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SUMMARY 

Atmospheric turbulence (also referred to as optical or heat Scintillation, or heat shimmer) is a 

particular problem encountered in video surveillance, especially over distances where the 

target object focused on is over lkm in the distance. Images obtained from video surveillance 

are commonly required to be of a high quality for object identification and classification. 

Atmospheric turbulence causes degradation in the image quality through the blurring and a 

warping of the image, making object identification difficult. Algorithms have and still are 

being developed to suppress the image turbulence in digital video footage and enhance detail. 

There is a lack of reliable comparisons among algorithms to provide research direction, 

methods for identification of the best algorithms for particular applications, identification of 

useful image processing techniques and a full understanding of the problem. 

This need and lack of comparisons among the algorithms and atmospheric turbulence 

degraded videos is identified through the problem identification chapter. 

A literature study is undertaken in which the source of atmospheric turbulence and models 

are identified, image processing techniques discussed, filtering of electromagnetic waves 

reviewed, a review of some equipment, and a discussion of metrics. This is followed by the 

presentation of a number of atmospheric turbulence suppression algorithms developed by 

other authors. 

After a discussion of the algorithm implementations, the experimental design is described for 

algorithm image quality and performance investigation as well as the effect of optical filters. 

Experimental results are presented and discussed which provide repeatable results pertaining 

to the algorithms' image quality and processing requirements. The results allowed 

identification of the algorithms' strengths and weaknesses, how they compare, and their 

suitability for real and post processing environments. Efficient performing software 

components were also able to be identified, particularly Illuminance-Reflectance adjustment. 

The experiments and results provide a solution to this atmospheric turbulence comparison 

problem. 
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1 CHAPTER 1: PROBLEM IDENTIFICATION 

1.1 INTRODUCTION AND BACKGROUND 

Video images and their use have become increasingly popular due to their availability, 

increasing quality and decreasing costs [1]. Video surveillance makes use of this technology 

to classify, and identify targets. Where the captured images are processed for object 

identification, low quality images can be a cause for concern [1, 2, 3]. Low quality can extend 

to some or all of the following properties: blur, low resolution, noise, low image stability, a 

small dynamic range of image [1].Video enhancement attempts to tackle the low quality 

image problem by making use of one or more algorithms to convert the low quality image to 

one which is of a high quality [3, 4]. 

Video surveillance equipment can be used in military applications to view objects from 

distances of 100 m to 10 km [4]. The light waves travelling from the object to the 

surveillance camera or equipment, may pass through turbulent atmosphere on a warm day 

due to the rising of heat and convection currents [1, 5]. The light rays travelling through this 

turbulent atmosphere are refracted and leads to a degraded image with distortion [1, 4, 5]. 

The degradation is normally at its peak in the middle of the day and the degradation effect is 

referred to as heat shimmer, optical/heat scintillation, atmospheric turbulence or "seeing". 

There are two types of scintillation, terrestrial and astronomical. The terrestrial form of 

scintillation is the more complex of the two and is seen when viewing objects on or close to 

the earth's surface; astronomical scintillation is seen when viewing an astronomical body, 

and this scintillation problem has been present in astronomy for decades (seen as the 

"twinkling" of stars) [5]. Both scintillations are due to atmospheric disturbances in the earth's 

atmosphere. Within the astronomy field, some telescopes, specifically larger ones within 

observatories, make use of adaptive optics in an attempt to counteract the effects the turbulent 

atmosphere has on captured images of astronomy bodies. 

With the increase of technology, processors are becoming faster, cheaper and smaller, 

making image enhancement and restoration techniques using software running on these 
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processors a tangible choice. While there are a few algorithms and different methods which 

may attempt to address the turbulent atmosphere imaging problem, there is very little or no 

comparisons between these methods in regards to their performance and efficiency. 

1.2 PURPOSE OF THE PROJECT 

While a few algorithms attempt to address the atmospheric turbulence problem in order to 

enhance images and extend the range of surveillance equipment, there is no clear distinction 

in regards to which is a better choice, or leading method under certain conditions. This study 

attempts to try and begin bridging the gap that exists in the comparisons between various 

atmospheric turbulence suppression algorithms, both in terms of quality of turbulence 

suppressed video and processing requirements. 

This study will address the problem of suitable metrics for image quality and performance 

requirement measurements, through a compilation of metrics used in experiments. Metrics 

and experiments which may be implemented to produce repeatable and comparative results 

are important for future algorithm analysis. 

By making use of this analysis one may be in a position to compare the algorithms and 

provide a direction in which atmospheric turbulence suppression has shown greater success. 

The side by side comparisons may also inspire newer or combination of techniques to be used 

in addressing this imaging problem. The results from the metrics applied to the algorithm 

implementations allows one to better judge and make choices as to which atmospheric 

turbulence suppression methods are better suited to real time processing and which provide 

the best enhancement in post processing. 

1.3 SCOPE OF THE PROJECT 

The broad range of atmospheric turbulence will be kept in context with regards to long range 

video surveillance. This context consists of the use of digital video equipment which may be 

used for capturing images of objects between distances of 100m and 10km from the video 

recorder. The focus will be on "terrestrial" atmospheric turbulence. 
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To narrow the scope, the study will focus on the obvious initial case for investigation, where 

the captured video images consist of a stationary scene which may contain small local object 

movement. Video footage will be captured of an object between 1 km and 2km from the 

camera depending on atmospheric turbulence levels during summer. Specifically software 

post processing restoration of images will be of focus, with the analysis or comparison of a 

chosen few algorithms in order to ensure timely completion of this study. 

With a desire for a comparison of algorithms, there is an obvious need for a metric or 

compilation of metrics. A metric compilation will therefore be constructed which will be 

implemented within experiments for algorithm analysis. The experimentation will be within 

the context of atmospheric turbulence degradation. 

1.4 RESEARCH METHODOLOGY 

A previous understanding of the atmospheric turbulence problem was created from previous 

studies (see [6]). The prior understanding has helped in the formulation of a research 

methodology. A simple block diagram is given in figure 1-1 to illustrate the basic 

methodology. 

A literature study will be undertaken which provides an understanding and illustration of 

different methods which attempt to address the imaging problem. The study will also provide 

insight into different ways with which the methods and algorithms may be compared. Image 

processing techniques which may be used, as well as smaller pertinent details that may have 

affect on this project may also be included in this literature study. From the literature study, 

methods shall be selected and implemented using a compilation of metrics, allowing for an 

experimental investigation into the algorithms' image quality capabilities and processing 

needs. 

Test digital video footage will be obtained using a camera coupled to a telescope or spotting 

scope. Long range surveillance over a distance between 1 km and 2 km in length will be used 

for obtaining test video footage and footage used with experiments. 
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The same video footages will be processed by the algorithms (through post processing), 

multiple experiments may analyse the same video and from the results, the different 

algorithm methods may be compared and an insight into the performance, image quality and 

other atmospheric turbulence capabilities formed. Various forms of the algorithms may also 

be tested by tweaking the algorithms through parameter adjustments or forming hybrid 

solutions. 

From the results, conclusions may be drawn as to the direction in which the problem is better 

treated as well as the applicability of algorithms in different circumstances (such as real time 

processing vs. post processing). 

Literature Study. 

Algorithm Methods 

Metrics 

Equipment 

Basic Algorithm Developments 
Refinement 

Test Video Footage Testing 

I Final Algorithm Implementations 

Digital Video Footage 
Testing and Comparisons Using 

Metric and Experiment 
Compilation 

Results and Conclusions 

Figure 1-1: Research Methodology block diagram. 
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1.5 DOCUMENT OVERVIEW 

Chapter 1 has outlined the projects purpose, scope and objectives, and presented a research 

methodology to address the problem. 

A literature study is reported on in chapter 2 which provides some background as to the 

source of atmospheric turbulence, discusses image processing mathematical models used in 

representing atmospheric turbulence, reviews some image processing techniques, contains an 

overview of filtering electromagnetic waves, discussion of some equipment, and presents 

some suitable metrics. 

The literature study is followed by a chapter which details the findings of. considered 

algorithms for use in atmospheric turbulence by other authors. Algorithms which are to be 

analysed through the experiment compilation are discussed in detail in chapter 4 pertaining to 

their construction and implementation. 

Experimental design is important in order to obtain repeatable and reliable results that may be 

used in analysis of this atmospheric turbulence problem, chapter 5 presents this. Results for 

the experiments listed in the Experimental Design chapter are presented and discussed in 

chapter 6 and includes implementation and experimental issues encountered. 

Chapter 7 presents some processed image frame examples for both the readers' interest and to 

aid in a final discussion and comparison of the interpreted results as a whole. This study then 

finishes in chapter 8 with a final conclusion to the work that was undertaken. 
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2 CHAPTER 2: LITERATURE STUDY 

2.1 INTRODUCTION AND OVERVIEW 

This chapter discusses some of the various methods and techniques used in image processing. 

Many of these methods and techniques are used in the atmospheric turbulence suppression 

algorithms. The literature study starts with an investigation of the physics surrounding the 

atmospheric turbulence and the modelling of it which various authors employ. Some image 

processing techniques and those relevant to atmospheric turbulence suppression algorithms 

are discussed, followed by a discussion of electromagnetic wave filtering and preconditioning 

of received light. The literature study continues with a review of some of the relevant 

equipment used in capturing the turbulent video footage and some metrics that may be useful 

when designing the experiments. Other content which may be relevant to this project and the 

problem of terrestrial atmospheric turbulence suppression is also discussed. 

2.2 PHYSICS SURROUNDING ATMOSPHERIC TURBULENCE 

To be able to effectively approach a problem, one would like to understand the problem 

itself. In this section the atmospheric turbulence is discussed and how it has an effect on 

distorting images whose light waves have passed through this turbulent atmosphere. The 

relevant physics of the problem is explained with the help of Serway et al in [7]. 

To begin with we will first consider the thermodynamics of the problem. Suppose we have a 

hot surface surrounded by cooler air. The cooler air comes into contact with the hot surface 

due to convectional air currents. The air is then heated causing an excitation of the air 

molecules which now have a higher kinetic energy and the molecules become further 

separated from one another. 

This heated portion of air has molecules separated a greater distance from one another than 

the cooler air and by definition is less dense than the cooler air. This results in the heated air 

to rise and cooler air to sweep under and take its place (convectional currents). 

BD Walters 	 2-1 



Literature Study 
UNIVERSITY 

cd 
JOHANNESBURG 

The convectional currents sweeping downwards to fill in the volume of the rising air may 

disturb the rising air column and produce non uniformity. There is thus non-uniformities in 

the density of the air. 

Serway et al. [7] explains the consequences in the path of light when travelling through 

different densities of matter. A light ray is refracted when the ray travels through two 

elements of different densities. The light ray bends towards the normal between two volumes 

when it travels from a less dense volume to one which is denser. It bends away travelling 

from a denser to a less dense volume. 

The relationship of the refraction of light between two densities can be expressed through 

Snell's law of refraction: 

nrisinOi = nr2sine2, 	 (2.1) 

where nri and nr2 is the index of refraction and 0 1  and 02 is the angle between the light ray 

and the normal between the two densities for density 1 and 2 respectively. 

0 

Air nr i  Glass nr i  
Glass nr2 Air nr2 

Figure 2-1: Refracted light waves through different densities 

As the light rays travel through the rising columns of air the light waves are refracted. If the 

rising columns of air have surface normals which are parallel to one another, then Snell's law 

tells us that the light waves entering the column of air will be parallel to the light waves 
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exiting the column of air. However, due to disturbances introduced by the convectional 

currents and the stochastic nature of the rising column of air, the normals are not parallel 

resulting in light waves exiting the column of air to not be parallel to those entering it. 

Cohen et al. in [8] discusses how this refractive index of air is dependent on the light 

wavelength, atmospheric pressure and temperature, but because the pressure variations are 

small, the temperature differences are the main factor in refractive index changes. Cohen et 

al. goes on to explain that the convection currents break the atmosphere into different 

inhomogeneities as discussed above, but both large scale inhomogeneities and smaller scale 

ones exist. The large scale inhomogeneities are primarily due to the sun's rays heating up 

differing portions of the earth's surface (e.g. a tarred road and a grassy field). The refractive 

index fluctuations are referred to as turbulent eddies [8]. 

An example used by Fante in [9] and illustrated in [8] is shown in figure 2-2 for completeness 

and is used in the explanation of the effects these eddies have on a laser spot of light. 

Figure 2-2: Effect of turbulent atmosphere on a point of light (illustration from [8]) 

If one considers a laser beam which passes through turbulent atmosphere onto a piece of 

paper, Figure 2-2 is an example of what one may observe of the point laser of light on the 

paper for different times at At, 2At, 3At, 4At and 5At. As explained by Cohen et al. within a 

short exposure picture one would notice a broadening of the laser spot (P,) which is deflected 
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by a distance (P a). He discusses that the deflection to a new geometric location is primarily 

due to larger eddies while the summation of smaller eddies accounts for the broadening of the 

laser spot. If a longer exposure time is taken, one would see a much wider spot with the 

radius P L. Due to the quasi-periodic nature of the turbulent atmosphere as discussed by 

various authors [1, 4, 8, 10, 11], by averaging over the estimated period of the geometric 

variance (or over many periods) one can find the true location of the point of light. In the 

example history shown in figure 2-2 this true centre location of the laser point of light, as if 

no turbulent atmosphere were present, is the centre of the long exposure spot of light with 

radius PL. 

Due to the atmospheric turbulence, the wavefront of light which a camera receives is tilted, 

producing the shifts in the image [12]. The atmospheric turbulence also scatters, and absorbs 

some of the light due to molecules in the air known as aerosols [12, 13]. 

2.3 ATMOSPHERIC TURBULENCE MODELLING 

Various parameters may cause image distortion such as camera shake due to wind or 

turbulent atmosphere causing geometric distortions, lens optics, defocusing, aerosols present 

in the air, blurring and turbulent atmosphere causing photometric distortions. The geometric 

distortions relate how captured objects in a degraded video footage do not appear in their 

geometrically correct locations in a video frame in relation to the real object itself (e.g. 

warping of the object due to the turbulent atmosphere between the real object and the video 

capturing device). The photometric distortions account for the object appearing blurred in a 

video footage. Atmospheric turbulence can be the cause of both geometric distortion and 

photometric distortion [1] but not necessarily the only cause, there may be other contributing 

factors such as wind causing camera shake or the camera lens genially being out of focus. An 

example of geometric and photometric distortions is given in Figure 2-3. 
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Original image 
	

Photometric distortion 

Geometric distortion 
	

Photometric and Geometric distortion 

Figure 2-3: Example of Photometric and Geometric distortions 

There are a few authors that use models which try to model how the degradation is taking 

place on the ideal image and producing one distorted and blurred by the atmospheric 

turbulence. Some of the authors relate the degradation of the image by the turbulent 

atmosphere as the convolution of the ideal undistorted image with a Point Spread Function 

(PSF) [2] [3]. 
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i d =h 9 , , 
	 (2.2) 

where id is the degraded image, h the PSF, i, the ideal image, and * showing convolution. 

With and h unknown the problem is ill defined. In the frequency domain the convolution 

becomes multiplication and the problem can be viewed as a blind deconvolution problem. 

I d  = HI , 	 (2.3) 

with Id, H and the corresponding frequency domain counterparts of those in (2.2). H is 

known as the Optical Transfer Function (OTF). 

A slightly more accurate model is one in which additive noise 	)is included so (2.2) and 

(2.3) respectively become that shown in (2.4) and (2.5). 

i d = h", ±ns , 
	 (2.4) 

Id 	+Ns , 
	 (2.5) 

where Ns is the Fourier transform of ns. 

Other authors recognise the geometric distortion apart from the photometric distortion created 

by the PSF and model the system slightly differently [1, 10], while other authors view the 

problem purely from an image enhancement viewpoint in which the video needs to be 

stabilised and geometric distortions removed from an image and the need for deblurring of 

the image: 

g(m, n, t) = D[x(m, n, t) * h(m, n, t), t] + n (m, n, t) , 	 (2.6) 

with g(m, n, t) the degraded image frame, x(m, n, t) the ideal undistorted image frame, h(m, n, t) 

the PSF, n dm,n, 0 additive noise and D[.,t] a time dependant function which causes the 

geometric distortions. (2.6) is presented by Li et al. in [10] and shows some similarities with 

(2.4), the only difference is D[.,t] is included for the geometric distortions. To simplify the 

model the methods often neglect the additive noise, ns(m,n,t). 
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An example of a PSF and how the CCD of a digital camera may capture a point of light 

travelling through turbulent atmosphere is shown in figure 2-4 and figure 2-5. 

Figure 2-4: Example of a Point Spread Function 

(Taken from [18]) 

Point 
abject 

	 0 

Figure 2-5: CCD capturing light travelling through turbulent atmosphere from a point object 

(Taken from [12]) 
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2.4 DIGITAL IMAGE CONSTRUCTION 

To be able to implement various algorithms for use with digital video images, and to 

understand which mathematical functions to use and how they should be utilised, we need to 

consider the surrounding construction of a digital video. 

We will broadly consider the construction around a digital image. 

As discussed in [20] a digital image can be viewed as a two dimensional array with its 

indexes starting at the top left hand corner. Each index (x,y) of the array contains a value 

called an intensity value which is normally between 0 and 1 (real) or between 0 and 255 

(integer). 

A grey scale image (or sometimes referred to as a grey image) is an image as described above 

where the intensity values correspond to different levels of grey. The highest intensity value 

is white and the lowest intensity black. Lower intensity values are darker than higher 

intensity values. 

A colour image has multiple two dimensional arrays for a single image. If we consider the 

colour space RGB (Red Green Blue), we have three two dimensional arrays containing 

intensity values, a two dimensional array to signify intensities of red, one for green and the 

last for blue. There are also other colour spaces such as HSV (Hue Saturation Variance) but 

we will not look into these colour spaces as the RGB colour space in this context is the 

easiest to work with. 

The index location in a digital image is known as a pixel. A 320 x 240 digital image is an 

image with a length of 320 and a height of 240 and contains 320 x 240 = 76800 pixels. The 

320 x 240 is known as the resolution of an image. The resolution is almost always a power of 

2 in order to help processing done by a computer. 

In digital video, the single grey or colour image is known as an image frame. With the digital 

video footage its construction can be viewed as containing an extra dimension, that of the 

frame number. A digital video is simply one containing a succession of image frames, and 

video footage nowadays commonly contains a rate of 25 frames per second (FPS) although 
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this number is dependent on the video capturing device used (PAL-25 fps, NTSC-30 fps). 

The number of frames per second a video capturing device obtains need not however be the 

same amount set by the PAL or NTSC standards of 25 and 30 fps. 

Dimension x 

Figure 2-6: Construction of a digital video 

2.5 BASIC GREY-LEVEL IMAGE PROCESSING USING HISTOGRAM 

Some basic image processing may be the manipulation of the image Histogram. The 

Histogram is an important tool in image processing and is simply a function and graph 

showing the counted pixel intensity values of an image. The Histogram gives no information 

as to the position of intensity values but just the frequency of occurrence of the intensity 

values. For a good dynamic range and detail presented in an image, the whole length of the 

Histogram should be well used. [20] 

The following is sourced from [20]. 

The Histogram (Hhist())  may be defined for an image f() with J occurrences of an intensity 

level (grey level) g as: 

I I  hist g 
	

(2.7) 

The grey level used henceforth is from 0 to 255. Figures 2-7, 2-8, 2-9 and 2-10 give some 

example images and their corresponding Histogram, from which the effects may be seen. 
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The average optical density (AOD) is a measure of the average grey level and can be 

computed using the histogram by: 

1 G-1  
AOD(f ()) = 	 gH hist  (g) 

NM g=0  
(2.8) 

where the dimensions of the image is MxN, Hinst(g) the histogram for image f() for the grey 

level g. 

(a.) 
	

(b.) 

Figure 2-7: Centred distribution Histogram example. 

(a)is the image of the centred distributed histogram shown in (b) 

If an image is constrained to a small set of grey levels then it will not provide as much 

contrast as one in which all the grey levels are used (Figure 2-7 vs. Figure 2-10). If an image 

is under exposed the grey levels present will predominately be the lower levels as illustrated 

in Figure 2-8. Figure 2-9 illustrates an image constrained to the higher levels. 

To correct and adjust the histogram point operations may be used. A point operation is a 

function which is identically applied to each pixel in an image. 
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The linear point operation can be defined as: 

g(n)= Pf (n)+ L , 	 (2.9) 

where f(n) is the image at position n, g(n) the new image, P a multiplicative scaling factor 

and L an additive offset. 
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(a.) 
	

(b.) 

Figure 2-8: Left biased distribution Histogram example. 

(a) is the image of the left biased distribution histogram shown in (b) 

50 	 100 	 150 	 200 	250 

(a.) 
	

(b.) 

Figure 2-9: Right biased distribution Histogram example. 

(a) is the image of the right biased distribution histogram shown in (b) 
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If the image in figure 2-7 is f(..), then a negative L can transform the image to that Figure 2-8 

and a positive L to that shown in Figure 2-9. The scaling term P will enable a contraction or 

expansion across grey levels if it is less than or greater than 1. One must be careful to not set 

P or L to high as saturation will result and there may be overflow errors or there will be 

clipping (maximum is 255 and values will be clipped to this level unless the number of bits 

used for the grey levelling is increased), the same problem is with lower values which may 

result in underflow conditions. A combination of a positive L and a less than 1 multiplicative 

value, P, can transform the image from that in Figure 2-10 to the image in Figure 2-7. Going 

in the reverse direction with a greater than 1 P and negative L (from Figure 2-7 to Figure 2-

11) there is a improvement from Figure 2-7 but the histogram differs to that of Figure 2-10 

due to the grey levels being discrete and resulting round-off errors. 

In short the additive offset can transform the image to a given average brightness level, and 

making use of the AOD we can better compare images by setting their AODs to the same 

level using the offset. The multiplicative scaling term allows compression or stretching of the 

histogram (also known as a contrast stretch), with a stretched histogram having an image 

which has better visibility of detail than an image with a compressed histogram. The 

stretching of a histogram to span all grey levels is known as a full scale histogram stretch or 

FSHS. 

11111111111111111filditimod  
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(a.) 
	

(b.) 

Figure 2-10: Full dynamic ranged Histogram example. 

(a) is the image of the full dynamic ranged histogram shown in (b) 
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(a.) 
	

(b.) 

Figure 2-11: Expanded Histogram example. 

(a) is the image of the expanded histogram shown in (b) 

To make an image negative a scaling term of P=-1 and L=G-1 is used, where G is the 

maximum grey level. Figure 2-12 shows the negative image of Figure 2-10. 

2500 

1 11 11 10110 1 
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(a.) 
	

(b) 

Figure 2-12: Image Negative Histogram example. 

(a) is the negative image of the histogram shown in (b) 
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Up to now linear point operations have been discussed. There are also nonlinear point 

operations such as the logarithmic point operation and the important Histogram equalization 

(or sometimes known as histogram flattening). 

The logarithmic operation is a conjoined operation with the FSHS and can be defined as: 

g(n) = FSHS log[l + f(n)] , 	 (2.10) 

where FSHS is the full scale histogram stretch, f(n) the original image, g(n) the resultant 

image and n the position. The additive unity is there to avoid the logarithm of 0. The 

logarithmic point operation works by suppressing brighter objects from which the FSHS is 

then applied with a final result of bringing forward detail from dimmer objects. 

2.6 INTERPOLATION 

Geometric image operations generally require the spatial mapping of the coordinates of one 

image to define a new image. However, digital images have discrete coordinates and the 

mapping might not fall on the discrete lattice structure. Interpolation is then necessary to take 

non-integer coordinates to integer values for expression in the required discrete row-column 

format [20]. In the following discussions we consider the coordinate- function 

a(n)=[ai(n,,n2),a2(n i ,n2)] which is usually continuous (e.g. analogue images). The need for 

interpolation by the above definition then arises through a I (n l ,n2) and a2(ni,n2) coordinates 

not being integer values. 

2.6.1 Nearest-Neighbour Interpolation 

Nearest neighbour interpolation simply maps the geometric coordinates to the nearest 

integer coordinates off, such that: 

g(n) = f {INT[a i  (n 1  , n2 ) + 0.5], INT[a 2  (n 1  , n2 ) 0 . 5] 
	

(2.11) 
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where INTER] (as used in [20]) specifies the nearest integer value which is less than 

or equal to R. f is the function which is being interpolated using rounded integer 

coordinates and g(n) the interpolated function or image. 

2.6.2 Bilinear Interpolation 

Bilinear Interpolation produces a smoother interpolation than the nearest neighbour 

approach (which results in jagged edges and a blocky effect) [20]. 

The bilinear interpolation is defined by Bovik in [20] as follows: Given four image 

coordinates of f[a(n)J (which could be nearest neighbours), f(nio,n2o), f(nit,n21), 

f(n12,n22), andf(n13,n23), then the image g(n) is computed through: 

(2.12) g(ni  , n2 ) = Ao  + 	+ A2n2  + A3ni n2  , 

where the weights Ao, A1, A2 and A 3  are found using: 

Al 

A 2  

_ A 3_ 

1 

1 

nto 

n11 

n12 

1113 

n20 

1121 

n22 

n23  

nlOn20 

1111 1121 

ni2n22 

11i31123_ 

-1 
f (nio , n20) 

f(n1151121) 

f(n12,n22) 

f(n1 3,n23) ...  

(2.13) 

In some cases the ai(ni,n2) and a2(ni,n2) mapping coordinates may not fall within the pixel 

ranges. In these cases, it is usual for a nominal value to be used such as g(n)=0. [20] 

2.7 FILTERS 

Filtering and the method of filtering has been around for decades and has become a very 

broad topic. This section specifically focuses on and touches on some of the aspects of two 

dimensional filters used in conjunction with discrete time and space signals (i.e. digital 

images and video). 
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Digital filtering is one of the most important processes in DSP (Digital Signal Processing) 

[27]. The filtering operation for an important class of filters as stated by Ifeacher et al. in [27] 

is defined as: 

N-1 

.Y(11) = E hk„(k)f (n — k) , 
k=0 

(2.14) 

where hker(k), k=0,...,N-1 are the coefficients of the filter, f(n) the filtered signal and y(n) the 

output. For the two dimensional case the filtering would be expressed as: 

M-IN-1 

y (m, n) = E E hker  (k ,1) f (m — k,n —1) , 
k=0 1=0 

(2.15) 

where hker(k, 1), k=0, , M-1; 1=0, ... , N-1 are the filter coefficients and f(m,n) the two 

dimensional input signal and y(m,n) the two dimensional output signal. 

In general filtering is convolution of the impulse response of the filter with the signal. In the 

frequency domain the convolution becomes multiplication and is the multiplication of the 

filters transfer function with the spectrum of the signal. 

Digital filters are generally grouped into two categories, IIR (infinite impulse response) and 

FIR (finite impulse response) filters. FIR filters are a common choice for image processing as 

they can have an exact linear phase response and thus introduce no phase distortion. FIR 

filters on the other hand require more coefficients than an IIR filter for a sharp cutoff 

frequency. This greater number relates to the requirement of more processing time and 

storage for coefficients. [27] 

2.7.1 Windowing 

Windowing is a method used within image processing and filtering specifically 

whereby pixel intensity values are collected around a location according to a rule. The 

rule set by the window for example may be a half of one grey level plus a third of 
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another grey level. The ruling layout is known as the window and may be of any 

shape (most commonly a square or circular type shape). [20] 

Figure 2-13 shows some examples of the different shapes a window might have. The 

shaded area is the position the window is presently at and the position for which the 

grey ruling is used and the calculated result stored. For a sliding window the window 

moves to each pixel location and uses the ruling with the surrounding grey levels to 

calculate the value for that point. 

Figure 2-13: Examples of different window shapes 

The shaded area is the position the window is presently at, around which the grey level ruling is used 

using the window and the calculated result stored 

2.7.2 Moving average filter 

The moving average filter simply collects intensity values using the geometric shape 

of a window and averaging the sample. This process provides for a smoothing effect 

and suppresses noise. [20] 
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2.7.3 Low-Pass filtering 

An alternative to the average filter is the Low pass filter. With this filter design the 

frequency response may be forced to zero at the cut-off frequencies, resulting in an 

ideal low pass filter. However the impulse response of the filter in the ideal case may 

extend to infinity and thus needs to be approximated for practical use. There are 

various approximations that may be made, such as just truncating the impulse 

response or tapering it using a hamming window to reduce the Gibbs phenomenon 

which one encounters with other signals. [20] 

The Butterworth filter is one approximation (out of many) of the ideal low pass filter 

and has the following transfer function: 

Hker (u,  v ) = 
1 

(2.16) 
1)  1+ (Vu 2  +v 2  ) 	))2  

where SIc  is the filter cut-off frequency and p specifies the order of the filter. A larger 

p provides for a greater precision. 

The Butterworth filter's impulse response also extends to infinity and so is spatially 

truncated in order to be implemented. [20] 

2.7.4 High -Pass Filtering 

High-Pass filtering as one may know is filtering out the lower frequencies of a signal. 

In spatial filtering of an image it has an effect opposite to Low-Pass filtering in which 

edges of objects become more distinct rather than smoothened. Unfortunately high 

pass filtering has the tendency of introducing high frequency noise. [20] [27] 
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2.7.5 Image restoration filtering methods 

There are a variety of filtering techniques in the realm of image processing and 

restoration which tries to address the effects of the PSF in (2.2) such as direct 

filtering, Wiener filtering, geometric mean filtering, constrained least squares, Lucy 

Richardson and others. [20] 

The direct filtering method simply uses the inverse of the OTF (Optical transfer 

function), however the inverse does not necessarily exist and thus the reasoning for 

the other techniques. The Wiener filter is a popular choice but while it is able to 

suppress noise it only removes a small amount of blur. The biggest hurdle of these 

techniques is that they require knowledge of the PSF, something which in many 

applications is unknown. 

Blind deconvolution is a filtering method where the PSF is unknown. 

Due to this ill-posed nature of image restoration, regularization theory is often used 

and most restoration methods fall under this framework. Regularization can be 

divided into two categories: regularization in functional spaces (using norms), and 

control of dimensionality. Regularization Theory accepts that a unique, true solution 

from imperfect data is not possible and a model is created which defines a class of 

acceptable solutions among which one of them must be found. This allows a 

reasonable solution to be obtained. [4] [6] [40] 

2.8 DISCRETE FOURIER TRANSFORM VS. FAST FOURIER TRANSFORM 

When one wants to transfer a signal to the frequency domain, whether the signal is time 

varying or spatial varying and the spatial frequency is required, there are two options that 

may be considered. When considering the Discrete Fourier Transform (DFT) and the Fast 

Fourier Transform (FFT), the FFT is more computationally efficient especially for signals 

with a larger amount of data points. Considering Table 3.3 in chapter 3 of [27] which is re- 
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illustrated below, it is obviously apparent that we would much rather perform an FFT over a 

DFT even if the image size is double that performed by the DFT for larger values of K. 

To utilize the FFT with oversampling from size M (time domain) to N (frequency domain), 

we can zero pad the right hand side and bottom of our image of size M in order to make it 

size N. If this zero padded image is processed using the FFT we obtain the same result as that 

obtained using the DFT and direct oversampling from M to N. 

DFT 	 FFT 

K 

Number of 
complex 

multiplications 

Number of 
Complex 
additions 

Number of 
complex 

multiplications 

Number of 
Complex 
additions 

64 4 096 4 032 192 384 

128 16 384 16 256 448 896 

256 65 536 65 280 1 024 2 048 

512 262 144 261 632 2 304 4 608 

1024 1 048 576 1 047 552 5 120 10 240 

2048 4 194 304 4 192 256 11 264 22 528 

4096 16 777 216 16 773 120 24 576 49 152 

Table 2-1: DFT computations vs. FFT computations 

2.9 GAUSSIAN AND LAPLACIAN PYRAMIDS 

Gaussian and Laplacian pyramids are commonly used in video and image compression 

techniques (as well as wavelet techniques which are similar). 

As discussed by Burt et al. in [41], the Laplacian pyramid can be constructed from the 

Gaussian pyramid. The Gaussian Pyramid is constructed from level 0 to N ieves  as follows: 

The initial image resides at level 0 

The image at level ritevei + 1, is a low passed filtered image of level ni eve l and down 

sampled by a factor of 2. 
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Burt et al. [41] gives the equation for creation of a Gaussian pyramid as follows: 

 

 

2 	2 

Greve! (m, n) = E E w(k,1).GI„d_ 1 (2m+ k,2n +1), 
k=-2 /=-2 

(2.17) 

where w is a 5 by 5 low pass filter mask. 

Burt et al. [41] stipulates from three constraints that the filter weights should be the 

following, where 'a' is chosen to be between 0.4 and 0.6: 

w(0) = a 	 w(-1) = w(1) = 0.25 	 w(-2) = w(2) = 0.25 — a12 

A method in expanding a level so it is the same size as the level below it is described by: 

2 	2 

= 4 E E w(k,1).G ).Greve!  [(m + k)12, (n +1)1 2]. G level exp anded ( 711 5 n) 
k=-2 l=-2 

(2.18) 

0 
	

1 
	

2 	3 

Figure 2-14: Gaussian Pyramid for level 0 to 3 

The Laplacian Pyramid is constructed by taking the Gaussian image at level nievei and 

subtracted the expanded Gaussian image at level ntevet + 1. The last level image of the 

Laplacian pyramid is the last level image of the Gaussian pyramid. 
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Figure 2-15: Expanded Laplacian Pyramid created from expanded Gaussian Pyramid 
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Image compression uses Laplacian pyramids because the original image (Gaussian pyramid 

level 0) can be created by expanding the image at the Laplacian pyramid level nievei + 1 using 

the Gaussian expand technique discussed above, and adding the expanded image of level 

nievei 1 to level nievei. The process continues till level 1 is expanded and added to level 0. 

The resulting image is the original image at level 0 in the Gaussian pyramid. 

The following figure demonstrates how the Laplacian pyramid is constructed from the 

Gaussian pyramid. Notice how the levels of the Laplacian pyramid contains the high 

frequency data which was filtered out of the Gaussian pyramid levels. The lowest level of the 

Laplacian pyramid shows the edges of the image. This figure was extracted from [41]. 

2.10 FILTERING ELECTROMAGNETIC WAVES 

Image processing is made easier and can have greater success when surrounding conditions 

such as lighting is set to levels which image processing algorithms are developed for. This is 

true for many other circumstances other than just image processing and is a logical 

assessment. When conditions sway from those which are ideal, the system and in our 

discussion, the image processing algorithms need to be robust to handle the change. 

This section provides an overview of electromagnetic waves and the filtering of such waves 

for the suppression of atmospheric turbulence effects, or image contrast enhancement before 

the light travelling from the object of interest is recorded by the CCD of the digital camera. 

One may say that this section discusses some pre-processing optical filtering techniques in an 

attempt to enhance atmospheric turbulence degraded images and set better conditions for the 

image processing algorithms. 

2.10.1 Electromagnetic waves 

Electromagnetic waves consist of an oscillating electric field perpendicular to the 

wave propagation (direction electromagnetic wave is travelling), and an oscillating 

magnetic field perpendicular to the electric field and wave propagation. The magnetic 

field and electric field both have the same frequency. [42] 
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Figure 2-16 illustrates an electromagnetic wave created from an oscillating charge 

along the y-axis. The electric field (E) resides in the plane of the y-axis and the 

perpendicular magnetic field (B) resides in the plane of z-axis with the propagation 

direction of the electromagnetic wave along the x-axis. The oscillating charge in the 

figure is referred to as the wave source. Since all directions of vibration may be 

possible for a wave source, the resulting electromagnetic wave is a combination 

(superposition) of waves from the vibrations in different directions. [51] 

In a vacuum the propagation speed of the electromagnetic wave is 299 792 458 m/s. 

(the speed of light). In fact as discussed in the next section, light and colour as we 

generally know it, is a frequency band of the electromagnetic spectrum. 

Figure 2-16: Electromagnetic wave. 

(Illustration from [43]) 

The electromagnetic waves carry energy and that energy is absorbed by objects that it 

encounters. Energy from higher frequency electromagnetic waves are more readily 

absorbed by objects than lower frequency waves. [42] [52] 

Electromagnetic waves are also referred to as electromagnetic radiation. 
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2.10.2 Polarization of electromagnetic waves 

As discussed in section 2.10.1, an electromagnetic wave is a resultant of a 

superposition of electromagnetic waves of a vibrating wave source. This 

electromagnetic wave in the context of light is referred to as an unpolarized light 

beam. [51] 

The direction of polarization for an individual wave is classified as the direction of 

oscillation of the electric field. An unpolarized light beam has many directions of 

polarizations. An electromagnetic wave is termed to be linearly polarized, plane 

polarized, or just polarized if it has only one direction of oscillation of the electric 

field at all points. [51] 

Light can be polarized through the selective absorption of electromagnetic wave 

directions, reflection, double refraction, or scattering. The selective absorption by a 

material is the most common in polarizing light. [51] 

An incident beam can be polarised by reflection when the condition: 

nr2 = (sin 01 )/(sin 02 ) = tan01 , 	 (2.19) 
nr1  

where 0, is the angle between the incident light and the normal and 02 is the angle 

between the refracted light beam and the normal. An angle of 90 degrees separates the 

reflected and refracted beam as illustrated in figure 2-17. The reflected beam is 

completely polarised, as is the refracted. [51] 

If the surface off of which the reflected beam originates is horizontal, then the 

reflected beam will be horizontally polarized and the refracted beam vertically 

polarized. This polarization is commonly found in nature with light reflecting off 

water. Polarized sunglasses remove this reflected glare by only allowing vertically 

polarized light through. 
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Incident beam Reflected beam 

  

Refracted beam 

Figure 2-17: Electromagnetic wave polarization by reflection. 

Double refraction polarization is a result from light entering substances such as a 

quartz or calcite crystal. Such substances are characterised by two indices of 

refraction and are termed as double-refracting or birefringent. When light enters these 

substances it is separated into two plane, polarized light waves which travel at 

differing velocities through the substance. [51] 

Polarization by scattering is a phenomenon which is observed every day. The 

scattering of light by gas molecules was mentioned in earlier, and now proceeds with 

a deeper discussion in the context of polarization. 

Polarization by scattering is a result of a substance's electrons reradiating a portion of 

incident light, with the angle of incident light perpendicular to the observer of the 

reradiated light. This scattering effect accounts for the observation of blue light when 

looking directly up at the sky. Gas molecules that make up air reradiate the incident 

light to the observer on the ground. The polarization by scattering is illustrated in 

figure 2-18. 

Light of various wavelengths X, which is incident on gas molecules with a diameter d 

(such as Oxygen and Nitrogen) with d << X., reradiates light waves and results in the 
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phenomenon of blue sky and red coloured sky during sunsets. The phenomenon is due 

from the fact that the relative intensity of the scattered light varies as 1/X 4, and shorter 

wavelengths of light (such as blue light) is scattered more efficiently than longer 

wavelengths (such as red light). [51] 

Unpolarized light 

Air molecule 

Polarized light 

Figure 2-18: Polarization by scattering. 

2.10.3 The electromagnetic spectrum 

As one may expect, the electromagnetic wave may have various frequencies and is 

determined by the frequency at which the charge (which sets up the electric and 

magnetic field) oscillates. Frequencies can range from as little as a few Hz through 

the kHz, MHz, GHz, THz (Terahertz), PHz (Petahertz) and EHz (Exahertz) ranges. 

The electromagnetic spectrum shows the possible frequency range of electromagnetic 

waves with wavelengths of thousands of kilometres down to those smaller than the 

width of an atom. The visible light spectrum which our eyes can detect forms only a 

small part of the electromagnetic spectrum. 

The visible light spectrum is boarded by ultraviolet light at the high frequency side 

and infrared light at the low frequency side (these reside outside of the visible light 

spectrum). In order from highest frequency to lowest frequency we have blue, green 

and red coloured light. 
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Figure 2-19: Electromagnetic spectrum. 

2.10.4 Refraction of electromagnetic waves 

Electromagnetic waves are refracted when passing from one density to another. A 

typical example is the glass prism and a beam of white light entering the prism as 

illustrated in Figure 2-20. 

The white light is composed of all colours of the visible light spectrum. When the 

light enters and passes through the prism, the electromagnetic waves are refracted at 

different angles. Red light being refracted the least and blue and violet light are 

refracted by the largest amount. 

Figure 2-20: Refraction of white light. 

(Illustration from [44]) 
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From this observation, higher frequency electromagnetic waves are refracted a larger 

amount than the smaller frequencies. In [46], Okayama et al. found that higher 

frequency light was refracted and dispersed to a greater degree than the lower 

frequency light when travelling through atmospheric turbulence as well. This 

coincides with the physics theory that the atmospheric turbulence consists of differing 

density mixtures of air outlined in section 2.2. 

2.10.5 Advantages and disadvantages of colour filtering electromagnetic waves 

By colour filtering electromagnetic waves, a portion of the frequency is being 

removed. In terms of a colour image, contrast may be improved by allowing only a 

certain frequency band of light to be captured. For example using a red coloured filter 

so blue objects appear dark. 

With higher frequency light being refracted to a higher degree than lower frequencies, 

it may be advantageous to use a coloured filter and allow only the lower frequencies 

to be captured. In the presence of atmospheric turbulence, a blurry image is captured 

due to the refraction of light through the atmosphere. Removing some of the overly 

refracted light may remove some of the blurriness associated with atmospheric 

turbulence. 

The use of filters however, results in information content being removed, and thus 

that frequency information is lost. The use of filters may also require the use of longer 

exposure times when capturing images due to filtering out some light intensity. These 

filters which may require a longer exposure time normally have a filter factor. The 

filter factor indicates the multiple in which the exposure time will need to be 

increased. An example is a filter which has a filter factor specified as 3, which may 

cause an exposure time increase from 1/60 seconds (without filter) to 1/20 seconds 

(with filter). [47] 

BD Walters 	 2-29 



Literature Study 
UNIVERSITY 

JOHANNESBURG 

A filter may also degrade image quality through the scattering of light (filter has its 

own PSF). Degradation of image quality may also occur because of dust on the filter 

and reflections of light off the filter. [47] 

2.10.6 Wratten numbers 

Optical filters are labelled according a system known as Wratten numbers. Each 

optical filter is given a number code known as a Wratten number which identifies 

with the set of frequencies of light it filters. 

An example is a filter with a Wratten number of 2A. This filter has a pale yellow 

colour and used in absorbing ultraviolet radiation. Another filter with a Wratten 

number of 21 has an orange colour and may be used as a contrast filter for blue and 

green light absorption. 

2.10.7 Optical filters 

For contrast enhancement, a coloured filter which is orange or red may be used. 

Possibilities of coloured filters is a Wratten number of 21 or for more intense contrast 

a Wratten number of 22, 23 or 24 (red coloured filter). An optical filter named by its 

colour or appearance (e.g. red) is the colour that the filter allows through and not that 

which it blocks. 

Filters with a Wratten number of 25, 26 or 29 absorb much of the visible light and are 

generally used for infrared photography. 

In some cases, the use of contrast enhancement and colour filters is dependent on the 

colour of the subject of interest and the colour surrounding the subject (in these cases 

the image is sometimes recorded in black and white, thus resulting in this context the 

wording of 'contrast enhancement') [45]. An example is a picture of a red hot air 

balloon against a blue sky. Instead of converting to black and white straight away, a 

red filter could be used first to filter out the blue of the sky resulting in a brighter 
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white balloon against a dark sky. If we used a blue filter instead, then the red of the 

balloon would be filtered out, and will result in a white sky and dark balloon. 

However as discussed, the use of a blue filter (for example in the red balloon and blue 

sky) may result in the loss of detail in the hot air balloon if the light from that object 

has little or no blue component. For this context of contrast enhancement, the 

coloured filter used is dependent on the subject and environment surrounding the 

subject. The selection of the best coloured filter is chosen in general to be 

complimentary to the colour of the region in which contrast is desired to be enhanced 

before converting to black and white [45]. 

Unfiltered colour image 	 Red filter applied 

Green filter applied 
	

Blue filter applied 

Figure 2-21: Coloured optical filter effects. 

(Illustration from [45]) 

A polarization filter filters light having an oscillating electric field of a specific 

direction and is primarily used to reduce glare from reflecting sunlight such as that off 

water. Such polarization filters which are used in photography make use of 

polarization by absorption. 
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Filters can be purchased from Celestron, Meade and other telescope and telescope 

accessory suppliers which fit between the eyepiece and the eyepiece holder (ocular) of 

the telescope. Filters are available for a range of eyepiece sizes. 

2.11 ALTERNATIVE APPROACHES 

Within the Astronomy field, Atmospheric turbulence also causes a problem by creating 

temporally shifting blurs. Some larger telescopes address the problem through the use of 

deformable mirrors in adaptive optics as Cohen et al. discusses in [59]. Ardeberg et al. in [60] 

explains the different optics used with larger telescopes. He describes passive, active, live and 

adaptive optics, where live optics can correct for high frequency errors due to wind, and 

adaptive optics consists of one or more deformable mirrors which are able to correct 

atmospheric turbulence errors. 

Figure 2-22 shows an example of the use of adaptive optics. In this example an LC SLM 

(Liquid-Crystal Spatial Light Modulator) is used to correct for the phase distorted wavefront 

and controlled via a VLSI (Very Large Scale Integration) controller. Figure 2-23 illustrates 

the application of a deformable mirror to correct for the phase distortion; these adaptive 

mirrors are made up of an array of smaller deformable mirrors, such as a MEMS (Micro-

Electro-Mechanical Systems) mirror, and may vary in size between different manufacturers. 
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Figure 2-22: Alternative approach using adaptive phase correcting device (LC SLM). 

(Image from [59]) 

Figure 2-23: Alternative approach using adaptive phase correcting device (MEMS mirror). 

(Image from [61]) 

BD Walters 	 2-33 



.% 

Ns> 	Literature Study 
UNIVERSITY 

c4 
JOHANNESBURG 

The development of a greater sophistication in wavefront sensors, adaptive optics 

capabilities, and smaller deformable mirrors such as the MEMS devices, resulting in two to 

three fold gains in resolution, has resulted in an increased interest within research groups 

[61]. 

"While a large portion of our efforts are focused on astronomy and defence research, a 

growing portion of development is now aimed at serving different areas such as 

ophthalmology, laser-based telecom, optical metrology, and confocal microscopy," says 

Hapet Berberian, industry consultant at AOA. [61] 

2.12 EQUIPMENT 

The equipment used for capturing digital video footage containing distortions caused by 

atmospheric turbulence is an important topic. Without the right equipment the captured video 

may be inadequate and this will affect the testing of the algorithms and the discovery of their 

capabilities. 

In some previous and current studies [86] [62] the equipment used for capturing the 

atmospheric turbulence on video consisted of a Telescope coupled to a digital video camera 

with a sufficiently low exposure time of 10 ms or less to "freeze" the atmospheric turbulence. 

The low exposure time is required so as to minimize the blurring caused by the atmospheric 

turbulence. 

Most telescopes have a 1.25" standard eyepiece diameter size (American design) with 

Japanese designed eyepieces having a 0.965" standard. With the American design, the 

interchangeable 1.25" eyepiece slides into the telescopes 1.25" eyepiece tube. The 

magnification can be changed by replacing the eyepiece with one of a different focal length. 

The magnification that is created can be computed by taking the telescopes focal length and 

dividing that by the eyepiece value (e.g. a 2000mm focal length for the telescope using a 

1 Omm valued eyepiece will give a 200x optical magnification). The focal length of a 

telescope can be calculated from its aperture and focal ratio by multiplying the two (e.g. the 

focal length of an 8 inch (200mm objective mirror or lens) clear aperture telescope with a 
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f/10 focal ratio is 2000mm). The greater the focal ratio (or sometimes referred to as the f 

number) the lesser the amount of light there is that reaches the focal plane (eyepiece), 

measuring brightness per unit area of the image. [63] 

Newtonian Reflector 

k  

Refractor 

Catadioptrics 

Figure 2-24: Comparisons of telescope designs. 

The green line represents the travelling path of light, purple objects represent mirrors and blue objects 

represent lenses. (Images from [641) 

There are various types of telescope designs as shown in Figure 2-24. Newtonian reflectors 

are generally inexpensive but are large in diameter, are an open ended tube design, sensitive 

to being bumped and require collimation of the optics now and then (realignment of optics). 

The Newtonian designs however can offer low focal ratios and collect a lot of light. 

Refractors are much more expensive than Newtonian reflectors with a smaller but longer 

tube. The refractors can offer excellent views and are robust without the need for collimation. 
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Catadioptric designs are generally priced between the Newtonian reflector and refractor 

telescopes. The Catadioptrics are fairly robust and require collimation only occasionally, are 

a closed tube design like the refractors, but are broader in diameter and shorter. They have 

higher focal ratios but offer greater portability. Two common Catadioptrics are Schmidt-

Cassegrains and Maksutov-Cassegrains. 

2.12.1 Telescopes and lenses 

In [65] they give the specifications of a multi-focal telescopic lens which can be 

attached to the "c" thread of a surveillance video camera. This telescopic lens, 

QUESTAR MFL 90 (see Figure 2-25), allows the user to select different focal lengths 

thus allowing for the selection of different magnifications. The different focal lengths 

which can be selected range between 480mm and 3100mm and is shown in table 2-2. 

It has an approximate aperture of 3.5", the unit is 35cm in length, 5.4kg in weight 

(excludes any mount) and weather resistant. [65] 

Figure 2-25: The QUESTAR MFL 90 Multi Focal Length Lens. 

(Taken from [65]) 
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Focal Length (mm) Focal Ratio 

480 f/5.4 

660 f/7.4 

820 f/9.2 

955 f/10.7 

1280 f/14.6 

2230 f/25.0 

3100 f/34.8 

Table 2-2: The QUESTAR MFL 90 Multi Focal Length Lens focal lengths and ratios. 

(Taken from [65]) 

The telescope used in [86] is a Celestron 8" Schmidt-Cassegrain. 

The Celestron Nexstar 8 SE (Figure 2-26) is a high quality 8" Schmidt-Cassegrain, 

with a 2032mm focal length with a focal ratio of f/10. The telescope is just less than 

11 Kg with a 4 Kg motorised mount (able to operate on 8 AA batteries) [66]. The 

smaller 6" sibling, the Nexstar 6 SE has a 1500mm focal length with a focal ratio of 

f/10. The Nexstar uses the 1.25" eyepiece standard. 

The Celestron Nexstar 8 SE, and the smaller Celestron Nexstar 6 SE at the time of 

this writing are priced around R19 000 — R20 000 and R13 000 respectively. 

Meade offer a 5" aperture Maksutov-Cassegrain telescope, the ETX 125PE (see 

Figure 2-27). The ETX 125PE has a focal length of 1900mm and a focal ratio of f/15. 

The higher focal ratio means that the image will be dimmer than that of the Celestron 

Nexstar. The ETX series also comes equipped with a motorised mount. The telescope 

weighs just less than 7 Kg with an 11.4 Kg shipping weight. [67] 

At the time of this writing, the Meade ETX 125PE cost around R15 000. 
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Figure 2-26: The Celestron Nexstar 8 SE telescope. 

(Image from [66]) 

Figure 2-27: The Meade ETX I 25PE telescope. 

(Image from [67]) 
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Meade also offers an 8" Schmidt-Cassegrain, the 8" LX90 GPS (see figure 2-28). The 

8" LX9OGPS has a focal length of 2000mm with a focal ratio of f/10. The telescope 

also has a motorised mount and additionally GPS capabilities to determine its true 

location and time. The telescope weighs an approximate 15 Kg and the motorised 

mount 8.5 Kg. The motorised mount can use 8 C sized batteries. [68] 

At the time of this writing the Meade 8" LX90 GPS cost around R27 000. 

Figure 2-28: The Meade 8" LX9OGPS telescope. 

(Image from [68]) 

2.12.1.1 	Telescope Accessories 

One can purchase adapters for the telescope that fit into the 1.25" ocular 

and allows a T-thread camera to be attached. There are also adapters 

available such as that sold by Astrovid which allows the connection of a C 

or CS thread video camera. In both cases the adapters replace the 1.25" 

eyepiece. 

BD Walters 	 2-39 



Literature Study 
UNIVERSITY 

r.4 
JOHANNESBURG 

Barlow lenses are sold by many brands such as Meade, Celestron, Zhumell 

and others. A Barlow lens fits between the 1.25" ocular of the telescope and 

the 1.25" eyepiece or other adapter. The 2x Barlow lens increases the 

magnification by two while a 3x increases the magnification by three. There 

are also Barlow lenses which have both the 2x and 3x capabilities which are 

selectable by the user. 

2.12.2 Cameras 

There are many different types of digital video cameras on the market. Camcorders 

are obviously the most common in general usage and have become quite good in their 

quality. Surveillance cameras and modified Web cameras seem to be the more 

popular choice when it comes to coupling a video camera to a telescope [69]. 

A video surveillance camera which is used within the University of Johannesburg 

Electrical Engineering department is the Arecont Vision AV3100 (Figure 2-29). The 

AV3100 is a 3 mega pixel camera which uses C threaded lenses. It has a Y2" CCD and 

is capable of 20 fps at a resolution of 1920x1080. The Arecont AV3100 uses Ethernet 

over which the motion jpg format video is transmitted. The camera weighs 450g 

without the lens. [70] 

PixeLINK offer a 1.3 megapixel camera, the PL-A741 (see Figure 2-30), with a 2/3" 

optics format and c-mount (lens not included). The camera is monochrome with a 

FireWire interface and capable of 27 fps in a 1280x1024 resolution, 33fps at 

1000x1000, 107 fps at a VGA resolution of 640x480, and 8000 fps at 427x8. All the 

resolutions can be defined for a selectable region of interest. Optionally supplied is a 

developer's kit which consists of the API (application programming interface) and 

GUI (graphical user interface). The camera allows the user to control the shutter 

(rolling or synchronous), exposure time (0.04ms to 1s), gain and brightness (black 

level), frame rate (from 2 fps upwards), region of interest, 8bit or 10bit pixel format, 

and others. The dimensions of the camera are 35mm x 50mm x 100mm and weighs at 

160g (without lens). [71] 
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Figure 2-29: Arecont Vision AV3100 Surveillance Camera. 

(Image from [70]) 

Figure 2-30: PixeLINK PL-A741 industrial and machine vision camera. 

(Image from [71]) 

BD Walters 	 2-41 



Literature Study 
UNIVERSITY 

JOHANNESBURG 

At time of this writing a quotation was received which priced the PL-A741 at about 

R15 900. One minor problem which may arise within portability (such as using a 

laptop for image capturing or processing) is that the camera uses FireWire and not 

many laptops have FireWire ports (other than Apple) without having to use a 

PCMCIA FireWire card. 

An alternative to the PixeLINK PL-A741 may be the usb 2.0 interfaced PL-B741U 

with similar specifications to the PL-A741 but slightly slower frame rates with 24FPS 

at 1280x1024, 30 fps at 1000x1000, 96 at 640x480 and up to 7200 fps at 724x8. 

For a colour version equivalent to the PL-A741 there is the PL-A742. 

PixeLINK Capture OEM is a software utility which PixeLINK provide for free 

download off their website and acts as a configuration utility which provides access to 

all the cameras features. 

In [86], a Qimaging Retiga 1300 camera is used which is a c-mount camera with a 

2/3" inch optical format. The camera has a specific application design to be used with 

microscopes. It has a 12bit CCD and capable of 1300x1300 resolution images at 10 

fps. The camera has a FireWire interface and at the time of this writing the Qimaging 

Retiga 1300 had an estimated cost of $6950.00 (direct conversion — R50 000). 

Figure 2-31: Qimaging Retiga 1300 CCD camera. 
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2.13 COMPARISON AND TESTING METHODS 

The testing and comparisons of algorithms and their resultant image quality can be difficult 

with MSE (mean square error) and PSNR (peak signal to noise ratio) tests possibly giving 

conflicting results to subjective testing results [72]. The testing becomes a greater problem 

when considering that one may be dealing with multiple images and the testing and 

comparison of a video as a whole. 

In a previous study [6], the aberration produced by a video sequence may be measured by the 

method of maintaining maximum pixel intensities across the image sequence. The method 

uses a checkerboard pattern object with equally sized black and white blocks as the object 

viewed through the turbulent atmosphere. The maximum pixel intensities are recorded from 

the image sequence to produce the single image containing maximum values. From this 

grayscale image the white blocks will appear fatter than the black blocks and if one plotted a 

profile across the pattern, peaks will be broader than the valleys allowing for the 

measurement of the aberration. 

In [86] Carrano uses a method which measures the modulation of different spatial 

frequencies. This method allows the determination of how visible edges of objects will be 

with higher modulations representing sharper edges and higher frequencies representing finer 

mesh objects with steeper edge gradients. 

In the test, various greyscale versions of sinusoids of differing frequencies of interest are 

printed and viewed through turbulent atmosphere. The turbulent atmosphere blurs the image 

and reduces higher frequency content. The modulations of the frequencies are measured as: 

Modulation 
/max  + /min 
	 (2.20) 

where Ima, is the maximum sinusoid intensity value and ' min  the minimum intensity value of a 

specific frequency. 
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Figure 2-32: Frequency Modulation test setup. 

(From [86]) 

Kopriva et al. in [92] propose the use of the Laplacian operator as a metric for determining 

image sharpness. The image sharpening metric is used to correspond a sharper image to one 

which contains a smaller amount of atmospheric turbulence effects. 

The Laplacian operator approximates the linear second order derivative of an image f(m,n) in 

the row and column directions (m and n), 

8 2f (m, n)  a2 f(m,  S(m, n) = V 2  f (m, n) 	am  2 	an 2  
(2.21) 
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with the image sharpening metric defined as: 

1 
S4 = 	E E is(m, n)I , 

MN 

where the image is of size MxN. 

A metric which is commonly used together with data and image compression is the MSE 

(mean square error). A higher number from a MSE test indicates more errors between the test 

data and base data. The MSE is defined as: 

MSE(id)= 
a l  E 
	

(2.23) 

where, id is the estimate or degraded image of the undistorted image, i,, of size MxN. The 

RMSE (root mean square error) is simply the square root of the MSE. 

As stated in [72] and [73], MSE or RMSE results can be contradictory to subjective results. 

In [73], Teo et al. states that "It has long been accepted that MSE (or RMSE) is inaccurate in 

predicting perceived distortion". An example is shown in Figure 2-33 to illustrate this 

discussion. In the figure, the top two images were created by adding different types of 

distortions to the original. The resulting RMSE values are shown below the two images. 

If one were to use the RMSE value as a selection for the image with least distortion then the 

first image with the RMSE value of 8.5 would be chosen over the image with the RMSE 

value of 9. This suggests that the first image is of better quality than the second. 

The PSNR (peak signal to noise ratio) of an 8 bit grey level image is defined as: 

(2.24) 

and being based off the RMSE, it faces the same problem as that illustrated in Figure 2-33. 
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RMSE = 8.5 

RMSE = 9.0 

Original Image 

Figure 2-33: Illustration of RMSE downfall. 

(Illustration from [73]) 
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2.14 CONCLUSION 

In this chapter the relevant literature study was undertaken which touches on some important 

methods used in image processing, identifies some atmospheric turbulence suppression 

methods, some applicable equipment that may be used in the project study and 

experimentation and testing, as well as some metrics which are applicable to atmospheric 

turbulence degraded video. 

The next chapter presents a number of algorithms that have been developed by other authors 

to address the imaging through atmospheric turbulence problem. 
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3 CHAPTER 3: ALGORITHM OVERVIEW 

3.1 INTRODUCTION AND OVERVIEW 

In this chapter, various atmospheric turbulence suppression algorithms which have been 

developed and documented by other authors over the past years are reviewed. These 

algorithms attempt to suppress the distortion created within images by turbulent atmosphere 

describe in the literature study. 

Some of these algorithms are selected for implementation so that they may undergo analysis 

and experimental testing, against a new atmospheric suppression algorithm proposed by the 

author. 

3.2 DFT ANALYSIS METHOD: 

In [2], Frieden proposes a linear solution to the problem of imaging through atmospheric 

turbulence which seems simplistic in its approach although it could be restrictive to 

applicable image sizes. 

The method below is summarized from [2]. 

The method starts with a look at the M point DFT (Discrete Fourier Transformation) and 

takes into consideration that the image can be over sampled rather than at just the Nyquist 

frequency (twice the maximum frequency): 

M-1 
1(co) = 	Ax.i(mAx)e -J"'"A' , - f2c  <sco> S2c  , 	 (3.1) 

m=o 

where Ax = 7r/ Q c  and fIc  the spectrum cut-off frequency. 
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The image spectrums are modelled in the following way: 

I (d' )  = H (n1) I n , i = 1,2; n= 0,1,2,...,N-1. 	 (3.2) 

In  is the observed image spectrum, I n  the object spectrum and H,, the random optical transfer 

function and N the total number of samples (frequency domain samples). 

By using the above equation and dividing the one spectrum by the other, the Object spectrum 

On  cancels and results in the ratio below: 

(1) 

	

H") I 	Hn 	0 1 ,...,  N-1. 
n 	n  = 	 n 	, ,••• 3 D, 	1, 

I 

(2)  = H(2)i 	H(2) 
d 	n 

n 	n 
 

(3.3) 

Representing Hn(i)  ( i = 1,2 ) in their DFT form we have: 

D n  = 

M -1 
e -27ymn I N 

m=0  
M -1 

e -27ymn I N 

m -= 0 

, n — 0, 1,...,N-1. 	 (3.4) 

The hn, 1  and hn-,2  functions are the PSF (Point Spread Functions) relating to H„ 1  and Hn2  

respectively. 

Recapping, Dn  is found from the ratio of the frequency domain representation of the two 

distorted images and can be represented as a ratio with the two unknowns hm1  and h,„2  which 

we want to find. Dn  can also be represented as the following since it is a complex number: 

D r, = M n 	, n= 0, 1, 2, ..., N - 1, where o) = 27013n/N. 	 (3.5) 

Mn  is the magnitude of D, and con  the phase angle. The 27r/N factor in co n  is simply there for 

convenience so it can be factored out later but is not necessary. 
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The DFT anal ysis continues and breaks the e quation into a set of two homo geneous 

equations, one for the real part and one for the complex part. 

Re part : E h ) cos(  27rmn 

–IM h M2)  cos[r2 	– mn)1 	= 0, 

Impart :Eh (m)  sin(  271ffin  

+IM „h(,,,2)  sin 3-5- (9
n 
 – mn) = 0. 

N  

In order to obtain a better estimate of each PSF in their ratio, the homo geneous equations are 

made inhomogeneous, obtaining : 

27r , 
E h2) cos( 2mNin) Em n ii(„,2) cosL— n – mn)1 

m#[Al /2] 

C 274M / 2]n) ,  

N 

27arin 27z- 
E 1'2) sin 	 + M h (m2)  sin —N 	– mn) 

m#[ti /2] 

= – sin(
271[M / 2]n)

,  for n = 0 ,1,...,N -1. 

If you use N = 2M equations, then the first M - 1 and last M + 1 e quations are linearl y  

independent and may  be used to form the solution set. The method above applies to a one 

dimensional image (1 x M). 

For a two dimensional image, Frieden [2] states that for a M x M ima ge, an N x N matrix 

allowed for a uni que solution if N = 1.5M, which relates to a 50% over samplin g. To 

transform the above method and e quations for use in two dimensions, the summations need to 

be performed twice for the x and y  directions. Also due to the fre quency  transform the cosine 
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and sine terms must contain amn/N + 27ckp/N where m is summation in x direction with n 

and k is summation in y direction with p. The image must also be zero padded to ensure M x 

M so m, k = 1, 2, 3, ..., M. The selected term of S mk(I)  resides at m, k, = M/2 like before and 

is excluded in the summation on the left hand side of the equation and forms the solution on 

the right hand side, but all other terms with m or k equal to M/2 must be included in the 

summation (m and k are not both equal to M/2). 

From this adaptation we may form a set of linear equations (A) with unknowns(x) and a 

solution set (b). 

Ax = b. 	 (3.10) 

With linear analysis and the matrix [Alb] we can reduce the matrix to row echelon form and 

find the solutions to the unknowns. With the unknowns now found they can be used with 

their associated distorted image to inverse filter the distorted image and obtain the 

approximate image without atmospheric turbulent effects present. 

This method requires two short exposure images to be available and is computationally 

restricted to the increasing matrix sizes with increasing image sizes (especially N which is 

50% larger than M when dealing with two dimensional images). With the two dimensional 

implementation, the number of linear equations is 2N 2  — 1 and the number of unknowns is 

2M2  — 1, where N = 1.5M. 

3.3 NEURAL NETWORK METHOD: 

In [18] they make use of neural networks based on the Monte Carlo model to try and estimate 

the atmospheric PSF. The method is used to try and reduce the computing bottleneck that 

other methods and algorithms encounter. The immediate problem with the method is that 

training data is required to 'teach' the algorithm to estimate the PSF with a fair accuracy. 

The model following is summarized from [18]. 
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The model is a multilayer feed forward network which contains one hidden layer. The input 

data to the model consists of five trial parameters accompanying the image data (the image 

data consists of 2000 1-meter bins). The five accompanying trial parameters are: 

= Atmosphere type (Integer, range = {1,2,3}) 

12 = Wavelength (Integer, range = {1,2,3,...,9}) 

13 = aerosol model (Integer, range = {1,2,...,6}) , unused in their current implementation 

14 = aerosol optical depth (real, range (0.0, 1.0)) 

15 = scale height (real, range (0.0, 10.0)) 

The neural network makes use of both conjunctive and coarse coding to provide for a 

sufficient amount of differentiation and generalization. The coarse coding allows the 

algorithm to perform more efficiently. 

The training file contained 1400 patterns and test data of 400 patterns. The training of the 

network stopped when the correct percentage was a little higher than 95%.The test data 

produced a result of a 90% correct PSF estimation. Cong states that this high percentage 

indicates that the network can be used reliably to estimate the PSF of atmospheric 

environments that it has never even seen before. 

The network unfortunately (as with most neural networks) requires a large training set, and 

the above network requires the input of various trial parameters. 

3.4 TIME-SEQUENCE REGISTRATION METHOD: 

In [5] a method is proposed and implemented using a hierarchically decreasing window 

registration to shift image sequences, and estimate the atmospheric PSF. 

The method in [5] is summarized below. 

The method uses images obtained with a shutter speed of less than 10ms to 'freeze' the 

atmospheric turbulence in the image. 
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An initial prototype image is formed (fo(m, n)) which is just the average of sample images, 

creating an image which seems blurred. 

Registration is performed on the images to create x and y shift maps corresponding to the 

prototype image fo(m,n). The registration procedure works by using two region windows of 

decreasing size. In the windows a phase correlation between the windowed pixels is 

performed. The co-ordinates where the phase correlation is the maximum represent the shift 

between the region window patterns. The region window is corrected by applying the 

opposite shift that was identified and the test repeated until the shift is close to zero. The 

window size is then decreased and focused on a subset of pixels to correct their region shifts. 

The x and y shift maps created from the registration can be inversed and used with their 

original images to correct them to their true geometry. These images are then summed to 

create a second prototype that is corrected for motion (f 2(m,n)), there may however still be a 

small amount of blur. This small amount of blur can be further reduced by use of a global 

deconvolution if the residual PSF can be estimated. 

Thorpe et al state that the prototype image (f 2(m, n)) can then be used as the new prototype 

image for the image registration instead of fo(m,n) in order to produce a sharper image. For an 

optimal result, they say that only two iterations of this registration technique are necessary. 

Although not necessary for use with the algorithm, the PSF (h(m, n)) that caused the restored 

image to become as blurry as the original prototype image is: 

h(1, y) = 	Y{10(-1-.J .)}, Yti2(x., 	 (3.11) 

3.5 ADAPTIVE CONTROL GRID METHOD: 

This method suppresses atmospheric turbulence effects in images by mapping the motion of 

the image from one image to the other using vectors and then using this information, it tries 

to correct the image to suppress the motion. 
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The method below is summarised from [76]: 

The first part of the procedure utilises bilinear interpolation to increase the resolution of the 

image by a factor of four. Frakes et al state that the reason for this is to allow for sub-pixel 

accuracy. Spatial filtering is then performed to increase the high frequency information in 

each frame using an inverse Laplacian emphasised filter. 

Control Grid Interpolation (CGI) is then performed to obtain a set of vectors that describe the 

movement of the image pixels from the one image to another. The motion field is obtained by 

segmenting the image into a set of contiguous squares whose corners are control points. The 

motion vectors between the control points are derived using the bilinear interpolation method. 
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Figure 3-1: Optical flow field representation. 

(Taken from [76]) 

CGI differs from the conventional block matching method commonly used in most motion 

detection techniques and is attractive due to its ability to represent complex non-translational 

motion. This image restoration method used by Frakes et al, uses a high resolution CGI 

algorithm and embedded optical flow equations for calculation of the control points. Figure 

3-1 shows a representation of the optical flow vectors obtained using the CGI algorithm. 
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3.5.1 Parameter estimation procedure: 

(3.12), (3.13) and (3.14) describe the relationship between the pixels of image 10  [n] 

and I I  [n], where d1 [n] is the horizontal component and d2[n] the vertical component 

of the displacement at the spatial location (m,n). For each segmented block a and 13 

are estimated iteratively. 

The bilinear parameters in each region R are found by minimizing (3.15). Using a 

Taylor series expansion (3.15) is approximated as (3.16). 

11 [n]= 1o [m +d 1 [n], n+d2 [n]] 

d 1 [n]=a 1 +a2 m+a2 n+a3 mn= a T  O[n] 

d2  [n] = /3 1  + 132 m + 182 n+ 183 mn = 13 T  O[n] 

E /0  [n] — [m + a T O[n], n+ 13 T O[n] 2 	 (3.15) 
nER 

To[n] 	[n] 13 T O[n] 2  (/o  [n] —1 1  [n] 
0/ 1  [n] 

nER 	 am 	 on 
(3.16) 

By solving the inverse of (3.16), the desired model parameters are found. The 

parameter estimation can be improved by changing the Taylor series approximation 

location from (m, n) to the new location (m + a TO[n], n + (3Te[n]) and re-estimating 

the parameters. Frakes et al found that the estimation usually converged in less than 

five iterations. 
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3.5.2 Segmentation: 

The image is segmented into rectangular regions using a quadtree. In the beginning of 

the parameter estimation procedure the image is segmented into M x N equally sized 

blocks and each block contains a one leaf quadtree. Eight motion parameters are 

estimated for each leaf. A single leaf of each quadtree is split into for more leafs on 

each pass of the estimation procedure. The leaf that is chosen to be split is the one 

containing the parameters which minimises (3.15) the best. 

3.5.3 Compensating for turbulence: 

The motion vector fields provide us with the information of how the image flow is 

changing from the one image to the next. However because atmospheric turbulence is 

continuous, the motion vector field between images cannot be used to shift the image 

to its geometrically correct position. However since atmospheric turbulence is quasi-

periodic, the turbulent motion vectors should sum to zero over a single period. By 

summing the motion vector fields over an estimated period, a base image frame can 

be obtained. By comparing the vector fields to this base frame the turbulent motion 

can be compensated resulting in suppressed atmospheric turbulence video footage. 

Local object motion within an image can also be accounted for and left unchanged by 

making use of thresholding on the motion vectors. The threshold value which is 

dependent on the amount of atmospheric turbulence present can be determined by 

averaging the magnitudes of motion vectors. Any vector whose magnitude is greater 

by a specified percentage of the threshold is flagged as real motion (flags contained in 

a matrix with dimensions equal to the matrix of motion vectors) .When the image is 

compensated for turbulence, the matrix of flags is consulted to see whether a pixel has 

undergone real motion. If the pixel has undergone real motion it is left unchanged. 

The advantage is allowing for real object motion in images while still correcting for 

atmospheric turbulence in the rest of the image. 
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3.6 IMAGE REGISTRATION AND FUSION METHOD: 

This algorithm is constructed with two existing techniques, Image registration whereby 

geometric distortions are reduced and image fusion which corrects photometric distortion. 

Image registration techniques have been developed based on a pyramid structure which is 

very accurate and robust for both global and local motion estimation [1]. 

In [1], Zhoa et al describe the image fusion as three steps: 

Laplacian pyramid decomposition of images from level 0 (the original images) to 

level N; 

Weight computation based on salient pattern at each level; and 

Image reconstruction from level N to 0 using weights at each level to combine source 

pyramids. 

The method below is summarised from [1]: 

Step 1: Obtain an initial image. 

Step 2: Perform video stabilization using frame to frame motion compensation and image 

warping using initial image. 

Step 3: Enhance current frame using image fusion. 

The number of neighbour frames used for image fusion was 10 due to the demand of fast 

video processing, however a larger number of neighbours may be chosen and is dependent on 

the atmospheric turbulence and object motion. 

Step 2 is simply the image registration. 

The selection of an initial image is important though as the second step aligns the frames 

geometrically with this initial frame. It is therefore important that this initial frame is chosen 

such that it contains the smallest amount of atmospheric turbulence possible. Ideally we want 

an initial frame that is unaltered by atmospheric turbulence. 
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Zhoa et al [1] suggested the following approaches to address the initial image frame selection 

problem: 

Compute the first initial frame: 1. manual selection of frame; or 2. determine a frame 

where the scintillation is zero and warp this back to in initial frame using object 

matching techniques; or 3. remove objects from all the frames and compute the most 

likely shape using Bayesian rule from the mixture of object motion and atmospheric 

turbulence. 

Compute the current initial frame: Warp a current frame to a previous initial frame, 

referring to option 2 above. 

Figure 3-2: Image Fusion comparison. 

From left to Right: Averaging of 10 frames, fusion of 10 frames using a clear initial image, and fusion of 10 

frames using a blurred initial image (first row shows original images and the second row an enlarged area of 

interest.) (Taken from [1]) 

Zhoa et al determined that one would not care if they had an initial frame will little or no 

geometric distortion but photometric distortion. Although the image may be blurred 

(photometric distortion) the image fusion step takes information from all the frames in the 

group. Zhoa et al show that there is no remarkable difference when using a clear initial image 

or a blurred one (see Figure 3-2). 
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3.7 SPECKLE INTERFEROMETRY METHOD (TRIPLE CORRELATION THEORY) 

Speckle Interferometry is a post processing technique which has been used in Astronomy for 

years, such as in retrieving Binary star information. Its basis was first established by Labeyrie 

in 1970 [80]. 

Speckle Interferometry refers to techniques which retrieve diffraction-limited (or near 

diffraction-limited) image information in the presence of atmospheric turbulence by making 

use of multiple speckle images [81]. A diffraction Limited image is the ideal image which 

would be observed through a telescope without the presence of any atmospheric turbulence. 

Speckle Images are images that are captured in a sufficiently short exposure time (typically 

less than 10ms) that freeze the atmospheric turbulence in place (sometimes referred to as 

specklegrams). The word 'speckle' in 'speckle image' and specklegram' comes from the 

way in which a single star (point source of light) is seen to be broken up into speckles due to 

the atmospheric turbulence [81] [82] 

Labeyrie [80] proposed and demonstrated the use of a second order correlation (power 

spectrum) but it only allowed for the determination of the Fourier magnitude (modulus) and 

not the Fourier phase [83]. In 1977 Weigelt proposed the use of a triple correlation and its 

Fourier transform known as the bi-spectrum to retrieve phase information. This is discussed 

in detail in [84] and [85]. 

As Hoffmann explains in [81], when "Speckle Interferometry" began it referred to the second 

order correlation with "speckle imaging" or "speckle masking" referring to the triple order 

correlation technique such as in [84] which extends on the second order correlation to retrieve 

additional image information for a more accurate reconstruction (Fourier phase retrieval). 

Hoffman further explains that for convenience, the classical interferometry method and the 

newer speckle imaging are thought of as a part of a collection of techniques to which the term 

"Speckle Interferometry" is broadly applied. 
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Figure 3-3: Flowchart of conceptual solution to obtaining a near diffraction-limited image. 

In a simple form the theory is to separately calculate the Fourier modulus and the Fourier 

phase of an image (spatial Frequency), and then use the calculated magnitude and phase with 

the inverse Fourier transform to retrieve the image which is near diffraction-limited (see 

Figure 3-3). The Fourier modulus may be calculated either by the Power Spectrum (second 

order autocorrelation) or Bispectrum (Fourier transform of third order autocorrelation). The 

Fourier phase is calculated using the Bispectrum. 

In [86] Carrano proposes a method using speckle imaging to remove atmospheric turbulence 

from images captured over horizontal paths (i.e. terrestrial atmospheric turbulence). The 

method described below is from [86]. 
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The method follows the broader conceptual solution shown in Figure 3-3. For calculation of 

the Fourier modulus the power spectrum is used while the bi-spectrum is used for the Fourier 

phase estimation. Figure 3-4 re-illustrates the method in [86]. 

Image Estimate 

Figure 3-4: Block diagram of processing steps for Bispectral speckle imaging. 

(Block diagram from [86].) 

For the calculation of the Fourier magnitude, the power spectrum is calculated for multiple 

short exposure images and the average power spectrum is then calculated. 

Using the model of (2.3) the Object (ideal undistorted image) Fourier modulus can be 

estimated through: 

4 9 (10 1 =  estimate 

- (vd  (u )1 2  )1' " 
H(u) 2  ) 

(3.17) 

where 10(u)! is the modulus of the object (ideal image viewed with no atmospheric 

turbulence), <II d(u)1 2> the calculated average power spectrum, and <IH(u)1 2> the point 

reference power spectrum. The point reference power spectrum can be obtained by capturing 

speckle images of a point source (such as a star in astronomy), but since this is obviously not 

possible or feasibly applicable with terrestrial surveillance, a model is used. The model used 

is the Labeyrie-Korff transfer function, with r o  (the atmospheric coherence length) chosen 
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and used in the function. It is stated that trying values for ro between 1 cm and 4cm in 0.5cm 

increments will almost always yield one or more acceptable images [86]. 

The bi-spectrum is defined in the spatial frequency space as: 

v) 	(u)/„ (v)4,(—u — v) , 	 (3.18) 

where u and v are spatial frequency vectors. The bi-spectrum of each speckle image is 

calculated, from which the average bi-spectrum is calculated and used for the Fourier phase 

retrieval. In [84] a method is devised and used to recursively find the Fourier phase according 

to a 3-point integration. Conceptually the ruling for the integration and how it is performed is 

through the following formulae: 

arg I 0(u + v) I= arg I 0(u) I +arg I 0(v) I —arg I (/B,n (u,v),) I , 	(3.19) 

where argl...1 refers to the phase. For the phase calculation, redundant information in the bi-

spectrum is used and an average Fourier phase calculated in order to suppress noise and 

increase the SNR (signal to noise ratio). [85] 

For improvement in the produced image quality the above method is applied to overlapping 

portions of the image (tiles), which are then stitched back together once the reconstruction of 

the Fourier modulus and phase has taken place to form the final image. To avoid ringing 

effects due to the overlap, a Hanning window apodization is used. 

3.7.1 Recursive Fourier phase estimation from bi -spectrum 

Bartell et al. in [85] proposed a method for the Fourier phase estimation through a 

recursive integration technique. The following text explains the method. 

If one considers the discrete bi-spectrum: 

T (3)  = T T T p,q 	p• q • —p—q 5 (3.20) 
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where Tp, q(3)  is the bi-spectrum and T p, Tq , T-p-q are sampled Fourier transforms of the 

signal. 

Figure 3-5: The Hexagonal structure of the bi-spectrum. 

For a real signal the shaded octant is all that is needed to completely determine the rest of the bi- 

spectrum due to the symmetrical properties. 

Using the bi-spectrums modulus and phase representation we find the phase 

relationship: 

p,q  = Pp (Pq  — (1) p+q 
	 (3.21) 

where 13p,q , (Pp, (NI , and - (Pp-Fq are the Fourier phases of Tm(3) Tpl Tq , and 

T-p-q respectively. From the relationship it can be seen that there exist combinations of 

p and q that will yield the same Fourier phase angle cp. 
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94 = 93 ± 91 — 133,1 

95= 93 + 92 —113,2 

2 	0 

2 	1 

2 	2 

1 	0 
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4 	0 

4 	1 

4 	2 

0 

94 = 94 + (Po — 114,0 

95= 94 + 91 — P4.1 

96= 94 + 92 — P4.2 

(Pn = 911 ± 90 — 11n,0 

1 	 96+1 = (Pn + 91 — 11.,1 

n 	 9n+n (ion + (Pn Pu,n 

Table 3-1: Recursive phase recovery using bi-spectrum phase information. 

Due to the symmetry of the bi-spectrum values of p and q which are used to find y are 

restricted. The bi-spectrum data resides within a hexagonal region and for a real 

signal, only one octant of the bi-spectrum is necessary to completely determine it due 

to symmetry relations with the other octants. [85]. 
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For the determination of the Fourier phase using the recursive technique Bartelt et al. 

[85] states that (p o  and (p i  can be arbitrarily set to 0. Table 3-1 shows the relation 

between p and q and the unknown (p phases. Phases can be averaged where p and q 

yield the same (p. 

From Table 3-1 we can see how we can use the redundant information in the bi-

spectrum to get a phase average (e.g. averaging to find (4 using p=2, q=2 and p=3, 

q=1). In using the averaging though, Bartelt et al. [85] states that the exponential 

factors should be averaged (exp(i (p p)) rather than just summing up (p p, because the (p p  

are only determined up to modulo 2n. 

3.7.2 Two dimensional signal Fourier phase reconstruction: Fourier series approach 

This method is summarized from [87] in which the Fourier phase is reconstructed 

using a Fourier series approach and the bi-spectrum for a two dimensional signal. 

For the following denotation of the bi-spectrum: 

13,n  (u, v) = I (u)I n  (v)/: (u + v) , 	 (3.22) 

where In  denotes the Fourier transform of the two dimensional signal i(n), with n = 

[m,n] T and u = [1.11 ,U2]
T

. IB,n(u,v) is the bi-spectrum using spatial frequency vectors u 

and v and * denotes the conjugate. 

Using the notation IB , n(u,v)= I /B, n(u,v)lexp[iy(u)] and for the Fourier transform of the 

two dimensional signal, /(u)= I I(u)Iexp[ii(u)], with evaluation along the line u = v , 

the Fourier phases are written as: 

CO 	CO 	 CO 	CO 

0(u)_ E E a(m,n) sin(u i m + u 2  n) +I I a(m,—n)sin(u i m —u 2 n), (3.23) 
m=0 n=0 	 m=1 n=1 

00 	00 	 00 	co 

(u) = E E el(m, n) sin(u i m + u 2 n) + E E (m ,—n) sin(u i m — u 2 n) . (3.24) 
m=0 n=0 	 m=1 n=1 
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To find (Ku) its coefficients, a(m,n), are determined from the w(u) coefficients, 

a(m,n) using the following algorithm described by diante et al. [87]. 

(1) If either m or n is odd, then 

1 ,‘ 
a(m,n)=—a(m,n) . 

2 

(2) If either (m/2) or (n/2) is odd, then 

1„ 	1 „(m 
a(m,n).—a(m,n)+-

4
a — — 

2 	2 '2 )  

(3.25) 

(3.26) 

(3) If both (m/2) and (n/2) are even, then 

a(m,n), 
2 
—

1
a(m,n)+-

2
1  a(—

m 
—

n 

2 , 2 * 
(3.27) 

First steps (1) and (2) are carried out and then step (3) which uses even spaced 

information from a(m,n). 

Given NxN samples, IB, n(u,u), of the bi-spectrum for u = 

[(2n/N)k, (27c/N)e] T, k, e = 0,1,...,N-1, a(m,n) is defined as: 

2 
—1m{DFT[tv(k,1)]}. (3.28) 

The Fourier phase is then reconstructed as: 

0(u) E a(k, Osin(u, k+u2 1). 	 (3.29) 
(k,/) 
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3.8 INDEPENDENT COMPONENT ANALYSIS (ICA) METHOD 

Independent Component Analysis in its general definition and usage uses multiple inputs 

from sensors for breaking a signal into component signals. The application of ICA may be 

extended into various signal processing fields such as environmental noise cancellation, 

whereby the environmental noise is identified as a separate component of the original signal. 

Another example is the separation of two voices with the use of two microphones. Two 

mixed voice signals are captured with the two microphones from which the voices are 

attempted to be separated using the ICA method. [89] 

Thus in a possible simpler view, ICA attempts the separation of an observed signal into the 

fundamental signals which were mixed, through the use of multiple observatory sensors. 

The theory below is discussed and presented in [89], [90] and [91] as well as some methods 

in separating the component sources. 

Considering the following model in which one observes n linear mixtures xj, x2, 	xn  of n 

components: 

x j  = 	a j2s2 + ...+ a jnsn , for all j, 	 (3.30) 

where xi  is the j th  observed mixture, ap  are the parameters which determine the mix and s, the 
.th original component signal (source). 

The mixing model is then expressed as: 

x = As , 	 (3.31) 

where x and s are the column vectors of the observed mixed signals and component signals 

respectively. Matrix A determines the mixing of the signals. The model in (3.31) is referred 

to as the independent component analysis or ICA model [89]. 
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The idea is the estimation of matrix A in (3.31), from which the inverse of matrix A is 

computed and used with x to find the component signals in the vector s. 

As discussed in [89] the starting point of the ICA is the assumption that the component 

signals s, are statistically independent and it is a requirement that they have non-Gaussian 

distributions. In [92], Kopriva et al. make the statement that the source signals (sj) be 

statistically independent and non-Gaussian (except possibly one). 

Kopriva et al. in [92] make use of ICA in order to try and separate the atmospheric distortions 

and the original image scene (image scene viewed if no distortions were present) using an 

image sequence as the vector set for the mixed signal observations (xi) where each image 

frame data in a video is treated as information from a sensor. The approach differs slightly 

from normal ICA approaches, in that instead of sensors and their data being separated by 

space, they are separated by time. A fourth order cumulant-based ICA algorithm is used, 

JADE (joint approximate diagonalization of the eigen-matrices), together with a 

minimization of the squares of the fourth order cross-cumulants of the observed image 

sequence (for statistical independence achievement of estimated sources). Video frames 

which are used with the ICA data model need to be different enough so measurements are 

independent, and so the Kullback-Leiber divergence is incorportated and used to measure the 

mutual information of the images, ensuring a selection of linearly independent measurements 

(images). The algorithm is tested under weak atmospheric turbulence conditions and 

compared to a straight frame averaging technique using the Laplacian operator as a metric. 

[92] 

3.9 HOMOMORPHIC FILTERING AND POWER SPECTRUM BASED METHOD 

The Homomorphic filtering and power spectrum based method is described in detail in [6] 

and [28]. In essence the method uses the spectrum of a frame average and the spectrum from 

high pass Homomorphic filtering, to form a power spectrum filter for the frame averaged 

output (see Figure 3-6). 

High frequency frame selection is performed by convolving the images with the 

convolutional mask shown in Figure 3-7. Grey-level threshold is then performed using the 
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intensity value of 63 (8 bit). The number of values which exceed the threshold are counted 

and the image frame which has the highest count is selected as the image which is used with 

the Homomorphic filtering. 

Figure 3-6• The Homomorphic filtering and Power spectrum based method block diagram. 

0 -1 0 

-1 4 -1 

0 -1 0 

Figure 3-7: Convolutional mask. 

The process and functional block following the high frequency frame selection is the 

Homomorphic filtering. The filter used is a direct form fourth order FIR high pass filter with 

the discrete time domain transfer function: 
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The operator is able to specify which filter coefficients the filter is to use, allowing for 

different cut-on frequencies to be selected. The two dimensional filtering is obtained by first 

applying the filter in the x direction and then filtering in the y direction. 

Homomorphic filtering is structured by taking the natural logarithm of the image intensity 

values, transferring to the frequency domain, multiplication with the filter's frequency 

response, transference back to time domain and then finally outputting the exponential of the 

values. To reduce computational complexity this process can be performed in the time 

domain and convolution with the filters impulse response. 

The power spectrum restoration filter is specified in [28] to have the following transfer 

function: 

HR  (u, V) = 

where WF is the ideal image power spectrum, W N  is the noise power spectrum, and HD is the 

degradation transfer function which is unknown. 

To approximate the above transfer function, the power spectrum from the Homomorphic 

filtered image is used in the numerator and the power spectrum of the image from the 

averaging is used as the denominator. Note that the square root does not fall away. 

The power spectrum filter that is created is then multiplied with the FFT (Fast Fourier 

Transform) output and the IFFT (Inverse Fast Fourier Transform) performed to recovery the 

turbulence suppressed image. 
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3.10 CONCLUSION 

This chapter presented various algorithms that have been created and documented over the 

past years by other authors. 

The following chapter is Algorithms Detail Design, in which algorithms that will be 

implemented and used for atmospheric turbulence suppression and a comparison to a new 

algorithm suggested by this author are presented and described in detail specific to their 

implementation. 
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4 CHAPTER 4: ALGORITHMS DETAIL DESIGN 

4.1 INTRODUCTION AND OVERVIEW 

In this chapter the various algorithms that are to be implemented and compared are described 

in greater detail with regards to their construction and implementation. The algorithms 

described in this chapter will be tested and -compared to one another using numerous 

experiments. 

For additional contrast enhancement of the processed video, a full scale histogram stretch 

may be performed on the image frames as described in the literature study chapter. 

Section 4.6 contains algorithms composed by this author, most notably the Illuminance-

Reflectance based algorithms which are based using a slightly modified method described in 

[93]. 

For Matlab code of the algorithms and their supporting functions, the reader is referred to 

Addendums A to G. 

4.2 SPECKLE MASKING ALGORITHM 

Speckle Masking is a method used within the astronomy field in an attempt to suppress 

atmospheric turbulence effects which degrade an image of an astronomical object and 

provide an image which is near diffraction limited as described in chapter 3. This method is 

used extensively to retrieve object information within solar images (images of the sun and its 

`surface'). 

The method in its simplest explanation is to separately determine the Fourier modulus using 

the averaged Power Spectrum of image frames and determine the Fourier phase using a triple 

integration technique with the averaged bi-spectrum. The Fourier modulus and phase forms 
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the spectrum of the object which is near diffraction limited and all that is left to do to recover 

the object image is an IFFT. This simplistic explanation is illustrated in Figure 4-1. 

Describing the method in more detail, the Fourier modulus and Fourier phase computations 

shall be described separately below. 

Atmospheric Turbulence 
Removed Object Image 

Figure 4-1: Speckle Masking simplified flow diagram. 
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4.2.1 Fourier Modulus Calculation 

The Fourier modulus calculation (see right hand branch of Figure 4-1) is performed 

by averaging the Power Spectrum of multiple image frames and then dividing this 

Power Spectrum by a reference Power Spectrum. The reference Power Spectrum is 

the squared Fourier modulus of the atmospheric turbulence PSF. Since we cannot find 

the reference Power Spectrum without a point source such as a star, a reference is 

computed using the model developed by Korff [96]. 

Once divided by the reference Power Spectrum, the corrected Power Spectrum 

elements are square rooted to yield the Fourier modulus. 

4.2.2 Fourier Phase Calculation 

The Fourier phase calculation begins by finding the averaged Bi-Spectrum of multiple 

image frames. The Bi-Spectrum, I B,„, of an image frame, I n, is defined in the spatial 

frequency space as: 

13 , ,(U,V) = In(u)In(v)In(—u—v), 	 (4.1) 

where u and v are spatial frequency vectors. 

The Bi-Spectrum of a two dimensional object is itself four dimensional and contains 

plenty of redundant information as discussed already in chapter 3. To reduce 

computational complexity, only relevant Bi-Spectrum values are calculated that are 

needed in this methods phase recovery step. In order to keep to standardised symbols 

used when working with bi-spectrums the spatial frequency vectors p=(px,py) and 

q=(qx, qy) will be used instead of the vectors u=(///, u2) and v=0], v2). 

Phase recovery proceeds based on the following equation: 

V(Px -Fqx,Py +q),)=c0(Px,Py )±(0(qx,q ),) — P(Px , Py , q, , R y ) , 
	(4.2) 
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where tp(p+q), 114), and w(q) are the Fourier phases of a two dimensional signal and 

fi(p,q) is the Bi-Spectrum phase at location (p,q). 

v(0,1) and v(1,0) cannot be found through the above equation and are the initial 

phases from which all higher frequency phases are found. w(0,1) and v(1,0) are 

simply set equal to the averaged image frame's respective Fourier phases. 

By using different values for p and q we can see that we can find a specific phase 

multiple times while keeping within a single octant of the Bi-Spectrum. This 

information is used in this phase recovery method, so that calculated values at a 

specific phase location may be averaged to improve the signal to noise ratio of the 

reconstructed image. 

The Fourier phases are calculated in the following way given that image frames are 

size NxN: 

Find v(0,2), v(0,3), v(0,4), ..., tit(0,N-1) using equation (4.2). 

Find tg(2,0), w(3,0), tg(4,0), 	w(N-1,0) using equation (4.2). 

Find tv(1,1) using tif(0,1) and w(1,0) in equation (4.2). 

Find w(1,2), w(1,3), yi(1, 4), ..., v(1,N-1) using equation (4.2). 

Find v(2,1), v(3,1), v(4,1), 	tp(N-1,1) using equation (4.2). 

The above have only one possible occurrence value when considering a single octant 

of the Bi-Spectrum. For calculation of the rest of the Fourier phases, the code snippet 

shown in Figure 4-2 is used where the variable `numtoavg' set by the user is the 

number of calculated phase values to average over for SNR improvement. 
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for k = 2:N-1 

for 1 = 2:N-k 

q. = floor(k/2) 

qy  = floor(1/2) 

occurs = q. + qy  -1 	% this is the maximum number 

of values that can be 

averaged 

if occurs>numtoavg then 

occurs = numtoavg 

endif 

for num = l:occurs 

Px = k 	qx 

py  = k - qy  

temp = expphases(q.,q y ) .*expphases(p.,p y ) .* 

exp(-i*(BSpecAngle(k,l,num)) 

expphases(k,l) = expphases(k,l) + temp/occurs 

if q.>qy  then 

qx = qx - 1  

else 

qy  = qy  - 1 

endif 

endfor 

endfor % 1 loop end 

endfor 	 % k loop end 

% Decrease greater vector 

component of q 

phases = angle(expphases) 
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Figure 4-2: Speckle Masking Pseudo code snippet 

In the algorithm code of Figure 4-2, angle(.), is a function which returns the phase of 

an object. The averaging used to find the phase at position (k,l) is performed using the 

exponential in order to remove ambiguities of +-m which can occur if averaged 

directly [97]. BSpecAngle(k,l,num) is the Bi-Spectrum angle calculated for finding 

the phase at (k,l) with num = 1... numtoavg. 
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The calculation of the Bi-Spectrum follows the same algorithm formulae as discussed 

above except that instead of the phase calculation portion (temp and expphases 

calculation in Figure 4-2), the Bi-Spectrum is calculated using: 

BSpecAngle(k,l,num)= angle((/(p,,p))*1(qx,q),)*conj(1(k,1))), 	 (4.3) 

where I is the Fourier transform of the image frame and the conj(.) function returns 

the conjugate of an element. Bi-Spectrum elements are also calculated for use when 

finding yi(0,2), w(0,3), iff(1,2), tit(1,1), w(2,3)... etc that have only one phase value 

occurrence in the Bi-Spectrum octant. 

4.2.3 Additional processing steps 

Now that the Fourier modulus and phase reconstructions have been described, 

additional processing steps which are undertaken when performing the reconstruction 

shall be discussed. 

In order to overcome anisoplanatism (the spatial variation of the PSF across an image) 

effects in reconstruction of the image as discussed by Pehlemann et al. [97], the image 

frames are divided into smaller overlapping segments which are processed and then 

recombined using a Hamming window at the end of the algorithm. Figure 4-3 

illustrates the segmentation and Figure 4-4 the hamming window. 

1 1,2 2 

1,3 1,2,3,4 2,4 

3 3,4 4 

Figure 4-3: Image frame segmented into four overlapping segments. Segment 1 is highlighted. 
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0 

Figure 4-4: 64x64 Hamming window for multiplication with a 64x64 sized segment during 

reconstruction. 

Before performing the Speckle Masking algorithm on a set of segments, basic 

registration is performed within a small region surrounding the segment to remove 

small translational motion. The reference image used for the registration is the 

spatially corresponding segment in the first image frame. 

4.3 IMAGE REGISTRATION AND LAPLACIAN PYRAMID IMAGE FUSION 

Laplacian Pyramid Image Fusion follows the theory laid out by Zhoa et al. [1] and as part of 

undergraduate work in [6]. Figure 4-5 gives a simple Block diagram for the algorithm. 

The method has three main steps. The first step is obtaining a reference image frame, which 

is simply the frame averaged image as calculated using equation (4.4),Image Registration is 

then performed on each image frame within a sliding window set so that object detail match 

up to those in the reference frame. The last step performs Laplacian Pyramid Image Fusion 

using the multiple registered image frames. 

These three steps are explained in detail in chapter 4 of [6] as part of the undergraduate study. 
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Figure 4-5: Block diagram of Image Registration and Laplacian Pyramid Image Fusion Algorithm. 

4.4 HOMOMORPHIC FILTERING AND POWER SPECTRUM RESTORATION 

The Homomorphic Filtering and Power Spectrum Restoration based method originally 

described by Thales Advanced Engineering (now called Protoclea Advanced Image 

Engineering) [28], treats the problem in two parallel processing steps as shown in Figure 4-6. 

The Ratio frame average block calculates the frame average using the following equation to 

suppress geometric distortions and provide Fourier Phase information during the Power 

Spectrum Restoration Step: 

g (t) (m,n)= a.f (m, n) + (1— a)g (i-I)  (m,n), 	 (4.4) 

where g(1)  (m,n) is the resulting image frame ratio average, f(m,n) the current image frame, 

get-1) (m,n) the frame average calculate on the previous iteration and alpha a scalar between 0 

and 1 which is specified by the user and controls the weighting between the current frame and 

ratio average. 
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Figure 4-6: Block diagram of Homomorphic filtering and Power Spectrum Restoration based algorithm. 

High frequency frame selection is performed by convolving the images with the 

convolutional mask shown in Figure 4-7. A Grey-level threshold is performed using the 

intensity value of 63 (8 bit). The number of values which exceed the threshold are counted 

and the image frame which has the highest count is selected as the image which is used in the 

Homomorphic Filtering step. 
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0 -1 0 

-1 4 -1 

0 -1 0 

Figure 4-7: Convolutional mask. 

For the Highest frequency image selection a sliding window of 8 images is used, with a new 

highest frequency image being selected from the set every 5 image frames. The reason for the 

selection is explained in [28] and is due to the fact that the high frequency Fourier modulus 

information does not change rapidly. 

The process and functional block following the high frequency frame selection is the 

Homomorphic filtering. The filter used is a direct form fourth order FIR high pass filter with 

the discrete time domain transfer function: 

4 

Hker (u) = E bk u -k  with filter coefficients b0,...,b4. 	 (4.5) 
k=0 

The operator is able to specify which filter coefficients the filter is to use, allowing for 

different cut-on frequencies to be selected. The two dimensional filtering is obtained by first 

applying the filter in the x direction and then filtering in the y direction. 

Homomorphic filtering is structured by taking the natural logarithm of the image intensity 

values, transferring to the frequency domain, multiplication with the filter's frequency 

response, transference back to time domain and then finally outputting the exponential of the 

values. To reduce computational complexity this process can be performed in the time 

domain and convolution with the filters impulse response. 
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The power spectrum restoration filter is specified in [28] to have the following transfer 

function: 

HR  (u, v) = 1  

 

WF  , V) 

 

(2.51) 

 

HD (u, V)2  WF  , 	W N , 1 , V) 

 

where WF  is the ideal image power spectrum, W N  is the noise power spectrum, and HD is the 

degradation transfer function which is unknown. 

To approximate the above transfer function, the power spectrum from the Homomorphic 

filtered image is used as the numerator and the power spectrum of the image from the 

averaging is used as the denominator. Note that the square root does not fall away. 

In Essence, the Fourier Modulus information from the Homomorphic filtered image is being 

incorporated into the Frame averaged image. The power spectrum filter that is created is then 

multiplied with the FFT (Fast Fourier Transform) output and the IFFT (Inverse Fast Fourier 

Transform) performed to recovery the turbulence suppressed image. 

4.5 WIENER FILTERING APPROACH 

The basic Wiener filtering approach is simply performing Wiener filtering on the ratio 

averaged image described by equation (4.4) for suppression of geometric distortions. In order 

to perform Wiener filtering a model of the PSF (Point Spread Function) or OTF (Optical 

Transfer Function) is required. The OTF model used in this method and used in the Control 

Grid Interpolation Method in [10] is: 

H(u, v) = e -A(u  2 +V2 )5 6 	 (4.7) 

where u and v are the spatial frequencies and A is a scalar which corresponds to the severity of 

the blur. As A increases so does the severity of H (u,v) (the OTF). 
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The Wiener filter is given by: 

H* (u, v) 
H wiener(u , v) = 	  

H(u,v)I
2 
 + W N  (14 ' V)  

Wi  

(4.8) 

where W(u,v) and WN(u,v) are the power spectrum of the signal and noise, respectively. 

Using the model described by equation (4.7) the value for A is found using kurtosis 

minimization as described in [98]. The kurtosis of a random variable (x) is described as the 

normalized fourth central moment: 

kurtosis = 
4 o- 

where 1u  is the mean of x, a is its standard deviation and E() is the expected value operation. 

The A parameter (also referred to as Lambda value within this study) in equation (4.7) is 

searched within a reasonable space a For each A parameter the image is Wiener filtered 

using equation (4.7) as the OTF and the kurtosis measured. The de-blurred image with the 

minimum kurtosis is chosen. 

4.6 OWN ALGORITHM DEVELOPMENTS 

Based on information gained through the literature study with regards to the atmospheric 

turbulence problem and the way various algorithms attempt to address the problem, 

algorithms have been constructed to compete with the existing mentioned algorithms. 

In order to keep to keep the workload the algorithms need to perform to a minimum, this 

algorithm attempts to be efficient in outputting an enhanced image with little overhead. 

Efficiency is essential to producing a good output image at higher frames per second than 

corresponding algorithms. 
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4.6.1 Wiener Filtering using Laplacian Operator 

This Wiener filtering method was produced as an alternative to the kurtosis 

minimization method. 

Instead of using the kurtosis as a measure to the amount of blur in an image and then 

using the X. that produces the smallest kurtosis, the Laplacian Operator Sharpness 

Metric is used to determine how sharp an image is and then use the X, which produces 

the sharpest image. 

The Laplacian Operator Sharpness Metric is described as: 

S =  1  EE 02 f 
MN ,n  n  

(4.10) 

where f(m, n) is the image being measured, M the number of rows and N the number 

of columns. This metric is equivalent to the image sharpening metric in [101] and 

[102]. 

4.6.2 Dynamic Illuminance -Reflectance Atmospheric Turbulence Suppression 

This method is primarily based on the Illuminance-Reflectance video enhancement 

technique discussed by Tao et al. [93]. The method separates an image into two 

components; a lower frequency Illuminance estimate and a high frequency 

Reflectance estimate. A block diagram of the process is given in Figure 4-8. 

This method is constructed such that it may operate using gray images or colour 

images. Tao et al. [93] presents some results indicating this methods excellent colour 

rendition and image enhancement in comparison to two other methods: Multi-Scale 

Retinex (MSR) and Luma Dependent Nonlinear Enhancement (LDNE) [93]. The 

construction and incorporation of some simplicity (in comparison to registration and 

memory hungry techniques) within the algorithm may yield some performance results 

achieving or reaching close to real time goals. 
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The first step in the algorithm uses a frame averaging technique described as: 

g (f)  (m, n) = a .f (m, n) + (1— a)g (")  (m, n) , 	 (4.4) 

where g(t)  (m,n) is the resulting image frame ratio average, f(m,n) the current image 

frame, g" (m,n) the frame average calculate on the previous iteration and alpha a 

scalar between 0 and 1 which is specified by the user and controls the weighting 

between the current frame and ratio average. 

The frame averaging technique is used because it is able to produce some stabilization 

to the image using a low alpha value. The ratio averaging is inexpensive in processing 

time and is much more efficient than elastic registration or similar techniques [6]. 

The Reflectance and Illuminance adjustment component by Tao et al. [93] was chosen 

to be a part of the algorithm as it too runs fairly fast [93] while sharpening up the 

image and suppressing blur which is a major component atmospheric turbulence. The 

algorithm component also has an advantage of enhancing detail hidden in shadows. 

Equation (4.12) describes an image frame comprising of Reflectance and Illuminace, 

whereby the Illuminance estimate is found by low pass filtering the image frame 

using a 4x4 sized Gaussian filter and the Illuminance is used together with equation 

(4.12) using element by element division to find the reflectance estimate. For colour 

images the greyscale image is used which is comprised using the maximum intensity 

across the RGB colour bands. 

f (m, n) = L(m, n).R(m, n) , 	 (4.12) 

where L(m,n) is the Illuminance estimate and R(m,n) is the Reflectance estimate. 

The Illuminance image is normalized and used in the Dynamic Range Compression 

step described by Tao et al. [93]. In this step the lower frequencies are suppressed. 

BD Walters 	 4-14 



Algorithms Detail Design 
UNIVERSITY 

0' 
JOHANNESBURG 

There is a minor difference in the sigmoid function which is used and that 

documented by Tao et al. 
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Figure 4-8: Block diagram of Dynamic Illuminance-Reflectance Atmospheric Turbulence Suppression 

Algorithm. 

The Sigmoid function used is: 

1 
I -I sig(k)= 

1+ e ak 	 (4.13) 

where the a value used is 1. 

The next step, Adaptive Mid-tone frequency Component Enhancement, takes place 

via the same technique as documented in [93]. Although the scalar P is found 
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dynamically through this step, it may be advantageous at times for this value to be 

overridden by a user specified scalar for contrast enhancement of particularly faint 

object detail. 

Image restoration takes place through the dot product of the new Illuminance 

component and Reflectance component. 

For colour images, the RGB colour bands are recovered using: 

, 

r = - r 	g ' = g 	b'=— b , (4.14) 

where r, g, b are the red, green and blue colour bands respectively from the frame 

ratio average. I' the greyscale version of the ratio frame average found through the 

maximum intensity approach discussed earlier. I is the new reconstructed grey image 

and r', g', b' the new red, green and blue colour bands respectively. 

4.6.3 Dynamic Illuminance-Reflectance Atmospheric Turbulence Suppression with 

Wiener Filter 

Image Frames 

Ratio Frame Average Calculation 

Wiener filtering using Laplacian 
operator technique 

1 	 
Illuminance Reflectance 

adjustment 

Figure 4-9: Dynamic Illuminance-Reflectance Atmospheric Turbulence Suppression with Wiener 

filtering. 
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This method is the same as the previously described technique except that it 

additionally performs Wiener filtering after the ratio frame averaging using the 

Wiener filtering using the Laplacian Operator technique previously described in this 

section. 

After Wiener filtering a full histogram stretch is performed to fully make use of the 8 

bit grey level and provide maximum contrast. Once the histogram stretch had been 

performed the Illuminance Reflectance adjustment proceeded. 

4.7 CONCLUSION 

This chapter detailed the base design of the selected algorithms which are implemented and 

compared. Own algorithm developments are presented which make use of components or 

parts of components described by other authors. 

The following chapter outlines the different experiments that will be performed, some of 

which are to compare the algorithms to one another. 
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5 CHAPTER 5: EXPERIMENTAL DESIGN 

5.1 INTRODUCTION AND OVERVIEW 

The planning of experimental work is essential in ensuring a successful outcome to any 

experiment. Also important in any experiment is repeatability and that of any tests so that 

results may be duplicated by others who follow the laid out experimental setup and method. 

The experiments follow suggestions and guidelines from various authors. [105, 106. 107, 

108, and 109] 

This chapter lists the experiments undertaken in order to provide a comparison between the 

various algorithms on a FPS (Frames per Second) performance and image quality level. The 

imaging system used in the experiments and the setup of that imaging system is first 

described. Following the description of the imaging system setup, the experiments 

undertaken to analyse the algorithms are listed. 

Each experiment has an aim, list of equipment used, method, discussion of experiment 

relevance and its relation to this project study, and expected experimental results. Some 

additional experiments are listed relating to the algorithm performance and quality 

investigation, as well as the basis atmospheric turbulence problem, such as the use of optical 

filters before video capture. 

5.2 IMAGING SYSTEM 

This section details the equipment used for capturing of test video footage used in some of 

the following experiments. 

The digital video footage will be captured using a CCD video camera which has a detachable 

lens with a C/CS thread. The reason for the C or CS thread is because an off-the-shelf adapter 

component is available that allows connection of a C or CS threaded device to the 1.25 inch 

telescope ocular at prime focus of the telescope. This is important as one will then not have 
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distortions due to the eyepiece lens of the telescope (the eyepiece lens is bypassed and 

telescope becomes the lens for the camera). The CCD camera used will be an Arecont Vision 

AV3100 3 mega pixel IP camera due to cost considerations and its availability within the 

Electrical Engineering Department for this project. 

While this camera has some suitable specifications, the AV2100 would be a more suitable 

camera for such purposes. This is because although it is a lower resolution camera (2 mega 

pixels) the size of the CCD is the same and has larger pixel bin sizes than the AV3100, thus it 

is more sensitive to light and performs better at very short exposure times which are desired 

for some of the algorithms. 

The 'lens' of the imaging system is a Celestron Nextar 8 SE telescope which has a focal 

length of 2032mm and a diameter of 8 inches. The long focal length provides a much greater 

optical zoom while the large diameter allows for a greater collection of light allowing for the 

camera to more readily achieve short exposure times. The telescope is of a Schmidt-

Cassegrain design which is a robust enclosed design and allows a wide range of focus 

adjustment. The focus adjustment is necessary for raw CCD imaging (CCD with no lens 

connected directly to the visual back of the telescope). 
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5.3 IMAGING SYSTEM EQUIPMENT SETUP 

The imaging system is setup for recording video footage of a distant target as follows: 

Assemble the telescope according to the manufacturer's instructions. 

Point the telescope at the intended target to be recorded. 

While looking through the eyepiece centre the target in the field of view. 

Remove the eyepiece and 1.25" diagonal. 

Unscrew c/cs mount lens from camera if one is attached exposing the ccd. 

Attach the 1.25" to c/cs adapter to the camera. 

Mount the camera and adapter to the back of the telescope (replacing the diagonal and 

eyepiece). 

Connect the power supply and Ethernet cable to the camera. 

Connect the Ethernet cable to the computer and setup a static Ip that has the same 

network address as the camera. 

Use camera software to view streaming video. 

Refocus image using focusing knob on telescope. 

Video footage can now be captured of the target using the camera software. 

The camera on its own gives roughly a 160x optical magnification of the target. 

Additionally a Barlow lens and 1.25" filters may be connected between the telescope 

and the 1.25" to c/cs adapter. The Barlow lens doubles the optical magnification. 

5.4 OVERVIEW OF EXPERIMENTS 

This section provides an experimental overview to link the experiments and their relationship 

to this study. 

There are 7 experiments. Experiments 1 to 4 are used to compare algorithms on a 

performance and image quality level. Experiment 5 uses the classical mean square error 

metric to try measure and compare image quality. Experiment 6 investigates a performance 

improvement vs. image quality impact for the Wiener filtering based algorithms and 

Experiment 7 investigates the use of light filters and their effect on captured video. 
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Experiment 7 is an additional experiment relating to the atmospheric turbulence problem 

itself rather than the algorithms. Experiment 7 is considered relevant however since real time 

improvements may be made to an image before the image is captured by digital video footage 

and enhanced further by the atmospheric turbulence suppression algorithms. Figure 5-2 

illustrates the relationship of these experiments. 

Figure 5-2: Overview of experiments 
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It is important when interpreting results that input parameters to the system that are not being 

investigated be set constant so as to insure that the changing system output is a result of the 

single parameter that is changing or under investigation. 

All external programs are closed to ensure memory and processor resources are not being 

used or changed by outside programs (such as antivirus software or programs trying to 

automatically update). 

5.5 EXPERIMENT 1: ALGORITHM PERFORMANCE EXPERIMENT 

5.5.1 Aim 

To find out how the algorithms compare with each other in terms of FPS (Frames per 

second) performance over various input image sizes. 

5.5.2 Equipment 

Imaging system described in section 5.2, 

Algorithms detailed in chapter 4 implemented in Matlab, and 

Computer on which to run Matlab and algorithms. 

5.5.3 Method 

Using the imaging system, capture and record raw avi (Audio Video 

Interleave) video footage containing at least 100 image frames with a 10ms or 

less exposure time. Image size recorded must be 640x480 pixels or greater. 

Crop the video into image sizes of 80x60, 160x120, 240x180, 320x240, 

400x300, 480x360, 560x420, and 640x480 and save each resized video file. 
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Record the number of seconds it takes an algorithm to process 100 video 

frames. Repeat for each algorithm and the different video sizes. 

Calculate average FPS for each image size by dividing 100 by the time it takes 

to process 100 frames. 

Graph the results (FPS vs. Image size) and compare the performances. 

5.5.4 Experiment Relevance 

This experiment allows a determination of the complexity of an algorithm and relates 

to how easily an algorithm may be implemented to run in real time. The greater the 

complexity of an algorithm, the more processing is required and the lower the FPS 

will be. Thus to achieve real time processing, an algorithm with a lower FPS will need 

more expensive equipment that may also be bulkier and require far more energy than 

an algorithm with a higher FPS. 

5.5.5 Expected Outcome 

Graphed results are expected to show an exponential type decay as double the number 

of rows and columns of an image means that there are four times more pixels to 

process. The homomorphic filtering and power spectrum based method is expected to 

show the highest fps and the least drop off with increase in image size as it is 

simplistic in nature and originally developed and optimised to run on portable 

processing hardware. The image registration and fusion based method is expected to 

have the lowest fps due to the high level of complexity in the image registration. 

5.5.6 Uncertainty Control 

In this experiment, uncertainty in output measurements is removed by using a single 

video footage which has been scaled to different image sizes. This video set is 

processed by each of the algorithms. 

BD Walters 	 5-6 



Experimental Design 
UNIVERSITY 

JOHANNESBURG 

Matlabs tic toc functions are used with each algorithm for measurement of time to 

process 100 image frames. All variables and parameters are cleared and memory freed 

before the next algorithm or video is used. Tic is implemented after loading the avi 

video and toc at the end of the algorithms. 

5.6 EXPERIMENT 2: ALGORITHM SHARPNESS EXPERIMENT 

5.6.1 Aim 

To compute and compare the sharpness of video processed by each algorithm under 

review in this study. 

5.6.2 Background - Laplacian Operator 

The Laplacian operator is to be used with a still image and provides a measurement of 

the image sharpness. This metric is described below and associates an image with a 

greater image sharpness as one which contains a smaller amount atmospheric 

turbulence effects. 

In order to have a fair comparison between the original unprocessed turbulent video 

footage and video footage processed through the algorithms, the same image frame, or 

average of image frames must be used. 

The Laplacian operator approximates the linear second order derivative of an image f(m,n) in 

the row and column directions (m and n), 

a 2 f(n,n)  a 2 f(m,n)  S(m,n)=V 2  f(m,n)=  am
t 	an 2  

(5.1) 
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with the image sharpening metric defined as: 

S4  = 	1  E 	IS(M, n)I 
MN „, „ 

(5.2) 

where the image is of size MxN. 

5.6.3 Equipment 

Imaging system described in section 5.2, 

Algorithms detailed in chapter 4 implemented in Matlab, and 

Computer on which to run Matlab and algorithms. 

5.6.4 Method 

Using the imaging system, capture and record raw avi (Audio Video 

Interleave) video footage containing at least 50 image frames with a 10ms or 

less exposure time. Image size recorded must be 640x480 pixels or greater. 

Crop the video to an image frame size of 640x480. 

Process the video using each algorithm and save the processed videos. 

Calculate the Laplacian Operator Image Sharpness value for the first 50 

frames in each processed video using equation (5.1) and (5.2). Graph the 

resulting values and calculate the average image sharpness indicative value. 

Repeat point 4 for the unprocessed video. 

Analyse and compare results. 

5.6.5 Experiment Relevance 

Since atmospheric turbulence blurs captured image due to the atmospheric PSF, this 

sharpness experiment may provide insight as to the amount of image blur removed by 

the algorithms and how much detail has been brought forward. 
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Sharpness is important in order to make out finer detail within the image. By 

calculating and graphing the sharpness value for multiple frames, information can be 

obtained as to the videos consistency in sharpness. 

5.6.6 Expected Outcome 

It is expected that there will be rippling of the sharpness value over the 50 frames for 

the processed and unprocessed videos due to the spatial and time varying nature of the 

atmospheric PSF causing differing blurs in each video frame. 

The Illuminance-Reflectance adjustment based algorithm with Wiener filtering is 

expected to have the best sharpness value because during implementation and testing 

of the algorithm the result was noticeably sharper with detail hidden in shadows 

enhanced quite an amount. 

5.6.7 Uncertainty Control 

This experiment uses a single atmospheric turbulence affected video for all the 

algorithms. The video is processed by each algorithm and image sharpness 

measurements taken across the same span of image frames. 

This ensures that each algorithm is exposed to the same image scene and identical 

atmospheric conditions. By measuring image sharpness across the same span of image 

frames, results between algorithms are directly comparable. None of the algorithms 

shift or delay image frames, i.e. the input frame number n forms part of the output 

frame at index n. 
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5.7 EXPERIMENT 3: ALGORITHM ABERRATION EXPERIMENT 

5.7.1 Aim 

To determine and compare the amount of aberration present in processed and 

unprocessed video due to atmospheric turbulence. 

5.7.2 Equipment 

Imaging system described in section 5.2, 

Algorithms detailed in chapter 4 implemented in Matlab, 

Computer on which to run Matlab and algorithms, and 

Chequered target of uniformly sized black and white squares. 

5.7.3 Method 

1. Make an AO sized chequered target as shown in Figure 5-3 with 20cm sized 

black and white squares. 

Figure 5-3: Checkerboard target example 
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Set the target at a distance of 1.2km from the imaging system. 

Measure and record atmospheric conditions. 

Setup the imaging system and capture video footage of the chequered target 

through atmospheric turbulence. 

Process the captured video footage with each of the algorithms and save the 

processed videos. 

Using the unprocessed video, display the frame average of the first 50 frames. 

Measure and record the number of pixels a square spans. To ensure accuracy 

take measurements from multiple squares and calculate the average. 

For unprocessed and all processed video footage follow the points below. 

Using the first 50 frames of the video, construct an image consisting of the 

maximum pixel values. 

Measure the number of pixels the white blocks span in the horizontal direction 

and calculate the average. 

Use the reference calculated in 7 to determine the maximum horizontal 

displacement in mm. 

Measure the number of pixels the white blocks span in the vertical direction 

and calculate the average. 

Use the reference calculated in 7 to determine the maximum vertical 

displacement in mm. 

Analyse and compare results. 

5.7.4 Experiment Relevance 

Atmospheric turbulence not only causes blurring of the object being viewed but also 

diverges light refracted from the object. This causes the object to appear to be moving 

(shaking) and warping. The movement is referred to as aberration. 

This experiment allows one to measure and compare vertical displacements to 

horizontal displacements. It also allows a measurement as to the amount of aberration 

that is able to be suppressed by the algorithms. 
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By suppressing the aberration, the video footage is smoother over image frames and 

allows objects to be viewed much easier. Suppression of aberrations may help 

preserve object geometry by removing warping and distortion of the object. 

5.7.5 Expected Outcome 

There is expected to be an improvement in video stabilization when comparing the 

processed to unprocessed video. 

Algorithms that use the ratio averaging are expected to have very similar residual 

displacements since the ratio averaging is common component to the algorithms and 

is the main factor in suppressing geometric distortions. 

It is expected that horizontal displacement may be slightly greater if there is a cross 

wing across the optical path. 

5.7.6 Uncertainty Control 

A single video footage of the captured checkerboard target is processed by each of the 

algorithms. This ensures that the algorithms all process video of the target containing 

identical atmospheric turbulence conditions. 

The same frame average reference image is used when measurements are taken 

between the different processed videos to ensure that only the algorithms themselves 

affect horizontal and vertical aberrations. 

The imaging system is protected from wind ensuring any motion and aberration is due 

to the atmospheric turbulence acting over the optical path. 
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5.8 EXPERIMENT 4: ALGORITHM MTF EXPERIMENT 

5.8.1 Aim 

To calculate and compare the MTF for processed and unprocessed video of 

atmospheric turbulence. 

5.8.2 Background 

This experiment makes use of multiple spatial frequencies and the modulation transfer 

function of the different frequencies is determined using: 

MTF =
/max — /min  \ /(W — B  

Imax + Imin 	W +13j' 
(5.3) 

where 'max  is the maximum intensity value within that frequency and Imm  is the 

minimum intensity. W is the maximum luminance for white areas and B is the 

minimum luminance for the dark areas. A higher modulation index is more desirable 

as in a grey level image the darkest and lightest grey areas will be further apart and 

details will be more pronounced. 

The W and B intensity values are obtained from very low frequencies. 

5.8.3 Equipment 

Imaging system described in section 5.2, 

Algorithms detailed in chapter 4 implemented in Matlab, 

Computer on which to run Matlab and algorithms, and 

Three charts across which have spatial frequencies from 415mm/lp (first chart) 

to 10mm/lp (third chart). 

BD Walters 	 5-13 



Experimental 	 Design 5
„c.....  

UNIVERSITY 

JOHANNESBURG 

The spatial frequency feature charts consist of sinusoidal printed patterns of different 

frequencies. Each frequency chart is printed on a AO sized vertically positioned white 

page. The lowest spatial frequency chart is divided into four rows while for the higher 

frequency charts the page is divided into two columns and four rows. In each section a 

sinusoidal spatial pattern is printed. The lowest spatial frequency is at the top left 

corner and frequencies increase as you travel from each section from left to right and 

top to bottom. Thus the highest spatial frequency is found in the bottom right hand 

corner for that page. 

There are three spatial frequency AO sized charts. A low frequencies chart having 

periods of 415, 208, 138, and 104 mm/lp corresponding to 2, 4, 6 and 8 visible 

sinusoidal waves. 

The rest of the frequencies have a period range from 92 mm/lp to lOmm/lp. 

Figure 5-4: Spatial frequency chart example. 

5.8.4 Method 

1. Create the described spatial frequency charts which will be the videoed targets 

in this experiment. 
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Set the targets at a distance of 1.2km from the imaging system, as well as a 

low frequency reference object (An A4 sized printed black page and an A4 

sized unprinted white page, both having intensities corresponding to the 

sinusoidal charts). 

Measure and record atmospheric conditions. 

Setup the imaging system and capture video footage of the chequered target 

through atmospheric turbulence. 

Process the captured video footage with each of the algorithms and save the 

processed videos. 

For each of the video footages repeat the following steps. 

Record the minimum intensity values across 50 frames as well as the 

maximum intensity values. 

Record more than 20 maximum and minimum values for each spatial 

frequency using the images obtained from step 7. 

Calculate the minimum and maximum intensity average using the 20 or more 

values for each frequency. 

Record the low frequency W and B intensity values from the white and black 

A4 pages respectively. Calculate the values using an average of values 

captured from the centre of the pages. 

Using the W, B, maximum and minimum intensity values for the different 

frequencies construct and graph the MTF using equation (5.3). 

Analyse and compare the results. 

5.8.5 Experiment Relevance 

Atmospheric turbulence causes blurring of an image and thus suppression of higher 

spatial frequencies. 

The MTF allows a measure of the degradation in the clarity of spatial frequencies as 

the frequency increases. Information may then be obtained as to the effect the 

algorithms have on the MTF. 

BD Walters 	 5-15 



Experimental 	 Design 
UNIVERSITY 

JOHANNESBURG 

The MTF allows a way of measuring improvement in detail within the video by the 

algorithms. 

5.8.6 Expected Outcome 

The MTF is expected to drop off in a downward curve as spatial frequency increases 

until a cut off frequency is reached. 

It is expected that there will be a slight improvement in the MTF curve for the 

algorithms particularly the Laplacian Operator based Wiener filtering algorithms. 

An expected MTF curve the various video footages will follow is shown in figure 5-5. 

MTF 

   

   

Spatial Frequency Ip/rnm 

Figure 5-5: Expected MTF curve. 

5.8.7 Uncertainty Control 

Video footages for the high, mid, and low spatial frequencies is captured. Each of the 

algorithms processed these three videos. Ideally a single video footage should be 

containing all the spatial frequencies should be used, however due to the size of the 

spatial frequency charts and field of view this was not possible. An assumption is 
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therefore used that over the interval in which the required video is recorded, 

atmospheric conditions will not drastically change to have a significant difference 

between video footages. This assumption is considered reasonable if the time span 

required is less than half an hour and if atmospheric conditions in the last hour have 

not been noticeably different. 

High spatial frequency results will be comparable between algorithms even if the 

assumption is false, the same applies to the mid and low frequency results. If the 

assumption is false the expected MTF curve may not follow the smooth curve as 

expected but doesn't stop result comparisons between algorithms for each of the 

spatial frequency bands. 

5.9 EXPERIMENT 5: ALGORITHM MSE AND PSNR EXPERIMENT 

5.9.1 Aim 

To obtain MSE and PSNR measurements through the construction of a reference 

image of atmospheric turbulence affected video and processed video and see how they 

compare to MTF and sharpness measurements. 

5.9.2 Background 

The MSE metric is a classical metric used in determining image compression and 

decompression effectiveness. For this metric a reference image frame is necessary. 

The MSE of the turbulent unprocessed or processed video footage from the 

algorithms is defined as: 

msE(i d)= 
1  

 E MN ( i d —i i) 2  (5.4) 

where, id is the estimate or degraded image of the undistorted image, ii, of size MxN. 
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The RMSE (Root mean square error) may also be calculated by simply taking the 

square root of the MSE. 

The PSNR is also a classical error metric. The PSNR uses the RMSE for calculation. 

The PSNR is defined as: 

PSNR(i d )  = 20 log 10  

for a grey level 8bit image. 

5.9.3 Equipment 

255  

 

(5.5) 
RMSE(i d  

Imaging system described in section 6.2, 

Algorithms detailed in chapter 4 implemented in Matlab, 

Computer on which to run Matlab and algorithms, and 

Chequered target of uniformly sized black and white squares. 

5.9.4 Method 

Make an AO sized chequered target as shown in figure 6-2 with 20cm sized 

black and white squares. 

Set the target at a distance of 1.2km from the imaging system. 

Measure and record atmospheric conditions. 

Setup the imaging system and capture video footage of the chequered target 

through atmospheric turbulence. 

Crop the video footage so only the chequered blocks are visible. (crop out 

background around chequered target) 

Process the cropped captured video footage with each of the algorithms and 

save the processed videos. 
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Construct the reference image by first performing a histogram stretch on the 

on the cropped unprocessed video. Perform ratio averaging with a 1/3 lambda 

value for geometric stabilization. Using thresholding, set the white and black 

blocks to the maximum and minimum intensity values to construct the 

chequered pattern estimate. Save the reference video. 

For the cropped unprocessed and processed video perform the following steps. 

Perform a histogram stretch on the video to correct intensity values. 

Use equation (6.4) and corresponding frame in reference video to calculate 

MSE for each frame. 

Use equation (6.5) and calculated MSE to calculate PSNR. 

Calculate average MSE and PSNR over image frames. 

Analyse and compare results. 

5.9.5 Experiment Relevance 

MSE and PSNR metrics are classical metrics in signal processing. However, they 

require a reference, and in this image processing problem exact knowledge of the 

original object construction to be used as a reference is not known. 

This experiment sets up to try and reconstruct a basic reference image and perform 

MSE and PSNR measurements. How the measurements correspond to MTF and 

sharpness measurements may provide insight as to whether MSE and PSNR metrics 

may be used for this particular problem with simple object reference construction. 

5.9.6 Expected Outcome 

It is expected that there will be very little difference in the MSE and PSNR 

measurements between the algorithms, however the processed algorithms will show a 

slightly better improvement. 
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5.9.7 Uncertainty Control 

Same video footage is processed by each algorithm to ensure that the same level of 

atmospheric turbulence is processed. The same reference image is used when 

performing MSE and PSNR measurements for all the unprocessed and processed 

video. This ensures that changes in MSE and PSNR measurements are due to the 

algorithms themselves and their processing of the unprocessed video footage. 

The imaging system is protected from wind ensuring any motion and aberration is due 

to the atmospheric turbulence. 

5.10 EXPERIMENT 6: WIENER FILTERING LAMBDA SELECTION EXPERIMENT 

5.10.1 Aim 

To determine the necessity of calculating a lambda value for every frame in the 

Wiener filtering based algorithms. 

5.10.2 Equipment 

Imaging system described in section 6.2, 

Algorithms detailed in chapter 4 implemented in Matlab, 

Computer on which to run Matlab and algorithms, 

Chequered target of uniformly sized black and white squares, and 

Spatial frequency charts. 

5.10.3 Method 

1. Setup the chequered and spatial frequency charts 1.2km from the imaging 

system. 
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Capture video footage of the charts. 

Process the video footage using the Wiener filtering using the Laplacian 

Operator based algorithm. Save the processed video. 

Record the average X value used across 50 frames. 

Modify the algorithm so the average X, value is used for the Wiener filtering of 

each of the 50 frames. 

Process the captured video using the modified algorithm. Save the processed 

video. 

Calculate frames per second processing performance, image sharpness, image 

aberration, MTF, MSE and PSNR as discussed in the previous experiments. 

Calculate for both of the processed and unprocessed video footages. 

Analyse and compare results from the two processed videos against 

unprocessed video. Note any differences between the two processed videos. 

5.10.4 Experiment Relevance 

Algorithm speed is important if the algorithm is to be used in a real time system. A 

faster algorithm will be able to be run real time on more compact lower energy 

requirement hardware than a slower algorithm. 

Calculating the X. used in the atmospheric OTF (Optical Transfer Function) 

construction for every image frame requires quite a bit of processing. If the X, value 

varies by a very small amount across image frames, the X, value could be updated after 

only a certain number of frames. 

This experiment will provide insight into the image quality hit that would be taken for 

a performance gain when using a single lambda value for 50 image frames. 

5.10.5 Expected Outcome 

It is expected that the image quality hit with regard to sharpness, MTF and MSE 

PSNR measurements will be small compared to the increase in performance. 
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This is from observations of the X, value fluctuating slightly when video footage is 

processed. Small fluctuations however may actually be quite significant and this 

experiment will show if that is the case. 

5.10.6 Uncertainty Control 

Uncertainty control follows same principles used in experiment 1, 2, 3, 4, and 5. Same 

input parameter control principles are followed since the FPS performance, image 

sharpness, aberration, MTF, MSE and PSNR experiments are rerun. 

5.11 EXPERIMENT 7: FILTERING RECEIVED LIGHT EXPERIMENT 

5.11.1 Aim 

To determine whether filtering atmospheric turbulence affected light received by the 

telescope before the camera captures it helps to improve contrast. This experiment 

separately looks at the use of a red filter and polarising filter. 

5.11.2 Equipment 

Imaging system described in section 5.2, 

Red 1.25" optical filter Wratten number #24, 

Polarised 1.25" optical filter, 

Computer on which to run Matlab and metrics, 

Chequered target of uniformly sized black and white squares, and 

Spatial frequency charts. 
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5.11.3 Method 

Setup chequered and spatial frequency targets at scene 1.2km from imaging 

system, 

Setup imaging system with no filters attached and focus on targets, 

Capture video footage of targets through the turbulent atmosphere and save 

unfiltered video, 

Setup imaging system with the red filter attached and refocus, 

Capture video footage of targets through the turbulent atmosphere and save 

colour filtered video, 

Remove red colour filter and setup imaging system with polarised filter, 

Capture video footage and save polarised video, 

Calculate image sharpness, MTF, MSE and PSNR for unfiltered and filtered 

video, 

Analyse and compare results. 

5.11.4 Experiment Relevance 

Optical filters are small and require no processing or energy source. They may be 

useful as a preconditioning of received light to remove unwanted light which may 

cause noise and degradation in the received image. 

Atmospheric turbulence causes blurring of the captured object and thus a decrease in 

contrast. As discussed in the literature study the atmospheric turbulence scatters and 

refracts light. 

The above facts are used together with the knowledge that in photography, as 

reviewed in chapter 2, red filters are used for contrast enhancement of the captured 

image and the polarising filter can increase contrast by removing light scattered from 

a specific orientation (such as horizontal reflected light off water). The red filter 

allows just longer wave length light to be captured, and as discussed in chapter 2, 

longer wavelength light is refracted a smaller amount than shorter wavelengths. 
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The experiment thus analyses whether and how much an improvement the filters can 

have in the quality of the image. 

5.11.5 Expected Outcome 

It is expected that the filters will provide a better quality image in terms of the image 

sharpness, MTF, MSE and PSNR when compared to the unfiltered image. MTF is 

expected to increase further into the higher frequencies when using the red optical 

filter. 

5.11.6 Uncertainty Control 

Uncertainty control follows same principles used in experiment 2, 3, 4, and 5. Same 

input parameter control principles are followed since the image sharpness, aberration, 

MTF, MSE and PSNR experiments are rerun within this experiment for colour 

filtered video and polarised filtered video instead of algorithm processed video 

footage. 

5.12 CONCLUSION 

In this chapter various experiments have been detailed which allow for comparison to be 

made relating to the algorithms performance and image quality enhancements. Addition 

experiments relating to the algorithm performances and the atmospheric turbulence problem 

are also described. The Experiments have been designed in attempt to provide some 

repeatability of the results under similar atmospheric conditions. 

The imaging System used in the experiments for capturing video footage and its setup has 

also been detailed along with the computer system platform used in the experiments. 

The following chapter discusses some of the experimental issues that where encountered. 
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6 CHAPTER 6: RESULTS 

6.1 IMPLEMENTATION ISSUES 

When performing implementation of the algorithms it was expected that unforeseen 

implementation issues may arise. This section lists some of the issues encountered while 

implementing the various algorithms within the Matlab environment and the solution to those 

problems. 

6.1.1 Speckle Masking Issues 

A main problem encountered when implementing the Speckle Masking algorithm was 

discovered during its testing phase using test video footage, from which parts of the 

generated image contained artefacts and what can be described as smearing. This 

smearing would consist of a low frequency diagonal component within a sub-image 

region. This degradation is due to anisoplanatism as mentioned in [97] and [99]. To 

overcome this effect it is necessary to reduce the sub-image sizes. The degradation is 

notable particularly when a sub-image consists of a high frequency component 

amongst lower frequencies, an example being a thin telecommunications aerial 

surrounded by clear sky. 

During implementation, a particular problem which related to the efficiency and 

realistic realization of the algorithm surrounded the recovery of the Fourier phases 

from the bispectrum. Since the Speckle Masking recovery is working with a two 

dimensional image rather than one dimensional projections, a four dimensional 

bispectrum object would be created. The bispectrum object contains a lot of redundant 

information and requires a large portion of memory, so a method was needed and 

devised which calculated and stored bispectrum values from the four dimensional 

bispectrum into a two dimensional array. Only the values that are needed for the 

phase recovery where calculated. 
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When performing apodization, the apodization function cannot be set to small (e.g. 

20%) otherwise overlapping Hamming functions do not sum to one and result in a 

chequered grid of vertical and horizontal artefact lines. 

6.1.2 Illuminance Reflectance Issues 

The Illuminance reflectance mid tone enhancement describes the use of the following 

function in [93]: 

H ,,g(k)= 	
1 	

(6.1) 
1 e-ak 

however, this resulted in an inversion in the image and thus is possibly an error within 

the documentation. The following function used as an alternative which made greater 

theoretical sense and proved itself in practice and implementation of the algorithm is: 

1 
I- I (k) = 	 

1+eak  • 
(6.2) 

6.1.3 Full Histogram Stretch 

Since there is a PSF variation across the video frames there is a change in maximum 

and minimum pixel intensities. By performing a full histogram stretch to make use of 

the full 8 bit intensity range, a flickering in brightness sometimes becomes apparent in 

the output video image. 

The flickering can be dampened by making use of the ratio averaging techniques as 

previously mentioned on the minimum and maximum intensity values. 
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6.1.4 Kurtosis Minimization 

After implementation and thorough reanalysis of the kurtosis minimization code, it 

was found that with the test video footage (used as part of the testing phase of the 

implementation), the kurtosis minimization did not converge. The smallest X, value 

was always arrived at with higher X values having larger calculated kurtosis. 

This failure of convergence is mentioned in [100] and appears to be a known problem. 

The minimization is therefore dependant on the data content within the video, and the 

problem is noted as arising in cases when the content may consist of a large amount of 

low frequency data such as a large portion of sky in the image [100]. 

The solution to selecting a X parameter is made by making use of the Laplacian 

Operator Image Sharpness metric from [101] and [102] for selection of the parameter 

based on image sharpness. This resulted in the construction of the Wiener Filtering 

using Laplacian Operator algorithm detailed in the preceding Algorithms Detail 

Design chapter. 

6.1.5 General Programming Precautions 

General programming precautions are those that should that should be kept in mind 

while programming. Some of the precautions in relation to the Matlab environment 

are described below. 

Video footage which is to be processed and read using Matlab's aviread' function, 

needs to be in an uncompressed AVI (audio/video interleaved) format. 

While working with video frame information, the data is in an 8 bit integer format and 

should be converted to double or other appropriate data type in order to maintain 

precision during calculations. After calculations have been completed the data is cast 

back to an 8 bit integer value (Assuming working with an 8 bit gray image or 24 bit 

colour image). 
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Most functions and associated code work with the normalized version of the image 

data rather than the 0-255 8 bit range, and care must be taken to normalize where 

necessary. This will obviously require the data type to be of type 'double'. 

6.2 EXPERIMENTAL ISSUES 

This section discusses some of the experimental issues encountered during design and 

implementation of the experiments and solutions used to overcome those problems. 

6.2.1 Providing for Comparability between Experiments 

Atmospheric conditions can change on a daily basis; this is evident since temperature, 

wind, barometric pressure and humidity readings differ daily as well as the amount of 

dust particles present in the air. 

This is a problem if video footage used for each experiment is captured on separate 

days or even hours if results want to be compared between algorithms. Video footage 

captured on different days will capture different atmospheric turbulence and possibly 

bias one set of experimental results. 

Since many of the experiments make use of the same imaging system and targets 

captured over the same distance, the simple solution is to capture all the required 

video footage for all the experiments within a 1 or 2 hour time span. 

6.2.2 Atmospheric Haze Degrading Seeing Conditions 

Dust Particles and other suspensions in the air (aerosols) absorb some of the light 

causing degradation in the seeing conditions. [12] These particles reduce visibility and 

the distance over which objects can be viewed. From observations during January 

2008, Haze was particularly prominent during the afternoons when compared to 
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mornings; however some mornings aerosols such as fine water molecules where 

present. The effect the haze has on captured images is to reduce the images contrast. 

This haze problem created some difficulty in timing and judging a clear late morning 

on which to capture video footage. Rain on a previous day with clear skies the next 

day helped to reduce aerosols in the air. 

The solution was to judge a week when there will be clear skies and check each 

morning the atmospheric conditions. Suitable conditions where a visibility of greater 

than 10 km with clear skies in the morning, light wind less than 10 knots and having 

preferably rained in the last couple days. 

6.2.3 High Level of Atmospheric Turbulence 

Initially a length of 2 km was chosen between the imaging system and targets. This 

distance was selected since it allowed a 2x Barlow lens to be used while still allowing 

the target to be within the cameras field of view. The site at 2 km was also convenient 

allowing the Telescope to be setup in a secure location with power supply and clear 

visibility of the targets. 

Unfortunately after testing the path length by capturing and reviewing video footage 

of the targets, the level of turbulent atmosphere was considerable. Some of the 

authors' algorithms seemed to be developed for light or medium turbulence. [1, 2, 5, 

8] The high level of turbulence can hardly be considered surprising since it was the 

middle of summer, but it was still unexpected since some test video footage captured 

during the end of winter contained significantly less turbulence. 

The solution was to find a site closer to the imaging system and postpone capturing 

video footage until the end of February, a task which involved judgement of 

conditions discussed in 7.3. A new site location was found at a distance of 1.2 km 

from the imaging system. Turbulence was still considerable but more manageable and 

viewable over the spatial frequency charts. 
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6.2.4 Effects of Wind and Finding a Suitable Site 

Wind can cause instability in the captured image even with the imaging system 

appearing to be sturdy. This is because of the high optical magnification that is used, a 

slight movement of the imaging system results in a large displacement in the viewed 

image. 

To ensure that wind which could move the imaging system did not corrupt video 

footage of the targets through atmospheric turbulence, a requirement was set to setup 

the imaging system in a protected location from the wind. Video footage was also 

captured only when the wind was little more than a breeze. 

Requiring a protected and secure location in which to setup the imaging system 

provided some difficulty as it needed to also have a clear view of a target site at 1 to 2 

km. Such a location was however found with the telescope setup and looking out 

through the open balcony doors of an upstairs bedroom. This also provided power for 

the telescope and IP camera although it was not necessary since a small generator or 

ups could be used at a location that did not have power. 

6.2.5 Creating Reference Image for MSE 

As discussed in the experimental setup, the MSE metric requires a reference image 

which is what would be viewed if atmospheric turbulence was not present. Slight 

wind causes large horizontal shifting and aberrations. The construction of the target 

was known (Chequered object), however the exact location of the reference target 

should be in the video frame is difficult to find. 

A method was thus devised as discussed in the experiment MSE and PSNR 

measurement to reconstruct the reference image for each video frame. By cropping 

out background images and having a video containing only the chequered target, there 

is a priori knowledge of the construction of the reference video as required to 

construct a reference used by the MSE. 
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6.2.6 Maintaining Short Exposure Times 

The Power Spectrum and Image Registration based algorithms require video frames 

to be captured with an exposure time of 10 ms or less to 'freeze' the atmospheric 

turbulence. To meet this requirement it was necessary to ensure that there was an 

adequate collection of light so that video frames would not be under exposed when 

using these low exposure times. 

The solution to ensuring the video frames where captured at a low exposure setting, 

was to use a large aperture telescope, ensuring a large collection of light, and capture 

video footage on a clear day. The IP camera was additionally set to its high speed 

setting which selects exposure time of 10 ms or less based on the amount of light. 

6.2.7 Separate Video Footage Captured for Frequency Targets 

The spatial frequencies that where to be recorded for the MTF experiment were 

spread across three separate charts due to the low spatial frequencies and the video 

cameras field of view. Video footage captured for the four highest frequencies, 

another for the mid range frequencies, and one for the four lowest frequencies. 

To try and avoid discrepancies in the level of atmospheric turbulence present in each 

of the video footages, video footage was captured within an hour assuring no changes 

in wind conditions. 

6.3 SYSTEM PLATFORM 

This section provides the specifications of the system platform on which the algorithms and 

related experiments are implemented, tested and analysed. This section is split into two parts: 

The hardware components/specifications of the system and the software 

components/specifications. 
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6.3.1 Hardware Specifications 

Relevant computer hardware specifications: 

2.8GHz Intel Core2Duo CPU socket LGA775, 

2 GB DDR2 RAM running at 800mhz, 

Asus P5B deluxe Motherboard. 

Imaging system hardware: 

Celestron Nexstar 8 SE 8 " Schmidt-Cassegrain Telescope, 

AreCont Vision 3100 IP Camera, 

1.25" to c/cs adapter, 

1.25" red colour filter, #24 Wratten number, 

1.25" polarised filter. 

6.3.2 Software Specifications 

Experiments make use of the following software: 

Windows XP professional Service Pack 2, 

Video is captured using AreCont Vision's supplied software, _ 

Matlab 7 in which algorithms are implemented and experiments performed, 

and 

Microsoft Office 2007. Some results are exported to Microsoft Excel, data 

tabularised and graphs created from the experimental data. 
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6.4 ATMOSPHERIC CONDITIONS RECORD 

Video footage for the experiments was taken under the following atmospheric conditions. 

Date: 28 February 2008 

Time: Between 9:30 and 10:30 

Temperature: 25°C 

Wind speed: 9km/h (5 knots) 

Dew Point: 12°C 

Humidity: 43% 

Pressure: 1023 hPa 

The optical path distance was 1.2km across suburban terrain. 

6.5 EXPERIMENT 1: ALGORITHM PERFORMANCE EXPERIMENT RESULTS 

The measurement of an algorithm's performance is taken in regard to the average amount of 

time it takes to process a single image frame. This section presents the results pertaining to 

the algorithms FPS (Frames per second) performance with an increase in video frame image 

size. 

Additional individual graphs and tables - for each of the algorithms relating to these 

experiment results may be found in Addendum H. 

The Speckle Masking algorithm takes a series of image frames and produces a single image. 

The results presented for the Speckle Masking are the number of seconds it takes to produce 

an image. In the Speckle masking algorithm, sub image size can be selected. This is the size 

of the overlapping images that the image frames are broken up into. The smaller the sub 

image size, the smaller the number of artefacts present in the video. 

Figure 6-1 presents the Speckle Masking FPS performance results for three different sub 

image sizes. 
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Figure 6-3: Image Registration and Laplacian Pyramid Image Fusion FPS performance graph 

Figure 6-2 shows the FPS performance results for the algorithms. The Image Registration and 

Fusion algorithms FPS performance would appear to lie along the x-axis of Figure 6-2, so it 

is included in Figure 6-3. 

Comparing the algorithms to one another we notice how they experience a general trend in 

which the frames per second drop off with an increase in image size. A sharper drop off 

indicates a more complex processing relationship with the image size. This sharp decrease in 

performance can be seen in the Image Registration and Fusion based algorithm as well as the 

Wiener filtering with Kurtosis Minimization algorithm. 

An interesting performance curve which was verified through repeated results is that of the 

Homomorphic Filtering and Power Spectrum based method. The performance drops off 

gradually in much more of a linear fashion, whereas the performance curves of the other 

algorithms tend to better parallel one another. This shows that the algorithm is not highly 

dependent on image size. Figure 6-2 illustrates the trend by showing a plot of the algorithm 

performance curves on a single set of axis. The solid lines indicate the trend in the 

corresponding algorithms data points. 
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The Speckle Masking algorithm is the slowest, and requires a lot of memory and processing 

time. The time it takes to produce an image increases sharply as image size increases. (Figure 

6-1). This is due to the algorithm being highly dependent on image size as the size of the bi-

spectrum used for image reconstruction is determined from the image dimension. By 

doubling the image size results in an increase in the number of bi-spectrum elements by a 

factor of 4. These bi-spectrum elements are necessary for reconstruction and not redundant. 

The Image Registration and Laplacian Pyramid image fusion algorithm is also very slow in 

comparison to the other algorithms. Referring to Figure 6-2, the Image Registration and 

Laplacian Pyramid algorithm would show as a line along the x axis. This poor performance in 

relation to the other algorithms is because of the way it attempts to remove or suppress 

geometric distortions in the video footage. The method uses elastic image registration which 

is complicated and requires a large amount of processing resources. The algorithms in Figure 

6-2 however use ratio frame averaging for geometric distortion suppression which is a vastly 

simpler method. 

On comparison of the Wiener filtering using the Laplacian operator method and the Dynamic 

Illuminance-Reflectance Atmospheric Turbulence suppression with Wiener filtering method, 

there is very little difference in performance, and both appear to lie on the orange trend line in 

Figure 6-2. This is interesting since the Dynamic Illuminance-Reflectance Atmospheric 

Turbulence suppression with Wiener filtering method uses the same Laplacian operator 

Lambda selected Wiener filtering. The reason is because the Illuminance-Reflectance 

processing component requires much less processing than the Wiener filtering component 

which searches for the best lambda value used in the OTF construction. 

6.5.1 Concluding remarks 

Results showed that for larger image sizes, the homomorphic filtering and power 

spectrum based algorithm had the highest frames per second. The algorithms using 

ratio averaging for geometric stabilisation ran much faster than the image registration 

and speckle masking methods, indicative of a much greater simplicity in processing 

and complexity than the latter mentioned methods. 
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The Dynamic Illuminance-Reflectance atmospheric turbulence suppression algorithm 

showed good performance when compared to the other algorithms and when coupled 

together with Wiener filtering it showed to add little overhead in terms of processing 

requirements when compared to the Wiener filtering method on its own. 

With the conclusion and analysis of the different algorithms performance with regard 

to processing requirements and FPS, attention is turned to image quality and stability 

results of the algorithms. 

6.6 EXPERIMENT 2: ALGORITHM SHARPNESS EXPERIMENT RESULTS 

Atmospheric Turbulence causes a blurring of captured images. The blurring is suppressed by 

the algorithms resulting in an image which should be sharper with the recovery of suppressed 

high spatial frequencies. 

The experiment results in this section consist of image frame sharpness measurements using a 

normalized cumulate of the Laplacian Operator performed on the image. In Addendum I, 

graphs of the sharpness value vs. frame number for 50 image frames are presented along with 

the average sharpness indicative value. A higher value would indicate an image is sharper 

than a lower value. Graphs are presented for each algorithm, as well as the original 

unprocessed video footage. The sharpness measurements for the unprocessed video provide a 

control reference. 

Listing the average image sharpness measured from highest to lowest we have the following 

result as shown in Table 6-1 and illustrated on Figure 6-4. 

All the methods where able to increase image sharpness with Illuminance-Reflectance based 

algorithms showing the greatest increase. This is due to the way the methods enhance detail 

hidden in flat zones such as shadows causing an increase in the image values when the 

Laplacian operator is performed. 

The Dynamic Illuminance-Reflectance Atmospheric Turbulence Suppression with Wiener 

Filtering algorithm has a far higher image sharpness. The reason for this high value is that 
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before the image is sharpened up using the Illuminance-Reflectance adjustment and 

enhancing detail hidden by shadow and overexposure, Wiener filtering is performed. The 

Wiener filter removes alot of the image blur resident in the video due to the turbulent 

atmosphere. Image blur causes a flattenning of the image intensities and decrease of image 

sharpness. 

Algorithm 

Average Image Sharpness 

Measurement 

Dynamic Illuminance-Reflectance Atmospheric Turbulence 
Suppression with Wiener Filtering 

21.726 

Dynamic Illuminance-Reflectance Atmospheric Turbulence 
Suppression 

13.333 

Image Registration and Laplacian Pyramid Image Fusion 11.256 

Wiener Filtering Using Laplacian Operator 9.166 

Speckle Masking 9.075 

Homomorphic Filtering and power spectrum restoration based 
method 

8.193 

No algorithm - original unprocessed video 5.192 

Table 6-1: Average image sharpness comparison, highest to lowest. 

The rippling across image frames as seen in the graphs in Addendum I, is possibly due to the 

fluctaution of the atmospheric PSF across video frames and subsequent algorithm processing. 

The Dynamic Illuminance-Reflectance Atmospheric Turbulence Suppression with Wiener 

Filtering algorithm shows a greater amount of rippling in the image sharpness value (Refer to 

Addendum I). Comparing frames 35-40 of the Dynamic Illuminance-Reflectance 

Atmospheric Turbulence Suppression with Wiener Filtering algorithm there appears some 

correlation in the rise and falls to some of the other algorithms. It is possible that the Wiener 
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filtering in the method increases the discrepancy, and would be due to the Wiener filtering 

boosting some high frequency noise which is further increased through the Dynamic 

Illuminace-Reflectance adjustment. An increase in high frequency noise can cause an 

increase in image sharpness measurement. 

Figure 6-4: Average image sharpness comparison, highest to lowest. 

While image Sharpness measurements are able to be made it is clear that they cannot be used 

as an image quality indictaor on their own as high frequency noise can increase image 

sharpness measurements and distort results. 
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6.6.1 Concluding Remarks 

This section has presented the results for image sharpness produced by the algorithms 

as well as the image sharpness for the unprocessed video. The unprocessed videos 

sharpness measurement acts as a control reference so comparisons may be made. All 

processed video showed an increase in image sharpness. The Illuminance-Reflectance 

based algorithms showed the greatest increase in sharpness primarily due to their 

ability to enhance detail hidden in flat tonal areas such as shadows and overly bright 

areas. Addendum I contains individual graphs for the algorithms' image sharpness 

across 50 image frames. 

As discussed, high frequency noise may cause an increase in image sharpness 

measurements and for this reason image sharpness measurements should not be used 

as an image quality indicator on its own. 

6.7 EXPERIMENT 3: ALGORITHM ABERRATION EXPERIMENT RESULTS 

These results are used for the interpretation of a video's stability. The less warping and 

shaking there is in the video, the greater its stability will be. This is important when viewing 

the video footage as objects in the video will be easier to identify as they will not be moving 

and shaking across video frames which could appear slightly blurred at high frame rates. 

Table 6-2 and Figure 6-5 display the results for horizontal aberration present in the video. 

Table 6-3 and Figure 6-6 present the vertical aberration results. Additional individual tables 

for each algorithm relating to the aberration measurements and results can be found in 

Addendum J. 

The results show a greater horizontal than vertical displacement; this indicates a far greater 

horizontal movement possibly due to wind effects interacting with the heat waves. After 

processing, the video footages still contained a fair amount of horizontal displacement. This 

residual displacement shows that there is a low frequency horizontal displacement present. 
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Horizontal Displacement ResultS 

!AlgoriiI6 veiage Diklacement'(mm 

Dynamic Illuminance-Reflectance Atmospheric Turbulence 
Suppression 

41.176 

Wiener Filtering using Laplacian Operator 41.667 

Image Registration and Laplacian Pyramid Image Fusion 45.588 

Dynamic Illuminance-Reflectance Atmospheric Turbulence 
Suppression with Wiener Filtering 

46.078 

Homomorphic Filtering and Powers Spectrum based 50.000 

Unprocessed video 54.412 

Table 6-2: Video aberration results — Horizontal displacement. 

Figure 6-5: Video aberration results — Horizontal displacement. 
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Vertical Displacement Results 

Algorithm Average Displacement (mm) 

Dynamic Illuminance-Reflectance Atmospheric Turbulence 
Suppression 

13.235 

Wiener Filtering using Laplacian Operator 16.667 

Dynamic Illuminance-Reflectance Atmospheric Turbulence 
Suppression with Wiener Filtering 

19.118 

Image Registration and Laplacian Pyramid Image Fusion 19.608 

Homomorphic Filtering and Powers Spectrum based 23.529 

Unprocessed video 24.020 

Table 6-3: Video aberration results — Vertical displacement. 

Figure 6-6: Video aberration results — Vertical displacement. 
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The results show a reduction in the horizontal and vertical displacements for all algorithms, 

however the results show very little improvement from the Homomorphic filtering and Power 

Restoration based method. Results are possible distorted due to the high frequency noise that 

is present in the processed video due to the power spectrum restoration and Homomorphic 

filtering outputted Fourier modulus information. When a histogram stretch is performed, the 

black squares contain some lower intensity high frequency noise and results in the black 

square average intensity being offset above the minimum intensity. This creates a problem 

when a threshold is performed and accurate determination of square sizes is required. 

The Dynamic Illuminance-Reflectance Atmospheric Turbulence Suppression algorithm 

shows the greatest reduction in displacement. The Wiener filtering and Illuminance-

Reflectance adjustment version however shows greater aberration, this is also be due to the 

propagation of high frequency from the Wiener filtering through the Illuminance-Reflectance 

adjustment, causing the black squares to be offset above the minimum. After Wiener filtering 

some high frequency noise is introduced. The Illuminance-Reflectance component then 

further enhances the noise amongst the flat field areas in an attempt to pull out detail. 

The noise enhancement after the Wiener filtering by the Illuminance-Reflectance component 

is evident if we consider the Wiener filtering and Laplacian Operator algorithm. This 

algorithm has a lower measured displacement than the Dynamic Illuminance-Reflectance 

Atmospheric Turbulence Suppression with Wiener filtering algorithm. 

6.7.1 Concluding Remarks 

It is evident that wind effects have caused greater horizontal motion then vertical 

motion across the image plane. All Algorithms showed a reduction in aberration when 

compared to the unprocessed video. The Homomorphic filtering method had the 

lowest reduction in aberration. These results are possibly corrupted by the amount of 

high frequency noise interfering in the histogram stretch. 

Results for the rest of algorithms were in close proximity to one another with the 

Dynamic Illuminance-Reflectance Atmospheric Turbulence Suppression algorithm 

showing the greatest reduction in aberration. 
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6.8 EXPERIMENT 4: ALGORITHM MTF EXPERIMENT RESULTS 

Atmospheric turbulence causes degradation in the higher spatial frequencies of an image. 

Atmospheric turbulence suppression algorithms try to increase object detail resulting in an 

enhancement of these suppressed higher frequencies. 

MTF (Modulation Transfer Function) is the spatial frequency response of the video measured 

from which information can be obtained as to spatial frequency enhancements gained. 

A low, medium, and high spatial frequency target was setup individually and video footage 

captured of each target. MTF was then calculated from the three video footages as laid out in 

the experimental method. Algorithms processed the three video footages and the outputted 

video used for their MTF calculation. 

This section presents these results for the Algorithm MTF Experiment. The MTF curve 

obtained for unprocessed video is used as a control reference for the processed video. Results 

are graphed on a logarithmic scale. 

Addendum K contains individual tables for each of the algorithms tabulating the MTF 

measurements. 

The results for the unprocessed video show sharp decrease then a slight increase where the 

curve starts to flatten out. This slight increase is because the video footage of the four highest 

spatial frequencies where captured first just before the other frequencies and the atmospheric 

conditions may have been a bit better. Slightly better conditions may be the result of why the 

highest frequencies don't decrease as rapidly but noise and scintillation can also play a part. 

Fluctuations in MTF among the four highest frequencies are due to the atmospheric PSF 

varying across an image frame as well as the aberration. The changing PSF and aberration 

causes a varied flickering of the intensities (scintillation) across video frames causing a 

flattening and slight variation in the MTF where visually the frequency bands are hard to 

discern. 
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Figure 6-7: Image Registration and Laplacian Pyramid Image Fusion algorithm MTF curve. 

Figure 6-8: Homomorphic Filtering and Power Spectrum based method MTF curve. 
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MTF Comparison 

Spatial Frequency (Ip/mm) 

—Wiener Filtering with Lapl. Op. 	—Unprocessed video 

MTF Comparison 

Spatial Frequency (Ip/mm) 

—Illuminance-Reflectance 	—Unprocessed video 

Figure 6-9: Wiener Filtering using Laplacian Operator algorithm MTF curve. 

Figure 6-10: Dynamic Illuminance-Reflectance method MTF curve. 
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Figure 6-11: Dynamic Illuminance-Reflectance with Wiener filtering method MTF curve. 

Figure 6-12: Speckle Masking algorithm MTF curve. 
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Considering some of the curves such as that from the Wiener filter, the MTF curve flattens 

out as we reach the high frequency noise level. This flattening is due to the process of 

recording maximum and minimum values across the video frame to overcome aberrations 

and varying PSF, form which MTF measurements are then made. 

This flattening can be useful as it allows a measurement to be made of the high frequency 

noise present in the video. The MTF curve from video footage which shows a flattening of 

the highest spatial frequencies above that of another video's MTF, has a greater amount of 

high frequency noise present. 

The Wiener filter based methods show an expected increase in high frequency noise when 

compared to the unprocessed video. The Speckle Masking algorithm and Dynamic 

Illuminance-Reflectance Atmospheric Turbulence Suppression with Wiener filtering 

algorithm show the greatest amount of high frequency noise. 

With regard to the rest of the MTF curve, all algorithms show an enhancement in the spatial 

frequencies. There is little improvement from the Homomorphic and Power Spectrum based 

method. The Speckle Masking algorithm, Dynamic Illuminance-Reflectance Atmospheric 

Turbulence Suppression with Wiener filtering algorithm, and the Image Registration and 

Laplacian Pyramid Image Fusion algorithm showed the greatest improvement in spatial 

frequencies. 

With regard to these spatial frequency response curves, the Dynamic Illuminance-Reflectance 

Atmospheric Turbulence Suppression algorithm shows similar performance to that of the 

Wiener filtering using Laplacian Operator algorithm. The Dynamic Illuminance-Reflectance 

Atmospheric Turbulence Suppression algorithm however has the advantage of not having the 

enhancement of the high frequency noise such as is evident in the Wiener filtering using 

Laplacian Operator algorithm's MTF curve. 

6.8.1 Concluding Remarks 

Results for unprocessed video have been presented and used as a comparison to the 

processed video results. From the MTF, a flattening of the curve at higher frequencies 
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can be indicative to high frequency noise present in the video. The high frequency 

noise and related MTF flattening is due to the method used for MTF measurement to 

overcome aberration and varying PSF corrupting measurements. This is useful for 

high frequency noise comparisons. 

With regard to spatial frequency response, the Speckle Masking algorithm, Dynamic 

Illuminance-Reflectance Atmospheric Turbulence Suppression with Wiener filtering 

algorithm, and the Image Registration and Laplacian Pyramid Image Fusion algorithm 

showed the greatest improvement in spatial frequencies. The Speckle Masking 

algorithm and Dynamic Illuminance-Reflectance Atmospheric Turbulence 

Suppression with Wiener filtering algorithm however also showed the greatest 

amount of high frequency noise. 

6.9 EXPERIMENT 5: ALGORITHM MSE AND PSNR EXPERIMENT RESULTS 

MSE (Mean Square Error) and PSNR (Peak Signal to Noise Ratio) metrics are classically 

used in signal processing, however they require signal reference such as the signal at the 

source before travelling through a medium to the observed state. In this particular 

atmospheric turbulence problem, the reference image needs to be estimated since it is 

unknown. Reconstruction of an estimate is made easier if a priori knowledge is known about 

the image that is captured after travelling though the turbulence. This experiment made use of 

such a priori knowledge to construct an estimate. 

From these results it appears that only the Dynamic Illuminance-Reflectance Atmospheric 

Turbulence Suppression algorithm is an improvement over the unprocessed video, and only a 

slight improvement at that. MSE and PSNR measurements are in close proximity to one 

another and are very low, indicative just how different the estimated ideal image is from the 

received and processed videos. 
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Algorithm MSE 

Unprocessed Video 0.0426 

Image Registration and Laplacian Pyramid Image Fusion 0.0664 

Homomorphic Filtering and Power Spectrum based method 0.0505 

Wiener Filtering using Laplacian Operator 0.0450 

Dynamic Illuminance-Reflectance Atmospheric Turbulence Suppression 0.0422 

Dynamic Illuminance-Reflectance Atmospheric Turbulence Suppression 
with Wiener Filtering 

0.0476 

Table 6-4: Algorithm MSE and PSNR Experiment - MSE Experiment results. 

A lgorithm PS1ti R (dB) 

Unprocessed Video 13.709 

Image Registration and Laplacian Pyramid Image Fusion 11.775 

Homomorphic Filtering and Power Spectrum based method 12.967 

Wiener Filtering using Laplacian Operator 13.469 

Dynamic Illuminance-Reflectance Atmospheric Turbulence Suppression 13.746 

Dynamic Illuminance-Reflectance Atmospheric Turbulence Suppression 
with Wiener Filtering 

13.220 

Table 6-5: Algorithm MSE and PSNR Experiment - PSNR Experiment results. 

Unwanted noise and artefacts in the video play a big part in the MSE and PSNR 

measurements. The Wiener filter in the algorithms adds some high frequency noise and the 

Illuminance-Reflectance component in the Dynamic Illuminance-Reflectance Atmospheric 

Turbulence Suppression with Wiener Filtering algorithm further enhances this noise. The 

Homomorphic Filtering and Power Spectrum based method has additive noise through the 

power spectrum adjustment. The Image Registration and Laplacian Pyramid Image Fusion 

algorithm processed video has some artefacts due to the alignment from the registration and 
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fusion of images. The registration process also uses a reference image which may lag the 

image sequence in the video, so image frames are registered to a previous geometric position. 

These results are later further discussed in relation to all the other algorithm experiment 

results and conclusions. 

6.9.1 Concluding Remarks 

MSE and PSNR measurements showed an increase in noise for all algorithms except 

the Dynamic Illuminance-Reflectance Atmospheric Turbulence Suppression 

algorithm. These poor results are both due to unwanted high frequency noise and 

difficulty in creating an estimate reference image which is a true representation of 

what would be viewed without the high frequency aberration and PSF of the 

atmosphere. 

6.10 EXPERIMENT 6: WIENER FILTERING LAMBDA SELECTION EXPERIMENT 

RESULTS 

The Wiener Filtering Laplacian Operator algorithm spends a considerable amount of time 

searching for a lambda value. From observation of this algorithm, the lambda value, which 

determines the OTF shape, varies slightly across image frames. 

The Wiener Filtering Lambda Selection Experiment investigates the performance gain and 

image quality loss when the lambda value is set instead of the lambda value being searched 

for in each frame. The set value is the average determined value across 50 image frames. The 

same video footage is processed by each algorithm to ensure the same atmospheric 

turbulence is used and any bias is removed during comparisons. 

Tables of measurements and individual graphs may be found in Addendum L. 

BD Walters 	 6-27 



Performance Comparison 
25 

20 

15 

10 
FPS 

0 

80x60 160x120 240x180 320x240 400x300 480x360 560x420 640x480 

Image Size 

a Wiener filtering using Laplacian Operator 	• Wiener filtering (user selected lambda) 

Figure 6-13: Wiener filtering FPS performance comparison graph 

UNIVERSITY 

JOHANNESBURG 

Comparing the two methods shows that there is a large performance gain by not calculating a 

X, value across the 50 image frames. Figure 6-13 shows a plot of the performance graphs on a 

single set of axes. 

A sharper image will have a higher measured sharpness value. The Wiener Filtering using 

Laplacian algorithm has a slightly higher value of 9.166 compared to the user selected 

Lambda algorithm's 9.063. Results indicate a little difference in image sharpness when 

calculating a lambda value for each image frame over 50 frames or using the average lambda 

value for all the frames. 

The small peaks, as seen in the image sharpness results graphs of Addendum L, are at the 

points were a new SNR estimate is made for the Wiener filtering. This SNR estimation is 

described in the Algorithm Detail Design chapter and is left unchanged between the 

algorithms. 

The difference between average image sharpness results is less than the difference in SNR 

estimate affects between image frames. 
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The MTF Comparison (Figure 6-14) shows very little difference between the two methods. 

Towards higher frequencies the Wiener filtering without the sharpness measurement for each 

frame (blue plot), is unable to resolve the frequencies as well due to a slight difference in the 

lambda. The Wiener filtering without the sharpness measurement reaches the noise level 

slightly faster than the Wiener filtering using Laplacian Operator algorithm. 

The MSE (Mean Square Error) and PSNR (Peak Signal to Noise Ratio), as discussed in the 

background of the Algorithm MSE and PSNR Experiment, were measured. Results for both 

algorithms were 0.045 for the MSE and 13.469dB for the PSNR. 

The MSE and PSNR values indicate that there is no difference between the lambda selected 

via the Laplacian Operator method and the use of a single lambda value across the image 

frames. 

6.10.1 Concluding Remarks 

Over 50 image frames a single lambda value can be used, rather than estimating a 

lambda value for each image frame, with a result of a large performance gain with 
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little loss in image quality. An algorithm can make use of these results by only 

estimating a new lambda value periodically such as every 50 th  frame. 

6.11 EXPERIMENT 7: FILTERING RECEIVED LIGHT EXPERIMENT RESULTS 

After investigation into filtering electromagnetic waves, it was found that both red coloured 

and polarised filters can be used for contrast enhancement in images. Blurring caused by the 

Atmospheric turbulence causes a loss of image contrast. The Filtering Received Light 

Experiment investigates the image quality for atmospheric turbulence affected video footage, 

using no optical filter, red colour filter, and a polarised filter. 

Unfiltered video footage is used as a control reference and video footage was captured within 

the hour to avoid discrepancies in atmospheric turbulence conditions. The red colour filter 

has a Wratten number of #24. 

Additional tables and individual graphs relating to this experiment and measurements taken 

can be found in Addendum M. 

The results (Table 6-6 and Figure 6-15) clearly show sharpness improvements by using either 

a red filter or polarised filter. The red filter provided a much greater gain in image sharpness. 

Sharpness improvement using the Polarised filter is small and is possibly due to a production 

of only a small amount of glare from the imaged scene which is removed by the polarised 

filter. 

Filtered Video Footage Used 

Average Image Sharpness 

Measurement 

Unfiltered Video 2.677 

Colour Filtered Video 5.907 

Polarised Filtered Video 3.319 

Table 6-6: Image sharpness results for unfiltered and filtered video. 
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Figure 6-15: Image sharpness results of unfiltered and filtered video. 

Figure 6-16: MTF results of unfiltered and filtered video. 

Figure 6-16 shows the MTF plots for the unfiltered and filtered videos on a common axis. 

The red filtered video shows an enhancement in mid spatial frequencies before the noise level 

is reached in comparison to the unfiltered video response. 
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The polarising filter shows a reduction in high frequency noise as its curve does not flatten 

towards the highest frequencies. The polarising filter's MTF is disappointing and is possibly 

due to, the filtering of the light from the broader white surfaces of the low spatial frequency 

target decreasing contrast, together with additive noise from the video camera. 

Filtered Video Footage Used MSE PSNR (dB) 

Unfiltered Video 0.0426 13.709 

Colour Filtered Video 0.0187 17.286 

Polarised Filtered Video 0.0359 14.450 

Table 6-7: MSE and PSNR results for unfiltered and filtered video. 

MSE and PSNR show improvement through the use of either filter. The Red #24 colour 

filtered footage has the greatest improvement in MSE and PSNR over unfiltered video 

footage. Figure 6-17 and 6-18 graphically illustrate MSE and PSNR differences. 

Figure 6-17: MSE results of unfiltered and filtered video (lower is better). 
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Figure 6-18: PSNR results of unfiltered and filtered video (higher is better). 

6.11.1 Concluding Remarks 

From the results it is clear that the use of a red #24 colour filter helps in improvement 

of image quality when viewing a scene through atmospheric turbulence. The 

polarising filter showed little improvement and its MTF curve suggests it helps to 

reduce high frequency noise but there is a loss of frequency detail. Considering results 

from the polarising filter it appears that it may have its own significant OTF that 

needs to be overcome, or else there may have been difficulty in obtaining focus with 

the imaging system for the video footages which used the polarising filter. 

6.12 CONCLUSION 

Various issues where encountered and corrected for during the implementation phase of the 

algorithms. A number of experimental design issues encountered are described as well as 

solutions that were used to counter those problems. Wind and aerosols in the air play a part as 

possible the biggest two problems since they jeopardise image contrast and clarity, and image 

stability respectively. This dissertation concentrates on analyse of atmospheric turbulence 
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suppression algorithms, however it is clear from some of the issues encountered that 

implementation and use of a portable system in the real world has many difficulties to 

overcome, and factors such as aerosols in the air can limit the effective range over which the 

system can be used, regardless of how turbulent the atmosphere is. 

Various experimental results have been presented and individually discussed. The next 

chapter discusses the experimental results as a whole and also provides some example images 

for the algorithms. 
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7 CHAPTER 7: EXAMPLE IMAGES AND RESULTS 

DISCUSSION 

7.1 INTRODUCTION 

Experimental results have been presented and analysed in the previous chapters. Results have 

not yet been discussed and as a whole. This chapter summarises the results as a whole, with 

analyses and interpretation. Before the interpretation summary, example images of processed 

video frames are presented not just for the reader's interest, but also to help as a visual aid for 

the discussion of the results. 

7.2 EXAMPLE IMAGES 

A sample image frame is shown for unprocessed and processed video in the following figures 

(Figure 7-1 to Figure 7-7). The video footage used is courtesy of the CSIR. The video footage 

is of a building site 5.5 km from the imaging system. Video frame size is 640x480 pixels. 

The video footage provides a various array of differing objects. There is complex scaffolding 

at the top of the video, foliage in the foreground, buildings and brickwork, various shadows, 

and higher spatial frequencies amongst flat fields such as the lampposts and fencing. 

Differences between some of the example frames are small enough that it can be difficult to 

see once printed on paper. Wiener filtering using Laplacian Operator algorithm and the 

Dynamic Illuminance-Reflectance based algorithms' improvements are however easily 

visible on printed paper. 
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Figure 7-1: Unprocessed video frame 

e lz 

Figure 7-2: Image Registration and Laplacian Pyramid Image Fusion. 
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Figure 7-3: Homomorphic Filtering and Power Spectrum based method. 

Figure 7-4: Wiener Filtering using Laplacian Operator. 
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Figure 7-5: Dynamic Illuminance-Reflectance Atmospheric Turbulence Suppression 

Figure 7-6: Dynamic Illuminance-Reflectance Atmospheric Turbulence Suppression with Wiener Filtering 
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Figure 7-7: a) an unprocessed video frame. b) Speckle Masking after processing 100 frames. 

7.3 SUMMARY AND LINKING OF RESULTS 

7.3.1 Image Registration and Laplacian Pyramid Image Fusion 

This algorithm has shown to improve an image's MTF, and provides a sharper image 

measurement due to the Laplacian Pyramid Image Fusion. The registration method 

however struggles to accurately align image frames resulting in only a small reduction 

in aberration across image frames. There is also evidence of small rippling and 

artefacts in the image as seen in Figure 7-2. These ripples and artefacts are due to the 

slight registration difference between frames and the fusion of these frames. 

The fine registration difficulties can be attributed to the use of an image average as a 

reference. Blurring in the reference image can cause these small alignment errors. 
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The Image Registration and Laplacian Pyramid Image Fusion algorithm is very slow 

in comparison to the other algorithms presented here. The poor performance is due to 

the complicated registration procedure. 

7.3.2 Homomorphic Filtering and Power Spectrum based method 

This algorithm had the highest FPS for larger image sizes; however it had the poorest 

image quality enhancement. A fair amount of noise is introduced into the video 

through the Power Spectrum adjustment even if the edge of the image frame is 

tapered before processing to remove discontinuities. Figure 7-3 shows a tapered 

processed video frame. 

7.3.3 Wiener Filtering using Laplacian Operator 

The Wiener Filtering using Laplacian Operator method had results that placed it 

towards the centre of the reviewed algorithm results for both performance and image 

quality. The algorithm increased image sharpness and the MTF slightly but also 

increased the high frequency noise level. 

The ratio averaging used together with the Wiener filtering helped reduce high 

frequency aberrations with only the Dynamic Illuminance-Reflectance algorithm 

showing a slightly better result. 

7.3.4 Wiener Filtering using Selected Lambda for Multiple Image Frames 

This method is a modification of the one above. The difference is that whereas the 

above method uses the Laplacian Operator metric to calculate a new lambda for each 

of the 50 image frames processed, this algorithm uses a single lambda value specified 

at the start of the algorithm. The lambda value is used when processing each of the 50 

image frames without having to search for it. The lambda value specifies the shape of 

the OTF (Optical Transfer Function) used in the Wiener filtering. 
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The performance increase over the Wiener Filtering using Laplacian Operator 

algorithm is considerable. FPS performance is comparable to the Homomorphic and 

Power Spectrum based method. The decrease in image quality is slight in comparison 

to the Wiener Filtering using Laplacian Operator algorithm. MTF is marginally poorer 

for high frequencies with this algorithm converging to the same noise level at a 

slightly lower spatial frequency. 

The use of a single lambda value across image frames shows that the small difference 

in the OTF's has minimal consequences for image quality and a viable trade off may 

be to update the lambda value and corresponding OTF after every few image frames. 

7.3.5 Dynamic Illuminance -Reflectance Atmospheric Turbulence Suppression 

This algorithm shows very good results. It has a good FPS performance and MTF 

curve similar to the above Wiener filtering algorithms but without having the high 

frequency noise levels the Wiener filtering based algorithms suffer with. 

The Dynamic Illuminance-Reflectance Atmospheric Turbulence Suppression 

algorithm has the greatest reduction in the amount of high frequency aberration 

present in the video. It also has the second highest image sharpness levels. The high 

image sharpness levels are attributable to the enhancement of detail hidden in 

shadows and very bright areas by the dynamic Illuminance-Reflectance adjustment 

component. This can be clearly seen from Figure 7-5. 

7.3.6 Dynamic Illuminance-Reflectance Atmospheric Turbulence Suppression with 

Wiener Filtering 

The Dynamic Illuminance-Reflectance Atmospheric Turbulence Suppression with 

Wiener Filtering algorithm is a combination of the Wiener Filtering using Laplacian 

Operator Algorithm and Dynamic Illuminance-Reflectance Atmospheric Turbulence 

Suppression algorithm. 
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This algorithm has the highest image sharpness levels out of the algorithms reviewed 

as well as a good enhancement in the MTF curve. Due to the Wiener filtering and the 

boosting because of the dynamic Illuminance-Reflectance component, high frequency 

noise levels are higher. 

The ratio frame average used in this algorithm reduces high frequency aberrations 

across video frames with only the Dynamic Illuminance-Reflectance Atmospheric 

Turbulence Suppression algorithm showing slightly better results. 

Image sharpness and enhancement of detail hidden in shadow is clearly seen in Figure 

7-6. 

7.3. 7 Speckle Masking 

The Speckle Masking algorithm uses a 100 image frames to render a single image of 

the observed scene. This algorithm is very slow and shows enhancement of the MTF 

curve. High noise levels however where observed due to high frequency additive 

noise. Smudging effects are also evident in the rendered image as seen in Figure 7-7 

amongst the lamppost and white sign which reads "Concealed Entrance". 

7.3.8 MSE and PSNR 

It is clear from MSE and PSNR measurements for the algorithms in comparison to 

MTF and image sharpness measurements, that they are not suitable metrics on their 

own. It is very difficult to reconstruct a reference image and noise levels can greatly 

affect their values. Slight misalignment between the reference image and measured 

image can give poor MSE and PSNR readings. These small differences in MSE 

results for this atmospheric turbulence problem are not great enough for interpretation 

as to which algorithms provide better image enhancement. Where there are vast 

differences in readings, such as the in the Filtering Received Light Experiment, then 
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results have greater meaning and can be interpreted with some level of confidence as 

to which is better. 

7.3.9 Imaging System and Optical Filters 

From the results it is seen that due to the enhancement of high frequencies by the 

algorithm, the imaging system should be constructed so that minimal high frequency 

additive noise is present. Using a higher bit grey level may also help reduce noise 

levels. 

The use of a red #24 colour optical filter can increase image sharpness and improve 

the MTF. The polarisation filter should be used where image glare may be a problem, 

its effect on image sharpness and MTF is less than the colour filter. 

The use of an optical filter causes some of the light to be blocked and reflected. This 

causes a decrease in image contrast and longer exposure times will be required than 

when not using a filter. 

7.3.10 Real time and post processing applications 

None of the algorithms showed real time performance with their Matlab 

implementations; however real time performance is feasible for some of the 

algorithms if they are implemented in C or C++ or on hardware such as a GPU 

(Graphics Processing Unit). The Homomorphic Filtering and Power Spectrum based 

method, Wiener Filtering using Selected Lambda for Multiple Image Frames 

algorithm and Dynamic Illuminance-Reflectance Atmospheric Turbulence 

Suppression algorithm are the easiest to implement with real time performance since 

they are relatively low in complexity. Making use of GPU technology or FPGA (Field 

Programmable Gate-Array) it is expected that the Dynamic Illuminance-Reflectance 

Atmospheric Turbulence Suppression with Wiener Filtering algorithm may also reach 

real time processing speeds. 
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If only post processing is necessary and video surveillance image quality 

enhancement was of utmost importance, then it might be expected that the most 

complex algorithm would give the best image. In this study the relatively less 

complicated Dynamic Illuminance-Reflectance based algorithms give a far better 

image quality. The Dynamic Illuminance-Reflectance Atmospheric Turbulence 

Suppression with Wiener Filtering algorithm particularly shows large video 

surveillance enhancement. 

7.4 CONCLUSION 

The Illuminance-Reflectance Atmospheric Turbulence Suppression with Wiener Filtering 

algorithm shows the greatest increase in image quality and should be used in an imaging 

system that has a low amount of additive high frequency noise. The use of a red #24 optical 

filter also shows an improvement in image quality, however due to its light filtering, longer 

exposure times are necessary. 

The simple ratio frame averaging using an a value of a 1/3, which is used in many of the 

reviewed algorithms, has shown to efficiently reduce high frequency aberrations across image 

frames. 

The next chapter concludes this dissertation. 
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8 CHAPTER 8: CONCLUSION 

8.1 OVERVIEW OF WORK 

Video surveillance is used globally for gathering information, whether viewed in a security, 

recreational, research or other perspective. Some of these video surveillance systems utilize 

very high magnifications and could be used to survey targets up to 10 km from the imaging 

system. This is particularly useful for covert systems tasked with information gathering. 

Digital video cameras are increasing with quality and decreasing with cost all the time 

making them prevalent in video surveillance systems. Coupling a digital video surveillance 

camera to a very long focal length lens to achieve high magnifications is possible with off-

the-shelf hardware. 

The problem with the high magnification systems is that between 1 km and 10km, 

atmospheric turbulence scatters, refracts and absorbs light travelling from the surveyed scene. 

The atmospheric PSF (Point Spread Function), which defines how a point of light is scattered 

when travelling through the turbulence, varies both spatially and with time and is unknown. 

The result is that video captured of a stationary scene containing a unmoving object, appears 

to show a 'shimmering' movement of the scene and object as well as blurring of the scene 

and object, both varying spatially and temporally. This causes difficulty in identification of 

objects and detail. 

Atmospheric turbulence is also known as heat shimmer, scintillation, and seeing, and a 

number of algorithms have been developed, as reviewed in the literature study, in an attempt 

at suppressing atmospheric turbulence effects. There is however a lack of comparison 

between the algorithms in relation to image quality improvements. Image quality analysis is 

made difficult since only the distorted image containing geometric distortion (seen as 

movement) and photometric distortion (seen as blur) is observed. The image scene that would 

be viewed without atmospheric turbulence is unknown. 
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This study is concerned with the comparison of the outputted video or image from various 

atmospheric turbulence suppression algorithms. This study is formed through a literature 

study which reviews the physics surrounding atmospheric turbulence and an understanding of 

the optics, image processing methods and related background information, atmospheric 

turbulence studies by other authors, atmospheric turbulence suppression algorithms by other 

authors, hardware components for construction of an imaging system, and metrics that may 

be useful for algorithm comparison. A study into the filtering of electromagnetic waves is 

also undertaken for a later experiment regarding the use of optical filters for image 

enhancement. 

A number of selected algorithms were implemented in Matlab from the literature study 

review as well as some own developed algorithms constructed using the dynamic 

Illuminance-Reflectance adjustment component, described by Tao et al. [93], as a base. 

An imaging system comprised of a Celestron Nexstar 8 SE eight inch diameter Schmidt 

Cassegrain telescope and an Arecont vision 3100 IP (Internet Protocol) surveillance camera 

was constructed. The imaging system was used to capture video footage through atmospheric 

turbulence of various targets for use with the experiments. 

A number of experiments were designed to provide results to give insight into the algorithms' 

outputted image qualities and performance requirements. An experiment was also undertaken 

to investigate the use of a polarising filter and a red #24 colour filter on atmospheric 

turbulence degraded video. 

The results indicated that all algorithms managed to increase image quality and stabilise the 

high frequency aberrations that were present across image. The results also showed that the 

newly constructed dynamic Illuminance-Reflectance adjustment based algorithms had the 

greatest image quality performances. The Illuminance-Reflectance adjustment has the added 

advantage of increasing detail hidden in shadows within the video. 

The Speckle Masking and image registration algorithms where identified as requiring the 

greatest amount of processing resources. The Homomorphic Filtering and Power Spectrum 

based method had the best FPS performance and was able to suppress high frequency 
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aberrations but its image quality enhancement was the smallest. This method may give better 

image quality results with an adjustment of the homomorphic filtering component. 

Out of the reviewed results the Illuminance-Reflectance adjustment based algorithms or 

Wiener Filtering (using a selected lambda) algorithm are best suited for a real time 

implementation. For post processing the dynamic Illuminance-Reflectance adjustment based 

algorithm showed the greatest image enhancement among the reviewed algorithms. 

It is important that if atmospheric turbulence suppression using one of the algorithms is to be 

performed, that the imaging system be designed to minimize the amount of additive noise. 

Since atmospheric turbulence degrades higher spatial frequencies of an image, the 

atmospheric turbulence suppression algorithms boost these higher frequencies. High 

frequency noise will be boosted along with the frequencies and so it is important to minimise 

noise added from the imaging system and the signal digitization. 

Using a red colour (Wratten #24) optical filter has shown to improve image quality of video 

captured through atmospheric turbulence. The filter however blocks a fair amount of light 

and this will cause an increase in exposure times. Care thus needs to be taken if considering 

using the filter together with an atmospheric turbulence suppression algorithm. Some 

atmospheric turbulence suppression algorithms, such as the Speckle Masking, image 

registration based, and optical flow field based algorithms, require exposure times of less 

than 10 ms to 'freeze' the atmospheric turbulence in place. 

8.2 SUCCESSFUL PROBLEM SOLUTION 

This study has been successfully undertaken by providing and demonstrating methods for 

comparing atmospheric turbulence suppression algorithms, both in terms of image quality 

relating to image sharpness and MTF (Modulation Transfer Function), and FPS (Frames per 

Second) performance. These methods allow for comparability of processed results which are 

repeatable. 
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Additionally new algorithms were developed based on Tao et al.'s Illuminance-Reflectance 

adjustment. This algorithm has shown excellent results in comparison to other algorithms 

reviewed. 

The comparisons show the strengths and weaknesses of the different algorithms and provide 

clear results as to the image quality enhancement. Together with the performance results it is 

easy to determine the suitability of each algorithm in a real time or post processing 

environment. 

Results have been interpreted for each of the algorithms. Interpretations were performed after 

each experiment, as well as after considering the results as a whole. From the results, 

algorithms providing the greatest FPS performance and those with the greatest image 

enhancement were identified. Post and real time processing requirements were discussed and 

suitable algorithms from those reviewed were identified. 

The use of optical filters for image enhancement of images viewed through atmospheric 

turbulence has also been considered, investigated through experimentation, and concluded. 

8.3 RELEVANCE OF EXPERIMENTS AND RESULTS 

The experiments allow for measurement of FPS performance and importantly image quality 

in relation to long range video surveillance through atmospheric turbulence. The experiments 

allow algorithms to be compared with repeatable results, providing valuable information as to 

their strengths and weaknesses with regard to one another, their efficiency and processing 

requirements, allowing a algorithm to be selected for a particular post processing or real time 

processing situation, providing direction as to components which perform well, and providing 

measurements and better algorithm understanding for future compositions of new algorithms. 

Experiments may be used with any video footage and various atmospheric turbulence 

affected video footage may be compared to one another. This can provide information such 

as how the image sharpness, video stability, and MTF changes over distance, temperature, 

terrain or other affecting factors such as wind. 
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The results show how some of the existing algorithm reviewed in this research compare. 

Comparison is on a FPS performance level, image quality level, and video stability. The 

implementation and comparison of two new algorithms constructed by this author and based 

on Tao et al.'s Illuminance-Reflectance adjustment model [93], demonstrates the strength of 

using Illuminance-Reflectance adjustment for this atmospheric turbulence affected video 

footage problem. Using a red #24 colour optical filter also shows that gains may be made in 

grey scale image quality for this problem. 

This study and its results may be used for a greater understanding of this imaging problem 

and how best to treat it, helping to identify issues that may be encountered, the design of 

imaging systems, selection and implementation of one of the reviewed algorithms for a 

particular situation, tweaking the algorithms where they show weakness, compiling a new 

algorithm using a composition of components from the reviewed algorithms, or allowing for 

inspiration and lateral thinking for development of entirely new algorithms. 

8.4 ISSUES ENCOUNTERED 

Implementation issues stemmed primarily from the Speckle Masking algorithm. This 

algorithm is highly complicated and small details such as splitting up an image into smaller 

over lapping images have a huge effect on outputted image quality. Information on smaller 

details were scattered among the reviewed literature. A one dimensional signal creates a two 

dimensional bi-spectrum object which contains symmetries and a path is documented in the 

literature for navigation through this 2D object. An image however is two dimensional and 

creates a four dimensional bi-spectrum. Symmetry in this object had to be found as well as a 

path used to navigate through the object for Fourier phase reconstruction, overall a 

complicated job which needed continuous trouble shooting. Important processing details that 

were found in the literature are that the images must be broken up into small overlapping sub-

images, image registration performed on the sub-images to remove small global low 

frequency aberrations, processing the sub-images separately using the Speckle Masking 

algorithm, and finally applying a hamming window to the processed sub images and piecing 

the sub-images together to create the final image. 
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For the Illuminance-Reflectance adjustment, equation (6.2) should be used instead of 

equation (6.1). 

Video footage captured by the video camera first needed to be converted to raw AVI (Audio 

Video Interleave) before it could be used with Matlab. Matlab's aviread function's supported 

frame types are 8-bit, for indexed or greyscale images, 16-bit, for greyscale images, or 24-bit, 

for true colour. 

When using a high magnification imaging system, the system must have a stable platform 

and support. If there is wind, the imaging system may need to be positioned in a sheltered 

area. Slight movements in the lens can cause large visible aberrations in the video footage, 

degrading the image and corrupting captured atmospheric turbulence. 

Manual focusing is very difficult in atmospheric turbulence conditions. Focusing may be 

made easier by using a smaller aperture lens to increase the depth of field over which objects 

are in focus. However exposure times will increase as less light will be gathered with the 

smaller aperture. An alternative may be real time measurement of the image sharpness 

allowing identification of when the best focus is achieved. 

8.5 FUTURE WORK 

Further work may be undertaken to expand the number of algorithms compared using these 

experiments, and using the results for development of new algorithms and adjustment of 

existing algorithms for better image quality and performance through identification of 

strengths and weaknesses. 

Experiments may be used for measurement of atmospheric turbulence and broadening its 

understanding. Valuable information and greater understanding may be found through the 

investigation of the effect on image sharpness and MTF as distance increases, temperature 

changes and how wind affects atmospheric turbulence. 

Future work can be carried out on algorithms to develop them on FPGA (Field Programmable 

Graphics Array) or GPU (Graphics Processing Unit) hardware for real time implementations. 

BD Walters 	 8-6 



V Conclusion 
UNIVERSITY 

CA 
JOHANNESBURG 

Work may also be carried into creation of an imaging system for use in the field either as a 

real time system or post processing system. 

8.6 PUBLICATIONS AND PRESENTATIONS 

Presented a paper and presentation entitled 'Reduction of Heat Shimmer in Long 

Range Surveillance' to The Military Information and Communications Symposium of 

South Africa (MICSSA) held between the 24 and 26 of July 2007. 

Presented, received acceptance, and have had published a paper entitled 'Comparison 

of two terrestrial atmospheric turbulence suppression algorithms'. Paper was 

presented at the 8th Institute of Electric and Electronic Engineers (IEEE) 2007 

Africon International Conference held in Windhoek, Namibia between the 26 and 28 

September 2007. 

Presented a paper co-authored with Philip Robinson entitled 'Reduction of the effects 

of atmospheric turbulence in long range video surveillance' to the Pattern Recognition 

Association of South Africa during 2007 for consideration for inclusion in the 

proceedings of the Annual PRASA Symposium that was held between the 28 th  and 

30th  of November 2007.. 

Part of the Council for Scientific and Industrial Research (CSIR) Programmed Reach 

into Science & Maths (PRISM) group. Presented presentations together with Philip 

Robinson regarding research on atmospheric turbulence undertaken at the University 

of Johannesburg at the CSIR Defence, Peace, Safety, and Security (DPSS) building 

on the 27th  of July 2007 and the 31 st  January 2008. Another presentation is set for the 

24th  July 2008. 
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10 ADDENDUM A 

SPECKLE MASKING ALGORITHM CODE 

10.1 `MAICEHANNING 9  FUNCTION 

function hWindow = makeHanning(length,percent) 
%this function constructs a two dimensional square hanning window 

based on a given 
%length and apodization percentage. The two dimensional window is 

returned 

han2D = ones(length,length); 

%% construct hanning function 
windowLength = round(length*(percent)/100); %determine length of 

hanning function 
han1D = hann(windowLength,'periodic'); 

%% construction of full length of function 
hanlDfull = ones(length); 
halfWindowLength = ceil(windowLength/2); %calculate integer half 
restWindowLength = windowLength - halfWindowLength; 
hanlDfull(1:halfWindowLength) = han1D(1:halfWindowLength); 
han1Dfull(length-restWindowLength+1:length) = 

han1D(halfWindowLength+1:windowLength); 

%% construction 2D window from function 
for k = 1:length, %iterate row 

for 1 = 1:length, %iterate column 
%han2D(k,l) = min(hanlDfull(k),hanlDfull(1)); %create 2D 

window 
han2D(k,l) = (hanlDfull(k)*hanlDfull(1)); %create 2D window 

end 
end 

hWindow = han2D; 

10.2 'IMAGEREGISTRATION' FUNCTION 

function reglm = imageRegistration(imageToReg,refImage,border) 
%performs image registration on imageToReg removing translational 

motion 
%given reference image refImage. The border edge width on imageToReg 

across which 
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%registration is performed is specified by the scalar border. 
%parameter sizes: 	refImage 	NxM 

imageToReg 	(N+2*border)x(M+2*border) 
regIm 	 NxM 

%function developed to coincide and support speckle masking 
procedure 

%By BD Walters 

[rw,cl] = size(refImage); 
bestFitImage = zeros(rw,cl); 
currentError = rw*cl; 
twiceBorder = 2*border; 

% cc = normxcorr2(refImage,imageToReg); 
% [max_cc, imax] = max(abs(cc(:))); 
% [ypeak, xpeak] = ind2sub(size(cc),imax(1)); 
% corr — offset = [ (ypeak-size(imageToReg,1)) (xpeak-

. 
slze(imageToReg,2)) ]; 

O 

% bestFitImage = imageToReg((l-corr_offset(1)):(rw- 
corr offset(1)),(1-corr offset(2)):(cl-corr offset(2))); 

for rborder = 0:twiceBorder, 
for cborder = 0:twiceBorder, 

%temp = 
corr2(imageToReg((l+rborder):(rw+rborder),(1+cborder):(cl+cborde 
r)),refImage); 

temp = 
sumsqr(imageToReg((l+rborder):(rw+rborder),(1+cborder):(cl+cbord 
er)) - refImage); 

if temp<currentError 
bestFitImage = 

imageToReg((l+rborder):(rw+rborder),(1+cborder):(cl+cborder)); 
currentError = temp; 

end 

end 
end 

regIm = bestFitImage; 

10.3 `BSPECCALC FUNCTION 

function finalBSpec = BSpecCalc(IG,imsize,numtoavg) 
%Bispectrum creation following path q through 4D space 
%optimized to calculate some necessary parts only corresponding with 

phase 
%reconstruction 

%created by BD Walters 
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BSpec = zeros(imsize,imsize,numtoavg); 

%% calculate OX except 01 
num = 1; 
qr = 0; 
qc = 1; 
kiter = 0; 
for liter = 2:imsize-1 

pr = kiter - qr; 
pc = liter - qc; 

BSpec(kiter+1, liter+1,num)= 
(IG(pr+1,pc+1)*IG(qr+1,qc+1)*conj(IG(kiter+1,1iter+1))); 

end 

%% calculate XO except 10 

qr = 1; 
qc = 0; 
liter = 0; 
for kiter = 2:imsize-1 

pr = kiter - qr; 
pc = liter - qc; 

BSpec(kiter+1,1iter+1,num)= 
(IG(pr+1,pc+1)*IG(qr+1,qc+1)*conj(IG(kiter+1,1iter+1))); 

end 

%% calculate 11 
pr = 0; 
pc = 1; 
qr = 1; 
qc = 0; 

kiter = 1; 
liter = 1; 
BSpec(kiter+1,liter+1,num)= 

(IG(pr+1,pc+1)*IG(qr+1,qc+1)*conj(IG(kiter+1,1iter+1))); 

%% calculate 1X except 11 

qr = 1; 
qc = 1; 
kiter = 1; 
for liter = 2:imsize-1, 

pr = kiter - qr; 
pc = liter - qc; 

BSpec(kiter+1,liter+1,num)= 
(IG(pr+1,pc+1)*IG(qr+1,qc+1)*conj(IG(kiter+1,1iter+1))); 

end 

%% calculate X1 except 11 
qr = 1; 
qc = 1; 
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liter = 1; 
for kiter = 2:imsize-1, 

pr = kiter - qr; 
pc = liter - qc; 

BSpec(kiter+1,1iter+1,num)= 
(IG(pr+1,pc+1)*IG(qr+1,qc+1)*conj(IG(kiter+1,1iter+1))); 

end 

%% calculate all other k and 1 indices 

occurs = 0;%initialize for use 

for kiter = 2:imsize-1, 
for liter = 2:imsize-1, 

qr = floor(kiter/2); 
qc = floor(liter/2); 
occurs = qr+qc-1; %total possible average number 

if (occurs>numtoavg) %ensure doesn't esceed specified number 
to avg 

occurs = numtoavg; 
end 

for num = 1:occurs, %iterate through averages 

pr = kiter - qr; 
pc = liter - qc; 

BSpec(kiter+1,1iter+1,num)= 
(IG(pr+1,pc+1)*IG(qr+1,qc+1)*conj(IG(kiter+1,1iter+1))); 

if (qr>qc) %decrease greater vector component of q for 
next iteration 

qr = qr - 1; 
else 

qc = qc - 1; 
end 

end 
end 

end 

%% end 

finalBSpec = BSpec; 
%end of bispectrum calculation 
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10.4 `PHASESCALC' FUNCTION 

function calcPhases = phasesCalc(BSpec,IG,imsize,numtoavg) 
%calculates the fourier phases from the 4D bispectrum created by 

BSpecCalc 
%optimized to make use of higher spectral data in bispectrum 
%created by BD Walters 

expphases = zeros(imsize,imsize); 

expphases(2,1) = IG(2,1);%exp(i*angle(IG(2,1)));%initial unknown 
1,0 

expphases(1,2) = IG(1,2);%exp(i*angle(IG(1,2)));%initial unknown 
0,1 

%% calculate OX except 01 
num = 1; 
qr = 0; 
qc = 1; 
kiter = 0; 
for liter = 2:imsize-1 

pr = kiter - qr; 
pc = liter - qc; 
expphases(kiter+1,1iter+1) = 
exp(i.*(angle(expphases(qr+1,qc+1))+angle(expphases(pr+1,pc+1)) -  
angle(BSpec(kiter+1,1iter+1,num)))); 

end 

%% calculate XO except 10 

qr = 1; 
qc = 0; 
liter = 0; 
for kiter = 2:imsize-1 

pr = kiter - qr; 
pc = liter - qc; 
expphases(kiter+1,1iter+1) = 
exp(i.*(angle(expphases(qr+1,qc+1))+angle(expphases(pr+1,pc+1)) -  
angle(BSpec(kiter+1,1iter+1,num)))); 

end 

%% calculate 11 
qr = 1; 
qc = 0; 
pr = 0; 
pc = 1; 
kiter = 1; 
liter = 1; 

expphases(kiter+1,liter+1) = 
exp(i.*(angle(expphases(qr+1,qc+1))+angle(expphases(pr+1,pc+1)) -  
angle(BSpec(kiter+1,1iter+1,num)))); 
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%% calculate 1X except 11 

qr = 1; 
qc = 1; 
kiter = 1; 
for liter = 2:imsize-1, 

pr = kiter - qr; 
pc = liter - qc; 
expphases(kiter+1,1iter+1) = 
exp(i.*(angle(expphases(qr+1,qc+1))+angle(expphases(pr+1,pc+1)) -  
angle(BSpec(kiter+1,1iter+1,num)))); 

end 

%% calculate X1 except 11 
qr = 1; 
qc = 1; 
liter = 1; 
for kiter = 2:imsize-1, 

pr = kiter - qr; 
pc = liter - qc; 
expphases(kiter+1,1iter+1) = 
exp(i.*(angle(expphases(qr+1,qc+1))+angle(expphases(pr+1,pc+1)) -  
angle(BSpec(kiter+1,1iter+1,num)))); 

end 

%% calculate all other k and 1 indices 

occurs = 0;%initialize for use 

for kiter = 2:imsize-1, 
for liter = 2:imsize-kiter, 

qr = floor(kiter/2); 
qc = floor(liter/2); 
occurs = qr+qc-1; %total possible average number 

if (occurs>numtoavg) %ensure doesn't esceed specified number 
to avg 

occurs = numtoavg; 
end 

for num = 1:occurs, %iterate through averages 

pr = kiter - qr; 
pc = liter - qc; 

temp = 
exp(i.*(angle(expphases(qr+1,qc+1))+angle(expphases(pr+1,pc+1)) -  
angle(BSpec(kiter+1,1iter+1,num)))); 

expphases(kiter+l,liter+1) = expphases(kiter+l,liter+l) 
+ temp/occurs; 

if (qr>qc) %decrease greater vector component of q for 
next iteration 
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qr = qr - 1; 
else 

qc = qc - 1; 
end 

end 

end 
end 

%% end 
phases = angle(expphases); 
checkflag = 0; 

if mod(imsize,2)==0 
checkflag=l; 

end 
for kt = 2:imsize, 

for It = 2:imsize-kt+2, 
if (checkflag==1) 

if (((imsize-kt+2)==kt)&&(imsize-lt+2)==lt) 

else 
phases(imsize-kt+2,imsize-lt+2) = 0- 

phases(kt,lt); 
end 

else 
phases(imsize-kt+2,imsize-lt+2) = 0- 

phases(kt,lt); 
end 

end 
end 

calcPhases = phases; 

10.5 MAIN FILE (RUN) 

%4D method image2d 

cic; 
clear all; 
close all; 

%%load video 
directoryToOpen = ('D:\workvids2\noiseRem\ '); 
fileToOpen = ('Mid freq no filt0001-0'); 

mov = aviread(strcat(directoryToOpen,fileToOpen,'.avi'),[1:110]); 
%open avi 

[M,N] = size(mov); % determine number of frames 

framenum = 100; %number of frames to use 
***set*** 
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framenumstart = 1; 
framenumend = framenumstart + framenum-1; 

border = 5; %border around which image registration takes place 
***set*** 

twiceBord = 2*border; 
imsize = 470;%size of image 

***set*** 
xshift = 80; %horizontal offset within video 

***set*** 
yshift = 0; %vertical offset down within video 

***set*** 

%%tiling and apodization setup 
sublSize = 32; %sub image size 

***set*** 
hPercent = 100; 	%percent apodization 

***set*** 

overlapLength = round((subISize*(hPercent)/100)/2); 

numtoavg = 16; %number of phases to average over if available 
***set*** 

%calculate number of sub images across row and column 
offset = sublSize-overlapLength; 
rowSublNum = floor((imsize-overlapLength)/(offset)); 
colSublNum = floor((imsize-overlapLength)/(offset)); 

w = (makeHanning(sublSize,hPercent)); %create banning apodization 
window 

newlmage = zeros(imsize,imsize); %pre-create a blank image for 
memory 

tile = zeros(sublSize,sublSize); %pre-create a blank tile 

%%create reference bispectrum Ispec 
Ispec = zeros(sublSize,sublSize); 
for x = -sublSize/2:0, 

for y = -sublSize/2:0, 
f = sqrt(xA2 + yA2); 
m = y + sublSize/2 + 1; 
n = x + sublSize/2 + 1; 

Ispec(m,n) = psReferenceSE(0.15,0.055,f/(subISize)); 
Ispec((m),(subISize+l-n)) = Ispec(m,n); 
Ispec((subISize+1-m),(n)) = Ispec(m,n); 
Ispec((subISize+l-m),(subISize+l-n)) = Ispec(m,n); 

end 
end 

Ispec = fftshift(Ispec); 

%%perform tiling image creation 
tic %start stopwatch 
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d = mov(framenumstart); %\ 
truecimg = d.cdata; 	%- get first image frame 
img = truecimg(:,:,:); 	%/ 

Igfull = rgb2gray(img); 
%first frame used for reference in image registration 
refIg = 

double(Igfull(l+yshift+border:imsize+yshift+border,l+xshift+bord 
er:imsize+xshift+border)); 

rFrom = 1+yshift 
rTo = imsize+yshift+2*border 
cFrom = 1+xshift 
cTo = imsize+xshift+2*border 

for ktile = 0:rowSubINum-1, %iterate through row subimage numbers 
for ltile = 0:colSubINum-1, %iterate through column subimage 
numbers 

PS = zeros(subISize,subISize); 
BSpect = zeros(subISize,subISize,numtoavg); 
phases = zeros(sublSize,sublSize); 

averagelG = zeros(2,2,'double'); 

for fnum = framenumstart:l:framenumend, 

%get image frame and sub portion 

d = mov(fnum); 
truecimg = d.cdata; 
img = truecimg(:,:,:); 
Igfull = rgb2gray(img); 
Ig = double(Igfull(rFrom:rTo,cFrom:cTo)); %crop to size 

mtile = (1+(ktile*offset)); 
ntile = (l+(ltile*offset)); 

%perform basic global image registration 
tile(1:sublSize,1:sublSize) = 

imageRegistration((Ig(mtile:(mtile+subISize+twiceBord -
1),ntile:(ntile+subISize+twiceBord-
1))./255),refIg(mtile:(mtile+subISize-1),ntile:(ntile+subISize -
1))./255,border); 

%%Fourier transform image 
IG = fft2(tile); 

temp = averageIG(1,2); 
averagelG(1,2) = temp + (IG(1,2))/framenum; 
temp = averageIG(2,1); 
averagelG(2,1) = temp + (IG(2,1))/framenum; 

apolG = IG; 
PS = PS + (apoIG.*conj(apoIG)/(subISizeA2))/framenum; 
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IG(l,l) = 0; 
BSpect = BSpect + 

BSpecCalc(IG,subISize,numtoavg)./framenum; 

end 

%%adjust power spectrum 
PS = PS./((Ispec)); 

%%Fourier phase calculation 
phases = phasesCalc(BSpect,averagelG,sublSize,numtoavg); 

newlG = sqrt(PS*(subISizeA2)).*exp(i.*phases); 
imageOut = abs(ifft2(newIG)).*255; 

tile = imageOut; 
tile = tile.*w; %apply apodization 

newImage(mtile:(mtile+subISize-1),ntile:(ntile+subISize-1)) 
= newImage(mtile:(mtile+subISize-1),ntile:(ntile+subISize-1)) + 
tile; 

end 
end 

newlm = imadjust(uint8(newImage(16:imsize-33,16:imsize-
33)),stretchlim(uint8(newImage(16:imsize-33,16:imsize-33)),[0 
1]),[1); 

toc %stop stopwatch and display elapsed time 

figure 
imshow(uint8(Ig)),title('original') %display original image 
figure 
imshow(uint8((newlm))),title('computed') %display reconstructed 

image 
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11 ADDENDUM B 

IMAGE REGISTRATION AND LAPLACIAN PYRAMID 

IMAGE FUSION ALGORITHM CODE 

11.1 'IMAGEFUSION' FUNCTION 

function [imageOut] = imagefusion(iml,im2,t) 
%fuse two images using laplacian pyramid decomposition and energy 

given threshold t 

%% gaussian 

a = 0.4; 
b = 0.25; 
c = b - a/2; 
wt = [c b a b c]; 

%iml 

%fprintf(1,'gau iml: leve10\n'); 
Glevell0 = iml; 
Glevelll = greduce(Gleve110,wt); 
Glevell2 = greduce(Glevelll,wt); 
Glevell3 = greduce(Glevell2,wt); 

%im2 

Gleve120 = im2; 
Glevel2l = greduce(Gleve120,wt); 
Gleve122 = greduce(Gleve121,wt); 
Gleve123 = greduce(Gleve122,wt); 

%% Laplacian 

%iml 

%fprintf(1,'lap iml: leve10\n'); 
levell0 = Glevell0 - gexpand(Glevelll,wt); 
levelll = Glevelll - gexpand(Glevell2,wt); 
levell2 = Glevell2 - gexpand(Glevell3,wt); 
levell3 = Glevell3 ;%- gexpand(Glevell4,wt); 

%im2 

leve120 = Gleve120 - gexpand(Glevel2l,wt); 
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level2l 
level22 
level23 

= Gleve121 - gexpand(Glevel22,wt); 
= Glevel22 - gexpand(Glevel23,wt); 
= Glevel23 ;%- gexpand(Gleve124,wt); 

%energy fusion 

%fprintf('START'); 
%t = 0.25; %threshold overide 

[k,1] = size(leve113); 

energyl3 = imgenergy(leve113,k,1); 
energy23 = imgenergy(level23,k,1); 
match33 = imgmatch(leve113,1eve123,k,1); 
[wtl3,wt23] = imgweights(match33,energyl3,energy23,t); 

level3 = ceil(wt13.*levell3 + wt23.*level23); %level 3 of 
recombination 

[k,1] = size(leve112); 
energyl2 = imgenergy(leve112,k,1); 
energy22 = imgenergy(level22,k,1); 
match32 = imgmatch(leve112,1eve122,k,1); 
[wtl2,wt22] = imgweights(match32,energyl2,energy22,t); 

level2 = ceil(wtl2.*levell2 + wt22.*level22) + gexpand(level3,wt); 
%level 2 of comb 

[k,1] = size(leve111); 
energyll = imgenergy(levelll,k,1); 
energy2l = imgenergy(leve121,k,1); 
match3l = imgmatch(leve111,1eve121,k,1); 
[wt11,wt21] = imgweights(match3l,energyll,energy2l,t); 

levell = ceil(wtll.*levelll + wt21.*leve121) + gexpand(level2,wt); 
%level 1 of comb 

[k,1] = size(leve110); 
energy10 = imgenergy(leve110,k,1); 
energy20 = imgenergy(leve120,k,1); 
match30 = imgmatch(leve110,1eve120,k,1); 
[wt10,wt20] = imgweights(match30,energy10,energy20,t); 

level() = ceil(wt10.*levell0 + wt20.*leve120) + gexpand(levell,wt); 
%level 0 of comb 

imageOut = level(); 
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11.2 GREDUCE' FUNCTION 

function IResult = greduce(I, Wt) 

[h w]= size(I); 

hnew = ceil(h * 0.5); 
wnew = ceil(w * 0.5); 

%% Pad the boundaries. 

I = [ I(1,:) ; I(2,:) ; 	I ; 	 ]; 	% Add two rows 
towards the beginning and the end. 

I = [ I(:,1) 	I(:,2) 	I 	I(:, w -1) 	I(:,w) ]; 	% Add two 
columns towards the beginning and the end. 

I = double(I); 

IResult = zeros(hnew, wnew); % Initialize the array in the beginning 
for i = 0 : hnew -1 

for j = 0 : wnew -1 
A = []; 
for m = -2 : 2 

for n = -2 : 2 
tmpval = I (2 * i + m + 3, 2 * j + n + 3 ) * Wt (m + 

3) * Wt (n + 3); 
A = [A, tmpval] ; 

end 
end 
IResult(i + 1, j + 1)= sum(A); 
% Bad array arithmetic - Matlab array indices start at 1. 
% and the algorithm assumes 0. Hence got to do it. 

end 
end 

11.3 GEXPAND' FUNCTION 

function IResult = gexpand(I, Wt) 

[h w]= size(I); 
hnew = ceil(h * 2); 
wnew = ceil(w * 2); 

%% Pad the boundaries. 

weight = Wt; 
I = [ I(1,:) ; 	I ; 	I(h,:) ]; 	% Pad the top and bottom rows. 
I = [ I(:,1) 	I 	I(:,w) ]; % Pad the left and right columns. 

I = double(I); 

IResult = zeros(hnew, wnew); % Initialize the array in the beginning 
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for i = 0 : hnew - 1 
% 	fprintf('\n %d', i); 

for k = 0 : wnew - 1 
A = []; 
for m = -2 : 2 

for n = -2 : 2 
pixeli = (i - m)/2 ; 
pixelj = (k - n)/2 ; 
if ( (floor(pixeli) == pixeli) & (floor(pixelj) == 

pixelj ) & pixeli >= 0 & pixelj >= 0 ) 
pixeli = pixeli + 1; 
pixelj = pixelj + 1; 
tmpval = I (pixeli, pixelj) * weight(m + 3) * 

weight(n + 3); 
A = [A, tmpval] ; 

end 
end 

end 
IResult(i + 1, k + 1)= 4 * sum(A); 
% Bad array arithmetic- Matlab array indices start at 1. 
% and the algorithm assumes 0. Hence got to do it. 

end 
end 

11.4 'IMGENERGY' FUNCTION 

function calcEnergy = imgenergy(img, x, y) 
%calculates the local energy of the image 'img' with intensity 

values 
%between 0 and 1 using a 3x3 window, given the rows 'x' of the image 
%and columns 'y' 
% BY BD WALTERS 

imgl = [img(1,:) ; img ; img(x,:)]; % Pad top and bottom row 
imgl = [imgl(:,1) 	imgl 	imgl(:,y)]; % Pad left and right column 

calcEnergy = zeros(x,y); 
for m = 2:x, 

for n = 2:y, 
for k = -1:1, 

for 1 = -1:1, 
calcEnergy(m,n) = calcEnergy(m,n) + (imgl(m + k, n + 

1)) ^2; 
end 

end 
end 

end 
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11.5 'IMGMATCH' FUNCTION 

function match = imgmatch(imgl, img2, x, y) 
%This function calculates the match between two images 'imgl' and 

'img2' 
%using their local energy based on a 3x3 window, function also 

recieves the 
%rows and columns of the two same sized images as 'x' and 'y' 

%imgl and img2 have intensities between 0 and 1 

% BY BD WALTERS 

newimgl = [img1(1,:) 	; imgl ; 
row 

newimgl = [newimg1(:,1) newimgl 
column 

newimg2 = [img2(1,:) 	; img2 ; 
row 

newimg2 = [newimg2(:,1) newimg2 
column 

img1(x,:) ]; %Pad top and bottom 

newimgl(:,y)]; %Pad left and right 

img2(x,:) ]; %Pad top and bottom 

newimg2(:,y)]; %Pad left and right 

match = zeros(x,y); %initialization 

for m = 2:x, %iterate rows 
for n = 2:y, %iterate columns 

for k = -1:1, 
for 1 = -1:1, 

match(m,n) = match(m,n) + (newimgl (m + k, n + 
1))*(newimg2(m + k, n + 1)); 

end 
end 

end 
end 

match = match./(imgenergy(imgl,x,y) + imgenergy(img2,x,y) + 0.001); 

11.6 'IMGWEIGHTS' FUNCTION 

function 	[wtl,wt2] = imgweights(match12, energyl, energy2, 
threshold) 

%This function calculates the weight matrices for two images based 
on the 

%images match and their energies. In selection of the appropriate 
weights, 

%a threshold is also used. The two weight matrices can then be used 
to fuse 

%two images. note it is assumed two images where of the same size. 
ie  
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%dimensions of first three parameters are the same. parameter 
threshold is 

%between 0 and 1 

% BY BD WALTERS 

[x,y] = size(matchl2); %get image sizes 

wtl = zeros(x,y); %initialisation of weight 1 

for m = 1:x, 
for n = 1:y, 

if (matchl2(m,n) <= threshold) 
if (energyl(m,n) > energy2(m,n)) 

wt1(m,n) = 1; 
else 

wt1(m,n) = 0; 
end 

else 
if (energyl(m,n) > energy2(m,n)) 

wtl(m,n) = 0.5 + 0.5*(1 - matchl2(m,n))/(1 - 
threshold); 

else 
wtl(m,n) = 0.5 - 0.5*(1 - matchl2(m,n))/(1 - 

threshold); 
end 

end 
end 

end 

wt2 = ones(x,y) - wtl; 

11.7 MAIN FILE (RUN) 

%main file 

%matlab code by (where not specified): 

Bryn Walters 
University Of Johannesburg 

%2d Registration and associated code by: 

%Dartmouth College, by Senthil Periaswamy under the direction of 
Hany Farid. 

% References: 

% 1) S. Periaswamy and H. Farid. "Elastic registration in the 
presence of 
intensity variations", IEEE Transactions on Medical Imaging, in 
press, 2003. 
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S. Periaswamy. "General-purpose medical image registration", 
Ph.D. 
Dissertation, Department of Computer Science, Dartmouth 
College, 2003 
S. Periaswamy, J.B. Weaver, D.M. Healy Jr., D. Rockmore, P.J. 
Kostelec, 
and H. Farid. "Differential Affine Motion Estimation for 
Medical Image 
Registration" Proceedings of the SPIE - The International 
Society for 
Optical Engineering, 4119, pp. 1066-1075, 2000. 

close all; 
clear all 

%% operator parameters 

alpha = 1/8; %averaging amount, 1/2 1/4 1/8 1/16 or 1/32 

%% get images 

mov = aviread(ld:\workvids\fusion\chousel bw bright.avi'); %30 fps  

[M,N] = size(mov); % determine number of frames 

a = 1; %image pixels to focus on; from a to b (rows) 
b = 240; 
c = 1; %c to d (columns) 
d = 320; 

dig = mov(1); 
truecimg = dig.cdata; 
img = truecimg(a:b,c:d,:); 
img = rgb2gray(img); 
imggray = img; 

%% run algorithm 

[imgx,imgy] = size(imggray); %get size of video frames 

imgavg = double(imggray); %initial image average set as first image 

z = zeros(imgx,imgy); 

%%% parameters for registration 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

params.main.boxW 
params.main.boxH 
params.main.model 
params.main.minSize 
params.main.dispFlag 
params.main.padSize 

params.smooth.loops_inner 
params.smooth.loops_outer 

= 5; 
= 5; 

 
= 32; 
= 0; 

 

= 30; 
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params.smooth.lamda 
lell]; 
params.smooth.deviant 
params.smooth.dweight 

= 	[lell 	lell 	Tell 	lell 	lell 	Tell 	lell 

— 	 [0 	0 	0 	0 	0 	0 	1 	0]; 
= 	[0 	0 	0 	0 	0 	0 	0 	0]; 

params.glob.flag = 1; 
params.glob.model = 4; 
params.glob.iters = 7; 
params.glob.numLevels = 100; 
params.glob.dispFlag = 0; 
params.glob.minSize = 32; 

params.em.sigma_global = 0.01; 
params.em.sigma_local = 0.1; 
params.em.useEdgeMask = 0; 
params.em.applybcFlag = 0; 
params.em.flagSmooth = 1; 

%%%%%%%%%%%%%%%%%%% 
N=100; %overide number of frames to process 
%%%%%%%%%%%%%%%%%%% 

previmg = double(imggray); %previous fused image 
figure 
tic 
for count = 1:N, %work with sets of eight images 

%%% 
fprintf('count: %5.0d \n',count); 
%%% 

dig = mov(count); 
truecimg = dig.cdata; 
img = truecimg(a:b,c:d,:); 
imggray = double(rgb2gray(img)); 

imgavg = ratioAvg(imggray,imgavg,alpha); %calculate avg at step 
count 

it = double(imggray) / 255; 
i2 = double(imgavg) / 255; 

[M,ib,ic] = register2dem_global(il,i2,params); %register 
image to obtain flow field 

ilw = double(aff warp(il,M)) * 255; %warp image using flow 
field 

fusedimage = imagefusion(imgavg,ilw,0.5); %fuse image 

imshow(uint8(fusedimage)) 
F(count) = getframe; 

end 
toc 
movie2avi(F,'d:\workvids\fusion\chousel_eigth_t_half_fuseavg.avi ','f 

ps',30) 
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12 ADDENDUM C 

HOMOMORPHIC FILTERING AND POWERS SPECTRUM 

RESTORATION BASED ALGORITHM CODE 

12.1 `RATIOAVG' FUNCTION 

function outImage = ratioAvg(imagel, image2, u) 
%function averages two inputted images using the ratio coefficient 

such 
%outImage = (u).*imagel + (1-u).*image2 

%matlab code by: 

Bryn Walters 
University Of Johannesburg 

as part of Honours year requirements for 
Baccalaureus Ingeneria Degree 

in 
Electrical and Electronic Engineering 

outImage = (u).*imagel + (1-u).*image2; 

12.2 `CHOOSEHIGHFREQIMC FUNCTION 

function [outImage,num] = chooseHighFreqImg(images,imgx,imgy, 
prevHF, prevnum) 

%this function chooses an image with the highest amount of high 
frequency 

%from the image set 'images'. 
%INPUTS: images: image set containing 8 images 

prevHF: previous high frequency image found 
prevnum: prevHF's number in previous set of images 

%matlab code by: 

Bryn Walters 
University Of Johannesburg 

as part of Honours year requirements for 
Baccalaureus Ingeneria Degree 

in 
Electrical and Electronic Engineering 

%initialization 
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look = 8; 
HFnum = 0; 
HFimg = images(l:imgx,l:imgy); 

if (prevnum < 4) %first three images of old img set will not have 
been forgotton 

look = 5; %compare first five to old 
HFimg = prevHF; 
HFnum = hFreqNum(HFimg); 
%eg. first image previously was HFimg therefore on second step 
with five 

new images we only need to check first five 
end 

for n = l:look, %assuming images was correctly sent as length of 8 

%deconcatanate current image 
current = images(1:imgx,imgy*(n-1)+1:imgy*n); 

tempnum = hFreqNum(current); 
if (tempnum > HFnum) %check if higher frequency 

HFimg = current; 
HFnum = tempnum; 

end 

end 

outImage = HFimg; 
num = HFnum; 

12.3 `HFREQNUM' FUNCTION 

function num = hFreqNum(image) 
%function hFreqNum returns the number of high frequency components 

in the 
%inputted image using the following convolution mask and 

thresholding at 63 
% mask = [0 -1 0;-1 4 -1;0 -1 0] 

%note the inputted must be a grayscale image 

%matlab code by: 

Bryn Walters 

mask = [0 -1 0;-1 4 -1;0 -1 0]; 

%padimg = padImage(image,2,2); %pad image with a 1 depth border of 
zeros 

%[ic,ir] = size(padimg); % get size of padded image 

%temp = 0; 
%totnum = 0; 
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%for m = 2:(ic-1), %iterate through original image columns 
for n = 2:(ir-1), %iterate through original image rows 

temp = 0; 
for k = -1:1, 

for 1 = -1:1, 
temp = temp + padimg(m+k,n+1)*mask(2+k,2+1); 

end 
end 
if (temp > 63) %threshold 

totnum = totnum + 1; 
end 

end 
%end 

%% matlab conv2 method which is handled more efficiently 
%enhanced code starts here 

convImage = conv2(double(mask),double(image)); %convolute image and 
mask 

[imx,imy] = size(convImage); 
totnum = 0; 
for m = 2:imx-1,%iterate through origional image 

for n = 2:imy-1, %iterate through origional image 
if (convImage(m,n) > 63) 

totnum = totnum +1; 
end 

end 
end 
num = totnum; 

12.4 `PADIMAGE' FUNCTION 

function outimage = padImage(image, height, width) 
%function pads an image with zeros of given padding height and width 
%The padding is split on either side of image so the image is 

centred 
%image is image to pad 
%height is TOTAL height of zeros to add to image 
%width is TOTAL width of zeros to add 
%eg if height = width = 2 
%output image will contain a single border of zeros 

%matlab code by: 
O 
0 

Bryn Walters 
University Of Johannesburg 

as part of Honours year requirements for 
Baccalaureus Ingeneria Degree 

in 
Electrical and Electronic Engineering 

[ix,iy] = size(image); 
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1p = floor(width/2); 	%padding thickness on the left of image 
rp = width - 1p; 	%right 
tp = floor(height/2); %top 
by = height - tp; 	%bottom 

outimageprev =[zeros(ix,lp) image zeros(ix,rp)]; 
outimage = [zeros(tp,iy+width);outimageprev;zeros(bp,iy+width)]; 

12.5 `HOMOMORPHICFILT 9  FUNCTION 

function outimage = homomorphicFilt(image, num) 
%this function performs homomorphic filtering on the inputted image 

where 
%num specifies the coefficient set to use in filtering 

%matlab code by: 

Bryn Walters 
University Of Johannesburg 

as part of Honours year requirements for 
Baccalaureus Ingeneria Degree 

in 
Electrical and Electronic Engineering 

bl = [-0.000016 -0.000108 
b2 = [-0.000032 -0.000216 
b3 = [-0.000064 -0.000432 
b4 = [-0.000128 -0.000864 
b5 = [-0.000256 -0.001728 
b6 = [-0.000384 -0.002592 
b7 = [-0.000512 -0.003456 
b8 = [-0.000768 -0.005183 
b9 = [-0.001024 -0.006910 

0.9998 -0.000108 -0.000016];%1 
0.9996 -0.000216 -0.000032];%2 
0.9992 -0.000432 -0.000064];%4 
0.9984 -0.000864 -0.000128];%8 
0.9968 -0.001728 -0.000256];%16 
0.9952 -0.002592 -0.000384];%24 
0.9936 -0.003456 -0.000512];%32 
0.9904 -0.005183 -0.000768];%48 
0.9872 -0.006910 -0.001024];%64 

b10 = [-0.001532 -0.010362 
bll = [-0.002039 -0.013809 
b12 = [-0.003104 -0.021115 
b13 = [-0.004026 -0.027529 
b14 = [-0.005908 -0.041071 
b15 = [-0.007638 -0.054347 
b16 = [-0.012222 -0.103118 

0.9808 -0.010362 -0.001532];%96 
0.9744 -0.013809 -0.002039];%128 
0.9608 -0.021115 -0.003104];%196 
0.9488 -0.027529 -0.004026];%256 
0.9232 -0.041071 -0.005908];%384 
0.8976 -0.054347 -0.007638];%512 
0.7952 -0.103118 -0.012222];%1024 

switch num 
case 1 

b = bl; 
case 2 

b = b2; 
case 3 
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b = b3; 
case 4 

b = b4; 
case 5 

b = b5; 
case 6 

b = b6; 
case 7 

b = b7; 
case 8 

b = b8; 
case 9 

b = b9; 
case 10 

b = b10; 
case 11 

b = bll; 
case 12 

b = b12; 
case 13 

b = b13; 
case 14 

b = b14; 
case 15 

b = b15; 
case 16 

b = b16; 
end 

im = (double(image))/255; % Rescale values 0-1 (and cast to 
'double') 

logIm = log(im+0.01); 	% first part of homomorphic is natural 
log values 

H = b*b'; %create 2d filter 
tempimage = filter2(H,logIm); %perform 2d filtering through rows and 

columns 

outImage = exp(tempimage)*255; %undo log with exponential 

12.6 MAIN FILE (RUN) 

%main file 

%matlab code by: 

Bryn Walters 
University Of Johannesburg 

as part of Honours year requirements for 
Baccalaureus Ingeneria Degree 

in 
Electrical and Electronic Engineering 
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close all; 
clear all; 
cic; 

%% operator parameters 

alpha = 1/8; %averaging amount, 1/2 1/4 1/8 1/16 or 1/32 
num = 5; %coefficient number set to use for homomorphic filtering(1-

16) 

%% get images 

mov = aviread('d:\workvids\chouseroof.avi '); 

[M,N] = size(mov); % determine number of frames 

a = 1; %image pixels to focus on; from a to b. (rows) 
b = 240; 
c = 1; %c to d (columns) 
d = 320; 

dig = mov(1); 
truecimg = dig.cdata; 
img = truecimg(a:b,c:d,:); 
img = rgb2gray(img); 
imggray = img; 

%% run algorithm 

[imgx,imgy] = size(imggray); %get size of video frames 

imgavg = imggray; %initial image average set as first image 
z = zeros(imgx,imgy); 

prevHFreq = z; %previous high frequency frame found in count-1 
prevHFNum = 1; %the frame number of the previous high frequency 

frame 
update = 5; %max frequency frame selection performed every 5 frames 

imageSet = [z z z z z z z z]; %image set of 8 images we work with 
specHF = z; %spectrum of high frequency selected image 

%%%%%%% 
%N = 150; %overide number of frames to process 
%%%%%%% 

tic %start stopwatch to record processing time 

for count = 1:N, %iterate frames 

dig = mov(count); 
truecimg = dig.cdata; 
img = truecimg(a:b,c:d,:); 
imggray = rgb2gray(img); 
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imgavg = ratioAvg(imggray,imgavg,alpha); %calculate avg at step 
count 
fftavg = fft2(double(imgavg)); %fft of avg 
specavg = fftavg.*conj(fftavg); %power spectrum of avg 

%shift old image set and add current image 
imageSet = [imggray imageSet(l:imgx,l+imgy:imgy*8)]; 

if (update == 5) %must look for new HF image 
[prevHFreq,prevHFNum] = 

chooseHighFreqImg(imageSet,imgx,imgy,prevHFreq,prevHFNum); 

fftHF = fft2(double(homomorphicFilt(prevHFreq, num)));%fft 
of HF image 

specHF = fftHF.*conj(fftHF); %spectrum of HF image 
update = 0; %reset update counter 

end 

update = update +1; %increment counter till update 
count 
specFilt = sqrt(specHF./specavg); %power spectrum filter 
fftOut = fftavg.*specFilt; %filter output of FFT average with PS 
filter 

ifftOut = real(ifft2(fftOut)); 
imageOut = ifftOut; 

imshow(uint8(imageOut));% show image 
F(count) = getframe; 

end 

toc %stop stopwatch 
movie2avi(F,'d:\workvids\thales\chouseroof_eighth_5.avi ','fps',30) 

%working with file 
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13 ADDENDUM D 

WIENER FILTERING USING KURTOSIS MINIMIZATION 

ALGORITHM CODE 

13.1 `RGB2INTENSITY' FUNCTION 

function intensityImage = rgb2intensity(rgblmage) 
% takes a rgb colour image and returns an intensity image comprised 
% of the maximum intensities of the r g and b channels 

[rw,cl,clSpace] = size(rgblmage); 
templ = zeros(rw,cl); %precreate blank image 

templ = max(rgbImage,[1,3); 

intensityImage = templ; 

13.2 `RATIOAVG' FUNCTION 

function outlmage = ratioAvg(imagel, image2, u) 
%function averages two inputted images using the ratio coefficient 

such 
%outlmage = (u).*imagel + (1-u).*image2 

%matlab code by: 

Bryn Walters 
University Of Johannesburg 

outlmage = (u).*imagel + (1-u).*image2; 

13.3 `ATMOSOTF' FUNCTION 

function otf = atmosOtf(sizeR,sizeC,lamda) 

tf = zeros(sizeR,sizeC); 

for k = -sizeR/2:sizeR/2-1 
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for 1 = -sizeC/2:sizeC/2-1 
tf(k+sizeR/2+1,1+sizeC/2+1) = exp(- 

lamda.*((k)^2+(1)^2)"(5/6)); 
end 

end 

otf = tf; 

13.4 `WIENEROPT' FUNCTION 

function imgOut = WienerOpt(img, nmax, nmin, num, snr) 
%returns best Wiener filtered image image using constraints provided 

and kurtosis measurements 

lamda = linspace(nmin,nmax,num); 

[imgr,lmgc] = size(img); 

IMG = fft2(img); 

OTF = ifftshift(atmosOtf(imgr,imgc,lamda(1))); 

newimg = real(ifft2(IMG.*conj(OTF)./((abs(OTF))."2 + 1/snr))); 
k = kurtosis(newimg(:)); 

biter = 1; 
bestimg = newimg; 
minK = k; 

for iter = 2:num, 
OTF = ifftshift(atmosOtf(imgr,imgc,lamda(iter))); 

newimg = real(ifft2(IMG.*conj(OTF)./((abs(OTF))."2 + 1/snr))); 
k = kurtosis(newimg(:)); 
if k < minK 

bestimg = newimg; 
minK = k; 
biter = iter; 

end 
end 

imgOut = bestimg; 

13.5 MAIN FILE (RUN) 

%close all; 
clear all; 
cic; 

%% operator parameters 
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alpha = 1/3; %averaging amount, 1/2 1/4 1/8 1/16 or 1/32 

%initial search parameters 
lamdamin = 0.0001; 
lamdamax = 0.001; 
num = 50; 

%% get images 

directoryToOpen = ('D:\workvids2\noiseRem\ '); 
fileToOpen = ('Mid freq no filt0001-0'); 
detail = "; 
mov = aviread(strcat(directoryToOpen,fileToOpen,'.avi'),1:100); 
fps = 20; 

[M,N] = size(mov); % determine number of frames 

a = 1; %image pixels to focus on; from a to b (rows) 
b = 480; 
c = 1; %c to d (columns) 
d = 640; 

dig = mov(1); 
truecimg = dig.cdata; 
imgcolor = truecimg(a:b,c:d,:); 
img = double(rgb2gray(imgcolor)); 

[imgr,imgc] = size(img); 
update = 10; 

N = 100; 
tic 
for count = 1:N, %iterate frames 

dig = mov(count); 
truecimg = dig.cdata; 
imgcolor = truecimg(a:b,c:d,:); 
imggray = double(rgb2gray(imgcolor)); 

img = ratioAvg(imggray,img,alpha); 

if (update == 10) 
%%snr est 
% estimate noise variance 
wsize = 5; 
numdiv = floor((imgr)/wsize)*floor((imgc)/wsize); 
nvar = 0; 

for m = wsize:wsize:imgr 
for n = wsize:wsize:imgc 

nvar = nvar + ((std2(img(m-wsize+1:m,n-
wsize+1:n)))^2)/numdiv; 

end 
end 
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snr = ((std2(img))^2-nvar)/nvar; 

update = 0; 
end 
update = update + 1; 

%%filter using Wiener 

[filteredImg,lamda0] = WienerOpt(img,lamdamin,lamdamax,num, 
snr); 

%search optimization 
lamdamin = lamda0 - 0.00008; 
lamdamax = lamda0 + 0.00008; 
num = 10; 

lamda0 

imgEnhanced = 
imadjust(uint8(filteredImg),stretchlim(uint8(filteredImg),[0 
1]), []); 

% figure 
imshow((imgEnhanced)) 
F(count) = getframe; 

end 
toc 

nameOfFile = strcat('d:\workvids2\Wiener  filtering average 
laplacianV,fileToOpen,'_',int2str(1/alpha),detail); 

movie2avi(F,nameOfFile,'fps',fps) 
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14 ADDENDUM E 

WIENER FILTERING USING LAPLACIAN OPERATOR 

ALGORITHM CODE 

14.1 `RGB2INTENSITY' FUNCTION 

function intensityImage = rgb2intensity(rgbImage) 
% takes a rgb colour image and returns an intensity image comprised 
% of the maximum intensities of the r g and b channels 

[rw,cl,clSpace] = size(rgbImage); 
templ = zeros(rw,cl); %precreate blank image 

templ = max(rgbImage,[],3); 

intensityImage = templ; 

14.2 `RATIOAVG' FUNCTION 

function outlmage = ratioAvg(imagel, image2, u) 
%function averages two inputted images using the ratio coefficient 

such 
%outlmage = (u).*imagel + (1-u).*image2 

%matlab code by: 

Bryn Walters 
University Of Johannesburg 

outlmage = (u).*imagel + (1-u).*image2; 

14.3 `ATMOSOTF' FUNCTION 

function otf = atmosOtf(sizeR,sizeC,lamda) 

tf = zeros(sizeR,sizeC); 

for k = -sizeR/2:sizeR/2-1 
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for 1 = -sizeC/2:sizeC/2-1 
tf(k+sizeR/2+1,1+sizeC/2+1) = exp(- 

lamda.*((k)A2+(1)^2)^(5/6)); 
end 

end 

otf = tf; 

14.4 `CUMLAP' FUNCTION 

function cumLapNum = cumLap(I) 
%perform Laplacian based sharpness measurement 

[r,c] = size(I); 

%option 1 
H = fspecial('laplacian',0.2); 
LI = imfilter(I,H,'replicate'); 

%option 2 (discrete laplacian) 
%LI = 4*del2(I); 

cumLapNum = sum(abs(LI(:)))/(r*c); 

14.5 `WIENEROPT' FUNCTION 

function [imgOut,lamdaout] = WienerOpt(img, nmax, nmin, num, snr) 

lamda = linspace(nmin,nmax,num); 

[imgr,imgc] = size(img); 

IMG = fft2(img); 

OTF = ifftshift(atmosOtf(imgr,imgc,lamda(1))); 

newimg = real(ifft2(IMG.*conj(OTF)./((abs(OTF)).A2 + 1/snr))); 

k = cumLap(newimg); 

biter = 1; 
bestimg = newimg; 
maxK = k; 

for iter = 2:num, 
OTF = ifftshift(atmosOtf(imgr,imgc,lamda(iter))); 

newimg = real(ifft2(IMG.*conj(OTF)./((abs(OTF)).A2 + 1/snr))); 

k = cumLap(newimg); 
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if k > maxK 
bestimg = newimg; 
maxK = k; 
biter = iter; 

end 
end 

imgOut = bestimg; 

lamdaout = lamda(biter); 

14.6 MAIN FILE (RUN) 

%close all; 
clear all; 
cic; 

%% operator parameters 

alpha = 1/3; %averaging amount, 1/2 1/4 1/8 1/16 or 1/32 

%initial search parameters 
lamdamin = 0.0001; 
lamdamax = 0.001; 
num = 50; 

%% get images 

directoryToOpen = ('D:\workvids2\noiseRem\ '); 
fileToOpen = ('Mid freq no filt0001-0'); 
detail = "; 
mov = aviread(strcat(directoryToOpen,fileToOpen,'.avi'),1:100); 
fps = 20; 

[M,N] = size(mov); % determine number of frames 

a = 1; %image pixels to focus on; from a to b (rows) 
b = 480; 
c = 1; %c to d (columns) 
d = 640; 

dig = mov(1); 
truecimg = dig.cdata; 
imgcolor = truecimg(a:b,c:d,:); 
img = double(rgb2gray(imgcolor)); 

[imgr,imgc] = size(img); 
update = 10; 

N = 100; 
tic 
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for count = 1:N, %iterate frames 

dig = mov(count); 
truecimg = dig.cdata; 
imgcolor = truecimg(a:b,c:d,:); 
imggray = double(rgb2gray(imgcolor)); 

img = ratioAvg(imggray,img,alpha); 

if (update == 10) 
%%snr est 
% estimate noise variance 
wsize = 5; 
numdiv = floor((imgr)/wsize)*floor((imgc)/wsize); 
nvar = 0; 

for m = wsize:wsize:imgr 
for n = wsize:wsize:imgc 

nvar = nvar + ((std2(img(m-wsize+1:m,n-
wsize+1:n)))^2)/numdiv; 

end 
end 

snr = ((std2(img))^2-nvar)/nvar; 

update = 0; 
end 
update = update + 1; 

%%filter using Wiener 

[filteredImg,lamda0] = WienerOpt(img,lamdamin,lamdamax,num, 
snr); 

%search optimization 
lamdamin = lamdaO - 0.00008; 
lamdamax = lamdaO + 0.00008; 
num = 10; 

lamdaO 

imgEnhanced = 
imadjust(uint8(filteredImg),stretchlim(uint8(filteredImg), [0 
1]),[]); 

% figure 
imshow((imgEnhanced)) 
F(count) = getframe; 

end 
toc 

nameOfFile = strcat('d:\workvids2\Wiener  filtering average 
laplacian\',fileToOpen,'_',int2str(1/alpha),detail); 

movie2avi(F,nameOfFile,'fps',fps) 
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15 ADDENDUM F 

DYNAMIC ILLUMINANCE-REFLECTANCE 

ATMOSPHERIC TURBULENCE SUPPRESSION 

ALGORITHM CODE 

15.1 'RGB2INTENSITY' FUNCTION 

function intensityImage = rgb2intensity(rgbImage) 
% takes a rgb colour image and returns an intensity image comprised 
% of the maximum intensities of the r g and b channels 

[rw,cl,clSpace] = size(rgbImage); 
templ = zeros(rw,cl); %precreate blank image 
templ = max(rgbImage,[],3); 

intensityImage = templ; 

15.2 `RATIOAVG' FUNCTION 

function outlmage = ratioAvg(imagel, image2, u) 
%function averages two inputted images using the ratio coefficient 

such 
%outlmage = (u).*imagel + (1-u).*image2 

%matlab code by: 

Bryn Walters 
University Of Johannesburg 

outlmage = (u).*imagel + (1-u).*image2; 

15.3 `WIS' FUNCTION 

function f = WIS(v,a) 
%Windowed Inverse Sigmoid 

f = 1/(1+exp(a*v)); 
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15.4 MAIN FILE (RUN) 

%illuminance reflectance based higher frequency enhancement method 
cic; 
close all; 
clear all; 

directoryToOpen = ('D:\workvids2\noiseRem\ '); 
fileToOpen = ('Mid freq no filt0001-0'); 
fps=20; 
mov = aviread(strcat(directoryToOpen,fileToOpen,'.avi'),1:100); 

[M,N] = size(mov); % determine number of frames 

a = 1; %image pixels to focus on; from a to b (rows) 
b = 480; 
c = 1; %c to d (columns) 
d = 640; 

framenum = 50; 
offsetframe = 1; 

dig = mov(offsetframe); 
truecimg = dig.cdata; 
I = truecimg(a:b,c:d,:); 

avgRatio = 1/3; 

updatetime = 4; %when to calculate new vmin and p values (1 is every 
frame) 

update = updatetime; %initialize to get new values on first frame 

gsize =4; 
sigma = gsize/sqrt(2); 
hsize = [gsize gsize]; 
h = fspecial('gaussian',hsize,sigma); %create gaussian filter 
h2 = fSpecial(igaussian',[10 10],10/sqrt(2)); %create gaussian 

filter 

%init 
IgMean = 0; 
a 	= 1; 
vMax 	= 3; 
vMin 	= 0; 
sDev 	= 0; 
p 	= 0; 

tic 
for count = 1:framenum, 

dig = mov(count+offsetframe); 
truecimg = dig.cdata; 
I = ratioAvg(truecimg(a:b,c:d,:),I,avgRatio); 
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[rw,cl,rgbspace] = size(I); 

%Ig = rgb2gray(I); %create grayscale image (Hue and saturation 
set to 0 in 
%NTSC colour space 

% alternate method to NTSC colour space transition 
Ig = double(rgb2intensity(I)); %transfer to maximum intensity 
values 

Lum = filter2(h,Ig); %find luminance estimate 
LumN = Lum./255; 

Ref = Ig./Lum;%exp(log(Ig)-log(Lum)); %find Reflectance estimate 

if (update == updatetime) %time to refresh values and 
recalculate vMin and p 

IgMean = mean2(Ig); %calculate mean of intensity image 

if (IgMean <= 70) %dynamically find vMin based on Ig 
vMin = -6; 

elseif (IgMean >= 150) 

vMin = -3; 
else 

vMin = (IgMean-70)/80*3-6; 
end 

sDev = std2(Ig); 

if 	(sDev<=30) 	%dynamically find p based on standard 
deviation 

p = 2; 
elseif 	(sDev > 80) 

p = 0.5; 
else 

p = -0.03*sDev + 	2.9; 
end 

update = 0; 
end 
update = update + 1; 

LumNl = (LumN).*(WIS(vMax,a)-WIS(vMin,a))+WIS(vMin,a); 
LumN2 = (1/a).*log(1./(LumN1) - 1); %inverse sigmoid function 
LumNenh =((LumN2 - vMin)./(vMax - vMin)); %calculate adjusted 
illuminance with normalisation 

%midtone enhancement 
midExp = (filter2(h2,Ig)./(Ig+1)).^p; 
LumNenh2 = LumNenh.^midExp; 
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Ig2 = uint8(LumNenh2.*255.*Ref); 

Ig2 = imadjust(uint8(Ig2),stretchlim(uint8(Ig2), [0.005 
0.995]), [1); 

imshow(uint8(Ig2)) 
F(count) = getframe; 

end 

toc 

nameOfFile = strcat('d:\workvids2\Image  average, Dynamic 
illuminance reflectance adjustment, and sharpening (video, 
colour)\',fileToOpen,'_',int2str(1/avgRatio), 1 th'); 

movie2avi(F,nameOfFile,'fps',fps) 
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16 ADDENDUM G 

DYNAMIC ILLUMINANCE-REFLECTANCE 

ATMOSPHERIC TURBULENCE SUPPRESSION WITH 

WIENER FILTERING ALGORITHM CODE 

16.1 `RGB2INTENSITY' FUNCTION 

function intensityImage = rgb2intensity(rgbImage) 
% takes a rgb colour image and returns an intensity image comprised 
% of the maximum intensities of the r g and b channels 

[rw,cl,clSpace] = size(rgblmage); 
templ = zeros(rw,cl); %precreate blank image 

templ = max(rgbImage,[],3); 

intensityImage = templ; 

16.2 `RATIOAVG' FUNCTION 

function outlmage = ratioAvg(imagel, image2, u) 
%function averages two inputted images using the ratio coefficient 

such 
%outlmage = (u).*imagel + (1-u).*image2 

%matlab code by: 

Bryn Walters 
University Of Johannesburg 

outlmage = (u).*imagel + (1-u).*image2; 

16.3 'AIMIDAYTF' FUNCTION 

function otf = atmosOtf(sizeR,sizeC,lamda) 

tf = zeros(sizeR,sizeC); 
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for k = -sizeR/2:sizeR/2-1 
for 1 = -sizeC/2:sizeC/2-1 

tf(k+sizeR/2+1,1+sizeC/2+1) = exp(- 
lamda.*((k)^2+(1)^2)A(5/6)); 
end 

end 

otf = tf; 

16.4 `CUMLAP' FUNCTION 

function cumLapNum = cumLap(I) 
%perform Laplacian based sharpness measurement 

[r,c] = size(I); 

%option 1 
H = fspecial('laplacian',0.2); 
LI = imfilter(I,H,'replicate'); 

%option 2 (discrete laplacian) 
%LI = 4*del2(I); 

cumLapNum = sum(abs(LI(:)))/(r*c); 

16.5 `WIENEROPT' FUNCTION 

function [imgOut,lamdaout] = WienerOpt(img, nmax, nmin, num, snr) 

lamda = linspace(nmin,nmax,num); 

[imgr,imgc] = size(img); 

IMG = fft2(img); 

OTF = ifftshift(atmosOtf(imgr,imgc,lamda(1))); 

newimg = real(ifft2(IMG.*conj(OTF)./((abs(OTF))."2 + 1/snr))); 

k = cumLap(newimg); 

biter = 1; 
bestimg = newimg; 
maxK = k; 

for iter = 2:num, 
OTF = ifftshift(atmosOtf(imgr,imgc,lamda(iter))); 
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newimg = real(ifft2(IMG.*conj(OTF)./((abs(OTF)). A 2 + 1/snr))); 

k = cumLap(newimg); 

if k > maxK 
bestimg = newimg; 
maxK = k; 
biter = iter; 

end 
end 

imgOut = bestimg; 

lamdaout = lamda(biter); 

16.6 `WIS' FUNCTION 

function f = WIS(v,a) 
%Windowed Inverse Sigmoid 

f = 1/(1+exp(a*v)); 

16.7 MAIN FILE (RUN) 

%close all; 
clear all; 
cic; 

%% operator parameters 

alpha = 1/3; %averaging amount, 1/2 1/4 1/8 1/16 or 1/32 

%initial search parameters 
lamdamin = 0.0001; 
lamdamax = 0.001; 
num = 10; 

%% get images 

directoryToOpen = ('D:\workvids2\noiseRem\ '); 
fileToOpen = ('Mid freq no filt0001-0'); 

detail = 'snr update 2 frames'; 
mov = aviread(strcat(directoryToOpen,fileToOpen,'.avi'),1:100); 
fps=20; 

[M,N] = size(mov); % determine number of frames 

a = 1; %image pixels to focus on; from a to b (rows) 
b = 480; 
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c = 1; %c to d (columns) 
d = 640; 

dig = mov(1); 
truecimg = dig.cdata; 
imgcolor = truecimg(a:b,c:d,:); 
imgl = double(rgb2gray(imgcolor)); 

[imgr,imgc] = size(imgl); 
updatesnr = 2; %when to update snr est 
update = updatesnr; 
snr = 0; 

N = 100; 

%%illuminance reflectance setup 
updatetime = 4; %when to calculate new vmin and p values (1 is every 

frame) 
update2 = updatetime; %initialize to get new values on first frame 

gsize =4; 
sigma = gsize/sqrt(2); 
hsize = [gsize gsize]; 
h = fspecial('gaussian',hsize,sigma); %create gaussian filter 
h2 = fspecial('gaussian',[10 10],10/sqrt(2)); %create gaussian 

filter 

%init 
Ig = zeros(imgr,imgc); 
IgMean = 0; 
a 	= 1; 
vMax 	= 3; 
vMin 	= 0; 
sDev 	= 0; 
p 	= 0; 
%%end of setup 

tic 
for count = 1:N, %iterate frames 

dig = mov(count); 
truecimg = dig.cdata; 
imgcolor = truecimg(a:b,c:d,:); 
imggray = double(rgb2intensity(imgcolor)); %transfer to maximum 
intensity values 

imgl = ratioAvg(imggray,imgl,alpha); 

if (update == updatesnr) 
%%snr est 
% estimate noise variance 
wsize = 5; 
numdiv = floor((imgr)/wsize)*floor((imgc)/wsize); 
nvar = 0; 
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for m = wsize:wsize:imgr 
for n = wsize:wsize:imgc 

nvar = nvar + ((std2(imgl(m-wsize+1:m,n-
wsize+1:n)))^2)/numdiv; 

end 
end 

snr = ((std2(img1))A2-nvar)/nvar; 

update = 0; 
end 
update = update + 1; 

%%filter using Wiener 

[filteredImg,lamda0] = WienerOpt(img1,1amdamin,lamdamax,num, 
snr); 

%search optimization 
lamdamin = lamda0 - 0.00008; 
lamdamax = lamda0 + 0.00008; 
num = 10; 

lamda0 

Ig = 
double(imadjust(uint8(filteredImg),stretchlim(uint8(filteredImg) 
,[0 1]),[])); 

%%illuminance adjustment section 
%%-- ----- ------- -------------- 

Lum = filter2(h,Ig); %find luminance estimate 
LumN = Lum./255; 

Ref = Ig./Lum;%exp(log(Ig)-log(Lum)); %find Reflectance estimate 

if (update2 == updatetime) %time to refresh values and 
recalculate vMin and p 

IgMean = mean2(Ig); %calculate mean of intensity image 

if (IgMean <= 70) %dynamically find vMin based on Ig 

vMin = -6; 
elseif (IgMean >= 150) 

vMin = -3; 
else 

vMin = (IgMean-70)/80*3-6; 
end 

sDev = std2(Ig); 
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if (sDev<=30) %dynamically find p based on standard 
deviation 

p = 2; 
elseif (sDev > 80) 

p = 0.5; 
else 

p = -0.03*sDev + 2.9; 
end 

update2 = 0; 
end 
update2 = update2 + 1; 

LumN1 = (LumN).*(WIS(vMax,a)-WIS(vMin,a))+WIS(vMin,a); 
LumN2 = (1/a).*log(1./(LumNl) - 1); %inverse sigmoid function 
LumNenh =((LumN2 - vMin)./(vMax - vMin)); %calculate adjusted 
illuminance with normalisation 

%midtone enhancement 
midExp = (filter2(h2,Ig)./(Ig+1)).^p; 
LumNenh2 = LumNenh.^midExp; 

Ig2 = uint8(LumNenh2.*255.*Ref); 

Ig2 = imadjust(uint8(Ig2),stretchlim(uint8(Ig2),[0.005 
0.995]),[]); 

imshow(uint8(Ig2)) 
F(count) = getframe; 

end 
toc 

nameOfFile = strcat('d:\workvids2\Wiener , Laplacian, Illuminance 
reflectance\',fileToOpen,'_',int2str(1/alpha),detail); 

movie2avi(F,nameOfFile,'fps',fps) 
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17 ADDENDUM H 

EXPERIMENT 1: ALGORITHM FPS PERFORMANCE 

ADDITIONAL GRAPHS AND TABLES 

Additional individual graphs and tables for the algorithms' results for Experiment 1: 

Algorithm FPS Performance. 

17.1 IMAGE REGISTRATION AND LAPLACIAN PYRAMID IMAGE FUSION 

The performance results of the Image Registration and Laplacian Pyramid Image Fusion 

algorithm are shown below in the following table. This table was used to construct the graph 

displayed in the Results section for the Image Registration and Laplacian Pyramid Image 

Fusion algorithm. 

Image size FPS 
160x120 0.05933 

320x240 0.01476 

480x360 0.00719 

640x480 0.00650 

Table 17- 1: Image Registration and Laplacian Pyramid Image Fusion FPS performance 

17.2 HOMOMORPHIC FILTERING AND POWER SPECTRUM BASED METHOD 

The performance results of the Homomorphic Filtering and Power Spectrum Restoration 

based algorithm are shown below in the following table and graph. In the graph, Blue dots 

represent data points and the green line is a fitted trend line. 
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Image size FPS 

80x60 21.053 

160x120 19.048 

240x180 15.129 

320x240 10.46 

400x300 7.502 

480x360 5.540 

560x420 4.191 

640x480 3.406 

Table 17-2: Homomorphic Filtering and Power Spectrum method FPS performance 

Homomorphic Filtering and Power Spectrum 
Restoration 

80x60 160x120 240x180 320x240 400x300 480x360 560x420 640x480 

Image Size 

Figure 17-1: Dynamic Homomorphic Filtering and Power Spectrum FPS performance graph 

17.3 WIENER FILTERING USING KURTOSIS MINIMIZATION 

The following table and graph presents the FPS performance for the Wiener filtering 

approach method with kurtosis minimization as described in the Algorithm Detailed Design 

chapter. In the graph, Blue dots represent data points and the green line is a fitted trend line. 
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Image size FPS 

80x60 7.576 

160x120 2.604 

240x180 1.323 

320x240 0.713 

400x300 0.528 

480x360 0.434 

560x420 0.319 

640x480 0.245 

Table 17-3: Wiener Filtering using Kurtosis Minimization FPS performance 

Figure 17-2: Wiener Filtering using Kurtosis Minimization FPS performance graph 

17.4 WIENER FILTERING USING LAPLACIAN OPERATOR 

The Wiener Filtering using the Laplacian Operator is a method similar to the kurtosis 

minimization except the Laplacian Operator is used in a metric for selection of the filter 

shape. The table and graph below show the performance of this method that was created. In 

the graph, Blue dots represent data points and the green line is a fitted trend line. 
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Image size FPS 
80x60 11.439 

160x120 4.973 

240x180 2.588 

320x240 1.497 

400x300 0.972 

480x360 0.682 

560x420 0.499 

640x480 0.387 

Table 17-4: Wiener filtering using Laplacian Operator FPS performance 

80x60 160x120 240x180 320x240 400x300 480x360 560x420 640x480 

Image Size 

Figure 17-3: Wiener Filtering using Laplacian Operator FPS performance graph 

17.5 DYNAMIC ILLUMINANCE-REFLECTANCE ATMOSPHERIC TURBULENCE 

SUPPRESSION 

The performance results of the Illuminance-Reflectance adjustment based algorithm are 

shown below in the following table and graph. In the graph, Blue dots represent data points 

and the green line is a fitted trend line. 
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Image size FPS 
80x60 30.769 

160x120 19.573 

240x180 13.530 

320x240 6.670 

400x300 4.469 

480x360 3.176 

560x420 2.353 

640x480 1.792 

Table 17-5: Dynamic Illuminance-Reflectance Adjustment FPS performance 

Figure 17-4: Dynamic Illuminance -Reflectance Adjustment FPS performance graph 

17.6 DYNAMIC ILLUMINANCE-REFLECTANCE ATMOSPHERIC TURBULENCE 

SUPPRESSION WITH WIENER FILTERING 

This algorithm is similar to the Dynamic Illuminance-Reflectance Atmospheric Turbulence 

suppression algorithm except it includes the Wiener Filtering Using the Laplacian Operator 

before Illuminance-Reflectance adjustment is performed. It is an interesting method in 

relation to just performing the Wiener filtering using Laplacian Operator, as the additional 
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overhead required from the Illuminance-Reflectance may be visualized on comparison of the 

two graphs. In the graph, Blue dots represent data points and the green line is a fitted trend 

line. 

Image size FPS 
80x60 10.978 

160x120 4.507 

240x180 2.342 

320x240 1.306 

400x300 0.838 

480x360 0.592 

560x420 0.432 

640x480 0.332 

Table 17-6: Dynamic Illuminance-Reflectance with Wiener filtering FPS performance 

Figure 17-5: Dynamic Illuminance-Reflectance with Wiener filtering FPS performance graph 
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17.7 SPECKLE MASKING 

The Speckle Masking algorithm takes a series of image frames and produces a single image. 

The results presented for the Speckle Masking are thus as the number of seconds it takes to 

produce an image. 

In the Speckle masking algorithm, sub image size can be selected. This is the size of the 

overlapping images that the image frames are broken up into. The smaller the sub image size, 

the smaller the number of artefacts present in the video. 

Seconds to process sub image size of: 
Image Size 128x128 (s) 64x64 (s) 32x32 (s) 

128x128 8.406 22.703 34.515 

256x256 80.953 125.047 163.875 

512x512 384.469 616.093 900.703 

Table 17-7: Speckle Masking with sub image size of 128x128, 64x64, and 32x32 performance 
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18 ADDENDUM I 

EXPERIMENT 2: ALGORITHM FPS PERFORMANCE 

ADDITIONAL GRAPHS 

18.1 UNPROCESSED VIDEO 

The following graph shows the sharpness measurement results for the unprocessed video. 

Each of the algorithms used this video footage and attempt to improve the high spatial 

frequencies which where suppressed by the atmospheric turbulence, I.e. the increase of image 

sharpness through high frequency enhancement. It is expected that this graph will have the 

lowest sharpness values and is used as a comparison to the other graphs to determine 

improvement in image sharpness. The average image sharpness measurement obtained across 

the 50 image frames is 5.192. 
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Figure 18-1: Unprocessed video - image sharpness vs. frame number graph. 

BD Walters 	 18-1 



UNIVERSITY 

JOHANNESBURG 

18.2 IMAGE REGISTRATION AND LAPLACIAN PYRAMID IMAGE FUSION 

Image Registration and Laplacian Pyramid image Fusion algorithm's outputted video 

sharpness results are presented. The frames analysed correspond to those in the unprocessed 

video. Figure 18-2 presents the results in graphical form. 

The average image sharpness measurement obtained across the 50 frames is 11.256. 
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Figure 18-2: Image registration and fusion - image sharpness vs. frame number graph. 
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18.3 HOMOMORPHIC FILTERING AND POWER SPECTRUM BASED METHOD 

The Homomorphic Filtering and Power Spectrum based method's outputted video sharpness 

results are presented. The frames analysed correspond to those in the unprocessed video. 

Figure 18-3 presents the results in graphical form. 

The average image sharpness measurement obtained across the 50 frames is 8.193. 
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Figure 18-3: Homomorphic filtering and power spectrum method — image sharpness vs. frame number graph. 
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18.4 WIENER FILTERING USING LAPLACIAN OPERATOR 

Wiener filtering using Laplacian Operator algorithm's outputted video sharpness results are 

presented. The frames analysed correspond to those in the unprocessed video. Figure 18-4 

presents the results in graphical form. 

The average image sharpness measurement obtained across the 50 frames is 9.166. 
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Figure 18-4: Wiener filtering using Laplacian Operator - image sharpness vs. frame number graph. 
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18.5 DYNAMIC ILLUMINANCE-REFLECTANCE ATMOSPHERIC TURBULENCE 

SUPPRESSION 

Dynamic Illuminance-Reflectance atmospheric turbulence suppression algorithm's outputted 

video sharpness results are presented. The frames analysed correspond to those in the 

unprocessed video. Figure 18-5 presents the results in graphical form. 

The average image sharpness measurement obtained across the 50 frames is 13.333. 

Laplacian Metric Measurements 
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Figure 18-5: Dynamic Illuminance-Reflectance atmospheric turbulence suppression - image sharpness vs. 

frame number graph. 
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18.6 DYNAMIC ILLUMINANCE-REFLECTANCE ATMOSPHERIC TURBULENCE 

SUPPRESSION WITH WIENER FILTERING 

Dynamic Illuminance-Reflectance atmospheric turbulence suppression with Wiener filtering 

algorithm's outputted video sharpness results are presented. The frames analysed correspond 

to those in the unprocessed video. Figure 18-6 presents the results in graphical form. 

The average image sharpness measurement obtained across the 50 frames is 21.726. 
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Figure 18-6: Dynamic Illuminance-Reflectance atmospheric turbulence suppression with Wiener filtering - 

image sharpness vs. frame number graph. 
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19 ADDENDUM J 

EXPERIMENT 3: ALGORITHM ABERRATION 

ADDITIONAL TABLES 

19.1 MEASUREMENT RESULTS 

Results are presented showing measured square size in pixels, calculated actual size in mm, 

and the calculated displacement in both a horizontal and vertical direction. 

Size of the squares is known to be 200mm. 

Averaging frames and measuring multiple square sizes and averaging measurement square 

size is measured to span 51 pixels. 

Therefore mm/pixel = 200/51 mm/pixel 

= 3.921569 mm/pixel 

This is used for converting the measured lengths in the video from pixels to mm. 

Original Unprocessed Video 

Direction Measured Horizontal Vertical 

Measurement 1 (pixels) 82 64 

Measurement 2 (pixels) 78 63 

Measurement 3 (pixels) 79 63 

Measurement 4 (pixels) 76 63 

Average (pixels) 78.750 63.250 

Size (mm) 308.824 248.039 

Displacement (mm) 54.412 24.020 

Table 19-1: Unprocessed video aberration result. 
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Image Registration and Laplacian Pyramid Image Fusion 

Direction Measured Horizontal Vertical 

Measurement 1 (pixels) 74 61 

Measurement 2 (pixels) 75 61 

Measurement 3 (pixels) 74 61 

Measurement 4 (pixels) 74 61 

Average (pixels) 74.250 61.000 

Size (mm) 291.177 239.216 

Displacement (mm) 45.588 19.608 

Table 19-2: Image Registration and Laplacian Pyramid Image Fusion aberration result. 

Homomorphic Filtering and Power Spectrum Based Method 

Direction Measured Horiiontal Vertical 

Measurement 1 (pixels) 76 63 

Measurement 2 (pixels) 76 64 

Measurement 3 (pixels) 76 63 

Measurement 4 (pixels) 78 62 

Average (pixels) 76.500 63.000 

Size (mm) 300.000 247.059 

Displacement (mm) 50.000 23.529 

Table 19-3: Homomorphic Filtering and Power Spectrum based method aberration result. 

Wiener Filtering using Laplacian Operator 

Direction Measured Horizontal Vertical 

Measurement 1 (pixels) 70 60 

Measurement 2 (pixels) 73 60 

Measurement 3 (pixels) 71 60 

Measurement 4 (pixels) 75 58 

Average (pixels) 72.250 59.500 

Size (mm) 283.333 233.333 

Displacement (mm) 41.667 16.667 

Table 19-4: Wiener Filtering using Laplacian Operator aberration result. 
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Dynamic Illuminance-Reflectance Atmospheric Turbulence Suppression 

Direction Measured Horizontal 	- Vertical 

Measurement 1 (pixels) 70 58 

Measurement 2 (pixels) 71 59 

Measurement 3 (pixels) 73 57 

Measurement 4 (pixels) 74 57 

Average (pixels) 72.000 57.750 

Size (mm) 282.353 226.471 

Displacement (mm) 41.176 13.235 

Table 19-5: Dynamic Illuminance-Reflectance Atmospheric Turbulence Suppression aberration result. 

Dynamic Illuminance-Reflectance Atmospheric Turbulence Suppression with 
Wiener Filtering 

Direction Measured Horizontal Vertical 

Measurement 1 (pixels) 74 63 

Measurement 2 (pixels) 73 61 

Measurement 3 (pixels) 75 59 

Measurement 4 (pixels) 76 60 

Average (pixels) 74.500 60.750 

Size (mm) 292.157 238.235 

Displacement (mm) 46.078 19.118 

Table 19-6: Dynamic Illuminance-Reflectance Atmospheric Turbulence Suppression with Wiener Filtering 

aberration result. 
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20 ADDENDUM K 

EXPERIMENT 4: ALGORITHM MTF RESULT 

ADDITIONAL TABLES 

Spatial 

Frequency Line pairs/mm 

Minimum 

Average 

Maximum 

Average MTF (%) 

0.002410 67.024 254.070 90.452721 

0.004819 89.213 250.310 73.675596 
Low 

0.007231 130.135 235.811 44.839913 
0.009634 154.390 220.878 27.511048  

0.010846 186.954 225.047 16.114237 

0.012048 197.767 228.023 12.384421 

0.013245 191.683 216.707 10.679481 

Medium 
0.014451 199.022 215.087 6.761394 
0.015674 194.311 209.800 6.680079 
0.016863 198.791 212.628 5.861734 
0.018083 193.222 207.333 6.139881 

0.019268 195.000 209.419 6.214082  

0.025000 183.861 201.000 6.790133 

0.033333 193.263 205.290 4.600930 
High: 

0.050000 183.250 198.694 6.165528 
0.100000 189.576 200.303 4.195233 

Table 20-1: Unprocessed video MTF measurements. 
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Spatial 

Frequency Line pairs/mm 

Minimum 

Average 

Maximum 

Average MTF (%) 

0.002410 67.707 255.000 92.212580 

0.004819 88.282 255.000 77.163014 
Low 

0.007231 109.270 255.000 63.562712 

0.009634 136.781 255.000 47.942912 

0.010846 187.233 255.000 25.808719 

0.012048 195.047 255.000 22.436418 

0.013245 198.098 253.878 20.785621 

0.014451 205.283 249.935 16.520393 
Medium 

0.015674 204.978 244.711 14.881231 

0.016863 210.163 252.302 15.346410 

0.018083 205.472 237.750 12.265318 
. 	, 

0.019268 204.710 

200.167 

235.000 

234.833 

11.602028 

12.661936 0.025000 

0.033333 208.553 236.763 10.065198 
High': 

0.050000 197.472 226.917 11.023469 

0.100000 203.394 218.485 5.683366 

Table 20-2: Image Registration and Laplacian Pyramid Image Fusion algorithm MTF measurements. 

Spatial 

Frequency Line pairs/mm 

Minimum 

Average 

Maximum 

Average MTF (%) 

0.002410 75.293 255.000 93.978316 

0.004819 100.718 255.000 74.915337 
Low 

0.007231 133.784 245.838 50.984406 

0.009634 159.732 232.585 32.075637 

0.010846 185.070 229.326 19.246764 

0.012048 198.279 231.535 13.944062 

0.013245 193.829 221.024 11.814032 

0.014451 202.783 223.044 8.574897 
Medium 

0.015674 193.844 214.089 8.943764 

0.016863 201.442 223.488 9.350276 

0.018083 198.167 215.444 7.528288 

0.019268 202.774 217.968 6.507955 

0.025000 183.556 203.472 7.175462 

0.033333 198.290 215.658 5.850480 
High 

0.050000 184.972 205.944 7.480605 

0.100000 193.818 206.182 4.309846 

Table 20-3: Homomorphic Filtering and Power Spectrum based method MTF measurements. 
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Spatial 

Frequency Line pairs/mm 

Minimum 

Average 

Maximum 

Average MTF (%) 

0.002410 64.220 255.000 95.745450 

0.004819 83.359 252.154 80.597867 
Low 

0.007231 119.405 231.243 51.096374 

0.009634 142.683 214.049 32.049600 

0.010846 180.907 223.884 19.464532 

0.012048 190.907 222.349 13.948576 

0.013245 185.146 213.195 12.909228 

0.014451 194.652 211.196 7.473181 
Medium 

0.015674 189.222 206.378 7.950438 

0.016863 194.651 210.279 7.075576 

0.018083 188.667 203.583 6.971855 

0.019268 192.581 204.645 5.568227 

0.025000 181.556 202.778 8.215391 

0.033333 190.790 211.658 7.714824 
High 

0.050000 181.778 205.528 9.123381 

0.100000 189.152 210.394 7.910126 

Table 20-4: Wiener Filtering using Laplacian Operator algorithm MTF measurements. 

Spatial 

Frequency Line pairs/mm 

Minimum 

Average 

Maximum 

Average MTF (%) 

0.002410 63.951 255.000 94.386412 

0.004819 74.718 240.923 82.973727 
Low 

0.007231 102.351 203.757 52.200603 

0.009634 123.366 186.634 32.159789 

0.010846 157.861 205.093 23.857854 

0.012048 168.209 202.837 17.109576 

0.013245 162.122 191.122 15.050975 

0.014451 171.391 190.935 9.888813 
Medium 

0.015674 166.044 184.356 9.580632 

0.016863 172.721 189.605 8.543043 

0.018083 164.944 180.806 8.410374 

0.019268 169.581 184.645 7.796844 

0.025000 143.833 161.806 8.400342 

0.033333 152.211 169.974 7.876240 
High 

0.050000 144.056 159.611 7.317939 

0.100000 149.758 162.485 5.822949 

Table 20-5: Dynamic Illuminance-Reflectance method MTF measurements. 
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Spatial 

Frequency Line pairs/mm 

Minimum 

Average 

Maximum 

Average MTF (%) 

0.002410 88.073 255.000 94.781390 

0.004819 95.308 246.154 86.055006 
Low 

0.007231 117.838 223.676 60.369438 

0.009634 135.732 210.732 42.168456 

0.010846 145.163 204.977 34.469000 

0.012048 155.698 201.744 25.993146 

0.013245 151.268 192.195 24.043351 

0.014451 159.000 187.630 16.665887 
Medium 

0.015674 155.267 184.267 17.233884 

0.016863 161.256 187.070 14.953319 

0.018083 155.556 182.889 16.295672 

0.019268 159.484 181.774 13.179551 

0.025000 157.972 202.194 14.368179 

. 0.033333 164.790 210.105 14.145069 
High° 

0.050000 156.611 209.167 16.813824 

0.100000 164.576 209.394 14.024321 

Table 20-6: Dynamic Illuminance-Reflectance with Wiener filtering method MTF measurements. 

Spatial 

Frequency Line pairs/mm 

Minimum 

Average 

Maximum 

Average MTF (%) 

0.002410 54.148 253.630 96.102776 

0.004819 62.179 248.464 88.917766 
Low 

0.007231 85.263 216.553 64.499768 

0.009634 110.594 199.969 42.671446 

0.010846 151.000 213.944 28.027461 

0.012048 169.233 210.900 17.811749 

0.013245 161.919 198.405 16.454778 

0.014451 173.184 202.553 12.701351 
Medium 

0.015674 170.683 194.488 10.593118 

0.016863 176.800 198.600 9.436601 

0.018083 169.889 189.756 8.976472 

0.019268 172.615 195.487 10.096825 

0.025000 155.400 181.886 10.470135 

0.033333 165.467 195.567 11.116238 
High 

0.050000 156.061 186.697 11.917616 

0.100000 164.657 194.400 11.044817 

Table 20-7: Speckle Masking algorithm MTF measurements. 
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80x60 160x120 240x180 320x240 400x300 480x360 560x420 640x480 

Image Size 

Addendum L 
UNIVERSITY 

JOHANNESBURG 

21 ADDENDUM L 

EXPERIMENT 6: WIENER FILTERING LAMBDA 

SELECTION ADDITIONAL GRAPHS AND TABLES 

21.1 ALGORITHM PERFORMANCE RESULTS 

21.1.1 Wiener Filtering User Selected Lambda Algorithm 

Image size FPS 

80x60 21.28 

160x120 15.87 

240x180 11.9 

320x240 8 

400x300 5.62 

480x360 4.22 

560x420 3.16 

640x480 2.51 

Table 21-1: Wiener filtering without sharpness measurement A selection FPS performance 

Figure 21-1: Wiener filtering without sharpness measurement A selection FPS performance graph 
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21.1.2 Wiener Filtering using Laplacian Operator 

Image size FPS 
80x60 11.439 

160x120 4.973 

240x180 2.588 

320x240 1.497 

400x300 0.972 

480x360 0.682 

560x420 0.499 

640x480 0.387 

Table 21-2: Wiener filtering using Laplacian Operator FPS performance 

Wiener filtering using Laplacian Operator 

80x60 160x120 240x180 320x240 400x300 480x360 560x420 640x480 

Image Size 

Figure 21-2: Wiener filtering using Laplacian Operator FPS performance graph 
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21.2 IMAGE SHARPNESS RESULTS 

Laplacian Metric Measurements 
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Figure 21-3: Wiener filtering without sharpness measurement A selection - sharpness measurement graph 
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Figure 21-4: Wiener filtering using Laplacian Operator — sharpness measurement graph 
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21.3 MTF RESULTS 

Wiener Filtering (Selected Lambda) 

Figure 21-5: Wiener filtering without sharpness measurement A selection — MTF graph 

Figure 21-6: Wiener filtering using Laplacian Operator — MTF graph 
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22 ADDENDUM M 

EXPERIMENT 7: FILTERING RECEIVED LIGHT 

ADDITIONAL GRAPHS AND TABLES 

22.1 IMAGE SHARPNESS RESULTS ACROSS 50 FRAMES 
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Figure 22-1: Unfiltered video - sharpness result. 
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Laplacian Metric Measurements 
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Figure 22-2: Colour filtered video - sharpness result. 
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Figure 22-3: Polarised filtered video - sharpness result. 
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Spatial Frequency (Ip/mm) 

Unfiltered video 
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22.2 MTF RESULTS 

Spatial 

Frequency Line pairs/mm 

Minimum 

Average 

Maximum 

Average MTF (%) 

0.002410 67.024 254.070 90.452721 

0.004819 89.213 250.310 73.675596 
Low 

0.007231 130.135 235.811 44.839913 

0.009634 154.390 220.878 27.511048 

0.010846 186.954 225.047 16.114237 

0.012048 197.767 228.023 12.384421 

0.013245 191.683 216.707 10.679481 

0.014451 199.022 215.087 6.761394 
Medium  

0.015674 194.311 209.800 6.680079 

0.016863 198.791 212.628 5.861734 

0.018083 193.222 207.333 6.139881 

0.019268 195.000 209.419 6.214082 

. i 
0.025000 183.861 201.000 6.790133 

0.033333 193.263 205.290 4.600930 
High 
-6 0.050000 183.250 198.694 6.165528 

0.100000 189.576 200.303 4.195233 

Table 22-1: Unfiltered video - MTF measurements. 

Figure 22-4: Unfiltered video - MTF curve. 
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Spatial 

Frequency Line pairs/mm 

Minimum 

Average 

Maximum 

Average MTF (%) 

0.002410 34.903 147.871 95.907881 

0.004819 48.191 146.429 78.326552 
Low 

0.007231 71.769 136.308 48.129297 

0.009634 86.784 124.622 27.773097 

0.010846 116.744 147.974 21.910130 

0.012048 127.186 147.628 13.814268 

0.013245 119.441 146.765 19.061802 

0.014451 127.531 145.594 12.281787 
Medium 

0.015674 124.077 144.308 13.999121 

0.016863 125.853 143.118 11.920643 

0.018083 121.065 135.645 10.548274 

0.019268 126.667 139.548 8.985870 

0.025000 152.636 167.000 7.651488 

0.033333 158.962 168.462 4.940299 
High 

0.050000 152.194 162.065 5.348274 

0.100000 155.778 163.704 4.224173 

Table 22-2: Red #24 Colour filtered video - MTF measurements. 

Red #24 Colour Filter 

Spatial Frequency (Ip/mm) 

Figure 22-5: Red #24 colour filtered video - MTF curve. 
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Polarised filter 

Spatial Frequency (Ip/mm) 
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Spatial 

Frequency Line pairs/mm 

Minimum 

Average 

Maximum 

Average MTF (%) 

0.002410 70.806 242.556 97.403343 

0.004819 108.818 218.273 59.468571 
Low 

0.007231 142.487 195.568 27.904616 

0.009634 148.333 181.767 17.999372 

0.010846 179.794 219.647 19.374307 

0.012048 181.222 208.694 13.681690 

0.013245 179.029 204.088 12.701242 

0.014451 185.000 203.031 9.023568 
Medium 

0.015674 180.962 199.885 9.648522 

0.016863 183.412 197.647 7.254250 

0.018083 179.097 193.581 7.546881 

0.019268 182.429 193.500 5.718935 

0.025000 173.556 183.667 5.170762 

0.033333 180.929 188.571 3.778616 
High i 

0.050000 173.222 180.722 3.871086 

0.100000 178.650 183.350 2.3.71832 

Figure 22-6: Polarised video - MTF curve. 
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