
Intelligent STL File Correction 

by 

GJ van Niekerk 

DISSERTATION 

submitted in fulfilment of the requirements for the degree of 

MASTER IN NATURAL SCIENCE 

in 

COMPUTER SCIENCE 

in the 

FACULTY OF SCIENCE 

at the 

RAND AFRIKAANS UNIVERSITY 

SUPERVISOR: PROF EM EHLERS 

October 2000 



Acknowledgement 

I would like hereby to convey my heartfelt gratitude to Professor Ehlers, for her 

patient guidance throughout this research study. 

In addition, I would like to thank Mrs Van der Mast, for her help with the 

editing and proof-reading of the manuscript. My sincere thanks also to my 

parents and to Ansie, who supported me throughout this endeavour. 

Finally, glory to God for enabling me successfully to conclude this dissertation. 



Abstract 

Layered Manufacturing (LM), also known as "Rapid Prototyping", is that process in 

terms of which a computer-designed model is created layer by layer with the aid of 

specific LM hardware. Telemanufacturing constitutes an extension of this technology 

that allows remote submission of manufacturing jobs or assignments across a 

communication medium, typically the Internet, to be built at the manufacturing bureau 

concerned. 

The de facto standard of LM is the STL file. Simply put, this file consists of a number 

of triangles that are used to describe an object in its entirety. This file format has 

several advantages over other known formats and allows easy 2D rendering. 

Unfortunately, however, the limitations of the latter format outweigh its advantages. 

Since the entire model is described in terms of a collection of triangles, the original 

geometry of the model is lost. As a result, a certain level of degradation will occur, 

especially around curvatures in the model. Although an increase in the number of 

triangles around such areas will enhance precision, it will also result in a much larger 

STL file. 

Triangles that get lost somewhere inside the file could also give rise to holes, 

orphaned surfaces and zero-width walls in the projected object. It is vital, therefore, 

that the manufacturing bureau verify the correctness of the entire file before it is built 

in order to prevent machine time and materials from being wasted. 

Instead of transmitting the entire file again, the bureau could attempt automatically to 

correct and repair less critical errors, thereby saving valuable resources and time. 



Opsomming 

"Layered Manufacturing" (LM), wat ook as "Rapid Prototyping" bekend staan, is 

daardie proses ingevolge waarvan 'n rekenaarontwerpte model lagie vir lagie met 

behulp van spesifieke LM-hardeware geskep word. Televervaardiging verteenwoordig 

'n uitbreiding op hierdie tegnologie wat die langafstand-voorlegging van 

vervaardigingsopdragte deur 'n kommunikasiemedium, gewoonlik die Internet, 

moontlik maak, waama die model by die betrokke vervaardigingsburo vervaardig kan 

word. 

Die de facto-standaard vir LM is die STL-leer. Eenvoudig gestel, bestaan die leer uit 

'n aantal driehoeke wat gebruik word om 'n objek in sy geheel te beslcryf Hierdie 

leerformaat hou verskeie voordele bo ander bekende formate in en vergemaklik die 

generering van 2D-beelde. 

Ongelukkig weeg die voordele wat die formaat inhou, nie op teen die beperkings 

daarvan nie. Aangesien die game model met behulp van 'n versameling driehoeke 

beskryf word, gaan die model se oorspronklike geometrie verlore. Gevolglik sal 'n 

bepaalde vlak van degradering in die model plaasvind, veral wat krommings betel 

Hoewel 'n vermeerdering in die aantal driehoeke rondom sodanige areas presisie sal 

verbeter, sal dit ook 'n veel groter STL-leer tot gevolg he. 

Driehoeke wat erens binne die leer verlore raak, mag moontlik ook gate, losstaande 

oppervlaktes en mure sonder enige dikte in die geprojekteerde objek tot gevolg he. 

Dit is daarom noodsaaklik dat die vervaardigingsburo die geldigheid van elke leer sal 

verifieer alvorens die model vervaardig word ten einde te voorkom dat masjientyd en 

boumateriaal vermors word. 

In plaas daarvan om die hele leer weer te versend, sou die buro 'n poging kon 

aanwend om minder kritieke foute outomaties te korrigeer en te herstel, waardeur 

kosbare tyd en hulpbronne bespaar sou kon word. 
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1.1 Introduction 

Homo sapiens is the only species on earth with the ability and drive on a large 

scale to model the environment to suit itself We create sculptures, paint 

portraits and compose operas. We also apply our intelligence to more mundane 

matters in our constant endeavour to change, manipulate and improve our 

environment. The dawning of the Information Age, however, forever changed 

the way in which we work such changes. The computer, together with the 

Internet, also rendered obsolete many an old adage, such as "There is nothing 

new under the sun", or "History repeats itself', and heralded a new epoch 

characterised by an information explosion. The present study will be devoted to 

one aspect of the impact this explosion is having on humankind, namely to the 

manner in which information is presented to the end-user today. 

Not so long ago, designers, engineers and architects making use of Computer 

Aided Design (CAD) technology to create a model had to content themselves 

with a flat, two-dimensional (2D) presentation of such model. This limitation 

gave rise to a myriad of errors, however, and not only hampered visualisation 

but also proved to be costly and time-consuming. Rapid Prototyping (RP) or 

Layered Manufacturing (LM) changed all that. Thanks to this relatively new 

technology, a model can now be fabricated before the designer's very eyes, to 

the extent that the model can be held, felt and touched. The number of benefits 

to be derived from this technology is legion and it has already proven 

indispensable to numerous industrial applications [1]. 

Rapid Prototyping (RP) or Layered Manufacturing (LM) constitutes a process in 

terms of which a physical model is created thanks to the ability of a specific 

piece of equipment to receive input from a terminal on which the file describing 

the model in question is stored. Even though many different methods have been 

devised to implement this technology over the past few years, its underlying 

principles have remained unchanged [1]. 
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Telemanufacturing constitutes an extension of this technology that allows 

remote submission of manufacturing jobs or assignments to a company or 

bureau with the required hardware. This technology, therefore, enables 

individuals and small companies to benefit from this process without having to 

acquire any of the expensive hardware involved [2]. 

The model is initially designed on a CAD system, whereupon it is transferred to 

an intermediate format, finally to be sliced and stored in a file format that the 

hardware can interpret. Although the intermediate step can be skipped, many 

bureaux on the Internet have adopted the StereoLithography (STL) file format 

as a primary medium for submitting job requests [1]. 

Unfortunately, such STL files usually are a haven for errors and anomalies, 

especially owing to their notoriously large size. Solving these problems is far 

from a trivial pursuit and special verification routines and geometrical-specific 

compression techniques have to be applied [2]. 

In the light of this, a section of the present study will be devoted to an 

introduction to the Layered Manufacturing and telemanufacturing technologies 

in general. In addition, the STL format and the problems by which it is plagued 

will be discussed in detail. Intelligent detection and correction methods will also 

be investigated and applied to a prototype software program. 

1.2 Chapter organisation 

The dissertation is divided into the following chapters: 

a) Chapter 1: An introduction to STL file correction 

This chapter allows an overview of the technologies to be discussed in the 

dissertation, as well as an overview of the manner in which the study is to be 

organised. 
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b) Chapter 2: The Layered Manufacturing (LM) process 

The Layered Manufacturing (LM) process is discussed in detail in this chapter. 

A closer look is also taken at the various methods by which the said technology 

is implemented, as well as at the many fields in industry that have been 

benefitting from this technology. 

.c) Chapter 3: Making LM available to one and all: telemanufacturing 

Telemanufacturing, that is, the technology that has made Layered 

Manufacturing available to a broader community, comes under discussion in 

this chapter. Here, the emphasis falls on the various methods used to transfer 

the file from the client to the bureau. 

Chapter 4: Transmission errors in telemanufacturing 

This chapter is devoted to the identification of the typical errors that occur 

during the transmission phase, as well as to the various ways in which to solve 

these problems. 

Chapter 5: Security in telemanufacturing 

Security breaches pose a considerable threat to many fields and have also 

cropped up in the telemanufacturing and LM arenas. This chapter is used to 

elaborate on such security issues and on ways in which to address them. 

Chapter 6: The STL file format 

One of the most widely used formats in the industry is that of the STL file. The 

syntax of the format is discussed in this chapter, as well as its pros and cons. 

Chapter 7: Compression in telemanufacturing 

The STL file format discussed in the foregoing chapter is notoriously large, with 

the result that good compression methods are required effectively to compress 

the file. This chapter is used to highlight the elements of the file that could be 

considered when designing or choosing a compression algorithm and to give a 

3 
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few proven methods by means of which to achieve high compression ratios for 

the STL file format. 

Chapter 8: An introduction to error checking and the prototype 

This chapter is devoted to identifying the areas that are vulnerable to attack. It is 

also used to highlight the constraints on the STL format and to introduce the 

prototype developed for the present study, as well as the problem areas this 

prototype addresses. 

Chapter 9: Structural-error checking 

In this chapter, the STL file is defined in Backus-Naur form (BNF) and the 

concept of syntax checking is introduced. 

Chapter 10: Geometrical-error checking 

The vast majority of errors in STL files are still geometrical in nature. In this 

chapter, it is explained how each of the errors identified earlier occurs, as well 

as the possible solutions for them. 

Chapter 11: Checking the file against building constraints 

Layered Manufacturing has been implemented on many different types of 

machines and not all STL files can be processed by a specific device. This 

chapter introduces the areas that pose problems and changes that should be 

wrought to the model to ensure compatibility with a specific type of hardware. 

1) Chapter 12: The prototype: STLComplete 

This chapter is used to elaborate on the prototype and to discuss the algorithms 

used for detecting and fixing common errors in the STL file. The interface of 

the prototype is also discussed, together with the appropriate illustrations. 

m) Chapter 13: Software comparison 

This chapter is used to take a closer look at the software currently available in 

the market. In so doing, a set of parameters is compiled to compare software 

4 
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with and the chapter is concluded with a comparison between software and 

STLComplete, the prototype that came under discussion in the previous chapter. 

n) Chapter 14: Conclusion 

The final chapter is used to formulate a conclusion to the author's findings and a 

hypothesis as to possible future developments in this technology. 

1.3 Summary 

"...prototypes not only enable products to be developed more 

quickly, but also result in products that are both higher quality and 

more effective in fulfilling their intended purpose in the 

marketplace." 

Maintaining the Lead in Manufacturing 

Harvard Business Review 

September-October 1994 

Layered Manufacturing has changed the way in which prototypes are being 

manufactured. Although its associated hardware is still deemed expensive, 

telemanufacturing allows remote submission of files, which endows anyone 

with a credit card and a connection to the Internet with a powerful design tool. 

This growing technology has, in turn, necessitated the verification of submitted 

files in order to avoid the wastage of resources. 

In the next chapter, the various LM technologies will be investigated, as well as 

those fields in the industry that have been benefitting from these technologies. 
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The Layered Manufacturing (LM) process 

2.1 Introduction 

In the engineering field today, which includes disciplines such as mechanical, 

civil and electronic engineering, as well as various other forms of development 

and manufacturing, the construction of a part for some application comprises a 

step-by-step design method, commonly referred to as the "concept-design-

production process" [2]. 

This process, graphically represented in figure 2.1 below, is illustrative of the 

iterative nature of the design process. Information that is constantly being fed 

back to previous steps is used to improve on and adapt each design [2]. 

New 
concept 

Existing 
design 

Figure 2.1: Data flow during the engineering design process [2] 

The costs incurred during each step increase as one moves upward and to the 

right of the diagram. Iterating, though a complete manufacturing process to test 

for part correctness, is an expensive and time-consuming task. Unfortunately, 

the manufacturing of a physical prototype cannot be avoided entirely during the 

design process, at least not for the more complicated models. For this reason, 

methods need to be examined that will render the production of prototypes both 

economical and trustworthy. If the manufacturing of models cannot be avoided, 

improving upon the efficiency with which they can be created will improve 

upon the overall design process [2]. 

6 



The Layered Manufacturing (LM) process 

After a model has been designed, typically on a CAD system, a rough prototype 

needs to be constructed before final production of the model could commence. 

CAD systems today are exceptionally complex and enable developers quickly 

and effectively to design objects. Unfortunately, even the most complex and 

versatile CAD systems are still being dogged by the 2D limitation of computer 

monitors. We live in a 3D world, however, and it is for this reason that physical 

models play a pivotal part in the production cycle [2, 3]. 

To quote Mike Bailey, SDSC Senior Principal Scientist, UCSD Associate 

Professor and head of the TMF Project: "Just about every time people build a 

TMF model, they see something they missed in the computer graphics 

rendering. Computer graphics images and animations and even virtual-reality 

simulations (cannot) convey all the information that real objects do." From this, 

it is evident that physical prototypes play an important part in the design process 

[4]. 

Figure 2.2: Evaluating a design on a CAD/CAM system [1] 

The physical model is especially useful for verification and visual-inspection 

purposes, which processes cannot always be executed in terms of the CAD 

application alone. Should an error be uncovered in the prototype, the designer 
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could correct it on the design and construct a new prototype, repeating the 

process. 

A good prototype not only has to meet certain quality requirements, but it also 

has to do so under strict yet relevant conditions, which include the following: 

Conditions obtaining to a specified margin of error 

It stands to reason that a prototype with inaccurate dimensions will serve little 

or no purpose either for the verification or testing of the model. Although a 

certain margin of error is acceptable, that margin should be so small that 

thorough testing of the model would not be impeded in any way. 

Conditions obtaining to the timeframe for prototype completion 

In most cases of prototyping, it follows as a matter of course that the increased 

accuracy of a model would culminate in an extended production cycle of the 

prototype. If, however, the production time were unreasonably long, the costs 

incurred during the production phase would not be commensurate with the 

effort. 

A strict time constraint on a project may compel the designer to accept the first 

operational model, if the manufacturing process would otherwise be dragged out 

for too long. Keeping the building cycle as short as possible will allow the 

designer to "experiment" until the optimal design be found. 

Restrictions as to production costs 

The total production costs of the prototype should be reasonable. These include 

both the material and labour involved in building the model. Again, an 

inordinately expensive model may result in a product that is far from optimal. 

Manufacturing costs should not only be evaluated from a financial point of 

view, however. Cognisance should also be taken of other aspects such as 

environmental issues. 
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d) Requirements for testing purposes 

All prototypes should be strong enough to allow rigorous testing of their models 

in the final environment. Unfortunately, a stronger prototype usually implies the 

use of more expensive material and more sophisticated hardware and, 

occasionally, even a protracted production time. 

Figure 23: Prototype of a side mirror tested in its final environment [5] 

Figure 2.3 above shows a prototype, in this case a side mirror of a vehicle, being 

tested in its final environment. 

To date, various methods have been suggested and employed to construct these 

prototypes, each with its own pros and cons. Usually, while compensating for 

one constraint, another is neglected to some extent. 

2.2 The new epoch: Layered Manufacturing (LM) 

Layered Manufacturing has heralded an era in which new standards have been 

set for the production of prototypes in the manufacturing industry today. As was 

previously mentioned, most methods fail to meet all the requirements and 

constraints without neglecting one or more requirement to some degree. LM, 

however, strikes a balance between these requirements and allows economical 

and swift production of prototype after prototype. In addition, the LM process 

offers two unique benefits to designers: the ability to fabricate complex models 

that cannot be built by means of traditional techniques and a greater degree of 

automation during the design process [3]. 

9 
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The accuracy of a model depends on the machine used, but is acceptable for 

most applications. Usually, a higher accuracy rating can be attained in exchange 

for a longer manufacturing period, although even the longest production periods 

with LM are still very reasonable, compared to some of the production periods 

generated by means of the traditional methods. 

Another aspect of LM that makes it an attractive alternative is the fact that it 

allows for rigorous testing before a model goes into final production. In terms of 

other, more delicate prototyping methods, testing is greatly hampered, if not 

impossible [1]. 

Although the LM process constitutes a marked improvement on many aspects of 

previous prototyping methods, it also poses new challenges to designers. One 

such challenge is the fact that the mere implementation of a geometrical 

algorithm is incapable of recognising the final purpose of the model. This makes 

it extremely difficult to tailor specific features in the decomposition without 

some form of human intervention. As these difficulties are slowly but surely 

being overcome thanks to continued research, the full potential of this 

technology will, however, be recognised and utilised during the manufacturing 

process [6]. 

In addition, although the hardware enabling the LM process is still relatively 

expensive (at the time of writing), once this asset has been obtained, the actual 

costs incurred in building a prototype will be much lower than when utilising 

conventional methods of part prototyping [1]. 

Although there are many different methods of LM, their basic fabrication 

process remains the same. The model is built layer by layer, starting from the 

bottom up. The width of each of the layers depends on the accuracy rating 

required for the prototype. (Varying layer widths have been suggested for and 

implemented in some applications.) The thicker the layers, the faster the model 

is produced, although very thick layering causes a stair-step effect that generally 

10 
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detracts from the overall accuracy rating. The latter effect is graphically 

illustrated in figure 2.4. 

Largo layer thickness 	Medium layer thickness 	Fine !aye, thickness 

Figure 2.4: Effects of stair-stepping by increased layer thickness [7] 

Before the model can be sliced and finally constructed, an STL file needs to be 

constructed from the original CAD design. An STL file can be defined as a 

collection of vectors describing a series of surface triangles in 3D space [8]. 

Although the simplicity of the STL file format makes it an attractive standard 

for LM, it suffers from a number of serious limitations. STL files are, for 

instance, notorious for having structural flaws. Holes in the object, zero-

thickness walls and orphaned structures are commonplace. The accuracy rating 

of the model can, however, be enhanced by increasing the number of triangles. 

Resizing the model will, on the other hand, detract from its accuracy rating, 

since the object geometry is lost during the creation of the file. Despite these 

limitations, the STL format has become the de facto standard for LM that is 

supported and implemented by most systems [2]. 

Depending on the technology employed to build the actual model, supports may 

be required in the model and such supports are introduced in the model at this 

stage. The orientation of the model plays an important part in the supports 

required in it [1]. 

After the STL file has been generated and after supports have been added and 

checked for any anomalies, the object can be sliced in accordance with the 

thickness of its various layers. The said slice file consists of a collection of 
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closely spaced planes, each with a different z coordinate indicating its position 

within the object [1]. 

A final build file is then constructed, whereupon the process of constructing the 

object can commence. Following, a discussion on the actual layered-

manufacturing methods, highlighting their respective pros and cons. 

a) Stereolithography 

In 1987, a new method of prototyping was devised. Also known as "3D 

printing", stereolithography was the first commercially viable Layered 

Manufacturing technology, which is still widely used today [7]. 

Figure 2.5: The stereolithography process 

The building process is executed in a bath filled with liquid resin and in it a 

platform capable of moving in the z direction. Two types of lasers are generally 

used for stereolithography. Ultraviolet-laser technology is commonly used for 

the smaller applications, whilst a stronger helium-cadmium laser is used for 

larger, more sophisticated systems that require a higher accuracy rating [7]. 

Two mirrors, driven by a pair of galvanometer motors, are used to direct the 

laser spot downward, towards the surface of the liquid photopolymer. After 

having been sufficiently exposed, the liquid will be transformed into a solid 

state. On completion of each layer, the platform is lowered by a high-precision 

stepping motor. Liquid resin then flows over the recently solidified layer. A 

recoater blade or roller ensures that liquid resin to the thickness of exactly one 
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layer be added to the previous layer, and that the latter layer be evenly 

distributed across the entire surface. This new layer is then solidified by laser 

exposure again. This process is repeated until the entire model has been 

constructed from bottom to top [7]. 

The process of constructing a model in this fashion is known as "hatching". A 

big drawback of stereolithography, however, is the fact that the models are 

subject to distortion in the form of shrinkage that occurs non-uniformly 

throughout the models. Fortunately, thanks to improved photopolymer 

compositions, computer software and laser technology, this part-distortion 

phenomenon has been greatly diminished, thereby improving the overall part 

accuracy rating [7, 8]. 

On completion of the model, the platform is elevated, revealing it in its finished 

form. After the excess liquid has been drained back into the vat, the supports 

that have been added to the design to facilitate the actual building of the model 

can be carefully removed. Care must, nonetheless, be taken not to damage the 

model whilst removing its support structures [7]. 

Finally, the model is placed in a Post-Cure Apparatus (PCA), where it is 

exposed to ultraviolet light of a certain wavelength. This step is taken to ensure 

that the model achieve optimal strength [7]. 

b) Fused Deposit Modeling (FDM) 

Developed by Stratasys Inc., Fused Deposit Modeling (or "FDM", for short) can 

be defined as that process in terms of which a thermoplastic material is heated to 

just above melting point. A nozzle is fed from a spool of thermoplastic material. 

Various types of material are available and can all be used on the same machine. 

Switching between materials can also be accomplished easily and quickly [8]. 

The melted substance is then extruded from the nozzle in the form of a thin 

ribbon. The melted plastic is deposited onto the previously built layer in this 
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form. The layer on which the new layer is constructed must, however, be 

maintained at a temperature just below that of solidification to ensure proper 

bonding. The nozzle is kept at a required distance by a computer-controlled 

platform that is moved in a downward direction as the layers are constructed [7]. 

Nozzle 

S Build substrate 

I Building 

Figure 2.6: The Fused Deposit Modeling (FDM) process 

The thickness of the layers is determined by the physical properties of the 

thermoplastic material used, the speed of the delivery head, the pressure with 

which the material is released and the diameter of the nozzle point from where 

the material is released. The overall precision of the model is greatly dependent 

on how closely the temperature of both the deposited material and the last layer 

is maintained. Model distortion in the form of rippling or, in the worst-case 

scenario, model collapse may occur if the temperature were to vary from the 

designated temperature. The nozzle should also never be allowed to become 

stationary above any given portion of the model. The high temperature at which 

the nozzle is operated will result in non-standard imperfections once the part has 

been completed [7]. 

FDM requires no high-powered laser technology, thus obviating the safety 

precautions associated with laser equipment. The material used for FDM, 

namely spools of plastic filament, has little or no environmental impact and 

does not require any handling or safety precautions. If the nozzle were 

sufficiently shielded, the elevated temperatures of both hardware and building 

material would hardly pose any risk. This makes it an ideal technology in 

scenarios where safety is at a premium [7]. 
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c) Laminated Object Manufacturing (LOM) 

This process was initially developed by Helisys Inc. As the name implies, 

Laminated Object Manufacturing (LOM) produces physical objects by the 

layering of thin sheet material. The material is typically supplied from a set of 

supply spools on either side of the evolving object. Each layer is joined to the 

previous layer by an adhesive that is both temperature and pressure sensitive. A 

roller, which is heated, ensures that the new layer adheres to the last by applying 

pressure from the top, thereby activating the adhesive [7]. 

00  Completed 
Roller 
	layers 	Roller 

Figure 2.7: The Laminated Object Manufacturing (LOM) process 

After the new layer has been applied, a carbon-dioxide laser traces the border, 

as specified by the build file. The laser beam renders each consecutive layer in 

this manner until the model is complete. The working platform is capable of 

moving in a vertical direction, which allows the laser to trace a layer at exactly 

the same height as that of the previous layer. The depth and width of the cut 

depend on the laser power, scan speed and physical properties of the laminated 

material used. The overall part accuracy rating is determined by the precision 

with which these parameters are controlled. If the finite width of the laser beam 

were ignored, the model would exhibit a small yet systematic flaw in each 

cross-section [7]. 

Because the entire model is submerged in a surrounding block of wasted 

material, no supports need to be constructed to keep the object from collapsing. 

Unfortunately, this has been known to waste a lot of material, which could 
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rather have been used to create a second or even a third model. Furthermore, to 

facilitate the removal of waste material, each consecutive layer needs to be 

diced, which takes up a lot of building time. Although the removal of waste 

material around large, solid parts generally poses no problems, special care 

should be taken to ensure that no part be damaged when material is removed 

near delicate and fragile sections of the model [7]. 

An attractive advantage of LOM is the fact that only the borders of each cross-

section of the model need to be traced. This certainly saves a lot of time during 

the actual building process, which, in turn, justifies the dicing process that the 

prototype must undergo [7]. 

Although the laser can cut vertically through the sheet paper, cutting 

horizontally along two adjacent layers is not possible. Surfaces facing up or 

down will, therefore, still be connected to the adjacent layer, which may hamper 

the successful removal of waste material near that section. The integrity of the 

adjacent excess material could be compromised by cutting a closely spaced, 

crosshatch pattern that will facilitate the removal of such material [7]. 

A model produced by means of the LOM method will, in texture, smell and 

physical properties, resemble a model made of wood. Although LOM is a 

relatively inexpensive RP technology, special precautions must be taken to 

shield the invisible yet powerful and certainly dangerous laser beam used in 

LOM part building [7]. 

d) Selective Laser Sintering (SLS) 

This process, which was developed at the University of Texas, produces RP 

parts in a similar fashion as stereolithography, but makes use of a fine powder, 

rather than a liquid resin. Using a counter-rotating roller, a thin layer of fine 

particles is spread evenly over the evolving object. A high-powered 50 watt 

carbon-dioxide laser is then used to fuse these particles together. In order to 
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minimise the laser output, the bed of powder is maintained at a constant 

temperature just below its fusing point. 

The tray containing the incomplete object is constantly moved in a downward 

direction on a computer-controlled table to ensure that each layer be built at 

exactly the same height as that of the previous layer. In order to avoid oxygen 

contamination of the bonding surfaces, the building process is performed in an 

environmentally controlled chamber with an oxygen content of less than 2% [7]. 

I Laser 

Figure 2.8: The Selective Laser Sintering (SLS) process 

Unfortunately, the volumetric shrinkage for crystalline materials is quite 

considerable, which usually results in distortion of the part and imprecise 

dimensions of the finished model. The model is built in a raster fashion, 

resulting in a stair-step effect when constructing diagonal lines. A fine enough 

resolution will, however, modify this effect to an acceptable level. Furthermore, 

the discontinuous nature of the particles used will result in a rough finish, which 

may need finishing off once the part has been completed. Unfortunately, this 

will compromise the accuracy rating of the part to some extent [7]. 

The left-over unfused particles serve as a natural support structure for the part, 

even though anchor points may still be required for orphaned structures, which 

will be attached to the model in subsequent layers. On completion of the model, 

the left-over powder is removed with various brushes, cutting tools and low-

pressure air. A wide range of materials can be used successfully as curing 
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material in SLS, which, in turn, makes for implementation in a much wider field 

than other RP technologies [7]. 

A wide range of materials (including metals) can be used during the SLS 

process, making it a choice method for future research [8]. 

2.3 Applications for LM 

Following, a few examples of fields in the manufacturing industry that have 

been benefitting from this evolving technology. 

2.3.1 Molecular science 

LM can be applied at atomic level, thus allowing researchers to build complex 

molecular models. This is especially useful for visualisation purposes and for a 

thorough understanding of the nature of atoms and molecules. 

Shown in figure 2.9 below is a 3D hardcopy of the light-harvesting system, 

produced by LM technology. The model was painted by hand on completion 

[9 ]. 

Figure 2.9: The light-harvesting system, LH-II [9] 
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2.3.2 Engineering 

LM has made a huge impact on the engineering field, literally redefining the 

production process. Since prototyping of an incomplete model has now become 

much easier, verification has become more accurate and cost-effective. 

Figure 2.10 presents just such an example. It depicts a gear system produced by 

means of LM equipment. The designer can now touch and move the various 

parts to get a better idea of the feasibility of the model [9]. 

Figure 2.10: A functional gear prototype [9] 

2.3.3 Earth sciences 

When a satellite takes pictures of the earth, elevations at certain heights are 

depicted by various colours. These coloured images can, in turn, be converted 

by computer software into 3D objects and built by LM machines. Representing 

a region in this manner will allow geologists to conduct unique experiments and 

to visualise the geological dynamics with greater clarity [9]. 

Figure 2.11 shows a scaled-down elevation map of the earth. The African 

continent can easily be distinguished in the centre of the image. 
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Figure 2.11: Earth as an LM model [9] 

2.3.4 Mathematics and physics 

LM can be used to visualise natural occurrences and mathematical functions 

that have traditionally been restricted to paper. Figure 2.12 shows the 

interference that occurs when two sinus waves are generated at a certain 

distance from each other [9]: 

Figure 2.12: Interference between sinus waves [9] 

2.3.5 Visualising complex occurrences 

Many events in nature are difficult or even impossible to visualise. A case in 

point is the flow of a liquid. In addition to quantities such as density, pressure 

and vorticity, which have only magnitude, a vector quantity such as velocity, 

which has both magnitude and direction, should also be represented. This model 

was traditionally visualised as a flat, 2D representation, with height indicating 

speed and colour indicating direction. 
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Figure 2.13: The 2D representation of the fluid-flow model [9] 

Recently, at the American Institute of Aeronautics and Astronautics, a method 

was investigated for visualising the selfsame concept as a 3D model, thereby 

moving away from the 2D representation. Figures 2.13 and 2.14 depict what 

happened when the 2D image was represented as a 3D model. Adding colour to 

the model will enhance its representation even further [4]. 

Figure 2.14: The 3D representation of the fluid-flow model [9] 

2.4 Problems and issues to be addressed 

Every new RP technology seems to rectify one or more shortcoming in its older 

version or versions, even though such new RP technologies oft-times create a 

brand-new set of problems, some of which are directly linked to the production 

of the new part, whilst still others can be traced back to the input file that was 

used during the manufacturing of the model. If a problematic input file were 

used that were fraught with errors, valuable resources would be lost, since the 

production would yield no more than an expensive piece of junk [1]. 
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For this reason, the next few chapters will be devoted to a closer look at the 

aspects involved in checking for errors before embarking on the actual 

construction of the part. Emphasis will, for the purposes of the said 

investigation, fall on the verification and checking of the file. 

2.5 Summary 

Layered Manufacturing can be defined as that process in terms of which a 

model is created from a CAD model by a layering process. LM allows 

reasonably quick prototyping and constitutes a vast improvement on previous 

techniques. It allows enhanced automation of the entire design process and the 

construction of parts that could previously not be readily fabricated. 

It also became evident from this chapter that a prototype is key to the design 

phase and that it has to be both economical and accurate. In the light of the wide 

variety of methods used in telemanufacturing and the unique features of each 

method, it is vital, too, to select the right hardware for the task at hand. 

Following, a discussion on telemanufacturing as a means of making the LM 

technology available to a much wider audience. 
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3.1 Introduction 

Even though the actual production of prototypes by means of the LM 

technology may be much cheaper than by means of conventional methods, the 

hardware associated with the former technology still is expensive and out of 

reach for most. As with the very first computer systems, a qualified technician is 

needed to operate the LM system, which adds to maintenance costs even further 

[7]. For this reason, companies that can afford such machines and qualified 

personnel may decide to sell machine time in order to have their investment 

yield as big a profit as possible. 

Telemanufacturing has paved the way for an even wider audience to benefit 

from the LM technology, and not only those fortunate enough to live in close 

proximity of an LM bureau [10]. Thanks to telemanufacturing, companies and 

individuals can now send a file that describes the part, together with their 

instructions, to a site where it can be constructed according to their 

specifications. Telemanufacturing is a growing technology that greatly aids the 

manufacturing process [11]. 

Following, a graphic representation of the telemanufacturing process: 

Testing 	Building of 
Security 	of file 	model 
protecting 

r 	system 
The Internet 

	4 

Figure 3.1: The telemanufacturing process 

3.2 Getting it there 

A wide range of technologies is available today by means of which to send a file 

to the manufacturing bureau. On receipt of such file, it must be checked for 

damage that might have occurred during the transmission process, especially as 
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some methods are more susceptible to errors than others. Following, an 

overview of the available technologies [10]. 

3.2.1 In person 

The simplest, surest way of getting a file to the LM bureau is, of course, to 

deliver it in person. This entails saving the file on CD-ROM, a floppy disk or 

some other medium and taking it to the bureau. The instructions for building the 

prototype can be attached as a written request. 

An advantage of taking the file to the bureau in person is that no complex 

verification methods are required to prove one's identity. This is, of course, a 

major concern when submitting the file by any other means. 

A great drawback of this method, however, is distance. If a bureau were too far 

from one's physical location, taking the file in person would waste money and 

time. In addition, since there are so many different types of LM technologies in 

use, one has to ensure that the technology implemented to create the model will 

be suited to the task at hand. It is also very important to note that not all 

technologies will be able to create a model from a specific source. Some 

hardware requires supports or a specific orientation, for example, an STL file 

that has been prepared for an LOM device will not suffice for production on a 

stereolithography machine. This issue will be addressed in more detail later on 

in the dissertation [10]. 

3.2.2 The postal service 

Despite all the advances in our hi-tech world, certain so-called "outdated" 

services are still very much in demand and, in some cases, even preferable to 

newer services. The postal service is one such service, as it can be used 

physically to transfer a file to a site. This method, however, is considered 

extremely slow in computer terms and is not always reliable. A local courier 

service may also be used, which would add to the reliability of the process and 

to the speed at which the file is delivered, albeit at a higher cost. In situations 
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where a connection to the Internet is unavailable, however, the postal (or 

courier) service may well be the only solution [10]. 

When sending the production file, exercising the above option may not be the 

best choice, but it would most likely be the only choice when the finished model 

has to be shipped back to the client (if not collected in person). A courier service 

will most probably be best suited to this task. 

3.2.3 Electronic mail (E-mail) 

Electronic mail has become an everyday service and, therefore, also a well-

known and widely used medium for sending files to the LM bureau. The textual 

part of the E-mail message will contain the client's instructions, while the 

production file will be added to the mail message in the form of an attachment. 

Unfortunately, E-mail messages pose a few problems, as their attachments may 

be damaged, especially if an attachment were rather large (which, in the case of 

STL files, they usually are). E-mail employs a message-switching protocol; that 

is, the message is stored at every node while the logic searches for the next node 

before the message is passed on. The message will, therefore, get lost or be 

severely damaged if some node were to store the message unsuccessfully owing 

to defective hardware or insufficient storage space [12]. 

Another problem with E-mail is that it is not practically possible to verify that 

the message has been successfully delivered. Although the receiver will often 

send acknowledgements, one could never be sure that it would be sent at all. 

Making sure that the E-mail message did indeed arrive successfully, one may be 

obliged to make a telephone call to the institution (thereby, in some cases, 

requiring an expensive international call). 

Despite this, however, electronic mail still is a popular and widely used method 

for transferring files to LM bureaux. Thanks to the greater reliability of current 

Internet technology in general, problems involving E-mail have been steadily 
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overcome over the past couple of years, to the extent that it can now be regarded 

as a safe, convenient and affordable means of transferring files across very long 

distances [12]. 

3.2.4 File Transfer Protocol (FTP) 

A marginally better means of transferring files over the Internet may be the 

well-known File Transfer Protocol (or "FTP", for short), a protocol that was 

specifically developed for the transmission of files over the Internet (which 

makes it an attractive way reliably to send files). 

Unfortunately, this is all it is: a file transfer protocol. No other latent functions 

have been included, which means that, after having submitted a job for 

production, the client has to inform the bureau by some other means of 

communication that a job has been submitted [10]. 

Although one could use a special program continuously to monitor the file 

server for newly submitted jobs, this is not always practical. Another solution 

may be to use the FTP in conjunction with E-mail, thus harnessing the best 

aspects of both technologies. The overhead costs incurred on both client and 

server sides may, however, not justify the effort. 

3.2.5 The World Wide Web (WWW) 

The World Wide Web constitutes a collection of uniquely identifiable file 

servers that hosts and provides documents (typically HTML) to the world. 

Thanks to the development of better Web browsers, CGI, Java and other 

technologies have also found their way into the information arena [12]. This 

added functionality has helped to make job submission over the WWW a reality 

for LM bureaux [10]. 

A great number of businesses are already deriving huge benefits from 

technologies such as these by allowing clients to send a job in its entirety via a 

Web browser, together with their instructions. Most technologies associated 
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with the WWW have since become de facto standards, thus facilitating 

compatibility between the various systems. 

Error checking, encryption and visualisation can also be included, depending on 

the complexity of the Web site. Given these advantages, it is evident that (at 

least at the time of writing) the WWW constitutes the best and most preferred 

means by which to submit jobs over the Internet, and that it is the technology 

most widely used by vendors [10, 11]. 

3.3 Summary 

Telemanufacturing is the key with which to unlock the wonders of LM 

technology to the whole world. Delivering the file to the vendor, however, is the 

most difficult task and careful consideration is required to ensure that the file be 

transmitted securely and that it would not be damaged or lost in transit. Some of 

the methods that could be used to deliver the job to the bureau include 

delivering it in person 

using the postal service 

making use of E-mail messages 

employing the File Transfer Protocol (FTP) 

sending it from a Web page on the World Wide Web (WWW). 

Important issues such as file integrity and security, as well as the speed and 

availability of the technology to be used for transmission, need to be considered 

before the file is submitted. Each of the technologies discussed in this chapter 

has its own strengths and weaknesses and the most appropriate one must, 

therefore, be chosen for each specific application. 

The next chapter will be devoted to a discussion on the most common errors to 

manifest during transmission, as well as ways in which either to prevent or 

remedy them. 
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4.1 Introduction 

Telemanufacturing has paved the way for smaller companies and individuals to 

benefit from the LM process. Unfortunately, however, the difficulties 

associated with the transmission of files over the Internet, as well as the 

security risks involved in doing so, have also become part and parcel of 

telemanufacturing. This chapter will, therefore, be devoted to a discussion on 

these errors and the problems they create. 

When a file is transmitted from its source to its destination over the Internet, it 

passes through numerous servers, each possibly running a different operating 

system than that from which the file originated. The file is also sent through 

various media, each susceptible to different kinds of interference and specific 

weaknesses that might compromise the integrity of the information contained in 

the transmitted file [12]. 

For this reason, each file has to be verified for possible errors created in transit 

as soon as it arrives at the LM bureau. Another important factor that will 

receive our attention later is that of security. The number of people that 

witnesses the transmission request also poses a serious security risk. In today's 

competitive world, watertight security is vital [10]. 

Generally, the following types of errors could occur and must, therefore, be 

weeded out on reception of the transmitted file: 

The file was only partially transmitted. 

The file content was altered during the transmission. 

The file does not comply with the agreed file format. 

The file was transmitted via an incorrect protocol or an incompatible 

system. 

The file was lost in transit. 
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The Internet currently utilises the Transmission Control Protocol and Internet 

Protocol (TCP/IP) protocol suite to transmit information from source to 

destination. Even though these protocols do not form part of the Open System 

Interconnect (OSI) model, they do correspond to layers 4 and 3 of the said 

model respectively. These protocols, therefore, form part of a suite of protocols 

that is mainly used to effect communication between remote stations over the 

Internet. The Simple Mail Transfer Protocol (SMTP) defines the protocol used 

to effect correspondence via E-mail over the Internet, while the File Transfer 

Protocol (FTP) defines a protocol used for the transmission of files. Following, 

a discussion on the errors that could occur during data transmission whilst 

utilising these protocols [12]. 

4.2 Partial transmission 

All information transmitted over the Internet is sent by way of packets. If the 

data set that needs to be sent were too large to fit into a single packet, it would 

be divided into multiple packets before transmission. When all the packets have 

successfully arrived at the recipient, they can be concatenated to reconstruct the 

original information. A file describing a part to be built on an LM machine is 

usually several megabytes in size and will, therefore, be divided into several 

packets to enable its transmission. 

It may, however, still be possible for an LM system to process an incomplete 

file and to commence building the model that it describes. Should this be done, 

valuable resources would be lost, since the model would be incomplete and 

useless. Not much can be done to ensure that a file arrive at its destination in its 

entirety, but by careful examination thereof the building of a model from an 

incomplete input file can be avoided [10]. 

A simple method by which to correct this error is to add the actual size of the 

file at the beginning thereof. After the file has been reconstructed from the 

various packets, the actual size of the received file can be compared to the size 

stored in the header of the file. Should the two sizes fail to correspond, an error 
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has occurred and the file has not been transmitted in its entirety. Since this 

method merely checks for the partial transmission of files, it is seldom used. 

In most cases, a Cyclic Redundancy Check (CRC) checksum is used for this 

task. CRC is based on polynomial division and is both reliable and effective. A 

CRC checksum is calculated and added in the header before the file is sent. At 

the destination, the CRC is recalculated and compared to the checksum stored 

in the header. If the two values were to correspond, the file was sent 

successfully. A CRC checksum will also validate the integrity of the data, with 

the result that, strictly speaking, CRC is an overkill if only the size of the file 

were of any concern. Thanks to its simplicity and high accuracy rating, 

however, it is a widely used safety mechanism [12]. 

Should it be detected, however, that a file was transmitted only partially, it 

should either be requested again in full or transmission should resume at the 

point where it was terminated. Sending the entire file again is often not 

necessary, especially if only a small percentage of the file has not been 

delivered. 

Fortunately, many Internet servers now support "resuming on downloads", 

which strategy could potentially save a lot of time if fully utilised. Software 

such as "Getright" by Headlight Software enables users to download a specific 

file in multiple sessions, supporting both HTTP and FTP. A future version of 

the software is expected to include an option in terms of which uploading a file 

can also be split into multiple sessions. This feature will, under certain 

conditions, serve dramatically to improve the submitting speed of files [13]. 

4.3 Alteration of file contents 

During transmission, the contents of a file could, either accidentally or 

deliberately, be altered by malfunctioning hardware or by outside interference. 

A CRC checksum (as described above) is one of the best and most widely used 
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methods to check whether the contents of a file has been tampered with for any 

reason [12]. 

Fortunately, the integrity of data sent is effectively dealt with by the underlying 

TCP/IP. The TCP packet format contains a checksum in the header that is 

calculated and recalculated for every packet sent. Unfortunately, however, this 

only applies to individual packets and not to an entire file. Subsequently, the 

TCP/IP cannot be trusted to detect files that have only been partially 

transmitted. For this reason, a header containing at least a CRC checksum 

and/or the size of the entire file should be added in order to check the file, both 

for integrity and for full transmission [12]. 

4.4 Non-compliance with the agreed file format 

Various file formats have been suggested for LM technology, many of which 

are in use currently. Although the STL file format (at the time of writing) is the 

format most widely used by vendors, it may well be replaced by an improved 

format, owing to its many disadvantages [14]. 

Before the file is finally submitted to the LM machine, it must be verified that 

the file has not only been correctly and completely received, but that it is in the 

correct format too. If the file were found not to be in the correct format, it must 

either be submitted again or converted into the correct format, on condition, 

naturally, that the bureau be equipped with the necessary software to do so. The 

said conversion must also be effected in such a way so as not to affect the size, 

accuracy rating or form of the model in any way. The following will help to 

define this idea more precisely: 

Let F 1  be a function to convert a file from format A to format B and F2 a 

function that will convert a file from format B to format A. If X were some file 

in format A, then: 
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F2(F1(X)) = X must be true for all instances of X, for the file converter to be 

acceptable. 

This is not always possible, however, since a specific format A may not 

necessarily contain all the information that a format B may contain. In such 

cases, information will inevitably be lost during conversion, whilst reverting to 

the original format may either be very difficult or impossible. 

This conversion between various file formats and the problems associated with 

this exercise can, however, be avoided by agreeing with the bureau on a 

suitable file format before transmission. Errors may, unfortunately, still crop up 

if the user were to utilise error-prone conversion software, which constitutes yet 

another reason to verify the integrity of a file during the building process. 

4.5 Incorrect protocol or incompatible systems 

The protocols used by the sender and the recipient must either be the same or 

they must be compatible, failing which the file would not be transmitted 

correctly. If the Internet were used as underlying protocol, such contingencies 

would be catered for, but if a direct link were to be established between the 

source and the destination, the protocol must be agreed on and adhered to. 

Another cause for file damage would be when a file is transmitted between two 

incompatible systems. An example of this type of error is when a binary STL 

file is sent from a UNIX-based machine that is set up for ASCII transmissions, 

instead of the BINARY format. The file would, as a result, be irreversibly 

scrambled [17]. 

STL files (especially the ASCII standard) are particularly large and 

cumbersome and compression techniques are often used to convert the files into 

smaller equivalents. Care must be taken, however, to use a standardised and 

compatible compression technique in order to enable the recipient to extract the 

original file. This is especially important if the operating systems between the 
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two systems were to differ. Compression techniques specifically developed for 

geometry-based files have been announced recently. These algorithms can 

potentially compress an STL file to a fraction of its original size [15, 16]. 

Once again, a CRC checksum is the most effective and preferred method by 

means of which to ensure that a file has been received successfully. Should the 

file be altered owing to an incompatible system or protocol during the 

transmission, the CRC would also be scrambled and the comparison would fail. 

Should this be the case, such file would have to be transmitted again [12]. 

4.6 Loss of file during transmission 

Depending on the protocol used, the file can either be sent as a complete unit or 

it can be sub-divided into packets before being sent. On occasion, however, the 

file may not be delivered at all, with the result that means for verifying if the 

file had been delivered successfully or not need to be implemented. 

If the file were only partially delivered or if fragments of it were lost (as in 4.2), 

the error(s) would be easy to uncover once the CRC checksum has been 

examined. The sender, however, needs to verify if the LM bureau had received 

the file, albeit only in part. The possibility does exist that the address of or the 

path to the bureau may be faulty and that, for this reason, the sender needs to 

determine if the file had been received. 

The best way to achieve this is for the bureau to reply to the sender in the form 

of an E-mail message to confirm the delivery and successful extraction of the 

file and its accompanying instructions. Unfortunately, there is no way of 

knowing whether or not the bureau will reply, unless one makes a direct 

inquiry, which could be expensive and time-consuming, depending on the 

circumstances. 
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4.7 Summary 

Transmission of files occurs over the Internet with dizzying frequency and 

since STL files are relatively large, they are susceptible to a whole range of 

errors. It is important, therefore, to ensure that the file be correctly transmitted 

to avoid the bureau from building a model fraught with errors. 

Another important issue in telemanufacturing is that of security. It is not 

enough for a file merely to be transmitted error-free, it must also be sent in such 

a way that its contents remains intact and undisclosed to all but the interested 

parties. Security is also vital if payment were to be effected electronically. The 

next chapter will, therefore, be devoted to a detailed discussion on the issue of 

security. 
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5.1 Introduction 

The question that springs to mind here is whether or not security in 

telemanufacturing really is an important issue. In today's world, where 

industrial espionage and sabotage are frequent and costly occurrences, it most 

certainly is. Competition amongst companies is exceptionally fierce and, should 

one party gain access to another's designs (even if they were unfinished), it 

would have devastating effects on the overall success of the resultant product. 

The latter party would gain an unfair advantage and would save much money, 

effort and time if it could gain access to the competition's designs. It is, 

therefore, imperative that communication between stations remain safe and 

secure and that effective security be maintained at LM bureaux too [10]. 

Mother important factor is that of payment. LM bureaux need to be paid for 

services rendered and if the bureau and the client were great distances apart, this 

could become a thorny problem. In cases like these, it might be better to employ 

an electronic-payment method over the Internet. Thanks to continued research 

in the field of electronic commerce, this method can now be considered a 

feasible and efficient way of paying for services rendered. 

5.2 Safeguarding during transmission 

A reliable security system hinges upon five pillars that function individually in 

order collectively to make up the security system. If any of these pillars were to 

be flawed in any way, the system would have a security hole, regardless of how 

well the other pillars had been implemented. These pillars could, therefore, also 

be seen as a chain, in terms of which the trustworthiness of the entire security 

system would be equivalent to its weakest link. The five pillars of information 

security are as follows [18]: 

User identification and authentication. 	• Data integrity. 

Authorisation or logical access control. 	• Non-denial. 

Confidentiality of information. 
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As noted, these pillars also support one another in a logical sequence, a process 

to which the remainder of this chapter will be devoted. 

5.2.1 User identification and authentication 

A proper security system will always be able to determine exactly who is 

accessing the system at any given moment. This is vital for the following 

reasons [18]: 

To ensure that only certified users could access the system. 

Successfully to enforce logical access control. 

To enforce accountability or non-denial. 

Depending on the manner in which the LM bureau renders its services, user 

identification and authentication will be affected to various degrees. Some 

bureaux operate in a closed environment, in terms of which only users that have 

been duly registered are allowed to access the system. In such cases, the system 

must be able correctly to identify each prospective user and to verify that such 

user is, in fact, who he/she claims to be [19]. 

A popular means by which to effect such identification and authentication is to 

request that the user type in his/her user name on the terminal (commonly a 

Web browser). The system will then check whether or not such user actually 

exist. If the user's name were not found on the database, login would be denied 

forthwith. If, however, the user's name were found, the system could 

authenticate if the user in question were indeed who he/she claimed to be. This 

is generally done with a password, which is known only to the legal party. Only 

if the password were to match the password on file would access be granted to 

the system, whereupon the user could proceed. The selfsame process is usually 

effected in one step over the Internet in a bid to minimise the packets sent 

between stations and to tighten security. The information thus sent between the 

systems must also be encrypted effectively to ensure that no third party would 

become privy to the user's login name and password. 
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Security in telemanufacturing 

In a situation where a first-time user is requesting access to a system, as so often 

occurs in the realm of electronic commerce, the user will, naturally, not be 

registered. In order to account for such transaction (to furnish proof that the 

transaction did indeed take place), alternative steps must be taken. 

5.2.2 Authorisation or logical access control 

Access control constitutes a key aspect of the endeavour to ensure that only 

select users be allowed to perform certain functions on a system. After a user 

has been identified by the system, only those functions the particular user is 

allowed to perform must be made available to him/her. Access control is key to 

telemanufacturing for various reasons, including [18] 

the safeguarding of existing files in the queue from industrial espionage 

measures to prevent a system from building a model from a file that has 

been compromised in any way 

the ability to prevent users from erasing files (be it intentionally or 

unintentionally) 

the ability to screen technicians for the right to access the files. 
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Various models have been propounded and implemented to deal with the ever-

greater security demands for access control and security, of which the following 

four models are most widely used: 

Monitor Model 

The Monitor Model constitutes one of the most basic authorisation models. The 

monitor is always online and validates each attempt at gaining access made 

between a subject (a user or computer program) and an object (an STL file or 

another program). The monitor, therefore, acts as a gateway between the 

subjects and the objects in the system. 

The Monitor Model could, however, create a serious bottleneck in a system, 

since each and every attempt at gaining access has to be authorised by the 

monitor first. Despite this possible drawback, the Monitor Model is relatively 

easy to implement and maintain [18]. 

Information Flow Model 

The Information Flow Model was propounded as an improvement on the 

Monitor Model, thanks to its ability to coordinate the flow of information 

between any two objects. The Information Flow Model acts as a filter that 

checks for both direct and indirect attempts at gaining access to information. 

An example of such indirect attempt would be when a subject gains 

unauthorised access to a third object through legal access to a second object, on 

the assumption that the second object has access to the third. This is a trapdoor 

in the Monitor Model through which access could be gained to critical 

information [18]. 

Military Security Model 

This model is based on the principle of least privilege, in terms of which a user 

is allowed access only to whatever information is required to perform a certain 

function. 
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The Military Model is based on a hierarchical system in terms of which every 

snippet of information is categorised according to its sensitivity and level of 

confidentiality. Four security levels are typically used, namely Public, 

Confidential, Secret and Top Secret. Each object is also catalogued into a 

specific compartment that assumes responsibility for and ownership of the 

information in question [18]. 

A subject is granted access to an object if and only if the 

security class of the subject is equivalent to or higher than that of the object 

compartment of the object is a subset of that which the subject has access to. 

d) Bell and Lapadula Model 

The Bell and Lapadula Model is the most popular model in the security industry 

today and shares many features with the Military Model, especially as both 

models make use of a hierarchical classification for subjects and objects. 

Each subject and object is tagged or labelled according to its security clearance 

and sensitivity. As with the Military Model, multiple levels of security are 

defined and implemented, whilst the number of security levels varies, depending 

on the granularity required by the implementation [11]. 

Any environment can be described in terms of a set of objects and subjects. 

Suppose, for example, that Charles is the head engineer at an LM bureau, with 

Peter and Sally as his assistants. The bureau boasts an LOM machine and a 

stereolithography machine, as well as a file server that contains all the files (in 

some common format, such as STL) to be built by the latter machines. The sets 

of subjects and objects may comprise the following: 

S = (Charles, Peter, Sally, Client). 

0 = (LOM machine, stereolithography machine, file server). 
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Every element of the subject set S must then be labelled to indicate the level of 

security to which the subject has access. Similarly, every element in the object 

set 0 must be labelled to indicate the level of security required for that specific 

object [18]. 

Access to an object is determined after having compared the tag of the subject 

with that of the object. Let C(X) be a function that returns the security level or 

clearance of X, where X is a subject or an object. It can safely be assumed, 

therefore, that if C(X) > C(Y), then the security level/clearance of X would be 

higher than that of Y (for example, X is Secret, whilst Y is merely 

Confidential). 

A subject Si has write access to object Oj  iff C(Si) C(0) (this is known as the 

"star property") and read access to an object iff C(Si) .? C(0j). The latter 

prevents sensitive information from leaking through to lower levels when high-

clearance subjects write critical information to lower-security level objects [18]. 

5.2.3 Confidentiality of information 

Protecting the confidentiality of an object means that only authorised subjects 

would gain access to that object. This is especially important in 

telemanufacturing, where industrial espionage poses a very real threat. The 

confidentiality of both data in storage and of data in transit must, therefore, be 

maintained at all times [18]. 

Scrambling the original data in such a way that only the authorised party could 

extract it generally enforces the confidentiality of the data. The scrambled data 

is (albeit only in theory) completely worthless to any third party. The processes 

of scrambling and unscrambling data are referred to as "encryption" and 

"decryption" respectively [12]. 

Two types of encryption are generally used, namely symmetrical and 

asymmetrical encryption. The latter is more often used to enforce non-denial 
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and will be discussed later. Symmetrical encryption, on the other hand, is used 

to enforce data confidentiality and will be examined next. 

Keyless symmetrical encryption: a specific algorithm is shared between 

the parties and any secret information is encrypted using this algorithm. 

Usually, the same algorithm is used for encryption and decryption, but 

different algorithms (referred to as an "algorithm pair") can also be used. 

The algorithm used is unique and must remain concealed in order to ensure 

confidentiality [18, 12]. 

Key-based symmetrical encryption: this encryption method is similar to 

that of keyless encryption, except that a secret key accompanies the data and 

the algorithm. In order to decode the scrambled message, the party must be 

privy to the key, as well as to the decryption algorithm [18, 12]. 

Encrypted messages, however, still are vulnerable to attack. A third party could 

still intercept the message and, by choosing a random key, attempt to obtain the 

original data. Although exhaustive, this search method poses a very real threat 

to data security. 

The longer the encryption key, the harder it would be to break the code. The 

rapid development in computer hardware over the past few years has also served 

greatly to complicate matters. Fortunately, the relationship between key size and 

key space is exponential and by merely increasing the key size by one character 

or digit, the key space is doubled. 

Mother problem associated with symmetrical encryption is the distribution of 

the secret key to authorised parties. Fortunately, asymmetrical encryption 

completely skirts this problem, which accounts for its being implemented more 

often [12]. 
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5.2.4 Data integrity 

Enforcing confidentiality is not enough to safeguard data in all circumstances. 

Although encryption will prevent unauthorised parties from gaining access to 

the real contents of the data, a determined hacker might still be able to alter or 

compromise the contents of the message. Data integrity will, therefore, 

guarantee that the submitted file is in its original form when the authorised party 

receives it [18]. 

It is vital in telemanufacturing to ensure that an undesirable party could not 

change the file in transit. Although the data remains confidential, valuable time 

might be lost if the contents of a file were to be changed. The LM hardware 

might even commence building the erroneous file, resulting in a useless 

prototype. It is crucial, therefore, to enforce data integrity and thus prevent 

industrial sabotage. 

An authenticator scheme is usually applied to the encrypted message, which will 

prove that the message is authentic and that it has remained unchanged during 

the transmission process. The process is effected as follows: 

The original message M is first scrambled, using the encryption algorithm EK 

(with/without a secret key), which will yield an encrypted message E K(M). The 

encrypted message is authenticated with C, the authentication scheme. 

C(E K(M)) is obtained and is used as the authenticator for the message. EK(M) + 

C(EK(M)) is now sent to the receiver through the network. The receiver has a 

copy of C and can, therefore, compute C'(EK(M)) from the information sent. If 

C'(E K(M)) were to match C(EK(M)), the message could be deemed authentic 

[18]. 

Even though the said method is not foolproof, it often serves as the springboard 

for more advanced authentication schemes. It is also important in this respect to 

note that data integrity and confidentiality usually go hand in hand [18]. 
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5.2.5 Non-denial 

When a purchase is made or an order is sent, an analogue signature (a signature 

made by hand) is used to prove the identity of the respective parties. A signature 

is important, because it binds a party to a contract. Owing to electronic 

commerce having become a reality, other means had to be researched to enforce 

accountability for the parties involved. Asymmetrical encryption is used to 

construct digital signatures, with which a party can now sign an electronic 

document [12]. 

In case of asymmetrical encryption, a party is equipped with a unique key-pair. 

This key-pair consists of a public key, shown as K B(S), and a private key, 

denoted Kp(S), for a specific subject S. These keys are mathematically related 

in such a way that any message encrypted with K B(S) could only be decrypted 

with Kp(S), and vice versa. 

The public key is constructed from the private key and the method used is such 

that going from the one key to the other is relatively easy, while going back 

from the constructed key is extremely difficult, if not impossible. The public 

key is made known through online directory services, whilst the private key is 

only known to S. 

Digital signatures are now constructed as follows: 

Suppose party A wants digitally to sign an electronic document and then send it 

off to party B, so that accountability can be enforced. Party A encrypts the 

message using his/her private key Kr(A). This message is now sent to party B. 

It is important in this respect to note that the message is not confidential in any 

way, because the only key that can decrypt this message, namely K B(A), is 

publicly available. In order to ensure confidentiality and data integrity, the 

message needs to be encrypted a second time, as explained in the foregoing 

sections. 
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On having received the message, party B can prove its authenticity by 

decrypting it, using KB(A). If the original message were obtained, that message 

must have been sent by party A, if and only if the following two axioms hold: 

If E(M, K1 ) = E(M, K2) for all M, then K1 = K2, where E(M, K) is an 

encryption algorithm taking a message M and key K as parameters (only 

one key could yield the encrypted message that could be decrypted by its 

counterpart). 

Kp is the private key known only to party A. 

5.3 Summary 

Although information security has been the subject of extensive research over 

the past few years, it still remains a thorny problem in the realm of 

telemanufacturing. As more and more companies are making use of this new 

technology, industrial espionage and sabotage will become ever-greater 

problems. 

An LM bureau with inadequate security is sure to lose clients and may even 

create a serious imbalance in the manufacturing industry if a fraudulent party 

were to gain an unfair advantage by breaching its security. Security is not only 

important during the transmission, but also at the bureau itself, so that only 

authorised personnel could gain access to sensitive data. 

Another issue deserving of our attention is that of electronic payment. Clients 

must, naturally, pay for the services rendered by LM bureaux and this will 

probably be done digitally. It is important, therefore, that a client could do so 

safely and reliably. 

Since the present study is aimed merely at touching upon the subject of security 

measures to be implemented during the telemanufacturing process, other 

sources should also be consulted for further information. 
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The STL file format is the de facto standard in the LM industry. Before shifting 

our attention to those means through which to remedy and correct errors in the 

file, however, we need to discuss the file format itself 
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6.1 Introduction 

The STL file has become the de facto standard of both LM and 

telemanufacturing. Unfortunately, the format suffers from a number of serious 

defects that render it less than ideal for this task. Owing to these defects, the file 

is susceptible to a wide range of errors that will cause serious problems if 

negated. 

Before error checking and correcting can be effected successfully, the structure 

of the file must be analysed and understood. The grammar or syntax of the 

format must be defined in order to process the file for verification and loading 

purposes. 

6.2 The file structure 

An STL file can be described as a collection of vertices representing a series of 

surface triangles in 3D space. (The terms face, edge and vertex are 

interchangeable with triangle, vector and point respectively.) Each triangle is 

also accompanied by a corresponding surface normal, which is needed to 

distinguish between inner and outer surfaces. This series of triangles is known 

as the "tessellated version of the prototype" and serves adequately to 

approximate the model [21]. 

The original CAD model is tessellated by an algorithm, such as the "adaptive 

subdivision" method, to yield an STL file. A higher accuracy rating can be 

achieved around curves and spherical surfaces by increasing the number of 

triangles in that specific region. Unfortunately, a higher accuracy rating also 

implies a bigger file. The file size, however, cannot be increased indefinitely, 

with the result that the storing and transmission of an STL file could pose a 

problem [22]. 

Since the object is defined in terms of a series of approximating triangles, the 

file does not constitute a perfect representation of the object. The format also 

does not allow for the storage of any geometrical data about the object. 
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Although the former error could be corrected to some degree, the lack of 

geometrical data in the format is the source of numerous problems that are 

difficult properly to address. The loss of the geometrical properties of the model 

clearly is one of the biggest disadvantages of the STL file format [2]. 

The following example is illustrative of the effect when a sphere is tessellated 

by a limited number of faces, which, in fact, requires an infinite number of 

triangles before it could be represented perfectly. In the example, the image on 

the extreme left displays the sphere when it is approximated by six faces, 

following which the accuracy rating of each subsequent image is increased by a 

factor of four. The image on the extreme right, therefore, contains no fewer than 

1 536 faces [23]. 

Figure 6.1: The wireframe representations [23] 

Figure 6.2: Shaded representations [23] 

The simplicity of the file, however, allows the ASCII variant thereof (shortly to 

be discussed) to be transported between systems of various architectures and 

operating systems. In addition, the format does not require any calculation 

overhead, which will save system time, especially on larger files. The wide use 

of the format also makes it a good choice when submitting a file to a 

telemanufacturing bureau [14]. 
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Two variants of the STL file are widely used. The information contained on the 

object is identical for both file types [8]. 

ASCII format 

This format usually engenders rather large files. Thanks to the nature of the file, 

however, it is easy to read and can be edited manually. The ASCII file also is 

more suitable to the Internet environment, since ASCII usually is much more 

platform-independent than its binary counterpart [8]. 

Unfortunately, the file does not contain a trustworthy header to identify the file 

and complete parsing is required successfully to identify the file. 

Binary format 

Although the binary format is much smaller in size, it is platform-dependent and 

can, therefore, only be successfully used between systems of similar 

architectures. The binary file is not as susceptible to syntactical errors as its 

ASCII counterpart, however, with the result that it is generally not necessary to 

parse the file. 

STL files in the ASCII and binary formats can, for transmission and archiving 

purposes, be compressed very effectively into a much smaller equivalent. (This 

is especially true for the ASCII variant.) Specific geometry-based compression 

techniques have been developed and implemented successfully [24]. 

Apart from that, the repetitive nature of specific strings in an ASCII STL file 

makes Lempel-Ziv or any other substitution-based technique an attractive 

method. Huffman encoding will also yield very good results, since certain 

characters have a far higher incidence than others. Characters that occur in the 

file more frequently will be stored using a shorter bit string than those with a 

lower incidence. This method will result in a much smaller file than when each 

character is stored in exactly the same number of bits. Compression techniques 

will be discussed in more detail in the next chapter [12]. 
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It is important to take into consideration the platform on which the file will be 

decompressed before applying any form of compression to it. If a file were 

compressed on a specific platform, it might be rendered incompatible with other 

systems. Fortunately, there are a number of compression methods in terms of 

which the file will remain platform-independent, which methods could be 

employed as and when required. 

The ASCII STL file is underpinned by the following format [2]: 

solid [name of solid] 

facet normal NI  

outer loop 

vertex V I  

vertex V 2  

vertex V 3  

endloop 

endfacet 

facet normal N2  

outer loop 

vertex V 4  

vertex V 

vertex V 6  

endloop 

endfacet 

facet normal IV;  

outer loop 

vertex V0.3- 2) 

vertex V 6 03  

vertex V o.3)  

endloop 

endfacet 

endsolid 
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The file must begin and end with the reserved words solid and endsolid 

respectively. The reserved word solid is occasionally followed by a descriptive 

name of the specific model that the file represents, although such identifier is 

not compulsory in the STL standard. 

Following, the entire model is defined between these delimiters as a series of 

triangles, which, in turn, consists of a number of vertices. All reserved words in 

the STL file are in lower case [21]. 

The vertices V„ represent the three corners of a surface triangle i describing that 

section of the model. The x, y and z components of each of these vertices are in 

Cartesian coordinates and should all be positive floating-point numbers. The 

normal vector Ni is a unit vector of length 1 based at the origin and accompanies 

each defined triangle. This normal is determined by calculating the vector cross 

product between any two vectors within the triangle [21]. 

Unfortunately, the STL format is not very robust in the sense that a file will still 

pass as a legal STL file even when the object has been severely compromised 

[25]. 

The binary STL file is underpinned by the following format: 

Table 6.1: Technical assumptions obtaining to the binary STL representation 

Unit type Size Lower boundary Upper boundary 

Bit On/Off state 0 1 

Byte 8 bits 0 255 

Unsigned integer 2 bytes 0 65,535 

Unsigned long integer 4 bytes 0 4,294,967,296 

Float 4 bytes IEEE ± 1.5 * 10-45  

(7-8 significant digits) 

± 3.4 * 1038  

(7-8 significant digits) 
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Table 6.2: The binary STL representation 

Description Size 

File header 80 bytes 

Number of triangles Unsigned long integer 

For every triangle in the model 

Normal 3 floats 

First vertex 3 floats 

Second vertex 3 floats 

Third vertex 3 floats 

Attribute Unsigned integer 

The format of the STL file suggests a highly simplified object-orientated 

approach, in the sense that each solid or real-world object consists of a number 

of objects called facets (or triangles), with each facet consisting of exactly three 

vertices. The three vectors defining the triangle are now constructed between 

these points. 

6.3 Summary 

The STL file is the de facto standard of both LM and telemanufacturing. Even 

though it suffers from several weak points, the simplicity of the file has made it 

an attractive format with the LM and telemanufacturing technologies. There are 

two specifications of the STL file format. a text-based or ASCII file that is more 

compatible between systems but larger in size, and a binary representation that 

can only be used between compatible systems but which is much smaller in size. 

Having discussed the format of the STL file, the next chapter will be devoted to 

an introduction to several compression methods that can be applied to a file in 

order to minimise its overall transmission time and the space required for its 

storage. 

51 



Chapter 7 

Compression in telemanufacturing 



Compression in telemanufacturing 

7.1 Introduction 

One of the greatest drawbacks of the STL file format is the large-sized files it 

tends to generate. Since any curvature in an object can be represented by an 

infinite number of triangles, the number of triangles necessary to achieve an 

acceptable accuracy rating oft-times causes an object file of average complexity 

to become too cumbersome [16]. 

These large files, in turn, tend to complicate Internet transmission. In addition, 

larger files require more storage space and if a telemanufacturing bureau were to 

receive a high volume of job requests all at once, a serious problem could be 

created. 

Fortunately, however, compression techniques applied to STL files can 

effectuate substantial savings in the storage space required. Two categories of 

compression techniques are available to compact files, namely that of general 

compression techniques and that of format-specific compression techniques. 

a) General compression techniques 

The most widely used compression agents, such as "WinZip" (a Windows-

based utility), "Gzip" and "Arj" (a multiplatform utility), allow for the ready 

compression of any type of file. The compression effected by means of this 

category of compression techniques is loss-less, which means that no loss of 

information will occur during the compression and decompressing processes. 

Since these utilities are readily available, many telemanufacturing bureaux 

require that all files must first be compressed by means of a specific 

compression agent before their submission [26, 27]. 

The general nature of these algorithms, however, limits the compression ratio to 

be attained and more specific algorithms should be applied better to compress 

STL files. Another problem associated with general compression techniques is 

that they are usually limited to system architecture. In other words, a file that 
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has been compressed by means of a specific architecture could only be 

decompressed by means of a compatible system [24]. 

b) Format-specific compression techniques 

A specific compression algorithm is an algorithm that can be applied to a 

specific file format only. Although some of these algorithms cause a loss of 

some information, such losses are generally acceptable. Extremely high 

compression ratios are commonplace in terms of this category of compression 

techniques. The JPG compression for high-dimension images and MP3 

compression for audio are well-known examples of such compression schemes 

attaining high compression ratios (both of which lose some data in return for 

such high compression ratios). 

Fortunately, the geometry hidden in the mesh of triangles in an STL file allows 

for specific compression algorithms to be applied to the file, resulting in file 

sizes that are mere fractions of the original sizes [15]. 

In case of ASCII STL files, the compression can also be effectuated in such a 

way that the files remain platform-independent even after having been 

compressed. Although the compression ratios will not be as high, the files will 

still be significantly smaller. 

7.2 Compression for STL files 

This section will be devoted to a discussion on those compression methods 

specifically propounded for the STL file format, many of which can be 

combined to achieve excellent compression ratios. After having applied 

geometrical compression, a general compression method may also be applied 

even further to decrease the size of a file. 
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7.2.1 The Vertex Reuse Method 

A generalised triangle mesh is a compact representation of 3D geometry. It is 

based on the premise that many vertices will be used several times by different 

edges [15]. 

In figure 7.1 below, a triangle mesh is shown with numbered vertices. A typical 

STL file would list each triangle consisting of three vertices. Each vertex is a 

point in space and consists of an x, y and z component. As was mentioned in 

chapter 6, each component takes up 4 bytes of storage (binary format). This 

implies that each vertex takes up a total of 12 bytes. Since a vertex is 'shared by 

a number of triangles, much space is wasted owing to duplication. 

4 	6 

12 

17 
22 

SAS 
saw 18 

Figure 7.1: A triangle mesh, demonstrating duplication in vertices [1 .5] 

An STL file can easily be compressed by using a "mesh buffer" on which to 

store those vertices with the highest incidences. The "mesh buffer" is a lookup 

table with a predefined size. A pointer value is used instead of having to list the 

entire vertex for each triangle. In this way, a table with 256 entries requires an 

8-bit, or a 1-byte pointer [15]. 

Although larger buffers could store more vertices, they require pointers that take 

up more space. Smaller buffers, on the other hand, require smaller pointers, but 

cannot hold as many vertices. A good balance should, therefore, be struck 

between the size of the buffer and the size of the STL file. 

54 



Compression in telemanufacturing 

Employing this method effects a substantial saving in the space taken up by an 

STL file. Table 7.1 is illustrative of the saving potentially to be effected by this 

method. In this example, each vertex is assumed to be shared by six triangles. In 

addition, the lookup table is assumed to be fully utilised. 

Table 7.1: Compression with generalised triangle meshes 

Size of lookup table Size of pointer Saving 

16 entries 1 nibble (4 bits) 912 bytes 

256 entries 1 byte 13,824 bytes 

65,536 entries 2 bytes 3,145,728 bytes 

16,777,216 entries 3 bytes 704,643,072 bytes 

Using a mesh buffer constitutes an excellent method by means of which to 

compress STL files, and one stands to derive the following benefits: 

Completely loss-less compression is achieved. 

ASCII STL files still are platform-independent. 

Compression and decompression require little computational overhead. 

Can be used in conjunction with other general and geometry-based 

compression methods, thereby achieving high compression ratios. 

7.2.2 The variable compression method 

Mother method by means of which to compress STL files is by variable 

compression. This method can be used in conjunction with the Vertex Reuse 

Method described in the previous section. The variable compression method is 

used to compress a file by reducing the space that the numbers take up, albeit 

with a small loss in its accuracy rating. Since the entire object consists of 

nothing but a series of structured vertices, high compression ratios could 

potentially be achieved. 

Fortunately, some applications allow minimal degradation of the object and 

this method can be employed in such cases. Research in this domain has shown 
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that to reduce the number precision rating from 32 to 16 bits usually results in 

little loss of quality [15]. 

The first step in the compression process is to normalise the entire object, so 

that all its coordinates fall within the range [-0.5, 0.5]. On decompression, the 

object can be translated and resized to meet the building constraints in question 

[15]. 

The next step in the said process involves a reduction in the space taken up by 

each vertex by truncating the least significant m bits of the position components, 

where m = 32 - q (with q 32, a predefined integer). This can be viewed as 

overlaying a 3D grid over the object, as shown in figure 7.2 [15]: 

Figure 7.2: Applying the 3D grid [28] 

The value of q must, however, be carefully chosen. Selecting a q value that is 

too small will result in a badly deformed model, while too large a value will 

result in a non-optimal compression ratio [15] (see figure 7.3): 
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This method has been modified, however, and many aspects of the algorithm 

have been improved, including: 

Selection of the q value 

The manual selection of the q value used to be a trial-and-error process, which 

constituted a serious drawback. One way is manually to select an error threshold 

and then to request that the system select a value for q, such that all fluctuation 

in coordinate adjustments be within this threshold. In this way, the file can be 

compressed optimally [15]. 

Region-based compression 

Not all regions of a specific part have the same number of triangles. More 

triangles are present around curvatures and round corners. An improvement on 

the algorithm is separately to compress these areas, with a different value for q. 

This will result in an optimally compressed file [15]. 

The variable compression method allows for good compression, depending on 

the overall model geometry. Unfortunately, a certain degree of precision is lost 

and a fair amount of computational power is required during the compression 

phase. One stands, nonetheless, to derive the following benefits from .  employing 

this method: 

Region-based compression. 

The q value allows various levels of compression. 

The compression level is chosen automatically after having specified the 

error threshold. 

Can be used in conjunction with other general and geometry-based 

compression methods to achieve high compression ratios. 

No decompression is necessary. 
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7.2.3 The redundancy compression method 

An uncompressed STL file contains huge chunks of redundant information. 

These serve, naturally, to inflate the STL file [29]. By removing all the 

redundant information, a marked reduction can be effected in the file size. 

Removal of normals 

Each triangle in the STL definition has a surface normal that distinguishes the 

outside of the object from its inside. Each of these normals takes up 12 bytes of 

space. Since each normal can easily be calculated by taking the cross product of 

any two vectors of that specific triangle (assuming the triangle orientation is 

correct), as much as 20% of space can be saved (depending on the type of STL 

file) by omitting the normals in the file once the triangle orientation has been 

verified. 

Hole-punching 

This method is, in many respects, similar to that of re-using vertices. Each edge 

is shared twice between two triangles. The size of the STL file can, therefore, be 

greatly reduced by removing one of the triangles sharing each edge. As long as 

the set of remaining triangles represents each edge contained in the entire 

model, there will be ample information to reconstruct the file in its entirety. This 

concept is illustrated in figure 7.4: 

Figure 7.4: Hole-punching compression 

A high-precision design is depicted in the extreme left image of figure 7.4. Once 

the entire triangle mesh is shown, the complexity of the model becomes evident, 

as depicted in the second image in the same figure. 
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In the third image, an enlarged section from the second image is shown. The 

individual triangles are now distinctly visible. On this image, each of the edges 

in the triangle containing the black dot is shared with three other triangles, each 

marked with a white dot. Since each of these neighbouring triangles contains the 

same edge, the triangle marked with the black dot can be omitted without any 

loss of information. 

On receipt, the removed triangles can be regenerated from the information 

contained in the rest of the model. Since this method effects nothing but to 

introduce "well-planned" holes in the model, a good error-correcting package 

will be able to recoup the missing triangles, thereby obviating the need for a 

decompressing program. 

This compression method can be improved further by requiring neighbouring 

triangles to contain a vertex, instead of an entire edge, for a specific triangle to 

be removed. Although much more computationally expensive and less robust, 

the compression ratio will be substantial. 

One stands to derive the following benefits from this method, thus making it an 

important candidate to consider for STL compression: 

Completely loss-less compression is achieved. 

ASCII STL maintains the platform-independent format. 

Decompression can be effected by good error-correction software. 

Relatively easy to implement. 

Can be used in conjunction with other general and geometry-based 

compression methods to achieve high compression ratios. 

7.3 Summary 

The large size of STL files, especially that of the ASCII variety, complicates 

their transmission and storage. If good compression schemes were applied to 
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such files before their transmission, however, a dramatic reduction in 

transmission time could be effected. 

Two categories of compression techniques are typically used to compress files, 

namely the general compression scheme used for all types of files and more 

specific compression methods that rely on imbedded geometrical properties to 

effect compression. Many of these compression schemes can, however, be 

combined to enhance the compression process even further. 

The next chapter will be devoted to an overview of the types of errors that STL 

files are particularly prone to, followed by a closer look at each type of error. 
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8.1 Introduction 

As was mentioned earlier, the building of a defective file should be avoided at 

all costs. STL files, however, are often flawed and a prototype built from an 

erroneous file will usually be worthless. For this reason, it is vital to check the 

file received and to verify that no errors have been created during its creation or 

transmission. This process could be effected either manually or, in the case of a 

large bureau, automatically [2]. 

The question whether or not STL files have been adequately checked and fixed 

remains a burning one and constitutes one of the biggest problems in 

telemanufacturing, especially since these files are sent from numerous unknown 

and, therefore, dubious sources. As the need for layered manufacturing arises in 

other fields, erroneous STL files will become even more problematic [2]. 

Errors and difficulties associated with the STL file format can be categorised 

into the following groups: 

Structural errors. 

Geometrical errors. 

Unmet building requirements. 

This chapter will be used to determine the steps to be taken to check an STL file 

before it is sliced and finally built. Checking a file is a step-by-step process and 

each step must be taken to verify its correctness. Once an error has been 

uncovered, it must be corrected before checking could be resumed. 

In the course of this dissertation, the author has not only explored existing 

algorithms for their ability to check and fix errors, but has also devised his own 

methods, where needed. The idea is to present these methods in a well-suited 

interface that will allow easy checking of a submitted file and which will 

generate a full report on such file, including recommendations on the object and 
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a list of errors that could and could not be fixed. This prototype and the areas it 

addresses will now be identified and introduced. A detailed discussion on the 

algorithms employed will follow in subsequent chapters. 

The framework of the prototype can be depicted as follows: 

Figure 8.1. Framework of the prototype 

The project consists of various modules, as shown above. The user interacts 

with the GUI to launch any of the other modules. From the GUI, the user can 

request a file to be loaded through the object loader. Once the object has been 

loaded and rendered through the object visualisation module, the user can 

request that the object be verified and/or corrected through the verification and 

correction modules respectively. 

8.2 Principal aim of the project 

The prototype was written for the Microsoft Windows environment, but the 

same algorithms could be applied to any platform. The project was undertaken 

with the following primary functions in mind: 
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Detection and correction of common STL errors, including 

file syntax and conformity to the STL format (for ASCII STL files) 

checking for and removal of duplicate triangles 

vertex-to-vertex checking and filling of simple holes 

checking of triangle orientation 

checking the file against Euler's rule for legal solids. 

Easy-to-use interface, thereby minimising training. 

Effective visualisation methods, including 

rotation of object in x, y and z directions 

translation of object 

resizing of object. 

Visual error reporting, through the use of different colour codes. 

Full text report on an object. 

Support for both ASCII and binary STL files. 

8.3 Error checking 

Two sets of errors generally occur in STL files, both of which are addressed in 

the prototype. They are structural and geometrical errors. 

8.3.1 Structural errors 

This type of error usually crops up in ASCII STL files, although binary STL 

files could also contain structural flaws (for example, omitting the number of 

triangles after the header, as specified by the format). Structural errors can, in 

turn, be sub-divided into the following two categories: 

a) File integrity 

Flaws integral to the file itself are classified as structural errors. Although there 

is a wide variety of factors that could cause damage to a file, some have a higher 

incidence than others, such as bad transmission, poorly written software or even 

electronic sabotage by malicious parties. Some of these errors, such as reserved 

words being in the wrong case, are easily fixed, even though this type of error 

generally calls for human intervention. 
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b) Incorrect format processed as STL file 

When a party sends a file to the bureau in the wrong format, the system should 

treat it as a special case of a structurally flawed file. When a file arrives at the 

telemanufacturing bureau, it needs to be verified to ensure that it is indeed in the 

STL format. Checking the file extension is definitely not enough to guarantee 

compatibility. 

A scanner-parser pair was subsequently designed to address these two problems. 

This concept, adapted from the construction of compilers, allows the file to be 

analysed more thoroughly and generates more detailed reports. 

Chapter 9 will be devoted to a detailed discussion on structural errors, whilst 

chapter 11 will be used to elaborate on the algorithms employed during the 

checking phase. 

8.3.2 Geometrical errors 

Geometrical errors have a high incidence in STL files, with the result that the 

files must be checked thoroughly [30, 2]. The following geometrical errors are 

commonly found in STL files: 

a) Duplicated triangles in the model 

This would represent a special case of vertex-to-vertex rule violation. The error 

is first detected by a procedure comparing every two triangles defined in the 

object. The following definition will allow us to define equal triangles: 

For triangle A with vertices (A0, AI, A2) and triangle B with vertices (Bo, B1, 

B 2), let e be a pre-defined threshold. 

A = B, if there exists a unique (0 j 2) such that IA; - 	e for each i = {0, 

1, 2). It is important that e not be chosen too large in order to prevent two 

closely spaced yet distinct vertices from being recognised as a single point. 
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If two triangles were found to be equal, one of the triangles would simply be 

removed from the object. 

b) Checking the data against the vertex-to-vertex rule 

Each triangle in the object must meet all of its adjacent triangles in a common 

edge. This implies that each side must be shared completely by exactly two 

triangles. Failure to adhere to this rule usually indicates the presence of holes 

and zero-width walls in the model [21]. 

This rule is verified by first giving structure to the entire file. The vertices of 

each triangle are used to construct three vectors, which are stored in a linked-list 

structure. Every correctly shared edge in the file will, therefore, be listed as two 

vectors — equal in size yet opposite in direction. 

The computer will now go about matching vectors to a common edge. The 

comparison between every two vertices is similar to the duplicated-triangle test, 

but for the following: 

For vector A, with starting and ending vertices (As, AE), and for vector B, with 

starting and ending vertices (Bs, BE), let e be a pre-defined threshold and let the 

following hold: 

If lAs - BEI e and IAE - BsI < e, then the edge would be correctly shared, as 

long as no other listed vectors shared it. If lAs - BsI e and IAE - BEI e, then 

one of the vectors has the wrong orientation and needs to be changed. Apart 

from that, if no other vector shared the edge, then the edge would be correctly 

shared. 

Should an edge be found that is shared by a single triangle only, the vector 

would be stored in a list for further analysis. After the entire file has been 

checked, the list of unshared vectors is examined in order to correct the file. 
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Ensuring that each surface normal do indeed point outwards 

In the previous paragraph, a scenario was created in terms of which an edge is 

correctly shared by two triangles, but both vectors have the same direction. In 

such cases, one triangle is incorrectly orientated. 

Every triangle must be checked against the right-hand rule to make sure that the 

orientation of the vectors be correct [10]. This is important for the calculation of 

each triangle normal. If a triangle were incorrectly orientated, the normal would 

point in the wrong direction [2]. 

By changing the concord of two of the vertices in the faulty triangle, the 

orientation of the triangle can be reversed. 

Checking the model against Euler's rule for legal solids 

For any convex polyhedron, the number of vertices and faces together is exactly 

two more than the number of edges. This meaningful result, discovered by 

Euler, allows an object to be verified as a legal solid [31]. Fortunately, the 

format of the STL file also conducts this check with relative ease. 

The said check will ensure that the object does not contain any orphaned 

surfaces, zero-width walls, cracks or holes. An object that comprises a hollow 

volume will also fail this check. If an object were to fail the Euler-check, it 

would have to be analysed for anomalies. 

The prototype also verifies this rule by counting the individual faces, edges and 

vertices, substituting these values in the equation and checking the final result. 

8.4 The interface 

The prototype incorporates a graphical user interface (GUI) that is not only 

user-friendly, but which also acts as a powerful visualisation aid, in terms of 

which information is conveyed to and from which commands are received from 

the user. 
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8.4.1 Visualisation 

One of the principal aims of layered manufacturing is the visualisation and 

inspection of a physically manufactured object [8]. Computer visualisation, 

however, still is very important. If an STL file were rendered on a computer 

screen, the designer could still work last-minute changes to the file, just prior to 

its being built. 

OpenGL' [32a] and DirectX 2  [32b], two mainstream technologies that are 

currently available, allow objects to be rendered relatively quickly, thanks to the 

interface they provide to the system hardware. The present prototype employs 

OpenGL for graphics rendering, thanks to its wide-spread use and support. 

An important aspect of the interface is not only to render the given object, but 

also to allow the user to rotate it in any direction and to move to any arbitrary 

location on the screen. Resizing the module in real time is important too, 

especially for small and highly detailed models. These concepts were also 

explored in the prototype, specifically through the use of OpenGL. 

8.4.2 Error reporting 

In most cases, error reporting on STL files takes on the form of a textual file 

with numbers and statistics. The prototype makes use of various colour codes to 

indicate the errors on the object itself. The user can then decide how to correct 

the model. This feature is especially useful for uncovering minute cracks in the 

object, which are not always visible on the computer rendering. 

A text report is also generated to complement the above scheme. Apart from the 

information imbedded in the file itself, it contains warnings where necessary 

and recommendations on errors that require human intervention. 

OpenGL is a registered trademark of Silicon Graphics, Inc. 

2  DirectX is a registered trademark of the Microsoft Corporation. 
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8.5 Complying with building constraints 

Each LM machine has various deficiencies and requirements that must be 

supplied and met before a model could be built. Some categories of LM 

equipment require supports, while others do not. The maximum size and 

accuracy rating also differ from machine to machine and careful consideration 

must be given to whether or not certain types of equipment would meet the 

needs of a particular model. 

Although this aspect of validation has not been explored in the prototype, it 

needs to be introduced here, since it forms an integral part of telemanufacturing. 

A detailed discussion on this matter will follow in a subsequent chapter. The 

most prominent building constraints are as follows: 

8.5.1 Coordinate range of the model 

Care must be taken that the object fall within the designated range. If this 

requirement were not met, the object should be rotated and/or translated to 

ensure that it does fall within the proper coordinate range. 

8.5.2 Model size 

Very large models cannot be built either. If a model were too big to be built in 

one pass, it should be adapted. One of the following two solutions should be 

applied here. 

Scaling the object, so that it would fit in the building area. This method allows 

for a solid part, without any visible attachment. Not all applications, however, 

allow the prototype to be resized. 

Mother method would be to divide the object into various parts, which could 

be reassembled on completion. This method has the added advantage of 

ensuring that the original size of the model be maintained, even though the 

precise binding of the various parts may pose a problem. 
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8.5.3 Model orientation 

The orientation of the model may affect various parameters of the model, as 

well as those obtaining to the building phase. These parameters include the 

precision of the model 

building material used 

time to completion. 

Rotating the part before it is completed could have a dramatic effect on the 

foregoing factors. Depending on the requirement, rotation of the object should 

be effectuated to meet the user's needs. 

8.6 Summary 

Errors constitute a sizeable problem in STL files. This chapter was devoted to 

the introduction of such problems in more detail, as well as to a brief 

introduction on the prototype that has been developed to check these files for 

errors and to fix them, if any. 

Building constraints was another aspect deserving of our attention. Because of 

these constraints, even an STL file devoid of any error would not necessarily be 

built successfully. As became evident from chapter 2, there are many different 

implementations of layered manufacturing and the same model cannot be built 

on all hardware. Size, orientation and model properties also play an important 

part in determining whether or not a model could be built on a specific device. 

Structural-error checking, the first line of defence against errors occurring in 

STL files, will be discussed in the next chapter. 
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9.1 Introduction 

The text (also known as the "ASCII") format is used when incompatible 

systems have to convey information over a communication medium, typically 

the Internet. A well-known example of this is the HTML format, universally 

used on the Internet to describe the content of a Web page [12]. 

Currently, there is a diverse collection of software programs on the market that 

does not create correct STL files [2] and in terms of which transmission errors 

are a frequent occurrence and issues such as security, electronic sabotage and 

incompatibility are still to be addressed. For this reason, it is very important to 

verify the syntactical structure of any received file to ensure that it complies 

with the STL standard. This chapter will, therefore, be devoted to a discussion 

on the scanner and parser pair that is employed to perform the latter function. 

9.2 Verifying the syntax of the STL file 

A scanner and parser pair works interactively on the STL file to ensure that the 

file 

is indeed an STL file 

conforms to the STL format 

is syntactically error-free. 

The reserved words or symbols within the STL file are important for the correct 

functionality of the scanner and parser. The scanner will be responsible for 

identifying each of these symbols and for passing them through to the parser, 

which will then check the correct concord of these symbols within the file [33]. 

The list of recognised symbols is as follows: 

"solid" and "endsolid" 

"facet" and "endfacet" 
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"outer", "loop" and "endloop" 

"vertex" 

"normal" 

Apart from these symbols, the scanner should also be able to identify positive 

floating-point numbers within the file, both in the normal decimal and in 

scientific E-notation. The decimal number 129.129 can also be written as 

0.129129E+3 in E-notation and it is important to support this format, as various 

STL files contain numbers in this format. 

Once the list of symbols has been compiled, the grammar of the STL file can be 

defined (shown here in BNF form): 

digit  = “2” 999 ‘,5”,  “6”,  4,7” , 	‘,9,9 

letter = "A", "B"..., "Z", "a", "b",... "z" "<space>", ".", "" 

operator = "+","-" 

number = [operator] {digit}["."{digit}] [scalefactor] 

scalefactor = ("e" I "E") operator {digit} 

ident = {letter I digit} 

vector = number number number 

vertex = "vertex" vector 

triangle = vertex vertex vertex 

outer_loop = "outer loop" triangle "endloop" 

normal = "normal" vector 

facet = "facet" normal outer_loop "endfacet" 

solid = "solid" [ident] {facet} "endsolid" 

STL-file = solid 
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Elucidation of symbols 

[ : zero, or one instance of 

} : one, or more instance of 

( ) : normal mathematical definition. 

: choice between the element on the left or the right, but not both. 

"' : reserved words or symbols shown within quotes (also shown in bold). 

<space> : blank space at this position. 

Once the grammar has been defined, the scanner and parser can be constructed 

from it. The principal aim of the scanner is to recognise each of the reserved 

words and identifiers in the file and to pass these symbols to the parser. Spaces, 

line breaks, tabs and other format characters are filtered out by the scanner and 

are not passed back to the parser, thus allowing the format to be more robust and 

completely independent as to its overall structure. A character or word not 

defined as a reserved word will raise an error during the scanning process. 

The principal aim of the parser is to check whether or not the concord of the 

reserved words and identifiers passed back from the scanner conform to the STL 

standard. These syntax rules are laid out in the grammar of the file (shown 

above). This is achieved through a series of functions and procedures in a 

programming language that supports recursive programming, such as Pascal, 

C++ or Java. A function is written for every grammatical rule and subsequently 

called as and when required. If a reserved word or identifier were found to be 

out of concord, an error would be returned, otherwise the scanning and parsing 

process would traverse through the remainder of the file. Only then could one 

rest assured that the file is syntactically correct [34]. 

This method of syntax checking allows ready modification, should the format of 

the STL file change or improve, thanks to future research. The basic layout of 

syntax checking can be depicted as follows: 
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Figure 9.1: Layout of syntax-checking procedure 

Once the syntax of the file has been validated, further checking can commence 

on the file. It must be stressed, however, that the syntax of the file must be 

100% correct before any geometrical testing commences to prevent false error 

reports and damage to the file due to modifications by the software. 

9.3 Fixing syntax errors 

Errors in the syntax of text STL files will usually indicate either a file of the 

wrong format or a file severely damaged by software or any other means. 

Syntax-error correcting techniques have been successfully applied to various 

compilers in the past and can possibly be adapted for STL files too [34]. 

Some structural errors are very easy to rectify. A case in point here would be a 

reserved word in the wrong case. Although many software packages 

successfully read STL files in upper case, a package following the format very 

strictly may reject such files. 
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The parser will also indicate files in the wrong format. In such cases, the bureau 

might be able successfully to convert the format. The current approach to badly 

damaged files and unrecognised file formats, however, is to contact the client 

and to request that the file be transmitted again. 

9.4 Summary 

This chapter was devoted to the elucidation of the importance of syntax 

checking with STL files, as well as to the introduction of a highly effective 

method of doing so. The method explained in this chapter allows the bureau 

carefully to analyse a submitted file and to check that the file 

is indeed an STL file 

conforms to the STL format 

is syntactically error-free. 

Once this has been achieved, further checking on the geometry of the model 

could commence, an aspect that will be explored in the next chapter. 
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10.1 Introduction 

Geometrical errors manifest on the object itself. Although the file describing 

the object may be correct, the object itself may suffer from a defect that needs 

correcting. Verifying and correcting such flawed STL files, however, is not 

only computationally expensive [29] but the testing process is also hampered 

by the numerical imprecision and redundancy associated with such flaws or 

defects [35]. 

Some geometrical errors merely involve the filling of gaps and the removal of 

duplicated triangles. More serious errors, however, may require integrate 

knowledge of the environment in order to be rectified, a process that would 

typically take place inside a rather complex expert system. 

The present chapter will be aimed at providing an overview on errors that can 

easily be fixed by employing a set of algorithms, specifically designed for this 

purpose. In so doing, the prototype propounded in the previous chapter will 

also be scrutinised. 

10.2 Removing duplicated triangles 

The chances are that certain triangles may be duplicated during the creation of 

an STL file. This could also happen when a high-definition STL file is resized 

into a smaller version, which would cause some vertices to converge. Such 

duplicated triangles not only make for a bigger file, but may also impede the 

software slicing the file, ultimately giving rise to the creation of errors during 

the final building process. 

A program checking the file against Euler's rule of legal solids may also have 

difficulty interpreting the extra face present in the file, reporting the solid as 

being invalid. Duplicated triangles in an STL file also violate the vertex-to-

vertex rule (see the next section), requiring the removal of triangles, rather 

than the insertion of new ones. 
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It is evident, therefore, that it is imperative first to scan the STL file for 

duplicated triangles, which must be removed before any further checking 

could be effectuated. In terms of the propounded prototype, every two 

triangles are compared, the one with the other. If two triangles were found 

either to be the same or to fall within an acceptable threshold (as indicated in 

chapter 8), one of them would be removed. As the two triangles might differ in 

orientation, however, the correct triangle should be removed in order to avoid 

the introduction of a new set of errors to the file. 

10.3 Checking the structure against the vertex-to-vertex rule 

STL files are subject to an important restraint, namely that each triangle must 

meet all of its adjacent triangles in a common edge. This, in turn, implies that 

each edge be shared in full by exactly two triangles [3, 16]. 

An adjacent or edge-neighbouring triangle to triangle A is any triangle 13 that 

shares one of the edges of triangle A. This concept is important to the process 

in terms of which holes in the object are corrected and is graphically 

represented in figure 10.1. The adjacent triangles to triangle A have been 

marked a'. Those triangles bearing the letter b' constitute triangles that share a 

common vertex with triangle A, which will henceforth be referred to as 

"vertex-neighbouring triangles". 

Figure 10.1: Adjacent triangles in an STL file 

If edge-neighbouring triangles failed to meet along a common edge, the STL 

file would not be in compliance with the STL file standard. This error is one of 
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the most common errors in the STL file format and one of the most difficult to 

correct, especially in a region that has already lost several triangles [21]. 

In figure 10.2, five tessellated rectangles are shown. (Suppose, for argument's 

sake, that each of the images represents the top of a cube and that the borders 

of each rectangle are correctly shared with those of another triangle not shown 

in the diagram.) As becomes evident from these images, the three rectangles at 

the top of the diagram fail to adhere to the vertex-to-vertex rule, whilst the 

rectangles shown at the bottom of the figure are correct. 

Incorrect 

(v) 

Correct 

Figure 10.2: The vertex-to-vertex rule 

In rectangle (i), four triangles are shown, namely abf, bdf, dce and cae. On 

closer investigation, it would become evident that edges ae, of and fd are not 

fully shared between any two triangles and that they, therefore, fail to comply 

with the vertex-to-vertex rule. This is also true of rectangle (ii), which 

comprises three triangles (abd, bcd and ecd). In this example, edge bd is 

shared among all three triangles. This is not allowed either, however, since an 

edge must only be shared by two triangles. In rectangle (iii), edges be, cd, di 

and ib are owned by one triangle only. These edges, in fact, define a rectangle 

themselves, namely bcdi, which is not allowed at all. 
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The rectangles shown at the bottom, however, are both correct. In rectangle 

(iv), triangles abe, bce, cde and dae each has one edge in common with 

another triangle. In this way, edge ae is shared between triangles abe and dae. 

This is in compliance with the STL file standard. The rectangle next to it has 

been tessellated at a higher resolution. It consists of eight triangles in total and 

also complies with the STL file standard. It is, in fact, the same rectangle as 

that shown in (iii), after the latter has been successfully corrected. 

On closer investigation, it becomes evident that a legal solid will have three 

edges between every two faces. From this ratio, it becomes clear that, for a 

legal solid, the following rules must always obtain [2]: 

F must always be a multiple of two. 

E must always be a multiple of three. 

3E must always equal 2F. 

The prototype propounded in this dissertation is aimed at checking for this 

error and at filling gaps that require the insertion of a single triangle. (The 

prototype does not, however, generate new edges and vertices.) Although it is 

very easy to check a file for this error, it is a time-consuming task that requires 

a fair amount of processing power to be performed within a reasonable time. 

The time span required is prolonged exponentially with an increase in the file 

size [29]. 

Checking and correcting an object against the vertex-to-vertex constraint 

requires a step-by-step procedure akin to the following (even through the 

proposed prototype follows this procedure, other packages may follow a 

different approach): 

a) Step 1: Listing of edges 

An STL file comprises a collection of triangles in a linear list, each consisting 

of three points in space in its turn. This architecture allows little checking 
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within itself and needs to be reorganised in a more suitable form in order to 

allow more intelligent error checking [29]. 

The three reference points of each triangle are used to construct three vectors, 

which are stored in a linear-list structure. Provided that the primary memory of 

the computer allowed it, the said list could be stored directly in memory, 

failing which a temporary file must be used for its storage. Storing the entire 

list in memory, however, is much better, since this would facilitate processing. 

It is important to keep track of each of the vertices, as well as of the triangle to 

which each vector belongs. This is easily accomplished, however, since the 

number of vectors in the list would always be three times the number of 

triangles in the object. Should an error be uncovered, the coordinates of the 

points making up the edge would be needed successfully to correct it. 

Step 2: Pairing of listed edges 

After having listed the vectors either in a temporary file or in primary 

memory, the program can begin pairing these vectors. As was stated before, 

each edge must be shared by exactly two triangles. The next step would be to 

iterate through the entire list and to mark those vectors that share a common 

edge. 

On completion of the foregoing step, all unmarked edges will reveal an 

erroneous section in the STL file. 

Step 3: Listing of unshared edges 

After having paired the edges, a list must be compiled of those edges that are 

not shared correctly between adjacent triangles. This list must then be 

analysed and used to correct the errors. 

79 



Geometrical-error checking 

Step 4: Reporting to the user 

During this phase, the program needs in a user-friendly manner to report to the 

user and state any errors that cropped up. The user can then decide if the 

program should correct the problem or if a new STL file should be created 

from the original CAD model (or whether it should be resubmitted, in case of 

telemanufacturing). 

Step 5: Correcting errors detected in the file 

When the vertex-to-vertex rule is not adhered to, it is usually indicative of a 

hole in the model, which needs to be filled (except in case of duplicated 

triangles, that is, in which case the extra triangle must merely be removed). It 

is important to add triangles in such a way that the geometry of the model 

would remain unchanged. 

Fortunately, the neighbouring triangles contain enough information to 

reconstruct any gaps created in the object, provided that the number of 

triangles to insert is equal to the number of triangles omitted. In order to 

correct a model by inserting a single triangle in a specific region, a triangle 

requires all of its edge-neighbours to be present. In this way, no new vertices 

or edges are introduced into the model, since the neighbouring triangles are 

used to construct the new triangle. 

Figure 10.3: Approximated sphere with a missing triangle 
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Figure 10.3 illustrates just such a case. In this simple example, reinserting the 

triangle will result in the correct model. The three unshared edges make up the 

triangle that has been omitted from the model. Although there is no way in 

which to determine the exact number of missing triangles, three vectors 

sharing three common vertices most likely are the result of a single missing 

triangle. 

The concord in which the vertices are listed in the new triangle is very 

important. If the concord were incorrect, the normal that accompanies the 

triangle would face the wrong direction and would introduce additional errors 

into the object. The direction of each vector of the new triangle should be the 

opposite of that of the vectors of the neighbouring triangles. This concept is 

illustrated in figure 10.4. Note the direction of the adjacent triangles, 

compared to that of the new triangle. (The new triangle is shown in the middle 

of the figure.) 

d 
Figure 10.4: Triangle orientation of new triangle 

When two or more edge-neighbours are missing, fixing the model becomes a 

lot more complicated. In such cases, new edges have to be generated in order 

to fill the gaps. When this is the case, the vertex-neighbouring triangles must 

be used to extract the information required to generate the new edges. The 

object could be fixed successfully, however, if at least one vertex-neighbour 

were present for every vertex. Special care must be taken, though, since more 
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than one triangle is now being inserted into the model. Edges must be 

correctly shared and triangles must have the correct orientation. 

Difficulties will, however, arise when the program is faced with a hole in 

terms of which all of the edge-neighbouring triangles are missing and no 

vertex-neighbours are present to construct the new edges. It would be 

impossible to reinsert triangles now by using existing vertices of neighbouring 

triangles and it would be up to the program to "guess" what the object actually 

looks like. It would be better in most all cases if the file were re-created or 

resubmitted. 

Figure 10.5: Badly damaged model 

Figure 10.5 shows a damaged model that has not been repaired successfully, 

as several triangles are missing from the middle of the model. This model 

cannot, therefore, exist in the real world and cannot be constructed. (It is 

already difficult interpreting the model from the illustrated image.) Attempting 

to correct the error programmatically will result in disaster, owing to 

insufficient information in the remaining model. Human intervention will 

undoubtedly be required to repair the error. 

Since there is no way to be sure that the file has been corrected, it should be 

inspected after correction to make sure that it does indeed describe the object 

to be built. 
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10.4 Ensuring that each surface normal do indeed point outwards 

The surface normal that accompanies each triangle is used to distinguish the 

outside from the inside of the solid. The direction in which the normal is 

pointing indicates the outside. It is very important that the orientation of each 

triangle be correct and that each normal do indeed point in the right direction. 

The direction of the surface normal is determined by the right-hand rule [10], 

which is nothing but the cross product between any two of the vectors defining 

the triangle. The length of the normal vector always is one [2]. 

Figures 10.4 and 10.6 are illustrative of the correct orientation of triangles, as 

well as of the incorrect orientation that will result in incorrect normal 

calculations. 

a 	 a 

d b 

Correct 

 

Incorrect 

Figure 10.6: Correct and incorrect triangle orientation 

The orientation of a triangle would be correct if each vector were to point in 

the opposite direction of the neighbouring triangle's vector, failing which one 

of the two triangles would have an incorrect orientation that would need to be 

changed. If all but one of the vectors were correctly orientated, then the 

adjacent triangle would most probably be the culprit. 

When the incorrect triangle has been identified, the orientation can easily be 

corrected by changing the order in which the vertices occur in the triangle 
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definition. When the orientation of the triangles is correct, calculating the 

normal of each triangle is simple. This can be done by computing the cross 

product between any two vectors of a given triangle and by dividing each 

component by the vector length to obtain a unit vector. The resulting vector 

would be the normal and would indicate the outside of the model [36]. 

Although the present prototype is aimed at detecting this error successfully, it 

is not geared for the actual correction of this error in the model as yet. 

10.5 Checking against Euler's rule for legal solids 

For any convex polyhedron, the number of vertices and faces together is 

exactly two more than the number of its edges. For V, the number of vertices, 

F, the number of faces and E, the number of edges, this equation would be as 

follows: 

V —E+F=2 

Proof for the above theorem now follows from induction [31]: 

The solid can be viewed as a connected plane graph, say G. We employ 

induction on E. The base case, E = 0, V = 1 and F = 1, clearly satisfies the 

above equation. Assuming that the result be true for all connected plane graphs 

with fewer than E edges, where E 1 and where G is supposed to comprise E 

edges. 

If G were a tree, then V = E + 1 and F = 1 and the desired formula would 

follow. Alternatively, if G were not a tree, then let a be a cycle edge of G and 

consider G - a. The connected plane graph G - a has V vertices, E - 1 edges 

and F - 1 faces, so that, by the inductive hypothesis, V - (E - 1) + (F - 1) = 2, 

which ultimately implies that V — E + F = 2, concluding the proof 
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Figure 10.7: The prism 

On visual inspection, the prism depicted in figure 10.7 is, for example, a legal 

solid (assuming that it is solid and that it does not contain any hollow 

interiors). The figure shows 6 vertices, 8 faces and 12 edges. Utilising Euler's 

formula for legal solids and substituting these values in the left-hand side of 

the formula yields 6 — 12 + 8, which equals 2, satisfying the right-hand side of 

the equation. A model that fails to satisfy this equation might suffer from a 

geometrical defect, which needs to be addressed [2]. 

Since an STL file only comprises a number of triangles, each triangle 

consisting of three vectors and vertices, the task of checking for this rule is 

greatly simplified (although it could be a rather time-consuming one). Care 

must be taken not to count any edge or vertex more than once and duplicated 

triangles should be removed (see section 10.2 before commencing). The ease 

with which an STL file can be checked against Euler's rule of legal solids is a 

great advantage of the format. 

Next, the proper procedure followed by the prototype to check a model against 

this formula: 
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Counting the triangles 

The first step would involve the counting of the triangles present in the file. 

This number represents the number of faces in the solid. If no duplicated 

triangles were uncovered, this step would be greatly simplified. With binary 

STL files, the number of triangles can simply be gleaned from the file, since it 

is listed immediately after the header (the first 80 bytes of the file). 

Counting the edges and vertices 

Lastly, the number of edges and vertices is calculated. Each edge is shared 

between two triangles and each vertex is shared between multiple edges. It is, 

therefore, important not to count the same edge or vertex more than once. 

Substituting and verifying 

After having computed the number of faces, edges and vertices successfully, 

these values can be substituted in Euler's formula to verify that the solid 

would indeed be valid. Should the solid be invalid, the STL file would have to 

be recreated, since integrate knowledge of the environment would be required 

to fix the erroneous model and software might yield unwanted results. The 

defect might also originate from the original CAD model. 

It is important in this respect to note that Euler's rule only obtains to solid 

shapes (any convex polyhedron). This means that a hollow object or any 

model containing an enclosed hole will fail this check. 

Hollow objects are important, however, and have many characteristics that 

could be beneficial in certain applications. Some of these characteristics 

include 

less material to manufacture an object, thereby saving valuable resources 

a great reduction on some LM machines in the time required to build the 

object 

the option to alter the overall weight of the object 
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the option to change the centre of gravity to some extent 

the possibility to allow applications that require an object with a hollow 

interior. 

Unfortunately, LM hardware has been unable to create hollow objects to date. 

All objects containing peninsula structures require supports to enable building, 

which are manually removed after the object has been completed. It is 

impossible, therefore, to remove the supports enclosed by an object. 

By splitting the model into several connectable pieces, however, a hollow 

model can be constructed. Each separate piece must meet Euler's condition 

and, after all the parts have been manufactured, the model can be assembled. 

10.6 Summary 

To prevent the LM hardware from constructing an erroneous model, an STL 

file has to be carefully checked for errors before building commences. 

Geometrical errors occur on the object itself and can be classified into the 

following groups: 

Removing duplicated triangles. 

The vertex-to-vertex rule. 

Inserting a single triangle. 

Inserting triangles by introducing new edges from existing vertices. 

Inserting new "guesstimated" vertices to create new edges and triangles. 

Triangle orientation and normal calculation. 

Euler's rule for legal solids. 

Scanning the file before the building process commences will ensure that no 

time or material will be lost due to the building of a defective model. Although 

most critical errors can readily be detected, correcting them cannot always be 

effected successfully and may require the file to be recreated or retransmitted. 
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Checking the file against building constraints 

11.1 Introduction 

Since the first LM device has been designed and implemented, the accuracy 

rating and time required to build a model have improved dramatically with 

every new model. Many new LM methods have been propounded and 

implemented successfully. 

Each of these technologies, however, represents a set of new constraints 

against the actual STL file. A model designed to be built by one machine may 

not necessarily be successful on another. Depending on the actual hardware 

used, an STL file should be carefully analysed to ensure that it could be built 

on the specific LM hardware available [37]. 

This verification process can be divided into the following steps: 

Ensuring that the coordinates of the solid fall within range. 

Checking and possibly changing the object orientation. 

Ensuring that the file be compatible with the hardware. 

Before the object can be built, these constraints must hold. In some cases, the 

file can be manipulated in such a way that the model can be manufactured, but 

in other cases, human intervention is required. These aspects will now be 

discussed in more detail. 

11.2 Ensuring that the coordinates of the solid fall within range 

This step ensures that the actual position of the model in the file is such that 

the model can be constructed successfully. Various factors can affect this 

constraint, including the size of the model and the orientation of the part. 

Ensuring that the part fall within the specified bounds can, in turn, be sub-

divided into the following three steps or factors: 

88 



Checking the file against building constraints 

11.2.1 The size of the model 

Each LM device has an upper limit regarding the size of the object that can be 

constructed. Before the building phase commences, the size of the model 

should be checked to ensure that the model would fit into the building area. If 

the model were found to be too big, one of two steps must be taken before 

building is attempted [10]: 

a) Resizing the model 

In some cases, the size of the model can be changed slightly to make it fit into 

the building area [10]. This constitutes a useful solution for models that are 

merely used for visualisation purposes. Changing the size of the model has the 

added advantages of curtailing the building time in which to construct the 

object and reducing the material and resources used. 

Great care should be taken, however, when resizing a model, as certain parts 

of the model may become too small successfully to manufacture, with the 

result that the final model would be unsatisfactory. In such cases, the model 

should be revised or split into various sub-parts, which can be re-assembled 

afterwards. This step will be discussed in detail in the next section. 

Advantages of resizing: 

It allows the manufacturing of large models on machines with a small 

building area. 

It does not require any additional post-building processing. 

It curtails overall building time and reduces materials and resources used 

to construct the object. 

Disadvantages of resizing: 

The model no longer fits its original design size. 

Large designs containing precision areas may lose detail after having been 

resized. 
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Resizing may cause vertices already in close proximity to each other to 

coincide, which will, in turn, result in errors. 

Resizing precludes the orientation of individual areas. 

b) Splitting the model into two or more connectable parts 

For some applications, especially for precision-critical parts, resizing the 

model is not ideal. In these cases, the only solution would be to split the part 

into two or more connectable parts, which parts can then be constructed 

individually by the hardware and assembled afterwards [10]. 

Although not always the ideal solution, splitting the object often is the most 

practical solution. If the manufacturer had access to more than one LM device, 

the parts could even be manufactured concurrently on each device, thereby 

reducing the build time of the entire object even further. By splitting the model 

into various parts, each part can also be rotated separately to maximise the 

accuracy rating of each individual part (the manner in and the extent to which 

the orientation of the part can affect the accuracy rating will be discussed 

shortly). 

Figure 11.1: Robot leg after assembly [4] 
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When assembling the parts, the touching surfaces may need to be sanded to 

ensure that the parts fit neatly into each other. This step could be critical and 

care must be taken to ensure that none of the detail of the model be lost while 

the parts are being assembled. 

In some applications, such as the robot leg shown in figure 11.1, the model 

consists of different materials and contains moveable parts, as well as 

electronic circuits. In such cases, it would be imperative separately to 

construct each part of the model. It is evident, therefore, that the splitting of an 

object into multiple parts constitutes a solution not only to size-related 

problems, but also to scenarios where electronic circuitry and various building 

materials are used in the same model. 

Advantages of splitting: 

The model still fits its original design size. 

No detail loss to the extent of that in a resized model. 

Orientation of individual parts can be optimised. 

Parts can be constructed from various materials. 

Prototypes containing moveable parts can be constructed. 

Splitting allows for the manufacturing of complex, multisubstance models 

(see figure 11.1). 

Disadvantages of splitting: 

Precise post-processing is vital when assembling the various parts. 

Splitting may prolong overall build time and may require more material 

(this is especially true if only one LM device were available). 

Splitting requires more calculations on the STL file(s). 

Not all objects can be successfully split into multiple components without 

complicating post-processing. 
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11.2.2 Distance from the table 

The model should be elevated a certain distance above the building table by 

adding redundant building material between the table and the bottom of the 

model. These few layers act as a bridge, with the following purposes [10]: 

The layers serve to bind the object to the table. 

The layers facilitate part removal. 

Without this bridge, the model could well drift away while being built. If, on 

the other hand, the model were bound to the table directly, the model would no 

doubt be damaged when removed afterwards. It is clear, therefore, that such 

bridge should be added to the bottom of the model. 

The bridge is a physical part of the model and is added to the STL file during 

the design phase. Care should be taken that the model remain within the 

coordinate bounds of the hardware after elevation of the object. 

11.2.3 Part orientation with respect to coordinate ranges 

Changing the part orientation may also allow the object to fit in the build area, 

especially in cases where the dimension of the building area is non-

symmetrical. A model that is too wide or too long can be rotated along the 

appropriate axes by a number of degrees, thereby ensuring that it would fit 

into the designated area [38]. 

This must be done with the utmost care, however, since the orientation of the 

model may impact on the building time and the accuracy rating of the object. 

This step will be discussed next. 
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11.3 Checking and possibly changing the object orientation 

The orientation of a part has a marked impact on various aspects of the model, 

including the [38] 

overall accuracy rating of the model 

amount of building material used 

time required to complete the model [38]. 

Before a model is built, these parameters can be optimised by slightly 

changing the orientation of the part [2]. 

11.3.1 Part precision 

In figure 2.4, the stair-stepping effect was illustrated when an arc is created by 

LM hardware. This effect can be greatly diminished by changing the part in 

such a way that all triangles lie either horizontally or vertically. This is, 

naturally, not always possible for all triangles. An optimum orientation will be 

one in terms of which as few as possible triangles are lying at a gradient, with 

the part still fitting inside the building area. 

(i) Cube with optimum (a) Cube with non-optimum 
orientation 	 orientation 

Figure 11.2: Orientation of a simple cube 

Figure 11.2 (i) shows a cube that has been optimally orientated, with all its 

facets either horizontally or vertically aligned. The cube next to it, however, 

has no vertically or horizontally aligned facets and will suffer precision loss 
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owing to the stair-stepping effect when it is built. (It will, in fact, require 

support structures in order to be built!) 

11.3.2 Amount of building material used 

The amount of building material used in the manufacturing of a model differs 

from machine to machine and changes with each new orientation of the model. 

Certain technologies, such as stereolithography, require structural support to 

prevent the object from drifting away [1]. By changing the orientation of the 

part, the support required by the model can be greatly diminished, optimising 

the post-processing and also requiring less building material to complete the 

model [2]. 

In case of a technology such as Layered Object Manufacturing (LOM), in 

terms of which no support is explicitly included in the model design, the 

orientation of the model can also influence the total amount of material used. 

Here, the height of the object is directly proportional to the material utilised 

and can, therefore, be minimised by orientating the object to its minimum 

height. 

11.3.3 Time to completion 

It becomes evident, then, that if the material required to complete a model 

were to depend on the orientation of the part, it could also influence the time it 

takes to complete the model. Usually, the more material used in the model, the 

longer the build time [2]. 

In technologies such as stereolithography and FDM, orientating the model 

optimally can reduce the degree of post-processing required to remove 

supports from the object. The creation of the said supports during the actual 

building process will also add to the time it takes to complete the model. 
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In terms of technologies such as LOM, each layer of paper placed on top of 

the unfinished model takes time to cut and hatch and by maintaining an 

optimum height, far less building time will be required. 

11.4 Ensuring that the file be compatible with the hardware 

The last aspect that needs to be verified is whether or not the model can 

actually be built in the hardware available, since no single model could be 

built on all types of Layered Manufacturing equipment. 

The size of the object should be verified to make sure that it would fit' inside 

the designated building area. This issue has been addressed in detail earlier in 

this chapter. Some systems require support for ceilings and overhangs and if 

such support were lacking, the building of the model would prove impossible. 

The opposite, however, is also true, with the result that if a technology such as 

LOM were used to create the model, an object with imbedded support 

structures would needlessly lengthen the post-processing of the final model. 

Secondly, the accuracy rating of the system should be checked to determine if 

the model could be successfully built and if it would, in fact, meet the 

precision requirements in question. Some technologies, such as LOM, are 

known to be incapable of rendering highly detailed models [8]. 

As some types of hardware are limited to specific ranges of materials, it is 

vital, too, to verify whether the material available would allow the building of 

the prototype. 

11.5 Summary 

After the file has been checked against errors, the model should also be 

verified to ensure that it be compatible with the available hardware. This is 

very important, since not all LM machines are fully compatible. 
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The following aspects should be carefully examined during this validation 

process: 

Object coordinates should fall within range. 

Object orientation should be optimally configured. 

The object should be compatible with the available hardware. 

After the model has been verified, its building can finally commence. The next 

chapter will be used to elaborate on the prototype propounded in the present 

research study. 
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Object loader 
ASCII and binary files. 
Makes use of parsing module. 
Error reporting on loading 
errors. 

GUI 
Menu- and toolbar-driven. 
Object manipulation. 
Intuitive yet powerful. 

Object visualisation 
Basic visualisation of object, 
with advanced error reporting. 
OpenGL standard. 

• 

A 1— 

Verification module 
Checks 

ASCII file syntax 
for duplicated triangles 
vertex-to-vertex rule 
surface normal's direction 
Euler's rule for legal solids. 

Interacts with Object 
Visualisation Module for 
advanced error reporting. 

Correction module 
Corrects 

duplicated triangles 
vertex-to-vertex rule. 

Threshold property allows 
dynamic operation. 

• 

Object 
Reordered in vertex, 
vector and triangle 
lists for verification 
and correction. 
Support for rotation 
and translation. 

The prototype: STLComplete 

12.1 Introduction 

STLComplete is a prototype developed for the Intel chipset, which is able to 

facilitate the visualisation process and, more importantly, the verification and 

fixing of both ASCII and binary STL files. The emphasis will be on those 

aspects that have been neglected in applications currently available. 

Once again, the layout of the system, this time in more detail: 

Figure 12.1: Detailed layout of the prototype 
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While chapter 8 was used to provide a brief introduction to the program, this 

chapter will be devoted to the algorithms used in the prototype, as well as to a 

more technical explanation on the workings of the program. The author will, 

in so doing, proceed on the assumption that the reader has acquired the 

necessary programming skills. 

12.2 Syntax checking 

The syntax-checking module of the program consists of two important parts 

that work in conjunction to check the syntax of the file. Together, these two 

parts, namely the scanner and the parser, form the basis of the syntax check 

[33]. 

12.2.1 The scanner 

As was discussed in chapter 9, the scanner is responsible for removing any 

non-printable characters in the file. The basic layout of the scanner, as 

implemented in STLComplete, will be discussed here. For this part of the 

program, the following sets have been defined: 

digit = {0, 1, 2, ..., 9} 

whiteSpace = {non-printable characters such as spaces, tabs and line feeds} 

reserved = {"solid", "facet", "normal", "outer", "loop", "vertex", "endloop", 

"endfacet", "endsolid", "end"} 

simpleOperator = 	-} 

procedure initialise(fileName of type string) 

procedure shutDowit() 

The foregoing two procedures are responsible for initialising the scanner 

module. The initialise() function is called before scanning commences. 

This function opens and sets up the STL file and the counters necessary to 

keep track of the current position in the file, as well as of the next 

character to be read. 
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The shutDown0 procedure is called after the scanning has been 

completed, in terms of which resources are released to the system. It also 

closes the STL file and releases the file handle to the operating system. 

function getNextCharacter() of type character 

This function starts from the first character in the file and returns the next 

character present in it. Once the end of the file has been reached, any 

further call will return the eof ("end of file") character, indicating that the 

end of the file has been reached. 

This is the only function in the entire scanning module that has any direct 

interaction with the STL file. Any optimisations that are directly linked to 

file access should be effected here. This includes maintaining a buffer to 

read a group of characters at once, instead of physically reading a single 

character with every consecutive call. 

function getNextWord() of type string 

This function mainly utilises the getNextCharacter() function and makes a 

number of successive calls to it. All characters returned are concatenated 

until a whiteSpace character is received. This whiteSpace character is then 

ignored by the getNextWord() function and the current word is returned to 

the calling function or procedure. (Any leading whiteSpace characters are 

also ignored and are not added to the word.) 

function processNumber(testString of type string) of type boolean 

When the first character in the string returned by getNextWord0 is a digit 

or an operator, this function is called to determine the likelihood of the 

string being a number. The BNF notation of a number (which is widely 

used in the computer industry) can be written as follows: 

scalefactor = ("e" I "E") simpleOperator {digit} 

number = [simpleOperator] {digit} ["." {digit}] [scalefactor] 
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If the function were to identify the symbol as being a number, the function 

would return TRUE, failing which the function returns FALSE. The foregoing 

BNF notation is strictly adhered to during this procedure. 

The following examples will clarify the difference between legal and illegal 

numbers: 

Table 12.1: Examples of legal and illegal numbers in E-notation 

Legal numbers Illegal numbers 

80.789 a9800.1 

+27.67E-5 E56+5 

-0.9999E+0 90E5 

0.9212333E+6 0.9333+ 

function getNextSymbolO of type symbol 

The foregoing functions are responsible for retrieving and verifying 

characters, words and numbers from the file. The present function uses 

these functions and identifies symbols from the file, categorising each and 

returning them to the parser. 

The function commences by making a call to the getNextWordO function. 

If the word returned were a reserved word, the corresponding symbol 

would be returned by this function. If the first character of the word were 

a simpleOperator or a digit, the processNumber0 function would be called 

with the word as a parameter to determine if the word were, in fact, a 

number. The process is repeated until the end of the file is reached. When 

this occurs, the scanner will return the eof ("end of file") symbol. 

The scanner will return a new symbol with every consecutive call to the 

getNextSymbol0 function. It should be noted in this respect that the parser 

is built on top of the scanner and that it utilises the functions it contains. 
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12.2.2 The parser 

This module now checks the concord of each identified reserved word and the 

correct use thereof. The main program also interacts with the parser by calling 

public functions from it. No direct interaction occurs between the main 

program and the scanner. 

function foundVertexNormal0 of type errorCode 

This function is called when a vector or coordinate is expected, consisting 

of three consecutive numbers. 

The function calls the getNextSymbol0 function and checks if the returned 

symbol were a number. If this were not the case, an error would be razed, 

failing which the process would be repeated until three numbers have been 

successfully identified. 

function foundFacet0 of type errorCode 

This function is called when the definition of a facet is expected in the 

file. It utilises the foundVertexNormal0 function (defined previously) to 

analyse each facet of the model. 

The function commences by ensuring that the next symbol be the 

"NORMAL" symbol. It then checks that the three numbers describing the 

normal are indeed correct. This is done by calling the 

foundVertexNormal0 function. 

Next, the program verifies the presence of the "OUTER" and "LOOP" 

reserved words respectively. The next step would be to verify the three 

occurrences of the reserved word "VERTEX", each followed by a vector, 

again using the foundVertexNormal0 function. Lastly, the delimiters 

"ENDLOOP" and "ENDFACET" are verified respectively. 
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Apart from checking each facet, this function also effects the loading of a 

text STL file into memory, if and when required. 

function foundSolid() of type errorCode 

The foundSolid0 function calls the foundFacet0 function for every facet 

described in the model. 

This function commences by recognising the identifier that may contain a 

description of the file. This is followed by the triangles that make up the 

object. These are handled by the foundFaceto function and are called 

accordingly. 

Once all the triangles have been identified, the function checks for the 

presence of the "ENDSOLID" delimiter. 

function checkSyntarailename of type string) of type errorCode 

This lies at the heart of the parser module. This function gets called from 

the main part of the system and accepts the name of the file to be checked 

against syntax errors. 

It is responsible for initialising the scanner and for returning system 

resources after the checking has been completed, making use of the 

initialise° and shutdown° functions respectively. 

It identifies the first delimiter of the file, namely "SOLID", and then calls 

the foundSolid0 function. This function can easily be extended to support 

multiple solids within the same STL file, should the need arise to do so. 

After the checking has been completed, the checkSyntax° function returns 

an error code, indicating whether or not the syntax check has been 

successful. A set of pre-defined error codes will indicate what type of 

error has occurred and where exactly. 
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The next section will be used to take a closer look at the module that effects 

the verification and correction of geometrical errors in STL files. 

12.3 Geometrical checking 

After an ASCII STL file has been verified free of structural errors, the file is 

verified against geometrical errors. (Binary STL files, on the other hand, do 

not require any structural checking.) Although greatly simplified, the 

following discussion will hopefully elucidate the basic algorithm: 

The geometrical engine makes use of a set of lists, which enables the program 

to restructure the file into a more workable form. These lists are declared as 

classes and are accessed like normal variables. They are as follows: 

TTriangleList, which is a list of triangles containing three vertices. 

TVectorList, a list of vectors, each with a starting and an ending vertex. 

TVertexList, which is a list of vertices, each with an x, y and z component. 

Each of the above classes contains numerous member functions that assist in 

the management of the list. Once the STL file has been ordered in the above 

structure, specific algorithms can be applied utilising these lists in order to 

check for geometrical anomalies. 

Should an error be uncovered in the object, all changes would be wrought 

directly to the list either by removing triangles or by generating new ones. 

Although some of the lists may be regenerated in the process, no changes are 

wrought to the actual STL file itself. 

After the checking has been completed and the necessary modifications have 

been effected to the lists, the program generates a new STL file from the 

triangle list (kept in TTriangleList, as shown above). The only information 

directly used from the original STL file is the identification string found in the 

beginning of both the ASCII and binary STL files. 
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function isEqual(a, b of type object) of type integer 

As this function is used in several of the geometrical tests, it will be 

discussed separately. The isEqual0 function accepts triangles, vectors or 

vertices as parameters (although both parameters have to be of the same 

type). 

The function returns an integer value, indicating whether or not the two 

objects are equal. A value of -1 indicates a difference in orientation with 

triangles and a difference in direction with vectors. (The value -1 has no 

meaning when vertices are compared and is, therefore, never returned.) If 

the two objects were found to be equal, the function would return a 1, 

failing which a 0 would be returned. 

The function also includes a pre-defined threshold for each object type, so 

that vertices within this radius are deemed to be the same. 

12.3.1 Removing duplicated triangles 

The removal of duplicated triangles is a special case of a vertex-to-vertex rule 

violation, but it is separated to improve performance. The manner in which 

this error is fixed also is unique, since it does not require the insertion of 

triangles, but rather the removal of duplicated ones. The checking and 

correction of the file against this error is effectuated in terms of two separate 

functions. 

function chkDupTriangles(T, E of type TTriangleList) of type boolean 

This procedure is responsible for taking the entire set of triangles, T, and 

for returning a subset of this list, E, which, in turn, contains a list of all the 

duplicated triangles. 

This checking procedure is written in such a way that the number of 

entries in E of a specific triangle is exactly one fewer than the number of 

instances of the same triangle in T. This means that if the same triangle 
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existed in T three times, it would only be listed in E twice (that is, two 

instances need to be removed). 

The workings of this function is elementary yet effective. The program 

starts off by clearing and initialising the E list. Next, two indexes are 

defined, say i and j. 

The first index, i, starts at triangle 1 and ends at triangle n-1 (for n 

triangles). The second index, j, is initialised to the triangle following the 

first index, therefore, i+1 and ends with j = n. The triangles at position i 

and j are compared. If found to be equal according to the isEqual() 

function, one instance of the triangle is added to the E list (for practical 

reasons, the triangle in position j is added) and the inside loop is 

terminated. The value of i is incremented and the process is repeated until 

both i = n + 1 and j = n. 

After having effected the latter algorithm, the E list will contain a number 

of triangles that must all be removed from the T list. 

function fvcDupTri(1; E of type TTriangleList) of type boolean 

This function uses the original T list, as well as the list of duplicated 

triangles, the E list. 

The function simply starts off at the first triangle in E and promptly 

removes every triangle defined in this list from T. Since each triangle in E 

also stores the original pointer value of the corresponding triangle in T as 

a reference, the actual removal of triangles can be done very effectively. 

12.3.2 Checking the object against the vertex-to-vertex rule 

Compliance with the vertex-to-vertex rule is often violated and must, 

therefore, be carefully checked. Once again, the procedure consists of two 

separate functions, with the first function being used for the detection of the 
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error and the second function being performed to fix any errors uncovered in 

the object. 

Although the first function serves to detect any vector not correctly shared, the 

fixing function addresses only those errors mainly caused by the omission of a 

single triangle. The function in terms of which to correct an object by inserting 

new edges and/or vertices into it has not been implemented in the present 

prototype. 

function checkV2V(T, E of type TVectorList) of type boolean 

This function takes the list of vectors, T (which has been compiled from 

the original set of triangles), and compiles a list of all vectors not correctly 

shared. These vectors are stored in the E list. 

The function starts by initialising the E list and goes on to create an index 

that is initialised to the first vector in T. The program then searches for 

another vector in the object that describes the same edge. During this 

check, the direction of the vectors should be ignored. The program repeats 

this step for every vector in the list. 

The same vector (vectors with identical starting and ending vertices) 

should not be found in two different triangles. Two vectors sharing the 

same edge correctly should have their starting and ending vertices 

reversed. 

If the edge were not successfully shared between two triangles, the vector 

would be placed in the E list. Incorrectly orientated vectors will be 

ignored from here on and will not be added to the E list. 
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function isHole(a, b, c of type TVector, T of type TTriangle) of type boolean 

In terms of this function, three separate vectors are compared to determine 

if they formed a triangle. If this were the case, the procedure would also 

be used to compute the new triangle and to calculate the corresponding 

normal. 

The vectors of the new triangle are created in reverse order to ensure that 

the normal do indeed point in the right direction. 

function fixSimpleHoles(T of type TTriangleList, 

E of type TVectorList) of type boolean 

This function takes the original list of triangles, T, as well as the set of 

erroneous vectors, E, as arguments. 

The function calls the isHole() function with sets of three vectors to 

determine if the three vectors formed a triangle. If a hole were found, this 

function would be used to take the triangle returned by the isHole0 

function and to add it to the T list. The three vectors are then removed 

from the E list. This process is perpetuated until E is empty or until it 

contains vectors that do not form triangles. Any vectors left over in E are 

deemed to be indicative of the fact that the file needs to be retransmitted 

and that it cannot be successfully corrected by merely following the 

current correction scheme. 

This procedure can be optimised by using a hash table to look for vectors 

within a specific range. By so doing, the need to search through the entire 

list to locate a specific vector is obviated. 

The prototype only fills holes that require the insertion of a single triangle. 

A more complex algorithm can be implemented by searching for fully 

connected closed polygons and by then tessellating these polygons 

separately. Although this approach will fill the majority of holes, the 
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corrected model may not be what the designer had in mind at first. The 

program always follows the shortest route by inserting the smallest 

number of triangles needed to end up with a geometrically correct model. 

12.3.3 Checking triangle orientation 

Checking the orientation of each triangle is very similar to checking the object 

against the vertex-to-vertex rule. In terms of the latter check, we merely verify 

that each edge is shared between two triangles. With this test, however, we 

also verify that every triangle correctly follows the right-hand rule and we 

ensure this by checking that no two triangles have an identical vector, sharing 

the same edge. 

function checkTriOrientation(T, E of type TVectorList) of type boolean 

As with the previous procedure, this procedure takes the original list of 

vectors, as well as an empty list, which will be used to store these vectors 

that have been orientated incorrectly. 

The program starts off by initialising the E list and the required indexes to 

traverse through the T list. When two vectors from two different triangles 

are found to be identical, both such vectors are added to the list. It should 

be noted in this respect, though, that each stored vector should contain a 

reference to the triangle to which it belongs, since this information will be 

required in order to correct the orientation. 

After the entire list has been traversed, the E list will contain a list of 

vectors that could be incorrectly orientated. Unfortunately, not all of these 

vectors will have a wrong orientation, with the result that the correction of 

all instances of this error is no mean feat. 

function checkEulerRule(T of type TTriangleList) of type boolean 

Checking the object against Euler's rule for legal solids is a test seldomly 

included in software packages. Any object, however, has to pass this rule 
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in order to be successfully built on any LM machine. If an object were to 

fail this check, something would invariably be wrong and human 

intervention would be required. This error would not necessarily be 

uncovered by any of the previous checks. 

The procedure is provided with a list of the triangles in the object, from 

where the following is carefully calculated: 

The number of faces 

The number of faces, in other words, the number of triangles in the object, 

is computed next. We can now proceed on the assumption that there are 

no more duplicated triangles (especially since all duplicated triangles have 

been removed with the first check already) and that a mere counting of the 

triangles in the T list will suffice. 

The number of edges 

The number of edges is computed next. Since the same edge is shared 

between multiple triangles, the procedure will first verify that the current 

vector has not been added before incrementing the counter. 

The number of vertices 

The number of vertices is computed in the same manner as the number of 

edges, taking care that no vertex is counted twice. 

After the number of faces, edges and vertices has been computed, the 

procedure will calculate the value according to Euler's formula and report 

back to the user. 

12.4 The interface 

One of the principal aims of this project was to create an intuitive and user-

friendly interface that will allow the user the necessary flexibility and 

adaptability when inspecting a model. 
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When the program is initially loaded into memory, the user is presented with a 

blank screen and a menu, from where a file can be chosen to be loaded. As 

was stated before, STLComplete supports both the ASCII (or text) and binary 

STL formats. 

The process in terms of which a file is loaded, is graphically represented in 

figure 12.2 below: 
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Figure 12.2: Selecting an STL file to load 

Once a file has been selected and loaded into memory, the program renders it 

on the screen. Once rendered, the user can rotate, translate and scale the object 

to meet his/her needs. This flexibility allows the user visually to verify the 

object to some extent. The user can also select that the object be viewed as a 

solid, as a wireframe or as a set of vertices. The former two options are 

graphically depicted in figures 12.3a and 12.3b respectively. 
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Figure 12.3a: Viewing the model as a solid 

S I L Complete 

Figure 12.3b: Viewing the model as a wireframe 
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Next, the part can be checked for anomalies either by selecting the "validate 

file" option from the menu or by selecting the option from the toolbar. A 

progress indicator at the bottom of the screen will show the progress made 

with the testing function. Once the checking procedure has been completed, 

the object is rendered again and errors in the object are indicated by a 

spectrum of colours indicating the various errors in the object. Duplicated 

triangles will be marked red, a violation of the vertex-to-vertex rule will 

appear green and all orientation errors will show up blue. Following, a graphic 

representation of a badly damaged file, as depicted in figure 12.4, after 

checking has been completed: 
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Figure 12.4: A badly damaged model, with errors showing up in various colours 

As depicted in figure 12.4, a textual error report is also generated during the 

verification process, describing the uncovered anomalies in detail. 

The user can exercise one of three options during the validation process. 

He/She can opt merely to check the file, ask for a prompt on each error or 

require the program to check and correct the file automatically. These options 
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can be exercised by selecting "options" under the menu or by pressing the 

corresponding button on the toolbar. 

The user will then be presented with a screen, which will allow the threshold 

to be changed and the selection of the required error-checking mode. This is 

demonstrated in figure 12.5a. Here, the program has loaded a sphere with 

obvious flaws. The user selects the "automatic repair" option, presses the 

"okay" button and selects "validate file" from the menu. As was depicted in 

figure 12.5b, the object has been successfully fixed and can now be built by 

the appropriate hardware. 
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Figure 12.5a: Fixing the model 
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Figure 12.5b: Revised model 

12.5 Summary 

This chapter was devoted to an overview on the project propounded in this 

research study. Some aspects, such as visualisation and most of the error 

handling, have, however, been dealt with in other software packages. 

Although some of the issues addressed in STLComplete are new, they have 

been shown to be important and their integration with certain software 

packages has been shown both possible and practicable. These issues include 

the checking of the model for duplicated triangles 

the checking of the object against Euler's rule for legal solids 

error visualisation by means of certain colour codes. 
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Many other software packages have also been analysed for the purposes of the 

present study, however, and the next chapter will be devoted to a brief 

discussion on the application of each of these packages. 
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Software comparison 

13.1 Introduction 

This section of the dissertation will be used to review several software 

packages that are currently being used in the industry to manipulate STL files 

and to correct errors as discussed in previous chapters. Most of the packages to 

be discussed for this purpose support numerous file formats, in addition to the 

STL format. 

In this discussion, emphasis will fall on the intelligent side of each software 

package, which mainly hinges upon its ability to uncover and correct errors in 

a solid. 

13.2 STLview version 7.0a 

STLview is a Microsoft Windows-based program that allows one to analyse, 

fix and embed or link 3D solid models to documents. Designed and coded by 

Igor G. Tebelev, it supports many file formats and allows the user to import 

and export a model from and to any other format of his/her choice. The 

package is released as shareware and is available for downloading from 

various sites on the Internet. Although some of the features have been 

disabled, they will be enabled on registration of the package [39]. 

13.2.1 System requirements 

The minimum system requirements, as stated in the documentation of the 

product, are an IBM PC AT486 or higher processor, with an 8-bit colour depth 

(256 colours) display and a resolution of 640x480 running Microsoft Windows 

95/98 or Windows NT [39]. 

After evaluation, it became evident that a fast Pentium-based system would be 

appreciated when some of the more processing-intensive features of the 

product are utilised. This includes the "playing around" option and the ability 

to fix errors in the solid [39]. 
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Figure 13.1: STLview interface (SDI option) 

13.2.2 Program features 

Interface type 

As depicted in figure 13.1, the interface is highly interactive and allows real-

time rotation, scaling and translation in any direction that the user requires. An 

option to zoom into the solid is also supported, which allows the user more 

closely to inspect the finer detail of the model [39]. 

The user is presented with a choice of two different kinds of interfaces, 

namely a Single Document Interface (an SDI) and an interface that supports a 

pop-up menu system [39]. 

File types supported for import 

ASCII and binary STL format 

3DS format 
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c) File types supported for export 

STL format 

DXF format 

IGES format 

3DS format 

d) Error correction supported 

Fixing of gaps and topologies of objects 

Correcting triangle orientation 

e) Salient and added features 

Measuring of the volume and surface area of solids 

Merging of a number of solids 

Boolean operations on solids 

Design protection in embedded documents 

13.3 Materialise Magics RP 4.3 

Materialise Magics RP 4.3 is a professional STL file verification and a 

correcting tool. Its basic interface layout is depicted in figure 13.2 [40]. 

This software package has been released by Materialise and is useful for 

general manipulation and error correcting of STL files. The package is 

released as shareware and requires registration after an evaluation period for 

further use [40]. 

13.3.1 System requirements 

The documentation supplied with the product suggests an IBM Pentium-based 

CPU with 32 Mb of primary memory running Microsoft Windows 95/98 or 

Windows NT as an operating system [40]. 
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Although this software supports real time rotation and translation of objects, a 

more powerful system will be necessary in more complex solids for smooth 

operation [40]. 
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Figure 13.2: Materialise Magics RP 4.3 interface 

13.3.2 Program features 

a) Interface type 

The product utilises a well-designed and intuitive user interface that makes it 

easy to manoeuvre between the functions that the package offers [40]. 

A drop-down menu lists all the tools that the user may require. A handy 

toolbar is situated beneath the menu for more ready access to commands used 

more often. Objects are loaded and placed on a canvas, from where the user 

can rotate and translate them as required [40]. 
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b) File types supported for import 

ASCII and STL format 

IGES format 

VDA format 

DXF format 

c) File types supported for export 

ASCII and binary STL format 

VRML format 

DXF format 

d) Error correction supported 

Filling holes and stitching 

Correcting the orientation of normals 

Manual error correction 

e) Salient and added features 

Calculating building time on LM equipment 

Inserting of simple pre-made objects 

Distance/Radius/Arc and angle calculation 

Visual error report 

Slicing with visual preview 

13.4 STeaL version 1.2 

STeaL is a very simple STL utility that is distributed free of charge from the 

Internet. Although the program does not support any error correction, it is 

useful for the visualisation of many 3D formats, as well as for exporting 

between these formats [41]. 

13.4.1 System requirements 

The STeaL software does not include any system specification with the 

software and it is up to the user to discover the optimal system configuration 

120 



Software comparison 

required by the package. The software makes use of Microsoft's DirectX 

library and it must, therefore, be installed on the system [41]. 

The program does not make use of intensive operations and any Pentium-

based system with hardware-accelerated video capabilities should suffice in 

the use of this application. Even an 80486-class machine would be enough for 

small, simple models [41]. 

5.4. brain-goats° - STeaL 

fie Vie delp 

r 

Ready 	  

Figure 13.3: STeaL by CIP software 

141MAIEZDC 

13.4.2 Program features 

a) Interface type 

An intuitive and easy-to-use interface is supplied to the user. The user conveys 

commands to the system through a toolbar at the top of the screen or by using 

the menu system. The image is displayed in the centre of the screen, from 

where it can be rotated in any direction or scaled to the required size [41]. 
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b) File types supported for import 

ASCII and binary STL 

TRI format 

OBJ format 

RAW format 

LWO Lightwave format (with colour support) 

3DS format 

POV format 

DXF format 

NFF format 

c) File types supported for export 

ASCII and binary STL 

TRI format 

OBJ format 

RAW format 

VRML 1.0 format 

d) Error correction supported 

This software is used as a visualisation tool and does not support any error 

correction. 

e) Salient and added features 

The program includes special rendering options, which can improve the 

visualisation of the model. The application also supports numerous file 

formats that are most useful for changing a file into an STL file from other 

sources. 

13.5 Summary 

This chapter will be concluded with a brief comparison between the software 

discussed in this chapter and STLComplete, the prototype propounded in this 

dissertation. 
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Table 13.1: Software comparison 

STLview Magics RP STeaL STLComplete 

Visual interface Yes Yes Yes Yes 

Error reporting as 

text file No No No Yes 

Visual error 

reporting No No No Yes 

Loading and saving 

of STL files No Yes Yes Yes 

Syntax evaluation No No No Yes 

Duplicated-triangle 

checking No No No Yes 

Duplicated-triangle 

correcting No 

. 

No No Yes 

Vertex-to-vertex 

rule checking Yes Yes No Yes 

Vertex-to-vertex 

rule correcting Yes Yes No Yes 

Checking triangle 

orientation Yes Yes No Yes 

Correcting triangle 

orientation Yes Yes No No 

Checking Euler's 

rule for legal solids No No No Yes 

The problems associated with the STL file format have prompted the 

development of software capable of solving them. Not all errors can be 

successfully fixed, through, and many of the corrections made will yield a 

solid with imprecise and unsatisfactory results. In such cases, the file must be 

created from scratch and tested again to ensure that it is indeed error-free. 
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14.1 Introduction 

Since the design and implementation of the first LM device, the precision and 

time required to build a model have improved exponentially with every new 

model over the past few years. Many new methods for LM have also been 

propounded and successfully implemented during this period. Although each 

of these methods has advantages and disadvantages, the disadvantages are 

slowly being eradicated, thanks to continued research in this realm. 

With telemanufacturing, the power of the Internet is truly being harnessed 

fully. Not only are more companies and individuals benefitting from this 

technology, but LM machines are also being used optimally, and have since 

become a source of revenue for many prototyping bureaux. 

An important issue to be addressed in the telemanufacturing arena is to find an 

acceptable standard in terms of which to communicate objects to the bureau. 

The STL file standard is currently one of the most widely used. Unfortunately, 

the standard is being hampered by a number of serious flaws, which need to be 

rectified. The present dissertation constitutes an attempt to investigate these 

flaws and possibly to find solutions to them. 

14.2 Correcting STL files 

The most widely used file format in telemanufacturing today is that of the STL 

file format. Even though the files generated by this format are bulky and 

fraught with errors, the format is remarkably simple, with the result that it has 

become the de facto standard of telemanufacturing. 

Verifying an STL file is commonplace in many telemanufacturing facilities as 

a precaution before building a model. Since the format is relatively new and 

many software packages are still in their infancy as far as development is 

concerned, many models are still being rejected owing to defects and flaws. 
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Fixing a file, instead of requesting that the client resubmit it, will save 

valuable time and resources. Oft-times, a triangle is merely incorrectly 

orientated or has been left out altogether, which would be easy to remedy. In 

case of some errors, however, the corrected file should be verified with the 

client to ensure that it is, in fact, the model the user requires. 

14.3 Practicability of the STL format 

The question still remains, however, whether a format should be used that is 

all that susceptible to errors. It is the opinion of the author that this particular 

format should indeed be shelved with all the other outdated formats. Although 

the simplicity of the format makes it an attractive option for some applications, 

the overheads it engenders owing to the verification and correcting phases 

required does not justify its few advantages. 

For a truly effective telemanufacturing infrastructure, a file format is required 

that would meet a certain set of requirements. On closer investigation, it has 

become evident that the STL format fails to meet the bulk of these 

requirements. 

The criteria for a good file format include the following: 

Flexibility 

The format should be able to store any type of geometrical occurrence with 

ease, including spherical shapes and curvatures. The STL format adopts a 

triangle approach and although this is highly effective for describing flat 

surfaces, curvatures pose a serious problem [3]. 

Geometry intact 

The format should also keep the geometry of the object intact. This means that 

the object should be easily scaled, without any loss of precision. Once a model 

has been described as a set of triangles (such as by the STL format), it loses all 

its geometrical information [2]. 
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File size 

Although complex models do understandably engender large files, these files 

should not be so large as to hamper the transmission or the storage phase of 

the file during the telemanufacturing process. As was shown in an earlier 

chapter, STL files contain huge chunks of redundant information and normally 

result in cumbersome files for fairly complex models [3]. 

Robustness 

The file should also be defined in such a way so as to preclude errors in the 

model from slipping through. As we know, the STL format is extremely error-

prone [2]. 

Simplicity 

An important attribute of the file should be its simplicity. It must be easily 

interpreted by software and should facilitate easy generation of the file from 

the model. This is the only constraint that the STL format truly meets. The 

simplicity of the file cannot be overemphasised, but, sadly, this does not 

compensate for its other shortcomings. 

14.4 Future research 

Telemanufacturing and Layered Manufacturing are emerging technologies that 

will benefit many people, from the most powerful engineering company down 

to the entrepreneur attempting to give shape to a new idea. 

Many aspects of the technology still require extensive research, whilst some 

areas must merely be refined. Some areas of possible future research include 

the following: 

• The possibility of a fully automated telemanufacturing facility. After the 

file has been uploaded, it could be automatically checked and corrected, 

scheduled and finally built. Automated hardware that removes the part 

itself may also be incorporated with the system. A system such as this may 
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save on human resources by minimising the number of human operators 

required. 

A software agent that could possibly optimise the orientation of the model 

by comparing several parameters to user preference. The time to complete 

may, for example, be deemed less important than the accuracy rating of the 

part. 

The standardisation of a file format that meets the requirement, as stated 

earlier in this chapter. 

The implementation of a five-pillar security model (as set out in chapter 5) 

during the transmission of files, as well as at the telemanufacturing bureau. 

Visualisation of the building process over the Internet, enabling clients to 

monitor submitted jobs, either directly through a live video feed or through 

a simulation. The implementation of security in this regard also warrants 

our further attention before it could be successfully implemented. 

Layered Manufacturing and telemanufacturing are still infant technologies, 

even though they have been around for a few years now. Looking at it 

philosophically, however, we could argue that man has barely perfected the 

mechanical clock and that many aspects of life and society could stand 

improving. This also goes for the computer industry and the Internet and, 

therefore, for LM and telemanufacturing. 

Although at atomic level, Layered Manufacturing, also called 

"nanometallurgy", as well as the perfect means of communication, boasting 

watertight security and lightning-fast speeds, may be music of the future as 

yet, such should be the stuff of our dreams if we hope to make any progress at 

all! 

14.5 Summary 

As long as the STL file format is being used in the Layered Manufacturing and 

telemanufacturing arena, there would be clamant need to verify files against 
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errors. Errors in STL files will, however, continue to crop up and will always 

remain a problem for as long as the format is being used [2]. 

Although not the ideal scenario, it is the author's opinion that the STL file will 

remain in use for some time to come, and it is for this reason that various 

methods should be investigated, applied and improved to verify and finally 

correct the model. 
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STLComplete: a user's guide 

A.1 Introduction 

STLComplete is a utility that allows the user to verify and correct both ASCII 

and binary STL files before submitting them to a telemanufacturing bureau. It 

boasts unique features and an intuitive interface, which allow easy 

visualisation and manipulation of the object to be built. 

A.1.1 System requirements 

The following minimum requirements for the verification and correction of 

relatively simple models obtain to the prototype: 

A Pentium 120 MHz processor or a similar processor. 

16 Mb of system memory. 

A PCI or AGP video card (3D accelerated recommended, but not 

compulsory). 

10 Mb of hard-drive space. 

A mouse and a keyboard. 

The system should have the Microsoft Windows operating system with 

OpenGL installed before STLComplete can be executed. Smoother 

visualisation, as well as faster verification and correction of STL files, is 

possible with more powerful hardware. 

A.2 Moving around 

The user can load and save files, export between formats, check and correct 

errors and translate and rotate the object by using the interface provided. 

—Export amend file a: a b Mary STL file 

Figure A.1: The toolbar for quick access 
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The interface consists of a pull-down menu and a toolbar, which make for easy 

access to the most frequented functions. 

a) Loading and saving an STL file 

By clicking on the "Loading of an STL file" button located on the toolbar or 

by selecting the "Load" option under the file menu, the user will be prompted 

for a file name. In this dialogue box, the user can search the current system 

and load the file into memory. 

After the file has been selected and loaded, the object is displayed in the 

canvas area, from where the user can move the object around and rotate it in 

any direction. Operations such as verification and correction are also made 

available at this stage 

Open 

Look in:  ST ereoLithography Files 	lid 	 ti w Fa ...., 

0 Brain-aear.srl 

LI Cube.stl 

E1 Frame.stl 

Ship.stl 

i 

- — -- 	- — ----- 

File name: (Brain-geastl 	 II Open 
1 

Files of type: I B inary and ASCII STL files __ 	 _f_ll j 	Cancel 

Figure A.2: Open-file dialogue 

After a model has been corrected, the user can resave it, so that all the changes 

can be effectuated. The computer will overwrite the previous file and will 

retain the original format (ASCII or binary). In order to save the corrected 

object to a different file or to change the format, the user must make use of the 

"Export" function. 
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Exporting an STL file 

Once successfully loaded, the current object can also be exported to the binary 

or the ASCII STL format. The solid identifier found in the ASCII variant will 

be used as a binary header, and vice versa. 

Rotation and translation mode 

Rotation and translation are achieved using the mouse. Either one of the two 

buttons will be selected for a specific function. 

With translation, the user will be able to move the object around by left 

clicking on it and by then moving the mouse about. Right clicking on the 

object and moving the mouse vertically will allow scaling of the object. 

When rotation is selected, the user will be able to rotate the object by left 

clicking on it. Vertical mouse movement will achieve rotation around the x 

axis, while rotation around the y axis is achieved by moving the mouse 

horizontally. Rotation around the z axis can be achieved by right clicking on 

the object and by moving the mouse horizontally. Vertical mouse movement 

while holding the right mouse button down will, once again, scale the object. 

The following table will hopefully serve as a handy reference. Please note that 

the "T" refers to translation, while the "R" refers to rotation. 

Table A.1: Rotation and translation table 

Left mouse button Right mouse button 

Mouse UP T: moving object upward 

R: x-axis rotation (anti-clockwise) 

T: Zoom out 

R: Zoom out 

Mouse 

DOWN 

T: moving object downward 

R: x-axis rotation (clockwise) 

T: Zoom in 

R: Zoom in 

Mouse 

RIGHT 

T: moving object to the right 

R: y-axis rotation (anti-clockwise) 

T: No effect 

R: z-axis rotation (clockwise) 

Mouse 

LEFT 

T: moving object to the left 

R: y-axis rotation (clockwise) 

T: No effect 

R: z-axis rotation (anti-clockwise) 
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Animation 

The user also has the option to rotate the object along the x, y and z axes 

simultaneously, without using the mouse. By clicking the "Animate" button on 

the toolbar or by selecting the option from the menu, the computer will 

automatically rotate the object. This is a useful function for inspection and 

presentation purposes if the user's attention were divided. Clicking on the 

button again will stop the animation. 

Verification of object integrity 

After an object has been successfully loaded, the user can verify the 

syntactical and geometrical integrity of the file. This process can be initiated 

by selecting the option under the file menu or by clicking on the corresponding 

toolbar button. The software will now analyse each aspect of the object, while 

indicating the progress in the status bar at the bottom of the display. 

Options 

By selecting "Options" under the file menu or by clicking on the appropriate 

toolbar button, the user will be presented with a list of options that takes effect 

during the error-checking and -correction phase. The options screen is shown 

in figure A.3 below: 

Options 

Figure A.3: Program options 
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The error threshold is useful in cases where vertices that are very close to each 

other should coincide. Here, the user can select a value ranging from 0.0000 

(no vertices will coincide) to 1 (vertices in a radius of 1 unit will coincide). 

The next three options will allow the user to specify the action that should be 

taken once an error has been uncovered: 

Take NO action at all: the object is checked for errors and an error report 

is generated, but the program will make no attempt to correct any of the 

errors. 

Prompt and wait for instructions from the user: if an error were found, 

the computer would report it and would wait for confirmation before 

making any correction attempt. 

Automatically repair: the computer would immediately attempt to correct 

each error uncovered. 

g) Object type 

Under the visualisation menu, the user has the option of selecting the 

rendering method of the model. Three options are presented to the user and 

each adds a unique benefit during the visualisation of the model. Two of the 

said rendering methods are shown in figure A.4 below: 

Solid  view efr ante view 

Figure A.4: Solid and wireframe visualisations 
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View as solid: the most typical visualisation mode. When the model is 

rendered as a solid, the sides are shaded in such a way as to give the 

impression of a real object. 

View as wireframe: during the rendering of this feature, only the vectors 

making up the individual triangles are drawn. This is useful when the user 

merely wants to view the individual triangles. 

View as points: now only the vertices are shown, making up the entire 

object. Features such as rotation, translation and scaling are, however, still 

available when the object is viewed as a collection of points. 

These three options can be found under the visualisation menu, with the 

methods listed under the "object type" sub-menu. This is illustrated in figure 

A.5 below: 

rfire- 1 Visualizationil 
I 	Enable/Disable Animation 

Object type 
1,7a 

Solid v 

I 	Llear marks 
Wseframe 
Points 

Figure A.5: Selecting the rendering method 

h) Clear marks 

Once a model is found to be defective, the problem areas are marked in 

various colours. By selecting this option, the marks on the object will be 

cleared. This feature can be found under the visualisation menu. 

A.3 The verification and correction of errors 

Once the object has been successfully loaded, the verification and correction 

of the model can commence. The first task would be to select the appropriate 

option under the "error options" menu. (Please refer to section A.3 (f) for 

details on invoking the options screen.) It is recommended that the error 

threshold initially be set to zero and that the user be prompted if and when an 

error be found. 
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The verification process can be initiated by selecting the verification button on 

the toolbar or selecting it from the menu. The status bar at the bottom of the 

screen will indicate the progress, as well as the name and location, of the file 

being checked. Once an object has been verified, it is rendered again and 

problematic regions are marked in colour. Each colour indicates a different 

type of error, as listed in table A.2 below: 

Table A.2: Colour legend 

Colour Error present 

Red Duplicated triangles found. 

Blue Triangle with incorrect orientation and/or incorrect normal. 

Green  The vertex-to-vertex rule is not complied with. 

Depending on the user's selection in the options screen, the program will 

prompt on each error, automatically correct each error or ignore all errors 

altogether. More serious errors cannot be corrected, however, and the system 

will report these to the user. If this were to happen, the file would need to be 

resubmitted. 

At the end of the process, an error report will be generated, which will be 

saved in the same directory under the same name as the object, but with a 

.TXT extension. This file will contain basic information of the file in question 

and a detailed analysis of each error that was verified and, if any such errors 

were found in the object, whether or not they were successfully rectified. 

A.4 Technical specifications 

Table A.3: Technical specifications 

Programming language Borland Delphi 5.00 (build 5.62) 

Other technologies OpenGL 

Lines of code 6,277 lines 

Code size 377,000 bytes 

Data size 8,229 bytes 

Executable size after compilation 790,528 bytes 
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Algorithm 

American Standard Code for 

Information Interchange STL 

(ASCII STL) 

Binary STL 

Backus Naur Form (BNF) 

Computer Aided Design 

(CAD) 

Common Gateway Interface 

(CGI) 

Compression 

Compression ratio 

Convex polyhedron 

De facto standard 

Extension 

File extension 

A step-by-step procedure or method executed or 

followed by a computer program to accomplish a set 

task. 

An STL file format that is coded using only the standard 

7-bit ASCII. 

An STL file format using a full 8-bit IBM code for file 

representation. 

A set of definitions describing a programming or 

scripting language. 

A paradigm in terms of which a design is produced with 

the aid of a computer system. 

Scripting language used on Internet systems. 

A method in terms of which a file is reformatted to take 

up less storage space. 

The ratio defined as the original file size to the 

compressed file size. A higher ratio will, therefore, 

describe a higher level of compression. 

A solid object with no enclosed holes or gaps. 

A standard that exists by virtue of its widespread use. 

See File extension. 

The last characters following the full stop in a file 

description. 
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Hacker 

Hypertext Markup Language 

(HTML) 

An Internet packet 

Java 

Open System Interconnect 

(OSI) model 

A packet 

Photopolymer 

Protocol 

Prototype 

Recursive procedure 

Stepping motor 

Support structures 

A person who does programming for sheer enjoyment. 

The term has, however, of late been used in a negative 

sense to describe a person who attempts to gain access 

to resources by unlawful means. 

A format used on the World Wide Web to describe the 

content and layout of a Web page 

Smallest unit of data sent on the Internet. 

A computer language widely used on the Internet, 

thanks to its compatibility with most systems and 

browsers. 

See Surface normal. 

A system that controls the hardware of a computer 

system and enables users and applications more readily 

to interact with the hardware. 

A protocol standard developed by the International 

Standards Organization to implement an open system. 

See Internet packet. 

A liquid substance used in the stereolithography process 

to create objects. 

Method or manner of communication. 

A model created for testing purposes. 

A routine (function or procedure) calling itself from 

within itself, which will terminate in a given set of 

conditions, called the "base case". 

A high-precision electric motor that is capable of 

accurately turning a defined fraction of a degree. Mainly 

used in control systems. 

Structures incorporated in LM to allow the building of 

arcs and overhangs, which are removed after 

construction. 

Normal 

Operating System (OS) 
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Surface normal 	 A vector of length 1, which is perpendicular to a face or 

a triangle in STL files. Indicates the outside of the 

model. 

Syntax 	 Method or set definition of a statement. 

Tessellation 	 The transformation of an object into a set of finite 

triangles. 

Web page 	 A page found on the World Wide Web (WWW) that 

could contain text, pictures and links to other pages or 

resources. 
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