Mi �Mo) � n (3.8)

The magnetic scalar potential can then be calculated using the the Laplacian of
the scalar potential, given by r2�M = ��M , and

@�M;i

@n � @�M;o

@n = �M .

� There is no magnetization outside the sample, therefore the Laplacian of the
scalar potential is equal to zero.

� The nabla operator is described in 2D{Fourier space as: r = (ikx; iky; @=@z).

Combining the last two properties, one easily derives that a sinusoidal potential decays

exponentially with the product of the magnitude of the k{vector, k =
q
k2x + k2y, and

the distance from the sample:

�M (k; z) = �M (k; 0)e�kz (3.9)

From the relation between scalar potential and stray �eld, it is clear that all stray �eld
components will also decay exponentially. The last, and most important property can
easily be derived from the previous relation: if the nabla operator is applied to source
free �elds, it can also be written as r = (ikx; iky;�k). Therefore, the magnetic scalar
potential, and thereby all stray{�eld components in the x-y{plane, can be determined
from a measurement of the stray �eld in the z{direction, Hz, except for their average
value, H(kx = 0; ky = 0), using the relations:

�M (k; z) = �1

k
Hz(k; z) (3.10)

H(k; z) = �r
k
Hz(k; z) : (3.11)

The same reconstruction can not be performed using only the x{ or y{component of
the stray �eld, therefore, measuring these components independently, as proposed in
[44], makes little sense.

3.2.2 Computation of the Force on the Tip

If one now calculates the force in Fourier space, the x-y{part of the correlation integral
in equation 3.2 is replaced by a multiplication:2

F(k; z) = �0

1Z
�1

Hsample(k; z
0)r0 � �M�

tip(k; z
0 � z)dz0

2one should not make the mistake to use the relation r = (ikx; iky;�k), because this relation is
only valid for the stray �eld outside the sample.
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= �0

1Z
�1

Hsample(k; z
0 + z)r0 � �M�

tip(k; z
0)dz0 ;

with � denoting the complex conjugate. Using equation 3.9, one gets:

F(k; z) = �0Hsample(k; z)

1Z
�1

e�kz
0r0 � �M�

tip(k; z
0)dz0 (3.12)

� �0Hsample(k; z)�
�
tip(k) ; (3.13)

with �tip(k) the Fourier transform of a tip{equivalent surface charge pattern, with the
surface charges located in a plane at the apex of the MFM tip, parallel to the sample.
The stray �eld of the tip below the plane containing equivalent charge distribution can
be calculated from �tip(k) using the expression:

Htip =
1

2

0
B@ �ikx=k
�iky=k

1

1
CA exp(k (z0 � z))�tip(k) ; (3.14)

with z the distance of the tip to the sample, and z0 < z the distance of the �eld to
the sample. Clearly, if one wishes to calculate the force on the tip from the �eld of the
sample, one needs to know the behavior of �tip. A procedure for determining �tip is
given in section 3.3.

3.2.3 The Relation between the Force and the Measured Contrast

The measured quantity in the MFM experiment must be derived from the force{vector.
This quantity is either the force Fn(k), or its derivative

d
dnFn(k), in the direction of

the normal of the cantilever surface (see section 2.2). This direction is characterized by
the vector n = (0; sin(�); cos(�)), with � the canting angle between the normal of the
cantilever and the normal of the sample surface (�gure 2.1):

d

dn
Fn = n � rFn = n � r(n � F) : (3.15)

Inserting equations 3.13 and 3.11 into equation 3.15, one �nds:

Fn(k) = �n �
�
�0 �

�
tip(k)

r
k
Hz(k)

�
� �0 �

�
tip(k)LCF (k; �)Hz(k) ; (3.16)

and

d

dn
Fn(k) = (n � r)Fn(k)

= �k �0 ��tip(k) [LCF (k; �)]2 Hz(k) ; (3.17)

with LCF (k; �) the lever canting function that describes the e�ect of the canting angle
of the cantilever on the measurement. The main e�ect of the canted orientation of
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the cantilever is a direction dependent phase shift in the ky{direction, if the image
is interpreted to represent the Hz �eld. A canting angle � results in a phase{shift �
in the static modes, and 2 � in the dynamic modes. This ky{independent phase{shift
causes a slight distortion of the image in the y{direction. In the images made with the
instruments used in this thesis, this is visible as a distortion in the up{down direction,
whereas in images made with a Nanoscope III, this is visible as a distortion in the left{
right direction. The distortion can easily be corrected by dividing the measurement
by the LCF, or the squared LCF in Fourier space, depending on what measurement
mode was used. In �gure 3.1, this is shown for a measurement on a Cu/7 nm Ni/Cu
sandwich. Although the di�erence is not immediately obvious in the image (panels
a,b), it becomes clear when taking a line{section in the y{direction (panel c). In the
measured image (dotted line), there is a clear asymmetry in the y{direction, which is
much reduced after correcting for cantilever canting (solid line).

-2 -1 0 1 2
-1.0

-0.5

0.0

0.5

1.0

measured
corrected  

y [µm]

∆ f
[Hz]b)a)

1µm1µm

c)

Figure 3.1: The canted orientation of the cantilever causes a distortion in the domain
transitions, that can be easily removed in Fourier space.
a) measurement with a Si{tip on a Cu/70 nmNi/Cu/Si(001){�lm at a tip{to{sample
distance z1 = 53 nm.
b) image corrected for cantilever canting using the LCF.
c) Line{sections of the measured and the corrected image, on the position indicated by
the white line in panel a. The asymmetry in the domain transition is strongly reduced.
Wavelengths below 80 nm were �ltered out in the line{sections to remove noise.

3.2.4 The Instrument Calibration Function

It is useful to de�ne an Instrument Calibration Function ICF (k) in addition to �tip(k)
to describe the imaging properties of the instrument. The ICF gives the relation between
sample stray �eld (derivative) and measured quantity, and can directly be determined
from calibration measurements (see section 3.3). On the other hand, �tip(k) can only
be determined from the calibration measurements if one knows the canting angle and
the mechanical properties of the cantilever. Therefore, the use of the ICF to describe
the instrument is especially advantageous if one wishes to use cantilevers with poorly
de�ned spring constants, such as SiNx cantilevers (see section 2.3).

Several calibration functions can be de�ned, at least one for each measurement
mode. To avoid confusion between the di�erent calibration functions, one should always
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explicitly state for what pair of variables the instrument calibration was determined. As
an example, the relation between instrument calibration and tip calibration is given for
the instrument calibration functions: ICF z

Hz
from stray �eld to cantilever de
ection,

ICF�f
dHz

from stray �eld derivative to resonance frequency shift, ICF�f
Hz

from stray �eld

to resonance frequency shift and ICF��
Hz

from stray �eld to phase shift. Using equations
2.5, 2.6, 3.16 and 3.17, one �nds:

ICF z
Hz
(k) =

1

cL
�0 �

�
tip(k)LCF (k; �) (3.18)

ICF�f
dHz

(k) = � f0
2cL

�0 �
�
tip(k) [LCF (k; �)]

2 (3.19)

ICF�f
Hz

(k) =
f0
2cL

k �0 �
�
tip(k) [LCF (k; �)]

2 (3.20)

ICF��
Hz

(k) =
Q

cL
k �0 �

�
tip(k) [LCF (k; �)]

2 ; (3.21)

where f0 is the resonance frequency, cL the force constant and Q the quality{factor of
the free cantilever (see sec. 2.1). By combining equations 3.18 and 3.20, it becomes clear
that a static image can be computed from a dynamic image in Fourier space by dividing
the dynamic measurement by 1=2 f0 k LCF (k; �), as was demonstrated in �gure 2.3.

3.2.5 Testing for Negligible Modi�cation

In the following, three methods are discussed for testing whether the modi�cation of
the tip and sample during the imaging is negligible.

The simplest, and most imprecise way to check whether the tip modi�es the sample,
is to invert the contrast of the image, and to see whether the image \looks the same".

A more complicated, but also more exact method is to reverse the magnetization of
the tip between two measurements on the same sample position [45]. In this case, the
sum of the two measurements should be zero in the non-modi�cation case (assuming
the magnetization of the tip has exactly been reversed).

The third method is useful if one does not wish to remove the tip from the instru-
ment, or one can not measure one the same location after removing the tip. In this case,
one can also test whether equation 3.9 holds for measurements made at the same lateral
position, but at di�erent distances: The sample �eld decays exponentially, therefore the
measured signal must also decay exponentially when the tip and sample do not modify
one another.

Of the ferromagnetic samples used in this thesis, the Cu/Ni/Cu sample containing
200 nm of Ni is most suitable for this test, because vibrating sample magnetometry
measurements have shown that its magnetization state is the most sensitive to applied
magnetic �elds (see section 4.1). Thus, if this sample is not modi�ed by the tip �eld,
the other samples are unlikely to be modi�ed. The test measurements were made on the
same location as in section 2.1, with tip{to{sample distances of 52 and 74 nm (�gure
3.2a,b). The e�ect of a distance increase of 22 nm was calculated from the measurement
data shown in panel a, using equation 3.9. The di�erence between the measurement
and the simulation is shown in panel c. After subtracting the errors due to noise and
position accuracy, the root{mean{squared (rms) error is 0.07 Hz. There seems to be no
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systematic error in the image, except for the area marked by the circle. Here, a slight
change in the sample magnetization is detected. Note though, that topography artifacts
will also give rise to a di�erence, as well as errors related to Fourier{transforming
an image of �nite size. Nevertheless, equation 3.9 clearly holds for almost the whole
MFM measurements acquired at two di�erent tip{to{sample distances. This strongly
indicates, but does not prove that the in
uence of the MFM tip on the sample (and
vice versa) can be neglected in this case. For other samples and tips, this may no be
the case: From MFM data acquired on Au/Co/Au thin �lms, Belliard et al.[46] have
concluded that equation 3.9 did not explain the observed distance dependence of the
contrast.
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Figure 3.2: Test measurements of the exponential decay of the spectral components of
the image with distance.
a) MFM data acquired on a Cu/200 nmNi/Cu/Si(001){�lm at a tip{to{sample distance
of 52 nm.
b) MFM data acquired at a tip{to{sample distance of 74 nm.
c) Di�erence image of a simulated measurement and the measurement shown in panel
b. The simulated measurement was computed from the data shown in panel a) using
equation 3.9.

3.2.6 Calculation of the Field from the Measured Signal

Until now, only the relations were given for simulating a measurement using a given
stray �eld distribution. Of course, it is more interesting to compute the stray �eld
for a given MFM measurement. This can generally be done by inverting the given
relations. However, the accuracy of the results obtained using these inverse relations is
limited by three factors. First, the MFM can not sense homogeneous magnetic �elds
(�tip(k = 0) � 0). Second, for the derived equations to be valid, the measurement
must have an in�nite extent. The third limit is mainly an instrumental problem; the
combination of limited signal{to{noise ratio of the measurement and the �nite volume
of the tip leads to an information loss, especially at high spatial frequencies. However,
this loss can be minimized by an improvement of the instrumentation, i.e. measurement
at low temperatures [11] and the use of tips with a better resolution [18].
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3.3 Calibration of the Instrument

From the previous section, it is clear that if one wishes to quantitatively evaluate MFM
measurements, one must calibrate the MFM. Several authors performed a calibration
over the whole k-space, instead of using a tip model such as the one given in equation
3.24:

Sch�onenberger et al. [29] �rst used transfer functions to analyze the imaging prop-
erties of various ferromagnetic tips. For the calibration process, they used a several
magnetic hard{disc samples containing bits of di�erent periods, and assumed that only
the fundamental frequency of the tracks was imaged.

Madabhushi et al. [47] described the imaging process from magnetization to force
gradient by two dipole response functions, Dx(x; y) and Dy(x; y). These functions are
de�ned as the MFM image of a magnetic point dipole along the x and y direction,
respectively. In the experiment, an MFM measurement of a magnetic nanoparticle was
used as an approximation for both dipolar transfer functions. The obtained response
functions were used to deconvolve a measurement of a hard disc track to obtain the
rotation free part of its in{plane magnetization structure.

Chang et al. [48] and Zhu et al.[49] used an impulse response function, which is
de�ned as the MFM response to a magnetic point charge at the sample surface. They
used a nanostructured �lm and partially erased bit transition in an in plane hard disc
track respectively, as an approximation for this point charge. The measured response of
the MFM tip to this point{like �eld source was used to reconstruct a magnetic surface
charge pattern of a recorded track in a hard{disc.

In contrast to the de�nition of the tip calibration function, the dipolar transfer
functions de�ned by Madabhushi et al.[47] and the impulse response function de�ned
by Chang et al. [48] contain both the stray �eld imaging properties of the MFM tip
and the geometrical and magnetic properties of the sample that generates the stray
�eld. As an example the Fourier transform of the dipole transfer functions, Dx;y(k), as
de�ned by Madabhushi et al., relate to �tip(k) as

Dx;y(k) = ikx;y
cL
�
1� e�k d0

�
e�kz0

f0

� [LCF (k; �)]2 �0 �
�
tip(k) : (3.22)

The dependence of these transfer functions on various experimental parameters, such
as tip-to-sample distance, z0, the thickness of the calibration sample, d0, the strength
of the dipole/monopole and the measurement mode, makes these functions unsuitable
for comparing tips calibrated under di�erent circumstances. Moreover they can not
(directly) be used to compare measurements made with one tip at di�erent distances.

Besides the fact that the transfer functions are di�cult to use, the procedure to
determine them from measuring an isolated magnetic monopole or ideal dipole is prob-
lematic, since these are di�cult to realize in an experimental situation. In addition, the
signal{to{noise ratio of an MFM measurement of such a calibration structure decreases
with its magnetic volume, i.e. the idealness of the mono-/dipole. Finally, it is di�cult
to estimate the magnitude of the mono-/dipole, making an absolute calibration more
complicated.
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3.3.1 Calibration Procedure

To circumvent the problems of the existing calibration procedures, a procedure was de-
veloped that allows the calibration of the instrument using easily obtainable samples.
This procedure consists of several steps, which are shown schematically in �gure 3.3. As
an example, the intermediate results of the consecutive steps are shown for one mea-
surement in �gure 3.4. The measurement in panel a was made using a microfabricated
Si cantilever, coated with 7.3 nm of Fe on a Cu/Ni/Cu sample containing 10 nm of Ni,
at a measurement distance of 45 nm. For more information on the sample, see chapter
4.
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Figure 3.3: Flow chart of the calibration process.

The calibration procedure starts with making several measurements of di�erent
magnetization patterns. This can be achieved by changing the measurement position
on one sample and/or by measuring on di�erent samples.

Next, the magnetization pattern of the sample is estimated for each measurement.
To do this, the distorting e�ect of the cantilever canting angle is �rst compensated
by multiplying the measurement with the square of the inverse of the LCF (k; �). The
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Figure 3.4: Example of the calibration process.
a) MFM measurement of a Cu/Ni(10 nm)/Cu/Si(001){�lm.
b) Magnetization pattern, determined by applying a discrimination level to the mea-
sured signal.
c) z{derivative of the z{component of the stray �eld, calculated using the magnetization
pattern.
d) Simulation of the MFM measurement using the instrument calibration function,

ICF�f
dHz

(k).

magnetization of the calibration sample is perpendicular to the sample plane, as will
be discussed in section 4.1. Therefore, the areas magnetized in the +z{direction can
therefore be separated those magnetized in the �z{direction using a discrimination
level for the frequency shift (�gure 3.4b). A histogram of the frequency shift values is
made to determine the discrimination level, . This histogram will typically have two
peaks. The frequency{shift at which the minimum between these peaks occurs is used
as the value for the discrimination level.

From the magnetization pattern, the sample stray �eld or �eld z-derivative is cal-
culated in a plane parallel to the sample, located at the tip end, using equation 4.16.
In the example, the �eld derivative is calculated (�gure 3.4c) in order to determine the
instrument calibration function that relates the measured frequency shift to the stray
�eld derivative, ICF�f

dHz
(k).

The instrument calibration function can now be determined by dividing the Fourier
components of the measurement by those of the stray �eld derivative. This calibra-
tion contains errors caused by small contributions of sample topography, small local
modi�cations of the sample magnetization, image boundary e�ects, errors in the mag-
netization estimate, noise etc.

The errors in the calibration function are reduced by averaging over several calibra-
tion functions obtained from di�erent MFM measurements. The statistical error in the
averaged calibration function can be estimated from the deviations of the individual
calibration functions from this average. Assuming the errors to be independent of one
another, their standard deviation, �ICF (k), can be estimated:

�ICF (k) =

vuut 1

n(n� 1)

nX
i=1

(ICFi(k)� hICF (k)i)2 ; (3.23)

This standard deviation is a lower estimate of the error, since it does not include
systematic errors, caused for example by the nonzero (although very small) width of
the domain wall or by an error in the piezo calibration. The Fourier amplitude of the
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ICF�f
dHz

(k) is averaged over circles with a constant size of k to plot the sensitivity and
the sensitivity error of the MFM as a function of k (�gure 3.5). 3
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Figure 3.5: Circular average of the average instrument calibration function and its
standard deviation as a function of k and �. The Instrument calibration function is
undetermined for �{values smaller than 100 nm.

The error in the estimated magnetization pattern can now be reduced by an iterative
process (�gure 3.3); a better estimate is obtained by deconvolving the measurement with
the averaged transfer function. The iteration is stopped when the statistical error in
the instrument calibration function stops decreasing.

To test the calibration function, one can use it to simulate a measurement, as is
shown in �gure 3.4d. The simulated image is computed by multiplying the stray �eld
calculated from the assumed magnetization pattern with the instrument calibration.
The rms error between the example measurement and the corresponding simulation
is 0.22 Hz, compared to the 3.0Hz total frequency variation in the images. This error
can be attributed to three sources: noise in the measurement, errors in the instrument
calibration and errors in the assumed magnetization pattern. The error due to the
statistical error in the instrument calibration function can be estimated by multiplying
the Fourier components of the calculated stray �eld derivative with �ICF (k). This gives
an expected error of 0.14 Hz. The error due to inaccuracies in the magnetization pattern
is approximately 0.14 Hz. It is found by subtracting the error due to the calibration error
and the measurement noise from the total error.

3.3.2 Stray Field of the Tip

The 
ux density distributions of a Basel type EBID{tip and a microfabricated Si type
tip (see section 2.3) were calculated from their corresponding Instrument calibration
functions using equations 3.19 and 3.14 (see �gure 3.6). Assuming the tip stray �eld
vanishes at the boundaries of the image, the maximum 
ux density at the tip end is
11mT for the Si{tip, and 10mT for the EBID tip. The �eld of the EBID{tip decreases

3This does not imply that the stray �eld of the tip has cylindrical symmetry, it only implies that
the deviation from the cylindrical symmetry has not yet been evaluated.
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much faster away from the center of the tip, which results in a better measurement
resolution. Moreover, the combination of the lower peak �eld, and the faster decay of
the �eld reduces the in
uence of the tip on the sample magnetization.
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Figure 3.6: z{component of the magnetic 
ux density of di�erent tips. a) magnetic 
ux
density of the Si-tip in a plane located at the geometrical end of the tip.
b) x{cross{section of the distribution shown in a).
c) magnetic 
ux density of the EBID-tip in a plane located at the geometrical end of
the tip.
d) x{cross{section of the distribution shown in c).

The obtained �eld distribution can be compared to the results of studies made with
electron microscopy. In the work by Streblechenko et al.,[50] the stray �eld of MFM
tips was quantitatively measured using electron holography. The maximum �eld was
found to be 62mT at the tip surface. Unfortunately, no speci�cations were given for
the thickness and material of the magnetic coating. In the work of Ferrier et al. [51],
the magnetic �eld distribution was measured using electron tomography. No absolute
�eld measurements were made, but the distribution of the tip �eld agrees well with
the measurements presented in this thesis, although the plane of measurement was not
canted with respect with the cantilever surface. Again no tip speci�cations were given.

3.4 Evaluation of the Experimental Image Contrast

In the following, the contrast formation of experimentally determined tip equivalent
charge (�Sitip(k) for the Si{tip and �EBIDtip (k) for the EBID{tip) is compared to the con-
trast formation of some simple tip models such as a magnetic point dipole, a magnetic
point charge, and a model based on the geometry of the Si{tip. In �gure 3.7 the average
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amplitudes of the Fourier components of the experimental and model tip{calibration
function are plotted as a function of k. To make a direct{space comparison between
the measured calibration and the di�erent tip models (�gure 3.8), a measurement was
made with the Si{tip on the Cu/Ni/Cu sample containing 7 nm of Ni at a measure-
ment distance of 53 nm (�gure 3.8a). To simulate the MFM measurement shown in
�gure 3.8a, a magnetization pattern was generated, using the procedure of section 3.3
(�gure 3.8b). The z{derivative of the stray �eld was then calculated using equation 4.15
and frequency shift images were calculated using the instrument calibration function.
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Figure 3.7: Average amplitude of the Fourier components of several tip calibration
functions as a function of k.

3.4.1 Results Obtained with Calibrated Tips

The best agreement between simulation and experiment is obtained if the experimen-
tally determined tip equivalent charge distribution is used. �gure 3.8c and �gure 3.8d
have been calculated from the magnetization pattern of �gure 3.8b using �Sitip and

�EBIDtip , respectively. It is noteworthy that this agreement between measurement and
simulation was obtained without any free parameters. The location of the cross{section
along the x{direction was chosen to run across many domain boundaries, whereas the
one along the y{direction intersects only a few domain boundaries. Comparing the
cross{sections in �gure 3.8c to those in �gure 3.8a, it is found that they match well,
including the behavior in the center of large domains and the asymmetry of certain
domain boundaries.

The experimentally determined tip equivalent charge distributions are plotted as
a function of k in �gure 3.7, (�Sitip, solid line, and �EBIDtip dotted line). The calibration
function of the Si{tip decays approximately with k�1:5, whereas the one of the EBID{tip
decays slower with k�1:3. This gives the EBID{tip slightly better imaging properties. 4

4The increase of �tip at small wavelength is due to noise in the calibration.
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Figure 3.8: E�ect of the calibration on the measurement contrast in direct space. a)
measurement, b) magnetization pattern, c) simulation using Si{tip calibration, d) simu-
lation using EBID tip calibration, e) point dipole, f) point monopole, g) point monopole
with additional distance, h) Si-tip geometry based model.
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3.4.2 Point{pole Tip Models

The most commonly used tip model, �rst proposed by Mamin et al.[52], describes the
tip as the sum of an ideal monopole, q0, and a point dipole, m = (mx;my;mz). One
can easily show that this model is equivalent to using the tip{equivalent charge:

�tip(k) = q0 +m � r� ; (3.24)

with r� = (�ikx;�iky;�k). Usually, this model is further simpli�ed to a magnetic

point dipole, oriented along the z{axis. The tip{calibration function, �dipoletip (k) for this
simpli�ed model (equation 3.24 with q0 = 0) is represented by the dashed{double{
dotted line in �gure 3.7. In contrast to the experimentally determined tip equivalent
charge distributions (Si{tip: solid line, EBID{tip: dotted line), �dipoletip , increases with
decreasing wavelength. A measurement was simulated, using zero canting angle of the
cantilever (�gure 3.8e). The magnetic dipole strength (m in equation 3.24) was adjusted
to achieve the best �t between the dipole tip simulation and the Si{tip measurement.
A dipole moment, jmj of 13:7 � 10�19 Am2 was found to give the best �t. As is to be
expected, the image contrast is much too sharp, and the signal in the middle of the
domains is too small. Besides this, the asymmetry visible in the y{cross{sections of the
measurement does not occur in the simulation.

In a previous paper [24], a magnetic point charge (monopole) was used as a model
for an EBID tip, coated with a thin cobalt layer. This tip was used to measure the
stray �eld of a perpendicular magnetization pattern. The size of the magnetic point
charge was �tted by comparing the magnitudes of the simulated stray �eld and the
measurement. With this point charge approximation an excellent agreement between
the measured and simulated data was obtained. However, the agreement required a
much larger distance between the magnetic point charge and the sample than the
typical tip{to{sample distances used in the experiment. Similar observations have been
reported by Belliard et al. for a monopole model [46] of the tip, and by Mamin et al.
for the dipole model of the tip [52].

Here, a monopole model is �rst considered, with �monopole
tip (k) = q0, located at the

experimentally determined tip{to{sample distance. This model is represented in �gure
3.7 by the (thick) dashed{single{dotted line. It is clear that the monopole model without
additional distance does not correspond well to the measured tip calibration, although
the correspondence is better than in the case of the dipole model. Again, a measurement
was simulated, using zero canting angle of the cantilever (�gure 3.8f). The charge of
the monopole was adjusted to get the best �t between the Si{tip measurement and
the dipole tip simulation, giving a monopole size of 8:2 � 10�11 Am. Again, the image
contrast is too sharp, there is not enough signal in the middle of the domains and the
y{asymmetry does not occur in the simulation.

To improve the agreement between simulation and measurement, the canting of the
cantilever can be taken into account, and the e�ect of the spatial extent of the tip can be
modeled by placing the magnetic point charge a distance, �z, away from the geometrical
end of the tip. This tip equivalent charge distribution is plotted in �gure 3.7 as a thin
dashed{single{dotted line. In a limited wavelength range, this model corresponds well
with the experimental tip calibration functions (solid and dotted lines). The best �t
of the simulation (�gure 3.8g) to the measurement (�gure 3.8a) is obtained with a



3.4. EVALUATION OF THE EXPERIMENTAL IMAGE CONTRAST 33

monopole charge of 6:9 � 10�10 Am, and an additional distance, �z = 125 nm (total
distance: 178 nm). Interestingly, both, the value of the magnetic charge on the tip and
the total tip{to{sample distance is close to the values found for the EBID{tip used in
[24] (q0 = 2:72 � 10�9 Am and a tip{to{sample distance of 176 nm). It should be noted
that the EBID tip was coated by a Co layer with a thickness of 25 nm, whereas the Si{
tip used here was coated by an Fe layer with a thickness of only 7.3 nm. The asymmetry
of the contrast at the domain boundaries in the y{cross{section is now reproduced by
taking the canted orientation of the cantilever into account. Furthermore, the contrast
of the image is in quite good agreement with the experimental observation. However,
the improved monopole model performs well only in a limited range of wavelengths,
because the optimum additional distance, �z, depends on the domain size. This also
becomes obvious from a closer inspection of the line sections in direct space. There is
a good agreement between the simulated and experimental x{cross{section, indicating
a good �t for the smaller domain size. However, the signal in the middle of the large
domains visible in the y{cross{section is smaller than that of the measurement. Thus,
if the monopole strength and distance are �t on a sample with a di�erent domain
size, di�erent values are found for each sample, as was described in the Master's thesis
of Viola Barwich [53]. This makes this model unsuitable for calibrating the imaging
properties of the MFM.

3.4.3 Tip Model Based on Tip Geometry

As an alternative for the direct experimental determination of the tip calibration func-
tion, the imaging properties of the tip can be calculated from the magnetization struc-
ture of the tip. Assuming the magnetization structure of the tip were known, the cali-
bration function of the tip can be calculated using the integral in equation 3.13.

Whereas the geometry of the tip can be derived from scanning electron microscopy
images (SEM) with high precision (see �gure 2.5b), the experimental determination of
the micromagnetic structure of the tip remains a challenge. After the tip preparation,
the tips are magnetized along the cantilever normal, n, in a �eld of approximately 0.4 T.
Based on the knowledge of the magnetization of the geometry of MFM tips determined
by SEM, the following assumptions of the tip magnetization are made:

1. The coated tip{faces are assumed to have a triangular shape.

2. The ferromagnetic Fe coating has the saturation magnetization of iron, a uniform
thickness, and a geometry exactly equal to the one of the tip{faces.

3. After the tip is magnetized parallel to the cantilever normal, the magnetization is
assumed to relax in the plane of the ferromagnetic coating. It is assumed that the
magnetization vector in a tip{face runs parallel to the projection of the cantilever
normal on the surface of the triangle. This leads to the formation of magnetic
surface charges at the edges of the tip{faces.

With these assumptions, the volume charge distribution vanishes (�M = 0), and the
surface charge distribution, �M are known. Numerical evaluation of the integral in
equation 3.13 can be used to calculate the tip{calibration function, �SEMtip (k).
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For comparison with the experimentally determined transfer function, the SEM{
model transfer function, �SEMtip is plotted as a function of k in �gure 3.7 (dashed line).

In contrast to the monopole and dipole models the SEM{model gives a �SEMtip that
decays with decreasing wavelengths. Using the numerically determined tip calibration
function and equation 3.19, a good qualitative agreement between the simulation (�gure
3.8h) and the measured data (�gure 3.8a) is obtained. However, the domain bound-
aries still appear too sharp in the simulated image and the asymmetry of the domain
boundaries in the x{direction is not visible in the experimental data. Furthermore the
total frequency variation in the image is about a factor of 5 larger than that of the
measurement. These de�ciencies arise from the rather strict and simple assumptions
on which the SEM{model is based:

1. The magnetization of the Fe{�lm of the tip has been assumed to be equal to the
saturation magnetization of single crystalline iron. However, in reality the iron
�lm may be partially oxidized, because it was deposited in a moderate vacuum
in the high 10�7mBar{range. In addition, the granular, polycrystalline structure
of the iron �lm may further decrease the average magnetization of the iron thin
�lm. These e�ects are expected to be especially strong at the tip apex.

2. The magnetization vector of the tip was assumed to be parallel to the projection of
n on the surface of the triangle. This leads to the formation of magnetic surface
charges at the geometrical edges of the tip{faces. In reality the magnetization
distribution of a the triangular tip face may slightly re{adjust to minimize the
total energy. It can be expected that the re{orientation of the magnetization
vector reduces the magnetic charge on the side faces of the ferromagnetic coating.

Generally it can be expected that the magnetic charge is distributed over a larger
volume and that the magnetization direction is more parallel to the side face of the
ferromagnetic coating. This minimizes the total magnetic energy of the MFM tip, and
lowers the image contrast.

In spite of the de�ciencies of the SEM model, it explains some important experi-
mental facts of magnetic force microscopy:

1. The signal in the middle of the micron{sized domains is of the same order of
magnitude as the signal close to the domain boundaries.

2. Simulations using simple point{pole models require a tip{to{sample distance
much larger than the experimental one in order to obtain a reasonable agree-
ment with the experimental data.

Both observations can be explained by the extended magnetic charge distribution of
the tip. There is no need to invoke a perturbation of the magnetization of the sample
by the tip as an explanation of the MFM{contrast, as suggested by Belliard et al. [46].

3.5 Comparison of MFM to Other Methods

The calibration of the MFM is used to compare the stray{�eld sensitivity of the MFM
to that of other scanning stray{�eld measurement methods in section 3.5. Here, the
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discussion is limited to two of those: Scanning Hall Microscopy and Scanning SQUID
Microscopy.

The stray �eld sensitivity of the MFM can be calculated as a function of k by di-
viding the measurement noise (see section 2.3) by the instrument calibration function.
If it is assumed that the noise, given in section 2.3, is uniformly distributed over the
measurement bandwidth, the frequency noise density is 9mHz/

p
Hz at room tempera-

ture, and 1.4mHz/
p
Hz at 6K. To allow for a better comparison with other magnetic

imaging methods, the magnetic 
ux density noise was computed instead of the �eld
gradient noise. To do this, the ICF from B-�eld to frequency shift is calculated from
the ICF from H-�eld derivative to frequency shift by multiplying it with k=�0 (See
equations 3.18, 3.19). The obtained magnetic 
ux density noise at room temperature
and close to LHe temperature is plotted as a function of k and � in �gure 3.9 .
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Figure 3.9: Smallest measurable magnetic 
ux{density as a function of k and � for
MFM (measured), scanning Hall probe Microscopy and Scanning SQUID microscopy
(simulated).

To estimate the sensitivity of the Scanning Hall Probe and Scanning SQUID micro-
scopes, it is assumed that they have a constant sensitivity over a square of the sensor
size, and that the sides of the square are parallel to the x{ and y{directions. Ignoring
the slightly canted orientation of the probes, the sensitivity of these instruments to the
stray �eld at the MFM measurement distance is given by:

S(k) = S0
kx ky l

2

4 sin(kx l=2) sin(ky l=2) exp(k�z)
; (3.25)

with S0 the sensitivity of the probe for homogeneous �elds, and l the length of the
sides of the square probe. Literature values for S0, l and the distance increase �z are
given in table 3.1. The sensitivity plots of the Scanning Hall Probe microscopes and
scanning SQUID microscope in �gure 3.9 were calculated using these values and equa-
tion 3.25. Unsurprisingly, the sensitivity of these instrument rapidly worsens (increases)
for magnetization wavelengths of the order of the sensor size. Probably, the sensitivity
functions of these instruments have a more smooth sensitivity pro�le than the square,
which would result in a less drastic sensitivity cut{o� at these frequencies. However,
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this may not only lead to a slightly better sensitivity at small wavelengths, but also to
a worse sensitivity at longer wavelengths.

Sensor l[�m] �z[�m] S[�T/
p
Hz]

Hall Probe [54] 0.85 0.5 3.8
at 300K

Hall Probe 0.85 0.5 0.022
at �4.2K
SQUID [55] 4.0 2.0 0.033
at �4.2K

Table 3.1: Literature values for the sensitivity, probe size and measurement distance of
Scanning Hall and Scanning SQUID microscopes.



Chapter 4

MFM on Ferromagnetic Layers,
Applied to Cu/Ni/Cu
Sandwiches

The description of magnetic materials is generally divided in �ve level (see �gure 4.1).
The lowest level is the description of the material on the atomic level, the highest
level describes the hysteresis loop of a macroscopic sample. Ideally, the theoretical

4. Phase, or magnetic texture analysis
Collects domains of equal magnetization direction in “phases”. More generally, 

describing the distribution function (texture) of magnetization directions   (> 0.1 µm)

1. Atomic level theory
Describes the origin, the interactions, the mutual arrangement and the 
statistical thermodynamics of elementary magnetic moments (< 1 nm)

2. Micromagnetic analysis
Describes the internal structure of domains and domain walls in terms of a 

continuum theory of a classical magnetization vector field (1-1000 nm)

3. Domain, or magnetic microstructure analysis
Describes the shape and detailed spatial arrangement of 

domains and their boundaries  (1-1000 µm)

5. Magnetic hysteresis
Describing the average magnetization vector of a sample 

as a function of the external field   (no length scale)

Figure 4.1: The hierarchy of descriptive levels of magnetic materials (from [9]).

understanding of the higher level phenomena is built upon lower level models. On the
other hand, the experimental investigation of the higher level behavior can give insight
in the behavior of the material on a lower description model. For example, measurement
of magnetization as a function of temperature can be used to understand the mechanism
that is responsible for the magnetic ordering of the atomic magnetic moments.

In this chapter, it will be shown that Magnetic Force Microscopy can be used for
both the study of magnetic domains and their micromagnetic structure. It was pointed
out in section 3.1, that the interpretation of MFM data of ferromagnetic samples is

37
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most straightforward for measurements on magnetically hard samples, with a large lat-
eral variation of their magnetic stray �eld. This is the case for thin{�lm samples with
a magnetic anisotropy that prefers an orientation of the magnetization perpendicular
to the sample surface. It is therefore expected that MFM can contribute to the un-
derstanding of the behavior of such samples, and in particular to the understanding of
the cause of this perpendicular anisotropy. In this chapter, measurements are presented
that were performed on epitaxially grown 5 nmCu/Ni/200 nmCu/Si(100) sandwiches,
prepared at the MIT by Kin Ha [56, 57]. Samples with this structure have an exception-
ally large thickness range in which the perpendicular orientation of the magnetization
is preferred. This low sensitivity of the e�ect on the sample thickness is expected to
simplify the study of the perpendicular anisotropy. The properties of these samples
known from literature are discussed in more detail in section 4.1. Following this, some
general properties of the domains in these samples are discussed in section 4.2. Finally,
measurements of the magnetization state of these samples are presented in section 4.3.

4.1 Properties of Cu/Ni/Cu/Si(001)

Following the scheme in �gure 4.1, the micromagnetic behavior of a sample must be
understood, in order to explain the properties of the magnetic domains in these samples.
In the micromagnetic approach, the free energy of the sample is expressed in terms of
a continuous magnetization distribution,M(r). The occurrence of the individual terms
in the free energy can in turn only be explained by atomic level theories. To a good
approximation, the magnitude of the magnetization is independent of its direction
and location. Therefore the magnetization can be written as M(r) = Msm(r), with
Ms = jM(r)j and jm(r)j = 1. The micromagnetic properties of the Cu/Ni/Cu/Si(001)
samples are discussed in section 4.1.1. From the micromagnetic properties, one can
derive the magnetization state of the Ni layer can be derived, as is described in section
4.1.2.

4.1.1 Micromagnetic Properties

The free energy terms considered in this thesis are the exchange energy, the magne-
tocrystalline energy, the magnetostrictive energy and the magnetostatic energy. Each
of these terms will be described in more detail in the following. In addition, an overview
of the magnitude of the parameters that determine the behavior of these free energy
terms is given in table 4.1.

Exchange Energy

The exchange energy is the cause of the parallel alignment of the atomic magnetic
moments in ferromagnetic materials, which manifests itself as a macroscopic magnetic
moment. In micromagnetics, the exchange energy density, Ex is written as:

Ex = A(r �m)2 ; (4.1)

with A the exchange constant. From equation 4.1, it is clear that the exchange energy
is isotropic for the direction of the magnetization. Thus the magnetic moment of the
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property symbol value units

saturation magnetization Ms 0.48 106 A/m

exchange constant A 10.3 10�12 J/m

shape anisotropy Kd(=
1
2�0M

2
s ) 0.15 106 J/m3

constant

1st cubic crystal Kc;1 -5.5 103 J/m3

anisotropy constant

2nd cubic crystal Kc;2 -2.5 103 J/m3

anisotropy constant

interface anisotropy Ks 0.71 10�3 J/m2

constant

linear strain B1

�
1 + 2c12

c11

�
14.14 106 J/m3

anisotropy constant

quadratic strain 1
4A11

�
3 + 22c12c11

�
�
2c12
c11

�2�
-1.07 109 J/m3

anisotropy constant

Table 4.1: Properties of the samples used in this thesis. Values of Kc;1 and Kc;2 taken
from [58], other anisotropy constants taken from [56, 57]

sample could point in any direction in the absence of a magnetic �eld, and would
always align with an applied external magnetic �eld. In reality however, the free energy
is anisotropic for the direction of the magnetization. This anisotropy is caused by the
atomic scale spin{orbit interaction, and the macroscopic self{demagnetizing �eld of the
sample. In the following, the anisotropy terms of interest for the Cu/Ni/Cu/Si(001)
samples are discussed. A more general overview of the di�erent anisotropy contributions
is given by Bl�ugel.

Crystal Anisotropy

The crystal anisotropy describes the tendency of the magnetization to align with certain
crystallographic axes of the sample. It is caused by spin{orbit interaction. Generally,
the crystalline anisotropy of a material is described in terms of the direction cosines of
the magnetization direction on the crystalline axes of the material. In the samples used
in this thesis, the (fcc) Nickel layer has a (001) surface and the crystal axes are aligned
with the x{, y{ and z{coordinate axes of the sample, with the z axis in the direction
of the surface normal. In this case, the direction cosines of the magnetization along
the crystal axes are identical to the cartesian components of m. Therefore, the crystal
anisotropy energy density Ec, limited to terms depending on up to the sixth power of
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m, can be described as1:

Ec = Kc;1(m
2
xm

2
y +m2

ym
2
z +m2

zm
2
x) +Kc;2m

2
xm

2
ym

2
z : (4.2)

Because both Kc;1 and Kc;2 are negative for nickel, the crystal anisotropy causes a
preferential alignment of the magnetization with the h111i directions (see for example
[9]).

At the surface of a magnetic layer, or at interfaces between di�erent layers, the
symmetry is reduced, giving rise to an additional anisotropy term. For the (001) surface
of the Nickel samples, the surface anisotropy energy density, limited to terms depending
on up to second power of m, is given by:

Es = �Ksm
2
z (4.3)

Based on the doubling of the range with perpendicular anisotropy, due to covering the
Ni layer with the second Cu layer observed on similar samples by Bochi et al. [59], and
on anisotropy measurements with a subsequent analysis using a second order spin-pair
model performed by Ha, it was concluded that the surface anisotropy constant Ks is
positive, favoring a magnetization out of the sample plane at the surface of the layer.
However, a negative surface anisotropy is often assumed for this system in the literature.
This assumption dates back to the �rst analysis of the anisotropy of this system by
Jungblut et al.[60]. The negative value of the surface anisotropy was obtained from
an analysis that used theoretical values for the strain in the layer. However, these
theoretical values seem to overestimate the actual strain, which has been measured by
Ha (see paragraph 4.1.1).

In general, the surface anisotropy may also depend on the roughness of the interface,
as the symmetry is further changed at a step in the surface. Scanning Force Microscopy
Measurements by Ha tentatively show that the surface of the Cu/Si(001) substrate on
which the Ni is deposited is very 
at, therefore this anisotropy contribution was not
considered here.

Strain Induced Anisotropy

The strain induced anisotropy describes the tendency of the magnetization to lie in
directions that are determined by the strain tensor of the sample, and its magnetoelas-
tic properties. Both strain induced anisotropy and magnetostriction are magnetoelastic
e�ects, which are due to an interaction between the strain of a material and its preferen-
tial orientation of the magnetization. It is generally assumed that the same mechanisms
that are responsible for crystal anisotropy, are also responsible for magnetoelastic ef-
fects.

It is to be expected that magnetoelastic e�ects have a considerable in
uence on the
Cu/Ni/Cu samples, because Magnetoelastic e�ects in Ni are relatively strong, compared
to the other magnetic elements and because the Ni layers are considerably strained. This
large strain is due to the lattice mismatch between Cu and Ni. The lattice mismatch,

1The free energy terms that are independent of the magnetization direction are ignored. These may
contribute to the temperature{dependent behavior of the sample, but this is not considered here.
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�, between the copper substrate and the Ni layer can be de�ned as:

� =
acu � aNi

aNi
; (4.4)

with aCu; aNi the (bulk) lattice constants of Cu and Ni. In this de�nition, the lattice
mismatch is 2.6%. This mismatch causes a much larger strain than is obtainable by
the application of macroscopic stresses to bulk samples. The strain in the layer is
assumed constant in layers below a critical thickness, dc. At thicknesses above the
critical thickness, the strain in the layer is relaxed by the formation of dislocations. The
biaxial in{plane strain2 e0(d) of the �lms was measured by Ha using X{Ray di�raction.
In the thickness range from 3 to 12 nm, the in plane strain was found to �t the curve:

e0 = �

�
dc
d

�2=3
(4.5)

with a �tted dc of 2.7 nm, which agrees moderately well with the value of 1.6 nm found
by TEM experiments [61, 62]. This behavior of the strain is signi�cantly di�erent from
the dependence e0(d) = � dcd , with dc = 4:2 nm used by Jungblut et al.

Due to the biaxial in{plane strain, the crystal structure of the Ni layer is e�ectively
changed into a centered tetragonal structure. Therefore, it is to be expected, that the
strain induced anisotropy terms re
ect the symmetry of this structure. If only terms up
to the second order in m are taken into account, this strain{induced anisotropy energy
Eme is given by:

Eme = �Kme(e0(d))m
2
z

= �
"
B1

�
1 +

2c12
c11

�
e0(d) +

1

4
A11

 
3 + 2

2c12
c11

�
�
2c12
c11

�2!
e20(d)

#
m2

z (4.6)

with c11 and c12 two elastic constants of Ni, �(2c12e0(d)))=c11 the out of plane strain
and B1 and A11 two magnetoelastic constants of Ni. Whereas B1 is known to be pos-
itive from the literature, the analysis by Ha indicates that A11 is negative. Thus, the
strain induced anisotropy favors a magnetization parallel to the sample plane for sam-
ples thinner than approximately 7.5 nm, and a perpendicular magnetization for thicker
samples (see �gure 4.2b).

One might expect that, analogous to the crystalline surface anisotropy, surface
magnetoelastic anisotropy might play a role. This was done in a paper by Bochi et
al. [59], where the negative anisotropy at small Ni thicknesses was explained by a
negative surface magnetoelastic anisotropy. However, the analysis by Ha showed that
these terms probably do not give a signi�cant contribution to the total anisotropy.

Shape Anisotropy

The shape anisotropy describes the tendency of homogeneously magnetized samples to
align with certain directions that are determined by the (macroscopic) shape of the
sample. This anisotropy is caused by the self{demagnetizing �eld of the sample. In a
sample with an arbitrary, non homogeneous magnetization structure, the demagnetizing

2this is the magnitude of the strain in the plane of the layer
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�eld tends to align the magnetization so that no magnetic poles exist. In other words, if
the demagnetizing energy is the dominant energy term, the magnetization is divergence
free inside the sample, and parallel to the sample surfaces. For thin magnetic �lms, this
con�guration is not possible, because the exchange interaction will force a homogeneous
magnetization throughout the sample thickness. In this case, the demagnetizing energy,
Ed, is given by:

Ed = �Kdm
2
z (4.7)

=
1

2
�0M

2
sm

2
z (4.8)

Thus, the demagnetizing �eld favors a magnetization direction parallel to the sample
surface. However, the demagnetizing energy can often be reduced by the formation of
domains, in which case the expression for the demagnetizing �eld is not valid anymore.
A fast method for calculating Ed for a domain structure in which the magnetization is
constant throughout the layer thickness is given in appendix A
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Figure 4.2: Behavior of the anisotropy as a function of Ni-layer thickness, according to
Ha [56, 57].

a) measured values of Keff
2 ;Keff

4 and calculated value of K2.

b) magnitude of the components of Keff
2 .

4.1.2 Orientation of the Magnetization

Using the anisotropy contributions described in the previous section, one can determine
the preferential orientation of the magnetization. For this purpose, e�ective uniaxial
anisotropy constants can be de�ned. Here the e�ective anisotropy constants Keff

2 ;Keff
4

are de�ned as:3

Ea = �Keff
2 cos2(�) +Keff

4 sin2(�)cos2(�) ; (4.9)

3An alternative de�nition is also often used in literature, for example by Bl�ugel [63] and Hubert [9]:
Ea = Keff

u1 sin2(�) +Keff
u2 sin4(�). It is important to note that the values of the measured anisotropy

depend on the de�nition of the anisotropy, in this case Keff
u1 = Keff

2
+Keff

4
and Keff

u2 = �Keff
4

.
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with Ea the total anisotropy energy and mz = cos(�). Adding all uniaxial anisotropies
to the second order in mz from the previous section, one �nds:

Keff
2 = 2Ks=d+Kme(e0(d)) +Kd : (4.10)

The crystal anisotropy was not included in the e�ective anisotropy, because its mag-
nitude is negligible, compared to the other anisotropy terms. Keff

2 and Keff
4 were

measured using torque magnetometry, and the values of Keff
2 were additionally deter-

mined using vibrating sample magnetometry. Good agreement was found between the
results of both methods. The values of Keff

2 and Keff
4 are plotted as open squares and

open circles respectively in �gure 4.2. All of the plotted values were determined using
torque magnetometry, except for those of the samples containing 50 and 200 nm of Ni.
The cause for the term Keff

4 is as yet unknown. To �nd it, a similar analysis as was

applied to Keff
2 should be performed.

Using the measured values of Keff
2 and Keff

4 , one can draw a diagram of the
energetically most favorable direction of the average sample magnetization (see �g.4.3).
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Figure 4.3: Five di�erent phases of the preferred magnetization direction may oc-
cur, depending on the ratio of the second and fourth order anisotropy constants. The
Cu/Ni/Cu samples are indicated by points, with the number indicating the Ni layer

thickness d in nm. (The Keff
4 value for the 200 nm Ni layer was obtained by extrapo-

lation)

This diagram contains �ve regions, that exhibit di�erent behaviors of the preferen-
tial direction of the magnetization:

I easy axis perpendicular to sample surface

II easy directions canted with respect to surface (so called cone states)

III easy directions parallel to the sample surface
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IV easy directions parallel to the sample surface, metastable state perpendicular to
the sample surface

V easy axis perpendicular to the sample surface, metastable state parallel to the
sample surface

In the cone state, the energy directions lying in a cone around the surface normal are
the energetically most favorable ones. The angle �c between the stable magnetization
direction and the surface normal is given by:

cos(2�c) = �K
eff
2

Keff
4

(4.11)

From the marks in �gure 4.3, it is clear that all the samples, except for the sample
containing 15 nm of Ni, should have either an in{plane, or an out of plane remanence.
For the sample containing 15 nm Ni, �c = 56o.

This representation of the magnetization state is too simple when the in
uence
of the spatial distribution of the anisotropy contributions must be considered. For
example, if the e�ective anisotropy is separated into a surface anisotropy term, and a
volume anisotropy term, it can become energetically favorable for the magnetization
to vary as a function of the depth in the sample, z. This would lead to a state in
which the energetically most favorable direction of the average magnetization is canted
with respect to the sample surface, even though no 4th order anisotropy term is present.
Professor Thomas showed the occurrence of this state using stability considerations [64].
The thickness limits for a homogeneous magnetization perpendicular to the sample
surface, d?, and the limit for a homogeneous magnetization parallel to the sample
surface, dk are given by:

d? = 2

s
A

�(Kd +Kme)
arctan

 
Ksp�(Kd +Kme)A

!
(4.12)

dk = 2

s
A

�(Kd +Kme)
Atanh

 
Ksp�(Kd +Kme)A

!
(4.13)

with Atanh the inverse function of the hyperbolic tangent. The resulting phase diagram
is shown in �gure 4.4. Additionally, the \conventional" stability limit between an in{
plane and out{of{plane magnetization, Keff

2 = 0 is plotted as a dotted line.4

It is remarkable that the sample containing 150 nm of Ni is the only sample that
should be in the canted state, but this is also the only sample for which the cone state
occurs (jKeff

4 j > jKeff
2 j). Possibly, an inhomogeneous sample magnetization, due to

the surface anisotropy, may give rise to an anomalous behavior of the torque that is
misinterpreted as a fourth order anisotropy term.

4.2 Magnetic Domains

The magnetostatic energy of a sample in which the direction of the sample magnetiza-
tion is distributed between the lowest energy axes is smaller than the magnetostatic en-
ergy of a sample with a homogeneous magnetization in one of these direction. However,

4Solving equation 4.10 one �nds d = �2Ks=(Kd +Kme).
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Figure 4.4: Boundaries of the surface domain state. The classical boundary between the
in{plane and the out{of{plane states is indicated by the dotted line. The dots indicate
the position of the Cu/Ni/Cu samples.

an instantaneous change of the magnetization direction is energetically unfavorable
due to the exchange energy. On the other hand, a gradual change of the magnetization
leads to an increase in the anisotropy energy. A minimum of the sum of these energy
terms is reached by the formation of domains in which the magnetization is approxi-
mately homogeneously magnetized along an easy direction, separated by domain walls.
The size of the domains is determined by the balance between the global decrease in
magnetostatic energy and the local increase in the energy needed to create the walls
[65].

4.2.1 Stray Field of the Magnetic Domains

It was found in chapter 3 that the MFM images the sample stray �eld when performing
measurements on magnetically hard samples. Therefore, if one wishes to know more
about the magnetization of such a sample, it is necessary know the relation between
the sample magnetization, and the stray �eld of the sample. The relation between the
stray �eld and the magnetization of the sample can be described in Fourier space in a
similar manner as was used in section 3.2. Although this relation has been derived in
the literature [29, 66], its derivation is repeated in appendix A in a more elegant way.
For a sample that has a magnetic domain structure with a magnetization, M, uniform
throughout its thickness, d, the stray �eld above the sample surface can be computed
in Fourier space using:

H(k) = �r
k

(1� e�k d)e�kz

2

0
B@ �ikx=k
�iky=k

1

1
CA �M(k) ; (4.14)

where z is the distance to the surface of the sample. Following the �ndings of paragraph
3.2.1, only the component of the �eld in the z-direction is considered. For the simple
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case of a sample, magnetized perpendicular to its surface (M = (0; 0;Mz)), equation
4.14 simpli�es to:

Hz(k) =

�
1� e�k d

�
e�kz

2
Mz(k) (4.15)

= HTFz(k)Mz(k) ; (4.16)

whereas for an in{plane magnetization con�guration,M = (Mx;My; 0), the z{component
of the stray �eld is calculated using:

Hz(k) =

�
1� e�kd

�
e�kz

2

0
B@ �ikx=k
�iky=k

1

1
CA �

0
B@ Mx(k)
My(k)

0

1
CA (4.17)

= HTFx;y(k) �M(k) ; (4.18)

where HTFz(k) and HTFx;y(k) are called the �eld{transfer functions for a perpendic-
ular and an in{plane magnetization structure, respectively.

If one wishes to determine the magnetization pattern from the stray �eld, equations
4.15 and 4.17 need to be solved for Mz and (Mx;My; 0), respectively. However, there
are limitations to doing this. To start, the average magnetization of the sample can't be
determined, since for k = 0, the �rst factor in both equations vanishes. In other words,
the average magnetization of an in�nite thin �lm sample does not generate stray �eld,
therefore its magnetization can't be determined from a stray �eld measurement. While
no further limitations exist for the perpendicular magnetization pattern, the equation
for the in{plane pattern has two unknowns, namelyMx andMy. In fact, the divergence
free (or solenoidal) part of the magnetization can't be determined, since it does not
generate stray �eld. The curl{free, (or irrotational) part of the magnetization, Mcf ,
can be determined using the constraint

r� Mcf = 0 ) ikyMcf;x(k) � ikxMcf;y(k) = 0 : (4.19)

However, with additional constraints the total magnetization can in some cases be
reconstructed. For example, if it is known that the magnitude of the magnetization is
constant, the additional constraint M2

x +M2
y =M2 is imposed.

4.2.2 Domain Walls

To calculate the energy of the walls, their structure must be known. Generally, the
structure of a wall can be described as a combination of two extreme cases: the Bloch
wall and the N�eel wall. In the Bloch wall, the magnetization changes in a divergence free
manner, whereas in the N�eel wall, the magnetization changes in a rotation free manner.
As a consequence, no magnetic volume charges occur in a Bloch wall. Besides this, the
surface charges of a layer with an easy axis perpendicular to its surface are reduced. The
combination of these factors gives the Bloch type wall a lower magnetostatic energy than
the N�eel type, making it the preferred wall in magnetic layers with a perpendicular easy
axis. To determine the domain wall energy and structure of a Bloch wall, an anisotropy
constant K2 is used that excludes the shape anisotropy (K2 = Keff

2 �Kd;K4 = Keff
4 ),
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see �gure 4.2a. For 0 < �K4 < K2, the wall surface energy density 
w, and the wall
width �w of such a wall are given by [9]:


w = 2
p
A

"p
K2 +K4 +

K2p�K4
arctan

s
�K4

K2 +K4

#
(4.20)

�w = �
q
A=K2 ; (4.21)

The calculated values of the wall width are shown in �gure 4.5. For samples with
a thickness comparable to the Bloch wall width, the sample magnetization can vary
considerably throughout the sample thickness and the samples are not considered to be
magnetic thin �lms anymore by convention. This is the case for Ni layers thicker than
approximately 30 nm.
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Figure 4.5: Wall width as a function of Ni layer thickness. Layers to the left of the
dotted line d = �w can be considered thin �lms.

To simplify the equations describing the domain wall somewhat, the contribution
of K4 can be neglected. Then one obtains the more familiar expression 
w = 4

p
AK2,

which gives an approximately 4% larger energy than the exact expression. The z{
component of the magnetization in an isolated domain wall, parallel to the yz-plane of
the simpli�ed wall is given by:

mz(x) = tanh(�x=�w) : (4.22)

The total magnetic moment of such a wall in the y-direction is equal to �wdMs. If the
walls approach one anther to a distance comparable to the domain wall width, it is to
be expected that the wall structure will change. Such wall structures were shown by
Kacz�er [67] to behave like:

mz(x) = sin(�0)sn(�x=�w; sin(�0)) ; (4.23)

with sn(z; k) the Jacobi sine [41]. The value of �0 must be determined numerically from
the equation:

�d = 4�w=�K(sin(�0)) ; (4.24)
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with �d the domain period and K(z) the complete elliptic integral of the �rst kind.
The Bloch wall changes the magnetic surface charges compared to a homogeneously

magnetized domain. Therefore, it is necessary to estimate the di�erence between a
binary domain surface charge pattern, as was used for the calibration of the tip, and
the real domain pattern. In order to do this, it is assumed that a wall correction can be
achieved by multiplying the Fourier transform of the square pattern with the Fourier
transform of a wall transfer function. This function is computed by dividing the Fourier
transform of equation 4.22 by the Fourier transform of a step{like wall:

Mz;walls(k) =
k�w=2

sinh(k�w=2)
Mz;square(k) (4.25)

This approximation stays valid, as long as the walls are not too curved, and they are
so far apart that they do not in
uence one another. From equation 4.25, one �nds
that the wavelength where the magnetization of the actual pattern becomes

p
2 (-

3 dB) smaller than that of a square pattern lies at approximately 2�w. For smaller
wavelengths, the error in the step{like pattern approximation increases rapidly. Thus,
the step{like magnetization pattern approximation used in the calibration procedure
becomes doubtful for magnetization wavelengths smaller than 50 nm for the calibration
sample containing 10 nm of Ni.

4.3 In
uence of Surface Anisotropy on the Magnetization
Structure in Cu/Ni/Cu Sandwiches

In previous studies on similar samples, the relation between anisotropy and domain
size [68] was veri�ed in the range where the e�ective anisotropy is positive [69, 70]. 5

In this thesis, the MFM is used to investigate the behavior of samples containing a 15
and 200 nm thick Ni layer with a negative e�ective anisotropy. In the analysis of the
measurements, the magnitude and the shape of the signal were investigated in addition
to the size of the domains, which has become possible due to the advances described
in chapter 3.

The sample containing 200 nm of Ni was the �rst to be studied. From the hysteresis
loop, it is found that the in{plane remanent magnetization is 0:42Ms, whereas there
is no out{of{plane remanent magnetization (�gure 4.6). Thus one might expect to see
typical in{plane domains in MFM measurements. However, the MFM measurements
on these samples showed a typical domain structure for a sample in which the magne-
tization is oriented perpendicular to its surface. A relatively regular domain structure
could be obtained in the remanent state after applying an in{plane �eld to the sample
of approximately 10 kA/m (�gure 4.7a). In this state, the domain walls are found to
align with the applied magnetic �eld. The typical period of the domains, �d, was deter-
mined to be 0.23�m from the maximum in the Fourier spectrum of the image. Several
models of the structure of the domains were considered, which are shown in �gure 4.8.
Each of these models will be described in more detail in the following. Finally, a similar
analysis will be applied to the sample containing 15 nm of Ni.

5It is remarkable that good agreement between theory and experiment was found, without taking
the �� e�ect into account [34, 71]. This e�ect should have its strongest in
uence on the domain size
for this type of samples, where K2 and Kd have a comparable magnitude.
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Figure 4.6: Hysteresis loops of the sample containing 200 nm of Ni measured using
Vibrating Sample Magnetometry. The magnetization was once measured in the �eld
direction with the �eld applied perpendicular to the sample plane, and once with the
applied �eld parallel to the sample plane. The anisotropy constant of the sample was
determined from the anisotropy �eld, Ha: K

eff
2 = 1

2�0MsHa. The remanent magneti-
zation, Mr, for the in{plane applied �eld is 0:42Ms.

4.3.1 Surface Domains

It was �rst thought that the domain contrast shown in �gure 4.7a was due to domains
with a magnetization perpendicular to the surface, located at the sample surface. These
perpendicular component should decay to an in{plane magnetization with a decay
length of approximately

p
A=Kd = 8nm [72] (�gure 4.8a). The observation of such

domains would be a direct proof that the anisotropy of the Cu/Ni interface is positive.

However, quantitative analysis of the magnitude of the MFM signal showed that
the the signal of the sample was much too large: The domain pattern was estimated by
using a discrimination level, as was used in the calibration method. As a simple model
for the magnetization structure of these domains, a homogeneously magnetized surface
layer was used. To explain the magnitude of the MFM signal, this layer should be ap-
proximately 40 nm thick, which is much thicker than the expected 8 nm. An exponential
decay of the perpendicular magnetization would need a decay length of much more than
40 nm to explain the measured signal. Moreover, strain measurements showed that these
samples had a higher strain than expected from extrapolating the d�2=3 decay of the
strain, determined from the measurements on the thin samples. The measured strain
was 3:2 10�3, versus a strain of 0:3 10�3 expected from the �tted power law (see section
4.1.1). This strain in turn gives rise to a considerable volume anisotropy term, com-
pared to the surface anisotropy term (Kme = 43 103 instead of 4:1 103 J/m3, compared
to 2Ks=d = 7:1 103 J/m3).



50 CHAPTER 4. MFM ON FERROMAGNETIC LAYERS

b)

1µm

20

-20

0

δf
[Hz]

-41

a)

1µm -20

-10

0

10

δf
[Hz]

-26

c)

1µm -20

-10

0

10

δf
[Hz]

-25

Figure 4.7: Measurement and simulations for di�erent wall pro�les.
a) Measurement of a Cu/200 nm Ni/Cu sample
b) Simulation, using a magnetization structure with a wall width of 47 nm: the signal
shape is correct, but its size is too large
c) Simulation, using the approximate magnetization structure for wall width of 94 nm:
the signal size is correct, but the shape is not.

a cb

Figure 4.8: Schematic representation of the magnetization structures considered for the
Cu/200 nm Ni/Cu sample.
a) Surface domain structure
b) Sinusoidally varying magnetization, constant throughout the sample thickness
c) Canted closure domains

4.3.2 Homogeneous Weak Stripes

Due to the large anisotropy, a di�erent magnetization structure of the domains can be
expected. In this structure, the sample magnetization is better aligned with the easy
axis throughout the sample (�gure 4.8b).

An exact solution for the nucleation of such a state was �rst presented by Muller
[73], but described more clearly in paragraph 3.7.2 of the book by Hubert and Sch�afer
[9].6 It was shown that a so-called weak stripe pattern will nucleate at zero applied �eld
in a magnetic layer thicker than a certain critical thickness. In case K2 � �Kd, this
critical thickness is twice the Bloch-wall width. As K2 approaches �Kd, the critical
thickness rapidly decreases to zero. Using the values for the anisotropy and wall width
of the layer containing 200 nm Ni, one �nds that the weak stripe domains can be

6This theory can quite easily be expanded to include the surface domain state, but this was omitted
by the authors. It is not presented in this thesis due to the limited amount of available time.
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removed by applying an in{plane �eld larger than 86 kA/m. The predicted period of
the nucleated sine-wave magnetization pattern that occurs on reducing the applied �eld
is 1:25d = 250 nm, which compares well with the observed domain period, even though
the observed domain period was obtained by applying a much smaller �eld.

However, this nucleation model can not predict the �nal shape of the formed magne-
tization structure, because it is based on linearization of the micromagnetic equations.
Thus, either the nucleated sinusoidal pattern might simply increase in amplitude af-
ter its nucleation, or higher harmonics may appear, to form a \normal" magnetization
pattern with domain walls.

To �nd the magnetization structure, it is assumed that the formed structure is
described by equation 4.23. If one uses the wall width �w = 47 nm, a normal domain
structure is obtained (solid line in �gure 4.9). In order to emulate the in
uence of the
smoothing of the magnetization transitions by the domain walls, the binary domain
transition was �ltered using a low-pass �lter similar to the one given in equation 4.25.
Due to the irregularity of the domains, it is somewhat problematic to compare these
pro�les to the ones calculated for the average domain size using equation 4.23. However,
for a section of the measurement where the domain size is equal to the average domain
size, the agreement is quite good, as is demonstrated by the squares in �gure 4.9. The
simulation of the MFM measurements using the magnetization structure with a wall
width of 47 nm is shown in �gure 4.7b. By comparing the magnitude of the simulated
signal to the measured signal, it is found that the simulated signal is too large by a
factor 1.6. (Note the di�erence in the contrast scales for the measured and simulated
image.)
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Figure 4.9: Magnetization structure for di�erent wall widths. The solid line shows a
simulation with actual wall width �w = 47 nm, the dotted line shows a simulation for
a �w = 103 nm. The plotted points are suitable cuts from the magnetization structures
used for the simulations of the MFM measurements.

The amplitude of the simulated signal can be decreased by decreasing the magneti-
zation variation. This in turn can be achieved by increasing the wall width. As a rough
simulation of the increase of the wall width, the magnetization pattern was smoothed
until a 0.6 times smaller amplitude of the signal was obtained (�gure 4.7c). By compar-
ing the smoothed magnetization pattern (crosses in �gure 4.9), to a pattern predicted
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by equation 4.23 (dotted line in �gure 4.9), it is found that the wall width should be
a factor two larger, to obtain a decrease of the simulated signal by a factor 0.6. This
corresponds to a factor four times smaller anisotropy than measured, therefore this
magnetization state is unlikely to occur.

The existence of a smooth, sinusoidal{like magnetization pattern can also be ex-
cluded by comparing the shape of the simulated signal for this magnetization structure
to the shape of the measured signal. By visual comparison of the simulations for the
normal and the sinusoidal domain pattern in �gure 4.7, one gets the impression that the
simulated measurement computed from the sinusoidal structure is too smooth. A more
quantitative view is obtained by comparing the behavior of magnitude of the spectral
components of these simulated MFM measurements to those of the actual measurement
(�gure 4.10). The spectral components of the image, simulated with the actual domain
wall width shows no signi�cant deviation from the measurement, whereas the spectral
components of the image, simulated with the double wall width are a factor 10 smaller
for the second harmonic. Thus, from the analysis of behavior of the higher spectral
components of the image, the magnetization pro�le is obtained with the calculated
wall width, rather than the double wall width, needed to explain a more sinusoidal
pattern.
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Figure 4.10: Normalized amplitude spectra of simulated measurements for the actual
wall width, �w, and the double wall width, compared to the amplitude spectrum of the
measured image.

4.3.3 Partial Closure Structure

Because the size and shape of the measured signal can not be explained by the for-
mation of a homogeneous weak stripe structure, it must be assumed that the sample
magnetization is inhomogeneous through its thickness. The reduction of the stray �eld
may be due to the formation of so called partial closure domains (�gure 4.8c): close to
the surface of the sample, the magnetization rotates in a divergence free manner, to
increase the the angle between the magnetization and the surface normal at the sample
surface. Since the magnetization rotates in a divergence{free way, no magnetic charges
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are formed inside the layer, and equation 4.15 can still be used if Mz is decreased to
Mz cos(�), with � the angle between the magnetization and the surface normal (see also
the derivation of the equation in appendix A). To obtain the necessary reduction of the
signal by a factor 1.6, � must be 90 + =� 37o- This was also the case for the maximal
angle of the sinusoidal pattern, but now the angle inside the �lm is 90 + = � 90o, and
the in{plane magnetization component at the surface lies in a direction perpendicular
to the wall, instead of parallel to it.

It is interesting that the remanent in{plane magnetization, determined from the
hysteresis loop (�gure 4.6) can be explained in this model, even though the schematic
representation of the magnetization in �gure 4.8c shows no magnetization component
parallel to the domain walls. The remanent magnetization could be be due to the
in{plane magnetization inside the domain wall, which has an average in{plane magne-
tization of approximately Ms2�w=�d = 0:41Ms. Thus, the direction of the macroscopic
magnetic moment of the sample is determined by the direction of the walls between
domains, and the dominant direction of the microscopic magnetization of the sample
is perpendicular to the direction of the macroscopic magnetic moment of the sample.

4.3.4 Domains in 15 nm Ni Samples

A similar analysis of measurements on the sample containing 15 nm of Ni was at-
tempted. According to equations 4.12 and 4.13, surface domains may nucleate, even for
in�nitely extended domain sizes. Besides this, the layer thickness is much smaller than
the 26 nm wall width, therefore the canted closure state can (probably) be excluded.
However, an additional state may be possible, if one believes that the cone states, men-
tioned in section 4.1.2 exist. In this state, domains may form in which the angle with
the surface normal takes the values 90 + =� 34o.7
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Figure 4.11: Domain structure of a Cu/15 nm Ni/Cu sample.
a) MFM measurement. Note that the noise is much larger than the thermal noise limit,
indicating that modi�cation of the sample occurs.
b) Simulation, using a magnetization structure with a wall width of 26 nm. The size of
the measured signal is approximately a factor 2 smaller, and its shape is not reproduced
very well.

7Strictly speaking, the expressions for the domain wall width, derived in section 4.2.2 can not be
applied if the measured values of K4 are correct. It is possible to calculate the structure and energy of
such a wall [9], but this was not pursued here.
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The evaluation of the measurements on these samples however, is more di�cult
due to the poor signal{to{noise ratio of the measurements (�gure 4.11a). Clearly, the
magnitude of the noise is much larger than the thermal noise (0.4 Hz, see section 2.3).
A possible source for the noise could be modi�cation of the sample magnetization. A
simulated measurement was calculated from the measured magnetization pattern (�g-
ure 4.11b). The correspondence between the measurement and the simulation is rather
poor, which could be due to the modi�cation of the sample by the tip. Nevertheless, it is
clear that the signal is smaller than can be expected for a layer that is homogeneously
magnetized perpendicular to its surface. However, it is even more di�cult to decide
what the domain structure is, because no analysis of the shape of the measured signal
is possible in this case.



Chapter 5

MFM on Superconductors,
Applied to YBCO Samples

When superconductivity was discovered by Kamerlingh{Onnes, it was through the
experimental observation that the resistivity of certain materials disappeared below a
certain critical temperature Tc. After this discovery, it took approximately twenty years
before Meissner and Oxenfeld discovered that applied �elds smaller than a critical �eld
Hc(T=Tc) are expelled from the inside of the superconductor, resulting in a repulsive
magnetic interaction. When the local �eld, given by the sum of the applied �eld and
the �eld due to the Meissner expulsion is larger than the critical �eld, the �eld can
penetrate the superconductor locally, and normal conducting regions are formed. The
behavior of these coexisting regions are described by the Ginsburg{Landau equations,
using a complex order parameter  :

�
ir+ 2�

A

�0

�2
 =

1

�2
( � j j2 ); (5.1)

r2A =
1

�2

�
j j2A+ i

�0
4�

( �r �  r �)
�
; (5.2)

with �0 the superconducting 
ux quantum, A the magnetic vector potential and j j the
density of superconducting particles. The parameter � is called the Ginsburg{Landau
coherence length, and is a characteristic length over which the order parameter changes
in size. The parameter � is called the penetration depth, and is a characteristic length
over which the vector potential, and thereby the magnetic �eld can vary inside the
superconductor. It was found that, although � and � vary as a function of tempera-
ture, their ratio, called the Ginsburg{Landau parameter, � � �=�, is approximately
constant. Furthermore, in the limit �!1, j j is constant, and the second Ginsberg{
Landau equation reduces to the simpler equation found previously by F. and H. London.
F. London also found that the 
uxoid is quantized, where the 
uxoid �0 is de�ned as:

�0 =
�0
�2

I
l

jdl+

Z
S

B ds = n
h

2e
; (5.3)

with B the magnetic 
ux density, h Plancks constant, e the electron charge, j the
current density vector, and l a closed path inside the superconductor that encloses the
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surface S. In the case the integral of the current is zero, the total amount of magnetic

ux is quantized with increments of �0 =

h
2e

1. Abrikosov found that a magnetic domain

structure is only occurs in superconductors with � < 1=
p
2. These superconductors are

called type{I superconductors. However, for superconductors with � < 1=
p
2, the energy

of the domain walls becomes negative between the external �elds Hc1 and Hc2. This
leads to the formation of a structure of screening current vortices around small, normal
conducting cores, with each vortex containing one 
ux quant. The superconductors
where this occurs are called type{II superconductors. These superconductors generally
have a higher critical temperature and �eld, and are therefore interesting for technical
applications. The interest in this type of superconductors revived due to the discovery of
the group of so called High{Tc superconducting materials by Bednorz and M�uller [74],
some of which have a critical temperature above the boiling point of liquid nitrogen.

Material Nb NbSe2 YBa2Cu3O7�x

� [nm] 32 200 140
� [nm] 39 7.7 1.4

Table 5.1: � and � for di�erent superconducting materials.

Using the low temperature MFM, both the Meissner forces due to the screening of
the tip �eld from the inside of the superconductor and the forces due to the stray �eld
of the vortex structures in the superconductor can be measured. The contrast formation
process on the superconductors will be investigated in more detail in section 5.1. The
results of this investigation are used in section 5.2 to estimate what information can
be extracted from the MFM measurements by the evaluation of the image contrast in
older measurements.

5.1 Contrast Formation on Superconductors

In previous work, all types of MFM contrast formation, as described in chapter 3 have
been investigated theoretically: negligible modi�cation [75, 76], reversible modi�cation
[35, 76, 77], and irreversible modi�cation [78]. However, due to the lack of experimental
data on the tip structure, this work has mainly focussed on the image formation process
in the case of simple model tips, such as monopoles and dipoles. In the following, the
contrast formation models for negligible and for reversible sample modi�cation are
discussed. Furthermore, the applicability of these models is expanded to include both
realistic tip models and the in
uence of the �nite thickness of the superconducting
layer.

As was the case for ferromagnets, the imaging mechanism is fully understood when
the stray �eld of the superconducting sample, and the stray �eld of the tip are known.
One source of the sample stray �eld is the �eld generated by the current distribution,
that in turn is caused by the Meissner expulsion of the tip �eld. This leads to a type of
contrast formation that is due reversible modi�cation of the sample stray �eld, that is
discussed in section 5.1.1. A second source of the sample stray �eld is the presence of

1Actually London found �0 = h
e
, later it was shown in the BCS{theory that the superconducting

current is carried by pairs of electrons, so{called Cooper pairs, with charge 2e.
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a vortex. When the MFM tip does not modify the vortex{core, the contrast formation
can be explained using negligible modi�cation of the sample, as shown in section 5.1.2.
A third source of stray �eld are normal{conducting domains in type{I superconductors.
However, the imaging of these domains by MFM has not been considered yet, which is
partly due to the fact that our instrument could not (conveniently) reach temperatures
below the critical temperature of these superconductors. Lead, that has one of the
highest Tc's of the type{I superconductors, has a critical temperature of 7.2 K.

5.1.1 Stray Field due to Meissner Expulsion

The �eld due to the Meissner expulsion of the tip can be modeled in the London limit,
as long as �� 1=

p
2 and the �eld of the MFM tip at the surface of the superconductor

is much smaller than the critical �eld of the superconductor. Hug et al.[35] derived
the force for a point monopole tip, whilst Co�ey [76] found the force on a tip with
rotational symmetry, and derived a closed form expression for the point monopole tip.
Here, the approach in [79, 77] is extended to include a calibrated MFM tip, and the

ux repulsion for a thin superconducting �lm is derived.

In the following, our discussion is limited a superconductor that carries no external
currents, and without changing electric �elds. In the London limit, the z{component of
the magnetic �eld H1 outside, and the �eld H2 inside a homogeneous superconductor
is determined by the di�erential equations:

r2H1 = 0

r2H2 =
H2

�2
; (5.4)

with the boundary conditionsH1 = H2 and H
0
1 = H 0

2, where the
0 designates the partial

derivative with respect to z. In 2-D Fourier space, these equations can be rewritten using
the relation @2H(x; y; z)=@x2+@2H(x; y; z)=@y2 ! (k2x+k

2
y)H(k; z) = k2H(k; z), which

was also used in section 3.2.1:

H 00
1 (k; z) = k2H1(k; z)

H 00
2 (k; z) = (k2 + 1=�2)H2(k; z) ; (5.5)

and one �nds the general solution:

H1(k; z) = H1#(k)e
z k +H1"(k)e

�z k

H2(k; z) = H2#(k)e
z
p
k2+1=�2 +H2"(k)e

�z
p
k2+1=�2 ; (5.6)

with the boundary conditions: H1# +H1" = H2# +H2" and H
0
1# +H 0

1" = H 0
2# +H 0

2".
As was pointed out by Co�ey [79], this description is analogous to the description of

non-relativistic quantum mechanics by the Schr�odinger equation, or the description of
the propagation of evanescent plane electromagnetic waves with normal incidence to a
surface. In the latter case, both the transversal components of the B{ and the E{�elds
are continuous at the interface, whereas here the H{ and the H0{�elds are continuous.
Analogous to the optical case, one can de�ne a re
ection coe�cient for the re
ection at
a single surface: r1 � H1"=H1#

2 and a transmission coe�cient t1 � H2#=H1# = 1 + r1.

2Co�ey uses a slightly di�erent de�nition of the re
ection coe�cient: rCo�ey = �r.
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Solving the boundary conditions using the de�nition of the re
ection coe�cient and
equations 5.6, one �nds that the re
ection coe�cient is given by:

r1 =
k �pk2 + 1=�2

k +
p
k2 + 1=�2

; (5.7)

Furthermore, a propagation coe�cient p can be used that describes the propagation of
the magnetic �eld as a function of z. 3 If a tip{equivalent surface charge distribution
�tip(k) (see section 3.2.2) is located at a distance z from the superconductor then
H1#(k) = e�z k�tip(k), as is shown schematically in �gure 5.1a. In this case, the �eld
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Figure 5.1: Schematic representation of the calculation of the Meissner repulsion of the
tip{�eld
a) for an in�nite superconductor
b) for a superconducting layer.

re
ected by the superconductor, Hrefl, at the location of the tip equivalent charge is
given by:

Hrefl(k; z) = �1=2�tip(k) p21(z) r(k)
r(k) = r1 ; p1(z) = e�z k; (5.8)

The transmitted part of the �eld in the inside the superconductor at a depth z0 is given
by:

Htrans(k; z; z
0) = �1=2�tip(k) p1(z) t(k) p2(z0)

t(k) = (1 + r1) ; p2(z
0) = e�z

0

p
k2+1=�2 ; (5.9)

3Co�ey showed that, even for an inhomogeneous superconductor, where the penetration depth de-
pends on z, �(z) can in principle be determined through the k{dependence of the re
ection coe�cient,
which can be estimated from measured force{distance curves [77, 79].
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For a thin superconducting layer one must take multiple re
ections into account, as is
shown schematically in �gure 5.1b. One �nds:

H1" = r1H1# + (1� r1)H2"

H2# = (1 + r1)H1# � r1H2"

H2" = p2 r2 p2H2# ;

with p2 = e�d
p
k2+1=�2 , and d the thickness of the superconducting layer. The solution

is given by:

r = H1"=H1# =
r1 + r2p

2
2

1 + r1r2p22
(5.10)

= r1
1� p22
1� r21p

2
2

; (5.11)

t = p2
1� r21
1� p22r

2
1

; (5.12)

using r2 = �r1. As is the case for optics, the re
ection coe�cient for the surface of a
sample consisting of any number of layers can be calculated by the recursive application
of equation 5.10, starting with the interface that is furthest away from the surface of
the superconductor, by inserting the re
ection coe�cient of the lower layer stack for
r2.

Using the calculated �eld, the force, Fn, acting on the MFM lever can be calculated
in Fourier space using equation 3.13. The di�erence between the negligible modi�ca-
tion case and the (homogeneous) reversible modi�cation case lies in the fact that the
screening current moves with the tip when it moves laterally. This makes the interac-
tion constant as a function of lateral position, and equal to the force at the position
x = 0; y = 0 in the negligible modi�cation case. Evaluating the inverse Fourier trans-
form for x = 0; y = 0 one �nds:

Fn =
�0 cos(�)

4�2

1Z
�1

�1=2�tip(k)p21(z)r(k)��tip(k) dk ; (5.13)

with � the canting angle between the lever normal and the sample surface normal, as
was shown in �g. 2.1. Inserting r from equation 5.8 one �nds the force caused by the

ux expulsion from a semi{in�nite sample:

Fn =
�0 cos(�)

8�2

1Z
�1

j�tip(k)j2
p
k2 + 1=�2 � kp
k2 + 1=�2 + k

e�2kz dk : (5.14)

Inserting � = 0, �tip(k) = q0, and transforming to polar coordinates, equation 5.13 can
be reformed to equation 13 in [35] (note that the unit of q is [Wb] in [35], whereas
it is [Am] here). In the case 1=k � �, the equation reduces to the complete 
ux
expulsion model, were the tip \feels" its mirror image at a distance 2z. For 1=k � �
the force becomes zero. Therefore, magnitude of the penetration depth dependent part
of the force is determined by the magnitude of the tip stray{�eld components with a
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wavelength comparable to �. These stray �eld components do not reach the sample at
tip{sample distances much larger than lambda, therefore the approach curve should be
approximately equal to that of the complete 
ux expulsion model at large distances.

In contrast to the �eld distribution of a theoretical tip model, the �eld distribution
of a real MFM tip can not be scaled by �, therefore the behavior of the force, or
force derivative as a function of distance must be calculated for each speci�c tip. This
calculation is demonstrated for the microfabricated Si{tip of which the stray �eld was
determined in section 3.3.2. For comparison to the measurements, not the force, but the
frequency shift was calculated as a function of tip{sample distance using equation 2.5
and the lever properties listed in table 2.1. It is noteworthy that all Fourier components
must be multiplied with 2 k instead of k to calculate the force derivative from the
force. This is due to the interaction between the tip and the sample. In �gure 5.2,
results are shown of calculations for a semi{in�nite superconductor and a thin{�lm
superconductor.
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Figure 5.2: Calculated frequency shift versus distance due to the Meissner Force.
Upper �gure: frequency shift for several values of � on an in�nite sample.
Lower �gure: frequency shift as a function of sample thickness h for a sample with the
penetration depth of YBCO, �YBCO = 140 nm.

It is clear that changes in the penetration depth of a semi{in�nite superconductor
can be measured more accurately for small penetration depths. For YBCO samples (� =
140 nm), a change in the penetration depth in the order of 20 nm should be detectable in
measurements with a small bandwidth, provided the Meissner force can be separated
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from other forces, such as electrostatic and Van{der{Waals forces. The accuracy of
absolute measurements of � is determined by the accuracy of the tip{calibration, and
should lie in the order of 10 %. The e�ect of the �nite �lm thickness becomes noticeable
when the �lm thickness decreases below �.

5.1.2 The Vortex Stray Field

If vortices are formed in a type{II superconductor, the expression for the �eld inside
the superconductor in equation 5.4 must be modi�ed in order to include the core of the
vortex:

r2H2 =
H2

�2
+ V (x; y) ; (5.15)

where V (x; y) is the `vorticity' of the vortex, which can not be calculated from the
London model, but must be determined from the Ginsburg{Landau equations. The
�eld of a vortex can be calculated similar to the 
ux repulsion of the MFM tip, as was
shown by Co�ey and Phipps [80].

A particular solution for the vortex{�eld equation 5.15, Mv(k), is:

Mv(k) = � V (k)

k2 + 1=�2
; (5.16)

which can be interpreted as the magnetization of the vortex core. The magnetic moment
of the sample is given by the integral of the magnetization of the vortex cores and the
magnetization due to the Meissner expulsion of the externally applied �eld. Note that
the homogeneous magnetization due to the Meissner expulsion of the external �eld will
not give a contribution to the contrast, as long as the measurement is not too close to
the sample edge, as was already pointed out in section 4.2.1. Furthermore, the vortex
structures imaged in this thesis were obtained by cooling the sample from above Tc to
below Tc in the presence of an applied �eld. In these samples no Meissner expulsion of
the applied �eld occurs, because the zero internal �eld is achieved by \transporting"
the external �eld through the superconducting layer in the form of vortices. Therefore,
the number of vortices is proportional to the external �eld: nvortex = �0Hext=�0.

Like the ferromagnetic samples in section 4.2.1, the magnetization of the vortex
core has a stray �eld, which is repelled by the superconductor similar to the stray �eld
of the MFM tip. For a vortex in a semi-in�nite superconductor, the �eld outside the
superconductor is given by the sum of the stray �eld of the vortex core and the stray
�eld that is expelled by the superconductor:

Hv(k; z) = 1=2Mv(k)p1(z)(1 � r1) ; (5.17)

with p1(z) and r1 as de�ned in section 5.1.1. For a thin �lm superconductor, the vortex
stray �eld is given by:

Hv(k; z) = 1=2Mv(k)p1(z)(1 � r � t)

= 1=2Mv(k)
(1 � r1)(1 � p2)

1 + p2r1

= Mv(k)
1

1 + k=
p
k2 + 1=�2 coth(d=2

p
k2 + 1=�2)

; (5.18)
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with t; r; p1 and p2 the same as for the 
ux repulsion from a thin superconducting layer.
In addition to the terms that were also needed to calculate the Meissner expulsion,
the t term is needed here to calculate the total �eld, because the e�ect of the �eld
transmitted from the lower end of the vortex through the superconductor must be
taken into account.

Fritz [75] calculated the stray �eld produced by an isolated vortex in an semi-in�nite
superconductor as a function of the anisotropy of the superconductor between the ab-
and c-directions, and the Ginsburg-Landau parameter �. As a side result, a simple
approximation for the vortex structure was found. In this approximation, the in
uence
of the coherence length on the vortex structure is modeled using the Ginsburg{Landau
theory, as done by Clem [81, 82, 83] for an in�nite superconductor. Additionally, the
widening of the vortex close to the superconductor surface, located in the xy{plane, is
modeled in the London limit (�!1). Ignoring the anisotropy of the superconductor,
the result by Fritz can be obtained using Clem's solution of the vortex �eld as Mv(k):

Mv(k) =
�0

��0K1(�v=�)

K1(�v
p
k2 + 1=�2)p

k2 + 1=�2
; (5.19)

where K1 is the �rst order modi�ed Bessel function of the second kind and �v is a
variational parameter for the radius of the normal conducting core. For small values
of �, �v is found to be equal to

p
2� (see �gure 1 in [75]). Inserting equation 5.19 into

equation 5.18, the vortex �eld is found:4

Hv(k; z) =
�0

��0K1(�v=�)

K1(�v
p
k2 + 1=�2)p

k2 + 1=�2 + k coth(d=2
p
k2 + 1=�2)

e�kz : (5.20)

For � ! 1, equation 5.20 becomes the solution found by Chang et al. and Irz et

al. [84, 85], and with the additional limit d ! 1, it becomes the solution found by
Pearl [86] for a superconductor with an in�nitely small core. The vortex �eld given by
equation 5.20 is plotted in direct space in �gure 5.3 for three di�erent superconductors,
Nb, NbSe2 and YBa2Cu3O7�x. The 
ux density in Tesla is plotted as a function of the
distance from the vortex center in panel a, the �eld normalized for the maximum 
ux
density is plotted as a function of the radial distance normalized for � in panel b .

To describe the behavior of the vortex �eld close to the center of the vortex, the
vortex radius can be de�ned as the distance at which the �eld decays to a fraction 1=e
of the maximum �eld value. This radius is indicated by the square symbols in �gure 5.3.
The vortex radius according to this de�nition is slightly larger than the penetration
depth for Nb, but about 4 times smaller than the penetration depth in the case of
YBa2Cu3O7�x.

A problem of this de�nition is that it does not do justice to the long range behavior
of the vortex, and that it goes to zero for the Pearl vortex model, due to the (unphysical)
fact that the 
ux density goes to in�nity at the center of the vortex in this model. To
circumvent these problems, an alternative de�nition of the radius is proposed that uses

4The di�erence with Fritz' result is due to the di�erent coordinate system used to describe the �eld.
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Figure 5.3: t-component of the 
ux density distribution of a vortex at the surface of
a semi{in�nite superconductor (z = 0) for three di�erent superconductors: Nb (solid
line), NbSe2 (dotted line) and YBa2Cu3O7�x (dashed line). The squares indicate the
position of the 1/e vortex radius, whereas the circles are plotted at the position of the
weighed average vortex radius according to equation 5.21).
a) Flux density versus distance
b) Flux density, normalized for maximum density versus distance normalized by �

the weighed average vortex radius, �v:

�v �
2�

1R
0
r Bz(r) dr

2�
1R
0
Bz(r)dr

: (5.21)

The numerator in equation 5.21 is equal to �0 for a radially symmetric vortex, and the
denominator can be evaluated using the previously obtained results using a coordinate
a transform to spherical coordinates:

Bz(r) =
1

2�

1Z
0

Bz(k) k J0(k r) dk

2�

1Z
0

Bz(r) dr =

1Z
0

Bz(k)

1Z
0

k J0(k r) dr dk

=

1Z
0

Bz(k) dk ; (5.22)

where J0 is the zeroth order Bessel function of the �rst kind. Analytical results are
obtained for Pearls vortex in a semi{in�nite superconductor: Deep inside the supercon-
ductor, one �nds �v = 2�=�, whereas at the surface of the superconductor �v = �. For
more complicated cases, equation 5.21 must be evaluated numerically. In �gure 5.4 the
magnetic vortex radius at the surface of the superconductor is plotted as a function
of � and layer thickness, obtained using equation 5.20. The weighed average radius is
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approximately equal to one for layers thicker than 1=3� and � values larger than 10.
Some caution must be used when interpreting the plotted results, because the following
points were neglected in the derivation of 5.20:

1. The anisotropy of the superconductor. However, for the materials discussed here
the anisotropy is quite small. Probably, the approach used here can be expanded
to describe anisotropic superconductors.

2. Due to the use of the London limit in the derivation of equation 5.20, the widening
of the magnetic radius of the vortex at the surface is not accompanied by a
widening of the vortex core. As discussed in [75], this is approximately correct
for high �{values. For �{values below 10,  vortex(r; z), widens by more than 40%
close to the surface, which will lead to an additional increase of the vortex radius.
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Figure 5.4: Behavior of the vortex radius.
Upper �gure: radius of a vortex in a semi{in�nite superconductor as a function of �.
The vortex radii for di�erent superconducting materials are indicated by the circles.
Lower �gure: Dependence of the vortex radius on layer thickness in a superconductor
with � ! 0. The vortex radius increases signi�cantly for layer thicknesses below 1=3�.
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5.2 Evaluation of the Experimental Image Contrast

Because the method for quantitative evaluation of MFM measurements was developed
more or less simultaneously with the possibility to perform measurements on super-
conductors, all measurements up to now were made with uncalibrated tips. Due to
instrumental problems it was not possible to perform any new measurements, therefore
the measurements that were published previously in Bruno Stiefel's thesis [10] are used.
However, even from these uncalibrated measurements, some conclusions can be drawn.

5.2.1 Cause of the Vortex Contrast

As a �rst application of of the contrast formation theory, the cause of the contrast
formation mechanism in vortex imaging can be investigated. In the London limit, the
contrast due to the Meissner screening and the contrast due to the vortex stray �eld are
superimposed. One could suppose that the contrast formation of the vortex is mainly
caused by the decrease in the Meissner repulsion of the tip, due to the change of the
screening current distribution around the vortex core. In this case, the repulsive inter-
action between the tip and sample should decrease close to the vortex core, independent
of the direction of the applied �eld that was used to create the vortex. On the other
hand, if the contrast formation is mainly caused by the interaction between the tip and
the stray �eld of the vortex, the interaction over the vortex is attractive when the vor-
tices are generated by a �eld parallel to the tip magnetization, whereas it is repulsive
when the vortices are generated by a �eld anti{parallel to the tip magnetization. To
test which of the contrast mechanisms is dominant, an experiment was performed on
a sample consisting of an approximately 140 nm thick YBa2Cu3O7�x layer on a (100)
SrTiO3 substrate, produced by laser ablation in the group of Dr. B. Dam [87]. As is
shown in �gure 5.5, the MFM measurements made of vertex structures produced by an
external �eld anti{parallel and parallel to the tip magnetization clearly show that the
interaction of the MFM tip with the stray �eld of the vortices is the dominant contrast
mechanism.
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Figure 5.5: MFM images at a single location of the magnetic stray �eld of a 140 nm thick
YBa2Cu3O7�x layer. The sample was �eld cooled in an external �eld, Bext, oriented
perpendicular to the thin �lm plane (i.e. parallel to the c{axis of the YBa2Cu3O7�x

structure). The magnitude of Bext was equal for both images (2mT), but its direc-
tion was anti{parallel to the magnetization direction of the MFM{tip in Fig. 5.5a and
parallel in Fig. 5.5b.

To estimate whether the contrast due to a change in the Meissner force in the
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neighborhood of the vortex can be neglected or not, the theory described in the previous
section can be used. To �nd the order of magnitude of the contrast, it is assumed that
the e�ect of the vortex core is approximately equal to that of a hole with a diameter of
the vortex radius. The maximum decrease of the Meissner repulsion, occurring above
the center of the hole, is probably smaller than the decrease of the repulsion due to an
increase of the e�ective distance between the tip and the superconductor by the radius
of the hole. The calculated frequency shift versus distance curves in �gure 5.2 can be
used to estimate the distance dependence of the tip repulsion, , because the tip used to
produce the measurements shown in �gure 5.5 was prepared similar to the calibrated
tip. From the slope of the curve calculated a 140 nm thick YBCO layer, one �nds that
a change in the e�ective distance by 2 nm would give a signal smaller than 3�Hz. This
is well below the noise level in the measurement of approximately 50�Hz, therefore it
can be concluded that the measurement contrast is entirely due to the stray �eld of the
vortices.

In principle, the test of the exponential decay of the measured interaction that was
described in section 3.2.5 can be used to check whether part of the contrast formation
is due to some other form of reversible, or irreversible interaction such as a movement
or bending of the vortex core in the direction of the scanning MFM tip, but such
measurements were not performed yet.

5.2.2 Dependence of the Contrast on � and �

To �nd how sensitive the measured contrast is to changes in the superconducting prop-
erties � and �, the measured contrast can be compared to the contrast calculated for
several parameter values, assuming that the sample magnetization is negligibly modi�ed
by the tip. The measurement was made under the same condition as the measurement
in �gure 5.5a, but with a reduced the scan range. An section of the measurement was
used in which the vortex is exactly in the center of the image (�gure 5.6a).

The calculation of the tip{sample interaction is more complicated in this case,
because the tip calibration used to calculate the Meissner force versus distance curves
can not be used here. This is due to the problem that the tip is only calibrated for those
spatial frequencies that are contained in the calibration measurements. The size of the
calibration measurements was 5�m, whereas the size of the measurement in �gure 5.6a
was only 0.75�m, therefore these measurements contain a di�erent spatial frequency
range. As an alternative for a calibrated tip, the calibration was estimated using the
calibration function of the geometry based tip model in paragraph 3.4.3. As was pointed
out there, the image contrast of this model is somewhat too sharp and too large. These
e�ects were compensated for by an in increased e�ective measuring distance and a
decrease of the overall strength of the tip �eld. First the measurement was deconvolved
by the simulated tip �eld. Then the e�ective distance and the multiplication factor
for the tip �eld were determined by �tting the deconvolved �eld with the �eld of a
vortex calculated using equation 5.18 with the parameters h = 140 nm, � = 140 nm,
� = 1:4 nm. A good �t was obtained for an e�ective distance of 147 nm, and a tip{�eld
strength that was a factor 0.49 smaller than the simulated �eld (compare the solid and
the dotted line in �gure 5.6c).

The �tted calibration allows the prediction of the accuracy with which di�erent
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Figure 5.6: Fit of the 
ux density distribution of a single vortex. a single vortex in
140 nm thick layer of YBa2Cu3O7�x.
a) Original measurement.
b) Deconvolved 
ux density at an e�ective tip{sample distance of 147 nm.
c) Line{sections from the deconvolved 
ux density (solid line), the 
ux density calcu-
lated using equation 5.18 (dotted line) and the 
ux density of the monopole model of
a vortex (dashed line).

models and parameter sets can be distinguished from one another, based on the mea-
surement data. An often used approximation of the stray �eld distribution of the vortex
far away from its core is a point monopole with charge 2�0, located at a distance �
below the surface of the superconductor. The 
ux distribution of this model is drawn in
�gure 5.6c as a dashed line. Clearly, the stray �eld of the simple model is signi�cantly
di�erent from the �eld calculated using equation 5.18: the peak �eld is much larger,
and it decays much more rapidly.

By evaluation of the behavior of the integrated squared deviation between the cal-
culated �eld and the `measured' �eld as a function of � and �, it was found that the
detection limit for changes in the value of � is mainly determined by the amount of
topography artifacts in the image and the accuracy with which the tip{to{sample dis-
tance can be determined. The accuracy of the absolute determination of � is mainly
limited by the accuracy of the tip{calibration, which is currently approximately 10%.
Changes in the magnitude of � on the other hand, can only be determined if the value
of � is known, and even then only if � increases by more than a factor of 4. Nevertheless,
� may still be determined by measurements with a better resolution, or in supercon-
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ductors with lower � values. However, one should realize that in this case of low �
values, a more sophisticated model is needed, as the approximations used to calculate
the vortex stray �eld become questionable and the Meissner{type vortex contrast may
give a non-negligible contribution to the overall contrast.



Chapter 6

Conclusion

In the following, the most important results of each chapter will be discussed, and
suggestions for further work will be made.

6.1 Instrument

The signal{to{noise ratio of the static and dynamic measurement modes was investi-
gated theoretically and experimentally. The surprising result was found that, theoreti-
cally, the static measurement mode is superior to the dynamic measurement mode for
the normal operating conditions of the magnetic force microscope if one only considers
noise due to thermal vibrations of the cantilever. However, this thermal noise limit is not
reached experimentally in the static measurement modes, making the dynamic modes
superior from the signal{to{noise point of view. Experimentally, it was shown that,
apart from signal{to{noise ratio considerations, equivalent information is contained in
the in the cantilever de
ection measured in the static mode and the resonance frequency
shift measured in the dynamic mode with small vibration amplitudes. Furthermore, it
was shown that the image contrast of dynamic mode measurements changes when the
vibration amplitude becomes too large. It may be interesting to study the contrast
formation of dynamic modes with large vibration amplitudes in future work, as these
modes should have a higher signal{to{noise ratio for stray �eld components that vary
on a large length scale.

6.2 Contrast Formation

The contrast formation mechanism of magnetic force microscopy was investigated in
the case when the modi�cation of the sample by the stray �eld of the tip is negligible. It
was shown that the contrast formation mechanism can be described elegantly in Fourier
space. It was demonstrated that a non{zero angle between the normals of the cantilever
surface and the normal of the sample surface creates a distortion in the image contrast,
and that this distortion can easily be removed by an operation in Fourier space.

A method for calibrating the MFM signal was proposed that uses calibration mea-
surements on a perpendicularly magnetized sample. A calibration function of the in-
strument is determined by a deconvolution of the measured signal with a simulation
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of the stray �eld of the sample. The simulated stray �eld is calculated from a magne-
tization pattern that is estimated from the MFM measurement. The accuracy of the
calibration was improved by averaging over several calibration measurements, and by
the use of an iterative procedure, in which the found calibration function is used to ob-
tain a more accurate estimate of the sample magnetization pattern. The di�erence was
calculated between the calibration measurements and simulations, obtained using the
calibration function. This di�erence is still too large to be completely explained by the
statistical errors in the calibration function, which indicates that the calibration can be
further improved. A possible source of the remaining di�erence is the implementation
of the deconvolution operation of the calibration measurement with the simulated mea-
surement as a division in Fourier space. It is expected that more advanced numerical
methods for �nding the the calibration will give a more accurate result.

It was shown that the stray �eld of the tip can be calculated from the calibration
of the instrument. It was found that the 
ux density at the end of the tips, used in the
experiments described here, is of the order of 10mT, and decays rapidly with increasing
distance from the tip.

The contrast predicted by the calibration functions was compared to the contrast
predicted by some simple tip models. Furthermore, measurements were made on a
di�erent sample than the sample on which the instrument was calibrated to test the
accuracy of the contrast predicted by the calibration function. These measurements
show the same shape and size of the contrast as the contrast calculated using the in-
strument calibration. The contrast of a microfabricated silicon type tip was compared
to the contrast of a electron beam induced deposition (EBID) type tip. It was found
that the EBID type tip has a higher resolution and a lower stray �eld than the micro-
fabricated Si type tip. Thus, the calibration of the tips can help to optimize the MFM
tips. The comparison of the calibration functions to some simple tip models showed
these simple models do not explain the measured image contrast quantitatively, and in
some cases even give a qualitatively wrong result.

The measurement sensitivity of the MFM was calculated for the microfabricated
silicon type tip and compared to the sensitivity scanning Hall probe and scanning
SQUID microscopes. It was found that at room temperature, the MFM has a better
sensitivity than Hall probes at magnetization wavelengths shorter than 1.4�m. In the
LHe temperature range, the MFM is more sensitive than the SQUID microscope for
wavelengths shorter than 4�m, and more sensitive than the scanning Hall microscopes
for wavelengths shorter than 0.85�m.

It is expected that the magnetization of ultrathin magnetic �lms and nanostructures
can be measured using calibrated MFM. To get more con�dence in the calibration
method, it would be interesting to compare the stray �eld of the MFM tip determined
from the instrument calibration function to the stray �eld determined by other methods,
such as Lorentz microscopy or electron holography. Finally, calibrated MFM can be used
to locally apply a known �eld to a sample. This could be used to map the sensitivity
of �eld sensors.
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6.3 MFM on Ferromagnetic Samples

Calibrated measurements were used to analyze the magnetization structure of domains
in Cu/Ni/Cu/Si(001) samples. It was hoped that the occurrence of a surface domain
structure would give direct evidence that the surface anisotropy of these samples favors
a magnetization oriented perpendicular to the sample surface. Analysis of measurements
on a sample containing 200 nm of Ni showed that its stray �eld distribution is similar
to that of a sample with domains, magnetized perpendicular to the sample surface,
but the magnitude of the stray �eld is a factor 0.6 smaller than the stray �eld of such
perpendicular domains. Comparison of the distribution and magnitude of the measured
stray �eld to the stray �eld of model magnetization structures showed that no surface
domain structure exists in these samples. However, no de�nitive statement can be made
on which alternative magnetization structure occurs, without evaluation of the energies
of the di�erent magnetization structures. This would require �nite element calculations,
which are beyond the scope of this thesis. Measurements on a sample containing 15 nm
of Ni illustrates the importance of good measurement quality,1 as it is not possible to
perform reliable quantitative analysis on this sample, due to modi�cation of the sample
by the tip.

A possible method for the direct determination of the surface anisotropy would be
the determination of the susceptibility, and thereby the anisotropy, of these samples as
a function of the depth in the sample. Tis can be done from measured force{distance
curves, using a similar method as was proposed by Co�ey for determining the penetra-
tion depth in superconductors.

6.4 MFM on Superconducting Samples

Amethod was presented that allows the calculation of the interaction between a tip with
an arbitrary stray �eld distribution and a superconducting sample. It was shown that
this method can be applied to the calculation of both the interaction due to Meissner
expulsion of the stray �eld of tip and the interaction between the tip and the stray �eld
emanating from a vortex.

The shift in resonance frequency due to the Meissner repulsion was calculated for
a microfabricated silicon type lever as a function of distance for samples with di�erent
penetration depths and thicknesses. It was shown that with present tips, it should be
possible to determine the penetration depth from the frequency shift{versus distance
measurements with an accuracy of approximately 10 nm.

To quantify the size of a vortex, two de�nitions of its magnetic radius were pro-
posed: the 1=e radius and the weighted average radius. It was shown that for large
values of the Ginsburg{Landau parameter �, the radius of the vortex decreases asymp-
totically towards towards zero or to the penetration depth, depending on the de�nition
of the vortex radius. Furthermore, the dependence of the vortex radius on the sample
thickness was calculated. It was shown that the vortex radius increases signi�cantly for
thicknesses below one third of the penetration depth.

The theory of the tip{sample interaction was used to analyze the vortex contrast for

1i.e. measurements with a high signal{to{noise ratio and negligible modi�cation of the sample.
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YBCO samples. It was found that the vortex contrast is due to the interaction between
the magnetic MFM tip and the stray �eld of the vortex, whereas the decrease in Meiss-
ner repulsion above the vortex core gives a negligible contribution to the contrast. It was
shown that the calculation of the vortex stray �eld using the contrast theory presented
here gives signi�cantly di�erent results than calculation using the simple model of a
vortex as a point monopole with twice the 
ux of the superconducting 
ux quantum,
located at a the penetration depth below the sample. From evaluation of the behavior
of the di�erence between the measured and the simulated signal, it was concluded that
it should be possible to determine changes in the penetration depth with an accuracy
of a few nanometers as long as the in
uence of topography artifacts is negligible. Fur-
thermore, it was found that the accuracy of the absolute value of the penetration depth
is mainly determined by the accuracy of the calibration of the measurement. Thus, it
is found that the present accuracy of the determination of the penetration depth, from
the measurement of the vortex signal, would also be approximately 10 nm. In YBCO
samples, the coherence length is too small to be determined from present measure-
ments. Possibly, this can be done using measurements made with better magnetic tips
at a smaller tip{to{sample distance.

As a suggestion for future work, it may be interesting to repeat the measurements
of a vortex con�guration as a function of temperature made by Bruno Stiefel with cali-
brated tips. These measurements are particularly interesting because they should show
the change of the vortex stray �eld due to the increase in the penetration depth, the
coherence length and and the ratio between the sample thickness and the penetration
depth. The changes in the penetration depth and the coherence length should only re-
sult in a scaling of the lateral dimensions of the vortex stray �eld, whereas the change
in the ratio between the sample thickness and the penetration depth should result in a
change in the shape of the vortex stray �eld.



Appendix A

Stray Field of a Magnetic Layer
in Fourier Space

It is instructive to derive the relation between the sample magnetization, and the stray
�eld of the sample, because this is not done very clearly in literature [29]. For a sample
with a volume charge �, that is independent of the depth in the sample, and with a
magnetic surface charge �top = ��bottom = �, the di�erential equations for the scalar
magnetic potential in Fourier space, can be given using the relations derived in section
3.2.1:

inside:

r2�M;i = ��(k)
�M;i(k; z) = A1(k)e

k z +A2(k)e
�k z +

�(k)
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outside:
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If it is assumed that the sample has a magnetic domain structure with a uniform
magnetization, M, throughout its thickness, d, � and � can be replaced by: � = �r �
M = �ikxMx � ikyMy and � =Mz:
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The demagnetizing energy density, Ed, can be calculated using the integral:

Ed =
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which can be written as the result two correlation operations of the scalar potential
with the surface charge and the volume charge respectively, evaluated only at (x,y) =
0. Therefore, the integral can be written as an integral over the Fourier coe�cients of
this correlation operation in Fourier space:
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