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To the many who have seen beauty in mathematics;

and the few who have seen both in me.

Like Poetry, Mathematics is Beautiful

Timidly I ask

each one I meet if they

find mathematics beautiful

or useful, and each one dares to say,
“Useful, of course. I use it every day.”
And if I seem to want a proof,

they all go on to tell

that daily they subtract and add

to keep a checkbook; sometimes also
they multiply to find how many squares
they need to tile the kitchen floor.

Mathematics is not only plus

and minus, not just counting one,

two, three. There are rules to bend
defiantly, so parallels

will meet before infinity. Look

at the magic of unending terms

that converge to a finite sum:

start with one-half plus half of one-half
plus half of the last again and again.
Though we go on forever, we never
pass one. Do you find me difficult? Oh, dear!

Suppose, instead, I ask

if poetry is beautiful

or useful. Will each person say,
“Useful, of course. I use it every day.”
And if I seem to want a proof,

will they go on to say that they

use rhymes to call to mind the days
of a month - like “Thirty hath
September” - and to remember

how to spell words with ‘i’ and ‘e’.

I have a faint, enduring hope
that someday folks will see
mathematics to be

as lovely

as poetry.

JoAnne Growney (Silver Spring, MD)
American Mathematical Monthly 101 (1994) 484
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Preface

Domination in graphs is now well studied in graph theory and the literature on this
subject has been surveyed and detailed in the two books by Haynes, Hedetniemi, and
Slater [45, 46]. In this thesis, we continue the study of domination, by adding to the
theory; improving a number of known bounds and solving two previously published con-

jectures.

With the exception of the introduction, each chapter in this thesis corresponds to a
single paper already published or submitted as a journal article. Despite the seeming
disparity in the content of some of these articles, there are two overarching goals achieved
in this thesis. The first is an attempt to partition the vertex set of a graph into two sets,
each holding a specific domination-type property. The second is simply to improve known
bounds for various domination parameters. In particular, an edge weighting function is

presented which has been useful in providing some of these bounds.

Although the research began as two separate areas of focus, there has been a fair
degree of overlap and a number of the results contained in this thesis bridge the gap
quite pleasingly. Specifically, Chapter 11 uses the edge weighting function to prove a
bound on one of the sets in our most fundamental partitions, while the improvement on
a known bound presented in Chapter 7 was inspired by considering the possible existence
of another partition. This latter proof relies implicitly on the ‘almost’ existence of such

a partition.



i

In Chapter 1, we outline the results of the thesis and introduce some basic notation.
We prove an existence result for “dominating, total dominating, partitionable” graphs
in Chapter 2, characterize all such graphs in Chapter 3, and then examine the case
when such a partition is exhaustive in Chapter 4. We prove a similar existence result for
“dominating paired-dominating partitionable” graphs in Chapter 5 and again characterize
all such graphs in Chapter 6. In Chapter 7 we improve on a published upper bound on the
total restrained domination number in cubic graphs and in Chapter 8 we investigate the
ratio of the independent domination number to the domination number in cubic graphs.
We then introduce an edge weighting function on dominating sets in Chapter 9 and apply
it to provide bounds on the upper domination number and the upper total domination
number in regular graphs. In Chapter 10, we solve a conjectured bound on the total
domination number in claw-free cubic graphs using a modified edge weighting function.
Finally, in Chapter 11 we use this weighting argument to provide a bound on one of the

sets in the partition presented in Chapter 2.

Chapters 2, 3, 4, 5, 6, 7, 8, 10, and 11 have been published or accepted for publication
in [65], [66], [61], [87], [88], [89], [90], [91] and [92], respectively, while Chapter 9 has been
submitted for journal consideration; see [93]. In addition, though not directly linked to
the topics presented in this thesis, the author has been involved in four further journal

articles accepted or submitted for publication; see [37], [55], [56], and [57].
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Chapter 1

Introduction and Overview

In this chapter, we provide an overview of the thesis and then introduce some standard
definitions and notation. Specific notation required only sporadically or in one chapter
will be introduced as required. Similarly, non-standard terminology used in proofs or to

simplify reading will be presented at a convenient proximity to its usage.

In Chapter 2, we show that the vertex set of every graph with minimum degree at
least two and no 5-cycle component can be partitioned into a dominating set and a total
dominating set. Exceedingly simple to state, this almost surprising existence sowed the
seed for many of the ideas presented in this thesis. In Chapter 3 we go on to provide a
constructive characterization of first the trees, and then the graphs, whose vertex set can
be partitioned into a dominating set and a total dominating set. We then examine, in
Chapter 4, the question of when such a partition necessarily contains the entire vertex
set. We answer the question for all graphs with minimum degree at least two and that

have no induced five cycle.

The situation is not quite as straightforward when attempting to partition the vertices
of a graph into a dominating set and a paired-dominating set. In fact, we demonstrate

that no minimum degree is sufficient to guarantee the existence of such a partition in
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Chapter 5. However, we prove that the vertex set of every cubic graph can be thus
partitioned. In Chapter 6, we provide a constructive characterization of first the trees,
and then the graphs, whose vertex set can be partitioned into a dominating set and a

paired-dominating set.

Here the thesis diverges temporarily to look at upper bounds on various domination
type parameters in various classes of graphs, most frequently cubic. The first of these,
however, is implicitly linked to the idea that the vertices in a cubic graph can be par-
titioned into a total dominating set and an ‘almost’ total dominating set. Jiang, Kang
and Shan [2] showed that the minimum cardinality of a total restrained dominating set
of a connected cubic graph of order n is at most 13n/19. In Chapter 7, we improve this
upper bound to (n + 4)/2 and demonstrate that our new improved bound is essentially
best possible. Staying with connected cubic graphs we show, in Chapter 8, that the ratio
of the independent domination number to the domination number is at most 4/3, except

in the case of K(3,3). Furthermore, we characterize the graphs achieving this bound.

We introduce the useful edge weighting function on dominating sets in Chapter 9 and
show that if we impose a regularity condition on a graph, then upper bounds on both
the upper domination number and the upper total domination number can be greatly
improved. We show that these bounds are sharp and characterize the infinite families of
graphs that achieve equality in both cases. In Chapter 10, we use the same edge weighting
function, with additional weight discharging rules, to solve the conjecture posed in [30]
that for connected claw-free cubic graphs of order n > 10, the total domination number

is at most 4n/9.

Chapter 11 brings the thesis full circle, and uses a weighting argument to provide a
bound for cubic graphs on one of the sets in the partition presented in Chapter 2. In
particular we show that every connected cubic graph on n vertices has a total dominating
set whose complement contains a dominating set such that the cardinality of the total

dominating set is at most (n 4 2)/2, and this bound is essentially best possible.
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Although each chapter covers the content of a single journal article, the thesis has been
assembled in such a way that it can be read from cover to cover with a through-running
theme. Alternatively, each chapter may be read individually, with all necessary nota-
tion and specific terminology required for the presented results included in the relevant
chapter. To avoid the construction of artificially unique and cumbersome labels, some
function or family names have been recycled in later chapters. The meanings, however,

should be clear in the context of the chapter, and hopefully make for simpler reading.

1.1 General Notation

For notation and graph theory terminology we in general follow [45]. Specifically, let
G = (V, E) be a simple undirected graph with vertex set V(G) of order n(G) = |V(G)|
and edge set E(G) of size m(G) = |E(G)|. If the graph G is clear from context, we
abbreviate V(G) to V, E(G) to E, n(G) to n and m(G) tom. Let S C V be a subset of

vertices in G and let v and v be vertices in V.

We denote the degree of v in G by dg(v), or simply by d(v) if the graph G is clear from
the context. The minimum degree (resp., maximum degree) among the vertices of G is
denoted by 6(G) (resp., A(G)). We call a vertex of degree k a degree-k vertez. A graph
is k-regular if every vertex in the graph has degree k. A 3-regular graph is also called
a cubic graph. We denote the number of vertices of S adjacent to v in G by dg(v). In

particular, dy (v) = dg(v).

If G is a connected graph, then the distance dg(u,v) between u and v is the length of
a shortest u—v path in G. The eccentricity e(v) of the vertex v is the distance between
v and a vertex farthest from v in G. The maximum eccentricity among the vertices of
G is its diameter, which is denoted by diam(G). If e(v) = diam(G), then v is called a
diametrical verter. A u—v walk is an alternating sequence of vertices and edges, starting

with u and ending with v, and with each edge being incident to the vertices immediately
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preceding and succeeding it in the sequence.

By a proper subgraph of a graph G we mean a subgraph of G that is different from G.
The subgraph induced by S is denoted by G[S], or simply by G, while the graph G — S
is the graph obtained from G by deleting the vertices in S and all edges incident with
S. For a set M C FE, the graph G — M is the graph obtained from G by deleting all the
edges in M. If X and Y are two subsets of V', we denote the set of all edges of G that

join a vertex of X and a vertex of Y by [X,Y].

The open neighborhood of v is the set Ng(v) = {u € V|uv € E} and the closed
neighborhood of v is Ng[v] = {v} U Ng(v). For the set S, its open neighborhood is the set
Na(S) = UyesNe(v) and its closed neighborhood is the set Ng[S] = Ng(S) U S. If the
graph G is clear from context, we simply write N(v), N[v], N(S), and N[S].

For the following definitions let v be a vertex in S. The S-private neighborhood of v is
defined by pnfv, S| = {w € V' | Nglw]NS = {v}}, while its open S-private neighborhood is
defined by pn(v,S) = {w € V | Ng(w) NS = {v}}. We remark that the sets pn[v, S|\ S
and pn(v,S) \ S are equivalent and define the S-external private neighborhood of v to
be this set, abbreviated epnfv, S] or epn(v,S). The S-internal private neighborhood of
v is defined by ipn[v, S] = pn[v, S| NS and its open S-internal private neighborhood is
defined by ipn(v, S) = pn(v, S) N S. We define an S-external private neighbor of v to be
a vertex in epn(v, S) and an S-internal private neighbor of v to be a vertex in ipn(v, S).
We remark that either v is isolated in G[S], in which case ipn[v, S] = {v}, or v has at
least one neighbor in S, in which case ipn[v, S| = 0. Thus, ipn[v, S| € {0, {v}}.

A matching in a graph G is a set of independent edges in G. If M is a matching in
G, an M-matched vertez is a vertex incident with an edge in M while an M-unmatched
vertex is a vertex not incident with an edge in M. An M-alternating path of G is a path
whose edges are alternately in M and not in M. A perfect matching M in G is a matching

in GG such that every vertex of GG is incident to an edge of M.
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Let X and Y be two subsets of V. The set X dominates Y in G if Y C N[X], while
X totally dominates Y in G if Y C N(X). In particular, if X dominates V', then X is
called a dominating set of G, abbreviated DS. If X totally dominates V', then X is called
a total dominating set of G, abbreviated TDS. Hence, S is a DS of G if N[S] =V, while
S is a TDS of G if N(S) = V. If S totally dominates V' and G|S] contains a perfect
matching M (not necessarily induced), then S is called a paired-dominating set of G,
abbreviated PDS. Two vertices joined by an edge of M are said to be paired and are also
called partners in S. The set S is a a total restrained dominating set, abbreviated TRDS,
of G if S is a TDS and, in addition, every vertex of V'\ S is adjacent to a vertex in V'\ S.
An independent dominating set of G, abbreviated ID-set, is a set that is both dominating

and independent in G.

The domination number of G, denoted by v(G), is the minimum cardinality of a DS
of G. The total domination number of G, denoted by ~;(G), is the minimum cardinality
of a TDS of G. The total restrained domination number of G, denoted by v, (G), is
the minimum cardinality of a TRDS of G. The independent domination number of G,
denoted by i(G), is the minimum cardinality of an ID-set of G. A DS of G of cardinality
7(G) is called a y(G)-set, a TDS of G of cardinality v;(G) is called a 7:(G)-set, a TRDS
of G of cardinality v;,(G) is called a ~;,.(G)-set, and an ID-set of G of cardinality i(G) is
called an i(G)-set. A DS (resp., TDS, TRDS, PDS, ID-set) S is said to be minimal if, for
all vertices v € S, we have that S\ {v} is not a DS (resp., TDS, TRDS, PDS, ID-set).

The upper domination number, I'(G), of a graph G is the maximum cardinality of a
minimal DS in G and we call a minimal DS of cardinality I'(G) a I'(G)-set. Similarly,
the upper total domination number, I'y(G), of a graph G is the maximum cardinality of a

minimal TDS in G and we call a minimal TDS of cardinality I';(G) a I';(G)-set.

A rooted tree distinguishes one vertex r called the root. For each vertex v # r of T', the
parent of v is the neighbor of v on the unique r—v path, while a child of v is any other

neighbor of v. We let C'(v) denote the set of children of v. A descendant of v is a vertex
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u such that the unique r—u path contains v. Thus, every child of v is a descendant of
v. A vertex of degree one is called a leaf and its neighbor is called a support vertex. A

strong support vertex is adjacent to at least two leaves.

A path on n vertices is denoted by P, and a cycle on n vertices by C,. By a P,-
component (resp., C,-component) of a graph we mean a component of the graph isomor-
phic to a path (resp., cycle) on n vertices. We say that a graph is F'-free if it does not
contain F' as an induced subgraph. In particular, if F' = (5, then we say that the graph
is Cs-free. Further, if I' = K 3, then we say that the graph is claw-free.



Chapter 2

The Existence of DTDP Graphs

A simple yet fundamental observation in domination theory made by Ore [80] is that
every graph of minimum degree at least one contains two disjoint dominating sets. Thus,
the vertex set of every graph without isolated vertices can be partitioned into two dom-
inating sets. In contrast to that, Zelinka [99, 100] showed that no minimum degree is
sufficient to guarantee the existence of three disjoint dominating sets or of two disjoint
total dominating sets. Clearly, if the domatic number [100] of a graph G is at least 2k,
then, by definition, G' contains 2k disjoint dominating sets and hence also k disjoint total
dominating sets. Therefore, the results of Calkin et al. [7] and Feige et al. [32] imply
that a sufficiently large minimum degree and small maximum degree together imply the

existence of arbitrarily many disjoint (total) dominating sets.

To see that no minimum degree is sufficient to guarantee the existence of two total
dominating sets, consider the bipartite graph G* formed by taking as one partite set a
set A of n elements, and as the other partite set all the k-element subsets of A, and
joining each element of A to those subsets it is a member of. Then G¥ has minimum
degree k. As observed in [99], if n > 2k — 1 then in any 2-coloring of A at least k vertices

must receive the same color, and these k are the neighborhood of some vertex.
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In contrast, results of Calkin and Dankelmann [7] and Feige et al. [32] show that if the
maximum degree is not too large relative to the minimum degree, then sufficiently large

minimum degree does suffice.

Heggernes and Telle [51] showed that the decision problem to decide if there is a
partition of V' (G) into two total dominating sets is NP-complete, even for bipartite graphs.
Broere et al. [6] considered the question of how many edges must be added to G to ensure
a partition of V' into two total dominating sets in the resulting graph. They denote this
minimum number by td(G). It is clear that td(G) can only exist for graphs with at
least four vertices. In particular, it was shown that if 7" is a tree with ¢ leaves, then
0/2 < td(T) < £/2 4+ 1. Dorfling et al. [24] showed that given a graph of order n > 4
with minimum degree at least 2, one can add at most (n—2y/n)/4+ O(logn) edges such
that the resulting graph has two disjoint total dominating sets, and this bound is best
possible.

In this chapter we give an exchange argument for a result which is somehow located
between Ore’s positive and Zelinka’s negative observations. More specifically, we consider
the question of whether the vertex set of every graph with minimum degree at least two
can be partitioned into a dominating set and a total dominating set. In future chapters,
we shall call such a graph a DTDP-graph (standing for “dominating, total dominating,
partitionable graph”).

2.1 DTDP Existence Result

Clearly the vertex set of a 5-cycle C5 cannot be partitioned into a dominating set and
a total dominating set. We show that this is the only exception. Before presenting the
result we introduce the following notation for this chapter. For S C V and v € S, we say
that v is an S-bad vertex if N[v] C S. Further, we say that a vertex v € S is an S-weak

vertex if u has degree 1 in G[S] and its neighbor in S is an S-bad vertex. We now prove:
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Theorem 2.1 If G = (V, E) is a graph with 6(G) > 2 that contains no Cs-component,

then V' can be partitioned into a dominating set and a total dominating set.

Proof. Among all total dominating sets of GG, let S be chosen so that

(1) the number of S-bad vertices is minimized, and

(2) subject to (1), the number of S-weak vertices is minimized.

Assume that there is at least one S-bad vertex. Let v be such a vertex. If v has no
S-weak neighbor, then S = S\ {v} is a total dominating set of G with fewer S’-bad
vertices than S-bad vertices, contradicting our choice of S. Hence we may assume that

every S-bad vertex has at least one S-weak neighbor.

Let w be an S-weak vertex. Since 0(G) > 2, w is adjacent to at least one vertex in
V\S. If epn(w, S) = 0, then S" = S\ {w} is a total dominating set of G with fewer S’-bad
vertices than S-bad vertices, contradicting our choice of S. Hence, |epn(w, S)| > 1. For
each S-weak vertex w, let w’ € epn(w,S). Since §(G) > 2, w’ is adjacent to at least one

vertex in V' \ S and N[w'] \ {fw} CV\ S.

We show next that every S-weak vertex has degree 2 in G. As defined earlier, let w be
an S-weak vertex and suppose that degw > 3. Then, S" = SU{w'} is a total dominating
set of G that satisfies condition (1), but with fewer S’-weak vertices than S-weak vertices,

contradicting our choice of S. Hence, every S-weak vertex has degree 2.

As defined earlier, let v be an S-bad vertex. Then, v has at least one S-weak neighbor.
For k > 1, let W = {wy,...,wx} be the set of all S-weak neighbors of v. Then, N(w;) =
{v,wi} fori=1,... k. Let W = {w},..., w;}.

If every vertex in W is adjacent to a vertex in V' \ (SUW’), then S’ = (SUW’)\{v} isa
total dominating set of G with fewer S’-bad vertices than S-bad vertices, contradicting our
choice of S. Hence, renaming vertices if necessary, we may assume that N[w}] C W/U{w;}

and that wjwj is an edge of G.
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If degv > 3, then S’ = (S U {w},wh}) \ {wi,ws} is a total dominating set of G with
fewer S’-bad vertices than S-bad vertices, contradicting our choice of S. Hence each of

v, wy, wy and ws has degree 2 in G and C': v, wy, W), w), wy, v is an induced 5-cycle in G.

Since G contains no Cs-component, the vertex wy is adjacent to some vertex not in the
5-cycle C'. But then S" = (SU{w;, w5})\ {v, w,} is a total dominating set of G with fewer
S’-bad vertices than S-bad vertices, contradicting our choice of S. We deduce, therefore,
that the total dominating set S contains no S-bad vertices. Hence, V'\ S is a dominating

set of (G, and we are done. O

We close the chapter with the remark that the minimum degree condition of Theo-
rem 2.1 cannot be relaxed to 6(G) > 1. Some examples are given at the beginning of the

next chapter.



Chapter 3

Characterizing DTDP Graphs

In Chapter 2, we showed that every graph with minimum degree at least two that contains
no Cs-component is a DTDP-graph. (Recall that DTDP-graph stands for “dominating,
total dominating, partitionable graph”.)

Not every graph with minimum degree one is a DTDP-graph. The simplest such
counterexample is a star K ,,. The graph obtained from the corona cor(H) of an arbitrary
graph H (denoted H o K7 in [45] and defined to be the graph obtained from H by adding
a pendant edge to each vertex of H) by subdividing at least one of the added pendant
edges is another example of a graph that is not a DTDP-graph and whose diameter can

be made arbitrarily large (by choosing H to have large diameter).

3.1 Graph Labelings
Our aim in this chapter is to provide a constructive characterization of DTDP-graphs.

The key to our constructive characterization is to find a labeling of the vertices that

indicates the role each vertex plays in the sets associated with both parameters. This

11
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idea of labeling the vertices is introduced in [25], where trees with equal domination
and independent domination numbers as well as trees with equal domination and total

domination numbers are characterized.

We define a labeling of a graph G as a partition S = (54, Sg) of V(G). The label or
status of a vertex v, denoted sta(v), is the letter x € {A, B} such that v € S,. Our aim
is to describe a procedure to build DTDP-graphs in terms of labelings. By a labeled-Py,

we shall mean a P, with the two central vertices labeled A and the two leaves labeled B.

3.1.1 The Graph Family 7

Let 7 be the minimum family of labeled trees that: (i) contains a labeled-Fy; and (ii) is
closed under the four operations Oy, Oy, O3 and O, listed below, which extend a labeled
tree T by attaching a tree to the vertex v € V(7).

e Operation O;. Assume sta(v) = A. Add a vertex u; and the edge vu;. Let
sta(u;) = B.

e Operation O,. Assume sta(v) = A. Add a path ujus and the edge vu;. Let
sta(u;) = A and sta(us) = B.

e Operation O;. Assume sta(v) = B. Add a path ujuous and the edge vu;. Let
sta(uy) = sta(ug) = A and sta(uz) = B.

e Operation O,. Assume sta(v) = B. Add a path ujususzus and the edge vu;. Let
sta(u;) = sta(uy) = B and sta(ug) = sta(uz) = A.

These four operations Oy, Oy, O3 and O, are illustrated in Figure 3.1.
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03..,4 A B
o4.- 44 3

Figure 3.1: The four operations Oy, O,, O3 and Q.

3.1.2 The Graph Family G

Let Os, Og, and O; be the three operations listed below, which extend a labeled graph

G as follows:

e Operation Os. Let v and v be two nonadjacent vertices in G. Add the edge uv.

e Operation Og. Let v € V(G) and assume sta(v) = B. Add a path ujuy and the

edges vu; and vuy. Let sta(uy) = sta(uy) = A.
e Operation O;. Let u and v be distinct vertices of G. Assume sta(u) = sta(v) = B.
Add a path ujus and the edges uuy and vuy. Let sta(uy) = sta(ug) = A.
These three operations are illustrated in Figure 3.2.

Let G be the minimum family of labeled graphs that: (i) contains a labeled-Py; and

(ii) is closed under the seven operations Op, Os, ..., O7 described earlier.

By construction, the family 7 is a subfamily of the family G. We shall need the

following observation which follows from the way in which the family G is constructed.
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A/BI

Figure 3.2: The three operations Oz, Og and O;.

Observation 3.1 Let (G,S) € G for some labeling S = (Sa,Sg). Then the following
properties hold:
(a) Every vertezx of status A is adjacent to a vertex of status A and to a vertex of
status B.
(b) Every vertex of status B is adjacent to a vertex of status A.
(c) Sais a TDS of G, while Sg is a DS of G.
(d) If (G,S) € T, then every leaf of G has status B and every support vertex has
status A.

3.2 DTDP Characterization Results

In this chapter, we have two immediate aims. Our first aim is to determine which trees are
DTDP-trees. For this purpose, we establish the following constructive characterization

of DTDP-trees that uses labelings, a proof of which is presented in Section 3.2.1.

Theorem 3.2 The DTDP-trees are precisely those trees T' such that (T, S) € T for some
labeling S
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Our second aim is to determine which connected graphs with minimum degree one are
DTDP-graphs. We remark that if a connected graph has a spanning DTDP-tree, then
it is a DTDP-graph. However, a connected DTDP-graph does not necessarily have a
spanning DTDP-tree. For example, let G be obtained from the disjoint union of &k > 1
copies of K3 by adding a path P3; and joining a leaf of the added path to one vertex
from each copy of K3. The graph G3 is illustrated in Figure 3.3. Then, G}, is a DTDP-
graph but G does not have a spanning DTDP-tree, a proof of which can be found in
Section 3.2.3. We remark that we could have replaced some or all of the copies of K3 in

G, with copies of Cg or Cy.

Figure 3.3: The graph Gj.

Every DTDP-graph has order at least 3. Trivially, the only DTDP-graph of order 3
is the complete graph K3. Our main result is the following constructive characterization

of DTDP-graphs of order at least 4 that uses labelings, a proof of which is presented in
Section 3.2.2.

Theorem 3.3 The connected DTDP-graphs of order at least 4 are precisely those graphs
G such that (G,S) € G for some labeling S.

3.2.1 Proof of Theorem 3.2

Since every TDS in a tree contains all the support vertices, we have the following obser-

vation.
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Observation 3.4 Let T be a rooted DTDP-tree and let D = (D4, D) be a partition of
V(T) into a TDS Dy and a DS Ds. Then the following properties hold:

(a) Every leaf belongs to Dy while every support vertez belongs to D;.

(b) If every child of a vertex is a leaf, then its parent belongs to D;.

Recall the statement of Theorem 3.2.

Theorem 3.2. The DTDP-trees are precisely those trees T such that (T,S) € T for

some labeling S.

Proof. Suppose first that 7" is a tree and (7', 5) € T for some labeling S. By Observa-
tion 3.1(c), (Sa,Sp) is a partition of V(7T') into a TDS S4 and a DS Sg, and so T is a
DTDP-tree. This establishes the sufficiency.

To prove the necessity, we proceed by induction on the order n of a DTDP-tree T.
Since every star K, is not a DTDP-tree, we have that n > 4 and diam(7") > 3. If
n = 4, then T' = P, and (T,S) € T, where S is the labeling of a labeled-P;. This
establishes the base case. For the inductive hypothesis, let n > 5 and assume that for

every DTDP-tree T” of order less than n there exists a labeling S’ such that (77, 5") € T.

Let T be a DTDP-tree of order n. Let D = (Dy, Ds) be a partition of V(T') into a
TDS D; and a DS Dy;. We now root the tree T' at a diametrical vertex r. Necessarily,
r is a leaf. Let u be a vertex at maximum distance from r. Necessarily, u is a leaf. Let
v be the parent of u, let w be the parent of v, and let x be the parent of w (possibly,
x = ). Since u is at maximum distance from the root r, every child of v is a leaf. Then,

by Observation 3.4, we observe that C'(v) C Dy and {v,w} C D;. In particular, u € D;.

Suppose that T" has a strong support vertex z. Let z; and 25 be two leaf-neighbors of
z in T. By Observation 3.4, we observe that {z1,2:} C Dy and z € Dy. Let T" =T — z.
Then, (D1, Dy \ {z1}) is a partition of V(7") into a TDS D; and a DS Dy \ {z1}. Hence,
T’ is a DTDP-tree. Applying the inductive hypothesis to 7”7, there exists a labeling
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S" = (5,8%) such that (7",5") € T. By Observation 3.1(d), z € S’. Thus, we can
restore the tree T by applying Operation O; to T”. Therefore, (T, S) € T, where S is the
labeling (5%, S5 U {z1}). Hence, if T" has a strong support vertex, then (7,5) € T for
some labeling S, as desired. Hence we may assume that 7" has no strong support vertex.

In particular, d(v) = 2.

Suppose d(w) > 3. Let v" € C(w)\ {v}. Suppose d(v') > 2. By our choice of the vertex
u, every child of v is a leaf. Since T" has no strong support vertex, d(v') = 2. Let u’ be the
child of v’. Then, u' is a leaf. By Observation 3.4, {u,u'} C Dy and {v,v',w} C D;. Let
T =T—{u,v'}. Then, (Dy\{v'}, Do\ {u'}) is a partition of V(T") into a TDS Dy \ {v'}
and a DS D, \ {v'}. Hence, T" is a DTDP-tree. Applying the inductive hypothesis to
T', there exists a labeling S = (5, S%) such that (77,5") € T. By Observation 3.1,
{v,w} C 5’ and u € S%3. Thus, we can restore the tree T by applying Operation O,
to T". Therefore, (T,S) € T, where S is the labeling (S’ U {v'}, S U {u'}). Hence, if
d(v") > 2, then (T, S) € T for some labeling S, as desired. Therefore we may assume that
every child of w, different from v, is a leaf. Thus since T has no strong support vertex,
d(w) = 3 and C(w) = {v,v'}, where ¢' is a leaf. By Observation 3.4, {u,v'} C Dy and
{v,w} C Dy.

Suppose x € D;. Let T" = T — {u,v}. Then, (D; \ {v}, Dy \ {u}) is a partition of
V(T") into a TDS D; \ {v} and a DS D, \ {u}. Hence, T" is a DTDP-tree. Applying the
inductive hypothesis to 7", there exists a labeling S" = (5, S%) such that (77,5") € T.
By Observation 3.1, v' € S and w € 5. Thus, we can restore the tree T by applying
Operation Oy to T". Therefore, (T,S) € T, where S is the labeling (S’ U {v}, S U{u}).
Hence, if x € Dy, then (T,S) € T for some labeling S5, as desired. Thus we may assume
that x € Ds.

We now let 7" = T — v'. Then, (Dy, Dy \ {v'}) is a partition of V(7”) into a TDS
Dy and a DS D, \ {v'}. Hence, T" is a DTDP-tree. Applying the inductive hypothesis
to 7", there exists a labeling S" = (5, S%) such that (77,5") € T. By Observation 3.1,
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{v,w} C 5’ and u € S%. Thus, we can restore the tree T by applying Operation O; to
T'. Hence, (T,S) € T, where S is the labeling (5%, S% U {v'}). We have therefore shown
that if d(w) > 3, then (7, 5) € T for some labeling S, as desired. Thus we may assume
that d(w) = 2. Since n > 5, the vertex x is not the root r of the rooted tree T'. Let y be

the parent of z.

By Observation 3.4, u € Dy and {v,w} C D;. Since D = (Dy, D3) is a partition of
V(T) into a TDS Dy and a DS Ds, we must have that x € D,. Hence, by Observation 3.4,

the vertex x is not a support vertex. In particular, no child of z is a leaf.

Suppose d(z) > 3. Let w’ € C(z) \ {w}. Since no child of z is a leaf, d(w') > 2.
By our choice of the vertex u, the vertex w’ is either a support vertex or is the parent
of a support vertex. Suppose w’ is not the parent of a support vertex. Then, since T
has no strong support vertex, d(w’) = 2 and the child ¢’ of w’ is a leaf. However by
Observation 3.4, this would imply that v" € Dy and {w’, z} € Dy, contradicting the fact
that © € Dy. Hence, w’ must be the parent of a support vertex v’. Let u' be a child
of v". An identical argument as shown with the vertex w, shows that we may assume
d(w') = d(v") = 2. Hence by Observation 3.4, v’ € Dy and {v',w'} C D;. Thus, z € Dy is
adjacent to a vertex of D; different from w. We now consider the tree 7" = T — {u, v, w}.
Then, (D \ {v,w}, Dy \ {u}) is a partition of V(T") into a TDS D; \ {v,w} and a DS
Dy \{u}. Hence, T" is a DTDP-tree. Applying the inductive hypothesis to 7", there exists
a labeling S’ = (9, S%) such that (77,5") € T. By Observation 3.1, {u’, 2} C Sj and
{v/;w'} C 5’. Thus, we can restore the tree T' by applying Operation Oz to T”. Therefore,
(T,S) € T, where S is the labeling (S U {v,w}, S5 U {u}). Hence, if d(z) > 3, then
(T,S) € T for some labeling S, as desired. Therefore we may assume that d(z) = 2. As

observed earlier, {u,x} C Dy and {v,w} C D;.

Suppose y € Dy. We now consider the tree 7" = T — {u, v, w}. Then, (D;\ {v,w}, Dy \
{u}) is a partition of V(7”) into a TDS D; \ {v,w} and a DS D, \ {u}. Hence, 7" is a
DTDP-tree. Applying the inductive hypothesis to T”, there exists a labeling S" = (5, S%)



3.2. DTDP CHARACTERIZATION RESULTS 19

such that (77,5") € T. By Observation 3.1, the leaf x € S%;. Thus, we can restore the
tree T by applying Operation Oz to T". Therefore, (7,5) € T, where S is the labeling
(S U{v,w}, SpU{u}). Hence, if y € Dy, then (T,S) € T for some labeling S, as desired.

Therefore we may assume that y € Ds.

We now consider the tree 77 = T — {u, v, w,z}. Then, (D; \ {v,w}, Dy \ {u,x}) is a
partition of V(7”) into a TDS D; \ {v,w} and a DS Dy \ {u,z}. Hence, 7" is a DTDP-
tree. Applying the inductive hypothesis to 7", there exists a labeling S” = (5, S%) such
that (77,5") € T. If y € S, then we can restore the tree T by applying Operation Oy
to T". If y € S, then we can restore the tree T' by first applying Operation O; to 17"
and then Operation O3 to the resulting tree. In both cases, (T,S) € T, where S is the
labeling (5’ U {v,w}, S5 U {u,z}). Thus, (7,S) € T for some labeling S, as desired.

This completes the necessity, and the proof of Theorem 3.2 is complete. O

3.2.2 Proof of Theorem 3.3

Recall the statement of Theorem 3.3.

Theorem 3.3. The connected DTDP-graphs of order at least 4 are precisely those graphs
G such that (G,S) € G for some labeling S.

Proof. Suppose first that G is a connected graph and (G, S) € G for some labeling S.
By Observation 3.1(c), (Sa, Sg) is a partition of V(G) into a TDS S, and a DS Sg, and
so (G is a connected DTDP-graph. This establishes the sufficiency.

To prove the necessity we proceed by induction on the order n > 4 of a connected
DTDP-graph G. Since every star K ,_; is not a DTDP-graph and since n > 4, we have
that diam(G) > 3, and so G contains P, as a subgraph. If n = 4, then let G’ = P,
be a subgraph of G (possibly, G' = G) obtained from G by removing zero, one, two
or three edges. Then, (G',S) € G, where S is the labeling of a labeled-P; and we can
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restore the graph G from G’ by repeated applications (including the possibility of none)
of Operation Os. Thus, (G, S) € G. This establishes the base case. For the inductive
hypothesis, let n > 5 and assume that for every DTDP-graph G’ of order less than n
there exists a labeling S’ such that (G',S") € G.

Let G be a connected DTDP-graph of order n. Among all partitions D = (Dy, D)
of V(G) into a TDS D; and DS D, of G and among all spanning connected subgraphs
H of G such that D = (Dy, Dy) is a partition of V/(H) into a TDS D; and DS Dy of H
(possibly, H = G, let the partition D = (D;, Dy) and the graph H be chosen so that

(1) | D] is a minimum.

(2) Subject to (1), |E(H)| is minimized.

If there are two adjacent vertices v and v in H that both belong to the DS D,, then
the edge uv could have been removed from H, contradicting the minimality of H. Hence

the set D is an independent set in H.

If H is a tree, then by Theorem 3.2, there exists a labeling S = (S4, Sp) such that
(H,S) € T € G. Thus, we can restore the graph G from H by repeated applications
(including the possibility of none) of Operation Os. Hence, (G, S) € G. We may therefore

assume that H is not a tree, for otherwise the desired result follows.

Since H is not a tree, H must contain a cycle. Let C': viwvvs...vpv1, K > 3, be a

shortest cycle in H (of length k). We proceed further with the following three claims.

Claim 1 The cycle C has the following properties:
(a) V(C)N Dy # 0.
(b) Every vertex of C' in Dy is adjacent in H to some other vertez of C' in D.
(¢) No three consecutive vertices on C are all in D;.
(d) k =0(mod3), and we may assume that v; € Dy for i =1(mod3) and v; € D,
fori=0,2(mod3).
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Proof. (a) If V(C') C Dy, then for any edge e € E(C'), the edge e could be removed from
H; that is, H — e is a connected graph, D; is a TDS of H — e, and D, is a DS of H — e.

This contradicts the minimality of H.

(b) Assume that there is a vertex v of C' in D; with both its neighbors on C' in Ds.
For notational convenience, we may assume that v = vy. Thus, v; € Dy, vo € Dy and
vg3 € Dy. Since D, is an independent set in H, we have that k£ > 4 and that v, € D;. But

then the edge vov3 could be removed from H, contradicting the minimality of H.

(c) Assume that there are three consecutive vertices on C' in D;. For notational con-
venience, we may assume that {vy, v9,v3} C Dy. By (a), k > 4. If vy € Dy, then the edge
vou3 could be removed from H, contradicting the choice of H. Hence vy € Dy. Since Dy
is an independent set in H, we have that either kK = 4 or k£ > 5 and v5 € D;. Suppose
dp(v3) > 3. Then vz has a neighbor v in V(H )\ {ve, v4}. If u € Dy, the edge vovs could be
removed from H, while if w € Dy, the edge v3v, could be removed from H. In both cases
we contradict the choice of H. Hence, dg(v3) = 2. But then (D; \ {vs}, Do U {v3}) is a
partition of V' (H) (and hence V(G)) into a TDS Dy \{vs} and DS DyU{wvs}, contradicting
Condition (1) of the choice of our partition D.

(d) By (a), at least one vertex of C' belongs to Ds. For notational convenience, we may
assume that v; € Ds. Since D, is an independent set in H, vy € D;. By (b), v3 € Dy. If
k = 3, then the desired result follows. Hence we may assume that k£ > 4. By (c), v4 € Ds.
Since D, is an independent set in H, k > 5 and vs € D;. By (b), k > 6 and vg € D;. If
k = 6, then the desired result follows. Hence we may assume that k£ > 7. Continuing in
this way, we have that & = 0 (mod 3) and that v; € D for i = 1 (mod 3) and v; € D, for
i=0,2(mod3). O

Claim 2 If k =3, then (G,S) € G for some labeling S.

Proof. Suppose k = 3. By Claim 1(d), v; € Dy and {ve,v3} C D;. Suppose dy(ve) > 3
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and dg(vs) > 3. Then, vy has a neighbor uy in V(H) \ {v1,v3} and v3 has a neighbor ug
in V(H) \ {vi,va} (possibly us = us). If us € Dy we could have removed the edge vyvs,
contradicting the choice of H. Hence, us € D;. Similarly, u3 € D;. But then we could
have removed the edge vov3, contradicting the choice of H. Hence at least one of v, and vs
has degree 2 in H. Without loss of generality, we may assume that dy(vs) = 2. Suppose
dp(ve) > 3. Then, vy has a neighbor us in V(H) \ {v1,v3} and, as before, uy € D;. But
then (D;\ {vs}, DoU{vs}) is a partition of V(H) (and hence V(G)) into a TDS Dy \ {vs}
and DS Dy U {v3}, contradicting Condition (1) of the choice of our partition D. Hence
dy(ve) = dg(vs) = 2.

Since n > 4 and H is connected, dy(vy) > 3. If Ny(v1) \ {ve,v3} C Ds, let D} =
(D1 \{va}) U{v1} and let Dy = (D3 \ {v1}) U{ve}. Then, D' = (D}, D)) is a partition of
V(G) into a TDS D} and DS D), of G. Further, let H' = H —vv,. Then, H' is a spanning
connected subgraph of G such that D' = (D}, D)) is a partition of V(H') into a TDS
D} and DS D) of H'. However since |D’'| = |D| and |E(H")| < |E(H)|, this contradicts
our choice of the partition D = (Dy, D) and the graph H. Hence at least one vertex in

Ny (v1) \ {v2, v3} belongs to the set D.

Let G' = H — {vq,v3}. Then, (D \ {ve,v3}, Da}) is a partition of V(G’) into a TDS
D1\ {vg,v3} and DS Dy. Hence, G’ is a DTDP-graph. Applying the inductive hypothesis
to G’, there exists a labeling ' = (5, Sg) such that (G, 5") € G. If v; € 5, we can
restore the graph H from G’ by first applying Operation Oy and then Operation O5. We
can then restore the graph G from H by repeated applications of Operation Q5. Hence,
(G,S) € G, where S is the labeling (S U {ve}, S U {v3}). If v; € S, we can restore
the graph H from G’ by applying Operation Og. We can then restore the graph G from
H by repeated applications of Operation Os. Hence, (G, S) € G, where S is the labeling
(S U{vg,v3},S8%). O
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Claim 3 If k > 3, then (G,S) € G for some labeling S.

Proof. Suppose k£ > 3. By Claim 1(d), ¥ = 0(mod3), and v; € D, for i = 1 (mod 3)
and v; € Dy for i = 0,2 (mod3). An identical argument used in the proof of Claim 2,
shows that dy(ve) = dy(vs) = 2. Let G' = H — {vy,v3}. Then, (D; \ {vq,v3}, Do}) is
a partition of V(G’) into a TDS Dy \ {vq,v3} and DS Dy. Hence, G’ is a DTDP-graph.
Applying the inductive hypothesis to G', there exists a labeling S’ = (S, S%;) such that
(G',S") € gG.

If v, € S, we can restore the graph H from G’ by first applying Operation Oy and
then Operation Os. We can then restore the graph G from H by repeated applications of
Operation Os. Hence, (G, S) € G, where S is the labeling (S’yU{vs}, SU{wvs}). Similarly,
if vy € 5, then (G, S) € G, where S is the labeling (5, U{vs}, S5 U{v2}). Hence we may
assume that {vy,v,} C S%. In this case, we can restore the graph H from G’ by applying
Operation O;. We can then restore the graph G from H by repeated applications of
Operation Oy. Hence, (G,S) € G, where S is the labeling (S’ U {vq, v3},5%). O

We now return to the proof of Theorem 3.3. By Claim 2 and Claim 3, (G,S) € G
for some labeling S, as desired. This completes the necessity and also the proof of

Theorem 3.3. O

3.2.3 Proof that G, contains no spanning DTDP-tree

Proof. Recall that GG, is the graph obtained from the disjoint union of k£ > 1 copies of
K3 by adding a path P3 and joining a leaf of the path to one vertex from each copy of
Ks. Forv=1,... k, let u;v;w;u; be the k original copies of K3 and let uvw be the added
path P;, where u is joined to w; for every ¢. The graph Gj is illustrated in Figure 3.4.
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<
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Figure 3.4: The graph Gj.

Then, Gy is a DTDP-graph. We show that Gy does not have a spanning DTDP-tree.
Assume, to the contrary, that G}, has a spanning tree Ty. Let D = (D;, Ds) be a partition
of V(T}) into a TDS D; and a DS Ds. Then, uvw is a path in T} where w is a leaf and
d(v) = 2. Thus, w € Dy while {u,v} € D;. If exactly one of v; and w; is a leaf in T,
say w;, then ww;v;w; is a path in T}, where d(u;) = d(v;) = 2. Thus, w; € Dy, v; € Dy,
u; € Dy, and u € Ds, a contradiction. Hence both v; and w; are leaves in T} with wu;
as their common neighbor. Thus, {v;,w;} C Dy while u; € D;. But then Nu] = Dy,
and so no vertex in D, is adjacent with u, a contradiction. Hence, G, has no spanning

DTDP-tree. O



Chapter 4

Exhaustive DTDP Graphs

In Chapter 2, we showed that if G is a graph of minimum degree at least 2 with no Cj-
component, then V(G) can be partitioned into a dominating set D and a total dominating
set T' (see Theorem 2.1). A characterization of all graphs with disjoint dominating and

total dominating sets was given in Chapter 3.

Recently, several authors have studied the cardinalities of pairs of disjoint dominating
sets in graphs (see, for example, [20, 35, 50, 58, 75, 77]). The context of this research
motivates the question for which graphs Theorem 2.1 is best-possible in the sense that
the union D U T of the two sets necessarily contains all vertices of the graph G. The

following recent result in [60] gives a partial answer to this question.

Theorem 4.1 ([60]) If G is a graph of minimum degree at least 3 with at least one
component different from the Petersen graph, then G contains a dominating set D and a

total dominating set T which are disjoint and satisfy |D| + |T| < |V (G)].

A DT-pair of a graph G is a pair (D,T) of disjoint sets of vertices of G' such that
D is a dominating set and 7' is a total dominating set of G. A DT-pair (D,T) in G
is ezhaustive if |D| 4+ |T'| = |V(G)|. Thus a DT-pair (D,T) in G is non-exhaustive if

25
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|D| + |T| < |[V(G)|. Note that Theorem 2.1 implies that every graph with minimum
degree at least 2 and with no Cs-component, has an exhaustive DT-pair. Using the

notation of Hedetniemi et al. [50], for a graph G we define vy:(G) as follows:

v%4(G) = min{|D| + |T'|: (D, T) is DT-pair of G}.

We call a DT-pair (D, T') whose union D UT has cardinality vv,(G) a vv.(G)-pair. By
Theorem 2.1, vy,(G) exists for every graph G with minimum degree at least 2 and with

no Cs-component. Hence we have the following immediate consequence of Theorem 2.1.

Theorem 4.2 If G is a graph with minimum degree at least 2 and with no Cs-component,

then y(G) < [V(G)].

In this chapter, we characterize the graphs that achieve equality in the upper bound

in Theorem 4.2 and that have no induced C5 subgraph.

Recall that a graph is F'-free if it does not contain F' as an induced subgraph. In
particular, if F' = (5, then we say that the graph is C5-free. The graph obtained from a
complete graph K, where n > 4, by subdividing every edge once, is denoted by K. We
note that |V(K;)| = |V (K,)| + |E(K,)| =n+ (3). We now define the families C and K*

of particular cycles and subdivided complete graphs as follows:

C = {C,: n>3andn #5}
Kr = {K}: n>4}.

We define a vertex as small if it has degree 2, and large if it has degree greater than 2.
For a graph G, we let £(G) and S(G) denote the set of all large and small vertices of G,
respectively. For notational convenience, we simply write £ and S when G is clear from

the context.
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4.1 The Problematic 5-Cycle

In this chapter we study graphs that achieve equality in the upper bound in Theorem 4.2.
If we restrict our attention to graphs with minimum degree at least 3, then a characteri-
zation of graphs is given by Theorem 4.1 which shows the only component is the Petersen

graph.

However the situation becomes much more complicated when we relax the degree con-
dition from minimum degree at least 3 to minimum degree at least 2. In this case a
characterization seems difficult to obtain since there are several families each contain-
ing infinitely many graphs that achieve equality in Theorem 4.2. For example, consider
the following four families of connected graphs different from the 5-cycle with minimum

degree at least 2 that satisfy the property that every DT-pair is exhaustive.

e The Family D: For k£ > 2, let D;, be the connected graph that can be constructed
from k disjoint 5-cycles by identifying a set of £k vertices, one from each cycle, into
one vertex. Let D = {Dy, : k > 2}. The family D is depicted in Figure 4.1(a). We

remark that a graph in the family D is called a daisy in the literature.

e The Family D,: For k£ > 0, we define D,(k) to be the connected graph obtained
from two disjoint 5-cycles by joining a vertex from one of the cycles to a vertex in
the other and subdividing the resulting edge k times. Let D, = {Dy(k) : k > 0}.
The family D, is depicted in Figure 4.1(b). We remark that a graph in the family D,

is called a dumb-bell in the literature.

e The Family D;: For k > 1, let D;(k) be the connected graph that can be con-
structed from k disjoint 5-cycles and a dumb-bell D,(3), defined above, by iden-
tifying a set of k + 1 vertices, one from each cycle and the central vertex of the
dumb-bell; into one vertex. Let Dy = {D;(k) : k > 1}. The family D, is depicted
in Figure 4.1(c).
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e The Family Dy: For k > 1 and ¢ > 1, let Dy(k, ¢) be the connected graph that
can be constructed from k 4+ ¢ disjoint 5-cycles by identifying a set of k£ vertices,
one from each of k cycles, into one vertex u and identifying a set of ¢ vertices, one
from each of the remaining ¢ cycles, into one vertex v and then adding a path of
length 2 joining u and v. Let Dy = {Dy(k): k > 1 and ¢ > 1}. The family D, is
depicted in Figure 4.1(d).

(a) (b) (¢) (d)
Figure 4.1: Graphs containing no non-exhaustive DT-pairs.

It is a routine exercise to check that if G € D U D, U Dy U D,, then vy, (G) = |V(G)|.
We note, however, that such a graph G contains an induced 5-cycle. Several other graphs
G that contain induced 5-cycles and satisfy v7:(G) = |V(G)| can readily be constructed.
These families demonstrate that a characterization of general graphs that achieve equality
in Theorem 4.2 seems difficult to obtain. We therefore restrict our attention to graphs

with no induced 5-cycle.

4.2 Exhaustive DTDP Result

Our aim in this chapter is to characterize the Cs-free graphs which achieve equality in

Theorem 4.2. We shall prove:

Theorem 4.3 Let G be a connected Cs-free graph with 6(G) > 2. Then, vy(G) = |V (G)|
if and only of G € CUK*.
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We will refer to a graph G as an n-minimal graph if G has order n and G is edge-
minimal with respect to satisfying the following three conditions: (i) §(G) > 2, (ii) G is
connected, (iii) yy(G) = n. We shall need the following key lemma which shows that

removing edges can never lead to a violation of condition (iii) above.

Lemma 4.4 Let G be a connected Cs-free graph of order n with 6(G) > 2 and vy,(G) =
n. If G is not n-minimal, then G contains an n-minimal spanning subgraph with no

induced 5-cycle.

The following result characterizes n-minimal Cs-free graphs and is useful in the proof

of our main result.

Theorem 4.5 Let G be a Cs-free graph of order n. Then, G is n-minimal if and only if
GeCuKkr.

We note that every graph G € DUD,UD;UDs is an n-minimal graph but, as remarked
earlier, such graphs are not Cs-free. We shall proceed as follows. We first prove a number
of useful preliminary results in Section 4.2.1. We then prove Lemma 4.4 in Section 4.2.2
and Theorem 4.5 in Section 4.2.3, before presenting a proof of our main result, namely

Theorem 4.3, in Section 4.2.4.

4.2.1 Preliminary Results

In this section, we present several preliminary results that will prove to be useful. We

begin with a proof of our key lemma.

Lemma 4.6 IfG = C,, wheren #5, and (D, T) is a DT-pair in G, then |D|+ |T| = n.
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Proof. Let G be the cycle vjvy...v,, where n # 5. By Theorem 2.1, G has a DT-
pair. For the sake of contradiction, suppose that G has a DT-pair (D,T) such that
|D| + |T'| < n. Renaming vertices, if necessary, we may assume that vo ¢ D UT. Then,
|D N {v,v3}| > 1 and |T N {vy,v3}] > 1. We may assume that vy € D and v3 € T. If
n = 3, then v3 is not totally dominated by 7', a contradiction. Hence, n > 4. If vy ¢ D,
then v3 is not dominated by D, a contradiction. Hence, vy, € D. But then v3 is not totally

dominated by 7', a contradiction. O

Lemma 4.7 If G € K* and (D,T) is a DT-pair in G, then |D| + |T| = |V (G)].

Proof. Let G € K*. Then, G may be obtained from the complete graph K, for some
¢ > 4, by subdividing every edge exactly once. By Theorem 2.1, there exists a DT-pair
(D, T) in G. If there are two vertices in £ that do not belong to 7', then the vertex in S
with these two vertices as its neighbors is not totally dominated by 7', a contradiction.
Hence, T contains all vertices in L, except possibly one. If £ C T, then since every
degree-2 vertex is dominated by D, we have that & C D. But then no vertex in L is
totally dominated by 7', a contradiction. Hence, exactly one vertex, v say, in £ is not
in 7. Since every vertex in S \ N(v) has both its neighbors in 7', and since S \ N(v) is
dominated by D, we have that S \ N(v) C D. Furthermore, in order for 7" to totally
dominate £ \ {v} we have that N(v) C T. But then v € D in order for the set D
to dominate N(v). Thus, D = (S\ N(v)) U {v} and T = (£ \ {v}) U N(v), and so
|D|+ |T| = |S|+ |£| = |[V(G)], as desired. O

The following observation follows from the proofs of Lemmas 4.6 and 4.7.

Observation 4.8 Let G € CUK* and let v € V(G). Then, G has the following proper-
ties.

(a) There exist DT-pairs (D1, T1) and (D2, Ty) with v € Dy and with v € Ts.
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(b) If G € C and wv € E(Q), there exist DT-pairs (D1,T1) and (Da,Ty) with
{u,v} €Ty and with u € Dy and v € Ts.

(¢) If G € K* and v € L, then there ezists a DT-pair (D,T) with v € D and
N(v) C T. Furthermore, every vertex in L\ {v} belongs to T and has exactly

one neighbor in T' with the remaining neighbors all in D.

Lemma 4.9 Let G = (V,E) be a cycle C,,, where n # 5, and let v € V. Then there
exists a pair (D, T) of disjoint sets of vertices in G such that |D| + |T| <n, v €T, and
either

(i) D dominates V' and T totally dominates V' \ {v}, or

(ii) D dominates V' \ {v} and T totally dominates V.

Proof. Let G be the cycle vyvy...v,v;, where n # 5 and where v = vy. If n = 3, let
D = {vy} and T = {v}, while if n = 4, let D = {v3} and T = {vy,v,}. If n > 6 and
n = 0 (mod3), let v; € D if + = 0(mod 3) and let v; € T if ¢ = 1,2 (mod 3) and i # 2. If
n > 6 and n = 1(mod3), let v; € D if i = 0(mod3) and let v; € T if i = 1,2 (mod 3)
and ¢ ¢ {2,n}, and let v, € D. If n > 6 and n = 2 (mod 3), let v; € D if i = 0 (mod 3)
and let v; € T'if i = 1,2 (mod 3) and i ¢ {2,n — 1}, and let v,_1 € D. In all cases, the

pair (D, T) satisfies the requirements of the lemma. O

Lemma 4.10 Let F' # C5 be a connected graph with 6(F) > 2 and let G be obtained from
F by subdividing an edge of F three times. If yvy(G) = |V(G)|, then yy(F) = |V (F)|.

Proof. We use a proof by contrapositive. Suppose that yv,(F) < |V (F)|. We show that
11(G) < [V(G)|. Let (Dp,Tr) be a yy(F)-pair in F. Then, [Dp| + [Tp| = y0(F) <
|[V(F)|. Let e = uv be the edge of F' that is subdivided three times to produce the path

uv1v9v3v in G. Note that u and v are not adjacent in G.

Suppose that TpN{u,v} # (). Renaming vertices, if necessary, we may assume that u €

Tp. IfveTp,let D= DpU{vy} andlet T'= TrU{vy,v3}. If v € Dp, let D = DpU{v;}



32 CHAPTER 4. EXHAUSTIVE DTDP GRAPHS

and let 7= Tr U{vg,v3}. If v ¢ DpUTp, let D = Dp U {ve} and let T = Tp U {v,v3}.
Then, (D,T) is a DT-pair in G with |D|+ |T| = |Dg|+ |Tr|+3 < |[V(F)|+ 3 = |[V(G)|.
Hence, 77(G) < |V(G)|, as desired. Thus we may assume that Tr N {u,v} = 0.

Suppose that Dp N {u,v} # (). Renaming vertices, if necessary, we may assume that
u € Dp. In this case, let D = DpU{vs} and let T' = TrU{v1, v}, and once again (D, T)
is a DT-pair in G with |D| + |T| < |[V(G)|. Thus we may assume that Dr N {u,v} = 0.
Now, |Dp| + |Tr| < |V(F)| — 2. We note that each of u and v is adjacent to a vertex
in Dp and to a vertex in Tp. We now let D = Dp U {v,v1} and let T' = T U {vq, v3}.
Then, (D, T) is a DT-pair in G with |D|+ |T| = |Dp| +|Tr| +4 < |[V(F)| +2 < |[V(G)].
Hence, v%:(G) < |[V(G)|. D

We remark that the converse of Lemma 4.10 is not necessarily true.

Lemma 4.11 Let G be the graph obtained from k > 2 disjoint cycles Fy, Fy, ..., Fy of

lengths ny,no, . .., Nk, respectively, by identifying a set of k vertices, one from each cycle,
into one vertex called v. If n; # 5 for i = 1,2,...,k, then G has a non-erhaustive
DT-pair.

Proof. Let G be the graph defined in the statement of the lemma. For i € {1,2,... &k},
let v; be the vertex of F; that was identified into the vertex v. Let (Dy,T}) be a pair
of disjoint sets of vertices in Fj that satisfies the requirements of Lemma 4.9 for the
graph F| with v; the specified vertex in the cycle. Then, vy € Ty, |D;| + |T1| < ny, and
either (i) D; dominates V' (F}) and T totally dominates V (F})\ {v;} or (ii) D; dominates
V(Fy) \ {v1} and T} totally dominates V' (F}). For each i € {2,...,k}, F; € C and hence,
by Observation 4.8(a), there exists a DT-pair (D;,T;) in F; such that v; € T;. Let

D= UDi and T = (U(T \ {vi})> U {v}.

=1
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Then, (D, T) is a non-exhaustive DT-pair in G. O

Lemma 4.12 If G # C, is a Cs-free hamiltonian graph of order n, then yy,(G) < n.

Proof. Let G # C, be a Cs-free hamiltonian graph of order n and let C' be a hamiltonian
cycle in G. Thus, every edge in E(G) \ E(C) is a chord of C' in G. Among all chords of
C, let uv be chosen so that k = d¢(u,v) is minimized. Since a chord of C' is not an edge
of C, we note that k > 2. Let P: ugu; ... us be a shortest u-v path in C, where u = g
and v = ug, and let C” be the cycle ugu; ... ugug. By our choice of uv, C’ is an induced
cycle in G. If kK =4, then C” is an induced 5-cycle in G, contradicting the fact that G is
Cs-free. Hence, C’ € C.

Let vouy ...vp be the v-u path in C not containing uy, where v = vy and u = wvy.
Thus, C is the cycle uguy ... ugv1vy... v, and n = k + £. Since k = do(u,v), we note
that £ > k > 2. We now apply Observation 4.8(b) to the cycle C" € C as follows. If
¢ =0,1(mod3), let (D',T") be a DT-pair in C” such that {u,v} = {ug,ux} C 7", while
if £ =2(mod3), let (D',T") be a DT-pair in C’ such that v = ug € D’ and v = u; € T".
Let D" ={v; | i =2(mod3) and 1 < i < ¢} and let 7" = {v; | i = 0,1 (mod 3) and 1 <
i</l}. Let D=D'UD" and let T'=T"UT"”. We note that vy ¢ DUT and that (D, T) is
a DT-pair in C' +uv. Hence, (D, T) is a non-exhaustive DT-pair in C' + uv and therefore
in G, and so 7%(G) < n. O

Lemma 4.13 Let G be a connected Cs-free graph of order n. If there exists a spanning
proper subgraph F of G such that F' € K*, then vv,(G) < n.

Proof. Let G be a connected Cjs-free graph of order n and suppose there exists a spanning
proper subgraph F' of G such that F' € K*. Among all edges in E(G) \ E(F), let the
edge uv be chosen so that dp(u) + dp(v) is maximized and, subject to that, the number

of common neighbors of © and v in F' is maximized. Let [ = F + uwv.
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By definition of the family £*, we note that L(F') > 4. Suppose {u,v} C L(F). Let
w € L(F)\ {u,v}. Let v be the common neighbor of v and w in F, and let v’ be the
common neighbor of v and w in F'. By Observation 4.8(c), there exists a DT-pair (D, T)
in F' such that w € D, {«/,v'} C N(w) C T and {u,v} C T. Now (D,T \ {u'}) is a
non-exhaustive DT-pair in F’ and therefore in GG, and so yy(G) < n. Hence we may

assume, without loss of generality, that dp(u) = 2.

Suppose v € L(F). Since uwv ¢ E(F), we note that v ¢ N(u). Let w € N(u). Then,
w € L(F). Let v" be the common neighbor of v and w. By Observation 4.8(c), there
exists a DT-pair (D,T) in F such that w € D, {u,v'} C N(w) C T and v € T. Now
(D, T\ {v'}) is a non-exhaustive DT-pair in F” and therefore in G, and so vy(G) < n.

Hence we may assume that dp(v) = 2.

Let Np(u) = {uy,us} and let Np(v) = {vy,v2}. Then, {uj,us} C L(F) and {vy,v9} C
L(F). Suppose that u and v have no common neighbor in F'. Then, {uy, us }N{vy,v2} = 0.
Let w be the common neighbor of u; and v, in F'. Then, C": uuywvvu is a 5-cycle in F’
and hence in G. By our choice of the edge wv, the cycle C’ is an induced 5-cycle in G,
contradicting the fact that G is Cs-free. Hence, u and v have a common neighbor in F
and we may assume that u; = v;. By Observation 4.8(c), there exists a DT-pair (D, T)
in F' such that vy € D, {u,v} C N(uy) C T and {ug,v2} C T. Furthermore, we note
that every neighbor of u, in F', different from u, is totally dominated by 7"\ {us}. Thus,
(D, T\ {us}) is a non-exhaustive DT-pair in F" and therefore in G, and so yy(G) < n. O

We now combine Lemma 4.12 and Lemma 4.13 into the following result.

Lemma 4.14 Let G be a connected Cs-free graph of order n. If there exists a spanning
proper subgraph F of G such that F € C U K*, then 7y(G) < n.
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4.2.2 Proof of Lemma 4.4

Recall the statement of Lemma 4.4.

Lemma 4.4. Let G be a connected Cs-free graph of order n with 6(G) > 2 and vy, (G) =
n. If G is not n-minimal, then G contains an n-minimal spanning subgraph with no

mduced 5-cycle.

Proof. Let G = (V, E) be the graph defined in the statement of the lemma such that
G is not n-minimal. By removing edges from G, we can obtain an n-minimal spanning
subgraph of GG. From all such subgraphs, choose F' so that the number of induced 5-cycles
in F' is minimized. For the sake of contradiction, suppose that F' contains the induced
5-cycle C': viv9ugvgusvy. If n = 5, then since G is Cs-free we may assume, relabeling
vertices if necessary, that vjv3 € E. But then ({vs,v4},{v1,v5}) is a non-exhaustive
DT-pair in G, a contradiction. Hence, n # 5 and since F' is connected, we may assume

dp(vy) > 3. By the minimality of F, dp(v2) = dp(vs) = 2.

For the sake of contradiction, suppose that dp(v3) > 3. Then by the minimality of
F, dp(vy) = 2. If vouy € E, then the graph obtained from F' by adding this edge and
removing the edge vivy is an n-minimal spanning subgraph of G' containing fewer induced
5-cycles than F'| contradicting the choice of F. Hence, vovy ¢ E. Similarly, vovs ¢ E.
If vjvy € E, then the graph obtained from F' by adding this edge and removing the
edge v3v,4 is an n-minimal spanning subgraph of G with fewer induced 5-cycles than F,
contradicting the choice of F'. Hence, vivy ¢ E and, by a similar argument, vzvs ¢ E. If
vivg € E, let F' = F 4 vyv3. By Theorem 2.1, there exists a DT-pair (D’,7") in F’. To
totally dominate v, we may assume, without loss of generality, that v; € T". If v3 € D',
then ((D'\ {va,v5}) U{vs}, (T"\ {v2,v4}) U {vs}) is a non-exhaustive DT-pair in F” and
hence in GG, a contradiction. Hence, v3 € T". To dominate vy, we therefore have that
ve € D'. But then ((D'\ {vs})U{vs}, T\ {v4, v5}) is a non-exhaustive DT-pair in F’ and

hence in G, again a contradiction. Thus, vyv3 ¢ E. Hence, C is an induced 5-cycle in G,
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contradicting the fact that G is Cs-free. Therefore, dp(vs) = 2. Similarly, dp(vs) = 2.

If vov; € E for some i € {4,5}, then the graph obtained from F' by adding this edge and
removing the edge v1v, is an n-minimal spanning subgraph of G' containing fewer induced
5-cycles than F, contradicting the choice of F'. Hence, vovs ¢ E and vvy ¢ E. By a
similar argument, vsvs ¢ E. If vju3 € E, let F' = F +vjv3. By Theorem 2.1, there exists
a DT-pair (D', T") in F'. If vy € T", then ((D’\ {vq, v5})U{vs, va}, (T"\ {ve, v3,v4})U{v5})
is a non-exhaustive DT-pair in F” and hence in G, a contradiction. Hence, v; € D’. But
then (D' \ {ve,v3,v4}) U{ws}, (T" \ {ve,vs5}) U{vs,v4}) is a non-exhaustive DT-pair in
F’ and hence in G, again a contradiction. Hence, vjv3 ¢ E. Similarly, v;u4 ¢ E. Thus,

C' is an induced 5-cycle in GG, contradicting the fact that G is Cs-free. O

4.2.3 Proof of Theorem 4.5

We are now in a position to prove our key preliminary result, namely Theorem 4.5.
Recall that a graph G is an n-minimal graph if G has order n and G is edge-minimal with
respect to satisfying the following three conditions: (i) §(G) > 2, (ii) G is connected, (iii)
¥7:(G) = n. Recall the statement of Theorem 4.5.

Theorem 4.5. Let G be a Cs-free graph of order n. Then, G is n-minimal if and only
if G e CUK .

Proof. If G € C UK*, then, by definition of the families C and K*, §(G) > 2 and G is
connected. By Lemmas 4.6 and 4.7, 7y;(G) = n. Furthermore, §(G —¢) = 1 for any edge

e in G, and so G is n-minimal. This establishes the sufficiency.

To prove the necessity, we proceed by induction on the order n of an n-minimal Cs-free
graph G. If n € {3,4}, then G = C,, € C. Suppose n = 5. Since G # Cs, either G
contains a (3, in which case GG can be obtained from two disjoint 3-cycles by identifying

a vertex from each cycle into one vertex, or GG contains a C; but no (3, in which case
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G = K,3. In both cases, there exists a non-exhaustive (D, T)-pair in G, contradicting

the fact that G is n-minimal. Hence, n # 5. This establishes the base cases.

Let n > 6 and assume that the result is true for all n’-minimal Cj-free graphs, where
3<n <n. Let G = (V,FE) be an n-minimal Cs-free graph. Before proceeding further,
we present two observations that will be useful in what follows. If e is an edge of GG, then

(G — €) > vy (G). Hence, by the minimality of GG, we have the following observation.

Observation 4.15 Ife € E, then either e is a bridge of G or 6(G —e) = 1.

Observation 4.16 If G’ is a connected subgraph of G of order n’ < n with 6(G") > 2,
then either G' € CUK* or yv(G') <n'.

Proof. Let G’ be a connected subgraph of G of order n’ < n with §(G") > 2. Suppose
¥1(G") = n'. Then, G' contains a spanning subgraph G’ which is n/-minimal. By
induction, G” € C U K*. If G” is a proper subgraph of G’, then Lemma 4.4 implies a

contradiction. Hence, G' = G”, and so G' €e CUK*. O

In what follows, we simply write £ rather than £(G) and S rather than S(G) when
G is clear from the context. If |£| = 0, then G = C,, and, since G is Cs-free, G € C
and we are done. Hence, we may assume that |£| > 1. If |£]| = 1, then G satisfies the
conditions of Lemma 4.11 and thus has a non-exhaustive DT-pair, contradicting the fact
that G is n-minimal. Hence, |£| > 2. We prove the following claim about the set £ of

large vertices in G.

Claim A L is an independent set in G.

Proof. For the sake of contradiction, suppose that {u,v} C £ with uv € E. Then,

by Observation 4.15, uv is a bridge of G. Let G, and G, denote the components of
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G — uv containing u and v respectively. We note that vv,(G) < v%(G.) + v (G,). If
Y1 (Gy) < |V(Gu)| or v14(G,) < |[V(G,)], then 7%(G) < n, a contradiction. Hence,
Y11 (Gy) = |V(G,)| and yy(G,) = |V(G,)|. Therefore, by Observation 4.16, {G,, G,} C
CUK*. If G, € C, then, by Lemma 4.9, there exists a pair (D;,T}) of disjoint sets of
vertices in G, such that v € T, |D1|+ 11| < |V (G,)|, and either (i) D; dominates V(G,,)
and 77 totally dominates V(G,,) \ {u} or (ii) D; dominates V(G,) \ {u} and T} totally
dominates V(G,). Using Observation 4.8(a), let (D2, T3) be a DT-pair in G, with v € T}
if (i) holds and v € Dy if (ii) holds. In both cases, (D; U Do, T} UT5) is a non-exhaustive
DT-pair in G, a contradiction. Hence, GG, € K*. Similarly, G, € IC*.

Let «' be a neighbor of v in G,. Since uu’ is not a bridge in G, the edge uu’ is
not a bridge in G, and so, by Observation 4.15, §(G — wu') = 1. Since dg(u) > 3,
we note that dg_,(u) > 2, implying that dg(v') = 2 and so dg, (v') = 2. Let u” be
the neighbor of u’ distinct from u. Since every edge in G, is incident with a vertex of
large degree and a vertex of small degree, dg,(u) > 3 and dg,(u”) > 3. Therefore, by
Observation 4.8(c), there exists a DT-pair (D;,77) such that «” € Dy, v’ € N(u") C Ty
and u € T;. By Observation 4.8(a), there exists a DT-pair (Ds,Ts) in G, with v € Ts.
Thus, (DU Do, Th UT, \ {v'}) is a non-exhaustive DT-pair in G, a contradiction. Hence,

we conclude that £ is an independent set in G. O

Let R be any component of G — £ and note that R is a path. If R has only one vertex,
or has at least two vertices with the two ends of R adjacent in G to different large vertices,

then we say that R is a 2-path. Otherwise we say that R is a 2-handle.
Claim B Fvery 2-path in G contains at most two vertices.
Proof. Let P: vy ...v; be a longest 2-path in G and let vy and v, 1 be the large vertices

that are adjacent in G to v; and vy, respectively. By definition of a 2-path, we note

that vy # viy1. For the sake of contradiction, suppose that £k > 3. Let F' be the graph
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obtained from G by deleting the vertices vy, v and v3 and adding the edge vyvs. Then
G can be obtained from F' by subdividing an edge of F' three times. Since L(G) = L(F)
and |L£(G)| > 2, we note that F' is not a cycle. In particular, F' # C5. By construction,
F is a connected graph with 6(F) > 2. Hence, by Lemma 4.10, y%(F) = |[V(F)|. We

proceed further with a subclaim showing that F'is Cs-free.

Subclaim B1 F' is C5-free.

Proof. Suppose that F' contains an induced 5-cycle C. Since G is Cs-free, we note that
C' contains the edge vyvy and therefore k € {3,4,5}. Suppose that k = 3. Let C be the
cycle vowiwewszvsvy. We note that either wiwows is a 2-path in G or wy € L. We now
consider the graph F’ = F' — vyvs and note that F” is a connected subgraph of G with
S(F') > 2 and V(F') = V(F). Further, |V(F")| > v%(F') > yy(F) = |V(F)|, and so
vy (EF') = |V(F")|. By Observation 4.16, F' € C U K*. We note that vpwiwewsvy is a
path in F’. If I’ € C, then, by our choice of P we have that F' € {Cg, C7,Cs}. In all
three cases, we can find a DT-pair (D’,7") in F’ such that {vg,v,} C T'. If F/ € K*,
then since w; and ws have degree 2 in both G and F’, we note that {vg, vy, wa} C L(F")
and by Observation 4.8(c), there exists a DT-pair (D’,T") in F' such that ws € D’ and
{vo,v4} C T'. But then (D’ U {vo},T7" U {v1}) is a non-exhaustive DT-pair in G, a

contradiction. Hence, k € {4,5}.

Suppose that k& = 4. Let C be the cycle vgwwovsvavg. We note that, since £ is an
independent set, wjws is a 2-path in G. We now consider the graph F' = F' — v, and
note that F” is a connected subgraph of G with §(F") > 2. If vy (F') < |[V(F")|, let
(D', T") be a yy(F')-pair. But then (D' U {vy,v4},T" U {vg,v3}) is a non-exhaustive
DT-pair in G, a contradiction. Hence, yy.(F') = [V (F")|, and so by Observation 4.16,
F’' € CUK*. Since both ends of the edge wywe € E(F') are small vertices in F”, we note
that I’ ¢ K*. Hence, F’ € C. By Observation 4.8(b), there exists a DT-pair (D’,7") in
F’" such that {vg,w,} C T". Necessarily, wy € D'. If vz € T, let D = D’ U {vq,v3} and
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T = (T'\{wi}) U{vi,v4}. lfvs € D', let D = D" U{ve} and T =T" U {v3,v4}. In both

cases, (D, T) is a non-exhaustive DT-pair in G, a contradiction. Hence, k = 5.

Let C' be the cycle vyvsvsv6v"v9. We note that, since £ is an independent set, v' € S(G)
and N(v') = {vo,v6}. We now consider the graph F’ = F' — {v4,v5} and note that F”
is a connected graph with §(F’) > 2. Furthermore, F’ is a subgraph of G and hence
F’' # Cs. Let (D',T") be a yy(F')-pair. In order to totally dominate the vertex v’ in
F', {vo,v6} NT'| > 0. We may assume, without loss of generality, that vy € 7. But
then (D'U{wvy,vs}, T U{vs,v4}) is a non-exhaustive DT-pair in G, a contradiction. This

completes the proof of Subclaim B1. O

We now return to the proof of Claim B. By Subclaim B1, the graph F'is a connected
Cs-free graph with §(F) > 2 that satisfies v (F) = |V(F)|. Let " = n — 3, and so
[V(F)| = n/. If F is not n-minimal, then by Lemma 4.4, F' contains an n/-minimal
spanning subgraph £’ with no induced 5-cycle. But then, by the induction hypothesis,
F’ € CUK* and therefore, by Lemma 4.14, vy, (F) < n’ = |V (F')|, a contradiction. Hence,
F'is n’-minimal, and by the induction hypothesis, F' € C U K*. As observed earlier, F' is
not a cycle, and so F' € K*. Since L(G) = L(F'), we note that vy € L(F') and that k = 4.
Let w be a large vertex different from vy and vs. Let v{, be the common neighbor of v
and w in F', and let vf be the common neighbor of v5 and w in F. By Observation 4.8(c),
there exists a DT-pair (D', T") such that w € D', {v{, v;} C N(w) C T" and {vg, vs} C T".
But now ((D"\ {v4}) U {va,vs}, (T"\ {v(}) U{v1,v4}) is a non-exhaustive DT-pair in G,

a contradiction. O
Claim C Fwvery 2-path in G contains exactly one vertex.
Proof. Let P: vy ...v; be a longest 2-path in G and let vy and v, 1 be the large vertices

that are adjacent in GG to v; and vy, respectively. We show that £ = 1. By Claim B,
k < 2. For the sake of contradiction, suppose that k = 2. Let F' = G — {vy, v2}.
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Suppose that F' is disconnected. Let F} and F, denote the components containing vg
and vs, respectively. Then, F' = F} U F». We consider first the case where v, (F}) <
|V (F1)| and vy (F2) < |V(F2)|. Let (Dy,T1) and (D, T5) be non-exhaustive DT-pairs
in F} and Fy, respectively. If vy ¢ D; then (D; U Dy U {vo}, 71 U Ty U {vg,v1}) is a
non-exhaustive DT-pair in G, a contradiction. Therefore, vy € D;. Similarly, v3 €
Dy. But then (D; U Do, Ty U T3 U {v,v2}) is a non-exhaustive DT-pair in G, again a
contradiction. Hence, without loss of generality, we may assume that vy, (Fy) = |V (F1)|.
By Observation 4.16, F; € C U K* and therefore, by Observation 4.8(a), there is a DT-
pair (Dy,Ty) in Fy with vy € Ty. If y3(Fy) = |V(F3)|, then, similarly, F» € C U K* and
there is a DT-pair (Dy,Ts) in Fy with vg € Ty. But then (D; U Dy U{v1}, 71 UT3) is a
non-exhaustive DT-pair in G, a contradiction. Thus, vy:(Fy) < |V(Fy)|. As before, let
(Do, T5) be a non-exhaustive DT-pair in F». But then (D; U Dy U{vy}, Th UTo, U{vy}) is

a non-exhaustive DT-pair in (G, again a contradiction. Hence, F' is connected.

Suppose Yy(F) < |[V(F)|. Let (D, T) be a yy(F)-pair. If vy € T, then (DU {vy}, T U
{v1}) is a non-exhaustive DT-pair in G, a contradiction. Therefore, vy ¢ T'. Similarly,
vs ¢ T. In order to totally dominate vy in F', there is a vertex © € N(vg) NT. Since £
is an independent set in G, dg(z) = dp(z) = 2. Let N(x) = {vg,y}. In order to totally
dominate x, we note that y € T'. In order to dominate x, we note that vy € D. Similarly,
vs € D. But then (D, T U {vy,v9}) is a non-exhaustive DT-pair in G, a contradiction.
Hence, y3(F) = [V(F)].

By Observation 4.16, F' € C U K*. Suppose F' € K*. Since every neighbor of vy is a
degree-2 vertex in G and hence in F, we note that vy € L(F). Similarly, v € L(F).
We note that vyvs is not an edge of F. Let v’ be the common neighbor of vy and v3 in
F. But then vgvivavsv'vg is an induced 5-cycle in G, contradicting the fact that G is
Cs-free. Hence, F' ¢ K*, and so F' € C. Since G is Cs-free, we note that vy and v3 have
no common neighbor in F'. Hence, by the choice of P, we note that ' = Cg and that

dp(vo,v3) = 3. Let F be the cycle wow; ... wswy where wy = vy and wy = v3. Then,
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({wy, wy,v1}, {wo, we, w3, ws}) is a non-exhaustive DT-pair in G, a contradiction. O

Claim D There is no 2-handle in G.

Proof. For the sake of contradiction, suppose that there is a 2-handle in G. Among all
2-handles in G, let P: vivy. .. v, have maximum length. Let v be the common neighbor
of v; and vi. We note that v € L. Further, we note that £ > 2 and since G is Cs-free,
k # 4. Let C be the cycle vvyvs ... vv and let v’ be a neighbor of v not on C'. Since £

is an independent set in G, dg(v') = 2.

Suppose dg(v) > 4. Let F' = G — V(P). Then, F' is a connected Cs-free graph with
I(F) =2. If y(F) < |V(F)|, let (Dy1,T1) be a yy(F)-pair. If yy,(F) = |V (F)|, then by
Observation 4.16, F' € CU K* and let (D;,7T}) be a DT-pair in F' such that v in 77. We
note that such a pair exists by Observation 4.8(a). If v € Dy, let (Do, T5) be a DT-pair in
C' such that v € Dy. Once again, such a pair exists by Observation 4.8(a). If v € T}, let
(Dy, Ty) be a pair of disjoint sets of vertices in C' such that |Dy|+| 15| < [V (C)|, v € T, and
either (i) Dy dominates V(C') and T, totally dominates V(C') \ {v}, or (ii) Dy dominates
V(C) \ {v} and T totally dominates V(C). In all cases, (Dy U Do, T} U T3) is a non-

exhaustive DT-pair in G, a contradiction. Hence, de(v) = 3, and so N(v) = {vy, vy, v'}.

We note that, since vv’ is a bridge in G, the degree-2 vertex v" belongs to a 2-path in
G. Let N(v') = {v,w}. By Claim C, w € L. Let F = G — (V(C) U {v'}). Then, F is
a connected Cj-free graph with 6(F) = 2. Let (Dy,T3) be a vy (F)-pair. If w € Dy, let
(D3, T3) be a DT-pair in C' such that v € Ty, If w € T, let (D3, T3) be a DT-pair in C
such that v € Ds. In both cases, we note that such a pair exists by Observation 4.8(a).
Furthermore, in both cases, (D; U Dy, T} U T3) is a non-exhaustive DT-pair in G, a
contradiction. Hence, w ¢ Dy U T} and (Dy,T}) is a non-exhaustive DT-pair in F'. We
now let (Dg,Ty) be a DT-pair in C such that v € Ty. Then, (D; U Dy U {v'}, T} UTs) is

a non-exhaustive DT-pair in GG, a contradiction. O
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The following result is an immediate consequence of Claims C and D.

Claim E The graph G is a bipartite graph with partite sets L and S.

We show next that a common neighbor of two large vertices is unique.

Claim F FEvery two vertices in L have at most one common neighbor.

Proof. For the sake of contradiction, suppose that {u,v} C £ and w and w’ are distinct
common neighbors of v and v. Let FF = G — w’. Then, F is a connected Cs-free
graph with 0(F) = 2. Suppose vy (F) < |V(F)|. Let (D,T) be a yy,(F)-pair. Since
T totally dominates w, {u,v} NT # (. But then (D U {w'},T) is a non-exhaustive
DT-pair in G, a contradiction. Hence, yv.(F) = |V(F)|, and so, by Observation 4.16,
F e CUK*. If F € K* then, since dp(w) = 2, we have that {u,v} C L(F). Therefore,
by Observation 4.8(c), there exists a DT-pair (D,T) in F such that v € D and v € T.
But then (D, T) is a non-exhaustive DT-pair in G, a contradiction. Hence, F' ¢ K*, and

so F € C. But then F' = (4, and so n = 5, a contradiction. O

Claim G Fvery two vertices in L have exactly one common neighbor.

Proof. By Claim F, every two vertices in £ have at most one common neighbor. Hence
it suffices to show that every two vertices in £ have a common neighbor. For the sake of
contradiction, suppose that {u,v} C £ and that u and v have no common neighbor. Let
N(u) = {uy,ug,...,u.}, and so dg(u) = r. By Claim E, we note that N(u) C S. For
i=1,2,...,r, let N(u;) = {u,v;}. By Claim E, we note that v; € L for each such i. By
Claim F, v; # v, for 1 <i < j <r. Let F = G — NJu]. Then, F'is a Cs-free graph with
d(F') = 2. We note that F' is possibly disconnected.

Suppose Yy(F) < |V(F)|. Let (D,T) be a yy(F)-pair. For i = 1,2,...,r, let w;

be a neighbor of v; in T. By Claim E, w; € S§. Hence, since D dominates and T
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totally dominates w;, we note that v; € DUT. If v; € D for some i, 1 < i < 7,
then (DU (N(u) \ {w;}), T U{u,u;}) is a non-exhaustive DT-pair in G, a contradiction.
Therefore, {vy, va,...,v.} CT. But then (DU{u}, TU{u;}) is a non-exhaustive DT-pair

in G, again a contradiction. Hence, vy(F) = |V (F)].

Suppose F' is disconnected. Let Fi, Fy, ..., F} be the components in F'. By assumption,
t > 2. Since Yy (F') = |V(F)|, we note that yy(F;) = |V (F;)| foralli = 1,2,...,t. Hence,
by Observation 4.16, F; € C U K*. Switching indices if necessary, we may assume that
v; € F; for © = 1,2,...,t. For each such i, let (D;,T;) be a DT-pair in F; such that
v; € D;. We note that such pairs exist by Observation 4.8(a). Let D = |Ji_, D; and let
T =U._, T;. Then, (D,T) is a DT-pair in F and (D U (N (u) \ {u1,ua}), T U {u,u,}) is

a non-exhaustive DT-pair in GG, a contradiction. Hence, F' is connected.

By Observation 4.16, ' € C U K*. Since dp(v) = dg(v) > 3, F is not a cycle and
therefore F' € K*. By Claim E, the set £(G) \ {u} = L(F'). In particular, each vertex
v; € L(F) for i = 1,2,...,r. By Observation 4.8(c), there exists a DT-pair (D,T) in F
such that v € D and {v1, v, ... v} C T. But then (DU{u}, TU{u;}) is a non-exhaustive

DT-pair in G, a contradiction. O

We now return to the proof of Theorem 4.5. By Claims E and G, the graph G is a
bipartite graph with partite sets £ and S where every two vertices in £ have exactly
one common neighbor. Hence, G € K*. This completes the necessity and the proof of

Theorem 4.5. O

4.2.4 Proof of Theorem 4.3

We are now in a position to present a proof of our main result, namely Theorem 4.3.

Recall the statement of Theorem 4.3.
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Theorem 4.3. Let G be a connected Cs-free graph with 6(G) > 2. Then, vy(G) = |V (G)|
if and only of G € CUK*.

Proof. The sufficiency follows from Lemmas 4.6 and 4.7. To prove the necessity, let G
be a connected Cs-free graph of order n with §(G) > 2 such that vy,(G) = n. Suppose
that G ¢ C U K*. Then, by Theorem 4.5, G is not an n-minimal graph. Hence, by
Lemma 4.4, G contains an n-minimal spanning subgraph F' with no induced 5-cycle. By
Theorem 4.5, F' € C U K*. Therefore, by Lemma 4.14, v (G) < n, a contradiction.
Hence, G e CUK*. O



46

CHAPTER 4. EXHAUSTIVE DTDP GRAPHS




Chapter 5

The Existence of DPDP Graphs

Paired-domination was introduced by Haynes and Slater [48, 49] as a model for assigning
backups to guards for security purposes and is studied in [9, 21, 22, 28, 33, 47, 48, 49,
52, 53, 63, 64, 67, 81, 98] inter alia.

We recall the results of Zelinka [99, 100] which showed that no minimum degree is
sufficient to guarantee the existence of two disjoint total dominating sets. Since every
paired-dominating set is a total dominating set, Zelinka’s result is also true for paired-
dominating sets. We therefore ask a similar question to that of Chapter 2; that is, which

graphs contain disjoint dominating and paired-dominating sets?

Unlike the result of Theorem 2.1 in Chapter 2, where the vertex set of all connected
graphs with minimum degree at least 2 can be partitioned into a dominating set and a
total dominating set (with the exception of the 5-cycle), the situation now becomes much
more complex. Our aim in this chapter is twofold: first to show that no minimum degree
is sufficient to guarantee the existence of a partition of the vertex set into a dominating
set and a paired-dominating set; secondly, to prove that every cubic graph contains a

disjoint dominating set and paired-dominating set.

47
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In Chapter 2, a graph whose vertex set can be partitioned into a DS and a TDS is
called a DTDP-graph (standing for “dominating, total dominating, partitionable graph”).

Hence Theorem 2.1 can be restated as follows.

Theorem 2.1 Fvery connected graph with minimum degree at least 2 that is different

from a 5-cycle is a DTDP-graph.

Following this notation, we call a graph whose vertex set can be partitioned into a DS
and a PDS a DPDP-graph (standing for “dominating, paired-dominating, partitionable
graph”). A TD-pair of a graph G is a pair (T, D) of disjoint sets of vertices of G such
that 7" is a TDS and D is a DS of G, while a PD-pair is a pair (P, D) of disjoint sets
such that P is a PDS and D is a DS of G. Every PD-pair in a graph is also a TD-pair
in the graph, and so every DPDP-graph is a DTDP-graph. The converse, however, is
not true in general. The simplest such counterexample is obtained from a star K, by

subdividing at least two of the edges.

5.1 DPDP Existence Results

As remarked earlier, unlike the result of Theorem 2.1, it is not enough to forbid the
5-cycle and guarantee the existence of the desired partition. We shall prove the following

two results, proofs of which can be found in Section 5.2.

Theorem 5.1 No minimum degree is sufficient to quarantee the existence of a disjoint

dominating set and paired-dominating set.

Theorem 5.2 There exist infinite families of connected graphs with minimum degree two

and mazimum degree three that are not DPDP-graphs.
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Although for every positive integer 6 > 1 there are infinite families of graphs with
minimum degree § whose vertex set cannot be partitioned into a DS and a PDS, our
main result shows that the vertex set of every cubic graph can be partitioned into a DS

and PDS. We shall prove the following result, a proof of which can be found in Section 5.3.

Theorem 5.3 Fvery cubic graph is a DPDP-graph.

5.2 Non-Existence Proofs

Recall the statement of Theorem 5.1.

Theorem 5.1. No minimum degree is sufficient to guarantee the existence of a disjoint

dominating set and paired-dominating set.

Proof. Let £ > 2 be an arbitrary fixed integer. We shall show that there exists a
graph G with minimum degree k that is not a DPDP-graph. Let G be the graph
on (k¥ 4+ k — 1)(k + 1) vertices constructed as follows. Let F' be the graph of (k — 1)
disjoint copies of Ky, and so F' = (k — 1)K ;. Label the k — 1 degree-k vertices in F
by ui, ug, ..., up_y and for i = 1,2, ...k — 1, let N(u;) = {vi,vs,... vi}. We construct
the index set I = {(i1,42,...,0k-1) : 1 <'y,d9,...,ix_1 < k} and, for each £ € I, we let
F¢ be the graph comprising % disjoint copies of K, and so Fy = kK, ;. Let X, be the
set of k vertices in F with degree k. Now we let G} be the graph obtained from the
disjoint union (U£€I F¢) U F as follows: For every & = (i1,42,...,i—1) € I and for every
j=1,2,...,k—1, join UZJJ to each vertex with degree 1 in F¢. Note that 6(G) = k. When
k = 3, the graph G} is sketched in Figure 5.1.

For the sake of contradiction suppose that Gy is a DPDP-graph. Let (P, D) be a PD-
pair in G. Thus, (P, D) is a pair of disjoint sets such that P is a PDS and D is a DS

of G. Since the set P totally dominates {uy,us, ..., ur_1}, we may assume, reassigning
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Figure 5.1: A sketch of Gj.

indices if necessary, that {v},v? ..., 0" '} ¢ P. Let ¢ = (1,1,...,1) € I and let
X, = {x1,29,..., 24} Since P totally dominates X, for each i € {1,2,...,k} there is
a vertex w; € N(z;) that belongs to the set P. By construction, we note that for each
such i € {1,2,...,k}, N(w;) = {vi,v?, ..., o' 2;}, implying that z; € D. Further, w;
is paired with ] for some j € {1,2,...,k — 1}. But then by the Pigeonhole Principle,
there is an £ € {1,2,...,k — 1} such that v{ is paired with two or more vertices from the

set {wy, we, ..., wy}, a contradiction. Hence, Gy, is not a DPDP-graph.

The z; and w; labels are included in Figure 5.1 for the case when k£ = 3. Vertices in P

and D are represented by shaded circles and hollow squares, respectively. O
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Recall the statement of Theorem 5.2.

Theorem 5.2. There exist infinite families of connected graphs with minimum degree

two and maximum degree three that are not DPDP-graphs.

Proof. For k > 1 an integer, let G be the graph obtained from a path P on 2k + 1
vertices as follows: For each vertex z of the path P, add a 5-cycle and join z to one vertex
of this cycle. The graph G, is illustrated in Figure 5.2. We note that if vvwzyu is a 5-
cycle in Gy, such that d(u) = d(v) = d(w) = d(z) = 2 and d(y) = 3 with N(y) = {u, z, 2},
then for any TD-pair (T, D) in Gy, where T'is a TDS and D is a DS of Gy, we have either:

(i) {u,z,y} C T and {v,w,z} C D, or
(ii) {v,w,z} C T and {u,x} C D.

If (i) holds for some such 5-cycle in Gy, then the subgraph of G}, induced by the TDS
T contains the path uyz as a component and hence has no perfect matching. In this case,
the (T, D)-pair would not be a (P, D)-pair. We may therefore assume that for every such
5-cycle in Gy, (ii) holds and so V(P) C T. In order to totally dominate the set V(P),
the set of 2k + 1 degree-3 vertices in GG not on the path P all belong to D. In the graph
(G5, illustrated in Figure 5.2, this partition is represented with the vertices in T" depicted
by shaded circles and the vertices in D by hollow circles. However since P is a path on
an odd number of vertices, we note that the subgraph of G induced by the TDS T' has
no perfect matching. Hence the (T, D)-pair is not a (P, D)-pair. Since every (P, D)-pair
is a (T, D)-pair, the graph Gy is not a DPDP-graph. O

OLo5e2430,

Figure 5.2: The graph G,.
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5.3 Existence Proof

Before proceeding to the proof of Theorem 5.3, we introduce the following additional
notation and definitions. Throughout this section, we restrict our attention to cubic
graphs unless otherwise stated. By Theorem 2.1, every cubic graph has a TD-pair. For
a given TD-pair D = (T, D) in a (cubic) graph G, we let ¢(D) be the number of M-
unmatched vertices in a maximum matching M of the subgraph G[T] induced by T'. We
note that D is a PD-pair if and only if ¢(D) = 0. Furthermore, we let {(D) be the
number of edges in G[T]. We say that the TD-pair D = (T, D) is an optimal TD-pair in

G if among all TD-pairs in G the following two conditions hold:

(1) o(D) is minimized.
(2) Subject to (1), £(D) is minimized.

Let D = (T, D) be an optimal TD-pair in G, and let M be an arbitrary maximum
matching in G[T']. We say that an M-unmatched vertex w’ in T' is Dy-desirable if there
exists a subset {u,v,w,z} € V(G) such that {u,v} € D, {w" w,z} CT, u € epn(w’,T),
v € ipn(u, D), N(v) = {u,w,x}, and the component of G[T] containing w is an M-
alternating w-x path (possibly, of length 1) that starts and ends with edges of M and
every vertex in this component has a T-epn in G. A graphical sketch of a Dj,-desirable
vertex w’ is given in Figure 5.3. Vertices in T" and D are represented by shaded and

hollow circles, respectively. We proceed further by proving the following two lemmas.

Figure 5.3: A Dj-desirable vertex w'.
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Lemma 5.4 Let D = (T, D) be an optimal TD-pair in a cubic graph G and let M be a
mazximum matching in G[T). If w is an M-unmatched vertex in T, then the component

of G[T] containing w is an odd cycle and every vertez in this component has a T-epn in

G.

Proof. Let GG, D and M be defined as in the statement of the lemma and suppose w
is an M-unmatched vertex in 7. Let U be the set of all M-unmatched vertices in T’
and let S = T\ U. We note that U is an independent set and that M is a perfect
matching in G[S]. Since T"is a TDS in G, the vertex w has a neighbor in 7. Since U
is an independent set, such a neighbor of w belongs to S. Let P: woviw; ...vws be a
longest M-alternating path in G[T] that starts at w = wy. We note that v;w; € M for
i =1,2,..., k. Further, by the maximality of M, we note that N(w;) N T C S U {wo}.

In particular, ipn(w;, T') = (.

If |epn(w;, T)| = 0 for some i € {0,1,...,k}, then D' = (D U {w;},T \ {w;}) is a
TD-pair with ¢(D’) < ¢(D), contradicting our choice of D. Hence for all i = 0,1,..., k,
lepn(w;, T')| > 0 and we let w} € epn(w;, T'). If |epn(v;, T')| = 0 for some i € {1,2,...,k}
then D = ((D\{w!_,, wiH)U{u}, (T\ {ui}) Ufwl_, w}) is a TD-pair with (D) < o(D),
again contradicting our choice of D. Hence |epn(v;, T')| > 0 for all i = 0,1,..., k. We
note, therefore, that since GG is a cubic graph, each internal vertex on the path P has
degree 2 in G[T] and is adjacent in G[T] only to the vertices immediately preceding it

and succeeding it on P.

Let N(wg) = {vg,wy,z}. If x € D, then D' = (D \ {w},T U {w,}) is a TD-pair
with (D) < ¢(D), contradicting our choice of D. Hence, x € T. As observed earlier,
x € SU{wp}. If x €S, then za’ € M for some ' € V(P). But then wyvjw; ... vywgza'
is an M-alternating path in G[T] that starts at wy and has length exceeding that of P,

contradicting our choice of P. Hence, x = wy and the desired result follows. O
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Lemma 5.5 If D = (T, D) is an optimal TD-pair in a cubic graph G and M is a maxi-

mum matching in G[T, then every M-unmatched vertex in T is Dy-desirable.

Proof. Let G, D and M be defined as in the statement of the lemma. Let U be the set
of all M-unmatched vertices in 7" and let S =T\ U. We note that U is an independent
set and that M is a perfect matching in G[S]. By Lemma 5.4, every vertex in U has two

neighbors in S and one neighbor in D. Hence we have the following claim.

Claim 1 If {a,b} C T and a € ipn(b,T), then ab € M. In particular, if b € U, then
ipn(b, T) = 0.

Let wy € U. We show that wy is a Dj,-desirable vertex. By Lemma 5.4, the component
of G[T] containing w is an odd cycle and every vertex in this component has a T-epn in
G. Let u € epn(wy, T). Let N(u) = {v,v',wp} and note that {v,v'} C D. Let N(v) =
{u,w,z}. Since T totally dominates v, we may assume w € T. Let N(w) = {v,wy, ws}.

Since T totally dominates w, we may assume w; € 7.

If w € U, then by Lemma 5.4, {wy,ws} C T and v € epn(w,T). Furthermore, by
Claim 1, ipn(w, T') = (). But then D' = ((D \ {u,v}) U{w,wo}, (T'\ {w,wo}) U {u,v}) is
a TD-pair in G with ¢(D’) < ¢(D), contradicting our choice of D. Hence, w € S and we

may assume that ww, € M. We show next that x € T'.

Claim 2 z € T.

Proof. For the sake of contradiction suppose that x € D. If wy € D, then D' =
(D {}) U {uo}, (T'\ {wp}) U {}) is a TD-pair in G with p(D') = ¢(D) but &) <
¢(D), contradicting our choice of D. Hence, wy € T. By Claim 1, wy ¢ ipn(w,T),
and so |N(wy) NT| = 2. Also by Claim 1, ipn(wy,T) = . If epn(w;,T) = 0, then
D' = ((D\{v}) U {wo, w1}, (T"\ {wo, w1 }) U {v}) is a TD-pair in & with ¢(D’') < ¢(D),

contradicting our choice of D. Hence, |epn(wy,T)| > 1. Let w’ € epn(wy, T').
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If w =z, then D' = (D \ {z}) U{w}, (T \ {w}) U {x}) is a TD-pair in G with
©(D') = ¢(D) but with £(D’) < £(D), contradicting our choice of D. Hence, w' # x. But
now D' = ((D \ {u,v,w'}) U{w,wo}, (T \ {w,we}) U {u,v,w'}) is a TD-pair in G with
©(D') < (D), contradicting our choice of D. We conclude that z € T. O

By Claim 2, x € T. Let N(x) = {v,x1,22}. Since T totally dominates z, we may
assume r; € T. If x € U, then by Lemma 54, {x1,22} C T and v € epn(z,T), a
contradiction since v is also adjacent to the vertex w € T. Hence, x € S and we may

assume that xxy € M. We note that possibly z = wy.

Claim 3 wy € D orxzg € D.

Proof. For the sake of contradiction, suppose that wy € T and 25 € T'. By Claim 1, ws &
ipn(w, T') and thus |N(wy) NT| = 2. Similarly, 2o & ipn(z,7") and thus |N(z2) NT| = 2.
If wy =z, then 1 = w and D' = (D \ {v}) U {wo, 2}, (T \ {wo, z}) U{v}) is a TD-pair
in G with p(D’') < ¢(D), contradicting our choice of D. Hence, w; # x.

If wy has a T-epn, w’ say, then D’ = (D \ {w'}) U{w}, (T'\ {w}) U{w'}) is a TD-pair
in G with p(D’') = ¢(D) but with {(D’) < £(D), contradicting our choice of D. Hence,
epn(wy,T) = (. Similarly, epn(zy,7) = (. Furthermore, by Claim 1, ipn(w;,T) =
ipn(zy,T) = 0.

Suppose there exists a vertex y € D such that N(y) N T = {wy,z1}. Then, D' =
((D\Av,y})U{wo, wy, x}, (T\{wo, wy,z})U{v,y}) is a TD-pair in G with ¢(D’) < ¢(D),
contradicting our choice of D. Hence for every vertex y € D, we have that N(y) N T €
{wy,z1}. But then D' = ((D \ {v}) U{wo, w1, 21}, (T \ {wo, wr,x1}) U {v}) is a TD-pair
in G such that (D) = (D) and £(D’) < £(D), again contradicting our choice of D. O
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Claim 4 wy € D and x5 € D.

Proof. By Claim 3, wy € D or x5 € D. Renaming vertices if necessary, we may
assume that xo € D. For the sake of contradiction, suppose that w, € T. By Claim 1,
wy ¢ ipn(w,T) and thus |[N(wy) NT| = 2. If w; has a T-epn, w' say, then D' =
(D\ {w'}) U{w}, (T \ {w}) U{w'}) is a TD-pair in G with p(D") = ¢(D) but with
£(D') < &(D), contradicting our choice of D. Hence, epn(wy,T) = 0. Furthermore, by
Claim 1, ipn(wy,T) = 0. But then D' = ((D \ {v}) U{wo, w1}, (T \ {wo, w1}) U {v}) is a
TD-pair in G with p(D’) < ¢(D), contradicting our choice of D. Hence, wy € D. O

Claim 5 The component of G[T] containing w is an M -alternating w-x path that starts

and ends with edges of M. Moreover, every vertex in this component has a T-epn in G.

Proof. Let D' = (D \ {v}) U {wo} and let 7" = (T'\ {wo}) U {v}. We note that if
z € T'NT', then epn(z,T) = epn(z,7"). Furthermore, D' = (D',T7") is a TD-pair in G
such that ¢(D') = p(D) and £(D’) = (D). Since M is a maximum matching in G[T”]
and v is an M-unmatched vertex in 7", the component of G[I”] containing v is an odd
cycle and every vertex in this component has a 7’-epn in G by Lemma 5.4. The desired

result follows. O

By Claim 5, wy is a Dj/-desirable vertex. This completes the proof of Lemma 5.5. O

We are now in a position to present a proof of our main result. Recall the statement

of Theorem 5.3.

Theorem 5.3. Fvery cubic graph is a DPDP-graph.

Proof. Let G be a cubic graph and suppose, for the sake of contradiction, that G is not
a DPDP-graph. By Theorem 2.1, G is a DTDP-graph. Let D = (T, D) be an optimal
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TD-pair in G and let M be a maximum matching in G[T]. Since D is not a PD-pair,
©(D) > 0. Let wy be an M-unmatched vertex in 7.

We now choose k to be the largest integer such that woui;viwiusvows . .. upvLwy is a
path in G satisfying the following properties: For each ¢ € {1,2,...,k}, {u;,v;} C D,
w; € T, u; € epn(w;_1,T), v; € ipn(u;, D), N(v;) = {u;, w;, z;} and the component of
G[T] containing w; is an M-alternating w;-z; path, P; say, that starts and ends with edges

of M and every vertex in this component has a T-epn in G. By Lemma 5.5, £ > 1. Let

D= (D\(U{vm) g (O{wi}) and T = (T\ <L_J{wi}>) (U{vz})

i=1 =0 1=0 i=1

We note that if z € T'NT’, then epn(z,T) = epn(z,7"). For ¢ = 1,2,...k, let
M; = E(P)NM and let M] = (E(P;) \ M) U {v;z;}. We now consider the matching M’

in G[T"] defined by
- (o) Q).

We note that |M| = |M’| and that D' = (D’,7") is a TD-pair in G. Furthermore,
since |T'| = |T'| and |M| = |M’|, we have that o(D') = (D). Additionally, {(D') =
&(D). Thus by the choice of D, D’ is an optimal TD-pair in G and M’ is a maximum
matching in G[T"]. Since wy is an M’-unmatched vertex in T’ wy is a D), ~desirable
vertex by Lemma 5.4. Hence there exist vertices {ug41, Vkt+1, Wet1, Tr+1} C V(G) such
that {ugy1, vp1} C D', {wpyr, 21} C T g1 € epn(wg, T'), vgr1 € epn(ugiq, D),
N(vgy1) = {ugs1, Wrr1, Tre1} and the component of G[T'] containing wy,; is an M'-
alternating wy,1-Tx,1 path that starts and ends with edges of M’ and every vertex in

this component has a T"-epn in G.

But now, by the construction of D' and M’, wouiviwy ... UpVpWrUEL1Vks1WE1 1S A
path in G satisfying the following properties: For each ¢ € {1,2,... k+1}, {u;,v;} C D,

w; € T, u; € epn(w;_1,T), v; € ipn(u;, T), N(v;) = {u;, w;, x;} and the component of
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G[T] containing w; is an M-alternating w;-z; path that starts and ends with edges of M
and every vertex in this component has a T-epn in G. This, however, contradicts our

choice of k. We deduce, therefore that the graph G is a DPDP-graph. O



Chapter 6

Characterizing DPDP Graphs

A characterization of graphs whose vertex set can be partitioned into a dominating set
and a total dominating set is given in Chapter 3. The context of this research motivates
the question of which graphs have disjoint dominating and paired-dominating sets. In
the previous chapter we showed that DPDP-graphs are more difficult to pin down than
DTDP-graphs when the minimum degree is at least 2. Our aim in this chapter is to
provide a constructive characterization of all graphs whose vertex set can be partitioned

into a dominating set and a paired-dominating set.

Recall that a graph whose vertex set can be partitioned into a dominating set and
a total dominating set is called a DTDP-graph and a graph whose vertex set can be
partitioned into a dominating set and a paired-dominating set a DPDP-graph. A TD-
pair of a graph G is a pair (T, D) of disjoint sets of vertices of G such that T is a total
dominating set and D is a dominating set of G, while a PD-pair is a pair (P, D) of disjoint

sets such that P is a paired-dominating set and D is a dominating set of G.

As noted in the previous chapter, every PD-pair in a graph is also a TD-pair in the
graph, and so every DPDP-graph is a DTDP-graph. The converse, however, is not true

in general, with the simplest counterexample obtained from a star K;, by subdividing

59
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at least two of the edges. More generally, let G be the graph obtained from an arbitrary
graph H by attaching two pendant edges to each vertex of H and then, for each vertex
in H, subdividing exactly one of the added pendant edges. The graph obtained from G
by attaching an additional pendant edge to any of the vertices from the original graph
H and subdividing this edge is a DTDP-graph, but not a DPDP-graph, whose diameter

can be made arbitrarily large (by choosing H to have large diameter).

Moreover, unlike the result of Theorem 2.1, which proves that all connected graphs with
minimum degree at least 2 (except the 5-cycle) are DTDP-graphs, the situation becomes
more complex for DPDP-graphs. Indeed there are infinite families of connected graphs of
minimum degree at least 2 that are not DPDP-graphs. The simplest such family consists
of graphs Dy(5) that can be constructed from k > 2 disjoint 5-cycles by identifying a set

of k vertices, one from each cycle, into one new vertex v.

Observation 6.1 For k > 2, the graph Dy (5) is not a DPDP-graph.

Proof. For the sake of contradiction, suppose that G = Dy(5) is a DPDP-graph for some
k > 2. Let (P,D) be a PD-pair in G. We note that P is also a total dominating set
in G. If v € D, then in order to totally dominate each neighbor of v, every vertex at
distance 2 from v belongs to P. In order to dominate these vertices at distance 2 from v,
every neighbor of v therefore belongs to D. But then v is not totally dominated by P, a
contradiction. Hence, v € P. In order to totally dominate v, let u be a neighbor of v in
P. Let wwwzyu be the 5-cycle containing u. To dominate u, we must have that y € D.
To totally dominate x, we therefore have that w € P. Since the subgraph induced by P
contains a perfect matching, we have that x € P. But then w is not dominated by D, a

contradiction. Hence, G contains no PD-pair; that is, G is not a DPDP-graph. O

We also remark that there exist graphs with minimum degree at least 2 and arbitrarily

large diameter that are not DPDP-graphs.
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6.1 Graph Labelings

Our aim in this chapter is to provide a constructive characterization of DPDP-graphs.
As in Chapter 3, where we characterize DTDP-graphs, the key to our constructive char-
acterization is to find a labeling of the vertices that indicates the role each vertex plays in
the sets associated with both parameters. We define a labeling of a graph G as a partition
S = (Sa,Sg) of V(G). The label or status of a vertex v, denoted sta(v), is the letter
x € {A, B} such that v € S,. Our aim is to describe a procedure to build DPDP-graphs
in terms of labelings. By a labeled-P,, we shall mean a P, with the two central vertices

labeled A and the two leaves labeled B.

6.1.1 The Graph Family T

Let 7 be the minimum family of labeled trees that: (i) contains a labeled-Py; and (ii) is
closed under the four operations Oy, Oy, O3 and Oy listed below, which extend a labeled

tree T' by attaching a tree to the vertex v € V(7).

Operation O;. Let v be a vertex with sta(v) = A. Add a vertex u; and the edge
vuy. Let sta(u;) = B.

e Operation O,. Let v be a vertex with sta(v) = A. Add a path ujusuzuy and the
edge vuy. Let sta(u;) = sta(us) = B and sta(ug) = sta(uz) = A.

e Operation Os. Let v be a vertex with sta(v) = B. Add a path wjusus and the
edge vu;. Let sta(u;) = sta(us) = A and sta(uz) = B.

e Operation O,. Let v be a vertex with sta(v) = B. Add a path ujusuzuy and the
edge vuy. Let sta(u;) = sta(us) = B and sta(ug) = sta(uz) = A.

These four operations Oq, Oy, O3 and O, are illustrated in Figure 6.1.
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Figure 6.1: The four operations Oq, O, O3 and Q.

6.1.2 The Graph Family G

Let Os5, Og, O7 and Og be the four operations listed below, which extend a labeled graph

G as follows:

e Operation O;. Let u and v be two nonadjacent vertices in G. Add the edge uv.

e Operation Og. Let v be a vertex with sta(v) = B. Add a path ujuy and the edges

vuy and vug. Let sta(uy) = sta(ug) = A.

e Operation O;. Let u and v be distinct vertices of G with sta(u) = sta(v) = B.
Add a path ujus and the edges uu; and vug. Let sta(u;) = sta(ug) = A.

e Operation Og. Let v be a vertex with sta(v) = A. Add a cycle ujususu; and the
edge vu;. Let sta(u;) = sta(uz) = A and sta(uz) = B.
These four operations are illustrated in Figure 6.2.

Let G be the minimum family of labeled graphs that: (i) contains a labeled-P;; and (ii)

is closed under the eight operations O, 0,, ..., Og described earlier. By construction,
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Figure 6.2: The four operations Os, Og, O7 and Os.

the family 7T is a subfamily of the family G.

We shall need the following observation which follows from the way in which the family

G is constructed.

Observation 6.2 Let (G,S) € G for some labeling S = (Sa,Sg). Then the following
properties hold:

(a) Every vertex of status A is adjacent to a vertex of status A and to a vertex of
status B,

(b) Every vertex of status B is adjacent to a vertex of status A;

(c) Since each operation adds exactly zero or two adjacent vertices of status A,
the subgraph induced by Sa contains a perfect matching comprising exactly
those edges incident with both status A wvertices added at each operation
(with the exception of Oy and Os) as well as the edge incident with both
status A wertices of the labeled-Py. Hence Sy is a PDS of G, while Sg is
a DS of G.
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(d) If v € V(G) and d(v) = 1, then v has status B and the neighbor of v has
status A.

6.2 DPDP Characterization Results

In this chapter, we have two immediate aims. Our first aim is to determine which trees are
DPDP-trees. For this purpose, we establish the following constructive characterization

of DPDP-trees that uses labelings, a proof of which is presented in Section 6.2.1.

Theorem 6.3 The DPDP-trees are precisely those trees T such that (T, S) € T for some

labeling S.

Our second aim is to determine which connected graphs with minimum degree one are
DPDP-graphs. We remark that if a connected graph has a spanning DPDP-tree, then
it is a DPDP-graph. However, a connected DPDP-graph does not necessarily have a
spanning DPDP-tree. For example, let G be obtained from the disjoint union of k£ > 1
copies of K3 by adding a path P3 and joining a leaf of the added path to one vertex from
each copy of K3. The graph Gj is illustrated in Figure 3.3 in Chapter 3. Then, G}, is
a DPDP-graph but G does not have a spanning DPDP-tree. We remark that we could

have replaced some or all of the copies of K3 in GG}, with copies of Cg or Cy.

Every DPDP-graph has order at least 3. Trivially, the only DPDP-graph of order 3
is the complete graph K3. Our main result is the following constructive characterization

of DPDP-graphs of order at least 4 that uses labelings, a proof of which is presented in
Section 6.2.2.

Theorem 6.4 The connected DPDP-graphs of order at least 4 are precisely those graphs
G such that (G,S) € G for some labeling S.
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6.2.1 Proof of Theorem 6.3

Recall that a PD-pair in a graph G is a pair (P, D) of disjoint sets such that P is a PDS
and D is a DS of G. Since every PDS in a tree contains all the support vertices, we have

the following observation.

Observation 6.5 Let T be a rooted DPDP-tree and let (D, Dy) be a PD-pair in T.
Then the following properties hold:

(a) Every leaf belongs to Dy while every support vertex belongs to D;.

(b) If every child of a vertex is a leaf, then its parent belongs to D;.

Recall the statement of Theorem 6.3.

Theorem 6.3. The DPDP-trees are precisely those trees T such that (T,S) € T for

some labeling S.

Proof. Suppose first that 7' is a tree and (7', 5) € T for some labeling S. By Observa-
tion 6.2(c), (Sa,Sp) is a PD-pair in 7', and so T is a DPDP-tree. This establishes the

sufficiency.

To prove the necessity, we proceed by induction on the order n of a DPDP-tree T'. Since
every star Kj,_; is not a DPDP-tree, we have that n > 4 and diam(7T") > 3. If n = 4,
then T'= P, and (T, S) € T, where S is the labeling of a labeled-P,. This establishes the
base case. For the inductive hypothesis, let n > 5 and assume that for every DPDP-tree
T’ of order less than n there exists a labeling S’ such that (77, 5") € T.

Let T be a DPDP-tree of order n. Let D = (Dy,Ds) be a a PD-pair in T. Let
Ty = T[D,] be the subgraph of 7" induced by D; and let M be a perfect matching in 7.
We now root the tree T" at a diametrical vertex r. Necessarily, r is a leaf. Let u be a vertex
at maximum distance from r. Necessarily, u is a leaf. Let v be the parent of u, let w be

the parent of v, and let x be the parent of w (possibly, z = r). Since u is at maximum
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distance from the root r, every child of v is a leaf. By Observation 6.5, we observe that
C(v) C Dy and {v,w} C D;. In particular, u € Dy. Furthermore, dr, (v) = 1 and hence
vw € M; that is, v and w are paired in D;. We proceed further with a series of claims

that we may assume the tree T' satisfies.

Claim A T has no strong support vertex.

Proof. Suppose that T" has a strong support vertex z. Let z; and 25 be two leaf-neighbors
of z in T. By Observation 6.5, we note that {z1,2} C Dy and z € Dy. Let T" =T — z.
Then, (Dy,Ds \ {z1}) is a PD-pair in 7, and so 7" is a DPDP-tree. Applying the
inductive hypothesis to 7", there exists a labeling S" = (5, S%) such that (77,5") € T.
By Observation 6.2(d), z € S’;. Thus, we can restore the tree T' by applying Operation Oy
to T'. Therefore, (T,S) € T, where S is the labeling (5, S% U {z1}). Hence, if T has a

strong support vertex, then (7, 5) € T for some labeling S, as desired. O

By Claim A, we note that dr(v) = 2.

Claim B dr(w) = 2.

Proof. Suppose dr(w) > 3. Let v/ € C(w) \ {v}. Suppose dp(v') > 2. By our choice of
the vertex u, every child of v’ is a leaf. Since T" has no strong support vertex, dr(v') = 2.
Let ' be the child of v'. Then, u is a leaf. By Observation 6.5, v’ € Dy and v' € D;.
Thus, v" and w are paired in D;, contradicting the fact that v and w are paired in D;.
Hence every child of w, different from v, is a leaf. Thus since T has no strong support
vertex, dr(w) = 3 and C(w) = {v,v'}, where v’ is a leaf. Thus by Observation 6.5,
{u,v'} C Dy and {v,w} C Dy, with v and w paired in D;.

Suppose x € D;. Since v and w are paired in Dy, the partner of z in D, is different

from w. We also note that since {x,w} C Dy, x is adjacent to a vertex of Dy different



6.2. DPDP CHARACTERIZATION RESULTS 67

from w. Let T" = T — {u,v,v',w}. Then, (D; \ {v,w}, Dy \ {u,v'}) is a PD-pair in
T, and so T" is a DPDP-tree. Applying the inductive hypothesis to 7", there exists a
labeling S" = (5%, Sp) such that (17,5") € T. If € S/, then we can restore the tree
T by applying Operation Oy to T". If x € S, then we can restore the tree T' by first
applying Operation Oz to 7" and then Operation O; to the resulting tree. In both cases,
(T,S) € T, where S is the labeling (5 U {v,w}, S5 U {u,v'}). Hence, if € Dy, then

(T,S) € T for some labeling S, as desired. Thus we may assume that x € Ds.

We now let 77 =T —v'. Then, (D;, D3\ {v'}) is a PD-pair in 7", and so 7" is a DPDP-
tree. Applying the inductive hypothesis to T”, there exists a labeling S" = (5, S%;) such
that (77,5") € T. By Observation 6.2, {v,w} C S’ and u € Sjz. Thus, we can restore
the tree T' by applying Operation O to 7. Hence, (T,S) € T, where S is the labeling
(S, Sz u{v}). O

By Claim B, we have that dr(w) = 2. Since n > 5, the vertex x is not the root r of the
rooted tree T'. Let y be the parent of x. As remarked earlier, u € Dy and {v,w} C Dy

with v and w paired in D;. In order to dominate w, we have that x € Ds.

Claim C dr(z) = 2.

Proof. Suppose dp(z) > 3. Let w’ € C(x)\ {w}. By Observation 6.5, the vertex x is not
a support vertex. Thus, no child of z is a leaf. In particular, dr(w’) > 2. By our choice
of the vertex u, every descendant of w’ is a leaf or is at distance 2 from w’. Suppose
every child of v’ is a leaf. Then, since T" has no strong support vertex, dp(w’) = 2. Let v/
denote the child of w’, and so v’ is a leaf. By Observation 6.5, v" € Dy and {w', 2} C Dy,
contradicting the fact that x € Dy. Hence, w’ has a descendant u’ at distance 2 from w’.
As shown in Claim B, we may assume that dy(w’) = 2. By Observation 6.5, u’ € Dy and

{v/;w'} C D; with v’ and w’ paired in D;.
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We now consider the tree 7" = T — {u,v,w}. Then, (D \ {v,w}, Do\ {u}) is a PD-pair
in 77, and so T" is a DPDP-tree. Applying the inductive hypothesis to 7", there exists
a labeling S = (9, S%) such that (77,5") € T. By Observation 6.2, {u',2} C Sj and
{v/;w'} C 8. Thus, we can restore the tree T' by applying Operation O3 to T". Hence,
(T,S) € T, where S is the labeling (S’ U{v,w}, S5 U{u}). O

By Claim C, we have that dp(z) = 2.

Claim D y € D.

Proof. Suppose y € D;. We now consider the tree 7" = T — {u,v,w}. Then,
(D1 \ {v,w}, Dy \ {u}) is a PD-pair in T, and so T’ is a DPDP-tree. Applying the
inductive hypothesis to 7", there exists a labeling S" = (5, S%) such that (77,5") € T.
By Observation 6.2, the leaf € Si. Thus, we can restore the tree 7" by applying Oper-
ation Os to T". Therefore, (7, 5) € T, where S is the labeling (5 U{v, w}, Sy U{u}). O

We now return to the proof of Theorem 6.3. By Claim D, we have that y € Dy. We
now consider the tree 7" =T — {u, v, w,z}. Then, (D; \ {v,w}, D3\ {u,z}) is a PD-pair
in 7", and so T" is a DPDP-tree. Applying the inductive hypothesis to T”, there exists
a labeling S" = (5, S%) such that (77,5") € T. If y € S}, then we can restore the tree
T by applying Operation Oy to 7. If y € 5, then we can restore the tree T by first
applying Operation O; to T" and then Operation O3 to the resulting tree. In both cases,
(T,S) € T, where S is the labeling (S, U{v,w}, Sy U{u,z}). Thus, (7,S) € T for some
labeling S, as desired. This completes the necessity, and the proof of Theorem 6.3. O

6.2.2 Proof of Theorem 6.4

Recall the statement of Theorem 6.4.
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Theorem 6.4. The connected DPDP-graphs of order at least 4 are precisely those graphs
G such that (G,S) € G for some labeling S.

Proof. Suppose first that G is a connected graph and (G, S) € G for some labeling S.
By Observation 6.2(c), (S4, Sp) is a PD-pair in GG, and so G is a connected DPDP-graph.

This establishes the sufficiency.

To prove the necessity we proceed by induction on the order n > 4 of a connected
DPDP-graph G. If n = 4, then since no star is a DPDP-graph, the graph G contains P,
as a subgraph. Let G’ = P, be a subgraph of G (possibly, G’ = G) obtained from G by
removing zero, one, two or three edges. Then, (G’,S) € G, where S is the labeling of a
labeled-P; and we can restore the graph G from G’ by repeated applications (including
the possibility of none) of Operation Os. Thus, (G,S) € G. This establishes the base
case. For the inductive hypothesis, let n > 5 and assume that for every DPDP-graph G’
of order less than n there exists a labeling S’ such that (G',5") € G.

Let G be a connected DPDP-graph of order n. Among all PD-pairs D = (Dy, Ds) in
G and among all spanning connected subgraphs H of G such that (D;, Ds) is a PD-pair
in H (possibly, H = G, let the partition (D;, D) and the graph H be chosen so that

(1) |Dy| is minimized.
(2) Subject to (1), |[E(H)| is minimized.
(3) Subject to (2), > cp, du(v) is minimized.

Let M be a perfect matching in G[D;] that is used to determine the pairing of vertices
in the PDS D;.

Claim E If H has a strong support vertex, then (G,S) € G for some labeling S.

Proof. Suppose H has a strong support vertex v. Let v; and vy be two leaf-neighbors of
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v in H. By Observation 6.5, we note that {vy,ve} C Dy and v € D;y. Let H = H — vy.
Then, (Dy, Dy \ {v1}) is a PD-pair in H', and so H' is a DPDP-graph. Applying the
inductive hypothesis to H’, there exists a labeling S" = (5, S%) such that (H',S") € G.
By Observation 6.2(d), v € S’. Thus, we can restore the graph H by applying Opera-
tion O; to H'. We can then restore G from H by repeated applications of Operation Os.

Therefore, (G, S) € G, where S is the labeling (5, % U {v,}). O

Hence, by Claim E, we may assume that H has no strong support vertex. We proceed
further with the following useful lemma, called the Cycle Lemma, that we may assume

the graph H satisfies.

Cycle Lemma Fork > 3, if C': vivqvs ... 01 = vy 1S a cycle in H, then the following
properties hold:
(a) No two adjacent vertices on C' both belong to Ds.

b) V(C) N Dy # 0.
¢) Every vertex of C in D is adjacent in H to some other vertex of C' in D;.
d) No three consecutive vertices on C are all in D;.

= 0(mod 3), and v; € Dy for i =1(mod3) and v; € D; fori = 0,2 (mod3).
V;vi1 € M for i =2 (mod 3).

(
(
(
(e) k
(f)
(g) The cycle C' is chordless.

(h) Every vertex in Dy on the cycle C is adjacent in H to exactly one vertex in Ds.
(i) dg(vi) =2 or dg(vit1) = 2 for i =2 (mod 3).

(j) If v; € Dy and dy(v;) > 3, then every edge incident with v; not on the cycle C

18 a bridge of H and does not belong to M.

Proof. (a) For the sake of contradiction, suppose there are two adjacent vertices u and
v in C that both belong to the DS D,. But then the graph H = H — uv is a spanning
connected subgraph of G and (D, Ds) in a PD-pair in H’', contradicting the minimality
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condition (2) of H. (In what follows, we will simply say that the edge uv could be removed

from H, contradicting the minimality of H.)

(b) For the sake of contradiction, suppose V(C') C D;. Let e € E(C)\ M. But then

the edge e could be removed from H, contradicting the minimality of H.

(c) For the sake of contradiction, suppose that there is a vertex v of C'in D; with both
its neighbors on C'in D,. For notational convenience, we may assume that v = vy. Thus,
{v1,v3} C Dy and vy € D;. By part (a), we have that k > 4 and that vy, € D;. But then

the edge vovs could be removed from H, contradicting the minimality of H.

(d) For the sake of contradiction, suppose that there are three consecutive vertices
on C in D;. For notational convenience, we may assume that {vy,vs,v3} C D;. If
v1ve ¢ M, then the edge v1v, could be removed from H, contradicting the minimality of
H. Hence, vivg € M. But then vyvs ¢ M, and so the edge vov3 could be removed from

H, contradicting the minimality of H.

(e) By (b), at least one vertex of C' belongs to Ds. For notational convenience, we may
assume that vy € Dy. By (a), vo € Dy. By (¢), v3 € Dy. If k = 3, then the desired result
follows. Hence we may assume that k > 4. By (d), vy € Dy. By (a), k > 5 and vs € D;.
By (c¢), k > 6 and vg € D;. If kK = 6, then the desired result follows.