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Abstract

Entanglement is a quantum resource with applications in quantum communica-
tion as well as quantum computing amongst others. Since quantum entangle-
ment is such an abstract concept numerous mathematical measures exist. Some
of these have a purely theoretic purpose whereas others play a role in describ-
ing the magnitude of entanglement of a system. In quantum systems energy
level crossing may occur. Energy levels in quantum systems tend to repel each
other so when any type of degeneracy occurs where the energy levels coalesce
or cross it is of interest to us. Two such points of degeneracy are exceptional
and diabolic points. When these occur it is useful to investigate these points in
specific systems and observe level crossing. In this thesis we mainly investigate
the relationship between entanglement, energy level crossing and symmetry as
well as the exceptional and diabolic points of specific systems. We are especially
interested in systems described by spin and Fermi operators.
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List of Symbols and
Notation

:= is defined as
∈ belongs to (a set)
∅ empty set
A ⊂ B subset A of set B
N natural numbers excluding 0
N0 natural numbers including 0
R real numbers
R+ nonnegative real numbers
Rn n-dimensional Euclidean space
C complex numbers
Cn n-dimensional complex linear space
i

√
−1

ωn := e2πi/n n-th root of unity where n ∈ N
Zn cyclic group of order n under addition modulo n
F field
Pn Pauli group over n qubits
H Hilbert space
x column vector in Cn
xT transpose of x (row vector)
x∗ conjugate transpose of x (row vector)
‖.‖ norm
x · y ≡ x∗y scalar product (inner product) in Cn
〈.|.〉 scalar product in Hilbert space
x× y vector (cross) product in R3

A⊗B Kronecker product of matrices A and B
A⊕B direct sum of matrices A and B
det(A) determinant of square matrix A
tr(A) trace of square matrix A
[A,B] := AB −BA commutator for square matrices A and B

iv



v

[A,B]+ := AB +BA anticommutator for square matrices A and B
AT transpose of matrix A
A conjugate of matrix A
A∗ = (A)T conjugate transpose of matrix A
δjk Kronecker delta with δjk = 1 for j = k and δjk = 0 for j 6= k

Ĥ Hamilton operator
N̂ number operator
U unitary matrix
Π projection matrix
P permutation matrix
~ h/2π with h the Planck constant
ω frequency
t time

The Pauli spin matrices are used extensively and are given by

σ1 :=
(

0 1
1 0

)
, σ2 :=

(
0−i
i 0

)
, σ3 :=

(
1 0
0−1

)
where we may also refer to σx, σy and σz, respectively. The spin matrices for
describing a spin- 1

2 system are given by

s1 :=
σ1

2
=

1
2

(
0 1
1 0

)
, s2 :=

σ2

2
=

1
2

(
0−i
i 0

)
, s3 :=

σ3

2
=

1
2

(
1 0
0−1

)
.

The spin matrices for describing a spin-1 system are given by

S1 :=
1√
2

0 1 0
1 0 1
0 1 0

 , S2 :=
1√
2

0−i 0
i 0 −i
0 i 0

 , S3 :=

1 0 0
0 0 0
0 0−1

 .

The Bell basis in C4 is used extensively and is given by

|φ+〉 :=
1√
2


1
0
0
1

 , |φ−〉 :=
1√
2


1
0
0
−1

 ,

|ψ+〉 :=
1√
2


0
1
1
0

 , |ψ−〉 :=
1√
2


0
1
−1
0

 .



Chapter 1

Introduction

Quantum entanglement is a type of quantum correlation and is a powerful re-
source in quantum communication. Quantum entanglement occurs when par-
ticles interact physically and the interaction is such that each member of the
pair may be described by a shared quantum state. The state of the individual
particles is not well defined and is not the same for each member of the pair.
Entanglement plays a large role in quatum communication and computing. It
may be described as a type of quantum superposition. According to the Copen-
hagen interpretation the shared state is indefinite until measured. There is a
correlation between the results of measurements performed on the entangled
pair even if they are separated by an arbitrary distance. This feature of quan-
tum entanglement sparked discussion between physicists and research into this
phenomenon started in 1935 with papers from Einstein, Podolsky and Rosen [30]
introducing the EPR-paradox. This is a thought experiment designed to show
that quantum mechanical theory was incomplete. This was followed by letters
from Schrödinger [108], [109] where he coined the term entanglement. Many of
these papers highlighted the counterintuitive nature of entanglement and it was
only in 1964 when Bell [6] highlighted a flaw in previous assumptions thereby
showing the validity of quantum entanglement as a theory. This phenomenon
has been proven experimentally and is recognized as a fundamental feature of
quantum mechanics. Research is now focused on exploiting this resource.

Historically energy level crossing and symmetries was first discussed by Hund
[56] in 1927 and the non-crossing rule was quantitatively formulated in 1929 by
von Neumann and Wigner [147], proving the theorem put forward by Hund.
This concept plays a large role in atomic chemistry, spectroscopy and quantum
chemistry. Energy levels in quantum systems tend to repel each other so when
any type of degeneracy occurs where the energy levels coalesce or cross it is
of interest to us. Two such points of degeneracy are exceptional and diabolic
points. When these occur it is useful to investigate these points in specific
systems and observe level crossing. It is of importance to consider exceptional

1



2 CHAPTER 1. INTRODUCTION

points of hermitian and non-hermitian operators as have been studied by Kato
[60] amongst others. Diabolic points were introduced by Berry in 1984 [11]
where they play a large role in molecular magnets and interest in their study
has increased when Berry noted that they behave as magnetic monopoles in
parameter space. These points have also been studied by Teller [139].

In this thesis we mainly investigate the relationship between entanglement, en-
ergy level crossing and symmetry as well as the exceptional and diabolic points
of specific systems. We are especially interested in systems described by spin
and Fermi operators. In chapter 2 we introduce the mathematical concepts of
Hilbert spaces, tensor products and group theory as these will be exploited in
further chapters. In chapter 3 we provide some historical background on quan-
tum theory introducing the postulates of quantum mechanics and giving a brief
overview of the Schrödinger picture compared to the Heisenberg picture. In
chapter 4 we introduce linear operators and investigate the properties of vari-
ous normal matrices. We introduce the eigenvalue problem and investigate spin
Hamilton operators and Hamilton operators of Fermi operators. In chapter 5
we introduce the concept of bipartite and multipartite entanglement as well
as some applicable measures of entanglement. In chapter 6 we investigate the
properties and differences of exceptional and diabolic points. We note that at
an exceptional point the eigenvalues merge or coalesce and at a diabolic point
the eigenvectors merge with bifurcations occuring at these points. We classify
these singularities for both hermitian and non-hermitian Hamilton operators.
We consider conservation laws, level crossings and symmetries. In chapter 7
we provide some sample Maxima programs implementing some of the concepts
discussed throughout.



Chapter 2

Mathematical Preliminaries

2.1 Hilbert Spaces

An abstract space is a set of elements satisfying certain axioms. By changing
the axioms, different spaces may be obtained. These abstract spaces help us to
generalize various concepts. Hilbert spaces have been investigated by various
authors such as Balakrishnan [3], Collatz [22], Debnath and Mikusiński [25],
Jain [58], Kreyszig [69], Prugovečki [96], Richtmyer [100], Steeb [119], [120],
[123], Weidmann [149], Yosida [157]. In this chapter we introduce the concept
of Hilbert spaces as well as some useful applications. Hilbert spaces enable us to
generalize the concept of the dot product and orthogonality to arbitrary vector
spaces.

2.1.1 Definitions

An inner product space (also known as a pre-Hilbert space) is a vector space X
with an inner product defined on X, where an inner product on X is a mapping
from X ×X into the scalar field of X. With every pair of vectors x and y there
is associated a scalar written as 〈x, y〉 that satisfies the following properties

1. 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉

2. 〈αx, y〉 = α 〈x, y〉

3. 〈x, y〉 = 〈y, x〉

4. 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 ⇔ x = 0

for x, y, z ∈ X and α a scalar. An inner product on X defines a norm on X

‖x‖ =
√
〈x, x〉.

3



4 CHAPTER 2. MATHEMATICAL PRELIMINARIES

From this we know the inner product also defines a metric on X

d(x, y) = ‖x− y‖ =
√
〈x− y, x− y〉.

A Hilbert space is a complete inner product space. All inner product spaces are
normed spaces but not all normed spaces are inner product spaces. Mathemati-
cally a Hilbert Space is a set H of elements or vectors that satisfies the following
conditions

(a) If x, y ∈ H then there is a unique element x + y ∈ H where the addition
operation (+) is invertible, commutative and associative.

(b) If c ∈ C then for any x ∈ H there is an element cx ∈ H and the mul-
tiplication of elements by complex numbers thereby defined satisfies the
distributive conditions c(x+ y) = cx+ cy and (c1 + c2)x = c1x+ c2x.

(c) Hilbert spaces H possess a zero element 0 characterized by the property
that 0 + x = x for all elements x ∈ H.

(d) For each pair of vectors x, y ∈ H there is a complex number 〈x, y〉 termed
the inner product or scalar product of x with y. This satisfies the properties
introduced above.

(e) If {xn} is a sequence in H satisfying the Cauchy condition that

‖xm − xn‖ → 0

as m and n tend independently to infinity then there is a unique element
x ∈ H such that ‖xn − x‖ → 0 as n→∞.

Let B = {xn : n ∈ I} be an orthonormal basis in a Hilbert space H. I is the
countable index set. Then

〈xn, xm〉 = δnm

x =
∑
n∈I

〈x, xn〉xn ∀x ∈ H

〈x, y〉 =
∑
n∈I

〈x, xn〉 〈y, xn〉 ∀x, y ∈ H(
〈x, xn〉 = 0 ∀xn ∈ B

)
⇒ x = 0

‖x‖2 =
∑
n∈I

| 〈x, xn〉 |2 ∀x ∈ H

where the third equation is also known as Parseval’s relation. We have the
inequalities

| 〈x, y〉 | ≤ ‖x‖ · ‖y‖
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‖x+ y‖ ≤ ‖x‖+ ‖y‖

and the parallelogram equality

‖x+ y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2) ∀ x, y ∈ X.

Consider the following useful corollaries

〈αx+ βy, z〉= 〈αx, z〉+ 〈βy, z〉 = α 〈x, z〉+ β 〈y, z〉
〈x, αy〉= 〈αy, x〉 = α〈y, x〉 = α 〈x, y〉

〈x, αy + βz〉= α 〈x, y〉+ β 〈x, z〉 .

A useful concept is that of orthogonality. An element x of an inner product
space X is said to be orthogonal to an element y ∈ X if

〈x, y〉 = 0.

We say x and y are orthogonal and we write x⊥y. Similarly for subsets A,B ⊂ X
we write x⊥A if x⊥a for all a ∈ A and A⊥B if a⊥b for all a ∈ A and all b ∈ B.

2.1.2 Applications

The Hilbert space Cn

The n-dimensional vector space Cn is the space of all ordered n-tuples of complex
numbers. An element x ∈ Cn is given by

x = (x1, x2, . . . , xn)T with xj ∈ C for j = 1, . . . , n.

We define the inner product between two elements x, y ∈ Cn by

〈x, y〉 =
n∑
j=1

xjyj .

This is also commonly known as the dot product . The inner product induces
the norm

‖x‖ =
√
〈x, x〉 =

√√√√ n∑
j=1

|xj |2.

From this we find the metric

d(x, y) = ‖x− y‖ =

√√√√ n∑
j=1

|xj − yj |2.
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The standard basis in Cn is given by
1
0
0
...
0

 ,


0
1
0
...
0

 , . . . ,


0
0
0
...
1

 .

Consider C2. The standard basis is obviously{(
1
0

)
,

(
0
1

)}
.

Another useful basis in C2 is

1√
2

(
1
1

)
,

1√
2

(
1
−1

)
which is also known as the Hadamard basis and plays a large role in quantum
computing. We are also able to find

1√
2

(
1
i

)
,

1√
2

(
1
−i

)
as an orthonormal basis in C2. This leads us to the useful concept of mutually
unbiased bases (MUB).

In a finite n-dimensional Hilbert space two complete, orthonormal bases B1, B2

are said to be mutually unbiased if and only if

∀ |u〉 , |v〉 ∈ B1,B2, | 〈u|v〉 | = 1√
n

for B1 6= B2. The physical meaning of this is that knowledge that a system is
in a particular state in one basis implies complete ignorance of its state in the
other basis (Revzen [99]). There can be at most n+1 MUB in an n-dimensional
Hilbert space where one of the bases will always be the standard basis. An
explicit formula for the remaining bases for n = p 6= 2 where p is prime is given
by

|m, b〉 :=
1√
n

n−1∑
j=0

ω
b
2 j(j−1)−jm
n |ej〉 with b,m = 0, 1, . . . , d− 1

where b denotes the basis, m labels the state within the base and ωn := ei2π/n

is the n-th root of unity. Program 1 determining these MUB is provided in the
Computer algebra implementation chapter.

Example. The bases found for C3 are given by
1

0
0

 ,

0
1
0

 ,

0
0
1





2.1. HILBERT SPACES 7

 1√
3

1
1
1

 ,


1√
3

− 2(3i+
√

3)
12

2(3i−
√

3)
12

 ,


1√
3

2(3i−
√

3)
12

− 2(3i+
√

3)
12




 1√
3

 1
1√

3i−1
2

 ,


1√
3

− 2(3i+
√

3)
12

− 2(3i+
√

3)
12

 ,


1√
3

2(3i−
√

3)
12
1√
3




 1√
3

 1
1

−
√

3i+1
2

 ,


1√
3

− 2(3i+
√

3)
12
1√
3

 ,


1√
3

2(3i−
√

3)
12

2(3i−
√

3)
12


 . ♣

Example. Consider the Hilbert space C4. The vectors

v1 =
1√
2


1
0
0
1

 , v2 =
1√
2


1
0
0
−1

 , v3 =
1√
2


0
1
1
0

 , v4 =
1√
2


0
1
−1
0


are linearly independent and form an orthonormal basis in the Hilbert space
C4. These vectors form the Bell basis and will be used extensively. We have

a
b
c
d

 =
1√
2

(
(a+ d)v1 + (a− d)v2 + (b+ c)v3 + (b− c)v4

)
.

Thus any arbitrary element may be constructed from these vectors. ♣

The Hilbert space of n× n matrices over C

Define the Hilbert space H to consist of all n × n matrices over C. We define
the inner product between two elements A,B ∈ H by

〈A,B〉 := tr(AB∗)

where * denotes the conjugate transpose of the matrix and tr is the trace of a
matrix given by

tr(A) :=
n∑
j=1

eTj Aej

where ej is the jth basis element. The inner product induces the norm

‖A‖F =
√
〈A,A〉 =

√
tr(AA∗).
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This is also known as the Frobenius norm. As with any other vector space
multiple matrix norms may be defined. The Euclidean norm for matrices is
defined by

‖A‖2 :=
n∑

j,k=1

|(A)j,k|2

and the max norm is defined by

‖A‖max := max
‖x‖=1

‖Ax‖.

It can be shown that the Frobenius norm and the Euclidean norm are equivalent

‖A‖2F = tr(A∗A) =
n∑
j=1

e∗jA
∗Aej =

n∑
j,k=1

e∗jA
∗eke

∗
kAej

=
n∑

j,k=1

(e∗kAej)
∗(e∗kAej) =

n∑
j,k=1

(A)k,j(A)k,j

=
n∑

j,k=1

|(A)k,j |2 = ‖A‖22.

In the Hilbert space of 2× 2 matrices over C the standard basis is given by(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)
.

Another basis in this Hilbert space that is used extensively consists of the iden-
tity matrix I2 and the Pauli matrices

I2 = σ0 =
(

1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0−i
i 0

)
, σ3 =

(
1 0
0−1

)
.

2.2 Kronecker and Tensor Products

Before introducing tensor products we introduce a new form of notation called
Dirac notation (Dirac [27]) (or bra-ket notation). Column vectors are repre-
sented by kets |ψ〉 and the conjugate transpose (which will now be a row vec-
tor) is represented by a bra 〈ψ|. When writing the inner product (in the case of
Cn the dot product) between |ψ〉 and |φ〉 we write 〈ψ|φ〉. Normal vector rules
apply, for instance if we have |ψ〉 and |φ〉 in Cn the product |ψ〉 〈φ| will provide
us with an n × n matrix as expected. We are able to combine vector spaces
using certain operations to form another vector space. Two such operations are
the direct sum and the tensor product . Borisenko and Tarapov [17], Dass and
Sharma [23], Dirac [27], Gottfried and Yan [44], Prugovečki [96], Steeb et al
[123], [121], [122], [119], [124], Williams [154] amongst others have investigated
properties of these operations.
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2.2.1 Definitions

Let H1 and H2 be Hilbert spaces. We may define a third Hilbert space H
in terms of H1 and H2. For each pair of vectors f1, f2 in H1,H2 there is a
corresponding vector f1 ⊗ f2 in H such that

〈f1 ⊗ f2|g1 ⊗ g2〉 = 〈f1|g1〉H1
〈f2|g2〉H2

.

We term H the tensor product of H1 and H2 and denote it by H1 ⊗H2 (Pru-
govečki [96]). If Â1 and Â2 are linear operators in H1 and H2 then we define
the operator Â1 ⊗ Â2 in H = H1 ⊗H2 by

(Â1 ⊗ Â2)(f1 ⊗ f2) = (Â1f1)⊗ (Â2f2).

We say Â1 ⊗ Â2 is the tensor product of Â1 and Â2. We can define the tensor
product of n Hilbert spaces.

In the finite dimensional Hilbert spaces Cn and Rn the tensor product reduces
to the Kronecker product (Graham [45], Steeb and Hardy [122], van Loan [143]).
Consider A an m × n matrix and B an s × t matrix. The Kronecker product
given by A⊗B is the (ms)× (nt) matrix

a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

. . .
...

am1B am2B · · · amnB

 .

Some properties of the Kronecker product are

(a) It is associative
A⊗ (B ⊗ C) = (A⊗B)⊗ C.

(b) The relation with ordinary matrix multiplication is

(A⊗B)(C ⊗D) = (AC)⊗ (BD)

where we assume that the matrix products AC and BD exist.

(c) tr(X ⊗ Y ) = tr(X)tr(Y ) where X and Y are square matrices.

(d) det(X ⊗ Y ) = (det(X))m(det(Y ))n where X is n× n and Y is m×m.

(e) (X ⊗ Y )−1 = X−1 ⊗ Y −1 provided the inverses of X and Y exist.

(f) (A⊗B)∗ = A∗ ⊗B∗.

(g) If Au = λu and Bv = µv are eigenvalue equations then

(A⊗B)(u⊗ v) = λµ(u⊗ v).

i.e. u⊗v is an eigenvector of A⊗B with eigenvalue λµ. Similarly A⊗I+I⊗B
has the eigenvector u⊗ v with eigenvalue λ+ µ.



10 CHAPTER 2. MATHEMATICAL PRELIMINARIES

Further useful relations to keep in mind are

(a) If A, B are normal matrices then A⊗B is also normal since

(A⊗B)∗(A⊗B) = (A∗A)⊗ (B∗B) = (AA∗)⊗ (BB∗) = (A⊗B)(A⊗B)∗.

(b) If U and V are unitary matrices then U ⊗ V is also unitary since

(U ⊗ V )(U ⊗ V )∗ = (U ⊗ V )(U∗ ⊗ V ∗) = (UU∗)⊗ (V V ∗) = In2 .

(c) If H and K are Hermitian matrices then H ⊗K is also Hermitian since

(H ⊗K)∗ = H∗ ⊗K∗ = H ⊗K.

(d) If Π1 and Π2 are projection matrices then Π1⊗Π2 is also a projection matrix
since

(Π1 ⊗Π2)∗ = Π1 ⊗Π2 from above and (Π1 ⊗Π2)2 = Π2
1 ⊗Π2

2 = Π1 ⊗Π2.

Consider A an m × n matrix and B an s × t matrix. The direct sum given by
A⊕B is the (m+ s)× (n+ t) matrix(

A 0m×t
0s×n B

)
.

Formally

(A⊕B)j,k =

(A)j,k j ∈ {1, · · · ,m}, k ∈ {1, · · · , n}
(B)j−m,k−n j ∈ {m+ 1, · · · ,m+ s}, k ∈ {n+ 1, · · · , n+ t}
0 otherwise

If two matrices A and B have the same size we may define the direct sum
between these matrices in terms of the Kronecker product

A⊕B =
(

1 0
0 0

)
⊗A +

(
0 0
0 1

)
⊗B.

2.2.2 Applications

Example. Given an orthonormal basis in Cn and an orthonormal basis in Cm
we can construct an orthonormal basis in Cn×m by taking all possible Kronecker
products between elements. Consider the Hadamard basis in C2

1√
2

(
1
1

)
,

1√
2

(
1
−1

)
.
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From the Hadamard basis we may construct an orthonormal basis in C4

1
2

(
1
1

)
⊗
(

1
1

)
=

1
2


1
1
1
1

 ,
1
2

(
1
1

)
⊗
(

1
−1

)
=

1
2


1
−1
1
−1

 ,

1
2

(
1
−1

)
⊗
(

1
1

)
=

1
2


1
1
−1
−1

 ,
1
2

(
1
−1

)
⊗
(

1
−1

)
=

1
2


1
−1
−1
1

 . ♣

Example. We may extend the above concept to matrices. Consider the Hilbert
space of all 2× 2 matrices over C where a basis is given by the identity matrix
σ0 = I2 and the Pauli matrices σ1, σ2, σ3. Using this basis of 2×2 matrices over
C we obtain a basis for 4× 4 matrices over C from the 16 Kronecker products

σj ⊗ σk with j, k = 0, 1, 2, 3. ♣

Example. Some vectors in the Hilbert space C4 can be written as the Kro-
necker product of two vectors in the Hilbert space C2. Then we say the state is
separable. An example of a separable state is given by

1
2


1
−1
1
−1

 =
1√
2

(
1
1

)
⊗ 1√

2

(
1
−1

)
.

However in almost all cases a vector in C4 cannot be written as a product and
then we say the vector is entangled . Examples of entangled states are the Bell
basis

1√
2


1
0
0
1

 ,
1√
2


1
0
0
−1

 ,
1√
2


0
1
1
0

 ,
1√
2


0
1
−1
0

 . ♣

Example. Consider the γ-matrices which are important for the Dirac equation

γ1 =


0 0 0 −i
0 0−i 0
0 i 0 0
i 0 0 0

 , γ2 =


0 0 0−1
0 0 1 0
0 1 0 0
−1 0 0 0

 ,

γ3 =


0 0 −i 0
0 0 0 i
i 0 0 0
0−i 0 0

 , γ4 =


1 0 0 0
0 1 0 0
0 0−1 0
0 0 0 −1

 .
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We may write these matrices as Kronecker products of the Pauli spin matrices
and I2. We see that

γ1 = σ2 ⊗ σ1, γ2 = σ2 ⊗ σ2, γ3 = σ2 ⊗ σ3, γ4 = σ3 ⊗ σ0.

We now find the anticommutators using properties of the Kronecker product

[γ4, γ1]+ = γ4γ1 + γ1γ4

= (σ3 ⊗ σ0)(σ2 ⊗ σ1) + (σ2 ⊗ σ1)(σ3 ⊗ σ0)
= (σ3σ2)⊗ σ1 + (σ2σ3)⊗ σ1

= (σ3σ2 + σ2σ3)⊗ σ1 = 04

where 04 is the 4 × 4 zero matrix. Similarly we find [γ4, γ2]+ = [γ4, γ3]+ = 04.
♣

Example. We define the matrices

s+ :=
(

0 1
0 0

)
, s− :=

(
0 0
1 0

)
and

sj,+ := I2 ⊗ . . .⊗ I2 ⊗ s+ ⊗ I2 ⊗ . . .⊗ I2

sj,− := I2 ⊗ . . .⊗ I2 ⊗ s− ⊗ I2 ⊗ . . .⊗ I2

where s± is at the j-th position and there are n Kronecker products. Let

Pj := sj,+sj,−.

We have

s+s− =
(

1 0
0 0

)
with (s+s−)2 = s+s− and (s+s−)∗ = s+s− so that s+s− is a projection matrix.
Thus

Pj = I2 ⊗ . . .⊗ I2 ⊗
(

1 0
0 0

)
⊗ I2 ⊗ . . .⊗ I2.

Since I2
2 = I∗2 = I2 it follows that P 2

j = Pj and P ∗j = Pj so that Pj is a 2n × 2n

projection matrix. ♣

Example. Let σ1, σ2, σ3 be the Pauli spin matrices. We define

R := σ1 ⊗ σ1 + σ2 ⊗ σ2 + σ3 ⊗ σ3.

Since tr(σ1) = tr(σ2) = tr(σ3) = 0 and tr(A ⊗ B) = tr(A)tr(B) we see that
tr(R) = 0 so that λ1 + λ2 + λ3 + λ4 = 0 where λj are the eigenvalues of R. We
see that

R2 = (σ1⊗σ1)2+(σ2⊗σ2)2+(σ3⊗σ3)2−2(σ1⊗σ1+σ2⊗σ2+σ3⊗σ3) = 3I4−2R.
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We may use this to find the eigenvalues of R. From the eigenvalue equation we
obtain

R2u = λRu = λ2u

so that
(3I4 − 2R)u = (3− 2λ)u = λ2u.

So (λ2 +2λ− 3)u = 0. Thus λ+ = 1 and λ− = −3. Since λ1 +λ2 +λ3 +λ4 = 0
we see that λ1,2,3 = 1 and λ4 = −3. ♣

Example. We find the vectors u ∈ C16 such that

(I2 ⊗ σ3 ⊗ σ1 ⊗ σ3)u = u, (σ3 ⊗ σ0 ⊗ σ3 ⊗ σ1)u = u,

(σ1 ⊗ σ3 ⊗ σ0 ⊗ σ3)u = u, (σ3 ⊗ σ1 ⊗ σ3 ⊗ σ0)u = u.

The vector u that satisfies these conditions is

u = [a
(
1 1 1−1 1 1−1 1 1−1 1 1−1 1 1 1

)
]T . ♣

Example. Let σ1, σ2, σ3 be the Pauli spin matrices. We define the 16 × 16
matrices

γ1 := σ2 ⊗ σ2 ⊗ σ2 ⊗ σ2, γ2 := σ0 ⊗ σ1 ⊗ σ2 ⊗ σ2

γ3 := σ0 ⊗ σ3 ⊗ σ2 ⊗ σ2, γ4 := σ1 ⊗ σ2 ⊗ σ0 ⊗ σ2

γ5 := σ3 ⊗ σ2 ⊗ σ0 ⊗ σ2, γ6 := σ2 ⊗ σ0 ⊗ σ1 ⊗ σ2

γ7 := σ2 ⊗ σ0 ⊗ σ3 ⊗ σ2, γ8 := σ0 ⊗ σ0 ⊗ σ0 ⊗ σ1

and
cj :=

1
2
(γ2j + iγ2j−1), c†j :=

1
2
(γ2j − iγ2j−1)

for j = 1, 2, 3, 4. We find the anticommutators

[cj , ck]+ = [c†j , c
†
k]+ = 016 and [cj , c

†
k]+ = δjkI16.

These satisfy the Fermi anticommutation relations (which will be discussed
further in chapter 4.4) so that c†j and cj are Fermi creation and annihilation
operators. ♣

The vec operator converts any matrix into a column vector. Let A be a matrix
with n columns, each represented by the column vector an. I.e.

A =
(
a1 a2 · · · an

)
.

The vec operator forms a column vector by stacking each of the columns in A
on top of each other. That is to say

vec(A) =


a1

a2

...
an

 .
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A useful relationship is

vec(ABC) = (CT ⊗A)vec(B).

From this it follows

vec(AB) = (I ⊗A)vec(B) = (BT ⊗ I)vec(A).

These are useful identities for solving matrix equations such as

AX +XB = C

where X is unknown. This problem becomes

vec(C) = vec(AX) + vec(XB)
= (I ⊗A)vec(X) + (BT ⊗ I)vec(X)
= [I ⊗A+BT ⊗ I]vec(X)

and now we can easily solve forX using elementary methods from linear algebra,
converting back to matrix form at the end.

Example. Let A be an n× n matrix over C. We are able to find a matrix Tn
such that

Tnvec(A) = tr(A)

is true, where tr(A) is the trace of the matrix. We note that

vec(A) :=
n∑
j=1

ej,n ⊗ (Aej,n) = (In ⊗A)
n∑
j=1

ej,n ⊗ ej,n

and

tr(A) :=
n∑
j=1

eTj,nAej,n

where ej,n denote the standard basis in Cn. We find that Tn = (vec(In))T . ♣

2.3 Group Theory

We discuss the mathematical field of group theory, starting with fundamental
concepts and later introducing specific applications of group theory with focus
on quantum theory and computing. Some authors who have studied group
theory include Gallian [38], Ludwig and Falter [76], Miller [81], Milne [82],
Nechaev et al [84], Planat and Jorrand [91], Steeb [120], Steeb and Hardy [124],
Weyl [151], Wigner [153]. Group theory is the study of the mathematical entity
known as a group.
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2.3.1 Definitions

Consider a set G (not necessarily countable) together with a binary operation
◦ that assigns to each a, b ∈ G an element a ◦ b ∈ G. We say the set is closed
under the operation. G is a group under the operation if the following axioms
hold

1. (a ◦ b) ◦ c = a ◦ (b ◦ c). (Associativity)

2. There exists an element e ∈ G such that a ◦ e = e ◦ a = a for all a ∈ G.
This is known as the neutral or identity element of the group.

3. For every a ∈ G there exists an element a′ ∈ G such that aa′ = a′a = e.
This is known as the inverse of a.

Depending on the binary operation given a group may be multiplicative or
additive. We generalise the operation to multiplication and simplify discussion
by denoting a◦b as ab, the additive case must however still be kept in mind. Some
consequences of the axioms are that the identity element and inverse elements
are unique. We indicate the unique inverse of an element a by a−1. Another
consequence is that the cancellation laws hold so that ab = ac ⇒ b = c and
ba = ca ⇒ b = c. For group elements a, b ∈ G we have (ab)−1 = b−1a−1. We
may summarise the interaction between elements in an operation table known
as a Cayley table.

When ab = ba we say the elements commute or are commutative. If ab =
ba for all elements in the group we say the group is commutative or Abelian.
The Cayley table of an Abelian group is symmetrical about the diagonal. If
G is a finite group such that the powers of one element generate the group
(G = {a, a2, . . . , an = e}) we say the group is cyclic (denoted by 〈a〉) and it is
generated by a. For an element a ∈ G define

an =

 aa · · · a n > 0 (n copies of a)
e n = 0

a−1a−1 · · · a−1 n < 0 (|n| copies of a−1)
.

The order of a group is denoted by |G| and is the number of elements in the
group. The order of group may be finite or infinite. We also talk about the
cardinality of the group. The order of an element g ∈ G denoted by |g| is the
least number of times the element must be multiplied by itself to obtain the
identity element. Symbolically gn = e implies that |g| = n.

A fundamental (non-Abelian) group that may be considered is the general linear
group of n× n matrices over a field F where F is in general taken to be C or R.
We denote this by GL(n,F) and this group consists of all n×n matrices over F
with non-zero determinant where the group operation is matrix multiplication.
Since the determinant of all matrices in the group is non-zero each element will
have an inverse element and the identity element is the n × n identity matrix
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denoted by In. Matrix groups are used extensively in this dissertation since we
focus on the matrix mechanics formulation of quantum theory.

If a subset H of a group G is itself a group under the operation of G, we say H
is a subgroup of G. A subgroup is said to be proper if it is not the entire group,
in other words H 6= G or H ⊂ G. The subgroup consisting only of the identity
element is said to be the trivial subgroup. As an example the set consisting of
all n× n matrices over F (where F is again taken to be C or R in general) with
determinant equal to 1 is a subgroup of GL(n,F). This subgroup is known as
the special linear group of n× n matrices over F and is denoted by SL(n,F).

Let G be a group and H a subgroup. We define the left and right cosets by

gH := {gh : h ∈ H}, Hg := {hg : h ∈ H}.

If for all g ∈ G the cosets are equal we say the subgroup H is a normal or
invariant subgroup of G. This is denoted by H / G.

The center of a group G denoted by Z(G) is the subset of elements in G that
commute with all other elements in G, i.e.

Z(G) := {a ∈ G | ax = xa ∀ x ∈ G}.

It can be shown that the center of G is a subgroup of G.

Consider a fixed element g in a group G. The centralizer of g in G denoted by
C(g) is the set of all elements in G that commute with g, i.e.

C(g) := {x ∈ G | xg = gx}.

It can be shown that for each element g in a group G the centralizer of g is a
subgroup of G.

A useful concept to consider is that of permutations where we may consider a
permutation to be a mapping or function from a set A to itself. We may take
this further and consider groups of permutations. Formally stated, given any
set A and a collection G of bijections from A into itself that is closed under
compositions and inverses. These bijections are known as permutations which
simply put is a rearrangement of the objects in A. We say that G is a group of
permutations acting on A.

An n×n binary matrix is called a permutation matrix if every row and column
has exactly one 1 and 0s elsewhere. We may also see this as an n × n identity
matrix where the rows have been permuted to create a new matrix. These
matrices form a group under matrix multiplication. A permutation matrix is
nonsingular with det(Pj) = ±1 so that an inverse always exists. We see that
PjP

T
j = In so that P−1

j = PTj where j = 0, 1, . . . , n!− 1. For any n there are n!
permutations in the group. As an example for n = 3 there are the 6 permutation
matrices

P0 =

1 0 0
0 1 0
0 0 1

 , P1 =

1 0 0
0 0 1
0 1 0

 , P2 =

0 1 0
1 0 0
0 0 1

 ,
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P3 =

0 1 0
0 0 1
1 0 0

 , P4 =

0 0 1
1 0 0
0 1 0

 , P5 =

0 0 1
0 1 0
1 0 0

 .

Program 2a in the Computer algebra implementation chapter generates permu-
tation matrices for any given value of n.

It may be of interest to determine whether or not two elements in a group are
equivalent to each other. Given a group G we say two elements (a, b ∈ G) are
equivalent if there exists u ∈ G such that u−1au = b. We denote this by a ∼ b
This does satisfy an equivalence relation

1. Reflexivity:
a ∼ a ∀ a ∈ G where u = e.

2. Symmetry:
a ∼ b then there exists u ∈ G such that u−1au = b
⇒ a = ubu−1 = (u−1)−1b(u−1) = v−1bv where v = u−1 ∈ G
⇒ b ∼ a.

3. Transitivity:
a ∼ b and b ∼ c then there exist u, v ∈ G such that u−1au = b and
v−1bv = c
⇒ (v−1u−1)a(uv) = c or (uv)−1a(uv) = w−1aw = c where w = uv ∈ G
⇒ a ∼ c.

The subset of G consisting of elements which are equivalent to each other are
called the equivalence classes of G. We achieve some simplification as a class
may be treated as a single object. Distinction between members is trivial.

A homomorphism φ from a group (G1, ◦) to a group (G2, ∗) is a one-to-one
mapping from G1 to G2 that preserves the group operation. Symbolically

φ(a ◦ b) = φ(a) ∗ φ(b).

If the mapping is onto (invertible) we call it an isomorphism and say the groups
are isomorphic. Symbolically we may write G1 ≈ G2. In the case of an isomor-
phism we may conclude that the order of the groups is the same.

The kernel of a homomorphism φ from G1 to a group with identity e2 is the set

Ker(φ) := {x ∈ G1 | φ(x) = e2}.

In words the kernel of a homomorphism is the set of elements in G1 that are
mapped to the identity element in G2.

Two useful group isomorphisms are automorphisms and inner automorphisms
induced by a group element. Formally an isomorphism from a group G onto
itself is called an automorphism of G. For a ∈ G the function φa(x) = axa−1

for all x ∈ G is the inner automorphism of G induced by a. The sets consisting
of these isomorphisms are groups under function composition.
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2.3.2 Applications

Pauli Group and Clifford Group

Two fundamental groups in quantum theory are the Pauli and Clifford groups
and these have been studied by authors such as Dehaene and De Moor [26], Durt
[28], Planat and Solé [92], Thas [142] amongst others. The Pauli spin matrices
are given by

σ1 =
(

0 1
1 0

)
, σ2 =

(
0−i
i 0

)
, σ3 =

(
1 0
0−1

)
.

These matrices are unitary and hermitian and may also be denoted by σx, σy,
σz, respectively. They are elements of the Lie group U(2). Sometimes the 2× 2
identity matrix I2 is included as a fourth Pauli matrix and may be referred to as
σ0. The Pauli matrices describe the spin of a system where this is a fundamental
concept in quantum theory. The matrices sj := σj/2 where j = 1, 2, 3 describe
particles with spin 1/2, i.e. the eigenvalues of the matrices sj are ±1/2.

The Pauli group P1 is defined as

P1 := {±I2,±iI2,±σ1,±iσ1,±σ2,±iσ2,±σ3,±iσ3}

where the group operation is matrix multiplication. We say that this group
operates on a single qubit . The group is not Abelian, the order is 16 and the
identity element is obviously the identity matrix. A subgroup of P1 with 8
elements is given by

{±I2,±σ1,±iσ2,±σ3}.

We may extend the Pauli group to 2n × 2n matrices acting on n-qubits. The
group Pn of 2n × 2n matrices is defined to consist of all n-fold tensor prod-
ucts of Pauli matrices and the multiplicative factors of ±1,±i are included.
Symbolically

Pn := { I2, σ1, σ2, σ3} ⊗n ⊗ { ±1, ±i}.

The order of the n-qubit Pauli group is 22(n+1) and it is generated by the Pauli
matrices. Let S be a subgroup of the Pauli group Pn with S = {Sj} and VS
the n-qubit subspace spanned by the states {|ψk〉} such that

Sj |ψk〉 = |ψk〉 for all j.

Then we say that S is the stabilizer of the subspace VS and the states |ψk〉 are
called stabilizer states.

The Clifford and Pauli groups are closely related. The n-qubit Clifford group
Cn is the normalizer of the Pauli group. That is to say a 2n×2n unitary matrix
U is an element of the Clifford group if and only if

UMU∗ ∈ Pn for each M ∈ Pn.
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One may say that the Clifford group is the group of all matrices that leave the
Pauli group invariant under conjugation. The Clifford group is the normalizer
of the Pauli group in U(2n) where this is the group of all 2n × 2n unitary
matrices. C is defined by conjugation so that the overall phase of the unitary
matrix is irrelevant. Both the Pauli and Clifford groups play a large role in error
correction in quantum computing. Consider the matrix

UH =
1√
2

(
1 1
1−1

)
=

1√
2
(σ1 + σ3) = U∗

H .

This is known as the Hadamard gate or the Walsh-Hadamard transform and
plays a role in quantum computing. It is easily shown that this gate is an
element of C1.

Finite Heisenberg Group

We now introduce the finite Heisenberg group, also known as the Heisenberg-
Pauli group, where this has been studied by authors such as Kibler [63], Korbelář
and Tolar [68], Vourdas [148] amongst others. This group plays an important
role in quantum mechanics as the elements of this group provide some basic
observables in finite dimensional Hilbert spaces. Let n be a positive integer.
We define ωn := e2iπ/n ∈ C and we let Qn and Pn denote the generalized Pauli
matrices

Qn := diag(1, ωn, ω2
n, . . . , ω

n−1
n ) ∈ GL(n,C)

(Pn)j,k := δj,k−1, j, k ∈ Zn, Pn ∈ GL(n,C).

The subgroup of unitary matrices in the Lie group GL(n,C) generated by Qn
and Pn defined by

Πn :=
{
ωjnQ

k
nP

`
n | j, k, ` ∈ {0, 1, . . . , n− 1}

}
is called the finite Heisenberg group. General properties of this group are

(a) The order of Πn is n3.

(b) The center of Πn is given by{
ωjnIn | j ∈ {0, 1, . . . , n− 1}

}
.

(c) PnQn = ωnQnPn.

Example. Let n = 2. We find the finite Heisenberg group

Π2 =

{(
1 0
0 1

)
,

(
0 1
1 0

)
,

(
1 0
0−1

)
,

(
−1 0
0 −1

)
,

(
−1 0
0 1

)
,

(
0 −1
−1 0

)
,

(
0 1
−1 0

)
,

(
0−1
1 0

)}
.
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Program 3 finding the finite dimensional Heisenberg group is provided in the
Computer algebra implementation chapter. ♣

Braid Group

The braid group has been studied by authors such as Jacak et al [57], Kassel
and Turaev [59], Georgiev [41], Manfredini et al [77], Nechaev et al [84], Rowell
[104]. The braid group Bn of n strings has n− 1 generators

{σ1, σ2, . . . , σn−1}

with the relations

σiσi+1σi = σi+1σiσi+1 (1 ≤ i < n− 1)
σiσj = σjσi (|i− j| ≥ 2)
σiσ

−1
i = σ−1

i σi = e

Figure 2.1: Graphical illustration of braids

Consider n strings oriented vertically from a lower to an upper bar. The least
number of strings required to make a closed braid representation of a link n is
called the braid index , where a link is a collection of knots which do not intersect
but which may be linked together. Mathematically a knot is an embedding of
a circle in 3-dimensional Euclidean space considered up to continuous isotopies.
A general n-braid is constructed by iteratively applying the σi operator which
switches the lower endpoints of the ith and (i+ 1)th strings keeping the upper
endpoints fixed. The ith string is brought over the (i + 1)th string. If the ith
string passes below the (i + 1)th string it is denoted by σ−1

i . Any n-braid can
be expressed as a braid word . As an example σ1σ2σ3σ

−1
2 σ1 is a braid word in

B4.

Example. Consider the braid relation

(R⊗ I2)(I2 ⊗R)(R⊗ I2) = (I2 ⊗R)(R⊗ I2)(I2 ⊗R)

where R is a 4× 4 matrix and I2 is the 2× 2 identity matrix. This is known as
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the Yang-Baxter equation. We see that the Bell matrix

B :=
1√
2


1 0 0 1
0 1−1 0
0 1 1 0
−1 0 0 1


satisfies this equality. Let

R :=


0 0 0 a
0 b 0 0
0 0 c 0
d 0 0 0


the equality is satisfied when b = c. Program 4 which tests the equation is
provided in the Computer algebra implementation chapter. ♣

2.4 Lie Groups and Lie Algebras

2.4.1 Definitions

Lie groups and Lie algebras have been studied by authors such as Belinfante
and Kolman [7], de Azcárraga and Izquierdo[24], Fuchs [37], Pressley [94], Steeb
and Hardy [124], Vilenkin and Klimyk [145]. An r parameter Lie group is an
r dimensional smooth manifold that is also a group with smooth multiplication
and inversion maps. An important example of a Lie group is the general linear
group GL(n,F) with r = n2. Important Lie groups are

(a) Special linear group SL(n,F) ⊂ GL(n,F) with detA = 1 and r = n2 − 1.

(b) Orthogonal group O(n) ⊂ GL(n,R) with ATA = In and r = n(n− 1)/2.

(c) Unitary group U(n) ⊂ GL(n,C) with A∗A = In and r = n2.

(d) Symplectic group Sp(2n) ⊂ GL(2n,R) with

ATJA = J =
(

0n −In
In 0n

)
and r = n(2n+ 1).

A real Lie algebra is a real vector space together with a bilinear map
[, ] : L× L → L caled the Lie bracket . For the remainer of this dissertation we
use the definition [a, b] := ab−ba. The following identities hold for all a, b, c ∈ L

(a) [a, a] = 0.

(b) [a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0 where this is the Jacobi identity .
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(c) [b, a] = −[a, b].

If A is an associative algebra over a field F with the definition

[a, b] := ab− ba, a, b ∈ A

then A acquires the structure of a Lie algebra.

2.4.2 Applications

The n× n unitary matrices U form the compact Lie group U(n) where unitary
matrices are such that U∗U = UU∗ = In and so U∗ = U−1. Consider a
quantum system that is described by a self-adjoint Hamilton operator Ĥ acting
on a Hilbert space H. We consider the finite dimensional Hilbert space Cn and
hermitian operators. It is of interest to us to find the n × n unitary matrices
such that

U∗ĤU = Ĥ.

Note that if
U∗ĤU = Ĥ and V ∗ĤV = Ĥ

then
(UV )∗Ĥ(UV ) = Ĥ

and so we see that the set of unitary matrices that keep Ĥ invariant form a
group under matrix multiplication.

A finite subgroup of U(n) are the n× n permutation matrices where there are
n! of these. For a given hermitian matrix Ĥ we want to find all permutation
matrices P such that PT ĤP = Ĥ where we note that PT = P−1. We are able
to use the permutation matrices to construct projection matrices to decompose
the Hilbert space into invariant sub-Hilbert spaces. If the permutation matrix
P satisfies P 2 = In then

Π1 :=
1
2
(In + P ), Π2 :=

1
2
(In − P )

are projection matrices which can be utilized to decompose the Hilbert space
Cn into invariant subspaces.

Example. Let c†j , cj (j = 1, 2, 3) be Fermi creation and annihilation operators
(where these will be discussed in further detail in chapter 4.4). Consider the
Hamilton operator

Ĥ = t(c†1c2 + c†1c3 + c†2c1 + c†2c3 + c†3c1 + c†3c2) + k1c
†
1c1 + k2c

†
2c2 + k3c

†
3c3

and the number operator

N̂ := c†1c1 + c†2c2 + c†3c3.
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Then [H, N̂ ] = 0. Given a basis with two Fermi particles

c†1c
†
2 |0〉 , c†1c

†
3 |0〉 , c

†
2c
†
3 |0〉 .

We find the matrix representation of Ĥ

Ĥ =

k1 + k2 t −t
t k1 + k3 t
−t t k2 + k3

 .

For the case k1 6= k2, k1 6= k3, k2 6= k3 no symmetry is found. Similarly for
k1 6= k2, k1 6= k3, k2 = k3 no symmetry is found. For k = k1 = k2 − k3 the
permutation matrix

P =

0 0 1
0 1 0
1 0 0


is obtained. Thus the projection matrices Π1 and Π2 defined above may be used
to decompose the Hilbert space C3 into invariant subspaces. We find

Π1 =
1
2

1 0 1
0 2 0
1 0 1

 , Π2 =
1
2

 1 0−1
0 0 0
−1 0 1


with

Π1

v1v2
v3

 =
1
2

v1 + v3
2v2

v1 + v3

 , Π2

v1v2
v3

 =
1
2

 v1 − v3
0

−v1 + v3


where v is an arbitrary vector. So we see that Π1 and Π2 project into the
subspaces spanned by the normalized vectors 1√

2

1
0
1

 ,

0
1
0


 1√

2

 1
0
−1

 . ♣



Chapter 3

Quantum Theory

3.1 Postulates of Quantum Mechanics

We require a complete description of quantum theory and strive toward a theory
that is consistent. There are two main formulations of quantum theory namely
matrix mechanics that was developed by Heisenberg and his colleagues and wave
mechanics that was developed by Schrödinger and his colleagues. The main
difference between classical and quantum mechanics is that the quantum theory
is a probabilistic description of nature. These differences between quantum and
classical theory may be better understood when considering the postulates of
quantum mechanics. These postulates may be formulated from different view-
points (in specific we may consider them from a matrix mechanics view or from a
wave function view) and with the focus placed on different aspects (for instance
the focus will be different if we consider pure mechanics compared to if we
considered the computing aspect of quantum theory). We are mostly interested
in the matrix description of quantum theory. Many authors such as Dirac
[27], Eisberg and Resnick [31], Flügge [34], Gasiorowicz [40], Glimm and Jaffe
[43], Healey [48], Landau and Lifshitz [71], Messiah [80], Prugovečki [96], Schiff
[107], Sewell [110], Shankar [112], Steeb [120], [123], Steeb and Hardy [124], ter
Haar [140], von Neumann [146], Weyl [151], Wigner [153] have studied quantum
theory. The standard postulates of quantum mechanics are given below.

Postulate 1: Let S denote a quantum system. The pure states of S may be
described by normalized vectors |ψ〉 which are elements of some Hilbert space
H. We may visualize pure states as rays, in other words as unit vectors with
arbitrary phase. This idea of representing a pure state by a ray leads to the
probability interpretation of quantum mechanics. If we consider a physical
system in state |ψ〉 then the probability of it being in the state |χ〉 is given by

p = | 〈ψ|χ〉 |2.

24
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Since the states are normalized in H we know that 0 ≤ p ≤ 1 as required from
probability theory. The phase of |ψ〉 has no physical significance but the relative
phase of vectors does have significance.

Example. Consider the Hilbert space H = C2 and the normalized states

|ψ〉 :=
1√
2

(
eiφ1

eiφ2

)
and |χ〉 :=

1√
2

(
1
1

)
.

The probability p of the system to be in state |χ〉 is given by

p(φ1, φ2) = | 〈ψ|χ〉 |2 =
1
2
(1 + cos(φ1 − φ2)).

p takes the maximum at 1 for φ1 = φ2 and the minimum at 0 for φ1 − φ2 = π.
♣

Postulate 2: Quantum states evolve in time according to the Schrödinger
equation. We now introduce this equation for time independent Ĥ as it is used
in matrix mechanics

i~
∂ |ψ〉
∂t

= Ĥ |ψ〉 .

Ĥ is a self-adjoint operator that specifies the dynamics of the system. The
solution to this partial differential equation is given by

|ψ(t)〉 = exp(−iĤt/~) |ψ(0)〉

where |ψ(0)〉 is the initial state of the system and is normalized so that
〈ψ(0)|ψ(0)〉 = 1. We may simplify the expression to

|ψ(t)〉 = Û(t) |ψ(0)〉

where Û(t) = exp(−iĤt/~) is a unitary operator.

Example. Consider the Hamilton operator

Ĥ := ~ωσ1 = ~ω
(

0 1
1 0

)
where ω is the constant frequency. Then we find

exp(−iĤt/~) =
(

cosh(−iωt) sinh(−iωt)
sinh(−iωt) cosh(−iωt)

)
=
(

cos(ωt) −isin(ωt)
−isin(ωt) cos(ωt)

)
.

Let

|ψ(0)〉 =
(

0
1

)
be the initial state. Then

|ψ(t)〉 =
(
−isin(ωt)
cos(ωt)

)
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and the probability to find the state |ψ(t)〉 in the initial state |ψ(0)〉 is

p(t) = | 〈ψ(t)|ψ(0)〉 |2 = cos2(ωt). ♣

Example. Consider the Hamilton operator

Ĥ = ~ω(σ1 ⊗ σ3 ⊗ σ1)

in the Hilbert space C8 where σ1 and σ3 are Pauli spin operators and ω is the
constant frequency. We find

exp(−iĤt/~) = cos(ωt)I8 − isin(ωt)(σ1 ⊗ σ3 ⊗ σ1).

Let

|ψ(0)〉 =
(

1
0

)
⊗
(

0
1

)
⊗
(

1
0

)
be the initial state. Then

|ψ(t)〉 = cos(ωt)
(

1
0

)
⊗
(

0
1

)
⊗
(

1
0

)
− isin(ωt)

(
0
1

)
⊗
(

0
−1

)
⊗
(

0
1

)
.

The probability to find the state |ψ(t)〉 in the initial state |ψ(0)〉 is

p(t) = | 〈ψ(t)|ψ(0)〉 |2 = cos2(ωt). ♣

Postulate 3: Any quantity in a quantum system that can be measured or
observed is known as an observable. Every observable a is associated with a
self-adjoint operator Â. For finite dimensional Hilbert spaces observables are
represented by hermitian matrices. The only possible outcomes of a measure-
ment on the observable a are the eigenvalues of Â. Let λj represent the (real)
eigenvalues of Â and |φj〉 represent the corresponding normalized eigenvectors.

Â |φj〉 = λj |φj〉 and 〈φj , φk〉 = δj,k

must hold.

Example. Consider the linear hermitian operator

Â =
~ω√

2

0 1 0
1 0 1
0 1 0

 = ωSx.

The possible outcomes of a measurement on this observable are −~ω, ~ω, 0 with
corresponding (normalized) eigenvectors

1
2

 1
−
√

2
1

 ,
1
2

 1√
2

1

 ,
1√
2

 1
0
−1

 . ♣
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Postulate 4: Consider a quantum state described by the normalized vector |ψ〉.
The measurement of observable a will yield an outcome λj with probability

pj = | 〈φj |ψ〉 |2

where 〈φj |ψ〉 ∈ C and 0 ≤ pj ≤ 1 must hold.

Example. Consider a quantum system described by the state

|ψ〉 =
1√
3

1
1
1

 .

From the previous example the measurement of observable a will yield an out-
come of −~ω with probability p1 = 3−2

√
2

6 , an outcome of ~ω with probability
p2 = 3+2

√
2

6 and an outcome of 0 with probability p3 = 0. 0 ≤ pj ≤ 1 and∑3
j=1 pj = 1 as required. ♣

Postulate 5: This is also known as the projection postulate. Immediately after
measurement on a yields the value λj the state of the system is described by
|ψj〉. The type of time evolution implied here is incompatible with postulate 2
and so we replace postulate 4 with the weaker postulate 4’.

Postulate 4’: If a quantum system is described by the state |ψj〉 then a mea-
surement on a will yield the outcome λj . This postulate eliminates the need for
postulate 5.

Postulate 6: Observables in quantum mechanics are described by self-adjoint
matrices (operators) that act on the Hilbert space H. The expected value (av-
erage in a continuous system) of observable a with the corresponding operator
A in the state |ψ〉 is given by

Eψ(A) := 〈ψ,Aψ〉

where 〈., .〉 is the inner product defined on H.

When considering the Hilbert space of n× n matrices over C the inner product
is defined by 〈A,B〉 := tr(AB∗), where B∗ is the conjugate transpose of B. We
see that

Eψ(Â) = 〈ψ, Âψ〉 = tr(ψ(Âψ)∗) = tr(ψψ∗Â).

Example. Consider Â = ωSx from above and the state |ψ〉 = 1√
3

(
1 1 1

)T . We
see

Eψ(Â) =
2
√

2~ω
3

. ♣

Postulate 7: This postulate relates to the evolution of a quantum system.
There are two standard descriptions that may be considered namely the
Schrödinger picture and the Heisenberg picture. This postulate ensures that the
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probability of finding a system in a given state is independent of the time at
which the experiment is performed. That is to say

| 〈ψ, χ〉 | = | 〈ψ(t), χ(t)〉 |.

In the Schrödinger picture the states |ψ〉 ∈ H evolve in time according to the
Schrödinger equation introduced previously and observables do not change with
time. The expectation value is given by

Eψ(t)(Â) = 〈ψ(t), Âψ(t)〉

and |ψ(t)〉 is a time-dependent state. In the Heisenberg picture the states remain
fixed in time and the observables evolve according to the automorphism group

Â→ Â(t) = exp(itĤ/~)Âexp(−itĤ/~) = Û(t)∗ÂÛ(t)

where we assume that the Hamilton operator Ĥ does not depend explicitly on
time. The Heisenberg equation of motion is given by the differential equation

−i~dÂ(t)
dt

= [Ĥ, Â(t)].

The solution to this is given by

Â(t) =
∞∑
n=0

(it/~)n

n!
[Ĥ, [Ĥ, . . . , [Ĥ, Â], . . . ]] = exp(itĤ/~)Âexp(−itĤ/~).

If [Ĥ, Â] = 0 then Â is called a constant of motion or a conserved quantity . The
relation between the Heisenberg and Schrödinger pictures is given by

〈ψ(t), Âψ(t)〉 = 〈ψ, Â(t)ψ〉

where ψ = ψ(t = 0).

Example. Let Â, Ĥ be n × n hermitian matrices, where Ĥ plays the role
of the Hamilton operator. Consider the Heisenberg equation of motion with
Â = Â(t = 0) = Â(0) and the solution of the initial value problem

Â(t) = eiĤt/~Âe−iĤt/~.

Let Ej(j = 1, 2, . . . , n2) be an orthonormal basis in the Hilbert space H of the
n× n matrices with scalar product

〈X,Y 〉 := tr(XY ∗), with X,Y ∈ H.

Now Â(t) can be expanded using the orthonormal basis

Â(t) =
n2∑
j=1

cj(t)Ej
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and Ĥ can be expanded

Ĥ =
n2∑
j=1

hjEj .

We wish to find the time evolution for the coefficients cj(t) where
j = 1, 2, . . . , n2. We have

dÂ(t)
dt

=
n2∑
j=1

dcj(t)
dt

Ej .

Substituting we get

n2∑
j=1

dcj(t)
dt

Ej =
i

~

[
n2∑
k=1

hkEk,
n2∑
j=1

cj(t)Ej

]
=
i

~

n2∑
k=1

n2∑
j=1

hkcj(t)[Ek, Ej ].

We now take the scalar product on both sides of the equation with E`. This
gives

n2∑
j=1

dcj(t)
dt

tr(EjE∗
` ) =

i

~

n2∑
k,j=1

hkcj(t)tr([Ek, Ej ]E∗
` )

where ` = 1, 2, . . . , n2. Since tr(EjE∗
` ) = δj` we obtain

dc`(t)
dt

=
i

~

n2∑
k,j=1

hkcj(t)tr([Ek, Ej ]E∗
` ) =

i

~

n2∑
k,j=1

hkcj(t)tr(EkEjE∗
j − EjEkE

∗
` ).

♣

Postulate 8: A quantum mechanical state is symmetric under the permuta-
tion of identical bosons and antisymmetric under the permutation of identical
fermions. Fermi and Bose operators will be introduced in chapter 4.4.

3.2 Uncertainty Relation

Let Â and B̂ be self-adjoint operators in a Hilbert space H and let |ψ〉 be a
normalized state in H. The uncertainty relation (Robertson [101], Merzbacher
[79], Lakshmibala [70]) is given by

(∆Â)(∆B̂) ≥ 1
2
| 〈[Â, B̂]〉 |

where ∆Â is the standard deviation of Â described by |ψ〉

∆Â :=
√
〈Â2〉 − 〈Â〉

2
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with 〈Â〉 := 〈ψ|Â|ψ〉 being the expected value of Â. A stronger bound is given
by

(∆Â)2(∆B̂)2 ≥ 1
4
| 〈[Â, B̂]〉 |+ 1

4
| 〈[Â− 〈Â〉 I, B̂ − 〈B̂〉 I]+〉 |2

where [ , ]+ denotes the anticommutator. When equality holds in the first in-
equality we say |ψ〉 is an intelligent state and when equality holds in the stronger
inequality we say |ψ〉 is a generalized intelligent state. There is a connection
between stabilizer states and intelligent states (Steeb [134]).

Example. Let Â = σ1 and B̂ = σ3 where σ1 and σ3 are the Pauli spin matrices.
Consider

|ψ1〉 =
1√
2

(
1
1

)
, |ψ2〉 =

1√
2

(
1
−1

)
where these vectors form the Hadamard basis and

|ψ3〉 =
1√
2

(
1
i

)
, |ψ4〉 =

1√
2

(
1
−i

)
.

We see that |ψ1〉 and |ψ2〉 are generalized intelligent states. We see that |ψ3〉 and
|ψ4〉 are intelligent states with an equality in the weaker relation and inequal-
ity in the stronger relation. Program 5 is provided in the Computer algebra
implementation chapter which evaluates these inequalities. ♣

Example. Consider the case where Â = σ1 ⊗ σ1 and B̂ = σ3 ⊗ σ3 where σ1

and σ3 are the Pauli spin matrices. We consider the states from the previous
example with

|ψ〉 := |ψi〉 ⊗ |ψj〉 with i, j = 1, 2, 3, 4.

We see that |ψ1〉 ⊗ |ψ1〉, |ψ1〉 ⊗ |ψ2〉, |ψ2〉 ⊗ |ψ1〉, |ψ2〉 ⊗ |ψ2〉 are generalized
intelligent states, |ψ3〉 ⊗ |ψ3〉, |ψ3〉 ⊗ |ψ4〉, |ψ4〉 ⊗ |ψ3〉, |ψ4〉 ⊗ |ψ4〉 are intelligent
states and all other combinations of |ψ〉 satisfy both inequalities but neither
equalities. ♣



Chapter 4

Matrix Properties

4.1 Introduction

The simplest quantum mechanical system known is the single qubit (quantum
bit) which is a simple 2-state system. Physically this is a free particle of spin-1/2
where we introduce the concept of spin later in the dissertation. The formulation
of quantum mechanics that we are interested in is the matrix formulation (or
matrix mechanics) formulated by Heisenberg and his colleagues. As the name
implies this formulation depends on matrices and as such we introduce some
basic mathematical concepts before continuing with the discussion. We consider
only finite dimensional Hilbert spaces. Thus the linear operators we consider
presently are given by n× n matrices over C.

4.2 Eigenvalue Problem

As we have seen we make extensive use of eigenvalues and eigenvectors in the
study of quantum computing. To formally define the eigenvalue problem let A
be an n × n matrix and λ a scalar. We say that λ is the eigenvalue of A if a
nonzero vector x exists such that

Ax = λx.

x is the corresponding eigenvector to λ. This is equivalent to the system Ax−
λx = 0 which may be written as

(A− λIn)x = 0

where In is the n × n identity matrix. The system has nontrivial solutions if
and only if

det(A− λIn) = 0

31
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holds. This is known as the characteristic equation of A and the resultant
polynomial is known as the characteristic polynomial . The set of all eigenvalues
of A is called the spectrum of A.

Example. Let n be odd and n ≥ 3. Consider the matrices

A3 =

 1√
2

0 1√
2

0 1 0
1√
2

0− 1√
2

 ; A5 =


1√
2

0 0 0 1√
2

0 1√
2

0 1√
2

0
0 0 1 0 0
0 1√

2
0− 1√

2
0

1√
2

0 0 0 − 1√
2


and the general case

An =



1√
2

0 · · · 0 0 0 · · · 0 1√
2

0 1√
2
· · · 0 0 0 · · · 1√

2
0

...
... · · ·

...
...

... · · ·
...

...
0 0 · · · 1√

2
0 1√

2
· · · 0 0

0 0 · · · 0 1 0 · · · 0 0
0 0 · · · 1√

2
0− 1√

2
· · · 0 0

...
... · · ·

...
...

... · · ·
...

...
0 1√

2
· · · 0 0 0 · · · − 1√

2
0

1√
2

0 · · · 0 0 0 · · · 0 − 1√
2


.

We find the eigenvalues of A3 to be 1 (with a multiplicity of 2) and -1 with
corresponding (normalized) eigenvectors

1 :

0
1
0

 ,
1√

4− 2
√

2

 1
0√

2− 1


−1 :

1√
4 + 2

√
2

 1
0

−
√

2− 1

 .

We find the eigenvalues of A5 to be 1 (with multiplicity of 3) and -1 (with
multiplicity of 2) with corresponding (normalized) eigenvectors

1 :


0
0
1
0
0

 ,
1√

4− 2
√

2


1
0
0
0√

2− 1

 ,
1√

4− 2
√

2


0
1
0√

2− 1
0



−1 :
1√

4 + 2
√

2


1
0
0
0

−
√

2− 1

 ,
1√

4 + 2
√

2


0
1
0

−
√

2− 1
0

 .
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For the general caseAn we find the eigenvalues 1 (with multiplicity (n+1)/2) and
-1 (with multiplicity (n− 1)/2) with corresponding (normalized) eigenvectors

1 :



0
...
0
0
1
0
0
...
0


,

1√
4− 2

√
2



1
0
0
0
...
0
0
0√

2− 1


, . . . ,

1√
4− 2

√
2



0
...
0
1
0√

2− 1
0
...
0



−1 :
1√

4 + 2
√

2



1
0
0
0
...
0
0
0

−
√

2− 1


, . . . ,

1√
4 + 2

√
2



0
...
0
1
0

−
√

2− 1
0
...
0


. ♣

Some important properties of the eigenvalue problem that we use extensively
are

(a) The eigenvalues of hermitian matrices are real.

(b) The eigenvalues of unitary matrices have an absolute value of 1 and may be
written in the form eiφ.

(c) The spectral decomposition of a normal matrix A is given by

A =
n∑
j=1

λjxjx∗j

where the eigenvectors are normalized and pairwise orthogonal.

(d) The only possible eigenvalues of projection matrices are 0 and 1.

(e) The eigenvalues of permutation matrices lie on the complex unit circle and
are evenly distributed. This is as expected since permutation matrices are
a subgroup of the unitary matrices.

(f) The eigenvectors of two different eigenvalues are linearly independent.
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Example. Consider the Hamilton operator given by the 4× 4 diagonal matrix

Ĥ =


1 0 0 0
0 ε 0 0
0 0−ε 0
0 0 0 −1


where ε ≥ 0. Thus the eigenvalues are ±1, ±ε. For ε = 0 the eigenvalue 0 is
twice degenerate and the other eigenvalues are ±1. Besides the identity matrix
I4 we find the permutation matrix

P =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


such that PT ĤP = Ĥ. Thus we have level crossing for ε = 0. For ε = 1 we
have the eigenvalue +1 twice degenerate and the eigenvalue -1 twice degenerate,
thus we have level crossing in both cases. We find three permutation matrices
other than I4 that satisfy PT ĤP = Ĥ namely

P1 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , P2 =


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 , P3 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 .

Figure 4.1 illustrates the eigenvalues as a function of ε

Figure 4.1: Eigenvalues of Ĥ

Here we see the crossing at ε = 0 and ε = 1. For all other ε there are no other
permutation matrices with PT ĤP = Ĥ except the identity matrix. ♣
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In 2005 Kirillov et al [64], [65] and Seyranian et al [111] studied the unfolding of
eigenvalue surfaces of real symmetric and hermitian operators due to arbitrary
perturbations near diabolic points and the coupling of eigenvalues of complex
matrices at diabolic and exceptional points. In chapter 6 we discuss exceptional
and diabolic points in great detail but we now introduce the concepts briefly
and discuss the effect of these points on eigenvalues. At exceptional points both
eigenvalues and eigenvectors merge forming a Jordan block. At diabolic points
the eigenvalues coalesce while the corresponding eigenvectors remain linearly
independent. Graphically we may see a diabolic point as the apex of a cone
and an exceptional point as an inflection point. We may study these points for
hermitian and non-hermitian Hamilton operators.

Considering the eigenvalue problem introduced above we assume the given ma-
trix A has an eigenvalue λ0 of multiplicity 2. This double eigenvalue can have
one or two linearly independent eigenvectors which will determine the geomet-
ric multiplicity. Double eigenvalues appear at sets in parameter space whose
codimensions depend on the matrix type and whether the degeneracy is an ex-
ceptional point (EP) or a diabolic point (DP). The following table lists these
codimensions based on the results of von Neumann and Wigner [147] and Arnold
[1]

Matrix type Codimension of EP Codimension of DP
real symmetric DNE 2

real non-symmetric 1 3
hermitian DNE 3

complex symmetric 2 4
complex non-symmetric 2 6

Table 4.1: Codimensions of eigenvalue degeneracies (Seyranian et al [111])

where DNE means that it is non-existent or does not exist.

4.3 Normal, Unitary and Hermitian Matrices

A matrix is said to be normal if A∗A = AA∗ is true. It can be shown that
A is normal if and only if a unitary matrix U exists such that A = UDU∗

where D is a diagonal matrix. The entries of D are the eigenvalues of A and
the column vectors of U are eigenvectors of A. Hermitian, skew-hermitian and
unitary matrices are all normal.

If A is an n×n normal matrix with eigenvalues λj and orthonormal eigenvectors
{|xj〉} then A can be decomposed as

A =
n∑
j=1

λj |xj〉 〈xj |.
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This is the spectral decomposition of A.

We say a matrix is hermitian if K∗ = K, a matrix is skew-hermitian if K∗ =
−K. A property of hermitian matrices is that their eigenvalues are always real
and the eigenvectors of distinct eigenvalues are always orthogonal. A matrix is
unitary if UU∗ = U∗U = I where I is the identity matrix. This means that the
matrix U is always invertible with U−1 = U∗. If H is a hermitian matrix then
iH is skew-hermitian and exp(iH) is a unitary matrix.

Let H be an n×n hermitian matrix with eigenvalues λ1 . . . λn and correspond-
ing pairwise orthogonal normalized eigenvectors |x1〉 . . . |xn〉. We can write the
spectral decomposition

H =
n∑
j=1

λj |xj〉 〈xj |

as before. We define

P := In − |xj〉 〈xj | − |xk〉 〈xk|+ |xj〉 〈xk|+ |xk〉 〈xj | for j 6= k.

The condition on the eigenvalues of H so that PHP ∗ = H holds is λj = λk and
we see that P 2 = In

Given an n × n hermitian matrix H we can form a unitary matrix V via the
Cayley transform given by

V := (H − iIn)(H + iIn)−1.

Program 6 is included in the Computer algebra implementation chapter to eval-
uate the Cayley transform of a given matrix.

Example. Let

Ĥ =
1
2

(
1 1
1 1

)
.

We find

V =
(

1
2 − i 1

2
1
2

1
2 − i

)(
1
2 + i 1

2
1
2

1
2 + i

)−1

=
(
− 1+i

2
1−i
2

1−i
2 − 1+i

2

)
. ♣

Let K be an n× n skew-hermitian matrix with the eigenvalues µ1, · · · , µn and
the corresponding normalized eigenvectors |u1〉 , · · · , |un〉 where 〈uj |uk〉 = 0 for
k 6= j. We may write K as

K =
n∑
j=1

µj |uj〉 〈uj |.

The matrices |uj〉 〈uj | are projection matrices and the completeness relation

n∑
j=1

|uj〉 〈uj | = In
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holds. Every n × n unitary matrix can be written as U = exp(K) where K is
skew-hermitian. Using the properties of K we find

U = exp(K) = exp

 n∑
j=1

µj |uj〉 〈uj |

 =
n∑
j=1

eµj |uj〉 〈uj |.

For a given unitary matrix U we may find a possible skew-hermitian matrix K

K =
n∑
j=1

ln(λj) |uj〉 〈uj |

where λj are the eigenvalues of U and |uj〉 are the corresponding normalized
eigenvectors. The eigenvalues of U are of the form eiα so that ln(eiα) = iα.
Every hermitian matrixH can be written asH = iK whereK is skew-hermitian.

Example. Given the 2× 2 unitary matrix

V (θ, φ) =
(

cosθ −eiφsinθ
e−iφsinθ cosθ

)
we find a possible K and H. The eigenvalues for V (θ, φ) are e−iθ and eiθ with
corresponding normalized eigenvectors

1√
2

(
1

ie−iφ

)
,

1√
2

(
1

−ie−iφ
)
.

Then

K(θ, φ) =
−iθ
2

(
1

ie−iφ

)(
1 ie−iφ

)
+
iθ

2

(
1

−ie−iφ
)(

1−ie−iφ
)

=
(

0 −θeiφ
θe−iφ 0

)
and

H(θ, φ) = iK(θ, φ) =
(

0 −iθeiφ
iθe−iφ 0

)
. ♣

Let z ∈ C and A, B be n× n matrices over C. We say that B is invariant with
respect to A if

ezABe−zA = B

holds. If this condition is satisfied then [A,B] = 0n where [, ] denotes the
commutator. If ezA is unitary we have

UBU∗ = B

where U = ezA.
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Example. Let z ∈ C and

A1 =
(

0 1
1 0

)
, B1 =

(
b11 b12
b12 b11

)
.

A2 =
(

0 1
0 0

)
, B2 =

(
b11 b12
0 b11

)
.

We find for A1 and B1

ezA1 =
(

cosh(z) sinh(z)
sinh(z) cosh(z)

)
, e−zA1 =

(
cosh(z) −sinh(z)
−sinh(z) cosh(z)

)
.

We see that ezA1B1e
−zA1 = B1 so that B1 is invariant with respect to A1. We

find for A2 and B2

ezA2 =
(

1 z
0 1

)
, e−zA2 =

(
1−z
0 1

)
.

Once again we see that ezA2B2e
−zA2 = B2 and so B2 is invariant with respect

to A2 and [A1,2, B1,2] = 02. ♣

Example. Let σ1 and σ3 be the Pauli spin matrices. We find unitary matrices
U and V such that

Uσ1U
∗ = σ3 and V (σ1 ⊗ σ1)V ∗ = σ3 ⊗ σ3.

We obtain

U =
1√
2

(
1 1
1−1

)
= U∗ = U−1

and we see that V = U ⊗ U since

(U ⊗ U)(σ1 ⊗ σ1)(U∗ ⊗ U∗) = (Uσ1U
∗)⊗ (Uσ1U

∗) = σ3 ⊗ σ3. ♣

4.4 Matrix Decompositions

We are able to factorize a given matrix A into a product of factor matrices
F1, F2, . . . , Fn and this is known as matrix decomposition. Some common de-
compositions used in quantum computing are

(a) Singular value decomposition (SVD).

(b) Cosine-sine decomposition.

(c) Polar decomposition.

(d) LU-decomposition.



4.4. MATRIX DECOMPOSITIONS 39

(e) QR-decomposition.

Matrix decompositions help to simplify computations by breaking complicated
matrices up into components that are easier to work with. Since we use matrices
so extensively in quantum information theory these matrix reorderings are very
useful. Among other things matrix decompositions (particularly SVD) allows us
to obtain simple formulae for the composition of quantum channels and partial
operations used in quantum information theory.

Let A be an arbitrary m× n matrix over R. We may rewrite A as A = UΣV T

where U is an m×m orthogonal matrix, V is an n×n orthogonal matrix and Σ
is an m× n diagonal matrix with nonnegative entries. This is a singular value
decomposition and the steps used to obtain these factor matrices is given by

1. Find the eigenvalues λj of the matrix ATA and arrange them in descending
order. The number of nonzero eigenvalues of this matrix is called r.

2. Find the corresponding orthonormal eigenvectors vj of ATA and arrange
them in the same order to form the column vectors of V (an n×n matrix).

3. Form the m × n diagonal matrix Σ by placing on the leading diagonal
σj =

√
λj of the matrix ATA found in the first step.

4. Find the first r column vectors of U (an m×m matrix) from

uj =
1
σj
Avj , j = 1, 2, . . . , r.

5. The remaining m − r column vectors of U are obtained using the Gram-
Schmidt orthogonalization process.

The SVD is in general not unique. Another useful application of the SVD is to
find the Moore-Penrose pseudo-inverse of a matrix (Steeb [121]).

Example. A singular value decomposition of the density operator

ρ =
1
2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1


is given by

ρ =
1√
2


−1 0 0 −1
0
√

2 0 0
0 0

√
2 0

−1 0 0 1




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 1√
2


−1−1 0 0
0 0 0

√
2

0 0
√

2 0
−1 1 0 0


T

. ♣
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Any 2n × 2n unitary matrix U can be decomposed as

U =
(
U1 0
0 U2

)(
C S
−S C

)(
U3 0
0 U4

)
where Uj are 2n−1 × 2n−1 unitary matrices and

C = diag(cosα1, cosα2, . . . , cosα2n/2)
S = diag(sinα1, sinα2, . . . , sinα2n/2)

where αj ∈ R. This is the cosine-sine decomposition (Steeb [121]).

Example. The cosine-sine decomposition of

A =
1
2


1 1 1 1
1 1 −1−1
1−1 1 −1
1−1−1 1


is given by

A =
1
2


1 1 0 0
1−1 0 0
0 0 −1−1
0 0 −1−1




1 0 0 0
0 0 0 1
0 0 1 0
0−1 0 0




1 1 0 0
1−1 0 0
0 0 −1 1
0 0 1 1

 . ♣

For any n×n matrix A over C there exists a positive semi-definite matrix H and
a unitary matrix U such that A = HU . This is known as polar decomposition.
If A is nonsingular then H is positive definite and the decomposition is unique.

Example. The polar decomposition of

A =

 1 0−4
0 5 4
−4 4 3


is given by

A =
1
3

 11 −4−4
−4 17 8
−4 8 17

 1
9

 1 4−8
4 7 4
−8 4 1

 .

Since det(A) 6= 0 the matrix is nonsingular and the decomposition is unique. ♣

4.5 Fourier Transform

4.5.1 The Quantum Fourier Transform

Consider the Hilbert space C2n with the orthonormal basis

{|0〉 , |1〉 , · · · , |2n − 1〉}.
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We define the quantum Fourier transform (QFT)

UQFT :=
1√
2n

2n−1∑
j,k=0

e−i2πkj/2
n

|k〉 〈j|.

It may be shown that this is a unitary transform so that UQFTU∗
QFT = I2n .

This transform plays a large role in a number of quantum algorithms such as
Shor’s algorithm which is an algorithm for factorizing large integers.

Example. Let {|0〉 , |1〉 , |2〉 , |3〉} denote an orthonormal basis in C4. We apply
the quantum Fourier transform to the states

|ψ1〉=
1
2

(|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉+ |2〉 ⊗ |0〉+ |3〉 ⊗ |1〉)

|ψ2〉=
1
2

(|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉 − |2〉 ⊗ |0〉 − |3〉 ⊗ |1〉) .

We find

(UQFT ⊗ I4) |ψ1〉=
1√
2

(
|0〉 ⊗ 1√

2
(|0〉+ |1〉) + |2〉 ⊗ 1√

2
(|0〉 − |1〉)

)
(UQFT ⊗ I4) |ψ12〉=

1√
2

(
|1〉 ⊗ 1√

2
(|0〉+ |1〉) + |3〉 ⊗ 1√

2
(|0〉+ |1〉)

)
. ♣

4.5.2 The Discrete Fourier Transform

Let
{|a0〉 , |a1〉 , . . . , |an−1〉}

be an orthonormal basis in the Hilbert space Cn. We may define the discrete
Fourier transform (DFT) as

|bj〉 :=
1√
n

n−1∑
k=0

ωjkn |ak〉, j = 1, 2, . . . , n

where ωn := e2πi/n is the n-th root of unity. The DFT is simply the inverse of
the QFT under a change of basis with a non-power 2 dimension (however power
2 dimensions may still be considered). Applying this transform to a basis implies
an inherent ordering where we require a0 < a1 < · · · < an−1 to hold. Program 8
calculating the DFT for C4 is included in the Computer implementation section.

Example. Consider the standard basis in C4

|s0〉 =


1
0
0
0

 , |s1〉 =


0
1
0
0

 , |s2〉 =


0
0
1
0

 , |s3〉 =


0
0
0
1

 .
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Applying the discrete Fourier transform we obtain

|fs0〉 =
1
2


1
1
1
1

 =
1√
2

(
1
1

)
⊗ 1√

2

(
1
1

)
,

|fs1〉 =
1
2


1
i
−1
−i

 =
1√
2

(
1
−1

)
⊗ 1√

2

(
1
i

)
,

|fs2〉 =
1
2


1
−1
1
−1

 =
1√
2

(
1
1

)
⊗ 1√

2

(
1
−1

)
,

|fs3〉 =
1
2


1
−i
−1
i

 =
1√
2

(
1
−1

)
⊗ 1√

2

(
1
−i

)
.

The standard basis is separable and we see that the new vectors obtained from
the DFT are also separable and form an orthonormal basis. ♣

Example. Consider the Bell basis in C4

|b0〉 =
1√
2


1
0
0
1

 , |b1〉 =
1√
2


1
0
0
−1

 ,

|b2〉 =
1√
2


0
1
1
0

 , |b3〉 =
1√
2


0
1
−1
0

 .

Applying the discrete Fourier transform we obtain

|fb0〉 =
1√
2


1
1
0
0

 =
(

1
0

)
⊗ 1√

2

(
1
1

)
, |fb1〉 =

1
2
√

2


1 + i
−1− i
−1 + i
1− i

 ,

|fb2〉 =
1√
2


0
0
1
1

 =
(

0
1

)
⊗ 1√

2

(
1
1

)
, |fb1〉 =

1
2
√

2


1− i
−1 + i
−1− i
1 + i

 .
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We see that even though all the original vectors in the Bell basis are entangled
not all the vectors obtained from applying the DFT are entangled. The resultant
vectors still form an orthonormal basis. ♣

We see that the discrete Fourier transform does not preserve the entangled state
of the input vectors.



Chapter 5

Linear Operators

5.1 Introduction

After introducing useful mathematical principles in the previous chapter we are
now able to introduce some linear operators that are of vital importance to
us. We start by introducing the concept of observables and Hamilton operators
which will be used extensively. Following this we introduce density operators
which play a large role in quantum entanglement.

5.1.1 Observables and Hamilton Operators

When we speak of an observable we are talking about a quantity that is experi-
mentally measurable either directly or indirectly. Based on the matrix formula-
tion of quantum mechanics all physical observables are represented mathemati-
cally by matrices. Examples of observables are position, momentum and energy.
The set of eigenvalues of an observable represent all possible outcomes when the
observable is measured by means of experiment on the system. Since the out-
comes of a real observable must be real we see that observables are represented
by hermitian matrices. The corresponding eigenvector represents the state of
the system immediately after measurement. We cannot know the precise state
of the system before the measurement and the Copenhagen interpretation of
quantum mechanics is only interested in the outcomes of measurement on a
quantum system. In quantum mechanics we do not only consider a single ’copy’
of the system but rather an ensemble of the system and the average of the re-
sults over the ensemble, denoted by 〈Â〉 (where Â is the matrix observable), is
the result that we are interested in. This is also known as the expected value.

In quantum mechanics the Hamilton operator denoted by Ĥ is the operator that
corresponds to the total energy of the system. Its spectrum is the set of possible

44
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outcomes when the energy of the system is measured.

5.1.2 Density Operators

A density operator denoted by ρ is a positive semidefinite operator on a Hilbert
space with unit trace. It is used in quantum theory to describe the statistical
state of a quantum system. It is especially convenient for describing systems
where the state is not completely known. A pure state |ψ〉 has a density matrix
defined by

ρ := |ψ〉 〈ψ| .
For a pure state ρ2 = ρ holds. A mixed state has the density matrix

ρ :=
n∑
j=1

pj |ψj〉 〈ψj |

where 0 ≤ pj ≤ 1,
∑n
j=1 pj = 1 and 〈ψj |ψk〉 = δjk. What this means is that we

may have a system that is in state |ψj〉 with probability pj . We call {pj , |ψj〉}
an ensemble of pure states. The expectation value of an observable Â in the
system is given by

〈Â〉 := tr(Âρ).

Let λj denote the eigenvalues of Â and |xj〉 the corresponding eigenvectors. The
probability of obtaining λj as outcome is given by

pλj := tr(|xj〉 〈xj | ρ).

Example. Let r ≥ 0. We define

ρ :=
1
2

(
1 + rcos(θ) rsin(θ)e−iφ

rsin(θ)eiφ 1− rcos(θ)

)
.

We require ρ to be a density matrix. tr(ρ) = 1 as required and the matrix is
hermitian (thus the eigenvalues are real). We find λ1,2 = 1

2 ±
1
2r. Thus r ≤ 1

for ρ to be a density matrix. There is no condition on θ and φ. ♣

A useful application of the density operator is as a descriptive tool when con-
sidering subsystems of composite quantum systems. In this case we consider
the reduced density operator . Consider the quantum system that is made up of
the composite systems A and B. The density operator is defined by ρAB . The
reduced density operator for system A is defined by

ρA := trB(ρAB)

where trB is the partial trace over system B defined by

trB(ρAB) :=
dim(HB)∑
j=1

(IA ⊗ 〈φj |)ρAB(IA ⊗ |φj〉)
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where HB is the Hilbert space relevant to system B, |φj〉 is an orthonormal
basis for B (j = 1, 2, . . . ,dim(HB)) and IA is the identity operator in system A.

The von Neumann equation for a given density operator ρ and a given Hamilton
operator Ĥ is given by

i~
dρ

dt
= [Ĥ, ρ(t)]

with the solution
ρ(t) = e−iĤt/~ρ(0)eiĤt/~.

Example. Consider the state

|ψ〉 =
(

cosθ
eiφsinθ

)
and the density matrix

ρ = |ψ〉 〈ψ| =
(

cos2θ e−iφcosθsinθ
eiφcosθsinθ sin2θ

)
.

Given the Hamilton operator
Ĥ = ~ωσ1.

We find

e−iĤt/~ =
(

cos(ωt) −isin(ωt)
−isin(ωt) cos(ωt)

)
and

eiĤt/~ =
(

cos(ωt) isin(ωt)
isin(ωt) cos(ωt)

)
.

Solving the von Neumann equation we find

ρ11(t) = cos2(ωt)cos2(θ) +
ie−iφ

4
(1− e2iφ)sin(2ωt)sin(2θ) + sin2(ωt)sin2(θ)

ρ12(t) =
i

2
sin(2ωt)cos(2θ) +

e−iφ

2
sin(2θ)(cos2(ωt) + e2iφsin2(ωt))

ρ21(t) =− i
2
sin(2ωt)cos(2θ) +

e−iφ

2
sin(2θ)(sin2(ωt) + e2iφcos2(ωt))

ρ22(t) = cos2(ωt)sin2(θ)− ie−iφ

4
(1− e2iφ)sin(2ωt)sin(2θ) + sin2(ωt)cos2(θ).♣

5.2 Spin Hamilton Operators

5.2.1 Introduction

As understanding of quantum theory increased the experiments conducted be-
came more involved and physicists developed a better intuition for what the
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results should be based on developing quantum theory. In 1922 Stern and Ger-
lach conducted experiments where the outcomes were not consistent with the
predicted outcomes based on the understanding of quantum theory up to that
point [31]. The best way to explain the results obtained and the inconsistencies
observed was to make the assumption that an electron has an intrinsic magnetic
dipole moment due to the fact that it has an intrinsic angular momentum. We
call this angular momentum the spin of the electron. With the introduction
of this entity we see that any quantum state has a corresponding spin quan-
tum number that describes the system. Some authors who have researched
this topic include Auerbach [2], Bethe [13], Eisberg and Resnick [31], Heisen-
berg [50], Nielsen and Chuang [86], Onsager [88], Steeb et al [120], [122], [124],
White [152].

Regarding the quantum spin numbers for different systems we have spin 0 for π
mesons; spin 1/2 for electrons, muons, protons and neutrons; spin 1 for photons
and higher spins for other particles or nuclei. Particles with integer spin are
called bosons and particles with half-integer spin are called fermions.

5.2.2 Pauli Spin Operators

The simple spin-1/2 system may be described in terms of three operators that
correspond to the Cartesian components of spin. These operators are known as
spin matrices. These are given by the matrices

sj :=
σj
2

where j = 1, 2, 3

and σj are the Pauli spin matrices given by

σ1 =
(

0 1
1 0

)
, σ2 =

(
0−i
i 0

)
, σ3 =

(
1 0
0−1

)
.

Conventionally we also define the state vectors

|↑〉 :=
(
1 0
)T the spin-up vector

|↓〉 :=
(
0 1
)T the spin-down vector.

The eigenvalues of the Pauli spin matrices are +1 and -1 with the eigenvectors

1√
2

(
1
1

)
,

1√
2

(
1
−1

)
;

1√
2

(
−i
1

)
,

1√
2

(
i
1

)
;
(

1
0

)
,

(
0
1

)
for σ1, σ2 and σ3 respectively. When we consider the 4× 4 hermitian matrices
σ1⊗σ1, σ2⊗σ2, σ3⊗σ3 we again find the eigenvalues +1 (twice) and -1 (twice).
Now the eigenvectors may be written as product (unentangled) states or as
entangled states. Obviously the normalized eigenstates of σ1 ⊗ σ1 are given by

1
2

(
1
1

)
⊗
(

1
1

)
,

1
2

(
1
1

)
⊗
(

1
−1

)
,
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1
2

(
1
−1

)
⊗
(

1
1

)
,

1
2

(
1
−1

)
⊗
(

1
−1

)
.

The eigenstates of σ2 ⊗ σ2 are given by

1
2

(
i
1

)
⊗
(
i
1

)
,

1
2

(
i
1

)
⊗
(
−i
1

)
,

1
2

(
−i
1

)
⊗
(
i
1

)
,

1
2

(
−i
1

)
⊗
(
−i
1

)
.

The eigenstates of σ3 ⊗ σ3 are given by(
1
0

)
⊗
(

1
0

)
,

(
1
0

)
⊗
(

0
1

)
,

(
0
1

)
⊗
(

1
0

)
,

(
0
1

)
⊗
(

0
1

)
.

All three matrices also admit the maximally entangled Bell basis as eigenstates.

The Pauli matrices together with I2 form an orthogonal basis in the Hilbert
space consisting of all 2× 2 matrices over C with the inner product defined by
〈A,B〉 := tr(AB∗) and we see that for an arbitrary matrix in this Hilbert space

A =
(
a b
c d

)
=
a+ d

2
I2 +

b+ c

2
σ1 + i

b− c

2
σ2 +

a− d

2
σ3.

We are able to make this an orthonormal basis by multiplying each matrix by
a factor 1√

2
. We find the following relationships

σ2
1 = σ2

2 = σ2
3 = I2

where I2 is the 2× 2 identity matrix. In addition to this, the commutators are
given by

[σ1, σ2] = 2iσ3, [σ2, σ3] = 2iσ1, [σ3, σ1] = 2iσ2

and the anticommutators are

[σ1, σ2]+ = [σ2, σ3]+ = [σ3, σ1]+ = 02

where 02 is the 2 × 2 zero matrix. The trace for each of the Pauli matrices is
zero. We may define the matrices

sj :=
~
2
σj where j = 1, 2, 3

σ+ :=
1
2
(σ1 + iσ2), σ− :=

1
2
(σ1 − iσ2)

Λ+ :=
1
2
(I2 + σ3), Λ− :=

1
2
(I2 − σ3)

where σ± are the spin-flip operators and Λ± are projection matrices. σ± and Λ±
form another orthonormal basis in the Hilbert space consisting of 2×2 matrices
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over C. When we study the action of spin matrices on spin vectors we see that
the following relations hold

σ1 |↑〉 = |↓〉 , σ1 |↓〉 = |↑〉 , σ2 |↑〉 = i |↓〉 , σ2 |↓〉 = −i |↑〉 ,

σ3 |↑〉 = |↑〉 , σ3 |↓〉 = − |↓〉 .

Furthermore

σ+ |↑〉 = σ− |↓〉 =
(

0
0

)
, σ+ |↓〉 = |↑〉 , σ− |↑〉 = |↓〉

and

Λ+ |↑〉 = |↑〉 , Λ− |↓〉 = |↓〉 , Λ+ |↓〉 = Λ− |↑〉 =
(

0
0

)
.

Example. Consider the Pauli spin matrices σ1, σ2 and σ3. We find the 2 × 2
hermitian matrices such that

σjH2σj = H2 where j = 1, 2, 3

and all 4× 4 Hermitian matrices such that

(σj ⊗ σj)H4(σj ⊗ σj) = H4 where j = 1, 2, 3.

Let

H2 =
(
h11 h12

h21 h22

)
.

We see that for the above to hold h11 = h22 and h12 = h21 = 0 must hold. So

H2 =
(
h 0
0 h

)
.

Let

H4 =


h11 h12 h13 h14

h21 h22 h23 h24

h31 h32 h33 h34

h41 h42 h43 h44

 .

We see that for the above to hold H4 must be in the form

H4 =


h11 0 0 h14

0 h22 h23 0
0 h23 h22 0
h14 0 0 h11

 . ♣

Example. Let σ1, σ2 and σ3 be the Pauli spin matrices. We find 8× 8 unitary
matrices U ∈ P3 such that

U∗(σ1 ⊗ σ2 ⊗ σ3)U = σ1 ⊗ σ2 ⊗ σ3.
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Obvious solutions are I2 ⊗ I2 ⊗ I2 and σ1 ⊗ σ2 ⊗ σ3 and we note that

P1 :=
1
2
(I2 ⊗ I2 ⊗ I2 + σ1 ⊗ σ2 ⊗ σ3)

P2 :=
1
2
(I2 ⊗ I2 ⊗ I2 − σ1 ⊗ σ2 ⊗ σ3)

are projection matrices with P1P2 = 0. Other solutions for U are

I2 ⊗ σ2 ⊗ σ3, σ1 ⊗ I2 ⊗ I2,

σ1 ⊗ I2 ⊗ σ3, I2 ⊗ σ2 ⊗ I2,

σ1 ⊗ σ2 ⊗ I2, I2 ⊗ I2 ⊗ σ3.

An additional factor of ±i or ±1 may be multiplied with each of the terms. ♣

Example. Let σ1, σ2 and σ3 denote the Pauli matrices. We define the spin
matrices S1 := 1

2σ1, S2 := 1
2σ2 and S3 := 1

2σ3. We define the Hamilton operator

Ĥ := 2J(S1 ⊗ S1 + S2 ⊗ S2 + S3 ⊗ S3)

where J 6= 0 is a constant. We find

Ĥ =
J

2


1 0 0 0
0−1 2 0
0 2 −1 0
0 0 0 1


with eigenvalues and corresponding normalized eigenvectors

−3J
2

:
1√
2


0
1
−1
0

 ,
J

2
:


1
0
0
0

 ,


0
0
0
1

 ,
1√
2


0
1
1
0

 .

Together with the identity matrix I4 = P0 we find the permutation matrices

P1 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 , P2 =


0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

 , P3 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


that satisfy PT ĤP = Ĥ. ♣

Example. Let σ1, σ2 and σ3 be the Pauli matrices and I2 the 2 × 2 identity
matrix. Consider the Hamilton operator

Ĥ4 := B(σ3 ⊗ I2 + I2 ⊗ σ3) + J(σ1 ⊗ σ1)
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where J > 0 is constant and we consider different values of B. We find

Ĥ4 =


2B 0 0 J
0 0 J 0
0 J 0 0
J 0 0 −2B


with eigenvalues and normalized eigenvectors

−J :
1√
2


0
1
−1
0

 , J :
1√
2


0
1
1
0

 ,

−
√
α :

J√
2α+ 4B

√
α


1
0
0

−
√
α+2B
J

 ,
√
α :

J√
2α− 4B

√
α


1
0
0√
α−2B
J


where α := J2 + 4B2. When B = 0 the eigenvalues are ±J with multiplicity
2 and the normalized eigenvectors are the Bell basis and as such are entangled.
WhenB 6= 0 the eigenvectors are still entangled but no degeneracy of eigenvalues
exist.

Figure 5.1: Energy levels of Ĥ4

Figure 5.1 illustrates the eigenvalues as a function of B/J . So we see that level
crossing only occurs when B/J = 0. We see that together with the identity
matrix I4 = P0 the permutation matrix

P1 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


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satisfies PT ĤP = Ĥ. Note that

[σ1 ⊗ σ1, σ3 ⊗ I2 + I2 ⊗ σ3] = −2i(σ1 ⊗ σ2 + σ2 ⊗ σ1) 6= 04. ♣

Example. Let σ1, σ2 and σ3 be the Pauli matrices and I2 the 2 × 2 identity
matrix. Consider the Hamilton operator with the triple spin interaction

Ĥ8 := B(σ3 ⊗ I2 ⊗ I2 + I2 ⊗ σ3 ⊗ I2 + I2 ⊗ I2 ⊗ σ3) + J(σ1 ⊗ σ2 ⊗ σ3).

J > 0 is constant as before and we consider different values of B. We find

Ĥ8 =



3B 0 0 0 0 0 −iJ 0
0 B 0 0 0 0 0 iJ
0 0 B 0 iJ 0 0 0
0 0 0 −B 0 −iJ 0 0
0 0 −iJ 0 B 0 0 0
0 0 0 iJ 0 −B 0 0
iJ 0 0 0 0 0 −B 0
0 −iJ 0 0 0 0 0 −3B


.

We find the eigenvalues and normalized eigenvectors

B ±
√
α :

J√
2α∓ 4B

√
α



1
0
0
0
0
0

± i
√
α∓2iB
J

0


,

−B ±
√
α :

J√
2α∓ 4B

√
α



0
1
0
0
0
0
0

∓ i
√
α∓2iB
J


,

B ± J :
1√
2



0
0
1
0
∓i
0
0
0


, −B ± J :

1√
2



0
0
0
1
0
±i
0
0


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where α := J2 + 4B2 as before. When B = 0 the eigenvalues are ±J each with
multiplicity 4 and the normalized eigenvectors are

J :
1√
2



1
0
0
0
0
0
i
0


,

1√
2



0
1
0
0
0
0
0
−i


,

1√
2



0
0
1
0
−i
0
0
0


,

1√
2



0
0
0
1
0
i
0
0


,

−J :
1√
2



1
0
0
0
0
0
−i
0


,

1√
2



0
1
0
0
0
0
0
i


,

1√
2



0
0
1
0
i
0
0
0


,

1√
2



0
0
0
1
0
−i
0
0


.

We see that the eigenvectors are entangled.

Figure 5.2: Energy levels of Ĥ8

Figure 5.2 illustrates the eigenvalues as a function of B/J . We see that level
crossing occurs when B/J = 0 and when B/J = 1. Note that

[σ3 ⊗ I2 ⊗ I2 + I2 ⊗ σ3 ⊗ I2 + I2 ⊗ I2 ⊗ σ3, σ1 ⊗ σ2 ⊗ σ3] 6= 08. ♣



54 CHAPTER 5. LINEAR OPERATORS

Example. Let H1, H2 be Hilbert spaces and H1⊗H2 be the product space. We
may often write a self-adjoint Hamilton operator acting on the product space
H1 ⊗H2 as

Ĥ := Ĥ1 ⊗ I2 + I1 ⊗ Ĥ2 + εV̂

where Ĥ1 acts on H1, Ĥ2 acts on H2, I1 is the identity operator acting on H1

and I2 is the identity operator acting on H2. We now consider specific cases of
this (Steeb et al [137]). Consider the Hamilton operators

Ĥ := αA⊗ In + In ⊗ βB + ε(A⊗B)

K̂ := αA⊗ In + In ⊗ βB + ε(B ⊗A)

where we let α := ~ω1, β := ~ω2 and A := σ3, B := σ1. We find

Ĥ =


~ω1 ~ω2 + ε 0 0

~ω2 + ε ~ω1 0 0
0 0 −~ω1 ~ω2 − ε
0 0 ~ω2 − ε −~ω1



K̂ =


~ω1 ~ω2 ε 0
~ω2 ~ω1 0 −ε
ε 0 −~ω1 ~ω2

0 −ε ~ω2 −~ω1

 .

The eigenvalues for Ĥ are

E1 = ~ω1 + ~ω2 + ε, E2 = ~ω1 − ~ω2 − ε,

E3 = −~ω1 + ~ω2 − ε, E4 = −~ω1 − ~ω2 + ε

with the following corresponding eigenvectors

1√
2

(
1
0

)
⊗
(

1
1

)
,

1√
2

(
1
0

)
⊗
(

1
−1

)
,

1√
2

(
0
1

)
⊗
(

1
1

)
,

1√
2

(
0
1

)
⊗
(

1
−1

)
.

We see that these may be written as product states and as such are not entan-
gled. The eigenvalues for K̂ are

Ẽ1 = −
√

~2(ω1 + ω2)2 + ε2, Ẽ2 =
√

~2(ω1 + ω2)2 + ε2,

Ẽ3 = −
√

~2(ω1 − ω2)2 + ε2, Ẽ4 =
√

~2(ω1 − ω2)2 + ε2

with corresponding (unnormalized) eigenvectors
ε
ε

Ẽ1 − ~(ω1 + ω2)
Ẽ2 + ~(ω1 + ω2)

 ,


ε
ε

Ẽ2 − ~(ω1 + ω2)
Ẽ1 + ~(ω1 + ω2)

 ,
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
ε
−ε

Ẽ3 − ~(ω1 − ω2)
Ẽ3 − ~(ω1 − ω2)

 ,


ε
−ε

Ẽ4 − ~(ω1 − ω2)
Ẽ4 − ~(ω1 − ω2)

 .

We see that these are entangled and cannot be written as product states. Due
to the discrete symmetry of Ĥ there is energy level crossing. The permutation
matrices P with PĤPT = Ĥ are given by P0 = I4, P1 = I2 ⊕ σ1, P2 = σ1 ⊕ I2,
P3 = σ1 ⊕ σ1. The Hamilton operator K̂ has no energy level crossing for ε > 0
since only P0 = I4 is admitted as a discrete symmetry and we say the symmetry
is broken. ♣

We introduce the following theorem (Steeb and Hardy [122]). Let A1, A2, A3

be n × n matrices over C and In be the n × n identity matrix. Consider the
matrix

M = c1(A1 ⊗ In ⊗ In + In ⊗A2 ⊗ In + In ⊗ In ⊗A3)
+c2(A1 ⊗A2 ⊗ In +A1 ⊗ In ⊗A3 + In ⊗A2 ⊗A3)
+c3(A1 ⊗A2 ⊗A3)

where c1, c2, c3 are constants. Since the terms in M are pairwise commutative
we can write exp(M) as

eM = ec1(A1⊗In⊗In)ec1(In⊗A2⊗In)ec1(In⊗In⊗A3)ec2(A1⊗A2⊗In)ec2(A1⊗In⊗A3)

×ec2(In⊗A2⊗A3)ec3(A1⊗A2⊗A3).

Example. Consider the operator with triple spin interaction of spin- 1
2

Ĥ1/2 = J1(σ1 ⊗ I2 ⊗ I2 + I2 ⊗ σ2 ⊗ I2 + I2 ⊗ I2 ⊗ σ3)
+J2(σ1 ⊗ σ2 ⊗ I2 + σ1 ⊗ I2 ⊗ σ3 + I2 ⊗ σ2 ⊗ σ3)
+J3(σ1 ⊗ σ2 ⊗ σ3)

where σ1, σ2, σ3 are the Pauli spin matrices and I2 the identity matrix. This
operator acts in C8. We define the unitary operator

U1/2(t) := e−iĤ1/2.
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Using the theorem introduced above we find

U1/2(t) =
(
I8cos

(
tJ1

~

)
− iσ1 ⊗ I2 ⊗ I2sin

(
tJ1

~

))
×
(
I8cos

(
tJ1

~

)
− iI2 ⊗ σ2 ⊗ I2sin

(
tJ1

~

))
×
(
I8cos

(
tJ1

~

)
− iI2 ⊗ I2 ⊗ σ3sin

(
tJ1

~

))
×
(
I8cos

(
tJ2

~

)
− iσ1 ⊗ σ2 ⊗ I2sin

(
tJ2

~

))
×
(
I8cos

(
tJ2

~

)
− iσ1 ⊗ I2 ⊗ σ3sin

(
tJ2

~

))
×
(
I8cos

(
tJ2

~

)
− iI2 ⊗ σ2 ⊗ σ3sin

(
tJ2

~

))
×
(
I8cos

(
tJ3

~

)
− iσ1 ⊗ σ2 ⊗ σ3sin

(
tJ3

~

))
.

We may apply this unitary operator to entangled and unentangled states. The
resultant states may in turn be entangled or unentangled depending on the
chosen parameters. ♣

Example. Consider the operator with triple spin interaction of spin-1

Ĥ1 = J1(s1 ⊗ I3 ⊗ I3 + I3 ⊗ s2 ⊗ I3 + I3 ⊗ I3 ⊗ s3)
+J2(s1 ⊗ s2 ⊗ I3 + s1 ⊗ I3 ⊗ s3 + I3 ⊗ s2 ⊗ s3)
+J3(s1 ⊗ s2 ⊗ s3)

where s1, s2 and s3 are the trace-less hermitian matrices

s1 :=
1√
2

0 1 0
1 0 1
0 1 0

 , s2 :=
1√
2

0−i 0
i 0 −i
0 i 0

 , s3 :=

1 0 0
0 0 0
0 0−1

 .

This operator acts in the Hilbert space C27. We define the unitary operator

U1(t) := e−iĤ1t/~.
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Using the theorem introduced above we find

U1(t) =
(
I27 − is1 ⊗ I3 ⊗ I3sin

(
tJ1

~

)
+ s21 ⊗ I3 ⊗ I3

(
cos
(
tJ1

~

)
− 1
))

×
(
I27 − iI3 ⊗ s2 ⊗ I3sin

(
tJ1

~

)
+ I3 ⊗ s22 ⊗ I3

(
cos
(
tJ1

~

)
− 1
))

×
(
I27 − iI3 ⊗ I3 ⊗ s3sin

(
tJ1

~

)
+ I3 ⊗ I3 ⊗ s23

(
cos
(
tJ1

~

)
− 1
))

×
(
I27 − is1 ⊗ s2 ⊗ I3sin

(
tJ2

~

)
+ s21 ⊗ s22 ⊗ I3

(
cos
(
tJ2

~

)
− 1
))

×
(
I27 − is1 ⊗ I3 ⊗ s3sin

(
tJ2

~

)
+ s21 ⊗ I3 ⊗ s23

(
cos
(
tJ2

~

)
− 1
))

×
(
I27 − iI3 ⊗ s2 ⊗ s3sin

(
tJ2

~

)
+ I3 ⊗ s22 ⊗ s23

(
cos
(
tJ2

~

)
− 1
))

×
(
I27 − is1 ⊗ s2 ⊗ s3sin

(
tJ3

~

)
+ s21 ⊗ s22 ⊗ s23

(
cos
(
tJ3

~

)
− 1
))

.

We may apply this unitary operator to entangled and unentangled states. The
resultant states may in turn be entangled or unentangled depending on the
chosen parameters. ♣

5.3 Fermi Operators

We introduce new operators namely creation and annihilation operators which
may be used in systems with multiple particles, quantum harmonic oscillators
and fields of quantum computing where continuous variables are applied such
as quantum teleportation and quantum cryptography. When creation and anni-
hilation operators are used instead of wavefunctions we call this second quanti-
zation. These operators adhere to commutation (bosons) and anticommutation
(fermions) rules to form Hilbert spaces in which we work and their function is
to change the number of fixed quanta of energy in the system. The creation
operator is the Hermitian adjoint of the annihilation operator. Authors who
have studied this include Auerbach [2], Berezin [9], Khomskii [62], Nolting and
Ramakanth [87], Prigogine and Rice [95], Sarkar [106], Smit [117], Steeb et al
[123], [122], [124].

Fermions are particles with half-integer spin and they obey Fermi-Dirac statis-
tics as well as the Pauli exclusion principle. This principle states that no two
quanta of the same type may occupy the same quantum state. We may con-
sider Fermi operators with or without spin. We introduce the spinless Fermi
operators first. Fermi operators play a large role in solid state physics. Con-
sider a family of linear operators cj , c

†
j with j = 1, 2, . . . , n defined on a finite
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dimensional Hilbert space H satisfying the anticommutation relations

[cj , ck]+ = [c†j , c
†
k]+ = 0 and [cj , c

†
k]+ = δj,kI

where I is the identity operator and 0 is the zero operator of the Hilbert space,
δj,k denotes the Kronecker delta. The indices are the quantum number (e.g.
spin, angular momentum, etc.) of the operator. c†j is called a Fermi creation
operator and cj is a Fermi annihilation operator. A direct consequence of the
anticommutation relations is

c†jc
†
j = cjcj = 0

which illustrates the Pauli exclusion principle as required. We define the nor-
malized vacuum state |0〉 with the property

cj |0〉 = 0 and 〈0| c†j = 0

where j = 1, 2, . . . , n. This is the quantum state with the lowest possible energy
and contains no quanta. New states may be constructed from the vacuum
state and the creation operators. It is useful to determine the commutation
relationship between creation and annihilation operators

[c†i , cj ] = c†i cj − cjc
†
i = c†i cj + cjc

†
i − cjc

†
i − cjc

†
i = δijI − 2cjc

†
i .

When n = 1 we find a matrix representation of the operators c†, c and N̂ where
we define N̂ := c†c to be the number operator . We find

c† =
(

0 1
0 0

)
=

1
2
(σ1 + iσ2) =

1
2
σ+

c =
(

0 0
1 0

)
=

1
2
(σ1 − iσ2) =

1
2
σ−

and the matrix representations for |0〉 and c† |0〉 are given by

|0〉 =
(

0
1

)
, c† |0〉 =

(
1
0

)
.

For arbitrary n we have

c†k = σ3 ⊗ · · · ⊗ σ3 ⊗
(

1
2
σ+

)
⊗ I2 ⊗ · · · ⊗ I2

ck = σ3 ⊗ · · · ⊗ σ3 ⊗
(

1
2
σ−

)
⊗ I2 ⊗ · · · ⊗ I2

where there are n terms in total and 1
2σ± is in the kth position (Steeb [123]).

Example. Let c†1, c
†
2 be Fermi creation operators. Consider the hermitian

Hamilton operator
Ĥ := t(c†1c

†
2 + c2c1).



5.3. FERMI OPERATORS 59

Let N̂ := c†1c1 + c†2c2 be the number operator. Furthermore consider the basis

|s0〉 = |0〉 , |s1〉 = c†1 |0〉 , |s2〉 = c†2 |0〉 , |s3〉 = c†1c
†
2 |0〉 .

We find the commutator

[Ĥ, N̂ ] = 2t(c†2c
†
1 − c2c1).

Using the given basis we find

Ĥ |s0〉 = t |s3〉 , Ĥ |s1〉 = 0, Ĥ |s2〉 = 0, Ĥ |s3〉 = t |s0〉

which gives us the matrix representation of Ĥ

Ĥ =


0 0 0 t
0 0 0 0
0 0 0 0
t 0 0 0

 . ♣

5.3.1 Hubbard Model

We now study Fermi operators with spin as well as introducing the Hubbard
model . The Hubbard model is a simplified approximate model for electrons in a
solid which interact with each other through Coulomb interaction. This model
takes into account the quantum mechanical motion of electrons in a solid and
the nonlinear repulsive interaction between electrons. Despite being too simple
to describe actual solids faithfully it is a very important model in theoretical
physics and exhibits various interesting phenomena. The Hubbard model plays
an important role in the modeling of magnetism, charge density waves and high-
Tc superconductivity. An interesting phenomena that has been studied is that
the 1 dimensional Hubbard Hamilton operator for the benzene molecule appears
to violate the non-crossing rule (Yuzbashyan et al [160]). This will be expanded
upon in a later section.

We consider a family of linear operators cjs, c
†
js with j = 1, 2, . . . , n defined on

a finite dimensional Hilbert space H satisfying the anticommutation relations

[cjs, cks′ ]+ = [c†js, c
†
ks′ ]+ = 0 and [cjs, c

†
ks′ ]+ = δjkδss′I

where I is the identity operator, 0 is the zero operator, j, k = 1, 2, . . . , n and
s, s′ ∈ {↑, ↓}. As before these operators are annihilation and creation operators
for fermions and now we have included spin with the quantum number. The
normalized vacuum state |0〉 is defined with the property cjs |0〉 = 0. Other
states may now be constructed from the vacuum state and the creation opera-
tors. From above it follows that the operators obey the Pauli exclusion principle
as expected. In other words (c†js)

2 = (cjs)2 = 0. We introduce a convention to
order the operators, both with respect to spin as well as the quantum number.
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All spin up operators are placed on the left and we set the Fermi operators with
the lower quantum number on the left hand side.

We may define the spin Si and quasispin Ri operators by

Ŝix =
1
2
(c†i↑ci↓ + c†i↓ci↑), Ŝiy =

1
2i

(c†i↑ci↓ − c†i↓ci↑), Ŝiz =
1
2
(ni↑ − ni↓),

R̂ix =
1
2
(c†i↑c

†
i↓ + ci↓ci↑), R̂iy =

1
2i

(c†i↑c
†
i↓ − ci↑ci↓), R̂iz =

1
2
(ni↑ + ni↓ − 1).

where nis := c†iscis. Both of these operators form a Lie algebra under the
commutator (Steeb et al [127], [130], [129]).

Example. In Wannier representation the two-point Hubbard model with cyclic
boundary conditions is given by

Ĥ = t(c†1↑c2↑ + c†1↓c2↓ + c†2↑c1↑ + c†2↓c1↓) + U(n1↑n1↓ + n2↑n2↓)

where njs := c†jscjs with the parameters t > 0 and U > 0 (Steeb et al [133]).
The Fermi operators obey the anticommutation relations. The total number
operator N̂ and the total spin operator Ŝz in the z direction are defined by

N̂ :=
2∑
j=1

(c†j↑cj↑ + c†j↓cj↓), Ŝz :=
1
2

2∑
j=1

(c†j↑cj↑ − c†j↓cj↓)

and [Ĥ, N̂ ] = [Ĥ, Ŝz] = 0. We consider the subspace with 2 electrons N = 2
and Sz = 0. A basis for this system is

|s1〉 := c†1↑c
†
1↓ |0〉 , |s2〉 := c†1↑c

†
2↓ |0〉 , |s3〉 := c†2↑c

†
1↓ |0〉 , |s4〉 := c†2↑c

†
2↓ |0〉 .

Another basis that may be considered is

|b1〉 :=
1√
2
(c†1↓c

†
1↑ + c†2↓c

†
2↑) |0〉 , |b2〉 :=

1√
2
(c†1↓c

†
2↑ + c†2↓c

†
1↑) |0〉 ,

|b3〉 :=
1√
2
(c†1↓c

†
2↑ − c†2↓c

†
1↑) |0〉 , |b4〉 :=

1√
2
(c†1↓c

†
1↑ − c†2↓c

†
2↑) |0〉 .

These states may be considered as the Bell states. We find the matrix represen-
tations of Ĥ in these bases (Steeb and Hardy [122]). Applying Ĥ to the given
bases gives us

Ĥ |s1〉 = U |s1〉+ t |s2〉+ t |s3〉 , Ĥ |s2〉 = t |s1〉+ t |s4〉 ,

Ĥ |s3〉 = t |s1〉+ t |s4〉 , Ĥ |s4〉 = t |s2〉+ t |s3〉+ U |s4〉 .
This yields the matrix representation

Ĥs =


U t t 0
t 0 0 t
t 0 0 t
0 t t U

 .
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This matrix representation admits symmetries given by the permutation matri-
ces

P0 = I4, P1 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 , P2 =


0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

 , P3 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


where PTj ĤsPj = Ĥs. We see P1P2 = P3, P1P3 = P2, P2P3 = P1 and P 2

1 =
P 2

2 = P 2
3 = I4. Thus we can form the projection matrices

Π1+ =
1
2
(I4 + P1), Π2+ =

1
2
(I4 + P2), Π3+ =

1
2
(I4 + P3),

Π1− =
1
2
(I4 − P1), Π2− =

1
2
(I4 − P2), Π3− =

1
2
(I4 − P3).

Consider Π3± . We have

Π3+


v1
v2
v3
v4

 =
1
2


v1 + v4
v2 + v3
v2 + v3
v1 + v4

 , Π3−


v1
v2
v3
v4

 =
1
2


v1 − v4
v2 − v3
−v2 + v3
−v1 + v4


where v is an arbitrary vector. So we see that Π3± projects into the subspaces
spanned by the normalized vectors

1√
2


1
0
0
1

 ,
1√
2


0
1
1
0


 ,


1√
2


1
0
0
−1

 ,
1√
2


0
1
−1
0


 .

We see that these are the Bell states. Considering the second basis we find

Ĥ |b1〉 = U |s1〉+ 2t |s2〉 , Ĥ |b2〉 = 2t |s1〉 , Ĥ |b3〉 = 0, Ĥ |b4〉 = U |s4〉

yielding the matrix representation

Ĥb =


U 2t 0 0
2t 0 0 0
0 0 0 0
0 0 0U

 =
(
U 2t
2t 0

)
⊕
(

0 0
0U

)

where ⊕ denotes the direct sum. Only the identity matrix P0 = I4 satisfies
PTj ĤsPj = Ĥs. ♣



Chapter 6

Entanglement

6.1 Introduction

Historically quantum entanglement has been studied by physicists such as Ein-
stein [29], Bohr [14], Weyl [151], Einstein et al [30], Schrödinger [108], [109] and
Bell [6]. More recently this phenomenon and its applications has been studied
by authors such as Raimond and Dalibard [97], Knight [67], Cleve and Buhrman
[20], Bruß [15], S-J. Gu et al [46], Horodecki et al [55], Bruß and Macchiavello
[16].

Entanglement is a type of quantum correlation that is one of the most strik-
ing features of quantum mechanics and sets it apart from classical mechanics.
This resource enforces a departure from classical thought. Entanglement occurs
when a pair of particles interact physically and then become separated with the
interaction being such that each resulting member of the pair is described by
the same state. When a measurement is made on one member of the entangled
pair and it takes on a specific value (for example spin up), then the other mem-
ber of the pair will take on a correlated value (for example spin down). This
correlation is instantaneous and is observed even though the entangled pair
may be separated by arbitrarily large distances. This correlation is what makes
quantum entanglement a powerful tool in transmitting information. Entangled
quantum states are an important component of quantum computing techniques
such as quantum error-correction, dense coding and quantum teleportation.

Consider a quantum state |ψ〉 in the composite Hilbert space HAB = HA⊗HB .
We may ask ourselves whether or not this state can be decomposed into the
Kronecker product of two states in the component Hilbert spaces HA and HB .
If this is possible we say the state is unentangled and if this is not possible then
the state is entangled.

62
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Example. Consider the normalized state

|ψ〉 =
1
2


1
−1
1
−1

 .

Then |ψ〉 can be written as

1√
2

(
1
1

)
⊗ 1√

2

(
1
−1

)
.

We say that |ψ〉 is separable or a product state. A state that cannot be written
as a product state is said to be entangled . ♣

Example. Consider the normalized vector

|ψ〉 =
1√
2


eiφ

0
0
1

 ∈ C4.

We assume there exists the states |u〉 = (u1, u2)T and |v〉 = (v1, v2)T in the
Hilbert space C2 such that |ψ〉 = |u〉 ⊗ |v〉 is true. From this assumption we
obtain the equations

u1v1 = eiφ/
√

2, u1v2 = 0, u2v1 = 0, u2v2 = 1/
√

2.

These equations cannot be satisfied simultaneously and our initial assumption
was incorrect. |ψ〉 cannot be written as a Kronecker product of two vectors and
is thus entangled. ♣

We introduce the states

|ψ1〉 =
1√
2


1
0
0
1

 , |ψ2〉 =
1√
2


0
1
1
0

 ,

|ψ3〉 =
1√
2


1
0
0
−1

 , |ψ4〉 =
1√
2


0
1
−1
0

 .

These states form the Bell basis in C4 and are maximally entangled.

Consider the Hilbert space H = Cn and the product space H ⊗ H. Let A be
an arbitrary n × n matrix over C. A normalized state |ψ〉 ∈ H ⊗ H is called
maximally entangled if

〈ψ| (A⊗ In) |ψ〉 = dim(H)−1tr(A)
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holds.

Example. Consider the normalized states in C4

|ψ1〉 =
1√
2


0
1
−1
0

 , |ψ2〉 =
1√
2


1
0
1
0

 , |ψ3〉 =
1
2


1
1
−1
1

 .

In all three cases we have dim(H) = dim(C2) = 2. Let

A =
(
a11 a12

a21 a22

)
so that tr(A) = a11 + a22. Then

A⊗ I2 =


a11 0 a12 0
0 a11 0 a12

a21 0 a22 0
0 a21 0 a22

 .

For the left-hand side of the equation to determine if a state is maximally
entangled we find

〈ψ1| (A⊗ I2) |ψ1〉=
1
2
(a11 + a22)

〈ψ2| (A⊗ I2) |ψ2〉=
1
2
(a11 + a12 + a21 + a22) 6=

1
2
(a11 + a22)

〈ψ3| (A⊗ I2) |ψ3〉=
1
2
(a11 + a22).

Thereby showing that |ψ1〉 and |ψ3〉 are maximally entangled. For |ψ2〉 we have

|ψ2〉 =
1√
2

(
1
1

)
⊗
(

1
0

)
.

Program 9 is provided in the Computer algebra implementation chapter that
determines if a given vector is maximally entangled. ♣

Let |ψ〉 be a given state in the Hilbert space Cn and let X, Y be two n × n
hermitian matrices. We define the correlation for a given state as

CXY (|ψ〉) := 〈ψ|XY |ψ〉 − 〈ψ|X|ψ〉 〈ψ|Y |ψ〉 .

Example. Consider the Hilbert space C4 and let

X =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 , Y =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 .
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Consider the normalized states

|ψ〉 =
1√
2


1
0
0
1

 , |φ〉 =
1√
2


1
1
0
0


where |ψ〉 is one of the (entangled) Bell states and |φ〉 is a separable state. We
find

CXY (|ψ〉) = 0, CXY (|φ〉) =
1
2
. ♣

It has been shown that a completely entangled state belonging to a finite dimen-
sional Hilbert space is equivalent to a simultaneous eigenstate of two unitary
operators (Ban [4]). Suppose that

{|a0〉 , |a1〉 , . . . , |an−1〉}

is a complete orthonormal basis of a Hilbert space Hn. We then perform the dis-
crete Fourier transform introduced in chapter 4.1 to obtain a new orthonormal
basis

{|b0〉 , |b1〉 , . . . , |bn−1〉}.

Using these two sets we introduce the hermitian operators Â and B̂ which are
complementary with each other

Â :=
n−1∑
k=0

k |ak〉 〈ak|, B̂ :=
n−1∑
k=0

k |bk〉 〈bk|.

We further introduce four new hermitian operators defined on the Hilbert space
Hn ⊗Hn by the relations

Â1 := Â⊗ I4, Â2 := I4 ⊗ Â, B̂1 := B̂ ⊗ I4, B̂2 := I4 ⊗ B̂

and from these we define the unitary matrices

M̂− := exp((2πi/n)m(Â1 − Â2)), M̂+ := exp((2πi/n)q(B̂1 + B̂2))

for any integers m and q. We introduce the fully entangled states

|Ψjk〉=
1√
n

n−1∑
`=0

|a`+jmodn〉 ⊗ |a`〉 e(2πi/n)k`

=
1√
n

n−1∑
`=0

|b`〉 ⊗ |bk−`modn〉 e−(2πi/n)j`

where j, k = 0, 1, . . . , n − 1. It may be seen that |Ψjk〉 are simultaneous eigen-
states of M̂− and M̂+ such that

M̂− |Ψjk〉 = ωjm |Ψjk〉 , M̂+ |Ψjk〉 = ωkq |Ψjk〉 .
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So it has been shown that a completely entangled state belonging to the Hilbert
space Hn⊗Hn is a simultaneous eigenstate of two unitary operators M̂∓ where
the hermitian matrices Â and B̂ are complementary with each other.

Entanglement plays a large role in quantum information theory and enables us
to achieve tasks that would otherwise be impossible. Interference impairs the
ability to transport states over long distances and introduces the need for error
correcting. A way that we overcome the problem of noise is to distribute the
quantum states over the ’noisy’ channel that is available and use high quality
quantum processes (known as local operations - LO) in the respective laborato-
ries. These LO are independent and occur in a controlled environment. Classical
communication (CC ) is used to coordinate the quantum actions. Such a pro-
cess is known as local operations and classical communication (LOCC ). The
term entanglement is used to describe any quantum correlation that cannot be
created by LOCC alone. Quantum entanglement may be exploited to perform
tasks that are inefficient or even impossible in the classical realm and plays a
large role in quantum communication science. An example of how entanglement
may be harnessed is in teleportation where classical communication is combined
with entanglement to transmit quantum states and data. Some basic properties
of entanglement are

(a) Separable states contain no entanglement.

(b) All non-separable states are entangled (cannot be reproduced by LOCC
alone) meaning that such states possess an additional useful resource not
present in separable states.

(c) Entanglement of states does not change under LOCC transformations or
local unitary operations.

(d) We may quantify the amount of entanglement and see that states may be
maximally entangled. It can be seen that in a two party system consisting
of two fixed d-dimensional subsystems (qudits) any pure state equivalent to

|ψ+
d 〉 =

|00〉+ |11〉+ · · ·+ |(d− 1)(d− 1)〉√
d

is maximally entangled. Here |jj〉 ≡ |j〉 ⊗ |j〉 (Plenio and Virmani [93]).

Example. Consider the Pauli spin matrix σ2. The eigenvalues for this matrix
are 1 and −1. The corresponding normalized eigenvectors are

1√
2

(
1
i

)
and

1√
2

(
1
−i

)
.

It is easy to show that

A = σ2 ⊗ σ2 =
(

0−i
i 0

)
⊗
(

0−i
i 0

)
=


0 0 0−1
0 0 1 0
0 1 0 0
−1 0 0 0


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with eigenvalues 1 (multiplicity 2) and -1 (multiplicity 2). The four product
eigenstates are given by

|φ1〉 =
1
2

(
1
i

)
⊗
(

1
i

)
, |φ2〉 =

1
2

(
1
i

)
⊗
(

1
−i

)
,

|φ3〉 =
1
2

(
1
−i

)
⊗
(

1
i

)
, |φ4〉 =

1
2

(
1
−i

)
⊗
(

1
−i

)
.

These vectors are eigenvectors of the above matrix σ2 ⊗ σ2

A |φ1〉 = |φ1〉 , A |φ2〉 = − |φ2〉 , A |φ3〉 = − |φ3〉 , A |φ4〉 = |φ4〉 .

We can show two examples of sets of entangled states in this (composite) Hilbert
space, the first being the Bell states

1√
2


1
0
0
1

 ,
1√
2


0
1
1
0

 ,
1√
2


1
0
0
−1

 ,
1√
2


0
1
−1
0

 .

These are eigenvectors of A. Another set of fully entangled states are

1
2


−1
−1
−1
1

 ,
1
2


−1
1
1
1

 ,
1
2


1
−1
1
1

 ,
1
2


1
1
−1
1

 .

Once again these are eigenvectors of A. This example has useful applications in
physics. ♣

Example. Consider the Hilbert space C4 and the Hamilton operator

Ĥ = ~ω(σ3 ⊗ σ3) + ∆(σ1 ⊗ σ1)

where ω,∆ > 0. We investigate this operator as well as the unitary operator
U(t) = exp(−iĤt/~) (Steeb [135]). We find the 4× 4 matrix

Ĥ =


~ω 0 0 ∆
0 −~ω ∆ 0
0 ∆ −~ω 0
∆ 0 0 ~ω


with the eigenvalues

~ω + ∆, −~ω −∆, −~ω + ∆, ~ω −∆

and corresponding normalized eigenvectors

1√
2


1
0
0
1

 ,
1√
2


0
1
−1
0

 ,
1√
2


0
1
1
0

 ,
1√
2


1
0
0
−1

 .
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We see that these states do not depend on ω or ∆ and are fully entangled since
they are the Bell states. We consider the unitary operator U(t)

U(t) = exp(−iĤt/~) = e−iωt(σ3⊗σ3)e−i∆t(σ1⊗σ1)/~

= I4cos(ωt)cos(∆t/~) + i(σ3 ⊗ σ3)sin(ωt)cos(∆t/~)
+i(σ1 ⊗ σ1)cos(ωt)sin(∆t/~)− (σ3σ1)⊗ (σ3σ1)sin(ωt)sin(∆t/~).

When we apply U(t) to an unentangled state, depending on the choice of pa-
rameters we may obtain an entangled state. For example

U(t)


1
0
0
0

 =


cos(ωt)cos(∆t/~) + isin(ωt)cos(∆t/~)

0
0

−sin(ωt)sin(∆t/~) + icos(ωt)sin(∆t/~)

 .

For the case where ~ω = ∆ energy level crossing occurs. This Hamilton operator
may be extended to N factors and this will be discussed in chapter 6.3. ♣

6.2 Measures of Entanglement

It is clear that to be able to exploit this resource we require a quantitative mea-
sure of the entanglement of states. Measures of entanglement have been studied
by various authors. In 1997 Vedral et al [144] discussed various requirements
of measures of entanglement together with introducing different entanglement
measures. Some of these measures have practical applications whereas some of
them are of theoretic interest only. In 1998 Bennett et al [8] discussed quantum
nonlocality without entanglement. They showed that even if a pair of separated
observers performed a sequence of local operations and classical communica-
tion (LOCC) on an orthogonal set of product states presented to them they
could not reliably distinguish between the states. In 1999 Coffman et al [21]
studied distributed entanglement between three qubits. They showed that if
three quantum states A, B and C were entangled with each other then there
is a trade-off between As entanglement with B and its entanglement with C.
They discussed the entanglement measure known as the tangle and intoduced a
relationship between τAB , τAC and τBC . In 2002 Bruß [15] produced a tutorial
describing different ways of quantifying entanglement using appropriate mea-
sures, how to characterize entanglement and how to classify entangled states
based on their usefulness. In 2007 Plenio and Virmani [93] discussed various
entanglement measures focusing on the finite dimensional bipartite case. In
2009 Horodecki et al [55] investigated entanglement and different entanglement
measures. They investigated the role of entanglement in quantum communi-
cation and how one may exploit entanglement in quantum cryptography. In
2011 Sperling and Vogel [118] investigated quantifying entanglement, focusing
on universal entanglement measures that are invariant under local invertible
operations. They identified that the Schmidt number is a universal measure
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of entanglement. In 2011 Streltsov et al [138] discussed an easy implementable
algorithm for the geometric measure of entanglement. They introduced an al-
gorithm for approximating the entanglement of any mixed multipartite state
(where multipartite entanglement is discussed at the end of the chapter) reduc-
ing the problem to an eigenvalue problem and a singular value decomposition. In
2011 Bruß and Macchiavello [16] investigated the multipartite entanglement of
states used in quantum algorithms and showed that many quantum algorithms
exploit multipartite entanglement.

Bell’s theorem enables us to verify experimentally the effects of quantum me-
chanics and provide a way to quantify quantum correlations. In 1991 Ekert [32]
investigated quantum cryptography based on Bell’s theorem. Bell’s inequalities
provided some of the first measures of entanglement however it was found that
in some cases these inequalities do not provide a sufficient measure for quantum
correlations. Today there are several more measures of entanglement such as
the entropy of entanglement, the entanglement of formation, the tangle (which
is the squared concurrence of the state) and the Schmidt number to name a few.
Some of these measures have physical relevance whereas others are merely of
academic interest. An entanglement measure is a mathematical quantity that
captures the essential features associated with entanglement and some of the
desired properties of such a measure are

(i) A bipartite measure of entanglement E(ρ) is a mapping ρ → E(ρ) ∈ R+

where ρ is the density matrix associated with the state. When we consider
the maximally entangled pure state |ψ+

d 〉 introduced previously we require
E(|ψ+

d 〉 〈ψ
+
d |) = log(d).

(ii) E(ρ) = 0 if ρ represents a separable state.

(iii) E does not increase under LOCC.

(iv) For a pure state |ψ〉 〈ψ| the measure reduces to the entropy of entangle-
ment.

6.2.1 Entropy of Entanglement

Entropy is a measure of how much uncertainty there is in the state of a physical
system and plays a role in both classical and quantum information theory. In
classical information theory we consider the Shannon entropy where probability
distributions play a role. In quantum information theory we use the von Neu-
mann entropy where density operators replace the probability distributions. We
define the von Neumann entropy

S(ρ) := −tr(ρlog2ρ).

Let λj be the eigenvalues of ρ. Then

S(ρ) = −
∑
j

λj log2λj .
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One defines 0log20 ≡ 0.

Consider two Hilbert spaces HA and HB with identity operators IA, IB and
orthonormal bases |ψj〉 (j = 1, 2, . . . ,dim(HA)) and |φj〉 (j = 1, 2, . . . ,dim(HB))
respectively. Then we define the partial trace of ρ over subsystems A and B as
follows

ρB := trA(ρ) =
dim(HA)∑
j=1

(〈ψj | ⊗ IB)ρ(|ψj〉 ⊗ IB)

and

ρA := trB(ρ) =
dim(HB)∑
j=1

(IA ⊗ 〈φj |)ρ(IA ⊗ |φj〉).

The entropy of entanglement for a pure state |ψ〉 is defined as

E(|ψ〉 〈ψ|) := S(trA |ψ〉 〈ψ|) = S(trB |ψ〉 〈ψ|).

Example. We consider the Hilbert space HA⊗HB where HA = HB = C2 and
the standard basis is used. Consider the states

|ψ1〉 :=
1
2


1
−1
1
−1

 , |ψ2〉 :=
1√
2


eiφ

0
0
1


where |ψ1〉 is a disentangled state and |ψ2〉 is an entangled state. We find

ρ1 =
1
4


1 −1 1 −1
−1 1 −1 1
1 −1 1 −1
−1 1 −1 1

 , ρ1,A =
1
2

(
1 1
1 1

)
, ρ1,B =

1
2

(
1 −1
−1 1

)

with the eigenvalues for both of these being 0 and 1.

E(ρ1) = S(ρ1,A) = 0.

Similarly

ρ2 =
1
2


1 0 0 eiφ

0 0 0 0
0 0 0 0

e−iφ 0 0 1

 , ρ2,A =
1
2

(
1 0
0 1

)
= ρ2,B

with the eigenvalue being 1
2 with multiplicity 2.

E(ρ2) = S(ρ2,A) = 1. ♣

Example. Consider the state in C4

|ψ〉 =
1
2

(U1 ⊗ U2)


1
−1
−1
1

 = (U1 ⊗ U2)
1√
2

(
1
−1

)
⊗ 1√

2

(
1
−1

)
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where U1, U2 ∈ U(2). We choose the basis{
U2

(
1
0

)
, U2

(
0
1

)}
to calculate the partial trace. We find

ρ =
1
4

(U1 ⊗ U2)
((

1 −1
−1 1

)
⊗
(

1 −1
−1 1

))
(U∗

1 ⊗ U∗
2 ) ,

ρA =
1
2
U1

(
1 −1
−1 1

)
U∗

1 , ρB =
1
2
U2

(
1 −1
−1 1

)
U∗

2 .

We find E(ρ) = 0 which is to be expected since we see that |ψ〉 can be written
as a product state and is thus separable. ♣

6.2.2 Tangle

Let ρ denote the density operator for a pair of qubits A, B in the Hilbert space
HA⊗HB where HA = HB = C2. This density operator may be pure or mixed.
We define the spin-flipped density operator

ρ̃ := (σ2 ⊗ σ2)ρ∗(σ2 ⊗ σ2)

where σ2 is the Pauli spin matrix in the y direction. We define the tangle of the
density operator ρ as

τAB := [max{µ1 − µ2 − µ3 − µ4, 0}]2

where µj are the square root of the eigenvalues of ρρ̃ ordered in decreasing
order. For the special case where we are working with a pure state we see that
the tangle reduces to

τAB = 4detρA.

Another measure that may be introduced is the concurrence C which is the
square root of the tangle.

Example. Consider the following states in the Hilbert space C2 ⊗ C2

|ψ1〉=
1
2


1
−1
1
−1

 =
1√
2

(
1
1

)
⊗ 1√

2

(
1
−1

)

|ψ2〉=
1√
2


0
1
1
0

 =
1√
2

((
1
0

)
⊗
(

0
1

)
+
(

0
1

)
⊗
(

1
0

))
.
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Clearly |ψ1〉 is separable and |ψ2〉 is entangled. We find

ρ1 =
1
4


1 −1 1 −1
−1 1 −1 1
1 −1 1 −1
−1 1 −1 1

 , ρ̃1 =
1
4


1 1 −1−1
1 1 −1−1
−1−1 1 1
−1−1 1 1


so that τAB,1 = 0. Similarly

ρ2 =
1
2


0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

 , ρ̃2 = ρ2

so that τAB,2 = 1. We see that for a separable state τAB = 0 and for an
entangled state τAB > 0. The Bell states are maximally entangled and we see
that 0 < τAB ≤ 1 for entangled states. ♣

Example. Consider the density matrix of the Werner state (Werner [150]) in
C4

ρW := r |φ+〉 〈φ+|+ 1− r

4
I4

where |φ+〉 = 1√
2

(
1 0 0 1

)T is a Bell state and 0 ≤ r ≤ 1. We determine the
concurrence. We have

ρW =


1+r
4 0 0 1

2
0 1−r

4 0 0
0 0 1−r

4 0
r
2 0 0 1+r

4


with the eigenvalues 1+3r

4 and 1−r
4 (with multiplicity 3). Now

C(ρW ) = max {λ1 − λ2 − λ3 − λ4, 0} = max
{

3r − 1
2

, 0
}
.

If r = 0 we have C(ρW ) = 0, if r = 1 we have C(ρW ) = 1 and if r = 2
3 we have

C(ρW ) = 1
2 . ♣

6.2.3 Entanglement of Formation

Let ρ be a density operator over the Hilbert space C2 ⊗ C2. We define the
entanglement of formation

Ef (ρ) := {pk, |ψk〉}min

|{pk,|ψk〉}|∑
j=0

pjS(trC2(|ψj〉 〈ψj |))
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where {pk, |ψk〉}min indicates that the minimum is taken over all mixtures which
realize ρ and S(ρ) is the von Neumann entropy introduced previously. We
calculate Ef (ρ) from

Ef (ρ) = h

(
1 +

√
1− τ

2

)
where τ is the tangle and h(p) is the Shannon entropy defined as

h(p) := −plog2p− (1− p)log2(1− p).

Example. Consider the following two states where one is separable and the
other is entangled

|ψ1〉 =
1√
2


1
0
−1
0

 , |ψ2〉 =
1√
2


1
0
0
−1

 .

The state |ψ2〉 is one of the Bell states and is thus maximally entangled. We
find τ1 = 0 as expected since |ψ1〉 is separable and so

Ef (ρ1) = h(1) = 0.

Similarly τ2 = 1 as expected since |ψ2〉 is maximally entangled and so

Ef (ρ2) = h

(
1
2

)
= 1.

We see that 0 ≤ Ef (ρ) ≤ 1 where Ef (ρ) = 0 indicates a separable state and
Ef (ρ) = 1 indicates a maximally entangled state. ♣

Example. We introduce the Werner state (Werner [150]) with

ρW =
5
8
|φ+〉 〈φ+|+ 1

8
(|φ−〉 〈φ−|+ |ψ+〉 〈ψ+|+ |ψ−〉 〈ψ−|)

=
1
2
|φ+〉 〈φ+|+ 1

8
I4

=
1
8


3 0 0 2
0 1 0 0
0 0 1 0
2 0 0 3

 .

We find τ = 1
16 and so

Ef (ρW ) = h

(
4−

√
15

8

)
= 0.11762. ♣
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6.2.4 Schmidt Number

Suppose |ψ〉 is a pure state of a composite system HA ⊗HB . Then there exist
orthonormal states |j〉A ∈ HA and orthonormal states |j〉B ∈ HB such that

|ψ〉 =
min(dim(HA),dim(HB))∑

j=1

λj |j〉A ⊗ |j〉B

is the Schmidt decomposition of |ψ〉 where the λj are known as Schmidt coeffi-
cients.

Let HA and HB be finite-dimensional Hilbert spaces over C. Let |ψ〉 denote a
pure state in the Hilbert space HA ⊗ HB . The Schmidt number (or rank) of
|ψ〉 is the smallest non-negative integer Sch(|ψ〉 ,HA,HB) such that |ψ〉 can be
written as

|ψ〉 =
Sch(|ψ〉,HA,HB)∑

j=1

|ψj〉A ⊗ |ψj〉B

where |ψj〉A ∈ HA and |ψj〉B ∈ HB . Consider the Schmidt decomposition of |ψ〉
as defined above. The Schmidt number is then the number of non-zero λj where
λ2
j are the eigenvalues of the matrix ρA = trBρ for ρ = |ψ〉 〈ψ|. A separable

state has a Schmidt number 1 and an entangled state has a Schmidt number
greater than 1 (Sperling and Vogel [118]).

Example. Consider the quantum state

|ψ〉 =
1√
2


eiφ

0
0
1

 .

We calculate the Schmidt number. From before we know that

ρA =
1
2
I2

where I2 is the 2 × 2 identity matrix. The eigenvalue is 1
2 with multiplicity 2

so that Sch(|ψ〉 ,C2,C2) = 2. This is as expected as we know that the state is
entangled. ♣

Example. Let f : {0, 1}2 → {0, 1} be a boolean function. We may define

|ψf 〉 :=
1
2

∑
a,b∈{0,1}

(−1)f(a,b) |a〉 ⊗ |b〉.

We determine and compare the Schmidt numbers of |ψOR〉 and |ψXOR〉 over
C2 ⊗ C2 where the standard basis {|0〉 := (0 1)T , |1〉 := (1 0)T } is considered
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(Steeb and Hardy [122]). We obtain

|ψOR〉=
1
2
(|0〉 ⊗ |0〉 − |0〉 ⊗ |1〉 − |1〉 ⊗ |0〉 − |1〉 ⊗ |1〉)

=
1
2
(
−1−1−1 1

)T
|ψXOR〉=

1
2
(|0〉 ⊗ |0〉 − |0〉 ⊗ |1〉 − |1〉 ⊗ |0〉+ |1〉 ⊗ |1〉)

=
1
2
(
1−1−1 1

)T
.

We obtain

ρOR,A = (I2 ⊗ 〈0|)ρOR(I2 ⊗ |0〉) + (I2 ⊗ 〈1|)ρOR(I2 ⊗ |1〉)

=
1
2

(
1 0
0 1

)
with eigenvalue 1

2 with multiplicity 2 so that Sch(|ψOR〉 ,C2,C2) = 2.

ρXOR,A = (I2 ⊗ 〈0|)ρXOR(I2 ⊗ |0〉) + (I2 ⊗ 〈1|)ρXOR(I2 ⊗ |1〉)

=
1
2

(
1 −1
−1 1

)
with eigenvalues 0 and 1 so that Sch(|ψXOR〉 ,C2,C2) = 1. We see that

|ψXOR〉 =
1√
2

(
1
−1

)
⊗ 1√

2

(
1
−1

)
showing that it is a separable state in the Hilbert space. ♣

Example. Consider the following state in the Hilbert space C4 ⊗ C2

|ψ〉 =
1√
2


i
0
0
1

⊗
(

0
1

)
.

In this case HA is C4. We determine the Schmidt number for this state. We
find

ρA =
1
2


1 0 0 i
0 0 0 0
0 0 0 0
−i 0 0 1


with eigenvalues 0 (with multiplicity 3) and 1 so that Sch(|ψ〉 ,C4,C2) = 1. This
state is separable in the given Hilbert space. However we may also write the
state as ((

1
0

)
⊗
(
i
0

)
+
(

0
1

)
⊗
(

0
1

))
⊗
(

0
1

)
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in the Hilbert space (C2 ⊗ C2)⊗ C2 in which case the state is entangled. ♣

In the following section we introduce multipartite entanglement where the sys-
tems are composed of N > 2 subsystems. This leads to the concept of the
generalized Schmidt decomposition. Suppose |ψ〉 is a pure state of a composite
systemHA1⊗HA2⊗· · ·⊗HAN

. Then there exist orthonormal states |j〉A`
∈ HA`

for ` = 1, 2, . . . , N such that

|ψ〉 =
min(dim(HA1 ),...,dim(HAN

))∑
j=1

λj |j〉A1
⊗ |j〉A2

⊗ · · · ⊗ |j〉AN

is the generalized Schmidt decomposition of |ψ〉 where the λj are known as
Schmidt coefficients as before.

6.3 Multipartite Entanglement

Up to now we have considered bipartite entanglement where we consider the
entanglement shared between two systems. We now consider systems that are
composed of more than two subsystems. The entanglement shared by these
systems is now referred to as multipartite entanglement. Before we considered
states that were fully entangled (or fully separable) now with the introduction
of more subsystems we may consider the concept of partial separability . Many
of the entanglement measures introduced for bipartite systems may be extended
to cover the multipartite case however more parameters are needed to calculate
the entanglement. The extension to higher dimensional Hilbert spaces have
recently been studied by many authors such as Ban [4], Friedland and Gour
[36], Hong and Gao [54], Li et al [73], Sheikholeslam and Gulliver [116], Steeb
and Hardy [124], Wong and Christensen [155], Wu et al [156].

A pure N -partite state is separable if and only if all the reduced density ma-
trices of the elementary subsystems describe pure states. In a bipartite case
separability can be determined by calculating the Schmidt decomposition of the
state. Unfortunately this concept cannot straightforwardly be generalized to
the case of N separate subsystems (A. Peres [90], Thapliyal [141]). In addition
to these methods a separability condition based on comparing the amplitudes
and phases of the components of the state has been presented by Matsueda and
Cohen [78]. For other ways to detect the separability of pure states one may
see Yu and Song [158], [159] and Brassard and Mor [18].

A comprehensive measure for multipartite entanglement is the N -tangle which
is related to the tangle in bipartite systems introduced earlier. We consider the
finite-dimensional Hilbert space H = C2N

with N = 3 or N even. We consider
the normalized states

|ψ〉 =
1∑

j1,j2,...,jN=0

cj1,j2,...,jN |j1〉 ⊗ |j2〉 ⊗ · · · ⊗ |jN 〉
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in the Hilbert space where |0〉, |1〉 denote the standard basis in C2. We introduce
εjk (j, k = 0, 1) and define ε00 = ε11 = 0, ε01 = 1 and ε10 = −1. The N -tangle
is then defined by

τ1...N := 2
∣∣ 1∑

α1,...,αN =0
...

δ1,...,δN=0

cα1...αN
cβ1...βN

cγ1...γN
cδ1...δN

×εα1β1εα2β2 . . . εαN−1βN−1εγ1δ1εγ2δ2 . . . εγN−1δN−1εαNγN
εβNδN

∣∣.
We see that this measurement for entanglement in a multipartite system is con-
siderably more complicated than the bipartite equivalent introduced previously
with many more additional variables. The more subsystems we deal with, the
more variables are introduced. In the Computer algebra implementation section
we include program 10 for calculating the 3-tangle.

Example. Consider the GHZ-state

|GHZ〉 =
1√
2



1
0
0
0
0
0
0
1


.

Here N = 3 and we find τ123 = 1 so that the state is maximally entangled under
this measure. ♣

Example. Consider the Werner state (Werner [150])

|W 〉 =
1√
3



0
1
1
0
1
0
0
0


.

N = 3 and τ123 = 0. This means that under the measure that we are considering
(the N -tangle) the state |W 〉 is not entangled. However the state is clearly not
separable since the state cannot be written as a product state. This state is
non-separable and also not entangled under this measure. ♣

Example. Let N = 4 and consider the state where

c0000 = c1111 =
1√
2
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and all other coefficients are 0. We find τ1234 = 1 and as such see that the state
is fully entangled under this measure. ♣



Chapter 7

Exceptional and Diabolic
Points

7.1 Introduction

A significant property of quantum mechanics is that the energy spectrum of
a given quantum system is quantized. That is, the system can possess only a
discrete number of energies. The energy of the system is given by the eigenvalues
of the Hamilton operator Ĥ of the system. We call the fixed amount of energy
that the system can have the energy levels of the system. When more than one
state is at the same energy we say the energy levels are degenerate. We may
consider discrete and continuous spectra.

We consider Hamilton operators Ĥ acting on a finite dimensional Hilbert space
H ensuring that the energy spectrum is discrete. We also assume it is bounded
from below. In many cases this operator depends on a real parameter and
the question arises whether or not energy levels can cross by changing this
parameter. This leads us to the non-crossing rule which was formulated by
von Neumann and Wigner in 1929 [147], proving the theorem put forward by
Hund [56]. This theorem shows that the real symmetric matrices (respectively
hermitian matrices) with a multiple eigenvalue form a real algebraic variety of
codimension 2 (respectively 3) in the space of all real symmetric matrices(all
hermitian matrices). This implies the non-crossing rule which states that a
generic one parameter family of real symmetric matrices (two parameter family
of hermitian matrices) contains no matrix with a multiple eigenvalue (Fried-
land et al [35], Steeb et al [125], [126], [135]). Simply put the potential energy
curves corresponding to states of the same symmetry cannot cross. A Hamilton
operator may depend on other real parameters that may give rise to certain
degeneracies. When the Hamilton operator depends on a single real parameter

79
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we refer to this as a coupling . Two types of degeneracies may occur. A perma-
nent degeneracy implies that energy levels remain degenerate for all values of
the parameter and the existence of such a degeneracy suggests the existence of
non-commuting symmetry operators. The second type of degeneracy is a cross-
ing of energy levels that occurs at a particular value of the parameter. Energy
level crossing is closely related to the symmetries of a system. In the absence
of symmetries energy levels repel or equivalently the energy levels do not cross.
Multiple level crossings at a certain point indicate a higher degree of symmetry
at this point than at others (Yuzbashyan et al [160]). We may also consider the
question of entanglement together with the question of energy level crossing.

At exceptional points and diabolic points width bifurcations occur and they
are physically meaningful as they influence the dynamics of both open as well
as closed quantum systems. The geometric phase that arises from encircling
exceptional points differ from the phase that arises from encircling diabolic
points. These phenomena are worth investigating.

Exceptional points may be studied for both hermitian and non-hermitian opera-
tors as have been investigated historically by Kato in 1984 [60] and by numerous
authors since. In 1991 Heiss and Steeb [51] discussed the Riemann sheet struc-
ture of the energy levels of an N -dimensional symmetric matrix problem. They
showed that singularities of the energy levels are related to avoided level cross-
ings. These singularities are exceptional points. In 1993 Steeb and Heiss [128]
investigated the exceptional points for a three level Hamilton system. In 2002
Yuzbashyan et al [160] investigated the degeneracies of the energy spectrum
of finite quantum systems using the Hamilton operator of the Hubbard model
as example. They studied the various symmetries that arose and investigated
the existence of an additional parameter independent symmetry in the model.
In 2004 Harney and Heiss [47] studied the eigenvectors of decaying quantum
systems at exceptional points of the Hamilton operator. They paid special at-
tention to the properties of the system under time reversal symmetry breaking
at the exceptional points. In 2005 Rotter [102] investigated avoided level cross-
ings and singular points. She discussed the influence of branch points on the
dynamics of both open and closed quantum systems as well as highlighting some
differences between exceptional and diabolic points. In 2010 Rotter [103] dis-
cussed the role of exceptional points in quantum systems. She discussed the
basic mathematical properties of exceptional points and considered their role
in the description of real physical quantum systems. In 2011 Elsen et al [33]
discussed exceptional points in bichromatic Wannier-Stark systems. They local-
ized these degeneracies of the spectum in parameter space. In 2012 Liertzer et
al [75] studied the affects of exceptional points on lasers and they found that the
above-threshold behaviour of a laser is strongly affected by exceptional points
which are induced by pumping the laser nonuniformly. They saw that in the
vicinity of these singularities the laser may turn off even when the overall pump
power deposited in the system was increased. In 2012 Ramezani et al [98] stud-
ied exceptional point dynamics in photonic honeycomb lattices with PT (parity
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and time) symmetry.

In 2004 Heiss [53] investigated the specific characteristics of exceptional points
of non-hermitian operators for real-parameter values. He studied theses re-
sults by considering a classical problem that lead to exceptional points of a
non-hermitian matrix. In 2007 Geyer et al [42] studied various properties of
non-hermitian operators and the physical implications of such operators. They
investigated the metric associated with these operators and the points at which
it is undefined, which are the exceptional points of the system. In 2009 Cartaris
et al [19] investigated exceptional points in spectra of the hydrogen atom. They
introduced a procedure to systematically search for these exceptional points and
they introduced a simple example for a non-hermitian operator. In 2012 Ryu
et al [105] investigated multiple exceptional points, or degeneracies, of non-
hermitian Hamilton operators where there were three eigenmodes interacting
with each other. They verified their expectations using numerical methods for
an open quantum system.

Exceptional points are also known as inflection points and occur at singularities
of eigenvalues and eigenvectors. An exceptional point is a point where both
eigenvalues and eigenvectors merge to form a Jordan block. At these singular
points at least two eigenvalues of an operator coalesce. There are only a finite
number of these exceptional points and each level repulsion is associated with
an exceptional point. The closer two levels approach each other for real values of
coupling strength the nearer these exceptional points are to the real axis (Steeb
et al [126]).

Diabolic points arise at a point of double eigenvalue with two linearly indepen-
dent eigenvectors and bifurcations occur at these points. Authors who have
studied diabolic points historically include Teller [139], Berry [10], Berry and
Wilkinson [12]. In 2000 Park and Garg [89] studied the degeneracies (diabolic
points) in magnetic molecules that have a four-fold symmetry axis. In 2005 Kir-
illov et al [64] presented a new theory of unfolding of eigenvalue surfaces of real
symmetric and Hermitian matrices due to an arbitrary complex perturbation
near a diabolic point. As a physical application they studied singularities of the
surfaces of refractive indices in crystal optics. In 2005 Seyranian et al [111] pre-
sented a paper describing a general theory for coupling of eigenvalues of complex
matrices at diabolic and exceptional points. Two physical examples were dis-
cussed illustrating the accuracy of the presented theory. This has been discussed
in chapter 4.2 when we introduced the eigenvalue problem. In 2006 Nesterov
and de la Cruz [85] studied complex magnetic monopoles and geometric phases
around diabolic and exceptional points. In 2006 Kirillov and Guenther [66]
studied the Krein space related perturbation theory for MHD alpha-2-dynamos
and the resonant unfolding of diabolical points. In 2010 Steeb [136] investigated
diabolic points and entanglement for a hierarchy of spin Hamilton operators
acting in the finite-dimensional Hilbert space C2N

. Diabolic points play a role
in superconducting circuits and in 2012 Monjou and Leone [83] studied a merg-
ing of diabolic points in the context of superconducting circuits. They studied
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a solvable four-level model and applied it to a circuit whose diabolic points are
already known. This circuit was the Cooper pairs pump studied by Leone and
Monjou in 2011 [72]. The diabolic points of the Fe8 molecular magnet were
investigated in 2000 by Garg [39], 2001 by Keçecioǧlu and Garg [61] and in
2011 by Li and Garg [74]. This is of interest as this magnetic molecule is rich
in degeneracies and these have been identified as diabolic points. In the 2001
paper the authors introduced an exactly solvable model.

We say that the eigenvalues coalesce while the corresponding eigenvectors re-
main different. In addition to considering these types of points or eigenvalues it
is also useful to consider the level of entanglement of the corresponding eigen-
vectors. The two energies near a diabolic point would vary locally as

E(α, β) = Ed ±
√
α2 + β2

where α, β are real parameters.

7.2 Exceptional Points

7.2.1 Real Symmetric Case (Hermitian operators)

Consider a closed quantum system where the system is isolated from the envi-
ronment. First consider the Hamilton operator

ĤB =
(
ε1 ω
ω ε2

)
.

The eigenvalues are

E1,2 =
1
2

(
ε1 + ε2 ±

√
(ε1 − ε2)2 + 4ω2

)
.

We see that the energies of the system are discrete and will never cross since√
(ε1 − ε2)2 + 4ω2 > 0

implies that E1 and E2 will be different. When E1 = E2 we say this is an
exceptional point .

Mathematically consider a hermitian Hamilton operator Ĥ of the form

Ĥ(ε) = Ĥ0 + εĤ1

where Ĥ0 and Ĥ1 are real symmetric n× n matrices with Ĥ0 being a diagonal
matrix. In perturbation theory for linear operators we say that Ĥ0 is the un-
perturbed operator and εĤ1 is the perturbation. The eigenvalues are obtained
by solving the characteristic polynomial

det
(
Ĥ(ε)− EIn

)
= 0.
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The number of eigenvalues of Ĥ(ε) is independent of ε with the exception of the
exceptional points where the eigenvalues coalesce. The exceptional points in
the complex ε plane are defined by the solution of the characteristic polynomial
together with

d

dE

(
det
(
Ĥ(ε)− EIn

))
= 0.

Example. Consider the two level system

Ĥ(ε) =
(

0 0
0 1

)
+ ε

(
0 1
1 0

)
.

We obtain
E2 − E − ε2 = 0, 2E − 1 = 0.

We find the exceptional points ε1,2 = ±i/2. Now consider the 2× 2 matrix

Ĥ(ε1 = i/2) =
(

0 i
2

i
2 1

)
with the single eigenvalue E = 1

2 and only one linearly independent eigenvector

1√
2

(
1
−i

)
.

Consider now the 2× 2 matrix

Ĥ(ε2 = −i/2) =
(

0 −i
2

−i
2 1

)
with the single eigenvalue E = 1

2 and only one linearly independent eigenvector

1√
2

(
1
i

)
.

The eigenvectors for Ĥ(ε1) and Ĥ(ε2) are orthonormal to each other. ♣

Example. Consider the three level system (Steeb and Heiss [128])

Ĥ(ε) =

0 0 0
0 1 0
0 0 2

+ ε

0 1 0
1 0 c
0 c 0


where c ∈ R . We find

E3 − 3E2 − E(c2ε2 + ε2 − 2) + 2ε2 = 0, E2 − 2E − 1
3
(c2ε2 + ε2 − 2) = 0.

Solving the second equation with respect to E gives

E1,2 = 1± 1
3

√
3(c2ε2 + ε2 + 1) = 1± 1

3

√
U.
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Substituting E1,2 into the first equation gives

±2
√
U(c2ε2 + ε2 + 1) + 9c2ε2 − 9ε2 = 0.

We introduce the abbreviations

A :=−c3 + c2 + c− 1
B1 := 3c5 + 15c4 − 18c3 − 18c2 + 15c+ 3
B2 := 10c4 − 52c2 + 10
B3 := 3c3 − 15c2 − 15c+ 3.

We find the exceptional points

ε1(c) =

(
A

1
3B3(−i

√
3− 1) +B2 − 3A

2
3 (c2 + 6c+ 1)(i

√
3− 1)

) 1
2

2(c2 + 1)
3
2

ε2(c) =−ε1(c), ε3(c) = ε∗1(c), ε4(c) = −ε∗1(c)

ε5(c) =

(
A

1
3B3 + B2

2 − 3A
2
3 (c2 + 6c+ 1)

) 1
2

2(c2 + 1)
3
2

ε6(c) = ε∗5(c).

Consider the special case where c→ 1. We find A→ 0 which causes a confluence
of exceptional points

ε1 →
i√
2
, ε4 →

i√
2
, ε5 →

i√
2

and
ε2 → − i√

2
, ε3 → − i√

2
, ε6 → − i√

2
.

This confluence simplifies the analytic structure in that two branch points cancel
one another. The eigenvalues in this case are given by

E±(ε) = 1±
√

2ε2 + 1, E2 = 1. ♣

7.2.2 Non-Hermitian Operators

In physics we may also consider non-hermitian systems to study exceptional
points. Some authors who have looked at this case are Kato [60], Heiss [53] and
Rotter [102], [103]. Here we call them crossing points of eigenvalue trajectories
or branch points. We now consider the situation where the quantum system
interacts with an environment (an open quantum system). We consider when
the quantum system is opened by embedding it into an environment where there
is a continuum of scattering wave functions. Consider the Hamilton operator

Ĥeff = ĤB + VBC
1

E+ − ĤC

VCB .
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ĤC is the Hamilton operator providing the scattering of wave functions of the
environment and VBC , VCB are the coupling matrix elements. The second term
of Ĥeff takes into account the coupling of eigenstates of the closed system ĤB

with the environment via the incoming and outgoing waves when the system
is opened. Since Ĥeff describes a subsystem that is embedded into another
subsystem it is non-hermitian. When the system is weakly opened (the cou-
pling term is small) the states avoid crossing in a similar manner to discrete
states. Considering non-hermitian operators allows us to consider the system’s
embedding into an environment.

Consider the 2× 2 Hamilton operator introduced previously

Ĥ(ω) :=
(
ε1 ω
ω ε2

)
where ε1,2 are the unperturbed energies of the system and ω is the interaction
between the two levels. The interaction ω contains exclusively the coupling of
the states via the environment and allows us to study environmentally induced
effects in an open quantum system. The eigenvalues of Ĥ(ω) are

E1,2 =
1
2

(
ε1 + ε2 ±

√
(ε1 − ε2)2 + 4ω2

)
as before. The eigenvalues coalesce when

ε1 − ε2
2ω

= ±i

and we call these crossing points the exceptional points.

Example. Consider the Hamilton operator

Ĥ1 := σ3 + iσ1

where σ1 and σ3 represent the Pauli spin matrices for describing a spin- 1
2 system.

We find

Ĥ1 =
(

1 i
i −1

)
.

The matrix is not normal and thus not hermitian. We find the eigenvalue 0
with multiplicity 2 and the normalized eigenvector

1√
2

(
1
i

)
. ♣

Example. Consider the Hamilton operator

Ĥ2 := s3 + is1

where s1 and s3 represent the Pauli spin matrices for describing a spin-1 system.
We find

Ĥ2 =
1√
2

√2 i 0
i 0 i

0 i −
√

2

 .
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The matrix is not normal and thus not hermitian. We find the eigenvalue 0
with multiplicity 3 and the normalized eigenvector

1
2

 1√
2i
−1

 . ♣

Exceptional points have many applications mathematically as well as in physics.
Amongst other things one may investigate the relation between exceptional
points and the phenomenon of resonance trapping and dynamical phase transi-
tions.

7.3 Diabolic Points in Spin Systems

We consider diabolic points for some spin-systems (Steeb [136]). Let σ1, σ2 and
σ3 be the Pauli spin matrices. We consider the diabolic points and entanglement
for the eigenvectors of the following Hamilton operators

Ĥ2 := ~ω(σ3 ⊗ σ3) + ∆1(σ1 ⊗ σ1) + ∆2(σ2 ⊗ σ2)

Ĥ3 := ~ω(σ3 ⊗ σ3 ⊗ σ3) + ∆1(σ1 ⊗ σ1 ⊗ σ1) + ∆2(σ2 ⊗ σ2 ⊗ σ2)

where ω > 0 and ∆1,∆2 ≥ 0. We then extend this to an arbitrary Hamilton
operator ĤN with N factors where N > 2.

Note that Ĥ2 is similar to the Hamilton operator investigated in chapter 5.1.
We find

Ĥ2 =


~ω 0 0 ∆1 −∆2

0 −~ω ∆1 + ∆2 0
0 ∆1 + ∆2 −~ω 0

∆1 −∆2 0 0 ~ω


with the eigenvalues

~ω + ∆1 −∆2, ~ω −∆1 + ∆2, −~ω + ∆1 + ∆2, −~ω −∆1 −∆2

and corresponding normalized eigenvectors

1√
2


1
0
0
1

 ,
1√
2


1
0
0
−1

 ,
1√
2


0
1
1
0

 ,
1√
2


0
1
−1
0

 .

We see the eigenvectors do not depend on ~ω, ∆1,2 and are in fact the Bell
states and as such are fully entangled.



7.3. DIABOLIC POINTS IN SPIN SYSTEMS 87

We find

Ĥ3 =



~ω 0 0 0 0 0 0 i∆2 + ∆1

0 −~ω 0 0 0 0 ∆1 − i∆2 0
0 0 −~ω 0 0 ∆1 − i∆2 0 0
0 0 0 ~ω i∆2 + ∆1 0 0 0
0 0 0 ∆1 − i∆2 −~ω 0 0 0
0 0 i∆2 + ∆1 0 0 ~ω 0 0
0 i∆2 + ∆1 0 0 0 0 ~ω 0

∆1 − i∆2 0 0 0 0 0 0 −~ω


with the eigenvalues√

~2ω2 + ∆2
1 + ∆2

2, −
√

~2ω2 + ∆2
1 + ∆2

2.

We let E ≡
√

~2ω2 + ∆2
1 + ∆2

2. We find corresponding eigenvectors

E + ~ω
0
0
0
0
0
0

∆1 − i∆2


,



0
E + ~ω

0
0
0
0

∆1 − i∆2

0


,



0
0

E + ~ω
0
0

∆1 − i∆2

0
0


,



0
0
0

E + ~ω
∆1 − i∆2

0
0
0


with the normalization factor

1√
(E + ~ω)2 + ∆2

1 + ∆2
2

and 

E − ~ω
0
0
0
0
0
0

−∆1 + i∆2


,



0
E − ~ω

0
0
0
0

−∆1 + i∆2

0


,



0
0

E − ~ω
0
0

−∆1 + i∆2

0
0


,



0
0
0

E − ~ω
−∆1 + i∆2

0
0
0


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with the normalization factor

1√
(E − ~ω)2 + ∆2

1 + ∆2
2

.

These may be entangled depending on the parameters ω and ∆1,2. Considering
the (normalized) first eigenvector

1√
(E − ~ω)2 + ∆2

1 + ∆2
2

(
E + ~ω 0 0 0 0 0 0 ∆1 − i∆2

)T
we find the 3-tangle

τ123 =
(

2(E + ~ω)(−∆1 + i∆2)
(E + ~ω)2 + ∆2

1 + ∆2
2

)2

.

For this eigenvector to be maximally entangled we require τ123 = 1 to hold. For
this to be true

∆2
1 + ∆2

2 = 0 or ω2 =
−2∆2(∆2 + i∆1)

~2
.

The 3-tangle may be determined similarly for the other eigenstates.

We now consider the general case where N > 2 with

ĤN = ~ω(σ3 ⊗ · · · ⊗ σ3) + ∆1(σ1 ⊗ · · · ⊗ σ1) + ∆2(σ2 ⊗ · · · ⊗ σ2)

where there are N factors. We consider even and odd values of N separately.
For N even we consider even and odd multiples of 2 (in other words N = 2n
with n even or odd). When n is even the eigenvalues are

E1 = ~ω + ∆1 + ∆2, E2 = ~ω −∆1 −∆2,

E3 = −~ω + ∆1 −∆2, E4 = −~ω −∆1 + ∆2.

When n is odd the eigenvalues are

E1 = ~ω + ∆1 −∆2, E2 = ~ω −∆1 + ∆2,

E3 = −~ω + ∆1 + ∆2, E4 = −~ω −∆1 −∆2.

In both cases the eigenvalues have multiplicity 2N−2. We see for N even there
are no diabolic points however there is energy level crossing. The corresponding
2N normalized eigenvectors are the same for the two cases of n and do not
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depend on ∆1,2 or ~ω. They are given by

1√
2



1
0
0
0
0
...
0
0
0
0
±1



,
1√
2



0
0
0
1
0
...
0
±1
0
0
0



, . . . ,
1√
2



0
...
0
1
0
0
±1
0
...
0


and

1√
2



0
1
0
0
...
0
0
±1
0


,

1√
2



0
0
1
0
...
0
±1
0
0


, . . . ,

1√
2



0
...
0
1
±1
0
...
0


respectively. These eigenvectors form an orthonormal basis in the Hilbert space
C2N

and are fully entangled.

For N odd we find the two eigenvalues ±E from before with the eigenvectors

E ± ~ω
0
0
...
0
0

±(∆1 − (−i)N∆2)


,



0
E ± ~ω

0
...
0

±(∆1 − (−i)N∆2)
0


, · · · ,



0
...
0

E ± ~ω
±(∆1 − (−i)N∆2)

0
...
0


.
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So we see that for N even the Hamilton operator provides a fully entangled
basis. When N is odd we may vary the given parameters to move between
entangled and unentangled states.

Once again we recall from a mathematical point of view that at diabolic points
the eigenvalues coalesce and that the eigenvectors remain linearly independent.
At exceptional points both eigenvalues and eigenvectors merge (Kirillov et al
[64], [65], Seyranian et al [111]). We have discussed this in chapter 4.2 as well.

7.4 Conservation Laws, Level Crossing and Sym-
metries

It can happen in a quantum mechanical system that there are energy level
crossings of the same parameter independent symmetry. This seems to be a
violation of the non-crossing rule introduced earlier. This however indicates
that higher invariants (conserved quantities) may exist. Typical examples that
may be studied are the four point Hubbard model (Steeb et al [127], [129]) and
the six point Hubbard model (Yuzbashyan et al [160]).

Consider first the four point Hubbard model. The Wannier representation is
given by

Ĥ := t
4∑
j=1

∑
s∈{↑,↓}

(c†j+1scjs + c†jscj+1s) + U
4∑
j=1

nj↑nj↓

with the cyclic boundary condition 5 ≡ 1 and njs := c†jscjs. The total number
operator N̂e and the total spin operator in z direction Ŝz are given by

N̂e :=
4∑
j=1

∑
s∈{↑,↓}

njs, Ŝz :=
1
2

4∑
j=1

(nj↑ − nj↓).

Since the Hubbard model commutes with N̂e and Ŝz the spectrum can be cal-
culated in each of the subspaces separately. In addition to these constants of
motion we also find the higher order conserved quantity (Steeb [130])

Ĉ :=
4∑
j=1

((c†j↑cj−1↑ − c†j−1↑cj↑)(nj↓ + nj−1↓) + (c†j↓cj−1↓ − c†j−1↓cj↓)(nj↑ + nj−1↑))

−
4∑
j=1

∑
s∈{↑,↓}

(c†jscj−1s − c†j−1scjs).

The existence of this higher-order constant of motion (since [Ĉ, Ĥ] = 0) is
related to the fact that the one-dimensional Hubbard model admits a Lax rep-
resentation. The Hamilton operator admits the C4v point-group symmetry and
the C2 symmetry of spin-reversal.
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In Bloch representation the four point Hubbard model is given by

Ĥ :=
∑
k

∑
s∈{↑,↓}

ε(k)c†kscks +
U

4

∑
k1,2,3,4

δ(k1 − k2 + k3 − k4)c
†
k1↑ck2↑c

†
k3↓ck4↓

where ε(k) = 2tcos(k) and

k, k1, k2, k3 ∈
{
−π

2
, 0,

π

2
, π modulo 2π

}
.

In this form the Hamilton operator commutes with the total momentum oper-
ator given by

P̂ :=
∑
k

∑
s∈{↑,↓}

knks.

Heilmann and Lieb [49] studied the six-point Hubbard Hamilton operator as
a model for ϕ electrons in benzene. They computed all the energy levels for
all values of the repulsion parameter. After extracting all the symmetry of
the model they found many instances of permanent degeneracy of levels with
different symmetry and also crossing of levels of the same symmetry. They
demonstrated that there is no hidden symmetry to account for these effects.

Thus one can conclude that the Hamilton operatorH has non-Abelian symmetry
groups and these are dependent on U . Shastry [113] found many invariants .

Yuzbashyan et al [160] expanded upon the research of Heilmann and Lieb and
looked at the relationship between the symmetry of a system and its degeneracies
for the six point Hubbard model. We may define the Hamilton operator for the
Hubbard model

Ĥ = t

N∑
j=1

∑
s∈{↑↓}

(
c†jscj+1s + c†j+1scjs

)
+ U

N∑
j=1

(
n̂j↑ −

1
2
I

)(
n̂j↓ −

1
2
I

)
where t represents the kinetic term and U the Coulomb interaction between
electrons of opposite spin on the same site. n̂js := c†jscjs is the number op-
erator. We introduce the notation N representing the number of sites and M
representing the number of electrons. Yuzbashyan et al [160] considered the
case where there are equal spin up and spin down electrons so that N = 2n and
M = 2m. We may consider parameter independent and parameter dependent
symmetries. For the purposes of studying the effect of parameter dependent
symmetries on the system one needs to factor out the parameter independent
symmetries.

Parameter independent symmetries (U -independent) fall into three categories
namely spatial symmetry (or symmetry of the polygon), spin symmetry and
particle-hole symmetry (Yuzbashyan et al [160]). Spatial symmetries are gener-
ated by rotations and reflections where

σ̂ :=
∏
s=↑↓

n−1∏
k=1

Ĵks;−ks, σ̂′ :=
∏
s=↑↓

n∏
k=1

Ĵk−1,s;2n−k,s
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reflects a polygon in the line passing through the vertices n and 2n where

Ĵjs;j′s′ := 1− n̂js − n̂j′s′ + c†jscj′s′ + c†j′s′cjs

interchanges orbitals (js) and (j′s′). Now the operator

Ĉ2n := σ̂σ̂′

rotates the polygon by π/n. Spin symmetry is generated by Ŝ2 and Ŝz where
we define

Ŝ+ := (Ŝ−)† =
2n∑
j=1

c†j↑cj↓, n̂s :=
2n∑
j=1

n̂js

so that
Ŝz :=

n̂↑ − n̂↓
2

, Ŝ2 :=
1
2

(
Ŝ−Ŝ+ + Ŝ+Ŝ−

)
+ Ŝ2

z .

To describe particle hole symmetry we define the operators

Ĵ (o)
s :=

n−1∏
j=0

(1− 2n̂2j+1,s), Ĵ (h)
s :=

2n∏
j=1

(
c†js + cjs

)
where Ĵ

(o)
s changes the sign of the wavefunction each time there is a spin-s

electron on an odd site and Ĵ
(h)
s interchanges holes and particles for a spin

direction s. We introduce the following operators

Ĵ (o) = Ĵ
(o)
↑ Ĵ

(o)
↓ , Ĵ (h) = Ĵ

(h)
↑ Ĵ

(h)
↓ , Î(o) = Ĵ (o)Ĵ (h), Ẑ↑ = Ĵ

(o)
↑ Ĵ

(h)
↓ .

The following commutation and anti-commutation relations hold

[Ẑ↑, Ĥ]+ = 0, [σ̂, Ĥ]+ = 0

[Î(o), Ĥ] = [Ĵ (0), t̂]+ = [Î(o), Ŝz]+ = [Î(o), Ŝ2] = 0

Î(o)Ĉ2n − Ĉ2nÎ
(o)(−1)n̂ = Ẑ↑Ĉ2n + Ĉ2nẐ↑(−1)n̂↓ = Ẑ↑σ̂ − (−1)n−1σ̂Ẑ↑ = 0

where t̂ is the kinetic energy operator

t̂ := t
N∑
j=1

∑
s=↑↓

(
c†jscj+1s + c†j+1scjs

)
.

When we consider parameter-dependent integrals of motion there are in prin-
ciple an infinite number of these that can be obtained by methods outlined by
Shastry [113], [114], [115]. On a finite lattice only a finite number of these
integrals are independent. The general form for the rth conserved current is

Îr(U, t) :=
∑̀
k=0

Ukt`−k Îkr
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where Îkr are parameter-independent operators. When we consider permanent
degeneracies it is important to note that odd (r = 2k + 1) and even (r = 2k)
transform differently under spatial reflections and partial particle-hole transfor-
mation

[σ̂, Î2k+1] = 0, [Ẑ↑, Î2k+1]+ = 0, [σ̂, Î2k]+ = 0, [Ẑ↑, Î2k] = 0.

Odd currents have the same U -independent symmetry as the Hubbard Hamilton
operator.



Chapter 8

Computer Algebra
Implementation

In this chapter we provide Maxima programs ([161], Barnes and Chu [5], Steeb
and Hardy [124]) for some of the problems discussed in the dissertation as well as
some other interesting problems. Further examples of computer implementation
for quantum computing and Fermi systems may be seen in works by Steeb
and Hardy [131], [132] amongst others where Symbolic C++ is used instead of
Maxima.

Some frequently used Maxima commands include

(a) Kronecker product between matrices A and B

kronecker_product(A,B)

(b) The complex conjugate transpose of a matrix A

ctranspose(A)

(c) The trace of an n× n matrix A

mat_trace(A)

(d) The determinant of an n× n matrix A

determinant(A)

(e) The Frobenius norm of a matrix A

mat_norm(A,frobenius)

94
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Program 1. The following Maxima code is an implementation of the formula
given in section 2.1.1 to determine mutually unbiased bases in a
d-dimensional Hilbert space. The dimension d and the required base b is given
as input.

genbase(b,d) := block(
for count : 0 thru d-1 do (
genm(count,b,d)

)
)$
genm(m,b,d) := block(
sum : 0,
I : genmatrix(lambda([r,c],0),d,d),
for i : 1 thru d do I[i,i] : 1,
om : cos((2*%pi)/d)+%i*sin((2*%pi)/d),
for j : 0 thru d-1 do (
sum : sum+om^((b/2)*j*(j-1)-j*m)*transpose(I[j+1])

),
S : ratsimp((1/(sqrt(d)))*sum),
print(S)

)$

Where the dimension d and the required base b is specified. For the input

genbase(0,3);

we obtain the output
1√
3

1√
3

1√
3

 ,


1√
3

2
3i−

√
3

− 2
3i+

√
3

 ,


1√
3

− 2
3i+

√
3

2
3i−

√
3

 .
For the input

genbase(1,3);

we obtain the output
1√
3

1√
3√

3i−1
2
√

3

 ,


1√
3

2
3i−

√
3

2
3i−

√
3

 ,


1√
3

− 2
3i+

√
3

1√
3

 .
This may also be done for the input

genbase(2,3);

Larger dimensions may also be considered.
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Program 2a. The following program provides a way of generating n× n per-
mutation matrices for a given value of n as discussed in section 2.3.1.

permgen(n) := block([i,j,k,P,c],
i : 1,
cnt : 1,
array(j,n),
for k : 1 thru n do j[k] : 0,
while i > 0 do (
j[i] : j[i]+1,
if equal(j[i],n+1) then (
j[i] : 0, i : i-1

) else (
if i > 0 then (
c : 0,
for k : 0 thru i-1 do if equal (j[k],j[i]) then c : c+1,
if equal (c,0) then (
i : i+1,
if equal (i,n+1) then (
P : genmatrix(lambda([r,c],0),n,n),
for k : 1 thru n do P[k,j[k]] : 1,
print(P),
cnt : cnt+1,
i : i-1
)
)

)
)
)

)$

The input

permgen(3)

provides the output 1 0 0
0 1 0
0 0 1

 ,
1 0 0

0 0 1
0 1 0

 ,
0 1 0

1 0 0
0 0 1

 ,
0 1 0

0 0 1
1 0 0

 ,
0 0 1

1 0 0
0 1 0

 ,
0 0 1

0 1 0
1 0 0

 .
As expected there are 3! = 6 matrices. There will be n! output matrices for a
given input n.
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Program 2b. The above program may be adapted in various ways depend-
ing on what one needs the permutation matrices for. The following Maxima
program is an adaptation of the above program to determine if there exists
permutation matrices Pj such that PTj HPj = H for a given H.

permgen(H) := block([i,j,k,P,c],
i : 1,
n : length(H),
count : 0,
array(j,n),
for k : 1 thru n do j[k] : 0,
while i > 0 do (
j[i] : j[i]+1,
if equal(j[i],n+1) then (
j[i] : 0, i : i-1

) else (
if i > 0 then (
c : 0,
for k : 0 thru i-1 do if equal (j[k],j[i]) then c : c+1,
if equal (c,0) then (
i : i+1,
if equal (i,n+1) then (
P : genmatrix(lambda([r,c],0),n,n),
for k : 1 thru n do P[k,j[k]] : 1,
commutes(H,P),
i : i-1
)
)

)
)
)

)$
commutes(H,P) :=
if equal(H.P,P.H) then (print(’P[count]= P), count : count+1)$

permgen(matrix([U,t,t,0], [t,0,0,t], [t,0,0,t], [0,t,t,U]));

We obtain the output
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 ,


0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

 ,


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 .



98 CHAPTER 8. COMPUTER ALGEBRA IMPLEMENTATION

Program 3. The following Maxima program is an implementation of the finite
Heisenberg group of order n as introduced in chapter 2.3.2

heisgroup(n) := block(
om : cos(2*%pi/n)+%i*sin(2*%pi/n),
Qn : genmatrix(lambda([r,c],0),n,n),
for j : 1 thru n do Qn[j,j] : ratsimp(om^(j-1)),
Pn : genmatrix(lambda([r,c],0),n,n),
for r : 1 thru n do(
for c : 1 thru n do (
if equal(mod(c,n), mod(r-1,n)) then Pn[r,c] : 1

)
),
count : 0,
for j : 0 thru n-1 do (
for k : 0 thru n-1 do (
for l : 0 thru n-1 do (
Hn : (om^j)*(Qn^^k).(Pn^^l),
print(H[count]),
print(Hn),
count : count+1

)
)
)
)$

For the input

heisgroup(2);

we obtain the output[
1 0
0 1

]
,

[
0 1
1 0

]
,

[
1 0
0−1

]
,

[
0 1
−1 0

]
,

[
−1 0
0 −1

]
,

[
0 −1
−1 0

]
,

[
−1 0
0 1

]
,

[
0−1
1 0

]
.

As expected for larger values of n the output will increase exponentially since
the order of the finite Heisenberg group is n3.
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Program 4. The following Maxima program tests the Yang-Baxter equation
introduced in the braid group section of chapter 2.3.2.

I2 : matrix([1,0],[0,1]);
R : matrix([0,0,0,a],[0,b,0,0],[0,0,c,0],[d,0,0,0]);
LHS : ratsimp(kronecker_product(R,I2).

kronecker_product(I2,R).kronecker_product(R,I2));
RHS : ratsimp(kronecker_product(I2,R).

kronecker_product(R,I2).kronecker_product(I2,R));
D : ratsimp(LHS-RHS);

If D is the zero matrix then we see that the equation is satisfied. In the case of
unknown variables one may easily solve each element to equal zero. Any 4× 4
matrix may be used as input for R.

Program 5. The following Maxima program is an implementation of the
Heisenberg uncertainty relation introduced in chapter 3.2 and computes both
the weaker and the stronger relation.

heis(A,B,psi) := block(
I : genmatrix(lambda([r,c],0),length(A),length(A)),
for j : 1 thru length(A) do I[j,j] : 1,
eA : ctranspose(psi).A.psi,
eA2 : ctranspose(psi).(A.A).psi,
dA : sqrt(eA2-(eA)^2),
eB : ctranspose(psi).B.psi,
eB2 : ctranspose(psi).(B.B).psi,
dB : sqrt(eB2-(eB)^2),
LHSw : dA.dB,
RHSw : (1/2)*abs(ctranspose(psi).(A.B-B.A).psi),
LHSs : (dA^2).(dB^2),
RHSs : (1/4)*abs(ctranspose(psi).(A.B-B.A).psi) +

(1/4)*(abs(ctranspose(psi).((A-eA.I).(B-eB.I) +
(B-eB.I).(A-eA.I)).psi))^2,

print("LHS weak"),
print(LHSw),
print("RHS weak"),
print(RHSw),
print("LHS strong"),
print(LHSs),
print("RHS strong"),
print(RHSs)

)$
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Program 6. The following Maxima program is an implementation of the Cayley
transform introduced in chapter 4.1.1.

caley(H) := block(
In : genmatrix(lambda([r,c],0),length(H),length(H)),
for j: 1 thru length(H) do In[j,j]:1,
A : H-%i*In,
B : H+%i*In,
V : ratsimp(A.invert(B)),
print(V)

)$

The input

caley(matrix([1/2,1/2],[1/2,1/2]));

provides the output [
i(i−1)

2 − i(i+1)
2

− i(i+1)
2

i(i−1)
2

]
and the input

caley((1/sqrt(2))*matrix([0,1,0],[1,0,1],[0,1,0]));

provides the output  − 1
2 − i√

2
1
2

− i√
2

0 − i√
2

1
2 − i√

2
− 1

2


Any n× n hermitian matrix may be used as input.
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Program 7. The following Maxima code provides the Pauli matrices together
with their eigenvectors (and the conjugate transpose of their eigenvectors).

I2 : matrix([1,0],[0,1])$
sx : matrix([0,1],[1,0])$
sy : matrix([0,-%i],[%i,0])$
sz : matrix([1,0],[0,-1])$
u1 : (1/sqrt(2))*matrix([1],[1])$
u1t : ctranspose(u1)$
u2 : (1/sqrt(2))*matrix([1],[-1])$
u2t : ctranspose(u2)$
v1 : (1/sqrt(2))*matrix([1],[%i])$
v1t : ctranspose(v1)$
v2 : (1/sqrt(2))*matrix([1],[-%i])$
v2t : ctranspose(v2)$
w1 : matrix([1],[0])$
w1t : ctranspose(w1)$
w2 : matrix([0],[1])$
w2t : ctranspose(w2)$
r1 : kronecker_product(u1,kronecker_product(v1,w1))$
r1t : ctranspose(r1)$
r2 : kronecker_product(u1,kronecker_product(v1,w2))$
r2t : ctranspose(r2)$
r3 : kronecker_product(u1,kronecker_product(v2,w1))$
r3t : ctranspose(r3)$
r4 : kronecker_product(u1,kronecker_product(v2,w2))$
r4t : ctranspose(r4)$
r5 : kronecker_product(u2,kronecker_product(v1,w1))$
r5t : ctranspose(r5)$
r6 : kronecker_product(u2,kronecker_product(v1,w2))$
r6t : ctranspose(r6)$
r7 : kronecker_product(u2,kronecker_product(v2,w1))$
r7t : ctranspose(r7)$
r8 : kronecker_product(u2,kronecker_product(v2,w2))$
r8t : ctranspose(r8)$
A : r1.r1t+r2.r2t+r3.r3t+r4.r4t+r5.r5t+r6.r6t+r7.r7t+r8.r8t;
S : exp(-%i*(3*om1+3*om2+om3)*t)*r1.r1t

+ exp(-%i*(om1-om2-om3)*t)*r2.r2t
+ exp(-%i*(om1-om2-om3)*t)*r3.r3t
+ exp(-%i*(-om1-om2-om3)*t)*r4.r4t
+ exp(-%i*(om1-om2-om3)*t)*r5.r5t
+ exp(-%i*(-om1-om2+om3)*t)*r6.r6t
+ exp(-%i*(-om1-om2+om3)*t)*r7.r7t
+ exp(-%i*(-3*om1+3*om2-om3)*t)*r8.r8t;

From this we see that the identity matrix may be partitioned.
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Program 8. The following Maxima code determines the discrete Fourier trans-
form of a given basis in C4 introduced in chapter 4.1.3

DFT(a0,a1,a2,a3) := block(
A : matrix([a0,a1,a2,a3]),
for count : 0 thru 3 do (
genb(count,A)

)
)$
genb (count,A) := block(
sum : 0,
om : %i,
for k : 0 thru 3 do (
sum : sum+om^(count*k)*A[1,k+1]

),
b : (1/2)*sum,
bnorm : ratsimp((1/mat_norm(b,frobenius))*b),
print(B[count]),
print(bnorm)

)$

Program 9. The following program determines if a given vector is maximally
entangled as described in chapter 5.1

maxent(n,psi) := block(
I : genmatrix(lambda([r,c],0),n,n),
for j : 1 thru n do I[j,j] : 1,
A : genmatrix(lambda([r,c],0),n,n),
for r : 1 thru n do(
for c : 1 thru n do (
A[r,c] : a[r,c]

)
),
LHS : ratsimp(ctranspose(psi).(kronecker_product(A, I)).psi),
RHS : ratsimp((1/n)*mat_trace(A)),
print("If following not 0, not maximally entangled:"),
print(ratsimp(LHS-RHS))
)$
maxent(2,(1/sqrt(2))*matrix([1],[0],[0],[1]));

The inputs for the program are the vector |ψ〉 ∈ H⊗H and the dimension n of
the Hilbert space H.
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Program 10. The following Maxima code is an implementation of the 3-tangle
introduced in chapter 5.3.

epps(n1,n2) := block(
if equal(n1,n2) then e : 0 else(
if equal(n1,0) then e : 1 else e : -1

)
)$
ntangle(c) := block(
itau : 0,
for a1 : 0 thru 1 do (
for a2 : 0 thru 1 do (
for a3 : 0 thru 1 do (
for b1 : 0 thru 1 do (
for b2 : 0 thru 1 do (
for b3 : 0 thru 1 do (
for g1 : 0 thru 1 do (
for g2 : 0 thru 1 do (
for g3 : 0 thru 1 do (
for d1 : 0 thru 1 do (
for d2 : 0 thru 1 do (
for d3 : 0 thru 1 do (

itau : itau + ((c[1+a1*4+a2*2+a3,1])*(c[1+b1*4+b2*2+b3,1])*
(c[1+g1*4+g2*2+g3,1])*(c[1+d1*4+d2*2+d3,1])*
(epps(a1,b1))*(epps(a2,b2))*(epps(g1,d1))*
(epps(g2,d2))*(epps(a3,g3))*(epps(b3,d3)))

)
)
)
)
)
)
)
)
)
)
)
),
tau : 2*abs(itau),
print("The 3-tangle is"),
print(tau)
)$
c : matrix([1/sqrt(2)],[0],[0],[0],[0],[0],[0],[1/sqrt(2)]);
ntangle(c);

In this example we use the GHZ-state, any vector in C8 may be used.



Chapter 9

Conclusion

In this dissertation our focus was on entanglement and energy level crossing in
spin and Fermi Hamilton operators. We introduced basic mathematical con-
cepts as well as quantum theory. Important matrix properties and linear op-
erators were discussed. We investigated exceptional points of Hermitian and
non-Hermitian operators and diabolic points of spin systems. A chapter with
sample Maxima programs was included.

There are open problems that one may investigate in future research. Many
new entanglement measures are being discussed in the literature, especially for
multipartite entanglement. It would be worthwhile to study these new measures
of entanglement focusing on points where energy level crossing occurs.

Furthermore in this dissertation we found that the Fourier transform does not
preserve entanglement. This can be investigated further considering other ques-
tions such as whether or not the ordering of the states affects the outcome of
the Fourier transform.
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[24] J. A. de Azcárraga and J. M. Izquierdo, Lie Groups, Lie Algebras, Co-
homology and some Applications in Physics, Cambridge University Press,
1998
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