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Preface 

This thesis concerns a study of the effect of isonitrosoacetophenone on plant metabolism. 

Three different systems were investigated; cultured tobacco and sorghum cells as well as 

Arabidopsis thaliana plants, and a metabolomic approach was followed. Unlike most 

scientific studies, metabolomics is a discipline which is not driven by a specific hypothesis, 

but rather by the obtained data to add scientific insights to the topic under investigation. As 

such, the current study lacks a definite overarching hypothesis, but specific objectives were 

outlined and answered in each experimental chapter. This thesis is therefore presented as a 

compilation of nine chapters in which experimental/research work is described in Chapter 3-

8. It is important to note that each chapter is presented in accordance with the guidelines for 

the respective journal in which the corresponding manuscript was published or submitted to. 

The outline of the thesis is as follows: 

Chapter 1: Summary and aims of the study. 

Chapter 2: Literature review. 

Chapter 3: The short and long of it: Shorter chromatographic analysis suffice for sample 

classification during UHPLC-MS-based metabolic fingerprinting. NE Madala, F 

Tugizimana, PA Steenkamp, LA Piater, IA Dubery, Chromatographia (2013) accepted: 

DOI: 10.1007/s10337-012-2336-z. (Special issue 'Chemometrics in Chromatography'). 

Chapter 4: Collision energy alteration during mass spectrometric acquisition is essential to 

ensure unbiased metabolomic analysis. NE Madala, PA Steenkamp, LA Piater, IA Dubery, 

Analytical and Bio-analytical Chemistry (2012) 404: 367-372. 

Chapter 5: Isonitrosoacetophenone induces perturbations in the metabolic status of tobacco 

cells. NE Madala, PA Steenkamp, LA Piater, IA Dubery (2012) To be submitted to 

Phytochemistry. 

Chapter 6: Metabolic changes induced by isonitrosoacetophenone in Arabidopsis thaliana 

plants results in an enhanced defensive environment. NE Madala, PA Steenkamp, LA Piater, 

IA Dubery (2012) To be submitted to Journal of Plant Physiology. 
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Chapter 7:  Deciphering time-dependant trends in metabolomic data from elicited plant cells 

using multivariate statistical models. NE Madala, S Halouska, PA Steenkamp, LA Piater, IA 

Dubery (2012) Submitted to Analytical Biochemsitry. 

Chapter 8: Bioconversion of isonitrosoacetophenone (2-keto-2-phenyl-acetaldoxime) in 

tobacco cell suspensions. NE Madala, PA Steenkamp, LA Piater, IA Dubery, Biotechnology 

Letters (2012) 34: 1351-1356. 

Chapter 9: General conclusion. 
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Chapter 1: Summary 

Plants are constantly faced with numerous biotic and abiotic stress factors and, unlike 

mammals, lack adaptive immunity and thus have to develop a way to overcome these 

devastating obstacles. One hallmark of plant mechanisms to defend themselves against these 

stress factors is based on a sophisticated innate immunity. Plant innate immunity, or basal 

resistance as it used to be referred to, can be divided into two facets, namely the inducible 

(active) and constitutive (passive) response. Both these forms of resistance can further be 

divided into structural and chemical defense responses. By nature, plants possess some 

structural and chemical components which allow them to fend off attacking stress factors 

such as pathogens, insects and herbivores. These components include, amongst others, cell 

wall layers such as cuticles and other chemicals which make the host plant unpalatable to a 

wide variety of herbivores and/or impenetrable to pathogens. However, during stress 

encounters, plants are also capable of inducing these chemicals and cell wall strengthening 

compounds, all of which are aimed at defense against the attacking stress factor. To a certain 

extent, the same strategy is also utilized to fight against abiotic stress factors such as drought 

and UV radiation. 

The current study focussed mainly on the chemically-inducible defense responses. Here, 

metabolomics as a new emerging field of study was evaluated to assess the impact of a 

chemical inducer of defense, isonitrosoacetophenone (INAP), on the metabolome of different 

plants. INAP, or 2-keto-2-phenyl-acetaldoxime, is a structural analogue of 4-(3-methyl-2-

butenoxy)-isonitrosoacetophenone, an oxime-containing stress metabolite/phytoalexin, (4-(3-

methyl-2-butenoxy)-isonitrosoacetophenone or citaldoxime) which was previously shown to 

accumulate in citrus peel undergoing oxidative stress due to gamma radiation treatment as 

well as resulting in an anti-fungal environment. Oxime functional groups are rare in natural 

products and the existence thereof is restrictively found in plants which are capable of 

producing specialised molecules known as glucosinolates and cyanogenic glycosides.  

Hitherto, the accumulation of citaldoxime and other oxime molecules in non-cyanogenic 

plants is not fully understood. It was from this notion that the current study stemmed. With 

the aid of UHPLC-MS and multivariate statistical data models, a comprehensive study to 

partially understand the accumulation of oximes in non-cyanogenic plants in comparison to 

cyanogenic counterparts was conducted and shown to successfully elucidate the metabolic 

fate and metabolic- / defense- inducing  ability of INAP.  
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Before the full-scale metabolomics study, method development procedures to better suite the 

outcomes of the current study were carried out. Here, optimizations of the different aspects of 

UHPLC-MS were required. Firstly, the chromatographic method was optimized by changing 

different factors such as column type, solvent systems and chromatographic run times. With 

the aid of chemometric data models (Principle component analysis (PCA) and orthogonal 

projections to latent structure discrimate analysis (OPLS-DA)), the effect of chromatographic 

separation length was evaluated and the outcomes of this study are reported in Chapter 3. 

Contrary to public perception, it was shown that the length of UHPLC-MS chromatography 

does not adversely affect the outcome of the analysis. It was shown that the statistical models 

managed to separate the samples from different biological groups (controls and INAP-

treated) in a similar manner regardless of the length of chromatography. The outcomes of this 

study are expected to have a positive impact on all scientists working in the field of 

metabolomics by eliminating the concern of loosing information when shorter 

chromatographic separation is employed. However, this study does not recommend the use of 

unqualified chromatographic length or conditions in general. The application of shorter 

chromatography will be feasible, for example, in the field of chemotaxonomy where the main 

intention is to classify the samples based on the chemical constituents. However, in cases 

where the objective is to fully understand the contributors to the differences (i.e. chemicals) 

between samples of varying biological background, optimization in chromatographic length 

is encouraged. It must also be kept in mind that the findings of this chapter could somehow 

be attributed to the type of instrument used (UHPLC) and its mass component with the ability 

to measure the monoisotopic mass of molecules with high accuracy (≤ 5ppm). 

 

Optimization of the MS components was also investigated and here, changes in the collision 

energy required for molecule fragmentation during MS acquisition was evaluated. The 

outcomes of this study, as presented in Chapter 4, shows that changes in collision energy is 

essential to ensure comprehensive coverage of the metabolome. Here, the same statistical 

models as in Chapter 3 were applied on data generated using different levels of collision 

energy, and it was found that such changes result in different sample grouping patterns. This 

chapter further shows that the identification of metabolites is somehow hindered by the level 

of collision energy utilized as the molecules become unstable at higher energy levels. It was 

thus concluded that the use of moderate energy levels is sufficient for MS-based 

metabolomics-related studies and optimization prior to full-scale analyses should be carried 

out. From this study it was further suggested that scientists working in the field of 
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metabolomics should take note of, and report on, the collision energy used when depositing 

findings into public databases so as to ensure that data is reproducible. This, in turn will 

ensure unbiased reporting. Both Chapters 3 & 4 were designed in order to honour the 

Metabolomic Standards Initiatives which aim to encourage proper and accurate reporting 

during metabolomics studies.  

 

Following the outcomes of the work presented in the latter two chapters, the effect of INAP 

on the metabolome of different plant systems (cells and tissue) was evaluated. Here, 

Arabidopsis thaliana (intact plants), Nicotiana tabacum (tobacco cell suspensions) and 

Sorghum bicolor (sorghum cell suspensions) were investigated. The reason for using these 

plants systems was mainly encouraged by the fact that they possess different genetic 

backgrounds, different secondary plant metabolic pathways, and thus different abilities of 

oxime metabolism. For instance, Arabidopsis was used because of its ability to metabolize 

oximes to form glucosinolates, whilst sorghum is able to produce cyanogenic glycosides 

(dhurrin to be specific) from oximes and lastly, tobacco represents a non-cyanogenic plant. 

Treating tobacco cell suspensions and Arabidopsis plants resulted in altered metabolic 

characteristics as predicted by PCA and OPLS-DA. The outcomes of these experiments are 

shown in two consecutive Chapters 5 & 6. From these chapters it was shown that INAP 

induced metabolites with known activity in stress responses. To be precise, metabolites with 

antimicrobial and antioxidant activity were shown to accumulate in INAP-treated samples. 

The total phenolics concentration was shown to increase in tobacco cells as a result of INAP 

treatment and, with the aid of diphenylpicryl-hydrazyl (DPPH)-TLC assay, was further 

shown to be capable of  inducing an antioxidant environment in vivo (Chapter 5). These 

findings can be collectively used to explain the initial accumulation of INAP-related 

molecule (citaldoxime) in tissue undergoing oxidative stress. The results in Arabidopsis 

(Chapter 6) further show that INAP is also capable of inducing an acquired resistance-like 

response against the representative bacterial pathogen, Pseudomonas syringae pv maculicola. 

It was also shown that INAP is bio-transformed to a product similar to those believed to form 

as side products during cyanogenic glycoside biosynthesis. Together, these findings suggest 

possible roles of INAP during plant stress responses in general.  Another highlight of 

Chapters 5 & 6 was the use of the PUTMEDID_LC-MS workflows for metabolite 

identification and these analyses proved promising in the field of plant-based metabolomics. 
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In order to evaluate the effect of INAP on cyanogenic and non-cyanogenic plants, sorghum 

and tobacco cells were respectively used. UHPLC-MS data from the extracts of control and 

INAP-treated cells (at different time intervals) were qualitatively compared to each other 

using PCA, OPLS-DA-based shared and unique structures (SUS) plots, hierarchal cluster 

analysis  (HCA) and Metabolic trees. From this study (Chapter 7), it was shown that INAP, 

as a xenobiotic compound, is better metabolized in sorghum than in tobacco cells. This 

conclusion was reached by comparing the differential clustering patterns between samples of 

biological background (controls and INAP-treated samples in different time intervals) from 

the two plant systems. It was thus concluded that INAP, as an oxime molecule, is hence 

better metabolized in cyanogenic than in non-cyanogenic plants as the response in the former 

is well coordinated when compared to the later system. It was further shown that the use of 

different/alternating statistical models to evaluate metabolic responses allows for 

comprehensive biological interpretation underlying the exhibited response with cross-

validated outcomes.  

 

Apart from the metabolic-inducing ability of INAP, this molecule was also shown to undergo 

biotransformation events characterized by a series of chemical modifications in the core of 

the INAP structure. The last chapter of this thesis (Chapter 8) entails the full characterization 

of biotransformation events which INAP was thought to undergo. With the aid of tandem 

mass spectromentry (MS/MS) and chemical intelligence software (MassFragmentTM) it was 

shown that this oxime molecule is modified by endogenous enzymatic processes of tobacco 

cells to result in a molecule with structural features similar to those of some endogenous anti-

stress metabolites found in different plants. As such, INAP is recognized as a xenobiotic and 

“mistakenly” metabolized as an alternative substrate in tobacco cells. The function of the bio-

transformed product was not characterized but was shown to possess antifungal activity 

(results not shown) which warrant further investigation.  

 

The results of the current study as a collective provide an undisputed contribution to the 

metabolism of oximes in plants and also in the field of metabolomics. The use of UHPLC-

MS in combination with chemometrics statistical-based models was shown to 

comprehensively contribute to understanding the biology significance behind the metabolic 

response induced by chemical inducer (INAP) and its metabolism in plants. To summarize 

the overall findings of the study, the general concluding remarks are presented (Chapter 9). 
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Aims/objectives of the study 

• The main aim of the current study was (i) the initial experimental design and method 

development of UHPLC-MS components for optimal metabolomic studies in plant 

systems for downstream evaluation using such an analytical platform, (ii) to evaluate 

the effect of isonitrosoacetophenone on the metabolome of different plant systems and 

(iii) to establish the metabolic fate thereof with the aid of UHPLC-MS-based 

metabolomic investigations in conjunction with multivariate data models and other 

chemical intelligent software. 

 

 



1 

 

Chapter 2: Literature Review 



2 

 

2.1. Plant Defense Mechanisms 

2.1.1. Summary 

 

As sessile organisms, with no adaptive immune system, plants are always faced with a 

challenge of defending themselves against a wide spectrum of biotic and abiotic stressors. To 

defend themselves against these devastating factors, plants have developed a very complex 

defense mechanism, which is well researched in the context of plant-pathogen interactions. It 

is known that plants defend themselves against pathogen attack by activating a multi-

component defense response, whereby a pathogen invasion is recognized by proteins encoded 

by receptor-like kinase (RLK) - and plant disease resistance (R) genes. The former 

bind/interact with microbe-associated molecular pattern molecules (MAMPs) while the latter 

bind/interact with specific pathogen-derived avirulence (Avr) effector proteins, resulting in 

the hypersensitive response (HR) that triggers host cell death in order to limit the spread of 

the pathogen (Chisholm et al., 2006). The interaction between the microbe and plant defense 

proteins is well explained by the Zigzag model proposed by Jones and Dangl (2006) as 

illustrated by Figure 1.1. 

 

 
Figure 1.1: Schematic representation of the Zigzag model illustrating the underlying steps from gene-to-gene 

interaction which result in full implementation of plant defense response. PTI (PAMP-triggered immunity, ETS 

(effector-triggered susceptibility), and ETI (effector-triggered immunity) (Jones and Dangl, 2006). 

 

From the above model (Figure 1.1), the ultimate amplitude of disease resistance or 

susceptibility is proportional to (PTI-ETS+ETI). The initial stage of this pathogen-plant 

interaction consist of the perception of microbial/pathogen-associated molecular patterns 
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(MAMPs / PAMPs, red diamonds) via pattern recognition receptors (PRRs) leading to a 

defense response known as PAMP-triggered immunity (PTI). In second and “intermediate” 

phase, successful pathogens, which have managed to overcome the PTI, release effectors 

proteins that interfere with PTI, and this subsequently leads to a state known as effector-

triggered susceptibility (ETS). In the final phase of this model, one effector (indicated in red) 

is recognized by nucleotide binding leucine-rich repeats (NB-LRR) protein. This recognition 

initiates the activation of effector-triggered immunity (ETI), which is an amplified version of 

PTI that often passes a threshold for induction of hypersensitive cell death (Figure 1.1). It is 

also important to note that pathogen isolates that have lost the red effector are selected, and 

perhaps gained new effectors through horizontal gene flow (in blue), and this helps the 

pathogen to suppress ETI. Selection favors new plant NB-LRR alleles that can recognize one 

of the newly acquired effectors, resulting again in ETI (Tao et al., 2003; Jones and Dangl, 

2006; Thilmony et al., 2006). 

 

The HR response is then followed by a complex signaling network, involving cytosolic Ca2+ 

and H+ ions, reactive oxygen intermediates, as well as molecular signaling molecules 

(hormones) such as jasmonic acid (JA), salicylic acid (SA) and ethylene (ET) (Jones and 

Dangl, 2006), which together result in the induction of the defense mechanisms (McDowell 

and Dangl, 2000; Odjakova and Hadjiivanova, 2001).  In another similar but independent 

case, plants do not produce the appropriate R proteins against Avr proteins of the pathogen. 

In such cases, the delayed cell response leads to the proliferation and spread of the bacteria to 

other parts of the plant and ultimately results in disease symptoms. This type of interaction is 

normally referred as a compatible interaction and commonly observed when host bacteria 

such as Pseudomonas syringe pv. tabaci infect a host plant (Nicotiana tabacum) (Huang et 

al., 1988; Jones and Dangl, 2006). Although the Zigzag model (Figure 1.1) is commonly used 

to show the fundamental basis of plant defense towards pathogens, it does not fully detail the 

underlying physiological changes which take place during plant defense responses.  A more 

descriptive model (Figure 1.2) was also used in conjunction with the Zigzag model to fully 

gain the molecular detail of signal transduction processes which form the basis of plant 

defense.   
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Figure 1.2: A schematic representation illustrating the main physiological pathways which takes place during 

plant-pathogen interactions using rice cells as a model (http://park.itc.u-tokyo.ac.jp) 

2.1.2. Induced Resistance (IR): SAR and ISR 

 

Plant innate immunity also includes an induced resistance (IR) aspect. By definition IR is a 

“physiological state of enhanced defensive capacity” elicited by specific stimuli, whereby the 

plant’s innate immunity is potentiated against subsequent biotic challenges (Van Loon et al., 

1998). IR is divided into different classes, depending on the mechanism in which they are 

implemented and exhibited (Pieterse et al., 2009). Using the model plant, Arabidopsis 

thaliana, the signaling pathways controlling these types of IR and defense responses in 

general are well characterized (Pieterse et al., 2009). The most common type IR is called the 

systemic acquired resistance (SAR); this phenomenon was previously known as physiological 

acquired immunity or just induced resistance, and is a physiological response in which plants 

exhibit a long-lasting response due to infection which subsequently results in a stronger 

response towards subsequent infection so that increased resistance or reduced disease 

symptoms are exhibited (Ryals et al., 1996).   
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Figure 1.3: Schematic representation of out-lining different basic routes leading to the establishment of 

SAR.SAR signals are believed to be orchestrated by several components abbreviated on the figure such as 

ALD1 (AGD2-Like Defense response protein 1); AzA  (Azelaic acid); BSMT1 (Benzoic acid/Salicylic acid 

Carboxyl Methyltransferase 1); DA (Dehydroabietinal); DIR1 (Defective in Induced Resistance 1); G3P 

(Glycerol-3-phosphate); FMO1 (Flavin-dependent monooxygenase 1); HMW (High molecular weight 

complex) ICS1 (Isochorismate Synthase); JA (Jasmonic acid); MeSA (Methyl salicylate); MSE (MeSA 

esterase); NPR1 (Non-Expressor of Pathogenesis-Related Genes 1); Pip (Pipecolic acid); SA (Salicylic acid); 

SFD1 (Suppressor of Fatty Acid Desaturase Deficiency 1). However, the mechanism through which some 

these signals interact is still unclear (Dempsey and Klessig, 2012). 

 

The carrier of the message from the localized site of infection to the systemic sites is 

currently not fully understood, however, previous research has shown that hormones such as 

SA are believed to play significant roles in the host-pathogen interactions (Figure 1.3) 

(Zimmerli et al., 2000, 2001). Hormones such as SA, JA and ET play central roles during IR 

and depending on the type of hormones which are produced during IR, the outcome of 

resistance are different and as such different types of IR exist. 
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A different type of IR with similar characteristics to SAR has been well characterized in 

plants and in most cases it has been commonly mistaken for SAR itself, however, this type 

is known as induced systemic resistance (ISR). The difference between the two types of IR 

states is not physically obvious, but physiologically, these two forms of IR are completely 

different as they are activated differently and sometimes independently. In the context of 

plant defense responses, it is believed that SAR is triggered by biotrophic organisms whilst 

ISR is triggered by beneficial microorganisms known as plant growth promoting 

rhizobacteria (Ramamoorthy et al., 2001). In the latter case the phyto-hormones jasmonic 

acid/ethylene are believed to play a central role (Thomma et al., 1998; Glazebrook, 2005).  

 

Although the two IR responses are physiologically different, it is important to note that there 

exists a cross-talk between respective phyto-hormone signalling pathways, which can be 

either antagonistic or synergistic and subsequently provide the plant with powerful 

regulatory potential (Spoel and Dong, 2008; Pieterse et al., 2009). This cross-talk is also 

believed to play roles in the enhancement of the ability of plants to use energy sparingly and 

create a generalized/flexible signaling network that allows a strong specific type of IR to be 

mounted against the invader (Van der Ent et al., 2008; Pieterse et al., 2009). The differences 

between the two types of IR responses are well outlined with the schematic representation 

below (Figure 1.4). 
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Figure 1.4: A pictorial comparison between SAR and ISR in plants.  From the figure it can be seen that SAR is 

induced by abiotic or biotic elicitors, and it is dependent to SA and associated with the accumulation of 

pathogenesis-related (PR) proteins. On the other hand, ISR is induced by different strains of plant growth-

promoting rhizobacteria (PGPR), and it is dependent on ethylene and jasmonic acid hormones. Though different 

in hormonal level, both responses are dependent on a functional NPR1 protein (non-expressor of pathogenesis-

related protein) (Pieterse et al., 2009). 

 

From the above information, it now clearer that these different forms of IR appear to be 

associated with direct activation / full implementation of plant defenses. However, another 

form of IR state which does not result in the full implementation of defenses has been shown, 

this IR state is known as priming. Plants that are under a primed state have been shown to 

have the ability to ‘recall’ a previous infection, however, this is only evident after secondary 

infection (Conrath et al., 2006; Goellner and Conrath, 2008). Full details regarding this 

complicated type of IR are discussed in subsequent sections. 

2.1.3. Priming 

 

As mentioned above, IR is a very complex phenomenon and currently not all information 

regarding the underlying physiological processes thereof is known. As seen from the previous 

section, IR is traditionally defined as either SAR or ISR. However, a new type of IR termed 

“priming” was described and is currently receiving significant research attention. To prime 

means generally to prepare or to make ready. On the other hand, in the context of plant 
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defense responses, priming is a physiological process by which a plant is predisposed to 

respond rapidly to future biotic or abiotic stress (Conrath et al., 2006; Goellner and Conrath, 

2008). The condition of readiness achieved by priming has been termed the “primed state” 

(Conrath et al., 2006). The primed state may persist as a residual effect following an initial 

exposure to the stress. For example, the classical pathogen-induced HR is often induced with 

greater efficiency in plants that have previously experienced pathogen attack (Kuc, 1982). 

Priming therefore initiates a state of readiness that does not confer resistance per se but rather 

allows for accelerated induced resistance. One presumed benefit of priming is that it does not 

impose the costs associated with full implementation of a fully induced defense response 

(Frost et al., 2008).  

 

In an attempt to conceptualize the primed state of plants, Frost and colleagues (2008) used a 

plant: herbivore interaction model, where there is an induced defense in plants in response to 

herbivore feeding. This defense response includes changes in a suite of chemicals that are 

toxic or unpalatable to herbivores. Furthermore, this induced resistance can be either indirect 

or direct. In the indirect case, the host produces volatile compounds, which are believed to 

function as attractants of natural enemies of the invading herbivore (Frost et al., 2008). Some 

of these released volatiles together with other signaling hormonal molecules such as JA are 

perceived by other undamaged parts of the host plant or even adjacent neighboring plants and 

induce a primed state in distant tissues or plants (Conrath et al., 2006). Although the full 

physiological mechanism of priming is still not fully known/ understood, priming is offering 

a great opportunity to researchers to gain knowledge about how to manipulate the plant 

defense responses, which will allow genetic manipulation resulting in plants that are resistant 

towards a wide spectrum of pathogens. There are no phenotypical or physical characteristics 

of the primed state, but recently some important factors which play central roles during 

priming have been shown. These include amongst many, the genes encoding proteins such as 

the non-expressor of PR genes 1 (NPR1) (Conrath et al., 2002), mitogen activated protein 

kinase (MAPK)-3 and -6 (Beckers et al., 2009), flavin dependant monooxygenase (FMO1) 

(Mishina and Zeir, 2006) and the lipid transfer protein (LTP) (Jung et al., 2009; Maldonado 

et al., 2002).  

 

To date, several synthetic and naturally occurring molecules have also been used to induce 

the primed state against several bacterial and fungal pathogens. Such chemicals include 

riboflavin (Zhang et al., 2008), saccharin (Walters et al., 2009), sucrose (Gomez-Ariza et al., 
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2007), hexanoic acid (Vicedo et al., 2009), beta-aminobutyric acid (BABA) (Ton et al., 

2005), nicotinic acid (INA) (Gorlach et al., 1996) and azealic acid (Jung et al., 2009). The 

biological mechanism of action of these chemical is not known, however, most studies are 

being carried out in attempt to fully characterize the mechanism of action of such chemical 

activators of defense. A good example is benzothiadiazole [benzo-(1,2,3)-thiadiazole-7-car-

bothioic acid S-methyl ester] (BTH), a functional analogue of the plant hormone-like 

molecule salicylic acid (SA) and the key player of SAR (Gorlach et al., 1996). It is one of the 

most researched molecules in the context of plant defense responses because of its ability to 

induce a more effective plant resistance response. This molecule has also been shown to 

prime the plant defense machinery against the pathogens (Friedrich et al., 1996; Gorlach et 

al., 1996). Similarly to SA, BTH efficiently inhibits hydrogen peroxide (H2O2) scavenger 

enzymes, ascorbate peroxidases (APXs) and catalases (CATs), but it is known to activate the 

NIM (non-induced immunity) / NPR1 (non-pathogenesis-related protein 1 inducer) genetic 

pathway (Wendehenne et al., 1998; Kohler et al., 2002). It is thus evident that BTH functions 

by modifying the redox homeostasis of the cells and results in full implementation of defense 

mechanisms which is orchestrated by H2O2, and activation of genes encoding pathogenesis 

related (PR) proteins and phytoalexins pathways (Gorlach et al., 1996; Faoro et al., 2008).  

BTH was also found to directly activate PR-1 and to prime Arabidopsis thaliana for potential 

phenylalanine ammonia lyase (PAL) expression in response to the infection by phyto-

pathogenic Pseudomonas syringae pv. tomato (Pst) (Lawton et al., 1996). BTH’s ability to 

induce PAL was also shown elsewhere (Maffi et al., 2011). In other separate but similar 

examples, BTH was also shown to induce SAR in tobacco (Friedrich et al., 1996) and in 

wheat (Gorlach et al., 1996). In an example which is more related to the current study, Dao 

and colleagues (2009), using NMR based metabolomics and gene expression studies, have 

also shown that BTH induce metabolic changes in Arabidopsis plants and also induced 

expression of some common PR proteins (Dao et al., 2009).  

 

It is quite interesting to note that several promoters for genes encoding proteins functioning 

towards plant defense responses, such as that of PR-1, are known to respond to several 

chemical inducers (especially BTH) of defense (Gatz and Lenk, 1998; Padidam, 2003). It is 

thus convincible that the use of chemicals in the induction of IR is a promising area of 

research in the attempt to fully understand biological mechanisms involved in plant defense 

responses. This, in turn, will subsequently allow comprehensive genetic manipulation of 

plants to improve them to respond more efficiently against different pathogens. 
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Previous work on priming was mostly concerned on the same generation but only recently 

priming has been reported to be transgenerational (Pastor et al., 2012; Slaughter et al., 2012). 

Using Arabidopsis thaliana plants which were primed by BABA and two pathogens (bacteria 

and fungi), it was shown that the descendant of previously challenged plants were able to 

withstand subsequent treatment better than those originating from unchallenged/non-primed 

parental plants (Slaugheter et al., 2012). Together with other reports, the work of Slaughter 

and colleagues has shown that information underlying the molecular basis of priming is 

stored in the genetic make-up of primed plants and as such can be carried along to the next 

generation. A few examples on transgenerational priming were previously reported and these 

include wild radish that has been fed on by a pest (Pieris rapae) or treated with jasmonic acid 

mimicking herbivore feeding (Boyko et al., 2007). Progenies of virus-treated tobacco plants 

were also shown to exhibit stronger resistance (Boyko et al., 2010; Kathiria et al., 2010). The 

molecular basis of transgenerational priming is still unclear, however, for the offspring to 

remember a past experience from the parents, the latter need to perceive and store the 

information and subsequently transmit it to the descendants (Slaughter et al., 2012).  For such 

to be possible, epigenetic mechanisms are believed to play central roles (Chinnusamy and 

Zhu, 2009; Alvarez et al., 2010; Sano, 2010), as well as histone modification (Boyko 2010; 

Luna et al., 2011) and small RNA molecules (Vaucheret, 2006).  

 

Pastor et al. (2012) stated that the main mechanisms of priming are temporally dissected, 

however, the accumulation of  ROS, callose, hormonal responses and other components of 

defense happen relatively early after challenge. However, the accumulation of 

unphosphorylated MAPKs, the modification of histones and DNA methylation are long 

lasting processes and the latter can be transferred to the offspring. The involvement of 

epigenetic modification during plant defense is not a new phenomenon (Alvarez-Venegas et 

al., 2007; Bezhani et al., 2007; March-Diaz et al., 2008; Berr et al., 2010). 
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2.1.4. Passive versus active defense 

 

Apart from the above-presented inducible defenses (active), plants have an adjacent form of 

defense known as constitutive defense, which is constantly present. This constitutive defense 

(passive) is made up of different components which plants normally possess naturally for 

protection against different environmental threats.  

 

Both active and passive defense mechanisms in plants are further divided into subclasses: 

physical and chemical barriers, which are pre-formed (for passive defense) or induced (for 

active defense). In the constitutive form of defense, plants rely on pre-existing anatomical 

barriers (such as trichomes, cuticles and cell walls) and pre-formed antimicrobial compounds 

to fight or stop the invasion of a pathogen or an abiotic stressor (Garcia-brugger et al., 2006). 

On the other hand, in the inducible defense, certain cellular mechanisms are actively unfolded 

to combat the stress. For instance, cell wall strengthening upon pathogen infection was shown 

to take place in the form of callose, lignin and suberin polymers appositions. Oxidative cross-

linking of extensin proteins in the cell wall was also shown to take place (Garcia-brugger et 

al., 2006). Cell wall strengthening is a way of preventing further spreading to other 

unaffected parts of the plant. The expression of genes that encode proteins, believed to be 

involved in the cell wall strengthening phenomenon, has been previously shown to be 

induced in plants challenged with pathogen/pathogen-derived elicitors (Hammond-Kosack 

and Jones, 1996; De Ascensao and Dubery, 2000; Zwiegelaar and Dubery, 2006). 

Interestingly, studies have demonstrated that some abiotic stressors also induce the 

expression of such genes. For instance, heat shock/stress was shown to trigger the expression 

of genes encoding proteins that function towards cell wall formation (Yang et al., 2006).  

2.1.5. Chemical defenses of plants 

 

Looking at the chemical facet of plant defense, the same phenomenon of constitutive and 

inducible defense also exists. For an example, preformed chemicals exist and are known as 

phytoanticipins.  These are antimicrobial compounds found in healthy/unchallenged plant 

tissues of which the function is to protect plants against natural pests (Van Etten et al., 1994). 

Plant metabolites in general provide protection against biotic or abiotic stresses (Dixon, 2001; 

Jahangir et al., 2009). Chemicals such as reactive oxygen species, phytoalexins, and other 

secondary metabolites are known to be part of inducible defense responses (Van Loon, 2000).  
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Research has shown that the accumulation of chemicals/metabolites (such as phytoalexins) 

due to stress, is an important component of the plant defense response. Phytoalexins are plant 

antimicrobial secondary metabolites, and they are synthesized from precursors such as 

phenylalanine, malonyl-CoA, acetyl-CoA, mevalonic acid and other amino acids 

(Hammerschmidt, 1999; Iriti and Faoro, 2009). During plant defense responses, phytoalexins 

are synthesized locally around infection sites, and the systemic accumulation thereof has 

never been shown (Van Loon, 2000). Apart from phytoalexins, other classes of compounds 

that have been shown to participate in plant defense responses include, amongst many, fatty 

acids, phenylpropanoids and flavanoids (Bollina et al., 2011). Some of these plant 

compounds (physiologically known as secondary metabolites) accumulate as stable 

molecules and some exist as precursors. For instance, activation of the phenylpropanoid 

pathway compounds is believed to result in the synthesis of a remarkably vast array of low-

molecular-mass natural chemicals, which further act/participate as substrates in many cellular 

regulatory processes which includes plant defense responses (Jahangir et al., 2009).  In the 

context of pathogen- inducible secondary metabolites, camalexin represent a well studied 

phytoalexin (Beets et al., 2012). This molecule is produced by the model plant, A. thaliana, 

as well as other closely related species, and its involvement in plant defense responses has 

been shown and characterized (Thomma et al., 1999).  The fact that this molecule exists in a 

specific group of related plants is believed to suggest that camalexin represents a relatively 

novel evolutionary invention in the competition between plants and pathogens (Bednarek et 

al., 2011; Bednarek, 2012). The study of such and other related compounds in plants has 

recently received much attention. Metabolite accumulation in plants during pathogen attack is 

also finding increasing attention as a way of evaluating the effect of plant: pathogen 

interactions, for instance in plant: bacteria interaction (Hagemeier et al., 2001; Tan et al., 

2004), plant: virus (Choi et al., 2006) or plant: fungal (Wolski et al., 2010). It is thus 

convincible that studies involving dynamic changes of metabolites in plant tissue undergoing 

stress responses represent a promising field of study in plant biotechnology. The involvement 

of plant metabolites in defense responses will also be discussed comprehensively throughout 

different sections of this manuscript.  
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2.2. Plant Secondary Metabolites 

2.2.1. Overview 

Plants produce a wide spectrum of compounds or metabolites, many of them genus– or 

species-specific. The plant metabolome is thus defined as the total collection of metabolites 

(low molecular weight compounds) that are present in cells or organisms and that participate 

in metabolic reactions required for growth, maintenance and normal function (Oliver et al., 

1998; Beecher, 2004). Based on the function, metabolites are normally referred to as either 

primary or secondary metabolites. Primary metabolites (nucleotides, amino acids, lipids and 

sugars) are known to function in simple maintenance of the cell such as growth and 

development (Verpoorte, 2000). On the other hand, secondary metabolites are compounds of 

which biosynthesis is restricted in a certain taxonomical group (Pichersky and Gang, 2000) 

and the functions are mainly interaction between the organism and its environment, ensuring 

the organism’s survival in an ecosystem (Verpoorte, 2000). Plant secondary metabolites (also 

known as natural products) have been studied intensively. The importance of these 

compounds varies according to the respective activities thereof within the organism. The 

ability of an organism to produce secondary metabolites is associated with different reasons, 

for example, floral scent volatiles and pigments serves to attract insect pollinators for 

reproduction purposes (Dudareva and Pichersky, 2000). 

  

As previously pointed out, plants synthesize secondary metabolite chemicals as a way of 

defending themselves against pathogens and herbivores but also to out-compete the growth of 

neighboring plants (Bennet and Wallsgrove, 1994; Dixon et al., 1996; Harborne, 1999). The 

involvement of plant metabolites in different plant developmental and physiological stages is 

well summarized by Figure1.5 which shows different domains in which these metabolites are 

deployed by the plants as a means to adapt well in given surrounding environmental 

conditions. By virtue of being the end product of cellular processes, metabolite constituents 

of the cell at any given time determine the phenotypic trait of an organism (Fernie et al., 

2004). In recent years the studies of plant metabolites have received overwhelming attention. 

For example, in the biotechnology field, metabolic pathways are being targeted for genetic 

engineering (Dawson et al., 1989; Bak et al., 2000). Manipulation of such pathways and 

knowledge gained thereof is of major importance as it opens up ways for genetic engineering, 
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aiming to increase resistance against microbial infections or insects attack (Dawson et al 

1989; Dixon and Paiva, 1995). 

 
Figure 1.5: A schematic representation of some known ecological functions of plant-derived secondary 

metabolites (Hartmann, 2007). 

 

According to Verpoorte (2000), plant secondary metabolites can be classified based on 

determined chemical features, biosynthetic origin or plant origin. There are three major 

pathways which most secondary metabolites originate from. These pathways are namely the 

shikimate, isoprenoid and polyketide pathways. In most cases secondary metabolites are 

mainly classified based on structural skeletal properties which is unique for certain 

biosynthetic pathways. Thus metabolites from similar pathways are more likely to have 

similar structural features, and a very good example will be terpenoids which are produced 

from isoprenoid pathway using C5 building block to build up C10 (monoterpenes), C15 

(sesquiterpenes), C20 (diterpenes), C30 (steroids and triterpenes) and C40 (carotenoids) 

compounds (Verpoorte, 2000). The building blocks for phenylpropanoids are either from 

phenylalanine or tyrosine (C9) and on the other hand, polyketides are produced from acetate 

(C2) (Verpoorte, 2000).  Overall, plant biosynthetic pathways are very complex systems that 

comprise different sub-pathways with different functions. For the scope of the current study, 

only two pathways will be considered, namely the shikimate pathway (Figure.1.6) and the 

phenylpropanoid pathway (Figure.1.7) as they relate to topic of the thesis. 
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2.2.2. The Shikimate Pathway 

This pathway is exclusively found in microorganisms and plants, and it is also known to be 

the major source of most aromatic compounds (Bentley, 1990, Haslam, 1993; Hermann, 

1995; Schmidt and Amrhein, 1995). The major steps which are involved in this pathway are 

summarized in Figure. 1.6. Other than shikimate itself, chorismate is also formed which is 

further converted to phenylalanine, tyrosine and tryptophan. Other metabolites such 

isochorismate, 4-hydroxybenzoic acid and 4-aminobenzoic acid also exist as precursors from 

which a series of different secondary metabolites are formed (Verpoorte, 2000). It is believed 

that two versions of the shikimate pathway exist in plants, one which yields aromatic amino 

acids (Jensen, 1986; Herrmann and Weaver, 1995) and the other secondary metabolites. 

However, there is no sufficient evidence so far to support this hypothetical theory. It is also 

believed that genes encoding enzymes which are parts of the shikimate pathway originate 

from at least three ancestors (cyanobacteria) (Vogt, 2010). 
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Figure 1.6: The shikimate pathway of higher plants (adapted from Herrmann and Weaver, 1999). 
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Figure 1.7: Schematic representation of important branching points of the phenylpropanoid pathway which 

results in the production of a variety of different secondary metabolite classes. Metabolites which are derived 

from the shikimate pathway are shaded in gray (Vogt, 2010). 
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2.2.3. The Phenylpropanoid Pathway  

The phenylpropanoid pathway should be thought of as the continuation of the shikimate 

pathway, as most of the shikimate pathway products are channeled into this pathway via 

phenylalanine. Just as in the shikimate pathway, the phenylpropanoid pathway yields a wide 

array of secondary metabolites (Vogt, 2010). The main metabolites from this pathway are lignin 

and flavonoids. However, the phenylpropanoid pathway also results in other secondary 

metabolites such as coumarins, phenolic volatiles and hydrolyzable tannins (Figure.1.7) (Vogt, 

2010).  

 

In the context of plant defense, this pathway is acted upon by different stimuli ranging from 

biotic to abiotic (La Camera et al., 2004). The resulting polymers which are synthesized from 

this pathway such as lignin are known to play a vital role during cell wall strengthening (see 

section 1.1.4). There are several genes and enzymes which participate in this pathway and 

function collectively even though they catalyze different steps. The phenylpropanoid pathway 

contains three mandatory steps catalysed by Phenyl Ammonium Lyase (PAL), cinnamate 4-

hydroxylase and 4-coumaroyl CoA ligase. All these enzymes yield “intermediate metabolites” 

which provide the basis for the synthesis of some important subsequent metabolites. The link 

between the shikimate- and phenylpropanoid pathway is a very crucial one and it is only possible 

under strict/controlled physiological conditions. It is important to note that under sub-optimal 

conditions such as low photosynthetic conditions  (i.e. when plants are under stress), low 

concentrations of shikimate intermediates are channeled into the phenylpropanoid pathway, 

redirecting the latter towards the  production of phytoalexins, volatiles, flavanoids, anthocyanins 

and production of defense related proteins (Abdulrazzak et al., 2006; Schoch et al., 2006). 

Soluble phenyls from this pathway, with defense-related and antioxidant activities such as 

caffeoyl quinate (chlorogenic acid) and caffeoyl phenyllactic acid (rosmarinic acid) are 

predominately present in the Solanaceae and Lamiales genera respectively (Petersen et al., 2009) 

The diversity of enzymes comprising this pathway makes it very interesting, because this is the 

reason why this pathway yields such a wide variety of secondary metabolites. The diversity of 

metabolites resulting from this pathway is due to wide variety of enzymes involved. Some of 

these enzymes exhibit limited specificity; whilst others are very specific to certain reactions.  It is 

also remarkably to note that there are more than 300 functional genes encoding cytochrome 



19 

 

P450s (CYP450) in Arabidopsis of which only one of them encode the hydroxylation of trans-

cinnamate to 4-coumarate. The mutation on these CYP450 genes has been shown to have an 

effect on the growth and development of Arabidopsis plants, and other than growth and 

development impediments, accumulation of unusual cinnamoyl malate products were also 

observed in transgenic plants plants (Schilmiller et al., 2009) highlighting the importance of each 

and every enzyme participating in this pathway. In lignin synthesis which is the main final step 

of this pathway, hydroxylation and methylation steps (carried out by CYP450 and O-

methyltransferase, respectively) are important during stress-related responses (Dohleman and 

Long, 2009). The phenylpropanoid pathway is thus one of the most important pathways that 

yield essential secondary metabolites involved in stress tolerance, growth and developments of 

plants. The various structural decorations on substrate metabolites result in a wide spectrum of 

metabolites and subsequently in a large and complex metabolome (Vogt, 2010) (Figure. 1.8).  

 

 
 

Figure 1.8: Schematic representation showing different convergence and divergence points during the biosynthetic 

pathways of secondary metabolites. The diversity of secondary metabolites is due to different chemical 

“decorations” as indicated (Vogt, 2010). 
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2.2.4. Cyanogenic Glycosides and Glucosinolates  

Cyanogenic glycosides and glucosinolates are very specialized classes of molecules which form 

part of plant defense responses, specifically against insects/herbivore attack (Bak et al; 2000; 

Moller, 2010). The presence of these compounds is limited to certain plant species such as 

Sorghum bicolor and Arabidopsis thaliana (Bak et al., 2000), and the biosynthetic pathways and 

respective involvement in plant defense responses are well characterized (Bak et al; 2000; 

Jørgensen et al; 2005). It was also further shown that biosynthesis thereof is a well controlled 

system and enzymes which are involved during these biosynthetic pathways are arranged in a 

specialized unit called a metabolon (Jørgensen et al; 2005; Nielsen et al; 2008; Moller, 2010). 

This arrangement of enzymes is thought to be a strategic plan aimed at efficient production of 

these labile/unstable molecules. Looking at the specific biosynthetic pathways (Figure 1.9), it 

can be noted that there exists multiple precursors which, if not rapidly converted would be 

broken down, (e.g. p-hydroxymandelonitrile, an intermediate during cyanogenic glycoside 

(dhurrin) biosynthesis). If not rapidly glycosylated by the UGT85B1 enzyme it can easily 

dissociate into hydrogen cyanide and p-hydroxybenzaldehyde (Jørgensen et al; 2005) and as 

such the main product, dhurrin will not form.  With the aid of gene fusion technology, the 

location of these biosynthetic enzymes was monitored using spectral variants of green 

fluorescent protein by means of confocal laser scanning microscopy and it was further 

demonstrated that these enzymes formed distinct domains (metabolons) in the endoplasmic 

reticulum (ER) (Koch et al., 1995; Bak et al., 1998; Winkel, 2004).  Once cyanogenic glycosides 

and glucosinolates molecules are formed, they are stored and only become active when a host 

plant is under attack. During this stage, these molecules are converted into toxic products 

through a process called the ‘cyanide -’ or ‘mustard bomb’, respectively (Osbourn, 1996). For 

instance, glucosinolates are activated by the plant enzyme myrosinase (a thioglucosidase) and as 

a consequences they break down into variety of products, including isothiocyanates, nitriles, and 

thiocyanates, all of which are highly reactive compounds (Osbourn, 1996). The involvement of 

cyanogenic glycosides and glucosinolates are well described and discussed throughout several 

sections of this thesis.  
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Figure 1.9: Schematic representation showing the biosynthesis pathways of cyanogenic glycoside and 

glucosinolates in plants. The metabolic crosstalk is shown in dashed arrows (Jørgensen et al., 2005). 
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2.3. Metabolomics 

2.3.1. Overview 

 

From the central dogma of molecular biology, cellular information flows from DNA which is 

transcribed into messenger RNA (mRNA). The latter is also subsequently translated into 

proteins, and some of these proteins participate in biosynthetic pathways that lead to the 

production of metabolites (Figure 1.10). Metabolites, as small molecules that participate in 

general metabolic reactions are required for the maintenance, growth and normal function of a 

cell (Hanhineva, 2008). The flow of the information, as stipulated by the central dogma, is well 

coordinated, and the components of this dogma are interdependent. It is therefore important to 

note that the flow of information is not unidirectional; there are several back-loops relaying 

information in multidirectional manner. For example, some proteins are known to function as 

transcription factors and hence activate DNA transcription, and in another example some RNA 

molecules are also known to interact with DNA as either regulators or suppressors of DNA-

transcription, a classical example of such phenomenon could be that of small interfering RNA 

(siRNA). It is through these interactions amongst the members of the central dogma components, 

that a cell acquires its full functionality of its cellular metabolism. By virtue of being the end 

product of most cellular metabolism, metabolites act as regulatory components of metabolism 

and hence accumulation thereof allow a complete ‘snapshot’ of the physiological status of the 

cell (Fernie et al., 2004; Ryan and Robards, 2006; Seger and Sturm, 2007).  

 

When integrated with other “-omic” techniques, measurement of metabolic changes has lead to 

the identification of so called “silent phenotypes”, genes whose expression does not affect the 

physical characteristics or behavior of an organism (Griffin et al., 2002). The metabolite content 

of the cell can be used to evaluate the physiological/phenotypic characteristics of the cell at 

given time (Lindon et al., 2003). Thus, a new field of study, termed metabolomics, was recently 

developed. By definition, metabolomics is an unbiased approach aimed at measuring the 

metabolite content of the cell, tissue or organism under given physiological status (Nicholson et 

al., 1998; Oliver et al., 1998). Table 1 shows metabolomic strategies that have been developed 
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for the study of metabolome. Most of these terminologies (in Table 1) are sometimes used 

interchangeably. 

 

 

Figure 1.10: The schematic representation of the flow of cellular information which comprises the systems biology 

of the cell. The arrows indicate the direction in which information flows from/to one component of the dogma to 

another (Adapted from Nanda et al., 2011). 

 

From Table 1 it can be seen that the term metabolomics can also be used interchangeably with 

metabonomics and even though they have different definitions, the meaning of the definitions are 

quiet similar and they basically differ based on sample nature (Lindon and Nicholson, 2008).  

Depending on the merit of the application, other terms can also be used and, as such, the use has 

also become individual preference. Irrespective of the term used, all these metabolomic 

approaches apply holistic analytical strategies to collect either targeted or untargeted analytical 

data to investigate the metabolites’ distribution patterns and concentrations in bio-fluids, cells or 

organs of an organism under study (Theodoridis et al., 2011).   
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Table 1: Description of terminologies which are commonly used in conjunction or interchangeably with the term 

metabolomics. The compressive explanation of metabolomics as given in text is highlighted in red (Adapted from 

Hanhineva, 2008) 

Terminology Definition 

Metabolome The complete set of metabolites in a cell, tissue or 

organism 

 

Metabolomics Unbiased identification and quantification of all 

metabolites in a biological system, or a complete set of 

metabolites in a cell or tissue type 

 

Metabonomics A term not used in plant science, although sometimes 

used interchangeably with metabolomics. Mostly used in 

disease diagnostics and toxicology as the quantitative 

measurement of the dynamic response of living systems 

to pathophysiological stimuli or genetic modification 

 

Metabolite (or metabolic) profiling 

 

Quantitative analysis of a set of metabolites in a selected 

biochemical pathway or a specific class of compounds; 

biased/targeted approach which addresses only limited 

number of often structurally closely related analytes due 

to methodological limitations of the analytical platforms 

used 

 

Metabolic fingerprinting High-throughput, rapid global analysis; unbiased global 

screening approach to classify samples based on 

metabolite patterns or “fingerprints” that change in 

response to disease, environmental, or genetic 

perturbations, not necessarily involving analyte 

identification and quantification 

 

Metabolic footprinting Fingerprinting analysis of extracellular metabolites in 

cell culture medium as a reflection of metabolite 

excretion or uptake by cells 
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Furthermore, new fields of study have also recently been developed, of which the origin can 

easily be traced from metabolomics and can be thought of as the expansion of applications of 

metabolomics. One of these new fields of study is known as pharmacometabolomics. The latter 

is an approach aimed at investigating the effect of pharmaceutical and naturally occurring drugs 

on certain diseases/physiological disorders (Wang et al., 2012). This approach represents a very 

promising prospect of metabolomics, because one area of considerable interest in the field of 

metabolomics is its application in the field of drug discovery and development, where the 

analysis of biofluids and tissues can provide a global view on the changes and distribution 

patterns of endogenous metabolites due to cellular responses to perturbations of drug treatment 

(Chan et al., 2011; Kinross et al., 2011). Furthermore, metabolomics can be useful and impact in 

several points in the drug development chain. This can be in target identification, lead discovery 

and optimization, preclinical efficacy and safety assessment, mode-of-action and mechanistic 

toxicology and pharmacological monitoring (Wang et al., 2012).  

 

Another term which is partially stemmed from the field of metabolomics is that which deals with 

drug metabolism by living organisms. In their study, Holmes et al. (2007) used the term 

“xenometabolome”, and they described it as the multivariate signature/description of the 

xenobiotic (foreign compound) metabolite profile of an individual or sample from an individual 

that has been exposed through any route (either deliberately or accidentally) to drugs, 

environmental pollutants, or dietary components that cannot be completely catabolized by 

endogenous metabolic enzyme systems (Holmes et al., 2007). In their approach, Holmes and 

colleagues used the combination of statistical methods and proton NMR-based metabolomics to 

characterize structural pathway connectivities of metabolites of commonly used drugs in urine of 

human beings. In this study, it was shown that statistical connectivities between drug metabolites 

can be established in routine “high-throughput” NMR screening of participants’ samples that 

have randomly self administered drugs prior to the analyses. It was also shown that this approach 

should be of value in considering inter-population patterns of drug metabolism in 

epidemiological and pharmacogenetic studies (Holmes et al., 2007).  

 

Though the above two examples serve as good platforms in which metabolomics was applied, 

there are also other fields in which metabolomics can be employed. For instance, metabolomics 
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has played significant roles in many fields such as responses to environmental stress (Lin et al., 

2006; Viant, 2007), cancer research (Pyo et al., 2008), comparing different growth stages, 

physiological disorders (diabetes for an example), microbial studies (Koek et al., 2006; Khoo 

and Al-Rubeai, 2007; Mashego et al., 2007), studying global effects of genetic manipulation, 

nutrition and health (Van der Greef et al., 2004; German et al.,2005; Fava et al., 2006; 

Goodacre, 2007), natural product discovery (Wang et al., 2011a), in drug efficacy/toxicology 

and disease prognosis (Ackerman et al., 2006; Dieterle et al., 2006; Kell, 2006; Lindon et al., 

2006; Chen et al., 2007; Homes et al., 2007; Van der Greef et al., 2007) and plant studies 

(Kopka et al., 2004; Weckwerth and Morgenthal, 2005;  Hall, 2006; Kim et al., 2010).   

 

To a certain extent, it is only lately that the comprehensive understanding of metabolomics has 

come to the fore. However, the origin of this field is well documented by Gates et al., (1978): 

• In the late 1940s some scientists started to investigate the metabolite distribution patterns 

to make sense of some physiological disorders. Example includes studies which the 

normality issue, profiling body fluids and examining individual changes, inter-individual 

changes and later pathological conditions such as those found with alcoholics and 

schizophrenic patients were investigated (Van der Greef and Smilde, 2005).   

• The growth of this type of study was quite noticeable in the 1960s when the technology 

was rapidly increasing and several groups in clinical chemistry started to take note of the 

inborn errors of metabolism using GC and GC-MS and this is well documented by 

(Politzer et al., 1976; Jellum, 1977; Jellum, 2001).  

• However, it is during the 1970s where the combination between pattern recognition 

methods and analytical platforms has been vastly utilized for metabolite analyses. The 

work performed at the Fundamental Research on Matter (FOM) Institute, where profiling 

by pyrolysis mass spectrometry of complex biological samples has been performed, 

serves as a good example (Meuzelaar et al., 1973).  It is worth noting that a scientist by 

the name of Jan Van der Greef stands as one of the individuals who first introduced the 

notion/concept of combining the mass spectrometric - and pattern recognition techniques 

as we experience them today. 

•  In 1983, Van der Greef, presented his findings to the audience of the first international 

chemometric meeting in Petten in the Netherlands. In his work, differences between 
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females and males were shown by principal component analysis (PCA) of the data of 

urine metabolites which were prior analyzed by field desorption mass spectrometry and 

subsequent analyzed by PCA (Van der Greef et al., 1983).  

• It is also during this time that the interface between liquid chromatography and mass 

spectrometry has been shown for the analysis of plant metabolites (Games et al., 1984).  

• Tas and Van der Greef (1995) reviewed on the improvements of the technology, 

especially on direct chemical ionization in combination with pyrolysis based mass 

spectrometry, and combination of the latter with pattern recognition models became the 

norm during the 1980s where it was mainly used for disease diagnosis, etiology and 

reverse pharmacology.  

• Other techniques such as NMR have also found application in the analysis of complex 

biological samples. The work of Nicholson and Wilson (1989) stands out amongst other 

as the pioneering beginning if not the first in which profiling of bio-fluids by NMR is 

utilized (Bell et al., 1989; Nicholson and Wilson, 1989). The earlier work in which the 

interface between NMR and pattern recognition became active is also reviewed by 

(Nicholson and Wilson, 1989).  

• Today, the analysis of metabolites has become much involved due to advanced 

instrumentation and incorporation of pattern recognition models which ease the analyses 

of the data. 

 

By virtue of being amongst the fastest growing fields of systems biology, metabolomics result in 

highly complex data. As such, scientists in the field of metabolomics spend a great deal of time 

and effort extracting meaningful information from such multi-complex datasets (Robertson, 

2005). The design of a metabolomics experiment is very crucial so as to lead to valid and 

reproducible results with meaningful biological knowledge/insights. Unlike other –omics 

approaches, metabolomics is a data-driven, or inductive, scientific discipline compared to the 

hypothesis-driven strategies employed in traditional molecular biology (Kell and Oliver, 2004). 

In its simplest form, metabolomics data sets can contain measurements performed on subjects 

under different biological conditions. This then results in significant complex data matrices 

which are cumbersome to analyze manually or with traditional statistical tools. As mentioned 

before, exploratory data mining methods are then the preferred choice for such analyses. As seen 
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from most examples herein the manuscripts, techniques such as PCA partial least square 

discriminate analysis (PLS-DA) and orthogonal projections to latent structures discriminate 

analysis (OPLS-DA) are commonly preferred for such involved analyses.  

 

Like all other scientific experiments, there are different steps which are mandatory to follow 

when metabolomics experiments are conducted. All steps of the experiment should be 

appropriately validated and experimental aspects such as sample numbers, sample preparation, 

choice of analytical technology and data processing strategies are of significant importance 

(Broadhurst and Kell, 2006). Similar to transcriptomics (Ball and Brazma, 2006) and proteomics 

(Taylor et al., 2006), there exist accurate reporting standards for metabolomics data and should 

also be followed and these are currently available (Plumb et al., 2006). Figure 1.11 highlights a 

general overview of steps which are mandatory for a successful metabolomics study. These 

standards have been developed by the metabolomics standards initiative (MSI) to enable other 

researchers to document research accurately (Fiehn et al., 2007). It is of major importance to 

note that these guidelines do not describe how to perform investigations but rather gives a 

description as to how the experimental work should be carried out and this will, in turn, allow 

others to evaluate or repeat the work. This will also ensure that all possibilities of bias reporting 

are eliminated (Ioannidis, 2005; Ransohoff, 2005). However, there exists certain factors which 

are not easily removable such as those due to the age differences between the samples (Yu et al., 

2007) and some stringent factors such as those due to diurnal variations (Plumb et al., 2005). The 

standards reported by Fiehn et al. (2007) were also followed during the progress of the current 

study. As stipulated above, the subsequent sections (2.3.2- 2.3.4) of this chapter will in most 

cases outline the basic mandatory steps of the metabolomics study.  
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Figure 1.11:  Schematic representation/overview of necessary steps which are commonly mandatory for most 

comprehensive metabolomics studies (adapted from Lu et al., 2008). 

2.3.2. Sample Preparation 

 

“The quality of samples and handling determines the quality of outcomes of the metabolites 

analyses” (t’Kindt et al., 2009; Alvarez-Sanchez et al., 2010; Kim and Verpoorte, 2010). It is 

therefore important, to start with a good sample for better outcomes. Different specimens can be 

used from plants for metabolite analysis, and these can be in form of leaves, stems, roots and 
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fruits, etc. Different tissues will give different metabolic pictures, for example it was found that 

metabolite patterns of leaf veins are different from those of other parts of the leaf (Choi et al., 

2004a&b). Another important aspect to take into account is the harvesting of samples, because it 

is in this step where undesirable chemical and enzymatic reactions of metabolites can occur and 

as a consequence, wrong conclusions can be made (Maltese et al., 2009). It is therefore 

recommended that during harvesting, samples be kept in a cool environment in order to 

overcome the above-mentioned problem (Kim et al., 2010). The process of stopping the 

physiological processes (enzyme action / metabolism) is referred to as quenching. Different 

methods to achieve quenching have been proposed, drying of samples is one of them as excess 

water can also provide a suitable environment for enzymatic reactions (Kim et al., 2010). Freeze-

drying the samples before analysis have been applied to remove excess water, however, this 

process also possesses some problems as it was found to lead to loss of metabolites, especially 

volatiles (Hanhineva, 2008).  

 

Other than sample handling, there are other factors which can influence the quality of the 

analysis and these include the time of harvesting, age and gender (Plumb et al., 2005; Laiakis et 

al., 2010). With the aid of UHPLC-MS and multivariate data analysis (MVDA), Plumb et al. 

(2005) reported diurnal-dependant metabolite variation in mouse samples which was primarily 

caused by different sampling times. Samples collected at different times of the day (morning, 

afternoon or evening) were found to contain varying metabolites (or metabolic 

signatures/patterns). The levels of some primary metabolites such as sugars, malic acid and citric 

acid were also found to differ from one sample to another throughout the day cycle (Queiroz, 

1974, Kim et al., 2006). This latter example illustrates that consistency in sample collection and 

preparation is mandatory for maximum data output in metabolomic studies. 

 

One of the holy grails of metabolomics is to establish a “Universal” sample preparation 

technique, thus a single solvent metabolite extraction protocol which can enable isolation of all 

types of metabolites (Choi et al., 2011). Due to the complexity of the physico-chemical 

properties of metabolites and respective matrix, it is very unlikely that there is a single solvent 

which can extract all metabolites from a cell or tissue under investigation (Kim et al., 2010). For 

NMR based metabolomics, perchloric acid was found to be a more suitable extraction protocol 
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for polar compounds such as sugars and amino acids (Kruger et al., 2007, 2008) but this method 

is also known to cause problems to some metabolites which are acid-intolerant. Aqueous 

methanol is commonly used for NMR-based metabolomics because it can extract both polar and 

mid-polar compounds (Hendrawati et al., 2006; Yang et al., 2006; Leiss et al., 2009). Attempts 

to design a universal extraction protocol have been made and these led to an isolation protocol in 

which both aqueous methanol and chloroform are used in order to target both polar and non-

polar metabolites (Choi et al., 2004b; Choi et al., 2005).  

 

Another important factor to be considered during metabolite extraction is the pH of the 

medium/solvents which should be maintained from one extraction to another in order to 

minimize ionization of metabolites which could lead to the greatest variability especially in 

techniques such as NMR (Kim et al., 2010). To overcome such problems, buffers are normally 

used to maintain the pH, for instance phosphate buffers (Kim et al., 2006) and formic acid is also 

used to enhance ionization for LC-MS (Theodoridis et al., 2011). It is therefore important that 

strict measures are taken into consideration during sample handling and preparation in order to 

minimize the problems associated with such steps during metabolic analyses which can lead to 

false conclusions. 

2.3.3. Analytical Platforms 

 

Different analytical techniques have been used to analyze complex mixtures and depending on 

the mode of separation, each technique results in different data output. Once again, due to highly 

diverse physico-chemical properties of metabolites (and subsequently the complex multi-

dimensionality of samples) there is currently no single analytical platform that can provide 

complete analysis of the whole metabolome. Hence, a multi-platform approach is advantageous 

so as to provide maximal metabolic coverage (Dunn et al. 2012). However different techniques 

such as Gas Chromatography coupled to Mass Spectrometry (GC-MS) (Olivier and Loots, 2012), 

Liquid Chromatography coupled to Mass Spectrometry (LC-MS) (Lu et al., 2008), Capillary 

Electrophoresis coupled to Mass Spectrometry (CE-MS), Fourier Transform Infra-red (FT-IR) 

spectroscopy, Direct Infusion Mass Spectrometry (DI-MS) and lastly, Nuclear Magnetic 

Resonance (NMR) spectroscopy (Kim et al., 2010) are commonly used, and more 

comprehensive details on these and other techniques used for metabolomics has been reported 
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before (Dunn et al., 2005). As mentioned before, each technique has advantages and short-falls, 

and it is therefore important that the choice of instrumentation is highly in line with the expected 

outcomes of the study. For the scope of this thesis, Ultra-performance Liquid Chromatography 

coupled to High Definition Mass Spectrometry (UHPLC-HD-MS) was used, and full information 

on the usability of this instrument is discussed below. 

2.3.3.1. Ultra-Performance Liquid Chromatography coupled to Mass Spectrometry 

(UHPLC-MS) 

 

In general, mass spectrometry (MS) is regarded as a very sensitive technique to analyze 

metabolites (Dunn et al., 2005). Although complex, MS instruments are composed of two main 

sections namely the (1) ionization technology of which the following are mostly used; electron 

ionization (EI), chemical ionization (CI), electrospray ionization (ESI), atmospheric pressure 

chemical ionization (APCI), matrix-assisted laser desorption/ionization (MALDI) or fast 

atom/ion bombardment (FAB) and (2) the type of mass analyzer of which the mostly used are; 

quadrupole (Q), triple-quadrupole (QQQ), ion-trap (IT) or time of flight (TOF) (Villas-Boas et 

al., 2005). In order to optimize the transmission of ions to the analyzer and detector, all three MS 

components are maintained under vacuum. The detected ions are recorded as pairs of m/z and 

abundance values, processed, and displayed in a mass spectral format (Moco et al., 2007; 

Allwood and Goodacre, 2010). To date, various technologies ranging from ionization methods, 

mass analysers to detectors, have been developed for different applications with the intent to 

enhance detection efficiency, mass resolving power and mass accuracy of MS (Hao and March, 

2001;  Tang et al., 2006; Moco et al., 2007; Brucker and Rathbone, 2010). 

 

As mentioned before, samples can be analyzed using different chromatographic techniques in 

conjunction with an MS detector. To date, GC and LC are the most widely used chromatographic 

techniques. GC-MS has been widely used for metabolite analysis and this is due to its high 

separation efficiency which suffices separation of very complex biological mixtures. In addition, 

identification of metabolites / compounds by GC-MS is relatively easier (Villas-Boas et al., 

2005). However GC-MS has some limitations of its own which hamper its applicability in 

metabolomics, one of which is associated with sample preparation. GC can only analyze samples 

which are volatiles in nature, and those which are not volatiles need to be converted to volatiles 



33 

 

before analysis through a process known as derivatization. This additional treatment leads to 

unwanted extra steps and prolongs the sample preparation and analysis time.  Derivitization is 

also known to result in more complex sample-handling and an increased variance in the analysis. 

Identification of unknown derivatized compounds can be difficult because they are chemically 

modified and possess / contain different structural features which are not in commercial libraries 

(Villas-Boas et al., 2005). Another disadvantage of using GC-MS associated with the afore-

mentioned notion is that not all compounds reach sufficient detectable concentration in the gas 

phase in the GC column at a given temperature. For instance, some high molecular weight 

compounds are thermally decomposed before reaching a measurable vapor pressure, and it is 

also known that extreme polar compounds require higher temperatures (due to strong inter-

molecular forces), and such higher temperatures will result in thermal decomposition of the 

compound. GC instruments are therefore commonly used for smaller, low polarity compounds 

(Figure 1.12) (Kaal and Jansen, 2008; Castello et al., 2009).  

 

 

 
Figure 1.12: A schematic representation of the GC and LC analytical applicability ranges. From the figure it can be 

seen that polarity and molecular size are major determinants/factors influencing the choice of which type of 

instrument is sufficient for particular application (Taken from Kaal and Jansen, 2008).  

 

With the above mentioned pitfalls associated with GC-MS, LC provides a second option for 

metabolomics. From this figure, it can also be noted that LC-based separation is possible across 

compounds of wide range of polarity and size (De Vos et al., 2007, Kaal and Jansen, 2008, Xiao 

et al., 2012). In recent years, LC-based methods have become the technique of choice for 

metabolic analyses (Grata et al., 2008) and have also been proven to be superior to the GC-based 
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counterpart. To illustrate this point, a parallel metabolomic study was conducted by GC-MS and 

UHPLC-MS to investigate the patho-physiology of irritable bowel syndrome. It was shown that 

the UHPLC-based method was three times more sensitive and detected more metabolites than its 

counterpart GC-based method (Kajander et al., 2009). LC-MS allows molecular identification 

and quantification of a wide spectrum of metabolites of different polarity and neutral 

metabolites, even when they are present at relatively low levels and in a complex matrix (Villas-

Boas et al., 2005). LC-based techniques has been intensively used as either stand-alone 

techniques (Plumb et al., 2002; Plumb et al., 2005, Wagner et al., 2006), or in combination with 

other techniques such as NMR spectroscopy (Lenz et al., 2004, 2005a&b). There exist different 

types of LC-based methods and they differ with some of the instrumental components which are 

developing with time as to improve the detection and throughput of the technique. Such LC-

based techniques include, amongst others, the conventional HPLC-MS, capillary HPLC and 

lastly the newly developed UHPLC-MS. The use of HPLC-MS for metabol (n)omics studies is 

finding many applications. Moreover, the availability of such instruments has resulted in a rapid 

and continuing increase in the number of publications lately (Wilson et al., 2005b).  

 

In general, the use of HPLC-MS for metabolomic studies has been performed using reverse-

phase packing materials of 3-5 µm particle size and in columns which range between 3.0 and 4.6 

mm in diameter, and with the length between 5 and 25 cm (Wilson et al., 2005b). Although not 

common, the use of normal phase columns has also been tried for metabolomics studies. For 

example, some of the biological bio-fluids such as urine contain highly polar molecules that are 

not suitable for reversed phase chromatography. For such and other reasons, normal phase 

techniques is favored for the analysis of such samples and this lead to the development of the 

hydrophilic interaction liquid chromatography (HILIC), which result in the elution of less polar 

molecules first and then retention of more polar molecules. The metabolomic study by Idborg et 

al. (2005) used HILIC chromatography in the analysis of urine samples with some success. The 

same technique (HILIC chromatography) has also been used in conjunction with ESI-MS for the 

analysis of dichloroacetic acid in rat blood and tissues (Delinsky et al., 2005), and for the 

determination of 5-fluorouracil in plasma and tissues with APCI based mass spectrometry 

(Pisano et al., 2005). In the context of plant sciences, HILIC was previously shown to be an 

efficient method of choice during the analysis of defense-related molecules (glucosinolates) in 
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cruciferous vegetables. This method was shown to be superior (as it uses intact glucosinolates) 

over traditional reverse phase chromatography which involves an extra-tedious step involving 

the enzymatic (hydrolytic) removal of the sulphate group prior chromatographic analysis (Troyer 

et al., 2001). 

 

Conventional HPLC-MS based methods have been shown to provide reasonable resolution and 

moderate throughput. However, developments in the techniques have seen the introduction of 

capillary HPLC based methods, which comes with certain improvements for metabolomic 

studies as compared to conventional HPLC. The capillary HPLC technique uses monolithic 

columns which have chromatographic resolutions approaching that of GC (Dunn, 2008) and 

increased signal to noise (S/N) due to more concentrated peaks and reduced ion suppression (Lu 

et al., 2008). This technique is also known to use less sample volumes than conventional HPLC. 

Its application for plant-based metabolomics has also yielded some positive results in the past 

(Delinsky et al., 2005; Shen et al., 2005; Maruska and Kornysova, 2006). Granger and associates 

(2005), showed that conventional and capillary HPLC columns, packed with the same 

chromatographic phase, yielded different results when urine from male and female  rats were 

analyzed simultaneously by the two techniques. It was further shown in this study that the overall 

pattern of peak distribution provided by both techniques is significantly different when 

considering the pool of ions detected in both methods (Granger et al., 2005). In summary, 

capillary HPLC-based methods are hailed as superior compared to conventional HPLC methods 

based on several factors of which some were addressed by Lu et al. (2008).   

 

Another development on the LC-based method is the introduction of UHPLC-MS. These 

technological advances have seen the application of LC-based methods which use sub-2 µm 

chromatographic particles which provide higher chromatographic resolution, narrower peak 

widths and higher sensitivities (Plumb and Wilson, 2004; Swartz, 2005). Due to this extremely 

small column particle sizes, there is an increased back-pressure which in turn affects the 

chromatography, and as such, these instruments are designed to handle such pressures and 

normally operate at up to 15 000 psi as compared to 6 000 psi  which is custom for conventional 

HPLC (Wilson et al., 2005a). Different column chemistries and column dimensions have been 
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applied in UHPLC-MS and the application thereof in metabolomics is well documented (Wang 

et al., 2011a).  

 

As mentioned before, UHPLC-based methods produce superior results compared those achieved 

by traditional LC methods. This can be elaborated on by using an experiment conducted by Gika 

et al. (2008) as an illustrative example, whereby the authors performed global metabolite 

profiling of Zucker obese rats with UHPLC-MS and traditional reversed-phase LC.  From their 

findings it was concluded that chromatography by UHPLC-MS provided better results than the 

conventional reversed-phase LC. This is due to high peak capacity and better peak asymmetry 

attained with UHPLC-MS (Gika et al., 2008). In a separate but similar example, Wilson and 

colleagues (2005a) compared the UHPLC and HPLC based methods using similar analytical 

conditions. The UHPLC–MS method showed improved phenotypic classification capability and 

increased ability to probe differential pathway activities between strains as a result of improved 

analytical sensitivity and resolution (Wilson et al., 2005a) above all the total ions detected by 

UHPLC (2.1 cm×100 mm Waters ACQUITY 1.7 µm C18 column) were also found to be higher 

than those achieved with HPLC (2.1 cm×100 mm Waters Symmetry 3.5µm C18 column) (Figure 

1.13). 

 

Figure 1.13: Three dimensional plots showing the retention time, m/z, and intensity of samples from mouse urine 

using (A) traditional HPLC-MS and (B) UHPLC-MS (Wilson et al., 2005a). 

 

From the above results it is quite clear that UHPLC provides superior resolution compared to 

traditional LC-based methods, and arguably the column chemistry and the use of small particles 
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stands out as one of the major improvements in this techniques (Wyndham et al., 2003). It is 

from this improved chemistry and orientation of the column materials that the running time 

during chromatographic separation by UHPLC is significantly shorter.  

 

In comparison with 5 µm column particles, which are custom for traditional HPLC, it is believed 

that the running time is decreased (three times shorter) when 3 µm particle sizes are utilized 

(Novakova et al., 2006). The work by Plumb and associates (2005) illustrated the above point. 

The authors showed that using 1.5 min run times for UHPLC, the peak capacity and number of 

detected ions were quite similar to those achieved by 10 min HPLC run times (Plumb et al., 

2005). It is also noteworthy that UHPLC displayed better retention time reproducibility over 

HPLC, which makes it an ideal technique for metabolomic analysis (Nordstrom et al., 2006). 

Some of the column chemistries used by the Waters Company for the Acquity UHPLC 

instruments are shown in Figure 1.14, and in the current study the BEH C18 column was used. 

There are more reports which are mostly concerned with the evaluation of stability and 

chromatographic efficacy of these types of column material and so far most of these reports 

consider these materials as superior both for metabolomics and other application such as in 

pharmaceutical industry (Wyndham et al., 2003; Nguyen et al., 2006; Novakova et al., 2006; 

Guillarme et al., 2007). 
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Figure 1.14: Different ethylene bridged hybrid column chemistries used in Acquity columns for UHPLC analyses. 

 

Mass spectrometry provides significant advantages for its application in metabolomics studies 

(Villas-Boas et al., 2005; Dettmer et al., 2007) and as such, techniques hyphenated to MS have 

found significant attention for metabolic studies, with UHPLC being regarded as a golden 

technique for metabolomics. Furthermore, in their review on UHPLC-MS and metabolomics, 

Wang et al., (2011b), concluded that the high selectivity and low-detection limits of the MS 

instruments as well as the compatibility with UHPLC separation techniques and the 

unquestionable ability to generate quantitative data makes it an ideal tool for metabolomic 

applications. As previously stated, there are three main mass analyzers: TOF, quadrupole and ion 

trap, which are known to provide significant advantages in metabolomics. However, TOF is 

regarded the best amongst them because of its capability to detect all the ions simultaneously 

regardless of the respective masses. The other two mass analysers (quadrupole and ion trap) are 

superior when dealing with selected mass ranges (Dunn, 2008). Thus, TOF based MS-

instruments are finding many applications in metabolomics and they have proven ideal for such 

applications. Hybrid MS instruments such as those comprising both quadrupole and TOF (i.e Q-

TOF) have also found application in metabolomics (Plumb et al., 2002, 2003a&b; Williams et 

al., 2005).  
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In the current study such MS-instrument (Q-TOF) was also used and the diagram of its 

components are shown in Figure 1.15. From this schematic representation it can be seen that this 

instrument is a hybrid instrument capable of performing accurate mass measurements as well as 

tandem MS (MS/MS) experiments for structural elucidation for both precursor and product ions. 

From the same figure it can also be noted that there exists a hight pressure cell  between the two 

analysers (Q and TOF) known as the collision-induced dissociation (CID) cell, which is aimed at 

aiding in further dissociation of selected ions from the quadrupole prior entering the TOF, thus 

generating more structural feature information (Dettmer et al., 2007; Dunn, 2008).  

 

 
Figure 1.15:  Schematic representation outlining instrumentation layout of the q-TOF-ESI-MS instrument 

(www.waters.com).  

2.3.4. Data Handling and Analyses 

 

Due to the large complexity and multi-dimensionality of the data obtained during metabolomic 

analyses, it is difficult and demanding to extract meaningful information from such data. 

Multivariate statistical models such as PCA (2.3.4.1) and OPLS-DA (2.3.4.2) are commonly 

used to reduce the dimensionality of these large data sets, providing models that are 

meaningfully interpretable. These models allow visualization of the data in 2- or 3-dimension 

(which is initially impossible in the multi-dimensional, original data) and by so doing, the 

underlying patterns within the data can be explained.  
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Before the dimensionality of the data is reduced, data pre-treatment is the initial and probably 

most important step. This allows transformation of the data into a format which is compatible 

with most of the statistical packages used to analyze the data. In the current study commercial 

data mining software (Markerlynx and AMIX) were used to retrieve data from UHPLC-MS 

chromatograms and NMR spectra respectively. These two software packages function 

differently. Markerlynx uses an ApexTrack peak detection technology to integrate peaks from 

LC-MS data: each peak on the chromatogram is given an identifier, which is mainly 

characterized by the area under the peak, retention time (Rt) and mass (m/z). Following peak 

detection, the peaks from different samples are aligned so that the same peaks (Rt, m/z), i.e. most 

probably the same compound, are found in the same row for all samples. During this process the 

retention times are allowed to differ by ± 0.2 min and the m/z values by ± 0.5 Thomson (Idborg 

et al., 2005).  

 

On other hand, AMIX is used for NMR data and in this procedure, the NMR spectrum is divided 

into a series of small bins (buckets). The sum of intensities of signals in each bin is calculated 

either by relative intensities to reference areas or to the sum of total intensities (Kim et al., 2010). 

Binning can be used to both reduce the size or dimensionality of data and to accommodate small 

differences in the peak shift caused by pH variation, and to ensure all samples included in pattern 

recognition analyses are corrected for such variation (Holmes et al., 1994; Craig et al., 2006). 

Bin size of 0.04 ppm are normally used (Dao et al., 2009; Kim et al., 2010) and provides a good 

compromise between spectral resolution and positional variation of resonances. 

 

Furthermore, scaling is another important step before data analysis. Scaling ensures that the 

statistical models are not excessively influenced by variables which are predominant or of high 

concentration as these typically have larger degrees of variance relative to variables which are 

less predominant (Van de Berg et al., 2006; Roberts, 2010). Scaling is achieved by multiplying 

each variable by a specific scaling weighting. There are several types of scaling procedures, 

however, for the scope of the thesis only two will be discussed. Before scaling, the data is mean-

centered by subtracting the respective mean for each data variable. However, after mean-

centering of the data, variables with large intensities would remain over-emphasized over those 

with less intensity. Scaling methods such as unit-variance (UV) in which each variable is divided 
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by its respective standard deviation is used, and this results in uniform or balanced data, giving 

all variables an equal weight, irrespective of respective initial intensity. Pareto scaling, on other 

hand, is achieved by dividing each variable by the square root of its respective standard deviation 

and this renders greater weight to variables which originally had larger intensity, but is not as 

extreme as using un-scaled data (Eriksson et al., 2001; Craig et al., 2006; Van den Berg et al., 

2006; Loo et al., 2010;). In the current study, Pareto scaling was used, unless stated otherwise. 

2.3.4.1. Principal Component Analysis (PCA) 

 

PCA is a non-supervised mathematical procedure which reduces the dimensionality of data 

without altering the data itself.  PCA is mathematically  defined  as  an  orthogonal linear 

transformation of possibly correlated variables into a smaller number of uncorrelated variables 

called principal components (PCs), where greatest variance within the data by any projection is 

explained on the first coordinate  (called  the  first principal  component),  and the least variance 

is explained/projected by subsequent PCs (Jolliffe, 2002; Liu et al., 2010). Figure 1.16 illustrates 

schematically this simplified-definition of PCA: each observation is plotted in k-dimensional 

space, each dimension corresponding to an individual variable. The PCs must intercept the origin 

and have the minimal square of the distance between each observation and itself. The 

observations are projected onto the PCs to generate a coordinate; this value is the score, t1, for 

PC 1 or t2 for PC 2 (see Figure 1.16). In other words, PCA converts the data obtained by high-

throughput instruments into a simple visual representations known as score plots which show the 

data as the clustering of biological samples into either similar or different groupings. Here, 

sample data from different biological backgrounds are clearly separated into distinct clusters and 

samples that cluster together can be referred as a specific “metabolic phenotype” (Fiehn et al., 

2000).  
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Figure 1.16: Schematic representation showing how principal component analysis is performed on metabolomics 

data. A, data is projected into three dimensional space with X1, X2, and X3 being the original variables; B, the first 

principal component (PC1) is projected through the data, this is done in such a way that maximum variation with the 

data is explained; C, the second component (PC2) is also projected perpendicularly to the first one, so that the 

second most variation is also encompassed; D, a plane is generated by the two PCs in the variable space (adapted 

from Roberts, 2010). 
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2.3.4.2. Orthogonal Projections to Latent Structure Discriminant Analysis (OPLS-DA) 

 

It is clear that PCA only evaluates global patterns (maximum variation) within the data and is not 

a good tool for revealing local phenomena. For the same and other reasons stated by Van der 

Greef and Smilde (2005), alternative techniques have been proposed. In this study a supervised 

model, OPLS-DA, was used to reveal underlying biological differences which are associated 

with a time-dependant INAP treatment as shown by the shared and unique structures (SUS) plot. 

OPLS-DA can be considered as an extension of the traditional PLS-DA, and it was proposed 

solely to handle the class orthogonal variation (hence the name) in the data which is not 

explained by PLS-DA (Trygg and Wold, 2002, Bylesjo et al., 2006, Wiklund et al., 2008). In 

detail, PLS-DA is a linear regression model which seeks to find relationships between two 

respective data tables (X and Y), where X is normally the instrument derived/measured data (i.e. 

GC/LC-MS or NMR data) while Y represents a binary vector which is associated with class 

membership. OPLS-DA separates the variation on X into two parts, one that is linearly related to 

X and another one that is orthogonal to Y. This fragmentation on the X variation results in OPLS-

DA comprised of two variations, one which is the Y-predictive variation and explains the 

variation between class membership, and the other which is the Y-orthogonal, which explain the 

variation within the class membership (Wiklund et al., 2008).   
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chromatographic analysis suffice for sample 

classification during UHPLC-MS-based 
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3.1. Abstract 

Ultra high-performance liquid chromatography hyphenated to mass spectrometry (UHPLC-MS) 

technologies has been widely applied in metabolomics, and the high resolution and peak capacity 

thereof are only some of the key aspects that are exploited in such and related fields. In the 

current study, we investigated if low resolution chromatography, with the aid of multivariate data 

analyses, could be sufficient for a metabolic fingerprinting study that aims at discriminating 

between samples of different biological status or origin. UHPLC-MS data from chemically-

treated Arabidopsis thaliana plants were used and chromatograms with different gradient lengths 

compared. MarkerLynxTM technology was employed for data mining, followed by principal 

component analysis (PCA) and orthogonal projections to latent structure discriminant analysis 

(OPLS-DA) as multivariate statistical interpretations. The results showed that, despite the 

congestion in low resolution chromatograms (of 5 and 10 min), samples could be classified 

based on the respective biological background in a similar manner as when using chromatograms 

with better resolution (of 20 and 40 min). This paper thus underlines that, in a metabolic 

fingerprinting study, low resolution chromatography together with multivariate data analyses 

suffice for biological classification of samples. The results also suggest that, depending on the 

initial objective of the undertaken study, optimization in chromatographic resolution prior to full 

scale metabolomics studies is mandatory. 

 

Keywords 

Ultra high-performance liquid chromatography - mass spectrometry, Data mining, Metabolic 

fingerprinting, Metabolomics, Multivariate data analysis. 
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3.2. Introduction 

Metabolomics can be viewed as a post-genomic scientific approach or discipline that aims at the 

comprehensive identification and quantitation of all cellular metabolites within a biological 

system. Metabolomics, in comparison to other “omics” technologies, deals with the dynamic 

metabolome of an organism [1, 2, 3, 4, 5]. Metabolites are the end products of gene expression 

and define the biochemical phenotype of a cell or tissue under defined conditions. Metabolite 

patterns can thus provide a holistic signature of the physiological state of an organism under 

study as well as insightful knowledge of specific biochemical processes [6,7,8,9,10] 

In this paper, we focus on metabolic fingerprinting, which is a powerful tool for exploring 

systematic metabolic changes and potential biomarkers in a cell/organism under certain 

physiological conditions.  As a non-targeted methodology, the initial intention with metabolic 

fingerprinting is not to identify the observed metabolites, but to detect differences between 

biological groups under investigation by comparing patterns, signatures, or “fingerprints” of 

metabolites that undergo dynamic changes in response to biotic or abiotic stresses, host-pathogen 

interactions and genetic - or environmental alterations. Metabolic fingerprinting thus aims at 

sample classification by rapid, global metabolite analysis [11,12]. Most of the analytical 

platforms used in metabolic fingerprinting studies include IR and Raman spectroscopy-, NMR 

spectroscopy- and MS-based technologies. Metabolic fingerprinting is increasingly becoming a 

valuable tool for rapid sample classification; e.g. disease diagnostics, monitoring whole-cell 

biotransformations, plant taxonomy, plant-based medicines, etc. [5,13,14]. 

In this study, data were acquired using a high-definition MS (Waters Synapt G1). The mass 

spectral data provides a pattern that is most often compound specific, thus enabling the 

extraction of metabolic patterns or signatures in samples, and ultimately compound identification 

and/or structural elucidation. Such information from MS analysis provides biological knowledge 

of the system under investigation; for instance, the classification or separation of biological 

samples based on differential metabolic signatures/fingerprints. In metabolomic studies, MS is 

often preceded by GC or LC. A better chromatographic separation can enhance the quality of MS 

analysis and subsequent compound identification by reducing the complexity of the mass spectra 

and the matrix effect [15]. However, the question in MS-based metabolic fingerprinting (aiming 
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mainly at sample classification by rapid, global metabolic analysis) is to know the extent to 

which chromatographic separation needs to be optimised and the chromatographic run time that 

is sufficient.  

An ultra high-performance liquid chromatography (UHPLC) step can be used prior to MS data 

acquisition. UHPLC offers numerous advantages over traditional HPLC, of which the most 

important includes higher peak capacity at the same analysis time and the ability to allow shorter 

chromatographic runs with similar (and sometimes even better) separation as those attained by 

traditional HPLC [16,17,18]. The underlying principles of the UHPLC technology are 

fundamentally governed by the van Deemter equation, which is an empirical formula that 

describes the relationship between linear velocity and plate height/column efficiency [19]. 

According to this equation, as the particle size decreases to less than 2 µm, there is a significant 

gain in efficiency, which does not diminish at increased flow rates or linear velocities [20,21,22]. 

Metabolic fingerprinting studies, like all other metabolomic approaches, generate high-

dimensional and complex data sets which are difficult to analyse and interpret by visual 

inspection or any traditional univariate statistical approaches. Mathematical modelling 

approaches involving multivariate data analysis (MVDA) methods are therefore utilised to 

extract meaningful information from these large empirical data sets [22,23,24]. 

In this study, the principal component analysis (PCA) – an unsupervised multivariate linear 

model – was used for data analysis. PCA provides a means of identifying patterns in data 

(especially of high dimension), and expressing the data in such a way as to highlight the 

similarities and differences. The other main advantage of PCA is that once the patterns in data 

are found, it can be compressed by reducing the number of dimensions without much loss of 

information. In other words, PCA attempts to explain as much variation in as few components as 

possible [25,26,27,28,29]. Another MVDA model which was used is orthogonal projection to 

latent structures discriminant analysis (OPLS-DA). The latter is a modification of the PLS-DA 

(projection to latent structures-discriminant analysis) method, with an integral orthogonal signal 

correction filter. The power of this regression model lies in its ability to separate modelling of 

response-related (predictive) and response-orthogonal variations in data. As such, the OPLS-DA 

model is a suitable tool to extract information on changes in the molecular composition of 

samples. The OPLS-DA scatter plots, S-plot and the shared-and-unique-structures (SUS)-plot 
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enable the extraction of statistically and biochemically potentially significant metabolites and the 

identification of shared and unique structures in the samples, respectively [27,30,31]. This study 

seeks to shed some light on these aspects by investigating the effect of short gradient/low 

resolution in comparison to longer gradient/high resolution chromatographic separation during 

metabolic fingerprinting of Arabidopsis plants treated with isonitrosoacetophenone (INAP), a 

structural analogue of citaldoxime, an anti-oxidant/anti-fungal stress metabolite from citrus [32]. 

3.3. Experimental 

3.3.1. Chemical treatment and metabolite extraction. 

 

Thirty (30) day old Arabidopsis thalina (ecotype Columbia) plants were used and foliar sprayed 

with 1 mM of INAP (Sigma-Aldrich, MO, USA) in 10 mM MgCl2, while control plants were 

only sprayed with 10 mM MgCl2. Plants were allowed to incubate for a period of 18 h at 25ºC 

prior to metabolite extraction. Leaves (2 g) were homogenised with an ultraturrax homogeniser 

in 20 mL 100% methanol (Romil, Cambridge, UK), and metabolites were extracted with the aid 

of heating at 60ºC for 10 min and sonification for 20 min. Homogenates were then centrifuged at 

10 000 x g for 10 min, and the resulting supernatants transferred to a round bottom flask prior to 

reducing the volume to approximately 2 mL with a rotary evaporator. The resulting volume was 

further dried to completeness using a speed vacuum centrifuge (R.C 10.09; Jouan, France) 

operating with constant heating at 50ºC. The residues were re-dissolved in 400 µL 50% (v/v) 

methanol in water and filtered through a 0.22 µm filter using a 1 mL sterile syringe. Unless 

stated elsewhere, all reagents and solvents were of UHPLC grade. 

 

3.3.2. UHPLC-HD-ESI-MS analysis 

 

Five (5) µL methanol extract was analyzed on a Waters UHPLC-high definition MS instrument 

equipped with an Acquity CSH C18 column (150 mm × 2.1 mm with a particle size of 1.7 µm) 

(Waters Corporation, Milford, MA, USA). The composition of mobile phase A consisted of 

0.1% formic acid in deionised water and mobile phase B consisted of 0.1% formic acid in 
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methanol. The time of the chromatographic separations were 5, 10, 20 and 40 min; with gradient 

conditions (methanol: 5-95%, at constant flow rate of 0.4 mL min-1). Full chromatographic 

gradient conditions for each chromatographic analysis time are indicated in Table 1.  

Table 1: Chromatographic gradient conditions for each chromatographic analysis time; 5, 10, 20 

and 40 min. (A = 0.1% formic acid in deionised water and B = 0.1% formic acid in methanol). 

Time (min) 
Flow rate 

(mL min-1) 
% A % B 

Initial Initial Initial Initial 0.400 95.0 5.0 
0.10 1.00 1.00 1.00 0.400 95.0 5.0 
2.00 6.00 16.00 36.00 0.400 5.0 95.0 
3.00 7.00 17.00 37.00 0.400 5.0 95.0 
3.50 8.00 18.00 38.00 0.400 95.0 5.0 
5.00 10.00 20.00 40.00 0.400 95.0 5.0 

 

Data was acquired using detection with both PAD (100-500 nm) and MS. MS was used in both 

positive and negative electrospray ionisation modes, and for the scope of this paper only the 

positive ionisation data was used. For MS detection, the optimal experimental conditions were as 

follows: capillary voltage of 2.5 kV, sample cone voltage of 17 V, multichannel plate detector 

voltage of 1750 V, source temperature of 120°C, desolvation temperature of 400°C, cone gas 

flow of 50 L h-1 and desolvation gas flow of 450 L h-1. The mass spectrometric full scan data 

were acquired from 100-1000 Da with a scan time of 0.1 sec, interscan delay of 0.02 sec. Data 

was centroided and mass spectra corrected in real time by an external reference standard 

consisting of leucine-enkephalin (5 pg mL-1) using a lockmass sprayer interface and a lockmass 

flow rate of 0.2 mL min-1.  

3.3.3. Data analysis 

 

MassLynx XSTM software version 4.1 (Waters Corporation, Milford, MA, USA) with an 

advanced statistical programme for multivariate data analysis (MarkerLynxTM) was used to 

analyse the UHPLC-ESI-MS data. For multivariate data analysis, ESI positive raw data was 

extracted and analysed with MarkerLynxTM software (Waters Corporation, Milford, MA, USA). 

MarkerLynxTM parameters were set to analyse between 0.5-4 min, 2.5-8.5 min, 3-19 min and 5-
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38 min for the 5, 10, 20 and 40 min runs respectively.  The mass range was set to 100-1000 Da, 

the mass tolerance to 0.01 Da, the tR window to 0.2 min and the mass window to 0.02 Da. 

Isotopic peaks were excluded from the analysis. The signal believed to be of residual INAP was 

also removed for the rest of the analysis. The dataset obtained from MarkerLynxTM processing 

was exported to the SIMCA-P software version 13.0 (Umetrics, Umea, Sweden) programme for 

PCA analysis. Unless stated otherwise, PCA and OPLS-DA models were centered and then 

Pareto scaled using SIMCA-P software. Using the loading S-plot from OPLS-DA, biomarkers 

(metabolites) of which the levels were highly perturbed by the treatment, thus with a correlation 

coefficient (P(corr)) of ≥ 0.8 and covariance coefficient (p1) ≥ 0.05, were selected and the 

respective m/z values compared using a Venn diagram [33]. The latter was performed in order to 

evaluate whether different lengths of chromatographic separation resulted in unique or different 

metabolite distribution patterns. 

3.4. Results and Discussion 

Visual inspection of the base peak intensity (BPI) chromatograms of different chromatographic 

run times (5, 10, 20 and 40 min) showed differential chromatographic resolution (Figure 1). 

Metabolites co-elute in a relatively small chromatographic time window (tR of 1.5-3.5 min) when 

a 5 min run is considered while there is enhanced separation of detected compounds across the 

longer time window of 15-38 min in the 40 min runs. The three dimensional (3D) BPI 

chromatograms (Electronic supplementary Figure S1) also clearly indicate that when shorter (5-

10 min) chromatography run times are utilized, there is peak co-elution as compared to longer 

(20-40 min) chromatographic runs. Both 3D and 2D BPI chromatograms show that resolution 

increases with increasing chromatographic run times as it was expected.  
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Figure 1:  Representative base peak intensity (BPI) UHPLC-ESI-MS chromatograms of 

methanol extracts from 18 h INAP-treated Arabidopsis thaliana plants analyzed under different 

chromatographic run times. 

The data were further analysed with PCA and OPLS-DA methods. PCA modelling enables the 

reduction of data dimensionality, thus providing interpretable visualisation of the original multi-

dimensional data. The PCA scores plots show the clustering of biological samples into either 

similar or different groupings [16,25]. Here, the PCA models for the 5, 10 20 and 40 min 

UHPLC-MS data sets were respectively computed and the PCA scores plots are represented in 

Figure 2. From these plots, a clear separation between samples originating from the different 

biological backgrounds (untreated and treated) can be seen in all data sets (5, 10, 20 and 40 min 

runs), and the differential clustering of the samples indicates the existence of different metabolic 

signatures (fingerprints) in cells, indicating that INAP treatment leads to metabolic changes in A. 

thaliana plants.  
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Figure 2: 2D PCA score plots showing the different clustering and separation patterns between 

extracts from treated and control Arabidopsis thaliana plants, generated by UHPLC-MS using 

different chromatographic running times of 5, 10, 20 and 40 min. 

However, from these PCA scores plots, no significant differences in the clustering of samples 

(treated and untreated) was observed when data from 5, 10, 20 and 40 min chromatographic runs 

are compared. The only apparent difference is the tighter clustering within the treated group in 

40 min samples (Figure 2). The PCA modelling thus suggests that despite the differential and 

improved chromatographic resolution obtained  in longer chromatography runs (Figure 1), the 

samples obtained from INAP-treated cells were clearly separated from the samples obtained 

from non-treated cells in all cases (Figure 2).  
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Figure 3: Representative 2D OPLS-DA score plots (A and B) and the respective loading S-plots (C 

and D) showing differential separation and the most influential metabolites between treated and 

control samples using the data from 5 min (A and C) and 40 min (B and D) chromatographic analysis 

times. The circled areas from the shaded boxes highlight two [M+H]+ ions of which the levels are 

strongly affected by INAP treatment, thus contributing to the clustering/separation of groups as seen 

in A and B. These two ions (m/z 639.406 and 683.433) are the same in both 5 and 40 min runs. 

To further characterise the results obtained by PCA, a supervised model, OPLS-DA, was used. 

Both OPLS-DA scores plots of 5 and 40 min chromatography showed separation and clustering 

of treated and non-treated samples (Figure 3A and B). To highlight m/z variables (potential bio-

marker metabolites) that are responsible for sample clustering, OPLS-DA loading S-plots of both 

5 and 40 min chromatography were computed (Figure 3C and D). Loadings S-plots uses the 

covariance - and correlation coefficients algorithms to highlight metabolites of which the levels 

are affected as a result of the biological perturbation in question [30]. Metabolites which are 

dispersed in the upper and lower outer regions of the “S”-like distribution shape represents those 

that are affiliated with treated and untreated samples, respectively.  In the current study only up-
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regulated metabolites (those with correlation coefficient, P(corr), of ≥ 0.8 and covariance 

coefficient, (p1) of ≥ 0.05, (thus less spurious variables), were used.  

 

Figure 4: Venn diagram highlighting the number of unique and shared most influential biomarkers 

identified by UHPLC-MS that are linked to the response of Arabidopsis thaliana plants towards 

INAP, from the data generated using different chromatographic analysis times as indicated.  

A close inspection of the S-plots results evidenced that in both cases of 5 and 40 min 

chromatography, the m/z ions (associated with the INAP treatment) were mostly the same 

(Figure 3C and D, expanded regions of most affected metabolites). This was further visualised 

using a Venn diagram (Figure 4), which allowed singling out the unique and shared m/z ions 

from data generated using differing times of chromatography separation. From this figure it is 

evident that varying lengths of chromatography resulted in largely similar metabolite patterns as 

most of the metabolites are found in the “shared” rather than unique areas. Here, 25 m/z ions 

(potential biomarkers) are common to all four datasets, thus showing high similarities in the 

metabolite distribution patterns. Comparing, for instance, 5 and 40 min chromatography runs, 30 

m/z ions are shared versus the 15 or 16 m/z ions that are unique to either the 5 or 40 min 
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chromatographic runs. This indicates that, despite the 8-fold increase in the chromatographic run 

time, the metabolic signatures/fingerprints that were uncovered from both short and long 

chromatography, are 67% the same. This observation becomes more pronounced when the 

exclusion bar/limit is tightened by increasing the p1 value to ≥ 0.07. In the latter case most, if not 

all, biomarkers on the 5, 10 and 20 min runs were shared (results not shown). Thus, the 

separation of different biological groups (treated and untreated) on the PCA and OPLS-DA score 

plots of different chromatographic run times was due to the same biomarkers, as illustrated in 

fig.3. 

Many metabolic fingerprinting or - footprinting studies have relied mostly on NMR-based 

approaches [34,35]. Few attempts have been carried out with LC-MS-based metabolic 

fingerprinting. Some of the GC-MS-based metabolic fingerprint studies used long 

chromatographic runs (e.g. 30 min) [12]. This study demonstrates that shorter chromatographic 

run times (5 min) may be sufficient for a metabolic fingerprint study that aims mainly at sample 

classification based on sample metabolic signatures. This observation was also seen on an 

separate study, conducted on tobacco cells suspensions, where the PCA results obtained from 5 

min chromatographic runs were comparable with those achieved by 30 min runs (results not 

shown).  

3.5. Conclusion 

The results from this study proved that, where the only question is whether samples are different 

or similar (based on the metabolic signature), a shorter chromatographic analysis (coupled to a 

high-definition mass spectrometer) is more practical, feasible and sufficient to provide the 

necessary biological information. The study also demonstrated that UHPLC is a powerful 

technique in studying metabolomics, owing to its practical robustness and ability to produce 

highly complex data matrices using short analysis times. MVDA models suffice (i) the 

visualization of different clustering and separation of samples based on metabolite distribution 

patterns due to biological variations and, (ii) allows comprehensive deciphering of underlying 

variation due to chromatography-related factors such as analysis time.  

From the current study, it is evident that a 5 min chromatographic analysis time is enough to 

distinguish Arabidopsis samples based on the metabolite content, using an UHPLC-MS 
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analytical platform. It must, however, be stressed that a generic method was used and applied 

over various analysis run times with no chromatographic optimisation performed as the run times 

changed. Such optimisation might include, amongst others, column length; in essence for such 

shorter runs, a shorter column would be more feasible. Another factor will be temperature that 

plays a significant role in chromatographic separation. Due to the small particle size utilised in 

the UHPLC columns, the flow rate can also be optimised in combination with the other factors 

mentioned above. Although a uniform set of parameters were used in the current study, excellent 

results were obtained. Combining a chromatography system capable high resolution with a high 

definition MS instrument formed the basis of a good analytical system that produced complex, 

but information-rich data. Specialized software such as MarkerLynxTM
 which is capable of fully 

utilising the raw data by applying Apex TrackTM technology, contributed to downstream data 

analyses and - processing. Taking all of the above into consideration, it is evident that high 

throughput sample classification based on metabolic profiles is feasible with short 

chromatographic run times of 5 min.  
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3.7. Supplementary files 

Figure S1: Representative 3D UHPLC-MS BIP chromatograms generated using different 
chromatographic analaysis times of 5, 10, 20 and 40 min. 

5 min 

2.0

1.5

1.0

0.5

 

10 min 

2.0

1.5

1.0

0.5

 



79 

 

 

 

20 min 

 

 

40 min 

2.0

1.5

0.5

1.0

 

 



80 

 

Chapter 4: Collision energy alteration during 

mass spectrometric acquisition is essential to 

ensure unbiased metabolomic-based analyses. 
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4.1. Abstract    

Metabolomics entails the identification and quantification of all metabolites within a biological 

system under a given physiological status and, as such, should be unbiased. Various techniques 

are employed to measure the metabolite content in living systems, and these differ with the mode 

of data acquisition and output generation. LC-MS is one of many techniques that has been 

utilised to study the metabolomes of different organisms but, although used extensively, does not 

provide a complete metabolic picture. Recent developments in technology, such as the 

introduction of UHPLC-ESI-MS, have however seen LC-MS as the preferred technique for 

metabolomics. Here, we show that by varying the MS settings on a UHPLC-ESI-MS, different 

metabolite profiles result from the same sample. Utilizing the UHPLC-high definition MS 

instrument, the collision energy was continuously altered (3, 10, 20, and 30 eV), during MS 

acquisition. PCA and OPLS-DA analyses of the generated UHPLC-MS data of metabolites 

extracted from elicited tobacco cells revealed different clustering – and distribution patterns. As 

expected, the ion abundance decreases with a concomitant increase in collision energy levels; 

but, more importantly, resulted in unique multivariate data patterns from the same samples. Our 

findings suggest that different collision energy settings should be explored during MS data 

acquisition as it can contribute to covering a wider percentage of the metabolome by UHPLC-

ESI-MS and prevent biased results. 

 

Keywords  Metabolomics . Collision energy . 2-Isonitrosoacetophenone . UHPLC-MS . PCA . 

OPLS-DA. 
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4.2. Introduction 

By virtue of being the end product of cellular metabolism, metabolites act as regulatory 

components of the proteome, transcriptome and genome, and accumulation thereof allows a 

complete snapshot of the physiological status of a cell [1-3]. Metabolomics has thus been defined 

as the comprehensive and quantitative analysis of all metabolites under a given physiological 

status [4] and the metabolite content of a living organism is referred to as the metabolome [5]. 

Metabolomics is amongst the fastest growing fields of systems biology and, as such, scientists 

spend a great deal of time and effort extracting meaningful information from such datasets [6]. 

Different techniques have been applied to study the metabolite content of different biological 

systems and, similar to the array of extraction procedures, there is no single analytical technique 

which is able to cover the complete metabolome in a single analysis due to the heterogeneity 

thereof  [7, 8]. It is thus important to note that different techniques will result in varying 

metabolite profiles and it is therefore essential to develop a universal method whereby a high 

percentage coverage of the metabolome can be achieved.  As one of the core techniques for 

metabolomic studies, Ultra-Performance Liquid Chromatography coupled to Mass Spectrometry 

(UHPLC-MS), allows for both the detection of novel markers and, via the provision of elemental 

composition and fragment ions, biomarker identification. 

In the current study, we show that by using UHPLC-MS as a technique of choice, 

different parameters can affect the metabolomic data output. By altering the collision energy on 

the trap mode of the Synapt G1 ESI-MS (Waters Corporation, Milford, USA), different 

metabolite profiles were attained. Here, metabolites extracted from tobacco cell suspensions 

treated at different time intervals with isonitrosoacetophenone (INAP), a sub-component of a 

plant-derived stress metabolite with anti-fungal and anti-oxidant properties [9], were analyzed on 

the UHPLC-MS. The generated data was further compared by unsupervised principal component 

analysis (PCA), while supervised orthogonal projection to latent structures discriminant analysis 

(OPLS-DA) models were also applied in order to identify the biomarkers responsible for the 

separation between various biological groups of samples using different MS settings.  From the 

results it can be seen that the metabolite profiles of the data generated at different MS collision 

energies varied and thus represents results with unique merit. Data obtained at these different 

collision energy levels reveal a wider metabolic picture, thus offering more information on the 
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metabolome under investigation. It is therefore of major importance that, prior to implementing a 

full scale metabolomics study/analyses, various technical parameters should be considered and 

validated to ensure an unbiased metabolic coverage.   

4.3. Experimental 

4.3.1. Chemicals 

 

Isonitrosoacetophenone was purchased from Sigma-Aldrich (St. Louis, MO, USA) and a stock of 

250 mM solution in acetone was prepared.  Methanol (Romil, Cambridge, UK) was utilised for 

metabolite extraction and chromatographic separation respectively. Leucine-enkephalin and 

formic acid were purchased from Sigma-Aldrich (St. Louis, MO, USA). 

4.3.2. Cell culture, treatment and metabolite extraction 

 

Nicotiana tabacum cv Samsun cell suspensions were cultivated as previously described [10] and 

treated with INAP solubilized in acetone to a final concentration of 1 mM for 6, 12, 18 and 24 h. 

Following each time interval, metabolites were extracted using 100% methanol, homogenized 

and centrifuged at 13000 x g for 10 min to pellet the cell debris. The supernatants were 

transferred to new tubes and dried to completeness with the aid of a speed vacuum centrifuge 

(R.C 10.09, Jouan, France) operating with constant heating at 50ºC. The residual brown 

precipitates were re-dissolved in 400 µl, 50% (v/v) methanol in water and passed through a 0.22 

µm filter using a 1 mL sterile syringe.  

4.3.3. Chromatographic analyses 

 

Methanol extracts (5 µl) were analyzed on a UHPLC connected to the Synapt-high definition G1 

MS instrument (Waters, Corporation, USA) equipped with an Acquity BEH C18 column (100 

mm × 2.1 mm with particle size of 1.7 µm) (Waters Corporation, USA). Two technical replicates 

for 5 independent samples were performed resulting in 10 injections for each biological group 

(control, 6, 12, 18, and 24 h). The composition of mobile phase A consisted of 0.1% formic acid 

in deionized Milli Q water and mobile phase B consisted of 0.1% formic acid in methanol.  The 

column was eluted with a linear gradient at a constant flow rate of 400 µl/min of 5% B over 0.0-
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2.0 min, 5-95% B over 2.0-22.0 min, held constant at 95% B over 22.0-25.0 min, 95-5% B over 

25.0-27.0 min and a final wash at 5 % B over 27-30 min.  

4.3.4. Mass Spectrometry acquisition 

 

The separated analytes were monitored using both photodiode array (PDA) and electrospray 

ionization mass spectrometry (ESI-MS) detectors. For MS detection, the optimal experimental 

conditions were as follows: capillary voltage of 2.5 kV, sample cone voltage of 17 V, 

multichannel plate detector voltage of 1750 V, source temperature of 120°C, desolvation 

temperature of 400°C, cone gas flow of 50 L/h and desolvation gas flow of 450 L/h. The mass 

spectrometric full scan data were acquired in both positive and negative ionization mode from 

100-1000 Da with a scan time of 0.1 s, inter-scan delay of 0.02 s. Data was centroided and mass 

spectra corrected in real time by an external reference standard consisting of leucine enkephalin 

(5 pg/mL) with the lockmass flow rate of 0.4 mL/min and mass window of 0.5 Da. To assist with 

structure elucidation and compound identification, the MS experiment file was set up to do 

unfragmented as well as three fragmenting experiments simultaneously. Fragmentation was done 

at increasing collision energies between 3 to 30 eV on the trap optics of the Synapt MS to obtain 

substructure information. Unless stated otherwise, unfragmented conditions refer to collision 

energy level of 3 eV. 

4.3.5. Multivariate data analysis 

 

Data collected from the different settings were further analyzed by Markerlynx XSTM software 

(Waters Corporation, Milford, USA). MarkerLynx XSTM parameters were set to analyze the 

whole retention (Rt) range of the chromatogram, mass range 100-1000 Da, mass tolerance 0.02 

Da and a Rt time window of 0.2 min. Isotopic peaks were excluded from the analysis. 

Markerlynx XSTM analyses were repeated for all the different data sets representing the various 

files generated from the altered collision energies. The datasets thus obtained were exported to 

the SIMCA-P software version 12.0 (Umetrics, Umea, Sweden) programme in order to perform 

PCA and OPLS-DA. Pareto scaling was used for both models. 
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4.4. Results and Discussion 

 

As previously stated, there is no single technique which can provide a complete metabolic 

analysis in a single experiment. NMR for example is regarded as a comprehensive technique, but 

its lack of sensitivity represents a shortcoming [11]. Different analytical platforms hyphenated to 

mass spectrometers as detectors provide an alternative to overcome sensitivity shortfalls of NMR 

[12]. Recently, LC-MS has become the technique of choice for (underivitized) metabolite 

analyses [13] since it allows molecular identification and quantification of a wide spectrum of 

differing polarity and neutral metabolites, even when present at relatively low concentration 

levels in a complex matrix [14]. It allows for both the detection of novel markers and, via 

elemental composition and fragment ions, structural elucidation for biomarker identification.  

 Varying sensitivity in the acquisition and detection modes from one instrument to another 

provides an alternative when choosing instruments, and consideration should be made with 

regard to the ionization mode and analyzer [14]. Depending on the combination of the latter two 

aspects, it is expected that different metabolite profiles will be obtained. In a previous study, 

Nordstrom and colleagues [15] has shown that different ionization modes result in distinct 

metabolite profiles. They also illustrated that data generated with the same ionization mode 

operating at varying polarities, i.e. ESI (+) or ESI (-), results in significantly different metabolic 

profiles within the same sample. It is thus from this notion that the current study stemmed, and 

shows that changes in the collision energy levels on MS acquisition significantly contributes to 

the detection of a variety of metabolites.  
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Fig. 1  Overlaid representative, base peak intensity UHPLC-ESI (-)-MS chromatograms, of the 

18 h INAP-treated sample extracts analyzed under different collision energy levels (3 – 30 eV). 

The values above each peak represent the mass thereof. A single asterisk (*) or double asterisks 

(**) above selected peaks indicate peaks which are showing increasing or decreasing trends 

respectively with an increase in collision energy. The bar below the stars represents multiple 

peaks which are showing similar trends of increase or decrease in abundance at different 

collision energies 

 PCA has recently found wide application in analyzing metabolomics data [11, 16]. PCA 

is a mathematical procedure defined as an orthogonal linear transformation of possibly correlated 

variables into a smaller number of uncorrelated variables called principal components, where 

greatest variance within the data by any projection is explained on the first co-ordinate (called 

the first principal component), and the least variance is explained/projected by subsequent 

principal components [17]. It is such transformation which allows complex data to be visualized 
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in at least two dimensions, hence simplifying the pattern of the data. PCA was used to evaluate 

the metabolite patterns of metabolomic data generated from samples analyzed by the same MS 

operating at different collision energy levels. Taking the 18 h INAP-treated sample extracts for 

instance, it is visually clear and easy to differentiate UHPLC-MS chromatograms of this sample 

attained at different collision energies based on the metabolite distribution patterns (Fig. 1). 

These differences are even more pronounced in the PCA score plots (Fig. 2) where it can be seen 

that the variation between sample groups is more pronounced along the first component (PC1) at 

lower energies as compared to the higher ones. In addition, it is also of major importance to note 

that there is higher variation within the groups along PC 2 associated with an increase in 

collision energy levels. This observation is an evidence of different metabolite distributions 

associated with altered collision energy levels.  

 

Fig. 2 Representative PCA score plots showing the different clustering/grouping of samples 

generated using different collision energy levels for each sample  

 

While PCA is an excellent tool for metabolomic data analyses, it does have limitations since 

separation is obtained only from maximum variations between samples [18]. For the same and 
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other unidentified reasons, many reports on metabolomic analyses where multivariate statistics 

are used, also include other models in parallel [18, 19]. Here, orthogonal projection to latent 

structures discriminant analysis (OPLS-DA), a supervised model, was used as a complimentary 

model to PCA. The advantage of using OPLS-DA and other supervised models is associated 

with the ability to highlight biomarkers/variables which are strictly associated with the biological 

factor under investigation. Using a combination of control and 18 h treated samples, OPLS-DA 

was employed using two “dummy” classes/identifier - Class 1 for controls and Class 2 for 18 h 

INAP-treated tobacco cell suspensions. Here the separation between the control and 18 h INAP-

treated samples was even more pronounced (Fig. S1, see Electronic supplementary material). 

The 18 h treatment time point was chosen because it was found to show optimal metabolite 

accumulation (data not shown). Using the OPLS-DA loading S-plots (Fig. 3) generated from the 

models indicated in Fig. S1 (see Electronic supplementary material), it can be seen that there is a 

separation/grouping of controls and INAP-treated samples due to different biomarkers, hence 

indicating unique metabolic patterns. From the same figure, it can also be noted that more 

potential biomarkers were generated when lower collision energy was used. In order to 

simplify/highlight the above observation, the top 20 biomarkers/variables projected along the 

side of the predictive component (p1) of the loadings S-plot, representing the treated samples, 

were compared. A table containing these biomarkers was constructed and the unique metabolite 

ions generated from a particular collision energy are highlighted (Table S1, see Electronic 

supplementary material).  From the above observations, it is thus convincing that metabolomic 

data output from an MS operating at alternate collision energy levels differ significantly. 
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Fig. 3  Representative OPLS-DA loadings S-plots showing the distribution patterns of ions 

contributing to the differences between control and 18 h INAP-treated samples at different 

collision energy levels on the score plots (Fig. S1) 

 

 In addition to the two figures provided as evidence to show the effect of different 

collision energy, additional comprehensive data analyses were also carried out, including the 

fragmentation behavior of single ions at different collision energy levels [20]. It was observed 

that, by changing the fragmentation energy, more structural features can be deduced from the MS 

data as compared to when a single energy level is used (e.g. Electronic supplementary material, 

Figs. S2 A and B for scopoletin and naringenin).   

4.5. Conclusion 

Changes in the metabolite concentrations define the consequences of cellular processes, and 

hence allow ultimate evaluation of the physiological status of the cell/organism. However, in 

order to gain this information from a global view of the metabolome, analytical strategies should 

be well optimized to remove artifacts and meet high throughput demands with the aim of gaining 

comprehensive metabolite profiles. It is therefore important that analytical techniques are well 
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validated and optimized for the latter to be possible. The data presented in this work reveal how 

metabolite profiles/patterns can be influenced and optimized through careful consideration of 

mass spectrometry acquisition parameters such as collision energy. By changing the collision 

energy levels, it was found that different patterns of metabolite distribution are achieved. When 

the unfragmented (3 eV) conditions were utilized, the metabolite patterns and yields differed 

significantly from those which were attained using 10 eV, 20 eV or 30 eV.  Varying collision 

energies are used to assist in structural elucidation, but should be properly monitored and 

reported so as to maintain consistency with data acquisition in order to attain quality and 

consistent metabolomic data. Higher collision energies will generate more complex data sets that 

may be able to distinguish between different control and treatment groups, but could also lead to 

more ambiguous results if wrongly interpreted. Care must therefore be taken when selecting an 

appropriate energy level that will allow maximum data output and sufficient structural 

elucidation of affected metabolites prior to holistic metabolomic studies. The results also support 

the call by the metabolomics community to honor the guidelines for reporting metabolomics data 

to ensure consistency in data generating platforms. 
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4.7. Supplementary files 

Electronic supplementary Table S1 

List of the top 20 most discriminative biomarkers derived from the OPLS-DA S-loadings plot of 

the data analyzed at different collision energies. The biomarkers are identified by the respective 

Rt and m/z values as in (retention time)_(base peak mass). 

 

Unfragmented 10eV 20eV 30eV 

1.36_194.9460 1.24_331.9483 10.32_180.0137 1.36_194.9474 

1.37_176.9353 1.37_176.9360 10.32_306.0775 1.36_292.9231 

10.33_453.1064 10.33_272.0894 10.33_272.0899 10.32_328.0597 

10.70_179.0557 10.33_306.0776 10.33_328.0596 10.33_180.0138 

10.70_346.0699 10.33_453.1073 10.70_674.1027 10.70_172.9545 

10.70_356.0976 10.67_179.0554 11.18_371.0995 12.50_249.0621 

10.70_357.1039 10.70_356.0992 12.49_371.0973 12.50_371.0983 

10.95_149.0255 10.75_455.0144 12.50_249.0619 12.50_372.1016 

11.18_371.0983 11.18_371.0980 12.50_372.1016 12.50_393.0802 

12.49_371.0980 12.49_371.0973 16.66_677.4961 16.66_677.4959 

8.09_455.1239 12.50_372.1015 17.41_188.0187 16.67_678.5003 

8.92_491.1395 16.67_723.5010 23.12_265.1480 17.41_188.0188 

9.38_207.0510 17.41_188.0183 25.78_304.9124 23.12_265.1486 

9.38_284.0873 25.79_304.9124 25.78_434.8702 25.78_304.9123 

9.38_319.0592 8.92_445.1341 9.38_376.0104 25.78_434.8705 

9.38_330.0927 9.38_283.0827 9.38_498.0472 25.78_564.8275 

9.39_121.0304 9.38_329.0879 9.38_620.0821 9.38_121.0310 

9.39_283.0810 9.38_620.0826 9.39_121.0309 9.38_376.0095 

9.39_329.0865 9.39_121.0304 9.63_272.0893 9.38_498.0478 

9.63_599.1650 9.63_599.1643 9.63_306.0774 9.64_328.0593 

 

The table highlights discriminatory metabolites (given by Rt and m/z), thus metabolites of which 

the abundance/distribution are responsible for the separation between control and treated (18 h) 
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sample datasets acquired at the different collision energy levels. The ions are arranged in such a 

way that the most influential ions are on top, whilst the bottom ones represents those with less 

influence. From the table it is quite notable that different ions are responsible for the separation 

of samples at different collision energy levels. 

 

Electronic supplementary Fig. S1 

 

Representative OPLS-DA score plots showing the different clustering/grouping of INAP-treated 

(18 h) cell extract samples generated using different collision energy levels.  Plots were 

generated where t1 and t2 represent the predictive component and orthogonal component, 

respectively. 
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Electronic supplementary Fig. S2 A 

Overlaid MS spectra showing differential fragmentation patterns of scopoletin at different 

collision energy levels 
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Electronic supplementary Fig. S2 B 

Overlaid MS spectra showing differential fragmentation patterns of naringenin at different 

collision energy levels 

 

 

 

From the results (Electronic supplementary Figs. S2 A and B), it is clear that changes in collision 

energy levels affect the fragmentation data detected by mass spectrometry. However, all 

metabolomic studies have the common intention which is to decipher the biological meaning of 

the attained response. This is mainly achieved by revealing the identity of metabolites of which 

the accumulation is perturbed by the treatment in question. By so doing, the affected pathways 

can further be elucidated and studied in more depth and detail. Here, scopoletin (a coumarin), 

was used as authentic standard to evaluate its structural stability under different collision energy 

levels. There is an increase in mass ions lower than the pseudomolecular ion in the MS spectrum 

with increasing collision energy levels (Fig. S2 A), hence more complex spectral data relating to 

structural features of the molecule. However, higher collision energy (30 eV) proved to be 
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detrimental to the process and resulted in extensive loss of spectral quality (and quantity) and 

masked the structural identity. The above was proven by matching the attained raw data with 

those of a custom library at the CSIR (Pretoria, South Africa). It was seen that at a collision 

energy of 3 eV, the percentage probability hit was 58%, for 10 eV 89.8%, for 20 eV 96%, and 

dropped to only 21% at 30 eV.   

The same differential fragmentation pattern was also observed in several peaks from the raw 

data, especially those which showed a high degree of variability in abundance/intensity across 

different collision energy levels (Fig. 1) and in most cases 10-20 eV collision energy levels were 

found to be moderate for structural elucidation. It should, however, be stressed that not all 

metabolites will show this trend. Fig. S2 B shows the fragmentation pattern of the flavonoid, 

naringenin. Here it can be seen that this molecule showed a more conserved fragmentation 

pattern across all levels of collision energy when compared to scopoletin. This observation 

suggests that changes in collision energy does not only result in more complex data output but 

also affect the detailed structural information of metabolites under investigation.   

The collection of data from multiple simultaneous MS experiments can therefore lead to large 

data sets that can be mined to obtain mass spectra of unfragmented compounds by keeping the 

collision energy of the first experiment below 10 eV. Another experiment at 10 – 20 eV would 

reveal low to moderate fragmentation and supply additional information to aid with structure 

elucidation. Increasing the collision energy to 30 – 40 eV would result in severe fragmentation of 

the more labile molecules, while the more robust molecules will only start to show low to 

moderate fragmentation.    
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Chapter 5: Isonitrosoacetophenone induces 
perturbations in the metabolic status of 

tobacco cells. 
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5.1. Abstract 

Plants have developed biochemical and molecular responses to adapt to different stress 

environments. One of the characteristics of the multi-component defence response is the 

production of defence-related metabolites. Plant defences can be triggered by various stimuli, 

including synthetic or naturally occurring molecules, especially those derived from pathogens. In 

the current study, Nicotiana tabacum cell suspensions were treated with isonitrosoacetophenone 

(INAP), a sub-component of a plant-derived stress metabolite with anti-fungal and anti-oxidant 

properties, in order to investigate the effect thereof on cellular metabolism. Subsequent 

metabolomic-based analyses were employed to evaluate changes in the metabolome. UHPLC-

MS in conjunction with multivariate data analyses was found to be an appropriate approach to 

study the effect of chemical inducers like INAP on plant metabolism in this model system. 

Principal component analysis (PCA) indicated that INAP is capable of inducing time-dependent 

metabolic perturbations in the cultured cells. Orthogonal projection to latent structures 

disciminant analysis (OPLS-DA) revealed metabolites of which the levels are affected by INAP, 

and eight of these were identified from the mass spectral data and online databases. These 

metabolites are known in the context of plant stress– and defense responses and include benzoic- 

or cinnamic acid derivatives that are either glycosylated or quinilated as well as flavonoid 

derivatives. The results indicate that INAP affects the shikimate - , phenylpropanoid - and 

flavonoid pathways, the products of which may subsequently lead to an anti-oxidant 

environment in vivo.   

 

Keywords: Biotransformation; induced-defences; isonitrosoacetophenone; 2-keto-2-phenyl-

acetaldoxime; metabolism; metabolomics; multivariate statistics; Nicotiana tabacum; 

xenobiotics. 
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5.2. Introduction 

 Plants can specifically recognize pathogenic micro-organisms and respond by activating 

appropriate multi-component defence mechanisms (McDowell and Dangl, 2000; Odjakova and 

Hadjiinova, 2001). By virtue of not having an adaptive immunity, plants rely solely on innate 

immunity of which there are two types namely induced - and preformed immunity.  Inducible 

plant immunity is the most complex of these, involving the generation of reactive oxygen species 

(ROS), defence gene activation, activation of programmed hypersensitive cell death responses 

(HR), and the production of pathogenesis-related (PR) proteins and anti-microbial phytoalexins 

(Dixon et al., 1994; Van Loon, 1997). Cell wall strengthening adds to existing structural 

defenses, thereby restricting entry of the pathogen to avoid further infection (Hammond-Kosack 

and Jones, 1996; Greenberg, 1997; De Ascensao and Dubery, 2000; Zwiegelaar and Dubery, 

2006). Chemical defence is regarded as a second line of defence after structural modifications 

and is characterised by the production of chemical compounds with direct/indirect anti-microbial 

activities. Most of these anti-microbial metabolites include, amongst many, phenolic compounds, 

terpenoids, cyanogenic glycosides, hydroxamic acids and peptides (Bell, 1981; Bednarek and 

Osbourn, 2009). Since metabolites accumulate as the end products of cellular metabolism, and 

the levels thus reflect the organism’s ultimate response to biological or environmental changes 

(Fiehn, 2002). 

 In addition to / as a consequence of innate immune responses, resistance can be induced in 

plants.  The significance of the HR response is to avoid further spreading of the attacking 

pathogen to other uninfected sites. Moreover, following the HR, uninfected sites become more 

resistant to subsequent infection, an adaptive phenomenon known as systemic acquired 

resistance (SAR) (Ryals et al., 1996). More recently, chemicals have also been employed to 

trigger a condition analogous to SAR, the most widely used being benzothiadiazole (BTH) with 

the trade name BION (Gatz and Lenk, 1998; Oostendorp et al., 2001; Dao et al., 2009). 

Promoters of genes with direct activity towards plant defence responses have been shown to 

respond to different types of chemical inducers (Gorlach et al., 1996; Gatz, 1997). Although 

BTH is the most researched chemical inducer of plant defence, other molecules are also known 

to exhibit this activity. These include, amongst others, β-aminobutyric acid (BABA) (Jakab et 

al., 2001), methyl-2,6-dichloroisonicotinic  acid  (INA) (Metraux et al., 1991), azelaic acid (Jung 
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et al., 2009) and more recently, riboflavin (Liu et al., 2010b). The mechanism of action of these 

molecules is in most cases not well documented. 

 Dubery et al. (1999) reported the accumulation of an oxime-containing stress 

metabolite/phytoalexin, (4-(3-methyl-2-butenoxy)-isonitrosoacetophenone or citaldoxime) in 

citrus peel undergoing oxidative stress due to gamma radiation treatment. This novel compound 

was reported to exhibit phytoalexin, anti-oxidant and radical scavenging activities (Dubery et al., 

1999). Although oxime functional groups are rare in natural products, they occur in a variety of 

phyla, e.g., sponges, bacteria, fungi, and plants (Almeida et al., 2011). In plants, oximes are 

known to be intermediates of a range of metabolic pathways (e.g. nitriles, cyanogenic glycosides, 

glucosinolates etc.) subject to controls that result in variation in both the type and amount of end 

product formed (Mahandevan, 1973). In the context of plant defence/stress responses, aldoximes 

are intermediates/precursors during the biosynthesis of glucosinolates and cyanogenic 

glycosides, two classes of molecules that play vital roles during plant:herbivore interactions 

(Moller, 2010).  

 

 

Fig. 1. The chemical structure of isonitrosoacetophenone (INAP). 

 In the current study, isonitrosoacetophenone (INAP, or 2-keto-2-phenyl-acetaldoxime) (Fig. 

1), a compound structurally similar to 4-(3-methyl-2-butenoxy)-isonitrosoacetophenone, was 

used to investigate induced metabolic changes in tobacco cell suspensions. Ultra-performance 

liquid chromatography coupled to mass spectrometry (UHPLC-MS) was used for measuring the 

levels of physiological metabolites affected by INAP treatment, and principal component 

analysis (PCA) and orthogonal projection to latent structures disciminant analysis (OPLS-DA) of 

the UHPLC-MS data discriminated between the metabolite content of untreated (control) and 
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INAP-treated tobacco cell suspensions. The findings presented here are the first in which the 

effect of INAP on the cellular metabolism of a plant model is investigated. 

5.3. Experimental 

5.3.1. Cell treatment, extraction and sample preparation 

 

 Nicotiana tabacum cv. Samsun cell suspensions were cultivated as previously described 

(Sanabria and Dubery, 2006). Three days after subculturing, aliquots (0.2 g cells/mL suspension) 

were treated with a 250 mM stock solution of INAP dissolved in acetone, to a final concentration 

of 1 mM with continuous rotation at 80 rpm and 25ºC. The final concentration of acetone was 

0.4 %. Control cells received no treatment.  

 The experimental design included three biological replicates with five technical repeats in 

order to have maximum reproducibility of the data. After elicitation time intervals of 6, 12, 18 

and 24 h, cells were collected by means of centrifugation at 10 000 x g for 10 min in a 

microcentrifuge at room temperature. Pelleted cells were homogenised in 1 mL 100% methanol 

using an Ultraturrax rotating blade homogeniser to terminate any enzymatic activity. Extraction 

of metabolites was maximised by means of further heating the homogenate at 60ºC for 10 min 

followed by mild sonification for 20 min. The homogenates were centrifuged at 10 000 x g for 

10 min, the resulting supernatants transferred to new tubes and dried to completeness using a 

speed vacuum centrifuge operating with constant heating at 50ºC. The residual brown 

precipitates were re-dissolved in 400 µL, 50% (v/v) methanol in water and filtered through a 

0.22 µm filter using a 1 mL sterile syringe. The filtrates were transferred to glass vials fitted with 

500 µL inserts and capped. Unless stated elsewhere, all reagents and solvents were of UHPLC 

grade. 

5.3.2. Total phenolic acid and antioxidant determination 

 

 Total soluble phenolics were measured using the Folin-Ciocalteau assay (De Ascenao and 

Dubery, 2003). Here, the extracts (50 µL) were diluted in 50% methanol (0.25 mL) and half-

strength Folin-Ciocalteau reagent (0.25 mL), and mixed thoroughly. After mixing, 0.5 mL of 

saturated aqueous sodium carbonate was added, the mixture again mixed thoroughly and further 

incubated in room temperature for 1 h. Absorbances were measured at 600 nm against 50% 
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methanol as a blank. In order to evaluate/screen for the antioxidant molecules induced by INAP 

treatment, extracts (20 µL) were separated on silica gel 60 F254TLC plates. The plates were 

developed using chloroform: methanol (60:40 v/v) as mobile phase and dried at room 

temperature. The TLC plates were sprayed with 1 mM of diphenylpicryl-hydrazyl (DPPH) in 

methanol and incubated at room temperature for at least 1 h (Esterhuizen et al., 2006). After 

incubation, the areas showing molecules with antioxidant activity appeared as white zones 

against a dark purple background of DPPH.  

5.3.3. Ultra-performance liquid chromatography-mass spectrometry  

 

 The methanol extracts (5 µL) were analyzed on a Waters UHPLC connected to high 

definition ion mobility MS instrument (UHPLC-QTOF SYNAPT G1 HD-MS system) equipped 

with an Acquity BEH C18 column (100 mm × 2.1 mm with particle size of 1.7 µm) (Waters 

Corporation, Milford, MA, USA). The composition of mobile phase A consisted of 0.1% formic 

acid in deionized water and mobile phase B consisted of 0.1% formic acid in methanol. The 

column was eluted with a linear gradient at a constant flow rate of 400 µL/min of 5% B over 0.0-

2.0 min, 5-95% B over 2.0-22.0 min, held constant at 95% B over 22.0-25.0 min, 95-5% B over 

25.0-27.0 min and final wash at 5% B over 27-30 min.  

 The separated analytes were monitored using both photo-diode array (PDA) and electro-

spray ionisation mass spectrometry (ESI-MS) detectors. For PDA detection, the UHPLC LG 

(Waters Corporation, Milford, MA, USA) detector was used. The sampling rate was set at 20 

points/sec; the filter time constant was 0.1 sec. The range of detection was set between 220-500 

nm with the resolution of 1.2 nm.  

 For MS detection, experimental conditions were as follows:  ESI (+ & -) conditions: ES  

capillary voltage: 2.5 kV, sample cone voltage: 17 V, MCP detector voltage: 1600 V, source 

temperature: 120°C, desolvation temperature: 350°C, cone gas flow: 50 L/h, desolvation gas 

flow: 450 L/h,  m/z range: 100-1000, scan time: 0.1 sec, interscan delay: 0.02 sec, mode: 

centroid, lockmass: leucine enkephalin (556.3 g/mol), lockmass flow rate: 0.4 ml/min, mass 

accuracy window: 0.5 Da. The molecular formula assignments software used was MassLynx 

XSTM (Waters Corporation, Milford, MA, USA). Mass accuracy of all the m/z values in all the 

acquired spectra were automatically corrected during acquisition based on calibration curves, 
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lockmass and dynamic range extended. The MS detector was also operated in the positive ion 

mode but there were no significant changes to the results. 

5.3.4. Data analyses 

 

 MassLynx version 4.1 software (Waters Corporation, Milford, MA, USA) with an added 

statistical programme for multivariate data analysis, was used to analyse the UHPLC-ESI-MS 

data where ESI negative raw data was extracted and analysed. MarkerLynxTM parameters were 

set to analyse the whole retention (tR) range of the chromatograms, mass range 100-1000 Da, 

mass tolerance 0.02 Da and a tR time window of 0.2 min. For qualitative visualisation, isotopic 

peaks were excluded from the analysis but included for quantitative and identification purposes. 

The dataset obtained from MarkerLynxTM processing was exported to the SIMCA-P software 

version 12.0 (Umetrics, Umea, Sweden) programme in order to perform PCA and OPLS-DA 

models, and Pareto scaling was used for both models. PCA is a non-supervised mathematical 

procedure which reduces the dimensionality of data without altering the data itself. By 

mathematical definition, this process is defined as an orthogonal linear transformation of 

possibly correlated variables into a smaller number of uncorrelated variables called principal 

components, where greatest variance within the data by any projection is explained on the first 

co-ordinate (called the first principal component), and the least variance is explained/projected 

by subsequent principal components (Jolliffe, 2002; Liu et al., 2010a). OPLS-DA, on the other 

hand, is a linear regression method that has been employed successfully for prediction modeling 

in various biological and biochemical applications (Trygg and Wold, 2002; Cloarec et al., 2005; 

Maree and Viljoen, 2011) and filters out any variation that is not directly related to the response, 

thereby resulting in models which are easier to interpret (Liu et al., 2010a).  Distribution graphs 

and statistical tests were done with the aid of Minitab, version 15 statistical software and n-

Anova using Microsoft Excel software, respectively. 

 

 Both PCA and OPLS-DA score plots were used to depict the clustering of biological 

groups depending on the background/source, i.e. either the data originated from control or treated 

samples. Other plots such as loadings- and S-plots were also utilised for identification of 

biomarkers of which the levels were affected due to INAP treatment. It is important to note that 

the peak area on the chromatograms corresponding to residual, non-metabolised INAP, was 
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removed prior to all statistical analyses. For metabolite identification, Markerlynx results were 

exported to the Taverna workbench (http://www.taverna.org.uk) for PUTMEDID_LC-MS 

workflow (Brown et al., 2011). These workflows have three main functions which are: 

correlation analysis, metabolic feature annotation, and metabolite annotation. All these functions 

allow for peaks which share similar features, such as tR, to be grouped together and further 

allows grouping together and annotating features with the type of m/z ion (isotope, adduct, 

dimer, others) which are believed to originate from the same metabolite. Once the 

aforementioned correlation is made, the elemental composition/molecular formula of each m/z 

ion is automatically calculated and lastly compared to pre-defined databases or manually 

searched against freely online databases such as DNP, Chemspider, AraCyC, PlantCYC, KEGG, 

LipidMAPS, KNApSAcK and METLIN database.  

5.4. Results and Discussion. 

 Oxime functional groups are rare in natural products; in plants, oximes are intermediates of 

a range of metabolic pathways subject to controls that result in variation in both the type and 

amount of end product formed (Mahadevan, 1973). As noted, the biological roles of oxime 

compounds such as citaldoxime in plants are not well researched with regard to biosynthesis, 

interconversions and biological effects (Madala et al., 2012). Here, we report on the metabolic 

changes in cultured N. tabacum cells due to INAP treatment, and the current study lays a good 

foundation for investigating the roles of other oxime-containing molecules in non-cyanogenic 

plants such as Nicotiana or Solananum species.  
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 Fig. 2. Graphical representation of time-dependent (0-24 h) accumulation of total phenolics in 
INAP-treated tobacco cells. The insert is a TLC-DPPH assay showing the separation of 
antioxidant molecules appearing as white spots against a gray background. 

 

 N. tabacum cells responded to treatment with 1 mM INAP by enhanced synthesis of 

phenolic compounds as detected by the Folin-Ciocalteau reagent (Fig. 2).  High resolution 

chromatography of cellular methanol extracts revealed that INAP treatment affected the 

metabolome and the changes in the metabolite profiles over different treatment times are easily 

noted by comparison of the UHPLC-PDA chromatograms (Fig. 3). In addition to the peak 

corresponding to residual INAP, two dominant peaks were found to exist predominantly only in 

INAP-treated samples as compared to control samples. PCA and OPLS-DA models were also 

used to identify the areas of the chromatograms which are responsible for differences between 
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the control and treated samples, hence identification of endogenous and INAP-derived 

metabolites of which the levels are affected due to the treatment.  

 

Fig. 3. Comparison of representative UHPLC-PDA base peak intensity (BPI) chromatograms of 

tobacco cell suspension samples treated with INAP for different time intervals. 

 

 Fig. 4A shows the PCA score plot based on UHPLC-MS chromatograms of the control and 

INAP-treated tobacco cell suspensions (6, 12, 18 and 24 h post treatment). It can be seen that 

clustering based on different treatment times was achieved. The separation between the controls 

and treated cells at different treatment time intervals is projected along the first principal 

component (PC1) which explains the high percentage (32.7%) of the variation in the model. The 

variation within the group is projected along the second principal component (PC2) which 

amounts to the least percentage of variation in the model (8.09%). Looking at the separation 

within the groups of the same treatment along PC2, it can be observed that there is very little 

variation. Other than the two peaks which are dominant across all the INAP-treated samples, the 

PCA loadings plot reveals other areas of the chromatograms representing metabolites 
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(biomarkers) of which levels are affected by this treatment (outliers in the four quadrants of Fig. 

4B).  

 

 

Fig. 4. Representative PCA score plot (A), based on the UHPLC-MS chromatograms, showing 

clustering of samples from tobacco cell suspensions treated with INAP for different time 

intervals and its corresponding loadings plot (B), showing biomarkers responsible for the 

clustering observed in A. The ellipse represents Hotelling’s T2 with 95% confidence. Model 

validation gave R2
X (0.486) and Q2 (cum) (0.351) with a 4 PC model. 
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Fig. 5. Representative OPLS-DA score plot (A), based on the UHPLC-MS chromatograms, 

showing clustering of control vs. 18 h treatment of tobacco cell suspensions with INAP and its 

corresponding loadings S-plot (B), and biomarkers responsible for the clustering observed in A, 

with those most significantly contributing to the treatment response highlighted by the rectangle. 

The ellipse represents Hotelling’s T2 with 95% confidence. Model validation gave R2
X (0.500), 

R2
Y (0.998) and Q2

(cum) (0.987) with a 2 PC model. 
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Although PCA is a very good method to depict the underlying variation between samples, there 

are several limitations associated with this model, one being that separation by PCA is achieved 

if maximum variation exists (Dao et al., 2009). For the same and other maybe yet unidentified 

reasons, specifically pertaining to other biological systems, many reports on metabolomic 

analyses also include other models in parallel where multivariate statistics are used (Dao et al., 

2009; Maree and Viljoen, 2011). Here, OPLS-DA was used as a complimentary model to PCA. 

In the OPLS-DA score plot of control vs. 18 h treatment (Fig. 5A), good separation between 

samples originating from different treatment time intervals was observed. Similar to the loadings 

plot for PCA, the loadings S-plot for OPLS-DA (Fig. 5B) was used to identify possible 

biomarkers which are responsible for the separation observed on the score plot (Table 1).     

 

Table 1: List of biomarkers of which the levels were found to be altered (up-regulated) due to 

INAP treatment in tobacco cell suspensions. 

 

ID 
No. 

Rt (min) m/z Metabolite name Core structure 

1 10.13 453.1065 1,2,4-Benzenetriol; 2-Me ether, 1-O-
[3,4,5-trihydroxybenzoyl-(->6)-β-D-
glucopyranoside]  

Benzoic (gallic) acid 

2 12.51 371.0947 Quinic acid; (-)-form, 4-O-(4-
Hydroxy-3,5-dimethoxybenzoyl) 

Benzoic (syringic) acid 

3 9.30 329.0827 3,4-Dihydroxybenzoic acid; 3-Me 
ether, 4-O-β-D-glucopyranoside; 

Benzoic (vanillic) acid 

4 8.86 491.1425 3,4-Dihydroxybenzoic acid; 3-Me 
ether, 4-O-β-D-glucopyranoside, β-D-
glucopyranosyl ester. 

Benzoic (vanillic) acid 

5 10.97 353.0861 3-O Caffeoylquinic acid   Cinnamic (caffeic) acid 
6 8.92 445.136 4-O-beta-D-glucosyl-sinapate 

 

Cinnamic (sinapic) acid 

7 12.49 815.223 Kaempferol 3-rhamnosyl-(1->2)-
galactoside-7-glucoside 
 

Flavonoid 

8 9.63 621.147 Kaempferol 3-[2'''-acetyl-alpha-L-
arabinopyranosyl-(1->6)-galactoside] 
 

Flavonoid 

 

  With the aid of open access online databases such as Chemspider and Dictionary of 

Natural Product (DNP), the identity (putative) of metabolites of which the levels were affected 

by INAP (Fig. 6, Table 1) were revealed. The distributions of these metabolites across different 
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treatment time intervals are shown in Fig. 7. Using n-Anova it was also shown that the identified 

metabolites differ significantly (p<0.01) in comparison to the control. 

 

Fig. 6. Identified metabolites with the aid of PCA and OPLS-DA loading S-plots from the 

UHPLC-MS data analyses of INAP treated tobacco cell suspensions. From the DNP databases 

markers were identified as; 1. 1,2,4-Benzenetriol; 2-Me ether, 1-O-(3,4,5-trihydroxybenzoyl-(-

>6)-β-D-glucopyranoside); 2. Quinic acid; (-)-form, 4-O-(4-Hydroxy-3,5-dimethoxybenzoyl);  3. 

3,4-Dihydroxybenzoic acid; 3-Me ether, 4-O-β-D-glucopyranoside; 4. 3-O Caffeoylquinic acid; 

5. 3,4-Dihydroxybenzoic acid; 3-Me ether, 4-O-β-D-glucopyranoside, β-D-glucopyranosyl ester; 

6. 4-O-beta-D-glucosyl-sinapate; 7. Kaempferol 3-rhamnosyl-(1->2)-galactoside-7-glucoside and 

8. Kaempferol 3-[2'''-acetyl-alpha-L-arabinopyranosyl-(1->6)-galactoside]. 

 

 From the structures of these identified molecules, it can be seen that (i) these are derived 

from shikimate - and phenylpropanoid pathway products, (ii) the cores resemble benzoic acid 

derivatives (1, 2, 3, 4) or cinnamic acid derivatives (5, 6), and (iii) are either glycosylated (1, 3, 
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4, 6) or quinilated (2, 5). In addition, two different glycosylated derivatives of kaempferol, 

originating from the phenylpropanoid-flavonoid pathway, were also identified (7, 8).  

 From the above list of signatory biomarkers, it is clear that INAP treatment leads to major 

changes in phenylpropanoid composition. In tobacco cells, INAP is recognized by the enzymatic 

machinery of the phenylpropanoid pathway and feed into the cinnamic acid pathway. Novel 

enzyme-substrate combinations in vivo can lead to the biosynthesis of new, natural product-

derived compounds (Pollier et al., 2011), and INAP is bioconverted to a molecule with a 

substitution pattern like ferulic acid (Madala et al., 2012). Some of the biotransformation events 

thus far identified include chemical modifications in the core structure. These include 

hydroxylation on the meta- and para- positions as well as subsequent methoxylation and 

glycosylation to result in 4’-hexopyranosyloxy-3’-methoxyisonitrosoacetophenone (Madala et 

al., 2012).  
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Fig. 7. Distribution graphs showing relative changes of identified metabolites across different 

treatment times.  The numbers 1-8 represents molecules respectively, as shown in Fig. 6. The 
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target represents the mean and the bars represent the region of 95% confident interval of the 

mean. All the ions were found to differ significantly across different treatment times (p<0.01).       

 

 Cinnamic acid is synthesized from phenylalanine in the first step of phenylpropanoid 

biosynthesis (Dubery and Schabort, 1986, 1988). Phenylpropanoids are found throughout the 

plant kingdom, where they serve as essential protective and defensive components in the 

interaction of plants and the environment (Ververidis et al., 2007). In addition to phytoalexins 

and chemical defenses, cinnamate derivatives can also act as precursors of monolignols (Whetten 

and Sederoff, 1995), monomers that are polymerized to generate various forms of lignin and 

suberin, and are used as structural components of plant cell walls. Strenghtening of cell walls is 

part of the dynamic plant defense repertoire, and is known to restrict pathogen access to plant 

cells (Dubery and Smit, 1997; De Ascensao and Dubery, 2003). Derivatives identified in this 

study include caffeic acid (5) and sinapic acid (6) core structures.   

 Other molecules which were also found to be predominately induced by INAP are those 

belonging to the benzoic acid class.  Plant benzoic acids and the respective derivatives are 

common and widespread mediators of plant responses to biotic and abiotic stress (Wildermuth, 

2006), and can be synthesised via the shikimate/chorismate pathway or via cinnamic acid. Free 

and conjugated benzoic acid in tobacco plants and cell cultures are known to be induced upon 

elicitation of defense responses and may have a functional role as precursors of salicylic acid, 

which play an important role in activation of the plant ‘defensome’ (Chong et al., 2001).  

Identified metabolites harbor gallic acid (compound 1), syringic acid (compound 2) and vanillic 

acid (compounds 3 and 4) core structures. The latter is known to be an antioxidant (Natella et al., 

1999) and has antimicrobial activity (Maddox et al., 2010). 

 Molecules such as compound 5, which was tentatively identified as O-caffeoylquinic acid 

(chlorogenic acid), form part of a large class of phenolic compounds that are formed as esters 

between quinic acid and one residue of trans-cinnamic acid derivatives, the most common ones 

being caffeic, p-coumaric- and ferulic acid (Clifford, 2000; Clifford, 2003; Clifford et al., 2006). 

In addition to playing a role in plant development (Franklin and Dias, 2011), chlorogenic acid is 

also believed to play a role during plant stress responses such as during plant : herbivore 

interaction (Jansen et al., 2009) and during abiotic stress responses (Torras-Cleveria et al., 2012). 



114 

 

 Although the action mechanism of INAP is not known, its induction of these 

phenylpropanoid compounds warrants further investigation since phenylpropanoids are known to 

be triggered by different stressors such as pathogen attack, UV-irradiation, high light, wounding, 

nutrient deficiencies, temperature and herbicide treatment (Dixon and Paiva, 1995).  

 

 In conclusion, the use of multivariate statistical models such PCA and OPLS-DA to analyse 

UHPLC-MS data proved to be a powerful approach to study metabolic perturbations of cell 

suspensions treated with chemical inducers. The accumulation of all the metabolites shown in 

Fig. 6 is evidence that INAP induces metabolic changes in tobacco cell suspensions and these are 

known to have diverse functions in plants. Although the mode of action of INAP cannot be 

deduced from this data, this compound can be thought of as a chemical inducer of defence 

responses which may be recognised by enzymes involved in secondary plant metabolism and 

subsequently biotransformed to a stable molecule which resembles those of the phenylpropanoid 

pathway (Madala et al., 2012). The accumulation of these phenylpropanoid-derived compounds 

in general warrants further investigation. In addition, the current findings suggest that INAP can 

be used as a “priming” agent for defense responses in plants, thus enhancing natural defenses and 

contributing to protection of plants against pathogen attack. 
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respectively, see CD attached. 
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Chapter 6: Metabolic perturbations induced 
by isonitrosoacetophenone in Arabidopsis 

thaliana plants results in an enhanced 

defensive environment. 
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6.1. Abstract  

During the life-cycle, plants are constantly exposed to numerous biotic or abiotic stress factors. 

Pathogens and pathogen-derived molecules are the most studied inducers of plant defense 

responses due to the devastating economical consequences. However, synthetic and naturally 

occurring molecules have also been used to induce various types of resistance in plants against 

pathogens. Such molecules include those derived from pathogens but recently, plant-derived 

molecules have also been included. In the current study, a plant-derived oxime molecule, 2-

isonitrosoacetophenone (INAP), was used to trigger metabolic changes as monitored in the 

metabolome of treated plants. UHPLC-MS in conjunction with principal component analysis 

(PCA) and orthogonal projection to latent structures discriminant analysis (OPLS-DA) was 

applied to investigate the metabolic changes in Arabidopsis thaliana plants treated with INAP. 

These chemometric methods managed to reveal metabolites found to be significantly present as a 

response to the treatment. These include bio-transformation events (phenylacetaldoxime-

glucoside and mandelonitrile-glucoside) as well as those of which the levels are affected by the 

treatment (benzoic acid, benzoylglucoside and scopoletin). Using in planta bacterial growth 

evaluations, INAP treatment was furthermore found to induce an anti-microbial environment in 

vivo.  

 

Keywords: Isonitrosoacetophenone, metabolomics, metabolites, PUTMEDID_LC-MS workflow, 

PCA, OPLS-DA, Arabidopsis thaliana, induced resistance, priming. 

 

 



122 

 

  6.2. Introduction 

Unlike mammals, plants do not possess adaptive immunity and solely rely on innate immunity 

to fight against the wide spectrum of stress factors that are constantly encountered. The term 

induced resistance (IR) is commonly used to describe this type of plant innate immunity and 

can be defined as a physiological state of enhanced defensive capacity, elicited by specific 

stimuli, and is potentiated against subsequent biotic challenges (van Loon et al., 1998). Diverse 

forms of IR exist and are mainly differentiated on the basis of implementation and outcomes 

(Pieterse et al., 2009).  

 Systemic acquired resistance (SAR), which was previously known as physiological 

acquired immunity, is the common form of IR. By definition SAR is a physiological response in 

which plants exhibit a long-lasting resistance due to infection, and results in a subsequent 

stronger response towards successive infection as well as reduced disease symptoms (Ryals et 

al., 1996). Another similar type of IR exists and is commonly referred to as induced systemic 

resistance (ISR). Although the term ‘induced’ is absent in SAR and biased towards ISR, it is 

worth noting that both are manifested upon induction of plant defense. These two forms of 

defense are quite similar, but can be differentiated physiologically rather than phenotypically 

since both are activated differently and independently. SAR is triggered by biotrophic 

organisms and is associated with the accumulation of salicylic acid (SA) (Ryals et al., 1994; 

Zimmerli et al., 2000, 2001). In contrast, beneficial microorganisms known as plant growth-

promoting rhizobacteria (PGPR) are known to induce ISR (Ramamoorthy et al., 2001). In the 

latter case, the phyto-hormones jasmonic acid and ethylene (JA / ET), generated during attack 

by necroptrohic pathogens, are believed to play a central role (Thomma et al., 1998; Dubery et 

al., 2000; Glazebrook, 2005). A third form of IR, known as priming, has also been proposed 

but, unlike the former two, this type is not fully characterized. Priming implies to prepare or to 

make ready, and in the context of plant defense responses, this is a physiological process by 

which a plant is predisposed to respond more rapidly and strongly to future biotic or abiotic 

stresses (Conrath et al., 2006; Goellner and Conrath, 2008). The condition of readiness 

achieved by priming has been termed the ‘primed state’ (Conrath et al., 2006) but, unlike SAR 

and ISR, does not result in full implementation of plant defense responses and, as such, does not 

impair the host plants’ energy pool. 
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 In most cases, IR is commonly thought to be exclusively triggered by pathogens, 

however, it should kept in mind that most studies aiming to understand IR have been conducted 

using live pathogens. It is only recently that several synthetic and naturally occurring molecules 

have been used to induce different forms of IR, for example chemicals such as isonicotinic acid 

(INA) (Gorlach et al., 1996), β-aminobutyric acid (BABA) (Ton et al., 2005), sucrose (Gomez-

Ariza et al., 2007), riboflavin (Zhang et al., 2009), saccharin (Walters et al., 2009), hexanoic 

acid (Vicedo et al., 2009), and azealic acid (Jung et al., 2009). The biological mechanisms of 

action of these chemicals are not fully understood and more studies need to be conducted in an 

attempt to answer this question. An appropriate example is benzothiadiazole [benzo-(1,2,3)-

thiadiazole-7-carbothioc acid S-methyl ester] (BTH), a functional analogue of SA and key 

player in SAR (Gorlach et al., 1996). It is one of the most researched molecules in the context 

of plant defense studies based on its ability to induce a more effective plant resistance response. 

This molecule has also been shown to prime the plant defense machinery against different 

pathogens (Friedrich et al., 1996; Gorlach et al., 1996).  

 The implementation of IR is not readily notable by mere visual inspection of infected 

plants and, as such, scientists aim to understand how this complicated response is initiated. 

Several biological approaches have been utilized to achieve the above and all differ with the 

mode of analysis and detection. IR can, for instance, be investigated using transcriptomics, and 

marker genes encoding proteins such as NPR1 (non-expressor of PR gene 1) (Conrath et al., 

2002), mitogen activated protein kinase (MAPK)-3 and -6 (Beckers et al., 2009), flavin-

dependant monooxygenase (FMO1) (Mishina and Zeier, 2007), pathogenesis-related (PR) 

proteins (Lawton et al., 1996; Zhang et al., 2009) and the lipid transfer proteins (LTPs) 

(Maldonado et al., 2002; Jung et al., 2009) have been suggested. It is also interesting to note that 

several promoters for genes encoding proteins functioning towards plant defense responses, such 

as that of PR-1, are known to respond to several chemical activators of defense (especially BTH) 

(Gatz and Lenk, 1998; Padidam, 2003).  

 Using bacterial lipopolysaccharide (LPS) as an inducer of SAR (Coventry and Dubery, 

2001) we also recently showed that both gene expression studies (Sanabria and Dubery, 2006; 

Madala et al., 2011, 2012) and proteomics (Piater et al., 2004; Gerber et al., 2006, 2008) 

contribute to a comprehensive understanding of activation of plant defense responses. Recently, 

it was shown that metabolites can also be used in this regard (Beets et al., 2012, Tugizimana et 
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al., 2012). By virtue of being the end product of most cellular metabolism, metabolites act as 

regulatory components of biological information flow and hence the accumulation and/or 

changes allow a complete snapshot of the physiological status of the cell (Fernie et al., 2004; 

Ryan and Robards, 2006; Seger and Sturm, 2007), referred to as metabolomics (Nicholson et al., 

1998; Oliver et al., 1998).  

 In the current study, isonitrosoacetophenone (INAP, or 2-keto-2-phenyl-acetaldoxime), a 

structural analogue of an oxidative stress metabolite with anti-oxidant and anti-fungal activity, 4-

(3-methyl-2-butenoxy)-isonitrosoacetophenone (Dubery et al. 1999), was used to trigger 

metabolic changes in Arabidopsis thaliana plants to further our existing knowledge on oxime 

metabolism in plants. Oximes are rare functional groups in natural products but they occur in a 

variety of phyla, e.g., sponges, bacteria, fungi, and plants (Almeida et al., 2011). In plants, 

oximes participate in different biosynthetic pathways and have been shown to act as 

intermediates of a select few metabolic pathways subject to controls that result in variation in 

both the type and amount of end product formed (Mahadevan, 1973). The most notable 

involvement of oximes in plants is during the biosynthesis of stress-related compounds known as 

glucosinolates and cyanogenic glycoside which function against pest (herbivore) attack (Moller, 

2010).  

 Untargeted UHPLC-MS-based metabolic analysis in combination with PCA and OPLS-

DA was used to investigate the metabolic-inducing (or IR) ability of INAP and to explain the 

existence of oximes in non-cyanogenic plants. Bacterial growth in INAP pre-treated plants was 

further used to understand the IR-inducing ability of this oxime. 

6.3. Material and methods 

6.3.1. Plant treatment and metabolite extraction 

 

Thirty (30) day old Arabidopsis thaliana (Columbia) plants were treated by means of foliar 

spraying with a solution of INAP (1 mM) in 10 mM MgCl2, while control plants were only 

sprayed with 10 mM MgCl2. Plants were allowed to incubate for a period of 18 h at 25ºC prior to 

metabolite extraction. Following the treatment period, metabolites were extracted from leaves (2 

g) with 100% methanol (20 mL) using an ultraturax rotating blade homogenizer. To aid 

maximum extraction, the homogenates were further sonicated for 20 min and heated at 60ºC for 
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10 min. The homogenates were then centrifuged at 10 000 x g for 10 min, and the supernatants 

transferred to a round bottom flask prior to reducing the volume to approximately 2 mL on a 

rotary evaporator. The resulting volume was further dried to completeness using a speed vacuum 

centrifuge (R.C 10.09; Jouan, France) operating with constant heating at 50ºC. The precipitates 

were re-dissolved in 400 µL 50% (v/v) methanol in water and filtered through a 0.22 µm filter 

using a 1 mL sterile syringe. Unless stated elsewhere, all reagents and solvents were of UHPLC 

grade. 

6.3.2. UHPLC-HD-ESI-MS analysis 

 

Five (5) µL methanol extract was analyzed on the Waters Acquity UHPLC-high definition MS 

instrument equipped with the Acquity CSH C18 column (150 mm × 2.1 mm with particle size of 

1.7 µm) (Waters Corporation, Milford, USA). The composition of mobile phase A consisted of 

0.1% formic acid in deionized water and mobile phase B consisted of 0.1% formic acid in 

methanol. The length of chromatographic separation was 20 min with the gradient conditions: 

5% B over 0.1-1.0 min, 5-95% B over 1.0-16.0 min, held constant at 95% B over 16.0-17.0 min, 

95-5% B over 17.0-18.0 min and final wash at 5% B over 18-20 min at constant flow rate of 0.4 

mL/min. Chromatographic separation was monitored using both a photodiode array detector 

(PDA) (100-500 nm) and a mass spectrometer (MS) detector operating in positive and negative 

ionization mode. The MS conditions were as follows: capillary voltage of 2.5 kV, sample cone 

voltage of 17 V, multichannel plate detector voltage of 1750 V, source temperature of 120°C, 

desolvation temperature of 400°C, cone gas flow of 50 L/h and desolvation gas flow of 450 L/h. 

The mass spectrometric full scan data were acquired from 100-1000 Da with a scan time of 0.1 

sec, interscan delay of 0.02 sec. Data was centroided and mass spectra corrected in real time by 

an external reference standard consisting of leucine-enkephalin (5 pg/mL) using a lockmass 

sprayer interface and a lockmass flow rate of 0.2 mL/min.  
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6.3.3. Data analysis 

For multivariate data analyses, both negative and positive ionization raw data files were 

visualized by MassLynx XSTM software version 4.1 (Waters Corporation, Milford, USA) and 

further analyzed by MarkerLynxTM software. The analysis parameters for MarkerLynxTM were 

set to analyse between 3-17 min, mass range 100-1000 Da, mass tolerance 0.01 Da, retention 

time (Rt) window 0.2 min, mass window of 0.02 Da and isotopic peaks were included for the 

analysis. The signal believed to be residual INAP was also removed for the subsequent analysis. 

The dataset obtained from MarkerLynxTM processing was exported to the SIMCA-P software 

version 12.0 (Umetrics, Umea, Sweden) programme for PCA analysis. Unless stated otherwise, 

PCA and OPLS-DA models were centered and then Pareto scaled using SIMCA-P software.  

Sample classification based on the metabolite content was achieved by PCA and OPLS-DA 

score plots, and metabolites of which the levels were found to be affected by INAP treatment 

were highlighted using the PCA loadings plot and OPLS-DA based S-plot. From the S-plot, only 

signatory biomarkers (metabolites) with the correlation coefficient [P(corr)] of ≥ 0.8 and 

covariance coefficient (p1) ≥ 0.05, were selected and the respective m/z values utilized to 

calculate the elemental composition for metabolite identification.  

 

Metabolite identification has proven to be the most difficult aspect of the metabolomics 

workflow in the past (Dunn et al., 2012a) and, as such, for the current study a more 

compressive/advanced route was preferred. Here, Markerlynx XSTM results were modified to a 

version compatible/similar to that required for the PUTMEDID_LC-MS workflow (Brown et al., 

2011). These workflows operate on the Taverna workbench (http://www.taverna.org.uk) and are 

comprised of three main functions which include (a) correlation analysis, (b) metabolic feature 

annotation, and (c) metabolite annotation. The basic functioning of this workflow lies in its 

ability to allow for peaks (accurate m/z) which share similar features, such as Rt, to be grouped 

together using basic correlation coefficients such as Pearson or Spearman algorithms. Further 

grouping of peaks takes place and once the peaks which belongs to a specific metabolite exist as 

“features” (isotope, adduct, dimer, others), the next step then involves calculation of the 

elemental composition/molecular formula of each accurate m/z.  Lastly, calculated molecular 

formulae are then used to tentatively identify the metabolites using freely available online 
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databases such as DNP, Chemspider, AraCyC, PlantCYC, KEGG, LipidMAPS, KNApSAcK and 

METLIN. This can be done automatically if the database is downloadable, or manually using the 

search engine window. It is worth stating that such workflows are only applicable for data 

generated using an instrument which is capable of measuring high accurate mass (< 5 ppm) such 

as the Q-TOF-MS, which was used during the current study. 

6.3.4. In planta growth evaluation 

 

Arabidopsis plants (3 per condition) were sprayed with INAP (1 mM) or 10 mM MgCl2 (control) 

on two consecutive days and on the third day, plants were inoculated with Pseudomonas 

syringae pv. maculicola (OD600 = 0.01) in 10 mM MgCl2 by means of foliar spraying (control 

plants were again only sprayed with 10 mM MgCl2).  Three days post-inoculation (dpi), leaves 

were harvested, weighed, sterilized, rinsed and homogenized in 10 mM MgCl2, and plant debris 

removed by centrifugation at 500 x g for 10 min. The resulting supernatant was diluted to the 

desired concentration and 100 µL spread on King’s B medium plates and kept at 28ºC for two 

days. Following growth, colonies were manually counted and quantified as follows: cfu/g = 

[colony number x total volume (µL) x dilution factor] / [coating volume (µL) x tissue weight 

(g)]. The resulting data was used to construct the bar graph and also for statistical significant test 

(Student t-test) using Microsoft Excel. 

6.4. Results and discussion 

INAP (or 2-keto-2-phenyl-acetaldoxime) is an oxime molecule with structural similarities to 

citaldoxime (4-(3-methyl-2-butenoxy)-isonitrosoacetophenone), a novel metabolite found to 

accumulate in citrus peel as a result of oxidative stress due to gamma radiation treatment 

(Dubery et al., 1999). In the current study, the effect of INAP on the metabolome of A. thaliana 

was investigated.  

 Metabolomics is the latest and fastest growing amongst the ‘–omics’ field of studies and, 

by definition, entails the comprehensive analysis of metabolites in a biological sample at any 

given physiological status (Fiehn, 2002; Sumner et al., 2003). By virtue of being the end product 

of most cellular metabolism, metabolites act as regulatory components thereof and hence the 

accumulation allows a complete snapshot of the physiological status of the cell (Fernie et al., 
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2004; Ryan and Robards, 2006; Seger and Sturm, 2007). One notable characteristic of plants is 

that they are capable of producing a vast number of natural compounds with different 

functionalities. These are sometimes referred to as secondary metabolites, and play a role in the 

basic developmental cycles of plants and also during interactions with the environment (biotic or 

abiotic) (Kutchan, 2001).  

 

Figure 1: Representative UHPLC-MS chromatograms showing qualitative separation of all 

detected biomarkers in methanolic extracts from A. thaliana leaves treated for 18 h with INAP 

under negative (A) and positive (B) ionization conditions. 

 In order to establish the metabolic fate of INAP in A. thaliana plants, metabolic profiling 

of treated plants was performed and compared to untreated counterparts using UHPLC-MS as 

the preferred analytical platform, in combination of PCA and OPLS-DA analysis of the resulting 

data. Both ESI negative and positive ionization data clearly show that several metabolites were 

detected (Fig. 1A, B). PCA and OPLS-DA models allow for comprehensive data mining and 

subsequent identification of signatory metabolites (biomarkers) of which the levels are affected 

by the treatment under investigation. From the current study, INAP was shown to induce 

metabolic perturbations in A. thaliana plants as is evident when UHPLC-MS chromatograms of 
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treated and untreated samples are compared. PCA score plots of data obtained from both 

negative and positive ionization managed to separate control and treated samples into distinct 

groups (Fig. 2 A, B).   

 

Figure 2: PCA score plots, based on the UHPLC-MS chromatograms from negative (A) and 

positive (B) ionization data, showing clustering of samples from Arabidopsis plants treated with 

INAP for 18 h and the corresponding loadings plot (C and D), showing biomarkers responsible 

for the clustering observed in A and B respectively. The ellipse represents Hotelling’s T2 with 

95% confidence. 

PCA is an unsupervised model and can be mathematically defined as an orthogonal linear 

transformation of possibly correlated variables into a smaller number of uncorrelated variables 

called principal components, where the greatest variance within the data by any projection is 

explained on the first co-ordinate (called the first principal component, PC) and the least 

variance is explained/projected by subsequent principal components (Jolliffe, 2002). This 

reduction allows samples to be easily classified based on the metabolite content. Here, samples 

from different biological backgrounds are clearly separated into distinct clusters, and samples 

that group together can be referred to as a specific ‘metabolic phenotype’ (Fiehn et al., 2000). It 
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is thus clear that INAP induced metabolite perturbations in treated plants since such metabolites 

are clearly projected as outliers (away from the center) on the PCA loadings plots (Fig. 2 C, D) 

in the direction in which the samples are scattered on the PCA score plot. Thus, when the score 

and loadings plot are superimposed, only metabolites (on the loadings plot) which lie to the 

direction of either sample grouping on the score plot have influence on that particular group. 

Although PCA has been used intensively in the field of metabolomics, it has disadvantages of its 

own. It is important to note that separation by PCA is achieved if maximum variation exists (Dao 

et al., 2009), thus this type of analysis only evaluates global patterns (maximum variation) within 

the data and, as such, it is not a good tool for revealing local phenomena. Apart from this reason, 

there are more negative sentiments associated with PCA (Van der Greef and Smilde, 2005), and 

metabolomic investigations usually require alternative methods in conjunction with PCA in order 

to strengthen the conclusions. In the current study, OPLS-DA was chosen as an alternative 

model.  Although OPLS-DA is a supervised model, the separation achieved is quite similar to 

that seen with PCA, however, information between and within classes is more comprehensively 

explained (Wiklund et al., 2008). From the current study, control and treated samples were found 

to form distinct clusters on the OPLS-DA score plot (Fig. 3 A, B) and such separation is more 

pronounced on OPLS-DA as compared to PCA.  Using the S-loadings plot (Fig. 3 C, D) 

(Wiklund et al., 2008), metabolites of which the levels are significantly altered by INAP 

treatment can be easily identified. Such metabolites are projected on the extreme ends of the ‘S’-

like figure and, similarly to the loadings plot, biomarkers which are projected towards the 

direction of particular cluster on the score plot influence that particular group/cluster.  
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Figure 3: OPLS-DA score plots, based on the UHPLC-MS chromatograms from negative (A) 

and positive (B) ionization data, showing clustering of samples from Arabidopsis plants treated 

with INAP for 18 h and the corresponding loadings S-plot (C and D), showing biomarkers 

responsible for the clustering observed in A and B respectively. The ellipse represents 

Hotelling’s T2 with 95% confidence. 

 The last step during metabolomic studies is the identification of all detected metabolites 

and, most importantly, those of which the levels are affected by the treatment in question. 

Contrary to GC-MS for which extensive metabolite libraries exist, there are very limited libraries 

for LC-MS (Von Roepenack-Lehaye et al., 2004), and thus metabolite identification in this 

regard presents a challenge. It is only with the recent introduction of Q-TOF instruments that 

LC-MS-based metabolomics data is becoming useful for metabolite identification. These 

instruments combine the accurate mass analysis ability of a TOF analyzer with that of ESI 

ionization mode which results in high sensitivity, high mass resolution and high mass accuracy 

(< 5 ppm) (Chernusheshevich et al., 2001).  To date, Q-TOF instruments have been applied 



132 

 

extensively in the field of metabolite analysis (Plumb et al., 2005; Lu et al., 2008; Kim et al., 

2011). Even though the application of Q-TOF is becoming the norm in metabolite profiling and 

related studies, there still exist challenges such as metabolite identification (Dunn et al., 2012a). 

Apart from the main aim of the current study, a novel way for metabolite identification was also 

investigated and proved promising with a high degree of confidence. This approach is based on 

the PUTMEDID_LC-MS workflow (Brown et al., 2011), and several reports have shown the 

ability of this workflow in the identification of metabolites (Dunn et al., 2012b). Most, however, 

have been performed on animal models. Traditionally, metabolite identification is performed by 

following a fundamental approach which firstly involves the calculation of elemental 

composition/molecular formula (MF) of each respective m/z, followed by manual searching of an 

identical MF using online databases, hence identification of the corresponding metabolite. In 

order to strengthen this identification, authentic standards if available, are then analyzed on the 

same analytical platform using similar conditions and by comparing either two or more 

chromatographic and molecular properties such as m/z, Rt, maximum absorbance range and 

fragmentation patterns. This renders or allows conclusive or definitive identification (Brown et 

al., 2011). However, due to unavailability of authentic standards for most natural compounds, an 

alternative identification strategy is performed. This putative/tentative approach is solely based 

on chromatographic properties without comparing to standards, but remains a second choice 

(type 2) to definitive identification as stipulated by the Metabolomics Standards Initiative 

(Sumner et al., 2007).  
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Figure 4: UHPLC-MS/MS chromatogram showing the dominant product (m/z = 334.0912) 

believed to be a sodium-adduct of the bio-transformed product, phenylacetaldoxime-glucoside 

(structure 6), derived from INAP. The mass accuracy was 1.5 ppm, and the DBE (double bond 

equivalent) and iFit (isotopic fit) values were 6.5 and 0.0 respectively. 

 As previously stated, an untargeted approach was followed in the current study and 

putative metabolite identification was performed using the PUTMEDID_LC-MS workflow. To 

the best of our knowledge this is one of the few, if not the first, where this workflow was applied 

in plant-based metabolomics. As mentioned, metabolite identification by these workflows 

provides insightful information because the accurate m/z and its associated isotopologues are all 

used to calculate MF. During this process other associated features such adducts, dimers, 

multiple charged ions and fragments are grouped together with neutral ions during identification. 

Several examples showing the characteristic results and ability of this workflow to identify 

metabolites with a high degree of certainty are shown in electronic Supplementary files S1 and 

S2.  
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Table 1: List of biomarkers (metabolites) of which the levels were found to be altered (up-

regulated) due to INAP treatment. 

ID No m/z Rt Molecular 

formula 

Adduct Metabolite name Ion 

mode 

1 285.0989 7.2 C13H16O7  Benzoyl-glucoside Pos 

1 283.0871 7.2 C13H16O7  Benzoyl-glucoside Neg 

2 121.0309 10.2 C7H5O2  Benzoic acid Neg 

3 313.0931 5.78 C14H17O8  Methoxy-benzoyl glucoside Neg 

4 308.0702 10.86 C10H17NO7 HCOOH 4-Amino-4-deoxyglucuronic acid; α-D-
pyranose-form, Me glycoside, N-Ac, Me ester 

Pos 

5 237.0412 10.5 C10H8O4 HCOOH Scopoletin/5,7-dihydroxy-2-methyl-4H-
chromen-4-one 

Neg 

6 334.0912 8.08 C14H17NO7 Na Phenylacetaldoxime-glucoside* Pos 

7 340.1028 7.56  C14H17NO6 HCOOH Prulaurasin  ((2R)-(β-D-
glucopyranosyloxy)(phenyl)acetonitrile / L-
mandelonitrile- β-D-glucoside) 

Neg 

8 258.1147 11.33 C15H15NO3  2-Hydroxy-1-(2-hydroxyphenyl)-3-phenyl-1-
propanone, oxime 

Pos 

*The elemental composition from the MS/MS also matched that of dhurrin, [(S)-4-hydroxymandelnitrile-β-D-

glucopyranoside], (see Fig. 5). 

Since the main aim of the current study is to evaluate the effect of INAP on A. thaliana plants, 

much emphasis was placed on metabolites of which the levels were found to be altered due to 

treatment. Table 1 highlights the metabolites most affected by INAP treatment as predicted by 

the OPLS-DA based S-loadings plot. From this list, it is notable that most of the metabolites 

induced are associated with plant defense. For example, benzoic acid (BA) molecules (1, 2, 3) 

are known to play a central role during full implementation of plant defense responses. BA 

normally exists in its conjugated form (Chong et al., 2001). Using HPLC equipped with UV 

detection, a time dependant accumulation of free and conjugated BA in tobacco undergoing HR 

after treatment with an elicitor of defense responses were monitored, and this suggest a possible 
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role during plant defense (Chong et al., 2001). Generally, plant BAs and the respective 

derivatives are strong mediators of plant responses towards biotic and abiotic stress 

(Wildermuth, 2006). One notable involvement of BAs is through its unique conjugated form, 

SA, which has previously been implicated to form the basis of plant defense against wide 

spectrum of pathogens, and where its accumulation is required for the establishment of local and 

systemic acquired resistance responses (Dempsey et al., 1999). Free and conjugated BAs play 

significant roles during plant stress responses in general and BA derivatives are also known to 

have anti-oxidant activities (Natella et al., 1999). The accumulation in INAP-treated plants 

indicates a possible role during the reconditioning of the physiological status of the cells 

following such an induced stress environment.  

 

Figure 5: Schematic representation showing two possible hypothetical routes by which INAP 

can be bio-transformed in Arabidopsis plants. Route 1 leads to dhurrin and route 2 to 

phenylacetaldoxime-glucoside (see also supplementary Figure S1). 

 Although all of the molecules listed in Table 1 are important, the most interesting 

identification is (6) with the elemental composition (C14H17NO7). According to several online 

libraries, including the dictionary of natural products (DNP), this molecule was consistently 

identified as dhurrin, (S)-4-hydroxymandelnitrile-β-D-glucopyranoside. To the best of our 
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knowledge, dhurrin is only found in sorghum plants (Bak et al., 2000) and its accumulation in A. 

thaliana has never been reported. It was from this observation that further experiments were 

conducted to confirm the identity of this molecule with a mass ion of 334.0912. Initially, MS/MS 

experiments were designed to monitor only this molecule. However, it was noted that the 

compound is very susceptible to changes in ionization and the mass ions at m/z 312 are only 

observed under very mild conditions on positive ionization mode. When optimized for the 

ionization of the mass ion cluster around m/z 334, the mass cluster at m/z 312 disappears and thus 

the nominal mass of m/z 334.0912 was used. This resulted in only one product (Fig. 4) and the 

elemental calculation strongly supports the presence of a Na adduct where the computation 

results yielded C14H17NO7Na,  (mass accuracy of 1.5 ppm, isotopic Fit (iFit) value of 0.0 and a 

double bond equivalent (DBE) value of 6.5). However, when searching for the identity of this 

molecule, dhurrin was found to be a dominant hit. 

 Transgenic tobacco and Arabidopsis plants expressing two multifunctional sorghum 

cytochrome P450 enzymes, CYP79A1 and CYP71E1, became cyanogenic and accumulated 

metabolites derived from intermediates (p-hydroxyphenylacetaldoxime and p-

hydroxymandelonitrile) in dhurrin biosynthesis (see Supplementary Fig. S1, Bak et al., 2000). If 

the same biotransformation events are considered in this regard, then it is possible that INAP 

could be converted to dhurrin or phenylacetaldoxime glucoside, and thus the two options as 

shown in Fig. 5.  From the structural properties of the two molecules, it is not convincing that 

dhurrin can easily form via route 1, since INAP would first have be hydroxylated and further 

glycosylated on the carbonyl group, where the latter is not very common for natural products. 

For the route 2 option, INAP has to undergo glycosylation on the hydroxyl group of the oxime 

motif, and this is well supported by the findings of Bak et al. (2000).   

 Oximes are used for the synthesis of glucosinolates and cyanogenic glycosides and are 

found in plants which are capable of producing such classes of compounds. Citrus plants, 

however, do not produce these compounds and citaldoxime was thought to serve as a means of 

protection against oxidative stress induced by ionizing radiation (Dubery et al., 1999). In 

addition, Dubery and colleagues showed that citaldoxime also exhibited anti-fungal activity 

which was limited to the oxime functional group. INAP, which is a structural moiety of 

citaldoxime harboring the oxime functional group, was also shown to exhibit anti-fungal activity 

(results not shown) and can thus be described as an activity-determining factor of citaldoxime. 
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However, the question regarding the function of oxime metabolites in plants not able to 

synthesize glucosinolates or cyanogenic glycosides, remains unexplained and it was only 

recently addressed.   

 Moller (2010) compared cyanogenic and non-cyanogenic plants based on these systems’ 

respective abilities to metabolize oxime molecules. He further showed that there exists parallel 

metabolic machinery in such plants, able to metabolize oximes to different products. It was 

shown that in cyanogenic plants, oximes are metabolized to form glucosinolates and cyanogenic 

glycoside compounds which function against pest/herbivore attack. However, in non-cyanogenic 

plants, oximes are metabolized using either one of two routes. In the first case, accumulation of 

oximes results in mitochondrial dysfunction which subsequently leads to accumulation of 

reactive oxygen species (ROS) that may act as signal molecules in response to pathogen attack. 

In the second option, oximes are believed to be detoxified and further metabolized to highly 

reactive nitroso-compounds which may also give rise to the formation of diverse protein 

conjugation products that could signal an innate immune response (Moller, 2010).  It is 

conceivable that there is more to the existence of oximes in plants than what was previously 

thought.  

 

 

 

 

 



138 

 

 

Figure 6:  Identified metabolites with the aid of PCA and OPLS-DA loading S-plots from the 

UHPLC-MS data analyses of INAP treated A. thaliana leaf extracts. From the DNP databases 

markers were identified as :1. benzoyl-glucoside, 2. benzoic acid, 3a.  methoxy-benzoyl 

glucoside, 3b. 3-hydroxy, 4-methoxy benzoyl glucoside  4.  4-amino-4-deoxyglucuronic acid; α-

D-pyranose-form, Methyl glycoside, N-Acetyl, Methyl ester, 5.  scopoletin, 6. 

phenylacetaldoxime-glucoside, 7.  prulaurasin / L-mandelonitrile- β-D-glucoside, 8.  2-hydroxy-

1-(2-hydroxyphenyl)-3-phenyl-1-propanone oxime . 

 Although the view point of  Moller (2010) can be used to explain the accumulation of 

citaldoxime in citrus, it was the objective of the current study to further investigate the existence 

of oximes in non-cyanogenic plants. From the study of Bak and colleagues, where a full 

metabolic biosynthetic pathway for dhurrin was transferred to Arabidopsis and tobacco through 

genetic engineering, it was shown that the two transgenic plants accumulated cyanogenic 

glycoside and other related molecules. Amongst these metabolites, A. thaliana also accumulated 

some unusual glucosinolates and it was thus concluded that defense components of one plant can 
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be transferred to another to result in new metabolite capabilities. This is also the notion from 

which the current study stemmed. 

 

 

Figure 6: Graphical representation of growth of P. syringae pv. maculicola in A. thaliana leaves 

after foliar spraying with 1 mM INAP on two consecutive days. 

 

 INAP was also found to inhibit bacterial growth in planta. When applied to A. thaliana 

plants for two consecutive days, it was found to reduce the growth of Pseudomonas syringae pv. 

maculicola (Fig. 7). The protection afforded by INAP treatment serves as an indication that it is 

capable of inducing an IR response which subsequently induces the priming state. Combining 

these observations with the metabolite-inducing ability of INAP, it is evident that when applied 

to plants, this oxime molecule induces both an anti-oxidant and anti-microbial environment in 

vivo. 

 In conclusion, INAP was found to induce metabolites with known activities towards plant 

defence responses. The use of UHPLC–MS in conjunction with multivariate data analysis 

models proved to be successful in the analyses of IR-related metabolites in A. thaliana plants. 

Adaptation of the PUTMEDID_LC–MS workflow for the analysis of plant metabolites was 

found to ease the identification of several metabolites. Together with our previous and yet to be 

published findings, the current study presents the unprecedented role of INAP or oximes in 

plants. Although it is generally assumed that oximes function solely in the biosynthesis of 

cyanogenic glycosides and glucosinolates, looking at the induced metabolites it can, however, be 

concluded that oximes are capable of inducing an anti-oxidant environment in plants. This 
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observation could serve as a justification for the initial accumulation of an INAP–related 

(citaldoxime) molecule in citrus peel undergoing oxidative stress. INAP was furthermore shown 

to halt/decrease (approximately 50%) bacterial growth in treated plants, suggesting its possible 

role in IR-related responses in plants. Adding to our previous finding in which INAP was also 

shown to undergo biotransformation events similarly to those previously discussed by Bak et al. 

(2000), we conclude that it is possible to use the existing enzymatic machinery of certain plants 

to produce desired products by means of providing a suitable substrate such as oximes.  
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6.6. Supplementary files 

Electronic Supplementary File S1: List of metabolites identified with the aid PUTMEDID_LC-

MS workflow using negative ionization UHPLC-MS data, see CD attached. 

Electronic Supplementary File S2: List of metabolites identified with the aid PUTMEDID_LC-

MS workflow using positive ionization UHPLC-MS data, see CD attached. 

Supplementary Fig. S1: Schematic representation showing the route by which sorghum plants 

produce the cyanogenic glycoside, dhurrin. The branching points indicate possible routes which 

other non-cyanogenic plants such as Arabidopsis and tobacco can follow in the presence of the 

precursor molecule p-hydroxyphenylacetaldoxime (Bak et al., 2000). By providing a related 

oxime molecule (INAP), to both Arabidopsis and tobacco, similar results were obtained during 

the current study. 
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Chapter 7: Deciphering time-dependent 

trends in metabolomic data from elicited 

plant cells using multivariate statistical 

models 
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7.1. Abstract 

Metabolomics is a systematic study of the unique chemical fingerprints that specific cellular 

processes generate.  Metabolomic analyses result in high dimensional data files which are 

cumbersome to analyze manually, requiring tools capable of handling complex data matrices. 

Chemometrics-based models that have been successfully applied for the analyses of 

metabolomics data include principal component analysis (PCA) and linear regression models 

such as orthogonal projections to latent structures discriminant analysis (OPLS-DA). As an 

unsupervised model, PCA allows patterns within the data to be revealed by reducing the 

dimensionality thereof into small variables which are easier to explain. Here, PCA-based 

hierarchical cluster analysis (HCA) and metabolic trees as alternative methods for data 

visualisation are exploited in parallel to reveal the time-dependent changes in the metabolite 

profiles of sorghum and tobacco cells treated with the xenobiotic, isonitrosoacetophenone 

(INAP). HCA and metabolic trees were able to show that INAP induces metabolic perturbations 

in both cell lines and that cellular homeostasis is re-established over time. OPLS-DA-based 

shared and unique structure (SUS) plots were also utilized to confirm the results obtained from 

both HCA and metabolic trees. Although similar, the response in sorghum cells was found to be 

more consistent and well coordinated compared to tobacco cells. 

 

 

Keywords: Nicotiana tabacum; Sorghum bicolor; Metabolomics; Isonitrosoacetophenone; PCA; 

HCA; OPLS-DA; SUS; Metabolic trees. 
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7.2. Introduction  

Metabolomics is an unbiased technique aimed at measuring the metabolite content of a cell, 

tissue or organism under a given physiological status [1, 2]. It is the analyses of these metabolites 

which lead to a comprehensive understanding of the unique chemical fingerprints that result 

from specific cellular processes [3] and, as opposed to the analysis of genes or proteins, allows a 

thorough elucidation of the phenotypical characteristics of living systems. Metabolomics has 

recently found significant applications in many fields such as responses to environmental stresses 

[4,5], studying global effects of genetic manipulation, nutrition and health [6-9] and, most 

importantly, in plant studies [10-13]. 

 A few steps are mandatory for metabolomic studies and these include sample preparation, 

choice of analytical platform, and subsequent data analyses. In sample preparation, the choice of 

solvents and method is defined by the physico-chemical properties of the metabolites and the 

anticipated outcomes of the study. The selection of solvents and suitable pH should be well 

optimized before any experimental procedure is carried out [13]. The choice of analytical 

technology is also as important as sample preparation. Here, techniques such as gas- and liquid 

chromatography coupled to mass spectrometry (GC-MS and LC-MS) [14, 15] and nuclear 

magnetic resonance (NMR) spectroscopy [13] are commonly used. More comprehensive details 

on these and other techniques have previously been reported in metabolomics [13, 16, 17]. In the 

current study, UHPLC-MS was used for metabolite data acquisition based on its technological 

advances and ability to analyze a broad spectrum of metabolites of different polarities [18, 19]. 

Using similar analytical conditions, UHPLC-based methods detect more metabolites than 

traditional HPLC-based methods and thus generates more data output [20].  Depending on the 

analytical platform and the method of data analysis, different data outputs can be obtained and if 
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care is not taken, these may wrongly be interpreted as biological variation whilst being due to 

experimental variation.  

 Data analysis is an essential step during metabolomic studies, since meaningful information 

needs to be extracted from structurally complex datasets [21]. It is therefore important that the 

design of metabolomic experiments is well standardized so that valid and reproducible results 

can be converted into biological knowledge.  

 Biotransformation is the process in which one chemical is transformed into another by 

means of a biocatalyst or biological system, and includes metabolism of xenobiotic compounds 

[22]. Novel enzyme-substrate combinations in vivo can lead to the biosynthesis of new, natural 

product-derived compounds [23]. We have previously reported that isonitrosoacetophenone 

(INAP), a structural analogue of citaldoxime, a phytoalexin and anti-oxidant stress metabolite 

[24,25], is metabolized and bio-converted in tobacco cells [26]. In the current study, 

comprehensive data analyses with the aid of multivariate data analysis (MDA) models such as 

Principal Component Analysis (PCA), Hierarchical Cluster Analysis (HCA), and the Shared and 

Unique Structures (SUS) plot generated by Orthogonal Projections to Latent Structures 

Discriminant Analysis (OPLS-DA), were used to investigate the effect of INAP in tobacco as 

well as sorghum cell suspensions. HCA, SUS plot and metabolic trees [27] were used together 

for the first time to decipher the time-dependent responses in the two cell lines which allowed 

comprehensive differentiations to be drawn with regard to the metabolism of oximes.  
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7.3. Materials and methods 

7.3.1. Cell culture, treatment and metabolite extraction 

 

 Nicotiana tabacum cv. Samsun and Sorghum bicolor L. Moench (sweet white) cell 

suspensions were cultured as previously described [44, 45]. Three days after sub-culturing, 

aliquots (20 mL suspensions) were treated with 250 mM isonitrosoacetophenone (INAP), 

dissolved in acetone, to a final concentration of 1 mM with continuous rotation at 80 rpm and 

25ºC for 6, 12, 18, and 24 h time intervals. The final concentration of acetone was 0.4% and 

control cells received no treatment. For the experimental design, a minimum of ten replicates for 

each biological group was utilized. After elicitation, cells were collected by means of vacuum 

filtration and metabolites extracted from the wet cells (2 g) by homogenization in 1 mL 100% 

methanol. To aid maximum extraction, the homogenates were allowed to agitate on a rotary 

shaker for at least 1 h. Cell debris was removed by means of centrifugation at 5000 x g for 10 

min. The resulting supernatant was transferred to a new tube and the volume reduced to 1 mL 

with the aid of a Buchi rotary evaporator operating at 45ºC, followed by drying to completeness 

in a 2 mL microcentrifuge tube using a speed vacuum centrifuge operating at 45ºC. The resulting 

pellet was dissolved in 400 µL 50% methanol and filtered through a 0.22 µm filter into a new 

UHPLC glass vial fitted with a 0.1 mL insert. 

7.3.2. Chromatographic- and Mass spectrometric conditions 

 

 Chromatographic conditions were adapted from our previous work [26]. Briefly, methanol 

extracts (5 µl) were analyzed on a UHPLC connected synapt high definition MS instrument 

(Waters, Corporation, USA) equipped with an Acquity BEH C18 column (100 mm × 2.1 mm 

with particle size of 1.7 µm) (Waters Corporation, USA). Two technical replicates for 5 
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independent samples were performed resulting in 10 injections for each biological group 

(control, 6, 12, 18, and 24 h). The composition of mobile phase A consisted of 0.1% formic acid 

in deionized water and mobile phase B consisted of 0.1% formic acid in methanol.  The column 

was eluted with a linear gradient at a constant flow rate of 400 µl min-1 of 5% B over 0.0-2.0 

min, 5-95% B over 2.0-22.0 min, held constant at 95% B over 22.0-25.0 min, 95-5% B over 

25.0-27.0 min and a final wash at 5% B over 27-30 min. For MS acquisition, data was collected 

on a centroid mode and negative polarity electro-spray ionization  (ESI) with a collision energy 

of 3 eV. Instrumental settings were as follows; capillary voltage: 2.5 kV, sample cone voltage: 

17 V, extraction cone voltage: 5.0 V, MCP detector voltage: 1600 V, source temperature: 120°C, 

desolvation temperature: 350°C, cone gas flow: 50 (L h-1), desolvation gas flow: 450 (L h-1),  m/z 

range: 100-1000, scan time: 0.1 sec, interscan delay: 0.02 sec, lockmass: leucine enkephalin 

(556.3 g/mol), lockmass flow rate: 0.4 mL min-1, mass accuracy window: 0.5 Da.  

7.3.3. Data analyses 

 

 Primary data was further analyzed by MarkerlynxXSTM software (Waters Corporation, 

Milford, USA) with parameters as follows: retention time (Rt) of 1-27 min, mass range of 100-

1000 Da, mass tolerance of 0.02 Da, Rt window of 0.2 min and, furthermore, isotopic peaks were 

excluded from the analysis. Data was normalized to total intensity (area) using Markerlynx. The 

datasets thus obtained were exported to the SIMCA-P software version 12.0 (Umetrics, Umea, 

Sweden) in order to perform PCA and OPLS-DA. Before performing these multivariate data 

analyses (MDA), data was mean centered and Pareto-scaled for both models. 

 In order to evaluate the effect of time on the response, HCA was automatically calculated 

and the resulting dendrogram evaluated with the aid of the SIMCA-P software. For HCA 

analysis, the Ward distance algorithm was used to calculate the distance between the different 
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generated clusters. Using the PCAtoTree programme [27], the metabolomic tree diagrams were 

created and the corresponding bootstrap values calculated to interpret the PCA clustering pattern. 

Unlike in the case of HCA, where the Ward method was used, these tree diagrams were 

generated using the Euclidean distances method between the clusters from the PCA scores plots 

(Fig. 1). Here, the standard bootstrapping techniques were used to generate a set of 100 distance 

matrices by randomly re-sampling the cluster centers and Euclidean distances. The matrices were 

then used in the PHYLIP phylogenetic software package (http://www.phylip.com) [46] to 

generate 100 tree diagrams and a consensus tree diagram. The numbers on the trees indicates the 

bootstrap values which describes the number of times each node was present in the set of 100 

tree diagrams. Bootstrap numbers below 50% indicates insignificant separation between the 

clusters. 

7.4. Results and discussion 

 

 In the current study, two metabolically distinct cell lines from tobacco (Nicotiana tabacum) 

and sorghum (Sorghum bicolor) plants were treated, for different time intervals, with an oxime 

molecule (INAP) which represents a precursor/activity determining motif of citaldoxime, a 

molecule with known anti-oxidant and antifungal activities [25]. Metabolites extracted from 

these cells in response to the treatment were analyzed using UHPLC-MS and subsequent data 

analyses were performed. As previously mentioned, metabolomic studies result in highly 

complex data which are spread in high-dimensional planes, and the dimensionality reduction is 

an important first step for pre-processing such data [28]. Traditionally, reduction techniques such 

as PCA, and multivariate data models like PLS-DA and OPLS-DA, are used to achieve this [28]. 

In the current study, PCA, HCA, metabolic trees and OPLS-DA models were exploited for data 
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visualization and useful information, such as the underlying biological responses of tobacco and 

sorghum cell suspensions towards INAP, was deduced. 

7.4.1. Principal Component Analysis 

 

By mathematical definition, PCA is an orthogonal linear transformation of possibly correlated 

variables into a smaller number of uncorrelated variables called principal components (PCs), 

where the greatest variance within the data by any projection is explained on the first co-ordinate 

(PC1) and the least variance is explained/projected by subsequent PCs [29]. PCA and other 

reduction models thus convert the data obtained by high-throughput instruments into a simple 

visual representation known as score plots which show the data as the clustering of biological 

samples into either similar or different groupings. Here, sample data from different biological 

backgrounds are clearly separated into distinct clusters and samples that cluster together can be 

referred as a specific “metabolic phenotype” [30].  
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Figure 1. PCA score plots showing the different clusters of samples from tobacco (A) and 

sorghum (B). Mid-polar metabolites were extracted from INAP-treated tobacco and sorghum cell 

suspensions at different time intervals as represented by different colors and symbols on the plot 

(key for different time intervals is indicated). Model validation gave R2
X = 0.6 and Q2

(cum) = 0.50 

for the tobacco PCA model (4 PCs) and R2
X = 0.64 and Q2

(cum) = 0.48 for the sorghum PCA 

model (7 PCs). 
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 From the PCA score plots (Fig. 1), it can be seen that INAP was capable of inducing 

metabolic perturbations in both cell lines. The samples originating from the treated and non-

treated cells clustered in different areas in the plots. As expected, the plot shows that variation 

between the different biological/treatment groups is more pronounced on the PC1 which 

constitutes the highest variation in the models. The corresponding PC1 (describing the variation 

between groups) from the two plots was found to be 25.7% and 31.3% respectively, and PC2 

(which describes the variation within the groups) was 10.6% and 9.5% for the tobacco and 

sorghum models respectively. However, the difference amongst all the treatment time intervals 

was found to be not as distinct, especially when the later time points (12, 18, and 24 h) are 

considered. From these plots (Fig. 1A and B) it is clear that although the 6 h time point exists as 

a distinctive cluster, it possesses less variation from the control as compared to the other time 

points and could be due to the fact that the metabolic responses are still minimal at such an early 

time interval. These trends cannot be deduced when later time points are also considered, thus 

the response appears to progress non-linearly from control to 6 h to 12 h, and so on.  In cases 

such as the one where variation amongst the later time points is less prominent (due to the fact 

that the separation of data clusters is not as clearly defined), measures need to be taken to 

overcome this. It should be noted that even though the presentation of data in PC scores space is 

the result of a statistical analysis, this only shows a qualitative separation and the degree of 

separation between data clusters is not quantitatively addressed by the score plots [27]. Thus, the 

basic statistical question regarding significant differences between the clusters is not addressed 

by PCA score plots even though the visualization represents a qualitative clustering due to 

metabolic differences. As such, subsequent plots, including the loadings plot, are used to 

evaluate the causative factors which result in different clustering on score plots [31]. From here, 



161 

 

metabolites that are either up- or down-regulated can be selected to further evaluate the degree of 

significance across the clusters which they influence. The loading plots (not shown) 

corresponding to these PCA score plots revealed metabolites which can be assumed to be 

influential of the clustering seen on the score plots and that were unique in the two plants. 

 From the results it is evident that PCA score plots suffice the understanding of ‘superficial’ 

clustering/separation of samples due to the respective biological/biochemical background. 

However, PCA is not capable of showing the underlying degree of similarities between the 

different clusters and hence the trend of responses within the data.  

7.4.2. Hierarchical Cluster Analysis 

 

 HCA was used as a complimentary model for data visualization.  HCA is another data 

reduction method which is mainly used for finding the underlying structure of objects through a 

repetitive process that associates (agglomerative methods) or dissociates (divisive methods) 

object by object until all are equally and completely processed [32]. PCA results in score plots 

for data visualization, while HCA usually produces a dendrogram, or tree-like diagram, as final 

output [32-34]. In the current study, a fully automated HCA was performed on the data, similarly 

to PCA generation as described in 2.1. The resulting dendrogram was calculated using the Ward 

method (Ward, 1963). Here, the Ward linkage method states that the distance between two 

clusters is described by how much the sum of the squares will increase when the two are merged 

(Sato et al., 2008). The distance between the clusters is given by the following formula: 

 

where d is the distance between cluster a and b, x is the center of each cluster and n is the 

number of points in each respective cluster [35, 36]. 
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Figure 2. HCA dendrograms showing the relationship between samples originating from INAP 

treated tobacco (A) and sorghum (B) cells at different time intervals. The plot shows the relation 

between samples as described by the length/distance of the node linking two clusters. The 

number of clusters can be deduced by counting the regions in which the red dotted line crosses 

the node of each respective cluster. The coloring of individual samples in the dendrogram 

correlate with colored symbols in the PCA scores plot. 
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 The HCA dendrograms (Fig. 2) show that, although similar results to those of PCA were 

obtained, more comprehensive findings can be deduced. Taking the tobacco HCA results (Fig. 

2A) into account, a definitive clustering among the control samples can be seen. When the 

different treatment times are however considered, no definitive clustering exists and samples 

from the same biological group (treatment times) are spread across different clusters. From these 

results, if a line is placed horizontally across the clusters as shown by the red dotted line on the 

plot, a maximum of four distinctive clusters can be identified. The first cluster exclusively 

contains all the control samples. The second cluster is dominated by the 24 h samples and also 

contains some samples from the 18 h treated time point. The third cluster is dominated by the 12 

h treatment as well as some traces of samples from 6 h, and lastly, equal amounts of samples 

from 18 h and 6 h are seen in the fourth cluster which also contains a few samples from 12 h 

time interval. These results are clearly different from that seen on the PCA score plots.  

 Interestingly, the results obtained with sorghum samples show a very well structured 

response due to INAP treatment unlike tobacco, where maximum variation only exists between 

the control group and treatment samples as a whole. In sorghum, a well consolidated response 

exists which can be explained more comprehensively, and underlying this response is a time 

factor which is more pronounced in the HCA dendrogram. Similarly to the tobacco case, if a line 

is considered in approximately the same position as in the tobacco HCA, it can be seen that five 

clusters exist. These depict the fundamental biological/treatment groups (control, 6 h, 12 h, 18 h, 

and 24 h) which were originally used in the study. From the results, the first cluster exclusively 

contains samples from the control group, the second cluster contains samples from 6 h, the third 

contains samples from 24 h, the fourth cluster contains 12 h and the fifth group contains samples 
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exclusively from the 18 h treated time point. These results are indicative of more stringent 

metabolism of INAP by the sorghum cells in comparison to the tobacco cells. 

 Sorghum is a cyanogenic plant which is able to metabolize oxime containing precursors 

[37]. As previously mentioned, INAP is an oxime molecule similar to intermediates/precursors 

during the biosynthesis of glucosinolates and cyanogenic glycosides. These two classes of 

molecules play vital roles during plant: herbivore interactions [38]. Plants capable of 

metabolizing oxime precursors that are subsequently used for defense responses include 

sorghum, Arabidopsis [37] and cassava [39], but not tobacco. The existence of oximes in non-

oxime metabolizing plants has been reported, e.g. the induced synthesis of citaldoxime in citrus 

flavedo in response to gamma-radiation treatment [25]. These findings suggest a possible role in 

plants other than the one stated above. The enzymes which code for the synthesis of cyanogenic 

glycosides and other related compounds exist in a tightly associated complex known as 

metabolons. In other plants, the same set of enzymes might exist as well, but are found to be a 

loosely associated metabolon and sometimes not all are present. In the latter case, oxime 

precursors do not result in the accumulation of cyanogenic glycosides or glucosinolates [37]. 

 The genes encoding the defense components of one plant can be transferred to another to 

result in new metabolite capabilities [37]. In contrast to transgenic approaches, new metabolites 

can also be generated by supplying precursor molecules that are capable of being recognized by 

enzymes already present in the plant [26]. The findings of the current study, as shown by the 

HCA, suggests that the metabolic machinery of sorghum cells recognizes the oxime molecule 

more efficiently than that of tobacco cells, which shows variability across the different treatment 

time intervals.  
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7.4.3. Metabolic tree and bootstrapping 

 

 An advanced data visualization model, metabolic tree diagrams (PCAtoTree programme), 

was also used to process the primary data. Unlike the HCA, these trees offer significant 

advantages as they represent data that are statistically justified [27]. This is due to the fact that 

during the generation of these trees, bootstrapping numbers which determine the significant 

differences between the different clusters are also shown [40]. From the current study, two 

independent tree diagrams corresponding to the tobacco and sorghum samples were generated 

using the data from the 2D PCA score plots.  

 

Figure 3. Metabolomics tree diagram determined from the PCA scores plots of both tobacco (A) 

and sorghum (B) samples. The bootstrap numbers for each node are indicated on the tree 

diagram. 

When comparing the trees (Fig. 3), the two diagrams appear similar, but with close visual 

inspection it can be seen that the distance between the clusters are different. This is due to 
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different metabolic responses exhibited by the two plant systems. Similarly to the HCA, the 

length of the lines (node) connecting the groups describes the distance between the clusters; for 

instance the horizontal line connecting the control and the rest of the groups is longer on the 

tobacco tree than it is on the sorghum tree. This is due to the fact that there is larger distance 

between the control group and the treated group on the tobacco data than for the sorghum 

system. Still, on both tree diagrams it is notable that the 18 h and 24 h are closely related to each 

other, and this cluster appeared 100 times in both cases. The 18 h/24 h cluster is more closely 

related to the 12 h cluster than it is to the control and 6 h clusters. However, the cluster of 12 

h/18 h/24 h appeared 100 times in sorghum and only 76 times on the tobacco system. This is 

consistent with the PCA results as it can be seen that the distance between the treatment times is 

smaller in tobacco than it is in the sorghum system. In deciphering the trends of these tree 

diagrams, it can be observed that the control is more closely related to the 6 h, followed by the 

24 h/18 h and then lastly to the 12 h cluster. The fact that the bootstrapping values in the 

sorghum system were always 100 is evidence that there is a definite separation between the 

groups that is not as clear in the tobacco system. These observations are in line with those seen 

on the HCA. 

7.4.4. Shared and Unique Structure (SUS) plots 

 

 It is clear that PCA only evaluates global patterns (maximum variation) within the data and 

is not a good tool for revealing local phenomena. For the same and other reasons stated by Van 

der Greef and Smilde (2005), alternative techniques have been proposed. Here, a supervised 

model, OPLS-DA, was used to reveal underlying responses which is associated with a time-trend 

as shown by the HCA above. OPLS-DA can be considered as an extension of the traditional 
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PLS-DA, and it was proposed solely to handle the class orthogonal variation (hence the name) in 

the data which is not explained by PLS-DA [31, 42, 43].  

 

 

Figure 4.  The representative SUS-plots constructed using a two correlation coefficient (p[corr]) 

from two independent OPLS-DA loadings S-plots (Control vs. 6 h (M2) and Control vs. 18 h 

(M4)) for both tobacco (A) and sorghum (B). This plot shows how the metabolites from one 
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independent model relates to those from the corresponding model. The regions in which shared 

and unique metabolites reside are highlighted on the plot. The description of the different regions 

is given in the main text. 

 

In detail, PLS-DA is a linear regression model which seeks to find relationships between two 

respective data tables (X and Y), where X is normally the instrument derived/measured data (i.e. 

GC/LC-MS or NMR data) while Y represents a binary vector which is associated with class 

membership. OPLS-DA separates the variation on X into two parts, one that is linearly related to 

X and another one that is orthogonal to Y. This fragmentation on the X variation results in OPLS-

DA comprised of two variations, one which is the Y-predictive variation and explains the 

variation between class membership, and the other which is the Y-orthogonal, which explain the 

variation within the class membership [31].   

 

 In the current study, OPLS-DA was used to highlight the variables responsible for 

differences among the various groups (classes represented by different time intervals). Similarly 

to PCA, score plots are also used to evaluate the differences in clustering between samples from 

different biological groups or classes in OPLS-DA. However, unlike PCA, the loadings plots for 

OPLS-DA contains statistical sound parameters which explain the underlying statistical 

significance that forms the basis of separation/clustering of different group on the score plots.  

OPLS-DA is therefore a very good model to identify variables (metabolites) of which the levels 

are perturbed due to a certain treatment as compared to control groups. This observation is made 

possible by plots such as the S-plots which are calculated to visualize the relationship between 

co-variance and correlation within the OPLS-DA results and to reveal the statistically significant 
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metabolites [31]. The SUS plot is another visualization plot proposed by Wiklund and associates. 

The SUS-plot combines the correlations from two different OPLS-DA models, and facilitates the 

identification of shared and unique metabolites from the two respective treatments with a 

common control. The SUS plot is capable of showing the metabolites which are unique in one 

model (as increasing or decreasing) and is also capable of showing those which are 

shared/correlated between the two models. This correlation can be positive 

(increasing/decreasing in both models) or negative (decreasing in one and increasing in another 

model). 

  In the current study, the use of SUS-plots was adapted to decipher the time-dependent 

response associated with different time intervals and, according our knowledge, this is the first 

report of its kind on any biological data. Basically, OPLS-DA models are generated by 

comparing control and treated samples represented by each time interval. From each cell line, a 

maximum of six (6) different plots (6 h vs. 12 h, 6 h vs. 18 h, 6 h vs. 24 h, 12 h vs. 18 h, 12 h vs. 

24 h, 18 h vs. 24 h) were generated and compared to each other.  These combinations were 

derived from the respective loadings S-plots generated from the four different models, Control 

vs. 6 h (M2), Control vs. 12 h (M3), Control vs. 18 h (M4), Control vs. 24 h (M5) (data not 

shown). From the results, the SUS-plot was found to be more complementary to the HCA, since 

the same pattern can also be drawn from both. Fig. 4 shows the SUS-plots generated by 

comparing M2 and M4 (6 h vs. 18 h), from both sorghum and tobacco. These two time points 

were chosen as they represent different stages of responses: the 6 h (M2) represent an early 

response and 18 h (M4) represent a mid to late response. Here, it can be seen that metabolites in 

the tobacco case are more positively correlated and less scattered than in the sorghum case at the 

same time points. In order to draw such a conclusion, one should consider the “key” 
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symbols/signatures provided on the plots. For instance, all the metabolites scattered across the 

red dotted line represent those which are positively correlated (++/--). Metabolites which are 

scattered across the green dotted line represent those which are negatively correlated (+-/-+). In 

the second case, those which are found on the red boxes across the plot axes are either increasing 

(+M) or decreasing (-M) for that particular model and, unlike the former case which describes 

the “shared structures”, the latter cases describes the “unique structures”. It is also important to 

note that metabolites which are on the extreme ends (outliers) of the axes contribute more 

significantly than those close to the center. Still, on the M2 vs. M4 tobacco SUS-plot, it can be 

seen that the distribution of the metabolites seems to create a latent line across the positively 

correlated diagonal line. The same is seen in the case of sorghum but is less pronounced as more 

metabolites are spread all over the plot, especially on the positive side of both M2 and M4. It is 

such spreading which shows less “sharing” of metabolites between the two models, hence a 

different/distinctive metabolic phenotype. When all the SUS-plots are considered 

(Supplementary figures S1 and S2), it can be seen that there is a tighter distribution of 

metabolites across the different time points on the tobacco cell line than in the sorghum system. 

This observation strongly supports the hypothesis that oximes are more efficiently metabolized 

in sorghum than in tobacco.  

7.5. Conclusion 

 In conclusion, the current study represents a unique approach which highlights the use of 

traditional statistical visualization techniques to decipher the biological understanding of oxime 

metabolism in different systems. From the results, it can be seen that HCA and OPLS-DA SUS-

plots are capable of showing the different trends of substrate metabolism which are not easy to 

interpret from traditional PCA models. Though the results of HCA are not statistically 
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represented, qualitative observations can be seen and a major conclusion regarding the metabolic 

patterns within the data can be drawn. On other hand, although the results of the SUS-plot are 

more qualitative than quantitative, they are statistically profound as the principle of correlation 

and covariance is taken into consideration during the calculations [31]. Above all, the metabolic 

tree showed very unique and more statistically important results than the other two models. The 

results as represented by the HCA and the tree diagrams show that the two plant systems 

managed to recognize INAP, adapted and metabolized it, and that the biochemical profile is re-

adjusting to internal equilibrium over time. It seems that oximes, as seen with the case of INAP, 

are more efficiently metabolized by cyanogenic as opposed to non-cyanogenic plants. However, 

the fact that INAP was capable of inducing metabolic perturbations in tobacco as a non-

cyanogenic plant is evidence that it is still recognized by the tobacco enzymatic machinery. As 

shown by our previous work [26], INAP does not only exhibit metabolic-altering capabilities 

but, at the same time, undergoes biotransformation. These biotransformation events occur by 

incorporation of certain chemical groups/motifs which are quite similar to those inherited by 

certain biological molecules with definitive functions towards stress responses [26].  

 This study extends our knowledge of the metabolism of oximes in plants, especially those 

that are not cyanogenic. The use of HCA, OPLS-DA-based SUS-plots and metabolic trees in 

understanding the underlying trend of biological responses at metabolic level is shown here. All 

these models undisputedly managed to show the time-dependent trend of INAP conversion and 

associated metabolic changes which are inherit within the metabolomic data generated from two 

comparable plant systems. Through the use of these models, the results show the response 

triggered by INAP in sorghum to be more uniform as compared to tobacco where a more 

variable response was obtained. HCA dendrograms were also shown to be superior to PCA score 
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plots in representing the results where time-dependent responses are expected. Although quite 

similar, the metabolic tree diagrams of both tobacco and sorghum were able to reveal 

differential, underlying clustering patterns similar to those revealed by the HCA dendrograms. 

It must, however, be stressed that all such models be utilized as parallel approaches since they 

uncover distinctive underlying trends which complement each other in gaining insight into the 

biochemical events taking place. 

 

 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 



173 

 

7.7. References  

[1]J.K. Nicholson, J.C. Lindon, E. Holmes, ‘Metabonomics’: understanding the metabolic 

responses of living systems to pathophysiological stimuli via multivariate statistical analysis 

 of biological NMRspectroscopic data, Xenobiotica  29 (1998) 1181-1189. 

[2]S.G. Oliver, M.K. Winson, D.B. Kell, F. Baganz, Systematic functional analysis of the 

 yeast genome, Trends Biotechnol. 16 (1998) 373-378. 

[3]H. Theodoridis, G. Gika, I.D. Wilson, Mass spectrometry-based holistic analytical approaches 

for metabolite profiling in systems biology studies, Mass Spectrom. Rev. 30 (2011) 884- 

906. 

[4]C.Y. Lin, M.R. Viant, R.S. Tjeerdema, Metabolomics: methodologies and applications in the 

environmental sciences, J. Pestic. Sci. 31 (2006) 245-251. 

[5]M.R. Viant, Metabolomics of aquatic organisms: the new ‘omics’ on the block, Mar. Ecol 

Prog. Ser. 332 (2007) 301-306. 

[6]J. Van der Greef, P. Stroobant, R. Van der Heijden, The role of analytical sciences medical 

systems biology, Curr. Opin. Chem. Biol. 8 (2004) 559-565. 

[7]J.B. German, S.M. Watkins, L.B. Fay, Metabolomics in practice: emerging knowledge 

 to guide future dietetic advice toward individualized health, J. Am. Diet Ass. 10 (2005) 

1425-1432. 

[8]F. Fava, J.A. Lovegrove, R. Gitau, K.G. Jackson, K.M. Tuohy, The gut microbiota and 

 lipid metabolism: implications for human health and coronary heart disease. Curr. Med.,

 Chem. 13 (2006) 3005-3021. 

[9]R. Goodacre, Metabolomics of a superorganism, J. Nutr. 137 (2007) 259-266. 

 



174 

 

[10] J. Kopka, A. Fernie, W. Weckwerth, Y. Gibon, M. Stitt, Metabolite profiling in plant 

biology: platforms and destinations, Genome Biol. 5 (2004) e109. 

[11]  W. Weckwerth, K. Morgenthal, Metabolomics: from pattern recognition to biological 

interpretation, Drug. Discov. Today 10 (2005) 1551-1558. 

[12] R.D. Hall, Plant metabolomics: from holistic hope, to hype, to hot topic, New Phytol. 169 

(2006) 453-468. 

[13] H.K. Kim, Y.H. Choi, R. Verpoorte, NMR-based metabolomic analysis of plants, Nat. 

Protoc. 5 (2010) 536-549. 

[14] X. Lu, X. Zhao, C. Bai, C. Zhao, G. Lu, G. Xu, LC-MS-based metabonomics analysis, 

 J. Chromatogr. B 866 (2008) 64-76. 

[15] I. Olivier, D.T. Loots, A metabolomics approach to characterise and identify various 

Mycobacterium species, J. Microbiol. Meth. 88 (2012) 419-426. 

[16] W.B. Dunn, N.J.C. Bailey, H.E. Johnson, Measuring the metabolome: current analytical 

technologies, Analyst 130 (2005) 606-625. 

[17] J.W. Allwood, R. Goodacre, Introduction to liquid chromatography–mass spectrometry 

instrumentation applied in plant metabolomic analyses, Phytochem. Anal. 21 (2010) 33-47. 

 [18]R.S. Plumb, I.D. Wilson, High throughput and high sensitivity LC/MS-OA-TOF and 

UHPLC/TOF-MS for the identification of biomarkers of toxicity and disease using a 

metabonomics approach, Abstracts of Papers of the American Chemical Society 228 (2004)  

U164. 

[19] M.E. Swartz, UHPLC (TM): an introduction and review, J. Liq. Chromatogr. Relat. Technol. 

28 (2005) 1253-1263. 



175 

 

[20] I.D. Wilson, J.K. Nicholson, J. Castro-Perez, J.H. Granger, K.A. Johnson, B.W. Smith, R.S. 

Plumb, High resolution "Ultra performance" liquid chromatography coupled to oa-TOF 

mass spectrometry as a tool for differential metabolic pathway profiling in functional 

genomic studies, J. Proteome Res. 4 (2005) 591-598. 

[21] D.G. Robertson, Metabonomics in toxicology: a review, Toxicol. Sci. 85 (2005) 809-822. 

[22] C.J. Omiecinski, J.P.V. Heuvel, G.H. Perdew, J.M. Peters, Xenobiotic metabolism, 

disposition, and regulation by receptors: From biochemical phenomenon to predictors of 

 major toxicities, Toxicol. Sci. 120 (2011) 49-75. 

[23] J. Pollier, T. Mosesab, A. Goossens, Combinatorial biosynthesis in plants: A review on its 

potential and future exploitation, Nat. Prod. Rep. 28 (2011) 1897-1916. 

[24] I.A. Dubery, C.W. Holzapfel, C.J. Kruger, J.C. Schabort, M. Van Dyk, Characterization of a 

gamma-radiation induced antifungal stress metabolite in citrus peel, Phytochemistry 27 

(1988) 2769-2772.   

[25] I.A. Dubery, A.E. Louw, F.R. Van Heerden, Synthesis and evaluation of 4-(3-methyl-2 

butenoxy) isonitrosoacetophenone, a radiation-induced stress metabolite in Citrus, 

Phytochemistry 50 (1999) 983-989. 

[26]N.E. Madala, L.A. Piater, P.A. Steenkamp, I.A. Dubery, Biotransformation of

 isonitrosoacetophenone (2-keto-2-phenyl-acetaldoxime) in tobacco cell suspensions,

 Biotechnol. Lett. 34 (2012) 1351-1356. 

[27] M.T. Werth, S. Halouska, M.D. Shortridge, B. Zhang, R. Powers, Analysis of metabolomic 

PCA data using tree diagrams, Anal. Biochem. 399, (2010) 58-63. 

 

 



176 

 

[28] H. Yamamoto, H. Yamaji, Y. Abe, K. Harada, D. Waluyo, E. Fukusaki, A. Kondo, H. Ohno, 

H. Fukuda, Chemometrics and intelligent laboratory systems dimensionality reduction for 

metabolome data using PCA, PLS, OPLS, and RFDA with differential penalties to latent 

variables, Chemometr. Intell. Lab. Sys. 98 (2009) 136-142. 

[29] I.T. Jolliffe, Principal Component Analysis.  Second ed. Springer, New York, 2002 

[30] O. Fiehn, J. Kopka, P. Dormann, T. Altmann, R.N. Trethewey, L. Willmitzer, Metabolite 

profiling for plant functional genomics, Nat. Biotechnol. 18 (2000) 1157-1161. 

[31] S. Wiklund, E. Johansson, L. Sjo, J.P. Shockcor, J. Gottfries, T. Moritz, J. Trygg, 

Visualization of GC / TOF-MS-based metabolomics data for identification of biochemicallly

 interesting compounds using OPLS class models, Anal. Chem. 80 (2008) 115-122. 

[32] M. Steinbach, L. Ertoz, V. Kumar, Challenges of clustering in high dimensional data, 

University of Minnesota Supercomputing Institute Research Report, 213 (2003) 1-33. 

[33] G.M. Downs, J.M. Barnard, Clustering methods and their uses in computational chemistry, 

in: K.B. Lipkowitz, D.B. Boyd (Eds.) Reviews in Computational Chemistry,  Wiley, United 

Kingdom, 2002, pp. 1-40. 

[34] M. Daszykowski, B. Walczak, D.L. Massart, Density-based clustering for exploration of 

analytical data, Anal. Bioanal. Chem. 380 (2004) 370-372. 

[35] J.H. Ward, Hierarchical grouping to optimize an objective function, J. Am. Stat. Ass. 58 

(1963) 236-245. 

[36] S. Sato, M. Arita, T. Soga, T. Nishioka, M. Tomita, Time-resolved metabolomics  reveals 

metabolic modulation in rice foliage, BMC Syst. Biol. 13 (2008) 1-13. 

[37] S. Bak, C.E. Olsen, B.A. Halkier, B.L. Møller,  Transgenic tobacco and Arabidopsis plants 

expressing the two multifunctional sorghum cytochrome P450 enzymes, CYP79A1 and 



177 

 

CYP71E1, are cyanogenic and accumulate metabolites derived from intermediates, Plant 

Physiol. 123 (2000) 1437-1448. 

[38] B.L. Møller, Dynamic metabolons, Science 330 (2010) 1328-1329. 

[39] R. Veterinary, K. Word, The biosynthesis of cyanogenic glucosides in roots of cassava, 

Science 39 (1995) 323-326. 

[40] S. Halouska, R.J. Fenton, R.G. Barletta, R. Powers, Predicting the in vivo mechanism of 

action for drug leads using NMR metabolomics, ACS Chem. Biol. 7 (2012) 166-171. 

[41] J. Van der Greef, A.K. Smilde, Symbiosis of chemometrics and metabolomics: past, present, 

and future, J. Chemometr. 19 (2005) 376-386. 

[42] J. Trygg, S. Wold, Orthogonal projections to latent structures (O-PLS), J. Chemometr. 16 

(2002) 119-128. 

[43] B. Bylesjo, M. Rantalainen, O. Cloarec, J.K. Nicholson, E. Holmes, J. Trygg, OPLS 

discriminant analysis: combining the strengths of PLS-DA and SIMCA classification, J. 

Chemometr. 20 (2006) 341-351. 

[44] N.M. Sanabria, I.A. Dubery, Differential display profiling of the Nicotiana response to LPS 

reveals elements of plant basal resistance, Biochem. Biophys. Res. Comm. 344 (2006) 1001-

1007 

[45] R. Ngara, J. Rees, B.K. Ndimba, Establishment of sorghum cell suspension culture  

 system for proteomics studies, Afr. J. Biotechnol. 7 (2008) 744-749.  

[46] J.D. Retief, Phylogenetic analysis using PHYLIP, Meth. Mol. Biol. 132 (2000) 243-258. 

 

  

 

 



178 

 

7.6. Supplementary files 

Supplementary Material: Figure S1: OPLS-DA based SUS-plots showing metabolite distribution from different 

treatment time intervals, A (6 h vs12 h), B (6 h vs 24 h), C (12 h vs 18 h), D (12 h vs 24 h) and E (18 h vs 24) of 

tobacco cell suspensions treated with 1 mM isonitrosacetophenone. For keys features, refer to Fig. 4. 
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Supplementary Material:  Figure S2:  OPLS-DA based SUS-plots showing metabolite distribution from different 

treatment time intervals, A (6 h vs.12 h), B (6 h vs. 24 h), C (12 h vs. 18 h), D (12 h vs. 24 h) and E (18 h vs. 24) of 

sorghum cell suspensions treated with 1 mM isonitrosacetophenone. For keys features, refer to Fig. 4. 

S2-A. 

 

S2-B. 

 



182 

 

S2-C. 

 

S2-

D.

 

 

 

 



183 

 

S2-E. 

 

 



184 

 

Chapter 8: Biotransformation of 
isonitrosoacetophenone (2-keto-2-phenyl-

acetaldoxime) in tobacco cell suspensions. 
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8.1. Abstract 

 Nicotiana tabacum cell suspensions were treated with isonitrosoacetophenone (INAP), a 

subcomponent of a plant-derived stress metabolite with anti-oxidative and anti-fungal properties.  

Upon addition of INAP to 1 mM, the cell suspensions exhibited a rapid uptake of INAP and 

metabolism to a bioconverted product that reached a plateau at 12 h.  At 18 h following addition 

of INAP, 54% of the total intracellular INAP content was represented by the bioconverted 

product with unconverted INAP at 33.4 µM. UHPLC-MS/MS analyses with MassFragmentTM 

software, were employed for metabolite identification. INAP is subject to biotransformation via 

multiple chemical modifications on the core structure. These include hydroxylation on the meta- 

and para- positions as well as subsequent methoxylation and glycosylation to result in 4’-

hexopyranosyloxy-3’-methoxyisonitrosoacetophenone. The data furthermore propose that INAP 

is recognized by the enzymatic machinery of the phenylpropanoid pathway and bioconverted to a 

molecule with a substitution pattern similar to ferulic acid. 

Keywords Biotransformation; isonitrosoacetophenone; 2-keto-2-phenyl-acetaldoxime; 

metabolism; Nicotiana tabacum; Solanaceae; xenobiotics. 
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8.2. Introduction 

Biotransformation has been widely exploited as a system of producing novel compounds.  Some 

of the enzymes involved in secondary metabolism may exhibit wide specificities, and the 

developmentally and spatially controlled expression thereof contributes to tissue and plant-

specific chemical phenotypes (Vogt, 2010). Novel enzyme-substrate combinations in vivo can 

lead to the biosynthesis of new, natural product-derived compounds (Pollier et al. 2011). 

 Citaldoxime, 4-(3-methyl-2-butenoxy)-isonitrosoacetophenone, a novel oxime-containing 

stress metabolite from citrus, was reported to exhibit phytoalexin and anti-oxidant activities 

(Dubery et al. 1999). Oxime functional groups are rare in natural products; in plants, oximes are 

intermediates of a range of metabolic pathways subject to controls that result in variation in both 

the type and amount of end product formed (Mahandevan, 1973). In the context of plant defence 

responses, aldoximes are intermediates during the biosynthesis of glucosinolates and cyanogenic 

glycosides (Møller, 2010). The reactive nitroso-compounds, originating from oxime metabolism, 

may also act as signals in innate immune responses (Møller, 2010). This interesting hypothesis 

warrants further investigation into oxime metabolism in plants to elucidate pathways in which 

such molecules participate. 

 Metabolites accumulate as the end products of cellular metabolism and the levels thereof 

reflect the organism’s ultimate response to biological or environmental changes (Allwood and 

Goodacre, 2010). Metabolomics is an unbiased approach aimed at measuring/profiling the 

metabolite content of the cell, tissue or organism under a specific physiological status and, by 

studying the metabolome, information regarding the metabolic status and altered pathways can 

be explained.  
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 In the current study, isonitrosoacetophenone was used as substrate to investigate 

biotransformation events in tobacco cell suspensions. This report is the first in which the 

metabolism of INAP in a plant model was investigated.    

8.3. Materials and methods 

8.3.1. Cell culture, treatment and viability 

 

Nicotiana tabacum cv. Samsun cell suspensions were cultivated as previously described 

(Sanabria and Dubery, 2006). Three days after sub-culturing, 2 g cells (wet weight) / ml 

suspension were treated with 250 mM isonitrosoacetophenone (INAP), dissolved in acetone, to a 

final concentration of 1 mM with continuous rotation at 80 rpm and 25ºC. The final 

concentration of acetone was 0.4%. Control cells received no treatment. The experimental design 

included three biological replicates with five technical repeats. Cell viability was evaluated using 

the TTC method (Towill and Mazur, 1975) and INAP had no toxic effects over 24 h (data not 

shown). 

8.3.2. Extraction and sample preparation 

 

After elicitation time intervals of 6, 12, 18 and 24 h, cells were collected by means of 

centrifugation at 10 000 x g for 10 min in a microcentrifuge at room temperature. Metabolites 

were extracted from pelleted cells by homogenization in 1 ml 100% methanol. Extraction was 

further maximised heating the homogenate at 60ºC for 10 min followed by mild sonification for 

20 min. The homogenates were then centrifuged at 10 000 x g for 10 min, the resulting 

supernatants transferred to new tubes and dried to completeness using a speed vacuum centrifuge 

operating with constant heating at 50ºC. The residual brown precipitates were re-dissolved in 
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400 µl, 50% (v/v) methanol in water. Debris from the samples was removed through a 0.22 µm 

filter, the filtrates transferred to glass vials fitted with 500 µl inserts and capped.  

8.3.3. Ultra-performance liquid chromatography-mass spectrometry 

 

Methanol extracts (5 µl) were analyzed on a Waters UHPLC coupled to a Waters Synapt high 

definition mass spectrometer (HD-MS) instrument (Waters Corporation, Milford, USA). 

Chromatographic separation was accomplished using an Acquity BEH C18 column (100 × 2.1 

mm with particle size of 1.7 µm) (Waters Corporation) with deionized water (A) and methanol 

(B), both containing 0.1% formic acid, as mobile phase solvents (described in legend to Fig 1). 

In order to sufficiently separate the detected target biomarkers, longer chromatographic 

separations of 30 min were utilised. 

 The separated analytes were monitored using both photo-diode array (PDA, 220 - 500 

nm) and electro-spray ionisation time-of-flight mass spectrometry (ESI-TOF-MS) detectors.  For 

MS detection, experimental conditions are described in the legend to Fig. 2. Mass accuracy of  

the m/z values in all the acquired spectra were automatically corrected during acquisition based 

on the instrumental calibration files and a simultaneous lockmass signal. Data was collected in 

extended dynamic range mode. The molecular formula assignments were obtained with the 

MassLynxTM software (version 4.1 SCN 704, Waters Corporation). The area/intensities of the 

peaks across the whole chromatogram were evaluated/calculated with the aid of the data mining 

technique, MakerLynxTM (Waters Corporation). Data was further analysed by Minitab, version 

15 statistical software. 
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8.3.4. Quantification 

  

From UHPLC-PDA data, the peaks representing INAP and its biotransformed product were 

manually integrated and quantified using an INAP standard curve (0.125 - 2.0 mM). Single 

wavelength (265 nm) monitoring aimed at maximum detection of the two metabolites with 

application of the Savitzky-Golay smoothing/filtering procedure was used. The areas of these 

two peaks were calculated with MassLynxTM software, and the % conversion of INAP inside the 

cells calculated using five independent data sets from INAP treated samples. 

8.4. Results and discussion 

The biological roles of oxime compounds such as citaldoxime in plants are not well researched 

with regard to the biosynthesis, interconversions and biological effects. Here, we report on the 

biotransformation of INAP by the metabolic machinery of Nicotiana tabacum, a non-cyanogenic 

plant. As a central analytical technique in metabolomics, MS provides a combination of rapid, 

sensitive and selective qualitative and quantitative analyses with the ability to identify 

metabolites. UHPLC-HD-MS (Allwood and Goodacre, 2010) was used for investigating the 

metabolites resulting from the bioconversion. MassFragmentTM software (Waters Corporation), a 

computer-based method which uses chemically intelligent algorithms to evaluate proposed 

structures for observed fragment ions on MS data of small molecule compounds 

(www.waters.com), was also used to validate the proposed INAP-derived compound. This 

combination provides a powerful approach to investigating biotransformation events. 
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Table 1 Time-dependent changes in the INAP content in cells reflecting uptake and conversion 

to 4’-hexopyranosyloxy-3’-methoxyisonitrosoacetophenone. Cell suspensions (2 g/ml) were 

initially treated with 1 mM INAP. 

 

Time 

(h) 

[INAP]cell 

(µM ± SD) 

Conversion 

(%) 

0 - - 

6 112.3 ± 1.8 20 

12 106.5 ± 8.6 32 

18 33.4 ± 4.2 54 

24 45.5 ± 9.6 50 

 

8.4.1. Metabolite profiling 

 

The introduction of INAP (I) affected the metabolome of tobacco cells (2 g/ml suspension 

containing 1 mM INAP), and time-dependent changes in the metabolite profiles were indicated 

by the UHPLC chromatograms (Fig. 1). Three major peaks were found to exist in the INAP-

treated samples as compared to the controls, one of which is the biotransformed product (II, 4’-

hexopyranosyloxy-3’-methoxyisonitrosoacetophenone). The peak corresponding to (I) showed a 

time-dependent decrease from 6 h onwards, concomitant with an increase in (II), indicating 

metabolism and bioconversion of INAP. As shown in Table 1 and the distribution graph of (II) 

(Fig. 2), the biotransformation increased from 6 h onwards and reached a plateau at 12 h. 
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Quantification of residual cellular INAP at 18 h revealed that 33.4 µM remained unconverted 

with 54% of the total intracellular INAP represented by (II).    

 

Fig. 1 Comparison of representative UHPLC-PDA base peak intensity (BPI) chromatograms of 

extracts from tobacco cell suspensions treated with INAP for 0, 6, 12, 18 and 24 h. The 

composition of mobile phase A was 0.1% formic acid in deionized water and mobile phase B 

was 0.1% formic acid in methanol. The column was eluted with a linear gradient at a constant 

flow rate of 400 µl/min of 5% B over 0.0-2.0 min, 5-95% B over 2.0-22.0 min, held constant at 

95% B over 22.0-25.0 min, 95-5% B over 25.0-27.0 min and a final wash at 5% B over 27-30 

min. The peaks corresponding to INAP and the biotransformed product are indicated by (I) and 

(II) respectively.     

 Although a structurally similar compound, 4-(3-methyl-2-butenoxy)-

isonitrosoacetophenone was reported as a stress metabolite in citrus (Citrus sinensis, Rutaceae) 

(Dubery et al. 1999), INAP can be regarded as a xenobiotic compound that is metabolized by the 

metabolic machinery present in tobacco cells. Enzymes involved in metabolism of secondary 
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metabolites often exhibit limited specificity (Schwab, 2003). These multifunctional, but poor 

substrate-specific, enzymes may also contribute to metabolome diversity through the capability 

of accepting more than one substrate, thereby catalyzing more than one reaction and forming 

multiple products (Vogt, 2010). In plants, like in microorganisms, many biosynthetic pathways 

are not fully active, or at least not detectable at the resolution of the present metabolite profiling 

technologies. This ‘silent metabolism’ (Lewinsohn and Gijzen, 2009) can be activated by either 

providing the appropriate substrate or by triggering the inactive parts of the biosynthetic 

pathways. Biotransformation can also fulfil the function of eliminating xenobiotic compounds 

from the system (Omiecinski et al. 2011) but this can alter the physical properties of a 

compound, for instance glycosylation of flavonoids increases the water solubility and enhances 

bioavailability of the compounds. Results obtained in this study suggest that INAP undergoes a 

series of modifications characterized by addition of different chemical groups on its ring 

structure.  

 

Fig. 2 Distribution graph showing the dispersal of the m/z 356.0964 ion (Fig. S1, S2) across the 

INAP-treated samples at different time intervals in comparison to the untreated control. The 
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target represents the mean and the bars represent the region of 95% confidence interval of the 

mean. Experimental conditions: ESI- , capillary voltage: 2.5 kV, sample cone voltage: 17 V, 

extraction cone voltage: 5.0 V, MCP detector voltage: 1600 V, source temperature: 120°C, 

desolvation temperature: 350°C, cone gas flow: 50 (l/h), desolvation gas flow: 450 (l/h),  m/z 

range: 100-1000, scan time: 0.1 sec, interscan delay: 0.02 sec, mode: centroid, lockmass: leucine 

enkephalin (556.3 g/mol), lockmass flow rate: 0.4 ml/min, mass accuracy window: 0.5 Da. 

8.4.2. Structural modifications to the INAP core structure 

 

From the ESI spectrum, the biotransformed product was detected as m/z 356.0964 and using this 

mass, the accurate mass of (II) was further verified with the aid of MS/MS experiments. The 

results of this analysis revealed only one product exclusively in treated samples (Fig. S1). Using 

the data from MarkerLynxTM analysis, the distribution graph showing the levels of (II) across the 

different time intervals in comparison to the controls was also constructed (Fig. 2). 

MassFragmentTM software was used to validate the proposed structure, and to determine whether 

it correlates with the fragmentation pattern as seen on the MS/MS spectral data (Fig. S2). The 

MassFragmentTM output (Table S1) shows that some of the fragment ions comply with possible 

fragmentation sites of the proposed biotransformed metabolite II (Fig. 3). From the proposed 

INAP biotransformation pathway (Fig. 3) it is thus conceivable that INAP is hydroxylated on the 

3’ and 4’ positions before being methoxylated on the 3’ position by an O-methyl transferase (O-

MT) to generate a substitution pattern on the aromatic ring similar to that of ferulic acid. The 

addition of a glucose residue by an O-glucosylase would then render compound II, 4’-

hexopyranosyloxy-3’-methoxyisonitrosoacetophenone. These proposed structural modifications 

are all supported by the observed ESI- fragmentation patterns. 
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Fig. 3  The chemical structure of isonitrosoacetophenone (I) and the biotransformed product (II), 

4’-hexopyranosyloxy-3’-methoxyisonitrosoacetophenone. The proposed biotransformation 

events of INAP in tobacco cell suspensions are 1 = hydroxylation on the m and p positions;  2, 3 

= methoxylation and glucosylation. The order of substitution is not certain.  

 Though no enzymatic investigations were done during the course of this study, 

cinnamate-4-hydroxylase (C4H), an enzyme found across a wide spectrum of plants, has the 

ability to metabolize some substrate analogues including xenobiotics (Schalk et al. 1997). These 

analogues are derivatives of cinnamate with a planar structure, negatively charged side chain and 

a size of one aromatic ring (Schoch et al. 2003). The metabolism of unnatural substrates by C4H 

provides the possibility to synthesize novel products from the phenylpropanoid- and benzoic acid 

pathways. 

 

 Furthermore, O-MTs have also been shown to act on various natural products like simple 

catechols, phenylpropanoids and structurally complex isoquinoline alkaloids (Frick and Kutchan, 

1999). Tobacco cells possess an array of O-MT isoforms with variable efficiency toward the 

diverse plant ortho-diphenolic substrates (Maury et al. 1999), and stress-induced multifunctional 

O-MTs from Pinus sylvestris have been shown to catalyze the methylation of diverse phenolic 

substrates (Chiron et al. 2000). The very broad substrate specificity included molecules derived 

from several branches of the phenylpropanoid pathway. In addition to enzymes exhibiting the 
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ability to accept a wide range of substrates, substrate availability was also shown to contribute to 

diversity in the formation of the methylated products. 

 Glucosylated hydroxycinnamic acids, where the glucose is attached to the phenolic 

hydroxyl group, are often found as intermediates in phenylpropanoid metabolism.  In addition, 

glucosylation of hydroxycinnamic acid derivatives have been suggested as a detoxification 

mechanism employed in plants against reactive phenylpropanoids (Meyermans et al.  2000). 

8.5. Conclusion 

INAP can be regarded as a xenobiotic chemical which is recognised by enzymes involved in 

secondary plant metabolism and subsequently biotransformed to a stable molecule,  4’- 

hexopyranosyloxy-3’-methoxyisonitrosoacetophenone. INAP was found to be metabolized 

through a series of steps which involves hydroxylation and subsequent methoxylation and 

glucosylation. These structural modifications could be the way in which tobacco cell suspensions 

eliminate INAP from the system by enzymes belonging to secondary metabolic pathways, acting 

upon precursor molecules with structural similarities to INAP. From the proposed structure of 

the biotransformed product II, this molecule exhibits features/modifications resembling those 

originating from the phenylpropanoid pathway. For example, ferulic acid glucoside is derived 

from trans-cinnamic acid through similar modifications proposed for INAP metabolism. Ferulic 

acid and derivatives thereof are effective anti-oxidants (Kikuzaki et al. 2002). The function of 4’-

hexopyranosyloxy-3’-methoxyisonitrosoacetophenone as a potential phytoprotective agent is still 

to be elucidated and warrants further investigation.  
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8.7. Supplementary files 

Supplementary Fig. 1  UHPLC-MS/MS BPI chromatogram showing a single peak at Rt of 

10.06 min of m/z 356.0964 biomarker.   

 

 

 

Supplementary Fig. 2  UHPLC-MS/MS spectrum showing the fragmentation patterns of m/z 

356.0964 ion on ESI negative ionization mode.     
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Supplementary Table1: MassFragment results, showing the correlation between fragmentation 

patterns and structural modifications of  the m/z = 356.09 ion on ESI negative ionization. 

356.0964 ¬- (+1H) 

356.0982 (-1.8.mDa) (S:1.0, B:0) 

C15H18NO9 (-none) 
 

180.0586 ¬.- (+3H) 

180.0634 (-4.8.mDa) (S:10.0, B:1) 

C6H12O6 (-C9H6NO3) 
 

180.0586 ¬- (+5H) 

180.0661 (-7.5.mDa) (S:1.5, B:2) 

C9H10NO3 (-C6H8O6) 
 

179.0533 ¬- (+2H) 

179.0556 (-2.3.mDa) (S:10.0, B:1) 

C6H11O6 (-C9H7NO3) 
 

165.0421 ¬.- (+5H) 

165.0426 (-0.5.mDa) (S:2.0, B:3) 

C8H7NO3 (-C7H11O6) 
 

162.0481 ¬.- (+1H) 

162.0528 (-4.7.mDa) (S:0.5, B:1) 

C6H10O5 (-C9H8NO4) 
 

161.0440 ¬- (+0H) 

161.0450 (-1.0.mDa) (S:0.5, B:1) 

C6H9O5 (-C9H9NO4) 
 

150.0460 ¬.- (+4H) 

150.0528 (-6.8.mDa) (S:11.0, B:2) 

C5H10O5 (-C10H8NO4) 
 

149.0454 ¬.- (+5H) 

149.0477 (-2.3.mDa) (S:4.0, B:4) 

C8H7NO2 (-C7H11O7) 
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148.0437            .- (+2H) 

148.0372 (+6.5.mDa) (S:11.0, B:2) 

C5H8O5 (-C10H10NO4) 
 

144.0379             .- (+0H) 

144.0423 (-4.4.mDa) (S:1.0, B:2) 

C6H8O4 (-C9H10NO5) 
 

143.0340          ¬- (-1H) 

143.0344 (-0.4.mDa) (S:1.0, B:2) 

C6H7O4 (-C9H11NO5) 
 

125.0239 ¬- (-2H) 

125.0239 (+0.0.mDa) (S:1.5, B:3) 

C6H5O3 (-C9H13NO6) 
 

121.0300 ¬- (+1H) 

121.0290 (+1.0.mDa) (S:10.5, B:2) 

C7H5O2 (-C8H13NO7) 
 

116.0464 ¬.- (+3H) 

116.0473 (-0.9.mDa) (S:2.0, B:3) 

C5H8O3 (-C10H10NO6) 
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Chapter 9: General conclusion  

Oximes are rare functional groups within plant natural products and, as such, the biology 

and chemistry thereof is not fully understood. However, the occurrence is known in certain 

plants capable of producing specialized stress-related molecules known as glucosinolates and 

cyanogenic glycosides. Apart from participation as intermediates during biosynthesis of these 

compounds, there is no other well-defined function(s) of oximes in plants. The existence in 

glucosinolates or cyanogenic glycosides non-producing plants have also been reported 

previously, but without comprehensive scientific explanation. It was therefore the aim of the 

current study to investigate other possible function of oximes in plants, especially in the afore-

mentioned non-producers. Here, INAP, an oxime molecule with structural similarities to 

citaldoxime, a stress-induced metabolite found in citrus, was used. With the aid of UHPLC-MS 

based-metabolomics, multivariate data models, and other chemical intelligent software, the effect 

of INAP on three different plant systems was investigated. INAP was found to trigger metabolite 

changes in all three systems and to undergo biotransformation events. With the aid of novel 

metabolite identification procedures, this oxime molecule was found to induce metabolites with 

known functions toward stress-related responses. From the literature, INAP-induced metabolites 

are known to exhibit antimicrobial and antioxidant activities. These findings explain the initial 

accumulation of citaldoxime in citrus peel undergoing oxidative stress due to ionizing radiation 

treatment. Furthermore, INAP was shown to be more efficiently metabolized in a cyanogenic 

plant system like sorghum than in non-cyanogenic plants, suggesting evolutionary differences 

between the three systems for oxime utilization. As stipulated above, INAP was found to 

undergo chemical modification (biotransformation) events on its core structure, similar to those 

on known endogenous metabolites with stress-related activities. The results of the current study 

highlight the feasibility of using UHPLC-MS and chemometric-based models for comprehensive 

biological understanding of chemical-induced metabolite perturbations and the metabolic fate 

thereof.  
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