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Mathematics is not a book confined within a cover and bound between brazen 
clasps, whose contents it needs only patience to ransack; it is not a mine, whose 
treasures may take long to reduce into possesion, but which fill only a limited 
number of veins and lodes; it _is not a soil, whose fertility can be exhausted by 
the yield of succesive harvests; it is not a continent or an ocean, whose area 
can be mapped out and its contour defined: 

it is limitless as that space which 
it finds too narrow for its aspira-
tions; its possibilities are as infi-
nite as the worlds which are for-
ever crowding in and multiply-
ing upon the astronomer's gaze; it 
is as incapable of being restricted 
within assigned boundaries or-be-
ing reduced to definitions of per-
manent validity, as the conscious-
ness, the life, which seems to 
slumber in each monad, in every 
atom of matter, in each leaf and 
bud and cell, and is forever ready 
to burst forth into new forms of 
vegetable and animal existence. 

It is difficult to give an idea of the vast extent of modern mathematics. 

The word 'extent' is not the right 
one: I mean extent crowded with 
beautiful detail — not an extent 
of mere uniformity such as an ob-
jectless plain, but of _a tract of 
beautiful country seen at first in 
the distance, but which will bear 
to be rambled through and studied 
in every detail of hillside and val-
ley, stream, rock, wood, and flow-
er. But, as for every thing else )  
so for a mathematical theory —  
beauty can be perceived but not ex-
plained. 
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Summary 
This thesis is concerned with one possible interplay between commutative algebra and 

graph theory. Specifically, we associate with a commutative ring R a graph and then set 
out to determine how the ring's properties influence the chromatic and clique numbers of 
the graph. 

The graph referred to is obtained by letting each ring element be represented by a 
vertex in the graph and joining two vertices when the product of their corresponding ring 
elements is equal to zero. 

The thesis focuses on rings that have a finite chromatic number, where the chromatic 
number of the ring is equal to the chromatic number of the associated graph. The nilrad-
ical of the ring plays a prominent role in these- investigations. 

Furthermore, the thesis also discusses conditions under which the chromatic and clique 
numbers of the associated graph are equal. The thesis ends with a discussion of rings with 
low (< 5) chromatic number and an example of a ring with clique number 5 and chromatic 
number 6. 
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Opsomming 
Hierdie skripsie is gemoeid met een moontlike interaksie tussen kommutatiewe algebra 

en grafiekteorie. Meer spesifiek neem ons 'n kommutatiewe ring, R, en assosieer hiermee 
`n grafiek. Ons bepaal dan hoe die eienskappe van die ring die chromatiese- en kliekgetalle 
van die grafiek beinvloed. 

Die grafiek waarna verwys word, word verkry deur met elke ringelement 'n punt in 
die grafiek te assosieer en twee punte in die grafiek te verbind as hulle ooreenstemmende 
ringelemente se produk nul is. 

Die skripsie fokus veral op ringe wat 'n eindige chromatiese getal het,.waar die chro-
matiese getal van die ring gelyk is aan die chromatiese getal van die geassosieerde grafiek. 
Die nilradikaal speel 'n .baie belangrike rol in die verband. 

Verder ondersoek die skripsie voorwaardes waaronder die chromatiese- en kliekgetalle 
van die geassosieerde grafiek gelyk is. Die laaste deel van die skripsie word gewy aan `ri - 
bespreking van ringe met 'n lae (< 5) chromatiese getal en 'n voorbeeld van 'n ring met 
kliekgetal 5 en chrornatiese getal 6 word ook gegee. 
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Chapter 1 

Introduction and background 

THE aim of this thesis is to investigate the possible connections that exist between 

commutative ring theory and graph theory. To a large extent there are not any deep 

connections with graph theory (yet) and the only graph theoretic tools that are used are 

a few basic definitions. Thus this thesis is largely algebraic in nature. 

After a brief introduction to the thesis, we discuss the background material necessary 

to be able to read this thesis. 

1.1 Introduction 

Throughout this thesis all rings will be commutative with identity. A basic reference for 

ring theory is [11]. The references we found the most useful for commutative rings were 

[2], [12] and [13]. A good graph theory reference is [4]. 

We begin by associating with a ring, R, a graph. Every element of the ring becomes 

a vertex in our graph and two (different) vertices are adjacent if the product of the 

corresponding (different) ring elements are zero. Specifically then, every nonzero element 

is adjacent to zero. Note also that our graph will be a simple graph (in contrast to a 

multigraph), meaning that no loops or multiple edges will be present in the graph. Once 

we have the graph, we next consider the chromatic number, x(R), of the graph (or the 

ring for .that matter). This is defined to be the smallest number of colours that can be 

assigned to R in such a way that adjacent elements have different colours. The colours are 

usually denoted by integers.' Another concept borrowed from graph theory and one that 

will feature quite often in the sequel is that of a clique. A clique is a. set of vertices (or 

ring elements) such that every two vertices from the set are adjacent. From this follows 

the concept of the clique number, w(R), of the ring. This is the size (number of vertices) 
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of the largest clique in R. 

The whole thesis is concerned with the interplay between ring theoretic properties and 

the Chromatic number of rings. We will see that for certain classeg of rings we have that 

Y(R) = CAJ (R) . (We always have x(R) > w(R) — every element in a clique must receive a 
different colour since it is adjacent to every other element in the clique so that we cannot 

colour the ring with fewer than w(R) colours.) 

We now discuss the necessary background material, starting with the terminology. All 

theorems are given without proof, but we do give complete references to works where the 

proofs may be located. 

1.2 Terminology 

As stated R will denote a commutative ring with identity. We will write the nilradical of 

R as 93(R). Note tha -  93(R) usually denotes the prime radical of the ring R. In the case 

of a commutative ring; the nilradical and prime radical are equal. 

R is reduced if 93(R) = (0). If A and B are subsets of R, then we define A : B = {r . E 

R I rB C A}. Further 0 : A = AnnA and if A consists of one element, say x, we write 
0 : x = Annx; these ideals are termed annihilators. 

The set of zero divisors of R will be denoted by 3(R). A prime ideal, p, will also be 

called an associated prime ideal if p = Annx for some x in R. 

A-finite chain of prime ideals of a ring R is a finite strictly increasing sequence, 

po c 	c • • c pn, 

of prime ideals. The length of the chain is n. The dimension [2] of R is defined to be the 

supremum of the lengths of all chains of prime ideals, not equal to-R, R and is written 

as dim R. 

The cardinality.  of a set I will be denoted by VI. 

An arbitrary ideal will normally be denoted by a captial letter I, set in the Fraktur 

typeface, that is as 3 or by a capital letter J, set in - the Fraktur typeface, 1 

1.3 Noetherian rings 

A Noetherian Ring is one in which the ascending chain condition (a.c.c.) on ideals holds. 

The following result gives equivalent conditions for a ring to be Noetherian. _ _ 
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Proposition 1.1 ([2, 13]). Let R be a ring. Then the following three conditions are 

equivalent : 

Every nonempty set of ideals in R has a maximal element. 

Every ascending chain of ideals contains a finite number of Weals. 

Every ideal in R is finitely generated. 

An ideal in a ring R is called a radical ideal if it coincides with its radical. Here the 

radical of an ideal 1 is defined to be the intersection of all prime ideals containing 3 [11, 

p. 64]. This radical is also denoted as 93(3). We also have the following. 

Theorem 1.2 ([11]). An ideal q in a ring R is a semi-prime ideal in R if and only if 

93 (0 = q. 

Since 93(R) is semi-Prime (intersection of prime ideals), we have that 93(93(R)) = 

93(R). Hence 93(R) is a radical ideal. 

The following result may be found in [10]. 

Theorem 1.3 ([10]). In a Noetherian ring every radical ideal has a unique irredundant 

representation as the intersection of a finite number of prime ideals. 

This in particular shows that in a Noetherian ring B(R) is the intersection of a finite 

number of prime ideals. 

1.4 Artinian and local rings 

An Artinian Ring is one in which the descending chain condition (d.c.c.) on ideals holds. 

A ring R with exactly one maximal ideal, m, is called a local ring and will be written as 

(R,m). 

The following results will be useful to us ([2] and [13]). 

Proposition 1.4 ([2]). In an Artinian ring R every prime ideal, not equal to R, is 

maximal. 

Theorem 1.5 ([2]). A ring R is Artinian < 	> R is Noetherian and dim R = 0. 

Theorem 1.6 ([2]). An Artinian ring is uniquely (up to isomorphism) a finite direct 

product of Artinian local rings. 
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Proposition 1.7 ([13]). A ring R is local < 	> the set of all the nonunits (i.e the 

elements that do not have multiplicative inverses) of R forms an ideal. 

Proposition 1.8 ([2]). Let R be an Artinian local ring. Then the following are equiva-

lent: 

Every ideal in R is principal. 

The maximal ideal m is principal. 

1.5 Brauer's theorem 

As the section title indicates, this section will be devoted to Brauer's Theorem [7]. We 

will not use the result itself anywhere in this thesis. The importance of this result lies in 

its method of proof which will be applied later on in this thesis. We therefore give the 

full proof of the theorem. 

Recall that an ideal 3 is considered to be nilpotent if there exists a positive integer n 

such that 3n = (0). Also, an element r of a ring R is idempotent if r 2  = r. 

In the proof of the theorem we will also need Hopkins' Theorem [7], which we state 

without proof. 

Theorem 1.9 (Hopkins' Theorem [7]). If R is left (right) Artinian, then every nil 

left (right) ideal is nilpotent. 

Theorem 1.10 (Brauer's Theorem [7]). Let R be a left (right) Aritinian ring. Any 

nonnilpotent left (right) ideal in R has a nonzero idempoten t.element. 

Proof. Let 3 be a nonnilpotent left ideal in R. Since R is left Artinian, the family of all 

nonnilpbtent left ideals of R contained in 3 has a minimal element, say 3 1 .. Furthermore, 

31  is not a nil left ideal in R (if it is, Hopkins' Theorem would imply that it is nilpotent 

which we know it not to be). 

Let a be a nonnilpotent element of 3 1  (which we know exits, since 3 1  is not a nil left 

ideal). Consider Ra. We have Ra C 31i  ,further Ra is nonnilpotent since a 2  E Ra and 

a2  is nonnilpotent. (If a2  was nilpotent, a would also he nilpotent, which is impossible.) 

Therefore Ra = 31  by the minimality of 3 1 . In a similar manner Ra 2  = 31. Thus 

Ra = Ra2 .  

_There exists an a 1  E Ra such that a, = al a (a E 3.1 .= Ra). Now qa = a i a = a, 

therefore (a 1  — ai)a = 0 and al  — ai E {a} l  fl Ra, where {a}z is the set of left annihilators 

of a. 
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Let a2  = a + a1  - aa1 . Then a2 a = a2  + a i a - aa i a = a2 + a - a 2  = a. Also  

(a•- a20a2  = ai a + a21.  - aiaai _ azia a3i  

a + a21.  aai  - a - 4 + aa i , 
2 	3 = a l - a l. 

Since a2a = a, a2  is not nilpotent : assume that a 2  is nilpotent, say a3 = 0. We now 
have a2' 1 (a2a) = ar i a, so that a2a = a2 -1 a 0. In the same way we get 0 = a2 -l a = 
a2-2a = a2- 

3 a = • • = a2a = a2a = a, implying a = 0 — this contradicts the fact that a 
is nonzero. Therefore Ra 2  = Ra = 31  and 

{a2 } /  fl Ra C 	fl Ra. 

The last equation follows from the fact that if b E {a2 } 1 , then ba 2  = 0 and since a 2 a = a, 
ba2 a = ba = 0. Thus b E fah. 

We now either have that ai = 4 or aT 0 4. If a 	, then 

( a202 = a 1  
3 a i  = a 1  

2 al  = a3 
= a2 

1 	1) 

so that 4 is idempotent and we are done. 

On the other hand, if 4 0 4, then (a 1  - 4)a2  0 0 and a 1  - ai {a2 } /  n Ra. Thus 
02 1 /  n Ra C {a} 1  n Ra. 

We can now repeat the process with a 2  playing the role of a. We then obtain elements 
a3 , a4  E 31  such that either a3 = a3 or a3 	a3 and {a..4 } /  fl Ra C {a2 } 1  fl Ra. If a3 = a3, 
a3 is the desired idempotent. If ct3 	a3, then the containment above is strict. Therefore 

if an idempotenet cannot be obtained after a finite number of steps, we have an infinite 

descending chain of left ideals, contradicting the fact that R is left Artinian. The proof 

for right Artinian is analogous. 	 1=1, 

1.6 Tensor product 

The definition of the.tensor product is taken from [8]. Let AR and R B be fixed, right and 

left R-modules respeCtively. Consider the formal sums.E(a,, b i ) where a,: E A and b, E B. 
If we ignore the order and association of the terms, then the (a,, b,)'s determine the sums 

uniquely. The formal sums, under the operation of concatenation, forms a semigroup S. 
Recall that a congruence relation on a semigroup S is firstly an equivalence relation 

and secondly it also satisfies: r 1  ti s 1  and r2  s2  = r1  + r2 	s 1  + s2. 

Now let ti be the smallest congruence relation on S that satisfy 
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(a 1  + a2, 	(a1, b) + (a2,  b), 

(a, b1 +.b2)  P--• (a, b1) + (a, b2 ), 

(ar, b) 	(a,rb), 

for all a l , a2  E A, b1, b2  E B and r E R. The collection of equivalence classes of S with 

respect to is called the tensor product of A and B with respect to R and is denoted by. 

A ®R B. The equivalence class that contains the element (a, b) is denoted by a ® b. 
Reference [12] provides a slightly different, although completely equivalent, definition 

of the tensor 'product as well. 

.1.7 Rings of fractions and localisation 

Definition 1.11 (Ring of Fractions [13]). Let R be a ring and SC R a multiplicative 

set (i.e 1 E S and st E S for all s, t E S). We introduce the following relation on R x S: 

(a, s) ti  (b, t) < 	> 3u E S such that u(at — bs) = 0. 

It can be shown that ti  is an equivalence relation [13]. The ring of fractions of R with 

respect to S, Rs, is 

S -1 R = (R x S)/ 

with the ring operations defined as for fractions: 

	

a 	b (at bs) 

	

s- 	= 
st 

a b 	ab 
s t 	Tst • 

Note that above we wrote al s for the clasS (a, s). From these definitions it should be 

clear that the zero of this ring is 0/1 and the identity is 1/1. 

We also. state the following fact as it will be needed later in the thesis. Let 

r 1 /s1, r2 /s2 , 	, rn/sn  be a finite set of elements from S'R. This finite set may be 

- brought to.-.a common denominator in the following manner. Take the element nisi  

from the set and..multiply it by sisz • • • 	• • • sn/s1s2 • • si-isi+i • • • sn . Note that 

([sisz • • • si:isi+1 • • sn], [sisz • • • 	• Sn]) — (1, 1), so that the multiplication above 

does not change the element ri /si . The effect of the multiplications is a common denomi- 

nator of s i sz  • sn . This procedure is the same as the one encountered when dealing with 

ordinary fractions. _ _ 
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Localisation is a particular case of "ring of fractions". If p is a prime ideal then 
S = R\p is a multiplicative set (see for instance [11]) and we set R p  = S-1 R. Further, 
cp : R —> S-1 R, defined by r 1-4 r/1 is a ring homomorphism. 

If p is a prime ideal in the ring R, then we define the extension of p, e(p), to be the 
ideal generated by the image of p (under co) in Rp . 

Proposition 1.12 ([13]). If p is a prime ideal in R and p n S = 0 (S a multiplicative 
set) then e(p) = 	= (p x S)/ is a prime ideal of S"R. 

Proposition 1.13 ([13]). a/s E Rt, is a unit of R p  < 	> a p. Therefore Rp  is a local 

ring, with maximal ideal e(p) = 

If 3 is an ideal of R we will write 3/4 for (3 x S)/ 	With this in mind the maximal 
ideal above, S-1 p, is sometimes also written as pRp . Later in the thesis we will also 

employ this notation in the form 93(R)R p  = (93(R) x S)/ 

The local ring (Rp , pRp ) is called the localisation of R at P. 

Proposition 1.14 ([2]). If p is a prime ideal of the ring R, the prime ideals of the local 

ring Rp  are in one-to-one correspondence with the prime ideals of R contained in p. 

The one-to-one correspondence referred to above is q 	S-1 q = (q x S)\ — . Here q 
is a prime _.ideal contained in p. Note that every ideal in Rp  is of the form S'a, where a 
is an ideal in R. 

Definition 1.15 (Modules of Fractions [13]). Let R be a ring, S a multiplicative 

subset of R and M a left R-module. Then S -1 M is the 5-1 R-module defined as fol-

lows. We define the equivalence relation on M x S as before 

(m, 	(n, t) < 	> 3u E S such that utm = usn, 

and set S'M = ( M x S)/ 	The module operations are defined by m/s f n/t = 

(mt f ns)/st and (a/s) • (n/t) = anl st. 

If S = R\p, where p is a prime ideal, then S'M is a module over the local ring 
S'R = Rp  and is also written as S -1 1V1 = Mp . 

If 3 is an ideal of R (and thus a left R-module) we can form the left S"R-module 
S-1 3. This module will be• written using the previous notation, S -13 = 3Rp  

The following proposition will be used later. 

Proposition 1.16 ([2]). Let M be a left R-module. Then the S -1 R modules, S - 1 M and 

S -1 R OR M are isomorphic. .  
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1.8 Exact sequences 

In a.number of instances we will make use of the concept of an exact sequence [2]. A 
sequence of R-modules and R-homomorphisms 

• • 	A-1 	>. 	't->-1  

is said to be exact at A if Im(fi) =Ker(fi+i)•• The sequence is exact if it is exact at each 
Mi. We will specifically have use for the following special cases : 

0 	M' 	M is exact 	< 	> f is injective, 

M 	M" —4 0 is exact < 	> g is surjective, 

0 	 J-÷ M" 	0 is exact 	< 	> f is injective and g is surjective. 

1.9 The Peirce decomposition of a ring 

Let R be a ring with identity and e an idempotent in R. Then any element in r E R can be 
written as r = er +(r —er), so that R= eR+ (1— e)R, where (1 —e)R .-{r — er r E R}. 
Also, eb = b for all b E eR (if b = er then eb = e2r = er = b) and eb = 0 for all 
b E (1— e)R (if b = r — er then eb = er—e 2 r = er—er = 0), therefore eRn(1— e)R = (0) (if 
eri = r2 — er2 0 then e 2 ri = er2—e 2 r2 .  = 0 — a contradiction). Thus R = eREB (1— e)R. 
This is called the right Peirce decomposition of R relative to e. We can analogously define 

a left and two-sided Peirce decomposition as well, see [7, p 83] for more details. 

1.10 Some results on finite rings with identity 

In some of our further work it is worthwhile to have the following results available [12].-

Proposition 1.17. Let R be a finite ring with identity. If IRS = char(R) then R 

Zchar( R) • 

Proposition 1.18. The only rings with an identity and four elemnts are 

Z4, 

Z 2 [x]I(x2 ), 

Z2  ED Z 2  and 

Z2[x]l (x 2  + 1) 
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1.11 Graph theory 

This section will be devoted to the graph theoretical terminology and results that will be 

used in this thesis. See [4] for more details. 

A graph is a collection of vertices {v i , v2 , . . . , vim,} and edges {e l , e2 , 	, ern )-. Each 

edge may be seen as an unordered pair of vertices, that is e i  = { vk , v1 } if edge e, joins 

vertices vk and v 1 . A graph is said to be the trivial graph if it has only one vertex. 

Let u and v be vertices of a graph (with the possibility that they may be equal). A 

u-v walk of the graph is a finite, alternating sequence, 

u = uo, e1, u1, e2, 	, 	ek, uk = v, 

of vertices and edges, starting with vertex u and _ending with vertex v, such that e i  = 

{ui _ i , i = 1, 2, ... k. The number k is called the length of the walk and is equal to the 

number of edges in 'the walk. The walk will often be written by listing only its vertices 

.since the egdes are then obvious. A u-v walk is considered closed when u = v. A u-v 

walk with no edge repeated is called a u-v trail, while if no vertex is repeated it is called 

a u-v path. A closed trail of a graph is referred to as a circuit and a closed path is known 

as a cycle. A cycle is said to be even or odd depending on whether its length is even or 

odd, respectively. The vertices that precede and follow the vertex v on a cycle *are called 

the neighbours of v. As stated in the introduction all our graphs will be simple. That 

is, no loops (edges connecting a vertex with itself) or multiple edges (more that one edge 

between a pair of vertices) are allowed. This, in particular, implies that the length of the 

smallest odd cycle will be three and the length of the smallest even cycle will be four. 

A graph is said to be bipartite if it is possible to partition the vertex set, V, of the 

graph into two subsets, V1  and V2 , such that the edges of the graph lie only between the 

two partite sets V1  and V2 . Thus there are no edges present between the vertices of V1  

and likewise for V2. We have the following theorem. 

Theorem 1.19 ([4]). A nontrivial graph is bipartite if and only if it contains no odd 

cycles. 

We will frequently refer to the colouring of a graph in this thesis. By this is meant 

the assignment of colours (usually denoted by integers) to the vertices of a graph in such 

a manner that two adjacent vertices receive different colours. Of specific interest is the 

minimum number of colours that can be assigned to the vertices of a graph. This is 

known as the chromatic number of a graph and is denoted by x(G). Note that a bipartite 

__ graph is therefore a graph for which x(G)= 2. (Assign one colour to_the one partite set 



CHAPTER 1. INTRODUCTION AND BACKGROUND 	10 

and another colour to the other partite set.) Also, if C is a cycle of even length, then 

Y(C) = 2. On the other hand if C is a cycle of odd length, x(C) = 3. These two facts may 

be easily verified by drawing cycles of even and odd lengths and trying to colour them 

with fewer colours. This leads to the following observation. If G is a graph with x(G)> 3, 
then G contains an odd cycle : assume that G! does not contain an odd cycle, then by 

the theorem above we know that G is then a bipartite graph. This leads to x(G) = 2 —
a contradiction. 

1.12 Thesis composition 

As stated in the beginning, our main concern will be to determine how the ring theoretic 

properties of a commutative ring with identity influence its chromatic number. Chapters 

one through eight are based on the results presented in [3] and chapter nine . is based on 

[1]. 

Chapter two deals with some examples of rings and their chromatic number. The third 

chapter deals with a characterisation of rings of finite chromatic number, aptly termed 

Colorings. Chapter four is on the properties of Colorings. The fifth chapter discusses 

the properties shared by the family of Colorings. Chapter six is devoted to the study of 

conditions that ensure x(R) = w(R). The seventh chapter is on rings of low chromatic 

number (that is x(R) < 5). Chapter eight presents some examples of finite rings with 
X (R) < 3. Chapter nine discusses an example of a ring with w(R) = 5 and X (R) = 6. 



Chapter 2 

Examples of rings and their 

chromatic numbers 

THE aim of this chapter is to present some examples of rings and to show how their 

chromatic number is calculated. 

The first Proposition follows from the definitions. 

Proposition 2.1. x(R) =1 < 	> R = (0) 

Proposition 2.2. x(R) = 2 < 	> R is an integral domain, R Z4, 	' 7L 2 [X]/(X 2 ) or 
R ti  Z 2 [x]I(x2  + 1). 

Proof. = Suppose that x(R) = 2. 

Since products of nonzero elements in an integral domain are always nonzero, the chro-

matic number of an integral domain is 2. Therefore R may be an integral domain. If R 
is not an integral domain, we then need to show that either R Z4, R Z2[x]l (x 2 ) or 
R '="= Z2 [x]l (x 2  + 1). 

Therefore suppose that R is not an integral domain. 

Then there exist x, y E R, with x 0 and y .0 0, but - xy = 0. In this case {0, x, y} forms a 
clique with three elements, but w(R) < x(R) = 2. This implies that x = y, so that x 0 
and x2  = 0. Using this we see that the ideal Rx is a clique (rixr2x = r i r2x2  = 0). Now, 
Ox E Rx and lx E Rx,* so that IRxI > 2, but since w(R) < 2, 1Rx1 = 2. Also, Rx C Annx 
([rx]x = rx2  = 0). Further, Annx C Rx: if z E Annx, then {0,x, z} is a clique, but since 
co(R) < 2, z = x or z = 0. Therefore z E Rx = {0, x}, which implies that Annx = Rx. 
Consider the exact sequence 

f3 0fi Annx f2  R --+ Rx f4  0, (2.1) 

11 
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where 

fi : 0 1-4 0, 

f2 	x x Vx E Annx, 

f3  : r 	rx Vr E :R, 

: rx H 0 Vrx E Rx. 

Clearly Im(f,) = Ker(f2+1 ): Since h is onto Rx, we have by the fundamental theorem on 
homomorphisms [11], that 

Rx R Ker(f3) = R/Im(h) = R/Annx 

1Rx1 = IRI/lAnnx1 

:NRI = 1RxIlAnnxl = 4 
	

(2.2) 

A well known corollary from Lagrange's theorem of group theory states that the order 
of an element divides the order of the group [6]. Also, for a ring with an identity, the 
characteristic of the ring equals the order of the identity [6]. Therefore the characteristic 
of R equals the characteristic of. 1, which in turn has to divide R.. In summary then, the 
characteristic of R has to divide 4. Therefore the characteristic of R is either 2 or 4. If 
char(R) = 4, then by Proposition 1.17, RL' Z4 . If char(R) = 2, then by Proposition 1.18, 
R'L Z 2 [x]1 (x 2 ), R'=" Z2  ® 7L 2  or R 76 2 [x]/ (x 2  + 1). In Z2  ® 7L 2  however, we have a clique 
of three elements ({(0, 0), (1, 0), (0, 1)1), but for the present ring w(R) < 2. Therefore if 
char(R) = 2, then R'L='- Z2 [x]/(x 2 ) or R Z 2 (x11(x 2- +1). 

Under the assumption that R is an integral domain, R Z4 , R Z2 [x]/(x 2 ) or 
7L 2 [x]/(x 2  + 1) it is easily seen that x(R) = 2. For ease of reference the corresponding 

graphs of the rings above are shown in Figure 2.1. 	 ❑ 

Proposition 2.3. Let p1, p2, 	 ,q7. be  different prime numbers and put 
N = p2in An2 	P2kn k q12M 1  + 1 en2 +1 	2 +1  Then 

X(7N) = w(7N) = p1ip721 2 	 q22 	%Tr + r. 

Probf. Put yo = n1 pr2z2 	pikik citi g72112+1 
pl 

 q.;n.r -. Then 	= 0 in Z N  and this in turn 
implies that yoZN is a clique witlip7 1 /42  • • • pknkqr q 72n2  • • qi.mr elements— to see this note 

- that the products between y o  with all integers from 1 to priqp1212  • • pknk q -nlq72712  • • • qnr, in 
ZN., are all distinct. 

Let yi  = yo /q2 , 1 < i < r. Then the set C = yoZN U {Yi, y2, 	yr } is a clique of size 

t = p71 p7222  • • p7k1 h-grirLi q2 'm • L • 	r elements : _ 



X + 1 

0 
Integral Domain 

1 
• 

13 

NONZERO ELEMENTS 
	

1 	2 	3 

0 
	

0 

Z2[x]/(x 2 ) 
	

Z2 [x]/(x 2  + 1) 

Figure 2.1: Rings With x(/4) = 2. 

Firstly, yi yoZN, 1 < i < r i  since yi < Yo, yi 0 0 and y o Z N  contains nonzero elements 

greater than or equal to y o-  together with zero. Note secondly that if y ox E yoZN and yi E 

{yi, Y27 . yr }, then yo xy i  = qi  = Nqi q2  • • qi_ i qi+i  • • • qrx = 0 (in Z N). Thirdly if 

yi  and 	{yi, y2) • . • , yr } with i j, then yiyj  = yld(qi qi ) = 

Nq i q2 • • • qi _ l.qi±1  • • • qj—iqj+i • • • (b. = 0 (in Z N). 

Therefore w(ZN) > t and in turn x(ZN) > t. To show that x(Z N) < t we have to 

produce a colouring of Z N  in t colours, the reasoning being that this t-colouring may not 

. be the most optimal one (least number of colours), so that the chromatic number may 

still be less than or equal to t. 

First off we have to colour each element of C with a unique colour of its own (C is a 

clique). Let x i  = N/pini, 1 < i < k. Note that x i  E yoZN so that x i  E C which implies 

that xi has been assignedd -a colour. We will now colour the remaining elements (i.e Z N  \C) 

of Z N  as follows (f (y) will denote the colour that we assigned to element y) : 
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Take x C. We assign x a colour as follows 

 

f (y3) if PTA' pknk divides x 

where j = min{i grini +1  x}, 

if p7 1 /22  • •/4k does not divide x 

where j = min{i pin' x}. 

 

f(x) 

 

(2.3) 

 

f(xi) 

   

We now proceed to show -  that this results in a valid colouring (i.e. adjacent elements 

should receive different colours) : 

If pni 1 p22  •pnk k divides x, then x receives the same colour as y i , so we have to ensure 

that x and y3  are not adjacent. 

Recall that y3 	 qi.rnr+ 1  and also Ci+1  x. 

Therefore in the product xy i , the power of qi  can never be greater than or equal to 
= yo /q;  = 	• • pknyni  i-Fi g,m2+1 	("in, 

2mi  + 1, since the poyver of qi  in x is strictly less than mi  + 1. Thus xyi  is never a 

multiple of N, so that xyi  0 0, which implies that x and yi  are not adjacent. 

If pni 1 p32  • • •pnk k does not divide x, then there exists at least one p i  such that plilt does 

not divide x and we chose pi  to be that specific factor such that j = min{i I 	t x}. In 

this case x receives the same colour as xj . Here x3  = 	= 
2n2 	n3 	2nk 2m 1 +1 2m2-1-1 • 

P1 P2 • • • Pi • • • Pk ql 	q2 	• enr+ 1 . In the product xx 3  the power of pi  can 

never be greater than or equal to 2n3 , because the power of pi in x is strictly less than 

ni . Therefore xx i  is never a multiple of N implying that xx i  0 0 with the implication 

that x and xi  are not adjacent. 

In summary, x(Z N) < t so that w(Z Ar) < t. Combining this with our previous results 

we get x(Z N ) = w(Z N) = t. 



Chapter 3 

Rings with x(R) < oo 

THIS chapter contains the results that will be needed later on to characterise the rings 

of finite chromatic number. 

Definition 3.1 (Finite element). An element x E R is said to be finite if the ideal Rx 

is a finite set. 

The following lemma plays a key role in the results that follow. 

Lemma 3.2. If R has an infinite number of finite elements then R contains an infinite 

clique. 

Proof. Let x i , x2 , 	, x„, . .. be different finite elements.in R. The elements ,.„ 
x 1 x 2 ,x 1 x 3 , • • • , xixn, • • • • all belong to the finite ideal x 1 R. Therefore there exists an 

infinite subsequence {an } of {2, 3, , n, } such that xixa, = xixa; = • . As before, 

the -elements xa i xa,, xa 1 xa3 , • • • , xa l xan , ... belong to the finite ideal xai  R, so that there 

exists an infinite subsequence {b n } of {a2, a3, , an, ... } with x al xb, = xa i  xb2 = • • • 
Continuing in this .manner we construct a subsequence yl , .,2) • • • , ya , ... of the sequence 

XI, X2, ... xn , ... such that yiyj  = yiyk  when j, k > i (all yd 's that follow a specific y i  are 

still in the same subsequence as the y i ). Here y i  = x1 and Y2 = Xai • 

Define Zi,j = yi 
 — Yj. Then if i < j < k < r, zi,izk,r = (Yi —  Yi)(Yk —  Yr) = YiYk — YiYr — 

YjYk+ yjYr = 0 — 0 = 0. We are now in a position to construct an infinite clique : 

Consider z 1 ,2 Z3 ,4  = Z1,2Z3,5 = 0. We have z3,4 0 z3,5 (z3,4 -= z3,5 = y4 = y5 , a 

contradiction). Thus at least one of z 3 ,4  and z3 ,5  is different from z 1 , 2 . If for example 

z3 ,5  z1 , 2 , then {z 1 , 2 , z3 , 5 } is a clique with two elements. Further z6 ,7, z6 , 8 and z6 ,9  are 

pairwise different, so that at least one of them is not equal to z1,2 or z3 , 5 . Say for example 

that z6 ,9 	{z 1 , 2 , z3 , 5 }, then {z 1 , 2 , z3 , 5 , z6 , 9 } is a clique with three eleinents. By repeating 

the above procedure we obtain an infinite clique: 	 _ _ ❑ 

15 
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Lemma 3.3. Let 3 be a finite ideal in the ring R. Then R contains an infinite clique 

< 	> RI3 has an infinite clique. 

Proof. = Suppose that R contains an infinite clique C. 

We will denote the quotient ring R/3 by R and the homomorphic image of C in R by C. 

Then C = {c + 3 I c E Also; C is a clique : (c i  + 3)(c2 + 3) = cic2 + 3 = 0 + 3 = 3, 
keeping in mind that 3 is the zero element of R. The fact that C is infinite is proved 

using a contradiction. 

If we assume that C is finite, - then there are only a finite number of different equivalence 

classes c+ 3, c E C. This implies that at least one equivalence class contains an infinite 

number of elements of C (since C is infinite). Say this class is c1 + 3 = c2 + 3 = • • • . Here 

ci E C, c3  for i j and i, j E K where K is an infinite index set. Written differently 

c1  +3 = ck  +3, k E K. Equivalently, c 1  - ck E 3, V k E K. Furthermore, c 1  - ck c1 - ci 
for k 1 (since c 1  - ck = c1 ct ck = c1 , a contradiction). Thus we have an infinite 

number of elements c 1  - ck, k - E K with c 1  - ck E 3. This gives the desired contradiction 

since 3 is finite. Therefore C is infinite. 

Let {A}i° be an infinite clique in R 	= xi  + 3, xi  E R). Therefore fif = 

(x, 3)(x 3  + 3) = xix i  + 3 = 3, so that x i xi  E 3 for i j. Since the products {x i x3 }io3  

belong to the finite ideal 3, we may apply the same technique as in Lemma 3.2 (where 

our present ideal 3 plays the role of the ideal Rx 1  in 3.2) to obtain an infinite clique in 

R. 	 ❑ 

Lemma 3.4. If the ring R contains a nilpotent element which is not finite, then R con-

tains an infinite clique. 

Proof. Assume that x E R is nilpotent, that is, zn = 0 for some positive integer n and 

that x is not finite i.e Rx is infinite. The proof is by induction on n. If x 2  = 0 and Rx 

is infinite, then Rx is itself an infinite clique in R. We now assume that the lemma is 

true for all elements of nilpotency n - 1. Let xn = 0, n > 3 and assume that Rx is 

infinite. Put y = x2 , then yn-i = (x2)n-1 = xn xn-2 = 0. If Ry is infinite then we may 

conclude from the induction assumption that R has an infinite clique. Otherwise if Ry is 

finite, then Rx/Ry = {rx + r E R} is infinite. (This follows in the same way as for 

0 in Lemma 3.3.) Furthermore, Rx/Ry is a clique in RI Ry : (r i x + Ry) (r2x + Ry) = 

r ir2 x2  + Ry = r 1 r 2 y + Ry = Ry. Therefore we have the infinite clique Rx Ry in R/Ry 

and Ry is finite so that by Lemma 3.3 R has an infinite clique. ❑ 

Lemma 3.5. If the nilradical,_93(R), of R is infinite, then R has an_infinite clique. _ _ _  
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Proof. Assume that 93(R) is infinite. If every element in 93(R) is finite, Lemma 3.2 implies 
that R contains an infinite clique. On the other hand if there is an element in 93(R) that 
is not finite, Lemma 3.4 implies that R contains an infinite clique. (The elements in 93(R) 
are all nilpotent for a commutative ring R.) -  ❑ 

Remark 3.6. If R is ring without an infinite clique, then by Lemma 3.5, 93(R) is finite. 

Applying Lemma 3.3 we then see that R/93(R) also does not have an infinite clique. 

Lemma 3.7. Let R be a reduced ring (i.e 93(R) = (0)) which does not contain an infinite 

clique. Then. R has the ascending chain condition (a.c.c) on ideals of the form Annx. 

Proof. Assume that we have an infinite chain of ideals of the form Annx (i.e. we are 

assuming the a.c.c does not hold), that is 

Anna i. C Anna2  C • • • . 	 (3.1) 

Let x i  E Annai  \Annai_i, i = 2, 3, . . . and yn  = xnan-i 0 0 n = 2, 3, ... (x, E Annan  
and xn  .Annan _ i ). Then the yn 's form a clique Yam = (xnan-1)(xmam-i) = 
(xn am_ i )(xman _ i ). If we assume, without loss of generality, that m > n, then x n am_ 1  = 0 
(since x n  E Annan  C Annan+1  C • • • C Annam _ i  C Annam , so that xn  E Annam _ i ), im-
plying that ynyni  = 0. Furthermore, y i  yi  if i j : If yi  = y3  then yF = yiyj  and 

= yiyj , but yiyj  = 0, therefore y? = 	= 0. This contradicts the fact that 93(R) = (0). 
(The nilradical contains all nilpotent elements.) 

In summary then, the existence of the infinite chain provided a means to construct an 

infinite clique (the y n 's), which contradicts our assumption on R that it does not have an 

infinite clique. Thus the a.c.c holds. ❑ 

Lemma 3.8. Let x and y be elements of the ring R such that Annx and Anny are different 

prime ideals. Then xy = 0. 

Proof The proof is by contradiction. Assuming that xy 	0, this implies that x 

Anny and y 	Annx. Further, Annx : y = {r E R I ry E Annx} = Annx and 
Anny : = {r E 	rx E Anny} = Anny: 

If r E Annx : y, then ry E Annx and since Annx is a prime ideal, r E Annx or y E Annx, 

but y Annx so that r E Annx. This proves Annx : y C Annx. Conversely, if r E Annx, 

then rx = 0 and also (rx)y = (ry)x = 0 so that ry E Annx which in turn implies that 

r E Annx : y. Therefore Annx : y = Annx. Similarly, Anny : x = Anny. 

However Annx : y = Anny : x = Ann(xy) : 

Let r E Annx :_y, then ry E Annx or (ry)x = r(xy) = 0, thus r E Ann(xy). Conversely,- 
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let r E Ann(xy), therefore r(xy) = (ry)x = 0, so that ry E Annx from which it follows 

that r E Annx : y. This proves Annx : y = Ann(xy): The proof of Anny : x = Ann(xy) 
is 

All of this implies that Annx = Annx : y = Anny : x = Anny, but our initial 

assumption was that Annx.and Anny are different, yielding the contradiction. Therefore 

xy = O. 

We are now in a position to prove one of the first major results. 

Theorem 3.9. For a reduced ring R the following are equivalent : 

x(R) is finite. 

w(R) is finite. 

3. The zero-ideal in R is a finite intersection of prime ideals. 

R does not contain an infinite clique. 

Proof. 1. 	2. This implication follows from w(R) < x(R). 

= 4. Similar to the implication above. 

= 4. Obvious. 

= 1. Let (0) = p i  f1 p 2  11 • • •fl pk, where p i , p2 , 	, p k  are prime ideals. Define a 

coloring f on R as follows: 

f (x) = 
tO 	 if x = 0, 

min{i x pi } if x 	O. 
(3.2) 

We now show that this is a valid colouring by showing that adjacent elements cannot 

receive the same colour. If x and y are adjacent then xy = 0; we will also assume that 

both x and y are not equal to 0 since 0 receives its own colour. Therefore xy E p i , xy E 

P27 • • • , xy E pk . Since the pi 's are prime ideals, this implies 

x E p i  or y E p i ,x E p 2  or y E P27 • • *) E Pk or y E Pk. 	 (3.3) 

• 
If we assume that x and y received the same colour i.e f(x) = f(y), then f(x) =-- 

min{i x 	pi } = min{i I y 	p i} = f (y). This implies that there exists an i E 

{1",2,... , k} such that x pi  and y pi , but this contradicts the equation above. This 

shows that f is a valid colouring of R. Note that in this case x(R) < k +1 so that this 

implies 1. . 
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4. 	3. We assume that R is reduced and that R does not contain an infinite clique. 

Lemma 3.7 implies that R satisfies the a.c.c on ideals of the form Anna. Let Annx i , i E I 

(I the index set) be the different maximal members of the family {Annr r E R, r 0 0}. 
Each Annxi  is a prime ideal : 

Let xy E Annxi  and assume x 	Annxi . Then xx i  0 0 and (xy)xi  = 0 = (xxi )y. 
Therefore y E Ann(xx i ). But Ann(xx i ) D Annxi  and Annxi  is a maximal element so that 

Annxi  cannot be properly contained in Ann(xx i ), therefore Ann(xx i ) = Annxi . Thus 
y E Annxi  which proves that Annx i  is prime. 

Lemma 3.8 now implies that III < oo, because otherwise we would have an infinite clique. 

We now show that n , Annxi  = (0) : 

Assume that x E n , Annxi  and that x 0. Then x E Annxi  and xx i  = 0 for all i E I. 

Also Annx C Annxi  for some i E I : we have two possibilities, Annx C Annx i  for some 

i E I, in which case we are done. Otherwise, Annx. Annx i  for all i E I, but then Annx 

is maximal, i.e. Annx = Annxi  for an i — a contradiction. From this it follows that 

xi  E Annx C Annxi . This shows that 4 = 0 or in otherwords that x i  is nilpotent and 

since R is reduced that x i  = 0. This contradicts the fact that the x i 's are all nonzero. 

Thus ni  Annxi  = (0). 

Theorem 3.10. Let R be a reduced ring with x(R) < oo. Then R has only a finite 

number of minimal prime ideals. If this number of minimal prime ideals is n, then x(R) 

w (R) = n + 1 . 

Proof By Theorem 3.9, (0) is equal to a finite intersection of prime ideals, that is (0) = 

Pi n P2 n • • n Pn . Every prime ideal, Pi, contains a minimal prime ideal, m i , [13]. Therefore 

mi nm2 n• • •nm, = (0), where each mi  is a minimal prime ideal. Note that we are assuming 

that these minimal prime ideals are different, since there is no point in including the same 

ideal more than once when forming an intersection. We now show that R has only a finite 

number of minimal prime ideals.: 

Assume that R has infinitely many minimal prime ideals. The nilradical is the intersection 

of all minimal prime ideals [13], so that B(R) = n m k , where' the intersection is taken 

over all minimal prime ideals. Since R is reduced, B(R) = (0). Using the result above 

we get 

• mi n.m2 n • • • n 	= n mk  = (0). 

_With a suitable renumbering of the minimal prime ideals we can rewrite this as 

mi  n m2  n • • • n mn  =_ (mi _n m2 n • • •n mn) n (n m i ), — 
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where n m' i  refers to the remainder of the minimal prime ideals. The identit y  above 

implies that (m i  n m 2  n • • • nmn) c (n m' i ), implying (m 1  II m2  11 • • n mn ) C m'i  for every 

We also have that m i m2  • • mn  C (mi n m2 n • • • n ran), so thal m i m2  • • • mn  C m'i . Since 

m'i  is prime, mi  C m' i  or m2  C m'i  or 	or ran  C m'i . Furthermore, m' i  is a minimal 

prime ideal so that m 1  = m' i  or m2  = m' i  or • • • or mn  = m' i . - 

This shows that every minimal prime ideal has to be equal to one of the n original 

minimal prime ideals that we started with. Thus there is onl y  a finite number of minimal 

prime ideals. 

We now show that the intersection m i  n m2  n • • • n mn  = (0) is also minimal, i.e the 

removal of any  minimal prime ideal from this intersection yields a nonzero intersection : 

Assume that the intersection is in fact not minimal. Then there exists at least one m i  

such that mi nmz n • • .nmn = mi nm2 n • •nmi_i n • •n ran = (0). From this we may 

conclude that m 1  nm2  n • • • nmi_, rim", • • • nmn  c mi . Using the same reasoning as above 

this leads to m 1  = mi  or m2  = mi  or or m, = mi . Since we assumed these minimal 

prime ideals to be distinct, this leads to a contradiction implying that the intersection is 

indeed minimal. 

Turning now to the proof of X (R) = w(R) = n + 1, we have as in the implication 

1. of Theorem 3.9 that x(R) < n + 1. 

We will now construct a clique with n + 1 elements : 

n 

	

nmi 	(0) 
	

(3.4) 
i= 1 

i0.i 

for every j = 1, 2, ... , n. Therefore for every i E {1, 2, ... , n} we may choose x i  0 0 such 

that xi  E mi  n m2 n • .•.n•mi_i n mi+ , n • • • n mn  and xi mi . That is xi  E rni  for all 

j i and xi  ■ mi . Now x i xj  = 0 for i j : x ixj  E mi  for all j i since xi  E mj  for all 

j i and x ixj  E mi  for all i j since xi  E mi  for all i j. Together, this.gives x ixj  E mi 

for alli = 1, 2, ... , n, i.e x ixj  E nz 1 mi = (0). Therefore {0, x l , , xn } forms a clique of 

n + 1 elements, so that w(R) > n 1. 

Combining our results we see that w(R) < X (R) < n + 1 and n + I < .w(R) < X(R) 
imply that cv(R) = x(R) = n + 1. 	 ❑ 

The following theorem can be considered the main result of this chapter. 

Theorem 3.11. The following conditions are equivalent for a ring R : 

1. x(R)-is finite. 
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w(R) is finite. 

The nilradical in R .is finite and equals a finite intersection of prime ideals. 

R does not contain an infinite clique.- 

Proof. The following implications follow- in the same manner as for Theorem 3.9 : 
1. 	2., 1. 	4., 2. 	4. 

1. Let 93(R) = pi n P2 n • • • n Pk, where p h  P2, 	p k  are prime ideals and with 
93(R) finite. We can colour the elements outside of 93(R) as follows : If x a3(R), assign 
x the colour f (x) = min{ iIxV pi }. This is the same type of colouring as the one defined 

in Theorem 3.9 so that we know from what we proved there-that the elements outside of 

93(R) can be coloured with a finite number of colours. Since 93(R) is a finite set, we will 

only need a finite (maybe even zero) amount of additional colours to colour the elements 
in 93(R). This shows that x(R) < oo. 

= 3. Assume that R does not have an infinite clique. Then by Lemma 3.5 

we see that 93(R) is finite. Lemma 3.3 then shows that R/93(R) does not have an 

infinite clique. We now apply Theorem 3.9 to R/93(R) and conclude that the zero ideal 
in R/93(R) is a finite intersection of 'prime ideals in RI93(R), that is {0 + 93(R)} ,--- 
{93(R)} = q 1  n q 2  n • • • n q n , where the q i 's are prime ideals in R/93(R). Furthermore we 

know that there exits a one-to-one, onto mapping between the ideals (prime ideals) in R 

which contain 93(R) and the ideals (prime ideals) in RIg3(R) given by p 1-4 p/93(R) = 
{p + 93(R) I p E p} [11]. Therefore for each of the prime ideals q i  above there exists a 
corresponding prime ideal in R, say pi  such that p, 	pi /93(R) = . qi . Thus {93(R)} = 
(p l /Q3(R)) n (p2 /a3(R)) n • • n (Pn/a3 (R)) = (P1 n p2,n • • • n Pn)/a3 (R). The second 
equality follows easily from first principles. The equality as a whole is only possible if 

93(.R) = p 1  n p 2  n • • • n pn . This shows that 93(R) is a finite intersection of prime ideals, 
yielding the desired result. 

The following theorem is an application of Theorem 3.11 to a somewhat restricted 

situation. 

Theorem 3.12. Let R be a ring which contains -a finite ideal which is a finite intersection 

of prime. ideals. Then the radical of any finite ideal is finite and equals a finite intersection 

of prime ideals. Furthermore, the ring has only a finite number of finite ideals. 

Proof If R contains a finite ideal which is a finite intersection of prime ideals then 

x (R) < oo by the same procedure used in proving implication 3. = 1. in Theorems 

3.9 and 3.11. This also implies that w(R) < co. 
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Let q be any finite ideal in R. Then by . Lemma 3.3 R/q does not have an infinite 
clique, since w(R) < oo. By Theorem 3.11 we then conclude that x(R/q) < oo and 
also that B(R/q) is finite and equals a finite intersection of prime ideals. Note that 
B(R/q) = {r + q E R/q (r + = q for some positive n} = {r + q E R/q rn + q = 
q for some positive n} = {r + q E R/q I rn E q for some positive n} = {r + q E R/q r E 
B(q)} = B(q)/q, where B(q) is the radical of q. That is, B (q) equals the intersection of 
the prime ideals in R which. contain q. Therefore 93(q)/q is finite and equal to a finite 
intersection of prime ideals, say B(q)/q = (P1/q)n(P2/q)n• • •n(13./q) = (PinP2n• • - pn)/q, 
so that B(q) = p i  fl p 2  n • • • pn  (where the pk's are prime ideals in R cf. Theorem 3.11, 
implication 4. = 3.). Therefore B(q) is also equal to a finite intersection of prime 
ideals. Since 93(q)/q and q are finite we conclude that B(q) is also finite, since 193(q)I = 

IFB(c1)/c11.1c1I. 
We still need to show that R contains only a finite number of finite ideals. To this 

end let A = - 1x ER ix is finite}. Since w(R) < oo it follows from Lemma 3.2 that A is 
a finite ideal. Also, A contains every finite ideal : 
Suppose 3 be a finite ideal and let x E 3. Then xR C 3 and since 131 < oo, xR is also 
finite. Therefore x is a finite element, so that x E A. Thus 3 C A, as desired. 

Now since A contains every finite ideal, the number of finite ideals has to be finite. 



Chapter 4 

Properties of rings with x(R) oo 

Colorings 

THE previous chapter was devoted to a characterisation of rings of finite chromatic 

number. The present chapter will be devoted to discussing some of the properties 

enjoyed by these rings. We first state the following definition : 

Definition 4.1 (Coloring). A ring R is called a Coloring if x(R) is finite. 

Lemma 4.2. If 3 is a finite ideal in a ring R, then 3 : x/Annx is a finite R-module. 

Proof. Consider the exact sequence 

04 Annx f2  3 : x f3  (3 : x)x f4 	
(4.1) 

where 

fi 
	1-÷ 0, 

f2 
	

• 

xVx E Annx, 

h 
	

✓ F-+ rx V r E 3 : x, 

f4 
	✓ 	OVr E (3 : x)x. 

Clearly Im(fi ) = Ker(fi+i ). Since h is onto, we have by the fundamental theorem on 

homomorphisms [11] that (3 : x)x 3 : x/Ker(f3) = 3.: x/Annx. Also (3 : C 3, 

since by definition the product of every element in (3 : x) with x is in 3. This forces 

(3 : x)x to be finite becauk 3 is finite. This means therefore, that 3 : x/Annx is also 

finite (by the isomorphism above). _ ❑ _ 

23 
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The next lemma will be useful in proving Theorem 4.4. 

Lemma 4.3. If R is a commutative ring with identity, then 

: x) = { R  
p 

X E p, 

x p, 

where p0 R is a prime ideal and x is any element in R. 

Proof Let x E R and let p R be a prime ideal. If x E p, then (p : x) = R since the 

product between x and any r E R will always be in p seeing that p is an ideal. 

Otherwise if x p, then for a y x and y p, (p :-x) = (p : y) : 

Let r E (p : x), therefore rx E p, so that x E p or r E p. p is prime which implies that 

r E p (x p). This leads to yr E p (p an ideal), so that r E (p : y), i.e (p : x) C (p : y). 

Similarly we can show that (p : y) C (p : x), which proves the assertion above. 

Therefore if x 1 and x p, then using the statement above with y = 1 (1 ,% p since 

p R), (p : x) = (p : 1) = p. If x = 1, then obviously (p : x) = (p : 1) = p also. Note 

that since 1 p the possibility x = 1 does exist. It does not change the result, though. 

In summary then 

(13  x) = { R  
p 

X E p, 

x p, 

so that under the assumptions of the lemma, the possibilities for (p : x) are severely 

limited. 	 ❑ 

Note that above we did not use the fact that R was commutative explicitly, thus this 

result would be valid in a noncommutative ring as well. In the case of a noncommutative 

ring, though, one would have to formulate the definition of p : x more carefully, specifying 

whether multiplication by elements from p : x is to be taken on the left or on the right of 

x. We choose to circumvent this problem by focusing on a commutative ring. 

The following theorem is a generalisation of Lemma 3.7. 

Theorem 4.4. A Coloring has a.c.c on ideals of the form Anna. 

Proof. Let R be a Coloring and assume that we have the infinite chain Annyi C Anny2 C 

• • • (i.e the a.c.c does not hold). By Theorem 3.11 we know that 93(R) is finite. We then 

remove those Anny2's from the chain above which are such that y2 E B(R). This still 

_ 	_ yields an infinite chain since we are _removing at most a finite number of-terms from the 
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infinite chain. This produces a chain Annz i  C Annx2  C • • • such that x i 	93(R) for 
i = 1, 2, .... Theorem 3.11 also yields that 93(R) = Pi n P2 n • n pn, where the p i 's are 
prime ideals. For an element x E R we are then able to write 

a3(R) : x = (pi : x) n (p2 : 	n • • n (Pri x), 
	 (4.2) 

using .nothing more than the definitions. Applying Lemma 4.3 to each term of the intersec-

tion we see that each term can have one of two possible values depending on the location 

of x. Since we do not know the location of x beforehand, the best that we can do is to say 

that the intersection will be restricted to one of 2' possibilities. Each term has 2 possible 

values and there are n terms. Note further that this set of 2' possibilities is the same for 

every x E R. The implication of this is that the family {93(R):xixER} is finite, specif-

ically 1{93(R) : x x E R}1 < 2'. Consequently, there exists a subsequence {z j } of {xi } 
for which B(R) : z 1  = B(R) : z 2  = • . Consider now the chain Annz i  C Annz2 C • • 

For each term of the chain we have Ann; C B(R) : z i , but since a3(R) : zi  = B(R) 

f6r all i = 2, 3, ... , we have Annz i  C Annz2  C • • • C B(R) : z 1 . Now, take r 1  E 

Annzi , r2 E Annz2  \Annzi , r3 E Annz3 VAnnzi  U Annz2 } = Annz3  \Annz2 , 	, then 

ri + Annzi  rj  + Annzi  for i < j : 

Assume that r i  + Annzi  = rj  + Annzi , then ri  — r3  E Annzi . Say ri  — ri  = zi where 

zi E Annzi. Since Annz i  C Annzi , zi E Annzi , so that T3  E Ann; which contradicts the 
choice of zj . 

This shows that (93(R) : z i )/Annzi  is infinite, which contradicts Lemma 4.2. There-

- fore the a.c.c holds. 	 ❑ 

Theorem 4.5. Let R be a Coloring. Then AssR (the set of associated prime ideals) is 

finite. Further, We have the following for the set of zerodivisors 

.3(R) = 	p. 
pEAssR\{R}, 

Also, any minimal prime ideal q, is an associated prime ideal and Rq  is a field or .a finite 

ring. 

Proof. Assume that R is a Coloring, then by Theorem 3.11 we know that w(R) < oo. 

A direct consequence of this and Lemma 3.8 is that AssR is finite (otherwise we can 

construct an infinite clique). 

Let x E 3(R), then x E Annr for some r 0. By Theorem 4.4 we then have that 

Annr C Anny for some maximal Anny, so that x E Anny for some maximal Anny. 
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Furthermore, we saw in Theorem 3.9 that the maximal Anny's are prime implying that 

Anny is an associated prime ideal. This shows that 

3(R)  g 	U 	P 
	

(4.3) 
peAssR\ {R} 

The converse is an easy consequence of the definitions. Note that the union is taken over 

the set of all associated prime ideals except R — R is an associated. prime ideal since 
R= AnnO. Therefore, 

3(R) = 	U 	P . 
	 (4.4) 

pEAssR\{R} 

We now show that every minimal prime ideal is an associated prime ideal. Let p be 

a minimal prime ideal and take x p. If there does not exist an x such that x p then 
p = R and there are no other proper minimal prime ideals. Further, p = Ann() so that 

p E AssR and we are done. Choose Annt maximal in the family {Annr Ann C p}. 

This family is not empty since Annx C p : 

Let y E AnnX, then xy = 0 E p. If y p then xy p, therefore y E p. 
This Annt is prime : 

Let ab E Annt and assume that a V Annt and bV Annt (i.e we assume that Annt is not 

prime). Consider now the ideal Annta. 

If a 0 p then Annt C Annta C p: 

Let r E Annta, then r(ta) = (ra)t = 0, so that ra E Annt C p. Therefore ra E p and 

since p is prime and a V p, r E p. We certainly have Annt C Annta. Now b E Annta, 

since b(ta) = (ab)t = 0 (ab E Annt), but b Annt. Therefore Annt C Annta. This 

contradicts the fact that Annt is maximal in the family. 

If on the other hand a E p and Annta C p, then the contradiction is repeated. The 

contradiction did not depend on a being an element of p. 

Therefore we still need to consider the case a E p and Annta 	p. We now have a 

c E Annta and c 	p. Here we consider the ideal Anntc and get the contradiction 

Annt C Anntc C p in the same manner as above (Annt C Anntc since a E Anntc and 

a V Annt). 

Therefore every possibility ends in a contradiction so that Annt is prime. Since p is a 

minimal prime ideal we need to have Annt = p. This shows that every minimal prime 

ideal is an associated prime ideal. 

Next, we will show that for a minimal prime ideal p, Rp  is a field or a finite ring. 

Let p be a minimal prime ideal. We know that p = Annx for some x E R. If x p, 

_pRp  = (0), i.e the unique maximal ideal in Rp is the zero ideal : 
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Recall that pR p  = {p/s IpEp and s E R\p}. Let p/s E pR p , then x(p.1 s.0) = xp = 0 

(p E p •= Annx), implying that (p, s) (0, 1), or in otherWords that the fraction p/s 

eq.uals the fraction 0/1 in R p ; 0/1 is the zero element in R p . This shows that pRp  = (0). 

If the unique maximal ideal is (0), it means that the only ideals in R p  are (0) and Rp . 
Let x be a nonzero element in R p , then xR p  is a nonzero ideal in R p  and so xR p  = Rp . 

Specifically there exists an element x' E R p  such that xx' = 1. This shows that every 

nonzero element has an inverse so that R I, is a field. 

Consider now the case x E p. We can write 93(R) = p n p i  n p 2  n • n pk , where 

pi, P21 	Pk are the remaining minimal prime ideals. This is possible since the nilradical 

is the intersection of all minimal prime ideals. Take y E (p i  n p2  n • • n p k )\p. Then 

yp C 93(R), since the product -  of y with an element in p is in p as well as in p i , p 2 , 	, pk  

(p is an ideal and p i , p 2 , 	, pk  are also ideals respectively). We now claim that pR p  = 

93(R)R0  : 

Let p/s E pRp, then (p, 	(yp, ys) since l(pys— syp) = 0, therefore p/s = yp/ys. Now, 

yp E 93(R) (yp C 93(R)) and ys E R\p since R\p is a multiplicative set and y p. This 

means that every element in pR p  is equal to some element in 93(R)R p , i.e pRp  c 93(R)Rp . 

Further, every element in 93(R)R p  trivially equals some element in pR p , since 93(R) c p. 

Thus pRp  2 (R)R p . Combining, pRp  = 93(R)Rp . 

Since the ideal 93(R) is finite, pR p  is also finite : assume that pR p  = 93(R)Rp  is not finite. 

Therefore there exist infinitely many pairs nisi  and rklsk in 93(R)Rp, with r,, rk E 93(R) 

and si , sk  E R\p, such that (r i , si ) x  (rk, sk). That is for all u E R\p, u(ri sk — r k si ) 0. 

Taking u = 1 we get that ri sk  0 rk si . Thus we have infinitely many pairs of elements 

ri sk  and rksi , such that risk 0 rksi . Note that ri sk  and rksi are both in 93(R) since 

ri , rk E 93(R). Therefore 93(R) has infinitely many different elements, but this contradicts 

the finiteness of 93(R). Thus 93(R)R 0  = pRp  is finite. 

Further, R/p =-12  Rx, the isomorphism being given by r + p = r + Annx 	rx. Since 

x E p = Annx, we have that x 2  = 0. This implies that Rx is a clique which together with 

cv(R) < oo yields that Rx is a finite; more importantly R/p is finite. Now Rx ® R  Rp  

(Rx)R p  C pRp  (the isomorphism is given by Proposition 1.16 and Rx c p since x E p), so 

that Rx ® R  Rp is finite. Also, Rx ®R  RD  R/p OR Rp P-= (R/p) p  Rp/(pRp) (the second 

last -isomorphism follows from Propostion 1.16 and the last isomorphism will be proved 

presently). 
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We now show that (R/p) p 	Rp /(pRp ) as left Rp-modules. Note that the module 

operations are given by 

2ri + P r + P 	(rise +  p) + (r2s1 + P)  
si 	

S2 
	 502 

+ pRp + —r2  + pRp = 
s1 	 S2 si

rl 
+ —

r2
S2 
 + pRp , 

(r + p) 	r'r + p 

7r Cr pRp ) T 
 + pRp S 	S 	 S/r 

 

S 

Consider the mapping (R/p) p 	Rp /(pRp ) defined by (r + p)/s 1-4 (r 1 s) + pRp  where 

r E R and s E R\p. 

- The mapping is onto: 

If (r/s) + pRp  E Rp /(pRp ) then obviously, (r + p)/51— (r/s) + pRp . 

The mapping is also one-to-one: 

Let (r i /s i )+pRp  = (r2 /s2 )+pRp . -  Therefore r 1 /s 1 —r2/s2 E pRp . Thus (rise—r2s1)/sis2 

r' 1 s' where r' E p and s' E R\p. That is there exists a u E R\p such that 

u([7•0 2  — r2 s 1 ]s' — r's i s2 ) = 0, 

(usi)r i s2  — (us i )r2s i  = ur'sis2 E p, 

u'r i s2  — u'r2s1 E p where u' = (us') E R\p, 

.•. u'r i s2  + p = u'r2s1 + p, 

u's2(r i  + p),= u'si(r2 + p), 

	

+ 	r2 + P  
S2 

s 	s' s 

The mapping is an R-homomorphigm: 
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r l + p 
Si 

T2 + 13 

S2 

(ris2 + + (T2s1 + P) ,  

sis2 
(7-02  +r2si) + p  

.sis2 
7-02  + rzsi 

+ pRp , 

+ pRp , 

s i s2 : 
(r i 	r2  

s2 

(

ri

Si 

r2 
— + pRp ) + (—

S2 
 + pRp ) 

Let r' I s' E Rp . Then 

r + p r'r + p 
s's 	' 

r r 
— p+ Rp , 
ss 

s' s 
+ pRp) 

Now the isomorphism Rx ®R Rp  Rp /(pRp ) implies that Rp /(pRp ) is finite and since 

1Rpi = IPRpiiRpiPRai we have that R p  is finite. 	 ❑ 

Theorem 4.6. If R is a Coloring and p an associated prime ideal in R, then either 

is a field or p is a maximal ideal. 

Proof. Let p be an associated prime ideal. Therefore p = Annx for some x E R. Suppose 

firstly that x E p, then x E Annx so that x2. = 0. This implies that Rx is a clique and 

since R is a Coloring i.e w(R) < co, Rx has to be finite. Now, the fact that p is prime 

implies that R/p is an integral domain. Also, Rx R/p so that R/p is a finite integral 

domain. A finite integral domain is a field, therefore R/p is afield. Furthermore, R/p is 

a field if and only if p is a 'maximal ideal. Thus p is a maximal ideal. 

If x p, then we conclude in the same manner as in Theorem 4.5 that pR I, = (0) so 

that RI, is a field. 	 ❑ 

Corollary 4.7. An associated prime ideal in a Coloring is either a maximal ideal or a 

minimal prime ideal. 



CHAPTER 4. PROPERTIES OF RINGS WITH x(R) < oo — COLORINGS 	30 

Proof. From Theorem 4.6 we have that either p is a maximal ideal or that R p  is a field. 
Therefore one half is already taken care of. 

Let Rp  be a field. ilecall that the prime ideals of R p  are in a one-to-one correspondence 
with the prime ideals of R contained in p. The correspondence is given by q 	S- lq 
(q x S)/ — , where q is a prime ideal contained in p. 

Assume that there exists a prime ideal q C p. That is, p is not a minimal prime ideal. 
Then S-1 q is a prime ideal in R p . But S'q C = p/4 = 0 because R p  is a field and 
pRp  is the unique maximal ideal in Rp . This contradicts the one-to-one correspondence. 
Thus p has to be a minimal prime ideal. ❑ 



Chapter 5 

Properties of the family of colorings 

THE subject of this chapter is the properties shared by the family of Colorings. 

The following theorem is rather obvious. 

Theorem' 5.1. A subring of a Coloring is itself a Coloring. 

The next theorem is an application of Lemma 3.3 and Theorem 3.11. 

Theorem 5.2. Let 3 be a finite ideal in a Coloring R. Then R/21 is a Coloring. 

Lemma 5.3. Let x be an element in a Coloring R. Then RI Annx is a Coloring. 

Proof. Let r l , r2 ,  • • • n be .a clique in R = R/Annx. That is all elements are distinct 

and fifj - = 0 for i j. Stated differently, (r i  + Annx)(rj  + Annx) = r irj  + Annx = Annx, 

which implies that ri rj .  E Annx or that ririx = 0 for i j. Furthermore, the elements 

rix, r2x, , rnx are distinct : 

Assume that r ix = rix (i j). Then (ri  —rj )x = 0, therefore r i  ri  e Annx or ri  —rj  = r 

where r E Annx. Now ri  + Annx = (rj  + r) + Annx = rj  + Annx, so that fi = fj which 

contradicts their initial choice of being all distinct. 

	

This shows that ri x, r2 x, 	, rnx is a clique in R. Therefore with every clique in 

R we can associate a clique in R of the same size and since the sizes of the cliques in 

R are bounded by w(R) the sizes of the cliques in R will also be bounded by w(R). 

Consequently w(R) < w(R) < oo. From,Theorem 3.11 we' then have that = R/Annx 

is also a Coloring. ❑ . _  

Theorem 5.4. Let 3 be a finite ideal in a Coloring R and x E R. Then R/(3 : x) is a 

Coloring. 

31 
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Proof. From Lemma 5.3 we have that R/Annx is a Coloring. Lemma 4.2 yields that 3 : 
x/Annx is a finite ideal in R/Annx. Theorem 5.2 then implies that (R/Annx)/(3 : x/Annx) 
is a Coloring. We also have that (R/Annx)/(3 : x/Annx) x) [11j, which is the 
desired result. 	 - 	-0 

Theorem 5.5. A finite product of Colorings is a Coloring. 

Proof We will consider the case of a product of two rings, the general result may be-.-
obtained through induction. Let R = R1  x R2, where R 1  and R2 are Colorings. Assume 
that w(Ri ) = n and that w(R2 ) = m. Consider any clique C in R. If we project C onto 
R1  we see that this projection cannot have more than n different elements as this would 
yield a.clique with more than n = w(R i ) elements. The same holds if we project C onto 
R2 but in this case there cannot be more than m elements. Since the elements in C are 
of the form (c i , c2 ) with ci E R1 and c2 E R2 we conclude that ICI < nm. Therefore 
w(R) • < nm and Theorem 3.11 then implies that R is,a Coloring. 	 • 111 

The following theorem is a generalisation of Lemma 5.3. 

Theorem 5.6. If 3 is a finitely generated ideal in a Coloring R, then R/Ann3 is a 

Coloring. 

Proof. Let 3 = (x1, x2, 	, x n ). Then Anna = Annxi  n Annx2  fl • • • fl Annxn 
Let r E Ann3. Since x 1 , x2, . , xn  E 3, rx i  rx2 .= • • = rx„ = 0 and therefore 
r E Annx 1  fl Annx2 .fl • • • fl Annxn , i.e Ann3 C Annx 1  fl Annx2  fl • • • fl Annxn . Conversely, 
let r E Annx i  n Annx2  n • • • n Annx„ and let s E 3. Then s = Ei  ri  xi  (ri  E R and 
xi  E {x1, x2, , xn }), so that sr = E i  ri  xi  r = 0; Therefore r E Anna and Annxi  il-
Annx2  fl • • • fl Ann± 7, C Ann3. 

Using the result above we have the injection R/Ann3 	R/Annx i  x R/Annx2  x 
• • x R/Annxn , given by r + 	(r Annx i , r + Annx2 , 	, r + Annxn): 
Let .  (r i  Annxi  , r 1  + Annx2 , 	, 7'1 + Annx,) =- (r 2  ±Annx i  , r2  + Arinx 2 , . . , r2 + Annxn)• 
Then + Annx i  = r2  + Annx i , r 1  + Annx 2  = r2 + Annx2 , 	r1 + Annxn  = r2 Annxn . 
Thus r 1  — r2  E .Annx i , r i  — r2 E Annx2 , 	, r 1  — r2  E Annxn ,` o that r 1 	.E 

Annx 1  fl Annx2  fl • • • fl Annxn  = Anna. Therefore r 1  + Ann3 = r2  + Ahn3. 
- By Lemma 5.3 we know that each of the rings R/Annx i  is a Coloring so that by 

Theorem 5.5 R/Annx i  x R/Annx2  x • • • x R/Annx n  is a Coloring. The injection shows 
that R/Ann3 is a subring of R/Annx i  x R/Annx 2  x • • • x R/Annxn  and from Theorem - 
5.1 we can then conclude that R/Ann3 is also a Coloring. ❑ 

Corollary 5.7. Let R be a Noetherian ring whose nilradical is finite and let 3 be any 

_ideal _in R. _Then_a3(Ann3)-/Ann3 -is finite.- 
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Proof. Note that g3(Ann3)/Ann3 is the nilradical of R/AnnJ. That is 93(R/Ann3) = 

93(Ann3)/Ann3 (cf. Theorem 3.12 where we had a similar situation). By applying Theo-

rem 3.11 we Conclude that R is a Coloring (nilradical is finite and a finite intersection of 

prime ideals, cf. Theorem 1.3). Since every ideal in a Noetherian ring is finitely generated, 

Theorem 5.6 implies that R/Ann3 is a Coloring. Furthermore, the nilradical of a Coloring 

is finite (Theorem 3.11), and this implies the result. ❑ 

Theorem 5.8. Let S be a multiplicatively closed set in a Coloring R. Then R s  = S'R 
is a Coloring. Moreover, x(Rs) < x(R) and w(R s ) < (.4)(R). 

Proof. Let x(R) = n. To show that the graph of Rs  is n-colourable (i.e that x(R s ) < n), 

it suffices to show that every finite subset is n-colourable [5]. 

Let x i , x2 , 	, x,, be a finite subset of Rs . Now any finite set in Rs  can be brought 

to a common denominator (see the discussion in Chapter 1). Therefore we have x i  = 

= r21s,.:. = rn,ls. We will now show that the set x i , x2 , , x, is n-

colourable by associating with each element x i  an eleMent r i  E R. 'Furthermore, xixj  = 0 

if only if rTrtj  = 0, so that we may assign the same colours to the x i 's.  that were assigned 

to the re's in a colouring of R : 
If x ixj  = 0 for i 	j, then (ri ls)(ri ls) = (ri ri )/s 2  — 0/s. This means that there 

exists an s'ij  E S such that siii (ri rj s — 0s2 ) = 0, or that siii srir; 	sorirj  = 0 (where 

sit = s'ij s E S). Let t = fJ so , where the product is over all pairs (i, j), i 	j and 

x ixj  = 0. Define, 	tri  = (11 sij )ri . Now x ixj  = 0 < 	> 	= 0 : 

,Assume x ixj  = 0, that is (rirj )/s 2  — 0/s. From our discussion above we know that there 

exists an sij E S such that sorirj  = 0. Therefore 7'7;ii  = tri trj  = fl sib  n soriri  = 0. The 

last equality follows by taking the product between ri , ri  and their corresponding s ib  such 

that s ii ri rj  = 0. Conversely, assume that (fl s ori )(11 sori ) = sii )2rir;  = 0. 

Therefore there exists an s' E S such that sirirj  = 0 (s' = (fl sij ) 2 ). Thus s'(riri s —0.52 ) = 

0, so that (ri rj )/s 2  = (ri /s) (ri ls)--, 01s, that is x ixj  = 0. 

Furthermore the rii 's are distinct : 

If = 	then (fl so )ri  = (11 soh, which implies that 11 so  (ri  — rj ) = 0, so that there 

exists an s' E S such that s'(r i  — rj ) = 0. Thus sl(ri s — ri s) = 0. This implies that 

ri /S ri ls, which is a contradiction to the fact that the x i 's are distinct. 

If we now make the identification x i  44 ri, we see that we can colour x i  with the same 

colour as rT and still produce a valid colouring of x 1 , x2 , 	, x n . Since x(R) = n, we will 

need at most n colours to colour the set {x 1 , x2 , 	, xii }. This shows that an arbitrary 

set of Rs  is n-colourable implying the theorem. 	 ❑ 



Chapter 6 

When is x(R) = (2)(R) ? 

THIS chapter discusses the conditions under which the chromatic and clique numbers 

of a ring are equal. 

The following interesting fact is a direct consequence of the properties of a prime ideal. 

Remark 6.1. Let p be a prime ideal in a Coloring R. If the elements in p have been 

coloured; then we need at most one additional colour to colour the elementS in R\p. To 

see this we note that no two elements, say x, y E R\p, can have a product of zero. If this 

was the case, xy = 0, so that xy E p, implying that x E p or y E p. Since neither one is 

in p we have a contradiction. Therefore xy 0 with the consequence that all elements in 

R\p may be coloured with the same colour. 

Next, we introduce the notion of a separating element to enable us to investigate the 

question : When is x(R) = w(R) ? 

Definition 6.2 (Separating Element). An element x E R is separating provided that 

x 0 and ab = 0 imply xa = 0 or xb = 0 for a,b E R. 

Definition 6.3 (3 -separating). Let 3_be an ideal. An element x E. 3 is 3-separating 

provided that x3 $ (0) and whenever ab = 0 (a, b E 3), then xa = 0 or xb = 0. 

We would like to stress the following points 

The idea of x being separating is equivalent to x being R-separating. 

In the definitions above it is not required that a $ b. 

If x is R-separating and x E 3, then x fails to be 3-separating if x3 -= (0) (i.e 

x E Ann3). If, however x3 0 (0), then x is also 3-separating._ 

34 
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The first point that we discuss is- the existence of separating elements. 

Proposition 6.4. If Annx is a prime ideal in -a ring R and x 0, then x is separating. 

Proof. Let a, b E R and assume ab = 0. Then abx = 0, so that ab E Annx. Since Annx is 

prime, a E Annx or b E Annx, that is xa = 0 or xb = 0; implying that x is separating. ❑ 

:Proposition 6.5. A nonzero ideal 3 in a Coloring R contains a separating element. 

Proof Consider the family {Annx i  I xi  E 3 and xi  0 0}. This family is not empty seeing 

that 3 is nonzero. Since R has a.c.c on annihilators _(Theorem 4.4) we conclude that the 

family has at least one maximal element, say Annx. It may be verified, as in the proof of 

Theorem 3.9, that Annx is priine. Therefore 3 contains an element x such that Annx is 

prime. By applying Proposition 6.4 we then see that x is separating. ❑ 

Theorem 6.6. Let 3 be an ideal in a Coloring R such that 3 is not 'contained in the 

nilradical. Then 3 contains an 3-separating element. 

Proof Consider the family {Annx, x i  E 3, 3 Annxi  and x, 0 0}: This family is not. 

empty : 

Firstly, 3 0 (0) since 3 	Q3(R). Therefore 3 has nonzero elements. Assume now that 

3 C Annxi  for all nonzero x, in 3. Therefore x i3 = (0) for all nonzero x i  in 2. Thus 

4 = 0. for all nonzero x, in 3. This implies that every element in 3 is nilpotent, which in 

turn implies that 3 C B(R) — a contradiction. 

Since R has a.c.c on annihilators, we conclude as in Proposition 6.5 that 3 contains 

an element x such that Annx is prime. This x is R-separating. Furthermore, 3 Annx, 

so that x3 0 (0). Therefore x is 3-separating. ❑ 

Remark 6.7. If 3 is an ideal such that 32  = (0), then . 3 cannot contain any 3-separating 

elements. 

Theorem 6.8. Let 3 be a principal ideal in a Coloring R. If 32  0 (0), then 3 contains 

an 3-separating element. 

Proof Let 3 = Rx. Note that x 2  0 0: if x2  = 0 then 32  = (0). Consider the set 

{Annx2r IrER and x2r $ 0}. This set is not empty since Annx 2  (i.e r = 1) is a member-

of it. Since R has a.c.c on annihilators, we conclude that the set has a maximal element, 

say Annx 2 t, which is also prime (following from the maximality, as we have seen before). 

Then xt is 3-separating : 

Let_a, b E 3 and assume that ab = 0. Since 3 is principal we can write-a-= 7'X and-b =-sx. 
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Then ab = rsx2  = 0, hence rs E Annx2 t. The fact that Annx 2t is prime implies that 
r E Annx2t or that s E Annx2t. If r E Annx2t, then (rx)(xt) = a(xt) = 0. Otherwise 
s E Annx2t and (sx)(xt) = b(xt) = 0. Furthermore, (xt)x = x2 t $ 0 (following from the 

choice of t in the set above), so that (xt)3 0 (0). _ 	 ❑ 

The following lemma will be used a number of times in the subsequent work and 

clearly illustrates the importance of separating elements. 

Lemma 6.9. Let 3 be an ideal in a Coloring and assume x E 3-is 3-separating. Define 
3' = Annx n 3. Then the following hold 

If x 2  =- 0 then w(3') = (,)(3) and x(3') = x(3). 

If x 2  0 0 then cv(3') = w(3) — 1 and x(3') = x(3) —1. 

Proof. Assume first that x 2  =•0, therefore x E Annx, so that' x E 3'. Let w(3) = n and 

choose a maximal clique C = {y i , Y2, • • • Yn" - } in Cl. 
If x E C, say x = yl , then xy2  = xy3  = • • = xyn  = 0, by the definition of a clique. 

Hence y2, Y31•'• • yn E Annx, therefore y2, y3, • • yn E Y. Thus C C 3'. cv(3 1 ) < w(3) 

since 3' C 3 (i.e every clique in 3' is a clique in 3 with the consequence that the sizes 

of cliques in 3' will be bounded by the clique number of 3). Also, C C 3' implies that 

w(3') > n = w(3) (as we have shown that there exists at least one clique of size n in 

3'), i.e ci.)(31 ) > w(3). Put together we get, cv(3') = w(3). The same argument obviously 

applies when x = yi  for any i = 1, 2, ... , n. 

On the other hand if x C, then xC (0) since C is a maximal clique. Assume that 

xyi  0 0. By definition of a clique we have that y 1 y2  = YiY3 = • • • = Y1Yn = 0. Since x 

is 3-separating, xy i  = 0 or xy2  = 0, xyi  = 0 or xy3  = 0, , xyi  = 0 or xyn  = 0, but 

since xy i  0 0, xy2 = 0, xy3 = 0, , xyn  = 0. This shows that y 2 , y2 , , yn  E Annx and 

subsequently that Y2, Y2, • • yn  E 3', but also that {x, Y2, • • , y n } is a clique of size n in 

3'. By the same reasoning as above one can therefore conclude that c.o(3 1 ) = w(3). Again 

the same argument will work if xy 2  0 0 for any i = 1, 2, ... , n. 

Next we consider the chromatic numbers and still work under the assumption that 
= 0.  

The fact that 3' C 3 implies that (Cl')x 	< x(3) — colour . 3 and then use these same 

colours to colour 3'. To prove that (Cl)x 	< x(31 ), colour 3' first. We will now:extend the 

colouring to the whole 3. If y E 3\3' we can colour y with the same colour as x. This is 

a valid colouring since 

• x and y are not adjacent : y E 3\3' implies that _y_ Annx, _therefore xy. 0. 
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Y17 Y2 E 3\3' are not adjacent : if y1y2 = 0, then xy1 = 0 or xy2 = 0 (x is 3-
separating), but both are impossible (y2 Annx), so that y1y2 0 0. 

if there is a z E T with the same colour as x, then any y E 3\3' is not adjacent to 
z : firstly xz 	0 (they were able to receive the same colour), secondly if yz = 0, 
then.xy = 0 or xz.= 0 (x is 3-separating). Both are impossible so that yz 0. 

Therefore we were able to . colour 3 using the same set of colours that was used to colour T. 

This shows that x(3) < x(3)'. Combining the two inequalities we have that x(3') = x(3). 

Assume now that x 2  0 0, that is x 3'. . 

Consider a clique, C', of maximal size (w(3')) in 3'. All of the elements in C' are 
annihilators of x, so that x may be added to C' to form a clique in 3 of size w(3 1 ) + 1. 
Since this is a clique in 3, w(3') + 1 < w(3), or w(31 ) < w(3) — 1. 

Conversely, let C = {yl , 7./ „2, • • ,yn} be a maximal clique in 3. If x 	C, then there 
exists a yi  E . C, i E {1, 2, ... , n}, such that xy, 0 0 (otherwise we can include x in 
the clique to obtain a clique of size greater than w(3)). Without loss of generality we 

can assume that yi  = yl , i.e xyi 0 0. From the clique C we get that y1y2 = yiy3 

• • = Y1Yn = 0. Since x is 3-separating, xy1 = 0 or xy2 = 0, xy1 = 0 or xy3 = 0, 

xyi = 0 or xyr, = 0, but xyi 0 0, so that xy2 = 0 = xy3 = • • • = xy 72  = O. 
This shows that {x, y2, , yn } is still a clique of maximal size in 3. Therefore x can 
always be included in a. clique of maximal size in 3. Now, if x E C, say x = yi , then 

xyi = xy2 = • • • = xy2_1 = xy2+1 = • • • = xyn  = 0, since C is a clique. This implies that 

Yi, Y27 • • , yi-1, Yi+1, • .. , yr, E Annx which implies that yi, Y27 • • • , yi-i, Yi+i, 	, yr, E 3'. 

Therefore {yi, Y2,... , yi_i, y2 + 1, 	, yn } is a clique which lies completely in 3'. This clique 

has size w(3) — 1. Since it is a clique in 3', w(3) — 1 < w(3 1 ). Combining the inequalities 

we have that w(3 1 ) = w(3) — 1. 

Lastly, we now look at x(3) and x(3') in the case of x 2  0 0 or x 3'. 

We colour 3' first and then try to extend the colouring to 3. Assume all elements in 

3' has received a colour. Since xy = 0 for all y E 3', x has to receive a' unique colour 

(when colouring in 3) i.e one that is different from all colours used in a colouring of 3'. 

Furthermore if yl , y2 E 3\3' and yi, y2 0 x, xy1 0 0 and xy2 0 0 since yi, y2 V Annx. 

Also if y1y2 = 0, then xy1 = 0 or xy2 = 0 (x is 3-separating), but neither one is possible 

so that y1y2 0 0. This shows that the elements in 3\3' are independent (i.e not adjacent). 

Therefore they can all be assigned the same colour. Thus in colouring 3 we need only 

one additional colour above those that were used in the colouring of 3'. This shows that 

x(3) < x(3') + 1 or that x(3') > x(3) — 1. 

To prove the converse colour 3 first. Now use these colours to colour _3' (i.e colour _ 
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3 and then remove the vertices in 3\3'; this leaves us with 3' that has been coloured). 

Since xy = 0 for all y E 3', x had to receive a colour different from all of the elements 

in 3' (when colouring in 3). ThuA by restricting the colouring of 3 to that of 3' we see 
that the_colour of x will not appear among the colours found in 3', therefore we need one 

less colour. This implies that x(39 < x(3) — 1. The two inequalities together, therefore 

imply that x(3') = x(3) — 1. ❑ 

Theorem 6.10. Let 3 be an ideal in a Coloring . R and {xi,  x 2, • • xn -} be a clique of 
3-separating elements. Define k = 1{x i  J x? 0 0}1 and 3' =3n Ann(x i , x2 , ... ,xn ). Then 
u.)(39 = w(3) — k and x(Y) = x(3) — k., 

Proof. Define A = 	xF, $ 0}, then k = tAl. 
Let C' be a maximal clique in 3'. We can adjoin each element of A to C' to form a 

clique of size w(39 + k in 3. Therefore w(3) > (2)(3') + k, that is w(39 < w(3) — k. 
Conversely, let C = {yi , Y2) • • yr„} be a maximal clique in 3. If x i  V .C, then there 

exists a y3  E C such that x 1 y3  0 0. Now yjyi  = 0 for all i j since the yk 's form a clique. 

Then x i y3  = 0 or x i yi  = 0, for each i 	j since x 1  is 3-separating.. Since x 1 y3  0 0, we 
have xiyi = 0 for all i 	j. Thus C1  = {Y1) Y21 • • • y3-1, x].) Y3 -1-1) • • • yn } is still a clique, 
We now consider x2  and determine whether x 2  E C1 . If x2 V C1  we can insert it into C1 

in the same manner as we did with x 1 . We then get a clique C2  with both x 1  and x2  in 

C2 . Note that x 1  will still be included in C2 , because an element will be removed from C1 

(to get to C2) only if its product with x 2  is nonzero and since x 1 x 2  = 0, x 1  will remain in 

C. By considering each element in {x 1 , x2, , xm } one at a time, we are able to form a 

clique Cm  with {x i , x2 , , xm } C We We also have A C Cm , since A C {x i , x2 ,... ,xn }. 

This clique will still be of maximal size. 

Now, Cn \A is a clique in 3' (each element in the remaining clique has product of zero 

with each element in {x 1 , x2 , , xn }) of size w(3) — k. Therefore w(3 1 ) > w(3) = k. 

Combining the results we get w(3 1 ) = w(3) — k. 

We now discuss the chromatic numbers of 3 and 3'. 

Colour 3' first (using x(3') colours). We now extend the colouring to 3. Note that 

every element in A is adjacent to every element in 3'. Therefore when extending the 

colouring to 3 each element of A will have to receive its own colour (and one tbat is 

different from every colour used in 3'). Also A n = 0 (since each x i  E A has x? 	0 

and so x i  V Ann(x i , x2 , 	, xm )), so that we need k additional colours for the elethents 

in A. Now, consider a y E 3\3' and y V A. The fact that y is not in 3' implies that 

y Ann(x i , x2 ; , xn ). Therefore there exists an x i , i E {1, 2, ... , n}, such that yx 0 0. 

Assign y the same colour as this xi . We still need to check whether y i , y2 _E 3\3' and 
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Yi, Y2 	A with Yi  and y2  assigned the same colour can be adjacent. The fact that Yi 
and y2  were assigned the same colour implies that y 1 x3  0 0 and y2x3  0 0 for some x3 , 
j E {1, 2, ... , n}. Now if y 1 y2 = 0 (i.e they are adjacent);then x 3 yi  = 0 or xjy2  = 0 since 
xj  is 3-separating, but since neither possibility is true we conclude that y 1 y2  -0-. That 
is, the y's in 3\3' with y V A can all be assigned the same colour as that x such that 
yxj  0 0. 

Therefore to colour the remaining elements of 3 we did not need more than the k 

additional colours. Thus x(3) < x(3') + k. 

Now, colour 3 (using x(3) colours). This automatically assigns colours to the elements 

of 3' (3' C 3). Since all possible products between elements in A and elements in 3' are 

zero, all 'these elements are adjacent. Therefore the colours used in A will not appear in 

the colouring of the elements of T. Also, we needed k colours to colour the elements of 

A since they are all adjacent. Therefore 3' can be coloured using x(3) — k colours. That 
is x(3') < x(3) — k. This in combination with the previous inequality yields x(3') = 

X(3) k. 0 

Theorem 6.11. Let pi,r132,... , p r, be the minimal prime ideals in a Coloring R. Let 
E(R) = Ifi R i„ is a fieldll. Then w(R) = c,;(Q3(R))+ E(R) and x(R) = x(a3(R)) +E(R). 

Proof. Consider firstly the case in which R is a minimal prime ideal. From the definition 

of minimality this implies that there are no other prime ideals in R and consequently no 

other minimal prime ideals in R. Now RR is not defined since the complement of R (which 

is used as the multiplicative set in the definition of a ring of fractions) is empty. Therefore 

E(R) = 0. Furthermore 93(R).= R, so that we do indeed get the desired equality. 

We now consider the case- of R not being a minimal prime ideal. By Theorem 4.5 we 
know that R •as only a finite number of minimal prime ideals and further that p i  '= Annxi  
for some x i  E R for every i = 1, 2, ... , n. Further this x, 0 0, since Ann() = R, and R is 

not considered to be a minimal prime ideal. Lemma 3.8 then implies that {x 1 , x2, xn} 
is a clique. Furthermore if a, b E R and ab = 0, then ab E Annx, for i = 1, 2, ... , n. Since 

Annx, is prime we have that a E Annx, or b E Annxi  for i = 1, 2, ... , n. Thus ax i  = 0 

or bx, = 0 for every i = 1, 2, ... , n and so {x1, x2, , x n } are R-separating. Therefore 

{x i , x2, • • • , xn } is a clique of R-separating elements. 

We also have that Rpi  is a field if and only if 4 0 0 : 

Assume that Rps  is a field. Therefore the element x 2 /1, with xi  0 0, is a unit of Rpi . 

This implies that xi  V pi  = Annxi  (see Proposition 1.13), so that 4 $ 0. Conversely, if 

4 0 0, then xi  V Annx, = p i . Recall that the maximal ideal of 14, 1  is pi Rpi  = {pis I  p E 
pi  ands E R\pi},_Let s E piRpi , then pis =- 0/s since_ xi (ps — 0s)- = 0 (x,p -= 0 and - 
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x, E R\p i ). Therefore the maximal ideal of R pt , pi Rp, = (0), so that R p„ is a field. 

We can now apply Theorem 6.10, noting the equivalence between 4 0 0 and RN being 

a field, to yield the desired result. 	 ❑ 

Theorem 6.11 shows that to decide whether x(R) = w(R) for a given ring, one has 

to concentrate on the nilradical. The next theorem is an application of this idea to the 

special case of the nilradical being zero. 

Theorem 6.12. Let R be a reduced (93(R) = (0)) Coloring. Then w(3) = x(3) for any 

ideal 3 C R. 

Proof. If 3 is the zero ideal we trivially have that cv(3) = x(3). Therefore let 3 be a 

nonzero ideal in R. This implies that 3 Qi(R) = (0). Theorem 6.6 then yields that 

3 has an 3-separating element, say x. Also, x2  0 0, since x2  = 0 implies that x is 

nilpotent and therefore that x E 93(R) = (0), i.e x = 0; this contradicts the fact that x is 

3-separating (specifically x3 = (0) instead of x3 0 (0)). 

From Lemma 6.9 we now have that ci..)(3 1 ) = w(3) — 1 and x(3') = x(3) — 1, where 

= 3 n Annx. The rest of the proof is by induction on w(3). 

If c.,;(3) = 1, the graph of 3 is empty (no lines). This implies that x(3) = 1. Assume 

now that whenever w(3) = n — 1, x(3) = w(3). Now let c.v(3) = n, then w(3') = n — 1, so 

that x(3') = w(3') = n — 1 by the induction assumption. Also, x(3) — 1 = x(3 1 ) = n — 1, 

so that x(3) = n. Therefore X( 3) = w(3). ❑ 

Theorem 6.13. Let R be a Coloring which is a principal ideal ring. Then x(3) = w(3) 

for any. ideal 3 in R. 

Proof. We will show firstly,that we can make a reduction to the case 3 C 93(R). Therefore 

assume that 3 Qi(R). 93(R) = p i  n p2  n • n pn , where the p i 's are the minimal prime 

ideals — recall that R has only a finite number of minimal prime ideals, since it is a 

Coloring and also the nilradical is the intersection of all the minimal prime ideals. Then 

3 93(R) implies that 3 pi  for at least one i. Therefore there exists an x E 3 such 

that x pi . 
We now have that Annx c pi  : if Annx pi , there exists a y E Annx with y pi . 

Then xy = 0 E pi  and - since pi  is prime, x E pi  or y E pi , but neither possibility is true 

and we have a contradiction. 

Consider the family {Annz I Annz C p,, z E 3 and z pi }. We have just shown 

that it is not empty and since R has a.c.c on ideals Anna, the family contains a maximal 

elementr-say Ann.z i . Furthermore this maximal-ideal is prime. (The process-of proving-   
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this is the same as in Theorem 3.9. Note that the z's appearin g  above are nonzero since 

z pi .) Since pi  is minimal we have that p, = Annzi . Now if a, b E 3 and ab = 0, then 

ab E pi , so that a E p, or b E pi  since' p i  is prime.° Thus a E Annzi  or b E Annzi . In other 

words az, = 0 or bzi  = 0. Therefore zi  is 3-separatin g . 

Define 3i  = 3 n Ann.;  = 3 n pi . Then by  Lemma 6.9 x (3) = w(3) if and onl y  if 

X(3i) = w(3i ) :  Therefore the problem of provin g x (3) = w(3) is reduced to the problem 

of proving x(3,) = w(3i ), where 3i  C pi . 

Recall that we are still workin g  with the situation 3 Q3(R). This implies that there 

exists a subset, 0 . t i , . 	• • • Pi, of the minimal prime ideals, pi, P2) • • per,, such that 3 	p Z  , 
j = 1, 2, ... , 1. We now define a set of ideals as follows 

3k = 
{3 n 13, if 3 pk , 

for k 1, 2, ... , n. Note also that b y  the process described above, pk = Annzk, where zk  

is an 3-separatin g  element, for ever y  pk  such that 3 p k . Thus 

3 if 3 C p k , 
(6.1) 

= 
{

3 n p k  = 3 n Annzk  

3 if 3 C p k , 

if 3 	Pk, 
(6.2) 

and 3k  C p k  for k = 1, 2, . , n. Therefore nak  c 93(R). Further, nrki=1 3k  =3 n (nLiPit)= 
3 n (Annzi , n Annzi2  n • • • n Annzi ) = 3 n Anntzii , zi2 , , z21}.  Also, from Lemma 3.8 

{z21 ,z~ 2 , , zi,} is a clique of 3-separatin g  elements. By  Theorem 6.10 it follows (by  

putting  n3k  = in the theorem) that x (nak) = co(nak) if and only  if X(3) = (4)(3)• - 
Therefore the problem of provin g x (3) = w(3) for an ideal 3 93(R) is e quivalent to 

proving x (J) = w() for an ideal 3 c a3(R). This shows that to prove the theorem we 

can always make a reduction to the case of an ideal contained in the nilradical. We now 

have to show that e quality  between the cli que and chromatic numbers holds for an y  ideal 

in the nilradical.  

Assume that 3 is an ideal in R such that 3 C Q3(R). Since R is a principal ideal 

ring ,  we may  assume that 3 = Rx. Now if 32 = (0), then 3 is itself_ a cli que and w(3) = 

131 = x(3). If 32 (0), then by  Theorem 6.8 3 contains an 3-separatin g  element, 

say  z1 . Let 31  = 3 n Annzi , then 3 1  C 3. If 3 1  = 3, then 3 n Annz i  = 3. This 

implies 3 C Annzi , so that 3z 1  = (0), which is impossible because z 1  is 3-separatin g . 

Therefore 3 1  C 3. From Lemma 6.9 it now follows that x (3) = w(3) if and only  if 

X(31) = w(31). B y  applying  the process above to the ideal 3 1 , we will either conclude 

_that 31 _is. a_clique (_with equal clique and_chromatic numbers), so that x (3) = w_(3) or 
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we will find an ideal 32  C 31  such that x(31) = w(3 1 ) if and only if x(32) = (,)(32). This 
process can only be repeated a finite number of times since a3(R) is finite by Theorem 
3.11. (Otherwise we could have formed an infinite chain of ideals 3 J 31 D 32 D • • 

contradicting the finiteness of B(R).) Therefore we will eventually reach an ideal, 3 n, 
(which may be the zero ideal), for which 3 2,, = (0). This ideal is itself a clique, so that 

On) = w(3n) 	X(3,1) = w(3n—i) 	• • •= X(31) = w(31) = X( 3) = w(3)• 	❑ 

Note the following about the proof above. The first part showed that in order to de-
termine whether x(3) = w(3), it was enough to consider ideals contained in the nilradical. 
This is valid in any ring (we did not use the fact that R was a principal ideal ring) . . 

By replacing the condition that every ideal in a Coloring be principal (in Theorem 
6.13) with another condition, we obtain the following theorem (which uses the same proof 
as Theorem 6.13). 

Theorem 6.14. Let R be a Coloring with the property that any ideal 3 for which 0 (0) 
contains an 3-separating element. Then x(3) = w(3) for any ideal in R. 

Remark 6.15. Let 3 be the direct sum of two ideals, say 3 = 31  ED 32. If 3 1  contains 

an 31 -separating element x i , then x 1  is also 3-separating. To see this, let a- = al  + a2, 
b = b1  + b2  E 3, where a l , bi  E 31  and a2, b2 E 32 . If oh = al bs  + a2b2 = 0 (keep in mind 

that cross products ai bi , i j are equal to zero; see [11]), then a l bs  = a2b2 = 0 [11]. 

Also, since x i  is 31 -separating, a i x i  = 0 or b1 x.1  = 0, so that (a1  + a2)(xi + 0)'=. a i x i  = 0 
or (b1  + b2)(xi + 0) = b 1 x 1  = 0. Therefore ax 1  = 0 or bx 1  = 0 implying that x 1  is 

3-separating. 

The remark above implies that if R is a Coloring that is a finite product of rings, each 
satisfying the hypothesis of Theorem 6.14, then x(3) = w(3) for any ideal 3 in R. From 
this we have the following theorem. 

Theorem 6.16. Let R be a Coloring which is a finite product of reduced rings and prin-

cipal ideal rings. Then x(3) = w(3) for any ideal 3 C R. 

Proof. Assume that R is a Coloring and that R = 1E1)7_ 1  Ra , where Ri  is a reduced ring or 
a pridcipal ideal ring. Let. 3 be an ideal in R, then 3 = EDin 3i , where 3i  is, an ideal in 
Ri  [11]. If 32  = (0), then 3 is itself a clique and w(3) = PI = x(3). If 3 2  0 (0), we can 
find an 3i-separating element x i  : note firstly that Ri is a subring of R and therefore itself 
a Coloring. Now use the proof of Theorem 6.12 or Theorem 6.13, depending od . Whether 
Ri  is reduced or a principal ideal ring. From the remark preceding the theorem this x i  is 

_ also 3-separating. Now from Theorem 6.14 we know that x(3) = w(3). _ _     
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Theorem 6.17. Let R be a local Coloring whose maximal ideal is a principal ideal. Then 

R is reduced or a finite principal ideal ring. 

, Proof. If R is finite, then R is a local Artinian ring (since any chain of descending ideals 

can only contain a finite number of ideals because -R has only a finite number of elements). 

For a local Artinian ring we know that if the maximal ideal is principal then every ideal 

is principal (see Chapter 1). We are given that the maximal ideal is principal, therefore 

every ideal is principal. Thus R is a finite principal ideal ring. 

We now assume that R is not finite and that R is not reduced and derive a contradic-

tion. 

Consider the following ideal 3 = 	ERIx is finite i.e xR is finite}. Since x(R) < oo 

we have that w(R) < oo, so that by Lemma 3.2 3 is finite. Also, if 3 is a finite ideal and 

x E 3, then xR C 3, that is xR is finite since 3 is finite. This implies that x is finite and 

so x E 3, thus 3 C 3. Therefore 3 contains all finite ideals. In summary, 3 is finite and is 

the unique maximal finite ideal. 

By Theorem 3.11 we know that 93(R) is finite. Thus 93(R) C 3. By • assumption 

93(R) (0) so that 3 (0). 

Note also the following : If m is the maximal ideal in a local ring R, then i C m for all 

proper ideals i of R. If there existed an ideal i such that i m and i R, consider the set 

{3 3 is an ideal in R,i C 3' and 1 V 3}. This set is not empty since i is a member and 

by Zorn's Lemma we have a maximal element, say a. This % is also a maximal ideal : if 

there existed an ideal 05 such that a C CU, then 1 E 15 and 05 = R, therefore a is maximal. 

This contradicts our assumption that m is the unique maximal ideal, so that all ideals are 

contained in the maximal ideal. (Note that a 0 m since i i m.) 

Let B = 3 : t = {r E R rt E 3}. Obviously 3 C B. Also, by the remark above 

3 C Rt (Rt is the unique maximal ideal). Further, Bt C 3, by the defnition of B. Let 

r E 3, then since 3 C Rt, there exists an r' E R such that r = r't. Now if r' B then 

r't 3, specifically r't cannot be equal to r. Therefore r' has to be in B and r = r't E Bt. 

Thus 3 C Bt. Put together we have that 3 = Bt. 

Up to now we have, Annx = p = Rt (x E 3). Since t E Rt (R has unity), t E Annx, 

so that tx = 0 or that x E Annt as well. Therefore the map 3 t3 (r 1-÷ tr) cannot be 

one-to-one since the kernel has at least one nonzero element namely x. We always have 

that t3 C 3, but since the map is not one-to-one, t3 C 3. Recall also that 3 C_B (by the 

definition of B). If 3 = B, then t3 = tB = Bt C 3. This contradicts 3 = Bt, so that 

3 C B. 

Let xi, x2 E Annt. Since Annt C Rt (Rt unique maximal ideal), we have x1 = r1t 

and_x2 = _r2t. Therefore x i t = r i t_2  = 0 and x 2t =_r2t2 _=_0,_so that_x 1 x2  =-- (rit)(r2t) = 
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r 1 r2 t2  = 0. Thus Annt is a clique and since R is a Coloring (with finite clique number), 

Annt has to be finite. Lemma 4.2 implies that 3 : t/Annt is finite. Also, 13 : tI = 

13 : t/Annti x 1Annt1 and since both terms are finite 1B1 = 13 : tl is finite, but 3 C B, 
contradicting the maximality of 3. 

Therefore R is either reduced or finite (and in this case, as we have seen, R is a 
principal ideal ring). 	 ❑ 

Lemma 6.18. Let R be an indecomposable Coloring. Assume that every. maximal ideal 

which equals Annx for some x E B(R) is principal. Then R is reduced or a finite local 

principal ideal ring. 

Proof. Assume that R is not finite and that R is not reduced (93(R) 0 (0)). Using the 

same technique as in the proof of Brauer's Theorem (Theorem 1.10) we conclude that 

every finite ideal not contained in the nilradical has an idempotent e 0. The use 

of this technique can be justified as follows. The proof presented in Chapter 1 needs a 

nonnilpotent element at the start of the proof. This element can be obtained in the present 

context since the finite ideal above is not completely contained in the nilradical (which 

contains all the nilpotent elements). Furthermore the proof requires the descending chain 

condition to obtain a contradiction in -terms of an infinite descending chain of ideals that 

is constructed. In our present situation the finiteness of the ideal above will still yield the 

same contradiciton. (We cannot form an infinite descending chain of ideals inside a finite 

ideal.).  

Furthermore e 	1 since the ideal is finite and .R is infinite. This idempotent gives 

us a Peirce decomposition of R relative to e as, R = eR ED (1 — e)R. This is a nontrivial 

decomposition : if eR = R, then (1 --•e)R = (0). .Therefore (1 — e) x 1 = 0, so that 

e = 1, which is impossible as stated above. If (1 — e)R = R, then eR = (0), so that 

e x 1 = e = 0. Since this is not the case either, we can' conclude that the decomposition 

is nontrivial. This contradicts the fact that R is indecomposable. Therefore every finite 

ideal is contained in 93(R), so that 93(R) is the unique maximal finite ideal. 

Using the same idea as in the. proof of Theorem 6.17, we can find 'a maximal ideal 

m = Annx, x E 93(R) (and note that m is also prime). From the assumptions of the 

theorem we can furthermore say that m = Rt. 

We now show that Annt = Annm C B(R) : 

Assume that Annm a3 (R). Then there exists a prime ideal p, such that Annm p. 
Thus there exists an x 1  E Annm and x1 0% p. Therefore xirt = 0 for all r E R (m =. Rt), so 

that x i  (rt) E p. Thus x1 E p or rt E p for all r E R, but since x 1  p, rt E p for all r E R. 

This implies that Rt = m c p.. Now,. m is_ maximal and therefore m_c p is-impossible Ori 
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the other hand if p = m, then Annm p = m. This implies that Annm + m = R, since 
m is maximal. Let x E Annm f1 m and assume that x 0. From Annm + m = R, we get 
1 = yi  + y2 , where y i  E Annm andy2  E m. Therefore x.1 = x(y 1  + y2 ) = xy 1  + xy2  -= 0 + 0 
(x E Annm n m), so that x = 0 — a contradiction. •Therefore Annm fl m = (0). This 
implies that R Annm ED m. This decomposition is nontrivial : Annm (0) since 

Annm B(R). If Annm = R, then m = (0), that is m = Annx = (0), .where x E B(R). 
Again m R so that x 0, also x E 93(R) implies that x is nilpotent. Say xn = 0, 
where n E N and n is the smallest such number. Then xn -1  0 0 and xi' x = xn = 0. 

Therefore xn -1  E Annx — a contradiction. Thus the decomposition is nontrivial. This is 

impossible since R is indecomposable. Since both cases lead to a Contradiction, we have 

that Annt = Annm C 93(R). 

This inclusion shows that Annt = Annm is finite since B(R) is finite. From Lemma 

4.2 it follows that B(R) : t/Annt is finite and since Annt is finite, B(R) : t is also finite. 

- We now show that B(R) C m = Annx = Rt since we will be using the same technique 

as in the proof of Theorem 6.17 (which requires this inclusion). There the stated inclusion 

followed from the fact that R was local, which is not the case in the present situation. 

Let r E 93(R) and assume that r Annx. Therefore rx 0 so that Annrx R (if 

Annrx = R, then 1.(rx) = 0 — a contradiction). We have that Annx C Annrx, but since 

Annx is maximal, Annx = Annrx. Furthermore Annrx = Annr 2x for the same reason 

(as long as r 2x 0 0). Thus Annx = Annrx = Annr 2x = • • , as long as rk x 0 0. Since 

r E 93(R), r is nilpotent. Therefore there exists a smallest n E N such that rnx = 0 

and r"-i x 0 0.. Now r E Annr'x, so that r E Annx. Thus rx = 0 contradicting our 

assumption. Therefore r E Annx = Rt and B(R) C Rt. 

Using the same method as in the proof of Theorem 6.17 we can conclude that 93(R) = 

(B(R) : t)t, t93(R) C (R) and B(R) C B(R) : t (by putting B(R) in this theorem 

equal to 3 in Theorem 6.17). This is a contradiction since B(R) is the unique maximal 

finite ideal. 

This contradiction stems from the assumption made at the start of the proof. Therefore 

R is finite or reduced. 

Now, if R is finite then R is an Artinian ring. Furthermore we know that R is then 

uniquely (up to isomorphism) a finite direct product of local Artinia,n rings (see Chapter 

1). Our original assumption that R be indecomposable then yields that R itself should 

be local. Since the maximal ideal, m, is principal we know that every ideal is principal. 

Therefore R is a finite local principal ideal ring. 



Chapter 7 

Rings of low chromatic number : 

(R) < 5 

IN this chapter we show that x(R) = w(R) for all x(R) 5_ 5 or w(R) < 4. Using the 

earlier results we will firstly discuss the finite rings with x(R) < 3. 

Proposition 7.1. Given a Coloring R, then x(R) = w(R) provided w(R), x(R) < 2. 

Proof. Let x(R) = 1. Then from Proposition 2.1 we know that R = (0) and w(R) = 1. 

Now, let w(R) = 1. This implies that there are no lines in the graph of R. Since 0 is 

always adjacent to all the nonzero elements, this shows that R does not have nonzero 

elements„ Thus R is again the zero ring and x(R) =1. 
Let .  x(R) = 2. Proposition 2.2 implies that R is an integral domain, R 	Z4, R === 

Z2 [x]/(x 2 ) or R Z 2 [x]/(x 2  + 1). For each of these possibilities we have that w(R) = 2. 

Consider now the case w(R) = 2. We always have that x(R) > w(R), therefore x(R) > 2. 

Assume x(R) > 2, that is .x(R) > 3. Since 0 is adjacent to every nonzero element, it has 

to receive its own colour. Also, there exist elements x 1  and x2 in R such that x i , x2  0 0 

and x 1 x2 = 0 (for if they did not exist, x(R) < 2). Therefore 0, x i  and x2  form a clique, 

so that w(R) > 3 — a contradiction. Therefore X (R) = 2. 1:1 

Proposition 7.2. Let R be a Coloring. Then w(R) = 3 	 X(R) = 3. 

Proof. It is enough to prove that w(R) < 3 < 	> x(R) < 3. The reason for this is as 

follows : if w(R) = 3, then (if we have shown the above) x(R) < 3. Now, x(R) 0 1, 2, by 

Proposition 7.1 (x(R) = 1, 2 w(R) = 1, 2 — a contradiction). Therefore w(R) = 3 has 

to imply.that x(R) = 3. Similarly, x(R) = 3 will imply w(R) ='3. 

Let x(R) < 3. Now it is always true that x(R) > w(R). Therefore w(R) _< 3. 
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We will prove this assertion using its contrapositive, i.e x(R) > 3 = w(R) > 3. Let 

X(R) > 3 and define R* = R\ {0}. Then X(R*) > 3, since 0 has its own colour in the 

graph of R (as it is adjacent to every nonzero element). Since R* is not'2-colourable it 
has to contain an odd cycle (R* is 2-colourable < > R* is bipartite < > R* does not 

contain an odd cycle): Let C be an odd cycle of minimum length, say n, in R* with 

C = x1,x2,x3, • • • ,xn,'xi• 

Assume that n > 5. We have that x 1 x2  = x2x3 = • • = x nx i  = 0. Suppose x i x k  = 0, 
for some k 0 1, 2, n. Then xi, x2, x3, , xk, x i  and x i , xk, xk+i, • • 7 x n , x1 are two cycles 

of length less than 71, one of which has to be odd (for if both were even then C has to be 

even, which it is not). See the Figure below. 

x n  

X3 

X k 

The argument above, using x 1 , can obviously be applied to the other points of C as well. 

Now since C is the smallest odd cycle, no smaller odd cycles can exist, therefore x ixi  = 0 

only if x2 and xi  are neighbours (on C). 

Now, let y = x 1 x3 , then yx 2  = yx4 = yxn  = 0. 

xn  

Therefore y is adjacent to three vertices on C, so that y cannot be on C. (The points on 

C are only adjacent to two vertices on C i.e its neighbours.) At this point we have that 

y, x4 , x5 , , xn , y is an odd cycle of length. n — 2, but we know that C is the shortest 

odd cycle. This gives a contradiction to our assumption that n > 5. Thus n < 5, or in 

o_therwords n < 4. 
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This shows that R* has an odd cycle of length 3, say x 1 , x2 , x3 , x 1 . If we now again 
consider the graph of R, in which 0 is adjacent to every nonzero element, then we see that 
we have in fact a clique {x i , x2 , x3 , 0} in R of size four. Therefore w(R) > 4. ❑ 

Theorem 7.3. Let R be a Coloring and k an integer such that k < 4. Then x(R) = k 
< > w(R) = k. Furthermore, x(R) = 5 = w(R) = 5. 

Proof. With the same reasoning as in Proposition 7.2, it is enough to show that x(R) < k 
< > w(R) < k. 

The first part of the proof of Proposition 7.2 can also be used here. We are therefore 
only left with the case w(R) < lc= x(R) < k. Since the cases k = 1, 2, 3 were 
treated above, we need to show that w(R) < 4 = x(R) < 4. We will do this using the 
contrapositive, x(R) > 4 = w(R) > 4. 

If R is reduced, then by Theorem 6.12, x(R) = w(R). We will therefore assume that 
.9(R) (0). 

By Theorem 6.11 w(R) = w(B(R)) +E(R) and x(R) = x(93(R)) +E(R), with E(R) as 
in 6.11. Therefore we need to show that w(B(R)) = x(Q3(R)), with the restriction that 
w(B(R)), x(93(R)) < 4. The reason being that the present theorem only considers values 
of w(R), x(R) < 4 and that E(R) > 0. 

Again, all that is left to prove is x(93(R)) > 4 = w(B(R)) > 4. (B(R)) is itself a 
Coloring so we may apply Propositions 7.1 and 7.2.) 

We show firstly that B(R) is nilpotent. Let B(R) = {7 .1, r2,... , r7,}; 93(R) is finite 
since R is a Coloring. We know that every element in B(R) is nilpotent, so rr'. = r2 = 
• • • = r7n = 0 for some m 1 , ri12, • • • , inn E N. 'Let m = max{ini,m2, • • • 7 rnn } SO that 

= 0 for all i E 2, ... , n}. Consider 93(R)mn = {E i rii ri, • • • rinin I  rik  E 93(R)}. 
Every term in these sums can be written as r ill r 122  • • rnin, by taking li  = 0, if necessary. 
Now at least one /k > m, for if every /k < m — 1, then every term in - the sum will have at 
most n(m — 1) r's instead of nm r's. For this /k, rkik = 0. Thus every term in every sum 
is zero, so that every possible sum is also zero. Therefore B(R)m" = (0). 

Let 3 = B(R) 11 AnnB(R). Assume that 3 = (0). That is for every nonzero element 
r of 93(R), r93(R) (0). (93(R) does not contain its annihilators.) Since Q3(R) is 
nilpotent, let m E N be the smallest m with B(R)m = (0). That is 93(R)" .' 0 (0). Let 
r' E 93(R)"1-1  and r' 0. The inclusion 93(R) 771-1  C B(R) implies that r' E 93(R). From 
the observation above . we should then have that r'93(R) (0), but r'93(R) C B(R)m = (0) 
— a contradiction. Therefore 3 = B(R) n Anna3(R) $ (0). Thus 131 > 2. 

Note that 3 is a clique in 93(R), since every element in 3 is both in B(R) and anni-
hilates 93(R). If 3 = 93(R),_then _93(R) is a clique and x(93(R)) — w(93(R)). If 131 > 4,-- 



49 

then w(93(R)) > 4 and we are done. Therefore we assume that 3 C B(R) and 131 < 4. 

If 131 = 4, choose x E B(R)\3. Then 3 U {x} is a clique with 5 elements so that 

(93(R)) > 4. 

• If 131 = 3 and x(93(R)) > 4, then there must exist elements x and y in 93(R)\3 

such that x and y are adjacent to each other as well as to every element in 1. The 

reason for this is that all three elements in 3 received its own colour (3 is a clique), but 

x(93(R)) > 5. The elements in 93(R) \3 are all adjacent to the elements in 3 and if none 

of them were adjacent to one another, then four colours would have been enough to colour 

B(R) — a contradiction. Now 3 U {x, y} forms a clique in 93(R) with 5 elements. Thus 

co(93(R)) > 4. 

Consider now .the case 131 -,- .2 and x(93(P)) > 4. Let 3 = {0, c}. Now 3 is an 

ideal so that c c = 0. Since x(Q3(R)) > 5, 93(R)\3 requires at least 3 distinct colours. 

Therefore there exists an odd cycle in 93(R) \3 (see discussion in Chapter 1) and among 

all odd cycles let C be one of minimum length. Say C = al , a2 , , ate . If n = 3, then 

a2 , a3 } U3 is a clique of size 5 and thus (4.)(a(R)) > 4. We may therefore assume that 

n > 5. 

If ai ak  = 0, where k i — 1, i, i +1, the cycle decomposes into - two smaller cycles. One 

of these cycles will be _odd and since C is the smallest odd cycle this is impossible.. Thus 

the only way that aiak = 0 is possible for i k is if a, and ak  are neighbours cin C. As 

in Proposition 7.2 the element z = ai ai  (ai  and aj  not neighbours) -can not be on C. The 

reason being that it is adjacent to at least four vertices on C (a,_ 1 , ai+1 , aj _ 1 , ai+i ) instead 

of the required two (its neighbours). Let i 1, 2, n. If i is even al ai, a2, a3, , is an 

odd cycle of length i — 1 < n. On the other hand if i is odd then alai, ai+i, ai+27 	, an 

is an odd cycle of - length n — i + 1 < n. See the Figure below. 

_ Since C is the smallest odd cycle_in_93(R)\3, the pointa i a, has to -be in 3. Also, aia, =-0 
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only if a l  and ai  are neighbours, therefore a l ai  = c. Thus in general for i j 

{0 only if ai  and a;  are neighbours, 

We now prove that a? $ 0 

Assume that ai = 0 and ai±i 	a2  + c. Then ai , ai±i  and (ai  + c) form a cycle in 

3(R)\3 : clearly, a i  and ai+1  are in 93(R) \3. Furthermore if a i  + c E 3, then either 

ai  + c = c in which case ai  = 0 or ai  + c = 0 so that ai  = —c = c E 3. Since both 

possibilities lead to a contradiction, a i  +c E a3(R)\3. Consider now the possible products 

between these elements. Firstly aja i+i  = 0 since they are neighbours on C. Secondly 

ai (ai  + = ai + ai c = 0 + 0 (4 = 0 and c E Ann93(R)). Lastly ai ±i (ai + c) = 

+ ai+1c = 0 + 0 (ai  and ai+1  are neighbours and c E Anna3(R)). This gives a cycle 

of length 3 in 93(R) \3 — a contradiction since C is an odd cycle of minimum length 

at leaA 5 in 93(R) \3. Thus either ci,? 0 0 or ai+1  = ai  + c. If ai+1  = ai  + c, then 

0 = ao. l ai+2  = + c)ai+2  = ctiai+2  + cai+2  = aj ai+2  (ai+i  and ai+2 are neighbours and 

c E Ann93(R)). Therefore aiai +2 = 0, but this contradicts the fact that a i  and ai+2 are 

not neighbours on. C. The only possibility then that is left, is ai o 0 for i E {1, 2, . . . , n}. 

Let b = a l  + a2 + • • + an_2. Then 

ban-i + a2a _1 + • • + an-3a 	+ 

c+c+•••+c+0, 

(n — 3)c, 

= 0. 

The reason for (n = 3)c = 0 is that (n — 3) is even and c + c = 0. Also, 

ban  = ai an  + a2 an  + • • • + an- 3 a + an-zan, 

= 0•c+•••+c+c, 

= (n — 3)c, 

= 0. 

ai a;  = 
c otherwise. 

Now an_ 0 and a2n_ i  0 0 so that b _ an _and b _an_ .1_. - _Since n is odd we are-able to- - 
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write n = 2k + 1 for some k E Z. Consider 

bag  = a l ak + a2ak • • • + ak-iak + a2k + ak+iak +•• • + a2k-2ak azk-iak, 

= c+c+•••+0+a2k +0+•••+c+c, 

= 2(k - 2)c + 

= a 2 

0 0. 

This shows that b AnnB(R) since ak e B(R). Thus b 3, implying b 0 and b c. 
All of the above leads to the fact that {0, (4,1, a n , b, c} is a clique in 93(R) of size 5. 

Therefore w(B(R)) > 4. 

We have thus shown that x(T(R)) = w(B(R)) for X(T(R)), (B(R)) < 4. As 

discussed above we may now conclude from Theorem 6.11 that X (R) = w(R) for x (R), 
w(R) < 4. 

We now prove the second part of the theorem, i.e x(R) = 5 = w(R) = 5. 

From Theorem 6.11 we have x(R) = x(93(R)) + E(R) and w(R) = (4.;(93(R)) + E(R). 
If we can show that x(93(R)) = w(B(R)) (under the - assumption that x(R) = 5) then 

w(R) = 5. 

If X(R) = 5, x(8(R)) < 5, since 93(R) is a subring of R. We already know that if 

X(T(R)) < 4 then x(93(R)) = w(B(R)). Therefore we only consider the case x( 93 (R)) = 
5. It is always true that x(93(R)) > w(93(R)), thus w(B(R)) < 5. From the proof above 

we know that if x(Q3(R)) > 4 (which therefore includes the present case), w(B(R)) > 5 

— we constructed a clique with at least 5 elements. Combining the inequalities we get 

c.,;(93(R)) = 5. Thus x (93(R)) = w(B(R)), so that x(R) = 5 = w(R) = 5. ❑ 



Chapter 8 

Examples of finite rings with x(R) < 3 

IN this chapter we will find some finite rings rings with x(R) < 3. 

Propositions 2.1 and 2.2 imply the following- 

x(R) = 1 if and only if R = (0). 

x(R) = 2 if and only if 

R is an integral domain, 

R === Z4) 

R Z2 [x]/(x2 ) or 

R Z 2 [x]/(x 2  + 1). 

Since we will be restricting our attention to finite rings, 2(a) then becomes a finite integral 

domain. It is well known that a finite integral domain is a . finite field. 

We now consider the case x(R) = 3. Fro-  m Theorem 7.3 we have that x(R) = 3 if and 

only if w(R) = 3. Theorem 6.11 in turn says that w(R) = w(93(R)) + E(R), where E(R) 
is the number of minimal prime ideals p such that is a field. Since w(B(R)) > 1, the 

possible values of E(R) are 0, 1 and 2. We examine the cases E(R) = 2 and 6(R) = 1. 

Case 6(R) = 2. 

In this case w(93(R)) = 1, so that B(R) = (0). (0 is always in Q3(R) and is also 

adjacent to everything else.) Since R is finite,. R is Artinian. Then by Theorem 1.5, 

dim R = 0. 

Theorem 3.10 now implies that (0) = p i  fl p2 , where p i  and p 2  are minimal prime 

ideals. Note that we only have two ideals here since w(R) = 3. in the present situation, 
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which in turn implies that n = 2 in Theorem 3.10. In an Artinian ring every prime ideal is 
maximal (Proposition 1.4). Therefore (0) = m i  n m2, where mi and m2 are maximal ideals 
in R.  (and pi = mi and p2 = m2). Now mi  + m2 . = R, since mi C mi + m2, m2 C mi + m2 
and mi  and m2 are maximal ideals. 

We now define an isomorphism, R 	RIm i  x R/m2, as follows. Let r E R, then 
there exist elements m1 E m1 and m2  E m2 such that r = m 1  + 

r = m 1  + m2 1—)• Gm' + m2] + ml, [m1 + m2] + m2) , 

= ([mi + mi] + [m2 + mil, [mi + m2] + [m2 + m2]) , 

= (mi + [m2 + mi], [mi + m2] + m2) , 

= am2 + mil, [mi + m2]) • 

This mappihg is onto: 

If (x ml, y + m2) E Rimi x R/m2, x , y E R, then there exist elements xi, yi E m1 and 

X21 Y2 G m2 such that x = xi + x2 and y = yi + y2. Thus 

(x 	y ± m2) = ([x i + x2] + mi, [yi + Y2] -+ m2 ), 

= (x2 ± ml, yi + m2)• 

Therefore yi + x2 H (x2 + ml, yi + m2) = (x + mi, y + m2) and yi + x2  E R. 
This mapping is also one-to-one: 

Let a H (p + mi , q + m2) and b (r + mi, s + m2). That is a E R, a = q p, b E R and 
b = s + r. Note that q, s E mi  and p,r E m2. Assume (p ±rni, q m2) (r + mi,  s + m2). 
Thus 

(P+mi,q+m2) = (r 	s + m2), 

.•.p+mi=r+mi and q ± m2 = s + m2, 

and q — s E m2 :.  

But p — r E m2 and q — s E mi. 

p — r E mi n m2 and q —s Emi n m2, 

p — r = 0 and q — s = 0, 

p= r  and q = s. 

We therefore have that a = q+p= 8+ =-L b. _ _  
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We will now show that this mapping is also a homomorphism: 
Let r 1 , r2 E R with r 1  = ml  +m2 and r2 	+m'2 , where m l , mi E m1  and m2 , m/2  E m2. 
Then 

r 1  f--4 (m2  + ml, ml  + m2), 
r2 	( 774 + m1,74 m2), 

r 1  + r2  H ([m2 + rri/ J +. m1 , [m1 + m'd + m2), 

([m2 + 	+ [m12 + mu], [mu + m2] + 	+ m2], 

(m2 + 	+ m2) + (m2 +m1,mi + m2). 
r 1 .r2  H ([m2.m2]+ ml, [/21.mi] + m2), 

([7n2 + mi].[m2 + ml], [ml + md.[mi + m2]), 

(m2 + m1 , ml  + m2). ( 772/2 + ml, mi  + m2). 

Therefore R RIm i  x R/m2 and R/m 1  and R/m2  are finite fields since m 1  and m2 
are maximal ideals. 

In summary, the case 6. (R) = 2 corresponds to R being a direct product of two finite 
fields. 

Case E(R) = 1. 
Let p be a prime ideal such that R I, is a field. (Recall that E(R) is the number of prime 

ideals, p, such that R I, is a field.) As above, we have that dim R = 0. Thus p is both a 
maximal and minimal prime ideal (no chains of length greater than zero exist). Theorem 
4.5 now implies that p E AssR, the set of associated prime ideals. Let p = Annx. Since 
RI, is a field and since x/1 E Rp , x/1 has an inverse.. Proposition 1.13 then implies.,that 
x p. 

Since p = Annx, xp = (0), so that x E Annp. Also if xr E (x) and xr E p, then r E p 
(x p and p is prime), but then xr = 0 (r E p = Annx). Thus pfl(x) = (0). Furthermore, 
prc p+ (x) (x p) and every prime ideal in an Artinian ring is maximal (Proposition 
1.4). This implies that p + (x) = R. Also, (x) C Annp, so that p + Annp = R. 

Furthermore p fl Annp = 0 : 
Let r Epn Annp = 0. Then r E p and pr = 0. We have that p + Annp = R, so that 
1 = x + y where x E p and y E Annp. Multiplying this by r we get r = rx + ry = 0 + 0 
(the first zero follows from r E Annp and the second from y E Annp). 

By the same technique as for the case above, we now find that R R/p x R/Annp. 
Since p is maximal, R/p is a finite field, say F. Let R/Annp = S, so that R F x S. 

From our assumptions_about the_clique number of _R we-then-have-w(F x 5) 3. We --- 
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always have w(F x S) < w(F)•w(S). Since w(F) = 2, because F is a finite field, w(S) > 2. 

If w(S) > 2, then there exist at least three elements x 1 , x2  and x3  all in S with 

1 1 X 2  = X 1 X 3  = X2 X 3  = 0. Now (1, 0), (0, x 1 ), (0, x2 ) and (0, x 3 ) are all in F x S and form 

a clique of size four. This contradicts w(F x S) ---- 3. Therefore w(S) = 2, which implies 

X(S) = 2. By assumption E(R) = 1 and w(R) = 3, so that w (93(R)) = 2. This shows that 

R is not reduced. By Proposition 2.2 then, S Z4, S r"=-' Z2 [x]/(x 2 ) or S ^ 7L 2 [x]/ (x 2  + 1). 

Therefoie R^ F x Z4 , R F x Z2 [x]/(x 2 ) or R F x Z2 [x]/(x 2  + 1). 



Chapter 9 

An example of a ring with 

w(R) c x(R) 

THE results in the previous chapters seem to indicate that w(R) = x(R) for all 

Colorings. Indeed this was a conjecture first stated by Beck in [3]. In [1] Anderson 

and Naseer gave a counterexample to Beck's conjecture. It involves a finite local ring with 

w(R) = 5 and x(R) = 6. This chapter is devoted to a discussion of their counterexample. 

The example given in [1] is : 

R = adx, y, z]/(x 2  — 2, y.2  — 2, z2 , 2x, 2y, 2z, xy, xz, yz — 2) 

To ease in the discussion of R, let 3 = ( x2 	2,  y2 2, z2 , 2x, 2y, 2z, xy, xz, yz — 2). The 

formation of the factor ring by 3 has the effect of restricting all polynomials in R to that 

of at most the first degree. The reason for this is the fact that all elements in 3 may be 

regarded as being equal to zero. Thus x 2  = 2, y2  = 2 and z2  = 0. If a polynomial in R 
contains a term of the form axn, where a E 7L 4 .  and n > 2, then axn = ax2xn-2 = 2axm-2 . 

This term (if n — 2 > 2) may be reduced still further. The end result will either be 

an element in Z4 (if n is even) or an element of the form bx, where b E Z4. The same 

obviously applies to an element of the form ayn. Using the same idea a term of the form 

azn with n > 2, will be seen to be equal to zero. 

Further, all cross products (i.e xy, xz and yz) will be either zero or reduced to a 

constant (by the same process as above). Therefore we only consider polynomials of the 

form 

a i x + a2y + a3z + a4, 

where ai  E Z4 for i = 1, 2, 3, 4. The presence of 2x, 2y and 2z in 3 allow for further 

simplifications, namely that of a l , a2  and_a3  not .being equal to 2 (as_equality implies that 
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such a term equals zero). Also, 3x = 2x + x = 0 + x = x (and the same obviously applies 
to y and z). Therefore, a l , a2  and a3  will not be equal to 3. Thus a l , a2  and a3  = 0,1 and 
a4  = 0,1,2, 3. This implies that there are 2 x 2 x 2 x 4 = 32 possible elements in R. 

Another property of this ring is that it is a local ring with maximal ideal given by 

931= {0, 2, x, + 2, y,y + 2,x + 	+ y + z, z + 2,x + z,x + z + 2,y + z,y + z + 2, 

x + y+z,x + y+ z + 2}. 

The fact that 931 is an ideal may be easily verfied by direct calculation. The other 16 
elements of R are the units of R, U(R) (i.e. they have multiplicative inverses). We now 
examine this fact more carefully. The elements in R\9f2 are of the form 

ai x + dzy + a3z + a4, 

where (as before) al, a 2  and a3 = 0,1..and a4 = 1,3. (Note that the elements in 912 
correspond to the case of a l , a2 and a3 = 0,1 and a4 = 0, 2.) Let a i x + a2y + a3z + 1 be 
an element in R\932 and consider the following product 

(a ix + azy + a3z + 1)(aix + a2y + a3z + 3) = 
2 ai2  x + ala2xy + ala3xz + 3a i x 

+aia2xy + a2y 2  + a2a3yz + 3a2y 

+ala3xz + a2a3yz + a23 Z2  + 3a3 z 

+alx + a2y + a 3 z .+ 3. 

Using the simplifications that are possible because of the ideal 3 in the factor ring, we 
obtain the following 

(ai x + a2y + a3z + 1)(aix + a2y + a3z + -3) = 2a;.  + 2a3 + 3. 

Now, if either a l  or a2  equals zero (not both), then the product equals 1, indicating that 
the two elements from R\93t above are multiplicative inverses of one another. We still-
need to discuss the case of both a1  and a2 being equal to zero or both being equal to 1. 
Towards this end consider the following product 

(a i x + a2y + a3z + a4)(aix + a2y  + a3z + a4) = 
2 ai2  x + ai a2xy + ala3xz + aia4x 

+alazxy + 4y2  + a2a3yz + a2 a4 y 
+ala3xz + a2a3yz + a 23 z2  + a3a4 z 

+alazix + a2a4-y + a3a4z + a24. 
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Again, the factor ring allows various simplifications, leading to 

(a i x + a2y + a3z + a4)(aix + a2y + a 3 z + a4 ) =.2a21  + 24 + 

In. this case if a l  = a2 = 0,1 and a 4  = 1, 3, -the product is 1. Therefore every element of 
this form is its own multiplicative inverse. 

In summary then, an element of the form a i x + a2y + a3z + a4, where a l  = 0, a2  = 1 or 
a l  = 1, a2  = 0 and a4  = 1, 3, has the element a i x +a2y+a3 z + (a4  + 2) as its multiplicative 
inverse. On the other hand the element a i x + a2y + a3 z + a4 , with al  = a2 = 0, 1.and 
a4  = 1, 3 is its own multiplicative inverse. This shows that every element in R\gft has a 
multiplicative inverse. The elements in 931 do not have multiplicative inverses. The reason 
for this is that if at least one element had an inverse, this element times its inverse yields 
1, which should then be in 93t since 931 is an ideal. Since 1 ■ 93t, no element in 93t has a 
multiplicative inverse. This shows that R\931 = U(R). 

This fact also implies that 931 is maximal since any ideal containing 932 would have to 
include one of the units of. R which would force this ideal to be equal to R. Futhermore, 
this fact also provides the motivation for 931 being the unique maximal ideal. For any 
other ideal to be different from 931 and to be maximal, it would have to include at least 
one unit and so will be forced to be equal to R. We also have U(R) = R\931 =1 +931 = 
{1 +m m E 931}. This may be seen by realizing that R\932 Z2 (since IR1 =.32 and 
19311 = 16). Now .1 t% 93/ and so the only other equivalence class (apart from 93t) in R\931 
is 1 + 931. This is precisely all the elements in P\931. 

A multiplication table for 931 is given in Table 9.1 on page 61. Note that 0 and 2 
have been omitted from the table since they both annihilate 931. It is easily seen that 
no other elements in R annihilate 932. For elements in 931 this is clear since there does 
not exist a column or row, in its multiplication table, entirely made up of zero's (which 
would indicate an annihilator of 931). For elements in R\Tft = U(R) = 1+ 931 we have 
that (1 + m i )m2  = m2 + mim2, where (1 + m 1 ) E U(R) and m2  E 931. If m1  = 0, 
then (1 + m 1 ) = 1, which does not annihilate 931. Further, if m 2  = 0, we obviously 
have (1 + mi)m2 = 0. This is the trivial case though and is not normally considered 
when determining annihilators. Therefore consider now the cases of m i , m2  0 0. Here we 
always have that m i m2  = 0, 2 (from table), so that (1 + m i )m2  = m2  + mi m2  is either 
equal to m2  or equal to m 2  + 2. Thus to have the product equal to zero, we ought to 
have m2  = 0 or m2  = 2 (so that m2  + 2 = 2 + 2 . = 0). The case of m 2  = 0 has already 
been dealt with and the case m2 = 2 implies that m i me  = 0 (since 2 annihilates.931) so 
that the product is in fact m 2  + mime  = 2 + 2m 1  = 2. Therefore no element in U(R) 

annihilates 931 (or any nonzero element in 931).  _ _ 
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Our ultimate goal is to show that w(R) = 5 and x(R) = 6. In the first instance this 
is greatly simplified by the fact that all cliques of R must be contained in 931. This is 
seen by noting that the product of two elements in U(R) is never zero : let (1 + mi) *and 
(1 + m2) be in U(R). Then (1 + mi)(1 + m2) = 1 + mi + m 2  + mim2. Neither m i  nor 
m2  is equal to 1 (they are elements in 9N) and m i m2  = 0, 2 (from table). Therefore the 
product above is either equal to 1+m i  +m2 or equal to 3+mi  +m2. To have the product 
equal to zero would imply that m i  + m2  would have to be equal to the additive inverse of 

1 or 3. Since no two elements in 931 sum to either 3 (the additive inverse of 1) or 1 (the 

additive inverse of 3), the product cannot be equal to zero. Also, as we have remarked 

earlier, no product of an element in U(R) with an element in 931\{0} equals zero. Thus 
all cliques in R are contained in 9)1. Therefore to show that Lc) (R) = 5, it suffices to show 
that w(9N) = 5. 

A maximal clique of R will be a clique that cannot be enlarged. The proof of w(932) = 5 

follows from-a, case by case examination of possible cliques that may exist within 932. This 

is accomplished by examining the elements in 931 one at a time, with the end result that 

all cliques containing a given element in 932 will have a maximum size of 5. Most of the 

following statements follow from the multiplication table. 

Observation 9.1. Every maximal clique of R contains 0 and 2. 

This is clear, since 0 and 2 are annihilators of 9R. 

Observation 9.2. {0, 2, x, y, y + z} is a maximal clique, implying that w(R) > 

Observation 9.3. Any clique containing x or x + 2 has at most 5 elements. 

A clique will never contain both x and x + 2, since their product is not zero. We may 

therefore suppose that it contains x (the case of x + 2 being similar). The only possible 

elements that we can include in a clique along with x (besides 0 and 2) are : one of the 

pair y and y + 2 (not both since their product is nonzero), z, z + 2 and one of the pair 
y + z and y + z + 2 (again not both since their product is nonzero). If we include z or 

z + 2 (or both) we have to exclude y, y + 2, y + z and y + z + 2 (since their products with 

z -and z + 2 are nonzero). In any case we have a clique size of at most 5. 

Observation 9.4. Any clique containing y or y +.2 has at most 5 elements. 

As before only one of y and y + 2 will be included in a clique. Suppose that a clique 

contains y. (y + 2 may be subjected to the same reasoning.) By Observation 9.3 we may 

assume that the clique does notcontain x_or_ x + 2 (if it did,_it_immediately yields-a clique 
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size of at most 5 — by the stated observation). Candidates for the clique, besides 0, 2 

and y, include : one of the pair y + z and y + z + 2, x + y + z and x + y + z + 2. If we 
include y + z or y+ z + 2, we must exclude x + y + z and x + y + z + 2 (the corresponding 
products are nonzero). This implies that the clique will contain at most 5 elements. 

Observation 9.5. Any clique containing x + y or x + y + 2 has at most 5 elements. 

We can assume that the clique contains 0, 2, x + y and x + y + 2. (They all have 
a product of zero and may be included if they were not originally.) The only possible 

candidates are : at most one of x + z and x + z + 2 (their product being nonzero) and 
at most one of y + z and y + z + 2. All possible products of the last four elements are 

nonzero, therefore we can only include at most one of x + z, x + z+ 2, y + z' and y+ z + 2. 

Thus the clique has a size of at most 5. 

Observation 9.6. Any clique containing z or z + 2 has at most 5 elements. 

We may assume that our clique contains 0, 2, z and z + 2, but that it does not contain 

x or x + 2 (by Observation 9.3). The only other candidate element is one of x + z and 
x + z + 2. Therefore the clique has at most 5 elements. 

Observation 9.7. Any clique containing x + z, x + z + 2, y + z or y + z+ 2 has at most 

5 elements. 

By the previous observations we may assume that the clique does not contain x, x + 2, 

y, y + 2, x + y, x + y + 2, z or z + 2. By consulting the mutiplication table we find that 

the clique will have at most 5 elements. (A lot less--in some cases, but for the present 

situation the bound of 5 suffices.) 

Observation 9.8. Any clique containing x +y + z or x+y+ z + 2 has -at most 5 elements. 

This is most readily established by keeping in mind that we have already considered 

all possible elements in the previous obserl4tions. 

All of the observations combined imply that w(931) 	(R) < 5. Therefore w(R) = 5. 
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We now establish the fact that x(R) = 6. 

Since {0, 2, x, y, y + z} forms a clique, we need at least five colours to colour R. We 

denoted these colours by 1, 2, 3, 4 and 5 and assign these colours to the clique in this order. 

Since 0 and 2 are adjacent to every element in 932 only 0 and 2 may receive the colours 1 

and 2 (respectively), when considering other elements in Mt. 

Consider the following subgraph of R: {0, 2, x,y,y+z,z,z+ 2, x + y,x+y+ 2, x + z}. 

A portion of this subgraph is shown in Figure 9.1. All elements except 0 and 2 are shown. 

The full subgraph may be obtained by adding 0 and 2 and joining them to every element. 

Next to each element its colour iS indicated in brackets. This colouring is discussed below. 

z(4) 

Figure 9.1: Colouring of the subgraph {x, y, y + z, z, z + 2, x+ y, x + y + 2, x + z} 

We show that it is impossible to colour this subgraph with fewer that 6 colours. 

Observation 9.9. Since xz = x(z + 2) = 0 and z(z + 2) = 0, we must colour one of the 

pair z and z + 2 with 4 and one -with 5. (The order is not important.) 

Colour z with 4 and colour z + 2 with 5. 

Observation 9.10. (x + y)(x + y + 2) = 0, so x + y and x + y + 2 must be coloured 

different colours. Also, (y + z)(x + y) = (y+-z)(x +y + 2) = 0, so again one of x + y and 

x + y + 2 must receive the colour 3 and the other_the _colour 4. -- _ _ _  
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Colour x + y with 3 and x + y + 2 with 4. 

Observation 9.11. Since (x + z)(x + y) = ( + z)z = (x + z)(z-+ 2) = 0, x + z cannot 

be coloured with 1, 2, 3, 4 or 5. 

This necessitates that we assign x + z a new colour (6). 
The existence of this subgraph within R implies that x(R) > 6. 
The following assignment of colours to the elements of R shows that x(R) < 

1 {0} 

2 -+ {2} U U(R) 

3 —+ {x,x+2,x+y,x+y+z} 

4 -+ {y,y+2,z,x+.y+2} 

5 {y+z,y+z+2,z+2,x+y+z+2} 

6 -+ {x+z,x+z+2} 

Note that within each colour class (that is the collection of elements that received the 
same colour) the elements are not adjacent, thus justifiying us assigning them the same 
colour. 

We now have the following theorem. 

Theorem 9.12 ([1]). The ring 

R = Z4 [x, y, z]/(x 2  — 2, y 2  — 2, z2 , 2x, 2y, 2z, xy, xz, yz — 2) 

has w(R) = 5 and x(R) = 6: 
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