
Intelligent STL File Correction

by

GJ van Niekerk

DISSERTATION

submitted in fulfilment of the requirements for the degree of

MASTER IN NATURAL SCIENCE

in

COMPUTER SCIENCE

in the

FACULTY OF SCIENCE

at the

RAND AFRIKAANS UNIVERSITY

SUPERVISOR: PROF EM EHLERS

October 2000

Acknowledgement

I would like hereby to convey my heartfelt gratitude to Professor Ehlers, for her

patient guidance throughout this research study.

In addition, I would like to thank Mrs Van der Mast, for her help with the

editing and proof-reading of the manuscript. My sincere thanks also to my

parents and to Ansie, who supported me throughout this endeavour.

Finally, glory to God for enabling me successfully to conclude this dissertation.

Abstract

Layered Manufacturing (LM), also known as "Rapid Prototyping", is that process in

terms of which a computer-designed model is created layer by layer with the aid of

specific LM hardware. Telemanufacturing constitutes an extension of this technology

that allows remote submission of manufacturing jobs or assignments across a

communication medium, typically the Internet, to be built at the manufacturing bureau

concerned.

The de facto standard of LM is the STL file. Simply put, this file consists of a number

of triangles that are used to describe an object in its entirety. This file format has

several advantages over other known formats and allows easy 2D rendering.

Unfortunately, however, the limitations of the latter format outweigh its advantages.

Since the entire model is described in terms of a collection of triangles, the original

geometry of the model is lost. As a result, a certain level of degradation will occur,

especially around curvatures in the model. Although an increase in the number of

triangles around such areas will enhance precision, it will also result in a much larger

STL file.

Triangles that get lost somewhere inside the file could also give rise to holes,

orphaned surfaces and zero-width walls in the projected object. It is vital, therefore,

that the manufacturing bureau verify the correctness of the entire file before it is built

in order to prevent machine time and materials from being wasted.

Instead of transmitting the entire file again, the bureau could attempt automatically to

correct and repair less critical errors, thereby saving valuable resources and time.

Opsomming

"Layered Manufacturing" (LM), wat ook as "Rapid Prototyping" bekend staan, is

daardie proses ingevolge waarvan 'n rekenaarontwerpte model lagie vir lagie met

behulp van spesifieke LM-hardeware geskep word. Televervaardiging verteenwoordig

'n uitbreiding op hierdie tegnologie wat die langafstand-voorlegging van

vervaardigingsopdragte deur 'n kommunikasiemedium, gewoonlik die Internet,

moontlik maak, waama die model by die betrokke vervaardigingsburo vervaardig kan

word.

Die de facto-standaard vir LM is die STL-leer. Eenvoudig gestel, bestaan die leer uit

'n aantal driehoeke wat gebruik word om 'n objek in sy geheel te beslcryf Hierdie

leerformaat hou verskeie voordele bo ander bekende formate in en vergemaklik die

generering van 2D-beelde.

Ongelukkig weeg die voordele wat die formaat inhou, nie op teen die beperkings

daarvan nie. Aangesien die game model met behulp van 'n versameling driehoeke

beskryf word, gaan die model se oorspronklike geometrie verlore. Gevolglik sal 'n

bepaalde vlak van degradering in die model plaasvind, veral wat krommings betel

Hoewel 'n vermeerdering in die aantal driehoeke rondom sodanige areas presisie sal

verbeter, sal dit ook 'n veel groter STL-leer tot gevolg he.

Driehoeke wat erens binne die leer verlore raak, mag moontlik ook gate, losstaande

oppervlaktes en mure sonder enige dikte in die geprojekteerde objek tot gevolg he.

Dit is daarom noodsaaklik dat die vervaardigingsburo die geldigheid van elke leer sal

verifieer alvorens die model vervaardig word ten einde te voorkom dat masjientyd en

boumateriaal vermors word.

In plaas daarvan om die hele leer weer te versend, sou die buro 'n poging kon

aanwend om minder kritieke foute outomaties te korrigeer en te herstel, waardeur

kosbare tyd en hulpbronne bespaar sou kon word.

ii

Contents

Introduction to STL file correction

1.1 	Introduction 	 1

1.2 Chapter organisation 	 2

1.3 Summary 	 5

The Layered Manufacturing (LM) process

2.1 Introduction 	 6

2.2 The new epoch: Layered Manufacturing (LM) 	 10

2.3 Applications for LM 	 18

2.3.1 Molecular science 	 18

2.3.2 Engineering 	 19

2.3.3 Earth sciences 	 19

2.3.4 Mathematics and physics 	 20

2.3.5 Visualising complex occurrences 	 20

2.4 Problems and issues to be addressed 	 21

2.5 Summary 	 22

Making LM available to one and all: telemanufacturing

3.1 Introduction 	 23

3.2 Getting it there 	 23

3.2.1 In person 	 24

3.2.2 The postal service 	 24

3.2.3 Electronic mail (E-mail) 	 25

3.2.4 File Transfer Protocol (FTP) 	 26

3.2.5 The World Wide Web (WWW) 	 26

3.3 Summary 	 27

iii

Contents

Transmission errors in telemanufacturing

4.1 Introduction 	 28

4.2 Partial transmission 	 29

4.3 Alteration of file contents 	 30

4.4 Non-compliance with the agreed file format 	 31

4.5 Incorrect protocol or incompatible systems 	 32

4.6 Loss of file during transmission 	 33

4.7 Summary 	 34

Security in telemanufacturing

5.1 Introduction 	 35

5.2 Safeguarding during transmission 	 35

5.2.1 User identification and authentication 	 36

5.2.2 Authorisation or logical access control 	 37

5.2.3 Confidentiality of information 	 40

5.2.4 Data integrity 	 42

5.2.5 Non-denial 	 43

5.3 Summary 	 44

The STL file format

6.1 Introduction 	 46

6.2 The file structure 	 46

6.3 Summary 	 51

Compression in telemanufacturing

7.1 Introduction 	 52

7.2 Compression for STL files 	 53

7.2.1 The Vertex Reuse Method 	 54

iv

Contents

7.2.2 The variable compression method 	 55

7.2.3 The redundancy compression method 	 58

7.3 Summary 	 59

An introduction to error checking and the prototype

8.1 Introduction 	 61

8.2 Principal aim of the project 	 62

8.3 Error checking 	 63

8.3.1 Structural errors 	 63

8.3.2 Geometrical errors 	 64

8.4 The interface 	 66

8.4.1 Visualisation 	 67

8.4.2 Error reporting 	 67

8.5 Complying with building constraints 	 68

8.5.1 Coordinate range of the model 	 68

8.5.2 Model size 	 68

8.5.3 Model orientation 	 69

8.6 Summary 	 69

Structural-error checking

9.1 Introduction 	 70

9.2 Verifying the syntax of the STL file 	 70

9.3 Fixing syntax errors 	 73

9.4 Summary 	 74

Geometrical-error checking

10.1 Introduction 	 75

10.2 Removing duplicated triangles 	 75

10.3 Checking the structure against the vertex-to-vertex rule 	 76

Contents

10.4 Ensuring that each surface normal do indeed point outwards 	 83

10.5 Checking against Euler's rule for legal solids 	 84

10.6 Summary 	 87

Checking the file against building constraints

11.1 Introduction 	 88

11.2 Ensuring that the coordinates of the solid fall within range 	 88

11.2.1 The size of the model 	 89

11.2.2 Distance from the table 	 92

11.2.3 Part orientation with respect to coordinate ranges 	 92

11.3 Checking and possibly changing the object orientation 	 93

11.3.1 Part precision 	 93

11.3.2 Amount of building material used 	 94

11.3.3 Time to completion 	 94

11.4 Ensuring that the file be compatible with the hardware 	 95

11.5 Summary 	 95

The prototype: STLComplete

12.1 Introduction 	 97

12.2 Syntax checking 	 98

12.2.1 The scanner 	 98

12.2.2 The parser 	 101

12.3 Geometrical checking 	 103

12.3.1 Removing duplicated triangles 	 104

12.3.2 Checking the object against the vertex-to-vertex rule 	 105

12.3.3 Checking triangle orientation 	 108

12.4 The interface 	 109

12.5 Summary 	 114

vi

Contents

Software comparison

13.1 Introduction 	 116

13.2 STLview version 7.0a 	 116

13.2.1 System requirements 	 116

13.2.2 Program features 	 117

13.3 Materialise Magics RP 4.3 	 118

13.3.1 System requirements 	 118

13.3.2 Program features 	 119

13.4 STeaL version 1.2 	 120

13.4.1 System requirements 	 120

13.4.2 Program features 	 121

13.5 Summary 	 122

Conclusion

14.1 Introduction 	 124

14.2 Correcting STL files 	 124

14.3 Practicability of the STL format 	 125

14.4 Future research 	 126

14.5 Summary 	 127

Appendix A

Glossary

List of sources consulted

vii

Figures

Figure 2.1:

Figure 2.2:

Figure 2.3:

Figure 2.4:

Figure 2.5:

Figure 2.6:

Figure 2.7:

Figure 2.8:

Figure 2.9:

Figure 2.10:

Figure 2.11:

Figure 2.12:

Figure 2.13:

Figure 2.14:

Figure 3.1:

Figure 5.1:

Figure 6.1:

Figure 6.2:

Figure 7.1:

Figure 7.2:

Figure 7.3:

Figure 7.4:

Figure 8.1:

Figure 9.1:

Figure 10.1:

Figure 10.2:

Figure 10.3:

Figure 10.4:

Figure 10.5:

Data flow during the engineering design process [2] 	 6

Evaluating a design on a CAD/CAM system [1] 	 7

Prototype of a side mirror tested in its final environment [5] 	9

Effects of stair-stepping by increased layer thickness [7] 	11

The stereolithography process 	 12

The Fused Deposit Modeling (FDM) process 	 14

The Laminated Object Manufacturing (LOM) process 	 15

The Selective Laser Sintering (SLS) process 	 17

The light-harvesting system, LH-II [9] 	 18

A functional gear prototype [9] 	 19

Earth as an LM model [9] 	 20

Interference between sinus waves [9] 	 20

The 2D representation of the fluid-flow model [9] 	 21

The 3D representation of the fluid-flow model [9] 	 21

The telemanufacturing process 	 23

Identification and authentication on the Internet [20] 	 37

The wireframe representations [23] 	 47

Shaded representations [23] 	 47

A triangle mesh, demonstrating duplication in vertices [15] 	54

Applying the 3D grid [28] 	 56

Choosing a value for q [28] 	 56

Hole-punching compression 	 58

Framework of the prototype 	 62

Layout of syntax-checking procedure 	 73

Adjacent triangles in an STL file 	 76

The vertex-to-vertex rule 	 77

Approximated sphere with a missing triangle 	 80

Triangle orientation of new triangle 	 81

Badly damaged model 	 82

viii

Figures

Figure 10.6: Correct and incorrect triangle orientation 	 83

Figure 10.7: The prism 	 85

Figure 11.1: Robot leg after assembly [4] 	 90

Figure 11.2: Orientation of a simple cube 	 93

Figure 12.1: Detailed layout of the prototype 	 97

Figure 12.2: Selecting an STL file to load 	 110

Figure 12.3a: Viewing the model as a solid 	 111

Figure 12.3b: Viewing the model as a wireframe 	 111

Figure 12.4: A badly damaged model, with errors showing up in various colours 112

Figure 12.5a: Fixing the model 	 113

Figure 12.5b: Revised model 	 114

Figure 13.1: STLview interface (SDI option) 	 117

Figure 13.2: Materialise Magics RP 4.3 interface 	 119

Figure 13.3: STeaL by CIP software 	 121

ix

Tables

Table 6.1:

Table 6.2:

Table 7.1:

Table 12.1:

Table 13.1:

Technical assumptions obtaining to the binary STL representation 	50

The binary STL representation 	 51

Compression with generalised triangle meshes 	 55

Examples of legal and illegal numbers in E-notation 	 100

Software comparison 	 123

x

Chapter 1

Introduction to STL file correction

Introduction to STL file correction

1.1 Introduction

Homo sapiens is the only species on earth with the ability and drive on a large

scale to model the environment to suit itself We create sculptures, paint

portraits and compose operas. We also apply our intelligence to more mundane

matters in our constant endeavour to change, manipulate and improve our

environment. The dawning of the Information Age, however, forever changed

the way in which we work such changes. The computer, together with the

Internet, also rendered obsolete many an old adage, such as "There is nothing

new under the sun", or "History repeats itself', and heralded a new epoch

characterised by an information explosion. The present study will be devoted to

one aspect of the impact this explosion is having on humankind, namely to the

manner in which information is presented to the end-user today.

Not so long ago, designers, engineers and architects making use of Computer

Aided Design (CAD) technology to create a model had to content themselves

with a flat, two-dimensional (2D) presentation of such model. This limitation

gave rise to a myriad of errors, however, and not only hampered visualisation

but also proved to be costly and time-consuming. Rapid Prototyping (RP) or

Layered Manufacturing (LM) changed all that. Thanks to this relatively new

technology, a model can now be fabricated before the designer's very eyes, to

the extent that the model can be held, felt and touched. The number of benefits

to be derived from this technology is legion and it has already proven

indispensable to numerous industrial applications [1].

Rapid Prototyping (RP) or Layered Manufacturing (LM) constitutes a process in

terms of which a physical model is created thanks to the ability of a specific

piece of equipment to receive input from a terminal on which the file describing

the model in question is stored. Even though many different methods have been

devised to implement this technology over the past few years, its underlying

principles have remained unchanged [1].

Introduction to STL file correction

Telemanufacturing constitutes an extension of this technology that allows

remote submission of manufacturing jobs or assignments to a company or

bureau with the required hardware. This technology, therefore, enables

individuals and small companies to benefit from this process without having to

acquire any of the expensive hardware involved [2].

The model is initially designed on a CAD system, whereupon it is transferred to

an intermediate format, finally to be sliced and stored in a file format that the

hardware can interpret. Although the intermediate step can be skipped, many

bureaux on the Internet have adopted the StereoLithography (STL) file format

as a primary medium for submitting job requests [1].

Unfortunately, such STL files usually are a haven for errors and anomalies,

especially owing to their notoriously large size. Solving these problems is far

from a trivial pursuit and special verification routines and geometrical-specific

compression techniques have to be applied [2].

In the light of this, a section of the present study will be devoted to an

introduction to the Layered Manufacturing and telemanufacturing technologies

in general. In addition, the STL format and the problems by which it is plagued

will be discussed in detail. Intelligent detection and correction methods will also

be investigated and applied to a prototype software program.

1.2 Chapter organisation

The dissertation is divided into the following chapters:

a) Chapter 1: An introduction to STL file correction

This chapter allows an overview of the technologies to be discussed in the

dissertation, as well as an overview of the manner in which the study is to be

organised.

2

Introduction to STL file correction

b) Chapter 2: The Layered Manufacturing (LM) process

The Layered Manufacturing (LM) process is discussed in detail in this chapter.

A closer look is also taken at the various methods by which the said technology

is implemented, as well as at the many fields in industry that have been

benefitting from this technology.

.c) Chapter 3: Making LM available to one and all: telemanufacturing

Telemanufacturing, that is, the technology that has made Layered

Manufacturing available to a broader community, comes under discussion in

this chapter. Here, the emphasis falls on the various methods used to transfer

the file from the client to the bureau.

Chapter 4: Transmission errors in telemanufacturing

This chapter is devoted to the identification of the typical errors that occur

during the transmission phase, as well as to the various ways in which to solve

these problems.

Chapter 5: Security in telemanufacturing

Security breaches pose a considerable threat to many fields and have also

cropped up in the telemanufacturing and LM arenas. This chapter is used to

elaborate on such security issues and on ways in which to address them.

Chapter 6: The STL file format

One of the most widely used formats in the industry is that of the STL file. The

syntax of the format is discussed in this chapter, as well as its pros and cons.

Chapter 7: Compression in telemanufacturing

The STL file format discussed in the foregoing chapter is notoriously large, with

the result that good compression methods are required effectively to compress

the file. This chapter is used to highlight the elements of the file that could be

considered when designing or choosing a compression algorithm and to give a

3

Introduction to STL file correction

few proven methods by means of which to achieve high compression ratios for

the STL file format.

Chapter 8: An introduction to error checking and the prototype

This chapter is devoted to identifying the areas that are vulnerable to attack. It is

also used to highlight the constraints on the STL format and to introduce the

prototype developed for the present study, as well as the problem areas this

prototype addresses.

Chapter 9: Structural-error checking

In this chapter, the STL file is defined in Backus-Naur form (BNF) and the

concept of syntax checking is introduced.

Chapter 10: Geometrical-error checking

The vast majority of errors in STL files are still geometrical in nature. In this

chapter, it is explained how each of the errors identified earlier occurs, as well

as the possible solutions for them.

Chapter 11: Checking the file against building constraints

Layered Manufacturing has been implemented on many different types of

machines and not all STL files can be processed by a specific device. This

chapter introduces the areas that pose problems and changes that should be

wrought to the model to ensure compatibility with a specific type of hardware.

1) Chapter 12: The prototype: STLComplete

This chapter is used to elaborate on the prototype and to discuss the algorithms

used for detecting and fixing common errors in the STL file. The interface of

the prototype is also discussed, together with the appropriate illustrations.

m) Chapter 13: Software comparison

This chapter is used to take a closer look at the software currently available in

the market. In so doing, a set of parameters is compiled to compare software

4

Introduction to STL file correction

with and the chapter is concluded with a comparison between software and

STLComplete, the prototype that came under discussion in the previous chapter.

n) Chapter 14: Conclusion

The final chapter is used to formulate a conclusion to the author's findings and a

hypothesis as to possible future developments in this technology.

1.3 Summary

"...prototypes not only enable products to be developed more

quickly, but also result in products that are both higher quality and

more effective in fulfilling their intended purpose in the

marketplace."

Maintaining the Lead in Manufacturing

Harvard Business Review

September-October 1994

Layered Manufacturing has changed the way in which prototypes are being

manufactured. Although its associated hardware is still deemed expensive,

telemanufacturing allows remote submission of files, which endows anyone

with a credit card and a connection to the Internet with a powerful design tool.

This growing technology has, in turn, necessitated the verification of submitted

files in order to avoid the wastage of resources.

In the next chapter, the various LM technologies will be investigated, as well as

those fields in the industry that have been benefitting from these technologies.

5

Chapter 2

The Layered Manufacturing (LM) process

Visualisation

Manufacturing

Analysis

Testing

Assembly

Design

The Layered Manufacturing (LM) process

2.1 Introduction

In the engineering field today, which includes disciplines such as mechanical,

civil and electronic engineering, as well as various other forms of development

and manufacturing, the construction of a part for some application comprises a

step-by-step design method, commonly referred to as the "concept-design-

production process" [2].

This process, graphically represented in figure 2.1 below, is illustrative of the

iterative nature of the design process. Information that is constantly being fed

back to previous steps is used to improve on and adapt each design [2].

New
concept

Existing
design

Figure 2.1: Data flow during the engineering design process [2]

The costs incurred during each step increase as one moves upward and to the

right of the diagram. Iterating, though a complete manufacturing process to test

for part correctness, is an expensive and time-consuming task. Unfortunately,

the manufacturing of a physical prototype cannot be avoided entirely during the

design process, at least not for the more complicated models. For this reason,

methods need to be examined that will render the production of prototypes both

economical and trustworthy. If the manufacturing of models cannot be avoided,

improving upon the efficiency with which they can be created will improve

upon the overall design process [2].

6

The Layered Manufacturing (LM) process

After a model has been designed, typically on a CAD system, a rough prototype

needs to be constructed before final production of the model could commence.

CAD systems today are exceptionally complex and enable developers quickly

and effectively to design objects. Unfortunately, even the most complex and

versatile CAD systems are still being dogged by the 2D limitation of computer

monitors. We live in a 3D world, however, and it is for this reason that physical

models play a pivotal part in the production cycle [2, 3].

To quote Mike Bailey, SDSC Senior Principal Scientist, UCSD Associate

Professor and head of the TMF Project: "Just about every time people build a

TMF model, they see something they missed in the computer graphics

rendering. Computer graphics images and animations and even virtual-reality

simulations (cannot) convey all the information that real objects do." From this,

it is evident that physical prototypes play an important part in the design process

[4].

Figure 2.2: Evaluating a design on a CAD/CAM system [1]

The physical model is especially useful for verification and visual-inspection

purposes, which processes cannot always be executed in terms of the CAD

application alone. Should an error be uncovered in the prototype, the designer

7

The Layered Manufacturing (LM) process

could correct it on the design and construct a new prototype, repeating the

process.

A good prototype not only has to meet certain quality requirements, but it also

has to do so under strict yet relevant conditions, which include the following:

Conditions obtaining to a specified margin of error

It stands to reason that a prototype with inaccurate dimensions will serve little

or no purpose either for the verification or testing of the model. Although a

certain margin of error is acceptable, that margin should be so small that

thorough testing of the model would not be impeded in any way.

Conditions obtaining to the timeframe for prototype completion

In most cases of prototyping, it follows as a matter of course that the increased

accuracy of a model would culminate in an extended production cycle of the

prototype. If, however, the production time were unreasonably long, the costs

incurred during the production phase would not be commensurate with the

effort.

A strict time constraint on a project may compel the designer to accept the first

operational model, if the manufacturing process would otherwise be dragged out

for too long. Keeping the building cycle as short as possible will allow the

designer to "experiment" until the optimal design be found.

Restrictions as to production costs

The total production costs of the prototype should be reasonable. These include

both the material and labour involved in building the model. Again, an

inordinately expensive model may result in a product that is far from optimal.

Manufacturing costs should not only be evaluated from a financial point of

view, however. Cognisance should also be taken of other aspects such as

environmental issues.

8

The Layered Manufacturing (LM) process

d) Requirements for testing purposes

All prototypes should be strong enough to allow rigorous testing of their models

in the final environment. Unfortunately, a stronger prototype usually implies the

use of more expensive material and more sophisticated hardware and,

occasionally, even a protracted production time.

Figure 23: Prototype of a side mirror tested in its final environment [5]

Figure 2.3 above shows a prototype, in this case a side mirror of a vehicle, being

tested in its final environment.

To date, various methods have been suggested and employed to construct these

prototypes, each with its own pros and cons. Usually, while compensating for

one constraint, another is neglected to some extent.

2.2 The new epoch: Layered Manufacturing (LM)

Layered Manufacturing has heralded an era in which new standards have been

set for the production of prototypes in the manufacturing industry today. As was

previously mentioned, most methods fail to meet all the requirements and

constraints without neglecting one or more requirement to some degree. LM,

however, strikes a balance between these requirements and allows economical

and swift production of prototype after prototype. In addition, the LM process

offers two unique benefits to designers: the ability to fabricate complex models

that cannot be built by means of traditional techniques and a greater degree of

automation during the design process [3].

9

The Layered Manufacturing (LM) process

The accuracy of a model depends on the machine used, but is acceptable for

most applications. Usually, a higher accuracy rating can be attained in exchange

for a longer manufacturing period, although even the longest production periods

with LM are still very reasonable, compared to some of the production periods

generated by means of the traditional methods.

Another aspect of LM that makes it an attractive alternative is the fact that it

allows for rigorous testing before a model goes into final production. In terms of

other, more delicate prototyping methods, testing is greatly hampered, if not

impossible [1].

Although the LM process constitutes a marked improvement on many aspects of

previous prototyping methods, it also poses new challenges to designers. One

such challenge is the fact that the mere implementation of a geometrical

algorithm is incapable of recognising the final purpose of the model. This makes

it extremely difficult to tailor specific features in the decomposition without

some form of human intervention. As these difficulties are slowly but surely

being overcome thanks to continued research, the full potential of this

technology will, however, be recognised and utilised during the manufacturing

process [6].

In addition, although the hardware enabling the LM process is still relatively

expensive (at the time of writing), once this asset has been obtained, the actual

costs incurred in building a prototype will be much lower than when utilising

conventional methods of part prototyping [1].

Although there are many different methods of LM, their basic fabrication

process remains the same. The model is built layer by layer, starting from the

bottom up. The width of each of the layers depends on the accuracy rating

required for the prototype. (Varying layer widths have been suggested for and

implemented in some applications.) The thicker the layers, the faster the model

is produced, although very thick layering causes a stair-step effect that generally

10

CAD 	 CAD design CAD PieSian

The Layered Manufacturing (LM) process

detracts from the overall accuracy rating. The latter effect is graphically

illustrated in figure 2.4.

Largo layer thickness 	Medium layer thickness 	Fine !aye, thickness

Figure 2.4: Effects of stair-stepping by increased layer thickness [7]

Before the model can be sliced and finally constructed, an STL file needs to be

constructed from the original CAD design. An STL file can be defined as a

collection of vectors describing a series of surface triangles in 3D space [8].

Although the simplicity of the STL file format makes it an attractive standard

for LM, it suffers from a number of serious limitations. STL files are, for

instance, notorious for having structural flaws. Holes in the object, zero-

thickness walls and orphaned structures are commonplace. The accuracy rating

of the model can, however, be enhanced by increasing the number of triangles.

Resizing the model will, on the other hand, detract from its accuracy rating,

since the object geometry is lost during the creation of the file. Despite these

limitations, the STL format has become the de facto standard for LM that is

supported and implemented by most systems [2].

Depending on the technology employed to build the actual model, supports may

be required in the model and such supports are introduced in the model at this

stage. The orientation of the model plays an important part in the supports

required in it [1].

After the STL file has been generated and after supports have been added and

checked for any anomalies, the object can be sliced in accordance with the

thickness of its various layers. The said slice file consists of a collection of

11

The Layered Manufacturing (LM) process

closely spaced planes, each with a different z coordinate indicating its position

within the object [1].

A final build file is then constructed, whereupon the process of constructing the

object can commence. Following, a discussion on the actual layered-

manufacturing methods, highlighting their respective pros and cons.

a) Stereolithography

In 1987, a new method of prototyping was devised. Also known as "3D

printing", stereolithography was the first commercially viable Layered

Manufacturing technology, which is still widely used today [7].

Figure 2.5: The stereolithography process

The building process is executed in a bath filled with liquid resin and in it a

platform capable of moving in the z direction. Two types of lasers are generally

used for stereolithography. Ultraviolet-laser technology is commonly used for

the smaller applications, whilst a stronger helium-cadmium laser is used for

larger, more sophisticated systems that require a higher accuracy rating [7].

Two mirrors, driven by a pair of galvanometer motors, are used to direct the

laser spot downward, towards the surface of the liquid photopolymer. After

having been sufficiently exposed, the liquid will be transformed into a solid

state. On completion of each layer, the platform is lowered by a high-precision

stepping motor. Liquid resin then flows over the recently solidified layer. A

recoater blade or roller ensures that liquid resin to the thickness of exactly one

12

The Layered Manufacturing (LM) process

layer be added to the previous layer, and that the latter layer be evenly

distributed across the entire surface. This new layer is then solidified by laser

exposure again. This process is repeated until the entire model has been

constructed from bottom to top [7].

The process of constructing a model in this fashion is known as "hatching". A

big drawback of stereolithography, however, is the fact that the models are

subject to distortion in the form of shrinkage that occurs non-uniformly

throughout the models. Fortunately, thanks to improved photopolymer

compositions, computer software and laser technology, this part-distortion

phenomenon has been greatly diminished, thereby improving the overall part

accuracy rating [7, 8].

On completion of the model, the platform is elevated, revealing it in its finished

form. After the excess liquid has been drained back into the vat, the supports

that have been added to the design to facilitate the actual building of the model

can be carefully removed. Care must, nonetheless, be taken not to damage the

model whilst removing its support structures [7].

Finally, the model is placed in a Post-Cure Apparatus (PCA), where it is

exposed to ultraviolet light of a certain wavelength. This step is taken to ensure

that the model achieve optimal strength [7].

b) Fused Deposit Modeling (FDM)

Developed by Stratasys Inc., Fused Deposit Modeling (or "FDM", for short) can

be defined as that process in terms of which a thermoplastic material is heated to

just above melting point. A nozzle is fed from a spool of thermoplastic material.

Various types of material are available and can all be used on the same machine.

Switching between materials can also be accomplished easily and quickly [8].

The melted substance is then extruded from the nozzle in the form of a thin

ribbon. The melted plastic is deposited onto the previously built layer in this

13

The Layered Manufacturing (LM) process

form. The layer on which the new layer is constructed must, however, be

maintained at a temperature just below that of solidification to ensure proper

bonding. The nozzle is kept at a required distance by a computer-controlled

platform that is moved in a downward direction as the layers are constructed [7].

Nozzle

S Build substrate

I Building

Figure 2.6: The Fused Deposit Modeling (FDM) process

The thickness of the layers is determined by the physical properties of the

thermoplastic material used, the speed of the delivery head, the pressure with

which the material is released and the diameter of the nozzle point from where

the material is released. The overall precision of the model is greatly dependent

on how closely the temperature of both the deposited material and the last layer

is maintained. Model distortion in the form of rippling or, in the worst-case

scenario, model collapse may occur if the temperature were to vary from the

designated temperature. The nozzle should also never be allowed to become

stationary above any given portion of the model. The high temperature at which

the nozzle is operated will result in non-standard imperfections once the part has

been completed [7].

FDM requires no high-powered laser technology, thus obviating the safety

precautions associated with laser equipment. The material used for FDM,

namely spools of plastic filament, has little or no environmental impact and

does not require any handling or safety precautions. If the nozzle were

sufficiently shielded, the elevated temperatures of both hardware and building

material would hardly pose any risk. This makes it an ideal technology in

scenarios where safety is at a premium [7].

14

Laser
44

Heated roller

The Layered Manufacturing (LM) process

c) Laminated Object Manufacturing (LOM)

This process was initially developed by Helisys Inc. As the name implies,

Laminated Object Manufacturing (LOM) produces physical objects by the

layering of thin sheet material. The material is typically supplied from a set of

supply spools on either side of the evolving object. Each layer is joined to the

previous layer by an adhesive that is both temperature and pressure sensitive. A

roller, which is heated, ensures that the new layer adheres to the last by applying

pressure from the top, thereby activating the adhesive [7].

00 Completed
Roller
	layers 	Roller

Figure 2.7: The Laminated Object Manufacturing (LOM) process

After the new layer has been applied, a carbon-dioxide laser traces the border,

as specified by the build file. The laser beam renders each consecutive layer in

this manner until the model is complete. The working platform is capable of

moving in a vertical direction, which allows the laser to trace a layer at exactly

the same height as that of the previous layer. The depth and width of the cut

depend on the laser power, scan speed and physical properties of the laminated

material used. The overall part accuracy rating is determined by the precision

with which these parameters are controlled. If the finite width of the laser beam

were ignored, the model would exhibit a small yet systematic flaw in each

cross-section [7].

Because the entire model is submerged in a surrounding block of wasted

material, no supports need to be constructed to keep the object from collapsing.

Unfortunately, this has been known to waste a lot of material, which could

15

The Layered Manufacturing (LM) process

rather have been used to create a second or even a third model. Furthermore, to

facilitate the removal of waste material, each consecutive layer needs to be

diced, which takes up a lot of building time. Although the removal of waste

material around large, solid parts generally poses no problems, special care

should be taken to ensure that no part be damaged when material is removed

near delicate and fragile sections of the model [7].

An attractive advantage of LOM is the fact that only the borders of each cross-

section of the model need to be traced. This certainly saves a lot of time during

the actual building process, which, in turn, justifies the dicing process that the

prototype must undergo [7].

Although the laser can cut vertically through the sheet paper, cutting

horizontally along two adjacent layers is not possible. Surfaces facing up or

down will, therefore, still be connected to the adjacent layer, which may hamper

the successful removal of waste material near that section. The integrity of the

adjacent excess material could be compromised by cutting a closely spaced,

crosshatch pattern that will facilitate the removal of such material [7].

A model produced by means of the LOM method will, in texture, smell and

physical properties, resemble a model made of wood. Although LOM is a

relatively inexpensive RP technology, special precautions must be taken to

shield the invisible yet powerful and certainly dangerous laser beam used in

LOM part building [7].

d) Selective Laser Sintering (SLS)

This process, which was developed at the University of Texas, produces RP

parts in a similar fashion as stereolithography, but makes use of a fine powder,

rather than a liquid resin. Using a counter-rotating roller, a thin layer of fine

particles is spread evenly over the evolving object. A high-powered 50 watt

carbon-dioxide laser is then used to fuse these particles together. In order to

16

The Layered Manufacturing (LM) process

minimise the laser output, the bed of powder is maintained at a constant

temperature just below its fusing point.

The tray containing the incomplete object is constantly moved in a downward

direction on a computer-controlled table to ensure that each layer be built at

exactly the same height as that of the previous layer. In order to avoid oxygen

contamination of the bonding surfaces, the building process is performed in an

environmentally controlled chamber with an oxygen content of less than 2% [7].

I Laser

Figure 2.8: The Selective Laser Sintering (SLS) process

Unfortunately, the volumetric shrinkage for crystalline materials is quite

considerable, which usually results in distortion of the part and imprecise

dimensions of the finished model. The model is built in a raster fashion,

resulting in a stair-step effect when constructing diagonal lines. A fine enough

resolution will, however, modify this effect to an acceptable level. Furthermore,

the discontinuous nature of the particles used will result in a rough finish, which

may need finishing off once the part has been completed. Unfortunately, this

will compromise the accuracy rating of the part to some extent [7].

The left-over unfused particles serve as a natural support structure for the part,

even though anchor points may still be required for orphaned structures, which

will be attached to the model in subsequent layers. On completion of the model,

the left-over powder is removed with various brushes, cutting tools and low-

pressure air. A wide range of materials can be used successfully as curing

17

The Layered Manufacturing (LM) process

material in SLS, which, in turn, makes for implementation in a much wider field

than other RP technologies [7].

A wide range of materials (including metals) can be used during the SLS

process, making it a choice method for future research [8].

2.3 Applications for LM

Following, a few examples of fields in the manufacturing industry that have

been benefitting from this evolving technology.

2.3.1 Molecular science

LM can be applied at atomic level, thus allowing researchers to build complex

molecular models. This is especially useful for visualisation purposes and for a

thorough understanding of the nature of atoms and molecules.

Shown in figure 2.9 below is a 3D hardcopy of the light-harvesting system,

produced by LM technology. The model was painted by hand on completion

[9].

Figure 2.9: The light-harvesting system, LH-II [9]

18

The Layered Manufacturing (LM) process

2.3.2 Engineering

LM has made a huge impact on the engineering field, literally redefining the

production process. Since prototyping of an incomplete model has now become

much easier, verification has become more accurate and cost-effective.

Figure 2.10 presents just such an example. It depicts a gear system produced by

means of LM equipment. The designer can now touch and move the various

parts to get a better idea of the feasibility of the model [9].

Figure 2.10: A functional gear prototype [9]

2.3.3 Earth sciences

When a satellite takes pictures of the earth, elevations at certain heights are

depicted by various colours. These coloured images can, in turn, be converted

by computer software into 3D objects and built by LM machines. Representing

a region in this manner will allow geologists to conduct unique experiments and

to visualise the geological dynamics with greater clarity [9].

Figure 2.11 shows a scaled-down elevation map of the earth. The African

continent can easily be distinguished in the centre of the image.

19

The Layered Manufacturing (LM) process

Figure 2.11: Earth as an LM model [9]

2.3.4 Mathematics and physics

LM can be used to visualise natural occurrences and mathematical functions

that have traditionally been restricted to paper. Figure 2.12 shows the

interference that occurs when two sinus waves are generated at a certain

distance from each other [9]:

Figure 2.12: Interference between sinus waves [9]

2.3.5 Visualising complex occurrences

Many events in nature are difficult or even impossible to visualise. A case in

point is the flow of a liquid. In addition to quantities such as density, pressure

and vorticity, which have only magnitude, a vector quantity such as velocity,

which has both magnitude and direction, should also be represented. This model

was traditionally visualised as a flat, 2D representation, with height indicating

speed and colour indicating direction.

20

The Layered Manufacturing (LM) process

Figure 2.13: The 2D representation of the fluid-flow model [9]

Recently, at the American Institute of Aeronautics and Astronautics, a method

was investigated for visualising the selfsame concept as a 3D model, thereby

moving away from the 2D representation. Figures 2.13 and 2.14 depict what

happened when the 2D image was represented as a 3D model. Adding colour to

the model will enhance its representation even further [4].

Figure 2.14: The 3D representation of the fluid-flow model [9]

2.4 Problems and issues to be addressed

Every new RP technology seems to rectify one or more shortcoming in its older

version or versions, even though such new RP technologies oft-times create a

brand-new set of problems, some of which are directly linked to the production

of the new part, whilst still others can be traced back to the input file that was

used during the manufacturing of the model. If a problematic input file were

used that were fraught with errors, valuable resources would be lost, since the

production would yield no more than an expensive piece of junk [1].

21

The Layered Manufacturing (LM) process

For this reason, the next few chapters will be devoted to a closer look at the

aspects involved in checking for errors before embarking on the actual

construction of the part. Emphasis will, for the purposes of the said

investigation, fall on the verification and checking of the file.

2.5 Summary

Layered Manufacturing can be defined as that process in terms of which a

model is created from a CAD model by a layering process. LM allows

reasonably quick prototyping and constitutes a vast improvement on previous

techniques. It allows enhanced automation of the entire design process and the

construction of parts that could previously not be readily fabricated.

It also became evident from this chapter that a prototype is key to the design

phase and that it has to be both economical and accurate. In the light of the wide

variety of methods used in telemanufacturing and the unique features of each

method, it is vital, too, to select the right hardware for the task at hand.

Following, a discussion on telemanufacturing as a means of making the LM

technology available to a much wider audience.

22

Chapter 3

Making LM available to one and all:
telemanufacturing

Client
	

Fie server 	LM device

LM bureau
Shipping finished
model back to client

Making LM available to one and all: telemanufacturing

3.1 Introduction

Even though the actual production of prototypes by means of the LM

technology may be much cheaper than by means of conventional methods, the

hardware associated with the former technology still is expensive and out of

reach for most. As with the very first computer systems, a qualified technician is

needed to operate the LM system, which adds to maintenance costs even further

[7]. For this reason, companies that can afford such machines and qualified

personnel may decide to sell machine time in order to have their investment

yield as big a profit as possible.

Telemanufacturing has paved the way for an even wider audience to benefit

from the LM technology, and not only those fortunate enough to live in close

proximity of an LM bureau [10]. Thanks to telemanufacturing, companies and

individuals can now send a file that describes the part, together with their

instructions, to a site where it can be constructed according to their

specifications. Telemanufacturing is a growing technology that greatly aids the

manufacturing process [11].

Following, a graphic representation of the telemanufacturing process:

Testing 	Building of
Security 	of file 	model
protecting

r 	system
The Internet

	4

Figure 3.1: The telemanufacturing process

3.2 Getting it there

A wide range of technologies is available today by means of which to send a file

to the manufacturing bureau. On receipt of such file, it must be checked for

damage that might have occurred during the transmission process, especially as

23

Making LM available to one and all: telemanufacturing

some methods are more susceptible to errors than others. Following, an

overview of the available technologies [10].

3.2.1 In person

The simplest, surest way of getting a file to the LM bureau is, of course, to

deliver it in person. This entails saving the file on CD-ROM, a floppy disk or

some other medium and taking it to the bureau. The instructions for building the

prototype can be attached as a written request.

An advantage of taking the file to the bureau in person is that no complex

verification methods are required to prove one's identity. This is, of course, a

major concern when submitting the file by any other means.

A great drawback of this method, however, is distance. If a bureau were too far

from one's physical location, taking the file in person would waste money and

time. In addition, since there are so many different types of LM technologies in

use, one has to ensure that the technology implemented to create the model will

be suited to the task at hand. It is also very important to note that not all

technologies will be able to create a model from a specific source. Some

hardware requires supports or a specific orientation, for example, an STL file

that has been prepared for an LOM device will not suffice for production on a

stereolithography machine. This issue will be addressed in more detail later on

in the dissertation [10].

3.2.2 The postal service

Despite all the advances in our hi-tech world, certain so-called "outdated"

services are still very much in demand and, in some cases, even preferable to

newer services. The postal service is one such service, as it can be used

physically to transfer a file to a site. This method, however, is considered

extremely slow in computer terms and is not always reliable. A local courier

service may also be used, which would add to the reliability of the process and

to the speed at which the file is delivered, albeit at a higher cost. In situations

24

Making LM available to one and all: telemanufacturing

where a connection to the Internet is unavailable, however, the postal (or

courier) service may well be the only solution [10].

When sending the production file, exercising the above option may not be the

best choice, but it would most likely be the only choice when the finished model

has to be shipped back to the client (if not collected in person). A courier service

will most probably be best suited to this task.

3.2.3 Electronic mail (E-mail)

Electronic mail has become an everyday service and, therefore, also a well-

known and widely used medium for sending files to the LM bureau. The textual

part of the E-mail message will contain the client's instructions, while the

production file will be added to the mail message in the form of an attachment.

Unfortunately, E-mail messages pose a few problems, as their attachments may

be damaged, especially if an attachment were rather large (which, in the case of

STL files, they usually are). E-mail employs a message-switching protocol; that

is, the message is stored at every node while the logic searches for the next node

before the message is passed on. The message will, therefore, get lost or be

severely damaged if some node were to store the message unsuccessfully owing

to defective hardware or insufficient storage space [12].

Another problem with E-mail is that it is not practically possible to verify that

the message has been successfully delivered. Although the receiver will often

send acknowledgements, one could never be sure that it would be sent at all.

Making sure that the E-mail message did indeed arrive successfully, one may be

obliged to make a telephone call to the institution (thereby, in some cases,

requiring an expensive international call).

Despite this, however, electronic mail still is a popular and widely used method

for transferring files to LM bureaux. Thanks to the greater reliability of current

Internet technology in general, problems involving E-mail have been steadily

25

Making LM available to one and all: telemanufacturing

overcome over the past couple of years, to the extent that it can now be regarded

as a safe, convenient and affordable means of transferring files across very long

distances [12].

3.2.4 File Transfer Protocol (FTP)

A marginally better means of transferring files over the Internet may be the

well-known File Transfer Protocol (or "FTP", for short), a protocol that was

specifically developed for the transmission of files over the Internet (which

makes it an attractive way reliably to send files).

Unfortunately, this is all it is: a file transfer protocol. No other latent functions

have been included, which means that, after having submitted a job for

production, the client has to inform the bureau by some other means of

communication that a job has been submitted [10].

Although one could use a special program continuously to monitor the file

server for newly submitted jobs, this is not always practical. Another solution

may be to use the FTP in conjunction with E-mail, thus harnessing the best

aspects of both technologies. The overhead costs incurred on both client and

server sides may, however, not justify the effort.

3.2.5 The World Wide Web (WWW)

The World Wide Web constitutes a collection of uniquely identifiable file

servers that hosts and provides documents (typically HTML) to the world.

Thanks to the development of better Web browsers, CGI, Java and other

technologies have also found their way into the information arena [12]. This

added functionality has helped to make job submission over the WWW a reality

for LM bureaux [10].

A great number of businesses are already deriving huge benefits from

technologies such as these by allowing clients to send a job in its entirety via a

Web browser, together with their instructions. Most technologies associated

26

Making LM available to one and all: telemanufacturing

with the WWW have since become de facto standards, thus facilitating

compatibility between the various systems.

Error checking, encryption and visualisation can also be included, depending on

the complexity of the Web site. Given these advantages, it is evident that (at

least at the time of writing) the WWW constitutes the best and most preferred

means by which to submit jobs over the Internet, and that it is the technology

most widely used by vendors [10, 11].

3.3 Summary

Telemanufacturing is the key with which to unlock the wonders of LM

technology to the whole world. Delivering the file to the vendor, however, is the

most difficult task and careful consideration is required to ensure that the file be

transmitted securely and that it would not be damaged or lost in transit. Some of

the methods that could be used to deliver the job to the bureau include

delivering it in person

using the postal service

making use of E-mail messages

employing the File Transfer Protocol (FTP)

sending it from a Web page on the World Wide Web (WWW).

Important issues such as file integrity and security, as well as the speed and

availability of the technology to be used for transmission, need to be considered

before the file is submitted. Each of the technologies discussed in this chapter

has its own strengths and weaknesses and the most appropriate one must,

therefore, be chosen for each specific application.

The next chapter will be devoted to a discussion on the most common errors to

manifest during transmission, as well as ways in which either to prevent or

remedy them.

27

Chapter 4

Transmission errors in telemanufacturing

Transmission errors in telemanufacturing

4.1 Introduction

Telemanufacturing has paved the way for smaller companies and individuals to

benefit from the LM process. Unfortunately, however, the difficulties

associated with the transmission of files over the Internet, as well as the

security risks involved in doing so, have also become part and parcel of

telemanufacturing. This chapter will, therefore, be devoted to a discussion on

these errors and the problems they create.

When a file is transmitted from its source to its destination over the Internet, it

passes through numerous servers, each possibly running a different operating

system than that from which the file originated. The file is also sent through

various media, each susceptible to different kinds of interference and specific

weaknesses that might compromise the integrity of the information contained in

the transmitted file [12].

For this reason, each file has to be verified for possible errors created in transit

as soon as it arrives at the LM bureau. Another important factor that will

receive our attention later is that of security. The number of people that

witnesses the transmission request also poses a serious security risk. In today's

competitive world, watertight security is vital [10].

Generally, the following types of errors could occur and must, therefore, be

weeded out on reception of the transmitted file:

The file was only partially transmitted.

The file content was altered during the transmission.

The file does not comply with the agreed file format.

The file was transmitted via an incorrect protocol or an incompatible

system.

The file was lost in transit.

28

Transmission errors in telemanufacturing

The Internet currently utilises the Transmission Control Protocol and Internet

Protocol (TCP/IP) protocol suite to transmit information from source to

destination. Even though these protocols do not form part of the Open System

Interconnect (OSI) model, they do correspond to layers 4 and 3 of the said

model respectively. These protocols, therefore, form part of a suite of protocols

that is mainly used to effect communication between remote stations over the

Internet. The Simple Mail Transfer Protocol (SMTP) defines the protocol used

to effect correspondence via E-mail over the Internet, while the File Transfer

Protocol (FTP) defines a protocol used for the transmission of files. Following,

a discussion on the errors that could occur during data transmission whilst

utilising these protocols [12].

4.2 Partial transmission

All information transmitted over the Internet is sent by way of packets. If the

data set that needs to be sent were too large to fit into a single packet, it would

be divided into multiple packets before transmission. When all the packets have

successfully arrived at the recipient, they can be concatenated to reconstruct the

original information. A file describing a part to be built on an LM machine is

usually several megabytes in size and will, therefore, be divided into several

packets to enable its transmission.

It may, however, still be possible for an LM system to process an incomplete

file and to commence building the model that it describes. Should this be done,

valuable resources would be lost, since the model would be incomplete and

useless. Not much can be done to ensure that a file arrive at its destination in its

entirety, but by careful examination thereof the building of a model from an

incomplete input file can be avoided [10].

A simple method by which to correct this error is to add the actual size of the

file at the beginning thereof. After the file has been reconstructed from the

various packets, the actual size of the received file can be compared to the size

stored in the header of the file. Should the two sizes fail to correspond, an error

29

Transmission errors in telemanufacturing

has occurred and the file has not been transmitted in its entirety. Since this

method merely checks for the partial transmission of files, it is seldom used.

In most cases, a Cyclic Redundancy Check (CRC) checksum is used for this

task. CRC is based on polynomial division and is both reliable and effective. A

CRC checksum is calculated and added in the header before the file is sent. At

the destination, the CRC is recalculated and compared to the checksum stored

in the header. If the two values were to correspond, the file was sent

successfully. A CRC checksum will also validate the integrity of the data, with

the result that, strictly speaking, CRC is an overkill if only the size of the file

were of any concern. Thanks to its simplicity and high accuracy rating,

however, it is a widely used safety mechanism [12].

Should it be detected, however, that a file was transmitted only partially, it

should either be requested again in full or transmission should resume at the

point where it was terminated. Sending the entire file again is often not

necessary, especially if only a small percentage of the file has not been

delivered.

Fortunately, many Internet servers now support "resuming on downloads",

which strategy could potentially save a lot of time if fully utilised. Software

such as "Getright" by Headlight Software enables users to download a specific

file in multiple sessions, supporting both HTTP and FTP. A future version of

the software is expected to include an option in terms of which uploading a file

can also be split into multiple sessions. This feature will, under certain

conditions, serve dramatically to improve the submitting speed of files [13].

4.3 Alteration of file contents

During transmission, the contents of a file could, either accidentally or

deliberately, be altered by malfunctioning hardware or by outside interference.

A CRC checksum (as described above) is one of the best and most widely used

30

Transmission errors in telemanufacturing

methods to check whether the contents of a file has been tampered with for any

reason [12].

Fortunately, the integrity of data sent is effectively dealt with by the underlying

TCP/IP. The TCP packet format contains a checksum in the header that is

calculated and recalculated for every packet sent. Unfortunately, however, this

only applies to individual packets and not to an entire file. Subsequently, the

TCP/IP cannot be trusted to detect files that have only been partially

transmitted. For this reason, a header containing at least a CRC checksum

and/or the size of the entire file should be added in order to check the file, both

for integrity and for full transmission [12].

4.4 Non-compliance with the agreed file format

Various file formats have been suggested for LM technology, many of which

are in use currently. Although the STL file format (at the time of writing) is the

format most widely used by vendors, it may well be replaced by an improved

format, owing to its many disadvantages [14].

Before the file is finally submitted to the LM machine, it must be verified that

the file has not only been correctly and completely received, but that it is in the

correct format too. If the file were found not to be in the correct format, it must

either be submitted again or converted into the correct format, on condition,

naturally, that the bureau be equipped with the necessary software to do so. The

said conversion must also be effected in such a way so as not to affect the size,

accuracy rating or form of the model in any way. The following will help to

define this idea more precisely:

Let F 1 be a function to convert a file from format A to format B and F2 a

function that will convert a file from format B to format A. If X were some file

in format A, then:

31

Transmission errors in telemanufacturing

F2(F1(X)) = X must be true for all instances of X, for the file converter to be

acceptable.

This is not always possible, however, since a specific format A may not

necessarily contain all the information that a format B may contain. In such

cases, information will inevitably be lost during conversion, whilst reverting to

the original format may either be very difficult or impossible.

This conversion between various file formats and the problems associated with

this exercise can, however, be avoided by agreeing with the bureau on a

suitable file format before transmission. Errors may, unfortunately, still crop up

if the user were to utilise error-prone conversion software, which constitutes yet

another reason to verify the integrity of a file during the building process.

4.5 Incorrect protocol or incompatible systems

The protocols used by the sender and the recipient must either be the same or

they must be compatible, failing which the file would not be transmitted

correctly. If the Internet were used as underlying protocol, such contingencies

would be catered for, but if a direct link were to be established between the

source and the destination, the protocol must be agreed on and adhered to.

Another cause for file damage would be when a file is transmitted between two

incompatible systems. An example of this type of error is when a binary STL

file is sent from a UNIX-based machine that is set up for ASCII transmissions,

instead of the BINARY format. The file would, as a result, be irreversibly

scrambled [17].

STL files (especially the ASCII standard) are particularly large and

cumbersome and compression techniques are often used to convert the files into

smaller equivalents. Care must be taken, however, to use a standardised and

compatible compression technique in order to enable the recipient to extract the

original file. This is especially important if the operating systems between the

32

Transmission errors in telemanufacturing

two systems were to differ. Compression techniques specifically developed for

geometry-based files have been announced recently. These algorithms can

potentially compress an STL file to a fraction of its original size [15, 16].

Once again, a CRC checksum is the most effective and preferred method by

means of which to ensure that a file has been received successfully. Should the

file be altered owing to an incompatible system or protocol during the

transmission, the CRC would also be scrambled and the comparison would fail.

Should this be the case, such file would have to be transmitted again [12].

4.6 Loss of file during transmission

Depending on the protocol used, the file can either be sent as a complete unit or

it can be sub-divided into packets before being sent. On occasion, however, the

file may not be delivered at all, with the result that means for verifying if the

file had been delivered successfully or not need to be implemented.

If the file were only partially delivered or if fragments of it were lost (as in 4.2),

the error(s) would be easy to uncover once the CRC checksum has been

examined. The sender, however, needs to verify if the LM bureau had received

the file, albeit only in part. The possibility does exist that the address of or the

path to the bureau may be faulty and that, for this reason, the sender needs to

determine if the file had been received.

The best way to achieve this is for the bureau to reply to the sender in the form

of an E-mail message to confirm the delivery and successful extraction of the

file and its accompanying instructions. Unfortunately, there is no way of

knowing whether or not the bureau will reply, unless one makes a direct

inquiry, which could be expensive and time-consuming, depending on the

circumstances.

33

Transmission errors in telemanufacturing

4.7 Summary

Transmission of files occurs over the Internet with dizzying frequency and

since STL files are relatively large, they are susceptible to a whole range of

errors. It is important, therefore, to ensure that the file be correctly transmitted

to avoid the bureau from building a model fraught with errors.

Another important issue in telemanufacturing is that of security. It is not

enough for a file merely to be transmitted error-free, it must also be sent in such

a way that its contents remains intact and undisclosed to all but the interested

parties. Security is also vital if payment were to be effected electronically. The

next chapter will, therefore, be devoted to a detailed discussion on the issue of

security.

34

Chapter 5

Security in telemanufacturing

Security in telemanufacturing

5.1 Introduction

The question that springs to mind here is whether or not security in

telemanufacturing really is an important issue. In today's world, where

industrial espionage and sabotage are frequent and costly occurrences, it most

certainly is. Competition amongst companies is exceptionally fierce and, should

one party gain access to another's designs (even if they were unfinished), it

would have devastating effects on the overall success of the resultant product.

The latter party would gain an unfair advantage and would save much money,

effort and time if it could gain access to the competition's designs. It is,

therefore, imperative that communication between stations remain safe and

secure and that effective security be maintained at LM bureaux too [10].

Mother important factor is that of payment. LM bureaux need to be paid for

services rendered and if the bureau and the client were great distances apart, this

could become a thorny problem. In cases like these, it might be better to employ

an electronic-payment method over the Internet. Thanks to continued research

in the field of electronic commerce, this method can now be considered a

feasible and efficient way of paying for services rendered.

5.2 Safeguarding during transmission

A reliable security system hinges upon five pillars that function individually in

order collectively to make up the security system. If any of these pillars were to

be flawed in any way, the system would have a security hole, regardless of how

well the other pillars had been implemented. These pillars could, therefore, also

be seen as a chain, in terms of which the trustworthiness of the entire security

system would be equivalent to its weakest link. The five pillars of information

security are as follows [18]:

User identification and authentication. 	• Data integrity.

Authorisation or logical access control. 	• Non-denial.

Confidentiality of information.

35

Security in telemanufacturing

As noted, these pillars also support one another in a logical sequence, a process

to which the remainder of this chapter will be devoted.

5.2.1 User identification and authentication

A proper security system will always be able to determine exactly who is

accessing the system at any given moment. This is vital for the following

reasons [18]:

To ensure that only certified users could access the system.

Successfully to enforce logical access control.

To enforce accountability or non-denial.

Depending on the manner in which the LM bureau renders its services, user

identification and authentication will be affected to various degrees. Some

bureaux operate in a closed environment, in terms of which only users that have

been duly registered are allowed to access the system. In such cases, the system

must be able correctly to identify each prospective user and to verify that such

user is, in fact, who he/she claims to be [19].

A popular means by which to effect such identification and authentication is to

request that the user type in his/her user name on the terminal (commonly a

Web browser). The system will then check whether or not such user actually

exist. If the user's name were not found on the database, login would be denied

forthwith. If, however, the user's name were found, the system could

authenticate if the user in question were indeed who he/she claimed to be. This

is generally done with a password, which is known only to the legal party. Only

if the password were to match the password on file would access be granted to

the system, whereupon the user could proceed. The selfsame process is usually

effected in one step over the Internet in a bid to minimise the packets sent

between stations and to tighten security. The information thus sent between the

systems must also be encrypted effectively to ensure that no third party would

become privy to the user's login name and password.

36

S flS 1
Tele-Manufacturing Facility Project

to 	STL rile Checking

luwont 1 . 	
0. Prap•-•

Your ID: 	ISparky
.•.. 	 •_

Your Password: lir *** *
1st 	TIti 3,.. :v.

Upload this file: 'Project. std.

RW 110 •IFPAG, Uja:osa cuourretki Kinuti Ilk rrnsw fmq Inman

kng• 	 alb. 	 5:-.

Figure 5.1: Identification and authentication on the Internet [20]

Security in telemanufacturing

In a situation where a first-time user is requesting access to a system, as so often

occurs in the realm of electronic commerce, the user will, naturally, not be

registered. In order to account for such transaction (to furnish proof that the

transaction did indeed take place), alternative steps must be taken.

5.2.2 Authorisation or logical access control

Access control constitutes a key aspect of the endeavour to ensure that only

select users be allowed to perform certain functions on a system. After a user

has been identified by the system, only those functions the particular user is

allowed to perform must be made available to him/her. Access control is key to

telemanufacturing for various reasons, including [18]

the safeguarding of existing files in the queue from industrial espionage

measures to prevent a system from building a model from a file that has

been compromised in any way

the ability to prevent users from erasing files (be it intentionally or

unintentionally)

the ability to screen technicians for the right to access the files.

37

Security in telemanufacturing

Various models have been propounded and implemented to deal with the ever-

greater security demands for access control and security, of which the following

four models are most widely used:

Monitor Model

The Monitor Model constitutes one of the most basic authorisation models. The

monitor is always online and validates each attempt at gaining access made

between a subject (a user or computer program) and an object (an STL file or

another program). The monitor, therefore, acts as a gateway between the

subjects and the objects in the system.

The Monitor Model could, however, create a serious bottleneck in a system,

since each and every attempt at gaining access has to be authorised by the

monitor first. Despite this possible drawback, the Monitor Model is relatively

easy to implement and maintain [18].

Information Flow Model

The Information Flow Model was propounded as an improvement on the

Monitor Model, thanks to its ability to coordinate the flow of information

between any two objects. The Information Flow Model acts as a filter that

checks for both direct and indirect attempts at gaining access to information.

An example of such indirect attempt would be when a subject gains

unauthorised access to a third object through legal access to a second object, on

the assumption that the second object has access to the third. This is a trapdoor

in the Monitor Model through which access could be gained to critical

information [18].

Military Security Model

This model is based on the principle of least privilege, in terms of which a user

is allowed access only to whatever information is required to perform a certain

function.

38

Security in telemanufacturing

The Military Model is based on a hierarchical system in terms of which every

snippet of information is categorised according to its sensitivity and level of

confidentiality. Four security levels are typically used, namely Public,

Confidential, Secret and Top Secret. Each object is also catalogued into a

specific compartment that assumes responsibility for and ownership of the

information in question [18].

A subject is granted access to an object if and only if the

security class of the subject is equivalent to or higher than that of the object

compartment of the object is a subset of that which the subject has access to.

d) Bell and Lapadula Model

The Bell and Lapadula Model is the most popular model in the security industry

today and shares many features with the Military Model, especially as both

models make use of a hierarchical classification for subjects and objects.

Each subject and object is tagged or labelled according to its security clearance

and sensitivity. As with the Military Model, multiple levels of security are

defined and implemented, whilst the number of security levels varies, depending

on the granularity required by the implementation [11].

Any environment can be described in terms of a set of objects and subjects.

Suppose, for example, that Charles is the head engineer at an LM bureau, with

Peter and Sally as his assistants. The bureau boasts an LOM machine and a

stereolithography machine, as well as a file server that contains all the files (in

some common format, such as STL) to be built by the latter machines. The sets

of subjects and objects may comprise the following:

S = (Charles, Peter, Sally, Client).

0 = (LOM machine, stereolithography machine, file server).

39

Security in telemanufacturing

Every element of the subject set S must then be labelled to indicate the level of

security to which the subject has access. Similarly, every element in the object

set 0 must be labelled to indicate the level of security required for that specific

object [18].

Access to an object is determined after having compared the tag of the subject

with that of the object. Let C(X) be a function that returns the security level or

clearance of X, where X is a subject or an object. It can safely be assumed,

therefore, that if C(X) > C(Y), then the security level/clearance of X would be

higher than that of Y (for example, X is Secret, whilst Y is merely

Confidential).

A subject Si has write access to object Oj iff C(Si) C(0) (this is known as the

"star property") and read access to an object iff C(Si) .? C(0j). The latter

prevents sensitive information from leaking through to lower levels when high-

clearance subjects write critical information to lower-security level objects [18].

5.2.3 Confidentiality of information

Protecting the confidentiality of an object means that only authorised subjects

would gain access to that object. This is especially important in

telemanufacturing, where industrial espionage poses a very real threat. The

confidentiality of both data in storage and of data in transit must, therefore, be

maintained at all times [18].

Scrambling the original data in such a way that only the authorised party could

extract it generally enforces the confidentiality of the data. The scrambled data

is (albeit only in theory) completely worthless to any third party. The processes

of scrambling and unscrambling data are referred to as "encryption" and

"decryption" respectively [12].

Two types of encryption are generally used, namely symmetrical and

asymmetrical encryption. The latter is more often used to enforce non-denial

40

Security in telemanufacturing

and will be discussed later. Symmetrical encryption, on the other hand, is used

to enforce data confidentiality and will be examined next.

Keyless symmetrical encryption: a specific algorithm is shared between

the parties and any secret information is encrypted using this algorithm.

Usually, the same algorithm is used for encryption and decryption, but

different algorithms (referred to as an "algorithm pair") can also be used.

The algorithm used is unique and must remain concealed in order to ensure

confidentiality [18, 12].

Key-based symmetrical encryption: this encryption method is similar to

that of keyless encryption, except that a secret key accompanies the data and

the algorithm. In order to decode the scrambled message, the party must be

privy to the key, as well as to the decryption algorithm [18, 12].

Encrypted messages, however, still are vulnerable to attack. A third party could

still intercept the message and, by choosing a random key, attempt to obtain the

original data. Although exhaustive, this search method poses a very real threat

to data security.

The longer the encryption key, the harder it would be to break the code. The

rapid development in computer hardware over the past few years has also served

greatly to complicate matters. Fortunately, the relationship between key size and

key space is exponential and by merely increasing the key size by one character

or digit, the key space is doubled.

Mother problem associated with symmetrical encryption is the distribution of

the secret key to authorised parties. Fortunately, asymmetrical encryption

completely skirts this problem, which accounts for its being implemented more

often [12].

41

Security in telemanufacturing

5.2.4 Data integrity

Enforcing confidentiality is not enough to safeguard data in all circumstances.

Although encryption will prevent unauthorised parties from gaining access to

the real contents of the data, a determined hacker might still be able to alter or

compromise the contents of the message. Data integrity will, therefore,

guarantee that the submitted file is in its original form when the authorised party

receives it [18].

It is vital in telemanufacturing to ensure that an undesirable party could not

change the file in transit. Although the data remains confidential, valuable time

might be lost if the contents of a file were to be changed. The LM hardware

might even commence building the erroneous file, resulting in a useless

prototype. It is crucial, therefore, to enforce data integrity and thus prevent

industrial sabotage.

An authenticator scheme is usually applied to the encrypted message, which will

prove that the message is authentic and that it has remained unchanged during

the transmission process. The process is effected as follows:

The original message M is first scrambled, using the encryption algorithm EK

(with/without a secret key), which will yield an encrypted message E K(M). The

encrypted message is authenticated with C, the authentication scheme.

C(E K(M)) is obtained and is used as the authenticator for the message. EK(M) +

C(EK(M)) is now sent to the receiver through the network. The receiver has a

copy of C and can, therefore, compute C'(EK(M)) from the information sent. If

C'(E K(M)) were to match C(EK(M)), the message could be deemed authentic

[18].

Even though the said method is not foolproof, it often serves as the springboard

for more advanced authentication schemes. It is also important in this respect to

note that data integrity and confidentiality usually go hand in hand [18].

42

Security in telemanufacturing

5.2.5 Non-denial

When a purchase is made or an order is sent, an analogue signature (a signature

made by hand) is used to prove the identity of the respective parties. A signature

is important, because it binds a party to a contract. Owing to electronic

commerce having become a reality, other means had to be researched to enforce

accountability for the parties involved. Asymmetrical encryption is used to

construct digital signatures, with which a party can now sign an electronic

document [12].

In case of asymmetrical encryption, a party is equipped with a unique key-pair.

This key-pair consists of a public key, shown as K B(S), and a private key,

denoted Kp(S), for a specific subject S. These keys are mathematically related

in such a way that any message encrypted with K B(S) could only be decrypted

with Kp(S), and vice versa.

The public key is constructed from the private key and the method used is such

that going from the one key to the other is relatively easy, while going back

from the constructed key is extremely difficult, if not impossible. The public

key is made known through online directory services, whilst the private key is

only known to S.

Digital signatures are now constructed as follows:

Suppose party A wants digitally to sign an electronic document and then send it

off to party B, so that accountability can be enforced. Party A encrypts the

message using his/her private key Kr(A). This message is now sent to party B.

It is important in this respect to note that the message is not confidential in any

way, because the only key that can decrypt this message, namely K B(A), is

publicly available. In order to ensure confidentiality and data integrity, the

message needs to be encrypted a second time, as explained in the foregoing

sections.

43

Security in telemanufacturing

On having received the message, party B can prove its authenticity by

decrypting it, using KB(A). If the original message were obtained, that message

must have been sent by party A, if and only if the following two axioms hold:

If E(M, K1) = E(M, K2) for all M, then K1 = K2, where E(M, K) is an

encryption algorithm taking a message M and key K as parameters (only

one key could yield the encrypted message that could be decrypted by its

counterpart).

Kp is the private key known only to party A.

5.3 Summary

Although information security has been the subject of extensive research over

the past few years, it still remains a thorny problem in the realm of

telemanufacturing. As more and more companies are making use of this new

technology, industrial espionage and sabotage will become ever-greater

problems.

An LM bureau with inadequate security is sure to lose clients and may even

create a serious imbalance in the manufacturing industry if a fraudulent party

were to gain an unfair advantage by breaching its security. Security is not only

important during the transmission, but also at the bureau itself, so that only

authorised personnel could gain access to sensitive data.

Another issue deserving of our attention is that of electronic payment. Clients

must, naturally, pay for the services rendered by LM bureaux and this will

probably be done digitally. It is important, therefore, that a client could do so

safely and reliably.

Since the present study is aimed merely at touching upon the subject of security

measures to be implemented during the telemanufacturing process, other

sources should also be consulted for further information.

44

Security in telemanufacturing

The STL file format is the de facto standard in the LM industry. Before shifting

our attention to those means through which to remedy and correct errors in the

file, however, we need to discuss the file format itself

45

Chapter 6

The STL file format

The STL file format

6.1 Introduction

The STL file has become the de facto standard of both LM and

telemanufacturing. Unfortunately, the format suffers from a number of serious

defects that render it less than ideal for this task. Owing to these defects, the file

is susceptible to a wide range of errors that will cause serious problems if

negated.

Before error checking and correcting can be effected successfully, the structure

of the file must be analysed and understood. The grammar or syntax of the

format must be defined in order to process the file for verification and loading

purposes.

6.2 The file structure

An STL file can be described as a collection of vertices representing a series of

surface triangles in 3D space. (The terms face, edge and vertex are

interchangeable with triangle, vector and point respectively.) Each triangle is

also accompanied by a corresponding surface normal, which is needed to

distinguish between inner and outer surfaces. This series of triangles is known

as the "tessellated version of the prototype" and serves adequately to

approximate the model [21].

The original CAD model is tessellated by an algorithm, such as the "adaptive

subdivision" method, to yield an STL file. A higher accuracy rating can be

achieved around curves and spherical surfaces by increasing the number of

triangles in that specific region. Unfortunately, a higher accuracy rating also

implies a bigger file. The file size, however, cannot be increased indefinitely,

with the result that the storing and transmission of an STL file could pose a

problem [22].

Since the object is defined in terms of a series of approximating triangles, the

file does not constitute a perfect representation of the object. The format also

does not allow for the storage of any geometrical data about the object.

46

The STL file format

Although the former error could be corrected to some degree, the lack of

geometrical data in the format is the source of numerous problems that are

difficult properly to address. The loss of the geometrical properties of the model

clearly is one of the biggest disadvantages of the STL file format [2].

The following example is illustrative of the effect when a sphere is tessellated

by a limited number of faces, which, in fact, requires an infinite number of

triangles before it could be represented perfectly. In the example, the image on

the extreme left displays the sphere when it is approximated by six faces,

following which the accuracy rating of each subsequent image is increased by a

factor of four. The image on the extreme right, therefore, contains no fewer than

1 536 faces [23].

Figure 6.1: The wireframe representations [23]

Figure 6.2: Shaded representations [23]

The simplicity of the file, however, allows the ASCII variant thereof (shortly to

be discussed) to be transported between systems of various architectures and

operating systems. In addition, the format does not require any calculation

overhead, which will save system time, especially on larger files. The wide use

of the format also makes it a good choice when submitting a file to a

telemanufacturing bureau [14].

47

The STL file format

Two variants of the STL file are widely used. The information contained on the

object is identical for both file types [8].

ASCII format

This format usually engenders rather large files. Thanks to the nature of the file,

however, it is easy to read and can be edited manually. The ASCII file also is

more suitable to the Internet environment, since ASCII usually is much more

platform-independent than its binary counterpart [8].

Unfortunately, the file does not contain a trustworthy header to identify the file

and complete parsing is required successfully to identify the file.

Binary format

Although the binary format is much smaller in size, it is platform-dependent and

can, therefore, only be successfully used between systems of similar

architectures. The binary file is not as susceptible to syntactical errors as its

ASCII counterpart, however, with the result that it is generally not necessary to

parse the file.

STL files in the ASCII and binary formats can, for transmission and archiving

purposes, be compressed very effectively into a much smaller equivalent. (This

is especially true for the ASCII variant.) Specific geometry-based compression

techniques have been developed and implemented successfully [24].

Apart from that, the repetitive nature of specific strings in an ASCII STL file

makes Lempel-Ziv or any other substitution-based technique an attractive

method. Huffman encoding will also yield very good results, since certain

characters have a far higher incidence than others. Characters that occur in the

file more frequently will be stored using a shorter bit string than those with a

lower incidence. This method will result in a much smaller file than when each

character is stored in exactly the same number of bits. Compression techniques

will be discussed in more detail in the next chapter [12].

48

The STL file format

It is important to take into consideration the platform on which the file will be

decompressed before applying any form of compression to it. If a file were

compressed on a specific platform, it might be rendered incompatible with other

systems. Fortunately, there are a number of compression methods in terms of

which the file will remain platform-independent, which methods could be

employed as and when required.

The ASCII STL file is underpinned by the following format [2]:

solid [name of solid]

facet normal NI

outer loop

vertex V I

vertex V 2

vertex V 3

endloop

endfacet

facet normal N2

outer loop

vertex V 4

vertex V

vertex V 6

endloop

endfacet

facet normal IV;

outer loop

vertex V0.3- 2)

vertex V 6 03

vertex V o.3)

endloop

endfacet

endsolid

49

The STL file format

The file must begin and end with the reserved words solid and endsolid

respectively. The reserved word solid is occasionally followed by a descriptive

name of the specific model that the file represents, although such identifier is

not compulsory in the STL standard.

Following, the entire model is defined between these delimiters as a series of

triangles, which, in turn, consists of a number of vertices. All reserved words in

the STL file are in lower case [21].

The vertices V„ represent the three corners of a surface triangle i describing that

section of the model. The x, y and z components of each of these vertices are in

Cartesian coordinates and should all be positive floating-point numbers. The

normal vector Ni is a unit vector of length 1 based at the origin and accompanies

each defined triangle. This normal is determined by calculating the vector cross

product between any two vectors within the triangle [21].

Unfortunately, the STL format is not very robust in the sense that a file will still

pass as a legal STL file even when the object has been severely compromised

[25].

The binary STL file is underpinned by the following format:

Table 6.1: Technical assumptions obtaining to the binary STL representation

Unit type Size Lower boundary Upper boundary

Bit On/Off state 0 1

Byte 8 bits 0 255

Unsigned integer 2 bytes 0 65,535

Unsigned long integer 4 bytes 0 4,294,967,296

Float 4 bytes IEEE ± 1.5 * 10-45

(7-8 significant digits)

± 3.4 * 1038

(7-8 significant digits)

50

The STL file format

Table 6.2: The binary STL representation

Description Size

File header 80 bytes

Number of triangles Unsigned long integer

For every triangle in the model

Normal 3 floats

First vertex 3 floats

Second vertex 3 floats

Third vertex 3 floats

Attribute Unsigned integer

The format of the STL file suggests a highly simplified object-orientated

approach, in the sense that each solid or real-world object consists of a number

of objects called facets (or triangles), with each facet consisting of exactly three

vertices. The three vectors defining the triangle are now constructed between

these points.

6.3 Summary

The STL file is the de facto standard of both LM and telemanufacturing. Even

though it suffers from several weak points, the simplicity of the file has made it

an attractive format with the LM and telemanufacturing technologies. There are

two specifications of the STL file format. a text-based or ASCII file that is more

compatible between systems but larger in size, and a binary representation that

can only be used between compatible systems but which is much smaller in size.

Having discussed the format of the STL file, the next chapter will be devoted to

an introduction to several compression methods that can be applied to a file in

order to minimise its overall transmission time and the space required for its

storage.

51

Chapter 7

Compression in telemanufacturing

Compression in telemanufacturing

7.1 Introduction

One of the greatest drawbacks of the STL file format is the large-sized files it

tends to generate. Since any curvature in an object can be represented by an

infinite number of triangles, the number of triangles necessary to achieve an

acceptable accuracy rating oft-times causes an object file of average complexity

to become too cumbersome [16].

These large files, in turn, tend to complicate Internet transmission. In addition,

larger files require more storage space and if a telemanufacturing bureau were to

receive a high volume of job requests all at once, a serious problem could be

created.

Fortunately, however, compression techniques applied to STL files can

effectuate substantial savings in the storage space required. Two categories of

compression techniques are available to compact files, namely that of general

compression techniques and that of format-specific compression techniques.

a) General compression techniques

The most widely used compression agents, such as "WinZip" (a Windows-

based utility), "Gzip" and "Arj" (a multiplatform utility), allow for the ready

compression of any type of file. The compression effected by means of this

category of compression techniques is loss-less, which means that no loss of

information will occur during the compression and decompressing processes.

Since these utilities are readily available, many telemanufacturing bureaux

require that all files must first be compressed by means of a specific

compression agent before their submission [26, 27].

The general nature of these algorithms, however, limits the compression ratio to

be attained and more specific algorithms should be applied better to compress

STL files. Another problem associated with general compression techniques is

that they are usually limited to system architecture. In other words, a file that

52

Compression in telemanufacturing

has been compressed by means of a specific architecture could only be

decompressed by means of a compatible system [24].

b) Format-specific compression techniques

A specific compression algorithm is an algorithm that can be applied to a

specific file format only. Although some of these algorithms cause a loss of

some information, such losses are generally acceptable. Extremely high

compression ratios are commonplace in terms of this category of compression

techniques. The JPG compression for high-dimension images and MP3

compression for audio are well-known examples of such compression schemes

attaining high compression ratios (both of which lose some data in return for

such high compression ratios).

Fortunately, the geometry hidden in the mesh of triangles in an STL file allows

for specific compression algorithms to be applied to the file, resulting in file

sizes that are mere fractions of the original sizes [15].

In case of ASCII STL files, the compression can also be effectuated in such a

way that the files remain platform-independent even after having been

compressed. Although the compression ratios will not be as high, the files will

still be significantly smaller.

7.2 Compression for STL files

This section will be devoted to a discussion on those compression methods

specifically propounded for the STL file format, many of which can be

combined to achieve excellent compression ratios. After having applied

geometrical compression, a general compression method may also be applied

even further to decrease the size of a file.

53

Compression in telemanufacturing

7.2.1 The Vertex Reuse Method

A generalised triangle mesh is a compact representation of 3D geometry. It is

based on the premise that many vertices will be used several times by different

edges [15].

In figure 7.1 below, a triangle mesh is shown with numbered vertices. A typical

STL file would list each triangle consisting of three vertices. Each vertex is a

point in space and consists of an x, y and z component. As was mentioned in

chapter 6, each component takes up 4 bytes of storage (binary format). This

implies that each vertex takes up a total of 12 bytes. Since a vertex is 'shared by

a number of triangles, much space is wasted owing to duplication.

4 	6

12

17
22

SAS
saw 18

Figure 7.1: A triangle mesh, demonstrating duplication in vertices [1 .5]

An STL file can easily be compressed by using a "mesh buffer" on which to

store those vertices with the highest incidences. The "mesh buffer" is a lookup

table with a predefined size. A pointer value is used instead of having to list the

entire vertex for each triangle. In this way, a table with 256 entries requires an

8-bit, or a 1-byte pointer [15].

Although larger buffers could store more vertices, they require pointers that take

up more space. Smaller buffers, on the other hand, require smaller pointers, but

cannot hold as many vertices. A good balance should, therefore, be struck

between the size of the buffer and the size of the STL file.

54

Compression in telemanufacturing

Employing this method effects a substantial saving in the space taken up by an

STL file. Table 7.1 is illustrative of the saving potentially to be effected by this

method. In this example, each vertex is assumed to be shared by six triangles. In

addition, the lookup table is assumed to be fully utilised.

Table 7.1: Compression with generalised triangle meshes

Size of lookup table Size of pointer Saving

16 entries 1 nibble (4 bits) 912 bytes

256 entries 1 byte 13,824 bytes

65,536 entries 2 bytes 3,145,728 bytes

16,777,216 entries 3 bytes 704,643,072 bytes

Using a mesh buffer constitutes an excellent method by means of which to

compress STL files, and one stands to derive the following benefits:

Completely loss-less compression is achieved.

ASCII STL files still are platform-independent.

Compression and decompression require little computational overhead.

Can be used in conjunction with other general and geometry-based

compression methods, thereby achieving high compression ratios.

7.2.2 The variable compression method

Mother method by means of which to compress STL files is by variable

compression. This method can be used in conjunction with the Vertex Reuse

Method described in the previous section. The variable compression method is

used to compress a file by reducing the space that the numbers take up, albeit

with a small loss in its accuracy rating. Since the entire object consists of

nothing but a series of structured vertices, high compression ratios could

potentially be achieved.

Fortunately, some applications allow minimal degradation of the object and

this method can be employed in such cases. Research in this domain has shown

55

MINIM MMMMM
MM

1111111111EallIMION

MMMMMM MIN

q=3

(a) Optimal 	(6) Under precision 	(c Over precision

Figure 7.3: Choosing a value for q [28]

MMMMM MN
	LIMN

ENNIS:EMIR
M.

Compression in telemanufacturing

that to reduce the number precision rating from 32 to 16 bits usually results in

little loss of quality [15].

The first step in the compression process is to normalise the entire object, so

that all its coordinates fall within the range [-0.5, 0.5]. On decompression, the

object can be translated and resized to meet the building constraints in question

[15].

The next step in the said process involves a reduction in the space taken up by

each vertex by truncating the least significant m bits of the position components,

where m = 32 - q (with q 32, a predefined integer). This can be viewed as

overlaying a 3D grid over the object, as shown in figure 7.2 [15]:

Figure 7.2: Applying the 3D grid [28]

The value of q must, however, be carefully chosen. Selecting a q value that is

too small will result in a badly deformed model, while too large a value will

result in a non-optimal compression ratio [15] (see figure 7.3):

56

Compression in telemanufacturing

This method has been modified, however, and many aspects of the algorithm

have been improved, including:

Selection of the q value

The manual selection of the q value used to be a trial-and-error process, which

constituted a serious drawback. One way is manually to select an error threshold

and then to request that the system select a value for q, such that all fluctuation

in coordinate adjustments be within this threshold. In this way, the file can be

compressed optimally [15].

Region-based compression

Not all regions of a specific part have the same number of triangles. More

triangles are present around curvatures and round corners. An improvement on

the algorithm is separately to compress these areas, with a different value for q.

This will result in an optimally compressed file [15].

The variable compression method allows for good compression, depending on

the overall model geometry. Unfortunately, a certain degree of precision is lost

and a fair amount of computational power is required during the compression

phase. One stands, nonetheless, to derive the following benefits from . employing

this method:

Region-based compression.

The q value allows various levels of compression.

The compression level is chosen automatically after having specified the

error threshold.

Can be used in conjunction with other general and geometry-based

compression methods to achieve high compression ratios.

No decompression is necessary.

57

Compression in telemanufacturing

7.2.3 The redundancy compression method

An uncompressed STL file contains huge chunks of redundant information.

These serve, naturally, to inflate the STL file [29]. By removing all the

redundant information, a marked reduction can be effected in the file size.

Removal of normals

Each triangle in the STL definition has a surface normal that distinguishes the

outside of the object from its inside. Each of these normals takes up 12 bytes of

space. Since each normal can easily be calculated by taking the cross product of

any two vectors of that specific triangle (assuming the triangle orientation is

correct), as much as 20% of space can be saved (depending on the type of STL

file) by omitting the normals in the file once the triangle orientation has been

verified.

Hole-punching

This method is, in many respects, similar to that of re-using vertices. Each edge

is shared twice between two triangles. The size of the STL file can, therefore, be

greatly reduced by removing one of the triangles sharing each edge. As long as

the set of remaining triangles represents each edge contained in the entire

model, there will be ample information to reconstruct the file in its entirety. This

concept is illustrated in figure 7.4:

Figure 7.4: Hole-punching compression

A high-precision design is depicted in the extreme left image of figure 7.4. Once

the entire triangle mesh is shown, the complexity of the model becomes evident,

as depicted in the second image in the same figure.

58

Compression in telemanufacturing

In the third image, an enlarged section from the second image is shown. The

individual triangles are now distinctly visible. On this image, each of the edges

in the triangle containing the black dot is shared with three other triangles, each

marked with a white dot. Since each of these neighbouring triangles contains the

same edge, the triangle marked with the black dot can be omitted without any

loss of information.

On receipt, the removed triangles can be regenerated from the information

contained in the rest of the model. Since this method effects nothing but to

introduce "well-planned" holes in the model, a good error-correcting package

will be able to recoup the missing triangles, thereby obviating the need for a

decompressing program.

This compression method can be improved further by requiring neighbouring

triangles to contain a vertex, instead of an entire edge, for a specific triangle to

be removed. Although much more computationally expensive and less robust,

the compression ratio will be substantial.

One stands to derive the following benefits from this method, thus making it an

important candidate to consider for STL compression:

Completely loss-less compression is achieved.

ASCII STL maintains the platform-independent format.

Decompression can be effected by good error-correction software.

Relatively easy to implement.

Can be used in conjunction with other general and geometry-based

compression methods to achieve high compression ratios.

7.3 Summary

The large size of STL files, especially that of the ASCII variety, complicates

their transmission and storage. If good compression schemes were applied to

59

Compression in telemanufacturing

such files before their transmission, however, a dramatic reduction in

transmission time could be effected.

Two categories of compression techniques are typically used to compress files,

namely the general compression scheme used for all types of files and more

specific compression methods that rely on imbedded geometrical properties to

effect compression. Many of these compression schemes can, however, be

combined to enhance the compression process even further.

The next chapter will be devoted to an overview of the types of errors that STL

files are particularly prone to, followed by a closer look at each type of error.

60

Chapter 8

An introduction to error checking and
the prototype

An introduction to error checking and the prototype

8.1 Introduction

As was mentioned earlier, the building of a defective file should be avoided at

all costs. STL files, however, are often flawed and a prototype built from an

erroneous file will usually be worthless. For this reason, it is vital to check the

file received and to verify that no errors have been created during its creation or

transmission. This process could be effected either manually or, in the case of a

large bureau, automatically [2].

The question whether or not STL files have been adequately checked and fixed

remains a burning one and constitutes one of the biggest problems in

telemanufacturing, especially since these files are sent from numerous unknown

and, therefore, dubious sources. As the need for layered manufacturing arises in

other fields, erroneous STL files will become even more problematic [2].

Errors and difficulties associated with the STL file format can be categorised

into the following groups:

Structural errors.

Geometrical errors.

Unmet building requirements.

This chapter will be used to determine the steps to be taken to check an STL file

before it is sliced and finally built. Checking a file is a step-by-step process and

each step must be taken to verify its correctness. Once an error has been

uncovered, it must be corrected before checking could be resumed.

In the course of this dissertation, the author has not only explored existing

algorithms for their ability to check and fix errors, but has also devised his own

methods, where needed. The idea is to present these methods in a well-suited

interface that will allow easy checking of a submitted file and which will

generate a full report on such file, including recommendations on the object and

61

Object Verification
module

Correction
module

Object loader

GUI

Object
visualisation

•

An introduction to error checking and the prototype

a list of errors that could and could not be fixed. This prototype and the areas it

addresses will now be identified and introduced. A detailed discussion on the

algorithms employed will follow in subsequent chapters.

The framework of the prototype can be depicted as follows:

Figure 8.1. Framework of the prototype

The project consists of various modules, as shown above. The user interacts

with the GUI to launch any of the other modules. From the GUI, the user can

request a file to be loaded through the object loader. Once the object has been

loaded and rendered through the object visualisation module, the user can

request that the object be verified and/or corrected through the verification and

correction modules respectively.

8.2 Principal aim of the project

The prototype was written for the Microsoft Windows environment, but the

same algorithms could be applied to any platform. The project was undertaken

with the following primary functions in mind:

62

An introduction to error checking and the prototype

Detection and correction of common STL errors, including

file syntax and conformity to the STL format (for ASCII STL files)

checking for and removal of duplicate triangles

vertex-to-vertex checking and filling of simple holes

checking of triangle orientation

checking the file against Euler's rule for legal solids.

Easy-to-use interface, thereby minimising training.

Effective visualisation methods, including

rotation of object in x, y and z directions

translation of object

resizing of object.

Visual error reporting, through the use of different colour codes.

Full text report on an object.

Support for both ASCII and binary STL files.

8.3 Error checking

Two sets of errors generally occur in STL files, both of which are addressed in

the prototype. They are structural and geometrical errors.

8.3.1 Structural errors

This type of error usually crops up in ASCII STL files, although binary STL

files could also contain structural flaws (for example, omitting the number of

triangles after the header, as specified by the format). Structural errors can, in

turn, be sub-divided into the following two categories:

a) File integrity

Flaws integral to the file itself are classified as structural errors. Although there

is a wide variety of factors that could cause damage to a file, some have a higher

incidence than others, such as bad transmission, poorly written software or even

electronic sabotage by malicious parties. Some of these errors, such as reserved

words being in the wrong case, are easily fixed, even though this type of error

generally calls for human intervention.

63

An introduction to error checking and the prototype

b) Incorrect format processed as STL file

When a party sends a file to the bureau in the wrong format, the system should

treat it as a special case of a structurally flawed file. When a file arrives at the

telemanufacturing bureau, it needs to be verified to ensure that it is indeed in the

STL format. Checking the file extension is definitely not enough to guarantee

compatibility.

A scanner-parser pair was subsequently designed to address these two problems.

This concept, adapted from the construction of compilers, allows the file to be

analysed more thoroughly and generates more detailed reports.

Chapter 9 will be devoted to a detailed discussion on structural errors, whilst

chapter 11 will be used to elaborate on the algorithms employed during the

checking phase.

8.3.2 Geometrical errors

Geometrical errors have a high incidence in STL files, with the result that the

files must be checked thoroughly [30, 2]. The following geometrical errors are

commonly found in STL files:

a) Duplicated triangles in the model

This would represent a special case of vertex-to-vertex rule violation. The error

is first detected by a procedure comparing every two triangles defined in the

object. The following definition will allow us to define equal triangles:

For triangle A with vertices (A0, AI, A2) and triangle B with vertices (Bo, B1,

B 2), let e be a pre-defined threshold.

A = B, if there exists a unique (0 j 2) such that IA; - 	e for each i = {0,

1, 2). It is important that e not be chosen too large in order to prevent two

closely spaced yet distinct vertices from being recognised as a single point.

64

An introduction to error checking and the prototype

If two triangles were found to be equal, one of the triangles would simply be

removed from the object.

b) Checking the data against the vertex-to-vertex rule

Each triangle in the object must meet all of its adjacent triangles in a common

edge. This implies that each side must be shared completely by exactly two

triangles. Failure to adhere to this rule usually indicates the presence of holes

and zero-width walls in the model [21].

This rule is verified by first giving structure to the entire file. The vertices of

each triangle are used to construct three vectors, which are stored in a linked-list

structure. Every correctly shared edge in the file will, therefore, be listed as two

vectors — equal in size yet opposite in direction.

The computer will now go about matching vectors to a common edge. The

comparison between every two vertices is similar to the duplicated-triangle test,

but for the following:

For vector A, with starting and ending vertices (As, AE), and for vector B, with

starting and ending vertices (Bs, BE), let e be a pre-defined threshold and let the

following hold:

If lAs - BEI e and IAE - BsI < e, then the edge would be correctly shared, as

long as no other listed vectors shared it. If lAs - BsI e and IAE - BEI e, then

one of the vectors has the wrong orientation and needs to be changed. Apart

from that, if no other vector shared the edge, then the edge would be correctly

shared.

Should an edge be found that is shared by a single triangle only, the vector

would be stored in a list for further analysis. After the entire file has been

checked, the list of unshared vectors is examined in order to correct the file.

65

An introduction to error checking and the prototype

Ensuring that each surface normal do indeed point outwards

In the previous paragraph, a scenario was created in terms of which an edge is

correctly shared by two triangles, but both vectors have the same direction. In

such cases, one triangle is incorrectly orientated.

Every triangle must be checked against the right-hand rule to make sure that the

orientation of the vectors be correct [10]. This is important for the calculation of

each triangle normal. If a triangle were incorrectly orientated, the normal would

point in the wrong direction [2].

By changing the concord of two of the vertices in the faulty triangle, the

orientation of the triangle can be reversed.

Checking the model against Euler's rule for legal solids

For any convex polyhedron, the number of vertices and faces together is exactly

two more than the number of edges. This meaningful result, discovered by

Euler, allows an object to be verified as a legal solid [31]. Fortunately, the

format of the STL file also conducts this check with relative ease.

The said check will ensure that the object does not contain any orphaned

surfaces, zero-width walls, cracks or holes. An object that comprises a hollow

volume will also fail this check. If an object were to fail the Euler-check, it

would have to be analysed for anomalies.

The prototype also verifies this rule by counting the individual faces, edges and

vertices, substituting these values in the equation and checking the final result.

8.4 The interface

The prototype incorporates a graphical user interface (GUI) that is not only

user-friendly, but which also acts as a powerful visualisation aid, in terms of

which information is conveyed to and from which commands are received from

the user.

66

An introduction to error checking and the prototype

8.4.1 Visualisation

One of the principal aims of layered manufacturing is the visualisation and

inspection of a physically manufactured object [8]. Computer visualisation,

however, still is very important. If an STL file were rendered on a computer

screen, the designer could still work last-minute changes to the file, just prior to

its being built.

OpenGL' [32a] and DirectX 2 [32b], two mainstream technologies that are

currently available, allow objects to be rendered relatively quickly, thanks to the

interface they provide to the system hardware. The present prototype employs

OpenGL for graphics rendering, thanks to its wide-spread use and support.

An important aspect of the interface is not only to render the given object, but

also to allow the user to rotate it in any direction and to move to any arbitrary

location on the screen. Resizing the module in real time is important too,

especially for small and highly detailed models. These concepts were also

explored in the prototype, specifically through the use of OpenGL.

8.4.2 Error reporting

In most cases, error reporting on STL files takes on the form of a textual file

with numbers and statistics. The prototype makes use of various colour codes to

indicate the errors on the object itself. The user can then decide how to correct

the model. This feature is especially useful for uncovering minute cracks in the

object, which are not always visible on the computer rendering.

A text report is also generated to complement the above scheme. Apart from the

information imbedded in the file itself, it contains warnings where necessary

and recommendations on errors that require human intervention.

OpenGL is a registered trademark of Silicon Graphics, Inc.

2 DirectX is a registered trademark of the Microsoft Corporation.

67

An introduction to error checking and the prototype

8.5 Complying with building constraints

Each LM machine has various deficiencies and requirements that must be

supplied and met before a model could be built. Some categories of LM

equipment require supports, while others do not. The maximum size and

accuracy rating also differ from machine to machine and careful consideration

must be given to whether or not certain types of equipment would meet the

needs of a particular model.

Although this aspect of validation has not been explored in the prototype, it

needs to be introduced here, since it forms an integral part of telemanufacturing.

A detailed discussion on this matter will follow in a subsequent chapter. The

most prominent building constraints are as follows:

8.5.1 Coordinate range of the model

Care must be taken that the object fall within the designated range. If this

requirement were not met, the object should be rotated and/or translated to

ensure that it does fall within the proper coordinate range.

8.5.2 Model size

Very large models cannot be built either. If a model were too big to be built in

one pass, it should be adapted. One of the following two solutions should be

applied here.

Scaling the object, so that it would fit in the building area. This method allows

for a solid part, without any visible attachment. Not all applications, however,

allow the prototype to be resized.

Mother method would be to divide the object into various parts, which could

be reassembled on completion. This method has the added advantage of

ensuring that the original size of the model be maintained, even though the

precise binding of the various parts may pose a problem.

68

An introduction to error checking and the prototype

8.5.3 Model orientation

The orientation of the model may affect various parameters of the model, as

well as those obtaining to the building phase. These parameters include the

precision of the model

building material used

time to completion.

Rotating the part before it is completed could have a dramatic effect on the

foregoing factors. Depending on the requirement, rotation of the object should

be effectuated to meet the user's needs.

8.6 Summary

Errors constitute a sizeable problem in STL files. This chapter was devoted to

the introduction of such problems in more detail, as well as to a brief

introduction on the prototype that has been developed to check these files for

errors and to fix them, if any.

Building constraints was another aspect deserving of our attention. Because of

these constraints, even an STL file devoid of any error would not necessarily be

built successfully. As became evident from chapter 2, there are many different

implementations of layered manufacturing and the same model cannot be built

on all hardware. Size, orientation and model properties also play an important

part in determining whether or not a model could be built on a specific device.

Structural-error checking, the first line of defence against errors occurring in

STL files, will be discussed in the next chapter.

69

Chapter 9

Structural-error checking

Structural-error checking

9.1 Introduction

The text (also known as the "ASCII") format is used when incompatible

systems have to convey information over a communication medium, typically

the Internet. A well-known example of this is the HTML format, universally

used on the Internet to describe the content of a Web page [12].

Currently, there is a diverse collection of software programs on the market that

does not create correct STL files [2] and in terms of which transmission errors

are a frequent occurrence and issues such as security, electronic sabotage and

incompatibility are still to be addressed. For this reason, it is very important to

verify the syntactical structure of any received file to ensure that it complies

with the STL standard. This chapter will, therefore, be devoted to a discussion

on the scanner and parser pair that is employed to perform the latter function.

9.2 Verifying the syntax of the STL file

A scanner and parser pair works interactively on the STL file to ensure that the

file

is indeed an STL file

conforms to the STL format

is syntactically error-free.

The reserved words or symbols within the STL file are important for the correct

functionality of the scanner and parser. The scanner will be responsible for

identifying each of these symbols and for passing them through to the parser,

which will then check the correct concord of these symbols within the file [33].

The list of recognised symbols is as follows:

"solid" and "endsolid"

"facet" and "endfacet"

70

Structural-error checking

"outer", "loop" and "endloop"

"vertex"

"normal"

Apart from these symbols, the scanner should also be able to identify positive

floating-point numbers within the file, both in the normal decimal and in

scientific E-notation. The decimal number 129.129 can also be written as

0.129129E+3 in E-notation and it is important to support this format, as various

STL files contain numbers in this format.

Once the list of symbols has been compiled, the grammar of the STL file can be

defined (shown here in BNF form):

digit = “2” 999 ‘,5”, “6”, 4,7” , 	‘,9,9

letter = "A", "B"..., "Z", "a", "b",... "z" "<space>", ".", ""

operator = "+","-"

number = [operator] {digit}["."{digit}] [scalefactor]

scalefactor = ("e" I "E") operator {digit}

ident = {letter I digit}

vector = number number number

vertex = "vertex" vector

triangle = vertex vertex vertex

outer_loop = "outer loop" triangle "endloop"

normal = "normal" vector

facet = "facet" normal outer_loop "endfacet"

solid = "solid" [ident] {facet} "endsolid"

STL-file = solid

71

Structural-error checking

Elucidation of symbols

[: zero, or one instance of

} : one, or more instance of

() : normal mathematical definition.

: choice between the element on the left or the right, but not both.

"' : reserved words or symbols shown within quotes (also shown in bold).

<space> : blank space at this position.

Once the grammar has been defined, the scanner and parser can be constructed

from it. The principal aim of the scanner is to recognise each of the reserved

words and identifiers in the file and to pass these symbols to the parser. Spaces,

line breaks, tabs and other format characters are filtered out by the scanner and

are not passed back to the parser, thus allowing the format to be more robust and

completely independent as to its overall structure. A character or word not

defined as a reserved word will raise an error during the scanning process.

The principal aim of the parser is to check whether or not the concord of the

reserved words and identifiers passed back from the scanner conform to the STL

standard. These syntax rules are laid out in the grammar of the file (shown

above). This is achieved through a series of functions and procedures in a

programming language that supports recursive programming, such as Pascal,

C++ or Java. A function is written for every grammatical rule and subsequently

called as and when required. If a reserved word or identifier were found to be

out of concord, an error would be returned, otherwise the scanning and parsing

process would traverse through the remainder of the file. Only then could one

rest assured that the file is syntactically correct [34].

This method of syntax checking allows ready modification, should the format of

the STL file change or improve, thanks to future research. The basic layout of

syntax checking can be depicted as follows:

72

File verifies!

STL file to
check Symbols

Identifiers
Numbers Verifies that file

conforms and
terminates /Scanner searches for

recognisable
Scanner symbols and passes

it to the parser
Parser

Error
messages

Structural-error checking

Figure 9.1: Layout of syntax-checking procedure

Once the syntax of the file has been validated, further checking can commence

on the file. It must be stressed, however, that the syntax of the file must be

100% correct before any geometrical testing commences to prevent false error

reports and damage to the file due to modifications by the software.

9.3 Fixing syntax errors

Errors in the syntax of text STL files will usually indicate either a file of the

wrong format or a file severely damaged by software or any other means.

Syntax-error correcting techniques have been successfully applied to various

compilers in the past and can possibly be adapted for STL files too [34].

Some structural errors are very easy to rectify. A case in point here would be a

reserved word in the wrong case. Although many software packages

successfully read STL files in upper case, a package following the format very

strictly may reject such files.

73

Structural-error checking

The parser will also indicate files in the wrong format. In such cases, the bureau

might be able successfully to convert the format. The current approach to badly

damaged files and unrecognised file formats, however, is to contact the client

and to request that the file be transmitted again.

9.4 Summary

This chapter was devoted to the elucidation of the importance of syntax

checking with STL files, as well as to the introduction of a highly effective

method of doing so. The method explained in this chapter allows the bureau

carefully to analyse a submitted file and to check that the file

is indeed an STL file

conforms to the STL format

is syntactically error-free.

Once this has been achieved, further checking on the geometry of the model

could commence, an aspect that will be explored in the next chapter.

74

Chapter 10

Geometrical-error checking

Geometrical-error checking

10.1 Introduction

Geometrical errors manifest on the object itself. Although the file describing

the object may be correct, the object itself may suffer from a defect that needs

correcting. Verifying and correcting such flawed STL files, however, is not

only computationally expensive [29] but the testing process is also hampered

by the numerical imprecision and redundancy associated with such flaws or

defects [35].

Some geometrical errors merely involve the filling of gaps and the removal of

duplicated triangles. More serious errors, however, may require integrate

knowledge of the environment in order to be rectified, a process that would

typically take place inside a rather complex expert system.

The present chapter will be aimed at providing an overview on errors that can

easily be fixed by employing a set of algorithms, specifically designed for this

purpose. In so doing, the prototype propounded in the previous chapter will

also be scrutinised.

10.2 Removing duplicated triangles

The chances are that certain triangles may be duplicated during the creation of

an STL file. This could also happen when a high-definition STL file is resized

into a smaller version, which would cause some vertices to converge. Such

duplicated triangles not only make for a bigger file, but may also impede the

software slicing the file, ultimately giving rise to the creation of errors during

the final building process.

A program checking the file against Euler's rule of legal solids may also have

difficulty interpreting the extra face present in the file, reporting the solid as

being invalid. Duplicated triangles in an STL file also violate the vertex-to-

vertex rule (see the next section), requiring the removal of triangles, rather

than the insertion of new ones.

75

Geometrical-error checking

It is evident, therefore, that it is imperative first to scan the STL file for

duplicated triangles, which must be removed before any further checking

could be effectuated. In terms of the propounded prototype, every two

triangles are compared, the one with the other. If two triangles were found

either to be the same or to fall within an acceptable threshold (as indicated in

chapter 8), one of them would be removed. As the two triangles might differ in

orientation, however, the correct triangle should be removed in order to avoid

the introduction of a new set of errors to the file.

10.3 Checking the structure against the vertex-to-vertex rule

STL files are subject to an important restraint, namely that each triangle must

meet all of its adjacent triangles in a common edge. This, in turn, implies that

each edge be shared in full by exactly two triangles [3, 16].

An adjacent or edge-neighbouring triangle to triangle A is any triangle 13 that

shares one of the edges of triangle A. This concept is important to the process

in terms of which holes in the object are corrected and is graphically

represented in figure 10.1. The adjacent triangles to triangle A have been

marked a'. Those triangles bearing the letter b' constitute triangles that share a

common vertex with triangle A, which will henceforth be referred to as

"vertex-neighbouring triangles".

Figure 10.1: Adjacent triangles in an STL file

If edge-neighbouring triangles failed to meet along a common edge, the STL

file would not be in compliance with the STL file standard. This error is one of

76

Geometrical-error checking

the most common errors in the STL file format and one of the most difficult to

correct, especially in a region that has already lost several triangles [21].

In figure 10.2, five tessellated rectangles are shown. (Suppose, for argument's

sake, that each of the images represents the top of a cube and that the borders

of each rectangle are correctly shared with those of another triangle not shown

in the diagram.) As becomes evident from these images, the three rectangles at

the top of the diagram fail to adhere to the vertex-to-vertex rule, whilst the

rectangles shown at the bottom of the figure are correct.

Incorrect

(v)

Correct

Figure 10.2: The vertex-to-vertex rule

In rectangle (i), four triangles are shown, namely abf, bdf, dce and cae. On

closer investigation, it would become evident that edges ae, of and fd are not

fully shared between any two triangles and that they, therefore, fail to comply

with the vertex-to-vertex rule. This is also true of rectangle (ii), which

comprises three triangles (abd, bcd and ecd). In this example, edge bd is

shared among all three triangles. This is not allowed either, however, since an

edge must only be shared by two triangles. In rectangle (iii), edges be, cd, di

and ib are owned by one triangle only. These edges, in fact, define a rectangle

themselves, namely bcdi, which is not allowed at all.

77

Geometrical-error checking

The rectangles shown at the bottom, however, are both correct. In rectangle

(iv), triangles abe, bce, cde and dae each has one edge in common with

another triangle. In this way, edge ae is shared between triangles abe and dae.

This is in compliance with the STL file standard. The rectangle next to it has

been tessellated at a higher resolution. It consists of eight triangles in total and

also complies with the STL file standard. It is, in fact, the same rectangle as

that shown in (iii), after the latter has been successfully corrected.

On closer investigation, it becomes evident that a legal solid will have three

edges between every two faces. From this ratio, it becomes clear that, for a

legal solid, the following rules must always obtain [2]:

F must always be a multiple of two.

E must always be a multiple of three.

3E must always equal 2F.

The prototype propounded in this dissertation is aimed at checking for this

error and at filling gaps that require the insertion of a single triangle. (The

prototype does not, however, generate new edges and vertices.) Although it is

very easy to check a file for this error, it is a time-consuming task that requires

a fair amount of processing power to be performed within a reasonable time.

The time span required is prolonged exponentially with an increase in the file

size [29].

Checking and correcting an object against the vertex-to-vertex constraint

requires a step-by-step procedure akin to the following (even through the

proposed prototype follows this procedure, other packages may follow a

different approach):

a) Step 1: Listing of edges

An STL file comprises a collection of triangles in a linear list, each consisting

of three points in space in its turn. This architecture allows little checking

78

Geometrical-error checking

within itself and needs to be reorganised in a more suitable form in order to

allow more intelligent error checking [29].

The three reference points of each triangle are used to construct three vectors,

which are stored in a linear-list structure. Provided that the primary memory of

the computer allowed it, the said list could be stored directly in memory,

failing which a temporary file must be used for its storage. Storing the entire

list in memory, however, is much better, since this would facilitate processing.

It is important to keep track of each of the vertices, as well as of the triangle to

which each vector belongs. This is easily accomplished, however, since the

number of vectors in the list would always be three times the number of

triangles in the object. Should an error be uncovered, the coordinates of the

points making up the edge would be needed successfully to correct it.

Step 2: Pairing of listed edges

After having listed the vectors either in a temporary file or in primary

memory, the program can begin pairing these vectors. As was stated before,

each edge must be shared by exactly two triangles. The next step would be to

iterate through the entire list and to mark those vectors that share a common

edge.

On completion of the foregoing step, all unmarked edges will reveal an

erroneous section in the STL file.

Step 3: Listing of unshared edges

After having paired the edges, a list must be compiled of those edges that are

not shared correctly between adjacent triangles. This list must then be

analysed and used to correct the errors.

79

Geometrical-error checking

Step 4: Reporting to the user

During this phase, the program needs in a user-friendly manner to report to the

user and state any errors that cropped up. The user can then decide if the

program should correct the problem or if a new STL file should be created

from the original CAD model (or whether it should be resubmitted, in case of

telemanufacturing).

Step 5: Correcting errors detected in the file

When the vertex-to-vertex rule is not adhered to, it is usually indicative of a

hole in the model, which needs to be filled (except in case of duplicated

triangles, that is, in which case the extra triangle must merely be removed). It

is important to add triangles in such a way that the geometry of the model

would remain unchanged.

Fortunately, the neighbouring triangles contain enough information to

reconstruct any gaps created in the object, provided that the number of

triangles to insert is equal to the number of triangles omitted. In order to

correct a model by inserting a single triangle in a specific region, a triangle

requires all of its edge-neighbours to be present. In this way, no new vertices

or edges are introduced into the model, since the neighbouring triangles are

used to construct the new triangle.

Figure 10.3: Approximated sphere with a missing triangle

80

Geometrical-error checking

Figure 10.3 illustrates just such a case. In this simple example, reinserting the

triangle will result in the correct model. The three unshared edges make up the

triangle that has been omitted from the model. Although there is no way in

which to determine the exact number of missing triangles, three vectors

sharing three common vertices most likely are the result of a single missing

triangle.

The concord in which the vertices are listed in the new triangle is very

important. If the concord were incorrect, the normal that accompanies the

triangle would face the wrong direction and would introduce additional errors

into the object. The direction of each vector of the new triangle should be the

opposite of that of the vectors of the neighbouring triangles. This concept is

illustrated in figure 10.4. Note the direction of the adjacent triangles,

compared to that of the new triangle. (The new triangle is shown in the middle

of the figure.)

d
Figure 10.4: Triangle orientation of new triangle

When two or more edge-neighbours are missing, fixing the model becomes a

lot more complicated. In such cases, new edges have to be generated in order

to fill the gaps. When this is the case, the vertex-neighbouring triangles must

be used to extract the information required to generate the new edges. The

object could be fixed successfully, however, if at least one vertex-neighbour

were present for every vertex. Special care must be taken, though, since more

81

Geometrical-error checking

than one triangle is now being inserted into the model. Edges must be

correctly shared and triangles must have the correct orientation.

Difficulties will, however, arise when the program is faced with a hole in

terms of which all of the edge-neighbouring triangles are missing and no

vertex-neighbours are present to construct the new edges. It would be

impossible to reinsert triangles now by using existing vertices of neighbouring

triangles and it would be up to the program to "guess" what the object actually

looks like. It would be better in most all cases if the file were re-created or

resubmitted.

Figure 10.5: Badly damaged model

Figure 10.5 shows a damaged model that has not been repaired successfully,

as several triangles are missing from the middle of the model. This model

cannot, therefore, exist in the real world and cannot be constructed. (It is

already difficult interpreting the model from the illustrated image.) Attempting

to correct the error programmatically will result in disaster, owing to

insufficient information in the remaining model. Human intervention will

undoubtedly be required to repair the error.

Since there is no way to be sure that the file has been corrected, it should be

inspected after correction to make sure that it does indeed describe the object

to be built.

82

Geometrical-error checking

10.4 Ensuring that each surface normal do indeed point outwards

The surface normal that accompanies each triangle is used to distinguish the

outside from the inside of the solid. The direction in which the normal is

pointing indicates the outside. It is very important that the orientation of each

triangle be correct and that each normal do indeed point in the right direction.

The direction of the surface normal is determined by the right-hand rule [10],

which is nothing but the cross product between any two of the vectors defining

the triangle. The length of the normal vector always is one [2].

Figures 10.4 and 10.6 are illustrative of the correct orientation of triangles, as

well as of the incorrect orientation that will result in incorrect normal

calculations.

a 	 a

d b

Correct

Incorrect

Figure 10.6: Correct and incorrect triangle orientation

The orientation of a triangle would be correct if each vector were to point in

the opposite direction of the neighbouring triangle's vector, failing which one

of the two triangles would have an incorrect orientation that would need to be

changed. If all but one of the vectors were correctly orientated, then the

adjacent triangle would most probably be the culprit.

When the incorrect triangle has been identified, the orientation can easily be

corrected by changing the order in which the vertices occur in the triangle

83

Geometrical-error checking

definition. When the orientation of the triangles is correct, calculating the

normal of each triangle is simple. This can be done by computing the cross

product between any two vectors of a given triangle and by dividing each

component by the vector length to obtain a unit vector. The resulting vector

would be the normal and would indicate the outside of the model [36].

Although the present prototype is aimed at detecting this error successfully, it

is not geared for the actual correction of this error in the model as yet.

10.5 Checking against Euler's rule for legal solids

For any convex polyhedron, the number of vertices and faces together is

exactly two more than the number of its edges. For V, the number of vertices,

F, the number of faces and E, the number of edges, this equation would be as

follows:

V —E+F=2

Proof for the above theorem now follows from induction [31]:

The solid can be viewed as a connected plane graph, say G. We employ

induction on E. The base case, E = 0, V = 1 and F = 1, clearly satisfies the

above equation. Assuming that the result be true for all connected plane graphs

with fewer than E edges, where E 1 and where G is supposed to comprise E

edges.

If G were a tree, then V = E + 1 and F = 1 and the desired formula would

follow. Alternatively, if G were not a tree, then let a be a cycle edge of G and

consider G - a. The connected plane graph G - a has V vertices, E - 1 edges

and F - 1 faces, so that, by the inductive hypothesis, V - (E - 1) + (F - 1) = 2,

which ultimately implies that V — E + F = 2, concluding the proof

84

Geometrical-error checking

Figure 10.7: The prism

On visual inspection, the prism depicted in figure 10.7 is, for example, a legal

solid (assuming that it is solid and that it does not contain any hollow

interiors). The figure shows 6 vertices, 8 faces and 12 edges. Utilising Euler's

formula for legal solids and substituting these values in the left-hand side of

the formula yields 6 — 12 + 8, which equals 2, satisfying the right-hand side of

the equation. A model that fails to satisfy this equation might suffer from a

geometrical defect, which needs to be addressed [2].

Since an STL file only comprises a number of triangles, each triangle

consisting of three vectors and vertices, the task of checking for this rule is

greatly simplified (although it could be a rather time-consuming one). Care

must be taken not to count any edge or vertex more than once and duplicated

triangles should be removed (see section 10.2 before commencing). The ease

with which an STL file can be checked against Euler's rule of legal solids is a

great advantage of the format.

Next, the proper procedure followed by the prototype to check a model against

this formula:

85

Geometrical-error checking

Counting the triangles

The first step would involve the counting of the triangles present in the file.

This number represents the number of faces in the solid. If no duplicated

triangles were uncovered, this step would be greatly simplified. With binary

STL files, the number of triangles can simply be gleaned from the file, since it

is listed immediately after the header (the first 80 bytes of the file).

Counting the edges and vertices

Lastly, the number of edges and vertices is calculated. Each edge is shared

between two triangles and each vertex is shared between multiple edges. It is,

therefore, important not to count the same edge or vertex more than once.

Substituting and verifying

After having computed the number of faces, edges and vertices successfully,

these values can be substituted in Euler's formula to verify that the solid

would indeed be valid. Should the solid be invalid, the STL file would have to

be recreated, since integrate knowledge of the environment would be required

to fix the erroneous model and software might yield unwanted results. The

defect might also originate from the original CAD model.

It is important in this respect to note that Euler's rule only obtains to solid

shapes (any convex polyhedron). This means that a hollow object or any

model containing an enclosed hole will fail this check.

Hollow objects are important, however, and have many characteristics that

could be beneficial in certain applications. Some of these characteristics

include

less material to manufacture an object, thereby saving valuable resources

a great reduction on some LM machines in the time required to build the

object

the option to alter the overall weight of the object

86

Geometrical-error checking

the option to change the centre of gravity to some extent

the possibility to allow applications that require an object with a hollow

interior.

Unfortunately, LM hardware has been unable to create hollow objects to date.

All objects containing peninsula structures require supports to enable building,

which are manually removed after the object has been completed. It is

impossible, therefore, to remove the supports enclosed by an object.

By splitting the model into several connectable pieces, however, a hollow

model can be constructed. Each separate piece must meet Euler's condition

and, after all the parts have been manufactured, the model can be assembled.

10.6 Summary

To prevent the LM hardware from constructing an erroneous model, an STL

file has to be carefully checked for errors before building commences.

Geometrical errors occur on the object itself and can be classified into the

following groups:

Removing duplicated triangles.

The vertex-to-vertex rule.

Inserting a single triangle.

Inserting triangles by introducing new edges from existing vertices.

Inserting new "guesstimated" vertices to create new edges and triangles.

Triangle orientation and normal calculation.

Euler's rule for legal solids.

Scanning the file before the building process commences will ensure that no

time or material will be lost due to the building of a defective model. Although

most critical errors can readily be detected, correcting them cannot always be

effected successfully and may require the file to be recreated or retransmitted.

87

Chapter 11

Checking the file against building
constraints

Checking the file against building constraints

11.1 Introduction

Since the first LM device has been designed and implemented, the accuracy

rating and time required to build a model have improved dramatically with

every new model. Many new LM methods have been propounded and

implemented successfully.

Each of these technologies, however, represents a set of new constraints

against the actual STL file. A model designed to be built by one machine may

not necessarily be successful on another. Depending on the actual hardware

used, an STL file should be carefully analysed to ensure that it could be built

on the specific LM hardware available [37].

This verification process can be divided into the following steps:

Ensuring that the coordinates of the solid fall within range.

Checking and possibly changing the object orientation.

Ensuring that the file be compatible with the hardware.

Before the object can be built, these constraints must hold. In some cases, the

file can be manipulated in such a way that the model can be manufactured, but

in other cases, human intervention is required. These aspects will now be

discussed in more detail.

11.2 Ensuring that the coordinates of the solid fall within range

This step ensures that the actual position of the model in the file is such that

the model can be constructed successfully. Various factors can affect this

constraint, including the size of the model and the orientation of the part.

Ensuring that the part fall within the specified bounds can, in turn, be sub-

divided into the following three steps or factors:

88

Checking the file against building constraints

11.2.1 The size of the model

Each LM device has an upper limit regarding the size of the object that can be

constructed. Before the building phase commences, the size of the model

should be checked to ensure that the model would fit into the building area. If

the model were found to be too big, one of two steps must be taken before

building is attempted [10]:

a) Resizing the model

In some cases, the size of the model can be changed slightly to make it fit into

the building area [10]. This constitutes a useful solution for models that are

merely used for visualisation purposes. Changing the size of the model has the

added advantages of curtailing the building time in which to construct the

object and reducing the material and resources used.

Great care should be taken, however, when resizing a model, as certain parts

of the model may become too small successfully to manufacture, with the

result that the final model would be unsatisfactory. In such cases, the model

should be revised or split into various sub-parts, which can be re-assembled

afterwards. This step will be discussed in detail in the next section.

Advantages of resizing:

It allows the manufacturing of large models on machines with a small

building area.

It does not require any additional post-building processing.

It curtails overall building time and reduces materials and resources used

to construct the object.

Disadvantages of resizing:

The model no longer fits its original design size.

Large designs containing precision areas may lose detail after having been

resized.

89

Checking the file against building constraints

Resizing may cause vertices already in close proximity to each other to

coincide, which will, in turn, result in errors.

Resizing precludes the orientation of individual areas.

b) Splitting the model into two or more connectable parts

For some applications, especially for precision-critical parts, resizing the

model is not ideal. In these cases, the only solution would be to split the part

into two or more connectable parts, which parts can then be constructed

individually by the hardware and assembled afterwards [10].

Although not always the ideal solution, splitting the object often is the most

practical solution. If the manufacturer had access to more than one LM device,

the parts could even be manufactured concurrently on each device, thereby

reducing the build time of the entire object even further. By splitting the model

into various parts, each part can also be rotated separately to maximise the

accuracy rating of each individual part (the manner in and the extent to which

the orientation of the part can affect the accuracy rating will be discussed

shortly).

Figure 11.1: Robot leg after assembly [4]

90

Checking the file against building constraints

When assembling the parts, the touching surfaces may need to be sanded to

ensure that the parts fit neatly into each other. This step could be critical and

care must be taken to ensure that none of the detail of the model be lost while

the parts are being assembled.

In some applications, such as the robot leg shown in figure 11.1, the model

consists of different materials and contains moveable parts, as well as

electronic circuits. In such cases, it would be imperative separately to

construct each part of the model. It is evident, therefore, that the splitting of an

object into multiple parts constitutes a solution not only to size-related

problems, but also to scenarios where electronic circuitry and various building

materials are used in the same model.

Advantages of splitting:

The model still fits its original design size.

No detail loss to the extent of that in a resized model.

Orientation of individual parts can be optimised.

Parts can be constructed from various materials.

Prototypes containing moveable parts can be constructed.

Splitting allows for the manufacturing of complex, multisubstance models

(see figure 11.1).

Disadvantages of splitting:

Precise post-processing is vital when assembling the various parts.

Splitting may prolong overall build time and may require more material

(this is especially true if only one LM device were available).

Splitting requires more calculations on the STL file(s).

Not all objects can be successfully split into multiple components without

complicating post-processing.

91

Checking the file against building constraints

11.2.2 Distance from the table

The model should be elevated a certain distance above the building table by

adding redundant building material between the table and the bottom of the

model. These few layers act as a bridge, with the following purposes [10]:

The layers serve to bind the object to the table.

The layers facilitate part removal.

Without this bridge, the model could well drift away while being built. If, on

the other hand, the model were bound to the table directly, the model would no

doubt be damaged when removed afterwards. It is clear, therefore, that such

bridge should be added to the bottom of the model.

The bridge is a physical part of the model and is added to the STL file during

the design phase. Care should be taken that the model remain within the

coordinate bounds of the hardware after elevation of the object.

11.2.3 Part orientation with respect to coordinate ranges

Changing the part orientation may also allow the object to fit in the build area,

especially in cases where the dimension of the building area is non-

symmetrical. A model that is too wide or too long can be rotated along the

appropriate axes by a number of degrees, thereby ensuring that it would fit

into the designated area [38].

This must be done with the utmost care, however, since the orientation of the

model may impact on the building time and the accuracy rating of the object.

This step will be discussed next.

92

Checking the file against building constraints

11.3 Checking and possibly changing the object orientation

The orientation of a part has a marked impact on various aspects of the model,

including the [38]

overall accuracy rating of the model

amount of building material used

time required to complete the model [38].

Before a model is built, these parameters can be optimised by slightly

changing the orientation of the part [2].

11.3.1 Part precision

In figure 2.4, the stair-stepping effect was illustrated when an arc is created by

LM hardware. This effect can be greatly diminished by changing the part in

such a way that all triangles lie either horizontally or vertically. This is,

naturally, not always possible for all triangles. An optimum orientation will be

one in terms of which as few as possible triangles are lying at a gradient, with

the part still fitting inside the building area.

(i) Cube with optimum (a) Cube with non-optimum
orientation 	 orientation

Figure 11.2: Orientation of a simple cube

Figure 11.2 (i) shows a cube that has been optimally orientated, with all its

facets either horizontally or vertically aligned. The cube next to it, however,

has no vertically or horizontally aligned facets and will suffer precision loss

93

Checking the file against building constraints

owing to the stair-stepping effect when it is built. (It will, in fact, require

support structures in order to be built!)

11.3.2 Amount of building material used

The amount of building material used in the manufacturing of a model differs

from machine to machine and changes with each new orientation of the model.

Certain technologies, such as stereolithography, require structural support to

prevent the object from drifting away [1]. By changing the orientation of the

part, the support required by the model can be greatly diminished, optimising

the post-processing and also requiring less building material to complete the

model [2].

In case of a technology such as Layered Object Manufacturing (LOM), in

terms of which no support is explicitly included in the model design, the

orientation of the model can also influence the total amount of material used.

Here, the height of the object is directly proportional to the material utilised

and can, therefore, be minimised by orientating the object to its minimum

height.

11.3.3 Time to completion

It becomes evident, then, that if the material required to complete a model

were to depend on the orientation of the part, it could also influence the time it

takes to complete the model. Usually, the more material used in the model, the

longer the build time [2].

In technologies such as stereolithography and FDM, orientating the model

optimally can reduce the degree of post-processing required to remove

supports from the object. The creation of the said supports during the actual

building process will also add to the time it takes to complete the model.

94

Checking the file against building constraints

In terms of technologies such as LOM, each layer of paper placed on top of

the unfinished model takes time to cut and hatch and by maintaining an

optimum height, far less building time will be required.

11.4 Ensuring that the file be compatible with the hardware

The last aspect that needs to be verified is whether or not the model can

actually be built in the hardware available, since no single model could be

built on all types of Layered Manufacturing equipment.

The size of the object should be verified to make sure that it would fit' inside

the designated building area. This issue has been addressed in detail earlier in

this chapter. Some systems require support for ceilings and overhangs and if

such support were lacking, the building of the model would prove impossible.

The opposite, however, is also true, with the result that if a technology such as

LOM were used to create the model, an object with imbedded support

structures would needlessly lengthen the post-processing of the final model.

Secondly, the accuracy rating of the system should be checked to determine if

the model could be successfully built and if it would, in fact, meet the

precision requirements in question. Some technologies, such as LOM, are

known to be incapable of rendering highly detailed models [8].

As some types of hardware are limited to specific ranges of materials, it is

vital, too, to verify whether the material available would allow the building of

the prototype.

11.5 Summary

After the file has been checked against errors, the model should also be

verified to ensure that it be compatible with the available hardware. This is

very important, since not all LM machines are fully compatible.

95

Checking the file against building constraints

The following aspects should be carefully examined during this validation

process:

Object coordinates should fall within range.

Object orientation should be optimally configured.

The object should be compatible with the available hardware.

After the model has been verified, its building can finally commence. The next

chapter will be used to elaborate on the prototype propounded in the present

research study.

96

Chapter 12

The prototype: STLComplete

Object loader
ASCII and binary files.
Makes use of parsing module.
Error reporting on loading
errors.

GUI
Menu- and toolbar-driven.
Object manipulation.
Intuitive yet powerful.

Object visualisation
Basic visualisation of object,
with advanced error reporting.
OpenGL standard.

•

A 1—

Verification module
Checks

ASCII file syntax
for duplicated triangles
vertex-to-vertex rule
surface normal's direction
Euler's rule for legal solids.

Interacts with Object
Visualisation Module for
advanced error reporting.

Correction module
Corrects

duplicated triangles
vertex-to-vertex rule.

Threshold property allows
dynamic operation.

•

Object
Reordered in vertex,
vector and triangle
lists for verification
and correction.
Support for rotation
and translation.

The prototype: STLComplete

12.1 Introduction

STLComplete is a prototype developed for the Intel chipset, which is able to

facilitate the visualisation process and, more importantly, the verification and

fixing of both ASCII and binary STL files. The emphasis will be on those

aspects that have been neglected in applications currently available.

Once again, the layout of the system, this time in more detail:

Figure 12.1: Detailed layout of the prototype

97

The prototype: STLComplete

While chapter 8 was used to provide a brief introduction to the program, this

chapter will be devoted to the algorithms used in the prototype, as well as to a

more technical explanation on the workings of the program. The author will,

in so doing, proceed on the assumption that the reader has acquired the

necessary programming skills.

12.2 Syntax checking

The syntax-checking module of the program consists of two important parts

that work in conjunction to check the syntax of the file. Together, these two

parts, namely the scanner and the parser, form the basis of the syntax check

[33].

12.2.1 The scanner

As was discussed in chapter 9, the scanner is responsible for removing any

non-printable characters in the file. The basic layout of the scanner, as

implemented in STLComplete, will be discussed here. For this part of the

program, the following sets have been defined:

digit = {0, 1, 2, ..., 9}

whiteSpace = {non-printable characters such as spaces, tabs and line feeds}

reserved = {"solid", "facet", "normal", "outer", "loop", "vertex", "endloop",

"endfacet", "endsolid", "end"}

simpleOperator = 	-}

procedure initialise(fileName of type string)

procedure shutDowit()

The foregoing two procedures are responsible for initialising the scanner

module. The initialise() function is called before scanning commences.

This function opens and sets up the STL file and the counters necessary to

keep track of the current position in the file, as well as of the next

character to be read.

98

The prototype: STLComplete

The shutDown0 procedure is called after the scanning has been

completed, in terms of which resources are released to the system. It also

closes the STL file and releases the file handle to the operating system.

function getNextCharacter() of type character

This function starts from the first character in the file and returns the next

character present in it. Once the end of the file has been reached, any

further call will return the eof ("end of file") character, indicating that the

end of the file has been reached.

This is the only function in the entire scanning module that has any direct

interaction with the STL file. Any optimisations that are directly linked to

file access should be effected here. This includes maintaining a buffer to

read a group of characters at once, instead of physically reading a single

character with every consecutive call.

function getNextWord() of type string

This function mainly utilises the getNextCharacter() function and makes a

number of successive calls to it. All characters returned are concatenated

until a whiteSpace character is received. This whiteSpace character is then

ignored by the getNextWord() function and the current word is returned to

the calling function or procedure. (Any leading whiteSpace characters are

also ignored and are not added to the word.)

function processNumber(testString of type string) of type boolean

When the first character in the string returned by getNextWord0 is a digit

or an operator, this function is called to determine the likelihood of the

string being a number. The BNF notation of a number (which is widely

used in the computer industry) can be written as follows:

scalefactor = ("e" I "E") simpleOperator {digit}

number = [simpleOperator] {digit} ["." {digit}] [scalefactor]

99

The prototype: STLComplete

If the function were to identify the symbol as being a number, the function

would return TRUE, failing which the function returns FALSE. The foregoing

BNF notation is strictly adhered to during this procedure.

The following examples will clarify the difference between legal and illegal

numbers:

Table 12.1: Examples of legal and illegal numbers in E-notation

Legal numbers Illegal numbers

80.789 a9800.1

+27.67E-5 E56+5

-0.9999E+0 90E5

0.9212333E+6 0.9333+

function getNextSymbolO of type symbol

The foregoing functions are responsible for retrieving and verifying

characters, words and numbers from the file. The present function uses

these functions and identifies symbols from the file, categorising each and

returning them to the parser.

The function commences by making a call to the getNextWordO function.

If the word returned were a reserved word, the corresponding symbol

would be returned by this function. If the first character of the word were

a simpleOperator or a digit, the processNumber0 function would be called

with the word as a parameter to determine if the word were, in fact, a

number. The process is repeated until the end of the file is reached. When

this occurs, the scanner will return the eof ("end of file") symbol.

The scanner will return a new symbol with every consecutive call to the

getNextSymbol0 function. It should be noted in this respect that the parser

is built on top of the scanner and that it utilises the functions it contains.

100

The prototype: STLComplete

12.2.2 The parser

This module now checks the concord of each identified reserved word and the

correct use thereof. The main program also interacts with the parser by calling

public functions from it. No direct interaction occurs between the main

program and the scanner.

function foundVertexNormal0 of type errorCode

This function is called when a vector or coordinate is expected, consisting

of three consecutive numbers.

The function calls the getNextSymbol0 function and checks if the returned

symbol were a number. If this were not the case, an error would be razed,

failing which the process would be repeated until three numbers have been

successfully identified.

function foundFacet0 of type errorCode

This function is called when the definition of a facet is expected in the

file. It utilises the foundVertexNormal0 function (defined previously) to

analyse each facet of the model.

The function commences by ensuring that the next symbol be the

"NORMAL" symbol. It then checks that the three numbers describing the

normal are indeed correct. This is done by calling the

foundVertexNormal0 function.

Next, the program verifies the presence of the "OUTER" and "LOOP"

reserved words respectively. The next step would be to verify the three

occurrences of the reserved word "VERTEX", each followed by a vector,

again using the foundVertexNormal0 function. Lastly, the delimiters

"ENDLOOP" and "ENDFACET" are verified respectively.

101

The prototype: STLComplete

Apart from checking each facet, this function also effects the loading of a

text STL file into memory, if and when required.

function foundSolid() of type errorCode

The foundSolid0 function calls the foundFacet0 function for every facet

described in the model.

This function commences by recognising the identifier that may contain a

description of the file. This is followed by the triangles that make up the

object. These are handled by the foundFaceto function and are called

accordingly.

Once all the triangles have been identified, the function checks for the

presence of the "ENDSOLID" delimiter.

function checkSyntarailename of type string) of type errorCode

This lies at the heart of the parser module. This function gets called from

the main part of the system and accepts the name of the file to be checked

against syntax errors.

It is responsible for initialising the scanner and for returning system

resources after the checking has been completed, making use of the

initialise° and shutdown° functions respectively.

It identifies the first delimiter of the file, namely "SOLID", and then calls

the foundSolid0 function. This function can easily be extended to support

multiple solids within the same STL file, should the need arise to do so.

After the checking has been completed, the checkSyntax° function returns

an error code, indicating whether or not the syntax check has been

successful. A set of pre-defined error codes will indicate what type of

error has occurred and where exactly.

102

The prototype: STLComplete

The next section will be used to take a closer look at the module that effects

the verification and correction of geometrical errors in STL files.

12.3 Geometrical checking

After an ASCII STL file has been verified free of structural errors, the file is

verified against geometrical errors. (Binary STL files, on the other hand, do

not require any structural checking.) Although greatly simplified, the

following discussion will hopefully elucidate the basic algorithm:

The geometrical engine makes use of a set of lists, which enables the program

to restructure the file into a more workable form. These lists are declared as

classes and are accessed like normal variables. They are as follows:

TTriangleList, which is a list of triangles containing three vertices.

TVectorList, a list of vectors, each with a starting and an ending vertex.

TVertexList, which is a list of vertices, each with an x, y and z component.

Each of the above classes contains numerous member functions that assist in

the management of the list. Once the STL file has been ordered in the above

structure, specific algorithms can be applied utilising these lists in order to

check for geometrical anomalies.

Should an error be uncovered in the object, all changes would be wrought

directly to the list either by removing triangles or by generating new ones.

Although some of the lists may be regenerated in the process, no changes are

wrought to the actual STL file itself.

After the checking has been completed and the necessary modifications have

been effected to the lists, the program generates a new STL file from the

triangle list (kept in TTriangleList, as shown above). The only information

directly used from the original STL file is the identification string found in the

beginning of both the ASCII and binary STL files.

103

The prototype: STLComplete

function isEqual(a, b of type object) of type integer

As this function is used in several of the geometrical tests, it will be

discussed separately. The isEqual0 function accepts triangles, vectors or

vertices as parameters (although both parameters have to be of the same

type).

The function returns an integer value, indicating whether or not the two

objects are equal. A value of -1 indicates a difference in orientation with

triangles and a difference in direction with vectors. (The value -1 has no

meaning when vertices are compared and is, therefore, never returned.) If

the two objects were found to be equal, the function would return a 1,

failing which a 0 would be returned.

The function also includes a pre-defined threshold for each object type, so

that vertices within this radius are deemed to be the same.

12.3.1 Removing duplicated triangles

The removal of duplicated triangles is a special case of a vertex-to-vertex rule

violation, but it is separated to improve performance. The manner in which

this error is fixed also is unique, since it does not require the insertion of

triangles, but rather the removal of duplicated ones. The checking and

correction of the file against this error is effectuated in terms of two separate

functions.

function chkDupTriangles(T, E of type TTriangleList) of type boolean

This procedure is responsible for taking the entire set of triangles, T, and

for returning a subset of this list, E, which, in turn, contains a list of all the

duplicated triangles.

This checking procedure is written in such a way that the number of

entries in E of a specific triangle is exactly one fewer than the number of

instances of the same triangle in T. This means that if the same triangle

104

The prototype: STLComplete

existed in T three times, it would only be listed in E twice (that is, two

instances need to be removed).

The workings of this function is elementary yet effective. The program

starts off by clearing and initialising the E list. Next, two indexes are

defined, say i and j.

The first index, i, starts at triangle 1 and ends at triangle n-1 (for n

triangles). The second index, j, is initialised to the triangle following the

first index, therefore, i+1 and ends with j = n. The triangles at position i

and j are compared. If found to be equal according to the isEqual()

function, one instance of the triangle is added to the E list (for practical

reasons, the triangle in position j is added) and the inside loop is

terminated. The value of i is incremented and the process is repeated until

both i = n + 1 and j = n.

After having effected the latter algorithm, the E list will contain a number

of triangles that must all be removed from the T list.

function fvcDupTri(1; E of type TTriangleList) of type boolean

This function uses the original T list, as well as the list of duplicated

triangles, the E list.

The function simply starts off at the first triangle in E and promptly

removes every triangle defined in this list from T. Since each triangle in E

also stores the original pointer value of the corresponding triangle in T as

a reference, the actual removal of triangles can be done very effectively.

12.3.2 Checking the object against the vertex-to-vertex rule

Compliance with the vertex-to-vertex rule is often violated and must,

therefore, be carefully checked. Once again, the procedure consists of two

separate functions, with the first function being used for the detection of the

105

The prototype: STLComplete

error and the second function being performed to fix any errors uncovered in

the object.

Although the first function serves to detect any vector not correctly shared, the

fixing function addresses only those errors mainly caused by the omission of a

single triangle. The function in terms of which to correct an object by inserting

new edges and/or vertices into it has not been implemented in the present

prototype.

function checkV2V(T, E of type TVectorList) of type boolean

This function takes the list of vectors, T (which has been compiled from

the original set of triangles), and compiles a list of all vectors not correctly

shared. These vectors are stored in the E list.

The function starts by initialising the E list and goes on to create an index

that is initialised to the first vector in T. The program then searches for

another vector in the object that describes the same edge. During this

check, the direction of the vectors should be ignored. The program repeats

this step for every vector in the list.

The same vector (vectors with identical starting and ending vertices)

should not be found in two different triangles. Two vectors sharing the

same edge correctly should have their starting and ending vertices

reversed.

If the edge were not successfully shared between two triangles, the vector

would be placed in the E list. Incorrectly orientated vectors will be

ignored from here on and will not be added to the E list.

106

The prototype: STLComplete

function isHole(a, b, c of type TVector, T of type TTriangle) of type boolean

In terms of this function, three separate vectors are compared to determine

if they formed a triangle. If this were the case, the procedure would also

be used to compute the new triangle and to calculate the corresponding

normal.

The vectors of the new triangle are created in reverse order to ensure that

the normal do indeed point in the right direction.

function fixSimpleHoles(T of type TTriangleList,

E of type TVectorList) of type boolean

This function takes the original list of triangles, T, as well as the set of

erroneous vectors, E, as arguments.

The function calls the isHole() function with sets of three vectors to

determine if the three vectors formed a triangle. If a hole were found, this

function would be used to take the triangle returned by the isHole0

function and to add it to the T list. The three vectors are then removed

from the E list. This process is perpetuated until E is empty or until it

contains vectors that do not form triangles. Any vectors left over in E are

deemed to be indicative of the fact that the file needs to be retransmitted

and that it cannot be successfully corrected by merely following the

current correction scheme.

This procedure can be optimised by using a hash table to look for vectors

within a specific range. By so doing, the need to search through the entire

list to locate a specific vector is obviated.

The prototype only fills holes that require the insertion of a single triangle.

A more complex algorithm can be implemented by searching for fully

connected closed polygons and by then tessellating these polygons

separately. Although this approach will fill the majority of holes, the

107

The prototype: STLComplete

corrected model may not be what the designer had in mind at first. The

program always follows the shortest route by inserting the smallest

number of triangles needed to end up with a geometrically correct model.

12.3.3 Checking triangle orientation

Checking the orientation of each triangle is very similar to checking the object

against the vertex-to-vertex rule. In terms of the latter check, we merely verify

that each edge is shared between two triangles. With this test, however, we

also verify that every triangle correctly follows the right-hand rule and we

ensure this by checking that no two triangles have an identical vector, sharing

the same edge.

function checkTriOrientation(T, E of type TVectorList) of type boolean

As with the previous procedure, this procedure takes the original list of

vectors, as well as an empty list, which will be used to store these vectors

that have been orientated incorrectly.

The program starts off by initialising the E list and the required indexes to

traverse through the T list. When two vectors from two different triangles

are found to be identical, both such vectors are added to the list. It should

be noted in this respect, though, that each stored vector should contain a

reference to the triangle to which it belongs, since this information will be

required in order to correct the orientation.

After the entire list has been traversed, the E list will contain a list of

vectors that could be incorrectly orientated. Unfortunately, not all of these

vectors will have a wrong orientation, with the result that the correction of

all instances of this error is no mean feat.

function checkEulerRule(T of type TTriangleList) of type boolean

Checking the object against Euler's rule for legal solids is a test seldomly

included in software packages. Any object, however, has to pass this rule

108

The prototype: STLComplete

in order to be successfully built on any LM machine. If an object were to

fail this check, something would invariably be wrong and human

intervention would be required. This error would not necessarily be

uncovered by any of the previous checks.

The procedure is provided with a list of the triangles in the object, from

where the following is carefully calculated:

The number of faces

The number of faces, in other words, the number of triangles in the object,

is computed next. We can now proceed on the assumption that there are

no more duplicated triangles (especially since all duplicated triangles have

been removed with the first check already) and that a mere counting of the

triangles in the T list will suffice.

The number of edges

The number of edges is computed next. Since the same edge is shared

between multiple triangles, the procedure will first verify that the current

vector has not been added before incrementing the counter.

The number of vertices

The number of vertices is computed in the same manner as the number of

edges, taking care that no vertex is counted twice.

After the number of faces, edges and vertices has been computed, the

procedure will calculate the value according to Euler's formula and report

back to the user.

12.4 The interface

One of the principal aims of this project was to create an intuitive and user-

friendly interface that will allow the user the necessary flexibility and

adaptability when inspecting a model.

109

The prototype: STLComplete

When the program is initially loaded into memory, the user is presented with a

blank screen and a menu, from where a file can be chosen to be loaded. As

was stated before, STLComplete supports both the ASCII (or text) and binary

STL formats.

The process in terms of which a file is loaded, is graphically represented in

figure 12.2 below:

~1F It 	 Molx
E

a * -UT

Open 	 UM

Look 0: I (ail STLCornoiete 	 :ME 12 El Ffilll
Demo
Fe-adermad
obi

t badstl
t loadZsd
t Bodied

binsho di 	It Copy of tlapDT.sd 	c
it binTest stl 	j esIvaae32stl 	it
b blonastl 12) expT estST L 	t
0 Eithip stl 	imyh=t sd 	II
t bSphereasfi 	shidsa 	it
ft checkSTL 	it shj:0 T stl 	t

sphere2
spheieD L
sphereW
test sti
trit_cub
wittrien

P-17:137-7p'

Ikons: 	I_ 	
} IlOen

Res el type: 	'Dewy and ASOI STL lies 	 AI
	II 	Cancel

II

Figure 12.2: Selecting an STL file to load

Once a file has been selected and loaded into memory, the program renders it

on the screen. Once rendered, the user can rotate, translate and scale the object

to meet his/her needs. This flexibility allows the user visually to verify the

object to some extent. The user can also select that the object be viewed as a

solid, as a wireframe or as a set of vertices. The former two options are

graphically depicted in figures 12.3a and 12.3b respectively.

110

BOM nstt Complete

fie Mituaization

a 	4 - 	.•

C . VASASTLIteskshODT.ill

rtiflyintzthi

CE1 4L. EL*

The prototype: STLComplete

Figure 12.3a: Viewing the model as a solid

S I L Complete

Figure 12.3b: Viewing the model as a wireframe

111

The prototype: STLComplete

Next, the part can be checked for anomalies either by selecting the "validate

file" option from the menu or by selecting the option from the toolbar. A

progress indicator at the bottom of the screen will show the progress made

with the testing function. Once the checking procedure has been completed,

the object is rendered again and errors in the object are indicated by a

spectrum of colours indicating the various errors in the object. Duplicated

triangles will be marked red, a violation of the vertex-to-vertex rule will

appear green and all orientation errors will show up blue. Following, a graphic

representation of a badly damaged file, as depicted in figure 12.4, after

checking has been completed:

Wie51.6t1:4103 	 levenx
vas 	ri

-

r4 • 	0 IHIZEI 	ml a
ono 	 terror reeort

k ey

k

5Th file Infernat tan

 Ft's naTeDi . CLVISc‘CodLng ProJectsklnternet

Mrnt:4.13.! my) .Ti- • ii•
Checking file syntax

0

CCRRECT: Syntax cheek successful.

Duplicate triangles

MOM inIcilv ikt&s ilm fgatogolit have duollcatels1.

The Vortex to Vertex Rule

EMCCIl IlEfarreergitig gecor.bitil9 sand.

Trtangl• Oelentat Lao

Entab MX:it:1°1.6e«, tit'S:cPrirg,:gillrIl iritibt.)

Ester's Rule for legal sands
lg . —, 	

a r
a...

i. -

al.

?i..7:'qi.frgigaV4. 	 .

acoLgitrtogn.net.tnI*74 . .i. . a
ERRROR1 Obitot DOES NOT obey Eater's rule for

Q

-------_______:____V

CAMS6Coing PrejectslIntetnet Demo \ siDcne

Figure 12.4: A badly damaged model, with errors showing up in various colours

As depicted in figure 12.4, a textual error report is also generated during the

verification process, describing the uncovered anomalies in detail.

The user can exercise one of three options during the validation process.

He/She can opt merely to check the file, ask for a prompt on each error or

require the program to check and correct the file automatically. These options

112

OpOsns

Erred T Fresh°Id 	 _
(U 	 .0000

0

When an arm is found

F.) Take NO action at al

0 Erompl and wait to instuctions eon the user

0 Automatise/atepee

l 	Elk 	j

latavalmaz
Edo Yisualzation

Ir. !Mx

The prototype: STLComplete

can be exercised by selecting "options" under the menu or by pressing the

corresponding button on the toolbar.

The user will then be presented with a screen, which will allow the threshold

to be changed and the selection of the required error-checking mode. This is

demonstrated in figure 12.5a. Here, the program has loaded a sphere with

obvious flaws. The user selects the "automatic repair" option, presses the

"okay" button and selects "validate file" from the menu. As was depicted in

figure 12.5b, the object has been successfully fixed and can now be built by

the appropriate hardware.

CANISthCacreng ProsectsSlrionet Demoq 	

Figure 12.5a: Fixing the model

113

The prototype: STLComplete

{a4*(tlEaCO r s x

Fie 	tvinialtzeitin

01 4 a• • 	7.77€11113 	a• 	a

o

__ano

et, 	rot rtoor t

STL flit Infornat ion Uri
1

Oci

..kliPl

t giAdontLyvt C ; 31FigiCod. lzg ProJegts.intesnes

Ci lin;IrCe.altli rts aly gilt- flit

I Duplicat e thiang its

. CORRECT! tie triangles found to have duplicates.

l The With to Vertex Wale

I ERROR: 	III vect uil l 	incorrectl y shared.

FIXED; irpgionottrk,::, obi"t, , 	I 	ho es sere successful lv Dab bed)

;Triangle Orientation

I EoF,RECTs -ir tingle orientation verlf ied.

I Eu 	 solids

11 	

g

Ler' s Rub for_ legal

ia
re

erijs7?72a^

APPIgiogZ 1r32t?42 . „2 = 2
!CORRECT: ObJaut obeys Euler's rule for legal solids.

I Ilk .,

C:VASc \ Coding Prgects \ Internet DemAilDone. 	

Figure 12.5b: Revised model

12.5 Summary

This chapter was devoted to an overview on the project propounded in this

research study. Some aspects, such as visualisation and most of the error

handling, have, however, been dealt with in other software packages.

Although some of the issues addressed in STLComplete are new, they have

been shown to be important and their integration with certain software

packages has been shown both possible and practicable. These issues include

the checking of the model for duplicated triangles

the checking of the object against Euler's rule for legal solids

error visualisation by means of certain colour codes.

114

The prototype: STLComplete

Many other software packages have also been analysed for the purposes of the

present study, however, and the next chapter will be devoted to a brief

discussion on the application of each of these packages.

115

Chapter 13

Software comparison

Software comparison

13.1 Introduction

This section of the dissertation will be used to review several software

packages that are currently being used in the industry to manipulate STL files

and to correct errors as discussed in previous chapters. Most of the packages to

be discussed for this purpose support numerous file formats, in addition to the

STL format.

In this discussion, emphasis will fall on the intelligent side of each software

package, which mainly hinges upon its ability to uncover and correct errors in

a solid.

13.2 STLview version 7.0a

STLview is a Microsoft Windows-based program that allows one to analyse,

fix and embed or link 3D solid models to documents. Designed and coded by

Igor G. Tebelev, it supports many file formats and allows the user to import

and export a model from and to any other format of his/her choice. The

package is released as shareware and is available for downloading from

various sites on the Internet. Although some of the features have been

disabled, they will be enabled on registration of the package [39].

13.2.1 System requirements

The minimum system requirements, as stated in the documentation of the

product, are an IBM PC AT486 or higher processor, with an 8-bit colour depth

(256 colours) display and a resolution of 640x480 running Microsoft Windows

95/98 or Windows NT [39].

After evaluation, it became evident that a fast Pentium-based system would be

appreciated when some of the more processing-intensive features of the

product are utilised. This includes the "playing around" option and the ability

to fix errors in the solid [39].

116

Software comparison

a c \ MSc \ S I LIdeAship :II - StiView 	 :. 11 X

fie 	Edit 	Iech Measure 	Fes 	Help

giF5Filpi rd Ir7 1.7r7 T, fif1TIFIYI 51 1gIclTialwl1761 76 151571 176 1 2 (CD
filil
ifij
re73

:

IA
1.7_12j
IA
g

Irz
it

i io
no.
i ril.
i rx

irk
rff
gi
tw
Lei

,c
Thu re your 1 day of Mal 	 A

Flxishation Inlarnalion
_i

 ,
Nome:

j
i

Compaw Name

eco van Nekerk

i:■
Fee HAI. wen Fl 	 10174T nbec 	dillFICA 	IICE23/30 0 433: 01 4

Figure 13.1: STLview interface (SDI option)

13.2.2 Program features

Interface type

As depicted in figure 13.1, the interface is highly interactive and allows real-

time rotation, scaling and translation in any direction that the user requires. An

option to zoom into the solid is also supported, which allows the user more

closely to inspect the finer detail of the model [39].

The user is presented with a choice of two different kinds of interfaces,

namely a Single Document Interface (an SDI) and an interface that supports a

pop-up menu system [39].

File types supported for import

ASCII and binary STL format

3DS format

117

Software comparison

c) File types supported for export

STL format

DXF format

IGES format

3DS format

d) Error correction supported

Fixing of gaps and topologies of objects

Correcting triangle orientation

e) Salient and added features

Measuring of the volume and surface area of solids

Merging of a number of solids

Boolean operations on solids

Design protection in embedded documents

13.3 Materialise Magics RP 4.3

Materialise Magics RP 4.3 is a professional STL file verification and a

correcting tool. Its basic interface layout is depicted in figure 13.2 [40].

This software package has been released by Materialise and is useful for

general manipulation and error correcting of STL files. The package is

released as shareware and requires registration after an evaluation period for

further use [40].

13.3.1 System requirements

The documentation supplied with the product suggests an IBM Pentium-based

CPU with 32 Mb of primary memory running Microsoft Windows 95/98 or

Windows NT as an operating system [40].

118

Far I Triangle Foca IIAutomatic

b Shen

Invert Naked
	

IcRecalculate Namael

rirTyte Pat I • Ii 	Aut.mati. 	

Na

[Node I Rotation I Serneen I Iuopard

'm71E-a Ira I 	I t ' I , Shade Wee Shy/ Mande Roe

I El Depth %acing : 0 Light &Heavy
View Options 	

E. Real Tina 	0 Flipped Wimples

0 Bad Edges 1211511d4Ottlfrte

Software comparison

Although this software supports real time rotation and translation of objects, a

more powerful system will be necessary in more complex solids for smooth

operation [40].

Eie Erg view loas Sleet Settings &good Gamete. Help

ratet iTh ielyi ngial (airlirg±rEl)R41153 rdie3)101Cii J51112- 	

itr72rrfirt,THF93r47 r t " e if7lre:ItarnlE.vt1iickl 	. 1, 511t. Iun.I Ir..ri
	 _

Reedy •

Figure 13.2: Materialise Magics RP 4.3 interface

13.3.2 Program features

a) Interface type

The product utilises a well-designed and intuitive user interface that makes it

easy to manoeuvre between the functions that the package offers [40].

A drop-down menu lists all the tools that the user may require. A handy

toolbar is situated beneath the menu for more ready access to commands used

more often. Objects are loaded and placed on a canvas, from where the user

can rotate and translate them as required [40].

119

Software comparison

b) File types supported for import

ASCII and STL format

IGES format

VDA format

DXF format

c) File types supported for export

ASCII and binary STL format

VRML format

DXF format

d) Error correction supported

Filling holes and stitching

Correcting the orientation of normals

Manual error correction

e) Salient and added features

Calculating building time on LM equipment

Inserting of simple pre-made objects

Distance/Radius/Arc and angle calculation

Visual error report

Slicing with visual preview

13.4 STeaL version 1.2

STeaL is a very simple STL utility that is distributed free of charge from the

Internet. Although the program does not support any error correction, it is

useful for the visualisation of many 3D formats, as well as for exporting

between these formats [41].

13.4.1 System requirements

The STeaL software does not include any system specification with the

software and it is up to the user to discover the optimal system configuration

120

Software comparison

required by the package. The software makes use of Microsoft's DirectX

library and it must, therefore, be installed on the system [41].

The program does not make use of intensive operations and any Pentium-

based system with hardware-accelerated video capabilities should suffice in

the use of this application. Even an 80486-class machine would be enough for

small, simple models [41].

5.4. brain-goats° - STeaL

fie Vie delp

r

Ready 	

Figure 13.3: STeaL by CIP software

141MAIEZDC

13.4.2 Program features

a) Interface type

An intuitive and easy-to-use interface is supplied to the user. The user conveys

commands to the system through a toolbar at the top of the screen or by using

the menu system. The image is displayed in the centre of the screen, from

where it can be rotated in any direction or scaled to the required size [41].

121

Software comparison

b) File types supported for import

ASCII and binary STL

TRI format

OBJ format

RAW format

LWO Lightwave format (with colour support)

3DS format

POV format

DXF format

NFF format

c) File types supported for export

ASCII and binary STL

TRI format

OBJ format

RAW format

VRML 1.0 format

d) Error correction supported

This software is used as a visualisation tool and does not support any error

correction.

e) Salient and added features

The program includes special rendering options, which can improve the

visualisation of the model. The application also supports numerous file

formats that are most useful for changing a file into an STL file from other

sources.

13.5 Summary

This chapter will be concluded with a brief comparison between the software

discussed in this chapter and STLComplete, the prototype propounded in this

dissertation.

122

Software comparison

Table 13.1: Software comparison

STLview Magics RP STeaL STLComplete

Visual interface Yes Yes Yes Yes

Error reporting as

text file No No No Yes

Visual error

reporting No No No Yes

Loading and saving

of STL files No Yes Yes Yes

Syntax evaluation No No No Yes

Duplicated-triangle

checking No No No Yes

Duplicated-triangle

correcting No

.

No No Yes

Vertex-to-vertex

rule checking Yes Yes No Yes

Vertex-to-vertex

rule correcting Yes Yes No Yes

Checking triangle

orientation Yes Yes No Yes

Correcting triangle

orientation Yes Yes No No

Checking Euler's

rule for legal solids No No No Yes

The problems associated with the STL file format have prompted the

development of software capable of solving them. Not all errors can be

successfully fixed, through, and many of the corrections made will yield a

solid with imprecise and unsatisfactory results. In such cases, the file must be

created from scratch and tested again to ensure that it is indeed error-free.

123

Chapter 14

Conclusion

Conclusion

14.1 Introduction

Since the design and implementation of the first LM device, the precision and

time required to build a model have improved exponentially with every new

model over the past few years. Many new methods for LM have also been

propounded and successfully implemented during this period. Although each

of these methods has advantages and disadvantages, the disadvantages are

slowly being eradicated, thanks to continued research in this realm.

With telemanufacturing, the power of the Internet is truly being harnessed

fully. Not only are more companies and individuals benefitting from this

technology, but LM machines are also being used optimally, and have since

become a source of revenue for many prototyping bureaux.

An important issue to be addressed in the telemanufacturing arena is to find an

acceptable standard in terms of which to communicate objects to the bureau.

The STL file standard is currently one of the most widely used. Unfortunately,

the standard is being hampered by a number of serious flaws, which need to be

rectified. The present dissertation constitutes an attempt to investigate these

flaws and possibly to find solutions to them.

14.2 Correcting STL files

The most widely used file format in telemanufacturing today is that of the STL

file format. Even though the files generated by this format are bulky and

fraught with errors, the format is remarkably simple, with the result that it has

become the de facto standard of telemanufacturing.

Verifying an STL file is commonplace in many telemanufacturing facilities as

a precaution before building a model. Since the format is relatively new and

many software packages are still in their infancy as far as development is

concerned, many models are still being rejected owing to defects and flaws.

124

Conclusion

Fixing a file, instead of requesting that the client resubmit it, will save

valuable time and resources. Oft-times, a triangle is merely incorrectly

orientated or has been left out altogether, which would be easy to remedy. In

case of some errors, however, the corrected file should be verified with the

client to ensure that it is, in fact, the model the user requires.

14.3 Practicability of the STL format

The question still remains, however, whether a format should be used that is

all that susceptible to errors. It is the opinion of the author that this particular

format should indeed be shelved with all the other outdated formats. Although

the simplicity of the format makes it an attractive option for some applications,

the overheads it engenders owing to the verification and correcting phases

required does not justify its few advantages.

For a truly effective telemanufacturing infrastructure, a file format is required

that would meet a certain set of requirements. On closer investigation, it has

become evident that the STL format fails to meet the bulk of these

requirements.

The criteria for a good file format include the following:

Flexibility

The format should be able to store any type of geometrical occurrence with

ease, including spherical shapes and curvatures. The STL format adopts a

triangle approach and although this is highly effective for describing flat

surfaces, curvatures pose a serious problem [3].

Geometry intact

The format should also keep the geometry of the object intact. This means that

the object should be easily scaled, without any loss of precision. Once a model

has been described as a set of triangles (such as by the STL format), it loses all

its geometrical information [2].

125

Conclusion

File size

Although complex models do understandably engender large files, these files

should not be so large as to hamper the transmission or the storage phase of

the file during the telemanufacturing process. As was shown in an earlier

chapter, STL files contain huge chunks of redundant information and normally

result in cumbersome files for fairly complex models [3].

Robustness

The file should also be defined in such a way so as to preclude errors in the

model from slipping through. As we know, the STL format is extremely error-

prone [2].

Simplicity

An important attribute of the file should be its simplicity. It must be easily

interpreted by software and should facilitate easy generation of the file from

the model. This is the only constraint that the STL format truly meets. The

simplicity of the file cannot be overemphasised, but, sadly, this does not

compensate for its other shortcomings.

14.4 Future research

Telemanufacturing and Layered Manufacturing are emerging technologies that

will benefit many people, from the most powerful engineering company down

to the entrepreneur attempting to give shape to a new idea.

Many aspects of the technology still require extensive research, whilst some

areas must merely be refined. Some areas of possible future research include

the following:

• The possibility of a fully automated telemanufacturing facility. After the

file has been uploaded, it could be automatically checked and corrected,

scheduled and finally built. Automated hardware that removes the part

itself may also be incorporated with the system. A system such as this may

126

Conclusion

save on human resources by minimising the number of human operators

required.

A software agent that could possibly optimise the orientation of the model

by comparing several parameters to user preference. The time to complete

may, for example, be deemed less important than the accuracy rating of the

part.

The standardisation of a file format that meets the requirement, as stated

earlier in this chapter.

The implementation of a five-pillar security model (as set out in chapter 5)

during the transmission of files, as well as at the telemanufacturing bureau.

Visualisation of the building process over the Internet, enabling clients to

monitor submitted jobs, either directly through a live video feed or through

a simulation. The implementation of security in this regard also warrants

our further attention before it could be successfully implemented.

Layered Manufacturing and telemanufacturing are still infant technologies,

even though they have been around for a few years now. Looking at it

philosophically, however, we could argue that man has barely perfected the

mechanical clock and that many aspects of life and society could stand

improving. This also goes for the computer industry and the Internet and,

therefore, for LM and telemanufacturing.

Although at atomic level, Layered Manufacturing, also called

"nanometallurgy", as well as the perfect means of communication, boasting

watertight security and lightning-fast speeds, may be music of the future as

yet, such should be the stuff of our dreams if we hope to make any progress at

all!

14.5 Summary

As long as the STL file format is being used in the Layered Manufacturing and

telemanufacturing arena, there would be clamant need to verify files against

127

Conclusion

errors. Errors in STL files will, however, continue to crop up and will always

remain a problem for as long as the format is being used [2].

Although not the ideal scenario, it is the author's opinion that the STL file will

remain in use for some time to come, and it is for this reason that various

methods should be investigated, applied and improved to verify and finally

correct the model.

128

Appendix A

STLComplete: a user's guide

Animate Option:

4c ,
♦ E]

Rotafion male
	

Tiairlatianniale
	

'lei& the abject integrity

Saving the auteut file
ASCII STL
Binary STL

Export amend file a: an ASCII STL file

Lowing an S TL file

	ftia•• 	 LOI

STLComplete: a user's guide

A.1 Introduction

STLComplete is a utility that allows the user to verify and correct both ASCII

and binary STL files before submitting them to a telemanufacturing bureau. It

boasts unique features and an intuitive interface, which allow easy

visualisation and manipulation of the object to be built.

A.1.1 System requirements

The following minimum requirements for the verification and correction of

relatively simple models obtain to the prototype:

A Pentium 120 MHz processor or a similar processor.

16 Mb of system memory.

A PCI or AGP video card (3D accelerated recommended, but not

compulsory).

10 Mb of hard-drive space.

A mouse and a keyboard.

The system should have the Microsoft Windows operating system with

OpenGL installed before STLComplete can be executed. Smoother

visualisation, as well as faster verification and correction of STL files, is

possible with more powerful hardware.

A.2 Moving around

The user can load and save files, export between formats, check and correct

errors and translate and rotate the object by using the interface provided.

—Export amend file a: a b Mary STL file

Figure A.1: The toolbar for quick access

A-1

STLComplete: a user's guide

The interface consists of a pull-down menu and a toolbar, which make for easy

access to the most frequented functions.

a) Loading and saving an STL file

By clicking on the "Loading of an STL file" button located on the toolbar or

by selecting the "Load" option under the file menu, the user will be prompted

for a file name. In this dialogue box, the user can search the current system

and load the file into memory.

After the file has been selected and loaded, the object is displayed in the

canvas area, from where the user can move the object around and rotate it in

any direction. Operations such as verification and correction are also made

available at this stage

Open

Look in: ST ereoLithography Files 	lid 	 ti w Fa,

0 Brain-aear.srl

LI Cube.stl

E1 Frame.stl

Ship.stl

i

- — -- 	- — -----

File name: (Brain-geastl 	 II Open
1

Files of type: I B inary and ASCII STL files __ 	 _f_ll j 	Cancel

Figure A.2: Open-file dialogue

After a model has been corrected, the user can resave it, so that all the changes

can be effectuated. The computer will overwrite the previous file and will

retain the original format (ASCII or binary). In order to save the corrected

object to a different file or to change the format, the user must make use of the

"Export" function.

A-2

STLComplete: a user's guide

Exporting an STL file

Once successfully loaded, the current object can also be exported to the binary

or the ASCII STL format. The solid identifier found in the ASCII variant will

be used as a binary header, and vice versa.

Rotation and translation mode

Rotation and translation are achieved using the mouse. Either one of the two

buttons will be selected for a specific function.

With translation, the user will be able to move the object around by left

clicking on it and by then moving the mouse about. Right clicking on the

object and moving the mouse vertically will allow scaling of the object.

When rotation is selected, the user will be able to rotate the object by left

clicking on it. Vertical mouse movement will achieve rotation around the x

axis, while rotation around the y axis is achieved by moving the mouse

horizontally. Rotation around the z axis can be achieved by right clicking on

the object and by moving the mouse horizontally. Vertical mouse movement

while holding the right mouse button down will, once again, scale the object.

The following table will hopefully serve as a handy reference. Please note that

the "T" refers to translation, while the "R" refers to rotation.

Table A.1: Rotation and translation table

Left mouse button Right mouse button

Mouse UP T: moving object upward

R: x-axis rotation (anti-clockwise)

T: Zoom out

R: Zoom out

Mouse

DOWN

T: moving object downward

R: x-axis rotation (clockwise)

T: Zoom in

R: Zoom in

Mouse

RIGHT

T: moving object to the right

R: y-axis rotation (anti-clockwise)

T: No effect

R: z-axis rotation (clockwise)

Mouse

LEFT

T: moving object to the left

R: y-axis rotation (clockwise)

T: No effect

R: z-axis rotation (anti-clockwise)

A-3

•,-Error threshold--

(11- 	 0.0333

1

When an error is found. - --

J Take NO action at all

Prompt and wait for instructions from the user

(1) Automatically repair

ntiay

STLComplete: a user's guide

Animation

The user also has the option to rotate the object along the x, y and z axes

simultaneously, without using the mouse. By clicking the "Animate" button on

the toolbar or by selecting the option from the menu, the computer will

automatically rotate the object. This is a useful function for inspection and

presentation purposes if the user's attention were divided. Clicking on the

button again will stop the animation.

Verification of object integrity

After an object has been successfully loaded, the user can verify the

syntactical and geometrical integrity of the file. This process can be initiated

by selecting the option under the file menu or by clicking on the corresponding

toolbar button. The software will now analyse each aspect of the object, while

indicating the progress in the status bar at the bottom of the display.

Options

By selecting "Options" under the file menu or by clicking on the appropriate

toolbar button, the user will be presented with a list of options that takes effect

during the error-checking and -correction phase. The options screen is shown

in figure A.3 below:

Options

Figure A.3: Program options

A-4

STLComplete: a user's guide

The error threshold is useful in cases where vertices that are very close to each

other should coincide. Here, the user can select a value ranging from 0.0000

(no vertices will coincide) to 1 (vertices in a radius of 1 unit will coincide).

The next three options will allow the user to specify the action that should be

taken once an error has been uncovered:

Take NO action at all: the object is checked for errors and an error report

is generated, but the program will make no attempt to correct any of the

errors.

Prompt and wait for instructions from the user: if an error were found,

the computer would report it and would wait for confirmation before

making any correction attempt.

Automatically repair: the computer would immediately attempt to correct

each error uncovered.

g) Object type

Under the visualisation menu, the user has the option of selecting the

rendering method of the model. Three options are presented to the user and

each adds a unique benefit during the visualisation of the model. Two of the

said rendering methods are shown in figure A.4 below:

Solid view efr ante view

Figure A.4: Solid and wireframe visualisations

A-5

STLComplete: a user's guide

View as solid: the most typical visualisation mode. When the model is

rendered as a solid, the sides are shaded in such a way as to give the

impression of a real object.

View as wireframe: during the rendering of this feature, only the vectors

making up the individual triangles are drawn. This is useful when the user

merely wants to view the individual triangles.

View as points: now only the vertices are shown, making up the entire

object. Features such as rotation, translation and scaling are, however, still

available when the object is viewed as a collection of points.

These three options can be found under the visualisation menu, with the

methods listed under the "object type" sub-menu. This is illustrated in figure

A.5 below:

rfire- 1 Visualizationil
I 	Enable/Disable Animation

Object type
1,7a

Solid v

I 	Llear marks
Wseframe
Points

Figure A.5: Selecting the rendering method

h) Clear marks

Once a model is found to be defective, the problem areas are marked in

various colours. By selecting this option, the marks on the object will be

cleared. This feature can be found under the visualisation menu.

A.3 The verification and correction of errors

Once the object has been successfully loaded, the verification and correction

of the model can commence. The first task would be to select the appropriate

option under the "error options" menu. (Please refer to section A.3 (f) for

details on invoking the options screen.) It is recommended that the error

threshold initially be set to zero and that the user be prompted if and when an

error be found.

A-6

STLComplete: a user's guide

The verification process can be initiated by selecting the verification button on

the toolbar or selecting it from the menu. The status bar at the bottom of the

screen will indicate the progress, as well as the name and location, of the file

being checked. Once an object has been verified, it is rendered again and

problematic regions are marked in colour. Each colour indicates a different

type of error, as listed in table A.2 below:

Table A.2: Colour legend

Colour Error present

Red Duplicated triangles found.

Blue Triangle with incorrect orientation and/or incorrect normal.

Green The vertex-to-vertex rule is not complied with.

Depending on the user's selection in the options screen, the program will

prompt on each error, automatically correct each error or ignore all errors

altogether. More serious errors cannot be corrected, however, and the system

will report these to the user. If this were to happen, the file would need to be

resubmitted.

At the end of the process, an error report will be generated, which will be

saved in the same directory under the same name as the object, but with a

.TXT extension. This file will contain basic information of the file in question

and a detailed analysis of each error that was verified and, if any such errors

were found in the object, whether or not they were successfully rectified.

A.4 Technical specifications

Table A.3: Technical specifications

Programming language Borland Delphi 5.00 (build 5.62)

Other technologies OpenGL

Lines of code 6,277 lines

Code size 377,000 bytes

Data size 8,229 bytes

Executable size after compilation 790,528 bytes

A-7

Glossary

Algorithm

American Standard Code for

Information Interchange STL

(ASCII STL)

Binary STL

Backus Naur Form (BNF)

Computer Aided Design

(CAD)

Common Gateway Interface

(CGI)

Compression

Compression ratio

Convex polyhedron

De facto standard

Extension

File extension

A step-by-step procedure or method executed or

followed by a computer program to accomplish a set

task.

An STL file format that is coded using only the standard

7-bit ASCII.

An STL file format using a full 8-bit IBM code for file

representation.

A set of definitions describing a programming or

scripting language.

A paradigm in terms of which a design is produced with

the aid of a computer system.

Scripting language used on Internet systems.

A method in terms of which a file is reformatted to take

up less storage space.

The ratio defined as the original file size to the

compressed file size. A higher ratio will, therefore,

describe a higher level of compression.

A solid object with no enclosed holes or gaps.

A standard that exists by virtue of its widespread use.

See File extension.

The last characters following the full stop in a file

description.

Glossary

Hacker

Hypertext Markup Language

(HTML)

An Internet packet

Java

Open System Interconnect

(OSI) model

A packet

Photopolymer

Protocol

Prototype

Recursive procedure

Stepping motor

Support structures

A person who does programming for sheer enjoyment.

The term has, however, of late been used in a negative

sense to describe a person who attempts to gain access

to resources by unlawful means.

A format used on the World Wide Web to describe the

content and layout of a Web page

Smallest unit of data sent on the Internet.

A computer language widely used on the Internet,

thanks to its compatibility with most systems and

browsers.

See Surface normal.

A system that controls the hardware of a computer

system and enables users and applications more readily

to interact with the hardware.

A protocol standard developed by the International

Standards Organization to implement an open system.

See Internet packet.

A liquid substance used in the stereolithography process

to create objects.

Method or manner of communication.

A model created for testing purposes.

A routine (function or procedure) calling itself from

within itself, which will terminate in a given set of

conditions, called the "base case".

A high-precision electric motor that is capable of

accurately turning a defined fraction of a degree. Mainly

used in control systems.

Structures incorporated in LM to allow the building of

arcs and overhangs, which are removed after

construction.

Normal

Operating System (OS)

ii

Glossary

Surface normal 	 A vector of length 1, which is perpendicular to a face or

a triangle in STL files. Indicates the outside of the

model.

Syntax 	 Method or set definition of a statement.

Tessellation 	 The transformation of an object into a set of finite

triangles.

Web page 	 A page found on the World Wide Web (WWW) that

could contain text, pictures and links to other pages or

resources.

iii

List of sources consulted

RP&M: Fundamentals of stereolithography,

Paul F. Jacobs, ASME Press, 1992

Telemanufacturing: Rapid Prototyping on the Internet with automatic

consistency-checking, Michael J. Bailey,

http://www.sdsc/edu/tmFWhitepaper/whitepaper.html

Design by composition for Rapid Prototyping,

Michael B. Binnard, Stanford University Press, Feb 1999

SDSC telemanufacturing facility: solid results, tangible benefits,

January-March 1999, Volume 15, Number 1,

http://www.npaci.edu/envision/v15.1/tmf.html

Computational and theoretical problems in modern Rapid Prototyping,

Mark R. Cutkosky, Stanford University Press, 1999

Building block design for layered shape manufacturing,

Michael B. Binnard and Mark R. Cutkosky,

Stanford University Press, Sept 1998

Stereolithography and other RP&M technologies,

Paul F. Jacobs, ASME Press, 1996

Rapid Prototyping from a computer scientist's point of view,

Rapid Prototyping Journal, Volume 2, Number 2, 1996,

A. Dolenc and I. Makela,

MCB University Press, 1996, http://www.emerald-library.com

iv

List of sources consulted

Telemanufacturing facility, San Diego Super Computer Centre,

http://www.sdsc.edu/Publications/TMF

Telemanufacturing,

Emile Marais, MSc dissertation, RAU Press, March 1998

Telemanufacturing project with UPM/UQ,

Lawrence Lau and Kevin Burrage, November 1997,

http://eng.upm.edu.my/home/rasid/html/proposal.htm

Understanding data communications and networks,

William A. Shay, PWS Publishing Company, 1995

Getright, Headlight Software,

http://www.getright.com

Rapid Prototyping in Europe and Japan, Michael J. Wozny,

Chapter 8: Interface formats, March 1997 (WTEC Hyper-Librarian),

http:Mtri.loyola.edu/rp/08-05.html

Optimised geometry compression for real-time rendering,

Mike Chow, IEEE Visualisation, 1997,

http://home.earthlink.netkmmchow/gcompiler/gcompiler.html

Graphics file formats FAQ: where to get file format specifications,

James D. Murray,

http://faqs.bilkent.edu.tr/faqs/graphics/fileformats-faq/part3/section-144.html

How to use FTP, TSCNET (C) 1996-97,

http://www.tscnet.com/faq/hardware/hardwarefaq010.html

List of sources consulted

Information security,

S.H. von So1ms and J.H.P. Eloff, RAU Press, 1997

Client/Server Internet environments,

Amjad Umar, Prentice Hall PTR, 1997

Telemanufacturing facility: automated STL file-checking (SDSC),

http://www.sdsc.edu/tmf/Upload/upload.html

Telemanufacturing facility: STL format description (SDSC),

http://www.sdsc/edu/tmOstl.htm

Graphics Gems IV,

P.S. Heckbert, A.P. Professional, 1994

Sphere generation,

Paul Bourke, May 1992,

http://www.mhri.edu.aukpdb/modeling/sphere

STLPack version 0.33,

Evgeny Ketsuba, 1997-1999,

http://www.laser.ru/stlpack/

Computational methods for Rapid Prototyping of analytic solid models,

Rapid Prototyping Journal, Volume 2, Number 3,

Rida T. Farouki and Thomas K6nig,

MCB University Press, 1996, http://www.emerald-library.com

Winzip Computing,

http://www.winzip.com

vi

List of sources consulted

ARJ Software Inc, July 1999,

http://www.arjsoftware.com

Optimised geometry compression,

Mike Chow, IEEE Visualisation, 1997,

http://home.earthlinIckmmchow/vis97/talkp0.0.html

A flexible file format for solid freeform fabrication,

Stephen J. Rock and Michael J. Wozny, 1991,

http://wwwspi.edukrocks/PUBS/SFF91-FlexFormat-Abstract.html

CAD requirements for Rapid Prototyping tutorial,

John F. Miller, Rapid Prototyping & Manufacturing '94,

Society of Manufacturing Engineers, 1994

Mathematics junkyard, proof for Euler's rule for legal solids,

David Eppstein, March 2000,

http://www.ics.uci.edu/—eppstein/junkyard/euler

OpenGL, Silicon Graphics, 1998,

http://www.opengl.org

DirectX, Microsoft Corporation,

http://www.microsoft.com/directx

Compilers, principles, techniques and tools,

Alfred V. Aho, Ravi Sethi and Jeffrey D. Ullman,

Addison-Wesley Publishing Company, 1986

Compiler construction,

Niklaus Wirth, Addison-Wesley Publishing Company, 1996

vii

List of sources consulted

Rapid Prototyping in Europe and Japan,

Friedrich B. Prinz,

Chapter 8: Model preparation, March 1997 (WTEC Hyper-Librarian),

http://itri.loyola.edu/rp/08-06.html

Calculus, one and several variables,

S.L. Salas and Einar Hille,

John Wiley and Sons, 1990

Optimal orientation with variable slicing in stereolithography,

Rapid Prototyping Journal, Volume 3, Number 3, 1997,

F. Xu, Y.S. Wong, H.T. Loh, J.Y.H. Fuh and T. Miyazawa,

MCB University Press, http://www.emerald-library.com

Accuracy issues in CAD to RP translations,

George M. Fadel and Chuck Kirschman,

MCB University Press, 1995

STLview Software,

Igot G. Tebelev,

http://www.cyberware.com/stiview

Materialise, RP Magics and WWRP product information, 1997,

http://www.materialise.com

CIP Software, 1999,

STeaL STL visualisation tool, 1999,

http://www.sobi.org

viii

