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Abstract-This work focuses on the design and control of a 
novel hybrId manufacturing system: Reconfigurable Cellular 
Manufacturing System (RCMS) by using Artificial Intelligence 
(AI) approach. It is hybrid as it combines the advantages of 
Cellular Manufacturing System (CMS) and Reconfigurable 
Manufacturing System (RMS). In addition to inheriting desirable 
properties from CMS and RMS, RCMS provides additional 
benefits including nexibility and the ability to respond to changing 
products, product mix and market conditions during its useful life, 
avoiding premature obsolescence of the manufacturing system. 
The emphasis of this research is the formation of Reconfigurable 
Manufacturing Cell (RMC) which is the dynamic and logical 
clustering of some manufacturing resources, driven by specific 
customer orders, aiming at optimally fulfilling customers' orders 
along with other RMCs in the RCMS. 
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I. INTRODUCTION 

W ITH the growing trend towards great product variety and 
fluctuating market demands, an important problem 

confronted by today's manufacturing companies is to balance 
the need for higher product variety with the request for more 
production resources. In order to satisfy customer's demands in 
today's market, industry and academe have invested 
considerable effort to make manufacturing systems more 
efficient and competitive. Traditionally, once a manufacturing 
system is adopted by a manufacturer, the operation model of 
the manufacturer will remain the same over the time. However, 
in the face of facing a changing product mix environment, a 
manufacturer needs an adaptable manufacturing system to gain 
the best performance possible. 
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According to Linck [I], a manufactming system can be 
defined as follows: Manufacturing system consists of people, 
machines, tools, material and information, which are related to 
each other to produce a value-added product. If manufactming 
systems are classified according to the arrangement of 
machines and departments in a plant, manufacturing systems in 
industry fall into four major categories: job shop, mass 
production, batch production, and traditional cellular 
manufacturing [2]. 

A. Job Shop 
The main characteristic of a job shop is that it produces a 

wide variety of products in relatively small volume [3]. 
Machines with the same functions are arranged together to 
form a department in a plant, as shown in Figure 1 a). A part 
being processed will jump from one department to another 
based on the part's operational sequence. Because a job shop 
type factory is designed to produce a variety of different 
products, it must have relatively high flexibility. In general, a 
job shop is very adaptive to a dynamic environment in which 
the product types and desired volumes change frequently. 
However, the main disadvantage of this type of layout is the 
lower productivity which is caused by the frequency of 
machine set-ups and excessive material handling between 
departments in a job shop. In addition, high expense may be 
associated with the large variety of tools and fixtures. 

B. Mass Production 
The mass production system is also called Dedicated 

Manufacturing System (OMS), which produces few products 
in large volumes [3]. To produce a large volume of a product 
type, the machines needed for production are arranged 
sequentially and organized together to form a dedicated 
production line, as shown in Figure I b). In most cases, the 
machines in a production line need to be set up only once. The 
flow in a OMS is much smoother than that of any other 
manufacturing system; as a result, the mass production system 
has the highest productivity. However, a mass production 
system is relatively inflexible because a production line is 
employed for only or very few product types. It is unsuitable 
for a manufacturing environment that experiences a changing 
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product mix due to its least adaptability among all 
manufacturing systems. 

Fig. 1. Different Types of Manufacturing Layouts. 

C. Batch Production 
The batch production system lies between the job shop and 

mass production [3]. The main characteristic of a batch 
production system is that it produces a range of product, each 
one in medium volume. The layout of a batch production 
system is functionally similar to that of a job shop, as shown in 
Fig. 1 c). Because products are processed in batches, some of 
the recurring fixed costs between individual batches can be 
shared. In general, the batch production system is the most 
suitable one for a company that produces and markets mature 
products with stable periodic demands. However, because 
products are produced in batches, a single product may occupy 
a machine for a considerable time, which might necessitate 
long delays in working on other products. Moreover, a batch 
production system is unsuitable for a changing product mix 
environment because its products and the relative sizes of 
batches to be produced during a period are generally known 
ahead of time. 

D. Cellular Manufacturing System (CMS) 
Cellular manufacturing is an application of the group 

technology philosophy to designing manufacturing systems [4]. 
According to the literature, the main characteristic of CMS is 
that it groups together the machine cells which are dedicated to 
the processing of a set of part families [5]. The typical layout of 
a traditional CMS is shown in Figure 1 d). Jobs in the same part 
family could share the same setup, or a common setup could be 
designed for the whole part family. With the common setup, 
accomplishing each job in a part family needs only a minor 
setup, so that the set-up time for producing the whole part 
family is reduced significantly. Because the manufacturing 
cells are formed and organized according to part families, a 
CMS is more flexible than a mass production system. Although 

CMS can offer us numerous benefits such as reduction in setup 
time, reduction in material handling cost and time, and 
reduction in tooling cost, there are still some disadvantages of 
CMS that need to be addressed. As per the literature review, a 
few of these drawbacks are discussed as follows [6]: 

a) Increased capital investment: Switching from DMS to 
CMS can require heavy investments in new machines and 
equipments. It may also require the older machines and 
equipment to be scrapped. hl addition, equipment and machines 
that are shared by multiple parts may have to be duplicated and 
put in multiple cells, increasing capital investment. 

b) Lower machine utilization: Since cells are dedicated to a 
particular part family, when those parts are low in demand, the 
corresponding machines end up being underutilized. Also, 
duplication of equipment could result in lower machine 
utilization. For older, fully depreciated equipment it may be 
easier to justify lower machine utilization, but with newer, 
expensive machine that might not be the case. 

c) Labor resistance: In cellular manufacturing, since the 
cells have dedicated resources (machines, equipment, 
operators), these resources are not available for use by other 
products in the plant unless they are duplicated. This makes 
cells less capable of handling products that require process 
steps outside the capabilities of the machines, equipment, or 
skills of the operator. This decreases the flexibility of the cell. 

d) Inefficiencies in a dynamic/stochastic environment: In a 
dynamic/stochastic product mix environment, the design for 
one set of conditions may not be the most efficient for the 
subsequent conditions, i.e. when one set of conditions is 
optimized and a layout for those conditions; it may not be the 
optimum design for other sets of conditions. 

E. Reconfigurable Manufacturing System (RMS) 
Under these circumstances, a new manufacturing system 

paradigm called Reconfigurable Manufacturing System (RMS) 
was proposed by Koren et al. [7] in 1999. It is defined as 
follows: A Reconfigurable Manufacturing System (RMS) is 
designed at the outset for rapid change in structure, as well as in 
hardware and software components, in order to quickly adjust 
production capacity and functionality within a part family in 
response to sudden changes in market or in regulatory 
requirements. 

According to this definition, an RMS is expected not only to 
accommodate for the production of a variety of products, which 
are grouped into families, but also it must give a positive 
response to new products introduced within each family. The 
MS is then required to be reconfigurable in capacity for 
volume's changes and functionality for families' changes. As 
summarized in Table 1, an RMS is expected to have the 
following 5 key characteristics [8]: 
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TABLE I 
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As the main component of RMS is Reconfigurable Machine 
Tool (RMT), the advances in RMS will not occur without RMT 
which has modular structure to provide the necessary 
characteristics for quick reconfiguration. However, the lack of 
RMT's design methodology and the lack of interfaces are the 
major barriers that impede structure modularity. 
Reconfiguration seems increasingly difficult because hardware 
interfaces are much more difficult to realize due to its inherent 
technical complexity. 

F. Reconfigurable Cellular Manufacturing System (RCMS) 
So in order to fill the gap between RMS and CMS (as shown 

in Fig. 2.), a novel hybrid manufacturing system, 
Reconfigurable Cellular Manufacturing System (RCMS), is 
proposed in this research. RCMS lies between the CMS and 
RMS. It is very similar to a traditional CMS; machine cells and 
parts families are also applied in RCMS. Moreover, RCMS also 
consists of a set of manufacturing cells which are called 
Reconfigurable Manufacturing Cells (RMCs) in this research. 
Compared with traditional manufacturing cell, RMC will have 
the following three advantages which could make it 
distinguished: 

a) Machines are logically, not physically organized in an 
RMC: Unlike a traditional manufacturing cell, which is a 
physical entity, an RMC is a logical entity. An RMC defines its 
groupings of machines in a computer, in other words, machines 
in an RMC are not physically moved but are conceptually 
grouped. Machines belonging to the same RMC during any 
period may not necessarily occupy the same geographic region 
of a shop floor. 

b) RMC is reconfigurable: RMCs are formed in response to 
the product mix released for production during a production 
session. Once a batch of jobs is completed and another batch is 
released for production, a new set of RMCs may be 
reconfigured. Therefore, machine set that constitutes an RMC 
constantly changes as the product mix changes. Due to the 
reconfigurability of RMCs, RCMS is very suitable for a 
dynamic changing product mix environment. 

c) Machines can be shared by different RMCs: The 
machine-sharing concept is applied among RMCs. In a RCMS, 
connections between machines are accomplished by a highly 
automated material handling system. As a result, it is not only 
unnecessary to change a factory's current layout, but a machine 
can serve more than one RMC. 

An example of RCMS is shown in Figure 1 e). As it shown in 

the picture, RMC-l consists of four types of machines, Lathe, 
Milling, Drilling, and Grinding. RMC-2 and RMC-l share the 
same Drilling and Grinding machine. RMC-2, RMC-3, and 
RMC-4 share the same Milling machine. RMC-2 and RMC-3 
share the same Milling and Grinding machine. Meanwhile, 
RMC-3 and RMC-4 share the same Milling and Lathe machine. 
By using machine-sharing method, an RMC can provide more 
flexibility than traditional manufacturing cells; tllis suggests 
that RCMS might have a bright future for bridging the gap 
between CMS and RMS. Although a great amount of efforts 
have been invested on the traditional cell formation problem, 
these methods can not be applied directly to RMC formation 
problem due to the introduction of machine-sharing concept. 
So there is a need to develop a new method which can be used 
for configuring RMCs. 
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Fig. 2. Different Types of ManUfacturing Layouts. 

n. LITERATURE STUDY AND RELATED WORK 

The cell formation (CF) problem is the main problem in 
designing a CMS. In this research, RCMS is very similar to 
CMS. So we will start our research with solving CF problems. 
CF is the problem of determining part families and machine 
cells. According to the literature, there are many approaches 
have been presented for solving CF problem. From 
production-oriented point of view, CF techniques can be 
classified into the following five categories: mathematical 
programming, manual techniques, graph theoretic, cluster 
analysis, and novel approaches. 

A. Mathematical Programming 
Several mathematical approaches have been used to identify 

part families and their corresponding manufacturing cells. 
Among them, the most basic and most popular are linear 
programming, non-linear programming, integer programming, 
and mixed integer programming [9]. These approaches off the 
distinct advantage of being able to incorporate ordered 
sequences of operations, alternative process plans, 
non-consecutive part operations on the same machine, setup 
and processing times, the use of multiple identical as well as 
outsourcing of parts. However, there are the following critical 
limitations impede mathematical programming method to be 
widely used in practice for solving CF problem [10]: 

a) Most approaches do not concurrently group machines into 
cells and parts into families due to the resulting nonlinear form 
of the objective function; 

b) With regard to number of decision variables and 
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constraints, it is very time consuming to formulate and solve a 
mathematical model, even for a small size problem; 

c) Mathematical programming is suitable only for a stable 
environment; once the mix of products is changed, a 
mathematical model needs to be reformulated. Furthermore, for 
a large-size problem, it is almost impossible to find an optimal 
solution within a reasonable time period, a phenomenon known 
as NP-complete. 

B. Manual Techniques 
Manual techniques require the analyst to make a series of 

judgments during the cell formation procedure such that part 
families and manufacturing cells are iteratively established by 
use of there manual approaches. Several manual techniques 
have been presented in the literature such as production flow 
analysis (PFA), in which the routing information of parts is 
used to simultaneously identify part families and their 
corresponding manufacturing cells [11] and component flow 
analysis (CFA), in which the parts are firstly sorted into groups 
based on their manufacturing requirement, and then the groups 
are manually analyzed to generate manufacturing cells. Finally, 
a detailed flow analysis is performed and appropriate 
adjustments are made to obtain an acceptable design [12]. 
Although according to literature, various manual procedures 
have been reported in case studies, there are two major 
disadvantages of manual techniques that should be addressed 
[10]: 

a) Because tllese techniques are heavily dependent on human 
judgment, it is difficult to implement them on a computer; 

b) The precise underlying use of manual techniques is that 
the various parts should be clearly defined, and this makes 
these techniques very difficult to apply. 

C. Graph Theoretic 
Several graph theoretic approaches for the CF problem such 

as network flow approach, bipartite graphs, and minimum 
spanning tree have been published in the literature. These 
methods treat the machines and/or parts as nodes, and the 
material flows as arcs. The intention of these approaches is to 
obtain disconnected sub-graphs from a machine-machine or 
machine-part graph, thereby identifying manufacturing cells. 
Rajagopalan and Batra were among the first to apply a purely 
graph theoretic approach to the cell formation problem [13]. 
The objective is to minimize the movements of parts between 
machine cells, using a measure called Jaccard's similarity 
coefficient [14], which is calculated for each machine pair. The 
same approach, with different similarity coefficients to design 
primary, secondary, and tertiary cells, was proposed by De 
Witte [15]. Other approaches in this category include network 
flow approach, proposed by Vohra et al. [16]; minimum 
spanning tree, presented by Ng [17]; and a heuristic graph 
partitioning approach, developed by Askin and Chiu [18]. 
However, the main drawbacks inherent to these approaches are 
the practical issues such as production volumes and alternate 
process plans are not addressed. Furthermore, the clique 
identification problem is a type of NP-complete problems. 

D. Cluster Analysis 
Cluster analysis assigns objects into clusters such that 

individual elements within a cluster have a high degree of 
relationship, while the relationship between clusters is very 
slight. A common feature of cluster analysis is that it 
sequentially rearranges columns and rows of the machine/part 
matrix based on an index, until diagonal blocks are generated 
[19]. In general, the methods in this category could be divided 
into tllree types: (1) array-based clustering techniques; (2) 
hierarchical clustering techniques; and (3) non-hierarchical 
clustering techniques [20]. 

Array-based clustering is one of the simplest classes of 
production-oriented cell formation methods. It operates on a 
0-1 part/machine incidence array performing a series of column 
and row manipulations trying to produce small clustered blocks 
along the diagonal as shown in Figure 3. The part/machine 
incidence matrix, A, consists of elements aij=l if part j requires 
processing on machine i, otherwise aij=O. Any tightly clustered 
blocks represent the candidate part families and machine cells, 
which are formed simultaneously. 
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Fig. 3. Part/Machine Matrix and Optimal Clustering.
 

Although the array-based clustering techniques used in the 
design of manufacturing cells are both efficient and simple to 
apply to the part/machine matrix, there are still some 
drawbacks exist among these techniques as follows [21]: 

a) Most array-based clustering techniques consider only 
binary routing information and do not take into account other 
types of manufacturing data such as the cost of machine, 
machine capacity, operational sequence, production volume of 
parts, and maximum cell size; 

b) In most cases, bottleneck machine must be removed 
before any part/machine cluster block can be clearly identified; 

c) To identify cluster blocks requires visual inspection, and 
that is difficult when a problem is large. 

Unlike array-based techniques, hierarchical clustering 
methods do not produce machine cells and part families 
simultaneously. Instead, hierarchical clustering techniques 
operate on an input data set described in terms of a 
similarity/dissimilarity of distance function and then create a 
hierarchy of clusters or partitions [22]. Hierarchical clustering 
approaches consist of two steps. The first step is to calculate 
similarity/dissimilarity coefficients for every machine (part) 
pair. There are various coefficients available in the literature 
such as the Jaccard's similarity coefficient [14], Weighted 
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similarity/dissimilarity coefficients [23], and operation-based 
similarity/dissimilarity coefficients [24]. The second step 
involves determining how to combine or merge the machine 
(part) pairs together. Several algorithms have been presented 
for this purpose such as single linkage clustering algorithm 
(SLINK) [14], average linkage clustering algorithm (ALINK) 
[25], weight average linkage clustering algorithm (WALCA) 
[26], complete linkage clusteling algorithm (CLINK) [27], and 
linear cell clustering algorithm (LCC) [28]. Because of their 
flexibility to incorporate manufacturing data, the hierarchical 
clustering methods can be implemented easily and have 
advantages relative to array-based clustering. However, there 
are still several disadvantages exist in hierarchical clustering 
methods [29]: 

a) The designer must decide on an appropriate similarity for 
groups. In small applications, this is not a problem since the 
designer can visually evaluate the dendrogram. However, as 
applications become too large for output for output in the form 
of a dendrogram, other methods for storing the hierarchy must 
be employed; 

b) Most algorithms do not handle the duplication of 
bottleneck machines; 

c) The problems of how to select the cluster criteria and the 
performance measure and how to determine the number of 
clusters remain unsolved. 

Non-hierarchical clustering methods are iterative approaches. 
Basically, a non-hierarchical clustering approach operates on 
an input data set by pre-specifying the number of clusters to be 
formed using a similarity function. The input data set could be 
either an initial partition of the data set or the choice of a few 
seed points [20]. The major difference between hierarchical 
clustering and non-hierarchical clustering is that a similarity 
matrix does not need to be computed and stored in most 
non-hierarchical clustering algorithms [22]. However, the 
major drawback of non-hierarchical clustering is related to the 
selection of the seed. Arbitrariness in the choice of seed points 
could lead to unsatisfactory results [20]. 

E. Novel Approaches 
This category consists of relatively new approaches to the 

CF problem. The major characteristics of these methods are the 
use of Artificial Intelligence (AI) and/or pattern recogpition 
techniques, and search approaches to form machine cells or part 
families. From the computational point of view, CF problems 
have proven to be NP-complete and cannot be solved in 
polynomial time. Meanwhile, AI methods are tools to solve the 
complicated real-life problems within a reasonable time by 
generating high-quality solutions. So the application of AI 
approaches in CF area proves to be a very promising area. In 
general, the AI approaches can be classified into six types: 
expert system, fuzzy logic, simulated annealing (SA), tabu 
search (TS), genetic algorithms (GA), and artificial neural 
networks (ANN). 

Knowledge-based rules and pattern recognition techniques 
are the two necessary components of expert systems. ill 1986, 
Wu et al. [30] presented an algorithm for using syntactic pattern 

recognition for the CF problem. The advantages of syntactic 
pattern recognition include cell formation that takes into 
account material flow patterns, operation precedence relations, 
and non-uniform importance of machines. In 1988, Kusiak 
introduced a knowledge-based system that takes advantage of 
expert system teChniques and optimization in which machine 
capacity, material-handling capabilities, technological 
requirement, and cell dimensions are considered in forming 
cells [31]. In another algorithm proposed in 1991 by Singh and 
Qi [32], the concept of multi-dimensional similarity coefficient 
using syntactic pattern recognition was introduced to form part 
families. Although there are several papers in the literature that 
were focused on knowledge-based expert systems, the main 
disadvantage of expert system is its less effective in facing the 
ever-changing, complex, and open system environment of 
today's manufacturing systems. 

Although some objects obviously belong to certain clusters, 
in some other cases it is not clear which cluster is most 
appropriate. Fuzzy logic methods are used to deal with the 
issues of vagueness and uncertainty in the CF problem. Chu 
and Hayya [33] applied a fuzzy c-means clustering algorithm to 
production data. This approach is unaffected by exceptional 
elements. The workload among machine cells can be balanced 
better by using a reallocation scheme that utilizes the degree of 
membership a part has in a particular family. However, if cis 
underestimated, the result is far from optimal. Also, a poor 
stopping criterion leads to inferior clusters. Furthermore, the 
fuzzy c-means clustering can be classified as a non-hierarchical 
method and suffers from the same problems associated with 
those methods. 

Kirkpatrick et al. [34] initially presented the SA algorithm, 
which attempts to solve hard combinatorial optimization 
problems through controlled randomization. Since then this 
algorithm has been applied to many optimization problems in a 
variety of areas, including CF problems. The most important 
characteristic of this algorithm is that is mimics the process of 
cooling a physical system slowly in order to reach a state of 
globally minimum potential energy. The stochastic nature of 
the algorithm allows it to escape local minimum, explore the 
state space, and find optimal or near-optimal solutions. 

TS is a stochastic neighbourhood search algorithm that was 
first suggested and applied by Glover [35]. The basic TS 
algorithm operates in the following way: it starts from a 
randomly selected or a known solution. From this solution, a set 
ofneighbourhood solutions N is generated using the predefined 
movement strategies. The objective function is evaluated for 
each solution in set N, and the best neighbour solution replaces 
the current solution, even though the best neighbor solution 
may be worse than the current one. In this way, the algorithm 
makes it possible to escape from the local minima (or maxima) 
of the objective function. However, the major drawback of SA 
and TS methods is that users need to set some parameters 
before initiating the search. 

GA mimics the evolutionary process by combining the 
survival of the fittest among solution structures with a 
structured, yet randomized, information exchange and creation 
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of offspring [36]. GA solves linear and nonlinear problems by 
exploring all regions of the state space and exponentially 
exploiting promising areas through mutation, crossover, and 
selection operations [37]. Venugopal and Narendran [38] in 
1992 proposed a GA-based approach to solve the CF problem. 
The objectives of the model are to minimize the inter-cell 
movements and the total within-cell load variation; limitations 
of machine capacities, production amounts, and processing 
times of parts are considered in the paper. In 1995, Gupta et al. 
[39] presented a similar GA to minimize a weighted total 
number of inter-cell and intra-cell movements. Later, their 
study was extended by adding one more objective that 
minimizes the total within-cell load variation [40]. There are 
two major differences between GA and traditional search 
algorithms. First, instead of improving a single solution, GA 
simultaneously exanlines and modifies a population that is a set 
of solutions. Second, GA is able to extract information from a 
population and then direct the search; by so doing, GA may 
avoid the problem of local optimal. However, GA technique is 
not developed for a stable environment, and it cannot address 
the CF problem in a changing product-mix environment. 

An ANN is a mathematical model of biologically motivated 
computation. It is designed to exploit the massively parallel 
local processing and distributed representation capability. 
ANN is a highly parallel computation system, loosely modeled 
after the human brain. It is especially powerful for identifying 
patterns, trends, and internal relationships [41]. As a result, 
ANN methods have been applied to many manufacturing areas, 
including CF problem. Basically, ANN could further be 
classified into two types, unsupervised or supervised. To use 
supervised ANN, a training data set including a series of 
input/output pairs is required to train the network by adjusting 
the weights between the individual nodes, neurons. The 
network with the trained weights is then employed as the basis 
for classifying new inputs. The most popular technique in this 
category is the back propagation algorithm [42]. However, 
because the manufacturing environment is dynamic, it is 
difficult to know the patterns of existing parts and processes in 
advance. Therefore, the other type of ANN, unsupervised ANN, 
is more appropriate than the supervised ANN for the CF 
problems due to unsupervised ANN is able to self-organize the 
presented data to discover common properties without .using 
any classified output data. Wong et al. concluded six main areas 
that ANN is applicable: accounting/auditing, finance, human 
resource, information systems, marketing/distribution, and 
production/operations. Among these various application areas, 
production/operation had the largest number of applications. 
Moreover, in production/operations, the most popular research 
areas were part family/machine cell formation, job shop 
scheduling, CMS design, and etc [43]. Basically, the CF 
problems can be classified into binary and comprehensive 
formation problems depending on whether or not the 
processing times and the machine capacities are considered. 
The binary formation problem arises if the part demands are 
unknown when the manufacturing system is being developed. 
If the part demand can be forecast accurately, both the 

processing times and machine capacities have to be included in 
the analysis. This gives rise to comprehensive formation 
problem [44]. Considering the large number of parts and 
machines involved in the industrial design problem, efficient 
solution methods are highly desirable. As a result, we can 
believe that ANN is a very suitable research method to solve 
CF problem for the following reasons [22]: 

a) To employ multi-criteria objective functions; 
b) Conveniently, and inter-changeably to utilize several 

non-linear evaluation measure; 
c) Selectively including or excluding constraints on tlle 

number of part families/machine cells; 
d) Simultaneously to form part families and machine cells 

without visual inspection of the output; 
e) Quickly to execute and obtain good clusters; 
f) The ability to solve large data sets. 

III. EMPIRICAL WORK 

As discussed in Section 3, although for most CF techniques, 
the concept of machine-sharing, one of the most important 
aspects of RCMS is not allowed, these methods provide some 
basic ideas and information of developing RMCs. So in tllis 
research, we will use one of the most promising AI techniques, 
ANN, for solving RMC formation problem. The flow chart (as 
shown in Figure 4) of RMC formation procedure can be 
described as follows: 

Step 1: The required data need to be provided such as the 
varieties of parts, their process plans and their batch sizes, and 
the due time of the order; 

Step 2: Based on this information, part family should be 
grouped; 

Step 3: The available machines with specific processing 
capacities need to be given such as which machines should be 
chosen to serve the orders;-­

Step 4: After the machines required to fulfill the orders have 
been identified by previous step, a candidate RMCs' 
organization should be worked out by using ANN approach; 

Step 5: Once the machines and parts have been grouped, the 
remaining problem is group scheduling which is how to 
sequence part families and schedule operations of tlle parts 
within each part family so that some planning goals can be 
achieved. ANN method will be used as well for solving group 
scheduling problem; 

Step 6: Evaluation and selection of the cells to be 
implemented; 

Step 7: Determination of the final intra-cell layout and the 
shop layout. 
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Input the required data 

Fig. 4. Flow chart of RMC formation procedure. 

To cvaluate the performance of ANN approach in this 
research, some test problems appeared in the literature were 
listed in Table n. An in-depth discussion will be given after the 
comparison has been done. 

TABLE II 
CELL FORMAnON TEST PROBI RMS 

Test 
Problems 

Size References 

1 15 x 10 Balasubmmanian & Panneerselvam [45] 

2 5x7 Wa!?hodekar & Sahu [46] 
3 5x7 Kin!? & Nakomchai [47] 
4 20x 35 Boe & Cheng [48] 
5 20x 35 Carrie [49] 
6 8x20 Chandrasekharan & Raiagopalan [50] 
7 16 x 30 Boctor [51] 
8 24x40 Chandrasekharan & Raja!?opalan [50] 
9 30x 41 Kumar & Vannelli [52] 
10 7 x 12 Kusiak [31] 
11 16 x 43 Kin!? & Nakomchai [47] 
12 16x 43 Brubidf!e [53] 
13 14 x 24 Kinf! [54] 
14 l2x 10 McAuley [14] 

IV. CONCLUSIONS 

The following conclusions can be obtained from this 
research work: 

a) A pure cellular arrangement is not practical in typical 
industria] environments. The idea of RCMS is proposed. In a 
dynamic changing product mix environment, ability to adapt to 
changes to improve production efficiency is desirable; 

b) The RCMS design problem is conveniently decomposed 
in a sequencc of sub-problems, i.e. parl family/machine cell 
formation and evaluation, RMC layout, and shop layout; 

c) These sub-problems may be solved more than once to 
arrive at a good solution; 

d) Practice issues, such as similarities in setups and changes 
in production mix, should be considered, if the final solution is 
to have practical significance; 

REFERENCES 

[1]	 Linck, I.. A decomposition-based approach for manufacturing system 
design, in Mechanical Engineering. Massachusetts Institute of 
Technology. p. 321, 2001. 

[2]	 Sule, D.R., Manufacturing facilities: location, planning, and design. 2nd 
ed. 1994, Boston, MA: PWS. 

[3]	 Browen, J., J. Harhen, and J. Shivnan, Production management systems. 
1988, NY: Addison-Wesley. 

[4]	 Mahdavi, 1, et aI., Designing a new mathematical model for cellular 
manufacturing system based on cell utilization. Applicd Mathematics 
and Computation, 2007. 190: p. 662-670. 

[5]	 Tompkins, J.A., Facilities planning. 2nd ed. 1996, NY: John Wiley and 
Sons. 

[6]	 Sharma, V., An evaluation of dimensionality reduction on cell formation 
efficacy, in Russ College of EngineeJing and Technology. June 2007, 
Ohio University. 

[7]	 Koren, Y., et aI., Reconfigurable manUfacturing systems. Armals of the 
CIRP, 1999.48(2): p. 527-540. 

[8]	 Mehrabi, M.G., A.G. Ulsoy, and Y. Koten, Reconfigurable 
manufacturing systems: Key to future manufacturing. Journal of 
Intelligent ManufactUling, 2000. 11: p. 403-419. 

[9]	 Shafer, S.M., Part-machine-Iabor grouping: the problem and solution 
methods, in Group technology and cellular manufacturing, N.r:. Soresh 
and J.M. Kay, Editors. 1998, Kluwer Academic Publishers: MA. p. 
131-152. 

[10]	 Ko, K.-C., Virtual production system. 2000, Iowa State University: 
Ames, Iowa. 

[11]	 Karvonen, S., J. Hohru;lrom, and E. Eloranta, Benefits from PFA in two 
make-to-order manufacturing firms in Finland, in Group technology and 
cellular manufacturing, N.C. Suresh and J.M. Kay, Editors. 1998, 
Kluwer Academic Publishers: MA. p. 458-474. 

[12]	 EI-Essawy, I.G. and I. Torrance, Component flow analysis-an effective 
approach to production systems' design. Production Engineer, May 1972: 
p.165-170. 

[13]	 Rajagopalan. R. and J. Batra, Design of cellular production systems-a 
graph theoretic approach. International Journal of Production Research, 
1975. 13: p. 56-68. 

[14]	 McAuley, I.. Machine grouping for efficient production. Production 
Engineer, 1972.51: p. 53-57. 

[15]	 De Witte, I., The use of similarity coeficients in production flow analysis. 
International Journal of Production Research, 1980. 18(4): p. 502-514. 

[16]	 Vohra, T., D.S. Chen, and I.C. Chang, A network approach to cell 
formation in cellular manufacturing. International Tournai of Production 
Research, 28(11): p. 2075-2084, 1990. 

[17]	 Ng, M.S .. Worst-case analysis of an algorithm for cellular manufacturing 
European Journal of Operational Research, 1993.69(3): p. 348-398. 

[18]	 Askin, R.G. and K. Chiu, A graph partitioning procedure for machine 
assignment and cell formation. International Journal of Production 
Research, 1990.28(8): p. 1555-1572. 

[19]	 Chu, C.H. and M. Tsai, A comparison of three array-based clustering 
techniques for manufacturing cellular formation. International Journal of 
Production Research, 1990.28: p. 1417-1433. 

[20]	 Selim, H.M., R.G. Askin, and A.I. Vakharia, Cell formation in group 
technology: review, evaluation and directions for future study. 
Computers and Industrial Engineering, 1998. 34(1): p. 3-20. 

[21]	 Chu. C.H., Recent advances in mathematical programming for cell 
formation, in Plarming, design, adn analysis of cellular manufacturing 
systems, K.e. aI., Editor. 1995, Elsevier: NY. p. 3-46. 

[22]	 Joines, J.A., R.E. King, and C.T. Culbreth, A comprehensive review of 
production-oriented manufacturing cell formation techniques. 1996, 
North Carolina State University: USA. 

[23]	 Nair, GJ. and T.T. Narendran, Case: a clustering algorithm for cell 
formation with sequence data. International Journal of Production 
Research, 1998.36(1): p. 157-179. 

[24]	 Choobineh, F., A framework for the design of cellular manufacturing 
systems. International Journal of Production Research, 1988. 26(7): p. 
1161-1172. 

[25]	 Seifoddini, H.e.a., Smgle linkage versus average linkage clustering in 
machine cell formation applications. Computers and Industrial 
Engincering, 1989. 1G: p. 419-426. 

408 2009 2nd International Conference on Adaptive Science & Technology 



[26]	 Gupta, T. and H. Seifoddini, Production data based similarity coefficient 
for machine-component grouping decisions in the design of a cellular 
manufacturing system. International Journal of Production Research, 
28(7): p. 1247-1269, 1990. 

[27]	 Mosier, C.T., An experiment investigating the application of clustering 
procedures and similarity coefficients to the GT machine cell forn1ation 
problem. International Journal of Production Research, 1989. 27( 10): p. 
1811-1835. 

[28]	 Wei, J.C. and G.M. Kern, Commonality analysis: a linear cell clustering 
algOrithm for group technology. International Journal of Production 
Research, 1989.27(12): p. 2053-2062. 

[29]	 Boctor, F.F., A linear fonnulation of the machine-part cell forn1ation 
problem. International Journal of Production Research, 1991. 29: p. 
343-356. 

[30]	 Wu, H., M. Venugopal, and M. Barash, Design of a cellular 
manufacturing system: a syntactic pattern recognition approach. Journal 
of Manufacturing Systems, 1986. 5(2): p. 81-88. 

[31]	 Kusiak, A., EXGT-S: A knowledge based system for group technology. 
International Journal of Production Research, 1988. 26(5): p. 887 -904. 

[32]	 Singh, N. and D.Z. Qi, A syntactic pattern recognition based approach to 
the design of cellular manufacturing systems with multi-dimentional 
considerations. 1991, University of Windsor: Canada. 

[33]	 Chu, C.H. and J.C. Hayya, A fuzzy clustering approach to manufacturing 
cell formation. International Journal of Production Research, 1991. 29(8): 
p. 1474-1487. 

[34]	 Kirkpatric, S., C.D. Gelatt, and M.P. Vecchi, Optimization by simulated 
annealing. Science, 220(4598): p. 671-680, 1980. 

[35]	 Lei, D. and Z. Wu, Tabu search for multiple-ctiteria manufacturing cell 
design. International Journal of Advanced Manufacturing Technology, 
2006. 28:p.950-956. 

[36]	 Holland, lH., Adaptation in neural and attificial systems. 1975, MI: 
University of Michigan Press. 

[37]	 Joines, lA., R.E. King, and C.T. Culbreth, Cell fonnation using genetic 
algotithm, in Group technology and cellular manufacturing, N.C. Suresh 
and J.M. Kay, Editors. 1998, Kluwer Academic Publishers: MA. p. 
185-204. 

[38]	 Venugopal, V. and T.T. Narendran, A genetic algorithm approach to the 
machine-component grouping problem with multiple objectives. 
Computers and Industrial Engineering, 1992.22(4): p. 469-480. 

[39]	 Gupta, Y.P., et aI., Minimizing total intercell at1d intracell moves in 
cellular manufacturing: a genetic algorithm approach. International 
Journal of Computer Integrated Manufacturing, 1995.9: p. 92-101. 

[40]	 Gupta, Y.P., et aI., A genetic algorithm-based approach to cell 
composition at1d layout design problems. International Journal of 
Production Research, 1996.34: p. 447-482. 

[41]	 Yang, Z., Analysis and design of cellular manufacturing 
systems-Machine-part cell formation and operation allocation, in 
Systems, Control and Industrial Engineering. August 1995, Case 
Western Reserve University. 

[42]	 Kao, Y. and Y.B. Moon, A unified group technology implementation 
using the back-propagation learning rule of neural network. Computers 
and Industrial Engineering, 1991. 20: p. 425-437. 

[43]	 Wong, B.K., V.S. Lai, and J. Lam, A bibliography of neural network 
business applications research: 1994-1998. Computers & Operations 
Research, 27: p. 1045-1076,2000. 

[44]	 Zolfaghari, S., Design and planning for Cellular 
manufacturing_application of neural networks and advanced search 
techniques, in Mechanical Engineering. University of Ottawa: Ottawa, 
Ontario, 1997. 

[45]	 Balasubramanian, K.N. and R. Panneerselvam, Covering 
technique-based algorithm for machine grouping to fonn manufacturing 
cells. International Journal of Production Research, 31(6): p. 1479-1504, 
1993. 

[46]	 Waghodekar, P.H. and S. Sahu, Machine-component cell fonnation in 
group technology: MACE. International Journal of Production Research, 
22(6): p. 937-948, 1984. 

[47]	 King, lR. and V. Nakornchai, Machine-component group formation 
in-group technology: review and extension. International Journal of 
Production Research, 20(2): p. 117-133, 1982. 

[48]	 Boe, W.J. and C.H. Cheng, A close neighbor algorithm for designing 
cellular manufacturing systems. International Journal of Production 
Research, 29(10): p. 2097-21I6, 1991. 

[49]	 Carrie, A.S., Numerical taxonomy applied to group technology and plant 
layout. International Journal of Production Research, 4(10): p. 399-416, 
1973. 

[50]	 Chandrasekhran, M.P. and R. Rajagopalan, MODROC: An extension of 
rank order clustering for group technology. International Journal of 
Production Research, 1986.24(5): p. 1221-1233. 

[51]	 Boctor, F.F., A linear formulation of the machine-part cell formation 
problem. International Journal of Production Research, 29(2): p. 
343-356,1991. 

[52]	 Kumar, K.R. and A. Vannelli, Strategic subcontracting for efficient 
disaggregated manufactuting. International Journal of Production 
Research, 25(12): p. 1715-1728,1987. 

[53]	 Burbidge, J.L., The introduction of group teclmology. 1975, New York: 
Halster Press and Jolm Wiley. 

[54]	 King, J.R., Machine-component grouping formation in group technology. 
International Journal of Management Science, 8(2): p. 193-199, 1980. 

2009 2nd International Conference on Adaptive Science & Technology 409 




