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Mathematics is not a book confined within a cover and bound between brazen
clasps, whose contents it needs only patience to ransack; it is not a mine, whose
treasures may take long to reduce into possesion, but which fill only a limited
number of veins and lodes; it is not a soil, whose fertility can be ezhausted by
the yield of succesive harvests; it is not a continent or an ocean, whose area
can be mapped out and its contour defined: '

it 1s limitless as that space which
it finds too narrow for its aspira-
tions; its possibilities are as infi-
nite as the worlds which are for-
ever crowding in and multiply-
ing upon the astronomer’s gaze; it
is as incapable of being restricted”
within assigned boundaries or be- )
ing reduced to definitions of per-
manent validity, as the conscious-
ness, the life, which seems to
slumber in each monad, in every
atom of matter, in each leaf and ' . :
bud and cell, and is forever ready James Joseph Sylvester
to burst forth into new forms of . (1814-1897)

vegetable and animal ezistence.

It is difficult to give an idea of the vast eztent of modern mathematics.

The word ‘extent’ is not the right
one: I mean ectent crowded with
beautiful detail — not an extent
of mere uniformity such as an ob-
jectless plain, but of a tract of
beautiful country seen at first in
the distance, but which will bear
to be rambled through and studied
in every detail of hillside and val-
ley, stream, rock, wood, and flow-
er. But, as for every thing else, .
so for a mathematical theory —
beauty can be perceived but not ez- -
plained. A

Arthur Cayley (1821—1893)
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Summary

This thesis is concerned with one possible interplay between commutative algebra and
graph theory. Specifically, we associate with a commutative ring R a graph and then set
out to determine how the ring’s properties influence the chromatic and clique numbers of
the graph.

The graph referred to is obtained by letting each ring element be represented by a
vertex in the graph and joining two vertices when the product of their corresponding ring
elements is equal to zero.

- The thesis focuses on rings that have a ﬁmte chromatic number where the chromatic
number of the ring is equal to the chromatic number of the associated graph. The nilrad-
ical of the ring plays a prominent role in these-investigations. L

Furthermore, the thesis also discusses conditions under which the chromatic and chque
numbers of the associated graph are equal. The thesis ends with a discussion of rings with
low (< 5) chromatic number and an example of a rrng with clique number 5 and chromatrc
number 6.



Opsommihg

Hierdie skripsie is gemoeid met een moontlike interaksie tussen kommutatiewe algebra
en grafiekteorie. Meer spesifiek neem ons ‘n kommutatiewe ring, R, en assosieer hiermee
‘n grafiek. Ons bepaal dan hoe die eienskappe van die ring die chromatiese- en kliekgetalle
van die grafiek beinvloed.

Die grafiek waarna verwys word, word verkry deur met elke rlngelement n punt in
die grafiek te assosieer en twee punte in d1e grafiek te verbind as hulle ooreensternrnende
ringelemente se produk nul is. :

Die skripsie fokus veral op ringe wat ‘n elndlge chromatlese getal het, waar die chro-
matiese getal van die ring gelyk is aan die chromatiese getal van die geas_sos1eerde grafiek.
Die nilradikaal speel ‘n.baie belangrike rol in die verband.

Verder ondersoek die skripsie voorwaardes waaronder die chrornatlese- en kliekgetalle
van die geassosieerde graﬁek gelyk is. Die laaste deel van die skripsie word gewy aan ‘n-
bespreking van ringe met ‘n lae (< 5) chromatiese getal en ‘n voorbeeld van ‘n ring met
kliekgetal 5 en chrornatlese getal 6 word ook gegee.
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Chapter 1
Introduction and ba»ckgr‘ound

HE aim of this thesis is to investigate the possible connections that exist between
T commutative ring theory and graph theory. To a large extent there are not any deep
connections with graph theory (yet) and the only graph theoretic tools that are. used are
a few basic definitions. Thus this thesis is largely algebraic in nature. '

After a brief introduction to the thesis, we discuss the background material necessary
to be able to read this thesis. ‘

1.1 Introduction

- Throughout this thesis all rings will be commutative with identity. A basic reference for

ring theory is [11). The references we found the most useful for commutative rlngs were
(2], [12] and [13]. A good graph theory reference is [4]. |
We begin by associating with a ring, R, a graph. Every element of the ring becomes
a vertex in our graph and two (different) vertices are adjacent if the product of the
corresponding (different) ring elements are zero. Specifically thén, every nonzero element
is adjacent-to zero. Note also that our graph will be a simple graph (in contrast to a
multi’graph), meaning that no loops or multiple edges will be pfesent in the graph. Once '

we have the graph, we next consider the chromatic number, x(R), of the graph (or the ..

ring for.that matter). This is defined to be the smallest number of colours that can be
assigned to R in such a way that adjacent elements have different colours. The colours are
usually denoted by integers. 'Another.concept borrowed from graph theory and one that

will feature quite often in the sequel is that of a cliqgue. A clique is a.set of vertices (or . .

ring elements) such that every two vertices from the set are adjacent. From this follows

the concept of the cligue number, w(R), of the ring. This is the size (number of vertices)

1



CHAPTER 1. INTRODUCTION AND BACKGROUND 2

of the largest clique in R.

"The whole thesis is concerned with the interplay between ring theoretic properties and
the chromatic number of rings. We will see that for certain classes of rings we have that
Y(R) = w(R). (We always have x(R) > w(R) — every element in a clique must receive a
different colour since it is adjacent to every other element in the clique so that we cannot
colour the ring with fewer than w(R) colours.)

We now discuss the necessary background material, starting with the terminology. All
theorems are given without proof, but we do glve complete references to works where the
proofs may be located.

1.2 Terminology

As stated R will denote a commutative ring with identity. We will wfité the nilradical of
" R'as B(R). Note that B(R) usually denotes the primé radical of the ring R. In the case
of a commutative ring, the nilradical and prime radical are equal.

R is reduced if B(R) = (0). If A and B are subsets of R, then we define 4 : B = {r ¢
R |rB C A}. Further 0 : A = AnnA and if A consists of one element, say z, we write
- 0: 2= Annz; these ideals are termed annihilators.

The set of zero divisors of K will be denoted by 3( ). A prime 1deal p, will also be.
called an associated prime ideal if p = Annz for some z in R.

-A-finite chain of prime ideals of a ring R is a finite strictly increasing sequence,

PoCp1 C - Cpn,

of prime ideals. The length of the chain is n. The dimension [2] of R is defined to be the
supremum of the lehgths of all chains of prime ideals, not equal to-R, in R and is written '
as dim R. A
" The cardinality of a set I will be denoted by 1].
An arbitrary ideal will normaily be denoted by a captial letter I, set in the Fraktur
typeface, that is as J or by a capital letter J, set in‘the Fraktur typeface, J.

1.3 Noetherian rings

A Noetherian Ring is one in which the ascending chain condition (a.c.c.) on ideals holds.
The following result gives equlvalent conditions for a ring to be Noetherian.
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Proposition 1.1 ([2, 13]). Let R be a ring. Then the following three conditions are

equivalent :
1. Every nonempty set of ideals in R has a mazimal element.
2. Fvery ascend_ing chain of ideais contains a ﬁm’te number of idecls.
3. Buvery ideal in R is finitely generated.

An ideal in a ring R is called a radical ideal if it coincides with its radical. Here the
radical of an ideal J is defined to be the intersection of all prime ideals containing J [11,
p. 64]. This radical is also denoted as B(J). We also have the following.

Theorem 1.2 ([11]). An ideal q ina ring R is a semi-prime ideal in R if and only if
B(q) = q. |

Since B(R) is .serni—p-rirne (intersection of prime ideals), we have that B(B(R)) =
 B(R). Hence B(R) is a radical ideal.
The following result may be found in [10].

Theorem 1.3 ([10]). In a Noetherian ring every radical ideal has a unique irredundant
representation as the intersection of a finite number of prime ideals.

This in particular shows that in a Noetherian riﬁg B(R) is the intersection of a finite
number of prime ideals.

1.4 Artinian and-local rings

An Artinian Ring is one in which the descending chain condition (d.c.c.) on ideals holds.
A ring R with exactly one maximal ideal, m, is called a local ring and will be written as
(R, m). | ) ’

The following results will be ‘useful to us (2] and [13]).

Proposition 1.4 ([2]). In an Artinian ring R every ;brz'me tdeal, not equal to R, 1is

mazimal.
Theorem 1.5 ([2]) A ring R is Artinian <= R is Noetherian and dim R = 0.

Theorem 1.6 ([2]) An Artinian ring. is ‘uniquely (up to isomorphism) a finite direct

product of Artinian local rings.
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Proposition 1.7 ([13]). A ring R is local <= the set of all the nonunits (i.e the
elements that do not have multiplicative inverses) of R forms an ideal.

Proposition 1.8 ([2]). Let R be an Artinian local ring. Then the following are equiva-
lent:

1. Every ideal in R is principal.

2. The mazimal ideal m is principal.

1.5 Brauer’s theorem

As the section title indicates, this section will be devoted to Brauer’s Theorem [7]. We
will not use the result itself anywhere in this thesis. The importance of this result lies in
its method of proof which will be applied later on in this thesis. We therefore give the
full proof of the theorem. .

Recall that an ideal J is considered to be nilpotent if there exists a posmve integer n
such that J* = (0). Also, an element r of a ring R is idempotent if 7* = r.

In the proof of the theorem we will also need Hopkins’ Theorem [7], which we state
without proof. ] -

Theorem 1.9 (Hopkins’ Theorem [7]). If R is left (right) Artzman, then every nil
left (right) ideal is mlpotent

Theorem 1.10 (Brauer’s Theorem [7]). Let R be a left (right) Aritinian ring. Any
nonmlpotent left (right) zdeal in R has a nonzero zdempotent element.

Proof. Let J be a nonmlpotent left 1deal in R. Since R is left Artinian, the family of all
nonnilpotent left ideals of ‘R contained in J has a minimal element, say J;- 'Furthermore
J, is not a nil left ideal in R (1f it is, Hopkins’ Theorem would 1mply that it is nllpotent
wh1ch we know it not to be).

Let a be a nonnilpotent element of J; (which we know exits, since 31 is not a nil left
ideal). Consider Ra. We have Ra C J), further Ra is nonnilpotent since a®> € Ra and
“a? is nonnilpotent. (If a* was nilpotent, a would .also be nilpotent, which is impossible.)
Therefore Ra = J, by the minimality of J,. In a similar manner Ra®> = J;. Thus
Ra = Ra®. '

‘There exists an a; € Ra such that a = a)a (a € J,.= Ra). Now aja = aja = aq,
therefore (a; — a?)a = 0 and a) — a] € {a};N Ra, where {a}, is the set of left annihilators

of a. . - L
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Let as = a+a; —aa;. Then aza = a® + a1a —agja =a? +a —a? = a. Also

2 2
(ar—aj)as = ara+ a} —ajaa; — ala — a3 + alaay,
= a+af7aa1—a—a?+aa1,

_ 2 3

Since asa = a, ap is not nilpotent : assume that a, is nilpotent, say a} = 0. We now

have a5~ (aza) = a3 'a, so that afa = aj"'a = 0. In the same way we get 0 = a?~'a =
ad2a=dita=--=dka=aa=aq, implying a = 0 — this contradicts the fact that a

is nonzero. Therefore Ray = Ra = J; and
{a2}iN Ra C {a}i N Ra.

The last equat1on follows from the fact that if b € {CLQ}[, then ba, = 0 and since aza = a,
baza = ba = 0. Thus b € {a}. :
We now either have that a? =ad or al 75 ad. If a? = a3, then

232 __ .3 _ _ 53 _'

so that a? is 1dempotent and we are done.

On the other hand, if a? # a3, then (a1 — a?)ay 75 0 and a) — a} ¢ {a>}; N Ra. Thus
{a2}1 N Ra C {a}; N Ra.

We can now repeat the process with a, playlng the role of a. We then obtain elements
as,as € J; such that either a3 = a3 or a} # a and {as}, N Ra C {a2}; N Ra. If a? = a},
a? is the desired idempotent. If a2 # a3, then the co_ht_ziiri’ment above is strict. Therefore .
if an idempotenet cannot be obtained after a finite nuﬁlber of steps, we have an infinite
descendlng chain of left 1deals contradlctlng the fact that R is left Artinian. The proof
for right Artinian is analogous S L )

1.6 Tensor 'pr'oduct

The definition of the.tensor product is taken from [8]. Let Az and gB be fixed, right and '
‘left R-modules respectively. Consider the formal sums.} (a;, b;) where a; € A and b; € B..
If we ignore the order and association of the terms, then the (a;, b;)’s determine the sums
uniquely. The formal V'sums, under the operation of concatenation, forms a semigroup S.
Recall that a congruence relation on a semigroup S is firstly an equivalence relation =~ .
and secondly it also satisfies: r; &~ s, and o & 53 = 71 + 72 = §) + 2. ’

Now let = be the smallest congruence relation on S that satisfy
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1. (a1+a2,b) ~ (al,b)—l—(ag,b),
. (a bl +, bz) (a bl) (a7 bQ))
3. (ar, b) ~ (a;rb),

for all a;,as € A, by1,b, € B.-and r € R. The collection of equivalence classes of S with

respect to = is called the tensor product of A and B with respect to R and is denoted by.

A ®r B. The equivalence class that contains the element (a,b) is denoted by a ® b. |
Reference [12] provides a slightly dlfferent although completely equivalent, definition

of the tensor product as well.

1.7 Rings of fractions and localisation

" Definition 1.11 (Ring of Fractions [13]).- Let R bearing and S C R a multiplicative
. set (el € Sandste Sforalls,t € S). Weintroduce the following relation ~ on R x S:

(a,s) ~ (b,t) <> Ju € S such that u(at — bs) = 0.

It can be shown that ~ is an equivalence relation [13]. The ring of fractions of R with

respect to S, Rg, is
ST'R=(RxS)/ ~

with the ring operations defined as for fractions:

a, b (attbs)
S t st

a b _ ab

s t st

Note that above we wrote a/s for the class (a,s). From these definitions it should be
clear that the zero of this ring is 0/1 and the identity is 1/1. ’

We also state the following fact as it will be needed later in the thesis. Let
T1/81,72/82,... ,Tn/5, be a finite set of elements from STIR. This finite set may be
‘brought to.a common denominator in the following manner. Take the element r;/s;
from the set and multiply it by s152- - 8i_18i41 " Sn/S182 - - - $i—18i+1 - - Sn. Note that
([s182° -+ Sic18it1 "~ Sn), [S152 - - 8iz18i1 - - - Sn]) ~ (1,1), so that the multiplication above
does not change the element 7;/s;. The effect of the multiplications is a common denomi-
nator of 18 - - - s,. This procedure is the same as the one encountered when dealing with

ordlnary fractlons 7 : L -
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Localisation is a particular case of “ring of fractions”. - If p is a prime ideal then
S = R\p is a multiplicative set (see for instance [11]) and we set B, = S™'R. _Further,
¢ : R — S7'R, defined by 7 + 7/1 is a ring homomorphism. .

If p is a prime ideal in the ring R, then we define the extension of p, e(p), to be the
ideal generated by the image of p (under ¢) in R,. - .

Proposition 1.12 ([13]). Ifpisa pmme ideal in R and pNS =0 (S a multzplzcatwe
set) then e(p) = S~ 'p = (p x S)/ ~ is a prime ideal of S~'R.

Proposition 1.13 ([13]). a/s € R, is a unit of R, <= a ¢ p. Therefore R, is a local
ring, with mazimal ideal e(p) = S™1p.

If 7 is an ideal of R we will write JR, for (J x S)/ ~. With this in mind the maximal
ideal above, S7!p, is sometimes also written as pR,. Later in the thesis we will also
employ this notation in the form B(R)R, = (B(R) x S)/ ~.

The local ring (R, pR,) is called the localisation of R at P. -

Proposition 1.14 ([2]). If p is a prime ideal of the ring R, the prime ideals of the local
_ring R, are in one-to-one correspondence with the prime ideals of R contained in p.

The one-to-one correspondence referred to above is q «— S~!q = (q x S)\ ~. Here q
is a prime.ideal contained in p. Note that every ideal in R, is of the form S~'a, where a
is an ideal in R.

- Definition 1.15 (Modules of Fractions [13]). Let R be a ring, S a multiplicative
subset of R and M a left R-module. Then S~!'M is the S~!R-module defined -as fol-
lows. We define the equivalence relation ~ on M x S as before

(m,s) ~ (n,t) <= Ju € S such that utm = usn,

and set S7!M = (M x S)/ ~. The module operations are defined by m/s £ nft =
" (mt £ ns)/st and (a/s) - (n/t) = an/st. :

If S = R\p, where p is a prime ideal, then S™'M is a module over the local ring
S7'R = R, and is also written as S™'M = M,.

If Jis an:.ideal of R (étﬂd thus a left R-module) we can form the left S~!R-module

- §7!73. This module will be written using the previous notation, S~!'J = JR,,.
The following proposition will be used later.

Proposition 1.16 ([2]). Let M be a left R-module. Then the S~™'R modules, S~ lM and
S-'R ®r M are zsomorphzc
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1.8 Exact sequences

In a.number of instances we will make use of the concept of an ezact sequence [2]. A
sequence of R-modules and R-homomorphisms

s Moy T M I g,

is said to be ezact at M; if Im(f;) =Ker(f;+1)- The sequence is ezact if it is exact at each
. M;. We will specifically have use for the following special cases : ‘

0— M L M isexact <= f is injective,
M 25 M" — 0is exact <= g is surjective,

0— M L M L3 M" — 0is exact <« f is injective and g is surjective.

L9 The Peirce decomposition of a ring

Let R be a ring with identity and e an idempotent in R. Then any element inr € Rcan be
written as 7 = er +(r —er), so that R = eR+ (1 —e)R, where (1—e)R ={r—er|rec R}
Also, eb = b for all b € eR (if b = er then eb = e = er = b) and eb = 0 for all
be (1—e)R (if b = r—er then eb = er —e2r = er—er = 0), therefore eRN(1—¢)R = (0) (if
er; = ry—ery # 0 then e’r; = er; —e?r; = 0 — a contradiction). Thus R = eR®(1—¢e)R.
This is called the right Peirce decomposition of R relative to e. We can analogously define
a left and two-sided Peirce decomposition as well, see (7, p 83] for more details.

'1.10 Some results on finite rings with identity
In some of our further work it is worthwhile to have the following résults available [12].- -

Proposition 1.17. Let R be a finite ring with identity. If |R| = char(R) then R =

Z(_:har(R)-
Proposition 1.18. The only rings with an identity and four elements are
1. Za,

!_ 2. ZQ[Z]/(:E?)J .
9. 7,8 Zy and

b/ ).
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1.11  Graph theory

This section will.be devoted ¢o the graph theoretical terminology and results that will be
used in this thesis, See [4] for more details. _ _ .
A graph is a collection of vertices {vy,vs,...,v,} and edges {e1,€2,... ,eém}. Bach
edge may be seen as an unordered pair of vertices, that is e; = {vk, v/} if edge e; joins
. vertices vx and v;. A graph is said to be the trivial graph if it has only one vertex. _
Let u and v be vertices of a graph (with the possibility that they may be equal). A
u-v walk of the graph is a finite, alternating sequence,

U = Ug, €1,U1,€2,. .. 7ulc_fl’ekauk =1,

of vertices and edges, starting with vertex v and ending with vertex v, such that e; =
» {ui—1,u},1=1, 2,}. .. k. The number % is called the length of the walk and is equal to the
number of edges in the walk. The walk will often be written by listing only its vertices
since the egdes are then obvious. A u~v walk is considered closed when u = v. A u—v
walk with no edge repeated is called a u~v trail, while if no vertex is repeated it is called
a u—v path. A closed trail of a- graph is referred to as a circuit and a closed path is known
as a cycle. A cycle is said to be even or odd depending on whether its length is even or
odd, respectively. The vertices that precede and follow the vertex v on a cycle are called
the neighbours of v. As stated in the introduction all our graphs will be simple. That
is, no loops (edges connecting a vertex with itself) or multiple edges (more that one 9dge
between a pair of vertices) are allowed. This, in particular, implies that the length of the
smallest odd cycle will be three and the length of the smallest even cycle will be four.

A graph is said to be bipartite if it is possible to partition the vertex set, V, of the
graph into two subsets, V; and V5, such that the edges of the graph lie only between the
two partlte sets Vi and V5. Thus there are no edges present between the vertices of W
and likewise for V,. We have the following theorem.

Theorem 1.19 ([4]). A nontrivial graph is bipartite if and oniy. of it contains no odd
-cycles. ‘ '

We will frequently refer to the colouring of a graph in this thesis. By this is'meant
the assignment of colours (usually denoted by integers) to the vertices of a graph in such-
_a manner that two adjacent vertices receive different colours. Of specific interest is the
minimum number of colours that. can be assigned to the vertices of a graph. ‘This is.
known as the chromatic number of a graph and is denoted by x(G). Note that a bipartite
__graph is therefore a_graph for which x(G)_= 2. (Assign one colour to_the one. partite set
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and another colour to the other partite set.) Also, if C is a cycle of even length, then
x(C) = 2. On the other hand if C' is a cycle of odd length, x(C) = 3. These two facts may

be easily verified by drawing cycles of even and odd lengths and trying to colour them

with fewer colours. This leads to the following observation. If G is a graph with x(G) > 3,
then G contains an odd cycle : assume that G does not contain an odd cycle, then by
the theorem above we know that G is then a bipartite graph. ‘This leads to x(G) =2 —

a contradiction.

1.12 Thesis composition e

As stated in the beginning, our main concern will be to determine how the ring theoretic
properties of a commutative ring with identity influence its chromatic number. Chapters
one through eight are based on the results presented in [3] and chapter nine is based on
u o y

Chapter two deals with some examples of rings and their chromatic number. The third
chapter deals with a characterisation of rings of finite chromatic number, aptly termed
Colorings. Chapter four is on the properties of Colorings. The fifth chapter discusses
the properties shared by the family of Colorings. Chapter six is devoted to the study of
conditions that ensure x(R) = w(R). The seventh chapter is on rings of low chromatic
number (that is x(R) < 5). Chapter eight presents some examples of finite rings with
x(R) < 3. Chapter nine discisses an example of a ring with w(R) =5 and ‘X(R) = 6.
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Examples of rin‘g's and their

chromatic numbers

r I YHE aim of this chapter is to present some examples of rings and to show how their .

chromatic number is calculated.
The first Proposition follows from the definitions.

Proposition 2.1. x(R) =1 <= R = (0)

Proposition 2.2. X(R) =2 <= R is an integral domain, R = Z4, R = Zy[z]/(z?) or
R = Zy[z])/(z® +1). :

Proof. = Suppose that Xx(R) = 2. .
Since products of nonzero elements in an integral domain are always nonzero, the chro-
matic number of an integral domain is 2. Therefore R may be an integral domain. If R

is not an integral domain, we then need to show that either R = Z4, R = Z,[z]|/(z?) or

R = Z,[z]/(z% + 1). .

Therefore suppose that R is not an integral domain.
" Then there exist z,y € R, with z # 0 and y'# 0, but-zy = 0. In this case {O z,y} forms a
clique with three elements, but w(R) < x(R) = 2. This implies that z = y, so that z # 0
and z? = 0. Using this we see that the ideal Rz is a clique (r1z7yz :'rl.;'”zxz =0). Now,
0z € Rz and 1z € Rz, so that |Rz| > 2, but since w(R) < 2, |Rz| = 2. Also, Rz C Annz

([rz]z = rz? = 0). Further, Annz C Rz: if 2 € Annz, then {0, z, 2} is a clique, but since -

w(R)<2,z=zorz=0. Therefore z € Rz = {0, z}, which implies that Annz = Rz.
Con31der the exact sequence

0L Annz 5 R & Re &4 0, - (21)

11
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" where

f'l. : 00,

fo : zw zVz € Annz,
fa rHrz‘v’rE;R,A
fs : rz+— 0Vrz € Rz.

Clearly Im(f;) = Ker( fir1): Since f; is onto Rz, we have by the fundamental theorem on
homomorphisms [11], that

Rz R/Kér.(. fs) = R/Im(f,) = R/Annz
|Rz| = |R|/|Ann:1;| __
|R| = |Rz||Annz| =4 (2.2)

A well known corollary from Légrange’s theorem of group theory states that the order
of an element divides the order of the group [6]. Also, for a ring with an identity, the
~ characteristic of the ring equals the order of the identity [6]. Therefore the characteristic
of R equals the characteristic of 1, which in turn has to divide R. In summary then, the
characteristic of R has to divide 4. Therefore the characteristic of R is either 2 or 4. If
char(R) = 4, then by Proposition 1.17, R = Z,. If char(R) = 2, then by Proposition 118,
R = Zy[z]/(2z?), R Zy® Zy or R = Zy[z]/(2? +1). In Zy @ Zy however, we have a clique
of three elements ({(0,0), (1,0), (0,1)}), but for the present ring w(R) < 2. Therefore if
~char(R) = 2, then R = Z,[z]/(z?) or R = Zy[z]/(z%+ 1).
<= Under the assumption that R is an integral domain, R Zy, R = Zo[z]/(2?) o

R = Zy[z]/(z*+1) it is easily seen that x(R) = 2. For ease of reference the correspondlng

graphs of the rings above are shown in Figure 2.1. ‘ T ..o g
'Proposition 2.3. Let p1,p2y - y Dk, Q1,92,--- , Q- be different prime numbers and put
N = pznlpgnz pinkqu1+1q22mz+1 . q2mr+1_ Then, .' ]

X(Zn) = w(Zy) = pT'p3* - pRral gp - - g + 7.

“Proof. Put yo = ppl?- p}c‘kq{"‘.’”q"‘2+1 q:"f“ "Then 42 = 0 in Zy and this in turn
implies that yoZy is a clique with p{*pp? - - - pp*q*' g5** - - - g™ elements — to see this note

Nk My

- that the products between y, with all integers from 1 to pripy? - pk g7ty ? ¢, in
' Zy;, are all distinct. : - _
Let y; = vo/q;, 1 <i < 7. Then the set C = vZny U {yl,yg, ... ,Yr} is a clique of size

Nk M1 M2

=Py ety g +relements: . . . B
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NONZERO ELEMENTS

0
Integral Domain

1 z z+1 1z z+1
- ‘ .

0 0
Zafa) /(=) R/

Figure 2.1: Rings With x(R) = 2.

Firstly, y; ¢ YlZy, 1 <1 < r;since y; < Yo, ¥ 7 0 and yoZy contains nonzero elements
greater than or equal to yq together with zero. Note secondly that if oz € yoZy and y; €
{y1,v2, - ,¥-}, then yozy; = ¥32/q; = N1g2-+ - @i -~ - = 0 (in Zy). Thirdly if
vi and y; € {y1,¥2, ... , ¥} With ¢ # j, then yy; = y§/(qig;) =

Nqiga- - Gi-1Git1 - @—1j+1 - ¢ = 0 (in Zy).

Therefore w(Zy) > t and in turn x(Zy) > t. To show that x(Zy) < t we have to
produce a colouring of Zy in t colours, the reasoning being that this ¢-colouring may not
.be the most optimal one (least number of colours), so that the chromatic number may

- still be less than or equal to t.

First off-we have to colour each element of C with a unique colour of its own (C is a
clique). Let z; = N/p*, 1 < ¢ < k. Note that z; € yoZy so that z; € C which implies
that z; has been assigned a colour. We will'now colour thé remaining elements (i.e Zy\C)
of Zy as follows (f(y) will denote the colour that we assigned to element y) : - _ -
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Take z ¢ C. We assign z a colour as follows

(

fly;) if pi*p5? - - -pe* divides

where j = min{i | ¢ {2 .
f(z) =< tl feh (2.3)
| f(zy) if pT'p5? - PRk does not divide =

\ where j = min{: | p" fz}.
We now proceed to show-that this results in a valid ‘colouring (i.e. adjacent elementsj' ‘
should receive different colours) :

If pip5? - - - pp* divides z, then z receives the same colour as y;, so we have to ensure
that z and y; are not adjacent. :
Recall that y; = yo/q; = pl'py® - -pprq Hlgg+t - g7 - g ¥
Therefore in the product zy;, the power of g; can never be greater than or equal to

and also qm’-H t .

2m; + 1, since the power of ¢; in z is strictly less than m; + 1. Thus zy, is never a '
multiple of IV, so that zy; # 0, which implies that z and y; are not adjacent.

If pT'py? - - - pp* does not divide z, then there exists at least one p; such that pI* does
not divide z and we chose p; to be that specific factor such that j = min{s | p{* { z}. In
this case z receives the same colour as z;. Here z; = N/p

2ny, 2n, . i 2ng 2mi+1 2mo+1 7 om.+1
D1 D2 "p Py 4 q; SR/

never be greater than or equal to 2n;, because the power of p; in z is strictly less than

In the product zz; the power of p; can

. Therefore zz; is never a multiple of NV 1mply1ng that zz; # 0 with the implication
tha.t z and z; are not adjacent.
In summary, X(Zy) < t so that w(Z ~v) <t Combmlng this with our previous results
we get X(Zy) = w(Zy) = t. _
O



Chapter 3
Rings with y(R) < oo

r I 1HIS chapter contains the results that will be needed later on to characterlse the rings
of finite chromatic number. |

Definition 3.1 (Finite element). An element z € R is said to be ﬁmte if the ideal Rz

is a finite set.
The following lemma plays a key role in the restilts that follow.

Lemma 3.2. If R has an infinite number of ﬁmte elements then R contains an infinite

clique.

Proof. Let z,,z,,.. , Zn, ... be different finite eleme.nts.in R. The elements
xlxg,xlﬁrg,... ,:z:lz'zfn',..-. -all belong to the finite ideal T, R. The£efere- there exists an
infinite subsequence {a.} of {2,3,...,7n,...} such that z,z,, = T1Tq, = ---. As before,
the elements Z,,Z4,, Ta, Tas, - - - » Loy Tan, - - - Delong to the finite ideal z,, R, so that there
exists an infinite subsequence {b,} of {as,as,...,an,...} with 4z, = 24,2, = - -.
Continuing in this manner we construct a subsequence ¥1,¥s2,... ,¥n,... of the séquence
T1,T2, ... ,%n,... such that yy; = yiyx when j, k > ¢ (all y,’s that follow a specific y; are
sﬂtiil in the same subseqﬁence as the y;). Here y; = zy and yp = z,,. =

Define z;; = y; —y;. Then if i < j <k <7, zij2k, = (yi — y;) (Y& —Yr) = Vil — Vit —
nyk + y,y, =0 —0=0. We are now in a position to construct an infinite clique :

‘Consider z,9234 = 212235 = 0. We have z34 # 235 (234 = 75 = Ys = Y5, 2
contradiction). Thus at least one of z34 and z35 is different from z; . If for example
235 # 21,2, then {219,235} is a clique with two elements. Further 267, 268 and zgg are
pairwise different, so that at least one of them is not equal to z; , or z3 5. Say for example
that zeg ¢ {212,235}, then {212,235,2,9} is a clique with three elements: By repeating
the above procedute we obtain an infinite clique.. . -~ . .~ . . . -0

15
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Lemma 3.3. Let J be a finite ideal in the ring R. Then R contains an infinite clique
<= R/7J has an infinite clique.

Proof. = Suppose that R contains an 1nﬁn1te clique C.

We will denote the quotient-ring R/J by R and-the homomorph1c image of Cin R by C’
Then C'={c+7J | ce C}. Also, C is a clique : (¢ + J)(c2 + J) =cc+J=0+3=7,
keeping in mind that J is the zero element of R The fact that C is infinite is proved

. 'using a contradiction.

If we assume that C is finite, then there are only a finite number of different equivalence
classes ¢ +J, ¢ € C. This implies that at least one equivalence class contains an infinite
number of elements of C (since C is infinite). Say this classis¢;+J =c,+J = ---. Here
¢ €C, ¢ #cj fori# j and 4,5 € K where K is an infinite index set. Written differently

a+J=c+3J, k€ K. Equivalently, ¢c; —c;, € J, Vk € K. Furthermore, ¢c; —¢c, #c1—¢;

for k # 1 (sinc_e cL—cC = ¢ = =>c =20, contradiction). Thus we have an infinite
number of elements ¢; — ¢, ke K with c1 — ¢ € J. This giVes the desired contradiction
since J is finite. Therefore C is infinite.

<= Let {Z;}{° be an infinite clique' in R (€; = z; + J, z; € R). Therefore ;%; =
(z; + 3)(z; + J) = ziz; + T =T, s that z;z; € T for i # 7. Since the products {z;z; }iz;
belong to the finite ideal J, we may apply the same technidué as in Lemma 3.2 (where
our present ideal J plays the role of the ideal Rz; in 3.2) to obtain an infinite clique in
R. : . ad

Lemma 3.4. If the ring R contains a nilpotent element which is not finite, then R con-

tains an infinite clique.

Proof. Assume that r € R is nilpotent, that is, z® = 0 for-some positive integer n and
that z is not finite i.e Rz is infinite. The proof is by induction on n. If z?2 =0 and Rz
is infinite, then Rz is itself an infinite clique in R. We now assume that the lemma is
true for all ‘elements of nilpotency n — 1. Let 2" = 0, n > 3 and assume that Rz is
"=2 = 0. If Ry is infinite then we may

infinite. Put y = 22, then y"! = (z2)""! = 2"z
conclude from the induction assumption that R has an infinite clique. Otherw1se if Ry is
finite, then Rz/Ry = {rz + Ry’| r € R} is infinite. (This follows in the same way as for
C in Lemmia 3.3.) Furthermore, Rz/Ry is a clique in R/Ry : (riz + Ry)(r:z + Ry) =

B rT9z% + Ry = riroy + Ry = Ry. Therefore we have the infinite clique Rz/Ry in R/Ry

- and Ry is finite so that by Lemma 3.3 R has an infinite clique. K o

_ Lemma 3.5. If the mlradzcal  B(R), of R is mﬁmte then R has an anfinite cligue. - -
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Proof. Assume that B(R) is infinite. If every element in B(R) is finite, Lemma 3.2 implies
that R contains an infinite clique. On the other hand if there is an element in B(R) that
is not finite, Lemma 3.4 implies that R contains an infinite clique. (The-elements in B(R)
are all nilpotent for a commutative ring R.)- . O

Remark 3.6. If R is ming without an infinite clique, then by Lemma 8.5, B(R) is finite.
Applying Lemma 3.3 we then see that R/9B(R) also does not have an infinite clique.

Lemma 3.7. Let R be a reduced ring (i.e B(R) = (0)) which does not contain an infinite
cligue. Then: R has the ascending chain condition (a.c.c) on ideals of the form Annz.

Proof. Assume that we have an infinite chain of ideals of the form Annz (i.e. we are
assuming the a.c.c does not hold), that is

Anng; C Anna; C --+. | (3.1)

Let z; € Anng;\Annag;_1, 7 = 2,3,. .. and Yn = ZTnGn—1.7 0n =2,3,... (z, € Anna,
and z, ¢ Anna,_;). Then the y,’s form a clique © Ypoym = (Tnan_1)(Tmam-1) =
(Zn0m—1)(Tman_1). If we assume, without loss of generality, that m > n, then z,am_; = 0
(since z, € Anna, C Anna,4; C --- C Anna,,_, C Anna,,, so that z, € Anna,,_;), im-
plying that y,ym = 0. Furthermore, y; # y; if ¢ # j : If y; = y; then y? = yy; and
y2 = yiy;, but y;y; = 0, therefore y? = y; = 0. This contradlcts the fact that B(R) = (0).
(The nilradical contains all nilpotent elements.)

In summary then, the existence of the infinite chain provided a means to construct an
infinite clique (the y,’s), which contradicts our assumption on R that it does not have an
infinite clique. Thus the a.c.c holds. ' o]

Lemma 3.8. Letz and y be elements of the ring R such that Annz and Anny are different
przme zdeals Then Ty = 0

Proof. The proof is by contradiction. Assuming that ﬁéy # 0, this irnplies that z ¢
Anny and y ¢ Annz. Further, Annz : y = {r € R | ry € Anna:} Annz and
Amny:z={r € R|rz € Anny} = Anny: )

If r € Annz : y, then 7y € Annz and since Annz is a prime ideal, 7 € Annz or y € Annz,
but y ¢ Annz so that r € Annz. This proves Annz : y C Annz. Conversely, if r € Annz,
then rz = 0 and also (rz)y = (ry)z = 0 so that ry € Annz which in turn implies that - -
T E Annz y. Therefore Annz : y = Annz. Similarly, Anny : T = Anny ' :

However Annz : y = Anny : z = Ann(zy) :
Let r € Annz : y, then ry € Annz or (ry)z = r(zy) =0, thus r € Ann(zy). .Conversely,-
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let 7 € Ann(zy), therefore r(zy) = (ry)z = 0, so that ry € Annz from which it follows
that 7 € Annz : y. This proves Annz : y = Ann(zy). The proof of Anny : z = Ann(zy)
is similar. ’ '

All of this implies that Annz = Annz : ¥ = Anny : £ = Anny, but our initial
assumption was that Annz and Anny are different, yielding the contradiction. Therefore
zy = 0. S : 0

We are now in a position to prove one of the ﬁfst major results.
Theorem 3.9. Ford reduced ring R the following a;”e equivalent :
1. -X('R-) is finite. |
2. Ww(R) is finite.
* 3. The zero-ideal in R is a finite intersection of prime ideals.
4. R does not contain an infinite clique.

~ Proof. 1. = 2. This implication follows from w(R) < x(R).

1. = 4. Similar to the implication above.

2. = 4. Obvious. < .

3. = 1. Let (0) = py N pa N -+ N pg, where Py, Pa, ... , P are prime ideals. Define a
coloririg f on R as follows: '

‘0 if z =0, :
fl@)=9 . , (32)
- min{: | z ¢ p;} ifz #0. 2
We now show that this is a valid colouring by showing that adjacent elements cannot
Teceive the same colour. If z and.y are adjacent then zy = 0; we will also assume that
both z and y are not equal to 0 since 0 receives its own ‘colour. Therefore zy € p;, zy €

p2,...,ZY € px. Since the p;’s are prime ideals, this-implies
TEPrOryEP,TEP2OryE€P,... , € Pk 0ryeE p;g. . (3.3)
If we assume that z and y received the same colour i.e f(z) = f(y), then f(x) =

min{i | z ¢ p;} = min{i | y ¢ p;} = f(y). This implies that there exists an i €
{1,2,...,k} such that = ¢ p; and y ¢ p;, but this contradicts the equation above. This
shows that f is a valid colouring of R. Note that in this-case x(R) < k + 1 so that this

.mplies 1. = - _ e
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4. = 3. We assume that R is reduced and that R does not contain an infinite clique.
Lemma 3.7 implies that R satisfies the a.c.c on ideals of the form Anna. Let Annz;, 1 € I
(I the index set) be the different maximal members of the family {Annr |r€R, T # 0}.
Each Annz; is a prime ideal : : :

Let zy € Annz; and assume z'¢ Annz;. Then zz; # 0 and (zy)z; = 0 = (zz;)y.
Therefore y € Ann(zz;). But Ann(zz;) O Annz; and Annz; is a maximal element so that
Annz; cannot be properly contained in Ann(zz;), therefore Ann(mxi) = Annx,-. Thus
y € Annz; which proves that Annz; is prime.

Lemma 3.8 now implies that |/| < oo, because otherwise we would have an infinite clique.
We now show that (); Annz; = (0) :

 Assume that z € (); Annz; and that z # 0. Then z € Annz; and zz; = 0 for all 7 € I.

Also Annz C Annz; for some ¢ € [ : we have two possibilities, Annz C Annz; for some
i € I, in which case we are done. Otherwise, Annz. ;(_ Annz; for all ¢ € I, but then Annz
is maximal, i.e. Annz = Annz; for an i — a contradiction. From this it follows that
z; € Annz C Annz;. This shows that xf = 0 or in otherwords that z; is nilpotent and
since R is reduced that z; = 0. This contradicts the fact that the z;’s are all nonzero.
Thus (); Annz; = (0). |

O

Theorem 3.10. Let R be a reduced ring with x(R) < oo. Then R has only a finite
number of minimal prime ideals. If this number of minimal prime ideals is n, then x(R) =

w(R)=n+1.

Proof. By Theorem 3.9, (0) is equal to a finite intersection of prime ideals, that is (0) =
p1NpaN-- ﬂpn Every prime ideal, p;, contains a minimal prime ideal; m;, [13]. “Therefore

“myNmyN---Nm, = (0), where each m; is a minimal prime ideal. Note that we are assuming

that these minimal prime ideals are different, since there is no point in including the same
ideal more than once when forming an intersection. We now show that R has only a finite
number of minimal prime ideals:

Assume that R has infinitely many minimal prime 1deals The nllradlcal is the intersection
of all minimal prime ideals [13], so that B(R) = N my, where the intersection is taken
over all minimal prime ideals. Since R is reduced, B(R) = (0). Using the result above

we get

mpNmeN---Nm, =N my = (0).

_With a suitable renumbering of the minimal prime ideals we can rewrite this as

mNmeN--Nm, = (mNmeN---Nmy,) N (N mi), - e
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where N m’; refers to the remainder of the minimal prime ideals. The identity above
implies that (m;NmyN---Nm,) C (N m';), implying (m; NmyN---Nm,) C m’; for every
i. We also have that mym,---m, C (m;NmyA---Nm,), so that mym,---m, C m’;. Since
‘m’; is prime, m; C m; ormy C m; or --- or m, C m/;. Furthermore, m’; is a minimal
prime ideal so that m=m;ormy=m;or--- orm, = m,
This shows that every minimal prime ideal has to be equa,l to one of the n orlgmal
minimal prime ideals that we started with. Thus there is only a finite number of minimal

prime ideals.

We now show that the intersection my Nmy N ---Nm, = (0) is also minimal, i.e the |

removal of any minimal prime ideal from this intersection yields a nonzero intersection :
Assume that the intersection is in fact not minimal. Then there exists at least one m;
such that m;NmyN---Nm,; =myNmyN---NmM;_;Nm;41 - - -Nm, = (0). From this we may
conclude that m, ﬂmgﬂ ‘Nm;_;Nmyy; - - -Nm, C€ m;. Using the same reasoning as above
this leads to m; = m; Or My = M; OF -+ - or m, = m;. Since we assumed these minimal
prime ideals to be distinct, this leads to a contradiction implying that the intersection is
indeed minimal. - _

Turning now to the proof of x(R) = w(R) = n+ 1, we have as in the implication
3. = 1. of Theorem 3.9 that x(R) < n +1.

We will now construct a clique with n + 1 elements :

[\m: # (0) o (3.4)
. . ' 4
forevery 7 =1,2,... ,n. Therefore for every ¢ € {1,2,...,n} we may choose z; # 0 such

that z; €E myNmy N -2 Nm_y MM N---Nm, and z; € m;. That is z; € m; for all
j#iand z; ¢ m. Now z;z; =0 for i # j : z;z; € m; for all j # i since z; € m; for all
j #iand z;z; € m; for all 4 # j since zj €m for all ¢ # j. Together, this.gives z;z; € m;
foralli=1,2,...,n,ilez;z; € NLm = (0) Therefore {0 Ty,...,Zn} forms a clique of
n + 1 elements, so that w(R) > n + 1. S
Combining our results we see that w(R) < X(R) < n'+ 1 and n+ 1 < w(R) < x(R)
imply that w(R) = x(R) = n + 1. ‘ V - a-

The following theorem can be considered the main result of this chapter.

Theorem 3.11. The fbllowing conditions are equivalent for a riné R :

e~ L. x(R)-is finite.. - - R L o L
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2. w(R) is finite
8. The nilradical in R 4s finite and equals a finite intersection of prime ideals.
4. R does not contain an infinite clique.-

Proof. The following implications follow-in the same manner as for Theorem 3.9 :
1.=2,1. 24,2 =4 | .

3."= 1. Let B(R) = p; NpaN---Npg, where py, pa, ..., px are prime ideals and with
B(R) finite. We can colour the elements outside of B(R) as follows : If z ¢ B(R), assign,
z the colour f(z) = min{s | z ¢ p;}. This is the same type of colouring as the one defined
in Theorem 3.9 so that we know from what we proved there-that the elements outside of
B(R) can be coloured with a finite number of colours. Since B(R) is a finite set, we will
only need a finite (maybe even zero) amount of additional colours to colour the elements
in $B(R). This shows that x(R) < co.

4. = 3. Assume that R does not have an infinite chque Then by Lemma 3.5
we see that B(R) is finite. Lemma 3.3 then shows that R/%B(R) does not have an
infinite clique. We now apply Theorem 3.9 to R/®B(R) and conclude that the zero ideal
in R/B(R) is a finite intersection of prime ideals in R/B(R), that is {0 + B(R)} =
{B(R)} =q1Nq2N---Nqn, where the g;’s are prime ideals in R/B(R). Furthermore we
know that there exits a one-to-one, onto mapping between the ideals (prime ideals) in R
which contain B(R) and the ideals (prime ideals) in R/B(R) given by p — p/B(R) =
{p+ B(R) | p € p} [11]. Therefore for each of the prime ideals q; above there exists a
corresponding prime ideal in R, say p; such that p; ~ p;/B(R) =.q;. Thus {B(R)} =
(p1/B(R)) N (p2/B(R)) N -+ N (pa/B(R)) = (p1 N paN -+ N py)/B(R). The second
equality follows ea.sily from first principles. The equality as a whole is only possible if
B(R) = pyNp2N---Np,. This shows that B(R) is a finite intersection of prime ideals,
yieldihg the desired result. m]

. The following theorem is an apphcatlon of Theorem 3.11 to a somewhat restricted

situation.

Theorem 3.12. Let R be a ming which contains a finite ideal which is a finite intersection
of prime.ideals. Then the radical of any finite ideal is finite and equals a finite intersection
of prime ideals. Furthermore the ring has only a finite number of finite zdeals

Proof. If R contains a finite 1deal which is a finite 1ntersect10n of prime ideals then
X(R) < oo by the same procedure used in proving 1mp11cat10n 3. = 1. in Theorems
3.9 and 3.11. This also 1mp11es that w(R) <00 .o Lo
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Let q be any finite ideal in R. Then by Lemma 3.3 R/q does not have an infinite
clique, since w(R) < oco. By Theorem 3.11 we then conclude that x(R/q) < oo and
also that B(R/q) is finite and equals a finite interséction of prime ideals. Note that
B(R/q) ={r+q€ R/q| (r+q)® = q for some positiven} = {r+q € R/q| ™ +q =

q for some positive n} = {r+q € R/q | r™ € q for some positive n} = {r+q € R/q|r €
B(q)} = B(q)/q, where B(q) is the radical of q. That is, B(q) equals the intersection of
the prime ideals in R which.contain q. Therefore 9B(q)/q is finite and equal to a finite
intersection of prirne ideals, say B(q)/q = (p1/a)N(p2/0)N- - N (Pn/q) = (P1OP20- - pa)/ 4,
so-that B(q) = p1NpaN-- - Pn (where the p;’s are prime ideals in R c¢f. Theorem 3.11,
implication 4. = 3.). Therefore B(q) is also equal to a finite intersection of prime
ideals. Since B(q)/q and q are finite we conclude that B(q) is also finite, since |B(q)| =
B()/allal. | |

We stlll need to show that R contains only a ﬁmte number of finite 1deals To this
_end let A ="{z € R |z is finite}. Since w(R) < oo it follows from Lemma 3.2 that .A is
- a finite ideal. Also, A contains every finite ideal :

Suppose J be a finite ideal and let z € J. Then zR C J and since |J| < oo, zR is also
finite. Therefore z is a finite element, so that z € A. Thus J C A, as desired. -

Now since A contains every finite ideal, the number of finite ideals has to be finite.

O



Chapter 4

Propertles of rings Wlth X(R) < co —

Colorlngs

r I \HE previous chapter was devoted to a characterisation of rings of finite chromatic
number. The present chapter will be devoted to discussing some of the properties
enjoyed by these rings. We first state the following definition :

_Deﬁnition 41 (Coloring). A.ring R is called a Coloring if x(R) is finite.
Lemma 4.2. IfJ s a finite ideal in a ring R, then J : z/Annz s a finite R-module.

Proof. Consider the exact sequence

OgAnnxgjzig(J:x)xﬁ}Q, ‘ (4.1)

where

fi OHO,

fo : z—zVz € Anng,
f;,;': rr—-)r:chEj:x,
fa rr—-)OVrE(fJ:a:)x.

Clearly Im(f;) = Ker(fi+1). Since f; is onto, we have by the fundamental theorem on
homomorphisms [11] that (J : )z = J : z/Ker(f;) = J-: z/Annz. Also (3 : z)z C 7,
since by definition the product of every element in (J : z) with z is in J. Thié forces
(3 : )z to be finite because J is finite. This means therefore ‘that J : x/Ann:c is also

ﬁn1te (by the isomorphism above). L 0o

23
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The next lemma will be useful in proving Theorem 4.4.

Lemma 4.3. If R is a commutative ring with identity, then

| R z€p,

(v:2) =
7 p z¢p

where p # R is a prime ideal and z is any element in R.

Proof. Let z € R and let p # R be a prime ideal. If £ € p, then (p : z) = R since the
product between z and any r € R will always be in p -seeing that p is an ideal. -
Otherwise if z ¢ p, then foray #z andy & p, (p:z)=(p:y):
Let 7 € (p : z), therefore rz € p, so that z € p or 7 € p. p is prime which implies that
r € p (z ¢ p). This leads to yr € p (p an ideal), so that r € (p:y), i.e (p:z) C(p:y).
Similarly we can show that (p:y) C (p : z), which proves the assertion above. .
Therefore ifz # 1 and z ¢ p, then usmg the statement above with y = 1(1¢ p s1nce4
p # R) (p:z)=(p:1) =p. If z =1, then obviously (p: z) = (p : 1) = p also. Note
that since 1 ¢ p the possibility z = 1 does exist. It does not change the result, though.. -
In summary then '

R ze€p,

o= p z¢p,

SO tha.t under the assumpt1ons of the lemma, the p0831b111t1es for (p : z) are severely
limited. ‘ d
Note that above we did not use the fact that R was commutative explicitly, thus this
result would be valid in a noncommutative ring as well. In the case of a nohcommutativej
ring, though, one would have to formulate the definition of p : z more carefully, specifying
whether multiplication by elements from p : z is to be taken on the left-or on the right of
z. We choose to circumvent this problem by focusing on a commutative ring.
The following theorem is a generalisation of Lemma 3.7.

" Theorem 4.4. A Coloring has a.c.c on ideals of the form Anna.

Proof. Let R be a Colering and assume that we have the infinite chain Anny; C Annyg‘“C
. (i.e the a.c.c does not hold). By Theorem 3.11 we know that B(R).is finite. We then
remove those Anny;’s from the chain above which are such that y; € B(R). This still

___yields an infinite chain since we are_removing .at most a finite number of terms from the -
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infinite chain. This produces a chain Annz, C Annz, C --- such that z; ¢ B(R) for
+=1,2,.... Theorem 3.11 also yields that *B(R) = p; N pa N --- N p,, where the p;’s are
prime ideals. For an element z € R we are then able to write -

BR):z=P1:x)N(p2:2)N---N(pn:2z), (4.2)

using nothing more than the definitions. Applying Lemma 4.3 to each term of the intersec-
tion we see that each term can have one of two poesible values depending on the location
‘of z. Since we do not know the location of = beforehand, the best that we can do is to say
that the intersection will be restricted to one of 2™ possibilities. Each term has 2 possible
values and there are n terms. Note further that this set of 2" possibilities is the same for
every z € R. The implication of this is that the family {B(R) : z |z € R} is finite, specif—
ically |{B(R) : z | = € R}|-< 2". Consequently, there exists a subsequence {z;} of {z;}
_'for which B(R) : 2y = B(R) : 2 = ---. Consider now the chain Annz; C Annz, C ---
For each term of the chain we have Annz; C B(R) : z;, but since B(R) : z; = B(R) : 7,
for all 7 = 2,3,..., we have Annz; C Annzy, C --- C B(R) : z;. Now, take r, €
Annz,, r, € Annz\Annz;, 73 € Annz;\{Annz, U Annz,} = Annzz\Annz,, ..., then
7i+Annz #r;+ Annz, fori < j:
Assume that 7; + Annz, = r;+ Annz;, then r; —r; € Annz,. Say 7, — r; = z; where
2y € Annz;. Since Annz; C Annz,, zl € Annz;, so that 7; € Anngz; which contradicts the
choice of z;. , ‘
This shows .that (B(R) : 21) /Annz1 is infinite, which contradicts Lemma 4.2. There-
- fore the a.c.c holds. ) o ' .

Theorem 4.5. Let R be a Coloring. Then AssR (the set of associated prime zdeals) 18
~ finite. Further, we have the followmg for the set of zerodivisors :

3wr= U »

pEAssR\{R}.

Also, any mmzmal prime ideal q, s an associated prime ideal and R s a field or a finite

ring.

Proof. Assume that R is a Coloring, then by Theorem 3.11 we know that w(R) < oo.
A direct consequence of this and Lemma 3.8 is that AssR is finite (otherw1se we can
construct an infinite clique). ,

Let z € 3(R), then z € Annr for some 7 # 0. By Theorem 4.4 we then have that
~_Annr C Anny for some rnaxlmal Anny, so that z € Anny for some. maximal Anny
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Furthermore, we saw in Theorem 3.9 that the maximal Anny’s are prime 1mply1ng that

Anny is an associated prime ideal. ThlS shows that

3me U o (43)

pEAssR\{R}

The converse is an easy consequence of the definitions. Note that the union is taken over -

the set of all associated prime ideals except 'R — R is an associated. prime ideal since
R = Ann0. Therefore, '

3= | S (4.4)
peAssR\{R}

We now show that every minimal prime ideal is an associated pfime ideal. Let p be
a minimal prime ideal and take z ¢ p. If there does not exist an z such that z ¢ p then
p = R and there are no other proper minimal prime ideals.- Further, p = Ann0 so that
p € AssR and we are done. Choose Annt maximal in the family {Annr | Annr C p}.
" This family is not empty since Annz C p : C
~ Let y € Annz, then zy = O €p. If y ¢ p then zy gé p, therefore y €p.
This Annt is prime : 4
Let ab € Annt and assume that ¢ ¢ Annt and b ¢ Annt (i.e we assume that Annt is not
prime). Consider now the ideal Annta.
If.a ¢ p thén Annt C Annta C p : :
Letr € Annta then r(ta) = (ra)t = 0, so that ra € Annt C p. Therefore ra € p and
since p is prime and a ¢ p, r €-p. We certalnly have Annt C Annta. Now be Annta,
since b(ta) = (ab)t = 0 (ab € Annt), but b ¢ Annt. Therefore Annt C Annte. This
contradicts the fact that Annt is maximal in the family. :
If on the other hand a € p and Annta C p, then the contradiction is. repeated The
contradiction did not depend on a being an element of p.
Therefore we still need to consider the case a € p and Annta € p. We now have a
¢ € Annta and ¢ ¢ p. Here we consider the ideal Anntc and get the contradiction

Annt C Anntc C p in the same manner as above (Annt - Anntc since a € Anntc and

a ¢ Annt). _ : -
" . Therefore every possibility ends in a contradlctlon so that Annt is prime. Slnce pisa
minimal prime ideal we need to have Annt = p. This shows that every minimal prime
. ideal is an associated prime ideal.

Next, we will show that for a minimal prime ideal p, R, is a field or a finite ring.
Let p be a minimal prime ideal. We know that p = Annz for some z € R. If z ¢ p,

- pR, = (0), i.e the unique maximal ideal in R, is the zero ideal :.. . = = . . — -
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Recall that pR, = {p/s | p € p and s € R\p}. Let p/s € pR,, then z(p.1 =s5.0) =zp =0
(p € p = Annz), implying that (p,s) ~ (0,1), or in otherwords that the fraction p/s
equals the fraction 0/1 in Ry; 0/1 is the zero element in R,. This shows that pR, = (0).
If the unique maximal ideal is (0), it means that the only ideals in R, are (0) and R,. -
Let z be a nonzero element in R,, then zR, is a nonzero ideal in R, and so zR, = R,.
Specifically there exists an element 7' € Rp' such that zz’ = 1. This shows that every
nonzero element has an inverse so that R, is a field.

Consider now the case T € p. We can write ‘B(R) = pNpNpyN---N pg, where
p1, P2, ... , Pk are the remaining minimal prime ideals. This is possible since the nilradical
is the intersection of all minimal prime ideals. Take y € (p, N pa N --- N px)\p. Then

yp C B(R), since the product of y with an element in p is in p as well as in P1, P2, .-, Pk
(p is an ideal and py,po,. .., Pk are also ideals respectively). We now claim that pR, =
B(R)R, : -

Let p/s € pR,, then (p, 5) ~ (yp,ys) since 1(pys — syp) = 0, therefore p/s = yp/ys. Now,
yp € B(R) (yp C B(R)) and ys € R\p since R\p is a multiplicative set and y ¢ p. This
means that every element in pR, is equal to some element in B(R)R,, ie pR, C B(R)R,.
Further, every element in B(R)R, trivially equals some element in pR,, since B(R) C p.
Thus pR, O B(R)R,. Combining, pR, = B(R)R,. _
Since the ideal B(R) is finite, pR, is also finite : assume that pR, = B(R)R, is not finite.
Therefore there exist infinitely many pairs 7;/s; and 7 /s, in B(R)R,, with r;, 7, € B(R)

and s;, sk € R\p, such that (r;,s;) » (rk, S¢). That is for all u € R\p, u(risg — m¢s:) #0.

Taking u = 1 we get that r;sx # r¢s;. Thus we have infinitely many pairs of elements
7;8, and ris;, such that 78, # 7s;. N(;t.e.that r;sx and ris; are both in B(R) since
ri, Tk € B(R). Therefore B(R) has infinitely many different elements, but- this contradicts
the finiteness of B(R). Thus B(R)R, = pR, is finite. :

Further, R/p = Rz, the isomorphism being given by r + p = 7+ Annz — rx. Since '
z € p = Annz, we have that 2 = 0. This implies that Rz is a clique which together with
w(R) < oo yields that Rz is a finite; more importantly R/p is finite. Now Rz ®g R, =
(Rz)R, C pR, (the isomorphism is given by Proposition 1.16 and Rz C p since z € p), so
that Rz ®g R, is finite. Also, Rz g R, = R/p®r Ry, = (R/p), = R,/(pR,) (the second
lastvisorlnpgphisqullows from 'Propostioﬁ 1.16 and 'the,ldst'isomorph’ism will be proved

presently).
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We now show that (R/p), = R,/(pR,) as left R,-modules. Note that the module

' ‘operations are given by

ntp_ r2tp (r182 +p) + (r251 + p)
S1 S2 S182

N ‘ T2 = (L,
(Sl.prp> + (32 +PRP> = <S1 + 82>_+PRp, |

)

r (r-{-p) _r'r+p

S

s N s's
rosr r'r
S (E+pR) = TT+eR,

s s's

Consider the mapping (R/p), = R,/(pR,) defined by (r + p)/s— (r/s) + pR, where
r € R and s € R\p.

- The mapping is onto:

If (r/s) + pRy, € R,/(pR,;) then obviously, (r +p)/s+ (r/s) + pR,.

The mapping is also one-to-one:
Let (r1/s1)+pR, = (r2/82)+pR,. Therefore v /sy —7r2/s2 € pR,. Thus (r183—7281)/s182 =
r'/s’ where ' € p and s’ € R\p. That is there exists a u € R\p such that

u([r1s2 — ras1)s’ — r's189) =0,
(ﬁsf)fISQ — (us')ras) = ur's1s; € p,
Fou'rsy — u'rys)-€ p where u' = (us’) € R\p,
sourisa+p=u'res; +p,

cou'se(ry +p) = u'si(r2 + p),
: . T+ p- - 72 +p
s B S2 )

'”_ The mapping is an R-homomorphism: _ - ... .. __ . . oo
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(risa+p) + (r2s1 +p)

H

T+ P " T2+ P

S1 S9 81892
(T182 + 7"281) + p
. 8182 ’

7182 + 7283
= ———— +pR,,
S182

S1

Let r'/s’ € R,. Then

Now the isomorphism Rz ®g R, = R,/(pR,) implies that R,/(pR,) is finite and since
|Ry| = |pR,||Ry/pR,| we have that R, is finite. | O

Theorem 4.6. IfRisa Colbring and p an associated prime ideal in R, thén either R,

is a field or p is a mazimal ideal.

Proof. Let p be an associated prime ideal. Therefore p = Annz for some z € R. Suppose
firstly that =z € p, then z € Annz so that z2 = 0. This implies that Rz is a clique and
since R is a Coloring i.e w(R) < oo, Rz has to be finite. Now, the fact that p is prime
implies that R/p is an integral domain. Also, Rz = R/p so that R/p is a finite integral
domain. A finite integral domain is a field, therefore R/p is a field. Furthermore, R/p is
a field if and only if p is a maximal ideal. Thus p is a maximal ideal. "

If z ¢ p, then we conclude in the same manner as in Theorem 4.5 that pR, = (0) so
that R, is a field. o o O

Corollary 4:7. An associated prime ideal in a Coloring is either a mazimal ideal or a

minimal prime ideal. . .. L
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Proof. From Theorem 4.6 we have that either p is a maximal ideal or that R, is a field.
Therefore one half is already taken care of.

Let R, be a field. Recall that the prime ideals of R, are in a one-to-one correspondence -
with. the prime ideals of R contained in p. The correspondence is given by q +» S~ 1q =
(q x S)/ ~, where q is a prime ideal contained in p.

Assume that there exists a prime ideal q C p. That is, p is not a mlmmal prime ideal.
“Then S~1q is a prime ideal in R,. But S™'q C S™'p = pR, = 0 because R, is a field and
pR, is the unique maximal ideal in R,. This contradicts the one-to-one correspondence.

Thus p has to be a minimal prime ideal. ' ' a



Chap'fer 5
Properties of the farhily of colorings

I l YHE subject of this chapter is the properties shared by the family of Colorings.

The following theorem is rather obvious.
- Theorem5.1. A subring of a Coloring is utself a Coloring.

The next theorem is ‘an application of Lemma 3.3 and Theorem 3.11.
Theorem 5.2. Let J be a ﬁnite wdeal 1n d Coloring R. Then R/3J is a Coloring.
Lemma 5'.3. Let x be an é‘lemeni ma Cbloring R. Then R/Annx is a Co{oring.

Proof. Let 7,,7,...,7, be.a clique in R = R/Annz. That is all elements are distinct
and 7;7; = 0 for i # j. Stated differently, (r; + Annz)(r; + Annz) = ;7 + Annz = Annz,
which 1mpl1es that r;r; € Annz or that rir;z = 0 for ¢ # j Furthermore, the elements
T1Z, T2, ... ,TaT are distinct : "

Assume that riz = ;2 (1 # j). Then (ry —rj)x =0, therefore r;—r; € Annzorr;—r; =71
where r € Annz. Now r; + Annz = (r; + 1)+ Annz =r; + Annx o that 7i = 7j which
contradicts their initial choice of being all distinct. '

This shows that 7,2,72z,... ,7,z is a clique in R. Therefore with every clique in

R we can associate a clique in R of the same size and since the sizes of the cliques in |
R are bounded by w(R) the sizes of the cliques in R will also be bounded by w(R). -
Consequently w(R) < w(R) < co. From,Theorem 3.11 we then have that R = R/Annz. -
is also a Coloring. ' : . . O

Theorem 5.4. Let J be a ﬁmte ideal in a Coloring R and z € R. Then R/(i] :c) is a
~Coloring.

31
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Proof. From Lemma 5.3 we have that R/Annz is a Coloring. Lemma 4.2 yields that J :
z/Annz is a finite ideal in R/Annz. Theorem 5.2 then implies that (R/Annz)/(J : z/Annz)
is a Coloring. We also have that (R/Annz)/(3 : z/Annz) = R/(3": z) [11], which is the

. desired result. . . : : : B

Theorem 5.5. A finite product of Colorings is a C’olorz’ng.

Proof. We will consider the case of a product of two rings, the general result may be-.

obtained through induction. Let R = R; X R,, where R, and R, are Colorings. Assume
that w(R;) = n and that w(Ry) = m. Consider any clique C in R. If we project C onto
R, we see that this projection cannot have more than n different elements as this would
. yield a-clique with more than n = w(R,) elements. The same holds if we project C onto
R,, but in this case there cannot be more than m elements. Since the elements in C are
of the form (c;,cy) with ¢; € R; and ¢, € Ry, we conclude that |[C] < nm. Therefore
w(R)S nm and Theorem 3.11 then implies that R is.a Coloring. -0

The.following theorem is a generalisation of Lemma 5.3.

Theorem 5.6.- If J is a finitely generated zdeal in a Colormg R then R/AnnJ is a
Coloring.

Proof. Let 3= (zy,22,... ,%n). 4Th>er; AnnJ = Annz; 0 Annz, N --- N Annz, :
Let r € AnnJ. Since z,,%Z3,...,2n € J, 72y = 729 = --- = 13, = 0 and therefore
r € Annz; NAnnz,N---NAnNz,, i.e AnnJ € Annz, NAnnz, N ---NAnnz,. Conversely,
let 7 € Annz; N Annzy N ---O'Afhnxn and let s € 3. Then s =) . riz; (r; € R and
z; € {11:1,:1:2, e :z:n} so that st = 3, mz;r = 0: Therefore 7 € AnnJ and Annz; N
‘Annz; N---N Annz, C AnnJ.
Usmg the result above we have the injection R/Anni] — R/Annz; x R/Annz, x
- x R/Annz,, given by r + AinJ —— (r + Annz,,7 + Annz,, ..., + Annz,):

Let (r,+Annz,,r, +Annx,, . .. ,71 + Annz,) = (ro+Annz;, 7o+ Annz,, . .. , 72+ Annz,).
Then.r; + Annz, = 7o + Annz,, r; + Annzs = 7o + Annz,, ... r, + Annz, = 7o + Annz,.
Thus r; — 7o € Annz,, 7, — T2 € Annzy, ..., 1y — 19 € Annz,, 'so that r; —'ry €

Annz; N Annz, N ---N Annz, = AnnJ. Therefore T + AnnJ = r, + Ain3J.
- By Lemma 5.3 we know that each of the rings R/Annz; is ‘a Coloring so that by
Theorem 5.5 R/Annz; x R/Annz; x --- x R/Annz, is a Coloring. The injection shows

that R/AnnJ is a subring of R/Annz,; X R/Ann:z:z x «++ X R/Annz, and from Theorem

5.1 we can then conclude that R/AnnJ is also a Colorlng A d

Corollary 5.7. Let R be a Noetherian ring whose nilradical is ﬁmte and let 3 be any

ideal in R._ThenB(AnnJ)/AnnJ is finste. - - - —- o o 2



38

Proof. Note that B(AnnJ)/Ann7J is the nilradical of R/AnnJ. That is B(R/AnnJ) =
B(AnnJ)/AnnJ (cf. Theorem 3.12 where we had a similar situation). By applying Theo-
rem 3.11 we ¢onclude that R is a Coloring (nilradical is finite and a finite intersection of
prime ideals, cf. Theorem 1.3). Since every ideal in a Noetherian ring is finitely generated,
Theorem 5.6 implies that R/AnnJ is a Coloring. Furthermore, the nilradical of a Coloring
is finite (Theorem 3.11), and this implies the result. : : O

_Theorem 5.8. Let S be a multiplicatively closed set in a Coloring R. Then Rs = S™'R

is a Coloring. Moreover, x(Rs) < x(R) and w(Rs) < w(R).

Proof. Let x(R) = n. To show that the graph of Rg is n-colourabie (i.e that x(Rs) < n),
it suffices to show-that every finite subset is n-colourable [5].

Let z1,Z2,... ,Zm be a finite subset of Rs. Now any finite set in Rs can be brought
to a common denominator (see the discussion in Chapter 1). Therefore we have z; =
r1/S, T2 = Ta/s,. ‘ ST = rm/s We will now show that the set z),z,... 'xm iIs n-
colourable by assoaatlng with each element z; an element r; € R. Furthermore, z;z; =0
if only if 7jr; = 0, so that we rnay assign the same colours to the z;’s that were ass1gned
to the rg’s in a colouring of R : _ N

If z;z; = 0 for i # j, then (r;/s)(r;/s) = (rir;)/s* ~ 0/s. This means that there

- _ R
exists an s;; € S such that sgj(r,-rjs — 0s%) = 0, or that 8;;8TiT; = syTiry = 0 (where

sij = si;8 € S). Let t = []si, where the product is over all pairs (3,5), 7 # j and
z;z; = 0. Define, 7} £ tr; = ([] s,])r1 Now z;2; =0 <= rir; =0:

~-Assume z;z; = 0, that is (rir;)/s* ~ 0/s. From our dlscussmn above we know that there

exists an s;; € S such that s;;r;r; = 0. Therefore ri7; = tritr; = [] si; [ sijrir; = 0. The
last equality follows by taking the product between r,, r; and their corresponding si; such

- that s;jrir; = 0.. Conversely, assume that rir; = Hsur1 (T1 s,Jr,) = ([Isi;)*rir; = 0.
" Therefore there exists an s’ € S such that s’ r,r, =0(s =([] s,J 2). Thus §'(r;rjs—0s%) =

0, so that (rir;)/s* = (ri/s)(r;/s) ~ 0/s, that is z;z; = 0.
Furthermore the 7;’s are distinct - . : _

If 7} = r, then (H 8i)Ti = (11 sU)rJ, which 1mphes that []si;(r: — ;) = 0, so that there
exists an s’ € S such that s'(r; — r;) = 0. Thus s'(r;s — r;5) = 0. This 1mp11es that

7;/8 ~ /s, which is a contradiction to the fact that the z,’s are distinct.

If we now make the identification z; < 7}, we see that we can colour z; with the same
colour as 7! “and still produce a valid colouring of T1,%2,...,Tn. Since x(R) =n, we will
need at most n colours to colour the set {z1,z2,...,zs}. This shows that an arbitrary
set, of Rs is n-colourable 1mply1ng the theorem. O



Chaptef 6
When is x(R) = w(R) ?

r I VHIS chapter discusses the conditions under which the chromatic and clique numbers
of a ring are equal. .- ' . '
The following interesting fact is a direct consequence of the properties of a prime ideal.

Remark 6.1. Let p be a prime ideal in a Coloring R. If the elements in p have been
coloured, then we need at most one additional colour to colour the elements 'z_"n‘R\‘p. To
see this we note that no two elements, say ﬁ:, y € R\p, can have a product of zero. If this _
was the case, TY = 0, so that Ty € p, im;ilyz’ng that z € p or y € p. Since neither one is -
mp we have a contradiction. Therefore xy # 0 with the consequence that all elements in

R\p may be coloured with the same colour.

\Iext we introduce the notion of a separatlng element to enable us to 1nvest1gate the
questlon When is x(R) =w(R) ?

Deﬁnltlon 6.2 (Separatmg Element). An element z € R is sepamtmg prov1ded that . - -
x;éOandab—O1mp1yxa—00rmb—0forabeR ' - :

Definition 6.3 (J-separating). Let J be an ideal. An element z € J is J-separating
provided that £J # (0) and whenever db =0 (a,b € J), then za =0 or zb = 0.

| _VVe would like to stress the following boints
e The idea of z being separating is equivalent to z being R-separating.
e In the definitions above it is not required that a # b.

e If z is R-separating and z € J, then z fails to be j—éeparating if zJ = (0) (i.e
_ r € AnnJ). If, however zJ # (0), then z is also J-separating. . .. .- —— .—. .~
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The first point that we discuss is-the existence of separating elements.

Proposition 6.4. If Annz is a prime ideal in-a ring R and = # 0, then z is separating.

- Proof. Let a,b € R and assume ab = 0. Then abz = 0, so that ab € Annz.. Since Annz is
prime, a € Annz or b € Annz, that is za = 0 or zb = 0, implying that z is separating. 0.

‘Proposition 6.5. A‘honzero ideal J in a Coloring R contains a separating element.

Proof. Consider the family {Annz; | z; € J and z; # 0}. This family is hot empty seeing

that J is nonzero. Since R has a.c.c on annihilators (Theorem 4.4) we conclude that the .

family has at least one maximal element, say Annz. It may be verified, as in the proof of
Theorem 3.9, that Annz is prime. Therefore J contains an element z such that Annz is
prime. By applying Proposition 6.4 we then see that z is separating. O

Theorem 6. 6 Let 3 be an ideal in a Colormg R such that J s not. ‘contained in the
nilradical. Then J contains an J- -separating element. '

Proof. Consider the family {Annz; | z; €3, J ,¢_ Annz; and z; # 0} This famlly is notr_‘ L

empty : \ .

Firstly, J # (0) since 3 € B(R). Therefore J has nonzero elements. Assume now that
J 'C Annz; for all nonzero z; in J. Therefore z;J = (0) for all nonzero z; in J. Thus
z2 = 0.for all nonzero z; in J. This implies that every element in J is nllpotent which in
turn implies that 3 C B(R) — a cortradiction. ' ‘

Since R has a.c.c on annihilators, we conclude as.in-Proposition 6.5 that 3 contains .

an element z such that Annz is prime. This z is R-separatlng Furthermore, J ¢ Annz,
SO that zJ # (0). Therefore z is J-separating. o O

Remark 6.7. If J is an ideal such that J% = (0), then'J cannot contain any J-separating

elements.

.Theorem 6.8. Let J be a prmczpal zdeal n a C’olorzng R.If 32 # (0), then J contains

an 3 sepamtmg element.

Proof Let 3 = Rz. Note that 22 # 0: if 22 = 0 then 32 = (0). Consider the set

of it. Since R has a.c.c on annihilators, we conclude that the set has a maximal element,

say Annz?t, which is also prime (following from the maximality, as we have seen before). _

Then zt is J-separating :

Let.a,b € J and assume that ab = 0. Since J.is principal we can write.a = rz.and-b =-sz. -

{Annz?r | 7 € R and z?r 3 0}. This set is not empty since Annz? (i.e r = 1) is a member-
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Then ab = rsz* = 0, hence 7s € Annz?t. The fact that Annz?t is prime implies that
r € Annz?t or that s € Annz?t. If 1 € Annz?t, then (rz)(zt) = a(xt) = 0. Otherwise
s € Annz?t and (sz)(xt) = b(zt) = 0. Furthermore, (zt)z = 2%t # 0 (following from the
choice of ¢ in_the set a.bove) so that (zt)J # (0 ) , - a

The followmg lemma. will be used a number of tlmes in the subsequent work and
clea.rly illustrates the importance of separatlng elements.

Lemma 6.9. Let J be an zdeal in a Coloring and assume r € f] s J- separatmg Define
J = Annx NJ. Then the following hold :

1. Ifa; =0 then w(J') = w(T) and x(T') = x(7J).
2. Ifz? #0 then w(¥) = w(3) — 1 and x(F) = x(J) — 1.

Proof. Assume first that z2 =0, therefore z € Annz, so that z € J’. Let w(i]) =n and

"~ choose a maximal clique C = {y1, 2, - . . ,yn} in J.

Ifz € C,say x =y, then 2y, = zy3 = - -+ = zY, :.0, by the definition of a clique.
Hence y2,%3, .. ,yn € Annz, therefore y5,ys,... , 9, € . Thus C C 7" w(f]’)A < w(7J)
since ' C T (i.e every éiiqué in J' is a clique in J with the consequence that the sizes
of cliques in 7’ will be bounded by the clique number of J). Also, C C 7' implies that
w(J") > n = w(J) (as we have shown that there exists at least one clique of size n in
7", i.e w(J') > w(J). Put together we get, w(J') = w(J). The same argument obviously

applies when z = y; forany : =1,2,... ,n.

On the other hand if z ¢ C, then 2C # (0) since C is a maximal clique. Assume that
zy1 # 0. By definition of a clique we have that y192 = y1y3 = - = y1yn =0. Since z -
is J-separating, zy; = 0 or zy; = 0, zy;, = 0 or zy3 =0,...,2y; =0 or icyn = 0, but
since zy; # 0, 2y, = 0,zy3 = 0,. = 0. This shows that Y2,Y2, .- ,Yn € Annz and

subsequently that yo,y2,... ,yn € 3’ but also that {z,ya,...,yn} is a clique of size n in
J'. By the same reasoning as above one can therefore conclude that w(J') = w(J). Again
the same argument will work if ry; #0foranyi=1,2,...,n.

Next we consider the chromatic numbers and still work under the assumption that

22 =0.

The fact that 3’ C J implies that x(ﬂ’) < x(3) — colour J and then use these same

colours to colour J’. To prove that x(J) < x(3'), colour 7’ first. We will now ‘extend the
colouring to the whole J. If y € J\J’ we can colour y with the same colour as z. This is

" a valid colouring since

_e z and'y are not adjacent : y € J\J implies that y ¢ Annz, therefore zy # 0. _ -
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® y1,y2 € J\J' are not adjacent : if y;y» = 0, then zy; = 0 or zy, = 0 (z is J-
separating), but both are impossible (y; ¢ Annz), so that y,y, # 0.

o if there is a 2 € J' with the same colour as z, then any y € J\7 is not adjacent to
z: Aﬁ‘r‘stly zz # 0-(they were able to receive the same colour), secondly if yz =0,
then.zy = 0 or a'cz.:'() (z is J-separating). Both are impossible so that yz # 0.

Therefore we were able to'colour J using the same set of colours that was used to.colour J'.
This shows that x(J) < x(J)". Combining the two inequalities we have that x(J') = x(J).
Assume now that z?2 7 0, that is z ¢7. |
Consider a clique, C’, of maximal size ( (7)) in 7. All of the elements in C” are

annihilators of z, so that z may be added to C’ to form a chque in J of size w(J’) + 1.

Since this is'a clique in J, w(J) + 1 < w(3J), or w(JF') <w(J) —-1.
Conversely, let C = {yl,yg, ..., Yn} be a maximal clique in J. If z ¢ C, then there

exists a y; € C, 1 € {1,2,...,n}, such that zy; # 0 (otherwise we can include z in
the clique-to obtain a clique of size greater than w(J)). Without loss of generality we
can assume that y; = y, ie zyy # 0. From the clique C' we get that v,y = 11y3 =

= ylyn = 0. Since z is J-separating, zy, = 0 or zy, = 0, zy; = 0 or zys = 0,

L, Ty = Oorzyn—O but zy, # 0, sothatzyg 0 =zy3 = -+ = 2y, = 0. .

- This shows that {z,y2,...,yn} is still a clique of maximal size in J. Therefore z can

always be included in a. clique of maximal size in J. Now, if z € C, say z = y;, then ... .

TY) = TYp =+ + = TYi—] = TYiy1 = -+ = TY, = 0, since C is a clique. This implies that
Y1,Y2,5 - Yi-1, Yi+1, - - - , Yn € Annz which implies that y1,y2,... ,¥ic1, Yig1, ... ,Un € T

Therefore {y;, vs, . . . yYi-1, Yit+1, - - - , Yn} is a clique which lies completely in J’. This clique -

has size w(J) — 1. Since it is a clique in F',-w(J) — 1 < w(J'). Combining the inequalities
we have that w(J') = w(J) — 1.

Lastly, we now look at x(J) and x(J') in the case of z? #0orzé¢ 3.

We colour 7' first and then try to extend the colourlng to J. Assume all elements in
7' has received a colour. Since zy = 0 for all y € J', = has to receive a unique colour
(when colouring in J) i.e one that is different from all colours used in a colouring of J".
Furthermore if y;,yo € J\J and v1;ys # z, zy; # 0 and zy2 # 0 since y;,y2 ¢ Annz.

Also if 1,9, = 0, then zy; = 0 or zy, = 0 (z is J-separating), but neither one is possible -

so that y;y, # 0. This shows that the elements in J\J’ are independent (i.e not adjacent).
Therefore they can all be assigned the same colour. Thus in colouring J we need only
one additional colour above those that were used in the colouring of J’. This shows that
X(3) < x(3') +1 or that x(¥) > x(3) - 1. ‘

" To prove the converse, colour J first. Now use these colours. to_colour F' (i.e colour. _ ..
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J and then remove the vertices in J\J; this leaves us with J' that has been coloured).
Since zy = 0 for all y € J', x had to receive a colour different from all of the elements
in ' (when colouring'in J). Thu$ by restricting the colouring of J to that of J' we see
that the_colour of z will not appear among the colours found in J’, therefore we need one
less colour. This implies that x(3') < x(J) — 1. The two inequalities together, therefore
(imply that x(J') = x(3) - 1. ] : ) O

Theorem 6.10. Let J be an ideal in a Coloring R and {z1,%3,... 22} be a cliqde of
J-separating elements. Define k = |{z; | z7 # 0} and J' = JﬂAnn(:z:l, Zo,...,Zn). Then
w(J) =w(J) — k and x(F) = x(3) — k..

Proof Define A = {z; | z? # 0}, then k = |A|.

Let C' be a maximal clique in J’. We can adjoin each element of A to C’ to form a
clique of size w(J’) + k in J. Therefore w(J) > w(J’) + k, that is w(J') < w(J) — k.

Conversefy, let C = {y1,92,.. ,Ym} be a maximal.clique in 3. If z; ¢ C, then there
exists a y; € C such that z,y; # 0. Now y;y; = 0 for all 7 # j since the y,’s form a clique.
Then z,y; = 0 or z1y; = 0, for each 1 # j since z; is J-separating.” Since T1y; # 0, we
have z,y; = 0 for all 4 # j. Thus C; = {y1,¥%2,--- ,¥j—1,Z1, Yj+1, - - - »Yn} is still a clique,
We now consider z, and determine whether z, € C;. If 2o ¢ C) we can insert it into Cl
in the same manner as we did with z;. We then get a clique C; with both z; an'd-':rz in
- Cy. Note that z, will still be included in C,, because an element will be removed from C,
(to get to Cy) only if its product with z, is nonzero and since z,zo = 0, z; will remain in
- C. By considering each element in {-1‘,1, Zo,... ,Tn} one at a time, we are able to form a
clique C, with {z1,2s,... ,2,} C C,,. We also have A C C,,, since A C {z1,22,:.. ,Z.}.
This clique will still be of maximal size. ' '

-Now, C,\A is a clique in J’ (each element in the remaining clique has product of zero
with each element in {z,,z3,...,2,}) of size w(J) — k. Therefore w(J') > w(3) = k.
Combining the results we get w(J') = w(J) — k. ‘

We now discuss the chromatic: numbers of J and J'.
Colour 7' first (using x(3") colours) We now extend the colouring to J. Note that
- every element in A is adjacent to every element in J'. Therefore when extending‘the
.. colouring to J each element of A will have to receive its own colour (and one that is
different from every colour used in ¥). Also ANJ = 0 (since each z; € A has z2 # 0
“and so z; ¢ Ann(z,,Z2,...,,)), so that we need k additional colours for the elements
*in A. Now, consider a y € J\J' and y ¢ A. The fact that y is not in J’ implies that
"y ¢ Ann(zy,Z2,...,Z,). Therefore there exists an z;, 1 € {1,2,... ,n}, such that yz;/# 0.
Assign y the same colour as this z;. We still need to check whether y1,9, € J\J' and
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Y1,Y2 € A with y; and y» assigned the same colour can be adjacent. The fact that Y1
and y, were assigned the same colour implies that y,z; # 0 and y,z; # 0 for some zj,
j€{L,2,...,n}. Now if 1y, = 0 (i.e they are adjacent), then z;y, = 0 or z;y2 = 0 since
z; is J-separating, but since neither possibility is true we conclude that y,y, #°0. That
is, the y’s in J\J’ with y ¢ A can all be assigned the same colour as that z; such:that
yz; # 0. ‘ -

Therefore to colour the remaining elements of J we did not need more than the &
additional colours. Thus x(J) < x(3') + k. ' '

Now, colour J (using x(3J) colours). This automatically assigns colours to the elements
of I (¥ C 3). Since all possible products between elements in A and elements in J' are
zero, all these elements are adjacent. Therefore the colours used in A will not appear in
the colouring of the elements of 7. Also, we needed k colours to colour the elements of
A since they are all adjacent. Therefore 3’ can be coloured using x(J) — & colours. That
is x(3') £ x(3) —%. This in combination with the previous inequality yields x(J') =
x(J) — k. . O

Theorem 6.11. Let P1,P2,...,Pn be the minimal prime ideals in a Coloring R Let
e(R) = |{i | Ry, is a field}|. Then w(R) = w(B(R)) +&(R) and x(R) = x(B(R)) +¢(R).

Proof. Consider firstly the case in which R is a minimal prime ideal. From the definition
of minimality' this implies that there are no other prime ideals in R and consequently no
other minimal prime ideals in R. Now Rp is not defined since the complement of R (which
is used as the multiplicative set in the definition of a ring of fractions) is empty. Therefore
£(R) = 0. Furthermore B(R).= R, so that we do indeed get the desired equality.

We now consider the casej-of R not being a minimal prime ideal. By Theorem 4.5 we
know that R has only a finite number of minifnal prime ideals and further that p;'= Annz;
for some z; e..R for every i = 1,2,... ,n. Further this z; # 0, since Ann0 = R, and R is
not considered to be a minimal prime ideal. Lemma 3.8 then implies that {z;, s, ... , .}
is a clique. ‘Furthermore if a,b € Rand ab =0, then ab € Annz; fori =1,2,. .. ,m. Since
Annz; is prime we have that a € Annz; or b € Annz; for i = 1,2,...,n. Thusaz; =0
or bz; = 0 for every i = 1,2,... ,n and so {z,,%2,...,2,} are R-separating. Therefore

{21,%2,..:, Ty} is a clique of R-separating elements.

We also have that R,, is a field if and only if 22 # 0 :

Assume that R, is a field. ~Therefore the element z;/1, with z; # 0, is a unit of R,,.

This implies that z; ¢ p; = Annz; (see Proposition 1.13), so that z? # 0. Conversely, if

-z #0, then z; ¢ Annz; = p;. Recall that the maximal ideal of R,, is p;R,, = {p/s | p €
_____ p;and s € R\p;}. Let p/s € p;R,,, then p/s = 0/s since-z,(ps — 0s)- =-0-(z;p.= 0 and - -
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z; € R\p;). Therefore the maximal ideal of R,,, p;R,, = (0), so that Ry, is a field.
We can now apply Theorem 6.10, noting the equivalence between z? # 0 and R,, being
a field, to yield the desired result. - : ’ a

~ Theorem 6.11 shows that to deeide Whether x(R) ‘w(R) for a ‘given rir'lgv,“ one has
to concentrate on. the nilradical. The next theorem is an application of thls 1dea, to the -
special case of the nilradical being zero.

Theorem 6.12. Let R be a reduced (‘B( ) (0)) Coloring. Then w(3J) = x(J)'for any |
ideal J C R. ’

Proof. If J is the zero ideal we trivially have that w(J) = x(J). Therefore let J be a’
nonzero ideal in R. This implies that 3 € B(R) = (0). Theorem 6.6 then yields that

2 = 0 implies that z is

'3 has an J-separating element, say z. Also, z2 # 0, since z
nilpotent and therefore that z € B(R) = (0), i.e z = 0; this contrad,lcts the fact that T is
J-separating (specifically zi] (0) instead of 27 # (0)).

From Lemma 6.9 we now have that w(J') = w(J) — 1 and x(J') = x(3) — 1, where
J' = 3N Annz. The rest of the proof is by induction on w(J).

If w(J) = 1, the graph of J is empty (no lines). This implies that x(J) = 1. Assume

now that whenever w(J) = n -1, x(J) = w(J). Now let w(J) = n, then w(J Y=n-—1,so
that x(J') = w(i]’) =n — 1 by the induction assumptlon Also, x(7) -1 =x(3J ) =n-1,
so that x(J) = n. Therefore x(3)=w(3). . d

Theorem 6.13. Let R be a Coloring whzch is a principal ideal ring. Then x(J) = w(J) |
for any.ideal J in R.

Proof. ‘We will show firstly that we can make a reduction to the case J C B(R). Therefore -
assume that J Z B(R). EB'(R) =p,NpaN---Npy, where the pi’s are the minimal prime |
ideals — recall that R has only a finite number of minimal prime ideals, since it is a
Coloring and also the nilradical is the intersection of all the minimal prime ideals. Then
J ¢ B(R) implies that J-Z p; for at least one i. Therefore there exists an z € J such
‘thatz ¢ pi. | | "
We now have that Annx C p1 . if Annz € p;, therre exists a}; € AAn.nz‘wit‘h y ¢ pi' ‘
Then zy = 0 € p; and’since p; is prlme z E pioryc€ pz, but neither p0551b111ty is true .
and we have a contradiction. S
Consider the family {Annz | Annz C p;, 2 € J and z gé p;}. We have just shown
that it is not empty and since R has a.c.c on ideals Anna, the family contains a maximal
—— ———element;-say-Annz;- -Furthermore -this-maximal-ideal is prime.- (The-process-of proving-. — —— —
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this is the same as in Theorem 3.9. Note that the z’s appearing above are nonzero since
z ¢ p;.) Since p; is minimal we have that p; = Annz;. Now if a,b € J and ab = 0, then
ab € p;, so that a € p; or b € p; since p; is prime.” Thus a € Annz; or b € Annz;. In other
words az; = 0 or bz; = 0. Therefore z; is J-separating. - S ,

Define J3;; = JN Annz; = 3N p;. Then by Lemma 6:9 x(J) = w(J) if and only if
x(3;) = w(3;). Therefore the problem of proving x(J) = w(3J) is reduced to the problem:
of proving x(J ) = w(3J;), where J; C p;. : . ~

Recall that we are still working with the situation J € B(R). This implies that there
exists a subset, p;, pi,, - - - P;;, of the minimal prime ideals, pi, pa, - . . P, such that J ¢ p;}‘f,
=1,2,...,l. We now define a set of ideals as follows ‘

TJNpeifJ - A
3, = P i T & pi (6.1)
Jif JC py,

for k=1,2,...,n. Note also that by the process described above, py = Annzy, where Zx )

is an 3—separat1ng element, for every py such that J € ps. Thus

an 3 N Annz if J i :
3, = Pr = k L pr (6.2)

and Jy C pgfork = 1,2,... ,n. Therefore NJx C B(R). Further, N?_,Tp-=T N (Nisps, )=
Jn (Annzi1 N Annz;, N---NAnnz;) = 3N Ann{z;,, 2;,,... ,2;}. Also, from Lemma 3.8
{zi,l,ziz, ..., 2} is a clique of J-separating elements. By Theorem 6.10 it follows (by
putting NJyx = 7" in the theorem) that x(NJx) = w(NJy) if and only if x(JI) = w(J). -
Therefore the problem of proving x(J) = w(J) for an ideal 3 ¢ B(R) is equivalent to
proving x(J) = w(3J) for an ideal J € B(R). This shows that to prove the theorem we
can always make a reduction to the case of an ideal contained in the nilradical. We n-ow
have to show that equahty between the chque and chromatlc numbers holds for any ideal

in the nilradical. -

- Assume that J'is an ideal in R such that J C B(R). Since R is a principal ideal

ring we may assume that J = Rz. Now if 32 = (0), then J is 1tself a clique and w(ﬂ)

13| = x(3). If 32 # (0), then by Theorem 6.8 J contains an J-separating element,
say z;. Let J;, = JN Annz,, then J; C 3. If J; = J, then J N Annz, = J. This
implies 3 C Annz, so that Jz, = (0), which is impossible because z, is J-separating.
Therefore J; € J. From Lemma 6.9 it now follows. that x(J) = w(3J) if and only if
x(31) = w(J,). By applying the process above to the ideal J;, we will either conclude

______that.J, is a_clique (with_equal_clique_and _chromatic numbers), so_that_x(3)_= w(3). or
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we will find an ideal 3, C J; such that x(3,) = w(3,) if and only if x(J2) = w(3J2). This
process can only be repeated a finite number of times since *B(R) is finite by Theorem
3.11." (Otherwise we could have formed an infinite chain of ideals J O J3 D32 D,
contradicting the finiteness of B(R).) Therefore we will eventually reach an ideal, J,
~ (which may be the zero ideal), for which 32 = (0). This ideal is itself a clique, so that
X(3n) =w(Tn) = X(Fn-1) =w(Tn-1) = - = x(3) =w(h) = x(J) =w(3). O

Note the following about the proof above. The first part showed that in order to de-
* termine whether x(J) = w(3J), it was enough to consider ideals contained in the nilradical.
" This is valid in any ring (we did not use the fact that R was a principal ideal ring).

By replacing the condition that every ideal in a Coloring be principal (in Theorem
6.13) with another condition, we obtain the following theorem (Wthh uses the same proof
as Theorem 6.13).

" Theorem 6.14. Let R be a Coiorz’ng with the property that any ideal I for which 3% # (0)
contains an J-separating element. Then x(3) = w(3J) for any ideal in R.

Remark 6.15. Let J be the direct sum of two ideals, say J ':'31 & Jy. If 3, contains
an Ji-separating element z, then zy 18 also J-separating. To see this, let a = a; + a,
b=0by+by €7, where a1,b, € J) and a,by € Jp. If ab = a1by + azb, = 0 (keep in mind
that cross products a;b;, i # j are equal to zero; see [11]), then a;by = azb, = 0 [11].
Also, since T, 1s J1-separating, a;z; = 0 or byzy = 0, so that (a; + az)(z1+0)=a12, =0
or (b + bg)(l‘l +0) = byzy = 0. Therefore az; = 0 or bz; = 0 implying i‘hat Ty 18
J- separatmg a o

The remark above implies that if R is a Colorihg that is a finite product of rings, each
satisfying the hypothesis of Theorem 6.14, then x(J) w(3J) for any ideal J in R. From
this we have the following theorem. i

Theorem 6.16. Let R be a Coloring which is a finite product of reduced rings and prin-
cipal ideal Tings. Then x(J) = w(J) for any ideal I C R.

Proof. Assume that R is a Coloring and that R= @, R, wﬁere R; is a reduced ring or
a principal ideal ring. Let J be an ideal in R, then J = @]_, J;, where Ji'is,'an ideal in
R; [11]. If 3% = (0), then J is itself a clique and w(J) = |J| = x(J). If I # (0), we can
find an J;-separating element z; : note firstly that R; is a subring of R and therefore itself
a Coloring Now use the proof of Theorem 6.12 or Theorem 6.13, depending on"whether
R; is reduced or a principal ideal ring. From the remark preceding the theorem this z; is
~also 3-separat1ng Now from Theorem 6.14 we know that x(J) =w@. . . .0
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Theorem 6.17. Let R be a local Coloring whose mazimal ideal is a principal ideal. Then
R 15 reduced or a finite principal ideal ring.

. Proof. If R is finite, then R is a local Art.'i'nian ring (since any chain of descending ideals
can only contain a finite number of ideals because R has only a finite number of elements).
For a local Artinian ring we know that if the maximal ideal is principal then every ideal
is principal (see Chapter 1). We are given that the maximal ideal is principal, therefore

“every ideal is principal. Thus R is a finite principal ideal ring.

We now assume that R is not finite and that R is not reduced and derive a contradic-
tion. ' ' .

Consider the following ideal J = {z € R | z is finite i.e zR is finite}. Since x(R) < oo
we have that w(R) < oo, so that by Lemma-3_.2 J is finite. Also, if J is a finite ideal and
z € J, then zR C J, that is zR is finite since J is finite. This implies that z is finite and
so z € J, thus J C J. Therefore J contains all finite ideals. In summary, J is finite and is
the unique maximal finite ideal. . ‘

By Theorem 3.11 we know that B(R) is finite. Thus B(R) C J. By assumption
B(R) # (0) so that T # (0). '

Note also the following : If m is the maximal ideal in a local ring R, then i C m for all
proper ideals i of R. If there existed an ideal i such that i € m and i # R, consider the set

{3 |Jisanideal in R,i C Jand 1 ¢ J}. This set is not empty since i is a member and .

by Zorn’s Lemma we have a maximal elemeﬁt, say §. This § is also a maximal ideal : if
there existed an ideal ® such that ¥ C &, theh leBand & = R, thereforeAS is maximal.
This contradicts our assumption that m is the unique maximal ideal, so that all ideals are
contained in the maximal ideal. (Note that F # m since i C:F-and i € m.)
Let B=7J:t={r € R|rteJ} Obviously J C B. Also, by the remark above
J C Rt (Rt is the unique maximal ideal). Further, Bt C J, by the defnition of B. Let
~r € J, then since J C Rt, there exists an r' € R such that r = r't. Now if 7/ ¢ B then
't ¢ J, specifically 7't cannot be equal to 7. Therefore 7’ has to be in B and r = r't € Bt.
" Thus J'C Bt. Put together we have that J = Bt. ’

Up to now we have, Annz = p = Rt (z € J). Since t € Rt (R has unity), t € Annz,
so that tz = 0 or that z € Annt as well. Therefore the map 7 — tJ (r  tr) cannot be
" one-to-one since the kernel has at least one nonzero element namely z. We always have
that ¢tJ C J, but since the map is not one-to-one, tJ C J. Recall also that J C B (by the
definition of B). If 3 = B, then tJ = tB = Bt C J. This contradicts J = Bt, so that
JcB. ' ' ‘ . _

Let zlA,’a:g € Annt. Since Annt C Rt (Rt unique maximal ideal), we have z, = 7t

___and 7 = rot. Therefore z,t =7 1t? = 0 and zot = rot? =.0, s0. that_-z,zo = (ryt)(rat) =- - -



CHAPTER 6. WHEN IS x(R) =w(R) ? 44

riret? = 0. Thus Annt is a clique and since R is a Coloring (with finite clique number),
Annt has to be finite. Lemma 4.2 implies that J : t/Annt is finite. Also, |J : t| =
|7 : t/Annt| x |Annt| and since both terms are finite |B| = |J : t| is finite, but J C B,
contradicting the maximality of J.

Therefore R is -either -reduced or finite (and in this case, as we have seen, R is a~

principal ideal ring). ; Co a

Lemma 6.18. Let R be an indecomposable Coloring. Assume that evefy, mazimal 1deal
which equals Annz for some x € B(R) is principal. Then R is reduced or a finite local
principal ideal Ting. ‘

Proof’:u Assume that R is not finite and that R is not reduced (B(R) # (0)). Using the
same technique as in the proof of Brauer’s Theorem (Theorem 1.10) we conclude that

every finite ideal not contained in the nilradical has an idempotent e # 0. The use

of this technique can be justified as follows. The proof presented in Chapter 1 needs a .-
nonnilpotent element at the start of the proof. This element can be obtained in the present.

context since the finite ideal above is not completely contained in the nilradical (which
contains all the nilpotent elements). Furthermore the proof requires 't,he descending chain
condition to obtain a contradiction in terms of an infinite descending chain of ideals that
is constructed. In our present situation the finiteness of the ideal above will still yield the
same contradiciton. (We cannot form an infinite descending chain of ideals inside a finite
ideal.).

Furthermore € # 1 since the ideal is finite and.R is infinite. This idempotent gives

us a Peirce decomposition of R relative to e as, R = eR @ (1 — e)R. This is a nontrivial
decomposition : if eR = R, then (1 —e)R = (0). Therefore (1 —e) x'1 = 0, so that

e = 1, which is-impossible as stated above. If (1 —e)R = R, then eR = (0), so that

e x 1 = e = 0. Since this is not the case either, we cai conclude that the decomposition
is nontrivial. This contradicts the fact that R is indecomposable. Therefore every finite
ideal is contained in B(R), so that B(R) is the unique maximal finite ideal. '

' Using the same idea as in the proof of Theorem 6.17, we can find 'a maximal ideal |

m = Annz, z € B(R) (and note that m is also prime). From the assumptions of the
theorem we can furthermore say that m = Rt. - _

We now show that Annt = Annm C B(R) : : -
Assume that Annnkl"@ B(R). Then there exists a prime ideal p, such that Annm Z p.
Thus there exists an z; € Annm and z, ¢ p. Therefore z,7¢t = 0 for all r € R (m = Rt), so
that z,(rt) € p. Thus z; € porrt € p for all 7 € R, but since z; ¢ p, rt € p for all € R.

This implies that Rt = m_C p. Now, m is. maximal and therefore m-C pis-impossible-On - -
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the other hand if p = m, then Annm ¢ p = m. This implies that Annm + m = R, since
m is maximal. Let z € Annm N'm and assume that z # 0. From Annm + m = R, we get
1 = y1 +¥2, where y; € Annm and 'y, € m. Therefore z.1 = z(y; + ) = Ty, +’a:y2 =0+0
(z € Annm N'm), so that £ = 0 — a contradiction. Therefore Annm N'm = (0). This
implies that R.= Annm @ m. This decomposition is nontrivial : Annm # (0) since
Annm ¢ B(R). If Annm = R, then m = (0), that is m = Annz = (0),-where z € B(R).
Again m # R so that z # 0, also z € B(R) implies that z is‘nilpotent. Say =" = 0,
where n € N and 7 is the smallest such number. Then z"~! 3 0 and 2 lg = g7 = 0,
Therefore z"~! '€ Annz — a contradiction. Thus the decomposition is nontrivial. This is
impossible since R is indecomposable. Since both casés lead to a contradiction, we have
that Annt = Annm C ‘B(R). 4 o '
* This inclusion shows that Ann¢ = Annm is finite since B(R) is finite. From Lemma
4.2 it follows that B(R) : t/Annt is finite and since Annt is finite, B(R) : ¢ is also finite.
~ We now show that B(R) € m = Annz = Rt since we will be using the same technique
as in the proof of Theorem 6.17 (which requires this inclusion). There the stated inclusi.(_;n
followed from the fact that R was local, which is not the case in the present situation.
- - Let r € B(R) and assume that r ¢ Annz. Therefore rz # 0 so that Annrz # R (if
Annrz = R, then 1.(rz) = 0 — a contradiction). We have that Annz C Annrz, but since
"Annz is maximal, Annz = Annrz. Furthermore Annrz = Annr2z for the same reason
(as long as r?z # 0). Thus Annz = Annrz = Annr’z = - -, as long as r*z # 0. Since
r € B(R), r is nilpotent. Therefore there exists a smallest n € N such that r"z =0
and "'z # 0. Now r € Annr" !z, so that r € Annz. Thus rz = 0 contradicting our
) assumption. Therefore r € Annz = Rt and B(R) C Rt.

Using the same method as in the proof of Theorem 6.17 we can.conclude that B(R) =
(B(R) : t)t, tB(R) C B(R) and B(R) C B(R) : t (by puttihg B(R) in this theorem
equal to J in Theorem 6.17). This is a contradiction since B(R) is the unique maximal
finite ideal. ' . .

This contradiction stems from the assumption made at the start of the proof. Therefore
R is finite or reduced.

Now, if R is finite then 'R is an Artinian ring. Furthermore we know that R is then
| uniquely (up to isomorphism) a finite direct product of local Artinian rings (see Chapter -
1). Our original assumption that R be indecomp;)sable then yields that R itself should
be local. Since the maximal ideal, m, is principal we know that every ideal is principal.

Therefore R is a finite local principal ideal ring. ‘ . S a



Chapter 7

Rings of ‘lowvchromatic number :

X(R) <5

IN this chapter we show tha,t x(R) = w(R) for all x(R) < 5 or w(R) < 4. Using the
earlier results we will firstly discuss the finite rings with x(R) < 3. '

‘Proposition 7.1. Given a Coloring R, then x(R) = w(R) provided w(R), x(R) < 2.

Proof. Let x(R) = 1. Then from Proposition 2.1 we know that R = (0) and w(R) = 1.
Now, let w(R) = 1. This implies that there are no lines in the graph of R. Since 0 is
always adjacent to all the nonzero elements, this shows that R does not have nonzero
elements. Thus R is again the zero ring and x(R) = 1. '

' Let"'-x(R) = 2. Proposition 2.2 implies that R is an integral domain, R & Z,, R =
Zo|z]/(2?) or R = Zy[z]/(z* + 1). For each of these possibilities we have that w(R) = 2.
Consider now the case w(R) = 2. We always have that x(R) > w(R), therefore x(R) > 2.

Assume x(R) > 2, that is X(R) > 3. Since 0 is adjacent to every nonzero element, it has -
to receive its own colour. Also, there exist elements z; and z; in R such that 1,2, # 0

and z1z2 = 0 (for if they did not exist, x(R) < 2). Therefore 0,z and z, form a clique,

so that w(R) > 3 — a contradiction. Therefore x(R) =2. "

Proposition 7.2. Let R be a Coloring. Then w(R)=3 < x(R)=3.

Proof. 1t is enough to prove that w(R) < 3 <= x(R) < 3. The reason for this is as

follows : if w(R) = 3, then (if we have shown the above) x(R) < 3. Now, x(R) # 1,2, by
Propositien 7.1 (x(R) = 1,2 = w(R) = 1,2 — a contradiction). Therefore w(R) = 3 has
to imply.that x(R) = 3. Similarly, x(R) = 3 will imply w(R) ='3. -
e 7 : - ’

Let x(R) <.3. Now it is always true that_x(R) > w(R).. Therefore w(R) < 3. — S
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=

We will prove this assertion using its contrapositive, i.e x(R) > 3 = w(R) > 3. Let
x(R) > 3 and define R* = R\{0}. Then x(R*) > 3, since 0 has its own colour in the
graph of R (as it is adjacent to every nonzero element). Since R* is not 2-colourable it
has to contain an odd cycle (R* is 2-colourable <= R* is bipartite <= R* does not

. contain an odd cycle). Let C be an odd cycle of minimum length, say n, in R* with

C=1,%2,T3,... ;Tn,T1- 4
Assume that n > 5. We have that 7,7, = 2,73 = -+ = z,7; = 0. Suppose z,;zx = 0,
for some k # 1,2, n. Then T1,22,Z3, - - - , Tk, T1 and z1,Zg, Tk41,--- > Tn, L1 are two cycles

of length less than n, one of which has to be odd (for if both were even then C has to be
even, which it is not). See the Figure below. ‘

-k
Tk
The argument above, us1ng z1, can obviously be applied to the other points of C as well.
Now since C is the smallest odd cycle, no smaller odd cycles can ex1st therefore z;z; = 0
only if z; and z; are neighbours (on C).
- Now, let y = z,z3, then yz, = yz4 = yz, = 0.

Therefore y is adjacent to three vertices on C, so that y cannot be on C. (The points on

C are only adjacent to two vertices on C i.e its neighbours.) At this point we have that |
Y,T4,Ts,.~. ,Tn, Yy is an odd cycle of length-n — 2, but we know that C is the shortest
odd cycle. This gives a contradiction to our assumptiop'p that n > 5. Thus n < 5, or in
otherwords n.< 4. _ . . _ . _ . . . [,
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This shows that R* has an odd cycle of length 3, say z1,z2,z3,z1. If we now again
consider the graph of R, in which 0 is adjacent to every nonzero element, then we see that
we have in fact a clique {z;, 73, 73,0} in R of size four. Therefore w(R) > 4. a

Theorem 7.3. Let R be a Colérz'ng and k an iﬁteger such that k < 4. Then X(R) =k
< w(R) = k. Furthermore, x(R) =5 = w(R) =5. ‘

Proof. With the same reasoning as in Proposition 7.2, it is enough to show that x(R) < k
— w(R) < k. :

The first part of the proof of Proposition 7.2 can also be used here. We are therefore
only left with the case w(R) < k = x(R) < k. Since the cases k = 1,2,3 were
treated above, we need to show that w(R) < 4 #_X(R) < 4. We will do this using the
contrapositive, x(R) > 4 = w(R) > 4. o

If R is reduced, then by Theorem 6.12, x(R) = w(R). We will therefore assume that
B(R) # (0). [ - - .

By Theorem 6.11 w(R) = w(B(R)) +e(R) and x(R) = x(B(R)) +&(R), with e(R) as
in 6.11. Therefore we need to show that w(B(R)) = x(B(R)), with the restriction that
.w(B(R)), x("™B(R)) < 4. The reason being that the_'p‘re'sent theorem only considers values
of w(R), x(R) < 4 and that e(R) > 0. o |

Again, all that is left to prove is x(B(R)) >4 = w(B(R)) > 4. (B(R)) is itself a
Colorlng so we may apply Propositions 7.1 and 7. 2 )

We show firstly that B(R) is nilpotent. Let B(R) = {r1,72,...,}; B(R) is finite
_ since R is a Coloring. We know that every element in B(R) is nilpotent, so T = Tyt =

- = rM = ( for some m;,my,...,m, € N. 'Let m = max{m;, ma,...,my}, so.that

=0 for alli € {1,2,...,n}. Consider %( )= {0 i, i | i, € B(R)}.
Every term in these sums can be written as r| lipl2 . pln by taking [; = 0, if necessary.
Now at least one [y > m, for if every iy < m — 1, then every term in-the sum will have at
most n(m — 1) r’s instead of nm r's. For this I, 7 = 0. Thus every term in every sum
is zero, so that every possible sum is also zero. Therefore B(R)™ = (0).

Let J = B(R) N AnnB(R). Assume that J = (0). That is for every nonzero element
r of B(R), mB(R) # (0). (%(R) does not contain its annihilators.) Since B(R) is
nilpotent, let m € N be the smallest m with B(R)™ = (0). That is B(R)™ ! # (0). Let
r" € B(R)™ ! and r’ # 0. The inclusion B(R)™! C %(R) implies that r’ € B(R). From
the observation above we should then have that 7B (R) # (0), but r'B(R) C B(R)™ = (0)
— a contradiction. Therefore J = B(R) N AnnB(R) # (0). Thus |J| > 2.

. Note that J is a clique in ®B(R), since every element in J is both in B(R) and anni:-
_hilates B(R)._If 3 = B(R),.then B(R) is a clique and x(B(R)) = w(B(R))--If || > 4,
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then w(B(R)) > 4 and we are done. Therefore we assume that J C B(R) and |J]| < 4.

If |3] = 4, choose z € B(R)\J. Then JU {z} is a clique with 5 elements so that

w(B(R)) >4. _

If 3] = 3 and x(B(R)) > ‘4, then there must exist elements z and y in B(R)\J
.such that z and y are adjacent to each other as well as to every element in J. The
reason for this is that all three elements in J received its own colour (J is a clique), but
X(B(R)) > 5. The elements in B(R)\J are all adjacent to the elements in J and if none
of them were adjacent to one another, then four colours would have been enough to colour
B(R) — a contradiction. Now J U {z,y} forms a clique in B(R) with 5 elements. Thus
w(B(R)) > 4. | ‘ g

- Consider now .the case |[J| = .2 and x(%(R)) > 4. Let 3 = {0,c}. Now Jis an
ideal so that ¢ + ¢ = 0. Since x(B(R)) > 5, B(R)\J requires at least 3 distinct colours.
Therefore there exists an odd cycle in B(R)\J (see discussion in Chapter 1) and among
all odd cycles let C be one of minimum length. Say C = d,as,... ,a,. If n = 3, then
{a1,a2,a3} U7T is a clique of size 5 and thus w(B(R)) > 4. We miay therefore assume that
n>95. ' ' '

If ajar = 0, where k # 1—1,1,7+1, the cycIe decomposes into two smaller cycles.. One

of these cycles will be odd and since C' is the smallest odd cycle this is impossible. Thus

the only way that a;a; = 0 is possible for ¢ # £ is if a; and a; are neighbours on C. ‘As

in Proposition 7.2 the element z = a;a; (a; and a; not neighbours) can not be on C. The

reason being that it is adjacent to at least four vertices on C (a;_1, @i+1, aj—1, @j+1) instead

of the required two (its neighbours). Let 1 # 1,2, n. If i is even aya;, as, as, - . . ,a;—1 iS an
E odd cycle of length i — 1 < n. On the other hand if 4 is odd .then 105, Git1, Gig2s - - - ;0
~is an odd cycle of length n — i + 1 < n. See the Figure below.

_ ._SinceC'is the smallest odd cycle_in B(R)\J, the point-a,a; has to.be in J. Also, a1a; =0 — — -
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only if a; and a; are neighbours, therefore a;a; = c. Thus in general for 1 # j

0 only if a; and a; are neighbours,
aia; =
‘ ¢ otherwise.

We now prove that a? # 0 : ;
Assume that a? = 0 énd ai+1 # a; + ¢c. Then aj,a:;41 and (a; + ¢) form a cycle in
B(R)\J : clearly, a; and a;4+; are in B(R)\J. Furthermore if a; + ¢ € J, then either
a; + ¢ = c in which case a; = 0 or a,:-l-c = 0 so that a; = —¢c = ¢ € J. Since both
possibilities lead to a contradiction, a; +c € B(R)\J. Consider now the possible products
between these elements. Firstly a;a;4; = 0 since they are neighbours on C. Secondly
ai{a; +¢c) = af +ac = 0+0 (af = 0 and ¢ € AnnB(R)). Lastly aii(a; +¢) =
air10; + ai1c=0+0 (a; and a;4, are neighbours and ¢ € AnnB(R)). This gives a cycle
of length 3 in B(R)\J — a contradiction since C'_is'an odd cycle of minimum length -
at least 5 in B(R)\J. Thus either a? # 0 or a;4; = di +c If a;yy = a; + ¢, then
0 = ai+1Gi+2 = (@i +.0)@i+2 = @iQirs + COiv2 = 0;Qi42 (Gi41 and a;o are neighbours and
¢ € AnnB(R)). Therefore a;a;12 = 0, but this contradicts the fact that a; and a4, are
not neighbours on C. The only possibility then that is left, is a? # 0 for : € {1,2,... ,n}.

Let b=a; +as+ -+ an—2. Then

ban_1 = @1Gp-1+ G2Gn_1 + "+ Gn-38n-1 + Gn—28n-1,
= c¢c+c+---+c+0,
= (77. - 3)03
= 0.
The reason for (n — 3)c = 0 is that (n — 3) is even and ¢+ ¢ = 0. Also,
bGn = G1Gn + G20n + c + Gno30n + Gnoon, L
= O0+c+:---+c+g, '
= (n-3)c,

= 0.

Now a2 # 0 and_a2_, # 0.so that b # an -and b_#_a,_y. Since n is -odd we-are-able fo o e
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write n = 2k + 1 for some k € Z. Consider

bar = a'lak+a2ak-~+ak_1ak+ai+ak+1ak+-~-+a2k_2ak+a2k_1ak,
= c+c+-.--+0+ai+0+---+c+c,

= 2(k—-2)c+a},

2
= a,

£ 0.

This shows that b'¢ AnnB(R) since ay € B(R). Thus b ¢ J, implying b#0andb+#c.

All of the above leads to the fact that {0, an-, an, b, c} is a clique in ‘B(R) of size 5.
Therefore w(B(R)) > 4.

We have thus shown that x(B(R)) = w(B(R)) for x(B(R)), w(B(R)) < 4. As
discussed above we may now conclude from Theorem6.11 that x(R) = w(R) for x(R),
w(R) < 4. _ ‘ - o

We now prove the second part of the theorem, i.e x(R) =5 — w(R) 5. ,

From Theorem 6.11 we have x(R) = x(B(R)) + ¢(R) and w(R) = w(B(R)) + &(R).
If we can show that x(B(R)) = w(B(R)) (under the assumption that y(R) = 5) then
w(R) = 5. - : ‘

If x(R) =5, x(B(R)) < 5, since B(R) is a subring of R. We already know that if
x(B(R)) < 4 then x(B(R)) = w(B(R)). Therefore we only consider the case x(B(R)) =
5. It is always true that x(*B(R)) > w(B(R)), thus w(B(R)) < 5. From the proof above

we know that if x(B(R)) > 4 (which therefore includes the present case), w(B(R)) > 5

— we constructed a clique with at least 5 elements. Combining the inequalities we get

w(B(R)) = 5. Thus x(B(R)) = w(B(R)), so that x(R) =5 = w(R) = 5. 0O



‘Chapter 8

‘Examples of finite rings with X(R)“< 3

IN this chapter we will find some finite rings rings with x(R) < 3.

Propositions 2.1'and 2.2 imply the followiné:-
1. x(R) =1 if and only if R = (0).

2. x(R) = 2 if and only if

Since we will be restricting our attention to finite rings, 2(a) then becomes a finite integral
“domain. It is well known that a finite integral domain is a finite field.

We now consider the case x(R) = 3. From Theorem 7.3 we have that x(R) = 3 if and
only if w(R) = 3. Theorem 6.11 in turn says that w(R) = w(B(R)) + €(R), where e(R)
is the number of minimal prime ideals p such that R, is a field. Since w(B(R)) > 1, the
possible values of ¢(R) are 0,1 and 2. We examine the cases ¢(R) = 2 and ¢(R) = 1.

Case ¢(R) = 2. : A :

In this case w(B(R)) = 1, so that B(R) = (0). (0 is always in B(R) and is also
adjacent to "everything else.) Since R is finite,. R is Artinian. Then by Theorem 1.5,
dim R = 0. R '

Theorem 3.10 now implies that (0) = p; N pa, where p; and p, are minimal prime

_____ _ideals.. Note that we only have two. ideals here since w(R) = 3.in the present.situation, - -

592
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which in turn implies that n = 2 in Theorem 3.10. In an Artinian ring every prime ideal is
maximal (Proposition 1.4). Therefore (0) = m, ﬂmg, where m; and m, are maximal ideals
in R (and p; = m; and p, ='m,). Now m; + m, = R, sincem; C m, + my, My C My +my
and m; and m, are maximal 1deals .

We now define an 1somorph1sm R — R/my X R/m,, as follows. Let 7 € R, then
there exist elements m; € m; ‘and m, € my such that 7 = m; + ni,.

T=mit+my = (M +me] + my, [my + mo] +my),
‘ [my + my] + [mo 4+ my], [my + ma] + [ma + my]),

my + [me + my], [my + my] + my),

o~~~ e~

[m2 + ml], [m1 + mz]) .

This mapping is onto:
If (z+m,y + my) € R/m; X R/mz, z,y € R, then there exist elements z1,y; €m and
To,Ys € My such(that T =2+ T2 and y = y; +y». Thus :

(x+m1,y‘—'+-m2) = ([:El+i2]+m1,[y1+y2]‘-}-m2),
= (:r2+r_r11,y1+m2)-

"Therefore y; + T3 — (T2 + my, 71 + M) = (z+my,y+my) and y; + 1z, € R.

This mapping is also one-to-one: '
Leta— (p+my,g+my) and b— (r +my,s+my). Thatisa € R,a=qg+p, b€ R and
b= s+r. Note that g,s € m; and p,7 € m;. Assume (p+m;,g+my) = (7 +my, s +my).
Thus

(p+my, g+ my) = (r+m;,s+m2),
p+m1:7‘+m1 and g+ mp =5+ my,

sp—rem and g—s€Em,.

Butp—r€mpand g —semy.
Sp—Tr€EmNmy and g—s € m Nmy,
s.p—7r =0 and q—s:O,'

s.p=r1 and ¢g=s.

. We therefore h@vg__th@t__a —g4+p=s+r=0b._
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We will now show that this mapping is also a homomorphism:
Let 1, ro € R with ry = m;+ms and ry = m| +mj, where my, m} € m; and ma, m) € m,.
Then ' - '

ro— (mq + ml,ml + m2)
To e ( 5 + mp,my + my),
r1+712 = ([me+ms] +my, [my +m]] + my),
= ([ma +my] + [my + my], [my +mg] + [m) +my),
= (m2+m1,m1+m2)+(m2+m1,m1+m2).
r1.ry = ([me.my] + my, [my.my] + my),

= ([m2 +m].fmy + m], [my + my].[m] + mQ])
= (m2+m1,m1+m2) (mg, + my, m] + my).

Therefore R & R/m; X R/mg and R/m, and R/m, are finite ﬁelds since m;, and m,
aré maximal ideals. '
- In summary, the case €(R) = 2 corresponds to R being a direct product of two finite
fields. ‘ |

Case ¢(R) = 1.

- Let p be a prime ideal such that R, is a field. (Recall that €(R) isthe number of prime
ideals, p, such that R, is a field.) As above, we have that dim R = 0. Thus p is both' a
maximal and minimal prinie ideal (no chains of length greater than zero exist). Theorem -
4.5 now implies that p € AssR, the set of associated prime ideals. Let p = Annz. Since
R, is a field and since z/1 € Rp,‘x/lj_has an inverse. Proposition 1.13 then implies. that
zé¢p.

Since p = Annz, zp = (0), so that z € Annp. Also if zr € () and zr € p, then r € p

(z ¢ p and p is prime), but then zr = 0 (r € p = Annz). Thus pN(z) = (0). Furthermore,
p"C p+(z) (z ¢ p) and every prime ideal in’ an Ag:tinian ring is maximal (Proposition

.4). This implies that p + (z) = R. Also, (z) C Annp, so that p + Annb = R.
Furthermore p N Annp =0 : :
~Letrepn Annp = 0. Then 7 € p and pr = 0. We have. that p+ Annp = R, so that
1 =z +vy where z € p and y € Annp. Multiplying this byrwegetr=rz+ry=0+0
(the first zero follows from 7 € Arihp and the second from y € Annp'):
, By the same technique as for the case above, we now find that R = R/p x R/Annp.

Since p is ma.xirnal, R/p is a finite field, say F'. Let R/Annp = S, so that R = F x §S.

_ From our assumptions_about. the_clique number. of »wae-,then--have-vw(F x-§) =-3. - We-
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always have w(F' x S) < w(F)-w(S). Since w(F) = 2, because F is a finite field, w(S) > 2.

If w(S) > 2, then there éxist at least three elements z,,z; and z3 all in S with
‘T1Ty = T1Z3 = ToZ3 = 0. Now (1,0),'(0,331), (0,z,) and (0,z3) are all in F' x S and form
. a.clique of size four. This contradicts w(F x S) = 3. Therefore w(S) = 2, which.implies
x(S) = 2. By assumption (R) = 1 and w(R) = 3, so that w(B(R)) = 2. This shows that -
R is not reduced. By Proposition 2.2 then, S & Zy, S = Zy[z]/(z?) or S = Zo[z]/(z?+1). -

Therefore R F x Zy, R F x Zy[z]/(z?) or R = F x'Zo[z]/(z* + 1).



Chapter 9
An example of a ring with

w(R) < x(R)

YHE results in the previous chapters seem to indicate that w(R) = x(R) for all

Colorings. Irdeed this was a conjecture first stated by Beck in [3]. In [1] Anderson

and Naseer gdve a counterexample to Beck’s conjecture. It involves a finite local ring with

w(R) = 5 and x(R) = 6. This chapter is devoted to a discussion of their counterexample.
The example given in [1} is :

R = Zyz,y,2]/(z® — 2,y — 2,2%, 22,2y, 22,2y, 22,2 — 2) . .

To ease in the discussion of R, let J = (z® — 2,9® — 2, 2%, 2z, 2y, 22, 2y, 72, y2 — 2). The
formation of the factor fing by J has the effect of restricting all polynomials in R to that
of at most the first degree. The reason for this is the fact that all elements in J may be
regarded as being équal to zero. Thus z* = 2,y% = 2 and 2° = 0. If a polynomial in R
contains a term of the form az", where a € Z4'and n > 2, then az™ = az?z"? = 2az
This term (if » — 2 > 2) may be reduced still further. The end result will either be -

an element in Z, (if n is even) or an element of the form bz, where b € Z4. The same

n—2

obviously' applies to an element of the form ay™. Using the same idea a term of the form
az™ with 7 > 2, will be seen to be equal to zero. ‘ '

Further, all cross products (i.e zy,zz and yz) will be either zero or reduced to a
constant .(b.y the same process as above). Therefore we only consider polynomials of the
form

a1z + agy + a3z + aq4,

where a; € Z4 for i = 1,2,3,4. The presence of 2z,2y and 2z in J allow for further

__ simplifications, namely that of (1,02 and a3 not being equal to 2 (as.equality-implies that — — -~
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such a term equals zero). Also, 3z = 2z +z = 0+ z = z (and the same obviously applies
to y and z). Therefore, a;, a; and a3 will not be equal to 3. Thus a;,a, and a3 = 0,1 and
ay = 0,1,2,3. This implies that there are 2 X 2 X 2 x 4 = 32 possible elements in"R.

- Another property of this ring is that it is a local ring with maximal ideal given by

M = {O,2,z,x+2,y,y+2,z+y,z+y+2;z,z+'2,z+z,x+z+2,y+z,y+z+2,
T+y+z,z+y+2+2}
The fact that 9 is an ideal may be easily verfied by direct calculation. The other 16

elements of R are the units of R, U(R) (i.e. they have multiplicative inverses). We now
examine this fact more carefully. The elements in R\9t are of the form

a1z + axy + azz + ag,

where (as before) a;,a; and a3 = 0,1 and as = 1,3. (Note that the elements in 9
correspond to the case of a;, a; and a3 = 0,1 and a4 = 0, 2.) Let a1z + ay + asz + 1 be
an element.in R\9 and consider the following product :

(a1z + ay+azz+1)(a1z + ay + azz + 3) =
” ' afz:2 + alizgzry + a1a372 + 341z
+a1a22Yy + a3y® + a2a3yz + 3axy
+a1a322 + azazyz + a2z’ + 3asz
+a1T + axy + azz.+ 3.
Using the simplifications that are possible because of the ideal J in the-factor ring, we

obtain the following
(a1 + ay + azz + 1) (a1 + aoy + a3z +3) = 2a? + 2a3 + 3.

Nowb,”if either a; or ay equals zero (not both), then thé‘"product equals 1, indicating that
the two elements from R\9 above are multiplicative inverses of one another. We still--
need to discuss the case of both a; and as being equal to zero or both being equal to 1.
Towards this end consider the following product

(@17 + a2y + azz + ag)(a1Z + a2y + azz + ag) =
afa:2 + a1022Y + Q1032 + Q1047
+a1a27y + a,%y2 + a203Yz + G204y

+01a3T2 + a203y2 + a32° + azayz

e e - RA104T F Q20G4Y a3a4z-+—a§--. mmm e emm e e o oo
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Again, the factor ring allows various simplifications, leading to
(a1Z + a2y + a3z + as)(a1Z + a2y +.a3z + a4) =.2a% + 2a3 + a?.

~In.this case if a; = a2 = 0,1 and a4 = 1, 3,-the product is 1. Therefore every element of -
“this form is its own multiplicative inverse. ’

-In summary then, an element of the form a,z + a,y + a3z + a4, where a; =0, a2 = 1 or
ap.=1,a,=0and as =1, 3, has the element a1+ a2y +azz+ (aq+2) as its multiplicative
.inverse. On the other hand the element a,Z + asy + a3z + aa, with ay = ay = 0,1 and
as = 1,3 is its own multiplicative inverse. This shows that every element in R\ has a
-multiplicative inverse. The elements in 2t do not have multiplicative inverses. The reason
. 'fo_r this is that if at least one element had an inverse, this element times its inverse yields
1,>which should then be in 97 since 9 is an ideal. Since 1 ¢ 90, no element in 9 has a
multiplicative inverse. This shows that R\9t = U(R).

- This fact also implies that 91 is maximal since any ideal containing 91 would have to
include one of the units of R which would force this ideal to be equal to K. Futhermore,
this fact also provides the motivation for 9 being the unique maximal ideal. For any
other ideal to be different from 91 and to be maximal, it would have to include at least
one unit and so will be forced to be equal to R. We also have U(R) = R\M =1 + M =
{L+m | m e M}. This may be seen by reahzmg that R\9M = Z, (since |R| = 32 and
|90t] = 16). Now 1 ¢ 91 and so the only other equivalence class (apart from 901) in R\

is 1 + 9. This is precisely all the elements in R\fm '
' A multiplication table for 9 is given in ‘Table 9.1 on page 61 Note that 0 and 2
have been omitted from the table since they both annihilate 9. It is easily seen that

no -other elements in R annihilate 9. For elements in 9t this is clear since there does
" not exist a column or row, in its multiplication table, entirely made up of zero’s (whjch
would indicate an annihilator of o). For elements in R\9 = U(R) = 1 + 9t we have
‘that (1 + mi)my = my + mymy, where (1+m;) € UR) and my € M. If m; = 0,
“then (1 +m;) = 1, which does not annihilate 9. Further, if my, = 0, we obviously
have (1 + m;)my = 0. This is the trivial case though and is not normally considered
when determining annihilators. Therefore consider now the cases of m,, m, # 0. Here we
always have that m;m, = 0,2 (from table), so that (1 + m;)mq = mq + mym, is either
equal to my or equal to my + 2. Thus to have the product equal to zero, we ought to
have my = 0 or my = 2 (so that my +2 = 242 = "0). The case of my = 0 has already
been dealt with and the case my, = 2 implies that mym, = 0 (since 2 annihilates ) so
that the product is in fact my + myms = 2 + 2m; = 2. Therefore no element in U(R)'
 annihilates 9% (or any nonzero element in ). _ S
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Our ultimate goal is to show that w(R) = 5 and x(R) = 6. In the first instance this
is greatly simplified by the fact that all cliques of R must be contained in 9t. This is
seen by noting that the product of two elements in U (R) is never zero : let (1 +m,) and

- (1+mg) be in U(R). Then (1 4+ m)(1 +m2) = 1 +my + my + m;m,. Neither m, nor
my is equal to 1 (they are elements in 9%) and m;my = 0,2 (from table). Therefore the
- product above is either equal to 1+m; +m, or equal to 3+m, +m,. To have the product
equal to zero would imply that m; +m; would have to be equal to the additive inverse of

+ 1 or 3. Since no two elements in 90 sum to either 3 (the additive inverse of 1) or 1 (the
additive inverse of 3), the product cannot be equal to zero. Also, as we have remarked
earlier, no product of an element in U(R) with an element in 9%\{0} equals zero. Thus
all cliques in R are contained in 9. Therefore to show that w(R) = 5, it suffices to show
that w(90) = 5. ‘ _

A mazimal clique of R will be a clique that cannot be enlarged. The proof of w(9N) = 5
follows froma case by case examination of possible cliques that niay exist within 991. This
is accomblished by examining the elements in 97 one at a time, with the end result that
all cliques containing a given element in 91 will have a maximum size of 5. Most of the
following statements follow from the multiplication table.

Observation 9.1. Every quimal cligue of R contains 0 aﬁd 2.

This is cleaf, since 0 and 2 are annihilators of 91.
Observation 9.2. {0,2,z,y,y + 2} is a mazimal clique, implyz'hg that w(R) > 5.
Observation 9.3. Any cli(jue éontaihing T orz + 2 has at most 5 elements.

A clique will never contain both z and z + 2, since their product is not zero. We may
therefore suppose that it contains z (the case of z + 2 being similar). The only possible
elements that we can include in a clique along with z (besides 0 and 2) are : one of the
pair ¥ and y + 2 (not both since their product is nonzero), z, z + 2 and one of the pair -
y + z and y + z + 2 (again not both since their product is nonzero). If we include z or
z+2 (or both) we haveto exclude y, y+2, y + z and y+ 2z + 2 (since their products with

- z-and z + 2 are nonzero). In any case we have a clique size of at most 5.

Observation 9.4. Any clique'contaim’ng y or y +.2 has at most 5 elements.

As before only one of y and y + 2 will be included in a clique. Suppose that a clique
~ contains y. (y+ 2 may be subjected to the same reasoning.) By Observation 9.3 we may
__ assume that the clique does not contain z_or z + 2 (if it did, it.immediately yields-a.clique -
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size of at most 5 — by the stated observation). Candidates for the clique, besides 0, 2
and y, include : one of the pairy+zand y+2+2, z+y+zand z+y + 2 + 2. If we
include y +z or y + z4 2, we must exclude z +y + z'and'z +y + 2 + 2 (the corresponding
_products are nonzero). This implies that the clique will contain at most 5 elements.

Observation 9.5. Any clique containing = + vy or z + Yy + 2 has at most 5 elements.

We can assume that the clique contains 0, 2, £ + y and = + y + 2. (They all have -
- a product of zero and may be included if they were not originally.) The only possible
candidates are : at most one of 2 4+ z and = + z + 2 (their product being nonzero) and
at most one of y + z and y + z + 2. All possible products of the last four elements are
nonzero, therefore we can only include at most one of z + z2, x+2z+2,y+zand y+z+2.
Thus the clique has a size of at most 5.

Observation 9.6. Any clique containing z or z + 2 has at most 5 elemerits.

We may assume that our clique contains 0, 2, z and 2+ 2, but that it does not contain
z or z + 2 (by Observation 9.3). The only other candidate element is one of z + z and
x —I- z —I— 2. Therefore the clique has at most 5 elements.

Observation 9.7. Any clique contammg T+z,z+z+2, ytzory + 242 has at most
5 elements.

By the previous observations we may assume that the clique does not contain z, z + 2,
Y, Y+ 2, 2+y, z+y+2, zor z+ 2. By consulting the mutiplicatioh table we find that
the clique will have at most 5 elements. (A lot less-in some cases, but-for the present,
situation the bound of 5 suffices.) ' '

(_)bs'érvation 9.8. Any clique containing T+y+zorz+y+z+2 has-at most 5 elements.

This is most readlly established by keeping in mlnd that we have already con51dered )
all posmble elements in the previous observations. ,
“All of the observations combined imply that w(9) = w(R) < 5. Therefore w(R) = 5.
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UG 10§ 9[qe], uoyedydimIy :1°6 S]qB],




CHAPTER 9. AN EXAMPLE OF A RING WITH w(R) < x(R) 62

We now establish the fact that x(R) = 6.

Since {0,2,z,y,y + z} forms a clique, we need at least five colours to colour R. We
denoted these colours by 1,2, 3,4 and 5 and assign these colours to the clique in this order.
Since 0 and 2 are adjacent to every element in 9 only 0 and 2 may receive the colours 1
and 2 (respectively), when considering other elements in 9.

Consider the following subgraph of R : {0,2,%,y,y+2,2,2+2,2+y, 2 +y+2, T+ z}.
A portion of this subgraph is shown in Figure 9.1. All elements except 0 and 2 are shown.
The full subgraph may be obtained by adding 0 and 2 and joining them to every element.
Next to each element its colour.js indicated in brackets. This colouring is discussed below.

Y+ 2(5)

z+y+2(4)

Figure 9.1: Colouring of the subgraph {z,y,y+ 2,2,z + 2,2 + y, 2 + y+2,z+ 2}

We show that it is impossible to colour this subgraph with féwer that 6 colours.

Observation 9.9. Since 2z = z(z + 2) = 0 and 2(z + 2) = 0, we must colour one of the
~ pair z and z + 2 with 4 and one with 5. (The order is not important.)

Colour z with 4 and colour z + 2 with 5. .

Observation 9.10. (z+y)(z+y+2) =0, so z+y and z + y + 2 must be coloured- .
different colours. Also, (y+ 2)(z +y) = (y +2)(z+y+2) =0, so again one of z+y and
4y + 2 must receive the colour 3 and the other the.colour4. — - -~ — — —---m- -



Colour z + y with 3 and z + y + 2 with 4.

Observation 9.11. Since (z + 2)(z +y) = (z + 2)z = (z + 2)(2+2) =0, z + z cannot
be coloured with 1,2,3,4 or 5. '

This necessitates that we assign z + z a new colour (6).
The existence of this subgraph within R implies that x(R) > 6.
The following assignment of colours to the elements of R shows that x(R) <.6.

- {0}

A{2tuu(Rry
{z,z+2,z+y,z+y+2z} |
{y,y+2,2z,z +y+2}
(y+zy+z+2,2+2,2+y+2z+2}
{z+ 2,2+ 2z+2}

L A

{

Note that within each colour class (that is the collection of elements that received the:
same colour) the elements are not adjacent, thus justifiying us assigning them the same
colour. o - ‘

We now have the following theorem.

Theorem 9.12 ([1]). The ring
R = Z4z,y,2)/(2* - 2,y — 2, 2%, 21, 2y, 22,2y, T2, y2 — 2)

has w(R) =5 and x(R) =6.
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