DOMINATION RESULTS:
 VERTEX PARTITIONS AND EDGE WEIGHT FUNCTIONS

by

Justin Gilfillan Southey

Submitted in fulfillment of the

 requirements for the degree of

Supervisor: Prof. Michael A. Henning

To the many who have seen beauty in mathematics; and the few who have seen both in me.

Like Poetry, Mathematics is Beautiful

Timidly I ask
each one I meet if they
find mathematics beautiful or useful, and each one dares to say, "Useful, of course. I use it every day." And if I seem to want a proof, they all go on to tell that daily they subtract and add to keep a checkbook; sometimes also they multiply to find how many squares they need to tile the kitchen floor.

Mathematics is not only plus and minus, not just counting one, two, three. There are rules to bend defiantly, so parallels
will meet before infinity. Look at the magic of unending terms that converge to a finite sum: start with one-half plus half/of one-half $B \cup R G$ plus half of the last again and again.
Though we go on forever, we never pass one. Do you find me difficult? Oh, dear!

Suppose, instead, I ask
if poetry is beautiful
or useful. Will each person say,
"Useful, of course. I use it every day."
And if I seem to want a proof, will they go on to say that they use rhymes to call to mind the days of a month - like "Thirty hath September" - and to remember how to spell words with 'i' and 'e'.

I have a faint, enduring hope that someday folks will see mathematics to be as lovely as poetry.

Preface

Domination in graphs is now well studied in graph theory and the literature on this subject has been surveyed and detailed in the two books by Haynes, Hedetniemi, and Slater [45, 46]. In this thesis, we continue the study of domination, by adding to the theory; improving a number of known bounds and solving two previously published conjectures.

With the exception of the introduction, each chapter in this thesis corresponds to a single paper already published or submitted as a journal article. Despite the seeming disparity in the content of some of these articles, there are two overarching goals achieved in this thesis. The first is an attempt to partition the vertex set of a graph into two sets, each holding a specific domination-type property. The second is simply to improve known bounds for various domination parameters. In particular, an edge weighting function is presented which has been useful in providing some of these bounds.

Although the research began as two separate areas of focus, there has been a fair degree of overlap and a number of the results contained in this thesis bridge the gap quite pleasingly. Specifically, Chapter 11 uses the edge weighting function to prove a bound on one of the sets in our most fundamental partitions, while the improvement on a known bound presented in Chapter 7 was inspired by considering the possible existence of another partition. This latter proof relies implicitly on the 'almost' existence of such a partition.

In Chapter 1, we outline the results of the thesis and introduce some basic notation. We prove an existence result for "dominating, total dominating, partitionable" graphs in Chapter 2, characterize all such graphs in Chapter 3, and then examine the case when such a partition is exhaustive in Chapter 4. We prove a similar existence result for "dominating paired-dominating partitionable" graphs in Chapter 5 and again characterize all such graphs in Chapter 6. In Chapter 7 we improve on a published upper bound on the total restrained domination number in cubic graphs and in Chapter 8 we investigate the ratio of the independent domination number to the domination number in cubic graphs. We then introduce an edge weighting function on dominating sets in Chapter 9 and apply it to provide bounds on the upper domination number and the upper total domination number in regular graphs. In Chapter 10, we solve a conjectured bound on the total domination number in claw-free cubic graphs using a modified edge weighting function. Finally, in Chapter 11 we use this weighting argument to provide a bound on one of the sets in the partition presented in Chapter 2.

Chapters 2, 3, 4, 5, 6, 7, 8, 10, and 11 have been published or accepted for publication in [65], [66], [61], [87], [88], [89], [90], [91] and [92], respectively, while Chapter 9 has been submitted for journal consideration; see [93]. In addition, though not directly linked to the topics presented in this thesis, the author has been involved in four further journal articles accepted or submitted for publication; see [37], [55], [56], and [57].

Acknowledgement

I wish to thank the South African National Research Foundation for their financial support of my studies. I offer special thanks to my supervisor, Professor Michael Henning, for his constant patience and guidance and for proposing that first and gripping problem, just on the edge of my untried ability. I am grateful to everyone who has encouraged and enabled my journey; but most particularly my parents, whose unfailing belief in me continues to dare me to dream.

Contents

1 Introduction and Overview 1
1.1 General Notation 3
2 The Existence of DTDP Graphs 7
2.1 DTDP Existence ResultV.FRS.T. Y 8
3 Characterizing DTDP Graphs 11
3.1 Graph Labelings 11
3.2 DTDP Characterization Results 14
4 Exhaustive DTDP Graphs 25
4.1 The Problematic 5-Cycle 27
4.2 Exhaustive DTDP Result 28
5 The Existence of DPDP Graphs 47
5.1 DPDP Existence Results 48
5.2 Non-Existence Proofs 49
5.3 Existence Proof 52
6 Characterizing DPDP Graphs 59
6.1 Graph Labelings 61
6.2 DPDP Characterization Results 64
7 Total Restrained Domination 83
7.1 Improving a Published Bound 84
8 Independent Domination 93
8.1 Ratio Result 94
8.2 Useful Notation and Preliminary Results A NNESB•URG 95
8.3 Proof of Ratio Result 98
8.4 A Further Conjecture 110
9 Edge Weighting Functions 113
9.1 The Families \mathcal{B}, \mathcal{F} and \mathcal{G} 114
9.2 Main Results 118
9.3 Preliminary Observations 118
9.4 Proof of Main Results 119
10 Proof of a Conjecture 135
10.1 Known Results 136
10.2 Conjecture Proof 137
11 A Partition and a Bound 173
11.1 Total Domination in Cubic Graphs 173
11.2 DT-Pair Total Dominating Sets 175
11.3 Hypergraph Notation and Results 177
11.4 Preliminary Results 179
11.5 Proof of Theorem 11.3 184
Bibliography 188

Chapter 1

Introduction and Overview

In this chapter, we provide an overview of the thesis and then introduce some standard definitions and notation. Specific notation required only sporadically or in one chapter will be introduced as required. Similarly, non-standard-terminology used in proofs or to simplify reading will be presented at a convenient proximity to its usage.

In Chapter 2, we show that the vertex set of every graph with minimum degree at least two and no 5 -cycle component can be partitioned into a dominating set and a total dominating set. Exceedingly simple to state, this almost surprising existence sowed the seed for many of the ideas presented in this thesis. In Chapter 3 we go on to provide a constructive characterization of first the trees, and then the graphs, whose vertex set can be partitioned into a dominating set and a total dominating set. We then examine, in Chapter 4, the question of when such a partition necessarily contains the entire vertex set. We answer the question for all graphs with minimum degree at least two and that have no induced five cycle.

The situation is not quite as straightforward when attempting to partition the vertices of a graph into a dominating set and a paired-dominating set. In fact, we demonstrate that no minimum degree is sufficient to guarantee the existence of such a partition in

Chapter 5. However, we prove that the vertex set of every cubic graph can be thus partitioned. In Chapter 6, we provide a constructive characterization of first the trees, and then the graphs, whose vertex set can be partitioned into a dominating set and a paired-dominating set.

Here the thesis diverges temporarily to look at upper bounds on various domination type parameters in various classes of graphs, most frequently cubic. The first of these, however, is implicitly linked to the idea that the vertices in a cubic graph can be partitioned into a total dominating set and an 'almost' total dominating set. Jiang, Kang and Shan [2] showed that the minimum cardinality of a total restrained dominating set of a connected cubic graph of order n is at most $13 n / 19$. In Chapter 7 , we improve this upper bound to $(n+4) / 2$ and demonstrate that our new improved bound is essentially best possible. Staying with connected cubic graphs we show, in Chapter 8, that the ratio of the independent domination number to the domination number is at most $4 / 3$, except in the case of $K(3,3)$. Furthermore, we characterize the graphs achieving this bound.

We introduce the useful edge weighting function on dominating sets in Chapter 9 and show that if we impose a regularity condition on a graph, then upper bounds on both the upper domination number and the upper total domination number can be greatly improved. We show that these bounds are sharp and characterize the infinite families of graphs that achieve equality in both cases. In Chapter 10, we use the same edge weighting function, with additional weight discharging rules, to solve the conjecture posed in [30] that for connected claw-free cubic graphs of order $n \geq 10$, the total domination number is at most $4 n / 9$.

Chapter 11 brings the thesis full circle, and uses a weighting argument to provide a bound for cubic graphs on one of the sets in the partition presented in Chapter 2. In particular we show that every connected cubic graph on n vertices has a total dominating set whose complement contains a dominating set such that the cardinality of the total dominating set is at most $(n+2) / 2$, and this bound is essentially best possible.

Although each chapter covers the content of a single journal article, the thesis has been assembled in such a way that it can be read from cover to cover with a through-running theme. Alternatively, each chapter may be read individually, with all necessary notation and specific terminology required for the presented results included in the relevant chapter. To avoid the construction of artificially unique and cumbersome labels, some function or family names have been recycled in later chapters. The meanings, however, should be clear in the context of the chapter, and hopefully make for simpler reading.

1.1 General Notation

For notation and graph theory terminology we in general follow [45]. Specifically, let $G=(V, E)$ be a simple undirected graph with vertex set $V(G)$ of order $n(G)=|V(G)|$ and edge set $E(G)$ of size $m(G)=|E(G)|$. If the graph G is clear from context, we abbreviate $V(G)$ to $V, E(G)$ to $E, n(G)$ to n and $m(G)$ to m. Let $S \subseteq V$ be a subset of vertices in G and let u and v be vertices in $W H A N N E S B U R G$

We denote the degree of v in G by $d_{G}(v)$, or simply by $d(v)$ if the graph G is clear from the context. The minimum degree (resp., maximum degree) among the vertices of G is denoted by $\delta(G)$ (resp., $\Delta(G)$). We call a vertex of degree k a degree- k vertex. A graph is k-regular if every vertex in the graph has degree k. A 3 -regular graph is also called a cubic graph. We denote the number of vertices of S adjacent to v in G by $d_{S}(v)$. In particular, $d_{V}(v)=d_{G}(v)$.

If G is a connected graph, then the distance $d_{G}(u, v)$ between u and v is the length of a shortest $u-v$ path in G. The eccentricity $e(v)$ of the vertex v is the distance between v and a vertex farthest from v in G. The maximum eccentricity among the vertices of G is its diameter, which is denoted by $\operatorname{diam}(G)$. If $e(v)=\operatorname{diam}(G)$, then v is called a diametrical vertex. A $u-v$ walk is an alternating sequence of vertices and edges, starting with u and ending with v, and with each edge being incident to the vertices immediately
preceding and succeeding it in the sequence.

By a proper subgraph of a graph G we mean a subgraph of G that is different from G. The subgraph induced by S is denoted by $G[S]$, or simply by G_{S}, while the graph $G-S$ is the graph obtained from G by deleting the vertices in S and all edges incident with S. For a set $M \subseteq E$, the graph $G-M$ is the graph obtained from G by deleting all the edges in M. If X and Y are two subsets of V, we denote the set of all edges of G that join a vertex of X and a vertex of Y by $[X, Y]$.

The open neighborhood of v is the set $N_{G}(v)=\{u \in V \mid u v \in E\}$ and the closed neighborhood of v is $N_{G}[v]=\{v\} \cup N_{G}(v)$. For the set S, its open neighborhood is the set $N_{G}(S)=\cup_{v \in S} N_{G}(v)$ and its closed neighborhood is the set $N_{G}[S]=N_{G}(S) \cup S$. If the graph G is clear from context, we simply write $N(v), N[v], N(S)$, and $N[S]$.

For the following definitions let v be a vertex in S. The S-private neighborhood of v is defined by $\operatorname{pn}[v, S]=\left\{w \in V \mid N_{G}[w] \cap S=\{v\}\right\}$, while its open S-private neighborhood is defined by $\operatorname{pn}(v, S)=\left\{w \in V \mid N_{G}(w) \cap S=\{v\}\right\}$. We remark that the sets $\operatorname{pn}[v, S] \backslash S$ and $\mathrm{pn}(v, S) \backslash S$ are equivalent and define the S-external private neighborhood of v to be this set, abbreviated epn $[v, S]$ or $\operatorname{epn}(v, S)$. The S-internal private neighborhood of v is defined by $\operatorname{ipn}[v, S]=\operatorname{pn}[v, S] \cap S$ and its open S-internal private neighborhood is defined by $\operatorname{ipn}(v, S)=\operatorname{pn}(v, S) \cap S$. We define an S-external private neighbor of v to be a vertex in $\operatorname{epn}(v, S)$ and an S-internal private neighbor of v to be a vertex in $\operatorname{ipn}(v, S)$. We remark that either v is isolated in $G[S]$, in which case $\operatorname{ipn}[v, S]=\{v\}$, or v has at least one neighbor in S, in which case $\operatorname{ipn}[v, S]=\emptyset$. Thus, $\operatorname{ipn}[v, S] \in\{\emptyset,\{v\}\}$.

A matching in a graph G is a set of independent edges in G. If M is a matching in G, an M-matched vertex is a vertex incident with an edge in M while an M-unmatched vertex is a vertex not incident with an edge in M. An M-alternating path of G is a path whose edges are alternately in M and not in M. A perfect matching M in G is a matching in G such that every vertex of G is incident to an edge of M.

Let X and Y be two subsets of V. The set X dominates Y in G if $Y \subseteq N[X]$, while X totally dominates Y in G if $Y \subseteq N(X)$. In particular, if X dominates V, then X is called a dominating set of G, abbreviated DS. If X totally dominates V, then X is called a total dominating set of G, abbreviated TDS. Hence, S is a DS of G if $N[S]=V$, while S is a TDS of G if $N(S)=V$. If S totally dominates V and $G[S]$ contains a perfect matching M (not necessarily induced), then S is called a paired-dominating set of G, abbreviated PDS. Two vertices joined by an edge of M are said to be paired and are also called partners in S. The set S is a a total restrained dominating set, abbreviated TRDS, of G if S is a TDS and, in addition, every vertex of $V \backslash S$ is adjacent to a vertex in $V \backslash S$. An independent dominating set of G, abbreviated ID-set, is a set that is both dominating and independent in G.

The domination number of G, denoted by $\gamma(G)$, is the minimum cardinality of a DS of G. The total domination number of G, denoted by $\gamma_{t}(G)$, is the minimum cardinality of a TDS of G. The total restrained domination number of G, denoted by $\gamma_{t r}(G)$, is the minimum cardinality of a TRDS of G. The independent domination number of G, denoted by $i(G)$, is the minimum cardinality of an ID-set of G. A DS of G of cardinality $\gamma(G)$ is called a $\gamma(G)$-set, a TDS of G of cardinality $\gamma_{t}(G)$ is called a $\gamma_{t}(G)$-set, a TRDS of G of cardinality $\gamma_{t r}(G)$ is called a $\gamma_{t r}(G)$-set, and an ID-set of G of cardinality $i(G)$ is called an $i(G)$-set. A DS (resp., TDS, TRDS, PDS, ID-set) S is said to be minimal if, for all vertices $v \in S$, we have that $S \backslash\{v\}$ is not a DS (resp., TDS, TRDS, PDS, ID-set).

The upper domination number, $\Gamma(G)$, of a graph G is the maximum cardinality of a minimal DS in G and we call a minimal DS of cardinality $\Gamma(G)$ a $\Gamma(G)$-set. Similarly, the upper total domination number, $\Gamma_{t}(G)$, of a graph G is the maximum cardinality of a minimal TDS in G and we call a minimal TDS of cardinality $\Gamma_{t}(G)$ a $\Gamma_{t}(G)$-set.

A rooted tree distinguishes one vertex r called the root. For each vertex $v \neq r$ of T, the parent of v is the neighbor of v on the unique $r-v$ path, while a child of v is any other neighbor of v. We let $C(v)$ denote the set of children of v. A descendant of v is a vertex
u such that the unique $r-u$ path contains v. Thus, every child of v is a descendant of v. A vertex of degree one is called a leaf and its neighbor is called a support vertex. A strong support vertex is adjacent to at least two leaves.

A path on n vertices is denoted by P_{n} and a cycle on n vertices by C_{n}. By a P_{n} component (resp., C_{n}-component) of a graph we mean a component of the graph isomorphic to a path (resp., cycle) on n vertices. We say that a graph is F-free if it does not contain F as an induced subgraph. In particular, if $F=C_{5}$, then we say that the graph is C_{5}-free. Further, if $F=K_{1,3}$, then we say that the graph is claw-free.

Chapter 2

The Existence of DTDP Graphs

A simple yet fundamental observation in domination theory made by Ore [80] is that every graph of minimum degree at least one contains two disjoint dominating sets. Thus, the vertex set of every graph without isolated vertices can be partitioned into two dominating sets. In contrast to that, Zelinka [99, 100] showed that no minimum degree is sufficient to guarantee the existence of three disjoint dominating sets or of two disjoint total dominating sets. Clearly, if the domatic number [100] of a graph G is at least $2 k$, then, by definition, G contains $2 k$ disjoint dominating sets and hence also k disjoint total dominating sets. Therefore, the results of Calkin et al. [7] and Feige et al. [32] imply that a sufficiently large minimum degree and small maximum degree together imply the existence of arbitrarily many disjoint (total) dominating sets.

To see that no minimum degree is sufficient to guarantee the existence of two total dominating sets, consider the bipartite graph G_{n}^{k} formed by taking as one partite set a set A of n elements, and as the other partite set all the k-element subsets of A, and joining each element of A to those subsets it is a member of. Then G_{n}^{k} has minimum degree k. As observed in [99], if $n \geq 2 k-1$ then in any 2 -coloring of A at least k vertices must receive the same color, and these k are the neighborhood of some vertex.

In contrast, results of Calkin and Dankelmann [7] and Feige et al. [32] show that if the maximum degree is not too large relative to the minimum degree, then sufficiently large minimum degree does suffice.

Heggernes and Telle [51] showed that the decision problem to decide if there is a partition of $V(G)$ into two total dominating sets is NP-complete, even for bipartite graphs. Broere et al. [6] considered the question of how many edges must be added to G to ensure a partition of V into two total dominating sets in the resulting graph. They denote this minimum number by $\operatorname{td}(G)$. It is clear that $t d(G)$ can only exist for graphs with at least four vertices. In particular, it was shown that if T is a tree with ℓ leaves, then $\ell / 2 \leq t d(T) \leq \ell / 2+1$. Dorfling et al. [24] showed that given a graph of order $n \geq 4$ with minimum degree at least 2 , one can add at most $(n-2 \sqrt{n}) / 4+O(\log n)$ edges such that the resulting graph has two disjoint total dominating sets, and this bound is best possible.

In this chapter we give an exchange argument for a result which is somehow located between Ore's positive and Zelinka's negative observations. More specifically, we consider the question of whether the vertex set of every graph with minimum degree at least two can be partitioned into a dominating set and a total dominating set. In future chapters, we shall call such a graph a DTDP-graph (standing for "dominating, total dominating, partitionable graph").

2.1 DTDP Existence Result

Clearly the vertex set of a 5 -cycle C_{5} cannot be partitioned into a dominating set and a total dominating set. We show that this is the only exception. Before presenting the result we introduce the following notation for this chapter. For $S \subseteq V$ and $v \in S$, we say that v is an S-bad vertex if $N[v] \subseteq S$. Further, we say that a vertex $u \in S$ is an S-weak vertex if u has degree 1 in $G[S]$ and its neighbor in S is an S-bad vertex. We now prove:

Theorem 2.1 If $G=(V, E)$ is a graph with $\delta(G) \geq 2$ that contains no C_{5}-component, then V can be partitioned into a dominating set and a total dominating set.

Proof. Among all total dominating sets of G, let S be chosen so that
(1) the number of S-bad vertices is minimized, and
(2) subject to (1), the number of S-weak vertices is minimized.

Assume that there is at least one S-bad vertex. Let v be such a vertex. If v has no S-weak neighbor, then $S^{\prime}=S \backslash\{v\}$ is a total dominating set of G with fewer S^{\prime}-bad vertices than S-bad vertices, contradicting our choice of S. Hence we may assume that every S-bad vertex has at least one S-weak neighbor.

Let w be an S-weak vertex. Since $\delta(G) \geq 2, w$ is adjacent to at least one vertex in $V \backslash S$. If epn $(w, S)=\emptyset$, then $S^{\prime}=S \backslash\{w\}$ is a total dominating set of G with fewer S^{\prime}-bad vertices than S-bad vertices, contradicting our choice of S. Hence, $|\operatorname{epn}(w, S)| \geq 1$. For each S-weak vertex w, let $w^{\prime} \in \operatorname{epn}(w, S)$. Since $\delta(G) \geq 2, w^{\prime}$ is adjacent to at least one vertex in $V \backslash S$ and $N\left[w^{\prime}\right] \backslash\{w\} \subseteq V \backslash S$.

We show next that every S-weak vertex has degree 2 in G. As defined earlier, let w be an S-weak vertex and suppose that $\operatorname{deg} w \geq 3$. Then, $S^{\prime}=S \cup\left\{w^{\prime}\right\}$ is a total dominating set of G that satisfies condition (1), but with fewer S^{\prime}-weak vertices than S-weak vertices, contradicting our choice of S. Hence, every S-weak vertex has degree 2 .

As defined earlier, let v be an S-bad vertex. Then, v has at least one S-weak neighbor. For $k \geq 1$, let $W=\left\{w_{1}, \ldots, w_{k}\right\}$ be the set of all S-weak neighbors of v. Then, $N\left(w_{i}\right)=$ $\left\{v, w_{i}^{\prime}\right\}$ for $i=1, \ldots, k$. Let $W^{\prime}=\left\{w_{1}^{\prime}, \ldots, w_{k}^{\prime}\right\}$.

If every vertex in W^{\prime} is adjacent to a vertex in $V \backslash\left(S \cup W^{\prime}\right)$, then $S^{\prime}=\left(S \cup W^{\prime}\right) \backslash\{v\}$ is a total dominating set of G with fewer S^{\prime}-bad vertices than S-bad vertices, contradicting our choice of S. Hence, renaming vertices if necessary, we may assume that $N\left[w_{1}^{\prime}\right] \subseteq W^{\prime} \cup\left\{w_{1}\right\}$ and that $w_{1}^{\prime} w_{2}^{\prime}$ is an edge of G.

If $\operatorname{deg} v \geq 3$, then $S^{\prime}=\left(S \cup\left\{w_{1}^{\prime}, w_{2}^{\prime}\right\}\right) \backslash\left\{w_{1}, w_{2}\right\}$ is a total dominating set of G with fewer S^{\prime}-bad vertices than S-bad vertices, contradicting our choice of S. Hence each of v, w_{1}, w_{1}^{\prime} and w_{2} has degree 2 in G and $C: v, w_{1}, w_{1}^{\prime}, w_{2}^{\prime}, w_{2}, v$ is an induced 5 -cycle in G.

Since G contains no C_{5}-component, the vertex w_{2}^{\prime} is adjacent to some vertex not in the 5-cycle C. But then $S^{\prime}=\left(S \cup\left\{w_{1}^{\prime}, w_{2}^{\prime}\right\}\right) \backslash\left\{v, w_{1}\right\}$ is a total dominating set of G with fewer S^{\prime}-bad vertices than S-bad vertices, contradicting our choice of S. We deduce, therefore, that the total dominating set S contains no S-bad vertices. Hence, $V \backslash S$ is a dominating set of G, and we are done.

We close the chapter with the remark that the minimum degree condition of Theorem 2.1 cannot be relaxed to $\delta(G) \geq 1$. Some examples are given at the beginning of the next chapter.

Chapter 3

Characterizing DTDP Graphs

In Chapter 2, we showed that every graph with minimum degree at least two that contains no C_{5}-component is a DTDP-graph. (Recall that DTDP-graph stands for "dominating, total dominating, partitionable graph".) UNIVERSITY

Not every graph with minimum degree one is a DTDP-graph. 3 The simplest such counterexample is a star $K_{1, n}$. The graph obtained from the corona cor (H) of an arbitrary graph H (denoted $H \circ K_{1}$ in [45] and defined to be the graph obtained from H by adding a pendant edge to each vertex of H) by subdividing at least one of the added pendant edges is another example of a graph that is not a DTDP-graph and whose diameter can be made arbitrarily large (by choosing H to have large diameter).

3.1 Graph Labelings

Our aim in this chapter is to provide a constructive characterization of DTDP-graphs. The key to our constructive characterization is to find a labeling of the vertices that indicates the role each vertex plays in the sets associated with both parameters. This
idea of labeling the vertices is introduced in [25], where trees with equal domination and independent domination numbers as well as trees with equal domination and total domination numbers are characterized.

We define a labeling of a graph G as a partition $S=\left(S_{A}, S_{B}\right)$ of $V(G)$. The label or status of a vertex v, denoted $\operatorname{sta}(v)$, is the letter $x \in\{A, B\}$ such that $v \in S_{x}$. Our aim is to describe a procedure to build DTDP-graphs in terms of labelings. By a labeled- P_{4}, we shall mean a P_{4} with the two central vertices labeled A and the two leaves labeled B.

3.1.1 The Graph Family \mathcal{T}

Let \mathcal{T} be the minimum family of labeled trees that: (i) contains a labeled- P_{4}; and (ii) is closed under the four operations $\mathcal{O}_{1}, \mathcal{O}_{2}, \mathcal{O}_{3}$ and \mathcal{O}_{4} listed below, which extend a labeled tree T by attaching a tree to the vertex $v \in V(T)$.

- Operation \mathcal{O}_{1}. Assume $\operatorname{sta}(v)=A$. Add a vertex u_{1} and the edge $v u_{1}$. Let $\operatorname{sta}\left(u_{1}\right)=B$.
- Operation \mathcal{O}_{2}. Assume $\operatorname{sta}(v)=A$. Add a path $u_{1} u_{2}$ and the edge $v u_{1}$. Let $\operatorname{sta}\left(u_{1}\right)=A$ and $\operatorname{sta}\left(u_{2}\right)=B$.
- Operation \mathcal{O}_{3}. Assume $\operatorname{sta}(v)=B$. Add a path $u_{1} u_{2} u_{3}$ and the edge $v u_{1}$. Let $\operatorname{sta}\left(u_{1}\right)=\operatorname{sta}\left(u_{2}\right)=A$ and $\operatorname{sta}\left(u_{3}\right)=B$.
- Operation \mathcal{O}_{4}. Assume $\operatorname{sta}(v)=B$. Add a path $u_{1} u_{2} u_{3} u_{4}$ and the edge $v u_{1}$. Let $\operatorname{sta}\left(u_{1}\right)=\operatorname{sta}\left(u_{4}\right)=B$ and $\operatorname{sta}\left(u_{2}\right)=\operatorname{sta}\left(u_{3}\right)=A$.

These four operations $\mathcal{O}_{1}, \mathcal{O}_{2}, \mathcal{O}_{3}$ and \mathcal{O}_{4} are illustrated in Figure 3.1.

Figure 3.1: The four operations $\mathcal{O}_{1}, \mathcal{O}_{2}, \mathcal{O}_{3}$ and \mathcal{O}_{4}.

3.1.2 The Graph Family \mathcal{G}

Let $\mathcal{O}_{5}, \mathcal{O}_{6}$, and \mathcal{O}_{7} be the three operations listed below, which extend a labeled graph G as follows:

- Operation \mathcal{O}_{5}. Let u and v be two nonadjacent vertices in G. Add the edge $u v$.
- Operation \mathcal{O}_{6}. Let $v \in V(G)$ and $\operatorname{assume} \operatorname{sta}(v)=B$. Add a path $u_{1} u_{2}$ and the edges $v u_{1}$ and $v u_{2}$. Let $\operatorname{sta}\left(u_{1}\right)=\operatorname{sta}\left(u_{2}\right)=A$.
- Operation \mathcal{O}_{7}. Let u and v be distinct vertices of G. Assume $\operatorname{sta}(u)=\operatorname{sta}(v)=B$. Add a path $u_{1} u_{2}$ and the edges $u u_{1}$ and $v u_{2}$. Let $\operatorname{sta}\left(u_{1}\right)=\operatorname{sta}\left(u_{2}\right)=A$.

These three operations are illustrated in Figure 3.2.

Let \mathcal{G} be the minimum family of labeled graphs that: (i) contains a labeled- P_{4}; and (ii) is closed under the seven operations $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots, \mathcal{O}_{7}$ described earlier.

By construction, the family \mathcal{T} is a subfamily of the family \mathcal{G}. We shall need the following observation which follows from the way in which the family \mathcal{G} is constructed.

Figure 3.2: The three operations $\mathcal{O}_{5}, \mathcal{O}_{6}$ and \mathcal{O}_{7}.

Observation 3.1 Let $(G, S) \in \mathcal{G}$ for some labeling $S=\left(S_{A}, S_{B}\right)$. Then the following properties hold:
(a) Every vertex of status A is adjacent to a vertex of status A and to a vertex of status B.
(b) Every vertex of status B is adjacent to a vertex of status A.
(c) S_{A} is a TDS of G, while S_{B} is a DS \mid of G. NNESBURG
(d) If $(G, S) \in \mathcal{T}$, then every leaf of G has status B and every support vertex has status A.

3.2 DTDP Characterization Results

In this chapter, we have two immediate aims. Our first aim is to determine which trees are DTDP-trees. For this purpose, we establish the following constructive characterization of DTDP-trees that uses labelings, a proof of which is presented in Section 3.2.1.

Theorem 3.2 The DTDP-trees are precisely those trees T such that $(T, S) \in \mathcal{T}$ for some labeling S.

Our second aim is to determine which connected graphs with minimum degree one are DTDP-graphs. We remark that if a connected graph has a spanning DTDP-tree, then it is a DTDP-graph. However, a connected DTDP-graph does not necessarily have a spanning DTDP-tree. For example, let G_{k} be obtained from the disjoint union of $k \geq 1$ copies of K_{3} by adding a path P_{3} and joining a leaf of the added path to one vertex from each copy of K_{3}. The graph G_{3} is illustrated in Figure 3.3. Then, G_{k} is a DTDPgraph but G_{k} does not have a spanning DTDP-tree, a proof of which can be found in Section 3.2.3. We remark that we could have replaced some or all of the copies of K_{3} in G_{k} with copies of C_{6} or C_{9}.

Figure 3.3: The graph $/ G_{3}$. SI SY

Every DTDP-graph has order at least 3. Trivially, the only DTDP-graph of order 3 is the complete graph K_{3}. Our main result is the following constructive characterization of DTDP-graphs of order at least 4 that uses labelings, a proof of which is presented in Section 3.2.2.

Theorem 3.3 The connected DTDP-graphs of order at least 4 are precisely those graphs G such that $(G, S) \in \mathcal{G}$ for some labeling S.

3.2.1 Proof of Theorem 3.2

Since every TDS in a tree contains all the support vertices, we have the following observation.

Observation 3.4 Let T be a rooted DTDP-tree and let $D=\left(D_{1}, D_{2}\right)$ be a partition of $V(T)$ into a TDS D_{1} and a $D S D_{2}$. Then the following properties hold:
(a) Every leaf belongs to D_{2} while every support vertex belongs to D_{1}.
(b) If every child of a vertex is a leaf, then its parent belongs to D_{1}.

Recall the statement of Theorem 3.2.

Theorem 3.2. The DTDP-trees are precisely those trees T such that $(T, S) \in \mathcal{T}$ for some labeling S.

Proof. Suppose first that T is a tree and $(T, S) \in \mathcal{T}$ for some labeling S. By Observation 3.1(c), $\left(S_{A}, S_{B}\right)$ is a partition of $V(T)$ into a $\operatorname{TDS} S_{A}$ and a DS S_{B}, and so T is a DTDP-tree. This establishes the sufficiency.

To prove the necessity, we proceed by induction on the order n of a DTDP-tree T. Since every star $K_{1, n-1}$ is not a DTDP-tree, we have that $n \geq 4$ and $\operatorname{diam}(T) \geq 3$. If $n=4$, then $T=P_{4}$ and $(T, S) \in \mathcal{T}$, where S is the labeling of a labeled- P_{4}. This establishes the base case. For the inductive hypothesis, let $n \geq 5$ and assume that for every DTDP-tree T^{\prime} of order less than n there exists a labeling S^{\prime} such that $\left(T^{\prime}, S^{\prime}\right) \in \mathcal{T}$.

Let T be a DTDP-tree of order n. Let $D=\left(D_{1}, D_{2}\right)$ be a partition of $V(T)$ into a TDS D_{1} and a DS D_{2}. We now root the tree T at a diametrical vertex r. Necessarily, r is a leaf. Let u be a vertex at maximum distance from r. Necessarily, u is a leaf. Let v be the parent of u, let w be the parent of v, and let x be the parent of w (possibly, $x=r)$. Since u is at maximum distance from the root r, every child of v is a leaf. Then, by Observation 3.4, we observe that $C(v) \subset D_{2}$ and $\{v, w\} \subseteq D_{1}$. In particular, $u \in D_{2}$.

Suppose that T has a strong support vertex z. Let z_{1} and z_{2} be two leaf-neighbors of z in T. By Observation 3.4, we observe that $\left\{z_{1}, z_{2}\right\} \subseteq D_{2}$ and $z \in D_{1}$. Let $T^{\prime}=T-z_{1}$. Then, $\left(D_{1}, D_{2} \backslash\left\{z_{1}\right\}\right)$ is a partition of $V\left(T^{\prime}\right)$ into a TDS D_{1} and a $\operatorname{DS} D_{2} \backslash\left\{z_{1}\right\}$. Hence, T^{\prime} is a DTDP-tree. Applying the inductive hypothesis to T^{\prime}, there exists a labeling
$S^{\prime}=\left(S_{A}^{\prime}, S_{B}^{\prime}\right)$ such that $\left(T^{\prime}, S^{\prime}\right) \in \mathcal{T}$. By Observation 3.1(d), $z \in S_{A}^{\prime}$. Thus, we can restore the tree T by applying Operation \mathcal{O}_{1} to T^{\prime}. Therefore, $(T, S) \in \mathcal{T}$, where S is the labeling $\left(S_{A}^{\prime}, S_{B}^{\prime} \cup\left\{z_{1}\right\}\right)$. Hence, if T has a strong support vertex, then $(T, S) \in \mathcal{T}$ for some labeling S, as desired. Hence we may assume that T has no strong support vertex. In particular, $d(v)=2$.

Suppose $d(w) \geq 3$. Let $v^{\prime} \in C(w) \backslash\{v\}$. Suppose $d\left(v^{\prime}\right) \geq 2$. By our choice of the vertex u, every child of v^{\prime} is a leaf. Since T has no strong support vertex, $d\left(v^{\prime}\right)=2$. Let u^{\prime} be the child of v^{\prime}. Then, u^{\prime} is a leaf. By Observation 3.4, $\left\{u, u^{\prime}\right\} \subseteq D_{2}$ and $\left\{v, v^{\prime}, w\right\} \subseteq D_{1}$. Let $T^{\prime}=T-\left\{u^{\prime}, v^{\prime}\right\}$. Then, $\left(D_{1} \backslash\left\{v^{\prime}\right\}, D_{2} \backslash\left\{u^{\prime}\right\}\right)$ is a partition of $V\left(T^{\prime}\right)$ into a TDS $D_{1} \backslash\left\{v^{\prime}\right\}$ and a DS $D_{2} \backslash\left\{u^{\prime}\right\}$. Hence, T^{\prime} is a DTDP-tree. Applying the inductive hypothesis to T^{\prime}, there exists a labeling $S^{\prime}=\left(S_{A}^{\prime}, S_{B}^{\prime}\right)$ such that $\left(T^{\prime}, S^{\prime}\right) \in \mathcal{T}$. By Observation 3.1, $\{v, w\} \subseteq S_{A}^{\prime}$ and $u \in S_{B}^{\prime}$. Thus, we can restore the tree T by applying Operation \mathcal{O}_{2} to T^{\prime}. Therefore, $(T, S) \in \mathcal{T}$, where S is the labeling $\left(S_{A}^{\prime} \cup\left\{v^{\prime}\right\}, S_{B}^{\prime} \cup\left\{u^{\prime}\right\}\right)$. Hence, if $d\left(v^{\prime}\right) \geq 2$, then $(T, S) \in \mathcal{T}$ for some labeling S, as desired. Therefore we may assume that every child of w, different from v, is a leaf. Thus since \bar{T} has no strong support vertex, $d(w)=3$ and $C(w)=\left\{v, v^{\prime}\right\}$, where v^{\prime} is a leaf. By Observation 3.4, $\left\{u, v^{\prime}\right\} \subseteq D_{2}$ and $\{v, w\} \subseteq D_{1}$.

Suppose $x \in D_{1}$. Let $T^{\prime}=T-\{u, v\}$. Then, $\left(D_{1} \backslash\{v\}, D_{2} \backslash\{u\}\right)$ is a partition of $V\left(T^{\prime}\right)$ into a TDS $D_{1} \backslash\{v\}$ and a DS $D_{2} \backslash\{u\}$. Hence, T^{\prime} is a DTDP-tree. Applying the inductive hypothesis to T^{\prime}, there exists a labeling $S^{\prime}=\left(S_{A}^{\prime}, S_{B}^{\prime}\right)$ such that $\left(T^{\prime}, S^{\prime}\right) \in \mathcal{T}$. By Observation 3.1, $v^{\prime} \in S_{B}^{\prime}$ and $w \in S_{A}^{\prime}$. Thus, we can restore the tree T by applying Operation \mathcal{O}_{2} to T^{\prime}. Therefore, $(T, S) \in \mathcal{T}$, where S is the labeling $\left(S_{A}^{\prime} \cup\{v\}, S_{B}^{\prime} \cup\{u\}\right)$. Hence, if $x \in D_{1}$, then $(T, S) \in \mathcal{T}$ for some labeling S, as desired. Thus we may assume that $x \in D_{2}$.

We now let $T^{\prime}=T-v^{\prime}$. Then, $\left(D_{1}, D_{2} \backslash\left\{v^{\prime}\right\}\right)$ is a partition of $V\left(T^{\prime}\right)$ into a TDS D_{1} and a DS $D_{2} \backslash\left\{v^{\prime}\right\}$. Hence, T^{\prime} is a DTDP-tree. Applying the inductive hypothesis to T^{\prime}, there exists a labeling $S^{\prime}=\left(S_{A}^{\prime}, S_{B}^{\prime}\right)$ such that $\left(T^{\prime}, S^{\prime}\right) \in \mathcal{T}$. By Observation 3.1,
$\{v, w\} \subseteq S_{A}^{\prime}$ and $u \in S_{B}^{\prime}$. Thus, we can restore the tree T by applying Operation \mathcal{O}_{1} to T^{\prime}. Hence, $(T, S) \in \mathcal{T}$, where S is the labeling $\left(S_{A}^{\prime}, S_{B}^{\prime} \cup\left\{v^{\prime}\right\}\right)$. We have therefore shown that if $d(w) \geq 3$, then $(T, S) \in \mathcal{T}$ for some labeling S, as desired. Thus we may assume that $d(w)=2$. Since $n \geq 5$, the vertex x is not the root r of the rooted tree T. Let y be the parent of x.

By Observation 3.4, $u \in D_{2}$ and $\{v, w\} \subseteq D_{1}$. Since $D=\left(D_{1}, D_{2}\right)$ is a partition of $V(T)$ into a TDS D_{1} and a DS D_{2}, we must have that $x \in D_{2}$. Hence, by Observation 3.4, the vertex x is not a support vertex. In particular, no child of x is a leaf.

Suppose $d(x) \geq 3$. Let $w^{\prime} \in C(x) \backslash\{w\}$. Since no child of x is a leaf, $d\left(w^{\prime}\right) \geq 2$. By our choice of the vertex u, the vertex w^{\prime} is either a support vertex or is the parent of a support vertex. Suppose w^{\prime} is not the parent of a support vertex. Then, since T has no strong support vertex, $d\left(w^{\prime}\right)=2$ and the child v^{\prime} of w^{\prime} is a leaf. However by Observation 3.4, this would imply that $v^{\prime} \in D_{2}$ and $\left\{w^{\prime}, x\right\} \in D_{1}$, contradicting the fact that $x \in D_{2}$. Hence, w^{\prime} must be the parent of a support vertex v^{\prime}. Let u^{\prime} be a child of v^{\prime}. An identical argument as shown with the/vertex $w \mathcal{L}$ shows that we may assume $d\left(w^{\prime}\right)=d\left(v^{\prime}\right)=2$. Hence by Observation 3.4, $u^{\prime} \in D_{2}$ and $\left\{v^{\prime}, w^{\prime}\right\} \subseteq D_{1}$. Thus, $x \in D_{2}$ is adjacent to a vertex of D_{1} different from w. We now consider the tree $T^{\prime}=T-\{u, v, w\}$. Then, $\left(D_{1} \backslash\{v, w\}, D_{2} \backslash\{u\}\right)$ is a partition of $V\left(T^{\prime}\right)$ into a $\operatorname{TDS} D_{1} \backslash\{v, w\}$ and a DS $D_{2} \backslash\{u\}$. Hence, T^{\prime} is a DTDP-tree. Applying the inductive hypothesis to T^{\prime}, there exists a labeling $S^{\prime}=\left(S_{A}^{\prime}, S_{B}^{\prime}\right)$ such that $\left(T^{\prime}, S^{\prime}\right) \in \mathcal{T}$. By Observation 3.1, $\left\{u^{\prime}, x\right\} \subseteq S_{B}^{\prime}$ and $\left\{v^{\prime}, w^{\prime}\right\} \subseteq S_{A}^{\prime}$. Thus, we can restore the tree T by applying Operation \mathcal{O}_{3} to T^{\prime}. Therefore, $(T, S) \in \mathcal{T}$, where S is the labeling $\left(S_{A}^{\prime} \cup\{v, w\}, S_{B}^{\prime} \cup\{u\}\right)$. Hence, if $d(x) \geq 3$, then $(T, S) \in \mathcal{T}$ for some labeling S, as desired. Therefore we may assume that $d(x)=2$. As observed earlier, $\{u, x\} \subseteq D_{2}$ and $\{v, w\} \subseteq D_{1}$.

Suppose $y \in D_{1}$. We now consider the tree $T^{\prime}=T-\{u, v, w\}$. Then, $\left(D_{1} \backslash\{v, w\}, D_{2} \backslash\right.$ $\{u\})$ is a partition of $V\left(T^{\prime}\right)$ into a TDS $D_{1} \backslash\{v, w\}$ and a DS $D_{2} \backslash\{u\}$. Hence, T^{\prime} is a DTDP-tree. Applying the inductive hypothesis to T^{\prime}, there exists a labeling $S^{\prime}=\left(S_{A}^{\prime}, S_{B}^{\prime}\right)$
such that $\left(T^{\prime}, S^{\prime}\right) \in \mathcal{T}$. By Observation 3.1, the leaf $x \in S_{B}^{\prime}$. Thus, we can restore the tree T by applying Operation \mathcal{O}_{3} to T^{\prime}. Therefore, $(T, S) \in \mathcal{T}$, where S is the labeling $\left(S_{A}^{\prime} \cup\{v, w\}, S_{B}^{\prime} \cup\{u\}\right)$. Hence, if $y \in D_{1}$, then $(T, S) \in \mathcal{T}$ for some labeling S, as desired. Therefore we may assume that $y \in D_{2}$.

We now consider the tree $T^{\prime}=T-\{u, v, w, x\}$. Then, $\left(D_{1} \backslash\{v, w\}, D_{2} \backslash\{u, x\}\right)$ is a partition of $V\left(T^{\prime}\right)$ into a TDS $D_{1} \backslash\{v, w\}$ and a $\operatorname{DS} D_{2} \backslash\{u, x\}$. Hence, T^{\prime} is a DTDPtree. Applying the inductive hypothesis to T^{\prime}, there exists a labeling $S^{\prime}=\left(S_{A}^{\prime}, S_{B}^{\prime}\right)$ such that $\left(T^{\prime}, S^{\prime}\right) \in \mathcal{T}$. If $y \in S_{B}^{\prime}$, then we can restore the tree T by applying Operation \mathcal{O}_{4} to T^{\prime}. If $y \in S_{A}^{\prime}$, then we can restore the tree T by first applying Operation \mathcal{O}_{1} to T^{\prime} and then Operation \mathcal{O}_{3} to the resulting tree. In both cases, $(T, S) \in \mathcal{T}$, where S is the labeling $\left(S_{A}^{\prime} \cup\{v, w\}, S_{B}^{\prime} \cup\{u, x\}\right)$. Thus, $(T, S) \in \mathcal{T}$ for some labeling S, as desired. This completes the necessity, and the proof of Theorem 3.2 is complete.

3.2.2 Proof of Theorem 3.3 UNIVERSITY JOHANANESBIIRG

Recall the statement of Theorem 3.3.

Theorem 3.3. The connected DTDP-graphs of order at least 4 are precisely those graphs G such that $(G, S) \in \mathcal{G}$ for some labeling S.

Proof. Suppose first that G is a connected graph and $(G, S) \in \mathcal{G}$ for some labeling S. By Observation 3.1(c), $\left(S_{A}, S_{B}\right)$ is a partition of $V(G)$ into a TDS S_{A} and a DS S_{B}, and so G is a connected DTDP-graph. This establishes the sufficiency.

To prove the necessity we proceed by induction on the order $n \geq 4$ of a connected DTDP-graph G. Since every star $K_{1, n-1}$ is not a DTDP-graph and since $n \geq 4$, we have that $\operatorname{diam}(G) \geq 3$, and so G contains P_{4} as a subgraph. If $n=4$, then let $G^{\prime}=P_{4}$ be a subgraph of G (possibly, $G^{\prime}=G$) obtained from G by removing zero, one, two or three edges. Then, $\left(G^{\prime}, S\right) \in \mathcal{G}$, where S is the labeling of a labeled- P_{4} and we can
restore the graph G from G^{\prime} by repeated applications (including the possibility of none) of Operation \mathcal{O}_{5}. Thus, $(G, S) \in \mathcal{G}$. This establishes the base case. For the inductive hypothesis, let $n \geq 5$ and assume that for every DTDP-graph G^{\prime} of order less than n there exists a labeling S^{\prime} such that $\left(G^{\prime}, S^{\prime}\right) \in \mathcal{G}$.

Let G be a connected DTDP-graph of order n. Among all partitions $D=\left(D_{1}, D_{2}\right)$ of $V(G)$ into a TDS D_{1} and $\operatorname{DS} D_{2}$ of G and among all spanning connected subgraphs H of G such that $D=\left(D_{1}, D_{2}\right)$ is a partition of $V(H)$ into a TDS D_{1} and DS D_{2} of H (possibly, $H=G$), let the partition $D=\left(D_{1}, D_{2}\right)$ and the graph H be chosen so that
(1) $\left|D_{1}\right|$ is a minimum.
(2) Subject to (1), $|E(H)|$ is minimized.

If there are two adjacent vertices u and v in H that both belong to the $\mathrm{DS} D_{2}$, then the edge $u v$ could have been removed from H, contradicting the minimality of H. Hence the set D_{2} is an independent set in H.

UNIVERSITY
If H is a tree, then by Theorem 3.2, there exists a labeling $S \in\left(S_{A}, S_{B}\right)$ such that $(H, S) \in \mathcal{T} \subset \mathcal{G}$. Thus, we can restore the graph G from H by repeated applications (including the possibility of none) of Operation \mathcal{O}_{5}. Hence, $(G, S) \in \mathcal{G}$. We may therefore assume that H is not a tree, for otherwise the desired result follows.

Since H is not a tree, H must contain a cycle. Let $C: v_{1} v_{2} v_{3} \ldots v_{k} v_{1}, k \geq 3$, be a shortest cycle in H (of length k). We proceed further with the following three claims.

Claim 1 The cycle C has the following properties:
(a) $V(C) \cap D_{2} \neq \emptyset$.
(b) Every vertex of C in D_{1} is adjacent in H to some other vertex of C in D_{1}.
(c) No three consecutive vertices on C are all in D_{1}.
(d) $k \equiv 0(\bmod 3)$, and we may assume that $v_{i} \in D_{2}$ for $i \equiv 1(\bmod 3)$ and $v_{i} \in D_{1}$ for $i \equiv 0,2(\bmod 3)$.

Proof. (a) If $V(C) \subseteq D_{1}$, then for any edge $e \in E(C)$, the edge e could be removed from H; that is, $H-e$ is a connected graph, D_{1} is a TDS of $H-e$, and D_{2} is a DS of $H-e$. This contradicts the minimality of H.
(b) Assume that there is a vertex v of C in D_{1} with both its neighbors on C in D_{2}. For notational convenience, we may assume that $v=v_{2}$. Thus, $v_{1} \in D_{2}, v_{2} \in D_{1}$ and $v_{3} \in D_{2}$. Since D_{2} is an independent set in H, we have that $k \geq 4$ and that $v_{4} \in D_{1}$. But then the edge $v_{2} v_{3}$ could be removed from H, contradicting the minimality of H.
(c) Assume that there are three consecutive vertices on C in D_{1}. For notational convenience, we may assume that $\left\{v_{1}, v_{2}, v_{3}\right\} \subseteq D_{1}$. By (a), $k \geq 4$. If $v_{4} \in D_{1}$, then the edge $v_{2} v_{3}$ could be removed from H, contradicting the choice of H. Hence $v_{4} \in D_{2}$. Since D_{2} is an independent set in H, we have that either $k=4$ or $k \geq 5$ and $v_{5} \in D_{1}$. Suppose $d_{H}\left(v_{3}\right) \geq 3$. Then v_{3} has a neighbor u in $V(H) \backslash\left\{v_{2}, v_{4}\right\}$. If $u \in D_{1}$, the edge $v_{2} v_{3}$ could be removed from H, while if $u \in D_{2}$, the edge $v_{3} v_{4}$ could be removed from H. In both cases we contradict the choice of H. Hence, $d_{H}\left(v_{3}\right)=2$. But then $\left(D_{1} \backslash\left\{v_{3}\right\}, D_{2} \cup\left\{v_{3}\right\}\right)$ is a partition of $V(H)$ (and hence $V(G)$) into a TDS $D_{1} \backslash\left\{v_{3}\right\}$ and $D S D_{2} \cup\left\{v_{3}\right\}$, contradicting Condition (1) of the choice of our partition D.
(d) By (a), at least one vertex of C belongs to D_{2}. For notational convenience, we may assume that $v_{1} \in D_{2}$. Since D_{2} is an independent set in $H, v_{2} \in D_{1}$. By (b), $v_{3} \in D_{1}$. If $k=3$, then the desired result follows. Hence we may assume that $k \geq 4$. By (c), $v_{4} \in D_{2}$. Since D_{2} is an independent set in $H, k \geq 5$ and $v_{5} \in D_{1}$. By (b), $k \geq 6$ and $v_{6} \in D_{1}$. If $k=6$, then the desired result follows. Hence we may assume that $k \geq 7$. Continuing in this way, we have that $k \equiv 0(\bmod 3)$ and that $v_{i} \in D_{2}$ for $i \equiv 1(\bmod 3)$ and $v_{i} \in D_{1}$ for $i \equiv 0,2(\bmod 3)$.

Claim 2 If $k=3$, then $(G, S) \in \mathcal{G}$ for some labeling S.

Proof. Suppose $k=3$. By Claim 1(d), $v_{1} \in D_{2}$ and $\left\{v_{2}, v_{3}\right\} \subseteq D_{1}$. Suppose $d_{H}\left(v_{2}\right) \geq 3$
and $d_{H}\left(v_{3}\right) \geq 3$. Then, v_{2} has a neighbor u_{2} in $V(H) \backslash\left\{v_{1}, v_{3}\right\}$ and v_{3} has a neighbor u_{3} in $V(H) \backslash\left\{v_{1}, v_{2}\right\}$ (possibly $u_{2}=u_{3}$). If $u_{2} \in D_{2}$ we could have removed the edge $v_{1} v_{2}$, contradicting the choice of H. Hence, $u_{2} \in D_{1}$. Similarly, $u_{3} \in D_{1}$. But then we could have removed the edge $v_{2} v_{3}$, contradicting the choice of H . Hence at least one of v_{2} and v_{3} has degree 2 in H. Without loss of generality, we may assume that $d_{H}\left(v_{3}\right)=2$. Suppose $d_{H}\left(v_{2}\right) \geq 3$. Then, v_{2} has a neighbor u_{2} in $V(H) \backslash\left\{v_{1}, v_{3}\right\}$ and, as before, $u_{2} \in D_{1}$. But then $\left(D_{1} \backslash\left\{v_{3}\right\}, D_{2} \cup\left\{v_{3}\right\}\right)$ is a partition of $V(H)$ (and hence $V(G)$) into a TDS $D_{1} \backslash\left\{v_{3}\right\}$ and DS $D_{2} \cup\left\{v_{3}\right\}$, contradicting Condition (1) of the choice of our partition D. Hence $d_{H}\left(v_{2}\right)=d_{H}\left(v_{3}\right)=2$.

Since $n \geq 4$ and H is connected, $d_{H}\left(v_{1}\right) \geq 3$. If $N_{H}\left(v_{1}\right) \backslash\left\{v_{2}, v_{3}\right\} \subset D_{2}$, let $D_{1}^{\prime}=$ $\left(D_{1} \backslash\left\{v_{2}\right\}\right) \cup\left\{v_{1}\right\}$ and let $D_{2}^{\prime}=\left(D_{2} \backslash\left\{v_{1}\right\}\right) \cup\left\{v_{2}\right\}$. Then, $D^{\prime}=\left(D_{1}^{\prime}, D_{2}^{\prime}\right)$ is a partition of $V(G)$ into a TDS D_{1}^{\prime} and DS D_{2}^{\prime} of G. Further, let $H^{\prime}=H-v_{1} v_{2}$. Then, H^{\prime} is a spanning connected subgraph of G such that $D^{\prime}=\left(D_{1}^{\prime}, D_{2}^{\prime}\right)$ is a partition of $V\left(H^{\prime}\right)$ into a TDS D_{1}^{\prime} and DS D_{2}^{\prime} of H^{\prime}. However since $\left|D^{\prime}\right|=|D|$ and $\left|E\left(H^{\prime}\right)\right|<|E(H)|$, this contradicts our choice of the partition $D=\left(D_{1}, D_{2}\right)$ and the graph H. Hence at least one vertex in $N_{H}\left(v_{1}\right) \backslash\left\{v_{2}, v_{3}\right\}$ belongs to the set D_{1}.

Let $G^{\prime}=H-\left\{v_{2}, v_{3}\right\}$. Then, $\left.\left(D_{1} \backslash\left\{v_{2}, v_{3}\right\}, D_{2}\right\}\right)$ is a partition of $V\left(G^{\prime}\right)$ into a TDS $D_{1} \backslash\left\{v_{2}, v_{3}\right\}$ and DS D_{2}. Hence, G^{\prime} is a DTDP-graph. Applying the inductive hypothesis to G^{\prime}, there exists a labeling $S^{\prime}=\left(S_{A}^{\prime}, S_{B}^{\prime}\right)$ such that $\left(G^{\prime}, S^{\prime}\right) \in \mathcal{G}$. If $v_{1} \in S_{A}^{\prime}$, we can restore the graph H from G^{\prime} by first applying Operation \mathcal{O}_{2} and then Operation \mathcal{O}_{5}. We can then restore the graph G from H by repeated applications of Operation \mathcal{O}_{5}. Hence, $(G, S) \in \mathcal{G}$, where S is the labeling $\left(S_{A}^{\prime} \cup\left\{v_{2}\right\}, S_{B}^{\prime} \cup\left\{v_{3}\right\}\right)$. If $v_{1} \in S_{B}^{\prime}$, we can restore the graph H from G^{\prime} by applying Operation \mathcal{O}_{6}. We can then restore the graph G from H by repeated applications of Operation \mathcal{O}_{5}. Hence, $(G, S) \in \mathcal{G}$, where S is the labeling $\left(S_{A}^{\prime} \cup\left\{v_{2}, v_{3}\right\}, S_{B}^{\prime}\right)$.

Claim 3 If $k>3$, then $(G, S) \in \mathcal{G}$ for some labeling S.

Proof. Suppose $k>3$. By Claim $1(\mathrm{~d}), k \equiv 0(\bmod 3)$, and $v_{i} \in D_{2}$ for $i \equiv 1(\bmod 3)$ and $v_{i} \in D_{1}$ for $i \equiv 0,2(\bmod 3)$. An identical argument used in the proof of Claim 2, shows that $d_{H}\left(v_{2}\right)=d_{H}\left(v_{3}\right)=2$. Let $G^{\prime}=H-\left\{v_{2}, v_{3}\right\}$. Then, $\left.\left(D_{1} \backslash\left\{v_{2}, v_{3}\right\}, D_{2}\right\}\right)$ is a partition of $V\left(G^{\prime}\right)$ into a TDS $D_{1} \backslash\left\{v_{2}, v_{3}\right\}$ and DS D_{2}. Hence, G^{\prime} is a DTDP-graph. Applying the inductive hypothesis to G^{\prime}, there exists a labeling $S^{\prime}=\left(S_{A}^{\prime}, S_{B}^{\prime}\right)$ such that $\left(G^{\prime}, S^{\prime}\right) \in \mathcal{G}$.

If $v_{1} \in S_{A}^{\prime}$, we can restore the graph H from G^{\prime} by first applying Operation \mathcal{O}_{2} and then Operation \mathcal{O}_{5}. We can then restore the graph G from H by repeated applications of Operation \mathcal{O}_{5}. Hence, $(G, S) \in \mathcal{G}$, where S is the labeling $\left(S_{A}^{\prime} \cup\left\{v_{2}\right\}, S_{B}^{\prime} \cup\left\{v_{3}\right\}\right)$. Similarly, if $v_{4} \in S_{A}^{\prime}$, then $(G, S) \in \mathcal{G}$, where S is the labeling $\left(S_{A}^{\prime} \cup\left\{v_{3}\right\}, S_{B}^{\prime} \cup\left\{v_{2}\right\}\right)$. Hence we may assume that $\left\{v_{1}, v_{4}\right\} \subseteq S_{B}^{\prime}$. In this case, we can restore the graph H from G^{\prime} by applying Operation \mathcal{O}_{7}. We can then restore the graph G from H by repeated applications of Operation \mathcal{O}_{5}. Hence, $(G, S) \in \mathcal{G}$, where S is the labeling $\left(S_{A}^{\prime} \cup\left\{v_{2}, v_{3}\right\}, S_{B}^{\prime}\right)$.

We now return to the proof of Theorem 3.3. By Claim 2 and Claim 3, $(G, S) \in \mathcal{G}$ for some labeling S, as desired. This completes the necessity and also the proof of Theorem 3.3.

3.2.3 Proof that G_{k} contains no spanning DTDP-tree

Proof. Recall that G_{k} is the graph obtained from the disjoint union of $k \geq 1$ copies of K_{3} by adding a path P_{3} and joining a leaf of the path to one vertex from each copy of K_{3}. For $i=1, \ldots, k$, let $u_{i} v_{i} w_{i} u_{i}$ be the k original copies of K_{3} and let $u v w$ be the added path P_{3}, where u is joined to u_{i} for every i. The graph G_{3} is illustrated in Figure 3.4.

Figure 3.4: The graph G_{3}.

Then, G_{k} is a DTDP-graph. We show that G_{k} does not have a spanning DTDP-tree. Assume, to the contrary, that G_{k} has a spanning tree T_{k}. Let $D=\left(D_{1}, D_{2}\right)$ be a partition of $V\left(T_{k}\right)$ into a TDS D_{1} and a $\operatorname{DS} D_{2}$. Then, uvw is a path in T_{k} where w is a leaf and $d(v)=2$. Thus, $w \in D_{2}$ while $\{u, v\} \in D_{1}$. If exactly one of v_{i} and w_{i} is a leaf in T_{k}, say w_{i}, then $u u_{i} v_{i} w_{i}$ is a path in T_{k} where $d\left(u_{i}\right)=d\left(v_{i}\right)=2$. Thus, $w_{i} \in D_{2}, v_{i} \in D_{1}$, $u_{i} \in D_{1}$, and $u \in D_{2}$, a contradiction. Hence both v_{i} and w_{i} are leaves in T_{k} with u_{i} as their common neighbor. Thus, $\left\{v_{i}, w_{i}\right\} \subset D_{2}$ while $u_{i} \in D_{1}$. But then $N[u]=D_{1}$, and so no vertex in D_{1} is adjacent with u, a contradiction. Hence, G_{k} has no spanning DTDP-tree.

Chapter 4

Exhaustive DTDP Graphs

In Chapter 2, we showed that if G is a graph of minimum degree at least 2 with no $C_{5^{-}}$ component, then $V(G)$ can be partitioned into a dominating set D and a total dominating set T (see Theorem 2.1). A characterization of all graphs with disjoint dominating and total dominating sets was given in Chapter 3 .

HANNESBURG
Recently, several authors have studied the cardinalities of pairs of disjoint dominating sets in graphs (see, for example, $[20,35,50,58,75,77]$). The context of this research motivates the question for which graphs Theorem 2.1 is best-possible in the sense that the union $D \cup T$ of the two sets necessarily contains all vertices of the graph G. The following recent result in [60] gives a partial answer to this question.

Theorem 4.1 ([60]) If G is a graph of minimum degree at least 3 with at least one component different from the Petersen graph, then G contains a dominating set D and a total dominating set T which are disjoint and satisfy $|D|+|T|<|V(G)|$.

A DT-pair of a graph G is a pair (D, T) of disjoint sets of vertices of G such that D is a dominating set and T is a total dominating set of G. A DT-pair (D, T) in G is exhaustive if $|D|+|T|=|V(G)|$. Thus a DT-pair (D, T) in G is non-exhaustive if
$|D|+|T|<|V(G)|$. Note that Theorem 2.1 implies that every graph with minimum degree at least 2 and with no C_{5}-component, has an exhaustive DT-pair. Using the notation of Hedetniemi et al. [50], for a graph G we define $\gamma \gamma_{t}(G)$ as follows:

$$
\gamma \gamma_{t}(G)=\min \{|D|+|T|:(D, T) \text { is DT-pair of } G\} .
$$

We call a DT-pair (D, T) whose union $D \cup T$ has cardinality $\gamma \gamma_{t}(G)$ a $\gamma \gamma_{t}(G)$-pair. By Theorem 2.1, $\gamma \gamma_{t}(G)$ exists for every graph G with minimum degree at least 2 and with no C_{5}-component. Hence we have the following immediate consequence of Theorem 2.1.

Theorem 4.2 If G is a graph with minimum degree at least 2 and with no C_{5}-component, then $\gamma \gamma_{t}(G) \leq|V(G)|$.

In this chapter, we characterize the graphs that achieve equality in the upper bound in Theorem 4.2 and that have no induced C_{5} subgraph.

Recall that a graph is F-free if it does not contain F as an induced subgraph. In particular, if $F=C_{5}$, then we say that the graph is C_{5}-free. The graph obtained from a complete graph K_{n}, where $n \geq 4$, by subdividing every edge once, is denoted by K_{n}^{*}. We note that $\left|V\left(K_{n}^{*}\right)\right|=\left|V\left(K_{n}\right)\right|+\left|E\left(K_{n}\right)\right|=n+\binom{n}{2}$. We now define the families \mathcal{C} and \mathcal{K}^{*} of particular cycles and subdivided complete graphs as follows:

$$
\begin{aligned}
\mathcal{C} & =\left\{C_{n}: n \geq 3 \text { and } n \neq 5\right\} \\
\mathcal{K}^{*} & =\left\{K_{n}^{*}: n \geq 4\right\} .
\end{aligned}
$$

We define a vertex as small if it has degree 2, and large if it has degree greater than 2 . For a graph G, we let $\mathcal{L}(G)$ and $\mathcal{S}(G)$ denote the set of all large and small vertices of G, respectively. For notational convenience, we simply write \mathcal{L} and \mathcal{S} when G is clear from the context.

4.1 The Problematic 5-Cycle

In this chapter we study graphs that achieve equality in the upper bound in Theorem 4.2. If we restrict our attention to graphs with minimum degree at least 3 , then a characterization of graphs is given by Theorem 4.1 which shows the only component is the Petersen graph.

However the situation becomes much more complicated when we relax the degree condition from minimum degree at least 3 to minimum degree at least 2 . In this case a characterization seems difficult to obtain since there are several families each containing infinitely many graphs that achieve equality in Theorem 4.2. For example, consider the following four families of connected graphs different from the 5 -cycle with minimum degree at least 2 that satisfy the property that every DT-pair is exhaustive.

- The Family \mathcal{D} : For $k \geq 2$, let \mathcal{D}_{k} be the connected graph that can be constructed from k disjoint 5 -cycles by identifying a set of k vertices, one from each cycle, into one vertex. Let $\mathcal{D}=\left\{\mathcal{D}_{k}: k \geq 2\right\}$. The family \mathcal{D} is depicted in Figure 4.1(a). We remark that a graph in the family \mathcal{D} is called a daisy in the literature.
- The Family \mathcal{D}_{b} : For $k \geq 0$, we define $D_{b}(k)$ to be the connected graph obtained from two disjoint 5 -cycles by joining a vertex from one of the cycles to a vertex in the other and subdividing the resulting edge k times. Let $\mathcal{D}_{b}=\left\{\mathcal{D}_{b}(k): k \geq 0\right\}$. The family \mathcal{D}_{b} is depicted in Figure $4.1(b)$. We remark that a graph in the family \mathcal{D}_{b} is called a dumb-bell in the literature.
- The Family \mathcal{D}_{1} : For $k \geq 1$, let $\mathcal{D}_{1}(k)$ be the connected graph that can be constructed from k disjoint 5 -cycles and a dumb-bell $D_{b}(3)$, defined above, by identifying a set of $k+1$ vertices, one from each cycle and the central vertex of the dumb-bell, into one vertex. Let $\mathcal{D}_{1}=\left\{\mathcal{D}_{1}(k): k \geq 1\right\}$. The family \mathcal{D}_{1} is depicted in Figure 4.1(c).
- The Family \mathcal{D}_{2} : For $k \geq 1$ and $\ell \geq 1$, let $\mathcal{D}_{2}(k, \ell)$ be the connected graph that can be constructed from $k+\ell$ disjoint 5 -cycles by identifying a set of k vertices, one from each of k cycles, into one vertex u and identifying a set of ℓ vertices, one from each of the remaining ℓ cycles, into one vertex v and then adding a path of length 2 joining u and v. Let $\mathcal{D}_{2}=\left\{\mathcal{D}_{2}(k): k \geq 1\right.$ and $\left.\ell \geq 1\right\}$. The family \mathcal{D}_{2} is depicted in Figure 4.1(d).

(a)

(b)

(c)

(d)

Figure 4.1: Graphs containing no non-exhaustive DT-pairs.

It is a routine exercise to check that if $G \in \mathcal{D} \cup \mathcal{D}_{b} \sqcup \mathcal{D}_{1} \cup \mathcal{D}_{2}$, then $\gamma \gamma_{t}(G)=|V(G)|$. We note, however, that such a graph G contains an induced 5-cycle. Several other graphs G that contain induced 5-cycles and satisfy $\gamma \gamma_{t}(G)=|V(G)|$ can readily be constructed. These families demonstrate that a characterization of general graphs that achieve equality in Theorem 4.2 seems difficult to obtain. We therefore restrict our attention to graphs with no induced 5-cycle.

4.2 Exhaustive DTDP Result

Our aim in this chapter is to characterize the C_{5}-free graphs which achieve equality in Theorem 4.2. We shall prove:

Theorem 4.3 Let G be a connected C_{5}-free graph with $\delta(G) \geq 2$. Then, $\gamma \gamma_{t}(G)=|V(G)|$ if and only if $G \in \mathcal{C} \cup \mathcal{K}^{*}$.

We will refer to a graph G as an n-minimal graph if G has order n and G is edgeminimal with respect to satisfying the following three conditions: (i) $\delta(G) \geq 2$, (ii) G is connected, (iii) $\gamma \gamma_{t}(G)=n$. We shall need the following key lemma which shows that removing edges can never lead to a violation of condition (iii) above.

Lemma 4.4 Let G be a connected C_{5}-free graph of order n with $\delta(G) \geq 2$ and $\gamma \gamma_{t}(G)=$ n. If G is not n-minimal, then G contains an n-minimal spanning subgraph with no induced 5-cycle.

The following result characterizes n-minimal C_{5}-free graphs and is useful in the proof of our main result.

Theorem 4.5 Let G be a C_{5}-free graph of order n. Then, G is n-minimal if and only if $G \in \mathcal{C} \cup \mathcal{K}^{*}$.

UNIVERSITY
We note that every graph $G \in \mathcal{D} \cup \mathcal{D}_{b} \cup \mathcal{D}_{1} \cup \mathcal{D}_{2}$ is an n-minimal graph but, as remarked earlier, such graphs are not C_{5}-free. We shall proceed as follows. We first prove a number of useful preliminary results in Section 4.2.1. We then prove Lemma 4.4 in Section 4.2.2 and Theorem 4.5 in Section 4.2.3, before presenting a proof of our main result, namely Theorem 4.3, in Section 4.2.4.

4.2.1 Preliminary Results

In this section, we present several preliminary results that will prove to be useful. We begin with a proof of our key lemma.

Lemma 4.6 If $G=C_{n}$, where $n \neq 5$, and (D, T) is a DT-pair in G, then $|D|+|T|=n$.

Proof. Let G be the cycle $v_{1} v_{2} \ldots v_{n}$, where $n \neq 5$. By Theorem 2.1, G has a DTpair. For the sake of contradiction, suppose that G has a DT-pair (D, T) such that $|D|+|T|<n$. Renaming vertices, if necessary, we may assume that $v_{2} \notin D \cup T$. Then, $\left|D \cap\left\{v_{1}, v_{3}\right\}\right| \geq 1$ and $\left|T \cap\left\{v_{1}, v_{3}\right\}\right| \geq 1$. We may assume that $v_{1} \in D$ and $v_{3} \in T$. If $n=3$, then v_{3} is not totally dominated by T, a contradiction. Hence, $n \geq 4$. If $v_{4} \notin D$, then v_{3} is not dominated by D, a contradiction. Hence, $v_{4} \in D$. But then v_{3} is not totally dominated by T, a contradiction.

Lemma 4.7 If $G \in \mathcal{K}^{*}$ and (D, T) is a DT-pair in G, then $|D|+|T|=|V(G)|$.

Proof. Let $G \in \mathcal{K}^{*}$. Then, G may be obtained from the complete graph K_{ℓ}, for some $\ell \geq 4$, by subdividing every edge exactly once. By Theorem 2.1, there exists a DT-pair (D, T) in G. If there are two vertices in \mathcal{L} that do not belong to T, then the vertex in \mathcal{S} with these two vertices as its neighbors is not totally dominated by T, a contradiction. Hence, T contains all vertices in \mathcal{L}, except possibly one. If $\mathcal{L} \subseteq T$, then since every degree-2 vertex is dominated by D, we have that $\mathcal{S} \subseteq \bar{D}$. But then no vertex in \mathcal{L} is totally dominated by T, a contradiction. Hence, exactly one vertex, v say, in \mathcal{L} is not in T. Since every vertex in $\mathcal{S} \backslash N(v)$ has both its neighbors in T, and since $\mathcal{S} \backslash N(v)$ is dominated by D, we have that $\mathcal{S} \backslash N(v) \subseteq D$. Furthermore, in order for T to totally dominate $\mathcal{L} \backslash\{v\}$ we have that $N(v) \subset T$. But then $v \in D$ in order for the set D to dominate $N(v)$. Thus, $D=(\mathcal{S} \backslash N(v)) \cup\{v\}$ and $T=(\mathcal{L} \backslash\{v\}) \cup N(v)$, and so $|D|+|T|=|\mathcal{S}|+|\mathcal{L}|=|V(G)|$, as desired.

The following observation follows from the proofs of Lemmas 4.6 and 4.7.

Observation 4.8 Let $G \in \mathcal{C} \cup \mathcal{K}^{*}$ and let $v \in V(G)$. Then, G has the following properties.
(a) There exist DT-pairs $\left(D_{1}, T_{1}\right)$ and $\left(D_{2}, T_{2}\right)$ with $v \in D_{1}$ and with $v \in T_{2}$.
(b) If $G \in \mathcal{C}$ and $u v \in E(G)$, there exist DT-pairs $\left(D_{1}, T_{1}\right)$ and $\left(D_{2}, T_{2}\right)$ with $\{u, v\} \subseteq T_{1}$ and with $u \in D_{2}$ and $v \in T_{2}$.
(c) If $G \in \mathcal{K}^{*}$ and $v \in \mathcal{L}$, then there exists a DT-pair (D, T) with $v \in D$ and $N(v) \subset T$. Furthermore, every vertex in $\mathcal{L} \backslash\{v\}$ belongs to T and has exactly one neighbor in T with the remaining neighbors all in D.

Lemma 4.9 Let $G=(V, E)$ be a cycle C_{n}, where $n \neq 5$, and let $v \in V$. Then there exists a pair (D, T) of disjoint sets of vertices in G such that $|D|+|T|<n, v \in T$, and either
(i) D dominates V and T totally dominates $V \backslash\{v\}$, or
(ii) D dominates $V \backslash\{v\}$ and T totally dominates V.

Proof. Let G be the cycle $v_{1} v_{2} \ldots v_{n} v_{1}$, where $n \neq 5$ and where $v=v_{1}$. If $n=3$, let $D=\left\{v_{2}\right\}$ and $T=\left\{v_{1}\right\}$, while if $n=4$, let $D=\left\{v_{3}\right\}$ and $T=\left\{v_{1}, v_{2}\right\}$. If $n \geq 6$ and $n \equiv 0(\bmod 3)$, let $v_{i} \in D$ if $i \equiv 0(\bmod 3)$ and let $v_{i} \in T$ if $i \equiv 1,2(\bmod 3)$ and $i \neq 2$. If $n \geq 6$ and $n \equiv 1(\bmod 3)$, let $v_{i} \in D$ if $i \equiv 0(\bmod 3)$ and let $v_{i} \in T$ if $i \equiv 1,2(\bmod 3)$ and $i \notin\{2, n\}$, and let $v_{n} \in D$. If $n \geq 6$ and $n \equiv 2(\bmod 3)$, let $v_{i} \in D$ if $i \equiv 0(\bmod 3)$ and let $v_{i} \in T$ if $i \equiv 1,2(\bmod 3)$ and $i \notin\{2, n-1\}$, and let $v_{n-1} \in D$. In all cases, the pair (D, T) satisfies the requirements of the lemma.

Lemma 4.10 Let $F \neq C_{5}$ be a connected graph with $\delta(F) \geq 2$ and let G be obtained from F by subdividing an edge of F three times. If $\gamma \gamma_{t}(G)=|V(G)|$, then $\gamma \gamma_{t}(F)=|V(F)|$.

Proof. We use a proof by contrapositive. Suppose that $\gamma \gamma_{t}(F)<|V(F)|$. We show that $\gamma \gamma_{t}(G)<|V(G)|$. Let $\left(D_{F}, T_{F}\right)$ be a $\gamma \gamma_{t}(F)$-pair in F. Then, $\left|D_{F}\right|+\left|T_{F}\right|=\gamma \gamma_{t}(F)<$ $|V(F)|$. Let $e=u v$ be the edge of F that is subdivided three times to produce the path $u v_{1} v_{2} v_{3} v$ in G. Note that u and v are not adjacent in G.

Suppose that $T_{F} \cap\{u, v\} \neq \emptyset$. Renaming vertices, if necessary, we may assume that $u \in$ T_{F}. If $v \in T_{F}$, let $D=D_{F} \cup\left\{v_{2}\right\}$ and let $T=T_{F} \cup\left\{v_{1}, v_{3}\right\}$. If $v \in D_{F}$, let $D=D_{F} \cup\left\{v_{1}\right\}$
and let $T=T_{F} \cup\left\{v_{2}, v_{3}\right\}$. If $v \notin D_{F} \cup T_{F}$, let $D=D_{F} \cup\left\{v_{2}\right\}$ and let $T=T_{F} \cup\left\{v, v_{3}\right\}$. Then, (D, T) is a DT-pair in G with $|D|+|T|=\left|D_{F}\right|+\left|T_{F}\right|+3<|V(F)|+3=|V(G)|$. Hence, $\gamma \gamma_{t}(G)<|V(G)|$, as desired. Thus we may assume that $T_{F} \cap\{u, v\}=\emptyset$.

Suppose that $D_{F} \cap\{u, v\} \neq \emptyset$. Renaming vertices, if necessary, we may assume that $u \in D_{F}$. In this case, let $D=D_{F} \cup\left\{v_{3}\right\}$ and let $T=T_{F} \cup\left\{v_{1}, v_{2}\right\}$, and once again (D, T) is a DT-pair in G with $|D|+|T|<|V(G)|$. Thus we may assume that $D_{F} \cap\{u, v\}=\emptyset$. Now, $\left|D_{F}\right|+\left|T_{F}\right| \leq|V(F)|-2$. We note that each of u and v is adjacent to a vertex in D_{F} and to a vertex in T_{F}. We now let $D=D_{F} \cup\left\{v, v_{1}\right\}$ and let $T=T_{F} \cup\left\{v_{2}, v_{3}\right\}$. Then, (D, T) is a DT-pair in G with $|D|+|T|=\left|D_{F}\right|+\left|T_{F}\right|+4 \leq|V(F)|+2<|V(G)|$. Hence, $\gamma \gamma_{t}(G)<|V(G)|$.

We remark that the converse of Lemma 4.10 is not necessarily true.

Lemma 4.11 Let G be the graph obtained from $k \geq 2$ disjoint cycles $F_{1}, F_{2}, \ldots, F_{k}$ of lengths $n_{1}, n_{2}, \ldots, n_{k}$, respectively, by identifying a set of k vertices, one from each cycle, into one vertex called v. If $n_{i} \neq 5$ for $i=1,2, \ldots, k$, then G has a non-exhaustive DT-pair.

Proof. Let G be the graph defined in the statement of the lemma. For $i \in\{1,2, \ldots, k\}$, let v_{i} be the vertex of F_{i} that was identified into the vertex v. Let $\left(D_{1}, T_{1}\right)$ be a pair of disjoint sets of vertices in F_{1} that satisfies the requirements of Lemma 4.9 for the graph F_{1} with v_{1} the specified vertex in the cycle. Then, $v_{1} \in T_{1},\left|D_{1}\right|+\left|T_{1}\right|<n_{1}$, and either (i) D_{1} dominates $V\left(F_{1}\right)$ and T_{1} totally dominates $V\left(F_{1}\right) \backslash\left\{v_{1}\right\}$ or (ii) D_{1} dominates $V\left(F_{1}\right) \backslash\left\{v_{1}\right\}$ and T_{1} totally dominates $V\left(F_{1}\right)$. For each $i \in\{2, \ldots, k\}, F_{i} \in \mathcal{C}$ and hence, by Observation 4.8(a), there exists a DT-pair $\left(D_{i}, T_{i}\right)$ in F_{i} such that $v_{i} \in T_{i}$. Let

$$
D=\bigcup_{i=1}^{k} D_{i} \quad \text { and } \quad T=\left(\bigcup_{i=1}^{k}\left(T_{i} \backslash\left\{v_{i}\right\}\right)\right) \cup\{v\} .
$$

Then, (D, T) is a non-exhaustive DT-pair in G.

Lemma 4.12 If $G \neq C_{n}$ is a C_{5}-free hamiltonian graph of order n, then $\gamma \gamma_{t}(G)<n$.

Proof. Let $G \neq C_{n}$ be a C_{5}-free hamiltonian graph of order n and let C be a hamiltonian cycle in G. Thus, every edge in $E(G) \backslash E(C)$ is a chord of C in G. Among all chords of C, let $u v$ be chosen so that $k=d_{C}(u, v)$ is minimized. Since a chord of C is not an edge of C, we note that $k \geq 2$. Let $P: u_{0} u_{1} \ldots u_{k}$ be a shortest $u-v$ path in C, where $u=u_{0}$ and $v=u_{k}$, and let C^{\prime} be the cycle $u_{0} u_{1} \ldots u_{k} u_{0}$. By our choice of $u v, C^{\prime}$ is an induced cycle in G. If $k=4$, then C^{\prime} is an induced 5 -cycle in G, contradicting the fact that G is C_{5}-free. Hence, $C^{\prime} \in \mathcal{C}$.

Let $v_{0} v_{1} \ldots v_{\ell}$ be the $v-u$ path in C not containing u_{1}, where $v=v_{0}$ and $u=v_{\ell}$. Thus, C is the cycle $u_{0} u_{1} \ldots u_{k} v_{1} v_{2} \ldots v_{\ell}$ and $n=k+\ell$. Since $k=d_{C}(u, v)$, we note that $\ell \geq k \geq 2$. We now apply Observation 4.8(b) tee the cycle $C^{\prime} \in \mathcal{C}$ as follows. If $\ell \equiv 0,1(\bmod 3)$, let $\left(D^{\prime}, T^{\prime}\right)$ be a DT-pair in C^{\prime} such that $\{u, v\}=\left\{u_{0}, u_{k}\right\} \subseteq T^{\prime}$, while if $\ell \equiv 2(\bmod 3)$, let $\left(D^{\prime}, T^{\prime}\right)$ be a DT-pair in C^{\prime} such that $u=u_{0} \in D^{\prime}$ and $v=u_{k} \in T^{\prime}$. Let $D^{\prime \prime}=\left\{v_{i} \mid i \equiv 2(\bmod 3)\right.$ and $\left.1<i<\ell\right\}$ and let $T^{\prime \prime}=\left\{v_{i} \mid i \equiv 0,1(\bmod 3)\right.$ and $1<$ $i<\ell\}$. Let $D=D^{\prime} \cup D^{\prime \prime}$ and let $T=T^{\prime} \cup T^{\prime \prime}$. We note that $v_{1} \notin D \cup T$ and that (D, T) is a DT-pair in $C+u v$. Hence, (D, T) is a non-exhaustive DT-pair in $C+u v$ and therefore in G, and so $\gamma \gamma_{t}(G)<n$.

Lemma 4.13 Let G be a connected C_{5}-free graph of order n. If there exists a spanning proper subgraph F of G such that $F \in \mathcal{K}^{*}$, then $\gamma \gamma_{t}(G)<n$.

Proof. Let G be a connected C_{5}-free graph of order n and suppose there exists a spanning proper subgraph F of G such that $F \in \mathcal{K}^{*}$. Among all edges in $E(G) \backslash E(F)$, let the edge $u v$ be chosen so that $d_{F}(u)+d_{F}(v)$ is maximized and, subject to that, the number of common neighbors of u and v in F is maximized. Let $F^{\prime}=F+u v$.

By definition of the family \mathcal{K}^{*}, we note that $\mathcal{L}(F) \geq 4$. Suppose $\{u, v\} \subset \mathcal{L}(F)$. Let $w \in \mathcal{L}(F) \backslash\{u, v\}$. Let u^{\prime} be the common neighbor of u and w in F, and let v^{\prime} be the common neighbor of v and w in F. By Observation 4.8(c), there exists a DT-pair (D, T) in F such that $w \in D,\left\{u^{\prime}, v^{\prime}\right\} \subset N(w) \subset T$ and $\{u, v\} \subset T$. Now $\left(D, T \backslash\left\{u^{\prime}\right\}\right)$ is a non-exhaustive DT-pair in F^{\prime} and therefore in G, and so $\gamma \gamma_{t}(G)<n$. Hence we may assume, without loss of generality, that $d_{F}(u)=2$.

Suppose $v \in \mathcal{L}(F)$. Since $u v \notin E(F)$, we note that $v \notin N(u)$. Let $w \in N(u)$. Then, $w \in \mathcal{L}(F)$. Let v^{\prime} be the common neighbor of v and w. By Observation 4.8(c), there exists a DT-pair (D, T) in F such that $w \in D,\left\{u, v^{\prime}\right\} \subset N(w) \subset T$ and $v \in T$. Now $\left(D, T \backslash\left\{v^{\prime}\right\}\right)$ is a non-exhaustive DT-pair in F^{\prime} and therefore in G, and so $\gamma \gamma_{t}(G)<n$. Hence we may assume that $d_{F}(v)=2$.

Let $N_{F}(u)=\left\{u_{1}, u_{2}\right\}$ and let $N_{F}(v)=\left\{v_{1}, v_{2}\right\}$. Then, $\left\{u_{1}, u_{2}\right\} \subset \mathcal{L}(F)$ and $\left\{v_{1}, v_{2}\right\} \subset$ $\mathcal{L}(F)$. Suppose that u and v have no common neighbor in F. Then, $\left\{u_{1}, u_{2}\right\} \cap\left\{v_{1}, v_{2}\right\}=\emptyset$. Let w be the common neighbor of u_{1} and v_{1} in F. Then, $C^{\prime \prime}: u u_{1} w v_{1} v u$ is a 5 -cycle in F^{\prime} and hence in G. By our choice of the edge $u v$, thelcycle C^{\prime} is an induced 5-cycle in G, contradicting the fact that G is C_{5}-free. Hence, u and v have a common neighbor in F and we may assume that $u_{1}=v_{1}$. By Observation 4.8(c), there exists a DT-pair (D, T) in F such that $u_{1} \in D,\{u, v\} \subset N\left(u_{1}\right) \subset T$ and $\left\{u_{2}, v_{2}\right\} \subset T$. Furthermore, we note that every neighbor of u_{2} in F, different from u, is totally dominated by $T \backslash\left\{u_{2}\right\}$. Thus, $\left(D, T \backslash\left\{u_{2}\right\}\right)$ is a non-exhaustive DT-pair in F^{\prime} and therefore in G, and so $\gamma \gamma_{t}(G)<n$.

We now combine Lemma 4.12 and Lemma 4.13 into the following result.

Lemma 4.14 Let G be a connected C_{5}-free graph of order n. If there exists a spanning proper subgraph F of G such that $F \in \mathcal{C} \cup \mathcal{K}^{*}$, then $\gamma \gamma_{t}(G)<n$.

4.2.2 Proof of Lemma 4.4

Recall the statement of Lemma 4.4.

Lemma 4.4. Let G be a connected C_{5}-free graph of order n with $\delta(G) \geq 2$ and $\gamma \gamma_{t}(G)=$ n. If G is not n-minimal, then G contains an n-minimal spanning subgraph with no induced 5-cycle.

Proof. Let $G=(V, E)$ be the graph defined in the statement of the lemma such that G is not n-minimal. By removing edges from G, we can obtain an n-minimal spanning subgraph of G. From all such subgraphs, choose F so that the number of induced 5 -cycles in F is minimized. For the sake of contradiction, suppose that F contains the induced 5 -cycle $C: v_{1} v_{2} v_{3} v_{4} v_{5} v_{1}$. If $n=5$, then since G is C_{5}-free we may assume, relabeling vertices if necessary, that $v_{1} v_{3} \in E$. But then $\left(\left\{v_{3}, v_{4}\right\},\left\{v_{1}, v_{5}\right\}\right)$ is a non-exhaustive DT-pair in G, a contradiction. Hence, $n \neq 5$ and since F is connected, we may assume $d_{F}\left(v_{1}\right) \geq 3$. By the minimality of $F, d_{F}\left(v_{2}\right)=d_{F}\left(v_{5}\right) / \neq 2$.

For the sake of contradiction, suppose that $d_{F}\left(v_{3}\right) \geq 3$. Then by the minimality of $F, d_{F}\left(v_{4}\right)=2$. If $v_{2} v_{4} \in E$, then the graph obtained from F by adding this edge and removing the edge $v_{1} v_{2}$ is an n-minimal spanning subgraph of G containing fewer induced 5 -cycles than F, contradicting the choice of F. Hence, $v_{2} v_{4} \notin E$. Similarly, $v_{2} v_{5} \notin E$. If $v_{1} v_{4} \in E$, then the graph obtained from F by adding this edge and removing the edge $v_{3} v_{4}$ is an n-minimal spanning subgraph of G with fewer induced 5 -cycles than F, contradicting the choice of F. Hence, $v_{1} v_{4} \notin E$ and, by a similar argument, $v_{3} v_{5} \notin E$. If $v_{1} v_{3} \in E$, let $F^{\prime}=F+v_{1} v_{3}$. By Theorem 2.1, there exists a DT-pair $\left(D^{\prime}, T^{\prime}\right)$ in F^{\prime}. To totally dominate v_{2} we may assume, without loss of generality, that $v_{1} \in T^{\prime}$. If $v_{3} \in D^{\prime}$, then $\left(\left(D^{\prime} \backslash\left\{v_{2}, v_{5}\right\}\right) \cup\left\{v_{4}\right\},\left(T^{\prime} \backslash\left\{v_{2}, v_{4}\right\}\right) \cup\left\{v_{5}\right\}\right)$ is a non-exhaustive DT-pair in F^{\prime} and hence in G, a contradiction. Hence, $v_{3} \in T^{\prime}$. To dominate v_{2}, we therefore have that $v_{2} \in D^{\prime}$. But then $\left(\left(D^{\prime} \backslash\left\{v_{4}\right\}\right) \cup\left\{v_{5}\right\}, T^{\prime} \backslash\left\{v_{4}, v_{5}\right\}\right)$ is a non-exhaustive DT-pair in F^{\prime} and hence in G, again a contradiction. Thus, $v_{1} v_{3} \notin E$. Hence, C is an induced 5 -cycle in G,
contradicting the fact that G is C_{5}-free. Therefore, $d_{F}\left(v_{3}\right)=2$. Similarly, $d_{F}\left(v_{4}\right)=2$.

If $v_{2} v_{i} \in E$ for some $i \in\{4,5\}$, then the graph obtained from F by adding this edge and removing the edge $v_{1} v_{2}$ is an n-minimal spanning subgraph of G containing fewer induced 5 -cycles than F, contradicting the choice of F. Hence, $v_{2} v_{5} \notin E$ and $v_{2} v_{4} \notin E$. By a similar argument, $v_{3} v_{5} \notin E$. If $v_{1} v_{3} \in E$, let $F^{\prime}=F+v_{1} v_{3}$. By Theorem 2.1, there exists a DT-pair $\left(D^{\prime}, T^{\prime}\right)$ in F^{\prime}. If $v_{1} \in T^{\prime}$, then $\left(\left(D^{\prime} \backslash\left\{v_{2}, v_{5}\right\}\right) \cup\left\{v_{3}, v_{4}\right\},\left(T^{\prime} \backslash\left\{v_{2}, v_{3}, v_{4}\right\}\right) \cup\left\{v_{5}\right\}\right)$ is a non-exhaustive DT-pair in F^{\prime} and hence in G, a contradiction. Hence, $v_{1} \in D^{\prime}$. But then $\left(\left(D^{\prime} \backslash\left\{v_{2}, v_{3}, v_{4}\right\}\right) \cup\left\{v_{5}\right\},\left(T^{\prime} \backslash\left\{v_{2}, v_{5}\right\}\right) \cup\left\{v_{3}, v_{4}\right\}\right)$ is a non-exhaustive DT-pair in F^{\prime} and hence in G, again a contradiction. Hence, $v_{1} v_{3} \notin E$. Similarly, $v_{1} v_{4} \notin E$. Thus, C is an induced 5 -cycle in G, contradicting the fact that G is C_{5}-free.

4.2.3 Proof of Theorem 4.5

We are now in a position to prove our key preliminary result, namely Theorem 4.5. Recall that a graph G is an n-minimal graph if G has order n and G is edge-minimal with respect to satisfying the following three conditions: (i) $\delta(G) \geq 2$, (ii) G is connected, (iii) $\gamma \gamma_{t}(G)=n$. Recall the statement of Theorem 4.5.

Theorem 4.5. Let G be a C_{5}-free graph of order n. Then, G is n-minimal if and only if $G \in \mathcal{C} \cup \mathcal{K}^{*}$.

Proof. If $G \in \mathcal{C} \cup \mathcal{K}^{*}$, then, by definition of the families \mathcal{C} and $\mathcal{K}^{*}, \delta(G) \geq 2$ and G is connected. By Lemmas 4.6 and 4.7, $\gamma \gamma_{t}(G)=n$. Furthermore, $\delta(G-e)=1$ for any edge e in G, and so G is n-minimal. This establishes the sufficiency.

To prove the necessity, we proceed by induction on the order n of an n-minimal C_{5}-free graph G. If $n \in\{3,4\}$, then $G=C_{n} \in \mathcal{C}$. Suppose $n=5$. Since $G \neq C_{5}$, either G contains a C_{3}, in which case G can be obtained from two disjoint 3 -cycles by identifying a vertex from each cycle into one vertex, or G contains a C_{4} but no C_{3}, in which case
$G=K_{2,3}$. In both cases, there exists a non-exhaustive (D, T)-pair in G, contradicting the fact that G is n-minimal. Hence, $n \neq 5$. This establishes the base cases.

Let $n \geq 6$ and assume that the result is true for all n^{\prime}-minimal C_{5}-free graphs, where $3 \leq n^{\prime}<n$. Let $G=(V, E)$ be an n-minimal C_{5}-free graph. Before proceeding further, we present two observations that will be useful in what follows. If e is an edge of G, then $\gamma \gamma_{t}(G-e) \geq \gamma \gamma_{t}(G)$. Hence, by the minimality of G, we have the following observation.

Observation 4.15 If $e \in E$, then either e is a bridge of G or $\delta(G-e)=1$.

Observation 4.16 If G^{\prime} is a connected subgraph of G of order $n^{\prime}<n$ with $\delta\left(G^{\prime}\right) \geq 2$, then either $G^{\prime} \in \mathcal{C} \cup \mathcal{K}^{*}$ or $\gamma \gamma_{t}\left(G^{\prime}\right)<n^{\prime}$.

Proof. Let G^{\prime} be a connected subgraph of G of order $n^{\prime}<n$ with $\delta\left(G^{\prime}\right) \geq 2$. Suppose $\gamma \gamma_{t}\left(G^{\prime}\right)=n^{\prime}$. Then, G^{\prime} contains a spanning subgraph $\left.G^{\prime \prime}\right\rceil^{\text {which }}$ is n^{\prime}-minimal. By induction, $G^{\prime \prime} \in \mathcal{C} \cup \mathcal{K}^{*}$. If $G^{\prime \prime}$ is a proper subgraph of G^{\prime}, then Lemma 4.4 implies a contradiction. Hence, $G^{\prime}=G^{\prime \prime}$, and so $G^{\prime} \in \mathcal{C} \cup \mathcal{K}^{*}$.

In what follows, we simply write \mathcal{L} rather than $\mathcal{L}(G)$ and \mathcal{S} rather than $\mathcal{S}(G)$ when G is clear from the context. If $|\mathcal{L}|=0$, then $G=C_{n}$ and, since G is C_{5}-free, $G \in \mathcal{C}$ and we are done. Hence, we may assume that $|\mathcal{L}| \geq 1$. If $|\mathcal{L}|=1$, then G satisfies the conditions of Lemma 4.11 and thus has a non-exhaustive DT-pair, contradicting the fact that G is n-minimal. Hence, $|\mathcal{L}| \geq 2$. We prove the following claim about the set \mathcal{L} of large vertices in G.

Claim A \mathcal{L} is an independent set in G.

Proof. For the sake of contradiction, suppose that $\{u, v\} \subseteq \mathcal{L}$ with $u v \in E$. Then, by Observation 4.15, $u v$ is a bridge of G. Let G_{u} and G_{v} denote the components of
$G-u v$ containing u and v respectively. We note that $\gamma \gamma_{t}(G) \leq \gamma \gamma_{t}\left(G_{u}\right)+\gamma \gamma_{t}\left(G_{v}\right)$. If $\gamma \gamma_{t}\left(G_{u}\right)<\left|V\left(G_{u}\right)\right|$ or $\gamma \gamma_{t}\left(G_{v}\right)<\left|V\left(G_{v}\right)\right|$, then $\gamma \gamma_{t}(G)<n$, a contradiction. Hence, $\gamma \gamma_{t}\left(G_{u}\right)=\left|V\left(G_{u}\right)\right|$ and $\gamma \gamma_{t}\left(G_{v}\right)=\left|V\left(G_{v}\right)\right|$. Therefore, by Observation 4.16, $\left\{G_{u}, G_{v}\right\} \subset$ $\mathcal{C} \cup \mathcal{K}^{*}$. If $G_{u} \in \mathcal{C}$, then, by Lemma 4.9, there exists a pair $\left(D_{1}, T_{1}\right)$ of disjoint sets of vertices in G_{u} such that $u \in T_{1},\left|D_{1}\right|+\left|T_{1}\right|<\left|V\left(G_{u}\right)\right|$, and either (i) D_{1} dominates $V\left(G_{u}\right)$ and T_{1} totally dominates $V\left(G_{u}\right) \backslash\{u\}$ or (ii) D_{1} dominates $V\left(G_{u}\right) \backslash\{u\}$ and T_{1} totally dominates $V\left(G_{u}\right)$. Using Observation 4.8(a), let $\left(D_{2}, T_{2}\right)$ be a DT-pair in G_{v} with $v \in T_{2}$ if (i) holds and $v \in D_{2}$ if (ii) holds. In both cases, $\left(D_{1} \cup D_{2}, T_{1} \cup T_{2}\right)$ is a non-exhaustive DT-pair in G, a contradiction. Hence, $G_{u} \in \mathcal{K}^{*}$. Similarly, $G_{v} \in \mathcal{K}^{*}$.

Let u^{\prime} be a neighbor of u in G_{u}. Since $u u^{\prime}$ is not a bridge in G_{u}, the edge $u u^{\prime}$ is not a bridge in G, and so, by Observation 4.15, $\delta\left(G-u u^{\prime}\right)=1$. Since $d_{G}(u) \geq 3$, we note that $d_{G-u u^{\prime}}(u) \geq 2$, implying that $d_{G}\left(u^{\prime}\right)=2$ and so $d_{G_{u}}\left(u^{\prime}\right)=2$. Let $u^{\prime \prime}$ be the neighbor of u^{\prime} distinct from u. Since every edge in G_{u} is incident with a vertex of large degree and a vertex of small degree, $d_{G_{u}}(u) \geq 3$ and $d_{G_{u}}\left(u^{\prime \prime}\right) \geq 3$. Therefore, by Observation 4.8(c), there exists a DT-pair $\left(D_{1}, T_{1}\right)$ such that $u^{\prime \prime} \in D_{1}, u^{\prime} \in N\left(u^{\prime \prime}\right) \subset T_{1}$ and $u \in T_{1}$. By Observation 4.8(a), there exists a DT-pair $\left(D_{2}, T_{2}\right)$ in G_{v} with $v \in T_{2}$. Thus, $\left(D_{1} \cup D_{2}, T_{1} \cup T_{2} \backslash\left\{u^{\prime}\right\}\right)$ is a non-exhaustive DT-pair in G, a contradiction. Hence, we conclude that \mathcal{L} is an independent set in G.

Let R be any component of $G-\mathcal{L}$ and note that R is a path. If R has only one vertex, or has at least two vertices with the two ends of R adjacent in G to different large vertices, then we say that R is a 2 -path. Otherwise we say that R is a 2 -handle.

Claim B Every 2-path in G contains at most two vertices.

Proof. Let $P: v_{1} \ldots v_{k}$ be a longest 2-path in G and let v_{0} and v_{k+1} be the large vertices that are adjacent in G to v_{1} and v_{k}, respectively. By definition of a 2 -path, we note that $v_{0} \neq v_{k+1}$. For the sake of contradiction, suppose that $k \geq 3$. Let F be the graph
obtained from G by deleting the vertices v_{1}, v_{2} and v_{3} and adding the edge $v_{0} v_{4}$. Then G can be obtained from F by subdividing an edge of F three times. Since $\mathcal{L}(G)=\mathcal{L}(F)$ and $|\mathcal{L}(G)| \geq 2$, we note that F is not a cycle. In particular, $F \neq C_{5}$. By construction, F is a connected graph with $\delta(F) \geq 2$. Hence, by Lemma 4.10, $\gamma \gamma_{t}(F)=|V(F)|$. We proceed further with a subclaim showing that F is C_{5}-free.

Subclaim B1 F is C_{5}-free.

Proof. Suppose that F contains an induced 5 -cycle C. Since G is C_{5}-free, we note that C contains the edge $v_{0} v_{4}$ and therefore $k \in\{3,4,5\}$. Suppose that $k=3$. Let C be the cycle $v_{0} w_{1} w_{2} w_{3} v_{4} v_{0}$. We note that either $w_{1} w_{2} w_{3}$ is a 2 -path in G or $w_{2} \in \mathcal{L}$. We now consider the graph $F^{\prime}=F-v_{0} v_{4}$ and note that F^{\prime} is a connected subgraph of G with $\delta\left(F^{\prime}\right) \geq 2$ and $V\left(F^{\prime}\right)=V(F)$. Further, $\left|V\left(F^{\prime}\right)\right| \geq \gamma \gamma_{t}\left(F^{\prime}\right) \geq \gamma \gamma_{t}(F)=|V(F)|$, and so $\gamma \gamma_{t}\left(F^{\prime}\right)=\left|V\left(F^{\prime}\right)\right|$. By Observation 4.16, $F^{\prime} \in \mathcal{C} \cup \mathcal{K}^{*}$. We note that $v_{0} w_{1} w_{2} w_{3} v_{4}$ is a path in F^{\prime}. If $F^{\prime} \in \mathcal{C}$, then, by our choice of P we have that $F^{\prime} \in\left\{C_{6}, C_{7}, C_{8}\right\}$. In all three cases, we can find a DT-pair $\left(D^{\prime}, T^{\prime}\right)$ in F^{\prime} such that $\left\{v_{0}, v_{4}\right\} \subset T^{\prime}$. If $F^{\prime} \in \mathcal{K}^{*}$, then since w_{1} and w_{3} have degree 2 in both G and F^{\prime}, we note that $\left\{v_{0}, v_{4}, w_{2}\right\} \subset \mathcal{L}\left(F^{\prime}\right)$ and by Observation 4.8(c), there exists a DT-pair (D^{\prime}, T^{\prime}) in F such that $w_{2} \in D^{\prime}$ and $\left\{v_{0}, v_{4}\right\} \subset T^{\prime}$. But then $\left(D^{\prime} \cup\left\{v_{2}\right\}, T^{\prime} \cup\left\{v_{1}\right\}\right)$ is a non-exhaustive DT-pair in G, a contradiction. Hence, $k \in\{4,5\}$.

Suppose that $k=4$. Let C be the cycle $v_{0} w_{1} w_{2} v_{5} v_{4} v_{0}$. We note that, since \mathcal{L} is an independent set, $w_{1} w_{2}$ is a 2-path in G. We now consider the graph $F^{\prime}=F-v_{4}$ and note that F^{\prime} is a connected subgraph of G with $\delta\left(F^{\prime}\right) \geq 2$. If $\gamma \gamma_{t}\left(F^{\prime}\right)<\left|V\left(F^{\prime}\right)\right|$, let (D^{\prime}, T^{\prime}) be a $\gamma \gamma_{t}\left(F^{\prime}\right)$-pair. But then $\left(D^{\prime} \cup\left\{v_{1}, v_{4}\right\}, T^{\prime} \cup\left\{v_{2}, v_{3}\right\}\right)$ is a non-exhaustive DT-pair in G, a contradiction. Hence, $\gamma \gamma_{t}\left(F^{\prime}\right)=\left|V\left(F^{\prime}\right)\right|$, and so by Observation 4.16, $F^{\prime} \in \mathcal{C} \cup \mathcal{K}^{*}$. Since both ends of the edge $w_{1} w_{2} \in E\left(F^{\prime}\right)$ are small vertices in F^{\prime}, we note that $F^{\prime} \notin \mathcal{K}^{*}$. Hence, $F^{\prime} \in \mathcal{C}$. By Observation $4.8(\mathrm{~b})$, there exists a DT-pair $\left(D^{\prime}, T^{\prime}\right)$ in F^{\prime} such that $\left\{v_{0}, w_{1}\right\} \subseteq T^{\prime}$. Necessarily, $w_{2} \in D^{\prime}$. If $v_{5} \in T^{\prime}$, let $D=D^{\prime} \cup\left\{v_{2}, v_{3}\right\}$ and
$T=\left(T^{\prime} \backslash\left\{w_{1}\right\}\right) \cup\left\{v_{1}, v_{4}\right\}$. If $v_{5} \in D^{\prime}$, let $D=D^{\prime} \cup\left\{v_{2}\right\}$ and $T=T^{\prime} \cup\left\{v_{3}, v_{4}\right\}$. In both cases, (D, T) is a non-exhaustive DT-pair in G, a contradiction. Hence, $k=5$.

Let C be the cycle $v_{0} v_{4} v_{5} v_{6} v^{\prime} v_{0}$. We note that, since \mathcal{L} is an independent set, $v^{\prime} \in \mathcal{S}(G)$ and $N\left(v^{\prime}\right)=\left\{v_{0}, v_{6}\right\}$. We now consider the graph $F^{\prime}=F-\left\{v_{4}, v_{5}\right\}$ and note that F^{\prime} is a connected graph with $\delta\left(F^{\prime}\right) \geq 2$. Furthermore, F^{\prime} is a subgraph of G and hence $F^{\prime} \neq C_{5}$. Let $\left(D^{\prime}, T^{\prime}\right)$ be a $\gamma \gamma_{t}\left(F^{\prime}\right)$-pair. In order to totally dominate the vertex v^{\prime} in $F^{\prime},\left|\left\{v_{0}, v_{6}\right\} \cap T^{\prime}\right| \geq 0$. We may assume, without loss of generality, that $v_{0} \in T^{\prime}$. But then $\left(D^{\prime} \cup\left\{v_{2}, v_{5}\right\}, T^{\prime} \cup\left\{v_{3}, v_{4}\right\}\right)$ is a non-exhaustive DT-pair in G, a contradiction. This completes the proof of Subclaim B1.

We now return to the proof of Claim B. By Subclaim B1, the graph F is a connected C_{5}-free graph with $\delta(F) \geq 2$ that satisfies $\gamma \gamma_{t}(F)=|V(F)|$. Let $n^{\prime}=n-3$, and so $|V(F)|=n^{\prime}$. If F is not n^{\prime}-minimal, then by Lemma 4.4, F contains an n^{\prime}-minimal spanning subgraph F^{\prime} with no induced 5-cycle. But then, by the induction hypothesis, $F^{\prime} \in \mathcal{C} \cup \mathcal{K}^{*}$ and therefore, by Lemma 4.14, $\gamma \gamma_{t}(F)<n^{\prime}=|V(F)|$, a contradiction. Hence, F is n^{\prime}-minimal, and by the induction hypothesis, $F \in \mathcal{C} \cup \mathcal{K}^{*}$. As observed earlier, F is not a cycle, and so $F \in \mathcal{K}^{*}$. Since $\mathcal{L}(G)=\mathcal{L}(F)$, we note that $v_{0} \in \mathcal{L}(F)$ and that $k=4$. Let w be a large vertex different from v_{0} and v_{5}. Let v_{0}^{\prime} be the common neighbor of v_{0} and w in F, and let v_{5}^{\prime} be the common neighbor of v_{5} and w in F. By Observation 4.8(c), there exists a DT-pair $\left(D^{\prime}, T^{\prime}\right)$ such that $w \in D^{\prime},\left\{v_{0}^{\prime}, v_{5}^{\prime}\right\} \subset N(w) \subset T^{\prime}$ and $\left\{v_{0}, v_{5}\right\} \subset T^{\prime}$. But now $\left(\left(D^{\prime} \backslash\left\{v_{4}\right\}\right) \cup\left\{v_{2}, v_{3}\right\},\left(T^{\prime} \backslash\left\{v_{0}^{\prime}\right\}\right) \cup\left\{v_{1}, v_{4}\right\}\right)$ is a non-exhaustive DT-pair in G, a contradiction.

Claim C Every 2-path in G contains exactly one vertex.

Proof. Let $P: v_{1} \ldots v_{k}$ be a longest 2-path in G and let v_{0} and v_{k+1} be the large vertices that are adjacent in G to v_{1} and v_{k}, respectively. We show that $k=1$. By Claim B, $k \leq 2$. For the sake of contradiction, suppose that $k=2$. Let $F=G-\left\{v_{1}, v_{2}\right\}$.

Suppose that F is disconnected. Let F_{1} and F_{2} denote the components containing v_{0} and v_{3}, respectively. Then, $F=F_{1} \cup F_{2}$. We consider first the case where $\gamma \gamma_{t}\left(F_{1}\right)<$ $\left|V\left(F_{1}\right)\right|$ and $\gamma \gamma_{t}\left(F_{2}\right)<\left|V\left(F_{2}\right)\right|$. Let $\left(D_{1}, T_{1}\right)$ and $\left(D_{2}, T_{2}\right)$ be non-exhaustive DT-pairs in F_{1} and F_{2}, respectively. If $v_{0} \notin D_{1}$ then $\left(D_{1} \cup D_{2} \cup\left\{v_{2}\right\}, T_{1} \cup T_{2} \cup\left\{v_{0}, v_{1}\right\}\right)$ is a non-exhaustive DT-pair in G, a contradiction. Therefore, $v_{0} \in D_{1}$. Similarly, $v_{3} \in$ D_{2}. But then $\left(D_{1} \cup D_{2}, T_{1} \cup T_{2} \cup\left\{v_{1}, v_{2}\right\}\right)$ is a non-exhaustive DT-pair in G, again a contradiction. Hence, without loss of generality, we may assume that $\gamma \gamma_{t}\left(F_{1}\right)=\left|V\left(F_{1}\right)\right|$. By Observation 4.16, $F_{1} \in \mathcal{C} \cup \mathcal{K}^{*}$ and therefore, by Observation 4.8(a), there is a DTpair $\left(D_{1}, T_{1}\right)$ in F_{1} with $v_{0} \in T_{1}$. If $\gamma \gamma_{t}\left(F_{2}\right)=\left|V\left(F_{2}\right)\right|$, then, similarly, $F_{2} \in \mathcal{C} \cup \mathcal{K}^{*}$ and there is a DT-pair $\left(D_{2}, T_{2}\right)$ in F_{2} with $v_{3} \in T_{2}$. But then $\left(D_{1} \cup D_{2} \cup\left\{v_{1}\right\}, T_{1} \cup T_{2}\right)$ is a non-exhaustive DT-pair in G, a contradiction. Thus, $\gamma \gamma_{t}\left(F_{2}\right)<\left|V\left(F_{2}\right)\right|$. As before, let $\left(D_{2}, T_{2}\right)$ be a non-exhaustive DT-pair in F_{2}. But then $\left(D_{1} \cup D_{2} \cup\left\{v_{2}\right\}, T_{1} \cup T_{2} \cup\left\{v_{1}\right\}\right)$ is a non-exhaustive DT-pair in G, again a contradiction. Hence, F is connected.

Suppose $\gamma \gamma_{t}(F)<|V(F)|$ Let (D, T) be a $\gamma \gamma_{t}(F)$-pair. If $\mid v_{0} \in T$, then $\left(D \cup\left\{v_{2}\right\}, T \cup\right.$ $\left.\left\{v_{1}\right\}\right)$ is a non-exhaustive DT-pair in G, a contradiction. Therefore, $v_{0} \notin T$. Similarly, $v_{3} \notin T$. In order to totally dominate v_{0} in F, there is a vertex $x \in N\left(v_{0}\right) \cap T$. Since \mathcal{L} is an independent set in $G, d_{G}(x)=d_{F}(x)=2$. Let $N(x)=\left\{v_{0}, y\right\}$. In order to totally dominate x, we note that $y \in T$. In order to dominate x, we note that $v_{0} \in D$. Similarly, $v_{3} \in D$. But then $\left(D, T \cup\left\{v_{1}, v_{2}\right\}\right)$ is a non-exhaustive DT-pair in G, a contradiction. Hence, $\gamma \gamma_{t}(F)=|V(F)|$.

By Observation 4.16, $F \in \mathcal{C} \cup \mathcal{K}^{*}$. Suppose $F \in \mathcal{K}^{*}$. Since every neighbor of v_{0} is a degree-2 vertex in G and hence in F, we note that $v_{0} \in \mathcal{L}(F)$. Similarly, $v_{3} \in \mathcal{L}(F)$. We note that $v_{0} v_{3}$ is not an edge of F. Let v^{\prime} be the common neighbor of v_{0} and v_{3} in F. But then $v_{0} v_{1} v_{2} v_{3} v^{\prime} v_{0}$ is an induced 5 -cycle in G, contradicting the fact that G is C_{5}-free. Hence, $F \notin \mathcal{K}^{*}$, and so $F \in \mathcal{C}$. Since G is C_{5}-free, we note that v_{0} and v_{3} have no common neighbor in F. Hence, by the choice of P, we note that $F=C_{6}$ and that $d_{F}\left(v_{0}, v_{3}\right)=3$. Let F be the cycle $w_{0} w_{1} \ldots w_{5} w_{0}$ where $w_{0}=v_{0}$ and $w_{3}=v_{3}$. Then,
$\left(\left\{w_{1}, w_{4}, v_{1}\right\},\left\{w_{0}, w_{2}, w_{3}, w_{5}\right\}\right)$ is a non-exhaustive DT-pair in G, a contradiction.

Claim D There is no 2-handle in G.

Proof. For the sake of contradiction, suppose that there is a 2 -handle in G. Among all 2-handles in G, let $P: v_{1} v_{2} \ldots v_{k}$ have maximum length. Let v be the common neighbor of v_{1} and v_{k}. We note that $v \in \mathcal{L}$. Further, we note that $k \geq 2$ and since G is C_{5}-free, $k \neq 4$. Let C be the cycle $v v_{1} v_{2} \ldots v_{k} v$ and let v^{\prime} be a neighbor of v not on C. Since \mathcal{L} is an independent set in $G, d_{G}\left(v^{\prime}\right)=2$.

Suppose $d_{G}(v) \geq 4$. Let $F=G-V(P)$. Then, F is a connected C_{5}-free graph with $\delta(F)=2$. If $\gamma \gamma_{t}(F)<|V(F)|$, let $\left(D_{1}, T_{1}\right)$ be a $\gamma \gamma_{t}(F)$-pair. If $\gamma \gamma_{t}(F)=|V(F)|$, then by Observation 4.16, $F \in \mathcal{C} \cup \mathcal{K}^{*}$ and let $\left(D_{1}, T_{1}\right)$ be a DT-pair in F such that v in T_{1}. We note that such a pair exists by Observation 4.8(a). If $v \in D_{1}$, let $\left(D_{2}, T_{2}\right)$ be a DT-pair in C such that $v \in D_{2}$. Once again, such a pair exists by Observation 4.8(a). If $v \in T_{1}$, let $\left(D_{2}, T_{2}\right)$ be a pair of disjoint sets of vertices in C such that $\left|D_{2}\right|+\left|T_{2}\right|<|V(C)|, v \in T_{2}$, and either (i) D_{2} dominates $V(C)$ and T_{2} totally dominates $V(C) \backslash\{v\}$, or (ii) D_{2} dominates $V(C) \backslash\{v\}$ and T_{2} totally dominates $V(C)$. In all cases, $\left(D_{1} \cup D_{2}, T_{1} \cup T_{2}\right)$ is a nonexhaustive DT-pair in G, a contradiction. Hence, $d_{G}(v)=3$, and so $N(v)=\left\{v_{1}, v_{k}, v^{\prime}\right\}$.

We note that, since $v v^{\prime}$ is a bridge in G, the degree- 2 vertex v^{\prime} belongs to a 2 -path in G. Let $N\left(v^{\prime}\right)=\{v, w\}$. By Claim C, $w \in \mathcal{L}$. Let $F=G-\left(V(C) \cup\left\{v^{\prime}\right\}\right)$. Then, F is a connected C_{5}-free graph with $\delta(F)=2$. Let $\left(D_{1}, T_{1}\right)$ be a $\gamma \gamma_{t}(F)$-pair. If $w \in D_{1}$, let $\left(D_{2}, T_{2}\right)$ be a DT-pair in C such that $v \in T_{2}$. If $w \in T_{1}$, let $\left(D_{2}, T_{2}\right)$ be a DT-pair in C such that $v \in D_{2}$. In both cases, we note that such a pair exists by Observation 4.8(a). Furthermore, in both cases, $\left(D_{1} \cup D_{2}, T_{1} \cup T_{2}\right)$ is a non-exhaustive DT-pair in G, a contradiction. Hence, $w \notin D_{1} \cup T_{1}$ and $\left(D_{1}, T_{1}\right)$ is a non-exhaustive DT-pair in F. We now let $\left(D_{2}, T_{2}\right)$ be a DT-pair in C such that $v \in T_{2}$. Then, $\left(D_{1} \cup D_{2} \cup\left\{v^{\prime}\right\}, T_{1} \cup T_{2}\right)$ is a non-exhaustive DT-pair in G, a contradiction.

The following result is an immediate consequence of Claims C and D.

Claim E The graph G is a bipartite graph with partite sets \mathcal{L} and \mathcal{S}.

We show next that a common neighbor of two large vertices is unique.

Claim \mathbf{F} Every two vertices in \mathcal{L} have at most one common neighbor.

Proof. For the sake of contradiction, suppose that $\{u, v\} \subseteq \mathcal{L}$ and w and w^{\prime} are distinct common neighbors of u and v. Let $F=G-w^{\prime}$. Then, F is a connected C_{5}-free graph with $\delta(F)=2$. Suppose $\gamma \gamma_{t}(F)<|V(F)|$. Let (D, T) be a $\gamma \gamma_{t}(F)$-pair. Since T totally dominates $w,\{u, v\} \cap T \neq \emptyset$. But then $\left(D \cup\left\{w^{\prime}\right\}, T\right)$ is a non-exhaustive DT-pair in G, a contradiction. Hence, $\gamma \gamma_{t}(F)=|V(F)|$, and so, by Observation 4.16, $F \in \mathcal{C} \cup \mathcal{K}^{*}$. If $F \in \mathcal{K}^{*}$ then, since $d_{F}(w)=2$, we have that $\{u, v\} \subset \mathcal{L}(F)$. Therefore, by Observation 4.8(c), there exists a DT-pair (D,T) in E such that $u \in D$ and $v \in T$. But then (D, T) is a non-exhaustive DT-pair in G, a contradiction. Hence, $F \notin \mathcal{K}^{*}$, and so $F \in \mathcal{C}$. But then $F=C_{4}$, and so $n=5$, a contradiction.

Claim G Every two vertices in \mathcal{L} have exactly one common neighbor.

Proof. By Claim F, every two vertices in \mathcal{L} have at most one common neighbor. Hence it suffices to show that every two vertices in \mathcal{L} have a common neighbor. For the sake of contradiction, suppose that $\{u, v\} \subseteq \mathcal{L}$ and that u and v have no common neighbor. Let $N(u)=\left\{u_{1}, u_{2}, \ldots, u_{r}\right\}$, and so $d_{G}(u)=r$. By Claim E, we note that $N(u) \subseteq \mathcal{S}$. For $i=1,2, \ldots, r$, let $N\left(u_{i}\right)=\left\{u, v_{i}\right\}$. By Claim E, we note that $v_{i} \in \mathcal{L}$ for each such i. By Claim F, $v_{i} \neq v_{j}$ for $1 \leq i<j \leq r$. Let $F=G-N[u]$. Then, F is a C_{5}-free graph with $\delta(F)=2$. We note that F is possibly disconnected.

Suppose $\gamma \gamma_{t}(F)<|V(F)|$. Let (D, T) be a $\gamma \gamma_{t}(F)$-pair. For $i=1,2, \ldots, r$, let w_{i} be a neighbor of v_{i} in T. By Claim $\mathrm{E}, w_{i} \in \mathcal{S}$. Hence, since D dominates and T
totally dominates w_{i}, we note that $v_{i} \in D \cup T$. If $v_{i} \in D$ for some $i, 1 \leq i \leq r$, then $\left(D \cup\left(N(u) \backslash\left\{u_{i}\right\}\right), T \cup\left\{u, u_{i}\right\}\right)$ is a non-exhaustive DT-pair in G, a contradiction. Therefore, $\left\{v_{1}, v_{2}, \ldots, v_{r}\right\} \subset T$. But then $\left(D \cup\{u\}, T \cup\left\{u_{1}\right\}\right)$ is a non-exhaustive DT-pair in G, again a contradiction. Hence, $\gamma \gamma_{t}(F)=|V(F)|$.

Suppose F is disconnected. Let $F_{1}, F_{2}, \ldots, F_{t}$ be the components in F. By assumption, $t \geq 2$. Since $\gamma \gamma_{t}(F)=|V(F)|$, we note that $\gamma \gamma_{t}\left(F_{i}\right)=\left|V\left(F_{i}\right)\right|$ for all $i=1,2, \ldots, t$. Hence, by Observation 4.16, $F_{i} \in \mathcal{C} \cup \mathcal{K}^{*}$. Switching indices if necessary, we may assume that $v_{i} \in F_{i}$ for $i=1,2, \ldots, t$. For each such i, let $\left(D_{i}, T_{i}\right)$ be a DT-pair in F_{i} such that $v_{i} \in D_{i}$. We note that such pairs exist by Observation 4.8(a). Let $D=\bigcup_{i=1}^{t} D_{i}$ and let $T=\bigcup_{i=1}^{t} T_{i}$. Then, (D, T) is a DT-pair in F and $\left(D \cup\left(N(u) \backslash\left\{u_{1}, u_{2}\right\}\right), T \cup\left\{u, u_{1}\right\}\right)$ is a non-exhaustive DT-pair in G, a contradiction. Hence, F is connected.

By Observation 4.16, $F \in \mathcal{C} \cup \mathcal{K}^{*}$. Since $d_{F}(v)=d_{G}(v) \geq 3, F$ is not a cycle and therefore $F \in \mathcal{K}^{*}$. By Claim E , the set $\mathcal{L}(G) \backslash\{u\}=\mathcal{L}(F)$. In particular, each vertex $v_{i} \in \mathcal{L}(F)$ for $i=1,2, \ldots, r$. By Observation 4.8(c), there exists a DT-pair (D, T) in F such that $v \in D$ and $\left\{v_{1}, v_{2}, \ldots, v_{r}\right\} \subset T$. But then $\left.\left(D \cup\{\bar{u}\} T \mathcal{T} \cup \mu_{1}\right\}\right)$ is a non-exhaustive DT-pair in G, a contradiction.

We now return to the proof of Theorem 4.5. By Claims E and G , the graph G is a bipartite graph with partite sets \mathcal{L} and \mathcal{S} where every two vertices in \mathcal{L} have exactly one common neighbor. Hence, $G \in \mathcal{K}^{*}$. This completes the necessity and the proof of Theorem 4.5.

4.2.4 Proof of Theorem 4.3

We are now in a position to present a proof of our main result, namely Theorem 4.3. Recall the statement of Theorem 4.3.

Theorem 4.3. Let G be a connected C_{5}-free graph with $\delta(G) \geq 2$. Then, $\gamma \gamma_{t}(G)=|V(G)|$ if and only if $G \in \mathcal{C} \cup \mathcal{K}^{*}$.

Proof. The sufficiency follows from Lemmas 4.6 and 4.7. To prove the necessity, let G be a connected C_{5}-free graph of order n with $\delta(G) \geq 2$ such that $\gamma \gamma_{t}(G)=n$. Suppose that $G \notin \mathcal{C} \cup \mathcal{K}^{*}$. Then, by Theorem 4.5, G is not an n-minimal graph. Hence, by Lemma 4.4, G contains an n-minimal spanning subgraph F with no induced 5 -cycle. By Theorem 4.5, $F \in \mathcal{C} \cup \mathcal{K}^{*}$. Therefore, by Lemma 4.14, $\gamma \gamma_{t}(G)<n$, a contradiction. Hence, $G \in \mathcal{C} \cup \mathcal{K}^{*}$.

Chapter 5

The Existence of DPDP Graphs

Paired-domination was introduced by Haynes and Slater [48, 49] as a model for assigning backups to guards for security purposes and is studied in $[9,21,22,28,33,47,48,49$, $52,53,63,64,67,81,98]$ inter alia.

UNIVERSITY
We recall the results of Zelinka [99, 100] which showed that no minimum degree is sufficient to guarantee the existence of two disjoint total dominating sets. Since every paired-dominating set is a total dominating set, Zelinka's result is also true for paireddominating sets. We therefore ask a similar question to that of Chapter 2; that is, which graphs contain disjoint dominating and paired-dominating sets?

Unlike the result of Theorem 2.1 in Chapter 2, where the vertex set of all connected graphs with minimum degree at least 2 can be partitioned into a dominating set and a total dominating set (with the exception of the 5-cycle), the situation now becomes much more complex. Our aim in this chapter is twofold: first to show that no minimum degree is sufficient to guarantee the existence of a partition of the vertex set into a dominating set and a paired-dominating set; secondly, to prove that every cubic graph contains a disjoint dominating set and paired-dominating set.

In Chapter 2, a graph whose vertex set can be partitioned into a DS and a TDS is called a DTDP-graph (standing for "dominating, total dominating, partitionable graph"). Hence Theorem 2.1 can be restated as follows.

Theorem 2.1 Every connected graph with minimum degree at least 2 that is different from a 5-cycle is a DTDP-graph.

Following this notation, we call a graph whose vertex set can be partitioned into a DS and a PDS a DPDP-graph (standing for "dominating, paired-dominating, partitionable graph"). A TD-pair of a graph G is a pair (T, D) of disjoint sets of vertices of G such that T is a TDS and D is a DS of G, while a PD-pair is a pair (P, D) of disjoint sets such that P is a PDS and D is a DS of G. Every PD-pair in a graph is also a TD-pair in the graph, and so every DPDP-graph is a DTDP-graph. The converse, however, is not true in general. The simplest such counterexample is obtained from a star $K_{1, n}$ by subdividing at least two of the edges.

JOHANNESBURG

5.1 DPDP Existence Results

As remarked earlier, unlike the result of Theorem 2.1, it is not enough to forbid the 5 -cycle and guarantee the existence of the desired partition. We shall prove the following two results, proofs of which can be found in Section 5.2.

Theorem 5.1 No minimum degree is sufficient to guarantee the existence of a disjoint dominating set and paired-dominating set.

Theorem 5.2 There exist infinite families of connected graphs with minimum degree two and maximum degree three that are not DPDP-graphs.

Although for every positive integer $\delta \geq 1$ there are infinite families of graphs with minimum degree δ whose vertex set cannot be partitioned into a DS and a PDS, our main result shows that the vertex set of every cubic graph can be partitioned into a DS and PDS. We shall prove the following result, a proof of which can be found in Section 5.3.

Theorem 5.3 Every cubic graph is a DPDP-graph.

5.2 Non-Existence Proofs

Recall the statement of Theorem 5.1.

Theorem 5.1. No minimum degree is sufficient to guarantee the existence of a disjoint dominating set and paired-dominating set.

Proof. Let $k \geq 2$ be an arbitrary fixed integer. We shall show that there exists a graph G_{k} with minimum degree k that is not a DPDP-graph. Ret G_{k} be the graph on $\left(k^{k}+k-1\right)(k+1)$ vertices constructed as follows. Let F be the graph of $(k-1)$ disjoint copies of $K_{1, k}$, and so $F=(k-1) K_{1, k}$. Label the $k-1$ degree- k vertices in F by $u_{1}, u_{2}, \ldots, u_{k-1}$ and for $i=1,2, \ldots, k-1$, let $N\left(u_{i}\right)=\left\{v_{1}^{i}, v_{2}^{i}, \ldots, v_{k}^{i}\right\}$. We construct the index set $I=\left\{\left(i_{1}, i_{2}, \ldots, i_{k-1}\right): 1 \leq i_{1}, i_{2}, \ldots, i_{k-1} \leq k\right\}$ and, for each $\xi \in I$, we let F_{ξ} be the graph comprising k disjoint copies of $K_{1, k}$, and so $F_{\xi}=k K_{1, k}$. Let X_{ξ} be the set of k vertices in F_{ξ} with degree k. Now we let G_{k} be the graph obtained from the disjoint union $\left(\bigcup_{\xi \in I} F_{\xi}\right) \cup F$ as follows: For every $\xi=\left(i_{1}, i_{2}, \ldots, i_{k-1}\right) \in I$ and for every $j=1,2, \ldots, k-1$, join $v_{i_{j}}^{j}$ to each vertex with degree 1 in F_{ξ}. Note that $\delta(G)=k$. When $k=3$, the graph G_{k} is sketched in Figure 5.1.

For the sake of contradiction suppose that G_{k} is a DPDP-graph. Let (P, D) be a PDpair in G. Thus, (P, D) is a pair of disjoint sets such that P is a PDS and D is a DS of G. Since the set P totally dominates $\left\{u_{1}, u_{2}, \ldots, u_{k-1}\right\}$, we may assume, reassigning

Figure 5.1: A sketch of G_{3}.
indices if necessary, that $\left\{v_{1}^{1}, v_{1}^{2}, \ldots, v_{1}^{k-1}\right\} \subset P$. Let $\varphi=(1,1, \ldots, 1) \in I$ and let $X_{\varphi}=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$. Since P totally dominates X_{φ}, for each $i \in\{1,2, \ldots, k\}$ there is a vertex $w_{i} \in N\left(x_{i}\right)$ that belongs to the set P. By construction, we note that for each such $i \in\{1,2, \ldots, k\}, N\left(w_{i}\right)=\left\{v_{1}^{1}, v_{1}^{2}, \ldots, v_{1}^{k-1}, x_{i}\right\}$, implying that $x_{i} \in D$. Further, w_{i} is paired with v_{1}^{j} for some $j \in\{1,2, \ldots, k-1\}$. But then by the Pigeonhole Principle, there is an $\ell \in\{1,2, \ldots, k-1\}$ such that v_{1}^{ℓ} is paired with two or more vertices from the set $\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$, a contradiction. Hence, G_{k} is not a DPDP-graph.

The x_{i} and w_{i} labels are included in Figure 5.1 for the case when $k=3$. Vertices in P and D are represented by shaded circles and hollow squares, respectively.

Recall the statement of Theorem 5.2.

Theorem 5.2. There exist infinite families of connected graphs with minimum degree two and maximum degree three that are not DPDP-graphs.

Proof. For $k \geq 1$ an integer, let G_{k} be the graph obtained from a path P on $2 k+1$ vertices as follows: For each vertex z of the path P, add a 5 -cycle and join z to one vertex of this cycle. The graph G_{2} is illustrated in Figure 5.2. We note that if uvwxyu is a 5 cycle in G_{k} such that $d(u)=d(v)=d(w)=d(x)=2$ and $d(y)=3$ with $N(y)=\{u, x, z\}$, then for any TD-pair (T, D) in G_{k} where T is a TDS and D is a DS of G_{k}, we have either:
(i) $\{u, x, y\} \subset T$ and $\{v, w, z\} \subset D$, or
(ii) $\{v, w, z\} \subset T$ and $\{u, x\} \subset D$.

If (i) holds for some such 5 -cycle in G_{k}, then the subgraph of G_{k} induced by the TDS T contains the path $u y x$ as a component and hence has no perfect matching. In this case, the (T, D)-pair would not be a (P, D)-pair. We may therefore assume that for every such 5-cycle in G_{k}, (ii) holds and so $V(P) \subset T$. In order to totally dominate the set $V(P)$, the set of $2 k+1$ degree- 3 vertices in G_{k} not on the path P all belong to D. In the graph G_{2}, illustrated in Figure 5.2, this partition is represented with the vertices in T depicted by shaded circles and the vertices in D by hollow circles. However since P is a path on an odd number of vertices, we note that the subgraph of G_{k} induced by the TDS T has no perfect matching. Hence the (T, D)-pair is not a (P, D)-pair. Since every (P, D)-pair is a (T, D)-pair, the graph G_{k} is not a DPDP-graph.

Figure 5.2: The graph G_{2}.

5.3 Existence Proof

Before proceeding to the proof of Theorem 5.3, we introduce the following additional notation and definitions. Throughout this section, we restrict our attention to cubic graphs unless otherwise stated. By Theorem 2.1, every cubic graph has a TD-pair. For a given TD-pair $\mathcal{D}=(T, D)$ in a (cubic) graph G, we let $\varphi(\mathcal{D})$ be the number of M unmatched vertices in a maximum matching M of the subgraph $G[T]$ induced by T. We note that \mathcal{D} is a PD-pair if and only if $\varphi(\mathcal{D})=0$. Furthermore, we let $\xi(\mathcal{D})$ be the number of edges in $G[T]$. We say that the TD-pair $\mathcal{D}=(T, D)$ is an optimal TD-pair in G if among all TD-pairs in G the following two conditions hold:
(1) $\varphi(\mathcal{D})$ is minimized.
(2) Subject to (1), $\xi(\mathcal{D})$ is minimized.

Let $\mathcal{D}=(T, D)$ be an optimal TD-pair in G, and let M be an arbitrary maximum matching in $G[T]$. We say that an M-unmatched vertex w^{ν} in T is \mathcal{D}_{M}-desirable if there exists a subset $\{u, v, w, x\} \subset V(G)$ such that $\{u, v\} \subseteq D,\left\{\bar{w}^{\prime} ; w, x\right\} \subseteq T, u \in \operatorname{epn}\left(w^{\prime}, T\right)$, $v \in \operatorname{ipn}(u, D), N(v)=\{u, w, x\}$, and the component of $G[T]$ containing w is an M alternating $w-x$ path (possibly, of length 1) that starts and ends with edges of M and every vertex in this component has a T-epn in G. A graphical sketch of a \mathcal{D}_{M}-desirable vertex w^{\prime} is given in Figure 5.3. Vertices in T and D are represented by shaded and hollow circles, respectively. We proceed further by proving the following two lemmas.

Figure 5.3: A \mathcal{D}_{M}-desirable vertex w^{\prime}.

Lemma 5.4 Let $\mathcal{D}=(T, D)$ be an optimal TD-pair in a cubic graph G and let M be a maximum matching in $G[T]$. If w is an M-unmatched vertex in T, then the component of $G[T]$ containing w is an odd cycle and every vertex in this component has a T-epn in G.

Proof. Let G, \mathcal{D} and M be defined as in the statement of the lemma and suppose w is an M-unmatched vertex in T. Let U be the set of all M-unmatched vertices in T and let $S=T \backslash U$. We note that U is an independent set and that M is a perfect matching in $G[S]$. Since T is a TDS in G, the vertex w has a neighbor in T. Since U is an independent set, such a neighbor of w belongs to S. Let $P: w_{0} v_{1} w_{1} \ldots v_{k} w_{k}$ be a longest M-alternating path in $G[T]$ that starts at $w=w_{0}$. We note that $v_{i} w_{i} \in M$ for $i=1,2, \ldots, k$. Further, by the maximality of M, we note that $N\left(w_{i}\right) \cap T \subseteq S \cup\left\{w_{0}\right\}$. In particular, $\operatorname{ipn}\left(w_{i}, T\right)=\emptyset$.

If $\left|\operatorname{epn}\left(w_{i}, T\right)\right|=0$ for some $i \in\{0,1, \ldots, k\}$, then $\left.\mathcal{D}^{\prime} \mathcal{S} \neq\right\rceil\left(D \cup\left\{w_{i}\right\}, T \backslash\left\{w_{i}\right\}\right)$ is a TD-pair with $\varphi\left(\mathcal{D}^{\prime}\right)<\varphi(\mathcal{D})$, contradicting our choice of \mathcal{D}. Hence for all $i=0,1, \ldots, k$, $\left|\operatorname{epn}\left(w_{i}, T\right)\right|>0$ and we let $w_{i}^{\prime} \in \operatorname{epn}\left(w_{i}, T\right)$. If $\left|\operatorname{epn}\left(v_{i}, T\right)\right|=0$ for some $i \in\{1,2, \ldots, k\}$ then $\mathcal{D}^{\prime}=\left(\left(D \backslash\left\{w_{i-1}^{\prime}, w_{i}^{\prime}\right\}\right) \cup\left\{v_{i}\right\},\left(T \backslash\left\{v_{i}\right\}\right) \cup\left\{w_{i-1}^{\prime}, w_{i}^{\prime}\right\}\right)$ is a TD-pair with $\varphi\left(\mathcal{D}^{\prime}\right)<\varphi(\mathcal{D})$, again contradicting our choice of \mathcal{D}. Hence $\left|\operatorname{epn}\left(v_{i}, T\right)\right|>0$ for all $i=0,1, \ldots, k$. We note, therefore, that since G is a cubic graph, each internal vertex on the path P has degree 2 in $G[T]$ and is adjacent in $G[T]$ only to the vertices immediately preceding it and succeeding it on P.

Let $N\left(w_{k}\right)=\left\{v_{k}, w_{k}^{\prime}, x\right\}$. If $x \in D$, then $\mathcal{D}^{\prime}=\left(D \backslash\left\{w_{k}^{\prime}\right\}, T \cup\left\{w_{k}^{\prime}\right\}\right)$ is a TD-pair with $\varphi\left(\mathcal{D}^{\prime}\right)<\varphi(\mathcal{D})$, contradicting our choice of \mathcal{D}. Hence, $x \in T$. As observed earlier, $x \in S \cup\left\{w_{0}\right\}$. If $x \in S$, then $x x^{\prime} \in M$ for some $x^{\prime} \notin V(P)$. But then $w_{0} v_{1} w_{1} \ldots v_{k} w_{k} x x^{\prime}$ is an M-alternating path in $G[T]$ that starts at w_{0} and has length exceeding that of P, contradicting our choice of P. Hence, $x=w_{0}$ and the desired result follows.

Lemma 5.5 If $\mathcal{D}=(T, D)$ is an optimal TD-pair in a cubic graph G and M is a maximum matching in $G[T]$, then every M-unmatched vertex in T is \mathcal{D}_{M}-desirable.

Proof. Let G, \mathcal{D} and M be defined as in the statement of the lemma. Let U be the set of all M-unmatched vertices in T and let $S=T \backslash U$. We note that U is an independent set and that M is a perfect matching in $G[S]$. By Lemma 5.4, every vertex in U has two neighbors in S and one neighbor in D. Hence we have the following claim.

Claim 1 If $\{a, b\} \subseteq T$ and $a \in \operatorname{ipn}(b, T)$, then $a b \in M$. In particular, if $b \in U$, then $\operatorname{ipn}(b, T)=\emptyset$.

Let $w_{0} \in U$. We show that w_{0} is a \mathcal{D}_{M}-desirable vertex. By Lemma 5.4, the component of $G[T]$ containing w is an odd cycle and every vertex in this component has a T-epn in G. Let $u \in \operatorname{epn}\left(w_{0}, T\right)$. Let $N(u)=\left\{v, v^{\prime}, w_{0}\right\}$ and note that $\left\{v, v^{\prime}\right\} \subset D$. Let $N(v)=$ $\{u, w, x\}$. Since T totally dominates v, we may assume $w \in T$. Let $N(w)=\left\{v, w_{1}, w_{2}\right\}$. Since T totally dominates w, we may assume $w_{1} \in T$.

If $w \in U$, then by Lemma 5.4, $\left\{w_{1}, w_{2}\right\} \subset T$ and $v \in \operatorname{epn}(w, T)$. Furthermore, by Claim $1, \operatorname{ipn}(w, T)=\emptyset$. But then $\mathcal{D}^{\prime}=\left((D \backslash\{u, v\}) \cup\left\{w, w_{0}\right\},\left(T \backslash\left\{w, w_{0}\right\}\right) \cup\{u, v\}\right)$ is a TD-pair in G with $\varphi\left(\mathcal{D}^{\prime}\right)<\varphi(\mathcal{D})$, contradicting our choice of \mathcal{D}. Hence, $w \in S$ and we may assume that $w w_{1} \in M$. We show next that $x \in T$.

Claim $2 x \in T$.

Proof. For the sake of contradiction suppose that $x \in D$. If $w_{2} \in D$, then $\mathcal{D}^{\prime}=$ $\left((D \backslash\{v\}) \cup\left\{w_{0}\right\},\left(T \backslash\left\{w_{0}\right\}\right) \cup\{v\}\right)$ is a TD-pair in G with $\varphi\left(\mathcal{D}^{\prime}\right)=\varphi(\mathcal{D})$ but $\xi\left(\mathcal{D}^{\prime}\right)<$ $\xi(\mathcal{D})$, contradicting our choice of \mathcal{D}. Hence, $w_{2} \in T$. By Claim $1, w_{2} \notin \operatorname{ipn}(w, T)$, and so $\left|N\left(w_{2}\right) \cap T\right|=2$. Also by Claim $1, \operatorname{ipn}\left(w_{1}, T\right)=\emptyset$. If $\operatorname{epn}\left(w_{1}, T\right)=\emptyset$, then $\mathcal{D}^{\prime}=\left((D \backslash\{v\}) \cup\left\{w_{0}, w_{1}\right\},\left(T \backslash\left\{w_{0}, w_{1}\right\}\right) \cup\{v\}\right)$ is a TD-pair in G with $\varphi\left(\mathcal{D}^{\prime}\right)<\varphi(\mathcal{D})$, contradicting our choice of \mathcal{D}. Hence, $\left|\operatorname{epn}\left(w_{1}, T\right)\right| \geq 1$. Let $w^{\prime} \in \operatorname{epn}\left(w_{1}, T\right)$.

If $w^{\prime}=x$, then $\mathcal{D}^{\prime}=((D \backslash\{x\}) \cup\{w\},(T \backslash\{w\}) \cup\{x\})$ is a TD-pair in G with $\varphi\left(\mathcal{D}^{\prime}\right)=\varphi(\mathcal{D})$ but with $\xi\left(\mathcal{D}^{\prime}\right)<\xi(\mathcal{D})$, contradicting our choice of \mathcal{D}. Hence, $w^{\prime} \neq x$. But now $\mathcal{D}^{\prime}=\left(\left(D \backslash\left\{u, v, w^{\prime}\right\}\right) \cup\left\{w, w_{0}\right\},\left(T \backslash\left\{w, w_{0}\right\}\right) \cup\left\{u, v, w^{\prime}\right\}\right)$ is a TD-pair in G with $\varphi\left(\mathcal{D}^{\prime}\right)<\varphi(\mathcal{D})$, contradicting our choice of \mathcal{D}. We conclude that $x \in T$.

By Claim 2, $x \in T$. Let $N(x)=\left\{v, x_{1}, x_{2}\right\}$. Since T totally dominates x, we may assume $x_{1} \in T$. If $x \in U$, then by Lemma 5.4, $\left\{x_{1}, x_{2}\right\} \subset T$ and $v \in \operatorname{epn}(x, T)$, a contradiction since v is also adjacent to the vertex $w \in T$. Hence, $x \in S$ and we may assume that $x x_{1} \in M$. We note that possibly $x=w_{1}$.

Claim $3 w_{2} \in D$ or $x_{2} \in D$.

Proof. For the sake of contradiction, suppose that $w_{2} \in T$ and $x_{2} \in T$. By Claim $1, w_{2} \notin$ $\operatorname{ipn}(w, T)$ and thus $\left|N\left(w_{2}\right) \cap T\right| \geqslant 2$. Similarly, $x_{2} \notin \operatorname{ipn}(x, T)$ and thus $\left|N\left(x_{2}\right) \cap T\right|=2$. If $w_{1}=x$, then $x_{1}=w$ and $\mathcal{D}^{\prime}=\left((D \backslash\{v\}) \cup\left\{w_{0}, x\right\},\left(T \backslash\left\{w_{0}, x\right\}\right) \cup\{v\}\right)$ is a TD-pair in G with $\varphi\left(\mathcal{D}^{\prime}\right)<\varphi(\mathcal{D})$, contradicting our choice of \mathcal{D}. Hence, $w_{1} \neq x$.

If w_{1} has a T-epn, w^{\prime} say, then $\mathcal{D}^{\prime}=\left(\left(D \backslash\left\{w^{\prime}\right\}\right) \cup\{w\},(T \backslash\{w\}) \cup\left\{w^{\prime}\right\}\right)$ is a TD-pair in G with $\varphi\left(\mathcal{D}^{\prime}\right)=\varphi(\mathcal{D})$ but with $\xi\left(\mathcal{D}^{\prime}\right)<\xi(\mathcal{D})$, contradicting our choice of \mathcal{D}. Hence, $\operatorname{epn}\left(w_{1}, T\right)=\emptyset$. Similarly, $\operatorname{epn}\left(x_{1}, T\right)=\emptyset$. Furthermore, by Claim $1, \operatorname{ipn}\left(w_{1}, T\right)=$ $\operatorname{ipn}\left(x_{1}, T\right)=\emptyset$.

Suppose there exists a vertex $y \in D$ such that $N(y) \cap T=\left\{w_{1}, x_{1}\right\}$. Then, $\mathcal{D}^{\prime}=$ $\left((D \backslash\{v, y\}) \cup\left\{w_{0}, w_{1}, x\right\},\left(T \backslash\left\{w_{0}, w_{1}, x\right\}\right) \cup\{v, y\}\right)$ is a TD-pair in G with $\varphi\left(\mathcal{D}^{\prime}\right)<\varphi(\mathcal{D})$, contradicting our choice of \mathcal{D}. Hence for every vertex $y \in D$, we have that $N(y) \cap T \nsubseteq$ $\left\{w_{1}, x_{1}\right\}$. But then $\mathcal{D}^{\prime}=\left((D \backslash\{v\}) \cup\left\{w_{0}, w_{1}, x_{1}\right\},\left(T \backslash\left\{w_{0}, w_{1}, x_{1}\right\}\right) \cup\{v\}\right)$ is a TD-pair in G such that $\varphi\left(\mathcal{D}^{\prime}\right)=\varphi(\mathcal{D})$ and $\xi\left(\mathcal{D}^{\prime}\right)<\xi(\mathcal{D})$, again contradicting our choice of \mathcal{D}.

Claim $4 w_{2} \in D$ and $x_{2} \in D$.

Proof. By Claim 3, $w_{2} \in D$ or $x_{2} \in D$. Renaming vertices if necessary, we may assume that $x_{2} \in D$. For the sake of contradiction, suppose that $w_{2} \in T$. By Claim 1, $w_{2} \notin \operatorname{ipn}(w, T)$ and thus $\left|N\left(w_{2}\right) \cap T\right|=2$. If w_{1} has a T-epn, w^{\prime} say, then $\mathcal{D}^{\prime}=$ $\left(\left(D \backslash\left\{w^{\prime}\right\}\right) \cup\{w\},(T \backslash\{w\}) \cup\left\{w^{\prime}\right\}\right)$ is a TD-pair in G with $\varphi\left(\mathcal{D}^{\prime}\right)=\varphi(\mathcal{D})$ but with $\xi\left(\mathcal{D}^{\prime}\right)<\xi(\mathcal{D})$, contradicting our choice of \mathcal{D}. Hence, epn $\left(w_{1}, T\right)=\emptyset$. Furthermore, by Claim $1, \operatorname{ipn}\left(w_{1}, T\right)=\emptyset$. But then $\mathcal{D}^{\prime}=\left((D \backslash\{v\}) \cup\left\{w_{0}, w_{1}\right\},\left(T \backslash\left\{w_{0}, w_{1}\right\}\right) \cup\{v\}\right)$ is a TD-pair in G with $\varphi\left(\mathcal{D}^{\prime}\right)<\varphi(\mathcal{D})$, contradicting our choice of \mathcal{D}. Hence, $w_{2} \in D$.

Claim 5 The component of $G[T]$ containing w is an M-alternating w-x path that starts and ends with edges of M. Moreover, every vertex in this component has a T-epn in G.

Proof. Let $D^{\prime}=(D \backslash\{v\}) \cup\left\{w_{0}\right\}$ and let $T^{\prime}=\left(T \backslash\left\{w_{0}\right\}\right) \cup\{v\}$. We note that if $z \in T \cap T^{\prime}$, then $\operatorname{epn}(z, T)=\operatorname{epn}\left(z, T^{\prime}\right)$. Furthermore, $\mathcal{D}^{\prime} S=\left(D^{\prime}, T^{\prime}\right)$ is a TD-pair in G such that $\varphi\left(\mathcal{D}^{\prime}\right)=\varphi(\mathcal{D})$ and $\xi\left(\mathcal{D}^{\prime}\right)=\xi(\mathcal{D})$. Since M is a maximum matching in $G\left[T^{\prime}\right]$ and v is an M-unmatched vertex in T^{\prime}, the component of $G\left[T^{\prime}\right]$ containing v is an odd cycle and every vertex in this component has a T^{\prime}-epn in G by Lemma 5.4. The desired result follows.

By Claim 5, w_{0} is a \mathcal{D}_{M}-desirable vertex. This completes the proof of Lemma 5.5.

We are now in a position to present a proof of our main result. Recall the statement of Theorem 5.3.

Theorem 5.3. Every cubic graph is a DPDP-graph.

Proof. Let G be a cubic graph and suppose, for the sake of contradiction, that G is not a DPDP-graph. By Theorem 2.1, G is a DTDP-graph. Let $\mathcal{D}=(T, D)$ be an optimal

TD-pair in G and let M be a maximum matching in $G[T]$. Since \mathcal{D} is not a PD-pair, $\varphi(\mathcal{D})>0$. Let w_{0} be an M-unmatched vertex in T.

We now choose k to be the largest integer such that $w_{0} u_{1} v_{1} w_{1} u_{2} v_{2} w_{2} \ldots u_{k} v_{k} w_{k}$ is a path in G satisfying the following properties: For each $i \in\{1,2, \ldots, k\},\left\{u_{i}, v_{i}\right\} \subset D$, $w_{i} \in T, u_{i} \in \operatorname{epn}\left(w_{i-1}, T\right), v_{i} \in \operatorname{ipn}\left(u_{i}, D\right), N\left(v_{i}\right)=\left\{u_{i}, w_{i}, x_{i}\right\}$ and the component of $G[T]$ containing w_{i} is an M-alternating $w_{i}-x_{i}$ path, P_{i} say, that starts and ends with edges of M and every vertex in this component has a T-epn in G. By Lemma $5.5, k \geq 1$. Let

$$
D^{\prime}=\left(D \backslash\left(\bigcup_{i=1}^{k}\left\{v_{i}\right\}\right)\right) \cup\left(\bigcup_{i=0}^{k-1}\left\{w_{i}\right\}\right) \quad \text { and } \quad T^{\prime}=\left(T \backslash\left(\bigcup_{i=0}^{k-1}\left\{w_{i}\right\}\right)\right) \cup\left(\bigcup_{i=1}^{k}\left\{v_{i}\right\}\right) .
$$

We note that if $z \in T \cap T^{\prime}$, then $\operatorname{epn}(z, T)=\operatorname{epn}\left(z, T^{\prime}\right)$. For $i=1,2, \ldots, k$, let $M_{i}=E\left(P_{i}\right) \cap M$ and let $M_{i}^{\prime}=\left(E\left(P_{i}\right) \backslash M\right) \cup\left\{v_{i} x_{i}\right\}$. We now consider the matching M^{\prime} in $G\left[T^{\prime}\right]$ defined by

$$
M^{\prime}=\left(M \backslash\left(\bigcup_{i=1}^{k} M_{i}\right)\right) \cup\left(\bigcup_{i=1}^{k} M_{i}^{\prime}\right)
$$

We note that $|M|=\left|M^{\prime}\right|$ and that $\mathcal{D}^{\prime}=\left(D^{\prime}, T^{\prime}\right)$ is a TD-pair in G. Furthermore, since $|T|=\left|T^{\prime}\right|$ and $|M|=\left|M^{\prime}\right|$, we have that $\varphi\left(\mathcal{D}^{\prime}\right)=\varphi(\mathcal{D})$. Additionally, $\xi\left(\mathcal{D}^{\prime}\right)=$ $\xi(\mathcal{D})$. Thus by the choice of $\mathcal{D}, \mathcal{D}^{\prime}$ is an optimal TD-pair in G and M^{\prime} is a maximum matching in $G\left[T^{\prime}\right]$. Since w_{k} is an M^{\prime}-unmatched vertex in T^{\prime}, w_{k} is a $\mathcal{D}_{M^{\prime}}^{\prime}$-desirable vertex by Lemma 5.4. Hence there exist vertices $\left\{u_{k+1}, v_{k+1}, w_{k+1}, x_{k+1}\right\} \subset V(G)$ such that $\left\{u_{k+1}, v_{k+1}\right\} \subset D^{\prime},\left\{w_{k+1}, x_{k+1}\right\} \subset T^{\prime}, u_{k+1} \in \operatorname{epn}\left(w_{k}, T^{\prime}\right), v_{k+1} \in \operatorname{epn}\left(u_{k+1}, D^{\prime}\right)$, $N\left(v_{k+1}\right)=\left\{u_{k+1}, w_{k+1}, x_{k+1}\right\}$ and the component of $G\left[T^{\prime}\right]$ containing w_{k+1} is an $M^{\prime}-$ alternating $w_{k+1}-x_{k+1}$ path that starts and ends with edges of M^{\prime} and every vertex in this component has a T^{\prime}-epn in G.

But now, by the construction of \mathcal{D}^{\prime} and $M^{\prime}, w_{0} u_{1} v_{1} w_{1} \ldots u_{k} v_{k} w_{k} u_{k+1} v_{k+1} w_{k+1}$ is a path in G satisfying the following properties: For each $i \in\{1,2, \ldots, k+1\},\left\{u_{i}, v_{i}\right\} \subset D$, $w_{i} \in T, u_{i} \in \operatorname{epn}\left(w_{i-1}, T\right), v_{i} \in \operatorname{ipn}\left(u_{i}, T\right), N\left(v_{i}\right)=\left\{u_{i}, w_{i}, x_{i}\right\}$ and the component of
$G[T]$ containing w_{i} is an M-alternating $w_{i}-x_{i}$ path that starts and ends with edges of M and every vertex in this component has a T-epn in G. This, however, contradicts our choice of k. We deduce, therefore that the graph G is a DPDP-graph.

Chapter 6

Characterizing DPDP Graphs

A characterization of graphs whose vertex set can be partitioned into a dominating set and a total dominating set is given in Chapter 3. The context of this research motivates the question of which graphs have disjoint dominating and paired-dominating sets. In the previous chapter we showed that DPDP-graphs are more difficult to pin down than DTDP-graphs when the minimum degree is at least 2. Our aim in this chapter is to provide a constructive characterization of all graphs whose vertex set can be partitioned into a dominating set and a paired-dominating set.

Recall that a graph whose vertex set can be partitioned into a dominating set and a total dominating set is called a DTDP-graph and a graph whose vertex set can be partitioned into a dominating set and a paired-dominating set a DPDP-graph. A TDpair of a graph G is a pair (T, D) of disjoint sets of vertices of G such that T is a total dominating set and D is a dominating set of G, while a PD-pair is a pair (P, D) of disjoint sets such that P is a paired-dominating set and D is a dominating set of G.

As noted in the previous chapter, every PD-pair in a graph is also a TD-pair in the graph, and so every DPDP-graph is a DTDP-graph. The converse, however, is not true in general, with the simplest counterexample obtained from a star $K_{1, n}$ by subdividing
at least two of the edges. More generally, let G be the graph obtained from an arbitrary graph H by attaching two pendant edges to each vertex of H and then, for each vertex in H, subdividing exactly one of the added pendant edges. The graph obtained from G by attaching an additional pendant edge to any of the vertices from the original graph H and subdividing this edge is a DTDP-graph, but not a DPDP-graph, whose diameter can be made arbitrarily large (by choosing H to have large diameter).

Moreover, unlike the result of Theorem 2.1, which proves that all connected graphs with minimum degree at least 2 (except the 5-cycle) are DTDP-graphs, the situation becomes more complex for DPDP-graphs. Indeed there are infinite families of connected graphs of minimum degree at least 2 that are not DPDP-graphs. The simplest such family consists of graphs $D_{k}(5)$ that can be constructed from $k \geq 2$ disjoint 5 -cycles by identifying a set of k vertices, one from each cycle, into one new vertex v.

Observation 6.1 For $k \geq 2$, the graph $D_{k}(5)$ is not a $D P D P$-graph.

Proof. For the sake of contradiction, suppose that $G=D_{k}(5)$ is a DPDP-graph for some $k \geq 2$. Let (P, D) be a PD-pair in G. We note that P is also a total dominating set in G. If $v \in D$, then in order to totally dominate each neighbor of v, every vertex at distance 2 from v belongs to P. In order to dominate these vertices at distance 2 from v, every neighbor of v therefore belongs to D. But then v is not totally dominated by P, a contradiction. Hence, $v \in P$. In order to totally dominate v, let u be a neighbor of v in P. Let uvwxyu be the 5 -cycle containing u. To dominate u, we must have that $y \in D$. To totally dominate x, we therefore have that $w \in P$. Since the subgraph induced by P contains a perfect matching, we have that $x \in P$. But then w is not dominated by D, a contradiction. Hence, G contains no PD-pair; that is, G is not a DPDP-graph.

We also remark that there exist graphs with minimum degree at least 2 and arbitrarily large diameter that are not DPDP-graphs.

6.1 Graph Labelings

Our aim in this chapter is to provide a constructive characterization of DPDP-graphs. As in Chapter 3, where we characterize DTDP-graphs, the key to our constructive characterization is to find a labeling of the vertices that indicates the role each vertex plays in the sets associated with both parameters. We define a labeling of a graph G as a partition $S=\left(S_{A}, S_{B}\right)$ of $V(G)$. The label or status of a vertex v, denoted sta (v), is the letter $x \in\{A, B\}$ such that $v \in S_{x}$. Our aim is to describe a procedure to build DPDP-graphs in terms of labelings. By a labeled- P_{4}, we shall mean a P_{4} with the two central vertices labeled A and the two leaves labeled B.

6.1.1 The Graph Family \mathcal{T}

Let \mathcal{T} be the minimum family of labeled trees that: (i) contains a labeled $-P_{4}$; and (ii) is closed under the four operations $\mathcal{O}_{1}, \mathcal{O}_{2}, \mathcal{O}_{3}$ and \mathcal{O}_{4} listed below, which extend a labeled tree T by attaching a tree to the vertex $v \in V(T)$.

- Operation \mathcal{O}_{1}. Let v be a vertex with $\operatorname{sta}(v)=A$. Add a vertex u_{1} and the edge $v u_{1}$. Let $\operatorname{sta}\left(u_{1}\right)=B$.
- Operation \mathcal{O}_{2}. Let v be a vertex with $\operatorname{sta}(v)=A$. Add a path $u_{1} u_{2} u_{3} u_{4}$ and the edge $v u_{2}$. Let $\operatorname{sta}\left(u_{1}\right)=\operatorname{sta}\left(u_{4}\right)=B$ and $\operatorname{sta}\left(u_{2}\right)=\operatorname{sta}\left(u_{3}\right)=A$.
- Operation \mathcal{O}_{3}. Let v be a vertex with $\operatorname{sta}(v)=B$. Add a path $u_{1} u_{2} u_{3}$ and the edge $v u_{1}$. Let $\operatorname{sta}\left(u_{1}\right)=\operatorname{sta}\left(u_{2}\right)=A$ and $\operatorname{sta}\left(u_{3}\right)=B$.
- Operation \mathcal{O}_{4}. Let v be a vertex with $\operatorname{sta}(v)=B$. Add a path $u_{1} u_{2} u_{3} u_{4}$ and the edge $v u_{1}$. Let $\operatorname{sta}\left(u_{1}\right)=\operatorname{sta}\left(u_{4}\right)=B$ and $\operatorname{sta}\left(u_{2}\right)=\operatorname{sta}\left(u_{3}\right)=A$.

These four operations $\mathcal{O}_{1}, \mathcal{O}_{2}, \mathcal{O}_{3}$ and \mathcal{O}_{4} are illustrated in Figure 6.1.

Figure 6.1: The four operations $\mathcal{O}_{1}, \mathcal{O}_{2}, \mathcal{O}_{3}$ and \mathcal{O}_{4}.

6.1.2 The Graph Family \mathcal{G}

Let $\mathcal{O}_{5}, \mathcal{O}_{6}, \mathcal{O}_{7}$ and \mathcal{O}_{8} be the four operations listed below, which extend a labeled graph G as follows:

- Operation \mathcal{O}_{5}. Let u and v be two nonadjacent vertices in G. Add the edge $u v$.
- Operation \mathcal{O}_{6}. Let v be a vertex with $\operatorname{sta}(v)=B$. Add a path $u_{1} u_{2}$ and the edges $v u_{1}$ and $v u_{2}$. Let $\operatorname{sta}\left(u_{1}\right)=\operatorname{sta}\left(u_{2}\right)=A$.
- Operation \mathcal{O}_{7}. Let u and v be distinct vertices of G with $\operatorname{sta}(u)=\operatorname{sta}(v)=B$. Add a path $u_{1} u_{2}$ and the edges $u u_{1}$ and $v u_{2}$. Let $\operatorname{sta}\left(u_{1}\right)=\operatorname{sta}\left(u_{2}\right)=A$.
- Operation \mathcal{O}_{8}. Let v be a vertex with $\operatorname{sta}(v)=A$. Add a cycle $u_{1} u_{2} u_{3} u_{1}$ and the edge $v u_{1}$. Let $\operatorname{sta}\left(u_{1}\right)=\operatorname{sta}\left(u_{2}\right)=A$ and $\operatorname{sta}\left(u_{3}\right)=B$.

These four operations are illustrated in Figure 6.2.

Let \mathcal{G} be the minimum family of labeled graphs that: (i) contains a labeled- P_{4}; and (ii) is closed under the eight operations $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots, \mathcal{O}_{8}$ described earlier. By construction,

Figure 6.2: The four operations $\mathcal{O}_{5}, \mathcal{O}_{6}, \mathcal{O}_{7}$ and \mathcal{O}_{8}.
the family \mathcal{T} is a subfamily of the family \mathcal{G}.
We shall need the following observation which followsfrom the way in which the family \mathcal{G} is constructed.

Observation 6.2 Let $(G, S) \in \mathcal{G}$ for some labeling $S=\left(S_{A}, S_{B}\right)$. Then the following properties hold:
(a) Every vertex of status A is adjacent to a vertex of status A and to a vertex of status B;
(b) Every vertex of status B is adjacent to a vertex of status A;
(c) Since each operation adds exactly zero or two adjacent vertices of status A, the subgraph induced by S_{A} contains a perfect matching comprising exactly those edges incident with both status A vertices added at each operation (with the exception of \mathcal{O}_{1} and \mathcal{O}_{5}) as well as the edge incident with both status A vertices of the labeled- P_{4}. Hence S_{A} is a $P D S$ of G, while S_{B} is a $D S$ of G.
(d) If $v \in V(G)$ and $d(v)=1$, then v has status B and the neighbor of v has status A.

6.2 DPDP Characterization Results

In this chapter, we have two immediate aims. Our first aim is to determine which trees are DPDP-trees. For this purpose, we establish the following constructive characterization of DPDP-trees that uses labelings, a proof of which is presented in Section 6.2.1.

Theorem 6.3 The DPDP-trees are precisely those trees T such that $(T, S) \in \mathcal{T}$ for some labeling S.

Our second aim is to determine which connected graphs with minimum degree one are DPDP-graphs. We remark that if a connected graph has a spanning DPDP-tree, then it is a DPDP-graph. However, a connected DPDP-graph does not necessarily have a spanning DPDP-tree. For example, let G_{k} be obtained from the disjoint union of $k \geq 1$ copies of K_{3} by adding a path P_{3} and joining a leaf of the added path to one vertex from each copy of K_{3}. The graph G_{3} is illustrated in Figure 3.3 in Chapter 3. Then, G_{k} is a DPDP-graph but G_{k} does not have a spanning DPDP-tree. We remark that we could have replaced some or all of the copies of K_{3} in G_{k} with copies of C_{6} or C_{9}.

Every DPDP-graph has order at least 3. Trivially, the only DPDP-graph of order 3 is the complete graph K_{3}. Our main result is the following constructive characterization of DPDP-graphs of order at least 4 that uses labelings, a proof of which is presented in Section 6.2.2.

Theorem 6.4 The connected DPDP-graphs of order at least 4 are precisely those graphs G such that $(G, S) \in \mathcal{G}$ for some labeling S.

6.2.1 Proof of Theorem 6.3

Recall that a PD-pair in a graph G is a pair (P, D) of disjoint sets such that P is a PDS and D is a DS of G. Since every PDS in a tree contains all the support vertices, we have the following observation.

Observation 6.5 Let T be a rooted DPDP-tree and let $\left(D_{1}, D_{2}\right)$ be a PD-pair in T. Then the following properties hold:
(a) Every leaf belongs to D_{2} while every support vertex belongs to D_{1}.
(b) If every child of a vertex is a leaf, then its parent belongs to D_{1}.

Recall the statement of Theorem 6.3.

Theorem 6.3. The DPDP-trees are precisely those trees T such that $(T, S) \in \mathcal{T}$ for some labeling S.

Proof. Suppose first that T is a tree and $(T, S) \in \mathcal{T}$ for some labeling S. By Observation 6.2(c), $\left(S_{A}, S_{B}\right)$ is a PD-pair in T, and so T is a DPDP-tree. This establishes the sufficiency.

To prove the necessity, we proceed by induction on the order n of a DPDP-tree T. Since every star $K_{1, n-1}$ is not a DPDP-tree, we have that $n \geq 4$ and $\operatorname{diam}(T) \geq 3$. If $n=4$, then $T=P_{4}$ and $(T, S) \in \mathcal{T}$, where S is the labeling of a labeled- P_{4}. This establishes the base case. For the inductive hypothesis, let $n \geq 5$ and assume that for every DPDP-tree T^{\prime} of order less than n there exists a labeling S^{\prime} such that $\left(T^{\prime}, S^{\prime}\right) \in \mathcal{T}$.

Let T be a DPDP-tree of order n. Let $D=\left(D_{1}, D_{2}\right)$ be a a PD-pair in T. Let $T_{1}=T\left[D_{1}\right]$ be the subgraph of T induced by D_{1} and let M be a perfect matching in T_{1}. We now root the tree T at a diametrical vertex r. Necessarily, r is a leaf. Let u be a vertex at maximum distance from r. Necessarily, u is a leaf. Let v be the parent of u, let w be the parent of v, and let x be the parent of w (possibly, $x=r$). Since u is at maximum
distance from the root r, every child of v is a leaf. By Observation 6.5, we observe that $C(v) \subset D_{2}$ and $\{v, w\} \subseteq D_{1}$. In particular, $u \in D_{2}$. Furthermore, $d_{T_{1}}(v)=1$ and hence $v w \in M$; that is, v and w are paired in D_{1}. We proceed further with a series of claims that we may assume the tree T satisfies.

Claim A T has no strong support vertex.

Proof. Suppose that T has a strong support vertex z. Let z_{1} and z_{2} be two leaf-neighbors of z in T. By Observation 6.5, we note that $\left\{z_{1}, z_{2}\right\} \subseteq D_{2}$ and $z \in D_{1}$. Let $T^{\prime}=T-z_{1}$. Then, $\left(D_{1}, D_{2} \backslash\left\{z_{1}\right\}\right)$ is a PD-pair in T^{\prime}, and so T^{\prime} is a DPDP-tree. Applying the inductive hypothesis to T^{\prime}, there exists a labeling $S^{\prime}=\left(S_{A}^{\prime}, S_{B}^{\prime}\right)$ such that $\left(T^{\prime}, S^{\prime}\right) \in \mathcal{T}$. By Observation $6.2(\mathrm{~d}), z \in S_{A}^{\prime}$. Thus, we can restore the tree T by applying Operation \mathcal{O}_{1} to T^{\prime}. Therefore, $(T, S) \in \mathcal{T}$, where S is the labeling $\left(S_{A}^{\prime}, S_{B}^{\prime} \cup\left\{z_{1}\right\}\right)$. Hence, if T has a strong support vertex, then $(T, S) \in \mathcal{T}$ for some labeling S, as desired.

By Claim A, we note that $d_{T}(v)=2$.

Claim B $d_{T}(w)=2$.

Proof. Suppose $d_{T}(w) \geq 3$. Let $v^{\prime} \in C(w) \backslash\{v\}$. Suppose $d_{T}\left(v^{\prime}\right) \geq 2$. By our choice of the vertex u, every child of v^{\prime} is a leaf. Since T has no strong support vertex, $d_{T}\left(v^{\prime}\right)=2$. Let u^{\prime} be the child of v^{\prime}. Then, u^{\prime} is a leaf. By Observation $6.5, u^{\prime} \in D_{2}$ and $v^{\prime} \in D_{1}$. Thus, v^{\prime} and w are paired in D_{1}, contradicting the fact that v and w are paired in D_{1}. Hence every child of w, different from v, is a leaf. Thus since T has no strong support vertex, $d_{T}(w)=3$ and $C(w)=\left\{v, v^{\prime}\right\}$, where v^{\prime} is a leaf. Thus by Observation 6.5, $\left\{u, v^{\prime}\right\} \subseteq D_{2}$ and $\{v, w\} \subseteq D_{1}$, with v and w paired in D_{1}.

Suppose $x \in D_{1}$. Since v and w are paired in D_{1}, the partner of x in D_{1} is different from w. We also note that since $\{x, w\} \subseteq D_{1}, x$ is adjacent to a vertex of D_{2} different
from w. Let $T^{\prime}=T-\left\{u, v, v^{\prime}, w\right\}$. Then, $\left(D_{1} \backslash\{v, w\}, D_{2} \backslash\left\{u, v^{\prime}\right\}\right)$ is a PD-pair in T^{\prime}, and so T^{\prime} is a DPDP-tree. Applying the inductive hypothesis to T^{\prime}, there exists a labeling $S^{\prime}=\left(S_{A}^{\prime}, S_{B}^{\prime}\right)$ such that $\left(T^{\prime}, S^{\prime}\right) \in \mathcal{T}$. If $x \in S_{A}^{\prime}$, then we can restore the tree T by applying Operation \mathcal{O}_{2} to T^{\prime}. If $x \in S_{B}^{\prime}$, then we can restore the tree T by first applying Operation \mathcal{O}_{3} to T^{\prime} and then Operation \mathcal{O}_{1} to the resulting tree. In both cases, $(T, S) \in \mathcal{T}$, where S is the labeling $\left(S_{A}^{\prime} \cup\{v, w\}, S_{B}^{\prime} \cup\left\{u, v^{\prime}\right\}\right)$. Hence, if $x \in D_{1}$, then $(T, S) \in \mathcal{T}$ for some labeling S, as desired. Thus we may assume that $x \in D_{2}$.

We now let $T^{\prime}=T-v^{\prime}$. Then, $\left(D_{1}, D_{2} \backslash\left\{v^{\prime}\right\}\right)$ is a PD-pair in T^{\prime}, and so T^{\prime} is a DPDPtree. Applying the inductive hypothesis to T^{\prime}, there exists a labeling $S^{\prime}=\left(S_{A}^{\prime}, S_{B}^{\prime}\right)$ such that $\left(T^{\prime}, S^{\prime}\right) \in \mathcal{T}$. By Observation 6.2, $\{v, w\} \subseteq S_{A}^{\prime}$ and $u \in S_{B}^{\prime}$. Thus, we can restore the tree T by applying Operation \mathcal{O}_{1} to T^{\prime}. Hence, $(T, S) \in \mathcal{T}$, where S is the labeling $\left(S_{A}^{\prime}, S_{B}^{\prime} \cup\left\{v^{\prime}\right\}\right)$.

By Claim B, we have that $d_{T}(w)=2$. Since $n \geq 5$, the vertex x is not the root r of the rooted tree T. Let y be the parent of x. As remarked earlier, $u \in D_{2}$ and $\{v, w\} \subseteq D_{1}$ with v and w paired in D_{1}. In order to dominate w, we have that $x \in D_{2}$.

Claim C $d_{T}(x)=2$.

Proof. Suppose $d_{T}(x) \geq 3$. Let $w^{\prime} \in C(x) \backslash\{w\}$. By Observation 6.5, the vertex x is not a support vertex. Thus, no child of x is a leaf. In particular, $d_{T}\left(w^{\prime}\right) \geq 2$. By our choice of the vertex u, every descendant of w^{\prime} is a leaf or is at distance 2 from w^{\prime}. Suppose every child of w^{\prime} is a leaf. Then, since T has no strong support vertex, $d_{T}\left(w^{\prime}\right)=2$. Let v^{\prime} denote the child of w^{\prime}, and so v^{\prime} is a leaf. By Observation 6.5, $v^{\prime} \in D_{2}$ and $\left\{w^{\prime}, x\right\} \subseteq D_{1}$, contradicting the fact that $x \in D_{2}$. Hence, w^{\prime} has a descendant u^{\prime} at distance 2 from w^{\prime}. As shown in Claim B, we may assume that $d_{T}\left(w^{\prime}\right)=2$. By Observation 6.5, $u^{\prime} \in D_{2}$ and $\left\{v^{\prime}, w^{\prime}\right\} \subseteq D_{1}$ with v^{\prime} and w^{\prime} paired in D_{1}.

We now consider the tree $T^{\prime}=T-\{u, v, w\}$. Then, $\left(D_{1} \backslash\{v, w\}, D_{2} \backslash\{u\}\right)$ is a PD-pair in T^{\prime}, and so T^{\prime} is a DPDP-tree. Applying the inductive hypothesis to T^{\prime}, there exists a labeling $S^{\prime}=\left(S_{A}^{\prime}, S_{B}^{\prime}\right)$ such that $\left(T^{\prime}, S^{\prime}\right) \in \mathcal{T}$. By Observation $6.2,\left\{u^{\prime}, x\right\} \subseteq S_{B}^{\prime}$ and $\left\{v^{\prime}, w^{\prime}\right\} \subseteq S_{A}^{\prime}$. Thus, we can restore the tree T by applying Operation \mathcal{O}_{3} to T^{\prime}. Hence, $(T, S) \in \mathcal{T}$, where S is the labeling $\left(S_{A}^{\prime} \cup\{v, w\}, S_{B}^{\prime} \cup\{u\}\right)$.

By Claim C, we have that $d_{T}(x)=2$.

Claim D $y \in D_{2}$.

Proof. Suppose $y \in D_{1}$. We now consider the tree $T^{\prime}=T-\{u, v, w\}$. Then, $\left(D_{1} \backslash\{v, w\}, D_{2} \backslash\{u\}\right)$ is a PD-pair in T^{\prime}, and so T^{\prime} is a DPDP-tree. Applying the inductive hypothesis to T^{\prime}, there exists a labeling $S^{\prime}=\left(S_{A}^{\prime}, S_{B}^{\prime}\right)$ such that $\left(T^{\prime}, S^{\prime}\right) \in \mathcal{T}$. By Observation 6.2, the leaf $x \in S_{B}^{\prime \prime}$. Thus, we can restore the tree T by applying Operation \mathcal{O}_{3} to T^{\prime}. Therefore, $(T, S) \in \mathcal{T}$, where S is the labeling $\left(S_{A}^{\prime} \cup\{v, w\}, S_{B}^{\prime} \cup\{u\}\right)$.

We now return to the proof of Theorem 6.3. By Claim D, we have that $y \in D_{2}$. We now consider the tree $T^{\prime}=T-\{u, v, w, x\}$. Then, $\left(D_{1} \backslash\{v, w\}, D_{2} \backslash\{u, x\}\right)$ is a PD-pair in T^{\prime}, and so T^{\prime} is a DPDP-tree. Applying the inductive hypothesis to T^{\prime}, there exists a labeling $S^{\prime}=\left(S_{A}^{\prime}, S_{B}^{\prime}\right)$ such that $\left(T^{\prime}, S^{\prime}\right) \in \mathcal{T}$. If $y \in S_{B}^{\prime}$, then we can restore the tree T by applying Operation \mathcal{O}_{4} to T^{\prime}. If $y \in S_{A}^{\prime}$, then we can restore the tree T by first applying Operation \mathcal{O}_{1} to T^{\prime} and then Operation \mathcal{O}_{3} to the resulting tree. In both cases, $(T, S) \in \mathcal{T}$, where S is the labeling $\left(S_{A}^{\prime} \cup\{v, w\}, S_{B}^{\prime} \cup\{u, x\}\right)$. Thus, $(T, S) \in \mathcal{T}$ for some labeling S, as desired. This completes the necessity, and the proof of Theorem 6.3.

6.2.2 Proof of Theorem 6.4

Recall the statement of Theorem 6.4.

Theorem 6.4. The connected DPDP-graphs of order at least 4 are precisely those graphs G such that $(G, S) \in \mathcal{G}$ for some labeling S.

Proof. Suppose first that G is a connected graph and $(G, S) \in \mathcal{G}$ for some labeling S. By Observation 6.2(c), $\left(S_{A}, S_{B}\right)$ is a PD-pair in G, and so G is a connected DPDP-graph. This establishes the sufficiency.

To prove the necessity we proceed by induction on the order $n \geq 4$ of a connected DPDP-graph G. If $n=4$, then since no star is a DPDP-graph, the graph G contains P_{4} as a subgraph. Let $G^{\prime}=P_{4}$ be a subgraph of G (possibly, $G^{\prime}=G$) obtained from G by removing zero, one, two or three edges. Then, $\left(G^{\prime}, S\right) \in \mathcal{G}$, where S is the labeling of a labeled- P_{4} and we can restore the graph G from G^{\prime} by repeated applications (including the possibility of none) of Operation \mathcal{O}_{5}. Thus, $(G, S) \in \mathcal{G}$. This establishes the base case. For the inductive hypothesis, let $n \geq 5$ and assume that for every DPDP-graph G^{\prime} of order less than n there exists a labeling S^{\prime} such that $\left(G^{\prime}, S^{\prime}\right) \in \mathcal{G}$.

Let G be a connected DPDP-graph of order n. Among all PD-pairs $\mathcal{D}=\left(D_{1}, D_{2}\right)$ in G and among all spanning connected subgraphs H of G such that $\left(D_{1}, D_{2}\right)$ is a PD-pair in H (possibly, $H=G$), let the partition $\left(D_{1}, D_{2}\right)$ and the graph H be chosen so that
(1) $\left|D_{1}\right|$ is minimized.
(2) Subject to (1), $|E(H)|$ is minimized.
(3) Subject to (2), $\sum_{v \in D_{1}} d_{H}(v)$ is minimized.

Let M be a perfect matching in $G\left[D_{1}\right]$ that is used to determine the pairing of vertices in the PDS D_{1}.

Claim E If H has a strong support vertex, then $(G, S) \in \mathcal{G}$ for some labeling S.

Proof. Suppose H has a strong support vertex v. Let v_{1} and v_{2} be two leaf-neighbors of
v in H. By Observation 6.5, we note that $\left\{v_{1}, v_{2}\right\} \subseteq D_{2}$ and $v \in D_{1}$. Let $H^{\prime}=H-v_{1}$. Then, $\left(D_{1}, D_{2} \backslash\left\{v_{1}\right\}\right)$ is a PD-pair in H^{\prime}, and so H^{\prime} is a DPDP-graph. Applying the inductive hypothesis to H^{\prime}, there exists a labeling $S^{\prime}=\left(S_{A}^{\prime}, S_{B}^{\prime}\right)$ such that $\left(H^{\prime}, S^{\prime}\right) \in \mathcal{G}$. By Observation $6.2(\mathrm{~d}), v \in S_{A}^{\prime}$. Thus, we can restore the graph H by applying Operation \mathcal{O}_{1} to H^{\prime}. We can then restore G from H by repeated applications of Operation \mathcal{O}_{5}. Therefore, $(G, S) \in \mathcal{G}$, where S is the labeling $\left(S_{A}^{\prime}, S_{B}^{\prime} \cup\left\{v_{1}\right\}\right)$.

Hence, by Claim E, we may assume that H has no strong support vertex. We proceed further with the following useful lemma, called the Cycle Lemma, that we may assume the graph H satisfies.

Cycle Lemma For $k \geq 3$, if $C: v_{1} v_{2} v_{3} \ldots v_{k} v_{k+1}=v_{1}$ is a cycle in H, then the following properties hold:
(a) No two adjacent vertices on C both belong to- D_{2} ITY
(b) $V(C) \cap D_{2} \neq \emptyset$.
(c) Every vertex of C in D_{1} is adjacent in H to some other vertex of C in D_{1}.
(d) No three consecutive vertices on C are all in D_{1}.
(e) $k \equiv 0(\bmod 3)$, and $v_{i} \in D_{2}$ for $i \equiv 1(\bmod 3)$ and $v_{i} \in D_{1}$ for $i \equiv 0,2(\bmod 3)$.
(f) $v_{i} v_{i+1} \in M$ for $i \equiv 2(\bmod 3)$.
(g) The cycle C is chordless.
(h) Every vertex in D_{1} on the cycle C is adjacent in H to exactly one vertex in D_{2}.
(i) $d_{H}\left(v_{i}\right)=2$ or $d_{H}\left(v_{i+1}\right)=2$ for $i \equiv 2(\bmod 3)$.
(j) If $v_{i} \in D_{1}$ and $d_{H}\left(v_{i}\right) \geq 3$, then every edge incident with v_{i} not on the cycle C is a bridge of H and does not belong to M.

Proof. (a) For the sake of contradiction, suppose there are two adjacent vertices u and v in C that both belong to the $\operatorname{DS} D_{2}$. But then the graph $H^{\prime}=H-u v$ is a spanning connected subgraph of G and $\left(D_{1}, D_{2}\right)$ in a PD-pair in H^{\prime}, contradicting the minimality
condition (2) of H. (In what follows, we will simply say that the edge $u v$ could be removed from H, contradicting the minimality of H.)
(b) For the sake of contradiction, suppose $V(C) \subseteq D_{1}$. Let $e \in E(C) \backslash M$. But then the edge e could be removed from H, contradicting the minimality of H.
(c) For the sake of contradiction, suppose that there is a vertex v of C in D_{1} with both its neighbors on C in D_{2}. For notational convenience, we may assume that $v=v_{2}$. Thus, $\left\{v_{1}, v_{3}\right\} \subseteq D_{2}$ and $v_{2} \in D_{1}$. By part (a), we have that $k \geq 4$ and that $v_{4} \in D_{1}$. But then the edge $v_{2} v_{3}$ could be removed from H, contradicting the minimality of H.
(d) For the sake of contradiction, suppose that there are three consecutive vertices on C in D_{1}. For notational convenience, we may assume that $\left\{v_{1}, v_{2}, v_{3}\right\} \subseteq D_{1}$. If $v_{1} v_{2} \notin M$, then the edge $v_{1} v_{2}$ could be removed from H, contradicting the minimality of H. Hence, $v_{1} v_{2} \in M$. But then $v_{2} v_{3} \notin M$, and so the edge $v_{2} v_{3}$ could be removed from H, contradicting the minimality of H.
(e) By (b), at least one vertex of C belongs to D_{2}. For notational convenience, we may assume that $v_{1} \in D_{2}$. By (a), $v_{2} \in D_{1}$. By (c), $v_{3} \in D_{1}$. If $k=3$, then the desired result follows. Hence we may assume that $k \geq 4$. By (d), $v_{4} \in D_{2}$. By (a), $k \geq 5$ and $v_{5} \in D_{1}$. By (c), $k \geq 6$ and $v_{6} \in D_{1}$. If $k=6$, then the desired result follows. Hence we may assume that $k \geq 7$. Continuing in this way, we have that $k \equiv 0(\bmod 3)$ and that $v_{i} \in D_{2}$ for $i \equiv 1(\bmod 3)$ and $v_{i} \in D_{1}$ for $i \equiv 0,2(\bmod 3)$.
(f) By (e), $\left\{v_{i}, v_{i+1}\right\} \subseteq D_{1}$ for $i \equiv 2(\bmod 3)$. Further, if the edge $v_{i} v_{i+1} \notin M$, then it could be removed from H, contradicting the minimality of H. Thus any edge on C incident with two vertices from D_{1} is in M.
(g) If there is a chord in the cycle C (that does not join two consecutive vertices on C), then it could be removed from H, contradicting the minimality of H.
(h) For the sake of contradiction, suppose $v_{i} \in D_{1}$ is adjacent to two or more vertices
in D_{2}. By $(\mathrm{e}), i \equiv 0,2(\bmod 3)$. If $i \equiv 2(\bmod 3)$, then the edge $v_{i-1} v_{i}$ could be removed from H. If $i \equiv 0(\bmod 3)$, then the edge $v_{i} v_{i+1}$ could be removed from H. Both cases contradict the minimality of H.
(i) Let $i \equiv 2(\bmod 3)$. By part (g), the cycle C is an induced cycle in H, and so $d_{H}\left(v_{i}\right) \geq d_{C}\left(v_{i}\right)=2$ and $d_{H}\left(v_{i+1}\right) \geq d_{C}\left(v_{i+1}\right)=2$. For the sake of contradiction, suppose that $d_{H}\left(v_{i}\right) \geq 3$ and $d_{H}\left(v_{i+1}\right) \geq 3$. Let w and x be neighbors of v_{i} and v_{i+1}, respectively, not on C. Possibly, $w=x$. By part (h), $w \in D_{1}$ and $x \in D_{1}$. By part (f), v_{i} and v_{i+1} are paired in D_{1}. Let w^{\prime} and x^{\prime} be the partners of w and x, respectively, in D_{1}. Then, $w^{\prime} \notin\left\{v_{i}, v_{i+1}\right\}$ and $x^{\prime} \notin\left\{v_{i}, v_{i+1}\right\}$. If $k \geq 6$, then $\left(D_{1} \backslash\left\{v_{i}, v_{i+1}\right\}, D_{2} \cup\left\{v_{i}, v_{i+1}\right\}\right)$ is a PD-pair of H, and hence of G, contradicting condition (1) of the choice of our partition \mathcal{D}. Hence, $k=3$ and $i=2$.

If v_{1} is adjacent to a vertex in $D_{1} \backslash\left\{v_{2}, v_{3}\right\}$, then $\left(D_{1} \backslash\left\{v_{2}, v_{3}\right\}, D_{2} \cup\left\{v_{2}, v_{3}\right\}\right)$ is a PD-pair of H, contradicting condition (1) of the choice of our partition \mathcal{D}. Hence, $N\left(v_{1}\right) \backslash\left\{v_{2}, v_{3}\right\} \subseteq D_{2}$. Thus if $d_{H}\left(v_{1}\right) \geq 3$, then $\left(\left(D_{1} \overline{\left.v_{2}\right\}}\right) \cup\left\{v_{1}\right\},\left(D_{2} \backslash\left\{v_{1}\right\}\right) \cup\left\{v_{2}\right\}\right)$ is a PD-pair in $H-v_{1} v_{2}$, contradicting the minimality of H. Therefore, $d_{H}\left(v_{1}\right)=2$. But then $\left(\left(D_{1} \backslash\left\{v_{2}\right\}\right) \cup\left\{v_{1}\right\},\left(D_{2} \backslash\left\{v_{1}\right\}\right) \cup\left\{v_{2}\right\}\right)$ is a PD-pair of H that satisfies conditions (1) and (2) but contradicts condition (3) of the choice of our partition \mathcal{D}. Hence, $d_{H}\left(v_{i}\right)=2$ or $d_{H}\left(v_{i+1}\right)=2$, as desired.
(j) Suppose $v_{i} \in D_{1}$ and $d_{H}\left(v_{i}\right) \geq 3$. By part $(\mathrm{e}), i \equiv 0,2(\bmod 3)$. By part (g), the cycle C is an induced cycle in H. Let w be a neighbor of v_{i} that is not on the cycle C. By part (h), w $\in D_{1}$. By part (f), $v_{i} w \notin M$. Hence if $v_{i} w$ is a cycle edge, it could be removed from H, contradicting the minimality of H. Therefore, $v_{i} w$ is a bridge of H.

We now introduce some additional notation. For any graph F, if $e=a b$ is a bridge in F, we let $F_{a}^{(e)}$ and $F_{b}^{(e)}$ denote the components of $F-e$ that contain a and b, respectively. If the edge e is clear from context, we simply denote $F_{a}^{(e)}$ by F_{a} and $F_{b}^{(e)}$ by F_{b}. We call a bridge of a graph with at least one of its ends contained in a cycle a cycle-bridge. If, in
addition, the removal of the cycle-bridge produces a graph containing a P_{3}-component, then we call the bridge a P_{3}-cycle-bridge. For any graph F, let $\xi(F)$ denote the number of cycle-bridges in F that are not P_{3}-cycle-bridges. Further if $F^{\prime}=F$ or if F^{\prime} is a component of $F-f$, where f is a cycle-bridge that is not a P_{3}-cycle-bridge in F, we call F^{\prime} a ξ-subgraph of F.

Among all ξ-subgraphs of H, let H^{\prime} be chosen so that
(i) $\xi\left(H^{\prime}\right)$ is minimized.
(ii) Subject to (i), $\left|V\left(H^{\prime}\right)\right|$ is minimized.

We note that if $\xi(H)=0$ then $H^{\prime}=H$. If $H^{\prime} \neq H$, let $e=a b$ be the cycle-bridge in H such that $H^{\prime}=H_{a}^{(e)}$. We note further that any cycle-bridge in H^{\prime} is also a cycle-bridge in H. The following claim proves some desirable properties about the ξ-subgraph H^{\prime}.

Claim F $\xi\left(H^{\prime}\right)=0$ and $\left|V\left(H^{\prime}\right)\right| \geq 3$.
UNIVERSITY
Proof. If $\xi(H)=0$ then $H^{\prime}=H$ and both results follow readily. Thus we may assume $\xi(H) \geq 1$ and $H^{\prime} \neq H$. Hence, $e=a b$ is the cycle-bridge in H such that $H^{\prime}=H_{a}^{(e)}$. For the sake of contradiction, suppose $\xi\left(H^{\prime}\right) \geq 1$. Then, H^{\prime} contains a cycle-bridge $f=c d$ that is not a P_{3}-cycle-bridge. We may assume, renaming the vertices c and d if necessary, that a and c are in different components of $H^{\prime}-f$. But now $H_{c}^{(f)}$ is a ξ-subgraph of H with $\xi\left(H_{c}^{(f)}\right)<\xi\left(H^{\prime}\right)$, contradicting our choice of H^{\prime}. Hence, $\xi\left(H^{\prime}\right)=0$.

Suppose $\left|V\left(H^{\prime}\right)\right|=1$. Then, a is the only vertex in H^{\prime} and hence $d_{H}(a)=1$. Therefore, $a \in D_{2}$ and $b \in D_{1}$. But, since e is a cycle-bridge, the vertex b lies on some cycle in H and so, by part (h) of the Cycle Lemma, $a \in D_{1}$, a contradiction. Hence, $\left|V\left(H^{\prime}\right)\right| \geq 2$. Suppose $\left|V\left(H^{\prime}\right)\right|=2$. Then, $d_{H^{\prime}}(a)=1$. Let a^{\prime} be the neighbor of a in H^{\prime} and note that $d_{H}\left(a^{\prime}\right)=1$ while $d_{H}(a)=2$. Necessarily, $a^{\prime} \in D_{2}$ and $\{a, b\} \subseteq D_{1}$ with a and b paired in D_{1} (and so, $\left.a b \in M\right)$. But, since e is a cycle-bridge, the vertex b lies on some cycle in H and so, by part (j) of the Cycle Lemma, $a b \notin M$, a contradiction. Hence, $\left|V\left(H^{\prime}\right)\right| \geq 3$.

Tree Lemma If H^{\prime} is a tree, then $(G, S) \in \mathcal{G}$ for some labeling S.

Proof. Suppose H^{\prime} is a tree. If $\xi(H)=0$ then $H^{\prime}=H$ and H is a tree. Then by Theorem 6.3, there exists a labeling $S=\left(S_{A}, S_{B}\right)$ such that $(H, S) \in \mathcal{T} \subset \mathcal{G}$. Thus, we can restore the graph G from H by repeated applications (including the possibility of none) of Operation \mathcal{O}_{5}. Hence, $(G, S) \in \mathcal{G}$, as desired. Thus we may assume $\xi(H) \geq 1$ and $H^{\prime} \neq H$. Hence, $e=a b$ is the cycle-bridge in H such that $H^{\prime}=H_{a}$.

By Claim F, $\left|V\left(H^{\prime}\right)\right| \geq 3$. Since $H_{a}=H^{\prime} \neq P_{3}$, we have that $\left|V\left(H_{a}\right)\right| \geq 4$. Since b lies on a cycle, $\left|V\left(H_{b}\right)\right| \geq 3$. Suppose that $\left|V\left(H_{b}\right)\right|=3$. Then, H_{b} is a 3 -cycle and thus H_{b} is a ξ-subgraph of H with $\xi\left(H_{b}\right)=0 \leq \xi\left(H^{\prime}\right)$ and with $\left|V\left(H_{b}\right)\right|<\left|V\left(H^{\prime}\right)\right|$, contradicting our choice of H^{\prime}. Hence, $\left|V\left(H_{b}\right)\right| \geq 4$.

We now root the tree H_{a} at the vertex a and let u be a vertex at maximum distance from a. Necessarily, u is a leaf. If $d_{H_{a}}(a, u)=1$, then H_{a} is a star with at least three leaves, contradicting the fact that H has no strong support vertices. Hence, $d_{H_{a}}(a, u) \geq 2$. Let v be the parent of u in H_{a}.

Suppose $d_{H_{a}}(a, u)=2$. Then, a is the parent of v in H_{a}. Since H has no strong support vertex, u is the only child of v, and so $N_{H}(v)=\{a, u\}$. Hence, $\{a, v\} \subseteq D_{1}$ with $a v \in M$. This implies that every child of a besides v is a leaf. Since $\left|V\left(H_{a}\right)\right| \geq 4, d_{H_{a}}(a) \geq 2$. If $d_{H_{a}}(a)>2$, then a is a strong support vertex, a contradiction. Hence, $d_{H_{a}}(a)=2$, and so $\left|V\left(H_{a}\right)\right|=4$. Let a^{\prime} be the child of a in H_{a} distinct from v. Thus, H_{a} is the path $a^{\prime} a v u$, and $\left\{a^{\prime}, u\right\} \subseteq D_{2}$. Since b lies on a cycle, by the Cycle Lemma, at least one neighbor of b on the cycle is in D_{1} and so ($D_{1} \cap V\left(H_{b}\right), D_{2} \cap V\left(H_{b}\right)$) is a PD-pair in H_{b}, and so H_{b} is a DPDP-graph. Applying the inductive hypothesis to H_{b}, there exists a labeling $S^{\prime}=\left(S_{A}^{\prime}, S_{B}^{\prime}\right)$ such that $\left(H_{b}, S^{\prime}\right) \in \mathcal{G}$. If $b \in S_{A}^{\prime}$, we can restore the graph H from H_{b} by applying Operation \mathcal{O}_{2}. If $b \in S_{B}^{\prime}$, we can restore the graph H from G^{\prime} by first applying Operation \mathcal{O}_{3} and then applying Operation \mathcal{O}_{1}. We can then restore the graph G from H by repeated applications of Operation \mathcal{O}_{5}. Hence, $(G, S) \in \mathcal{G}$, where S is the labeling
$S=\left(S_{A}^{\prime} \cup\{a, v\}, S_{B}^{\prime} \cup\left\{a^{\prime}, u\right\}\right)$. Thus we may assume that $d_{H_{a}}(a, u) \geq 3$.
Let w be the parent of v in the rooted tree H_{a} and let x be the parent of w in H_{a} (possibly, $x=a$). Proceeding now exactly as in the proof of Theorem 6.3, we have that $(H, S) \in \mathcal{G}$ for some labeling S. We can then restore G from H by repeated applications of Operation \mathcal{O}_{5} and therefore $(G, S) \in \mathcal{G}$.

By the Tree Lemma, we may assume that H^{\prime} is not a tree.

Small Order Lemma If $\left|V\left(H^{\prime}\right)\right|=3$, then $(G, S) \in \mathcal{G}$ for some labeling S.

Proof. Suppose $\left|V\left(H^{\prime}\right)\right|=3$. Then $H^{\prime} \neq H$ and hence $e=a b$ is the cycle-bridge in H such that $H^{\prime}=H_{a}$. Then, since $H^{\prime} \neq P_{3}$ we must have that $H^{\prime}=C_{3}$. Let H^{\prime} be given by the cycle $a a_{1} a_{2} a$. We note that each of a, a_{1} and a_{2} has degree 2 in H^{\prime}. If $a \in D_{1}$, then by the Cycle Lemma, we may assume that $a_{1} V \in D_{1} S$ and $\bigvee a_{2} \in D_{2}$. Furthermore, $a a_{1} \in M$ and $b \in D_{1}$. But then $\left(\left(D_{1} \backslash\{a\}\right) \cup\left\{a_{2}\right\},\left(D_{2} \triangle\left\{a_{2}\right\}\right) \cup\{a\}\right)$ is a PD-pair in H that satisfies conditions (1) and (2) but contradicts condition (3) of the choice of our partition \mathcal{D}. Hence, $a \in D_{2}$.

Suppose $b \in D_{2}$. Then, $\left(\left(D_{1} \backslash\left\{a_{1}\right\}\right) \cup\{a\},\left(D_{2} \backslash\{a\}\right) \cup\left\{a_{1}\right\}\right)$ is a PD-pair in H and hence G. Furthermore, it is a PD-pair in $H-a a_{1}$ which is a spanning connected subgraph of G, contradicting condition (2) of our choice of H. Hence, $b \in D_{1}$.

Let b^{\prime} be the partner of b in D_{1}, and let c be a neighbor of b^{\prime} in D_{2}. Note that, since $a b$ is a bridge, $\left\{b^{\prime}, c\right\} \subset V\left(H_{b}\right)$. Let $G^{\prime}=H-\left\{a_{1}, a_{2}\right\}$ and note that $\left|V\left(G^{\prime}\right)\right| \geq\left|\left\{a, b, b^{\prime}, c\right\}\right|=4$. Then, $\left.\left(D_{1} \backslash\left\{a_{1}, a_{2}\right\}, D_{2}\right\}\right)$ is a PD-pair in G^{\prime}, and so G^{\prime} is a DPDP-graph. Applying the inductive hypothesis to G^{\prime}, there exists a labeling $S^{\prime}=\left(S_{A}^{\prime}, S_{B}^{\prime}\right)$ such that $\left(G^{\prime}, S^{\prime}\right) \in \mathcal{G}$. Since a is a leaf in G^{\prime}, Observation 6.2 implies that $a \in S_{B}^{\prime}$. Hence we can restore the graph H from G^{\prime} by applying Operation \mathcal{O}_{6}. We can then restore the graph G from H by repeated applications of Operation \mathcal{O}_{5}. Hence, $(G, S) \in \mathcal{G}$, where S is the labeling
$\left(S_{A}^{\prime} \cup\left\{a_{1}, a_{2}\right\}, S_{B}^{\prime}\right)$.

By the Small Order Lemma, we may assume that $\left|V\left(H^{\prime}\right)\right| \geq 4$. We are now able to prove the following desirable properties about the ξ-subgraph H^{\prime}.

Claim G The ξ-subgraph H^{\prime} has the following properties.
(a) Every P_{3}-cycle-bridge in H^{\prime} is a P_{3}-cycle-bridge in H.
(b) Every cycle-bridge f in H^{\prime} belongs to $\left[D_{1}, D_{2}\right]$ with the end of f that lies on a cycle in D_{2}.
(c) At least one vertex of H^{\prime} belongs to D_{2}.
(d) $D_{2} \cap V\left(H^{\prime}\right)$ is an independent set in H^{\prime}.
(e) If $x \in D_{1} \cap V\left(H^{\prime}\right)$, then $d_{H^{\prime}}(x)=2$ (with one neighbor of x in D_{1} and the other in D_{2}).

Proof. (a) If it exists, let $f=c d$ be a P_{3}-cycle-bridge in H^{\prime} where d lies on a cycle. Then, $H_{c}^{\prime(f)}$ is a P_{3}-component in $H^{\prime}-f$. For the sake of contradiction, suppose f is a not a P_{3}-cycle-bridge in H. Then $H_{c}^{(f)} \neq H_{c}^{\prime(f)}$ and, thus, $H^{\prime} \neq H$. Recall that $e=a b$ is the cycle-bridge in H such that $H^{\prime}=H_{a}^{(e)}$. Necessarily, $a \in V\left(H_{c}^{(f)}\right)$. But then $H_{d}^{(f)}$ is a ξ-subgraph of H with $\xi\left(H_{d}^{(f)}\right)=\xi\left(H^{\prime}\right)$ but $\left|V\left(H_{d}^{(f)}\right)\right|<\left|V\left(H^{\prime}\right)\right|$, contradicting our choice of H^{\prime}. This establishes part (a).
(b) If it exists, let $f=c d$ be a cycle-bridge in H^{\prime} where d lies on a cycle. Since $\xi\left(H^{\prime}\right)=0, f$ is a P_{3}-cycle-bridge in H^{\prime} and thus, by part (a), in H. Therefore, $H_{c}^{(f)}$ is a P_{3}-component of $H-f$ and since H contains no strong support vertex, the vertex c is a leaf in this P_{3}-component. Let $H_{c}^{(f)}$ be given by the path $c c_{1} c_{2}$. We note that $d_{H}\left(c_{2}\right)=1$ and $d_{H}(c)=d_{H}\left(c_{1}\right)=2$. Hence, $\left\{c_{2}, d\right\} \subseteq D_{2}$ and $\left\{c, c_{1}\right\} \subseteq D_{1}$. In particular, $f \in\left[D_{1}, D_{2}\right]$ and $d \in D_{2}$. This establishes part (b).
(c) If $\left|D_{2} \cap V\left(H^{\prime}\right)\right|=0$, then $H^{\prime} \neq H$ and every vertex in H^{\prime} is adjacent to some vertex
in $H-V\left(H^{\prime}\right)$, contradicting the fact $e=a b$ is a cycle-bridge in H such that $H^{\prime}=H_{a}^{(e)}$. Hence, $\left|D_{2} \cap V\left(H^{\prime}\right)\right| \geq 1$.
(d) For the sake of contradiction, suppose that $w w^{\prime}$ is an edge of H^{\prime}, where $\left\{w, w^{\prime}\right\} \subseteq$ D_{2}. By the Cycle Lemma, $w w^{\prime}$ is a bridge and therefore, by part (b), neither w nor w^{\prime} lies on a cycle in H^{\prime}. Among all vertices lying on some cycle in H^{\prime}, choose u so that the distance $d_{H^{\prime}}(u, w)$ is minimum. Let v be the vertex adjacent to u on the unique shortest $u-w$ path (possibly, $v \in\left\{w, w^{\prime}\right\}$). By the choice of u, we have that $u v$ is a bridge. We note that $u v$ is a cycle-bridge. Since $\xi\left(H^{\prime}\right)=0, u v$ is a P_{3}-cycle-bridge in H^{\prime} and thus, by part (a), in H. Therefore, $H_{v}^{(u v)}$ is a P_{3}-component of $H-u v$ and since H contains no strong support vertex, v is a leaf in this P_{3}-component. We note that $\left\{w, w^{\prime}\right\} \subset V\left(H_{v}^{(u v)}\right)$. Let $H_{v}^{(u v)}$ be given by the path $v v_{1} v_{2}$. We note that $d_{H}\left(v_{2}\right)=1$ and $d_{H}(v)=d_{H}\left(v_{1}\right)=2$. Hence, $v_{2} \in D_{2}$ and $\left\{v, v_{1}\right\} \subseteq D_{1}$. Thus, $H_{v}^{(u v)}$ has exactly one vertex in D_{2}, contradicting the fact that $\left\{w, w^{\prime}\right\} \subseteq D_{2} \cap V\left(H_{v}^{(u v)}\right)$.
(e) For the sake of contradiction, suppose that $x \in D_{1} \cap V\left(H^{\prime}\right)$ and $d_{H^{\prime}}(x) \geq 3$. Suppose that C is a cycle in H^{\prime} containing x. By the Cycle Lemma, one neighbor of x on C is paired with x in D_{1} and the other neighbor of x on C belongs to D_{2}. Since $d_{H^{\prime}}(x) \geq 3$, there is a cycle-bridge incident with x. By part (b), the vertex x, which lies on a cycle, belongs to D_{2}, a contradiction. Hence, every edge incident with x in H^{\prime} is a bridge in H^{\prime}. Let x^{\prime} be the partner of x in D_{1}, and let y be a neighbor of x in D_{2}. Let z be a neighbor of x distinct from x^{\prime} and y. Among all vertices that belong to a cycle in H^{\prime}, choose u^{\prime} so that the distance $d_{H^{\prime}}\left(u^{\prime}, x\right)$ is minimum. Let v^{\prime} be the vertex adjacent to u^{\prime} on the unique shortest $u^{\prime}-x$ path. By the choice of u^{\prime}, we note that $u^{\prime} v^{\prime}$ is a cycle-bridge. Since $\xi\left(H^{\prime}\right)=0, u^{\prime} v^{\prime}$ is a P_{3}-cycle-bridge in H^{\prime} and thus, by part (a), in H. Therefore, $H_{v^{\prime}}^{\left(u^{\prime} v^{\prime}\right)}$ is a P_{3}-component of $H-u^{\prime} v^{\prime}$. Since H contains no strong support vertices, v^{\prime} is a leaf in this P_{3}-component, and so $d_{H^{\prime}}\left(v^{\prime}\right) \leq d_{H}\left(v^{\prime}\right)=2$. In particular, we note that $v^{\prime} \neq x$, and so $\left\{x, x^{\prime}, y, z\right\} \subseteq V\left(H_{v^{\prime}}^{\left(u^{\prime} v^{\prime}\right)}\right)$. Thus the component $H_{v^{\prime}}^{\left(u^{\prime} v^{\prime}\right)}$ contains at least four vertices, a contradiction.

We now proceed by labeling some (or possibly all) of the vertices in H^{\prime} as follows. If $H=H^{\prime}$, then select the vertex a to be any vertex in D_{2}. If $H^{\prime} \neq H$, then $e=a b$ is the cycle-bridge in H such that $H^{\prime}=H_{a}$. Let $k=\left|D_{2} \cap V\left(H^{\prime}\right)\right|$ and label the vertices in $D_{2} \cap V\left(H^{\prime}\right)$ by $w_{1}, w_{2}, \ldots, w_{k}$ so that $d_{H^{\prime}}\left(a, w_{i}\right) \leq d_{H^{\prime}}\left(a, w_{j}\right)$ for $1 \leq i<j \leq k$ (possibly, $\left.a=w_{1}\right)$.

If $k \geq 2$ then for each $i \in\{2,3, \ldots, k\}$, let v_{i} be the vertex preceding w_{i} on a shortest $a-w_{i}$ path in H^{\prime} and let u_{i} be the vertex preceding v_{i} on the same $a-w_{i}$ path. We note that since $D_{2} \cap V\left(H^{\prime}\right)$ is an independent set in H^{\prime}, we must have that $v_{i} \in D_{1}$. By Claim $\mathrm{G}(\mathrm{e})$, each vertex in $D_{1} \cap V\left(H^{\prime}\right)$ has degree 2 in H^{\prime} and has one neighbor in D_{1}. Hence, $v_{i} \neq v_{j}$ for $2 \leq i<j \leq k$. Further for each $i \in\{2,3, \ldots, k\}, u_{i} \in D_{1}$ and u_{i} has exactly one other neighbor in H^{\prime} besides v_{i}, necessarily w_{j} for some $j<i$. If $a \in D_{1}$ and a lies on a cycle of length 3 , then assign it the label u_{1} and assign its neighbor in D_{1} that belongs to this cycle the label v_{1}. We note, by our choice of labels, no vertex in $V\left(H^{\prime}\right)$ is assigned more than one label from the set of labels $\bigcup_{1 \leq i \leq k}\left\{u_{i}, v_{i}, w_{i}\right\}$. We note that either $a=w_{1}$ or $a=u_{1}$ or $a=u_{2}$.

We call a vertex in H^{\prime} that is not assigned a label from $\bigcup_{1 \leq i \leq k}\left\{u_{i}, v_{i}, w_{i}\right\}$ an unlabeled vertex, and we let U be the set of unlabeled vertices in H^{\prime} (possibly $|U|=0$). We note that by Claim $\mathrm{G}(\mathrm{e})$, every vertex in U belongs to D_{1} and is adjacent (in H^{\prime}) to exactly one other unlabeled vertex from D_{1} and exactly one labeled vertex from D_{2}. Let H_{k} be the graph $H-U$. If $k \geq 2$ then for $i=1,2, \ldots, k-1$, let H_{i} be the graph $H_{i+1}-\left\{u_{i+1}, v_{i+1}, w_{i+1}\right\}$.

Claim H If $H=H^{\prime}$, then $(G, S) \in \mathcal{G}$ for some labeling S.

Proof. Suppose $H=H^{\prime}$. Then, $a \in D_{2}$ and $a=w_{1}$. If $k=1$, then $D_{1}=V(H) \backslash\{a\}$. In this case, since $n \geq 5$, we note by Claim $\mathrm{G}(\mathrm{e})$ that H can be constructed from $t \geq 2$ disjoint 3 -cycles by identifying a set of t vertices, one from each cycle, into one vertex called a. Thus, $H-a=t K_{2}$ with the vertices in each copy of K_{2} partners in D_{1}. Let
axya be a 3-cycle containing a. Then, $\left(\{a, x\}, D_{1} \backslash\{b\}\right)$ is a PD-pair of H, and hence of G, contradicting condition (1) of the choice of our partition \mathcal{D}. Hence, $k \geq 2$. Let $G^{\prime}=H_{2}$ and note that $G^{\prime}=P_{4}$. Let $S^{\prime}=\left(S_{A}^{\prime}, S_{B}^{\prime}\right)$, where $S_{A}^{\prime}=\left\{u_{2}, v_{2}\right\}$ and $S_{B}^{\prime}=\left\{w_{1}, w_{2}\right\}$. Then, $\left(G^{\prime}, S^{\prime}\right) \in \mathcal{G}$. If $k \geq 3$, then for each $i=3, \ldots, k$, we can restore the graph H_{i} from H_{i-1} by applying Operation \mathcal{O}_{3} and noting that $\operatorname{sta}\left(u_{i}\right)=\operatorname{sta}\left(v_{i}\right)=A$ and $\operatorname{sta}\left(w_{i}\right)=B$. We can then restore the graph H from H_{k} by repeated applications of Operations \mathcal{O}_{6} and \mathcal{O}_{7} and the graph G from H by repeated applications of Operation \mathcal{O}_{5}. Hence, $(G, S) \in \mathcal{G}$, where S is the labeling $\left(S_{A}^{\prime} \cup U \cup\left(\bigcup_{3 \leq i \leq k}\left\{u_{i}, v_{i}\right\}\right), S_{B}^{\prime} \cup\left(\bigcup_{3 \leq i \leq k}\left\{w_{i}\right\}\right)\right)$.

By Claim H, we may assume that $H \neq H^{\prime}$ and hence $e=a b$ is the cycle-bridge in H such that $H^{\prime}=H_{a}$. We now present two final claims that consider the cases when $a \in D_{2}$ and $a \in D_{1}$, respectively.

Claim I If $a \in D_{2}$ then $(G, S) \in \mathcal{G}$ for some labeling S.

Proof. Suppose that $a \in D_{2}$. Then, $a=w_{1}$. If $b \in D_{1}$, het b^{b} be the partner of b in D_{1}, and let c be a neighbor of b^{\prime} in D_{2}. Note that, since $a b$ is a bridge, $\left\{b^{\prime}, c\right\} \subset V\left(H_{b}\right)$. Let $G^{\prime}=H_{1}$ and note that $d_{G^{\prime}}(a)=1$. Furthermore, since $\left\{a, b, b^{\prime}, c\right\} \subseteq V\left(G^{\prime}\right),\left|V\left(G^{\prime}\right)\right| \geq 4$. Then, $\left(D_{1} \cap V\left(H_{b}\right),\left(D_{2} \cap V\left(H_{b}\right)\right) \cup\{a\}\right)$ is a PD-pair of G^{\prime}, and so G^{\prime} is a DPDP-graph. We note that $\left|V\left(G^{\prime}\right)\right|<|V(H)|$ and thus, applying the inductive hypothesis to G^{\prime}, there exists a labeling $S^{\prime}=\left(S_{A}^{\prime}, S_{B}^{\prime}\right)$ such that $\left(G^{\prime}, S^{\prime}\right) \in \mathcal{G}$. By Observation 6.2(d), a $\in S_{B}^{\prime}$. For each $i=2,3, \ldots, k$, we can restore the graph H_{i} from H_{i-1} by applying Operation \mathcal{O}_{3} and noting that $\operatorname{sta}\left(u_{i}\right)=\operatorname{sta}\left(v_{i}\right)=A$ and $\operatorname{sta}\left(w_{i}\right)=B$. We can then restore the graph H from H_{k} by repeated applications of Operations \mathcal{O}_{6} and \mathcal{O}_{7} and the graph G from H by repeated applications of Operation \mathcal{O}_{5}. Hence, $(G, S) \in \mathcal{G}$, where S is the labeling $\left(S_{A}^{\prime} \cup U \cup\left(\bigcup_{2 \leq i \leq k}\left\{u_{i}, v_{i}\right\}\right), S_{B}^{\prime} \cup\left(\bigcup_{2 \leq i \leq k}\left\{w_{i}\right\}\right)\right)$. Hence we may assume that $b \in D_{2}$, for otherwise we have the desired result.

Let b_{1} be a neighbor of b in D_{1}, and let b_{2} be the partner of b_{1} in D_{1}. Let b_{3} be a
neighbor of b_{2} in D_{2} (possibly, $b=b_{3}$). Note that, since $a b$ is a bridge, $\left\{b_{1}, b_{2}, b_{3}\right\} \subseteq V\left(H_{b}\right)$. Suppose $\left|V\left(H_{b}\right)\right|=3$. Then, $b=b_{3}$ and H_{b} is the cycle $b b_{1} b_{2} b$. We note that in this case, $d_{H}\left(b_{1}\right)=d_{H}\left(b_{2}\right)=2$. But then, $\left(\left(D_{1} \backslash\left\{b_{1}\right\}\right) \cup\{b\},\left(D_{2} \backslash\{b\}\right) \cup\left\{b_{1}\right\}\right)$ is a PD-pair in H and hence G. Furthermore, it is a PD-pair in $H-b b_{1}$ which is a spanning connected subgraph of G, contradicting condition (2) of our choice of H. Hence, we may assume that $\left|V\left(H_{b}\right)\right| \geq 4$.

Suppose $k=1$. Then, $D_{1}=V\left(H^{\prime}\right) \backslash\{a\}$. Then, since $\left|V\left(H^{\prime}\right)\right| \geq 4$, we note by Claim $\mathrm{G}(\mathrm{e})$ that H^{\prime} can be constructed from $t \geq 2$ disjoint 3 -cycles by identifying a set of t vertices, one from each cycle, into one vertex called a. Let axya be a 3-cycle containing a. Then, $\left(\left(D_{1} \backslash V\left(H^{\prime}\right)\right) \cup\{a, x\},\left(D_{2} \cup V\left(H^{\prime}\right)\right) \backslash\{a, x\}\right)$ is a PD-pair of H, and hence of G, contradicting condition (1) of the choice of our partition \mathcal{D}. Hence, $k \geq 2$.

Now, $\left(D_{1} \cap V\left(H_{b}\right), D_{2} \cap V\left(H_{b}\right)\right)$ is a PD-pair in H_{b}, and so H_{b} is a DPDP-graph. Applying the inductive hypothesis to H_{b}, there exists a labeling $S^{\prime}=\left(S_{A}^{\prime}, S_{B}^{\prime}\right)$ such that $\left(H_{b}, S^{\prime}\right) \in \mathcal{G}$. If $b \in S_{B}^{\prime}$, we can restore the graph H_{2} from H_{b} by applying Operation \mathcal{O}_{4}. If $b \in S_{A}^{\prime}$, we can restore the graph H_{2} from H_{b} by first applying Operation \mathcal{O}_{1} and then applying Operation \mathcal{O}_{3}. In both cases, $\operatorname{sta}\left(u_{2}\right)=\operatorname{sta}\left(v_{2}\right)=A$ and $\operatorname{sta}\left(w_{1}\right)=\operatorname{sta}\left(w_{2}\right)=B$. If $k>2$, then for each $i=3, \ldots, k$, we can restore the graph H_{i} from H_{i-1} by applying Operation \mathcal{O}_{3} and noting that $\operatorname{sta}\left(u_{i}\right)=\operatorname{sta}\left(v_{i}\right)=A$ and $\operatorname{sta}\left(w_{i}\right)=B$. We can then restore the graph H from H_{k} by repeated applications of Operations \mathcal{O}_{6} and \mathcal{O}_{7} and finally restore the graph G from H by repeated applications of Operation \mathcal{O}_{5}. Hence, $(G, S) \in \mathcal{G}$, where S is the labeling $\left(S_{A}^{\prime} \cup U \cup\left(\bigcup_{2 \leq i \leq k}\left\{u_{i}, v_{i}\right\}\right), S_{B}^{\prime} \cup\left(\bigcup_{1 \leq i \leq k}\left\{w_{i}\right\}\right)\right)$. This completes the proof of Claim I.

Claim J If $a \in D_{1}$, then $(G, S) \in \mathcal{G}$ for some labeling S.

Proof. Suppose that $a \in D_{1}$. If $a=u_{2}$, then $k \geq 2$ and we note then that the component of $H_{2}-a b$ containing a consists of the path $w_{1} u_{2} v_{2} w_{2}$, and so both w_{1} and w_{2} have degree 1 in H_{2}. Since H^{\prime} is not a tree and since, by Claim $\mathrm{G}(\mathrm{e}), d_{H^{\prime}}\left(u_{2}\right)=d_{H^{\prime}}\left(v_{2}\right)=2$, we must
have $d_{H^{\prime}}\left(w_{1}\right)>1$ or $d_{H^{\prime}}\left(w_{2}\right)>1$. By the Cycle Lemma, $w_{1} w_{2} \notin E\left(H^{\prime}\right)$ and hence $\left|V\left(H^{\prime}\right)\right|>4$. Consequently, $\left|V\left(H_{2}\right)\right|<|V(H)|$. Now, $\left(\left(D_{1} \cap V\left(H_{b}\right)\right) \cup\left\{u_{2}, v_{2}\right\},\left(D_{2} \cap\right.\right.$ $\left.\left.V\left(H_{b}\right)\right) \cup\left\{w_{1}, w_{2}\right\}\right)$ is a PD-pair in H_{2}, and so H_{2} is a DPDP-graph. Applying the inductive hypothesis to H_{2}, there exists a labeling $S^{\prime}=\left(S_{A}^{\prime}, S_{B}^{\prime}\right)$ such that $\left(H_{2}, S^{\prime}\right) \in \mathcal{G}$. By Observation 6.2, $\left\{w_{1}, w_{2}\right\} \subseteq S_{B}^{\prime}$ and $\left\{u_{2}, v_{2}\right\} \subseteq S_{A}^{\prime}$. If $k>2$, then for each $i=$ $3, \ldots, k$, we can restore the graph H_{i} from H_{i-1} by applying Operation \mathcal{O}_{3} and noting that $\operatorname{sta}\left(u_{i}\right)=\operatorname{sta}\left(v_{i}\right)=A$ and $\operatorname{sta}\left(w_{i}\right)=B$. We can then restore the graph H from H_{k} by repeated applications of Operations \mathcal{O}_{6} and \mathcal{O}_{7} and finally restore the graph G from H by repeated applications of Operation \mathcal{O}_{5}. Hence, $(G, S) \in \mathcal{G}$, where S is the labeling $\left(S_{A}^{\prime} \cup U \cup\left(\bigcup_{3 \leq i \leq k}\left\{u_{i}, v_{i}\right\}\right), S_{B}^{\prime} \cup\left(\bigcup_{3 \leq i \leq k}\left\{w_{i}\right\}\right)\right)$. Hence, we may assume that $a=u_{1}$.

Since $a=u_{1}$, we have that $w_{1} v_{1} u_{1} w_{1}$ is a cycle in H^{\prime} containing the vertex a. By Claim $\mathrm{G}(\mathrm{e}), d_{H^{\prime}}(a)=2$ and $d_{H^{\prime}}\left(v_{1}\right)=2$. Thus, a and v_{1} are partners in D_{1}. Further, $d_{H}(a)=3$ and $N_{H}(a)=\left\{b, v_{1}, w_{1}\right\}$. By part (h) of the Cycle Lemma, $b \in D_{1}$. Let b_{1} be the partner of b in D_{1}. Let b_{2} be a neighbor of b in D_{2} and let b_{3} be a neighbor of b_{1} in D_{2}.

JOHANNESBURG

Suppose $b_{2}=b_{3}$. By condition (2) of the choice of our partition \mathcal{D}, we note that (D_{1}, D_{2}) is not a PD-pair in $H-b_{1} b_{2}$, and so b_{2} is the only vertex in D_{2} adjacent to b_{1}. But then $\left(D_{1} \backslash\left\{b_{1}, v_{1}\right\}, D_{2} \cup\left\{b_{1}, v_{1}\right\}\right)$ is a PD-pair in H, contradicting condition (1) of the choice of our partition \mathcal{D}. Hence, $b_{2} \neq b_{3}$. Furthermore, since $a b$ is a bridge, $\left\{b, b_{1}, b_{2}, b_{3}\right\} \subseteq V\left(H_{b}\right)$, and so $\left|V\left(H_{b}\right)\right| \geq 4$.

Now, $\left(D_{1} \cap V\left(H_{b}\right), D_{2} \cap V\left(H_{b}\right)\right)$ is a PD-pair in H_{b}, and so H_{b} is a DPDP-graph. Applying the inductive hypothesis to H_{b}, there exists a labeling $S^{\prime}=\left(S_{A}^{\prime}, S_{B}^{\prime}\right)$ such that $\left(H_{b}, S^{\prime}\right) \in \mathcal{G}$. If $b \in S_{B}^{\prime}$, we can restore the graph H_{1} from H_{b} by first applying Operation \mathcal{O}_{3} and then applying Operation \mathcal{O}_{5}. If $b \in S_{A}^{\prime}$, we can restore the graph H_{1} from H_{b} by applying Operation \mathcal{O}_{8}. In both cases, $\operatorname{sta}\left(u_{1}\right)=\operatorname{sta}\left(v_{1}\right)=A$ and $\operatorname{sta}\left(w_{1}\right)=B$. If $k \geq 2$, then for each $i=2, \ldots, k$, we can restore the graph H_{i} from H_{i-1} by applying Operation \mathcal{O}_{3} and noting that $\operatorname{sta}\left(u_{i}\right)=\operatorname{sta}\left(v_{i}\right)=A$ and $\operatorname{sta}\left(w_{i}\right)=B$. We
can then restore the graph H from H_{k} by repeated applications of Operations \mathcal{O}_{6} and \mathcal{O}_{7} and finally restore the graph G from H by repeated applications of Operation \mathcal{O}_{5}. Hence, $(G, S) \in \mathcal{G}$, where S is the labeling $\left(S_{A}^{\prime} \cup U \cup\left(\bigcup_{1 \leq i \leq k}\left\{u_{i}, v_{i}\right\}\right), S_{B}^{\prime} \cup\left(\bigcup_{1 \leq i \leq k}\left\{w_{i}\right\}\right)\right)$. This completes the proof of Claim J.

We have thus demonstrated that $(G, S) \in \mathcal{G}$ for some labeling S. This completes the necessity, and the proof of Theorem 6.4.

Chapter 7

Total Restrained Domination

In this chapter, we continue the study of total restrained domination in graphs, a concept introduced by Telle and Proskurowksi [95] as a vertex partitioning problem. Recent papers on total restrained domination in graphs can be found in [8, 40, 41, 62, 72, 79, 82, $83,101]$. We improve on a previously published bound in the case of cubic graphs.

Partitioning the vertices of a graph into sets holding various domination properties can quickly provide simple bounds on the corresponding domination parameters. As an example, the now familiar observation made by Ore [80] that every graph of minimum degree at least one contains two disjoint dominating sets yields an upper bound of half the order on the domination number. We observe that a similar bound would hold for the total domination number if it were not for Zelinka's observation regarding the less frequent existence of a partition of the vertices into two total dominating sets. In fact, if such a partition always existed, the bound would also hold for the total restrained domination number, since both sets would be not only total dominating sets, but also total restrained dominating sets.

Even in the restricted case of cubic graphs, such a partition is not guaranteed. However, in the case when no such partition exists it is, loosely put, 'a very near miss'. It is this
'almost' partition that lies at the heart of the results in this chapter.

Before examining the total restrained domination number, we note that an upper bound on the total domination number of a cubic graph follows directly from a more general result due to several authors, including Archdeacon et al. [2], Chvátal and McDiarmid [15], Thomassé and Yeo [96], and Tuza [97], that every graph with minimum degree at least three has total domination number at most one-half its order.

Theorem 7.1 ([2, 15, 96, 97]) If G is a graph of order n with $\delta(G) \geq 3$, then $\gamma_{t}(G) \leq n / 2$.

7.1 Improving a Published Bound

Using intricate and clever counting arguments, Jiang, Kang and Shan [72] established the following upper bound on the total restrained domination number of a cubic graph.

JOHANNESBURG
Theorem 7.2 ([72]) If G is a connected cubic graph of order n, then $\gamma_{\operatorname{tr}}(G) \leq 13 n / 19$.

Our aim is to improve the upper bound given in Theorem 7.2. We shall prove:

Theorem 7.3 If G is a connected cubic graph of order n, then $\gamma_{\operatorname{tr}}(G) \leq(n+4) / 2$.

We show that our new improved bound is essentially best possible by providing two infinite families of connected cubic graphs G of order n with $\gamma_{\operatorname{tr}}(G)=n / 2$.

7.1.1 Preliminary Results

As a special case of König's [73] result that every regular bipartite graph has a perfect matching, we have the following result.

Observation 7.4 ([73]) Every cubic bipartite graph contains a perfect matching.

Lemma 7.5 If $G=(V, E)$ is a connected non-bipartite graph and $\{u, v\} \subset V$, then there exists a u-v walk in G of even length.

Proof. Let $G=(V, E)$ be a connected non-bipartite graph and let $\{u, v\} \subset V$. Let C be an odd cycle in G and let $w \in V(C)$. Let P_{u} be a shortest $u-w$ path and P_{v} a shortest $v-w$ path in G. Let W_{1} be the $u-v$ walk which traverses the path P_{u} from u to w and then the path P_{v} from w to v. Let W_{2} be the $u-v$ walk which traverses the path P_{u} from u to w, then the cycle C, and finally the path P_{v} from w to v. We note that W_{1} is of even length if, and only if, W_{2} is of odd length. In either case, the desired result follows.

Lemma 7.6 Let $G=(V, E)$ be a cubic graph of order n and $v \in V$. If there exists a $T R D S S \subset V$ such that $V \backslash S$ dominates $V \backslash\{v\}$, then $\gamma_{\operatorname{tr}}(G) \leq(n+2) / 2$.

Proof. Let $G=(V, E)$ be a cubic graph of order n with $v \in V$ and suppose that there exists a TRDS $S \subset V$ such that $V \backslash S$ dominates $V \backslash\{v\}$. We may assume that $|S|>(n+2) / 2$ for otherwise, the desired result follows. Hence, $|V \backslash S|<(n-2) / 2$. If $V \backslash S$ dominates V then $V \backslash S$ is a TRDS and the desired result follows. We may therefore assume that $N(v) \subseteq S$. Since S is a TRDS, the subgraph $G[V \backslash S]$ contains no isolated vertices, and so we must have that $v \in S$. Let $u \in N(v)$ and let $N(u)=\{v, w, x\}$. Since $V \backslash S$ dominates u, we may assume that $w \in V \backslash S$. If $x \in V \backslash S$, then $S^{\prime}=(V \backslash S) \cup\{u\}$ is a TRDS with $\left|S^{\prime}\right|<n / 2$ and the desired result follows. Hence, we may assume that $x \in S$. If $d_{G[S]}(x)>1$ then, again, $S^{\prime}=(V \backslash S) \cup\{u\}$ is a total restrained dominating set with $\left|S^{\prime}\right|<n / 2$ and the desired result follows. Hence we may assume that $d_{G[S]}(x)=1$. But now $S^{\prime \prime}=(V \backslash S) \cup\{u, x\}$ is a TRDS with $\left|S^{\prime \prime}\right|<(n+2) / 2$, as desired.

The following lemma shows the existence of a useful partition of one of the partite sets in a cubic bipartite graph.

Lemma 7.7 Let G be a connected cubic bipartite graph of order n with partite sets X and Y. For any specified vertex $y \in Y$ there exists a partition of X into X_{1} and X_{2} such that X_{1} dominates Y and X_{2} dominates $Y \backslash\{y\}$.

Proof. Let $G=(V, E)$ be a connected cubic bipartite graph of order n with partite sets X and Y. Let y be an arbitrary vertex in Y. By Observation 7.4, G contains a perfect matching M. Let $k=n / 2$ and note that $|M|=|X|=|Y|=k$. Let $H=G-M$. Since every vertex in G is incident with exactly one edge in M, we have that H is a 2-regular bipartite graph. Hence, every component in H is a cycle of even length. Let c be the number of components in H (possibly $c=1$). Let x_{0} be the vertex that is M-matched to y and let H_{0} be the graph consisting of only the vertex x_{0} and zero edges. Let $S_{0}=S_{0}^{\prime}=\emptyset$ and let $i=1$. We perform the following iterative construction while $i \leq c$.

Let y_{0}^{i} be the vertex M-matched to x_{i-1}. We note that $y_{0}^{i} \notin V\left(H_{i-1}\right)$. Let C^{i} : $y_{0}^{i} x_{1}^{i} y_{1}^{i} x_{2}^{i} y_{2}^{i} \ldots x_{k_{i}}^{i} y_{k_{i}}^{i}=y_{0}^{i}$ be the cycle component of H containing y_{0}^{i} where $k_{i}=\left|V\left(C^{i}\right)\right| / 2$. If $x_{i-1} \notin S_{i-1}$ then let $S_{i}=S_{i-1} \cup\left\{x_{j}^{i} \mid j \equiv 1(\bmod 2)\right\}$ and let $S_{i}^{\prime}=S_{i-1}^{\prime} \cup\left\{x_{j}^{i} \mid j \equiv\right.$ $0(\bmod 2)\}$. Otherwise if $x_{i-1} \in S_{i-1}$, let $S_{i}=S_{i-1} \cup\left\{x_{j}^{i} P j \equiv 0(\bmod 2)\right\}$ and let $S_{i}^{\prime}=$ $S_{i-1}^{\prime} \cup\left\{x_{j}^{i} \mid j \equiv 1(\bmod 2)\right\}$. Let $H_{i}=G\left[\bigcup_{j=1}^{i} V\left(C^{i}\right)\right]$ and note that $S_{i} \cup S_{i}^{\prime}=V\left(H_{i}\right) \cap X$, $S_{i} \cap S_{i}^{\prime}=\emptyset, S_{i}$ dominates $V\left(H_{i}\right) \cap Y$, and S_{i}^{\prime} dominates $\left(V\left(H_{i}\right) \cap Y\right) \backslash\left\{y_{0}^{1}\right\}$. We note further, that for all $v \in V\left(H_{i}\right)$ we must have $2 \leq d_{H_{i}}(v) \leq 3$. If for all $v \in V\left(H_{i}\right)$ we have that $d_{H_{i}}(v)=3$, then since G is connected, $H_{i}=G$ and $i=c$. In this case, our iterative construction is complete. Hence, we may assume that $i<c$ and that there exists a vertex $x_{i} \in V\left(H_{i}\right)$ such that $d_{H_{i}}\left(x_{i}\right)=2$. Additionally, since H_{i} is a bipartite graph with partite sets of equal size, we may choose such an x_{i} to be from X. Necessarily, $x_{i} \in S_{i} \cup S_{i}^{\prime}$ and the vertex in Y that is M-matched to x_{i} is not in $V\left(H_{i}\right)$ and we repeat the iterative step after incrementing i by 1 .

By construction, $H_{c}=G$. Furthermore, $S_{c} \cup S_{c}^{\prime}=X, S_{c} \cap S_{c}^{\prime}=\emptyset, S_{c}$ dominates Y, and S_{c}^{\prime} dominates $Y \backslash\left\{y_{0}^{1}\right\}$. But $y=y_{0}^{1}$ and so, letting $X_{1}=S_{c}$ and $X_{2}=S_{c}^{\prime}$, the desired result follows.

Our final preliminary result uses Lemma 7.6 and Lemma 7.7 to establish a bound on the total restrained domination number in the case of connected cubic bipartite graphs.

Lemma 7.8 If G is a connected cubic bipartite graph of order n, then $\gamma_{\operatorname{tr}}(G) \leq(n+2) / 2$.

Proof. Let G be a cubic bipartite graph of order n with partite sets X and Y. We note that $|X|=|Y|=n / 2$. Let $x \in X$ and $y \in Y \cap N(x)$. By Lemma 7.7, there exists a partition of X into X_{1} and X_{2} such that X_{1} dominates Y and X_{2} dominates $Y \backslash\{y\}$. Similarly, there exists a partition of Y into Y_{1} and Y_{2} such that Y_{1} dominates X and Y_{2} dominates $X \backslash\{x\}$.

If X_{2} dominates Y and Y_{2} dominates X, then $X_{1} \cup Y_{1}$ and $X_{2} \cup Y_{2}$ are disjoint TDSs in G and hence also, TRDSs in G. Letting S be the smaller of $X_{1} \cup Y_{1}$ and $X_{2} \cup Y_{2}$ (or the former, in the case of equality), we have that $\backslash S \backslash\lfloor\lfloor n \not 2$ and the desired result follows. Hence we may assume, without loss of generality, that X_{2} does not dominate Y. We note that $x \in N(y) \subseteq X_{1}$.

If Y_{2} dominates X, then, switching the labels Y_{1} and Y_{2} if necessary, we may assume that $y \in Y_{1}$. We now let $S=X_{1} \cup Y_{1}$ and note that S is a TRDS in G and $V \backslash S=X_{2} \cup Y_{2}$ dominates $V \backslash\{y\}$. Then, by Lemma 7.6, $\gamma_{\mathrm{tr}}(G) \leq(n+2) / 2$, as desired. Hence we may assume that Y_{2} does not dominate X. We note that $y \in N(x) \subseteq Y_{1}$.

If $\left|X_{1} \cup Y_{2}\right| \leq\left|X_{2} \cup Y_{1}\right|$, we let $S=X_{1} \cup Y_{2} \cup\{y\}$. Conversely, if $\left|X_{2} \cup Y_{1}\right|<\left|X_{1} \cup Y_{2}\right|$, we let $S=X_{2} \cup Y_{1} \cup\{x\}$. In both cases, we note that S is a TRDS and $|S| \leq(n+2) / 2$, as desired.

7.1.2 Proof of Theorem 7.3

We are now in a position to prove our main result, namely Theorem 7.3. Recall the statement of the Theorem 7.3.

Theorem 7.3. If G is a connected cubic graph of order n, then $\gamma_{\operatorname{tr}}(G) \leq(n+4) / 2$.

Proof. Let $G=(V, E)$ be a connected cubic graph of order n. If G is a bipartite graph, then the result follows from Lemma 7.8. Thus we may assume that G is not a bipartite graph. Let $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Let $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ be the bipartite graph obtained from G as follows. Let G^{\prime} have partite sets $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ and let $E^{\prime}=\left\{x_{i} y_{j} \mid v_{i} v_{j} \in E\right\}$. We note that G^{\prime} is a cubic bipartite graph on $2 n$ vertices and that $x_{i} y_{i} \notin E^{\prime}$ for all $i \in\{1,2, \ldots, n\}$.

We show first that G^{\prime} is connected. It suffices to show that for all $1 \leq i<j \leq n$, there exists an $x_{i}-x_{j}$ walk in G^{\prime}. Since G is non-bipartite, by Lemma 7.5 , there exists a $v_{i}-v_{j}$ walk of even length in G. Let $v_{i}=v_{\ell_{0}} v_{\ell_{1}} v_{\ell_{2}} \ldots v_{\ell_{2 k}}=v_{j}$ be such a $v_{i}-v_{j}$ walk. But now $x_{i}=x_{\ell_{0}} y_{\ell_{1}} x_{\ell_{2}} y_{\ell_{3}} \ldots x_{\ell_{2 k}}=x_{j}$ is an $x_{i}-x_{j}$ walk in G^{\prime}. Hence, G^{\prime} is connected. Therefore, by Lemma 7.7, there exists a partition of X into X_{1} and X_{2} such that X_{1} dominates Y and X_{2} dominates $Y \backslash\left\{y_{1}\right\}$.

We consider the set $S=\left\{v_{i} \in V \mid x_{i} \in X_{1}\right\}$ and show that S is a TDS in G. Let v_{j} be an arbitrary vertex in V. Since X_{1} dominates Y, there exists a vertex $x_{i} \in X_{1}$ such that $i \neq j$ and $x_{i} y_{j} \in E^{\prime}$. By our construction of $G^{\prime}, v_{i} v_{j} \in E$. By definition of the set S, $v_{i} \in S$. Hence, every vertex in V is adjacent to some vertex in S, and so S is a TDS in G as claimed. If X_{2} dominates Y, then by a similar argument, $V \backslash S$ is a TDS in G. But then each of S and $V \backslash S$ is a TRDS, and so $\gamma_{\operatorname{tr}}(G) \leq \min (|S|,|V \backslash S|) \leq n / 2$, and we are done. We may therefore assume that X_{2} does not dominate Y, and so $N\left(y_{1}\right) \subseteq X_{1}$. Hence, by our construction of G^{\prime} and definition of $S, N\left(v_{1}\right) \subseteq S$.

We show next that every vertex in V is adjacent to a vertex in $V \backslash S$, with the exception
of v_{1}. Let v_{j} be an arbitrary vertex in V such that $j \neq 1$. Since X_{2} dominates $Y \backslash\left\{y_{1}\right\}$, there exists a vertex $x_{i} \in X_{2}$ such that $i \neq j$ and $x_{i} y_{j} \in E^{\prime}$. By our construction of G^{\prime}, $v_{i} v_{j} \in E$. By definition of the set S, we have that $v_{i} \in V \backslash S$, and so v_{j} is adjacent to a vertex in $V \backslash S$, as desired. Consequently, $G[V \backslash S]$ contains no isolated vertices, except possibly v_{1}. We note, therefore, that $S \cup\left\{v_{1}\right\}$ is a TRDS in G (possibly, $v_{1} \in S$). If $|S| \leq n / 2$ then $\gamma_{\operatorname{tr}}(G) \leq|S|+1 \leq(n+2) / 2$ and the desired result follows. We may therefore assume that $|S|>n / 2$ or, equivalently, $|V \backslash S|<n / 2$. But since G is cubic, n is even and hence $|V \backslash S| \leq(n-2) / 2$.

Let $u \in N_{G}\left(v_{1}\right)$ and let $N_{G}(u)=\left\{v_{1}, w_{1}, w_{2}\right\}$. Note that $u \in S$. If $v_{1} \in S$, then $G[V \backslash S]$ contains no isolated vertices, and so S is a TRDS in G such that $V \backslash S$ dominates $V \backslash\left\{v_{1}\right\}$. The desired result now follows from Lemma 7.6. Hence, we may assume that $v_{1} \in V \backslash S$.

Since S totally dominates V, we may assume that $w_{1} \in S$ in order to totally dominate u. Suppose that $w_{2} \in V \backslash S . /$ If $d_{G[S]}\left(w_{1}\right)>1$, then $(V \backslash S) \cup\{u\}$ is a TRDS and $\gamma_{\operatorname{tr}}(G) \leq|V \backslash S|+1 \leq n / 2$, as desired. We may therefore assume $d_{G[S]}\left(w_{1}\right)=1$. But now $(V \backslash S) \cup\left\{u, w_{1}\right\}$ is a TRDS and $\gamma_{\operatorname{tr}}(G) \leq|V \backslash S A+2| \leq(n+2) / 2$, as desired. Hence, if $w_{2} \in V \backslash S$, the desired result follows and so we may assume that $w_{2} \in S$.

If $d_{G[S]}\left(w_{1}\right)>1$ and $d_{G[S]}\left(w_{2}\right)>1$, then $(V \backslash S) \cup\{u\}$ is a TRDS and the desired result follows. We may therefore assume, without loss of generality, that $d_{G[S]}\left(w_{1}\right)=1$. If $d_{G[S]}\left(w_{2}\right)>1$ then $(V \backslash S) \cup\left\{u, w_{1}\right\}$ is a TRDS and, again, the desired result follows. Hence, we may assume that $d_{G[S]}\left(w_{2}\right)=1$. But now $(V \backslash S) \cup\left\{u, w_{1}, w_{2}\right\}$ is a TRDS and so $\gamma_{\operatorname{tr}}(G) \leq|V \backslash S|+3 \leq(n+4) / 2$. This concludes the proof of Theorem 7.3.

7.1.3 Examples Showing the Tightness of our Result

Let G be a connected cubic graph of order n. In this chapter, we improved the upper bound on $\gamma_{\text {tr }}(G)$ established by Jiang, Kang and Shan [72] in Theorem 7.2 from 13n/19 to $(n+4) / 2$. We will now show that our result is essentially best possible.

The generalized Petersen graph G_{16} of order $n=16$ shown in Figure 7.1 achieves equality in Theorem 7.1.

Figure 7.1: The generalized Petersen graph G_{16} of order 16.

Two infinite families \mathcal{G} and \mathcal{H} of connected cubic graphs (described below) with total domination number one-half their orders are constructed in [31]. For $k \geq 2$ consider two copies of the path $P_{2 k}$ with respective vertex sequences $a_{1}, b_{1}, a_{2}, b_{2}, \ldots, a_{k}, b_{k}$ and $c_{1}, d_{1}, c_{2}, d_{2}, \ldots, c_{k}, d_{k}$. For each $i \in\{1,2, \ldots, k\}$, join a_{i} to d_{i} and b_{i} to c_{i}. To complete the construction of graphs in \mathcal{G} (\mathcal{H}, respectively), join a_{1} to c_{1} and b_{k} to d_{k} (a_{1} to b_{k} and c_{1} to d_{k}, respectively). Two graphs G and H in the families \mathcal{G} and \mathcal{H} are illustrated in Figure 7.2.

Figure 7.2: Cubic graphs $G \in \mathcal{G}$ and $H \in \mathcal{H}$ of order n with $\gamma_{t}(G)=\gamma_{t}(H)=n / 2$.

We remark that in [69] it is shown that there are no other extremal connected graphs achieving the bound in Theorem 7.1; that is, if G is a connected graph of order n with $\delta(G) \geq 3$ and $\gamma_{t}(G)=n / 2$, then $G \in \mathcal{G} \cup \mathcal{H}$ or $G=G_{16}$.

If $G \in \mathcal{G} \cup \mathcal{H}$ has order $n=4 k$, then using the notation described earlier to construct the families \mathcal{G} and \mathcal{H}, we note that the set $S=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\} \cup\left\{b_{1}, b_{2}, \ldots, b_{k}\right\}$ is a

TRDS in G, and so $\gamma_{\operatorname{tr}}(G) \leq n / 2$. Further if $G=G_{16}$, then G has order $n=16$ and the vertices on the outer 8-cycle of G_{16} as drawn in Figure 7.1 form a TRDS of G, and so $\gamma_{\operatorname{tr}}(G) \leq n / 2$. Hence if $G \in \mathcal{G} \cup \mathcal{H} \cup\left\{G_{16}\right\}$ has order n, then $\gamma_{\operatorname{tr}}(G) \leq n / 2$. As remarked earlier, if $G \in \mathcal{G} \cup \mathcal{H} \cup\left\{G_{16}\right\}$ has order n, then $\gamma_{t}(G)=n / 2$. Since every TRDS is a TDS, we note that $\gamma_{t}(G) \leq \gamma_{\text {tr }}(G)$ for every graph G. Consequently, we have the following observation.

Observation 7.9 If $G \in \mathcal{G} \cup \mathcal{H}$ or G is the generalized Petersen graph G_{16} shown in Figure 7.1 and G has order n, then $\gamma_{\operatorname{tr}}(G)=n / 2$.

Chapter 8

Independent Domination

Recall that an independent dominating set in a graph is a set that is both dominating and independent. Equivalently, an independent dominating set is a maximal independent set. The theory of independent domination was formálized by Berge [4] and Ore [80] in 1962. The independent domination number was introduced by Cockayne and Hedetniemi in [18]. Independent dominating sets are now extensively studied in the literature; see, for example, [1, 44, 85, 94] and the two books by Haynes, Hedetniemi, and Slater [45, 46]. Independent dominating sets in regular graphs, and in cubic graphs in particular, are also well studied; see for example $[42,43,74,78]$ and elsewhere. In this chapter, we consider the ratio of the independent domination number to the domination number in a cubic graph.

In 1991, Barefoot, Harary, and Jones [3] gave a class of 2-connected cubic graphs for which the difference between i and γ is unbounded and conjectured that for any 3 -connected cubic graph the difference is at most 1 . Their conjecture was disproved in multiple papers, including [19, 74, 102, 103], who showed collectively that there are cubic graphs that are 3 -connected with γ and i arbitrarily far apart. We consider the ratio i / γ in a connected cubic graph.

The question of best possible bounds for cubic graphs remains unresolved. Lam, Shiu, and Sun [76] gave a proof of the following result.

Theorem 8.1 ([76]) For a connected cubic graph G on n vertices, $i(G) \leq 2 n / 5$ except for $K(3,3)$.

We note that equality in Theorem 8.1 holds for the prism $C_{5} \times K_{2}$ but it is not known if this is the only cubic graph achieving this bound. In [37], the authors provide a simple counting argument to show that the ratio of the independence number and the domination number in a cubic graph cannot be too large as is evident from the following result.

Theorem 8.2 ([37]) If G is a connected cubic graph, then $i(G) / \gamma(G) \leq 3 / 2$, with equality if and only if $G=K(3,3)$.

The following open question is posed in [37]. UNIVERSITY
JOHANNESBURG
Question 1 ([37]) If $G \neq K(3,3)$ is a connected cubic graph, then is it true that $i(G) / \gamma(G) \leq 4 / 3$?

8.1 Ratio Result

Our aim in this chapter is to improve the bound given in Theorem 8.2 by answering Question 1 in the affirmative and, in addition, to characterize the graphs achieving this improved bound of $4 / 3$. In particular, we shall prove the following result, a proof of which can be found in Section 8.3.

Theorem 8.3 If $G \neq K(3,3)$ is a connected cubic graph, then $i(G) / \gamma(G) \leq 4 / 3$, with equality if and only if $G=C_{5} \times K_{2}$.

8.2 Useful Notation and Preliminary Results

For the remainder of the chapter we assume that G is a connected cubic graph of order n and $G \neq K(3,3)$. We introduce some useful notation and preliminary results.

If D is a dominating set in G such that $\Delta\left(G_{D}\right) \leq 1$, we call D a near independent dominating set, abbreviated NID-set. We remark that if D is a NID-set, then every component in G_{D} is isomorphic to either K_{1} or K_{2} and that every ID-set is a NID-set.

Lemma 8.4 Suppose that D is a NID-set in G and let k denote the number of components in G_{D} that are isomorphic to K_{2}. Then, $i(G) \leq|D|+k$.

Proof. We proceed by induction on k. If $k=0$, then D is an ID-set and the result is immediate. This establishes the base case. Suppose $k \geq 1$ and let $v \in D$ such that $d_{D}(v)=1$. Let $u \in N_{G}(v) \backslash D$. We note that $|\operatorname{epn}(v, D)| \leq 2$. If $|\operatorname{epn}(v, D)|=2$ and $G[\operatorname{epn}(v, D)]=K_{2}$, then let $D^{\prime}=(D \backslash\{v\}) \cup\{u\}$. Otherwise, let $D^{\prime}=(D \backslash\{v\}) \cup$ $\operatorname{epn}(v, D)$. In both cases, $\left|D^{\prime}\right| \leq|D|+1$. Furthermore, D^{\prime} is a NID-set in G and there are precisely $k-1$ components in $G_{D^{\prime}}$ that are isomorphic to K_{2}. Hence, by the inductive hypothesis, $i(G) \leq\left|D^{\prime}\right|+(k-1) \leq|D|+k$.

Lemma 8.5 Suppose that D is a NID-set in G and let k denote the number of components in G_{D} that are isomorphic to K_{2}. If there exists a vertex $v \in D$, such that $d_{D}(v)=1$ and $|\operatorname{epn}(v, D)| \leq 1$, then $i(G) \leq|D|+k-1$.

Proof. Let $D^{\prime}=(D \backslash\{v\}) \cup \operatorname{epn}(v, D)$. Since $|\operatorname{epn}(v, D)| \leq 1$, we have $\left|D^{\prime}\right| \leq|D|$. Furthermore, D^{\prime} is a NID-set in G and there are precisely $k-1$ components in $G_{D^{\prime}}$ that are isomorphic to K_{2}. Hence, by Lemma $8.4, i(G) \leq\left|D^{\prime}\right|+(k-1) \leq|D|+k-1$.

If D is a $\gamma(G)$-set and for every $\gamma(G)$-set D^{\prime} we have that $m\left(G_{D}\right) \leq m\left(G_{D^{\prime}}\right)$, then we say D is an edge minimal $\gamma(G)$-set. Thus an edge minimal $\gamma(G)$-set is a $\gamma(G)$-set that induces a subgraph of minimum size. The following lemma will prove useful.

Lemma 8.6 Let D be an edge minimal $\gamma(G)$-set with $v \in D$. If v is not an isolated vertex in G_{D}, then $d_{D}(v)=1$ and $|\operatorname{epn}(v, D)|=2$.

Proof. Suppose that $N(v) \cap D \neq \emptyset$. Let $N(v)=\left\{v_{1}, v_{2}, v_{3}\right\}$ where that $v_{3} \in D$. If $\operatorname{epn}(v, D)=\emptyset$, then $D \backslash\{v\}$ is a dominating set, contradicting the fact that D is a $\gamma(G)$ set. Hence, $|\operatorname{epn}(v, D)| \geq 1$. Switching labels for v_{1} and v_{2}, if necessary, we can assume that $v_{1} \in \operatorname{epn}(v, D)$. If $v_{2} \notin \operatorname{epn}(v, D)$, then $D^{\prime}=(D \backslash\{v\}) \cup\left\{v_{1}\right\}$ is a $\gamma(G)$-set with $m\left(G_{D^{\prime}}\right)<m\left(G_{D}\right)$, contradicting our choice of the set D. Hence, $v_{2} \in \operatorname{epn}(v, D)$.

Lemma 8.6 motivates the following definitions. If D is an edge minimal $\gamma(G)$-set, we define $D_{1}=\left\{v \in D \mid d_{D}(v)=0\right\}$ and $D_{2}=\left\{v \in D \mid d_{D}(v)=1\right\}$. We note that $D_{1} \cap D_{2}=\emptyset$ and by Lemma 8.6 we have $D_{1} \cup D_{2}=D$. Furthermore, every vertex in D_{2} has precisely one neighbor in D_{2} and two D-external private neighbors. We define $k_{1}=\left|D_{1}\right|$ and $k_{2}=\left|D_{2}\right| / 2$ and note that $\gamma(G)=|D|=\left|D_{1}+\left|+\left|D_{2}\right|=k_{1}+2 k_{2}\right.\right.$. Our next lemma further clarifies the structure in $N\left[D_{2}\right]$.

Lemma 8.7 Suppose that $D_{2} \neq \emptyset$ for some edge minimal $\gamma(G)$-set D. Let $u v \in E\left(G_{D_{2}}\right)$, $N(u)=\left\{v, u^{\prime}, u^{\prime \prime}\right\}, N(v)=\left\{u, v^{\prime}, v^{\prime \prime}\right\}, V^{\prime}=\left\{u^{\prime}, u^{\prime \prime}, v^{\prime}, v^{\prime \prime}\right\}$ and $E^{\prime}=E\left(G_{V^{\prime}}\right)$. Relabeling vertices if necessary, we may assume that precisely one of the following three properties holds:
(i) $E^{\prime}=\emptyset$.
(ii) $E^{\prime}=\left\{u^{\prime} v^{\prime}\right\}$.
(iii) $E^{\prime}=\left\{u^{\prime} v^{\prime}, u^{\prime} v^{\prime \prime}\right\}$.

Proof. By Lemma 8.6, $\operatorname{epn}(u, D)=\left\{u^{\prime}, u^{\prime \prime}\right\}$ and $\operatorname{epn}(v, D)=\left\{v^{\prime}, v^{\prime \prime}\right\}$. If $u^{\prime} u^{\prime \prime} \in E^{\prime}$, then $D^{\prime}=(D \backslash\{u\}) \cup\left\{u^{\prime}\right\}$ is a $\gamma(G)$-set with $m\left(G_{D^{\prime}}\right)<m\left(G_{D}\right)$, contradicting the fact that D is an edge minimal $\gamma(G)$-set. Thus, $u^{\prime} u^{\prime \prime} \notin E^{\prime}$ and analogously, $v^{\prime} v^{\prime \prime} \notin E^{\prime}$. Hence, $\left|E^{\prime}\right| \leq 4$. If $E^{\prime}=\emptyset$, then property (i) holds and we are done. Relabeling vertices, if necessary, we
may therefore assume that $u^{\prime} v^{\prime} \in E^{\prime}$. If $\left|E^{\prime}\right|=1$, then property (ii) holds and we are done. Thus we may assume that $\left|E^{\prime}\right| \geq 2$. If $\left|E^{\prime}\right|=4$, then $G=K(3,3)$, a contradiction. Thus, $\left|E^{\prime}\right| \leq 3$ and we can assume, relabeling vertices if necessary, that $u^{\prime \prime} v^{\prime} \notin E^{\prime}$. If $u^{\prime \prime} v^{\prime \prime} \in E^{\prime}$, then $D^{\prime \prime}=(D \backslash\{u, v\}) \cup\left\{u^{\prime \prime}, v^{\prime}\right\}$ is a $\gamma(G)$-set with $m\left(G_{D^{\prime \prime}}\right)<m\left(G_{D}\right)$, contradicting our choice of D. Hence, $u^{\prime \prime} v^{\prime \prime} \notin E^{\prime}$, implying that $E^{\prime}=\left\{u^{\prime} v^{\prime}, u^{\prime} v^{\prime \prime}\right\}$ and property (iii) holds.

Motivated by Lemma 8.7, we provide some final definitions and labels for vertices in an edge minimal $\gamma(G)$-set, D. If $k_{2} \neq 0$, let $E\left(G_{D}\right)=\left\{u_{1} v_{1}, u_{2} v_{2}, \ldots, u_{k_{2}} v_{k_{2}}\right\}$ and note that $D_{2}=\left\{u_{1}, v_{1}, u_{2}, v_{2}, \ldots, u_{k_{2}}, v_{k_{2}}\right\}$. For $i \in\left\{1, \ldots, k_{2}\right\}$, let $N\left(u_{i}\right)=\left\{v_{i}, u_{i}^{\prime}, u_{i}^{\prime \prime}\right\}$, let $N(v)=\left\{u_{i}, v_{i}^{\prime}, v_{i}^{\prime \prime}\right\}$, let $V_{i}^{\prime}=\left\{u_{i}^{\prime}, u_{i}^{\prime \prime}, v_{i}^{\prime}, v_{i}^{\prime \prime}\right\}$, and let $E_{i}^{\prime}=E\left(G_{V_{i}^{\prime}}\right)$. Relabeling vertices if necessary, we may assume by Lemma 8.7 that $E_{i}^{\prime} \in\left\{\emptyset,\left\{u_{i}^{\prime} v_{i}^{\prime}\right\},\left\{u_{i}^{\prime} v_{i}^{\prime}, u_{i}^{\prime} v_{i}^{\prime \prime}\right\}\right\}$ for each $i \in\left\{1, \ldots, k_{2}\right\}$. For each such i, let $V_{i}=N\left[\left\{u_{i}, v_{i}\right\}\right]$, and let $G_{i}=G_{V_{i}}$. We call G_{i} a unit of G. More specifically, if $E_{i}^{\prime}=\emptyset$ we call G_{i} a 0-unit, if $E_{i}^{\prime}=\left\{u_{i}^{\prime} v_{i}^{\prime}\right\}$ we call G_{i} a 1-unit, and if $E_{i}^{\prime}=\left\{u_{i}^{\prime} v_{i}^{\prime}, u_{i}^{\prime} v_{i}^{\prime \prime}\right\}$ we call G_{i} a 2 -unit. For $j \in\{0,1,2\}$, let ℓ_{j} be the number of j-units in G. For each $i \in\left\{1, \ldots, k_{2}\right\}$ define u_{i}^{*} as follows. If G_{i} is a 0 -unit, let $u_{i}^{*}=u_{i}$; otherwise, let $u_{i}^{*}=u_{i}^{\prime \prime}$. Let

$$
A=\bigcup_{i=1}^{k_{2}}\left\{u_{i}^{*}, v_{i}^{\prime}, v_{i}^{\prime \prime}\right\}
$$

Note that $|A|=3 k_{2}$. If $k_{1}>0$, let $D_{1}=\left\{w_{1}, w_{2}, \ldots, w_{k_{1}}\right\}$ and for $i \in\left\{1, \ldots, k_{1}\right\}$, let $B_{i}=N\left(w_{i}\right)=\left\{w_{i}^{1}, w_{i}^{2}, w_{i}^{3}\right\}$. Let $B=N\left(D_{1}\right)$. For $i \in\left\{1, \ldots, k_{1}\right\}$, let $E_{i} \subseteq[A, B]$ such that $e \in E_{i}$ if and only if e is incident with a vertex in B_{i}. Further let $A_{i} \subseteq A$ such that $a \in A_{i}$ if and only if a is incident with an edge in E_{i}. We note that $\left|A_{i}\right| \leq\left|E_{i}\right| \leq 6$.

We define $\xi(D)$ to be the number of edges in $G\left[N\left(D_{2}\right) \backslash D_{2}\right]$. If D is an edge minimal $\gamma(G)$-set and $\xi(D) \leq \xi\left(D^{\prime}\right)$ for every edge minimal $\gamma(G)$-set D^{\prime}, then we say that D is a desirable $\gamma(G)$-set.

8.3 Proof of Ratio Result

We are now in a position to prove our main result, namely Theorem 8.3. Throughout the proof of Theorem 8.3 we use the notation and vertex labeling introduced in Section 8.2. Recall the statement of Theorem 8.3.

Theorem 8.3 If $G \neq K(3,3)$ is a connected cubic graph, then $i(G) / \gamma(G) \leq 4 / 3$, with equality if and only if $G=C_{5} \times K_{2}$.

Proof. Let $G \neq K(3,3)$ be a connected cubic graph and let $G=(V, E)$. Let D be a desirable $\gamma(G)$-set, and recall that by definition, the set D is also an edge minimal $\gamma(G)$-set. We proceed with the following three claims.

Claim A If $k_{1}<k_{2}$, then $i(G) / \gamma(G)<4 / 3$.

Proof. By Lemma 8.6, every vertex in D_{2} has precisely one neighbor in D_{2} and two D external private neighbors. Hence, we have $\left.\mid N+D_{2}\right]|=3| \bar{D}_{2} \mid=6 k_{2}$.GFurthermore, every vertex not in $N\left[D_{2}\right]$ is necessarily dominated by D_{1} and therefore $V \backslash N\left[D_{2}\right] \subseteq N\left[D_{1}\right]$. Thus we have the following inequality chain,

$$
n-6 k_{2}=\left|V \backslash N\left[D_{2}\right]\right| \leq\left|N\left[D_{1}\right]\right| \leq 4\left|D_{1}\right|=4 k_{1} .
$$

Equivalently, $n \leq 4 k_{1}+6 k_{2}$. Therefore, since $k_{1}<k_{2}$ we have $n<10 k_{2}$. Further, $n-6 k_{2} \leq 4\left|D_{1}\right|$ and so $\left|D_{1}\right| \geq\left(n-6 k_{2}\right) / 4$. Hence, $\gamma(G)=|D|=\left|D_{1}\right|+\left|D_{2}\right| \geq$ $\left(n-6 k_{2}\right) / 4+2 k_{2}=\left(n+2 k_{2}\right) / 4$. Since G is a cubic graph and $G \neq K(3,3)$ we have, by

Theorem 8.1, that $i(G) \leq 2 n / 5$. Therefore,

$$
\begin{aligned}
\frac{i(G)}{\gamma(G)} & \leq \frac{2 n / 5}{\left(n+2 k_{2}\right) / 4} \\
& =\frac{8 n}{5 n+10 k_{2}} \\
& <\frac{8 n}{5 n+n} \quad\left(\text { since } n<10 k_{2}\right) \\
& =4 / 3
\end{aligned}
$$

as desired.

Claim B If $k_{2} \leq k_{1}$, then $i(G) / \gamma(G) \leq 4 / 3$.

Proof. Suppose $k_{2} \leq k_{1}$. Since D is a $\gamma(G)$-set, we have that $\gamma(G)=|D|=\left|D_{1}\right|+\left|D_{2}\right|=$ $k_{1}+2 k_{2}$. Furthermore, D is a NID-set in G and k_{2} is the number of components in G_{D} that are isomorphic to K_{2}. If $k_{2}=0$, then D is an ID-set, and so $i(G) \leq|D|=\gamma(G)$. Consequently, $i(G)=\gamma(G)$, or, equivalently, $i(G) / \gamma(G) \equiv 1$. BThus we may assume that $k_{2}>0$. By Lemma 8.4 we have that $i(G) \leq|D|+k_{2}=k_{1}+3 k_{2}$. Therefore,

$$
\begin{aligned}
\frac{i(G)}{\gamma(G)} & \leq \frac{k_{1}+3 k_{2}}{k_{1}+2 k_{2}} \\
& =1+\frac{k_{2}}{k_{1}+2 k_{2}} \\
& \leq 1+\frac{k_{2}}{3 k_{2}} \quad\left(\text { since } k_{2} \leq k_{1}\right) \\
& =4 / 3
\end{aligned}
$$

as desired.

The following two properties follow immediately by replacing the relevant inequality signs with strict inequality signs in the proof of Claim B.

Claim C The following two properties hold.

(i) If $i(G)<k_{1}+3 k_{2}$, then $i(G) / \gamma(G)<4 / 3$.
(ii) If $k_{2}<k_{1}$, then $i(G) / \gamma(G)<4 / 3$.

From Claims A and B we get $i(G) / \gamma(G) \leq 4 / 3$. This proves the desired bound and we turn our attention to proving the second part of Theorem 8.3, namely the characterization of graphs achieving this bound. We suppose now that $i(G) / \gamma(G)=4 / 3$ and show that $G=C_{5} \times K_{2}$. By Claim C, we have $i(G)=k_{1}+3 k_{2}$ and $k_{1}=k_{2}$. To simplify notation in the remainder of the proof, we let $k=k_{1}=k_{2}$ and so we have $i(G)=4 k$ and $\gamma(G)=|D|=3 k$. Additionally, let $I=\{1, \ldots, k\}$. We proceed with a series of claims, culminating in the desired result. Recall that a packing in G is a set of vertices that are pairwise at distance at least 3 apart in G.

Claim D The set D_{1} is a packing in G.

UNIVERSITY

Proof. Suppose, for the sake of contradiction, that D_{\perp} is not a packing in G. Thus since D_{1} is an independent set, there are two vertices x and y in D_{1} that have a common neighbor. For each $v \in V$ we have $|N[v]|=4$ and so $\left|N\left[D_{1}\right]\right| \leq 4\left|D_{1}\right|=4 k$. But since $N(x) \cap N(y) \neq \emptyset$, we have $\left|N\left[D_{1}\right]\right|<4 k$. As in the proof of Claim A, we have $\left|N\left[D_{2}\right]\right|=6 k$ and $V \backslash N\left[D_{2}\right] \subseteq N\left[D_{1}\right]$. We now get the following inequality chain,

$$
n-6 k=\left|V \backslash N\left[D_{2}\right]\right| \leq\left|N\left[D_{1}\right]\right|<4 k .
$$

Hence, $n<10 k$ or, equivalently, $k>n / 10$. Therefore, $\gamma(G)=3 k>3 n / 10$. By Theorem 8.1 we have $i(G) \leq 2 n / 5$, and so $i(G) / \gamma(G)<(2 n / 5) /(3 n / 10)=4 / 3$, a contradiction.

Claim D shows that every vertex in D_{1} has three D-external private neighbors. Combining this with Lemma 8.6, we have that every vertex not in D is a D-external private
neighbor for some vertex in D. Equivalently, $G[V \backslash D]$ is a 2-regular graph and is therefore a disjoint union of cycles.

Claim E No edge of G is incident with vertices from two distinct units.

Proof. Suppose, to the contrary, that for some $\{i, j\} \subseteq I$ we have $x \in\left\{u_{i}, v_{i}\right\}, y \in$ $\left\{u_{j}, v_{j}\right\}, x^{\prime} \in \operatorname{epn}(x, D)$ and $y^{\prime} \in \operatorname{epn}(y, D)$ such that $x^{\prime} y^{\prime} \in E$. Let $D^{\prime}=(D \backslash\{x\}) \cup$ $\operatorname{epn}(x, D)$. Note that $\left|D^{\prime}\right|=|D|+1$ and D^{\prime} is a NID-set with $k-1$ copies of K_{2} in $G_{D^{\prime}}$. Furthermore, since $x^{\prime} \in D^{\prime}$ we have $y^{\prime} \notin \operatorname{epn}\left(y, D^{\prime}\right)$ and so $\left|\operatorname{epn}\left(y, D^{\prime}\right)\right| \leq 1$. But now D^{\prime} is a NID-set with $k-1$ copies of K_{2} in $G_{D^{\prime}}$ and y is a vertex in D^{\prime} such the $d_{D^{\prime}}(y)=1$ and $\left|\operatorname{epn}\left(y, D^{\prime}\right)\right| \leq 1$. Hence, by Lemma 8.5 we have $i(G) \leq\left|D^{\prime}\right|+k-2=|D|+k-1=4 k-1$. But this contradicts the fact that $i(G)=4 k$.

Claim F The following hold.

(a) $A \cup D_{1}$ is an $i(G)$-set.
(b) $|[A, B]|=4 \ell_{0}+5 \ell_{1}+4 \ell_{2}$.

Proof. By Claim E we have that if $\{i, j\} \subseteq I$, then $\left[V_{i}, V_{j}\right]=\emptyset$. We therefore observe that $A \cup D_{1}$ is an ID-set in G of cardinality $4 k$. This establishes Part (a). Further each 1-unit contributes exactly five edges to $[A, B]$, whilst every other unit contributes exactly four edges to $[A, B]$. Hence, $|[A, B]|=4 \ell_{0}+5 \ell_{1}+4 \ell_{2}$.

Claim G For $i \in I$, the set $N\left(B_{i}\right)$ contains vertices from at most two units in G.

Proof. For the sake of contradiction, suppose that for some $i \in I$ we have $\left\{x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right\} \subseteq$ $N\left(B_{i}\right)$ such that $x_{1}^{\prime}, x_{2}^{\prime}$ and x_{3}^{\prime} each lie in a different unit of G. For $\ell \in\{1,2,3\}$, let x_{ℓ} be the unique neighbor of x_{ℓ}^{\prime} such that $x_{\ell} \in D_{2}$ and $x_{\ell}^{\prime} \in \operatorname{epn}\left(x_{\ell}, D\right)$. Necessarily, x_{1}, x_{2} and x_{3} each lie in a different unit of G. Recall that $\left|\operatorname{epn}\left(x_{\ell}, D\right)\right|=2$ for each $\ell \in\{1,2,3\}$.

Suppose that B_{i} is an independent set. Let $D^{\prime}=\left(D \backslash\left\{w_{i}\right\}\right) \cup B_{i}$. Now, $\left|D^{\prime}\right|=$ $|D|+2$. Furthermore, $x_{\ell}^{\prime} \notin \operatorname{epn}\left(x_{\ell}, D^{\prime}\right)$ for $\ell \in\{1,2,3\}$ and so $\left|\operatorname{epn}\left(x_{\ell}, D^{\prime}\right)\right| \leq 1$. For $\ell \in\{1,2,3\}$, let $X_{\ell}=\operatorname{epn}\left(x_{\ell}, D^{\prime}\right)$. Let $D^{\prime \prime}=\left(D^{\prime} \backslash\left\{x_{1}, x_{2}, x_{3}\right\}\right) \cup X_{1} \cup X_{2} \cup X_{3}$. Note that $\left|D^{\prime \prime}\right| \leq\left|D^{\prime}\right|$ and $D^{\prime \prime}$ is a NID-set with $k-3$ copies of K_{2} in $G_{D^{\prime \prime}}$. By Lemma 8.4, $i(G) \leq\left|D^{\prime \prime}\right|+(k-3) \leq\left|D^{\prime}\right|+(k-3)=(|D|+2)+(k-3)=4 k-1$, contradicting the fact that $i(G)=4 k$. Thus, B_{i} is not an independent set.

We may assume, relabeling vertices if necessary, that $w_{i}^{2} w_{i}^{3} \in E(G)$. Since $\left\{x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right\} \subseteq$ $N\left(B_{i}\right)$ and G is cubic, there are no further edges in $G_{B_{i}}$. Since w_{i}^{3} is adjacent to at most one vertex in $\left\{x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right\}$, we may further assume, relabeling vertices if necessary, that neither x_{1}^{\prime} nor x_{2}^{\prime} is adjacent to w_{i}^{3}. Let $D^{*}=\left(D \backslash\left\{w_{i}\right\}\right) \cup\left\{w_{i}^{1}, w_{i}^{2}\right\}$. Now, $\left|D^{*}\right|=|D|+1$. Furthermore, $x_{\ell} \notin \operatorname{epn}\left(x_{\ell}, D^{*}\right)$ for $\ell \in\{1,2\}$ and so $\left|\operatorname{epn}\left(x_{\ell}, D^{*}\right)\right| \leq 1$. For $\ell \in\{1,2\}$, let $X_{\ell}^{*}=\operatorname{epn}\left(x_{\ell}, D^{*}\right)$. Let $D^{* *}=\left(D^{*} \backslash\left\{x_{1}, x_{2}\right\}\right) \cup X_{1}^{*} \cup X_{2}^{*}$. Note that $\left|D^{* *}\right| \leq\left|D^{*}\right|$ and $D^{* *}$ is a NID-set with $k-2$ copies of K_{2} in $G_{D^{* *}}$. By Lemma 8.4, $i(G) \leq\left|D^{* *}\right|+(k-2) \leq\left|D^{*}\right|+(k-2)=(|D|+1)+(k \mid-2)=4 k-1$, which is a contradiction and the desired result follows. \square HANNESBURG

Our next claim provides some additional structure in the graph G whenever any $N\left(B_{i}\right)$ contains vertices from two distinct units in G.

Claim H Let $i \in I$ and suppose $N\left(B_{i}\right) \cap V_{j_{1}} \neq \emptyset$ and $N\left(B_{i}\right) \cap V_{j_{2}} \neq \emptyset$ for some $\left\{j_{1}, j_{2}\right\} \subseteq$ I. Then, $\left|N(x) \cap N\left(B_{i}\right)\right| \leq 1$ for every $x \in\left\{u_{j_{1}}, u_{j_{2}}, v_{j_{1}}, v_{j_{2}}\right\}$.

Proof. It suffices to show that for $x \in\left\{u_{j_{1}}, v_{j_{1}}, u_{j_{2}}, v_{j_{2}}\right\}$, we have $\operatorname{epn}(x, D) \nsubseteq N\left(B_{i}\right)$. Suppose, to the contrary, that $\operatorname{epn}(x, D) \subseteq N\left(B_{i}\right)$. Switching j_{1} and j_{2} if necessary, we may assume $x \in\left\{u_{j_{1}}, v_{j_{1}}\right\}$. Let $y^{\prime} \in N\left(B_{i}\right) \cap V_{j_{2}}$ and let y be the unique vertex in D_{2} such that $y^{\prime} \in \operatorname{epn}(y, D)$. Note that y^{\prime} is adjacent to at least one vertex in B_{i}. Let $D^{\prime}=$ $\left(D \backslash\left\{w_{i}\right\}\right) \cup B_{i}$. Now, $\left|D^{\prime}\right|=|D|+2$. Furthermore, epn $\left(x, D^{\prime}\right)=\emptyset$ and $y^{\prime} \notin \operatorname{epn}\left(y, D^{\prime}\right)$. Hence, $\left|\operatorname{epn}\left(y, D^{\prime}\right)\right| \leq 1$. Let $D^{\prime \prime}=\left(D^{\prime} \backslash\{x, y\}\right) \cup \operatorname{epn}\left(y, D^{\prime}\right)$ and note that $\left|D^{\prime \prime}\right| \leq\left|D^{\prime}\right|-1$.

If B_{i} is an independent set, then $D^{\prime \prime}$ is a NID-set with $k-2$ copies of K_{2} in $G_{D^{\prime \prime}}$ and so by Lemma 8.4 we have $i(G) \leq\left|D^{\prime \prime}\right|+(k-2) \leq\left(\left|D^{\prime}\right|-1\right)+(k-2)=|D|+k-1=4 k-1$, a contradiction. Thus, B_{i} is not an independent set.

We may assume, relabeling vertices if necessary, that $w_{i}^{2} w_{i}^{3} \in E(G)$. Since $|\operatorname{epn}(x, D)|=$ 2 and $\operatorname{epn}(x, D) \cup\left\{y^{\prime}\right\} \subseteq N\left(B_{i}\right)$, there are no further edges in $G_{B_{i}}$. Note that w_{i}^{2} and w_{i}^{3} belong to the same K_{2}-component of $G_{D^{\prime \prime}}$. Further, $w_{i} \notin \operatorname{epn}\left(w_{i}^{3}, D^{\prime \prime}\right)$ and so $\left|\operatorname{epn}\left(w_{i}^{3}, D^{\prime \prime}\right)\right| \leq 1$. But now $D^{\prime \prime}$ is a NID-set with $k-1$ copies of K_{2} in $G_{D^{\prime \prime}}$ and w_{i}^{3} is a vertex in $D^{\prime \prime}$ such that $d_{D^{\prime \prime}}\left(w_{i}^{3}\right)=1$ and $\left|\operatorname{epn}\left(w_{i}^{3}, D^{\prime \prime}\right)\right| \leq 1$. Hence, by Lemma 8.5, we have $i(G) \leq\left|D^{\prime \prime}\right|+k-2 \leq\left(\left|D^{\prime}\right|-1\right)+(k-2)=|D|+k-1=4 k-1$, a contradiction. Therefore, $\operatorname{epn}(x, D) \nsubseteq N\left(B_{i}\right)$ and the desired result follows.

Claim I Suppose that G_{i} is a 2-unit for some $i \in I$ and $u_{i}^{\prime \prime}$ has two neighbors in B_{j} for some $j \in I$. If w is the vertex in B_{i} not adjacent to $u_{i}^{\prime \prime}$, then w has no neighbors in $N\left(D_{2}\right)$.

Proof. We may assume, relabeling vertices if necessary, that G_{1} is a 2 -unit and $\left\{u_{1}^{\prime \prime} w_{1}^{1}, u_{1}^{\prime \prime} w_{1}^{2}\right\} \subseteq E$. If $\left\{v_{1}^{\prime} w_{1}^{3}, v_{1}^{\prime \prime} w_{1}^{3}\right\} \subseteq E$, then $D^{*}=\left(D \backslash\left\{v_{1}, w_{1}\right\}\right) \cup\left\{u_{1}^{\prime \prime}, w_{1}^{3}\right\}$ is a $\gamma(G)$-set with $m\left(G_{D^{*}}\right)=m\left(G_{D}\right)$ but with $\xi\left(D^{*}\right)<\xi(D)$, contradicting our choice of D. Thus, we may assume, switching labels for v_{1}^{\prime} and $v_{1}^{\prime \prime}$ if necessary, that $v_{1}^{\prime \prime} w_{1}^{3} \notin E$. If $v_{1}^{\prime} w_{1}^{3} \in E$, then $D^{\prime}=\left(D \backslash\left\{u_{1}, v_{1}, w_{1}\right\}\right) \cup\left\{u_{1}^{\prime \prime}, v_{1}^{\prime \prime}, w_{1}^{3}\right\}$ is a $\gamma(G)$-set with $m\left(G_{D^{\prime}}\right)<m\left(G_{D}\right)$, contradicting the fact that D is an edge minimal $\gamma(G)$-set. Hence, $v_{1}^{\prime} w_{1}^{3} \notin E$. Suppose, for the sake of contradiction, that w_{1}^{3} has a neighbor in $N\left(D_{2}\right)$, say y^{\prime}. Necessarily, y^{\prime} is in a unit different to G_{1}. Let y be the unique vertex in D_{2} such that $y^{\prime} \in \operatorname{epn}(y, D)$. Let $D^{\prime \prime}=\left(D \backslash\left\{u_{1}, w_{1}\right\}\right) \cup\left\{u_{1}^{\prime}, u_{1}^{\prime \prime}, w_{1}^{3}\right\}$. Now, $\left|D^{\prime \prime}\right|=|D|+1$. Furthermore, $y^{\prime} \notin \operatorname{epn}\left(y, D^{\prime \prime}\right)$, and so $\left|\operatorname{epn}\left(y, D^{\prime \prime}\right)\right| \leq 1$. But now $D^{\prime \prime}$ is a NID-set with $k-1$ copies of K_{2} in $G_{D^{\prime \prime}}$ and y is a vertex in $D^{\prime \prime}$ such the $d_{D^{\prime \prime}}(y)=1$ and $\left|\operatorname{epn}\left(y, D^{\prime \prime}\right)\right| \leq 1$. Hence, by Lemma 8.5, we have $i(G) \leq\left|D^{\prime \prime}\right|+k-2=(|D|+1)+k-2=4 k-1$, a contradiction. Hence, w_{1}^{3} has no neighbor in $N\left(D_{2}\right)$.

Recall that for $i \in\{1, \ldots, k\}, E_{i}$ is the set of edges in $[A, B]$ that are incident with a vertex in B_{i}. Further, A_{i} is the set of vertices in A that are incident with an edge in E_{i}. As observer earlier, $\left|A_{i}\right| \leq\left|E_{i}\right| \leq 6$.

Claim J For each $i \in I,\left|E_{i}\right| \leq 5$.

Proof. Suppose, to the contrary, that $\left|E_{i}\right|=6$ for some $i \in I$. Since the vertices in each unit in G are incident with at most five edges from $[A, B]$, we have that $A_{i} \subseteq N\left(B_{i}\right)$ contains vertices from at least two units in G. Hence, by Claim G, the set A_{i} contains vertices from exactly two units. Relabeling vertices, if necessary, we may assume that these units are G_{1} and G_{2} and that at least three edges in E_{i} are incident with vertices in G_{1}. We remark that $A_{i} \subseteq\left\{u_{1}^{*}, v_{1}^{\prime}, v_{1}^{\prime \prime}, u_{2}^{*}, v_{2}^{\prime}, v_{2}^{\prime \prime}\right\}$.

Suppose $v_{1}^{\prime \prime}$ is incident with two edges in E_{i}. Necessarily, G_{1} is a 0 -unit or a 1-unit and we may assume, relabeling/the vertices of B_{i} if necessary, that $\left\{v_{1}^{\prime \prime} w_{i}^{1}, v_{1}^{\prime \prime} w_{i}^{2}\right\} \subseteq E_{i}$. Consider the two neighbors of w_{i}^{3} different from w_{i}. By Claim H, neither of them is v_{1}^{\prime}. Furthermore, at least one of them, x^{\prime} say, is different from $u_{1}^{\prime \prime}$. Hence, x^{\prime} is in G_{2}. Let x be the unique vertex in D_{2} such that $x^{\prime} \in \operatorname{epn}(x, D)$. Let $D^{\prime}=\left(D \backslash\left\{v_{1}, w_{i}\right\}\right) \cup\left\{v_{1}^{\prime}, v_{1}^{\prime \prime}, w_{i}^{3}\right\}$. Then, $\left|D^{\prime}\right|=|D|+1$. Furthermore, $x^{\prime} \notin \operatorname{epn}\left(x, D^{\prime}\right)$ and so $\left|\operatorname{epn}\left(x, D^{\prime}\right)\right| \leq 1$. But now D^{\prime} is a NID-set with $k-1$ copies of K_{2} in $G_{D^{\prime}}$ and x is a vertex in D^{\prime} such that $d_{D^{\prime}}(x)=1$ and $\left|\operatorname{epn}\left(x, D^{\prime}\right)\right| \leq 1$. Hence, by Lemma 8.5, we have that $i(G) \leq\left|D^{\prime}\right|+k-2=$ $(|D|+1)+k-2=4 k-1$, a contradiction. Hence, $v_{1}^{\prime \prime}$ is incident with at most one edge from E_{i}.

If G_{1} is a 0 -unit, then $v_{1}^{\prime \prime}$ is incident with exactly one edge from E_{i} and v_{1}^{\prime} is incident with exactly two edges from E_{i}, contradicting Claim H. Hence, G_{1} is a 1-unit or a 2-unit. Therefore, $u_{1}^{\prime} v_{1}^{\prime} \in E$, and so v_{1}^{\prime} is incident with at most one edge from E_{i}. By Claim H , at most one of v_{1}^{\prime} and $v_{1}^{\prime \prime}$ is incident with an edge in E_{i}, implying that at most one edge from E_{i} is incident with a vertex in $\left\{v_{1}^{\prime}, v_{1}^{\prime \prime}\right\}$. However by our choice of G_{1}, there are at least three edges in E_{i} incident with vertices in G_{1}. Hence, $u_{1}^{\prime \prime}$ is incident with two edges
from E_{i} and exactly one of v_{1}^{\prime} or $v_{1}^{\prime \prime}$ is incident with one edge from E_{i}. We may assume, relabeling the vertices of B_{i} if necessary, that $\left\{u_{1}^{\prime \prime} w_{i}^{1}, u_{1}^{\prime \prime} w_{i}^{2}\right\} \subseteq E_{i}$. Consider again the two neighbors of w_{i}^{3} different from w_{i}. At least one of them, y^{\prime} say, is not in $\left\{v_{1}^{\prime}, v_{1}^{\prime \prime}\right\}$. Since $u_{1}^{\prime} \notin A$, we note that $u_{1}^{\prime} \notin N\left(B_{i}\right)$. Hence, y^{\prime} is in G_{2}. Let y be the unique vertex in D_{2} such that $y^{\prime} \in \operatorname{epn}(y, D)$. Let $D^{\prime \prime}=\left(D \backslash\left\{u_{1}, w_{i}\right\}\right) \cup\left\{u_{1}^{\prime}, u_{1}^{\prime \prime}, w_{i}^{3}\right\}$. Now, $\left|D^{\prime \prime}\right|=|D|+1$. Furthermore, $y^{\prime} \notin \operatorname{epn}\left(y, D^{\prime \prime}\right)$ and so $\left|\operatorname{epn}\left(y, D^{\prime \prime}\right)\right| \leq 1$. But now $D^{\prime \prime}$ is a NID-set with $k-1$ copies of K_{2} in $G_{D^{\prime \prime}}$ and y is a vertex in $D^{\prime \prime}$ such the $d_{D^{\prime \prime}}(y)=1$ and $\left|\operatorname{epn}\left(y, D^{\prime \prime}\right)\right| \leq 1$. Hence, by Lemma 8.5, we have that $i(G) \leq\left|D^{\prime \prime}\right|+k-2=(|D|+1)+k-2=4 k-1$, a contradiction. We conclude that $\left|E_{i}\right| \leq 5$.

Claim K If $\left|E_{i}\right| \leq 4$ for each $i \in I$, then the following hold.
(a) No unit in G is a 1-unit.
(b) $\left|E_{i}\right|=4$ for each $i \in I$.
(c) If G_{i} is a 0 -unit and $\left[\left\{u_{i}^{\prime}, u_{i}^{\prime \prime}\right\}, B_{j}\right] \neq \emptyset$ for some $i, j \in I$, then $\left|\left[\left\{v_{i}^{\prime}, v_{i}^{\prime \prime}\right\}, B_{j}\right]\right| \geq 1$.
(d) If G_{i} is a 0 -unit and $\left[\left\{u_{i}^{\prime}, u_{i}^{\prime \prime}\right\}, B_{j}\right] \neq \emptyset$ for some $i, j \in I$, then $\left|\left[\left\{v_{i}^{\prime}, v_{i}^{\prime \prime}\right\}, B_{j}\right]\right| \geq 2$.
(e) If G_{i} is a 0 -unit for some $i \in I$, then $A_{i} \nsubseteq V_{j} \mid$ for any $j \in I$.
(f) If G_{i} is a 0 -unit for some $i \in I$, then $\left|\left\{u_{i}^{\prime}, u_{i}^{\prime \prime}\right\} \cap N\left(B_{j}\right)\right| \leq 1$ for all $j \in I$.
(g) If G_{i} is a 0 -unit for some $i \in I$, then $\left(N\left(u_{i}^{\prime}\right) \cap B\right) \nsubseteq B_{j}$ for any $j \in I$.
(h) If G_{i} is a 0 -unit for some $i \in I$, then $\left(N\left(u_{i}^{\prime \prime}\right) \cap B\right) \nsubseteq B_{j}$ for any $j \in I$.
(i) No unit in G is a 0-unit.
(j) For each $i \in I$, one of the vertices in B_{i} is not incident with any edge in E_{i}.

Proof. (a) Since $\left|E_{i}\right| \leq 4$ for each $i \in I$, we have $\sum_{i=1}^{k}\left|E_{i}\right| \leq 4 k$, with equality if and only if $\left|E_{i}\right|=4$ for each $i \in I$. Recall that $|[A, B]|=4 \ell_{0}+5 \ell_{1}+4 \ell_{2}=4 k+\ell_{1}$. Hence,

$$
4 k+\ell_{1}=|[A, B]|=\sum_{i=1}^{k}\left|E_{i}\right| \leq 4 k
$$

and so $\ell_{1}=0$ and $\left|E_{i}\right|=4$ for $i \in I$. Since $\ell_{1}=0$, every unit in G is a 0 -unit or a 2-unit.
(b) The result follows from the proof of Part (a).
(c) By Part (a), every unit in G is a 0 -unit or a 2 -unit. For the sake of contradiction, we may assume, relabeling vertices if necessary, that G_{1} is a 0 -unit, $u_{1}^{\prime} w_{1}^{1} \in E$, and $\left[\left\{v_{1}^{\prime}, v_{1}^{\prime \prime}\right\}, B_{1}\right]=\emptyset$. Thus, no edge in E_{1} is incident with either v_{1}^{\prime} or $v_{1}^{\prime \prime}$. Further, since G_{1} is a 0 -unit, no edge in E_{1} is incident with a vertex in V_{1}. We may assume, relabeling vertices if necessary, that one of the edges in E_{1} is incident with a vertex in V_{2}. Thus, $N\left(B_{1}\right)$ contains vertices from both V_{1} and V_{2}. Hence by Claim G, the set $N\left(B_{1}\right)$ contains vertices from only V_{1} and V_{2}. But then each of the four edges in E_{1} is incident with a vertex in V_{2}. But now, whether G_{2} is a 0 -unit or a 2 -unit in G, we have $\left\{v_{2}^{\prime}, v_{2}^{\prime \prime}\right\} \subseteq N\left(B_{1}\right)$, contradicting Claim H and the desired result follows.
(d) By Part (a), every unit in G is a 0 -unit or a 2 -unit. For the sake of contradiction, we may assume, relabeling vertices if necessary, that G_{1} is a 0 -unit, $\left[\left\{u_{1}^{\prime}, u_{1}^{\prime \prime}\right\}, B_{1}\right] \neq \emptyset$, and that three of the four edges in E_{1} are not incident with either v_{1}^{\prime} or $v_{1}^{\prime \prime}$. By Part (c), at least one of the four edges in E_{1}, e_{1} say, is incident with either v_{1}^{\prime} or $v_{1}^{\prime \prime}$. By Claim G we may assume, relabeling vertices if necessary, that/each of the edges in E_{1} different from e_{1} is incident with a vertex in V_{2}. By Claim $\mathrm{H},\left\{v_{2}^{\prime}, v_{2}^{\prime \prime}\right\} \nsubseteq N\left(B_{1}\right)$. Necessarily then, G_{2} is a 2-unit with two edges from $E_{1} \backslash\left\{e_{1}\right\}$ incident with $u_{2}^{\prime \prime}$ and the third incident with either v_{2}^{\prime} or $v_{2}^{\prime \prime}$. We may assume, relabeling vertices if necessary, that $u_{2}^{\prime \prime}$ is adjacent to both w_{1}^{1} and w_{1}^{2}. By Claim I, the vertex w_{1}^{3} has no neighbors in $N\left(D_{2}\right)$. Thus, $\left|\left[B_{1}, N\left(D_{2}\right)\right]\right| \leq 4$. But, $\left|\left[B_{1}, N\left(D_{2}\right)\right]\right| \geq\left|E_{1}\right|+\left|\left[\left\{u_{1}^{\prime}, u_{1}^{\prime \prime}\right\}, B_{1}\right]\right| \geq 5$, a contradiction.
(e) For the sake of contradiction, we may assume, relabeling vertices if necessary, that G_{1} is a 0 -unit and $A_{1} \subseteq V_{1}$. But then $E_{1}=\left[\left\{v_{1}^{\prime}, v_{1}^{\prime \prime}\right\}, B\right]$ and so $\left|\left[\left\{v_{1}^{\prime}, v_{1}^{\prime \prime}\right\}, B_{1}\right]\right|=\left|E_{1}\right|=4$. Since $\left|\left[\left\{u_{1}^{\prime}, u_{1}^{\prime \prime}, v_{1}^{\prime}, v_{1}^{\prime \prime}\right\}, B_{1}\right]\right| \leq 6$, we have that either u_{1}^{\prime} or $u_{1}^{\prime \prime}$ has a neighbor in $B \backslash B_{1}$. We may assume (relabeling vertices, if necessary) that w_{2}^{1} is such a neighbor. But now no edge in E_{2} is incident with either v_{1}^{\prime} or $v_{1}^{\prime \prime}$. We may assume, relabeling vertices if necessary, that one of the edges in E_{2} is incident with a vertex in V_{2}. Therefore, by Claim G, each of the four edges in E_{2} is incident with a vertex in V_{2}. But now, whether
G_{2} is a 0 -unit or a 2 -unit in G, we have $\left\{v_{2}^{\prime}, v_{2}^{\prime \prime}\right\} \subseteq N\left(B_{2}\right)$, contradicting Claim H.
(f) For the sake of contradiction, we may assume, relabeling vertices if necessary, that G_{1} is a 0 -unit and that both u_{1}^{\prime} and $u_{1}^{\prime \prime}$ have a neighbor in B_{1}. Thus, $\left\{u_{1}^{\prime}, u_{1}^{\prime \prime}\right\} \subseteq N\left(B_{1}\right)$ and so by Claim H, we have $N\left(B_{1}\right) \cap V_{i}=\emptyset$ for each $i \in I \backslash\{1\}$. Therefore, each of the four edges in E_{1} is incident with either v_{1}^{\prime} or $v_{1}^{\prime \prime}$, and so $A_{1}=\left\{v_{1}^{\prime}, v_{1}^{\prime \prime}\right\} \subseteq V_{1}$. But this contradicts Part (e).
(g) For the sake of contradiction, we may assume, relabeling vertices if necessary, that G_{1} is a 0 -unit and $N\left(u_{1}^{\prime}\right)=\left\{u_{1}, w_{1}^{1}, w_{1}^{2}\right\}$. Since $\left|E_{1}\right|=4$, both the neighbors of w_{1}^{3} different from w_{1} are in A. We note, therefore, that $u_{1}^{\prime \prime} w_{1}^{3} \notin E$. If $\left\{v_{1}^{\prime}, v_{1}^{\prime \prime}\right\} \subseteq N\left(B_{1}\right)$, then by Claim H we have $N\left(B_{1}\right) \cap V_{i}=\emptyset$ for each $i \in I \backslash\{1\}$. But then $A_{1}=\left\{v_{1}^{\prime}, v_{1}^{\prime \prime}\right\} \subseteq V_{1}$, contradicting Part (e), and so w_{1}^{3} has a neighbor, x^{\prime} say, in a different unit to G_{1}. Let x be the unique vertex in D_{2} such that $x^{\prime} \in \operatorname{epn}(x, D)$. Let $D^{\prime}=\left(D \backslash\left\{u_{1}, w_{1}\right\}\right) \cup\left\{u_{1}^{\prime}, u_{1}^{\prime \prime}, w_{1}^{3}\right\}$. Now, $\left|D^{\prime}\right|=|D|+1$. Furthermore, $x^{\prime} \notin \operatorname{epn}\left(x, D^{\prime}\right)$ and so $\left|\operatorname{epn}\left(x, D^{\prime}\right)\right| \leq 1$. But now D^{\prime} is a NID-set with $k-1$ copies of K_{2} in $G_{D^{\prime}}$ and x is a vertex in D^{\prime} such that $d_{D^{\prime}}(x)=1$ and $\left|\operatorname{epn}\left(x, D^{\prime}\right)\right| \leq 1$. Hence, by Lemma 8.5 we have-that $i(G) \leq\left|D^{\prime}\right|+k-2=$ $(|D|+1)+k-2=4 k-1$, a contradiction.
(h) By symmetry of u_{1}^{\prime} and $u_{1}^{\prime \prime}$, the proof is analogous to Part (g).
(i) For the sake of contradiction, we may assume, relabeling vertices if necessary, that G_{1} is a 0 -unit. By Parts (f$)-(\mathrm{h})$, no two of the four neighbors of u_{1}^{\prime} and $u_{1}^{\prime \prime}$ in B have w_{i} as a common neighbor for any $i \in I$. We may assume, relabeling vertices if necessary, that $\left\{u_{1}^{\prime} w_{1}^{1}, u_{1}^{\prime} w_{2}^{1}, u_{1}^{\prime \prime} w_{3}^{1}, u_{1}^{\prime \prime} w_{4}^{1}\right\} \subseteq E$. By Part (d), $\left|\left\{\left\{v_{1}^{\prime}, v_{1}^{\prime \prime}\right\}, B_{i}\right]\right| \geq 2$ for each $i \in\{1, \ldots, 4\}$. But now we have

$$
4=\left|\left[\left\{v_{1}^{\prime}, v_{1}^{\prime \prime}\right\}, B\right]\right| \geq\left|\left[\left\{v_{1}^{\prime}, v_{1}^{\prime \prime}\right\}, \bigcup_{i=1}^{4} B_{i}\right]\right|=\sum_{i=1}^{4}\left|\left[\left\{v_{1}^{\prime}, v_{1}^{\prime \prime}\right\}, B_{i}\right]\right| \geq 8
$$

a contradiction.
(j) By Parts (a) and (i), every unit in G is a 2-unit. Suppose, for the sake of contradiction, relabeling vertices if necessary, that $E_{1}=\left\{w_{1}^{1} x_{1}, w_{1}^{1} x_{2}, w_{1}^{2} x_{3}, w_{1}^{3} x_{4}\right\}$. By Claim F, $A \cup D_{1}$ is an $i(G)$-set. If $x_{3} \in\left\{v_{i}^{\prime}, v_{i}^{\prime \prime}\right\}$ for some $i \in I$, then $\left(\left(A \cup D_{1}\right) \backslash\left\{x_{3}, w_{1}\right\}\right) \cup\left\{w_{1}^{2}\right\}$ is an ID-set of size $4 k-1$, a contradiction. Therefore, $x_{3} \notin\left\{v_{i}^{\prime}, v_{i}^{\prime \prime}\right\}$ for any $i \in I$ and similarly, $x_{4} \notin\left\{v_{i}^{\prime}, v_{i}^{\prime \prime}\right\}$ for any $i \in I$. If $x_{3}=x_{4}=u_{i}^{\prime \prime}$ for some $i \in I$, then by Claim I, w_{1}^{1} has no neighbors in $N\left(D_{2}\right)$, a contradiction. Hence, we may assume, relabeling vertices if necessary, that $x_{3}=u_{1}^{\prime \prime}$ and $x_{4}=u_{2}^{\prime \prime}$. By Claim G, the neighbors of w_{1}^{1} different from w_{1} are both in $V_{1} \cup V_{2}$. By Claim I, w_{1}^{1} is not adjacent to either $u_{1}^{\prime \prime}$ or $u_{2}^{\prime \prime}$. By Claim H, $\left\{v_{1}^{\prime}, v_{1}^{\prime \prime}\right\} \nsubseteq N\left(w_{1}^{1}\right)$ and $\left\{v_{2}^{\prime}, v_{2}^{\prime \prime}\right\} \nsubseteq N\left(w_{1}^{1}\right)$. Hence, we may assume (relabeling vertices, if necessary) that w_{1}^{1} is adjacent to v_{1}^{\prime} and v_{2}^{\prime}. Let $D^{\prime}=\left(D \backslash\left\{u_{1}, v_{1}, u_{2}, v_{2}, w_{1}\right\}\right) \cup\left\{u_{1}^{\prime \prime}, v_{1}^{\prime \prime}, u_{2}^{\prime \prime}, v_{2}^{\prime \prime}, w_{1}^{1}\right\}$. Now $\left|D^{\prime}\right|=|D|$ and D^{\prime} is a $\gamma(G)$-set with $m\left(G_{D^{\prime}}\right)<m\left(G_{D}\right)$, contradicting the fact that D is an edge minimal $\gamma(G)$-set.

Claim L For some $i \in I$ we have $\left|E_{i}\right|=5$.

UNIVERSITY

Proof. By Claim J we have $\left|E_{i}\right| \leq 5$ for each $i \in I$. Suppose then, for the sake of contradiction, that $\left|E_{i}\right| \leq 4$ for each $i \in I$. By Claim $\mathrm{K}(\mathrm{a})$ and Claim $\mathrm{K}(\mathrm{i})$, every unit in G is a 2-unit. By Claim $\mathrm{K}(\mathrm{b}),\left|E_{i}\right|=4$ for all $i \in I$. Let $B^{\prime}=\left\{w_{1}^{3}, \ldots, w_{k}^{3}\right\}$ and let $B^{\prime \prime}=B \backslash B^{\prime}$. By Claim $\mathrm{K}(\mathrm{j})$, we may assume, relabeling vertices if necessary, that for every $i \in I$, the vertex w_{i}^{3} has no neighbors in A and hence no neighbors in $N\left(D_{2}\right)$. Consequently, $G\left[B^{\prime}\right]$ is a 2 -regular graph. Let W be an ID-set in $G[B]$. Since any cycle requires at most half its vertices to independently dominate it, we have $|W| \leq k / 2$. But now $D^{\prime}=W \cup\left\{u_{1}, \ldots, u_{k}\right\} \cup B^{\prime \prime}$ is an ID-set with $\left|D^{\prime}\right| \leq k / 2+3 k<4 k$, a contradiction. Therefore, $\left|E_{i}\right|=5$ for some $i \in I$.

By Claim L, $\left|E_{i}\right|=5$ for some $i \in I$. Renaming vertices if necessary, we may assume that $\left|E_{1}\right|=5$. We provide one final claim before completing our characterization of the graph G.

Claim M $A_{1} \subseteq V_{j}$ for some $j \in I$.

Proof. Suppose, for the sake of contradiction, that $A_{1} \cap V_{j_{1}} \neq \emptyset$ and $A_{1} \cap V_{j_{2}} \neq \emptyset$ for some $\left\{j_{1}, j_{2}\right\} \subseteq I$. Relabeling vertices, if necessary, we may assume that $j_{1}=1$ and $j_{2}=2$. Let $A^{*}=A \cap\left(V_{1} \cup V_{2}\right)$. Thus, $A^{*}=\left\{u_{1}^{*}, v_{1}^{\prime}, v_{1}^{\prime \prime}, u_{2}^{*}, v_{2}^{\prime}, v_{2}^{\prime \prime}\right\}$. By Claim G, we have that $A_{1} \subseteq V_{1} \cup V_{2}$ and so $A_{1} \subseteq A^{*}$. We may assume, relabeling the vertices of B_{1} if necessary, that both w_{1}^{1} and w_{1}^{2} are incident with two edges in E_{1} and w_{1}^{3} is incident with one edge in E_{1}. Let v be the unique vertex in A^{*} adjacent to w_{1}^{3}.

Suppose $v \in\left\{v_{1}^{\prime}, v_{1}^{\prime \prime}, v_{2}^{\prime}, v_{2}^{\prime \prime}\right\}$. Renaming vertices if necessary, we may assume that $v \in\left\{v_{1}^{\prime}, v_{1}^{\prime \prime}\right\}$. On the one hand suppose that $v=v_{1}^{\prime}$ and G_{1} is a 1 -unit. Then both neighbors of w_{1}^{1} and w_{1}^{2} in A^{*} differ from v. In this case, let $D^{\prime}=\left(D \backslash\left\{v_{1}, u_{2}, v_{2}, w_{1}\right\}\right) \cup$ $\left\{v_{1}^{\prime \prime}, u_{2}^{*}, v_{2}^{\prime}, v_{2}^{\prime \prime}, w_{1}^{3}\right\}$. Note that in this case, both w_{1}^{1} and w_{1}^{2} are dominated by D^{\prime}. On the other hand, suppose that $v=v_{1}^{\prime}$ and G_{1} is not a 1 -unit or $v=v_{2}^{\prime \prime}$. Then both w_{1}^{1} and w_{1}^{2} have at least one neighbor in A^{*} different from v. In this case, let $D^{\prime}=$ $\left(D \backslash\left\{u_{1}, v_{1}, u_{2}, v_{2}, w_{1}\right\}\right) \cup\left(A^{*} \backslash\{v\}\right) \cup\left\{w_{1}^{3}\right\}$. Note that in the second case the vertex u_{1}^{\prime} is dominated by $u_{1}^{*}, v_{1}^{\prime}$ or by $v_{1}^{\prime \prime}$ from the set D^{\prime}. In both cases, $\left|D^{\prime}\right|=|D|+1$ and D^{\prime} is a NID-set with $k-2$ copies of K_{2} in $G_{D^{\prime}}$. By Lemma 8.4, $i(G) \leq\left|D^{\prime}\right|+(k-2)=$ $(|D|+1)+(k-2)=4 k-1$, a contradiction. Hence, $v \in\left\{u_{1}^{*}, u_{2}^{*}\right\}$. Renaming vertices if necessary, we may assume that $v=u_{1}^{*}$. This implies that G_{1} is a 1 -unit or a 2 -unit and $v=u_{1}^{\prime \prime}$. Thus, $A^{*}=\left\{u_{1}^{\prime \prime}, v_{1}^{\prime}, v_{1}^{\prime \prime}, u_{2}^{*}, v_{2}^{\prime}, v_{2}^{\prime \prime}\right\}$.

Suppose $\left|N\left(u_{1}^{\prime \prime}\right) \cap B_{1}\right| \geq 2$. We may assume, switching the labels of w_{1}^{1} and w_{1}^{2} if necessary, that $w_{1}^{2} \in N\left(u_{1}^{\prime \prime}\right) \cap B_{1}$. We now consider the two neighbors of w_{1}^{1} in A^{*}. By Claim H, at most one of them is in $\left\{v_{1}^{\prime}, v_{1}^{\prime \prime}\right\}$. Hence, w_{1}^{1} must have a neighbor in $\left\{u_{2}^{*}, v_{2}^{\prime}, v_{2}^{\prime \prime}\right\} \subseteq V_{2}$. Let y^{\prime} be this neighbor and let y be the unique vertex in D_{2} such that $y^{\prime} \in \operatorname{epn}(y, D)$. Let $D^{\prime \prime}=\left(D \backslash\left\{u_{1}, w_{1}\right\}\right) \cup\left\{u_{1}^{\prime}, u_{1}^{\prime \prime}, w_{1}^{1}\right\}$. Now, $\left|D^{\prime \prime}\right|=|D|+1$. Furthermore, $y^{\prime} \notin \operatorname{epn}\left(y, D^{\prime \prime}\right)$, and so $\left|\operatorname{epn}\left(y, D^{\prime \prime}\right)\right| \leq 1$. But now $D^{\prime \prime}$ is a NID-set with $k-1$ copies of K_{2} in $G_{D^{\prime \prime}}$ and y is a vertex in $D^{\prime \prime}$ such the $d_{D^{\prime \prime}}(y)=1$ and $\left|\operatorname{epn}\left(y, D^{\prime \prime}\right)\right| \leq 1$. Hence, by Lemma 8.5 we have $i(G) \leq\left|D^{\prime \prime}\right|+k-2=(|D|+1)+k-2=4 k-1$, a contradiction.

Therefore, $N\left(u_{1}^{\prime \prime}\right) \cap B_{1}=\left\{w_{1}^{3}\right\}$.
Again, we consider the two neighbors of w_{1}^{1} in $A^{*}=\left\{u_{1}^{\prime \prime}, v_{1}^{\prime}, v_{1}^{\prime \prime}, u_{2}^{*}, v_{2}^{\prime}, v_{2}^{\prime \prime}\right\}$. Since w_{1}^{3} is the only neighbor of $u_{1}^{\prime \prime}$ in B_{1}, neither neighbor of w_{1}^{1} in A^{*} is $u_{1}^{\prime \prime}$ and by Claim H , at most one of them is in $\left\{v_{1}^{\prime}, v_{1}^{\prime \prime}\right\}$. Hence, w_{1}^{1} must have a neighbor in $\left\{u_{2}^{*}, v_{2}^{\prime}, v_{2}^{\prime \prime}\right\}$. Similarly, w_{1}^{2} must also have a neighbor in $\left\{u_{2}^{*}, v_{2}^{\prime}, v_{2}^{\prime \prime}\right\}$. We note that $w_{1}^{3} u_{1}^{\prime} \notin E$ by Claim H. Let $D^{*}=\left(D \backslash\left\{u_{1}, u_{2}, v_{2}, w_{1}\right\}\right) \cup\left\{u_{1}^{\prime}, u_{2}^{*}, v_{2}^{\prime}, v_{2}^{\prime \prime}, w_{1}^{3}\right\}$. Now, $\left|D^{*}\right|=|D|+1$ and D^{*} is a NID-set with $k-2$ copies of K_{2} in $G_{D^{*}}$. By Lemma 8.4, $i(G) \leq\left|D^{*}\right|+(k-2)=(|D|+1)+(k-2)=$ $4 k-1$, a contradiction. The desired result follows.

We now return to the proof of Theorem 8.3 one last time. By our earlier assumption, $\left|E_{1}\right|=5$. By Claim M , we have $A_{1} \subseteq V_{j}$ for some $j \in I$. We may assume, renaming vertices if necessary, that $A_{1} \subseteq V_{1}$. Since the vertices of G_{1} are incident with all five edges in $E_{1} \subseteq[A, B]$, we have that G_{1} is a 1 -unit. We may assume, relabeling the vertices of B_{1} if necessary, that $\left\{v_{1}^{\prime \prime} w_{1}^{2}, v_{1}^{\prime \prime} w_{1}^{3}\right\} \subseteq E_{1}$. If $v_{1}^{\prime} w_{1}^{1} \in E_{1}$, then $D^{\prime} \mid \mp\left(D \backslash\left\{v_{1}, w_{1}\right\}\right) \cup\left\{v_{1}^{\prime \prime}, w_{1}^{1}\right\}$ is a $\gamma(G)$-set with $m\left(G_{D^{\prime}}\right)<m\left(G_{D}\right)$, contradicting the fact that D is an edge minimal $\gamma(G)$-set. Hence, $v_{1}^{\prime} w_{1}^{1} \notin E_{1}$ and we may assume, switching the labels of w_{1}^{2} and w_{1}^{3} if necessary, that $v_{1}^{\prime} w_{1}^{3} \in E_{1}$. But now, since $u_{1}^{\prime \prime}$ is incident with two edges from E_{1}, we must have $\left\{u_{1}^{\prime \prime} w_{1}^{1}, u_{1}^{\prime \prime} w_{1}^{2}\right\} \subseteq E_{1}$. If $u_{1}^{\prime} w_{1}^{1} \notin E$ then $D^{\prime \prime}=\left(D \backslash\left\{u_{1}, v_{1}, w_{1}\right\}\right) \cup\left\{u_{1}^{\prime}, v_{1}^{\prime \prime}, w_{1}^{1}\right\}$ is a $\gamma(G)$-set with $m\left(G_{D^{\prime \prime}}\right)<m\left(G_{D}\right)$, contradicting the fact that D is an edge minimal $\gamma(G)$-set. Hence $u_{1}^{\prime} w_{1}^{1} \in E$ and, since G is a connected cubic graph, $G=C_{5} \times K_{2}$.

8.4 A Further Conjecture

As a consequence of our main result, namely Theorem 8.3, we have that if G is a connected cubic graph of order $n \geq 12$, then $i(G) / \gamma(G)<4 / 3$. We close the chapter with the following conjecture.

Conjecture 8.8 If G is a connected cubic graph of sufficiently large order, then $i(G) / \gamma(G) \leq 6 / 5$.

We remark that if Conjecture 8.8 is true, then the result is best possible. For this purpose, we shall need the following two infinite families $\mathcal{G}_{\text {cubic }}$ and $\mathcal{H}_{\text {cubic }}$ of connected cubic graphs constructed in [37] as follows.

For $k \geq 1$, define graph G_{k} as described below. Consider two copies of the path $P_{4 k}$ with respective vertex sequences $a_{1} b_{1} c_{1} d_{1} \ldots a_{k} b_{k} c_{k} d_{k}$ and $w_{1} x_{1} y_{1} z_{1} \ldots w_{k} x_{k} y_{k} z_{k}$. For each $1 \leq i \leq k$, join a_{i} to w_{i}, b_{i} to x_{i}, c_{i} to z_{i}, and d_{i} to y_{i}. To complete G_{k} join a_{1} to d_{k} and w_{1} to z_{k}. Let $\mathcal{G}_{\text {cubic }}=\left\{G_{k}: k \geq 1\right\}$.

For $k \geq 1$, define H_{k} as follows. Consider a copy of the cycle $C_{3 k}$ with vertex sequence $a_{1} b_{1} c_{1} \ldots a_{k} b_{k} c_{k} a_{1}$. For each $1 \leq i \leq k$, add the vertices $\left\{w_{i}, x_{i}, y_{i}, z_{i}^{1}, z_{i}^{2}\right\}$, and join a_{i} to w_{i}, b_{i} to x_{i}, and c_{i} to y_{i}. To complete the construction of H_{k}, for each $1 \leq i \leq k$ and $j \in\{1,2\}$, join z_{i}^{j} to each of the vertices w_{i}, x_{i}, and y_{i} Let $\mathcal{H}_{\text {cubic }}=\left\{H_{k}: k \geq 1\right\}$.

Graphs in the families $\mathcal{G}_{\text {cubic }}$ and $\mathcal{H}_{\text {cubic }}$ are illustrated in Figure 8.1.

G_{k}

H_{k}

Figure 8.1: Graphs $G_{k} \in \mathcal{G}_{\text {cubic }}$ and $H_{k} \in \mathcal{H}_{\text {cubic }}$.

It is shown in [37] that if $G \in \mathcal{G}_{\text {cubic }} \cup \mathcal{H}_{\text {cubic }}$ has order n, then $\gamma(G)=\lceil 5 n / 16\rceil$ and $i(G)=3 n / 8$, implying that $i(G) / \gamma(G) \leq 6 / 5$. In particular, if $n \equiv 0(\bmod 16)$, then $i(G) / \gamma(G)=6 / 5$. Hence we have the following result.

Corollary 8.9 ([37]) There exist connected cubic graphs G of arbitrarily large order satisfying $i(G) / \gamma(G)=6 / 5$.

Hence if Conjecture 8.8 is true, then by Corollary 8.9 the result is best possible.

Chapter 9

Edge Weighting Functions

In this chapter we introduce an edge weighting function which has been useful in achieving bounds on domination parameters similar to the previous two chapters. In order to demonstrate this technique we present the bounds achieved on the upper domination number and the upper total domination number in regular graphs. We also characterize graphs achieving these bounds. In the following two chapters we use a similar modified weighting function to prove additional bounds on different domination parameters in cubic graphs.

Recall that the upper domination number, $\Gamma(G)$, of a graph G is the maximum cardinality of a minimal dominating set in G and that the upper total domination number, $\Gamma_{t}(G)$, of a graph G is the maximum cardinality of a minimal total dominating set in G. We observe that if G has at least one vertex that is not isolated and if v is such a vertex of G, then $V(G) \backslash\{v\}$ is a dominating set in G, implying that the set $V(G)$ is not a minimal dominating set. Hence we have the following observation.

Observation 9.1 If G is a graph of order n with maximum degree greater than 0 , then $\Gamma(G) \leq n-1$.

That the trivial upper bound in Observation 9.1 is sharp, may be seen by taking G to be a star $K_{1, n-1}$ where $n \geq 3$. The set of $n-1$ leaves in the star form a minimal dominating set in G, and so $\Gamma(G) \geq n-1$. Hence by Observation 9.1, $\Gamma(G)=n-1$.

A similar observation may be made for the upper total domination number in a graph with maximum degree greater than 1 . If G is such a graph, then G necessarily contains a vertex, v say, such that no neighbor of v has degree 1 . Further, $V(G) \backslash\{v\}$ is a total dominating set in G, implying that the set $V(G)$ is not a minimal total dominating set. Hence we have the following observation.

Observation 9.2 If G is a graph of order n with maximum degree greater than 1 , then $\Gamma_{t}(G) \leq n-1$.

Again, the trivial upper bound in Observation 9.2 is sharp, as may be seen by taking G to be the graph obtained by subdividing every edge in the star $K_{1,(n-1) / 2}$ exactly once, where n is odd and $n \geq 5$. The set of $n-1$ leaves and support vertices form a minimal total dominating set in G, and so $\Gamma_{t}(G) \geq n-1$. Hence by Observation 9.2, $\Gamma_{t}(G)=n-1$.

Our aim in this chapter is to show that if we impose a regularity condition on the graph, then using edge weighting functions on dominating sets these bounds can be greatly improved. We establish sharp upper bounds on both the upper domination number and the upper total domination number of a graph, and we characterize the extremal graphs that achieve equality in these bounds.

9.1 The Families \mathcal{B}, \mathcal{F} and \mathcal{G}

A circulant graph $C_{n}\langle L\rangle$ with a given list $L \subseteq\{1,2, \ldots,\lfloor n / 2\rfloor\}$ is a graph on n vertices in which the i th vertex is adjacent to the $(i+j)$ th and $(i-j)$ th vertices for each j in the list L and where addition is taken modulo n. More precisely, if $L=$
$\left\{j_{1}, j_{2}, \ldots, j_{r}\right\} \subseteq\{1,2, \ldots,\lfloor n / 2\rfloor\}$, then the circulant graph $C_{n}\langle L\rangle$ is the graph with vertex set $\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$ and edge set $\left\{v_{i} v_{i+j(\bmod n)} \mid i \in\{0,1, \ldots, n-1\}\right.$ and $j \in$ $\left.\left\{j_{1}, j_{2}, \ldots, j_{r}\right\}\right\}$. For $k \geq 4$ even and $\ell \geq k$ with ℓ even, let $L_{k, \ell}=\{1,2, \ldots, k / 2-1, \ell / 2\}$, while for $k \geq 3$ odd and $\ell \geq k$, let $L_{k, \ell}=\{1,2, \ldots,(k-1) / 2\}$. In both cases, the circulant graph $C_{\ell}\left\langle L_{k, \ell}\right\rangle$ is a $(k-1)$-regular graph on ℓ vertices. For example, the circulant graph $C_{8}\left\langle L_{5,8}\right\rangle=C_{8}\langle 1,2\rangle$ shown in Figure $9.1(\mathrm{a})$ is a 4 -regular graph on 8 vertices, while the circulant graph $C_{10}\left\langle L_{6,10}\right\rangle=C_{10}\langle 1,2,5\rangle$ shown in Figure 9.1(b) is a 5 -regular graph on 10 vertices.

(a) $C_{8}\langle 1,2\rangle$

(b) $C_{10}\langle 1,2,5\rangle$

Figure 9.1: Graphs in the Family \mathcal{F}.

We remark that given any positive integer ℓ_{1} the empty graph on ℓ_{1} vertices is 0 -regular, and given any positive even integer ℓ_{2} the graph comprising $\mathscr{C}_{2} / 2$ copies of K_{2} is 1-regular. In view of this remark, and the circulant graphs $C_{\ell}\left\langle L_{k, \ell}\right\rangle$ constructed above, we observe that for every two positive integers k and ℓ where $\ell \geq k$ and where ℓ is even whenever k is even, there always exist $(k-1)$-regular graphs on ℓ vertices. Conversely, since every graph has an even number of vertices of odd degree, every $(k-1)$-regular graph on ℓ vertices satisfies $\ell \geq k$ with ℓ even whenever k is even. Hence we have the following result.

Observation 9.3 Let k and ℓ be two positive integers. Then there exists a $(k-1)$-regular graph on ℓ vertices if and only if $\ell \geq k$ and where ℓ is even whenever k is even.

The Family \mathcal{B}. Let \mathcal{B} be the family of connected bipartite regular graphs.

The Family \mathcal{F}. Let \mathcal{F} be the family of connected regular graphs constructed as follows. Let $k \geq 1$ and $\ell \geq k$ be arbitrary fixed integers, provided that ℓ is even whenever k is even. By Observation 9.3, for every such pair of integers k and ℓ there exist ($k-1$)-regular graphs on ℓ vertices. Let F_{1} and F_{2} be disjoint $(k-1)$-regular graphs (not necessarily connected) on ℓ vertices with $V\left(F_{1}\right)=\left\{u_{1}, u_{2}, \ldots, u_{\ell}\right\}$ and $V\left(F_{2}\right)=\left\{v_{1}, v_{2}, \ldots, v_{\ell}\right\}$. Let F be the graph obtained from the disjoint union $F_{1} \cup F_{2}$ by joining u_{i} to v_{i} for each $i \in\{1,2, \ldots, \ell\}$. Let \mathcal{F} be the family of all graphs thus constructed which are, in addition, connected.

A (k,s,t)-triple. We define a (k, s, t)-triple as three non-negative integers k, s and t satisfying the following four conditions.

- $2 s+t \geq k \geq 1$.
- $2(s+t)=\ell k$ for some positive integer ℓ.
- If $k=1$, then $t=0$.
- If $t>0$, then $t \geq k$ where t is even whenever k is even. B

A $(\mathbf{k}, \mathbf{s}, \mathbf{t})$-graph. Given a (k, s, t)-triple, if $k=1$ we define a (k, s, t)-graph to be the empty graph on $2 s$ vertices; otherwise $k>1$ and we define a (k, s, t)-graph to be any bipartite graph, G, with partite sets $X=X_{1} \cup X_{2}$ and Y such that $|X|=2 s+t$, $\left|X_{1}\right|=2 s,\left|X_{2}\right|=t,|Y|=2 s+t-\ell$, and for all $x_{1} \in X_{1}, x_{2} \in X_{2}$ and $y \in Y$ we have $d_{G}\left(x_{1}\right)=k-1, d_{G}\left(x_{2}\right)=k-2$, and $d_{G}(y)=k$. We remark that ($\left.k, s, t\right)$-graphs exist for every (k, s, t)-triple. As an example, consider the following construction of a (k, s, t)-graph from an empty graph with vertex set $X \cup Y$, where $X=\left\{x_{1}, \ldots, x_{2 s+t}\right\}$, and $Y=\left\{y_{1}, \ldots, y_{2 s+t-\ell}\right\}$. For $i=1,2, \ldots, 2 s+t-\ell$, let

$$
N_{i}=\bigcup_{j=1}^{k}\left\{x_{(i-1) k+j}\right\}
$$

where addition is taken modulo $2 s+t$, and join the vertex y_{i} to each vertex in the set N_{i}. Thus the edges between X and Y are distributed equitably among the vertices in X. By construction, the resulting graph is bipartite and each vertex in $X_{1}=\left\{x_{1}, \ldots, x_{2 s}\right\}$ has degree $k-1$, each vertex in $X_{2}=\left\{x_{2 s+1}, \ldots, x_{2 s+t}\right\}$ has degree $k-2$, and each vertex in $Y=\left\{y_{1}, \ldots, y_{2 s+t-\ell}\right\}$ has degree k. The (3,2,4)-graph so constructed from the (3,2,4)triple is given in Figure 9.2(a). In Figure 9.2(b) we give a non-isomorphic (3, 2, 4)-graph. We remark that, in general, there are many non-isomorphic (k, s, t)-graphs associated with a given (k, s, t)-triple. However every (k, s, t)-graph has $4 s+2 t-2(s+t) / k$ vertices.

Figure 9.2: Non-isomorphic (3,2,4)-graphs.

The Family \mathcal{G}. Let \mathcal{G} be the family of regular graphs (not necessarily connected) constructed as follows. Let G_{1} be a (k, s, t)-graph. Let $U=\left\{u_{1}, v_{1}, u_{2}, v_{2}, \ldots, u_{s}, v_{s}\right\}$ be the set of $2 s$ vertices in G_{1} of degree $k-1$, let $W=\left\{w_{1}, w_{2}, \ldots, w_{t}\right\}$ be the set of t vertices in G_{1} of degree $k-2$, and let $Z=\left\{z_{1}, z_{2}, \ldots, z_{2 s+t-\ell}\right\}$ be the set of $2 s+t-\ell$ vertices in G_{1} of degree k. We remark that if $s=0$ then $U=\emptyset$, and if $t=0$ then $W=\emptyset$. If $s=0$, let $E_{U}=\emptyset$, while if $s \geq 1$, let $E_{U}=\left\{u_{1} v_{1}, \ldots, u_{s} v_{s}\right\}$. If $t=0$, let G be the k-regular graph obtained from G_{1} by adding the edges from the set E_{U}. For $t \geq 1$, let G_{2} and G_{3} be disjoint $(k-1)$-regular graphs (not necessarily connected) of order t with $X=V\left(G_{2}\right)=\left\{x_{1}, x_{2}, \ldots, x_{t}\right\}$ and $Y=V\left(G_{3}\right)=\left\{y_{1}, y_{2}, \ldots, y_{t}\right\}$, and let $E_{W}=\bigcup_{i=1}^{t}\left\{x_{i} w_{i}, w_{i} y_{i}\right\}$. If $t \geq 1$, let G be the k-regular graph obtained from the disjoint union $G_{1} \cup G_{2} \cup G_{3}$ by adding the edges from the set $E_{U} \cup E_{W}$. Let \mathcal{G} be the family of all graphs G thus constructed.

9.2 Main Results

Our aim is to use edge weighting functions on dominating sets to show that if we impose a regularity condition on the graph, then bounds on both its upper domination and upper total domination numbers can be greatly improved. We shall prove the following two results, proofs of which are provided in Sections 9.4.2 and 9.4.3, respectively.

Theorem 9.4 For every regular graph G of order n with no isolates, $\Gamma(G) \leq n / 2$, with equality if and only if every component of G belongs to the family $\mathcal{B} \cup \mathcal{F}$.

Theorem 9.5 For every k-regular graph G of order n with no isolates, $\Gamma_{t}(G) \leq n /\left(2-\frac{1}{k}\right)$, with equality if and only if $G \in \mathcal{G}$.

9.3 Preliminary Observations

Let G be a graph, let D be a minimal dominating set in G with $u \in D$, and let T be a minimal total dominating set in G with $v \in T$. If $\operatorname{ipn}[u, D]=\operatorname{epn}[u, D]=\emptyset$, then $D \backslash\{u\}$ is a dominating set in G, contradicting the minimality of D. Similarly, if $\operatorname{ipn}(v, T)=\operatorname{epn}(v, T)=\emptyset$, then $T \backslash\{v\}$ is a total dominating set in G, contradicting the minimality of T. We therefore have the following two useful observations.

Observation 9.6 If D is a minimal dominating set of a graph, then for every $u \in D$ we have $\operatorname{ipn}[u, D] \neq \emptyset$ or $\operatorname{epn}[u, D] \neq \emptyset$.

Observation 9.7 If T is a minimal total dominating set of a graph, then for every $v \in T$ we have $\operatorname{ipn}(v, T) \neq \emptyset$ or $\operatorname{epn}(v, T) \neq \emptyset$.

We observe next that each graph in the family $\mathcal{B} \cup \mathcal{F}$ has upper domination at least onehalf its order. To see this, consider first a graph $G \in \mathcal{B}$. Then, G is a connected bipartite
regular graph. Let G have partite sets B_{1} and B_{2}. We remark that $\left|B_{1}\right|=\left|B_{2}\right|$ and that B_{1} is a dominating set in G. Furthermore, since $B_{1} \backslash\{v\}$ does not dominate v for any $v \in B_{1}$, we have that B_{1} is a minimal dominating set in G. Therefore, $\Gamma(G) \geq\left|B_{1}\right|=|V(G)| / 2$. Consider next a graph $F \in \mathcal{F}$ that is constructed as described in Section 9.1. We remark that for such a graph F, the set $V\left(F_{1}\right)$ is a dominating set. Furthermore, since $V\left(F_{1}\right) \backslash\left\{u_{i}\right\}$ does not dominate v_{i} for any $i \in\{1,2, \ldots, \ell\}$, we have that $V\left(F_{1}\right)$ is a minimal dominating set. Therefore, $\Gamma(F) \geq|V(F)| / 2$. Hence we have the following observation.

Observation 9.8 If $G \in \mathcal{B} \cup \mathcal{F}$ has order n, then $\Gamma(G) \geq n / 2$.

We now consider a graph $G \in \mathcal{G}$ that is constructed as described in Section 9.1. We remark that for such a graph G, the set $T=U \cup W \cup X$ is a total dominating set. Now, if $s>0$ then $T \backslash\left\{u_{i}\right\}$ does not totally dominate v_{i} and $T \backslash\left\{v_{i}\right\}$ does not totally dominate u_{i} for any $i \in\{1, \ldots, s\}$. Further, if $t>0$ then $T \backslash\left\{x_{j}\right\}$ does not totally dominate w_{j} and $T \backslash\left\{w_{j}\right\}$ does not totally dominate y_{j} for any $j \in\{1, \ldots, t\}$. Hence T is a minimal total dominating set. We remark further that $|T|=|U|+|W|+|X|=2 s+2 t$ and, since $|V(G)|=\left|V\left(G_{1}\right)\right|+\left|V\left(G_{2}\right)\right|+\left|V\left(G_{3}\right)\right|$, we have $|V(G)|=4 s+2 t-2(s+t) / k+2 t=$ $(2 s+2 t)\left(2-\frac{1}{k}\right)$. We conclude that $\Gamma_{t}(G) \geq|T|=|V(G)| /\left(2-\frac{1}{k}\right)$. Hence we have the following observation.

Observation 9.9 If $G \in \mathcal{G}$ is a k-regular graph of order n, then $\Gamma_{t}(G) \geq n /\left(2-\frac{1}{k}\right)$.

9.4 Proof of Main Results

In order to prove our main results, we first define an edge weight function on a dominating set in a graph.

9.4.1 An Edge Weight Function on a Dominating Set

For disjoint subsets X and Y of vertices in a graph $G=(V, E)$, we denote the set of edges between X and Y by $[X, Y]$. Let S be a dominating set of G. The edge weight function of $S \subseteq V$ is defined to be the function $\psi_{S}: E \rightarrow[0,1]$ that assigns to each edge in $G[S]$ and each edge in $G[V \backslash S]$ a weight of 0 and that assigns to each edge in $[S, V \backslash S]$ a weight in $(0,1]$ in such a way that for each vertex $v \in V \backslash S$, the weight 1 is shared among the edges joining v to S. Thus if e is an edge joining $v \in V \backslash S$ to S, then $\psi(e)=1 / d_{S}(v)$, where we recall that $d_{S}(v)$ denotes the number of vertices in S adjacent to v. Thus since S is a dominating set in G, for each $v \in V \backslash S$, the sum of the weights of the edges incident with v is 1 . Further, since each edge in $[S, V \backslash S]$ is incident with exactly one vertex in $V \backslash S$ we have that

$$
\begin{equation*}
\sum_{e \in[S, V \backslash S]} \psi_{S}(e)=\sum_{v \in V \backslash S}\left(\mid \sum_{e \in\{\{v\}, S]} \psi_{S}(e)\right)=\sum_{\cup v \in V \backslash S E R S \mid T Y} 1=|V \backslash S|=n-|S| . \tag{9.1}
\end{equation*}
$$

Next we define the vertex weight function of S, denoted ϕ_{S}, that assigns to each vertex $v \in S$ the sum of the weights of the edges incident with v. Since every edge in $G[S]$ has weight 0 , we have that

$$
\phi_{S}(v)=\sum_{e \in[\{v\}, V \backslash\{v\}]} \psi_{S}(e)=\sum_{e \in[\{v\}, V \backslash S]} \psi_{S}(e) .
$$

Since each edge in $[S, V \backslash S]$ is incident with exactly one vertex in S we have the following equation.

$$
\begin{equation*}
\sum_{e \in[S, V \backslash S]} \psi_{S}(e)=\sum_{v \in S}\left(\sum_{e \in[\{v\}, V \backslash S]} \psi_{S}(e)\right)=\sum_{v \in S} \phi_{S}(v) . \tag{9.2}
\end{equation*}
$$

Finally, we define the vertex weight sum of S, denoted $\xi(S)$, to be the sum over all
vertices in S of the weights assigned by ϕ_{S}; that is,

$$
\xi(S)=\sum_{v \in S} \phi_{S}(v)
$$

Hence, from Equations (9.1) and (9.2), the following equation holds for every dominating set S in the graph G.

$$
\begin{equation*}
\xi(S)=n-|S| \tag{9.3}
\end{equation*}
$$

We note that a related concept of vertex weights was used by Slater [86] in his introductory paper on single-fault-tolerant locating-dominating sets in infinite grids. In his paper, however, a total weight of n is distributed amongst the vertices in a given dominating set S rather than a total weight of $n-|S|$.

9.4.2 Proof of Theorem 9.4

 UNIVERSITY
Johannesburg

We are now in a position to prove our upper domination result, namely Theorem 9.4. Recall the statement of Theorem 9.4.

Theorem 9.4 For every regular graph G of order n with no isolates, $\Gamma(G) \leq n / 2$, with equality if and only if every component of G belongs to the family $\mathcal{B} \cup \mathcal{F}$.

Proof. Let G be a k-regular graph on n vertices where $k \geq 1$ and let D be a $\Gamma(G)$-set. We use the edge weight function ψ_{D} and vertex weight function ϕ_{D} to count the number of vertices in D relative to n. Recall that if e is an edge joining $v \in V \backslash D$ to D, then $\psi_{D}(e)=1 / d_{D}(v)$. Thus, $\frac{1}{k} \leq \psi_{D}(e) \leq 1$ for every edge $e \in[D, V \backslash D]$.

We show that $\phi_{D}(v) \geq 1$ for each $v \in D$. Let A be the set of isolated vertices in $G[D]$ and let $B=D \backslash A$. Each vertex $a \in A$ is joined by k edges to $V \backslash D$. Thus since $\psi_{D}(e) \geq \frac{1}{k}$ for every edge joining D to $V \backslash D$, we have $\phi_{D}(a) \geq k\left(\frac{1}{k}\right)=1$ for each $a \in A$. For every
vertex $b \in B$, we have that b is not an isolated vertex in $G[D]$, and so $\operatorname{ipn}[b, D] \neq\{b\}$. Therefore, $\operatorname{since} \operatorname{ipn}[v, D] \in\{\emptyset,\{v\}\}$ for every $v \in D$, we must have $\operatorname{ipn}[b, D]=\emptyset$. Hence, by Observation 9.6, we have epn $[b, D] \neq \emptyset$. But every edge that joins b to a vertex in $\operatorname{epn}[b, D]$ is assigned weight 1 under the function ψ_{D}, and so we have $\phi_{D}(b) \geq 1$ for each $b \in B$. Thus, $\phi_{D}(v) \geq 1$ for each $v \in D$, and so $\xi(D) \geq|D|$. Recall that $n-|D|=\xi(D)$, by Equation (9.3), and so $n-|D| \geq|D|$. Thus, $\Gamma(G)=|D| \leq n / 2$. This establishes the desired upper bound.

Next we characterize the regular graphs with no isolated vertex and with upper domination number exactly one-half their order. If such a graph is disconnected, then each of its components is a regular graph with no isolated vertex and with upper domination number exactly one-half its order. Therefore without loss of generality, we restrict our attention to connected regular graphs.

If $G \in \mathcal{B} \cup \mathcal{F}$ has order n, then by Observation $9.8, \Gamma(G) \geq n / 2$. As shown earlier, every regular graph with no isolated vertex has upper domination number at most one-half its order. In particular, $\Gamma(G) \leq n / 2$. Consequently, $\Gamma(G) \mid \neq n / 2$. URG

Conversely, suppose that $G=(V, E)$ is a connected k-regular graph on n vertices where $k \geq 1$ satisfying $\Gamma(G)=n / 2$. We show that $G \in \mathcal{B} \cup \mathcal{F}$. If $k=1$, then $G=K_{2} \in \mathcal{B}$. Hence we may assume that $k \geq 2$. Let D be a $\Gamma(G)$-set and let $\bar{D}=V \backslash D$. We again use the edge weight function ψ_{D} and vertex weight function ϕ_{D} to count the number of vertices in D relative to n. As shown in our earlier proof which establishes the upper bound of $n / 2$, we have $\phi_{D}(v) \geq 1$ for each $v \in D$, and so $\xi(D) \geq|D|$. If $\phi_{D}(v)>1$ for some vertex $v \in D$, then $\xi(D)>|D|$, and so, by Equation (9.3), we have $n-|D|=\xi(D)>|D|$. But then $\Gamma(G)=|D|<n / 2$, a contradiction. Hence, $\phi_{D}(v)=1$ for every vertex $v \in D$.

Let $D_{1} \subseteq D$ such that if $v \in D_{1}$, then v is isolated in $G[D]$ and every vertex in $N_{G}(v)$ is isolated in $G[\bar{D}]$. Let $D_{2} \subseteq D$ such that every vertex in D_{2} has precisely one neighbor in \bar{D} and this neighbor is a D-external private neighbor. Since $k \geq 2$, we note that
$D_{1} \cap D_{2}=\emptyset$. We proceed further with the following three claims.

Claim A Every isolated vertex in $G[D]$ belongs to the set D_{1}, while every non-isolated vertex in $G[D]$ belongs to the set D_{2}.

Proof. Let $v \in D$ and let $N_{G}(v)=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$. On the one hand, suppose that v is isolated in $G[D]$. Then, $N_{G}(v)=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\} \subseteq \bar{D}$. Then since $\psi_{D}(e) \geq \frac{1}{k}$ for every edge $e \in[D, \bar{D}]$, we have that

$$
1=\phi_{D}(v)=\sum_{i=1}^{k} \psi_{D}\left(v v_{i}\right) \geq \sum_{i=1}^{k}\left(\frac{1}{k}\right)=1 .
$$

Hence we must have equality throughout the above inequality chain, implying that $\psi_{D}\left(v v_{i}\right)=\frac{1}{k}$ for all $i \in\{1,2, \ldots, k\}$. But then for all $i \in\{1,2, \ldots, k\}$, we have $\mid N_{G}\left(v_{i}\right) \cap$ $D \mid=k$, and so v_{i} is isolated in $G[\bar{D}]$. Therefore, $v \in D_{1}$.

Suppose, on the other hand, that v is not isolated in $G[D]$. Then, $\operatorname{ipn}[v, D] \neq\{v\}$ and consequently, $\operatorname{ipn}[v, D]=\emptyset$. Hence, by Observation 9.6, we have that epn $[v, D] \neq \emptyset$. Renaming vertices if necessary, we may assume $v_{1} \in \operatorname{epn}[v, D]$, and so $\psi_{D}\left(v v_{1}\right)=1$. Thus since $\psi_{D}(e) \geq \frac{1}{k}$ for every edge $e \in[D, \bar{D}]$, we have that

$$
1=\phi_{D}(v)=\sum_{i=1}^{k} \psi_{D}\left(v v_{i}\right) \geq 1+\sum_{i=2}^{k} \psi_{D}\left(v v_{i}\right) \geq 1 .
$$

Hence we must have equality throughout the above inequality chain, implying that $\psi_{D}\left(v v_{i}\right)=0$ for all $i \in\{2, \ldots, k\}$. This in turn implies that $v_{i} \in D$ for all $i \in\{2, \ldots, k\}$ and therefore that $v \in D_{2}$.

Claim B $D=D_{1} \cup D_{2}$.

Proof. By Claim A, we have that every vertex $v \in D$ belongs to either the set D_{1} or the
set D_{2}, implying that $D \subseteq D_{1} \cup D_{2}$. By definition of the sets D_{1} and D_{2}, we have that $D_{1} \cup D_{2} \subseteq D$. Consequently, $D=D_{1} \cup D_{2}$.

Claim C Either $D=D_{1}$ or $D=D_{2}$.

Proof. By Claim B, we have that $D=D_{1} \cup D_{2}$. As observed earlier, $D_{1} \cap D_{2}=\emptyset$. Suppose, for the sake of contradiction, that $D_{1} \neq \emptyset$ and $D_{2} \neq \emptyset$. Let $w \in D_{1}$ and $x \in D_{2}$ and consider a shortest $w-x$ path in G, say $y_{1} y_{2} \ldots y_{\ell}$ where $w=y_{1}$ and $x=y_{\ell}$. Let i be the largest index in $\{1,2, \ldots, \ell-1\}$ such that $y_{i} \in D_{1}$ (possibly, $i=1$). By the definition of the set D_{1}, every neighbor of y_{i} is an isolated vertex in $G[\bar{D}]$. In particular, y_{i+1} is an isolated vertex in $G[\bar{D}]$, and so $y_{i+2} \in D$. If $y_{i+2} \in D_{2}$, then by the definition of the set D_{2}, the vertex y_{i+2} has precisely one neighbor in \bar{D} and this neighbor is a D-external private neighbor. However since y_{i+1} is a neighbor of y_{i+2} in \bar{D}, this unique neighbor of y_{i+2} in \bar{D} must be y_{i+1}. However, y_{i+1} is a common neighbor of at least two vertices in D, namely y_{i} and y_{i+2}, and therefore is not a D-external private neighbor, a contradiction. Hence, $y_{i+2} \in D_{1}$. But then this contradicts our choice of i. Therefore, either $D=D_{1}$ or $D=D_{2}$.

We now return to the proof of Theorem 9.4. By Claim C, either $D=D_{1}$ or $D=D_{2}$. If $D=D_{1}$, then by the definition of D_{1}, every vertex in D is isolated in $G[D]$ and every vertex in \bar{D} is isolated in $G[\bar{D}]$. Therefore, G is a regular bipartite graph with partite sets D and \bar{D}, and so $G \in \mathcal{B}$ as desired. Hence we may assume that $D=D_{2}$. Let $D=\left\{z_{1}, z_{2}, \ldots, z_{n / 2}\right\}$. For every $i \in\{1,2, \ldots, n / 2\}$ we have, by the definition of D_{2}, that z_{i} has exactly one neighbor in \bar{D} and this neighbor is a D-external private neighbor. For each z_{i}, let z_{i}^{\prime} be this unique D-external private neighbor. We note that $\bar{D}=\left\{z_{1}^{\prime}, z_{2}^{\prime}, \ldots, z_{n / 2}^{\prime}\right\}$. Furthermore, $G[D]$ and $G[\bar{D}]$ are disjoint ($k-1$)-regular graphs and G is the graph obtained from the disjoint union $G[D] \cup G[\bar{D}]$ by joining z_{i} to z_{i}^{\prime} for each $i \in\{1,2, \ldots, n / 2\}$. But this is precisely the definition of a graph in the family \mathcal{F}. We conclude that $G \in \mathcal{F}$, as desired.

9.4.3 Proof of Theorem 9.5

We are now in a position to prove our upper domination result, namely Theorem 9.5. Recall the statement of Theorem 9.5.

Theorem 9.5 For every k-regular graph G of order n with no isolates, $\Gamma_{t}(G) \leq n /\left(2-\frac{1}{k}\right)$, with equality if and only if $G \in \mathcal{G}$.

Proof. Let G be a k-regular graph on n vertices where $k \geq 1$ and let T be a $\Gamma_{t}(G)$-set. We use the edge weight function ψ_{T} and vertex weight function ϕ_{T} to count the number of vertices in T relative to n. Recall that if $e \in[T, V \backslash T]$, then $\psi_{T}(e)=1 / d_{T}(v)$, and so $\frac{1}{k} \leq \psi_{T}(e) \leq 1$.

We show that, on average, $\phi_{T}(v) \geq 1-\frac{1}{k}$ for each vertex $v \in T$. Let $A=\{v \in$ $V \mid \operatorname{ipn}(v, T) \neq \emptyset\}$ and let $B=T \backslash A$. By Observation 9.7, epn $(v, T) \neq \emptyset$ or $\operatorname{ipn}(v, T) \neq \emptyset$ for each vertex $v \in T$, and so for each $v \in B$, we have $\operatorname{epn}(v, T) \neq \emptyset$. For $X \in\{A, B\}$, let $X_{1}=\{v \in X \mid v \in \operatorname{ipn}(u, T)$ for some $u \in T\}$ and let $X_{2}=X \backslash X_{1}$. We remark that A_{1}, A_{2}, B_{1} and B_{2} are pairwise disjoint and that $T=A_{1} \cup A_{2} \cup B_{1} \cup B_{2}$. We consider the weight assigned by the function ϕ_{T} to vertices from each of these sets in turn.

If $v \in A_{1}$, then $v \in \operatorname{ipn}(u, T)$ for some $u \in T$. Hence, v has exactly $k-1$ neighbors in $V \backslash T$ and we have $\phi_{T}(v) \geq(k-1)\left(\frac{1}{k}\right)=1-\frac{1}{k}$. If $v \in A_{2}$, then possibly v has no neighbors in $V \backslash T$ and we have $\phi_{T}(v) \geq 0$. If $v \in B_{1}$, then $v \in \operatorname{ipn}(u, T)$ for some $u \in T$ and hence v has exactly $k-1$ neighbors in $V \backslash T$. Furthermore, $\operatorname{epn}(v, T) \neq \emptyset$. Therefore under the function ψ_{T}, at least one edge joining v to $V \backslash T$ is assigned weight 1 and each of the remaining $k-2$ edges joining v to $V \backslash T$ is assigned weight at least $\frac{1}{k}$. Thus, $\phi_{T}(v) \geq 1+(k-2)\left(\frac{1}{k}\right)=2\left(1-\frac{1}{k}\right)$. Finally if $v \in B_{2}$, then $\operatorname{epn}(v, T) \neq \emptyset$ and so at least one edge incident with v has weight 1 . Thus, $\phi_{T}(v) \geq 1>1-\frac{1}{k}$. Summing the weights over all vertices in T we therefore obtain the following inequality.

$$
\begin{equation*}
\xi(T)=\sum_{v \in T} \phi_{T}(v) \geq\left(1-\frac{1}{k}\right)\left(\left|A_{1}\right|+2\left|B_{1}\right|+\left|B_{2}\right|\right) . \tag{9.4}
\end{equation*}
$$

We now show that $\left|B_{1}\right| \geq\left|A_{2}\right|$. Let $t=\left|A_{2}\right|$. If $t=0$, the result is immediate. Hence we may assume that $t \geq 1$. Let $A_{2}=\left\{a_{1}, \ldots, a_{t}\right\}$. For $i \in\{1, \ldots, t\}$ we remark that $\operatorname{ipn}\left(a_{i}, T\right) \neq \emptyset$ and we let $b_{i} \in \operatorname{ipn}\left(a_{i}, T\right)$. Since a_{i} is the unique neighbor of b_{i} in T, we have $b_{i} \neq b_{j}$ for $i \neq j$. For any $i \in\{1, \ldots, t\}$, if $b_{i} \in A$, then $\operatorname{ipn}\left(b_{i}, T\right) \neq \emptyset$, and so necessarily $a_{i} \in \operatorname{ipn}\left(b_{i}, T\right)$, contradicting the fact that $a_{i} \in A_{2}$. Hence, $b_{i} \in B$ for all $i \in\{1, \ldots, t\}$ and since $b_{i} \in \operatorname{ipn}\left(a_{i}, T\right)$ we have that $b_{i} \in B_{1}$. But now $\left\{b_{1}, \ldots, b_{t}\right\} \subseteq B_{1}$, and so $\left|B_{1}\right| \geq t=\left|A_{2}\right|$, as desired. Therefore, $\left|A_{1}\right|+2\left|B_{1}\right|+\left|B_{2}\right| \geq\left|A_{1}\right|+\left|A_{2}\right|+\left|B_{1}\right|+\left|B_{2}\right|=|T|$ and so, from Inequality (9.4), we get

$$
\begin{equation*}
\xi(T) \geq\left(1-\frac{1}{k}\right)|T| \tag{9.5}
\end{equation*}
$$

By Equation (9.3), $n-|T|=\xi(T)$, and so by Inequality (9.5) we have $n-|T| \geq$ $\left(1-\frac{1}{k}\right)|T|$. Thus, $\Gamma_{t}(G)=|T| \leq n /\left(2-\frac{1}{k}\right)$. This establishes the desired upper bound.

Next we characterize the k-regular graphs with no isolated vertex and with upper total domination number exactly $1 /\left(2-\frac{1}{k}\right)$ times their order. If $G \in \mathcal{G}$ is a k-regular graph of order n, then by Observation 9.9, $\Gamma_{t}(G) \geq n /\left(2-\frac{1}{k}\right)$. As shown earlier, every k-regular graph with no isolates has upper total domination number at most $1 /\left(2-\frac{1}{k}\right)$ times its order. In particular, $\Gamma_{t}(G) \leq n /\left(2-\frac{1}{k}\right)$. Consequently, $\Gamma_{t}(G)=n /\left(2-\frac{1}{k}\right)$.

Conversely, suppose that $G=(V, E)$ is a k-regular graph of order n with no isolates such that $\Gamma_{t}(G)=n /\left(2-\frac{1}{k}\right)$. We show that $G \in \mathcal{G}$. If $k=1$, then G comprises $n / 2$ copies of K_{2}. Furthermore, the empty graph with vertex set $\left\{u_{1}, v_{1}, u_{2}, v_{2}, \ldots, u_{n / 2}, v_{n / 2}\right\}$ is a (k, s, t)-graph with $k=1, s=n / 2$ and $t=0$, and G can be obtained from this graph by adding the edges $\left\{u_{1} v_{1}, u_{2} v_{2}, \ldots, u_{s} v_{s}\right\}$. Thus, $G \in \mathcal{G}$. We may therefore assume that

$k \geq 2$.

Let T be a $\Gamma_{t}(G)$-set and let $\bar{T}=V \backslash T$. We again use the edge weight function ψ_{T} and vertex weight function ϕ_{T} defined earlier to count the number of vertices in T relative to n. By Inequality (9.5), we have $\xi(T) \geq\left(1-\frac{1}{k}\right)|T|$. If $\xi(T)>\left(1-\frac{1}{k}\right)|T|$, then by Equation (9.3), we have $n-|T|>\left(1-\frac{1}{k}\right)|T|$. But then $\Gamma_{t}(G)=|T|<n /\left(2-\frac{1}{k}\right)$, a contradiction. Hence we must have equality in Inequality (9.5); that is,

$$
\begin{equation*}
\xi(T)=\left(1-\frac{1}{k}\right)|T| . \tag{9.6}
\end{equation*}
$$

Let A_{1}, A_{2}, B_{1} and B_{2} be defined as before. Recall that if $v \in A_{1}$, then $\phi_{T}(v) \geq 1-\frac{1}{k}$, if $v \in A_{2}$, then $\phi_{T}(v) \geq 0$, if $v \in B_{1}$, then $\phi_{T}(v) \geq 2\left(1-\frac{1}{k}\right)$, and if $v \in B_{2}$, then $\phi_{T}(v) \geq 1=\left(1-\frac{1}{k}\right)+\frac{1}{k}$. Furthermore, $T=A_{1} \cup A_{2} \cup B_{1} \cup B_{2}$ and $\left|B_{1}\right| \geq\left|A_{2}\right|$. Using these facts, and summing the weights over all vertices in T, we have

$$
\begin{aligned}
\xi(T) & \geq\left(1-\frac{1}{k}\right)\left(\left|A_{1}\right|+2\left|B_{1}\right|+\left|B_{2}\right|\right)+\frac{1}{k}\left|B_{2}\right| \\
& \geq\left(1-\frac{1}{k}\right)\left(\left|A_{1}\right|+\left|A_{2}\right|+\left|B_{1}\right|+\left|B_{2}\right|\right)+\frac{1}{k}\left|B_{2}\right| \\
& \geq\left(1-\frac{1}{k}\right)|T|+\frac{1}{k}\left|B_{2}\right| .
\end{aligned}
$$

Thus if $\left|B_{2}\right| \neq 0$, then $\xi(T)>\left(1-\frac{1}{k}\right)|T|$, contradicting Equation (9.6). Hence, $B_{2}=\emptyset$ and $T=A_{1} \cup A_{2} \cup B_{1}$. Now, if $\left|B_{1}\right|>\left|A_{2}\right|$ and we again sum the weights over all vertices in T, we have

$$
\begin{aligned}
\xi(T) & \geq\left(1-\frac{1}{k}\right)\left(\left|A_{1}\right|+2\left|B_{1}\right|\right) \\
& >\left(1-\frac{1}{k}\right)\left(\left|A_{1}\right|+\left|A_{2}\right|+\left|B_{1}\right|\right) \\
& =\left(1-\frac{1}{k}\right)|T|
\end{aligned}
$$

which, again, contradicts Equation (9.6). Hence, $\left|A_{2}\right|=\left|B_{1}\right|$.
We now define the function $\phi^{\prime}: T \rightarrow\left\{1-\frac{1}{k}, 0,2\left(1-\frac{1}{k}\right)\right\}$ so that $\phi^{\prime}: A_{1} \rightarrow\left\{1-\frac{1}{k}\right\}$,
$\phi^{\prime}: A_{2} \rightarrow\{0\}$, and $\phi^{\prime}: B_{1} \rightarrow\left\{2\left(1-\frac{1}{k}\right)\right\}$. We remark that for all $v \in T$ we have $\phi_{T}(v) \geq \phi^{\prime}(v)$, and so

$$
\begin{aligned}
\xi(T) & =\sum_{v \in T} \phi_{T}(v) \\
& \geq \sum_{v \in T} \phi^{\prime}(v) \\
& =\left(1-\frac{1}{k}\right)\left|A_{1}\right|+0\left|A_{2}\right|+2\left(1-\frac{1}{k}\right)\left|B_{1}\right| \\
& =\left(1-\frac{1}{k}\right)\left(\left|A_{1}\right|+2\left|B_{1}\right|\right) \\
& =\left(1-\frac{1}{k}\right)\left(\left|A_{1}\right|+\left|A_{2}\right|+\left|B_{1}\right|\right) \\
& =\left(1-\frac{1}{k}\right)|T| .
\end{aligned}
$$

But by Equation (9.6), $\xi(T)=\left(1-\frac{1}{k}\right)|T|$. Hence we must have equality throughout the above inequality chain. Thus,

$$
\sum_{v \in T} \phi_{T}(v)=\sum_{v \in T} p^{\prime}(v) N E S B U R G
$$

and therefore, since $\phi_{T}(v) \geq \phi^{\prime}(v)$ for every $v \in T$, we must have $\phi_{T}(v)=\phi^{\prime}(v)$ for every $v \in T$. Thus, under the function ϕ_{T}, every vertex in A_{1} is assigned a weight of exactly $1-\frac{1}{k}$, every vertex in A_{2} is assigned a weight of zero, and every vertex in B_{2} is assigned a weight of exactly $2\left(1-\frac{1}{k}\right)$.

Let $Y \subseteq \bar{T}$ such that $y \in Y$ if and only if $y \in \operatorname{epn}(v, T)$ for some $v \in T$. Let Z be the set of all vertices in \bar{T} which are isolated in $G[\bar{T}]$. We now examine various properties of vertices in the sets A_{1}, A_{2}, B_{1}, Y and Z, respectively, in the following series of claims. We remark that some of these sets are possibly empty.

Claim I Every vertex in A_{1} has exactly one neighbor in A_{1} and exactly $k-1$ neighbors in Z.

Proof. If $A_{1}=\emptyset$, then the result is vacuously true and so we may assume $A_{1} \neq \emptyset$. Let $u \in A_{1}$. By the definition of A_{1}, we have that $u \in \operatorname{ipn}(v, T)$ for some $v \in T$ and that $\operatorname{ipn}(u, T) \neq \emptyset$. Now, since v is the only neighbor of u in T and since $\operatorname{ipn}(u, T) \subseteq T$, we have $v \in \operatorname{ipn}(u, T)$, and so by definition $v \in A_{1}$. Furthermore, since $v \in \operatorname{ipn}(u, T)$ and $u \in \operatorname{ipn}(v, T)$, we have $N_{G}(\{u, v\}) \backslash\{u, v\} \subseteq \bar{T}$. We remark therefore that every component of $G\left[A_{1}\right]$ is isomorphic to K_{2}.

Let $N_{G}(u)=\left\{v, z_{1}, z_{2}, \ldots, z_{k-1}\right\}$ and note then that $\left\{z_{1}, z_{2}, \ldots, z_{k-1}\right\} \subseteq \bar{T}$. Let e be the edge joining u to v and for each $i \in\{1, \ldots, k-1\}$, let e_{i} be the edge joining u to z_{i}. Recall that $\psi_{T}(e)=0$ and $\psi_{T}\left(e_{i}\right) \geq \frac{1}{k}$. Hence,

$$
\phi_{T}(u)=\psi_{T}(e)+\sum_{i=1}^{k-1} \psi_{T}\left(e_{i}\right) \geq(k-1) \frac{1}{k}=1-\frac{1}{k}
$$

But $\phi_{T}(u)=1-\frac{1}{k}$, and we so we must have equality throughout the above inequality chain. Hence,
and therefore, since $\psi_{T}\left(e_{i}\right) \geq \frac{1}{k}$ for each $i \in\{1, \ldots, k-1\}$, we deduce that $\psi_{T}\left(e_{i}\right)=\frac{1}{k}$. By the definition of the function ψ_{T}, this implies that each z_{i} has exactly k neighbors in T. Therefore since $d_{G}\left(z_{i}\right)=k$, we have $N_{G}\left(z_{i}\right) \subseteq T$ for each $i \in\{1, \ldots, k-1\}$. Since u was chosen to be an arbitrary vertex in A_{1}, the desired result follows.

Motivated by Claim I we let $s=\left|A_{1}\right| / 2$ and, if $s>0$, we let $A_{1}=\left\{u_{1}, v_{1}, u_{2}, v_{2}, \ldots, u_{s}, v_{s}\right\}$, where u_{i} is joined to v_{i} in $G\left[A_{1}\right]$ for each $i \in\{1, \ldots, s\}$. Let $t=\left|A_{2}\right|$ and, if $t>0$, let $A_{2}=\left\{x_{1}, x_{2}, \ldots, x_{t}\right\}$. If $t>0$ then for each $i \in\{1, \ldots, t\}$ we note that $\operatorname{ipn}\left(x_{i}, T\right) \neq \emptyset$ and we let $w_{i} \in \operatorname{ipn}\left(x_{i}, T\right)$. By definition of the sets A_{1} and B_{1}, we have $w_{i} \in A_{1} \cup B_{1}$. If $w_{i} \in A_{1}$, then by Claim I we must have $x_{i} \in A_{1}$, a contradiction. Hence, $w_{i} \in B_{1}$ for all $i \in\{1, \ldots, t\}$. Furthermore, since x_{i} is the unique neighbor of w_{i} in T, we have
$w_{i} \neq w_{j}$ for $i \neq j$. Thus, $\left\{w_{1}, w_{2}, \ldots, w_{t}\right\} \subseteq B_{1}$ and since $\left|B_{1}\right|=\left|A_{2}\right|=t$ we deduce that $B_{1}=\left\{w_{1}, w_{2}, \ldots, w_{t}\right\}$.

Claim II If $t>0$, then $N_{G}\left(A_{2}\right) \subseteq T$ and $G\left[A_{2}\right]$ is a $(k-1)$-regular graph.

Proof. Assume $t>0$ and let $i \in\{1, \ldots, t\}$. Recall that $x_{i} \in A_{2}$ and $w_{i} \in \operatorname{ipn}\left(x_{i}, T\right)$. Since every vertex in A_{2} is assigned a weight of zero under the function ϕ_{T}, we have that $N_{G}\left(x_{i}\right) \subseteq T$. Let x_{i}^{\prime} be a neighbor of x_{i} distinct from w_{i}. If $x_{i}^{\prime} \in A_{1}$, then by Claim I we must have $x_{i} \in A_{1}$, a contradiction. If $x_{i}^{\prime} \in B_{1}$, then $x_{i}^{\prime}=w_{j}$ for some $j \in\{1, \ldots, t\} \backslash\{i\}$. But $w_{j} \in \operatorname{ipn}\left(x_{j}, T\right)$, implying that $x_{i}=x_{j}$, contradicting the fact that $i \neq j$. Hence, $x_{i}^{\prime} \in A_{2}$. This is true for every vertex $x_{i} \in A_{2}$ and for each of the $k-1$ neighbors of x_{i} different from w_{i}. Therefore the graph $G\left[A_{2}\right]$ is a $(k-1)$-regular graph.

Claim III Every vertex in B_{1} has exactly one neighbor in A_{2}, exactly one neighbor in Y and exactly $k-2$ neighbors in Z.

Proof. If $t=0$, then the result is vacuously|true and so me may assume $t>0$. Let $i \in\{1, \ldots, t\}$ and consider the vertex $w_{i} \in B_{1}$. Recall that $w_{i} \in \operatorname{ipn}\left(x_{i}, T\right)$, where $x_{i} \in A_{2}$. Further since $w_{i} \in B_{1}$, we have $\operatorname{ipn}\left(w_{i}, T\right)=\emptyset$, and so $\operatorname{epn}\left(w_{i}, T\right) \neq \emptyset$. Let $y \in \operatorname{epn}\left(w_{i}, T\right)$ and note that $y \in Y$. Let $N_{G}\left(w_{i}\right)=\left\{x_{i}, y, z_{1}, z_{2}, \ldots, z_{k-2}\right\}$ and note that since $w_{i} \in \operatorname{ipn}\left(x_{i}, T\right)$ we have $\left\{y, z_{1}, \ldots, z_{k-2}\right\} \subseteq \bar{T}$. Let e^{\prime} be the edge joining w_{i} to x_{i}, let e be the edge joining w_{i} to y and, for each $j \in\{1, \ldots, k-2\}$, let e_{j} be the edge joining w_{i} to z_{j}. Recall that $\psi_{T}\left(e^{\prime}\right)=0, \psi_{T}(e)=1$ and $\psi_{T}\left(e_{j}\right) \geq \frac{1}{k}$. Hence,

$$
\phi_{T}\left(w_{i}\right)=\psi_{T}\left(e^{\prime}\right)+\psi_{T}(e)+\sum_{j=1}^{k-2} \psi_{T}\left(e_{j}\right) \geq 1+(k-2) \frac{1}{k}=2\left(1-\frac{1}{k}\right) .
$$

But $\phi_{T}\left(w_{i}\right)=2\left(1-\frac{1}{k}\right)$, and so we must have equality throughout the above inequality chain. Hence,

$$
\sum_{j=1}^{k-2} \psi_{T}\left(e_{j}\right)=(k-2) \frac{1}{k}
$$

and therefore, since $\psi_{T}\left(e_{j}\right) \geq \frac{1}{k}$ for each $j \in\{1, \ldots, k-2\}$, we deduce that $\psi_{T}\left(e_{j}\right)=\frac{1}{k}$. By the definition of the function ψ_{T}, we have that each z_{j} has exactly k neighbors in T. Therefore since $d_{G}\left(z_{j}\right)=k$, we have $N_{G}\left(z_{j}\right) \subseteq T$ for each $j \in\{1, \ldots, k-2\}$, and so $z_{j} \in Z$. Since w_{i} was chosen to be an arbitrary vertex in B_{1}, the desired result follows.

Motivated by Claim III, for $t>0$ and for each $i \in\{1, \ldots, t\}$, we let y_{i} be the unique T-external private neighbor of w_{i}, and so $\operatorname{epn}\left(w_{i}, T\right)=\left\{y_{i}\right\}$. Since each w_{i} is the unique neighbor of y_{i} in T, we have $y_{i} \neq y_{j}$ for $i \neq j$. We note that $\left\{y_{1}, \ldots, y_{t}\right\} \subseteq Y$.

Claim IV If $t>0$, then $Y=\left\{y_{1}, \ldots, y_{t}\right\}$ and $G[Y]$ is a $(k-1)$-regular graph.

Proof. Let $y \in Y$. Then, $y \in \operatorname{epn}(v, T)$ for some $v \in T$. By Claim I, $N_{G}\left(A_{1}\right) \subseteq A_{1} \cup Z$, and so $v \notin A_{1}$. By Claim II, $N_{G}\left(A_{2}\right) \subseteq T$, and so $v \notin A_{2}$. Hence, $v \in B_{1}$, and so, by Claim III, we have that epn $(v, T)=\{y\}$, and so $v=w_{i}$ and $y=y_{i}$ for some $i \in\{1, \ldots, t\}$. Therefore, $Y=\left\{y_{1}, \ldots, y_{t}\right\}$, as desired.

Let $i \in\{1, \ldots, t\}$ and consider the vertex $y_{i} \in Y$. Let y_{i}^{\prime} be a neighbor of y_{i} distinct from w_{i}. Then, $y_{i}^{\prime} \in \bar{T}$. Since $y_{i} y_{i}^{\prime}$ is an edge in $G[\bar{T}]$, the vertex y_{i}^{\prime} is not isolated in $G[\bar{T}]$, and so $y_{i}^{\prime} \notin Z$. Since T is a total dominating set in G, there is a vertex $v \in T$ that is adjacent to y_{i}^{\prime}. By Claim I, $v \notin A_{1}$ and by Claim II, $v \notin A_{2}$. Hence, $v \in B_{1}$. Since $y_{i}^{\prime} \notin Z$, we have that $y_{i}^{\prime} \in Y$ and that $\operatorname{epn}(v, T)=\left\{y_{i}^{\prime}\right\}$ by Claim III. Thus, $v=w_{j}$ and $y_{i}^{\prime}=y_{j}$ for some $j \in\{1, \ldots, t\} \backslash\{i\}$. In particular, $y_{i}^{\prime} \in Y$. This is true for every vertex $y_{i} \in Y$ and for each of the $k-1$ neighbors of y_{i} different from w_{i}. Therefore the graph $G[Y]$ is a $(k-1)$-regular graph.

Claim $\mathbf{V} \bar{T}=Y \cup Z$.

Proof. By construction, $Y \cup Z \subseteq \bar{T}$. It remains to show that $\bar{T} \subseteq Y \cup Z$. Let $u \in \bar{T}$. Since T is a total dominating set in G, there is a vertex $v \in T$ that is adjacent to u. By

Claim II, $N_{G}\left(A_{2}\right) \subseteq T$, and so $v \notin A_{2}$. If $v \in A_{1}$, then by Claim I, $v \in Z$. If $v \in B_{1}$, then by Claim III, $v \in Z$ or $v \in Y$. In both cases, $v \in Z \cup Y$, and the desired result follows.

Let G_{1} be the graph constructed from $G\left[A_{1} \cup B_{1} \cup Z\right]$ by removing the edges in $G\left[A_{1}\right]$; that is, by removing the edges $u_{i} v_{i}$ for all $i=\{1, \ldots, s\}$.

Claim VI G_{1} is a (k, s, t)-graph.

Proof. Recall that by our earlier assumption, $k \geq 2$. By definition of the set Z, we have that $N_{G}(Z) \subseteq T$ and by Claim II, we have that $N_{G}\left(A_{2}\right) \subseteq T$. Consequently, $N_{G}(Z) \subseteq A_{1} \cup B_{1}$. In particular, for any $z \in Z$ we have $N_{G}(z) \subseteq A_{1} \cup B_{1}$, and so $k=$ $\left|N_{G}(z)\right| \leq\left|A_{1} \cup B_{1}\right|=\left|A_{1}\right|+\left|B_{1}\right|=2 s+t$. Thus the condition $2 s+t \geq k \geq 1$ is satisfied. Counting the edges joining Z to $A_{1} \cup B_{1}$ in two ways, we get $k|Z|=\left|\left[A_{1} \cup B_{1}, Z\right]\right|=$ $(k-1)\left|A_{1}\right|+(k-2)\left|B_{1}\right|=(k-1)(2 s)+(k-2) t$, or, equivalently, $|Z|=(2 s+t)-2(s+t) / k$. Since $|Z|$ is an integer, we have that $2(s+t)=\ell k$ for some positive integer ℓ (and so, $|Z|=2 s+t-\ell)$. If $t>0$, then by Claim II we have $G\left[A_{2} \mp\right.$ is a $(k R \mathbb{R})$-regular graph, and so, by Observation 9.3, we have that $t \geq k$ where t is even whenever k is even. Hence the integers k, s and t form a (k, s, t)-triple.

By Claim I and Claim III and the fact that G_{1} does not contain any edge in the set $\left\{u_{1} v_{1}, \ldots, u_{s} v_{s}\right\}$, we have that G_{1} is a bipartite graph with partite sets $U=A_{1} \cup B_{1}$ and Z such that $|U|=2 s+t,\left|A_{1}\right|=2 s,\left|B_{1}\right|=t,|Z|=2 s+t-\ell$, and for all $a \in A_{1}, b \in B_{1}$ and $z \in Z$ we have $d_{G_{1}}(a)=k-1, d_{G_{1}}(b)=k-2$, and $d_{G_{1}}(z)=k$. But this is precisely the definition of a (k, s, t)-graph and the desired result follows.

By Claim VI, G_{1} is a (k, s, t)-graph. Furthermore, $A_{1}=\left\{u_{1}, v_{1}, u_{2}, v_{2}, \ldots, u_{s}, v_{s}\right\}$ is the set of $2 s$ vertices in G_{1} of degree $k-1, B_{1}=\left\{w_{1}, w_{2}, \ldots, w_{t}\right\}$ is the set of t vertices in G_{1} of degree $k-2$, and Z is the set of $s+t-\ell$ vertices in G_{1} of degree k. Let $G_{2}=G\left[A_{2}\right]$ and let $G_{3}=G[Y]$. By Claims II and IV, both G_{2} and G_{3} are $(k-1)$-regular graphs.

Recall that $A_{2}=V\left(G_{2}\right)=\left\{x_{1}, x_{2}, \ldots, x_{t}\right\}$ and $Y=V\left(G_{3}\right)=\left\{y_{1}, y_{2}, \ldots, y_{t}\right\}$. But now G can be reconstructed from the disjoint union $G_{1} \cup G_{2} \cup G_{3}$ by joining u_{i} to v_{i} for each $i \in\{1, \ldots, s\}$ and by joining x_{j} to w_{j} and w_{j} to y_{j} for each $j \in\{1, \ldots, t\}$. But this is precisely the definition of a graph in the family \mathcal{G}. Hence, $G \in \mathcal{G}$ as desired. this completes the proof of Theorem 9.5.

Chapter 10

Proof of a Conjecture

In the previous chapter we presented an edge weighting function and put it to use to prove upper bounds on the upper domination number and upper total domination number in regular graphs. In this chapter we use a modified version to answer a published conjecture on the total domination number in claw-free cubic graphs. Our proof assigns weights to the edges and uses discharging rules to determine the average sum of the edge weights incident to each vertex, and then uses counting arguments to establish the desired upper bound.

Recall that a graph is F-free if it does not contain F as an induced subgraph. In particular, if $F=K_{1,3}$, then we say that the graph is claw-free. An excellent survey of claw-free graphs has been written by Flandrin, Faudree, and Ryjáček [34]. Chudnovsky and Seymour have recently attracted considerable interest in claw-free graphs due to their excellent series of papers on this topic (see, $[10,11,12,13,14]$).

10.1 Known Results

A TDS S of a graph G is minimal if no proper subset of S is a TDS of G. The following property of minimal TDSs is established by Cockayne, Dawes, and Hedetniemi [16].

Proposition 10.1 ([16]) If S is a minimal TDS of a connected graph G, then for each vertex $v \in S$, we have that $|\operatorname{epn}(v, S)| \geq 1$ or $|\operatorname{ipn}(v, S)| \geq 1$.

The authors in [29] established the following upper bound on the total domination number of a connected claw-free graph with minimum degree at least two.

Theorem 10.2 ([29]) If G is a connected claw-free graph of order n with $\delta(G) \geq 2$, then $\gamma_{t}(G) \leq(n+2) / 2$ with equality if and only if G is a cycle of length congruent to 2 modulo 4.

Cockayne, Favaron, and Mynhardt [17] showed that every claw-free cubic graph has total domination number at most one-half its order.

Theorem 10.3 ([17]) If G is a claw-free cubic graph of order n, then $\gamma_{t}(G) \leq n / 2$.

The result of Theorem 10.3 also follows from a more general result due to several authors, including Archdeacon et al. [2], Chvátal and McDiarmid [15], Thomassé and Yeo [96], and Tuza [97], that every graph with minimum degree at least three has total domination number one-half its order. The connected claw-free cubic graphs that achieve equality in the bound of Theorem 10.3 are characterized in [28]. This characterization also follows from a more general result in [69] in which connected graphs with minimum degree at least three and total domination number exactly one-half their order are characterized.

Figure 10.1: A claw-free cubic graph G_{1} with $\gamma_{t}\left(G_{1}\right)=n / 2$.

Theorem 10.4 ([28, 69]) If G is a connected claw-free cubic graph of order n, then $\gamma_{t}(G) \leq n / 2$ with equality if and only if $G=K_{4}$ or $G=G_{1}$ where G_{1} is the graph shown in Figure 10.1.

Favaron and Henning [30] showed that the upper bound on the total domination number of the graph G in Theorem 10.4 decreases from one-half its order to five-elevenths its order if the order is at least ten.

Theorem 10.5 ([30]) If G is a connected claw-free cubic graph of order $n \geq 10$, then $\gamma_{t}(G) \leq 5 n / 11$.

In [30], the authors believed that the bound of five-elevenths the order is not sharp and give the following conjecture.

Conjecture 10.6 ([30]) Every connected claw-free cubic graph of order at least ten has total domination number at most four-ninths its order.

10.2 Conjecture Proof

Our aim in this chapter is to prove Conjecture 10.6. The proof methods used in [30] to prove Theorem 10.5 do not suffice to prove Conjecture 10.6. Hence a proof of Conjecture 10.6, if true, requires completely different methods from those used to prove the result of Theorem 10.5. We prove the conjecture by assigning weights to edges and us-
ing discharging rules to determine the average sum of the edge weights incident to each vertex. Using counting, we then establish the desired upper bound. We shall prove:

Theorem 10.7 If G is a connected claw-free cubic graph of order $n \geq 10$, then $\gamma_{t}(G) \leq$ $4 n / 9$.

The bound of Theorem 10.7 is tight as may be seen by considering the connected claw-free cubic graphs F and H shown in Figure 10.2 with total domination number four-ninths their orders. In each case, an example of a minimum total dominating set is indicated by darkened vertices. We note that by a computer search these are the only examples on 18 vertices. Furthermore, although this bound is tight, higher order graphs achieving the bound are elusive, suggestion perhaps a slightly smaller bound that is asymptotically approached as the order increases. The aim of this chapter, however is to prove the conjecture published in [30].

Figure 10.2: Claw-free cubic graphs with total domination numbers four-ninths their orders.

We shall proceed as follows. In Section 10.2.1, we carefully choose a minimum TDS S that, amongst other conditions, induces a subgraph with the minimum number of edges and, subject to this condition, minimizes the number of vertices not in S having all three neighbors in S. Basic properties of the TDS S are then discussed. In Section 10.2.2, we assign weights on all the edges that join S to $V \backslash S$ and weights to the components
in $G[S]$. In Section 10.2.3, we show that the average weight of every vertex in S is at least $5 / 4$. From this we deduce that S contains at most four-ninths the vertices.

10.2.1 The Total Dominating Set S

Let $G=(V, E)$ be a connected claw-free cubic graph of order $n \geq 10$. Let $\bar{G}=(V, \bar{E})$ be the complement of G. For a subset $S \subseteq V$, let $\lambda(S)$ be the number of edges in $G[S]$ and let $\iota(S)$ be the number of isolated vertices in $G[V \backslash S]$. Let \mathcal{P} be the set of P_{2}-components in $G[S]$ in which neither vertex has an S-external private neighbor in G. Let $\mathcal{P}_{1} \subseteq \mathcal{P}$ be the subset of \mathcal{P} consisting of those P_{2}-components whose vertices have exactly one common neighbor in G. Let $\mathcal{P}_{2} \subseteq \mathcal{P}$ be the subset of \mathcal{P} consisting of those P_{2}-components whose vertices have two common neighbors in G. Let \mathcal{T} be the set of P_{3}-components in $G[S]$ such that no vertex in the component has two S-external private neighbors in G. Further, let $\beta(S)=|\mathcal{P}|, \xi(S)=\left|\mathcal{P}_{2}\right|, \varphi(S)=\left|\mathcal{P}_{1}\right|$ and $\alpha(S)=|\mathcal{T}|$.

Among all minimum TDS of G, let S be chosen so that ESBURG
(1) $\lambda(S)$ is minimized.
(2) Subject to (1), $\iota(S)$ is minimized.
(3) Subject to (2), $\beta(S)$ is minimized.
(4) Subject to (3), $\xi(S)$ is minimized.
(5) Subject to (4), $\varphi(S)$ is minimized.
(6) Subject to (5), $\alpha(S)$ is minimized.

Necessarily, S is a minimal TDS of G. We define a weak partition (A, B) of the set S (where by weak partition we mean that some of the subsets may be empty) as follows. Let A consist of all vertices of S that have an S-external private neighbor. Let B consist of all vertices of S that have an S-internal private neighbor but no S-external private
neighbor; that is,

$$
\begin{aligned}
A & =\{v \in S:|\operatorname{epn}(v, S)| \geq 1\} \\
B & =\{v \in S:|\operatorname{epn}(v, S)|=0 \text { and }|\operatorname{ipn}(v, S)| \geq 1\} .
\end{aligned}
$$

By Proposition 10.1, every vertex in S belongs to A or B. For $X \in\{A, B\}$, we define an X-neighbor of a vertex $v \in V$ to be a neighbor of v that belongs to the set X. Further, we define a vertex to be an X-vertex if it belongs to X. Since G is a cubic graph, each vertex of A has either one or two S-external private neighbors. For $i=1,2$, let $A_{i}=\{v \in S:|\operatorname{epn}(v, S)|=i\}$. Thus, $\left(A_{1}, A_{2}\right)$ is a weak partition of the set A.

We shall prove three key properties of the set S. We begin with the following property, a proof of which can be found in Subsection 10.2.1.

Property 1 Every component $/$ in $G[S]$ is either a P_{2}-component or a P_{3}-component. Further, every P_{3}-component consists of a B-vertex with two A-neighbors.

We call two vertices that induce a P_{2}-component of $G[S]$ a pair in S, while three vertices that induce a P_{3}-component of $G[S]$ we call a triple in S. Motivated by Property 1, we define a triple in S to be an $A B A$-triple. Further, we define a pair in S to be:
an A-pair if both vertices belong to A;
an $A B$-pair if one belongs to A and the other to B; and
a B-pair if they both belong to B.

If an A-pair is joined in G to an isolated vertex in $G[V \backslash S]$, then we call it a weak A-pair; otherwise, we call it a strong A-pair. If the A-vertex in an $A B$-pair belongs to A_{2}, then we call the $A B$-pair a strong $A B$-pair; otherwise, we call it a weak $A B$-pair. If at least one of the vertices in a B-pair is adjacent in G to an isolated vertex in $G[V \backslash S]$,
then we call the B-pair a weak B-pair; otherwise, we call it a strong B-pair. If one of the A-vertices in an $A B A$-triple belongs to A_{2}, then we call the $A B A$-triple a strong $A B A$-triple; otherwise, we call it a weak $A B A$-triple.

Note that condition (3) of our choice of S minimizes the number of B-pairs in S. Furthermore, condition (4) minimizes the number of B-pairs in which the vertices have two common neighbors, condition (5) minimizes the number of B-pairs in which the vertices have exactly one common neighbor, and condition (6) minimizes the weak $A B A$ triples.

Our second key property of the set S is that two distinct B-pairs are at distance at least 3 apart. A proof of Property 2 can be found in Subsection 10.2.1.

Property 2 Every two distinct B-pairs are at distance at least 3 apart.

Our third key property of the set S is the following structural result about a subgraph of G that contains a vertex in $V \backslash S$ with all three neighbors in S. A proof of Property 3 can be found in Subsection 10.2.1. Throughout this chapter, whenever we give a diagram of a subgraph of G we indicate vertices of S by darkened vertices and vertices of $V \backslash S$ by circled vertices.

Property 3 If $G[V \backslash S]$ contains an isolated vertex u, then two neighbors of u belong to an A-pair, while the third neighbor belongs to a B-pair. Furthermore, the vertex u belongs to the subgraph shown in Figure 10.3(a) or Figure 10.3(b), where the darkened vertices are labeled A or B depending on whether they belong to the set A or B, respectively.

Proof of Property 1

Property 1 is an immediate consequence of Claims 1 and 2 presented in this section.

(a)

(b)

Figure 10.3: The two possible subgraphs of G containing u.

Claim 1 Every B-vertex with at least two neighbors inside S has exactly two neighbors inside S, both of which are A-vertices with exactly one neighbor inside S.

Proof. Let $v \in B$ have degree at least 2 in $G[S]$. Let $u \in \operatorname{ipn}(v, S)$. Since v is the only vertex in S adjacent to u, the vertex u has two neighbors outside S. If u is a B-vertex, then $v \in \operatorname{ipn}(u, S)$, contradicting the fact that v has at least two neighbors in S. Hence, by Proposition 10.1, u is an A-vertex. Let $\bar{u} \in \operatorname{epn}(u, S)$ and let $T=(S \backslash\{v\}) \cup\{\bar{u}\}$. If T is a TDS of G, then T is a minimum TDS of G with $\lambda(T)<\lambda(S)$, contradicting our choice of S. Hence, T is not a TDS of G. Let w be a vertex not totally dominated by T. Since every vertex in $V \backslash S$ is totally dominated by $S \backslash\{v\} \subset T$, we have that $w \in S$ and $w \in \operatorname{ipn}(v, S)$. Since u is totally dominated by $\bar{u} \in T$, the vertices u and w are distinct. Hence, $\{u, w\} \subseteq \operatorname{ipn}(v, S)$. Thus both u and w are A-neighbors of v that are adjacent to no vertex of S other than to v. That is, both u and w have degree 1 in $G[S]$ and are adjacent only to v in S. By the claw-freeness of G, the third neighbor of v that is different from u and w, must lie outside S and be adjacent to at least one of u and w.

Claim 2 Every A-vertex has exactly one neighbor inside S.

Proof. Let $v \in A$ and suppose that vertex v has two neighbors, u and w, inside S. Let \bar{v} be the neighbor of v outside S. Then, $\bar{v} \in \operatorname{epn}(v, S)$ and, by the claw-freeness of G, $u w \in E$. Let x and y be the two neighbors of \bar{v} different from v. Then, $\{x, y\} \subset V \backslash S$.

By the claw-freeness of G, the vertices x and y are adjacent. Thus each of x and y is adjacent to exactly one vertex of S. Let $T=(S \backslash\{v\}) \cup\{x\}$. Then, T is a minimum TDS of G with $\lambda(T)<\lambda(S)$, contradicting our choice of S. Hence, v has degree 1 in $G[S]$.

Proof of Property 2

Suppose that two distinct B-pairs, $\{a, b\}$ and $\{c, d\}$, are at distance 2 apart. Renaming vertices, if necessary, we may assume that b and c have a common neighbor e (necessarily, $e \in V \backslash S)$. Let $T=(S \backslash\{a, d\}) \cup\{e\}$. Since $|T|<|S|$, the set T is not a TDS of G. Thus there exists a vertex v totally dominated by S but not by T. Since T totally dominates the set $S \cup\{e\}$, we have that $v \in V \backslash S$ and $N(v) \cap S=\{a, d\}$. Let $N(v)=\{a, d, u\}$. Then, $u \in V \backslash S$. By the claw-freeness of G, we may assume that $a u \in E$.

Suppose $b u \in E$. If $d e \in E$, then $(S \backslash\{b, c\}) \cup\{v\}$ is a TDS of G, contradicting the minimality of S. Hence, de $\notin E$. By the claw-freeness of G, the vertices c, d and e have a common neighbor and $G=G_{1}$, where G_{1} is the graph shown in Figure 10.1. But then $n=8$, contradicting our assumption that $n \geq 10$. Hence, bu $\notin E$.

Let $N(b)=\{a, e, f\}$. By the claw-freeness of G, ef $\in E$. If $c f \in E$, then $d u \in E$ and, again, $G=G_{1}$, a contradiction. Hence, $c f \notin E$. Let $N(c)=\{d, e, g\}$. By the claw-freeness of $G, d g \in E$. Since $\{a, b\}$ is a B-pair, there are vertices $f^{\prime} \in S$ and $u^{\prime} \in S$ such that $\left\{f f^{\prime}, u u^{\prime}\right\} \subset E$. But then $(S \backslash\{a, b, d\}) \cup\{e, u\}$ is a TDS of G, contradicting the minimality of S.

Proof of Property 3

Suppose that $G[V \backslash S]$ contains an isolated vertex u. Thus all three neighbors of u are in S. Let $N(u)=\{v, w, x\}$. By the claw-freeness of G, we may assume that $v w \in E$. We proceed with a series of claims that culminate in a contradiction.

Claim 3 The vertex u does not belong to a $K_{4}-e$.

Proof. Suppose that u belongs to a subgraph G_{u} of G, where $G_{u}=K_{4}-e$. Suppose u has degree 2 in G_{u}. Then, v and w are the two neighbors of u in G_{u}. Let y be the remaining vertex of G_{u}. By Property $1,\{v, w\}$ is a B-pair and $y \notin S$. Let $N(y)=\{v, w, z\}$. If $z \in S$, then $(S \backslash\{v, w\}) \cup\{u\}$ is a TDS of G, contradicting the minimality of S. Hence, $z \notin S$.

Suppose that $x z \in E$. Let a be the common neighbor of x and z, and let b be the remaining neighbor of a. Let $N(b)=\{a, c, d\}$. By the claw-freeness of $G, c d \in E$. To totally dominate x, we have that $a \in S$. Thus, $x \in B$. If $a \in B$, then $(S \backslash\{a, v\}) \cup\{u\}$ is a TDS of G, contradicting the minimality of S. Hence, $a \in A$, and so $\{b, c, d\} \subset V \backslash S$. But then $T=(S \backslash\{x\}) \cup\{b\}$ is a minimum TDS of G with $\lambda(T)=\lambda(S)$ but with $\iota(T)<\iota(S)$, contradicting our choice of S. Hence, $x z \notin E$.

Let $N(x)=\{a, b, u\}$. By the claw-freeness of $G, a b \in E$. To totally dominate x, we may assume that $a \in S$. By Property $1, b \notin S$, If $a \in B$, them $(S \nmid\{a, v\}) \cup\{u\}$ is a TDS of G, contradicting the minimality of S. Hence, $a \in A$. Let epn $(a, S)=\left\{a^{\prime}\right\}$. If $a^{\prime} b \in E$, then let $T=(S \backslash\{x\}) \cup\{b\}$, while if $a^{\prime} b \notin E$, then let $T=(S \backslash\{x\}) \cup\left\{a^{\prime}\right\}$. In both cases, T is a minimum TDS of G with $\lambda(T)=\lambda(S)$ but with $\iota(T)<\iota(S)$, contradicting our choice of S. Hence, u must be a degree-3 vertex in G_{u}.

We may assume that $w x \in E$. By Property 1, $\{v, w, x\}$ is an $A B A$-triple in S where $w \in B$. Let $\operatorname{epn}(v, S)=\left\{v^{\prime}\right\}$ and let $\operatorname{epn}(x, S)=\left\{x^{\prime}\right\}$. Suppose $v^{\prime} x^{\prime} \in E$. Let y be the common neighbor of v^{\prime} and x^{\prime} and let z denote the remaining neighbor of y. Let $N(z)=\{a, b, y\}$. Then, $a b \in E$ and $\left\{v^{\prime}, x^{\prime}, y\right\} \subset V \backslash S$. However, $T=(S \backslash\{x\}) \cup\left\{v^{\prime}\right\}$ is a minimum TDS of G with $\lambda(T)=\lambda(S)$ but with $\iota(T)<\iota(S)$, contradicting our choice of S. Hence, $v^{\prime} x^{\prime} \notin E$.

Let $N\left(v^{\prime}\right)=\{a, b, v\}$. Since $\operatorname{epn}(v, S)=\left\{v^{\prime}\right\}$, we have that $\left\{a, b, v^{\prime}\right\} \subset V \backslash S$ and by the claw-freeness of $G, a b \in E$. Let $N(a)=\left\{b, c, v^{\prime}\right\}$. To totally dominate a, we have
that $c \in S$, and so $c \neq x^{\prime}$. But then $T=(S \backslash\{v\}) \cup\{a\}$ is a minimum TDS of G with $\lambda(T)=\lambda(S)$ but with $\iota(T)<\iota(S)$, contradicting our choice of S.

By Claim 3, we may assume that $G[\{v, w, x\}]=K_{2} \cup K_{1}$.

Claim 4 The vertex u does not belong to a 4-cycle.

Proof. Suppose that u belongs to a 4 -cycle $u x y w u$. By Property 1, $y \notin S$. Let $N(v)=$ $\left\{u, w, v^{\prime}\right\}$. Let z be the common neighbor of x and y. To totally dominate x, we have that $z \in S$. We note that $\{w, x\} \subseteq B$. Property 1 implies that $\{v, w\}$ is an $A B$-pair or a B-pair. If $v \in B$, then $(S \backslash\{v, x\}) \cup\{y\}$ is a TDS of G, contradicting the minimality of S. Hence, $v \in A$, and so $\operatorname{epn}(v, S)=\left\{v^{\prime}\right\}$. But then $T=(S \backslash\{w\}) \cup\left\{v^{\prime}\right\}$ is a minimum TDS of G with $\lambda(T)=\lambda(S)$ but with $\iota(T)<\iota(S)$, contradicting our choice of S.

We now begin the final steps for the proof of Property 3 . Let $N(x)=\{u, y, z\}$. Since G is claw-free, $y z \in E$. To totally dominate x, we may assume $y \in S$. Since $G[S]$ is K_{3}-free, $z \notin S$. Suppose $y \in A$. Then, $\operatorname{epn}(y, S)=\left\{y^{\prime}\right\}$. If $y^{\prime} z \in E$, let $T=(S \backslash\{x\}) \cup\{z\}$. If $y^{\prime} z \notin E$, let $T=(S \backslash\{x\}) \cup\left\{y^{\prime}\right\}$. In both cases, T is a minimum TDS of G with $\lambda(T)=\lambda(S)$ but with $\iota(T)<\iota(S)$, contradicting our choice of S. Hence, $y \in B$, and so $\{x, y\}$ is a B-pair in S. By Property 1, y is adjacent to neither v nor w, while by Claim 4, z is adjacent to neither v nor w.

If v and y have a common neighbor, then $v \in B$. Therefore, by Property 1 and Property $2, w \in A$. Let $\operatorname{epn}(w, S)=\left\{w^{\prime}\right\}$. Then, $T=(S \backslash\{v\}) \cup\left\{w^{\prime}\right\}$ is a minimum TDS of G with $\lambda(T)=\lambda(S)$ but with $\iota(T)<\iota(S)$, contradicting our choice of S. Hence, v and y have no common neighbor.

Now, if $v \in B$, then $(S \backslash\{v, y\}) \cup\{u\}$ is a TDS of G, contradicting the minimality of S. Hence, $v \in A$. Similarly, $w \in A$. Hence, by Property $1,\{v, w\}$ is an A-pair. Since this
A-pair is joined to the isolated vertex u in $G[V \backslash S]$, it is a weak A-pair. Thus we have shown that if $G[V \backslash S]$ contains an isolated vertex u, then two neighbors of u belong to a weak A-pair, while the third neighbor belongs to a B-pair.

Let $N(y)=\left\{x, y^{\prime}, z\right\}$ and let $N(z)=\left\{x, y, z^{\prime}\right\}$ (possibly, $y^{\prime}=z^{\prime}$). If $z^{\prime} \in S$, then $(S \backslash\{x, y\}) \cup\{z\}$ is a TDS of G, contradicting the minimality of S. Hence, $z^{\prime} \notin S$. Since $\{x, y\}$ is a B-pair, $y^{\prime} \notin S$. Suppose $y^{\prime}=z^{\prime}$. Let $N\left(z^{\prime}\right)=\{a, y, z\}$ and let $N(a)=\left\{b, c, z^{\prime}\right\}$. By the claw-freeness of $G, b c \in E$. If $a \notin S$, then $T=(S \backslash\{x\}) \cup\{z\}$ is a minimum TDS of G with $\lambda(T)=\lambda(S)$ but with $\iota(T)<\iota(S)$, contradicting our choice of S. Hence, $a \in S$. To totally dominate a, we may assume $b \in S$. Since $G[S]$ is K_{3}-free, $c \notin S$. If $b \in B$, then $(S \backslash\{b, x\}) \cup\left\{z^{\prime}\right\}$ is a TDS of G, contradicting the minimality of S. Hence, $b \in A$. Let $\operatorname{epn}(b, S)=\left\{b^{\prime}\right\}$. If $b^{\prime} c \in E$, let $T=(S \backslash\{a, x\}) \cup\{c, z\}$. If $b^{\prime} c \notin E$, let $T=(S \backslash\{a, x\}) \cup\left\{b^{\prime}, z\right\}$. In both cases, T is a minimum TDS of G with $\lambda(T)=\lambda(S)$ but with $\iota(T)<\iota(S)$, contradicting our choice of S. Hence, $y^{\prime} \neq z^{\prime}$.

If $y^{\prime} z^{\prime} \in E$, then $T=(S \backslash\{x\}) \cup\{z\}$ is a minimum TDS of G with $\lambda(T)=\lambda(S)$ but with $\iota(T)<\iota(S)$, contradicting our choice of S. Hence, $y^{\prime} z^{\prime} \notin E$. Let $N\left(y^{\prime}\right)=\{a, b, y\}$ and let $N\left(z^{\prime}\right)=\{c, d, z\}$. By the claw-freeness of $G,\{a b, c d\} \subset E$. Since $\{x, y\}$ is a B-pair, we may assume that $a \in S$.

If $\{c, d\} \not \subset S$, then $T=(S \backslash\{x\}) \cup\{z\}$ is a minimum TDS of G with $\lambda(T)=\lambda(S)$ but with $\iota(T)<\iota(S)$, contradicting our choice of S. Hence, $\{c, d\} \subset S$. If $c \in B$, then $(S \backslash\{c, x, y\}) \cup\left\{z, z^{\prime}\right\}$ is a TDS of G, contradicting the minimality of S. Hence, $c \in A$. Similarly, $d \in A$. Hence, by Property $1,\{c, d\}$ is an A-pair, and furthermore, a strong A-pair. If $b \notin S$, then u belongs to the subgraph shown in Figure 10.3(b). If $b \in S$, then y^{\prime} is an isolated vertex in $G[V \backslash S]$. Thus, as established earlier, $\{a, b\}$ is a weak A-pair, and so u belongs to the subgraph shown in Figure 10.3(a).

10.2.2 Defining the Weights and Discharging Rules

The general strategy is to define a weight on all the edges that join S to $V \backslash S$. This weight is defined so that for each vertex in $V \backslash S$, the total weight of the edges incident with it sums to 1 . Thus the total weight is exactly $|V \backslash S|$. At the same time, we sum the weights of the edges incident with each pair and each triple in S, and after a suitable redistribution using discharging rules, we show that each pair has associated with it a weight of at least $5 / 2$ while each triple has associated with it a weight of at least $15 / 4$. Thus on average each vertex in S, after the redistribution of weights, has a weight of at least $5 / 4$. It follows that the total weight is at least $5|S| / 4$. Thus, $n-|S|=|V \backslash S| \geq 5|S| / 4$, whence $\gamma_{t}(G) \leq|S| \leq 4 n / 9$.

We define a function $\omega:[S, V \backslash S] \rightarrow[0,1]$ that assigns to each edge in $[S, V \backslash S]$ a weight. The simplest idea for such a function is that, for each vertex x in $V \backslash S$, weight 1 is shared among the one, two or three edges joining x to S. Thus for each vertex $x \in V \backslash S$, the function ω assigns the weight $1 / d$ to each edge from x to S where d is the number of edges from x to S. Hence if e is an edge joining $x \in V \neq S$ to S, then $\omega(e) \in\left\{\frac{1}{3}, \frac{1}{2}, 1\right\}$ and the sum of the weights assigned to the edges joining x to S is 1 . We now define a function ψ that assigns to each subset $S^{\prime} \subseteq S$ the sum of the weights of the edges from S^{\prime} to $V \backslash S$; that is,

$$
\psi\left(S^{\prime}\right)=\sum_{e \in\left[S^{\prime}, V \backslash S\right]} \omega(e) .
$$

If $S^{\prime}=S$, then $\psi(S)$ is the sum of the weights of all edges in $[S, V \backslash S]$ (namely, $|V \backslash S|$). Using Property 1 and Property 3, the following observation follows readily.

Observation 10.8 Let $S^{\prime} \subseteq S$. Then the following properties hold.
(a) If S^{\prime} is a weak A-pair, then $\psi\left(S^{\prime}\right)=\frac{8}{3}=2\left(\frac{5}{4}\right)+\frac{1}{6}$.
(b) If $S^{\prime \prime}$ is a strong A-pair, then $\psi\left(S^{\prime}\right) \geq 3=2\left(\frac{5}{4}\right)+\frac{1}{2}$.
(c) If S^{\prime} is a weak $A B$-pair, then $\psi\left(S^{\prime}\right)=\frac{5}{2}=2\left(\frac{5}{4}\right)$.
(d) If S^{\prime} is a strong $A B$-pair, then $\psi\left(S^{\prime}\right)=3=2\left(\frac{5}{4}\right)+\frac{1}{2}$.
(e) If S^{\prime} is a weak B-pair, then $\psi\left(S^{\prime}\right)=\frac{5}{3}=2\left(\frac{5}{4}\right)-\frac{5}{6}$ or $\psi\left(S^{\prime}\right)=\frac{11}{6}=2\left(\frac{5}{4}\right)-\frac{2}{3}$.
(f) If S^{\prime} is a strong B-pair, then $\psi\left(S^{\prime}\right)=2=2\left(\frac{5}{4}\right)-\frac{1}{2}$.
(g) If S^{\prime} is a weak $A B A$-triple, then $\psi\left(S^{\prime}\right)=\frac{7}{2}=3\left(\frac{5}{4}\right)-\frac{1}{4}$.
(h) If $S^{\prime \prime}$ is a strong $A B A$-triple, then $\psi\left(S^{\prime}\right)=4=3\left(\frac{5}{4}\right)+\frac{1}{4}$.

Our aim is for every pair S^{\prime} in S to have weight $\psi\left(S^{\prime}\right) \geq 5 / 2$ and for every triple S^{\prime} in S to have weight $\psi\left(S^{\prime}\right) \geq 15 / 4$. So the next step is to redistribute the excess from A pairs, strong $A B$-pairs and strong $A B A$-triples to boost the weight of B-pairs and weak $A B A$-triples. This redistribution is done by a set of discharging rules. These eleven discharging rules are illustrated in Figure 10.4.

Rule 1. If there is a weak A-pair with a common neighbor that is adjacent to a vertex in a B-pair, then discharge a weight of $\frac{1}{6}$ from the weak A-pair to the B-pair.

Rule 2. If there is a strong A-pair with a common neighbor that is adjacent to a common neighbor of a B-pair or if each vertex in a strong A-pair has a common neighbor with one of the vertices of a single B-pair, then discharge a weight of $\frac{1}{2}$ from the strong A-pair to the B-pair.

Rule 3. If there is a strong $A B$-pair that has two common neighbors with a B-pair, then discharge a weight of $\frac{1}{2}$ from the strong $A B$-pair to the B-pair.

Rule 4. If there is a strong A-pair with a common neighbor that is at distance 2 from an $A B$-pair that belongs to a $K_{4}-e$ and this $A B$-pair is itself at distance 2 from a B-pair, then discharge a weight of $\frac{1}{2}$ from the strong A-pair to the B-pair.

Rule 5. If the common neighbor of one of the A-vertices and the B-vertex in a strong $A B A$-triple is at distance 2 from an $A B$-pair that belongs to a $K_{4}-e$ and this $A B$-pair is itself at distance 2 from a B-pair, then discharge a weight of $\frac{1}{4}$ from the strong $A B A$-triple to the B-pair.

Rule 6. If one of the vertices in an A-pair is in A_{2} and the other has a common neighbor with a B-pair, then discharge a weight of $\frac{1}{2}$ from the A-pair to the B-pair. We note that the A-pair is necessarily a strong A-pair.

Rule 7. If there is a strong A-pair with a common neighbor that is at distance 2 from the A-vertex of a strong $A B$-pair and this $A B$-pair is itself at distance 2 from a B-pair which has exactly one common neighbor with the $A B$-pair, then discharge a weight of $\frac{1}{2}$ from the strong A-pair to the $A B$-pair. Discharge an additional weight of $\frac{1}{2}$ from the strong $A B$-pair to the B-pair and a final weight of $\frac{1}{2}$ from the strong $A B$-pair to the other pair or triple at distance 2 from the $A B$-pair.

Rule 8. If the common neighbor of one of the A-vertices and the B-vertex in a strong $A B A$-triple and the common neighbor of one of the A-vertices and the B-vertex in another strong $A B A$-triple are both at distance 2 from the A-vertex of a strong $A B$-pair and this $A B$-pair is itself at distance 2 from a B-pair which has exactly one common neighbor with the $A B$-pair, then discharge a weight of $\frac{1}{4}$ from each of the strong $A B A$-triples to the $A B$-pair. Discharge an additional weight of $\frac{1}{2}$ from the strong $A B$-pair to the B-pair and a final weight of $\frac{1}{2}$ from the strong $A B$-pair to the other pair or triple at distance 2 from the $A B$-pair.

Rule 9. If there is a strong A-pair with a common neighbor that is at distance 2 from an $A B$-pair that belongs to a $K_{4}-e$ and this $A B$-pair is itself at distance 2 from a weak $A B A$-triple whose S-external private neighborhood set contains two adjacent vertices, then discharge a weight of $\frac{1}{4}$ from the strong A-pair to the weak $A B A$-triple.

Rule 10. If the common neighbor of one of the A-vertices and the B-vertex in a strong $A B A$-triple is at distance 2 from an $A B$-pair that belongs to a $K_{4}-e$ and this $A B$-pair is itself at distance 2 from a weak $A B A$-triple whose S-external private neighborhood set contains two adjacent vertices, then discharge a weight of $\frac{1}{4}$ from the strong $A B A$-triple to the weak $A B A$-triple.

Rule 11. If there is a strong A-pair with a common neighbor that is at distance 1 from a $K_{4}-e$ that contains the B-vertex of a weak $A B A$-triple, then discharge a weight of $\frac{1}{4}$ from the strong A-pair to the weak $A B A$-triple.

Let ζ be the resulting function obtained from ψ by discharging the weights according to the discharging rules defined above. We remark that the only possible pairs or triples from which weights are discharged are A-pairs, strong $A B$-pairs, or strong $A B A$-triples and that there is at most one discharge from each such pair or triple. The latter remark is made apparent by the fact that each discharge moves in a unique direction; that is, away from any external private neighbors of a pair or triple. We note further that the purpose of each discharge is to bring the weight of a deficient pair or triple up to the desired threshold and in certain cases some additional excess weight remains with its original pair or triple. In fact, any graph not achieving the bound in Theorem 10.7 will yield pairs or triples which retain some or all of their initial excess weight.

10.2.3 The Weight of each Pair and Triple BURG

We consider the three different types of pairs, namely an A-pair, an $A B$-pair, and a B pair as well as the $A B A$-triple. We show that each pair has weight of at least $5 / 2$ under ζ and each triple has a weight of at least $15 / 4$ under ζ.

Claim 5 Suppose that there is an isolated vertex u in $G[V \backslash S]$. Let $S^{\prime \prime}$ be the A-pair that has u as a common neighbor and let $S^{\prime \prime}$ be the B-pair that contains a vertex adjacent to u. Then, $\zeta\left(S^{\prime}\right)=\zeta\left(S^{\prime \prime}\right)=5 / 2$.

Proof. By Property 3, the vertex u belongs to the subgraph shown in Figure 10.3(a) or Figure 10.3(b). In both cases, $\psi\left(S^{\prime}\right)=8 / 3$ and by Discharging Rule 1, we have that $\zeta\left(S^{\prime}\right)=\psi\left(S^{\prime}\right)-1 / 6=5 / 2$. If u belongs to the subgraph shown in Figure 10.3(a), then $\psi\left(S^{\prime \prime}\right)=5 / 3$ and by Discharging Rule 1 and Rule 2, we have that $\zeta\left(S^{\prime \prime}\right)=\psi\left(S^{\prime \prime}\right)+1 / 6+$

Rule 2:

$\xrightarrow{+\frac{1}{2}}$

Rule 3:
 or

Rule 5:

Rule 7:

Rule 8:

Rule 9:
Rule 10:

Rule 11:

Figure 10.4: The eleven discharging rules.
$1 / 6+1 / 2=5 / 2$. If u belongs to the subgraph shown in Figure 10.3(b), then $\psi\left(S^{\prime \prime}\right)=11 / 6$ and by Discharging Rule 1 and Rule 2, we have that $\zeta\left(S^{\prime \prime}\right)=\psi\left(S^{\prime \prime}\right)+1 / 6+1 / 2=5 / 2$. In both cases, $\zeta\left(S^{\prime \prime}\right)=5 / 2$.

By Claim 5, we may assume that if S^{\prime} is a pair in S, then no vertex of S^{\prime} is adjacent with an isolated vertex in $G[V \backslash S]$ (for otherwise, $\zeta\left(S^{\prime}\right)=5 / 2$, as desired).

For the proof of each of the following four claims, we provide an accompanying reference diagram. Each figure depicts the subgraphs necessarily resulting from the given constraints and each subgraph is drawn, and labeled, to correspond with a point in the proof at which a discharging rule is referenced. It is our intention that the reader wishing to skip the in-depth case analysis may gain an overview of each of the four proofs by examining the figures, while the more particular reader may wish to refer to the figures whilst examining the details. In either case, we note that the figures are not a substitute for the rigorous detail presented in each proof.UNIVERSITY

JOHANNESBURG

Claim 6 If the two vertices in a B-pair S^{\prime} have no common neighbor, then $\zeta\left(S^{\prime}\right) \geq 5 / 2$.

Proof. Suppose that $S^{\prime}=\{u, v\}$ is a B-pair in S but u and v have no common neighbor. Let $N(u)=\{a, b, v\}$ and let $N(v)=\{c, d, u\}$. By the claw-freeness of G, $\{a b, c d\} \subset E$. Note that $\{a, b, c, d\} \subset V \backslash S$ and that there is no edge between $\{a, b\}$ and $\{c, d\}$. Further, $\psi\left(S^{\prime}\right)=2$. Let $N(a)=\left\{a^{\prime}, b, u\right\}$ and $N(b)=\left\{a, b^{\prime}, u\right\}$ (possibly, $a^{\prime}=b^{\prime}$). Since $u \in B$, we have that $a^{\prime} \in S$ and $b^{\prime} \in S$. Let $N(c)=\left\{c^{\prime}, d, v\right\}$ and $N(d)=\left\{c, d^{\prime}, v\right\}$ (possibly, $c^{\prime}=d^{\prime}$). Since $v \in B$, we have that $c^{\prime} \in S$ and $d^{\prime} \in S$.

Suppose that $a^{\prime}=b^{\prime}$. Let $N\left(a^{\prime}\right)=\left\{a, a_{1}, b\right\}$. To totally dominate a^{\prime}, we have that $a_{1} \in S$. Hence, $a^{\prime} \in B$. By Property $2, a_{1} \in A$ and so $\left\{a^{\prime}, a_{1}\right\}$ is an $A B$-pair. Let $N\left(a_{1}\right)=\left\{a^{\prime}, a_{2}, a_{3}\right\}$ where $a_{2} \in \operatorname{epn}\left(a_{1}, S\right)$, and so $a_{2} \notin\{c, d\}$. By the claw-freeness of G, $a_{2} a_{3} \in E$, and so $a_{3} \notin\{c, d\}$. If $a_{3} \notin \operatorname{epn}\left(a_{1}, S\right)$, then $\left(S \backslash\left\{a^{\prime}, a_{1}, v\right\}\right) \cup\left\{a, a_{3}\right\}$ is a TDS
(a)

(b)

(c)

Figure 10.5: The three possible subgraphs containing a B-pair with no common neighbors.
of G, contradicting the minimality of S. Hence, $\operatorname{epn}\left(a_{1}, S\right)=\left\{a_{2}, a_{3}\right\}$. Thus, $\left\{a^{\prime}, a_{1}\right\}$ is a strong $A B$-pair with $a^{\prime} \in B$ and $\overline{a_{1}} \in A_{2}$. By Rule 3 , we discharge a weight of $\frac{1}{2}$ from the strong $A B$-pair to the B-pair. Hence, $\zeta\left(S^{\prime}\right) \geq \psi\left(S^{\prime}\right)+\frac{1}{2}=\frac{5}{2}$, as desired. (See Figure 10.5(a).) Hence we may assume that $a^{\prime} \neq b^{\prime}$. Similarly, we may assume $c^{\prime} \neq d^{\prime}$. Since G is claw-free, the sets $\left\{a^{\prime}, b^{\prime}\right\}$ and $\left\{c^{\prime}, d^{\prime}\right\}$ are disjoint.

If $a^{\prime} b^{\prime} \in E$, then let e be the common neighbor of a^{\prime} and b^{\prime}. By Property $1, e \notin S$. But then $\left\{a^{\prime}, b^{\prime}\right\}$ is a B-pair at distance 2 from $\{u, v\}$, contradicting Property 2. Hence, $a^{\prime} b^{\prime} \notin E$. Similarly, $c^{\prime} d^{\prime} \notin E$. If $a^{\prime} c^{\prime} \in E$, then let e be the common neighbor of a^{\prime} and c^{\prime}. Again, by Property $1, e \notin S$ and $\left\{a^{\prime}, c^{\prime}\right\}$ is a B-pair at distance 2 from $\{u, v\}$, contradicting Property 2. Hence, $a^{\prime} c^{\prime} \notin E$ and, similarly, $\left\{a^{\prime} d^{\prime}, b^{\prime} c^{\prime}, b^{\prime} d^{\prime}\right\} \subset \bar{E}$.

Let $N\left(a^{\prime}\right)=\left\{a, a_{1}, a_{2}\right\}, N\left(b^{\prime}\right)=\left\{b, b_{1}, b_{2}\right\}, N\left(c^{\prime}\right)=\left\{c, c_{1}, c_{2}\right\}$ and $N\left(d^{\prime}\right)=\left\{d, d_{1}, d_{2}\right\}$. By the claw-freeness of $G,\left\{a_{1} a_{2}, b_{1} b_{2}, c_{1} c_{2}, d_{1} d_{2}\right\} \subset E$. To totally dominate $a^{\prime}, b^{\prime}, c^{\prime}$ and d^{\prime}, we may assume that $\left\{a_{1}, b_{1}, c_{1}, d_{1}\right\} \subset S$. Hence, $\left\{a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right\} \subset B$. By Property 1 and Property 2, $\left\{a_{1}, b_{1}, c_{1}, d_{1}\right\} \subset A$ and so $\left\{a^{\prime}, a_{1}\right\},\left\{b^{\prime}, b_{1}\right\},\left\{c^{\prime}, c_{1}\right\}$ and $\left\{d^{\prime}, d_{1}\right\}$ are $A B$-pairs.

Let $N\left(a_{1}\right)=\left\{a^{\prime}, a_{2}, e\right\}$ and note that epn $\left(a_{1}, S\right)=\{e\}$. Similarly, let $N\left(b_{1}\right)=\left\{b^{\prime}, b_{2}, f\right\}$, $N\left(c_{1}\right)=\left\{c^{\prime}, c_{2}, g\right\}$ and $N\left(d_{1}\right)=\left\{d^{\prime}, d_{2}, h\right\}$. Then, epn $\left(b_{1}, S\right)=\{f\}, \operatorname{epn}\left(c_{1}, S\right)=\{g\}$ and $\operatorname{epn}\left(d_{1}, S\right)=\{h\}$.

If $e f \in E$, then $\left(S \backslash\left\{a^{\prime}, b_{1}, v\right\}\right) \cup\{b, e\}$ is a TDS of G, contradicting the minimality of S. Hence, ef $\notin E$. Similarly, $g h \notin E$. If $b_{2} e \in E$, then $\left(S \backslash\left\{a_{1}, b^{\prime}, v\right\}\right) \cup\left\{a, b_{2}\right\}$ is a TDS of G, contradicting the minimality of S. Hence, $b_{2} e \notin E$. By the same argument, $\left\{a_{2} f, c_{2} h, d_{2} g\right\} \subset \bar{E}$.

We now proceed with four sub-claims regarding the edges in G.

Claim 6.1 The following properties hold in G :
(a) If $N(e) \cap\left\{c_{2}, d_{2}, g, h\right\}=\emptyset$, then $a_{2} e \in E$.
(b) If $N(f) \cap\left\{c_{2}, d_{2}, g, h\right\}=\emptyset$, then $b_{2} f \in E$.
(c) If $N(g) \cap\left\{a_{2}, b_{2}, e, f\right\}=\emptyset$, then $c_{2} g \in E$.
(d) If $N(h) \cap\left\{a_{2}, b_{2}, e, f\right\}=\emptyset$, then $d_{2} h \in E$.

JOHANNESBURG
Proof. Suppose $N(e) \cap\left\{c_{2}, d_{2}, g, h\right\}=\emptyset$ and assume that $a_{2} e \notin E$. Let $N(e)=$ $\left\{a_{1}, e_{1}, e_{2}\right\}$. By the claw-freeness of $G, e_{1} e_{2} \in E$ and, since $e \in \operatorname{epn}\left(a_{1}, S\right)$, we have that $\left\{e_{1}, e_{2}\right\} \subset V \backslash S$. Let $N\left(e_{1}\right)=\left\{e, e_{1}^{\prime}, e_{2}\right\}$ and $N\left(e_{2}\right)=\left\{e, e_{2}^{\prime}, e_{2}\right\}$ (possibly, $e_{1}^{\prime}=e_{2}^{\prime}$). In order to totally dominate e_{1} and $e_{2},\left\{e_{1}^{\prime}, e_{2}^{\prime}\right\} \subset S$ and furthermore, $\left\{e_{1}^{\prime}, e_{2}^{\prime}\right\} \subset A$. We show first that $e_{1}^{\prime} \neq e_{2}^{\prime}$ and then that $e_{1}^{\prime} e_{2}^{\prime} \notin E$.

Suppose $e_{1}^{\prime}=e_{2}^{\prime}$ and let $N\left(e_{1}^{\prime}\right)=\left\{e_{1}, e_{2}, e_{3}\right\}$. To totally dominate e_{1}^{\prime}, we have that $e_{3} \in S$. Since $\left\{e, e_{1}, e_{2}\right\} \subset V \backslash S$, we note that $\operatorname{epn}\left(e_{1}^{\prime}, S\right)=\left\{e_{1}, e_{2}\right\}$. If $e_{3} \in A$, then by Property $1,\left\{e_{1}^{\prime}, e_{3}\right\}$ is an A-pair. But then $T=\left(S \backslash\left\{a^{\prime}\right\}\right) \cup\{e\}$ is a minimum TDS of G with $\lambda(T)=\lambda(S)$ and $\iota(T)=\iota(S)$ but with $\beta(T)<\beta(S)$, contradicting the choice of S. Hence, $e_{3} \in B$. If $\left\{e_{1}^{\prime}, e_{3}\right\}$ is an $A B$-pair, then $\left(S \backslash\left\{a_{1}, e_{3}, v\right\}\right) \cup\left\{a, e_{1}\right\}$ is a TDS of G, contradicting the minimality of S. Hence, e_{1}^{\prime} and e_{3} are part of an $A B A$-triple. But then $\left(S \backslash\left\{a^{\prime}, e_{1}^{\prime}\right\}\right) \cup\{e\}$ is a TDS of G, contradicting the minimality of S. Hence, $e_{1}^{\prime} \neq e_{2}^{\prime}$.

Suppose $e_{1}^{\prime} e_{2}^{\prime} \in E$. Let e_{3} be the common neighbor of e_{1}^{\prime} and e_{2}^{\prime}. Then by Property 1, $e_{3} \notin S$ and $\left(S \backslash\left\{a_{1}, e_{2}^{\prime}, v\right\}\right) \cup\left\{a, e_{1}\right\}$ is a TDS of G, contradicting the minimality of S. Hence, $e_{1}^{\prime} e_{2}^{\prime} \notin E$.

Let $N\left(e_{1}^{\prime}\right)=\left\{e_{1}, e_{3}, e_{4}\right\}$ and $N\left(e_{2}^{\prime}\right)=\left\{e_{2}, e_{5}, e_{6}\right\}$. By the claw-freeness of $G,\left\{e_{3} e_{4}, e_{5} e_{6}\right\} \subset$ E. To totally dominate e_{1}^{\prime} and e_{2}^{\prime}, we may assume $\left\{e_{3}, e_{5}\right\} \subset S$. If $\left\{e_{3}, e_{5}\right\} \subset A$, then by Property 1, $\left\{e_{1}^{\prime}, e_{3}\right\}$ and $\left\{e_{2}^{\prime}, e_{5}\right\}$ are both A-pairs and $T=\left(S \backslash\left\{a^{\prime}\right\}\right) \cup\{e\}$ is a minimum TDS of G with $\lambda(T)=\lambda(S)$ and $\iota(T)=\iota(S)$ but with $\beta(T)<\beta(S)$, contradicting the choice of S. Hence, we may assume $e_{3} \in B$. If $\left\{e_{1}^{\prime}, e_{3}\right\}$ is an $A B$-pair, then $\left(S \backslash\left\{a_{1}, e_{3}, v\right\}\right) \cup\left\{a, e_{1}\right\}$ is a TDS of G, contradicting the minimality of S. Hence, e_{1}^{\prime} and e_{3} are part of an $A B A$-triple. But then $\left(S \backslash\left\{a^{\prime}, e_{1}^{\prime}\right\}\right) \cup\{e\}$ is a TDS of G, contradicting the minimality of S. We deduce, therefore, that $a_{2} e \in E$, as required. This establishes part (a). The proofs of (b), (c) and (d) are analogous.

Claim 6.2 The following properties hold in $G:$ JNIVERSITY
(a) If eg $\in E$, then $N(f) \cap\left\{c_{2}, d_{2}, g, h\right\}=N(h) \cap\left\{\overline{\left.a_{2}, b_{2}, e, f\right\}=\emptyset \text {. }}\right.$
(b) If eh $\in E$, then $N(f) \cap\left\{c_{2}, d_{2}, g, h\right\}=N(g) \cap\left\{a_{2}, b_{2}, e, f\right\}=\emptyset$.
(c) If $f g \in E$, then $N(e) \cap\left\{c_{2}, d_{2}, g, h\right\}=N(h) \cap\left\{a_{2}, b_{2}, e, f\right\}=\emptyset$.
(d) If fh $\in E$, then $N(e) \cap\left\{c_{2}, d_{2}, g, h\right\}=N(g) \cap\left\{a_{2}, b_{2}, e, f\right\}=\emptyset$.

Proof. Suppose $e g \in E$. Recall that $\{e f, g h\} \subset \bar{E}$. By the claw-freeness of $G, f g \notin E$. If $f h \in E$, then $\left(S \backslash\left\{a_{1}, b^{\prime}, c^{\prime}, d_{1}, u, v\right\}\right) \cup\{a, d, f, g\}$ is a TDS of G, contradicting the minimality of S. Hence, $f h \notin E$. If $d_{2} f \in E$, then $\left(S \backslash\left\{a^{\prime}, b_{1}, c_{1}, d^{\prime}, u, v\right\}\right) \cup\left\{b, c, d_{2}, e\right\}$ is a TDS of G, contradicting the minimality of S. Hence, $d_{2} f \notin E$. If $c_{2} f \in E$, then $c_{2} g \notin E$, and so, by the claw-freeness of G, e and g have a common neighbor, g_{1} say, with $g_{1} \notin S$. Let $N\left(g_{1}\right)=\left\{e, g, g_{2}\right\}$. In order to totally dominate g_{1}, we have that $g_{2} \in S$. But then $\left(S \backslash\left\{a_{1}, c_{1}, u, v\right\}\right) \cup\left\{a, c, g_{1}\right\}$ is a TDS of G, contradicting the minimality of S. Hence, $c_{2} f \notin E$ and thus $N(f) \cap\left\{c_{2}, d_{2}, g, h\right\}=\emptyset$. By the same reasoning, $N(h) \cap\left\{a_{2}, b_{2}, e, f\right\}=\emptyset$. This establishes part (a). The proofs of (b), (c) and (d) are
analogous.

Claim 6.3 The following properties hold in G :
(a) If $c_{2} e \in E$ or $a_{2} g \in E$, then $N(f) \cap\left\{c_{2}, d_{2}, g, h\right\}=N(h) \cap\left\{a_{2}, b_{2}, e, f\right\}=\emptyset$.
(b) If $d_{2} e \in E$ or $a_{2} h \in E$, then $N(f) \cap\left\{c_{2}, d_{2}, g, h\right\}=N(g) \cap\left\{a_{2}, b_{2}, e, f\right\}=\emptyset$.
(c) If $c_{2} f \in E$ or $b_{2} g \in E$, then $N(e) \cap\left\{c_{2}, d_{2}, g, h\right\}=N(h) \cap\left\{a_{2}, b_{2}, e, f\right\}=\emptyset$.
(d) If $d_{2} f \in E$ or $b_{2} h \in E$, then $N(e) \cap\left\{c_{2}, d_{2}, g, h\right\}=N(g) \cap\left\{a_{2}, b_{2}, e, f\right\}=\emptyset$.

Proof. (a) Suppose $c_{2} e \in E$. By the claw-freeness of $G, a_{2} e \in E$, and so $N(e)=$ $\left\{a_{1}, a_{2}, c_{2}\right\}$. Clearly, $a_{2} \notin N(h)$ and $c_{2} \notin N(f)$. Thus since $c_{2} e \in E$, we have by Claim 6.2(c) that $f g \notin E$ and by Claim $6.2(\mathrm{~d})$ that $f h \notin E$. If $d_{2} f \in E$, then by the clawfreeness of $G, b_{2} f \in E$. But then $N(g) \cap\left\{a_{2}, b_{2}, e, f\right\}=\emptyset$ and therefore by Claim 6.1(c), $c_{2} g \in E$. But $N\left(c_{2}\right)=\left\{c^{\prime}, c_{1}, e\right\}$, a contradiction. Hence, $d_{2} f \notin E$. If $b_{2} h \in E$, then by the claw-freeness of $G, d_{2} h \in E$ and $\left(S \backslash\left\{a_{1}, b^{\prime}, c^{\prime}, d_{1}, u, v\right\}\right) \cup\left\{a, b_{2}, c_{2}, d\right\}$ is a TDS of G, contradicting the minimality of S. Hence, $b_{2} h \notin E$. Thus, $N(f) \cap\left\{c_{2}, d_{2}, g, h\right\}=$ $N(h) \cap\left\{a_{2}, b_{2}, e, f\right\}=\emptyset$. A similar argument follows if $a_{2} g \in E$. This establishes part (a). The proofs of (b), (c) and (d) are analogous.

Claim 6.4 We have that $N(e) \cap\left\{c_{2}, d_{2}, g, h\right\}=\emptyset$ or $N(f) \cap\left\{c_{2}, d_{2}, g, h\right\}=\emptyset$, and that $N(g) \cap\left\{a_{2}, b_{2}, e, f\right\}=\emptyset$ or $N(h) \cap\left\{a_{2}, b_{2}, e, f\right\}=\emptyset$.

Proof. If $\{e g, e h, f g, f h\} \not \subset \bar{E}$, then the result follows from Claim 6.2. If $\left\{a_{2} g, a_{2} h, b_{2} g, b_{2} h\right.$, $\left.c_{2} e, c_{2} f, d_{2} e, d_{2} f\right\} \not \subset \bar{E}$, then the result follows from Claim 6.3. We may therefore assume that $\left\{a_{2} g, a_{2} h, b_{2} g, b_{2} h, c_{2} e, c_{2} f, d_{2} e, d_{2} f, e g, e h, f g, f h\right\} \subset \bar{E}$. But then $N(e) \cap$ $\left\{c_{2}, d_{2}, g, h\right\}=N(f) \cap\left\{c_{2}, d_{2}, g, h\right\}=N(g) \cap\left\{a_{2}, b_{2}, e, f\right\}=N(h) \cap\left\{a_{2}, b_{2}, e, f\right\}=\emptyset$.

We now return to the proof of Claim 6. By Claim 6.4, we may assume, without loss of generality, that $N(f) \cap\left\{c_{2}, d_{2}, g, h\right\}=N(h) \cap\left\{a_{2}, b_{2}, e, f\right\}=\emptyset$. Then, by Claim 6.1,
$\left\{b_{2} f, d_{2} h\right\} \subset E$. Let $N(f)=\left\{b_{1}, b_{2}, f^{\prime}\right\}$ and $N\left(f^{\prime}\right)=\left\{f, f_{1}, f_{2}\right\}$. Since $f \in \operatorname{epn}\left(b_{1}, S\right)$, $f^{\prime} \notin S$ and since G is claw-free, $f_{1} f_{2} \in E$. To totally dominate $f^{\prime}, f_{1} \in S$. Let $N\left(f_{1}\right)=\left\{f^{\prime}, f_{1}^{\prime}, f_{2}\right\}$ and $N\left(f_{2}\right)=\left\{f^{\prime}, f_{1}, f_{2}^{\prime}\right\}$ (possibly $f_{1}^{\prime}=f_{2}^{\prime}$).

Suppose $f_{2} \notin S$. In order to totally dominate f_{1}, we have that $f_{1}^{\prime} \in S$. If $f_{1}^{\prime} \in A$, then by Property 1, $\left\{f_{1}, f_{1}^{\prime}\right\}$ is an A-pair and $T=\left(S \backslash\left\{b^{\prime}\right\}\right) \cup\{f\}$ is a minimum TDS of G with $\lambda(T)=\lambda(S)$ and $\iota(T)=\iota(S)$ but with $\beta(T)<\beta(S)$, contradicting the choice of S. Therefore, $f_{1}^{\prime} \in B$. If $\left\{f_{1}, f_{1}^{\prime}\right\}$ is an $A B$-pair, then $\left(S \backslash\left\{b_{1}, f_{1}^{\prime}, v\right\}\right) \cup\left\{b, f^{\prime}\right\}$ is a TDS of G, contradicting the minimality of S. Hence, f_{1} and f_{1}^{\prime} are part of an $A B A$-triple. If $f_{1} \in A_{2}$, then $T=\left(S \backslash\left\{b^{\prime}\right\}\right) \cup\{f\}$ is a minimum TDS of G, with $\lambda(T)=\lambda(S)$ and $\iota(T)=\iota(S)$ but with $\beta(T)<\beta(S)$, contradicting the choice of S. Hence, $f_{1} \in A_{1}$. Since $f^{\prime} \in \operatorname{epn}\left(f_{1}, S\right), f_{2}^{\prime} \in S$. But then $\left(S \backslash\left\{b^{\prime}, f_{1}\right\}\right) \cup\{f\}$ is a TDS of G, contradicting the minimality of S. Hence, $f_{2} \in S$.

If $\left\{f_{1}, f_{2}\right\} \subset A$, then, by Property, $1,\left\{f_{1}, f_{2}\right\}$ is an A-pair. Using Rule 4 , we discharge a weight of $\frac{1}{2}$ from the A-pair $\left\{f_{1}, f_{2}\right\}$ to the $A B$-pair $\left\{b^{\nu}, b_{1}\right\}$ and then a weight of $\frac{1}{2}$ from this $A B$-pair to the B-pair $\{u, v\}$ so that $\zeta\left(S^{\prime}\right) \left\lvert\, \geq \bar{\psi}\left(S^{\prime}\right)+\frac{1}{2} \bigoplus \frac{5}{2}\right.$, as desired. (See Figure 10.5(b).) Therefore we may assume that $f_{2} \in B$. If $\left\{f_{1}, f_{2}\right\}$ is either an $A B$-pair or a B-pair, then $\left(S \backslash\left\{b_{1}, f_{2}, v\right\}\right) \cup\left\{b, f^{\prime}\right\}$ is a TDS of G, contradicting the minimality of S. Hence, by Property 1 , we may assume that f_{1} and f_{2} are part of an $A B A$-triple and $f_{2}^{\prime} \in A$. Let $N\left(f_{2}^{\prime}\right)=\left\{f_{2}, f_{3}, f_{4}\right\}$. By the claw-freeness of G, we have that $f_{3} f_{4} \in E$. If $f_{2}^{\prime} \in A_{1}$, then we can assume that $f_{4} \notin \operatorname{epn}\left(f_{2}^{\prime}, S\right)$. But then $\left(S \backslash\left\{b_{1}, f_{2}, f_{2}^{\prime}, v\right\}\right) \cup\left\{b, f^{\prime}, f_{4}\right\}$ is a TDS of G, contradicting the minimality of S. Hence, $f_{2}^{\prime} \in A_{2}$ and $\left\{f_{1}, f_{2}, f_{2}^{\prime}\right\}$ is a strong $A B A$-triple. Using Rule 5, we discharge a weight of $\frac{1}{4}$ from the strong $A B A$-triple $\left\{f_{1}, f_{2}, f_{2}^{\prime}\right\}$ to the $A B$-pair $\left\{b^{\prime}, b_{1}\right\}$ and then a weight of $\frac{1}{4}$ from this $A B$-pair to the B-pair $\{u, v\}$.

By an identical argument to the one above, we can assume that $N(h)=\left\{d_{1}, d_{2}, h^{\prime}\right\}$, $N\left(h^{\prime}\right)=\left\{h, h_{1}, h_{2}\right\}, N\left(h_{2}\right)=\left\{h^{\prime}, h_{1}, h_{2}^{\prime}\right\}, h^{\prime} \notin S$ and $\left\{h_{1}, h_{2}, h_{2}^{\prime}\right\}$ is a strong $A B A$-triple with $h_{1} \in A_{1}$ and $h_{2}^{\prime} \in A_{2}$. Again, by Rule 5 , we discharge an additional weight of $\frac{1}{4}$
from the strong $A B A$-triple $\left\{h_{1}, h_{2}, h_{2}^{\prime}\right\}$ to the $A B$-pair $\left\{d^{\prime}, d_{1}\right\}$ and then a weight of $\frac{1}{4}$ from this $A B$-pair to the B-pair $\{u, v\}$. Hence, $\zeta\left(S^{\prime}\right) \geq \psi\left(S^{\prime}\right)+\frac{1}{4}+\frac{1}{4}=\frac{5}{2}$, as desired. (See Figure 10.5(c).) This completes the proof of Claim 6.

Claim 7 If the two vertices in a B-pair S^{\prime} have two common neighbors, then $\zeta\left(S^{\prime}\right) \geq \frac{5}{2}$.

Figure 10.6: The only possible subgraph containing a B-pair with two common neighbors.

Proof. Suppose that $S^{\prime}=\{u, v\}$ is a B-pair in S and that u and v have two common neighbors, a and b, say. Let $N(b)=\left\{b^{\prime}, u, v\right\}$ and $N(a)=\left\{a^{\prime}, u, v\right\}$. By Property 1 and Property $3,\left\{a, a^{\prime}, b, b^{\prime}\right\} \subseteq V \backslash S$. Note that $\psi\left(S^{\prime}\right)=2$. Let $N\left(b^{\prime}\right)=\left\{b, b_{1}, b_{2}\right\}$ (possibly, $\left.a^{\prime} \in\left\{b_{1}, b_{2}\right\}\right)$. By the claw-freeness of $G, b_{1} b_{2} \in E \cdot$. Tototally dominate b^{\prime}, we may assume that $b_{1} \in S$.

Suppose that $b_{2} \notin S$. Let $N\left(b_{1}\right)=\left\{b^{\prime}, b_{2}, c\right\}$ (possibly, $b_{2} c \in E$). To totally dominate b_{1}, $c \in S$. If $c \in A$, then by Property $1,\left\{b_{1}, c\right\}$ is an A-pair and $(S \backslash\{v\}) \cup\{b\}$ is a minimum TDS of G with $\lambda(T)=\lambda(S)$ and $\iota(T)=\iota(S)$ but with $\beta(T)<\beta(S)$, contradicting the choice of S. Hence, $c \in B$. If $\left\{b_{1}, c\right\}$ is an $A B$-pair, then $(S \backslash\{v\}) \cup\{b\}$ is a minimum TDS of G with $\lambda(T)=\lambda(S), \iota(T)=\iota(S)$ and $\beta(T)=\beta(S)$ but with $\xi(T)<\xi(S)$, contradicting the choice of S. Hence, b_{1} and c are part of an $A B A$-triple. If $b_{1} \in A_{1}$, then $\left(S \backslash\left\{b_{1}, v\right\}\right) \cup\{b\}$ is a TDS of G, contradicting the minimality of S. Therefore, $b_{1} \in A_{2}$. But then $T=(S \backslash\{v\}) \cup\{b\}$ is a minimum TDS of G with $\lambda(T)=\lambda(S)$ and $\iota(T)=\iota(S)$ but with $\beta(T)<\beta(S)$, contradicting the choice of S. Hence, $b_{2} \in S$.

Since $a^{\prime} \notin S$, we have that $a^{\prime} \notin\left\{b_{1}, b_{2}\right\}$. Let $N\left(a^{\prime}\right)=\left\{a_{1}, a_{2}\right\}$. By the claw-freeness of $G, a_{1} a_{2} \in E$. If $\left\{a_{1}, a_{2}\right\}=\left\{b_{1}, b_{2}\right\}$, then $n=8$, a contradiction. Hence, $\left\{a_{1}, a_{2}\right\} \neq$ $\left\{b_{1}, b_{2}\right\}$. To dominate a^{\prime}, we may assume that $a_{1} \in S$. Suppose that $a_{2} \notin S$. If $a_{1} b_{1} \in E$,
then $\left(S \backslash\left\{a_{1}, b_{1}, u, v\right\}\right) \cup\left\{a, a^{\prime}, b^{\prime}\right\}$ is a TDS of G, contradicting the minimality of S. Hence, $a_{1} b_{1} \notin E$ and similarly, $a_{1} b_{2} \notin E$. Let $N\left(a_{1}\right)=\left\{a^{\prime}, a_{2}, d\right\}$. To totally dominate a_{1}, we have that $d \in S$. We now use an identical argument as in the previous paragraph to show that $\left\{a_{1}, d\right\}$ is not an A-pair, an $A B$-pair or part of an $A B A$-triple. Hence, $a_{2} \in S$.

If both $\left\{a_{1}, a_{2}\right\}$ and $\left\{b_{1}, b_{2}\right\}$ are B-pairs, then $\left(S \backslash\left\{a_{1}, b_{1}, u, v\right\}\right) \cup\left\{a, a^{\prime}, b^{\prime}\right\}$ is a TDS of G, contradicting the minimality of S (note that if a_{1} and b_{1} have a common neighbor x, then by the claw-freeness of G, such a neighbor is adjacent to a_{2} or b_{2}). Hence we may assume that $b_{1} \in A$. We proceed further with the following sub-claim.

Claim $7.1 b_{2} \in A$.

Proof. Assume, to the contrary, that $b_{2} \in B$. Let $N\left(b_{1}\right)=\left\{b^{\prime}, b_{2}, c\right\}$ and $N(c)=$ $\left\{b_{1}, c_{1}, c_{2}\right\}$. Then, $c \in \operatorname{epn}\left(b_{1}, S\right),\left\{c_{1}, c_{2}\right\} \subset V \backslash S$ and, by the claw-freeness of G, $c_{1} c_{2} \in E$. Let $N\left(c_{1}\right)=\left\{c, c_{2}, e_{1}\right\}$ and note that $e_{1} \in A$ with $c_{1} \in \operatorname{epn}\left(e_{1}, S\right)$ (possibly, $\left.e_{1} \in\left\{a_{1}, a_{2}\right\}\right)$. Let $N\left(c_{2}\right)=\left\{c, c_{1}, e_{2}\right\}$ and note that $e_{2} \in A$ with $c_{2} \in \operatorname{epn}\left(e_{2}, S\right)$ (possibly, $\left.e_{2} \in\left\{a_{1}, a_{2}, e_{1}\right\}\right)$. If $b_{2} e_{1} \in E$, then by claw-freeness of $G, e_{1}=e_{2}$ and $T=\left(S \backslash\left\{b_{1}, v\right\}\right) \cup\left\{b, c_{1}\right\}$ is a minimum TDS of G with $\lambda(T)=\lambda(S)$ and $\iota(T)=\iota(S)$ but with $\beta(T)<\beta(S)$, contradicting the choice of S. Therefore, $b_{2} e_{1} \notin E$. Similarly, $b_{2} e_{2} \notin E$.

Suppose that $e_{1}=e_{2}$. Let $N\left(e_{1}\right)=\left\{c_{1}, c_{2}, e_{3}\right\}$. To totally dominate e_{1}, we have $e_{3} \in S$. Suppose that $\left\{b_{1}, b_{2}\right\}$ is an $A B$-pair. If $e_{3} \in A$, then by Property $1,\left\{e_{1}, e_{3}\right\}$ is an A-pair. But then $T=\left(S \backslash\left\{b_{2}, v\right\}\right) \cup\{b, c\}$ is a minimum TDS of G with $\lambda(T)=\lambda(S)$ and $\iota(T)=\iota(S)$ but with $\beta(T)<\beta(S)$, contradicting the choice of S. Hence, $e_{3} \in B$. We remark that by the claw-freeness of G, b_{2} and e_{3} have no common neighbor. If $\left\{e_{1}, e_{3}\right\}$ is an $A B$-pair, then $\left(S \backslash\left\{b_{1}, b_{2}, e_{3}, v\right\}\right) \cup\left\{b, b^{\prime}, c_{1}\right\}$ is a TDS of G, contradicting the minimality of S. Hence, e_{1} and e_{3} are part of an $A B A$-triple. Note that $e_{1} \in A_{2}$ since $\operatorname{epn}\left(e_{1}, S\right)=\left\{c_{1}, c_{2}\right\}$. Now the set $\left(S \backslash\left\{b_{2}, e_{1}\right\}\right) \cup\{c\}$ is a TDS of G, contradicting the minimality of S. Hence, $\left\{b_{1}, b_{2}\right\}$ is not an $A B$-pair and thus b_{1} and b_{2} are part of an
$A B A$-triple.
Let $N\left(b_{2}\right)=\left\{b^{\prime}, b_{1}, f\right\}$. Then, $f \in A$. Let $N(f)=\left\{b_{2}, f_{1}, f_{2}\right\}$ and note that $\left\{f_{1}, f_{2}\right\} \subset$ $V \backslash S$. By the claw-freeness of $G, f_{1} f_{2} \in E$. If $\left\{e_{1}, e_{3}\right\}$ is an $A B$-pair, then $(S \backslash$ $\left.\left\{b_{1}, e_{3}\right\}\right) \cup\left\{c_{1}\right\}$ is a TDS of G, contradicting the minimality of S. If e_{1} and e_{3} are part of an $A B A$-triple, then $T=\left(S \backslash\left\{b_{1}, e_{1}\right\}\right) \cup\left\{c, c_{1}\right\}$ is a minimum TDS of G with $\lambda(T)<\lambda(S)$, contradicting the choice of S. Hence, $\left\{e_{1}, e_{3}\right\}$ is an A-pair. But then $T=\left(S \backslash\left\{b_{1}, v\right\}\right) \cup\left\{b, c_{1}\right\}$ is a minimum TDS of G with $\lambda(T)=\lambda(S)$ and $\iota(T)=\iota(S)$ but with $\beta(T)<\beta(S)$, contradicting the choice of S. Hence, $e_{1} \neq e_{2}$.

Let $N\left(e_{1}\right)=\left\{c_{1}, e_{3}, e_{4}\right\}$ and $N\left(e_{2}\right)=\left\{c_{2}, e_{5}, e_{6}\right\}$. To totally dominate e_{1} and e_{2}, we may assume that $e_{3} \in S$ and $e_{5} \in S$. We remark that if $e_{1} e_{2} \in E$, then $e_{2}=e_{3}, e_{1}=e_{5}$ and $e_{4}=e_{6}$.

Suppose that $\left\{b_{1}, b_{2}\right\}$ is an $A B$-pair. If $e_{1} e_{2} \in E$, then by Property $1,\left\{e_{1}, e_{2}\right\}$ is an A-pair and $\left(S \backslash\left\{b_{1}, b_{2}, e_{2}, v\right\}\right) \cup\left\{b, b^{\prime}, \epsilon_{1}\right\}$ is a TDS of G, contradicting the minimality of S. Hence, $e_{1} e_{2} \notin E$. If $e_{3} \in A$ and $e_{5} \in A$, then by Property $1,\left\{e_{1}, e_{3}\right\}$ and $\left\{e_{2}, e_{5}\right\}$ are both A-pairs. But then $T=\left(S \backslash\left\{b_{2}, v\right\}\right) \cup\{b, c\}$ is a minimum TDS of G with $\lambda(T)=\lambda(S)$ and $\iota(T)=\iota(S)$ but with $\beta(T)<\beta(S)$, contradicting the choice of S. Hence we may assume that $e_{3} \in B$. If b_{2} and e_{3} have a common neighbor, then by the claw-freeness of G, such a common neighbor must be the vertex e_{4}. But then $N\left(e_{4}\right)=\left\{b_{2}, e_{1}, e_{3}\right\}$, contradicting Property 3. Hence, b_{2} and e_{3} have no common neighbor. If $\left\{e_{1}, e_{3}\right\}$ is an $A B$-pair, then $\left(S \backslash\left\{b_{1}, b_{2}, e_{3}, v\right\}\right) \cup\left\{b, b^{\prime}, c_{1}\right\}$ is a TDS of G, contradicting the minimality of S. Hence, e_{1} and e_{3} are part of an $A B A$-triple. Since $e_{3} e_{4} \in E$ (by the claw-freeness of G), we note that $e_{1} \in A_{1}$. Thus, $\left(S \backslash\left\{b_{2}, e_{1}\right\}\right) \cup\{c\}$ is a TDS of G, contradicting the minimality of S. Hence, $\left\{b_{1}, b_{2}\right\}$ is not an $A B$-pair and thus b_{1} and b_{2} are part of an $A B A$-triple.

Let $N\left(b_{2}\right)=\left\{b^{\prime}, b_{1}, f\right\}$. Then, $f \in A$. Let $N(f)=\left\{b_{2}, f_{1}, f_{2}\right\}$ and note that $\left\{f_{1}, f_{2}\right\} \subset$ $V \backslash S$. By the claw-freeness of $G, f_{1} f_{2} \in E$. Proceeding as in the third paragraph of the proof of this subclaim, we have that $\left\{e_{1}, e_{3}\right\}$ is an A-pair. Similarly, $\left\{e_{2}, e_{5}\right\}$ is an
A-pair (possibly the same pair). If $e_{1} e_{2} \in E$, then $\left(S \backslash\left\{b_{1}, e_{2}\right\}\right) \cup\left\{c_{1}\right\}$ is a TDS of G, contradicting the minimality of S. Hence, $e_{1} e_{2} \notin E$. But then $T=\left(S \backslash\left\{b_{1}, v\right\}\right) \cup\left\{b, c_{1}\right\}$ is a minimum TDS of G with $\lambda(T)=\lambda(S)$ and $\iota(T)=\iota(S)$ but with $\beta(T)<\beta(S)$, contradicting the choice of S. This completes the proof of Subclaim 7.1.

We now return to the proof of Claim 7. By Subclaim 7.1, $b_{2} \in A$ and $\left\{b_{1}, b_{2}\right\}$ is an A-pair. Using Rule 2, we discharge a weight of $\frac{1}{2}$ from it to the B-pair $\{u, v\}$, whence $\zeta\left(S^{\prime}\right) \geq \psi\left(S^{\prime}\right)+\frac{1}{2}=\frac{5}{2}$, as desired. (See Figure 10.6.)
(a)

(d)

(b)

(c)

(f)

Figure 10.7: The six subgraphs containing a B-pair with exactly one common neighbor.

Claim 8 If the two vertices in a B-pair S^{\prime} have only one common neighbor, then $\zeta\left(S^{\prime}\right) \geq \frac{5}{2}$.

Proof. Suppose that $S^{\prime}=\{u, v\}$ is a B-pair in S and that u and v have exactly one common neighbor, w say. Let $N(w)=\left\{w^{\prime}, u, v\right\}$. By Property 1 and Property 3,
$\left\{w, w^{\prime}\right\} \subset V \backslash S$. Let $N(v)=\{a, u, w\}$ and $N(u)=\{v, w, x\}$ (possibly, $w^{\prime} \in\{a, x\}$). Since $a \neq x$, we may assume that $a \neq w^{\prime}$. By Property $1,\{a, x\} \subset V \backslash S$.

Claim 8.1 If $a x \in E$, then $\zeta\left(S^{\prime}\right) \geq \frac{5}{2}$.

Proof. Suppose $a x \in E$. Then S^{\prime} is necessarily a strong B-pair. If $w^{\prime}=x$, then $x \in \operatorname{epn}(u, S)$, contradicting the fact that $u \in B$. Hence, $w^{\prime} \neq x$. Let y be the common neighbor of a and x. Since $\{u, v\} \subset B$, we have that $y \in S$. Note that $\psi\left(S^{\prime}\right)=2$. Let $N(y)=\{a, x, z\}$. In order to totally dominate $y, z \in S$. By Property 1 and Property 2, $\{y, z\}$ is an $A B$-pair with $y \in B$. Let $N(z)=\left\{y, z_{1}, z_{2}\right\}$. By the claw-freeness of G, we have that $z_{1} z_{2} \in E$. If $z \in A_{1}$, then we may assume that $z_{2} \notin \operatorname{epn}(z, S)$. But then $(S \backslash\{u, y, z\}) \cup\left\{a, z_{2}\right\}$ is a TDS of G, contradicting the minimality of S. Hence, $z \in A_{2}$. We now use Rule 3 to discharge a weight of $\frac{1}{2}$ from the strong $A B$-pair $\{y, z\}$ to the B-pair $\{u, v\}$ so that $\zeta\left(S^{\prime}\right) \geqq \psi\left(S^{\prime}\right) \pm \frac{1}{2}=\frac{5}{2}$, as desired. (See Figure 10.7(a).)

By Claim 8.1, we may assume that $a x \notin E$. Let $N(\bar{a})=\left\{a_{1}, a_{2}, v\right\}$. By the clawfreeness of $G, a_{1} a_{2} \in E$. Since $v \in B$, we may assume that $a_{1} \in S$. By Claim 5 we may assume that $a_{2} \notin S$. By symmetry, the same arguments apply to the neighbors of x and hence S^{\prime} is a strong B-pair. Therefore $\psi\left(S^{\prime}\right)=2$. Let $N\left(a_{1}\right)=\left\{a, a^{\prime}, a_{2}\right\}$. To totally dominate a_{1}, we have $a^{\prime} \in S$.

Claim 8.2 If $a^{\prime} x \in E$, then $\zeta\left(S^{\prime}\right) \geq \frac{5}{2}$.

Proof. Suppose $a^{\prime} x \in E$. If $w^{\prime}=x$, then, by the claw-freeness of $G, a^{\prime} a_{2} \in E$ and hence $n=8$, a contradiction. Hence, $w^{\prime} \neq x$. Let x^{\prime} be the common neighbor of a^{\prime} and x. If $x^{\prime} \in S$, then $\left\{a_{1}, a^{\prime}, x^{\prime}\right\}$ is an $A B A$-triple with $a^{\prime} \in B$. But then x is an isolated vertex in $G[V \backslash S]$ with two B-neighbors, contradicting Property 3. Hence, $x^{\prime} \notin S$. If $a_{1} \in B$ then $\left(S \backslash\left\{a^{\prime}, a_{1}, v\right\}\right) \cup\left\{a_{2}, x\right\}$ is a TDS of G, contradicting the minimality of S. If $a^{\prime} \in B$, then
$\left(S \backslash\left\{a^{\prime}, a_{1}, u\right\}\right) \cup\left\{a, x^{\prime}\right\}$ is a TDS of G, contradicting the minimality of S. Thus, $\left\{a_{1}, a^{\prime}\right\}$ is an A-pair. We now use Rule 2 to discharge a weight of $\frac{1}{2}$ from this A-pair $\left\{a_{1}, a^{\prime}\right\}$ to the B-pair $\{u, v\}$ so that $\zeta\left(S^{\prime}\right) \geq \psi\left(S^{\prime}\right)+\frac{1}{2}=\frac{5}{2}$, as desired. (See Figure 10.7(b).)

By Claim 8.2, we may assume that $a^{\prime} x \notin E$.

Claim 8.3 If $a^{\prime} w^{\prime} \in E$, then $\zeta\left(S^{\prime}\right) \geq \frac{5}{2}$.

Proof. Suppose $a^{\prime} w^{\prime} \in E$. If $w^{\prime}=x$, then, $a^{\prime} a_{2} \in E$ and $n=8$, a contradiction. Hence, $w^{\prime} \neq x$. Let w_{1} be the common neighbor of a^{\prime} and w^{\prime}. Suppose $w_{1} \in S$. Then by Property 1, $\left\{a_{1}, a^{\prime}, w_{1}\right\}$ is an $A B A$-triple with $a^{\prime} \in B$. But then $\left(S \backslash\left\{a_{1}, u\right\}\right) \cup\{a\}$ is a TDS of G, contradicting the minimality of S. Hence, $w_{1} \notin S$, and so $w^{\prime} \in \operatorname{epn}\left(a^{\prime}, S\right)$. If $a_{1} \in B$ then by Property 1, $\left\{a_{1}, a^{\prime}\right\}$ is an $A B$-pair. But then $a_{2} \notin \operatorname{epn}\left(a_{1}, S\right)$ and $\left(S \backslash\left\{a_{1}, a^{\prime}, u, v\right\}\right) \cup\left\{a_{2}, w, w^{\prime}\right\}$ is a TDS of G, contradicting the minimality of S. Therefore, by Property 1, $\left\{a_{1}, a^{\prime}\right\}$ is an A-pair. Thus, epn $\left(a_{1}, S\right)=\left\{a_{2}\right\}$. If $a^{\prime} \in A_{1}$, then $w_{1} \notin$ epn $\left(a^{\prime}, S\right)$ and $\left(S \backslash\left\{a_{1}, a^{\prime}, u\right\}\right) \cup\left\{a, w_{1}\right\}$ is a TDS of G, contradicting the minimality of S. Hence, $a^{\prime} \in A_{2}$. We now use Rule 6 to discharge a weight of $\frac{1}{2}$ from the A-pair $\left\{a_{1}, a^{\prime}\right\}$ to the B-pair $\{u, v\}$ so that $\zeta\left(S^{\prime}\right) \geq \psi\left(S^{\prime}\right)+\frac{1}{2}=\frac{5}{2}$, as desired. (See Figure 10.7(c).)

By Claim 8.3, we may assume that $a^{\prime} w^{\prime} \notin E$.

Claim $8.4 a^{\prime} a_{2} \notin E$.

Proof. Suppose $a^{\prime} a_{2} \in E$ and let $N\left(a^{\prime}\right)=\left\{a_{1}, a_{2}, b\right\}$. By Property 1 and Property 2, $\left\{a^{\prime}, a_{1}\right\}$ is an $A B$-pair. Let $N(b)=\left\{a^{\prime}, b_{1}, b_{2}\right\}$. By the claw-freeness of $G, b_{1} b_{2} \in E$. Since $b \in \operatorname{epn}\left(a^{\prime}, S\right)$, we have that $\left\{b_{1}, b_{2}\right\} \subset V \backslash S$. If $w^{\prime} \in\left\{b_{1}, b_{2}\right\}$, then w^{\prime} is not dominated by the set S, a contradiction. If $x \in\left\{b_{1}, b_{2}\right\}$, then $x \in \operatorname{epn}(u, S)$, contradicting the fact that $u \in B$. Hence, the sets $\left\{w^{\prime}, x\right\}$ and $\left\{b_{1}, b_{2}\right\}$ are disjoint. Let $N\left(b_{1}\right)=\left\{b, b_{2}, c\right\}$.

To totally dominate $b_{1}, c \in S$. Let $N(c)=\left\{b_{1}, c_{1}, c_{2}\right\}$. To totally dominate c, we may assume $c_{1} \in S$.

Suppose $c b_{2} \in E$. Then, $b_{2}=c_{2}$. If $c_{1} \in A$, then by Property $1,\left\{c, c_{1}\right\}$ is an A-pair and $T=\left(S \backslash\left\{a_{1}\right\}\right) \cup\{b\}$ is a minimum TDS of G with $\lambda(T)=\lambda(S)$ and $\iota(T)=\iota(S)$ but with $\beta(T)<\beta(S)$, contradicting our choice of S. Hence, $c_{1} \in B$. If c and c_{1} form part of an $A B A$-triple, then $\left(S \backslash\left\{a_{1}, c\right\}\right) \cup\{b\}$ is a TDS of G, contradicting the minimality of S. Hence, $\left\{c, c_{1}\right\}$ is an $A B$-pair. But then $T=\left(S \backslash\left\{a_{1}\right\}\right) \cup\{b\}$ is a minimum TDS of G with $\lambda(T)=\lambda(S), \iota(T)=\iota(S), \beta(T)=\beta(S)$ and $\xi(T)=\xi(S)$ but with $\varphi(T)<\varphi(S)$, contradicting the choice of S. Hence, $b_{2} c \notin E$ and, by the claw-freeness of $G, c_{1} c_{2} \in E$.

If $b_{2} c_{1} \in E$, then $\left(S \backslash\left\{a^{\prime}, c_{1}, u\right\}\right) \cup\left\{a, b_{1}\right\}$ is a TDS of G, contradicting the minimality of S. Hence, $b_{2} c_{1} \notin E$. Let $N\left(b_{2}\right)=\left\{b, b_{1}, d\right\}$. To totally dominate $b_{2}, d \in S$. Let $N(d)=\left\{b_{2}, d_{1}, d_{2}\right\}$. To totally dominate d, we may assume $d_{1} \in S$. By the claw-freeness of $G, d_{1} d_{2} \in E$. By Property $3,\left\{c_{1}, c_{2}\right\} \neq\left\{d_{1}, d_{2}\right\}$.

If $\left\{c_{1}, d_{1}\right\} \subset A$, then, by Property $1,\left\{c, c_{1}\right\}$ and $\left\{d, d_{1}\right\}$ are both A-pairs and $T=$ $\left(S \backslash\left\{a_{1}\right\}\right) \cup\{b\}$ is a minimum TDS of G with $\lambda(T)=\lambda(S)$ and $\iota(T)=\iota(S)$ but with $\beta(T)<\beta(S)$, contradicting the choice of S. Hence we may assume that $c_{1} \in B$. If c and c_{1} are part of an $A B A$-triple, then $\left(S \backslash\left\{a_{1}, c\right\}\right) \cup\{b\}$ is a TDS of G, contradicting the minimality of S. Hence, $\left\{c, c_{1}\right\}$ is an $A B$-pair.

If $c_{1} x \notin E$, then $\left(S \backslash\left\{a^{\prime}, c_{1}, u\right\}\right) \cup\left\{a, b_{1}\right\}$ is a TDS of G, contradicting the minimality of S. Hence, $c_{1} x \in E$. Suppose $d_{1} \in A$. Let $T=\left(S \backslash\left\{a_{1}, c, u\right\}\right) \cup\{a, b, x\}$. Then, T is a minimum TDS of G. If $w^{\prime}=x$, then $\lambda(T)=\lambda(S), \iota(T)=\iota(S), \beta(T)=\beta(S)$ and $\xi(T)=\xi(S)$ but with $\varphi(T)<\varphi(S)$. If $w^{\prime} \neq x$, then $\lambda(T)=\lambda(S)$ and $\iota(T)=\iota(S)$ but with $\beta(T)<\beta(S)$. Since both cases contradict the choice of S, we deduce that $d_{1} \in B$. If d and d_{1} are part of an $A B A$-triple, then $\left(S \backslash\left\{a_{1}, d\right\}\right) \cup\{b\}$ is a TDS of G, contradicting the minimality of S. Hence, $\left\{d, d_{1}\right\}$ is an $A B$-pair. By the claw-freeness of $G, d_{1} x \notin E$ and therefore $\left(S \backslash\left\{a^{\prime}, d_{1}, u\right\}\right) \cup\left\{a, b_{2}\right\}$ is a TDS of G, contradicting the minimality of S.

This completes the proof of Claim $8.4 \square$

We now return to the proof of Claim 8. Let $N\left(a^{\prime}\right)=\left\{a_{1}, b_{1}, b_{2}\right\}$ (possibly, $w^{\prime} \in\left\{b_{1}, b_{2}\right\}$). By the claw-freeness of $G, b_{1} b_{2} \in E$. If a^{\prime} and a_{1} are part of an $A B A$-triple, then $\left(S \backslash\left\{a_{1}, u\right\}\right) \cup\{a\}$ is a TDS of G, contradicting the minimality of S. Hence, by Property 1 and Property 2, we may assume $\left\{a^{\prime}, a_{1}\right\}$ is either an A-pair or an $A B$-pair. If $a^{\prime} \in B$, then $\left(S \backslash\left\{a^{\prime}, u\right\}\right) \cup\{a\}$ is a TDS of G, contradicting the minimality of S. Hence, $a^{\prime} \in A$. Suppose $a^{\prime} \in A_{1}$. We may assume that $\operatorname{epn}\left(a^{\prime}, S\right)=\left\{b_{1}\right\}$. But then $\left(S \backslash\left\{a^{\prime}, a_{1}, u\right\}\right) \cup\left\{a, b_{2}\right\}$ is a TDS of G, contradicting the minimality of S. Thus, $a^{\prime} \in A_{2}$ and $\operatorname{epn}\left(a^{\prime}, S\right)=\left\{b_{1}, b_{2}\right\}$.

If $a_{1} \in A$, then $\left\{a^{\prime}, a_{1}\right\}$ is an A-pair with $a^{\prime} \in A_{2}$ and $a_{1} \in A_{1}$. Using Rule 6 , we discharge a weight of $\frac{1}{2}$ from the A-pair $\left\{a^{\prime}, a_{1}\right\}$ to the B-pair $\{u, v\}$ so that $\zeta\left(S^{\prime}\right) \geq$ $\psi\left(S^{\prime}\right)+\frac{1}{2}=\frac{5}{2}$, as desired. (See Figure $10.7(\mathrm{~d})$.) Hence we may assume that $a_{1} \in B$. Let $N\left(a_{2}\right)=\left\{a, a_{1}, a_{3}\right\}$. Then, $a_{3} \in S$.

Let $N\left(b_{1}\right)=\left\{a^{\prime}, b_{2}, c\right\}$ and $N\left(b_{2}\right)=\left\{a^{\prime}, b_{1}, d\right\}$ (possibly, $c=d$). We note that $\{c, d\} \subset$ $V \backslash S$. Let $N(c)=\left\{b_{1}, c_{1}, c_{2}\right\}$ and $N(d)=\left\{b_{2}, d_{1}, d_{2}\right\}$. To totally dominate c and d, we may assume $c_{1} \in S$ and $d_{1} \in S$ (possibly, $c_{1}=d_{1}$).

Claim 8.5 The following properties hold in G :
(a) $c \neq d$ and $\left\{c_{1} c_{2}, d_{1} d_{2}\right\} \subset E$.
(b) $c d \notin E$.
(c) $\left\{c_{2}, d_{2}\right\} \subset S$.

Proof. (a) Suppose $c=d$. Then, $b_{1}=d_{2}, b_{2}=c_{2}$ and $c_{1}=d_{1}$. Let $N\left(c_{1}\right)=\left\{c, c_{3}, c_{4}\right\}$. To totally dominate c_{1}, we may assume that $c_{3} \in S$. By the claw-freeness of $G, c_{3} c_{4} \in E$. If $c_{3} \in A$, then by Property $1,\left\{c_{1}, c_{3}\right\}$ is an A-pair and $T=\left(S \backslash\left\{a_{1}\right\}\right) \cup\left\{b_{1}\right\}$ is a minimum TDS of G with $\lambda(T)=\lambda(S)$ and $\iota(T)=\iota(S)$ but with $\beta(T)<\beta(S)$, contradicting the choice of S. Hence, $c_{3} \in B$. If c_{1} and c_{3} are part of an $A B A$-triple, then $\left(S \backslash\left\{a_{1}, c_{1}\right\}\right) \cup\left\{b_{1}\right\}$
is a TDS of G, contradicting the minimality of S. Hence, $\left\{c_{1}, c_{3}\right\}$ is an $A B$-pair. Suppose $c_{3} x \in E$. If $w^{\prime} \neq x$, then by the claw-freeness of $G, c_{4}=x$. But then since $a_{3} \in S$, we have that $\left(S \backslash\left\{a_{1}, a^{\prime}, c_{1}, c_{3}, v\right\}\right) \cup\left\{a_{2}, b_{1}, c, x\right\}$ is a TDS of G, contradicting the minimality of S. Hence, $w^{\prime}=x$. But then $T=\left(S \backslash\left\{a_{1}, c_{1}, u\right\}\right) \cup\left\{a, b_{1}, x\right\}$ is a minimum TDS of G with $\lambda(T)=\lambda(S), \iota(T)=\iota(S), \beta(T)=\beta(S)$ and $\xi(T)=\xi(S)$ but with $\varphi(T)<\varphi(S)$, contradicting the choice of S. Hence, $c_{3} x \notin E$. But then $\left(S \backslash\left\{a^{\prime}, c_{3}, u\right\}\right) \cup\{a, c\}$ is a TDS of G, contradicting the minimality of S. We conclude that $c \neq d$. Thus, by the claw-freeness of $G,\left\{c_{1} c_{2}, d_{1} d_{2}\right\} \subset E$. This establishes part (a).
(b) Suppose $c d \in E$. Then, $c=d_{2}, d=c_{2}$ and $c_{1}=d_{1}$. But then $T=\left(S \backslash\left\{a_{1}\right\}\right) \cup\left\{b_{1}\right\}$ is a minimum TDS of G with $\lambda(T)=\lambda(S)$ and $\iota(T)=\iota(S)$ but with $\beta(T)<\beta(S)$, contradicting the choice of S. This establishes part (b).
(c) Suppose $\left\{c_{2}, d_{2}\right\} \not \subset S$. We may assume that $c_{2} \notin S$. Let $N\left(c_{1}\right)=\left\{c, c_{2}, c^{\prime}\right\}$. To totally dominate $c_{1}, c^{\prime} \in S$. If $c^{\prime} \in A$, then by Property $1,\left\{c^{\prime}, c_{1}\right\}$ is an A-pair and $T=\left(S \backslash\left\{a_{1}\right\}\right) \cup\left\{b_{1}\right\}$ is a minimum TDS of G with $\lambda(T)=\lambda(S)$ and $\iota(T)=\iota(S)$ but with $\beta(T)<\beta(S)$, contradicting the choice of $S A$ Hence, $\mathcal{G}^{\prime} \in B$. If c^{\prime} and c_{1} are part of an $A B A$-triple, then either $c_{1} \in A_{1}$ or $c_{1} \in A_{2}$. If $c_{1} \in A_{1}$ then $\operatorname{epn}\left(c_{1}, S\right)=\{c\}$ and $\left(S \backslash\left\{a_{1}, c_{1}\right\}\right) \cup\left\{b_{1}\right\}$ is a TDS of G, contradicting the minimality of S. If $c_{1} \in A_{2}$ then $\operatorname{epn}\left(c_{1}, S\right)=\left\{c, c_{2}\right\}$ and $T=\left(S \backslash\left\{a_{1}\right\}\right) \cup\left\{b_{1}\right\}$ is a minimum TDS of G with $\lambda(T)=\lambda(S)$ and $\iota(T)=\iota(S)$ but with $\beta(T)<\beta(S)$, contradicting the choice of S. Hence, $\left\{c^{\prime}, c_{1}\right\}$ is an $A B$-pair. Suppose $c^{\prime} x \in E$. If $w^{\prime} \neq x$, then, by the claw-freeness of G, c^{\prime} and x have a common neighbor, x^{\prime} say, and $T=\left(S \backslash\left\{a_{1}\right\}\right) \cup\left\{b_{1}\right\}$ is a minimum TDS of G with $\lambda(T)=\lambda(S), \iota(T)=\iota(S), \beta(T)=\beta(S)$ and $\xi(T)=\xi(S)$ but with $\varphi(T)<\varphi(S)$, contradicting the choice of S. Hence, $w^{\prime}=x$. By the claw-freeness of $G, c^{\prime} c_{2} \in E$ and we have that $T=\left(S \backslash\left\{a_{1}, c_{1}, u\right\}\right) \cup\left\{a, b_{1}, x\right\}$ is a minimum TDS of G with $\lambda(T)=\lambda(S)$, $\iota(T)=\iota(S), \beta(T)=\beta(S)$ and $\xi(T)=\xi(S)$ but with $\varphi(T)<\varphi(S)$, contradicting the choice of S. Hence, $c^{\prime} x \notin E$. But then $\left(S \backslash\left\{a^{\prime}, a_{1}, c^{\prime}, u\right\}\right) \cup\left\{a, b_{1}, c\right\}$ is a TDS of G, contradicting the minimality of S. Hence, $c_{2} \in S$ and, similarly, $d_{2} \in S$. This establishes
part (c).
If $\left\{c_{1}, c_{2}\right\} \subset A$, then by Property $1,\left\{c_{1}, c_{2}\right\}$ is an A-pair and using Rule 7 , we discharge a weight of $\frac{1}{2}$ to the strong $A B$-pair $\left\{a^{\prime}, a_{1}\right\}$ and then a weight of $\frac{1}{2}$ to the B-pair $\{u, v\}$. Thus, $\zeta\left(S^{\prime}\right) \geq \psi\left(S^{\prime}\right)+\frac{1}{2}=\frac{5}{2}$, as desired. (See Figure 10.7(e).) We may therefore assume that $c_{1} \in B$.

Suppose $\left\{c_{1}, c_{2}\right\}$ is an $A B$-pair or a B-pair. Suppose $c_{1} x \in E$. If $w^{\prime} \neq x$, then by the claw-freeness of G we have that $c_{2} x \in E$, contradicting Property 3 . Hence, $w^{\prime}=x$. But then $T=\left(S \backslash\left\{c_{1}\right\}\right) \cup\{c\}$ is a minimum TDS of G with $\lambda(T)=\lambda(S)$ and $\iota(T)=\iota(S)$ but with $\beta(T)<\beta(S)$, contradicting the choice of S. Hence, $c_{1} x \notin E$. But then $\left(S \backslash\left\{a^{\prime}, a_{1}, c_{1}, u\right\}\right) \cup\left\{a, b_{1}, c\right\}$ is a TDS of G, contradicting the minimality of S. Hence, c_{1} and c_{2} are part of an $A B A$-triple.

Let $N\left(c_{1}\right)=\left\{c, c^{\prime}, c_{2}\right\}$ and $N\left(c^{\prime}\right)=\left\{c_{1}, c_{3}, c_{4}\right\}$. Note that $c^{\prime} \in A$ and $\left\{c_{3}, c_{4}\right\} \subset V \backslash S$. By the claw-freeness of $G, e_{3} c_{4} \in E$. If $c^{\prime} \in A_{1}$, we may assume that $c_{4} \in \operatorname{epn}\left(c^{\prime}, S\right)$. But then $\left(S \backslash\left\{a^{\prime}, a_{1}, c^{\prime}, c_{1}, u\right\}\right) \cup\left\{a, b_{1}, c, c_{3}\right\}$ is a TDS of G, contradicting the minimality of S. Hence, $c^{\prime} \in A_{2}$ and therefore $\left\{c^{\prime}, c_{1}, c_{2}\right\}$ is a strong $A B A$-triple. By the same argument, we may assume that $N\left(d_{1}\right)=\left\{d, d^{\prime}, d_{2}\right\}$ and that $\left\{d^{\prime}, d_{1}, d_{2}\right\}$ is a strong $A B A$ triple with $d^{\prime} \in A_{2}, d_{1} \in B$ and $d_{2} \in A_{1}$. Using Rule 8 , we discharge a weight of $\frac{1}{4}$ from each of these strong $A B A$-triples to the strong $A B$-pair $\left\{a^{\prime}, a_{1}\right\}$ and then a weight of $\frac{1}{2}$ from this $A B$-pair to the B-pair $\{u, v\}$ so that $\zeta\left(S^{\prime}\right) \geq \psi\left(S^{\prime}\right)+\frac{1}{2}=\frac{5}{2}$, as desired. (See Figure 10.7(f).)

Claim 9 If S^{\prime} is a weak $A B$-triple, then $\zeta\left(S^{\prime}\right) \geq \frac{15}{4}$.

Proof. Suppose that $S^{\prime}=\{u, v, w\}$ is a weak $A B A$-triple in S with $\{u, w\} \subset A_{1}$ and $v \in B$. We note that $\psi\left(S^{\prime}\right)=\frac{7}{2}$. By the claw-freeness of G, we may assume that u and v have a common neighbor, x say. Let $N(u)=\{a, v, x\}$ and note that $a \in \operatorname{epn}(u, S)$. Let $N(w)=\{b, c, v\}$ with $b \in \operatorname{epn}(w, S)$ and $c \notin \operatorname{epn}(w, S)$. By Property 3, $x \notin N(w)$
(a)

(b)

(c)

Figure 10.8: The three possible subgraphs containing a weak ABA-triple.
and hence, since G is claw-free, $b c \in E$. Let $N(c)=\left\{b, c_{1}, w\right\}$ and note that $c_{1} \in S$. Let $N\left(c_{1}\right)=\left\{c, c_{2}, c_{3}\right\}$. To totally dominate c_{1}, we may assume that $c_{2} \in S$. By the claw-freeness of $G, c_{2} c_{3} \in E$. Thus, $c_{1} \in B$. If $c_{2} \in B$, then $\left\{c_{1}, c_{2}\right\}$ is a B-pair and $\left(S \backslash\left\{c_{2}, w\right\}\right) \cup\{c\}$ is a TDS of G, contradicting the minimality of S. Hence, $c_{2} \in A$ and therefore, by Property 1, $\left\{c_{1}, c_{2}\right\}$ is an $A B$-pair. If $a c_{3} \in E$, then by the claw-freeness of $G, N(a)=\left\{c_{3}, u, x\right\}$ and $\left(S \backslash\left\{c_{1}, u\right\}\right) \cup\left\{c_{3}\right\}$ is a TDS of G, contradicting the minimality of S. Hence, $a c_{3} \notin E$. We proceed further with the following two claims.

Claim $9.1 a x \in E$.

Proof. For sake of contradiction, suppose that $a x \notin E$. By the claw-freeness of $G, a b \notin$ E. Let $N(a)=\left\{a_{1}, a_{2}, u\right\}$. By the claw-freeness of $G, a_{1} a_{2} \in E$ and since $a \in \operatorname{epn}(u, S)$ we have that $\left\{a_{1}, a_{2}\right\} \subset V \backslash S$. Let $N\left(a_{1}\right)=\left\{a, a_{2}, d\right\}$ and $N\left(a_{2}\right)=\left\{a, a_{1}, e\right\}$ (possibly, $d=e$). In order to totally dominate a_{1} and a_{2}, we have that $d \in S$ and $e \in S$. Let $N(d)=\left\{a_{1}, d_{1}, d_{2}\right\}$ and $N(e)=\left\{a_{2}, e_{1}, e_{2}\right\}$. To totally dominate d and e, we may assume that $d_{1} \in S$ and $e_{2} \in S$ (possibly, $d_{1}=e_{1}$).

Suppose $d=e$. Then $a_{1}=e_{2}, a_{2}=d_{2}$ and $d_{1}=e_{1}$. If $d_{1} \in A$, then by Property 1 , $\left\{d, d_{1}\right\}$ is an A-pair and $T=(S \backslash\{v, w\}) \cup\{a, c\}$ is a minimum TDS of G with $\lambda(T)=$ $\lambda(S), \iota(T)=\iota(S), \beta(T)=\beta(S), \xi(T)=\xi(S)$ and $\varphi(T)=\varphi(S)$ but with $\alpha(T)<$
$\alpha(S)$, contradicting the choice of S. Hence, $d_{1} \in B$. If $\left\{d, d_{1}\right\}$ is an $A B$-pair, then $\left(S \backslash\left\{d_{1}, u\right\}\right) \cup\left\{a_{1}\right\}$ is a TDS of G, contradicting the minimality of S. Hence, d and d_{1} are part of an $A B A$-triple. But then $(S \backslash\{d, v, w\}) \cup\{a, c\}$ is a TDS of G, contradicting the minimality of S. Hence $d \neq e$.

Suppose $d e \in E$. Then, $d=e_{1}, e=d_{1}$ and $d_{2}=e_{2}$. But then $(S \backslash\{e, u\}) \cup\left\{a_{1}\right\}$ is a TDS of G, contradicting the minimality of S. Hence, de $\notin E$. By the claw-freeness of G, $\left\{d_{1} d_{2}, e_{1} e_{2}\right\} \subset E$.

Suppose $d_{1} \neq e_{1}$. If $\left\{d_{1}, e_{1}\right\} \subset A$, then by Property $1,\left\{d, d_{1}\right\}$ and $\left\{e, e_{1}\right\}$ are both A-pairs and $T=(S \backslash\{v, w\}) \cup\{a, c\}$ is a minimum TDS of G with $\lambda(T)=\lambda(S)$, $\iota(T)=\iota(S), \beta(T)=\beta(S), \xi(T)=\xi(S)$ and $\varphi(T)=\varphi(S)$ but with $\alpha(T)<\alpha(S)$, contradicting the choice of S. Hence we may assume that $d_{1} \in B$. If $\left\{d, d_{1}\right\}$ is an $A B$ pair, then $\left(S \backslash\left\{d_{1}, u\right\}\right) \cup\left\{a_{1}\right\}$ is a TDS of G, contradicting the minimality of S. Hence, d and d_{1} are part of and $A B A$-triple. But then $(S \backslash\{d, v, w\}) \cup\{a, c\}$ is a TDS of G, contradicting the minimality of S. Hence, $d_{1}=e_{1}$. Thus, by the claw-freeness of G, $d_{2}=e_{2}$. But then $(S \backslash\{d, v, w\}) \cup\{a, c\}$ is aTDS of G, contradicting the minimality of S. We deduce, therefore, that $a x \in E$.

Claim 9.2 If $a b \notin E$, then $\zeta\left(S^{\prime}\right) \geq \frac{15}{4}$.

Proof. Suppose that $a b \notin E$. Let $N(a)=\left\{a_{1}, u, x\right\}$ and note that since $u \in A$ we have that $a_{1} \notin S$. Let $N\left(a_{1}\right)=\left\{a, a_{2}, a_{3}\right\}$. To totally dominate a_{1}, we may assume that $a_{2} \in S$. By the claw-freeness of $G, a_{2} a_{3} \in E$ (possibly, $\left\{a_{2}, a_{3}\right\}=\left\{c_{2}, c_{3}\right\}$).

Suppose $a_{3} \notin S$. Let $N\left(a_{2}\right)=\left\{a_{1}, a_{2}, a_{4}\right\}$. To totally dominate a_{2}, we have that $a_{4} \in S$. If $a_{4} \in A$, then by Property $1\left\{a_{2}, a_{4}\right\}$ is an A-pair and so $\left\{a_{2}, a_{3}\right\} \neq\left\{c_{2}, c_{3}\right\}$. But then $T=(S \backslash\{v, w\}) \cup\{a, c\}$ is a minimum TDS of G with $\lambda(T)=\lambda(S), \iota(T)=\iota(S)$, $\beta(T)=\beta(S), \xi(T)=\xi(S)$ and $\varphi(T)=\varphi(S)$ but with $\alpha(T)<\alpha(S)$, contradicting the choice of S. Hence, $a_{4} \in B$. If $\left\{a_{2}, a_{4}\right\}$ is an $A B$-pair, then $\left(S \backslash\left\{a_{4}, u\right\}\right) \cup\left\{a_{1}\right\}$ is a TDS
of G, contradicting the minimality of S. Hence a_{2} and a_{4} are part of an $A B A$-triple. But then $T=\left(S \backslash\left\{a_{2}, u\right\}\right) \cup\left\{a, a_{1}\right\}$ is a minimum TDS of G with $\lambda(T)<\lambda(S)$, contradicting the choice of S. Hence, $a_{3} \in S$.

Suppose $\left\{a_{2}, a_{3}\right\} \not \subset A$. We may assume then that $a_{3} \in B$. Let $N\left(a_{3}\right)=\left\{a_{1}, a_{2}, a_{5}\right\}$. If $\left\{a_{2}, a_{3}\right\}$ is an $A B$-pair or a B-pair, then $\left(S \backslash\left\{a_{3}, u\right\}\right) \cup\left\{a_{1}\right\}$ is a TDS of G, contradicting the minimality of S. Hence, $\left\{a_{2}, a_{3}, a_{5}\right\}$ must be an $A B A$-triple. Let $a_{6} \in \operatorname{epn}\left(a_{5}, S\right)$. Then $T=\left(S \backslash\left\{a_{3}, u\right\}\right) \cup\left\{a_{1}, a_{6}\right\}$ is a minimum TDS of G with $\lambda(T)<\lambda(S)$, contradicting the choice of S. Therefore, $\left\{a_{2}, a_{3}\right\} \subset A$ and so, by Property $1,\left\{a_{2}, a_{3}\right\}$ is an A-pair. Using Rule 11, we discharge a weight of $\frac{1}{4}$ from this A-pair to the weak $A B A$-triple $\{u, v, w\}$ so that $\zeta\left(S^{\prime}\right) \geq \psi\left(S^{\prime}\right)+\frac{1}{4}=\frac{15}{4}$, as desired. (See Figure 10.8(a).)

By Claim 9.2, we may assume that $a b \in E$. Let $N\left(c_{2}\right)=\left\{c_{1}, c_{3}, f\right\}$. Since $c_{2} \in A$, we note that $\operatorname{epn}\left(c_{2}, S\right)=\{f\}$. Let $N\left(c_{3}\right)=\left\{c_{1}, c_{2}, g\right\}$. By Property 3, we have that $g \notin S$.

Claim $9.3 f=g$.

Proof. Our proof of Claim 9.3 is a modified argument to the proof of Claim 9.1. For sake of contradiction, suppose that $f \neq g$. If $f g \in E$, let h be the common neighbor of f and g. But then to totally dominate g, we have that $h \in S$, contradicting the fact that $c_{2} \in A$. Hence, $f g \notin E$. Let $N(f)=\left\{c_{2}, f_{1}, f_{2}\right\}$. By the claw-freeness of $G, f_{1} f_{2} \in E$ and since $f \in \operatorname{epn}\left(c_{2}, S\right)$ we have that $\left\{f_{1}, f_{2}\right\} \subset V \backslash S$. Let $N\left(f_{1}\right)=\left\{f, f_{2}, d\right\}$ and $N\left(f_{2}\right)=\left\{f, f_{1}, e\right\}$ (possibly, $d=e$). In order to totally dominate f_{1} and f_{2}, we have that $d \in S$ and $e \in S$. Let $N(d)=\left\{f_{1}, d_{1}, d_{2}\right\}$ and $N(e)=\left\{f_{2}, e_{1}, e_{2}\right\}$. To totally dominate d and e, we may assume that $d_{1} \in S$ and $e_{1} \in S$.

Suppose $d=e$. Then, $f_{1}=e_{2}, f_{2}=d_{2}$ and $d_{1}=e_{1}$. If $d_{1} \in A$, then by Property 1 , $\left\{d, d_{1}\right\}$ is an A-pair and $T=\left(S \backslash\left\{c_{1}\right\}\right) \cup\{f\}$ is a minimum TDS of G with $\lambda(T)=\lambda(S)$, $\iota(T)=\iota(S), \beta(T)=\beta(S), \xi(T)=\xi(S)$ and $\varphi(T)=\varphi(S)$ but with $\alpha(T)<\alpha(S)$,
contradicting the choice of S. Hence, $d_{1} \in B$. If $\left\{d, d_{1}\right\}$ is an $A B$-pair, then $(S \backslash$ $\left.\left\{c_{2}, d_{1}, w\right\}\right) \cup\left\{c, f_{1}\right\}$ is a TDS of G, contradicting the minimality of S. Hence, d and d_{1} are part of an $A B A$-triple. But then $\left(S \backslash\left\{c_{1}, d\right\}\right) \cup\{f\}$ is a TDS of G, contradicting the minimality of S. Hence $d \neq e$.

Suppose $d e \in E$. Then, $d=e_{1}, e=d_{1}$ and $d_{2}=e_{2}$. But then $\left(S \backslash\left\{c_{2}, e, w\right\}\right) \cup\left\{c, f_{1}\right\}$ is a TDS of G, contradicting the minimality of S. Hence, $d e \notin E$. By the claw-freeness of $G,\left\{d_{1} d_{2}, e_{1} e_{2}\right\} \in E$.

Suppose $d_{1} \neq e_{1}$. If $\left\{d_{1}, e_{1}\right\} \subset A$, then by Property $1,\left\{d, d_{1}\right\}$ and $\left\{e, e_{1}\right\}$ are both A-pairs and $T=\left(S \backslash\left\{c_{1}\right\}\right) \cup\{f\}$ is a minimum TDS of G with $\lambda(T)=\lambda(S), \iota(T)=\iota(S)$, $\beta(T)=\beta(S), \xi(T)=\xi(S)$ and $\varphi(T)=\varphi(S)$ but with $\alpha(T)<\alpha(S)$, contradicting the choice of S. Therefore we may assume that $d_{1} \in B$. If $\left\{d, d_{1}\right\}$ is an $A B$-pair, then $\left(S \backslash\left\{c_{2}, d_{1}, w\right\}\right) \cup\left\{c, f_{1}\right\}$ is a TDS of G, contradicting the minimality of S. Hence, d and d_{1} are part of an $A B A$-triple. But then $\left(S \backslash\left\{c_{1}, d\right\}\right) \cup\{f\}$ is a TDS of G, contradicting the minimality of S. Hence $d_{1}=e_{1}$. Thus, by the claw-freeness of $G, d_{2}=e_{2}$. But then $\left(S \backslash\left\{d, c_{1}\right\}\right) \cup\{f\}$ is a TDS of G, contradicting the minimality of S. We deduce, therefore, that $f=g$.

We now return to the proof of Claim 9. By Claim 9.3, $f=g$. Let $N(f)=\left\{c_{2}, c_{3}, h\right\}$. Since $f \in \operatorname{epn}\left(c_{2}, S\right)$, we have that $h \notin S$. Let $N(h)=\left\{f, h_{1}, h_{2}\right\}$. By the claw-freeness of $G, h_{1} h_{2} \in E$. To totally dominate h, we may assume that $h_{1} \in S$.

Suppose $h_{2} \notin S$. Let $N\left(h_{1}\right)=\left\{h, h_{2}, h_{3}\right\}$. To totally dominate h_{1}, we have that $h_{3} \in S$. If $h_{3} \in A$, then by Property $1,\left\{h_{1}, h_{3}\right\}$ is an A-pair and $T=\left(S \backslash\left\{c_{1}\right\}\right) \cup\{f\}$ is a minimum TDS of G with $\lambda(T)=\lambda(S), \iota(T)=\iota(S), \beta(T)=\beta(S), \xi(T)=\xi(S)$ and $\varphi(T)=\varphi(S)$ but with $\alpha(T)<\alpha(S)$, contradicting the choice of S. Hence, $h_{3} \in B$. If $\left\{h_{1}, h_{3}\right\}$ is an $A B$-pair, then $\left(S \backslash\left\{c_{2}, h_{3}, w\right\}\right) \cup\{c, h\}$ is a TDS of G, contradicting the minimality of S. Hence, h_{1} and h_{3} are part of an $A B A$-triple. But then $T=\left(S \backslash\left\{c_{2}, h_{1}, w\right\}\right) \cup\{c, f, h\}$ is a minimum TDS of G with $\lambda(T)<\lambda(S)$, contradicting the choice of S. Hence, $h_{2} \in S$.

If $\left\{h_{1}, h_{2}\right\} \subset A$, then, by Property $1,\left\{h_{1}, h_{2}\right\}$ is an A-pair. Using Rule 9 , we discharge a weight of $\frac{1}{4}$ from the A-pair $\left\{h_{1}, h_{2}\right\}$ to the $A B$-pair $\left\{c_{1}, c_{2}\right\}$ and a weight of $\frac{1}{4}$ from this $A B$-pair to the weak $A B A$-triple $\{u, v, w\}$ so that $\zeta\left(S^{\prime}\right) \geq \psi\left(S^{\prime}\right)+\frac{1}{4}=\frac{15}{4}$, as desired. (See Figure 10.8(b).) Hence, $\left\{h_{1}, h_{2}\right\} \not \subset A$. We may assume that $h_{2} \in B$. Let $N\left(h_{2}\right)=\left\{h, h_{1}, h_{3}\right\}$. If $\left\{h_{1}, h_{2}\right\}$ is an $A B$-pair or a B-pair, then $\left(S \backslash\left\{c_{2}, h_{2}, w\right\}\right) \cup\{c, h\}$ is a TDS of G, contradicting the minimality of S. Hence, $\left\{h_{1}, h_{2}, h_{3}\right\}$ is an $A B A$-triple. Let $N\left(h_{3}\right)=\left\{h_{2}, h_{4}, h_{5}\right\}$. If $h_{3} \in A_{1}$, then we may assume that $\operatorname{epn}\left(h_{3}, S\right)=\left\{h_{4}\right\}$. But then $T=\left(S \backslash\left\{c_{2}, h_{2}, h_{3}, w\right\}\right) \cup\left\{c, h, h_{5}\right\}$ is a TDS of G, contradicting the minimality of S. Therefore, $h_{3} \in A_{2}$. Using Rule 10, we discharge a weight of $\frac{1}{4}$ from the strong $A B A$ triple $\left\{h_{1}, h_{2}, h_{3}\right\}$ to the $A B$-pair $\left\{c_{1}, c_{2}\right\}$ and a weight of $\frac{1}{4}$ from this $A B$-pair to the weak $A B A$-triple $\{u, v, w\}$ so that $\zeta\left(S^{\prime}\right) \geq \psi\left(S^{\prime}\right)+\frac{1}{4}=\frac{15}{4}$, as desired. (See Figure 10.8(c).) This completes the proof of Claim 9.

We conclude the section with/the following claim.

Claim 10 The average weight under g of every vertex in S is at least $\frac{5}{4}$.

Proof. We show that each pair in S has weight of at least $5 / 2$ under g and each triple in S has a weight of at least $15 / 4$ under g. Let $S^{\prime} \subset S$. If S^{\prime} is a weak A-pair or a B-pair, then the result follows from Claims 5 to 8 . If S^{\prime} is a weak $A B$-pair, then no discharging rule alters the weight assigned to the pair, and so $\zeta\left(S^{\prime}\right)=\psi\left(S^{\prime}\right)=\frac{5}{2}$. If S^{\prime} is a strong $A B$-pair, then a maximum weight of $\frac{1}{2}$ is discharged from S^{\prime} and hence $\zeta\left(S^{\prime}\right) \geq \psi\left(S^{\prime}\right)-\frac{1}{2}=\frac{5}{2}$. If S^{\prime} is a strong A-pair, then a maximum weight of $\frac{1}{2}$ is discharged from S^{\prime} and hence $\zeta\left(S^{\prime}\right) \geq \psi\left(S^{\prime}\right)-\frac{1}{2} \geq \frac{5}{2}$. If S^{\prime} is a weak $A B A$-triple, then the result follows from Claim 9. Finally, if S^{\prime} is a strong $A B A$-triple, then a maximum weight of $\frac{1}{4}$ is discharged from S^{\prime} and hence $\zeta\left(S^{\prime}\right) \geq \psi\left(S^{\prime}\right)-\frac{1}{4}=\frac{15}{4}$.

Chapter 11

A Partition and a Bound

In our final chapter, we combine the partition first presented in Chapter 2 with the edge weighting function used in the previous two chapters and present a new bound. More specifically, we show that every connected cubic graph on n vertices has a total dominating set whose complement contains a dominating set such that the cardinality of the total dominating set is at most $(n+2) / 2$, and this bound is essentially best possible.

Recently, several authors studied the cardinalities of pairs of disjoint dominating sets in graphs (see, for example, $[20,35,50,58,59,60,61,75,77]$), which serves to motivate this research into the cardinality of a total dominating set whose complement is a dominating set. We restrict our attention to cubic graphs.

11.1 Total Domination in Cubic Graphs

As presented in previous chapters, several authors, including Archdeacon et al. [2], Chvátal and McDiarmid [15], Thomassé and Yeo [96], and Tuza [97], established the following upper bound for the total domination number of a graph with minimum degree
at least three.

Theorem 11.1 ([2, 15, 96, 97]) If G is a graph of order n with $\delta(G) \geq 3$, then $\gamma_{t}(G) \leq$ $n / 2$.

As an immediate consequence of Theorem 11.1, we have that the total domination number of a cubic graph is at most one-half its order. The generalized Petersen graph G_{16} of order $n=16$ shown in Figure 11.1 achieves equality in Theorem 11.1.

Figure 11.1: The generalized Petersen graph G_{16} of order 16.

Two infinite families \mathcal{G} and \mathcal{H} of connected cubic graphs (described below) with total domination number one-half their orders are constructed in [31]. For $k \geq 2$ consider two copies of the path $P_{2 k}$ with respective vertex sequences $a_{1}, b_{1}, a_{2}, b_{2}, \ldots, a_{k}, b_{k}$ and $c_{1}, d_{1}, c_{2}, d_{2}, \ldots, c_{k}, d_{k}$. For each $i \in\{1,2, \ldots, k\}$, join a_{i} to d_{i} and b_{i} to c_{i}. To complete the construction of graphs in \mathcal{G} (\mathcal{H}, respectively), join a_{1} to c_{1} and b_{k} to d_{k} (a_{1} to b_{k} and c_{1} to d_{k}, respectively). Two graphs G and H from the families \mathcal{G} and \mathcal{H} are illustrated in Figure 11.2.

Theorem 11.2 ([69]) Let G be a connected graph of order n with $\delta(G) \geq 3$. Then, $\gamma_{t}(G) \leq n / 2$, with equality if and only if $G \in \mathcal{G} \cup \mathcal{H}$ or G is the generalized Petersen graph G_{16} shown in Figure 11.1.

G

H

Figure 11.2: Cubic graphs $G \in \mathcal{G}$ and $H \in \mathcal{H}$ of order n with $\gamma_{t}(G)=\gamma_{t}(H)=n / 2$.

11.2 DT-Pair Total Dominating Sets

Recall that a DT-pair of a graph G, if it exists, is a pair (D, T) of disjoint sets of vertices of G such that D is a DS and T is a TDS of G. We define a DT-pair total dominating set, abbreviated DT-pair TDS, to be a total dominating set $T \subseteq V$ such that $V \backslash T$ contains a dominating set. Following the previous notation in the literature, we define the DT-pair total domination number of G, denoted by $\gamma \gamma_{t}^{*}(G)$, to be the minimum cardinality of a

Since every DT-pair TDS of G is a TDS of G, we observe that $\gamma_{t}(G) \leq \gamma \gamma_{t}^{*}(G)$. This inequality may be strict. To see that, consider for example the Petersen graph P shown in Figure 11.3. Every $\gamma_{t}(P)$-set is of the form $N[v]$, where v is an arbitrary vertex in P, but the set $V(P) \backslash N[v]$ is not a DS in P. Thus no $\gamma_{t}(P)$-set is a DT-pair TDS of P, and so $\gamma \gamma_{t}^{*}(P)>\gamma_{t}(P)=4$. On the other hand, taking T to be the set of five vertices on the outer cycle of P (as drawn in Figure 11.3), we have a DT-pair TDS of P, and hence $\gamma \gamma_{t}^{*}(P) \leq|T|=5$. Consequently, the Petersen graph is a cubic graph of order $n=10$ with $\gamma_{t}(P)=4$ but with $\gamma \gamma_{t}^{*}(P)=5=n / 2$. Consider also the cubic graph P^{\prime} of order $n=20$ constructed from two copies of the Petersen graph by removing an edge from each copy and adding the two edges shown in Figure 11.3. Then, $\gamma_{t}\left(P^{\prime}\right)=8$, but $\gamma \gamma_{t}^{*}\left(P^{\prime}\right)=9$.

We remark that if we restrict our attention to connected cubic graphs of girth at least 5,
then a computer search produces three graphs G of order $n=20$ with $\gamma_{t}(G)<\gamma \gamma_{t}^{*}(G)$, while there are 835 such graphs of order $n=22$ with $\gamma_{t}(G)<\gamma \gamma_{t}^{*}(G)$, and 5890 such graphs of order $n=24$ with $\gamma_{t}(G)<\gamma \gamma_{t}^{*}(G)$.

Figure 11.3: The Petersen Graph P and the constructed graph P^{\prime} of order 20.

Our aim in this chapter is to establish an upper bound on the DT-pair total domination number of a connected cubic graph in terms of its order. We shall prove the following result, a proof of which can be found in Section 11.5.

Theorem 11.3 If G is a connected cubic graph of order n, then $\gamma \gamma_{t}^{*}(G) \leq(n+2) / 2$.

The bound of Theorem 11.3 is almost sharp since there exist two infinite families of connected cubic graphs G of order n such that $\gamma \gamma_{t}^{*}(G)=n / 2$, as may be seen by the following result.

Proposition 11.4 If $G \in \mathcal{G} \cup \mathcal{H} \cup\left\{G_{16}\right\} \cup\{P\}$ has order n, where G_{16} is the generalized Petersen graph shown in Figure 11.1 and P is the Petersen graph shown in Figure 11.3, then $\gamma \gamma_{t}^{*}(G)=n / 2$.

Proof. If $G=P$, then G has order $n=10$ and as observed earlier (see Section 11.2), $\gamma \gamma_{t}^{*}(G)=n / 2$. Suppose, then, that $G \in \mathcal{G} \cup \mathcal{H} \cup\left\{G_{16}\right\}$. If $G=G_{16}$, then G has order $n=16$ and the vertices on the outer 8-cycle of G as drawn in Figure 11.1 form a DT-pair TDS of G, and hence $\gamma \gamma_{t}^{*}(G) \leq n / 2$. Suppose $G \in \mathcal{G} \cup \mathcal{H}$ has order $n=4 k$. Using the notation described earlier (see Section 11.1) to construct the families \mathcal{G} and
\mathcal{H}, the set $S=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\} \cup\left\{b_{1}, b_{2}, \ldots, b_{k}\right\}$ is a DT-pair TDS in G, and hence $\gamma \gamma_{t}^{*}(G) \leq 2 k=n / 2$. Hence if $G \in \mathcal{G} \cup \mathcal{H} \cup\left\{G_{16}\right\}$ has order n, then $\gamma \gamma_{t}^{*}(G) \leq n / 2$. By Theorem 11.2, $\gamma_{t}(G)=n / 2$. Consequently, since $\gamma_{t}(F) \leq \gamma \gamma_{t}^{*}(F)$ for all graphs F, we have that $\gamma \gamma_{t}^{*}(G)=n / 2$.

11.3 Hypergraph Notation and Results

A hypergraph $H=(V, E)$ is a finite set $V=V(H)$ of elements, called vertices, together with a finite multiset $E=E(H)$ of arbitrary subsets of V, called hyperedges or simply edges. A k-edge in H is an edge of cardinality k in H. The hypergraph H is said to be k-uniform if every edge of H is a k-edge. The degree of a vertex v in H, denoted $d_{H}(v)$ or simply $d(v)$ if H is clear from the context, is the number of edges of H which contain v. The hypergraph H is k-regular if every vertex has degree k in H. For a set F of edges in H, the hypergraph $H-F$ denotes the hypergraph obtained from H by deleting the edges from F. If F consists of a single edge e, we simply write $H-e$ rather than $H-\{e\}$.

Two vertices x and y of H are adjacent if there is an edge e of H such that $\{x, y\} \subseteq e$. Further, x and y are connected if there is a sequence $x=v_{0}, v_{1}, v_{2} \ldots, v_{k}=y$ of vertices of H in which v_{i-1} is adjacent to v_{i} for $i=1,2, \ldots, k$. A connected hypergraph is a hypergraph in which every pair of vertices are connected. A (connected) component of a hypergraph H is a maximal connected subhypergraph of H.

For a graph $G=(V, E)$, we denote by H_{G} the open neighborhood hypergraph of G; that is, H_{G} is the hypergraph with vertex set $V\left(H_{G}\right)=V$ and with edge multiset $E\left(H_{G}\right)=$ $\left\{N_{G}(x) \mid x \in V(G)\right\}$ consisting of all the open neighborhoods of vertices in G.

A subset T of vertices in a hypergraph H is a transversal in H if T has a nonempty intersection with every edge of H. A transversal is also called an edge cover or hitting set in the literature. Much of the recent interest in total domination in graphs arises
from the fact that a total dominating set in a graph G corresponds to a transversal in its open neighborhood hypergraph H_{G}. This idea of using transversals in hypergraphs to obtain results on total domination in graphs first appeared in a paper by Thomassé and Yeo [96], and subsequently in several other papers, including [68, 69, 70].

A hypergraph H is bipartite if its vertex set can be partitioned into two sets such that every hyperedge intersects both partite sets. Equivalently, H is bipartite if it is 2colorable; that is, there is a 2 -coloring of the vertices with no monochromatic hyperedge. By definition, every partite set in such a partition in a bipartite hypergraph H is a transversal of H. A hypergraph H is minimally non-bipartite if H is not bipartite but every subhypergraph of H, different from H itself, is bipartite. Seymour [84] proved the following property of minimally non-bipartite hypergraphs.

Theorem 11.5 ([84]) Every minimally non-bipartite hypergraph has at least as many hyperedges as vertices.

JOHANNESBURG

Using Seymour's Theorem 11.5 one can readily prove (or see [71]) the following result.

Corollary 11.6 ([71]) Every connected 3-regular 3-uniform hypergraph is either bipartite or becomes bipartite on deleting any hyperedge from it.

We shall need the following lemma from [69].

Lemma 11.7 ([69]) If G is a connected bipartite graph, then H_{G} contains exactly two components (which are induced by the two partite sets of G). If G is a connected nonbipartite graph, then H_{G} contains exactly one component.

11.4 Preliminary Results

In order to prove our main theorem, namely Theorem 11.3, we first present a number of preliminary results.

Lemma 11.8 Let G be a connected bipartite cubic graph and let uv be an edge in G. Then there exists a partition (D, T) of the vertices of G such that T totally dominates $V(G)$ and D totally dominates $V(G) \backslash\{u, v\}$.

Proof. Let $N_{G}(u)=\left\{v, v_{1}, v_{2}\right\}$ and let $N_{G}(v)=\left\{u, u_{1}, u_{2}\right\}$. Let U and V be the partite sets of G containing u and v, respectively, and note that $\left\{u_{1}, u_{2}\right\} \subset U$ and $\left\{v_{1}, v_{2}\right\} \subset V$. We now consider the open neighborhood hypergraph H_{G} of G. Since G is a cubic graph, H_{G} is a 3-regular, 3-uniform hypergraph. Further since G is bipartite, by Lemma 11.7, we have that H_{G} contains two components, one with vertex set U and the other with vertex set V. For $X \in\{U, V\}$, let H_{X} be the component of H_{G} with vertex set X. Necessarily, each of H_{U} and H_{V} is a 3-regular, 3-uniform hypergraph.

Let $e_{u}=\left\{v, v_{1}, v_{2}\right\}$ and $e_{v}=\left\{u, u_{1}, u_{2}\right\}$ be the hyperedges of H corresponding to the open neighborhoods of u and v, respectively, in G. Then, $e_{u} \in E\left(H_{V}\right)$ and $e_{v} \in E\left(H_{U}\right)$. We now consider the hypergraphs $H_{U}^{\prime}=H_{U}-e_{v}$ and $H_{V}^{\prime}=H_{V}-e_{u}$. By Corollary 11.6, both H_{U}^{\prime} and H_{V}^{\prime} are bipartite. Let U_{1} and U_{2} be the partite sets in some bipartition of H_{U} and let V_{1} and V_{2} be the partite sets in some bipartition of H_{V}. Renaming sets if necessary, we may assume that $u \in U_{1}$ and $v \in V_{1}$.

Let $T=U_{1} \cup V_{1}$ and let $D=U_{2} \cup V_{2}$. Now, since U_{1} and U_{2} are both transversals in H_{U}^{\prime} and since V_{1} and V_{2} are both transversals in H_{V}^{\prime}, we have that T intersects every hyperedge in H_{G} and D intersects every hyperedge in H_{G} with the possible exceptions of the hyperedges e_{u} and e_{v}. Hence, in the graph G, the set T totally dominates $V(G)$ and the set D totally dominates $V(G) \backslash\{u, v\}$.

Lemma 11.9 Let G be a connected non-bipartite cubic graph and let $v \in V(G)$. Then there exists a partition (D, T) of the vertices of G such that T totally dominates $V(G)$ and D totally dominates $V(G) \backslash\{v\}$.

Proof. Consider the open neighborhood hypergraph H_{G} of G. Since G is a cubic graph, H_{G} is a 3 -regular, 3 -uniform hypergraph. Further since G is non-bipartite, by Lemma 11.7, we have that H_{G} is connected. Let $e_{v}=\left\{v_{1}, v_{2}, v_{3}\right\}$ be the hyperedge of H corresponding to the open neighborhood of v in G, and consider the hypergraph $H_{G}^{\prime}=H_{G}-e_{v}$. By Corollary 11.6, H_{G}^{\prime} is bipartite. Let D and T be the partite sets in some bipartition of H_{G}. Renaming sets if necessary, we may assume that $v_{1} \in T$. Now, since D and T are both transversals in H_{G}^{\prime}, we have that T intersects every hyperedge in H_{G} and D intersects every hyperedge in H_{G} with the possible exception of the hyperedge e_{v}. Hence in the graph G, the set T totally dominates $V(G)$ and the set D totally dominates $V(G) \backslash\{v\}$.

We now introduce some additional notation which will be useful in the proofs of the lemmas that follow. For a graph G, let $\iota(G)=\left\{v \in V(G) \mid d_{G}(v)=0\right\}$; that is, $\iota(G)$ is the set of isolated vertices in G.

Lemma 11.10 Let $G=(V, E)$ be a connected cubic graph and let $v \in V$. If (D, T) is a partition of V such that T totally dominates V in G, D totally dominates $V \backslash\{v\}$, and $N[v] \subseteq T$, then there exists a DT-pair in G such that the subgraph induced by the dominating set in the DT-pair contains at most seven isolated vertices.

Proof. Let (D, T) be a partition of V as defined in the statement of the lemma. Then, every vertex in V except for the vertex v has a neighbor in both T and D. In particular, $\iota(G[D])=\emptyset$. Further, since D does not dominate the vertex v, the set D is not a dominating set of G. Let $N(v)=\{w, x, y\}, N(w)=\left\{v, w_{1}, w_{2}\right\}, N(x)=\left\{v, x_{1}, x_{2}\right\}$ and
$N(y)=\left\{v, y_{1}, y_{2}\right\}$. We note that the sets $\left\{w, w_{1}, w_{2}\right\},\left\{x, x_{1}, x_{2}\right\}$ and $\left\{y, y_{1}, y_{2}\right\}$ are not necessarily pairwise disjoint.

If $T \backslash\{v\}$ totally dominates V, then $(D \cup\{v\}, T \backslash\{v\})$ is a DT-pair and $\iota(G[D \cup\{v\}])=$ $\{v\}$. We may therefore assume that $T \backslash\{v\}$ does not totally dominate V, for otherwise the desired result follows. Hence, renaming vertices if necessary, we may assume that $\left\{w_{1}, w_{2}\right\} \subseteq D$. If $T \backslash\{w\}$ totally dominates V, then $(D \cup\{w\}, T \backslash\{w\})$ is a DT-pair with $\iota(G[D \cup\{w\}])=\emptyset$, and the desired result follows. We may therefore assume that $T \backslash\{w\}$ does not totally dominate V and, renaming vertices if necessary, that $N\left(w_{1}\right) \cap T=\{w\}$. Let $N\left(w_{1}\right) \cap D=\left\{w_{1}^{\prime}, w_{2}^{\prime}\right\}$.

Let $D_{1}=D \backslash\left\{w_{1}\right\}$ and let $T_{1}=T \cup\left\{w_{1}\right\}$.Then, T_{1} totally dominates V and D_{1} dominates $V \backslash\{v\}$. Furthermore, $\iota\left(G\left[D_{1}\right]\right) \subseteq\left\{w_{1}^{\prime}, w_{2}^{\prime}\right\}$. If $T_{1} \backslash\{v\}$ totally dominates V, then $\left(D_{1} \cup\{v\}, T_{1} \backslash\{v\}\right)$ is a DT-pair, $\iota\left(G\left[D_{1} \cup\{v\}\right]\right) \subseteq\left\{v, w_{1}^{\prime}, w_{2}^{\prime}\right\}$, and the desired result follows. We may therefore assume that $T_{1} \backslash\{v\}$ does not totally dominate V. The only possible vertices not totally dominated by $T_{1} \backslash\{v\}$ are x and y. Renaming vertices if necessary, we may assume that $\left\{x_{1}, x_{2}\right\} \subseteq D_{1}, \$ and $\bar{s} \Theta x$ is not totally dominated by $T_{1} \backslash\{v\}$. If $T_{1} \backslash\{x\}$ totally dominates V, then $\left(D_{1} \cup\{x\}, T_{1} \backslash\{x\}\right)$ is a DT-pair, $\iota\left(G\left[D_{1} \cup\{x\}\right]\right) \subseteq\left\{w_{1}^{\prime}, w_{2}^{\prime}\right\}$, and the desired result follows. Hence we may assume that $T_{1} \backslash\{x\}$ does not totally dominate V and, renaming vertices if necessary, that $N\left(x_{1}\right) \cap T_{1}=$ $\{x\}$. Let $N\left(x_{1}\right) \cap D_{1}=\left\{x_{1}^{\prime}, x_{2}^{\prime}\right\}$.

Let $D_{2}=D_{1} \backslash\left\{x_{1}\right\}$ and let $T_{2}=T_{1} \cup\left\{x_{1}\right\}$. Then, T_{2} totally dominates V and D_{2} dominates $V \backslash\{v\}$. Furthermore, $\iota\left(G\left[D_{2}\right]\right) \subseteq\left\{w_{1}^{\prime}, w_{2}^{\prime}, x_{1}^{\prime}, x_{2}^{\prime}\right\}$. If $T_{2} \backslash\{v\}$ totally dominates V, then $\left(D_{2} \cup\{v\}, T_{2} \backslash\{v\}\right)$ is a DT-pair, $\iota\left(G\left[D_{2} \cup\{v\}\right]\right) \subseteq\left\{v, w_{1}^{\prime}, w_{2}^{\prime}, x_{1}^{\prime}, x_{2}^{\prime}\right\}$, and the desired result follows. We may therefore assume that $T_{2} \backslash\{v\}$ does not totally dominate V. The only possible vertex not totally dominated by $T_{2} \backslash\{v\}$ is y, and so $\left\{y_{1}, y_{2}\right\} \subseteq D_{2}$. If $T_{2} \backslash\{y\}$ totally dominates V, then $\left(D_{2} \cup\{y\}, T_{2} \backslash\{y\}\right)$ is a DTpair, $\iota\left(G\left[D_{2} \cup\{y\}\right]\right) \subseteq\left\{w_{1}^{\prime}, w_{2}^{\prime}, x_{1}^{\prime}, x_{2}^{\prime}\right\}$, and the desired result follows. Hence we may assume that $T_{2} \backslash\{y\}$ does not totally dominate V and, renaming vertices if necessary,
that $N\left(y_{1}\right) \cap T_{2}=\{y\}$. Let $N\left(y_{1}\right) \cap D_{2}=\left\{y_{1}^{\prime}, y_{2}^{\prime}\right\}$.
Let $D_{3}=D_{2} \backslash\left\{y_{1}\right\}$ and let $T_{3}=T_{2} \cup\left\{y_{1}\right\}$. Then, T_{3} totally dominates V and D_{3} dominates $V \backslash\{v\}$. Furthermore, $\iota\left(G\left[D_{3}\right]\right) \subseteq\left\{w_{1}^{\prime}, w_{2}^{\prime}, x_{1}^{\prime}, x_{2}^{\prime}, y_{1}^{\prime}, y_{2}^{\prime}\right\}$. But now $T_{3} \backslash$ $\{v\}$ totally dominates V, and so $\left(D_{3} \cup\{v\}, T_{3} \backslash\{v\}\right)$ is a DT-pair, $\iota\left(G\left[D_{3} \cup\{v\}\right]\right) \subseteq$ $\left\{v, w_{1}^{\prime}, w_{2}^{\prime}, x_{1}^{\prime}, x_{2}^{\prime}, y_{1}^{\prime}, y_{2}^{\prime}\right\}$, and the desired result follows.

Lemma 11.11 If G is a connected non-bipartite cubic graph, then there exists a DT-pair in G such that the subgraph induced by the dominating set in the DT-pair contains at most seven isolated vertices.

Proof. Let $G=(V, E)$ be a connected non-bipartite cubic graph and let $v \in V$. By Lemma 11.9 there exists a partition (D, T) of the vertices of G such that T totally dominates V and D totally dominates $V \backslash\{v\}$. If D totally dominates V, then D and T are both total dominating sets, and so (D, T) is à/DT-pair with $\iota(G[D])=\emptyset$. Hence we may assume that D does not totally dominate the vertex v. Therefore, $N(v) \subseteq T$. If $v \in D$, then since D totally dominates $V \backslash\{v\}$, we have that D is a dominating set, and so (D, T) is a DT-pair and $\iota(G[D])=\{v\}$ and the desired result follows. We may therefore assume that $v \in T$. But now we have that (D, T) is a partition of V such that T totally dominates V in G, the set D totally dominates $V \backslash\{v\}$, and $N[v] \subseteq T$. The desired result now follows from Lemma 11.10.

Lemma 11.12 If G is a connected cubic graph, then there exists a DT-pair in G such that the subgraph induced by the dominating set in the DT-pair contains at most seven isolated vertices.

Proof. Let $G=(V, E)$ be a connected cubic graph. If G is non-bipartite, then the result follows from Lemma 11.11. We may therefore assume that G is bipartite. Let $u v \in E$. By Lemma 11.8 there exists a partition (D, T) of the vertices of G such that T
totally dominates V and D totally dominates $V \backslash\{u, v\}$. Let $N(u)=\{v, w, x\}$ and let $N(v)=\{u, y, z\}$.

If D totally dominates V, then D and T are both total dominating sets and the desired result follows since (D, T) is a DT-pair and $\iota(G[D])=\emptyset$. Hence we may assume that D does not totally dominate $\{u, v\}$. Renaming vertices if necessary, we may assume that $\{u, y, z\} \subseteq T$, and so v is not totally dominated by D. If $v \in D$, then D dominates V, and so (D, T) is a DT-pair with $\iota(G[D])=\{v\}$, implying the desired result. Hence we may assume that $v \in T$. If $\{w, x\} \cap D \neq \emptyset$, then (D, T) is a partition of V such that T totally dominates V in G, the set D totally dominates $V \backslash\{v\}$, and $N[v] \subseteq T$. The desired result then follows from Lemma 11.10. We may therefore assume that $\{w, x\} \subset T$. Thus, $\{u, v, w, x, y, z\} \subseteq T$.

We note that $\iota(G[D])=\emptyset$. However, D dominates neither u nor v and is therefore not a dominating set in G. Let $N(w)=\left\{u, w_{1}, w_{2}\right\}, N(x)=\left\{u, x_{1}, x_{2}\right\}, N(y)=\left\{v, y_{1}, y_{2}\right\}$, and $N(z)=\left\{v, z_{1}, z_{2}\right\}$. We note that the sets $\left\{w, w_{1}, w_{2}\right\},\left\{x, x_{1}, x_{2}\right\},\left\{y, y_{1}, y_{2}\right\}$ and $\left\{z, z_{1}, z_{2}\right\}$ are not necessarily pairwise disjoint|but that Ghas no odd cycles since it is bipartite.

If $T \backslash\{u\}$ totally dominates V, then $(D \cup\{u\}, T \backslash\{u\})$ is a DT-pair, $\iota(G[D \cup\{u\}])=\{u\}$, and the desired result follows. We may therefore assume that $T \backslash\{u\}$ does not totally dominate V. The only possible vertices not totally dominated by $T \backslash\{u\}$ are w and x. Renaming vertices if necessary, we may assume that $\left\{w_{1}, w_{2}\right\} \subseteq D$, and so w is not totally dominated by $T \backslash\{u\}$. By symmetry, we may assume that $T \backslash\{v\}$ does not totally dominate V and that $\left\{y_{1}, y_{2}\right\} \subseteq D$. Since G is bipartite, we note that $\left\{w_{1}, w_{2}\right\} \cap\left\{y_{1}, y_{2}\right\}=\emptyset$.

If $T \backslash\{w, y\}$ totally dominates V, then $(D \cup\{w, y\}, T \backslash\{w, y\})$ is a DT-pair, $\iota(G[D \cup$ $\{w, y\}])=\emptyset$, and the desired result follows. We may therefore assume that $T \backslash\{w, y\}$ does not totally dominate V. The only possible vertices not totally dominated by $T \backslash\{w, y\}$
are neighbors of w and y different from u and v. Renaming vertices if necessary, we may assume that $N\left(w_{1}\right) \cap T=\{w\}$, and so w_{1} is not totally dominated by $T \backslash\{w, y\}$. Let $N\left(w_{1}\right) \cap D=\left\{w_{1}^{\prime}, w_{2}^{\prime}\right\}$.

Let $D_{1}=D \backslash\left\{w_{1}\right\}$ and let $T_{1}=T \cup\left\{w_{1}\right\}$. Then, T_{1} totally dominates V and D_{1} dominates $V \backslash\{u, v\}$. Furthermore, $\iota\left(G\left[D_{1}\right]\right) \subseteq\left\{w_{1}^{\prime}, w_{2}^{\prime}\right\}$. If $T_{1} \backslash\{u\}$ totally dominates V, then $\left(D_{1} \cup\{u\}, T_{1} \backslash\{u\}\right)$ is a DT-pair, $\iota\left(G\left[D_{1} \cup\{u\}\right]\right) \subseteq\left\{u, w_{1}^{\prime}, w_{2}^{\prime}\right\}$, and the desired result follows. We may therefore assume that $T_{1} \backslash\{u\}$ does not totally dominate V. The only possible vertex not totally dominated by $T_{1} \backslash\{u\}$ is the vertex x, implying that $\left\{x_{1}, x_{2}\right\} \subset D_{1}$. Since $D_{1}=D \backslash\left\{w_{1}\right\} \subset D$, we have $\left\{x_{1}, x_{2}\right\} \subset D$.

If $T \backslash\{x\}$ totally dominates V, then $(D \cup\{x\}, T \backslash\{x\})$ is a partition of V such that $T \backslash\{x\}$ totally dominates V in G, the set $D \cup\{x\}$ totally dominates $V \backslash\{v\}$, and $N[v] \subseteq T \backslash\{x\}$. The desired result then follows from Lemma 11.10. We may therefore assume that $T \backslash\{x\}$ does not totally dominate V. The only possible vertices not totally dominated by $T \backslash\{x\}$ are neighbors of x different from \bar{u}. Renaming vertices if necessary, we may assume that $N\left(x_{1}\right) \cap T=\{x\}$, and so x_{1} is \mid not \mid tetally dominated by $T \backslash\{x\}$.

Let $N\left(x_{1}\right) \cap D=\left\{x_{1}^{\prime}, x_{2}^{\prime}\right\}$. Let $D_{2}=\left(D \backslash\left\{w_{1}, x_{1}\right\}\right) \cup\{u\}$ and let $T_{2}=\left(T \cup\left\{w_{1}, x_{1}\right\}\right) \backslash$ $\{u\}$. Then, T_{2} totally dominates V and D_{2} dominates V. Thus, $\left(D_{2}, T_{2}\right)$ is a DT-pair. Furthermore, $\iota\left(G\left[D_{2}\right]\right) \subseteq\left\{u, w_{1}^{\prime}, w_{2}^{\prime}, x_{1}^{\prime}, x_{2}^{\prime}\right\}$, and the desired result follows.

11.5 Proof of Theorem 11.3

We are now ready to prove our main result, namely Theorem 11.3. Let us recall its statement.

Theorem 11.3. If G is a connected cubic graph of order n, then $\gamma \gamma_{t}^{*}(G) \leq(n+2) / 2$.
Proof. Let $G=(V, E)$ be a connected cubic graph of order n. By Lemma 11.12, there
exists a partition $\left(D^{\prime}, T^{\prime}\right)$ of V so that D^{\prime} dominates V, the set T^{\prime} totally dominates V and $\left|\iota\left(G\left[D^{\prime}\right]\right)\right| \leq 7$. Let T be the smallest subset of T^{\prime} (possibly, $T=T^{\prime}$) such that T totally dominates V. Let $D=V \backslash T$ and note that $D^{\prime} \subseteq D$ with equality if and only if $T=T^{\prime}$. Since D^{\prime} dominates V, so does D. Thus, (D, T) is a DT-pair in G.

We show that every isolated vertex in $G[D]$ is an isolated vertex in $G\left[D^{\prime}\right]$. Let $v \in$ $\iota(G[D])$. Then $N(v) \subseteq T \subseteq T^{\prime}=V \backslash D^{\prime}$. Since D^{\prime} dominates V, we must have that $v \in D^{\prime}$ and thus, $v \in \iota\left(G\left[D^{\prime}\right]\right)$. Consequently, $\iota(G[D]) \subseteq \iota\left(G\left[D^{\prime}\right]\right)$, and so $|\iota(G[D])| \leq$ $\left|\iota\left(G\left[D^{\prime}\right]\right)\right| \leq 7$. Let $D_{1}=\iota(G[D])$ and let $D_{2}=D \backslash D_{1}$. Then $\left|D_{1}\right| \leq 7$.

We now use an edge-weighting argument on the edges that join D to T. For this purpose, we define a function ψ_{1} that assigns a weight to each vertex $v \in D$ as follows. To each vertex that is isolated in $G[D]$ we assign a weight of $3 / 2$ and to every other vertex in D we assign a weight of 1 ; that is,

$$
\psi_{1}(v)=\left\{\begin{array}{l}
3 / 2 \text { if }|v| \in D_{1} R S I T Y \\
1 J \text { if } v \in D_{2}^{F} \cdot \underline{E S B U R G}
\end{array}\right.
$$

Then,

$$
\begin{equation*}
\sum_{v \in D} \psi_{1}(v)=3\left|D_{1}\right| / 2+\left|D_{2}\right|=|D|+\left|D_{1}\right| / 2 \leq|D|+7 / 2 \tag{11.1}
\end{equation*}
$$

We now define a function $\psi_{2}:[T, D] \rightarrow[0,1]$ that assigns a weight to each edge in $[T, D]$. For each vertex $v \in D$, the weight $\psi_{1}(v)$ is equally distributed among the edges joining v to T. Thus if e is an edge joining $v \in D_{1}$ to T, then $\psi_{2}(e)=\psi_{1}(v) / 3=1 / 2$ and the sum of the weights assigned to the three edges joining v to T is $3 / 2$. If e is an edge joining $v \in D_{2}$ to T, then $\psi_{2}(e)=1 / d_{T}(v)$, where $d_{T}(v)$ denotes the number of vertices in T adjacent to v. In this case, $\psi_{2}(e) \in\left\{\frac{1}{2}, 1\right\}$ and the sum of the weights assigned to
the edges joining v to T is 1 . By our construction,

$$
\begin{equation*}
\sum_{e \in[T, D]} \psi_{2}(e)=\sum_{v \in D} \psi_{1}(v) . \tag{11.2}
\end{equation*}
$$

Finally, we define a function ψ_{3} that assigns to each subset $T^{*} \subseteq T$ the sum of the weights of the edges from T^{*} to D; that is,

$$
\psi_{3}\left(T^{*}\right)=\sum_{e \in\left[T^{*}, D\right]} \psi_{2}(e) .
$$

If $T^{*}=T$, then $\psi_{3}\left(T^{*}\right)$ is the sum of the weights of all edges in $[T, D]$. We proceed further with the following claim.

Claim $\psi_{3}(T) \geq|T|$.

Proof. Let G^{*} be a component of $G[T]$ and let $T^{*}=V\left(G^{*}\right)$. It suffices to show that $\psi_{3}\left(T^{*}\right) \geq\left|T^{*}\right|$. Since (D, T) is a DT-pair in G, every vertex in T has degree 1 or 2 in $G[T]$. Hence G^{*} is either a cycle, or a path on at least two vertices.

Suppose that G^{*} is a cycle. Then, $\left|\left[T^{*}, D\right]\right|=\left|T^{*}\right|$. Let $e^{*}=x y \in\left[T^{*}, D\right]$, where $x \in T^{*}$ and $y \in D$. If $d_{T}(y)>1$, then $T \backslash\{x\}$ is a subset of T that totally dominates V, contradicting the minimality of T. Hence, $d_{T}(y)=1$ and $N_{G}(y) \cap T=\{x\}$. Thus, $d_{D}(y)=2$, and so $\psi_{1}(y)=\psi_{2}\left(e^{*}\right)=1$. Therefore, $\psi_{3}\left(T^{*}\right)=\sum_{e \in\left[T^{*}, D\right]} \psi_{3}(e)=\left|T^{*}\right|$, as desired. We may therefore assume that G^{*} is a path on at least two vertices.

Let G^{*} be the path $x_{1} x_{2} \ldots x_{k}$, where $k=\left|T^{*}\right|$. Let $N_{G}\left(x_{1}\right)=\left\{x_{2}, y_{1}, y_{1}^{\prime}\right\}$ and let $N_{G}\left(x_{k}\right)=\left\{x_{k-1}, y_{k}, y_{k}^{\prime}\right\}$. Necessarily, $\left\{y_{1}, y_{1}^{\prime}\right\} \subseteq D$ and $\left\{y_{k}, y_{k}^{\prime}\right\} \subseteq D$. If $k=2$, then $\left|\left[T^{*}, D\right]\right|=4$ and since $\psi_{3}(e) \geq 1 / 2$ for each $e \in[T, D]$, we have that $\psi_{3}\left(T^{*}\right) \geq 2=\left|T^{*}\right|$, as desired. We may therefore assume that $k \geq 3$. For $i \in\{2, \ldots, k-1\}$, let $N_{G}\left(x_{i}\right)=$ $\left\{x_{i-1}, x_{i+1}, y_{i}\right\}$ and note that $y_{i} \in D$. For $i=1,2, \ldots, k$, let $e_{i}=x_{i} y_{i}$. Further, let
$e_{1}^{\prime}=x_{1} y_{1}^{\prime}$ and let $e_{k}^{\prime}=x_{k} y_{k}^{\prime}$.
If $d_{T}\left(y_{1}\right)>1$ and $d_{T}\left(y_{1}^{\prime}\right)>1$, then $T \backslash\left\{x_{1}\right\}$ is a subset of T that totally dominates V, contradicting the minimality of T. Hence, renaming vertices if necessary, we may assume that $d_{T}\left(y_{1}\right)=1$, and so $d_{D}\left(y_{1}\right)=2$. Thus, $\psi_{1}\left(y_{1}\right)=\psi_{2}\left(e_{1}\right)=1$. By a similar argument we may assume that $d_{T}\left(y_{k}\right)=1$, and so $\psi_{1}\left(y_{k}\right)=\psi_{2}\left(e_{k}\right)=1$. If $k=3$, then $\left[T^{*}, D\right]=\left\{e_{1}, e_{1}^{\prime}, e_{2}, e_{3}, e_{3}^{\prime}\right\}$. Since $\psi_{2}\left(e_{1}\right)=\psi_{2}\left(e_{3}\right)=1$, while $\psi_{3}(e) \geq 1 / 2$ for each $e \in[T, D] \backslash\left\{e_{1}, e_{3}\right\}$, we have that $\psi_{3}\left(T^{*}\right) \geq 7 / 2>3=\left|T^{*}\right|$. If $k=4$, then $\left|\left[T^{*}, D\right]\right|=6$ and by the same reasoning we have that $\psi_{3}\left(T^{*}\right) \geq 4=\left|T^{*}\right|$. Hence we may assume that $k \geq 5$, for otherwise $\psi_{3}\left(T^{*}\right) \geq\left|T^{*}\right|$, as desired.

For $i \in\{3, \ldots, k-2\}$, if $d_{T}\left(y_{i}\right)>1$, then $T \backslash\left\{x_{i}\right\}$ is a subset of T that totally dominates V, contradicting the minimality of T. Hence, $d_{T}\left(y_{i}\right)=1$, and so $\psi_{1}\left(y_{i}\right)=$ $\psi_{2}\left(e_{i}\right)=1$ for $i \in\{3, \ldots, k-2\}$. As observed earlier, $\psi_{2}\left(e_{1}\right)=\psi_{2}\left(e_{k}\right)=1$. Moreover, $\psi_{3}(e) \geq 1 / 2$ for each $e \in\left\{e_{1}^{\prime}, e_{2}, e_{k+1}, e_{k}^{\prime}\right\}$. Thus since $\left[T^{*}, D\right]=\left\{e_{1}^{\prime}, e_{k}^{\prime}\right\} \cup\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$, we have that $\psi_{3}\left(T^{*}\right) \geq k=\left|T^{*}\right|$. This completes the proof of the claim.

We now return to the proof of Theorem 11.3. By definition of the function $\psi_{3}(T)$, Inequality (11.1), Equality (11.2) and the above claim, we have that

$$
|T| \leq \psi_{3}(T)=\sum_{e \in[T, D]} \psi_{2}(e)=\sum_{v \in D} \psi_{1}(v) \leq|D|+7 / 2 .
$$

Thus, since $|D|=n-|T|$, we get $|T| \leq n / 2+7 / 4$. However, every cubic graph has an even number of vertices, and hence $n / 2$ is an integer. Thus since $|T|$ is an integer, we have that $|T| \leq n / 2+1$. This completes the proof of Theorem 11.3.

Bibliography

[1] S. Ao, E. J. Cockayne, G. MacGillivray, and C. M. Mynhardt, Domination critical graphs with higher independent domination numbers. J. Graph Theory 22 (1996), 9-14.
[2] D. Archdeacon, J. Ellis-Monaghan, D. Fischer, D. Froncek, P. C. B. Lam, S. Seager, B. Wei, and R. Yuster, Some remarks on domination. J. Graph Theory 46 (2004), 207-210.
[3] C. Barefoot, F. Harary, and K. F. Jones, What is the difference between the domination and independent domination numbers of cubic graph? Graphs Combin. $\mathbf{7}$ (1991), 205-20.
[4] C. Berge. Theory of Graphs and its Applications. Methuen, London, 1962.
[5] B. Brešar, Vizing-like conjecture for the upper domination of Cartesian products of graphs - the proof. Electron. J. Combin. 12 (2005), Note 12, 6 pp.
[6] I. Broere, M. Dorfling, W. Goddard, J. H. Hattingh, M. A. Henning, and E. Ungerer, Augmenting trees to have two disjoint total dominating sets. Bull. Institute Combin. Applic. 42 (2004), 12-18.
[7] N. J. Calkin and P. Dankelmann, The domatic number of regular graphs. Ars Combin. 73 (2004), 247-255.
[8] X. G. Chen, W. C. Shiu, and H. Y. Chen, Trees with equal total domination and total restrained domination numbers. Discuss. Math. Graph Theory 28 (2008), 59-66.
[9] T. C. E. Cheng, L. Y. Kang, and C. T. Ng, Paired domination on interval and circular-arc graphs. Discrete Appl. Math. 155 (2007), 2077-2086.
[10] M. Chudnovsky and P. Seymour, Claw-free graphs. I. Orientable prismatic graphs. J. Combin. Theory Ser. B 97 (2007), no. 6, 867-903.
[11] M. Chudnovsky and P. Seymour, Claw-free graphs. II. Non-orientable prismatic graphs. J. Combin. Theory Ser. B 98 (2008), no. 2, 249-290.
[12] M. Chudnovsky and P. Seymour, Claw-free graphs. III. Circular interval graphs. J. Combin. Theory Ser. B 98 (2008), no. 4, 812-834.
[13] M. Chudnovsky and P. Seymour, Claw-free graphs. IV. Decomposition theorem. J. Combin. Theory Ser. B 98 (2008), no. 5, 839-938.
[14] M. Chudnovsky and P. Seymour, Claw-free graphs. V. Global structure. J. Combin. Theory Ser. B 98 (2008), no. 6, 1373-1410.
[15] V. Chvátal and C. McDiarmid, Small transversals in hypergraphs. Combinatorica 12 (1992), 19-26.
[16] E. J. Cockayne, R. M. Dawes, and S. T. Hedetniemi, Total domination in graphs. Networks 10 (1980), 211-219.
[17] E. J. Cockayne, O. Favaron, C. M. Mynhardt, Total domination in claw-free cubic graphs. J. Combin. Math. Combin. Comput. 43 (2002), 219-225.
[18] E. J. Cockayne and S. T. Hedetniemi, Towards a theory of domination in graphs. Networks 7 (1977), 247-261.
[19] E. J. Cockayne and C. M. Mynhardt, Independence and domination in 3-connected cubic graphs. J. Combin. Math. Combin. Comput. 10 (1991), 173-182.
[20] G. S. Domke, J. E. Dunbar, and L. R. Markus, The inverse domination number of a graph. Ars Combin. 72 (2004), 149-160.
[21] P. Dorbec and S. Gravier, Paired-domination in P_{5}-free graphs. Graphs Combin. 24 (2008), 303-308.
[22] P. Dorbec, S. Gravier, and M. A. Henning, Paired-domination in generalized clawfree graphs. J. Combin. Optim. 14 (2007), 1-7.
[23] P. Dorbec, M. A. Henning, and D. F. Rall, On the upper total domination number of Cartesian products of graphs. J. Comb. Optim. 16 (2008), 68-80.
[24] M. Dorfling, W. Goddard, J. H Hattingh, and M. A. Henning, Augmenting a graph of minimum degree 2 to have two disjoint total dominating sets. Discrete Math. 300 (2005), 82-90.
[25] M. Dorfling, W. Goddard, M. A. Henning, and C. M. Mynhardt, Construction of trees and graphs with equal domination parameters. Diserete Math. 306 (2006), 2647-2654.
[26] Q. Fang, On the computational complexity of upper total domination. Discrete Appl. Math. 136 (2004), 13-22.
[27] O. Favaron and M. A. Henning, Upper total domination in claw-free graphs. J. Graph Theory 44 (2003), 148-158.
[28] O. Favaron and M. A. Henning, Paired domination in claw-free cubic graphs. Graphs Combin. 20 (2004), 447-456.
[29] O. Favaron and M. A. Henning, Total domination in claw-free graphs with minimum degree two. Discrete Math. 308 (2008), 3213-3219.
[30] O. Favaron and M. A. Henning, Bounds on total domination in claw-free cubic graphs. Discrete Math. 308 (2008), 3491-3507.
[31] O. Favaron, M. A. Henning, C. M. Mynhardt, and J. Puech, Total domination in graphs with minimum degree three. J. Graph Theory 34 (2000), 9-19.
[32] U. Feige, M. M. Halldórsson, G. Kortsarz, and A. Srinivasan, Approximating the domatic number. SIAM J. Comput. 32 (2002), 172-195.
[33] S. Fitzpatrick and B. Hartnell, Paired-domination. Discuss. Math. Graph Theory 18 (1998), 63-72.
[34] E. Flandrin, R. Faudree, and Z. Ryjáček, Claw-free graphs-a survey. Discrete Math. 164 (1997), 87-147.
[35] A. Frendrup, M. A. Henning, P. D. Vestergaard, and B. Randerath, On a conjecture about inverse domination in graphs. Ars Combin. 97A (2010), 129-143.
[36] W. Goddard and M. A. Henning, A characterization of cubic graphs with paireddomination number three-fifths their order. Graphs Combin. 25 (2009), 675-692.
[37] W. Goddard, M. A. Henning, J. Lyle, and J. Southey, On the independent domination number of regular graphs. To appear in Annals Combin.
[38] P. J. P. Grobler and C. M. Mynhardt, Vertex criticality for upper domination and irredundance. J. Graph Theory 37 (2001), 205-212.
[39] G. Gutin and V. E. Zverovich, Upper domination and upper irredundance perfect graphs. Discrete Math. 190 (1998), 95-105
[40] J. H. Hattingh, E. Jonck, E. J. Joubert, and A. R. Plummer, Total restrained domination in trees. Discrete Math. 307 (2007), 1643-1650.
[41] J. H. Hattingh, E. Jonck, E. J. Joubert, and A. R. Plummer, Nordhaus-Gaddum results for restrained domination and total restrained domination in graphs. Discrete Math. 308 (2008), 1080-1087.
[42] J. Haviland, Independent domination in regular graphs. Discrete Math. 143 (1995), 275-280.
[43] J. Haviland, Upper bounds for independent domination in regular graphs. Discrete Math. 307 (2007), 2643-2646.
[44] P. Haxell, B. Seamone, and J. Verstraete, Independent dominating sets and Hamiltonian cycles. J. Graph Theory 54 (2007), 233-244.
[45] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater (eds), Fundamentals of Domination in Graphs, Marcel Dekker, Inc. New York, 1998.
[46] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater (eds), Domination in Graphs: Advanced Topics, Marcel Dekker, New York, 1998.
[47] T. W. Haynes and M. A. Henning, Trees with large paired-domination number. Utilitas Mathematica 71 (2006), 3-12.
[48] T. W. Haynes and P. J. Slater, Paired-domination and the paired-domatic number. Congr. Numer. 109 (1995), 65-72.
[49] T. W. Haynes and P. J. Slater, Paired-domination in graphs. Networks 32 (1998), 199-206.
[50] S. M. Hedetniemi, S. T. Hedetniemi, R. C. Laskar, L. Markus, and P. J. Slater, Disjoint dominating sets in graphs. Discrete mathematics, 87-100, Ramanujan Math. Soc. Lect. Notes Ser., 7, Ramanujan Math. Soc., Mysore, 2008.
[51] P. Heggernes and J. A. Telle, Partitioning graphs into generalized dominating sets. Nordic J. Comput. 5 (1998), 128-142.
[52] M. A. Henning, Trees with equal total domination and paired-domination numbers. Utilitas Math. 69 (2006), 207-218.
[53] M. A. Henning, Graphs with large paired-domination number. J. Combin. Optim. 13 (2007), 61-78.
[54] M. A. Henning, Recent results on total domination in graphs: A survey. Discrete Math. 309 (2009), 32-63.
[55] M. A. Henning, E. J. Joubert, and J. Southey, Nordhaus-Gaddum bounds for total domination. Applied Mathematics Letters 24 (2011), 987-990.
[56] M. A. Henning, E. J. Joubert, and J. Southey, Nordhaus-Gaddum type results for total domination. To appear in Discrete Mathematics ${ }^{8}$ Theoretical Computer Science.
[57] M. A. Henning, E. J. Joubert, and J. Southey, Multiple factor Nordhaus-Gaddum type results for domination and total domination. To appear in Discrete Applied Mathematics.
[58] M. A. Henning, C. Löwenstein, and D. Rautenbach, Remarks about disjoint dominating sets. Discrete Math. 309 (2009), 6451-6458.
[59] M. A. Henning, C. Löwenstein, and D. Rautenbach, An independent dominating set in the complement of a minimum dominating set of a tree. Applied Mathematics Letters 23 (2010), 79-81.
[60] M. A. Henning, C. Löwenstein, and D. Rautenbach, Partitioning a graph into a dominating set, a total dominating set, and something else. Discussiones Mathematicae Graph Theory 30(4) (2010), 563-574.
[61] M. A. Henning, C. Löwenstein, D. Rautenbach, and J. Southey, Disjoint dominating and total dominating sets in graphs. Discrete Applied Math. 158 (2010), 1615-1623
[62] M. A. Henning and J. E. Maritz, Total restrained domination in graphs with minimum degree two. Discrete Math. 308 (2008), 1909-1920.
[63] M. A. Henning and C. M. Mynhardt, The diameter of paired-domination vertex critical graphs. Czechoslovak Math. J. 58 (2008), 887-897.
[64] M. A. Henning and M. D. Plummer, Vertices contained in all or in no minimum paired-dominating set of a tree. J. Combin. Optim. 10 (2005), 283-294.
[65] M. A. Henning and J. Southey, A note on graphs with disjoint dominating and total dominating sets. Ars Combin. 89 (2008), 159-162.
[66] M. A. Henning and J. Southey, A characterization of graphs with disjoint dominating and total dominating sets. Quaestiones Mathematicae 32 (2009), 119-129.
[67] M. A. Henning and P. D. Vestergaard, Trees with paired-domination number twice their domination number. Utilitas Math. 74 (2007), 187-197.
[68] M. A. Henning and A. Yeo, Total domination in graphs with given girth. Graphs Combin. 24 (2008), 333-348.
[69] M. A. Henning and A. Yeo, Hypergraphs with large transversal number and with edge sizes at least three. J. Graph Theory 59 (2008), 326-348.
[70] M. A. Henning and A. Yeo, Total domination in 2-connected graphs and in graphs with no induced 6-cycles. J. Graph Theory 60 (2009), 55-79.
[71] M. A. Henning and A. Yeo, 2-Colorings in k-regular k-uniform hypergraphs, manuscript.
[72] H. Jiang, L. Kang, and E. Shan, Total restrained domination in cubic graphs. Graphs Combin. 25 (2009), 341-350.
[73] König D., Über Graphen und ihre Anwendung auf Determinantheorie und Mengenlehre. Math. Ann. 77 (1916), 453-465.
[74] A. V. Kostochka, The independent domination number of a cubic 3-connected graph can be much larger than its domination number. Graphs Combin. 9 (1993), 235-237.
[75] V. R. Kulli and S. C. Sigarkanti, Inverse domination in graphs. Nat. Acad. Sci. Lett. 14 (1991), 473-475.
[76] P. C. B. Lam, W. C. Shiu, and L. Sun, On independent domination number of regular graphs. Discrete Math. 202 (1999), 135-144.
[77] C. Löwenstein and D. Rautenbach, Pairs of disjoint dominating sets and the minimum degree of graphs. Graphs Combin. 26 (2010), 407-424.
[78] J. Lyle and W. Goddard, Independent domination in regular graphs. In preparation.
[79] D. X. Ma, X. G. Chen, and L. Sun, On total restrained domination in graphs. Czechoslovak Math. J. 55 (2005), 165-173.
[80] O. Ore, Theory of graphs, Amer. Math. Soc. Transl. 38 (Amer. Math. Soc., Providence, RI, 1962), 206-212.
[81] H. Qiao, L. Kang, M. Cardei, and Ding-Zhu. Du, Paired-domination of trees. J. Global Optim. 25 (2003), 43-54.
[82] J. Raczek and J. Cyman, On the total restrained domination number of a graph. Australas. J. Combin. 36 (2006), 91-100.
[83] J. Raczek and J. Cyman, Total restrained domination numbers of trees. Discrete Math. 308 (2008), 44-50.
[84] P. D. Seymour, On the two coloring of hypergraphs. Quart. J. Math. Oxford Ser. 25 (1974), 303-312.
[85] W. C. Shiu, X. Chen, and W. H. Chan, Triangle-free graphs with large independent domination number. Discrete Optim. 7 (2010), 86-92.
[86] P. J. Slater, Fault-tolerant locating-dominating sets. Discrete Math. 249 (2002), 179-189.
[87] J. Southey and M. A. Henning, Graphs with disjoint dominating and paireddominating sets. Central European Journal of Mathematics 8 (2010), 459-467.
[88] J. Southey and M. A. Henning, A characterization of graphs with disjoint dominating and paired-dominating sets. J. Combin. Optim. 22 (2011), 217-234.
[89] J. Southey and M. A. Henning, An improved upper bound on the total restrained domination number in cubic graphs. To appear in Graphs Combin. (Online first: 2 June 2011)
[90] J. Southey and M. A. Henning, Domination versus independent domination in cubic graphs. To appear in Discrete Math.
[91] J. Southey and M. A. Henning, On a conjecture on total domination in claw-free cubic graphs. Discrete Math. 310 (2010), 2984-2999.
[92] J. Southey and M. A. Henning, Dominating and total dominating partitions in cubic graphs. Central European Journal of Mathematics 9 (2011), 699-708.
[93] J. Southey and M. A. Henning, Edge weighting functions on dominating set. To appear in J. Graph Theory.
[94] L. Sun and J. Wang, An upper bound for the independent domination number. J. Combin. Theory Ser. B 76 (1999), 240-246.
[95] J. Telle and A. Proskurowski, Algorithms for vertex partitioning problems on partial k-trees. SIAM J. Discrete Math. 10 (1997), 529-550.
[96] S. Thomassé and A. Yeo, Total domination of graphs and small transversals of hypergraphs. Combinatorica 27 (2007), 473-487.
[97] Z. Tuza, Covering all cliques of a graph. Discrete Math. 86 (1990), 117-126.
[98] Chen Xue-Gang, Sun Liang, and Xing Hua-Ming, Paired-domination numbers of cubic graphs (Chinese). Acta Math. Sci. Ser. A Chin. Ed. 27 (2007), 166-170.
[99] B. Zelinka, Total domatic number and degrees of vertices of a graph. Math. Slovaca 39 (1989), 7-11.
[100] B. Zelinka, Domatic numbers of graphs and their variants: A survey, in Domination in Graphs: Advanced Topics, T.W. Haynes et al. eds, Marcel Dekker, New York, 1998, 351-377.
[101] B. Zelinka, Remarks on restrained domination and total restrained domination in graphs. Czechoslovak Math. J. 55 (2005), 393-396.
[102] J. Žerovnik and J. Oplerova, A counterexample to conjecture of Barefoot, Harary, and Jones. Graphs Combin. 9 (1993), 205-207.
[103] I. E. Zverovich and V. E. Zverovich. Disproof of a conjecture in the domination theory. Graphs Combin. 10 (1994), 389-396.
[104] I. E. Zverovich and V.E./Zverovich, A semi-induced subgraph characterization of upper domination perfect graphs. J. Graph Theory 31 (1999), 29-49.

