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EXECUTIVE SUMMARY 
 

 

Low level laser therapy, commonly known as LLLT or biomodulation, is a form 

of phototherapy which involves the application of low power monochromatic 

and coherent light to injuries and lesions to stimulate healing. In the medical 

field, lasers are classified as high power or surgical lasers and low level 

lasers which are used to stimulate cellular responses. Phototherapy has been 

successfully used for pain attenuation and induction of wound healing in non 

healing defects.  

 

 

Even though phototherapy has been found to be beneficial in a wide variety 

of therapeutic applications, it has been shown that phototherapy can induce 

DNA damage; however this damage appears to be repairable (Houreld and 

Abrahamse, 2008). DNA repair is vital to cells to avoid mutation. Literature 

reports show that red light or phototherapy up or down regulates genes 

involved in DNA repair (Zhang et al., 2003). N-methylpurine DNA glycosylase 

(MPG) is involved in DNA repair by catalysing the excision of a variety of 

modified bases. The exact mechanism by which phototherapy works is still 

poorly understood. 

 

 

Several authors have demonstrated that phototherapy enhances cell 

proliferation and migration. However, these cellular responses seem to 

confuse scientists as to whether wound healing is due to cell proliferation or 

migration or both. To determine the effect of phototherapy on cell proliferation 

or migration, a mini project was conducted (Zungu et al., 2008). Thus, cell 

proliferation was arrested using 5 mM hydroxyurea (HU) which is an 

antiproliferative drug. Wounded (W) human skin fibroblast cells (WS1, ATCC 

   iii 



CRL 1502) were irradiated with 5 J/cm2 using a Helium-Neon (He-Ne) laser 

with a wavelength (λ) of 632.8 nm on day 1 and 4. Cell morphology, viability 

and proliferation were measured 24 h post irradiation. Reports indicate that 

several cell culture studies have used HU to control proliferation (Cai et al., 

2000; Hamuro et al., 2002).  

 

 

Thereafter, the main study which was aimed at determining the effects of 

phototherapy on DNA damage and gene activation related to repair using 5 or 

16 J/cm2 on W human skin fibroblast (WS1) cells was performed. Both studies 

involved growing WS1 cells aseptically in complete minimum essential 

medium (MEM) with Earle’s balanced salt solution and incubated at 37 °C in 

5% CO2 and 85% humidity. Normal (N) and W cell cultures were irradiated 

with 5 or 16 J/cm2 30 min and 72 h (day 1 and 4) post wounding. Non 

irradiated cells (0 J/cm2) served as controls, while irradiated cells were the 

experimental groups. A wound was simulated by creating a central scratch 

across a monolayer of cells using a sterile 1 ml pipette. A 3 mW/cm2 He-Ne 

laser, λ 632.8 nm, was used to irradiate cells. After a repair time of 1 or 24 h 

on day 4, cell morphology (microscopy), cell viability (Trypan blue exclusion 

test and ATP luminescent assay), proliferation (XTT assay) and DNA integrity 

(alkaline comet assay with and without Formamidopyrimidine glycosylase 

[Fpg]) were assessed. The up or down regulation of the DNA repair gene, 

MPG, and regulation of three reference genes namely; beta Actin (ACTB), 

Glyceraldehyde 3 phosphate dehydrogenase (GPDH) and Ubiquitin c (UBC) 

were assessed by real time reverse transcriptase polymerase chain reaction 

(real time RT-PCR).  
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Non irradiated HU treated cells had a reduced number of cells in the central 

scratch compared to non irradiated non treated cells, suggesting that HU 

inhibited cellular proliferation. Irradiated HU treated cells showed an 

increased number of cells in the central scratch compared to non irradiated 

treated cells. This observation proved that this increase was due to the 

stimulatory effect of irradiation with 5 J/cm2. The addition of HU had no 

significant effect on cell viability. The Trypan blue exclusion test showed no 

significant difference in percent viability between treated and non treated 

cells. Irradiated non treated cells showed a significant increase in the 

formazan dye, which is as a result of cleavage of XTT by the mitochondrial 

succinate dehydrogenase in actively proliferating cells, compared to non 

irradiated non treated cells (P=0.01). 

 

 

W cells, which were not irradiated, showed incomplete wound closure at both 

1 and 24 h, while W cells irradiated with 5 J/cm2 showed complete wound 

closure. Similarly, W cells irradiated with 16 J/cm2 showed incomplete wound 

closure at 1 and 24 h. Cell viability, proliferation and DNA integrity assays 

showed that irradiated and non irradiated N cells were not significantly 

affected at both 1 and 24 h post irradiation. W cells (1 h) irradiated with 

5 J/cm2 showed a significant increase in percentage cell viability and ATP 

compared to non irradiated W cells (1 h), (P=0.05 and P=0.04 respectively), 

while irradiation with 16 J/cm2 showed a significant decrease (P=0.014 and 

P=0.02 respectively). W cells (24 h) irradiated with 5 J/cm2 also showed a 

significant increase in percentage cell viability and ATP when compared to 

non irradiated W cells (24 h), (P=0.006 and P=0.04 respectively).  Contrary, 

irradiation with 16 J/cm2 showed a significant decrease (P<0.001 and 

P=0.003 respectively).  
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Cell proliferation results showed that irradiation with 5 J/cm2 was stimulatory 

while 16 J/cm2 was inhibitory. The comet assay demonstrated that N cells 

irradiated with 5 or 16 J/cm2 exhibited an insignificant change in DNA damage 

at both 1 and 24 h when compared to their respective controls. This finding is 

in agreement with Karu et al., (2003) who observed that phototherapy does 

not alter the biological activity of cells which at the time of irradiation are 

functioning normally. W cells (1 and 24 h) irradiated with 16 J/cm2 showed a 

significant increase in DNA damage compared to their respective controls. 

However, there was a significant decrease in damage at 24 h compared to 

1 h incubation due to the activation of DNA repair mechanisms. Though not 

significant, comet assay with Fpg (modified comet assay) showed more DNA 

damage compared to comet assay without the enzyme (conventional comet 

assay). It can be explained that the modified comet assay detected and 

cleaved oxidised bases in addition to single strand breaks, which the 

conventional comet assay detected, suggesting that the modified comet 

assay is more sensitive than the conventional comet assay. 

 

 

After validation of the three reference genes, ACTB was chosen to be the 

gene with which to normalise MPG expression in WS1 cells. It was found to 

be the least variable; its expression was consistent in W cells as well as cells 

exposed to a He-Ne laser at a fluence of 5 or 16 J/cm2. It produced an 

acceptable correlation coefficient (R2 >0.999) and PCR efficiency (94%). 

Conversely, other primers like GAPDH produced a low PCR efficiency (82%), 

while UBC produced a low R2 (0.898). Wang et al., (2006) recommends the 

value of R2 to be more than 0.995 and a PCR efficiency of between 90 and 

100% for PCR results to be reliable. Other researchers have not supported 

the use of ACTB as a reference gene, stating that it is highly regulated (Wang 

et al., 2006), however this study showed that ACTB was not regulated by 

laser irradiation (632.8 nm at 5 or 16 J/cm2). The cell culture conditions and 
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laser irradiation in this study did not induce MPG expression; perhaps an 

alternative repair pathway might have been induced, and hence repaired the 

DNA damage.  

 

 

In conclusion, the mini project demonstrated that HU is able to inhibit cell 

proliferation through its cytostatic effect without affecting the viability of W 

WS1 cells. This study also showed that irradiation of W cells with 5 J/cm2 

using the correct parameters enhances cell migration and proliferation as 

evidenced by the presence of more cells in the central scratch in HU treated 

cells, and a significant increase in cell proliferation as shown by the XTT 

assay in non treated cells respectively. Thus, migration and proliferation are 

the direct result of phototherapy as both are involved in wound closure. This 

study further confirmed that irradiation of W cells with 5 J/cm2 stimulated 

ATP production, and hence cellular viability, as well as cell proliferation and 

migration.  

 

 

Irradiation of cells with higher fluences such as 16 J/cm2 is damaging to 

DNA and inhibitory to cell proliferation, migration and possibly to MPG 

expression. The study further showed that N cells are not stimulated by 

phototherapy, supporting the notion that lasers stimulate compromised cells. 

Thus, if they are growing normally there is nothing to stimulate. This 

understanding helps to clarify why N cells irradiated with 5 or 16 J/cm2 had 

insignificant responses. Cell culture conditions, fluence and duration of 

exposures are important parameters that can affect gene expression, and 

hence documentation of all experimental conditions needs to be 

emphasised and published if reproducibility is to be achieved. 
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CHAPTER 1 INTRODUCTION 
 

 
1.1 Introduction 
 
Phototherapy or biomodulation is a remarkable therapy that has become 

more popular and widely used in the treatment of a variety of medical 

conditions, such as slow to heal wounds, pain, soft tissue injuries, arthritis 

and skin trauma. Although the mechanism is not very well understood, it is 

known that light energy passes through a cell and photonic energy is 

absorbed by the mitochondria. This absorbed light stimulates a cascade of 

photobiological events. The effects of phototherapy are photochemical, not 

thermal (Matic et al., 2003).  

 

 

1.2 Statement of the Problem 
 

Even though phototherapy has been found to be beneficial in a wide variety 

of therapeutic applications, it has been shown that phototherapy can induce 

DNA damage; however this damage appears to be repairable (Houreld and 

Abrahamse, 2008). It might be that phototherapy helps the patient at first 

glance and damages DNA at the same time, thereby increasing the risk of 

therapy induced disease up to an increased cancer risk (Greulich, 2003). The 

restorative capacity of DNA damage is important for progress of life. If DNA 

damage repair mechanisms are compromised, mutation, death or extinction 

of the species may occur. The exact mechanism by which phototherapy 

influences DNA repair is not known. However, literature indicates that 

irradiation at 628 nm upregulates genes involved in DNA repair (Zhang et al., 

2003).  
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Despite extensive research in the field of phototherapy, literature still remains 

contradictory; some authors have found positive, negative or no effect at all in 

wound healing. This discrepancy has been largely attributed to poor records 

and lack of proper controls. Furthermore, little research has been done on 

DNA repair genes related to phototherapy and hence this study would add 

knowledge to the public on the molecular biology of phototherapy. Lastly, in 

South Africa not many people are aware of phototherapy as an alternative 

treatment modality for the various ailments and as such its study would help 

patients and healthcare practitioners understand and make informed choices. 

If the treatment is accepted, healthcare practitioners would incorporate it in 

their treatment plans to enhance the healing of slow to heal wounds. 

 

 

1.3 Aims 
 

The aims of this study were to:  

• assess the effects of phototherapy on wounded WS1 cells by 

investigating DNA damage and methylpurine DNA glycosylase (MPG) 

gene activation related to DNA repair using a He-Ne laser (λ 632.8 nm) 

with fluences of 5 or 16 J/cm2;   

• attempt to bridge the gap in knowledge which might have been created 

due to modern advances in cellular and molecular biological research 

techniques associated with laboratory experiments in wound healing 

and the clinical application of this knowledge; 

• compare the effect of phototherapy on the expression of MPG in WS1 

cells at 1 and 24 h post irradiation and  

• assess the sensitivity of the comet assay with and without Fpg. 
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CHAPTER 2 LITERATURE REVIEW 
 

 

2.1 Introduction 
 

 

There are conflicting reports in the literature about the effectiveness of low 

level laser therapy (LLLT), commonly known as phototherapy, in wound 

healing; some researchers reported beneficial or inhibitory effects, while 

others have reported no effect at all (Allendorf et al., 1997; Flemming and 

Cullum, 2000; Hall et al., 1994; Kopera et al., 2005; Damante et al., 2004). 

Most researchers agree that the differences in the findings might have been 

due to a number of conditions and amongst them were poor records, cell 

culture conditions, methods of assessing results, and lack of proper control 

groups and theoretical understanding (Karu, 1990; Vincky et al., 2003). 

 

 
More research is being done in wound healing using phototherapy, and there 

are numerous reports that its application enhances wound healing (Conlan et 

al., 1996; Mester et al., 1971; Mester et al., 1985). Karu (2003) observed that 

in laser therapy, the question is no longer whether light has biological effects 

but rather how irradiation from therapeutic lasers and light emitting diodes 

(LED’s) work at the cellular and organism level and what the optimal light 

parameters are for different uses of these light sources. 

 
 
2.2 Ordinary Light 
 

Light therapy, which has also been called photon therapy (Streeter et al., 

2004) has been used for healing purposes for thousands of years (Karu, 

2003). The ancient Egyptians were the first to recognise the beneficial effect 
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of sunlight on humans. In 525 B.C., Herodot correlated the strength of the 

human skull to the degree of sun exposure. The ancient Greeks (Hippocrates 

460-375 B.C. and Obrasius of Pergamon 325 A.D.) used the sun to treat a 

variety of illnesses including oedema and diseases of the abdomen and 

kidneys (Kai, 2002; Karu, 2003). Furthermore, scientists demonstrated that 

vitamin D, which is acquired through exposure to the sun, can be used to 

increase bone strength and simulated sunlight in the form of bright light has 

been shown to reduce psychological stress.  

 

 

Today, researchers are trying to reproduce light’s healing properties using 

devices such as low level lasers (Coulter, 2003). Present scientists have 

come to understand more about the nature of light and its restorative capacity 

and thus techniques and devices like lasers, that use light as part of the 

healing process, have been developed in the last few years. People had 

forgotten about the restorative capacity of sunlight. After noting that lasers 

can be used for treatment, the present generation is reminded of the past 

when sick people would be taken into the sunlight for treatment. 

Phototherapy, healing with light, could be one of the first natural therapies 

(Coulter, 2003). Enwemeka (2004) wraps it all up by saying “sunny days are 

exciting and dull ones depressing”. 

 

 

Normal daylight, which falls in the visible range, is incoherent (travels in all 

directions) and has a thermal effect. It consists of ultra violet light (300 to 

400 nm range) as well as all the colours of the rainbow (polychromatic light), 

with wavelength (λ) from 400 nanometre (nm), where the light is blue in 

colour, to the rich red λ of 700 nm (Figure 1). 
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2.3      Laser Light 
 

The laser is a device that emits a special form of light, which does not exist in 

nature and the word LASER is an acronym for Light Amplification by 

Stimulated Emission of Radiation (Tunér and Hode, 2002; Coulter, 2003; 

Carroll and Humphreys, 2006). Radiation refers to the coherent light (travels 

in a straight line) energy which is released. Light beams which fall between 

400 to 700 nm form part of the visible spectrum of the electromagnetic 

radiation spectrum (Figure 1), while ultraviolet (UV) light forms part of the 

invisible spectrum (5 to 400 nm) beyond the violet ends of the visible 

spectrum. On the opposite end, infrared (IR) light is the portion of the invisible 

electromagnetic spectrum consisting of radiation with λ 750 nm to 1 mm, 

between light and radio waves. 

 

 

 

Figure 1 The electromagnetic spectrum showing the different types of electromagnetic 
radiation. The longer the λ of visible light the more red it appears. 
Wavelengths longer than red are referred to as infrared, while those shorter 
than violet are ultraviolet. A He-Ne laser falls in the visible range (Streeter et 
al., 2004).  
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Laser light is monochromatic (has one precise colour or wavelength), it is 

coherent (travels in a straight line) and collimated (beam is concentrated in a 

defined location or spot), (Csele, 2004). These three properties make laser 

light to be considered as a disciplined light, because other light sources such 

as the sun and conventional light scatter in many directions and have no 

relationship to other light rays emitted from the same source (Gregory, 1998). 

 

 

Lasers consist of three basic components namely: a power supply (energy 

source), a lasing or amplifying medium (solid, gas or liquid), which consists of 

molecules or atoms that store and release energy, and thirdly a resonating 

cavity or reflecting mirrors that return the photons to the lasing medium until 

they are released from the laser in the form of laser energy (Gregory, 1998; 

Tunér and Hode, 2002; Carroll and Humphreys, 2006). The principle on 

which lasers are based was postulated in 1917 by Albert Einstein. In 1959, 

32 years after the concept of stimulation emission had been proposed, 

Theodore Maiman successfully developed a device known as a laser by 

utilising the technique of concentrating and amplifying monochromatic light 

which had originally been produced by two teams of researchers. Because 

the beam could be concentrated to a minute surface area, surgical 

applications were developed (Soet, 2005).  

 

 

2.4 Science of Wound Healing 
 
Anatomically, the skin is partitioned into two layers. The outermost layer is the 

epidermis, consisting of densely packed keratinocytes and the underlying 

layer is the dermis, which is composed of fibroblast cells, extracellular matrix 

and blood capillaries. The primary function of the skin is to serve as a 

protective barrier against the environment. Loss of the integrity of large 
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portions of the skin as a result of injury or illness may lead to major disability 

or even death (Singer and Clark, 1999). Diegelmann and Evans (2004) 

described the disruption of the normal anatomical structure and more 

importantly, the function as a wound. The primary function of treating a 

wound is to rapidly restore the anatomical structure and function. 

 

 

Wound healing is a dynamic, interactive process involving soluble mediators, 

blood cells, extracellular matrix and parenchymal cells. A wound is a highly 

complex biological system, and hence detailed studies of repair processes 

are vital if progress is to be made in wound healing. This process of wound 

repair is the focus of intense research, with the goal of developing more rapid 

and long lasting treatments for chronic wounds. Because of that, considerable 

studies with phototherapy as a treatment modality have been done for the 

past four decades.  

 

 

The healing process has a number of overlapping phases: inflammation, 

formation of granular tissue with angiogenesis (proliferation) and scar 

formation (remodelling) (Clark, 1996; Dyson, 1991; Singer and Clark, 1999; 

Gál et al., 2006). Each component of the wound healing process plays a key 

role through several mediators. Inflammation is the normal acute reaction of 

tissues after any injury and occurs through the actions of neutrophils, 

macrophages and lymphocytes; all mediated by growth factors and proteases 

(Yilmaz et al., 2006). The earliest circulating cell fragment detected at the 

injury site is platelets, which are involved in haemostasis and initiation of the 

inflammatory phase. Activated platelets become sticky and aggregate to form 

a plug that temporarily occludes small vessels (Figure 2). Fibroblasts also 

migrate into the wound site 24 h after injury.  
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Figure 2 A cutaneous wound three days after injury. A platelet plug is formed to 

occlude the haemorrhage. Neutrophils and macrophages produce growth 
factors which stimulate fibroblast proliferation (Singer and Clark, 1999).  

 

 

During the phase of healing (4 to 21 days), fibroblasts are activated and 

undergo a burst of proliferative and synthetic activity, initially producing high 

amounts of fibronectin and then other proteins including collagen and elastin 

(Abrahamse et al., 2006; Singer and Clark, 1999). The fibroblasts align 

themselves along the wound axis and form cell to cell links, which contribute 

to the contraction of the wound (Calvin, 1998). Finally, remodelling is 

provided by collagen cross linking. Usually, natural healing of a wound takes 

time, and humans quickly become impatient, and hence seek alternative 

remedies such as medicine and a range of natural and synthetic materials in 

an attempt to speed healing (Demir et al., 2004). Patients and healthcare 

practitioners who are aware of phototherapy as a treatment modality look for 

this intervention. 
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Even though there is no general agreement about the exact way in which 

phototherapy influences the process of wound healing, literature indicates 

that laser photobioactivation accelerates inflammation, modulates the level of 

prostaglandin, enhances the action of macrophages, promotes fibroblast 

proliferation, facilitates collagen synthesis, fosters immunity and therefore in 

the process, accelerates the healing process (Dyson, 1991; Saygun et al., 

2008). However, there are some studies which have found negative or no 

effect at all between He-Ne irradiated groups and control wounds. This is in 

sharp contrast to the general trend regarding phototherapy as a biostimulator.  

 

 
2.4.1 Chronic wound healing 
 

Wound healing is a repair process that begins immediately after the wounding 

event. Due to various reasons, some wounds take longer to heal, and hence 

wounds are often classified as acute or chronic. Acute wounds take less than 

8 weeks to heal and have not yet completed the natural healing cycle. 

Lazarus et al., (1994) defines a chronic wound as one that fails to proceed 

through an orderly and timely process to produce anatomic and functional 

integrity, or one that proceeds through the repair process without establishing 

a sustained anatomic and functional result. Chronic wounds either require a 

prolonged time to heal, do not heal completely, or recur frequently.  

 
 

A large number of factors can impede wound healing and may predispose a 

patient to the development of chronic wounds (Williams and Barbul, 2003). 

For instance, if the inflammatory phase persists beyond its normal 

physiological limits, a chronic wound is generated (Ennis et al., 2007). 

Chronic wounds usually attract macrophages which produce matrix 

metalloproteinase. This protein is associated with inflammation. Thus as long 
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as there is inflammation reactive oxygen species (ROS), which damage DNA, 

are produced (de Bont and Larebeke, 2004). Phototherapy is known to be 

associated with the reduction of inflammation. 

 

 

Chronic wounds are an economic burden to the family as well as the 

government because patients suffering from these wounds are most of the 

time semi incapacitated, if not completely, and thus have to be cared for. If 

admitted, they also spend more time in the hospital. Previous studies indicate 

that phototherapy enhances wound healing (Conlan et al., 1996) and could 

thus decrease this burden by saving valuable time and resources for both 

patients and healthcare facilities. Furthermore, improved wound healing 

would reduce the risk of infection for the patient, decrease the amount of 

costly dressings required, and more quickly return the patient to a 

pre-injury/illness level of activity. 

 

 

2.5 Laser Light Tissue Interaction 
 

Light or laser light can interact with tissue in four ways namely: transmission, 

reflection, scattering and absorption. Transmission refers to the passage of 

light through a tissue without having any effect on that tissue or on the 

properties of the light. The transmission of laser radiation in tissues is related 

to its wavelength. Reflection refers to the repelling of light off the surface of 

the tissue without entering the tissue. Scattering of light occurs after it has 

entered the tissue, whereby the beam of light is spread out within the tissue 

resulting in irradiation of a larger area than anticipated (Carroll and 

Humphreys, 2006). Absorption is a process by which a photon gives up 

energy to its surrounding medium. This energy is ultimately responsible for 

photobiostimulation (Streeter et al., 2004). 
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According to the Grothus-Draper law light must be absorbed by tissue to 

produce an effect in that tissue. Light absorbing tissue components are 

known as chromophores. Laser transforms light into electrical energy which is 

applied to tissue to accomplish a task. If properly applied, the task can be 

accomplished precisely with great benefit and few adverse effects (Gregory, 

1998). Thus absorption of the photons of laser light is responsible for the 

effects on the tissue; cell metabolism activation via the respiratory chain 

occurs in all cells susceptible to light irradiation. Susceptibility to irradiation 

and capability of activation depends on the physiological status of irradiated 

cells; cells whose overall redox potential is shifted to a more reduced state 

(e.g. in a pathological state) are sensitive to irradiation (Karu, 1988; Karu 

2003). Mester et al., (1991) states that photons absorbed by tissue are 

thought to cause biological effects by two mechanisms: non specific 

photothermal effects caused by kinetic excitation and specific photochemical 

effects caused by electronic excitation of chromophore molecules. Thus, a 

fundamental understanding of laser tissue interactions is vital for the proper 

and appropriate use in clinical practice (Carroll and Humphreys, 2006).  

 

 

Although several types of lasers exist, two lasers are commonly used in 

therapy namely: infrared and He-Ne lasers, with infrared being the most 

common. Infrared laser irradiation shows a higher penetration into tissues 

than laser light in the red region of the visible spectrum. A He-Ne laser has an 

indirect penetration depth of 1 to 1.5 cm and a direct penetration of 0.5 cm 

(Hartley, 2004).  Laser therapy has proved useful in the treatment of skin and 

mucosal disorders (Mester et al., 1985). The He-Ne laser has been used for 

wound healing for more than 30 years (Tunér and Hode, 2002). The long 

duration of use of the He-Ne laser has been attributed to the fact that it was 

the first commercially available source of coherent red light (Karu, 1990).  

 

   11 



The beam of a low energy laser produces a temperature change confined in 

the range from less than 0.1 to 0.5 °C in the irradiated tissues (Basford, 1989; 

Yu et al., 2003). The properties of lasers allow laser light used in 

phototherapy to penetrate the surface of the skin with no heating effect, no 

damage to the skin and no known side effects. Therefore, biological effects 

are derived directly from the radiation itself rather than from thermal influence 

(Yu et al., 1996).  Laser light directs biostimulation light energy to the body's 

cells, which the cells then convert into chemical energy to promote natural 

healing and pain relief.  

 

 

2.6 Laser Therapy 
 
While other researchers were busy with military applications, Endre Mester 

suspected that the laser could have a more human application; the 

destruction of malignant tumours. Mester’s research did not work as 

anticipated; he found that the treatment was ineffective against malignancies. 

However, he observed that the incisions made to implant malignant cells in 

test animals appeared to heal faster in treated animals than in the control 

animals that were not treated. At last, he discovered that his laser was 

underpowered and hence could not destroy the cancerous tissue but could 

stimulate healing (Soet, 2005).   

 

 

In the medical field, the application of laser therapy started with the eye 

(Steen, 2003). This therapy has been divided into two major categories 

namely; High Level Laser Therapy (HLLT) and LLLT. High level lasers are 

also known as surgical lasers because they can replace the knife of a 

surgeon; they can burn, cut and ablate (Damante et al., 2004). In order for a 

laser to be used as a surgical laser it must be powerful enough to heat up the 
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tissues to a temperature of over 50 °C (Tunér and Hode, 2002). HLLT, as a 

surgical knife, has shown certain advantages over the scalpel blade because 

surgery using lasers is a non contact method, bloodless, precise, has 

minimum post operative oedema, painless healing and is without 

complication (Takac et al., 1998).  

 

 

In a different way, LLLT, which is a branch of phototherapy, utilises low power 

energy for biostimulating target cells or altering cellular behaviour (Damante 

et al., 2004). The energy range for low level lasers lies between 1 to 500 mW, 

while for surgical lasers the energy ranges between 3,000 to 10,000 mW. The 

use of HLLT as a surgical tool is established while LLLT, as a biostimulator, is 

not really established. There are controversies with the application of LLLT in 

biostimulation (Soet, 2005) and more studies are being pursued to have LLLT 

established. 

 

 

Reports by Mester and colleagues in the late 1960’s and early 1970’s showed 

that 1 to 4 J/cm2 of laser irradiation induced healing of chronic non healing 

soft tissue ulcers and formed the genesis of clinical laser therapy (Mester et 

al., 1971; Schindl et al., 2000). Since then, over 2,000 studies have been 

published, producing a wide range of results (Papillion et al., 2004). Lasers 

have been found to be beneficial in a wide variety of therapeutic applications 

such as treatment of dermatological conditions, dental problems, tumours, 

surgical cases and reducing pain.   

 

           

Even though laser medicine has been in existence for more than four 

decades, it is still unclear as to its effects on human cells, and therefore 

studies are still on-going to find effects of phototherapy on cells. Reports 
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contradict on the effects of phototherapy and this has been attributed to 

difficulties in identifying its effect on cells (Carnevalli et al., 2003; Allendorf et 

al., 1997). Literature has shown that even though phototherapy has been 

found beneficial in a wide variety of therapeutic applications, it can induce 

DNA damage; however this damage appears to be repairable (Houreld and 

Abrahamse, 2008). It might be that phototherapy helps the patient at first 

glance and damages DNA at the same time, thereby increasing the risk of 

therapy induced disease up to an increased cancer risk (Greulich, 2003). 

Kujawa et al., (2004) had similar sentiments by stating that even though 

phototherapy is used in the biomedical treatment of many diseases, the 

possible molecular mechanisms of laser actions remain unclear and the 

damaging effects of laser irradiation are still controversial. 

 

  

Simunovic (2000) observed that a cell without adenosine triphosphate (ATP) 

cannot maintain life, and therefore activities of the cell correlate to the amount 

of ATP which can be influenced by laser irradiation. Other studies proposed 

that phototherapy increases ATP production in the mitochondria, and that 

with more energy available the cell utilises this fuel to operate more efficiently 

(Karu, 1988). That is, it might be able to synthesise more proteins involved in 

cellular repair and enhance proliferation. Not only does laser irradiation 

increase ATP at the cellular level, researchers have also shown that it causes 

stimulation of the mitochondria, cellular enzymes, macrophage activation, 

collagen synthesis, significant increase of granulation tissue, increased 

permeability of cell membranes, increase in serotonin and endorphin levels 

with decreased fibre activity and bradykinin. The mentioned stimulatory 

effects of phototherapy make it a useful remedy for treatment of slow to heal 

wounds. Phototherapy is an effective therapy, working in harmony with the 

body’s own healing and relieving mechanism (Hartley, 2004).  
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Biostimulatory effects of lasers are governed by the Arndt-Schultz law of 

biology; weak stimuli excite physiological activity while strong stimuli retard or 

abolish activity (Figure 3), (Sommer et al., 2001). The optimal energy density 

for biostimulation in the Laser Research Group is 5 J/cm2 and fluences more 

than 10 J/cm2 cause DNA damage and hence inhibit growth of cell cultures 

(Mbene et al., 2006; Zungu et al., 2008; Houreld and Abrahamse, 2008). 

 

 

                                                                                                                                                                          
Figure 3 Irradiation of cells with 5 J/cm2 is stimulatory while irradiation with more 

than 12 J/cm2 is inhibitory. Basic Arndt-Schultz rule asserts that there is an 
ideal dosage for a best possible response and that too little energy will 
have no effect, while too much will be suppressive (Adapted from Sommer 
et al., 2001). 
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2.7      DNA Damage and Repair 
 

The human genome is continuously exposed to exogenous and endogenous 

alkylating and oxidative agents that result in DNA damage. This damage 

interrupts the continuity of genetic information by inhibiting or preventing 

transcription, DNA replication, and cell division. Exogenous sources include 

UV radiation from the sun, ionising radiation, aflatoxin from fungi, burning 

tobacco and many chemotherapy drugs. On the other hand, endogenous 

sources include oxidative metabolism and spontaneous alterations of DNA. 

DNA damage produced by ROS is the most frequently occurring damage. If 

the damage is unrepaired, it can lead to the production of mutations by 

insertion of incorrect bases, or cell death by blocking DNA replication and 

ageing (Livneh, 2001; Dale and Park, 2004; Wood, 1994).  

 

 

DNA repair is controlled by a specific set of genes encoding the enzymes that 

catalyse cellular response to DNA damage. For instance, when DNA is 

damaged by radiation, enzymes within the cell nucleus attempt to repair the 

damage. These DNA repair mechanisms are an important component of the 

cell’s defences against a variety of agents that damage the DNA (Dale and 

Park, 2004), (Table 1). It appears phototherapy can be used in maintaining 

proper functions of the body. Thus, the study of genes involved in DNA repair 

can have an important impact in phototherapy.  

 

 

Ruttan and Glickman (2002) observed that dozens of genes are involved in 

DNA damage repair to maintain genomic stability through different pathways, 

including direct repair, base excision repair, nucleotide excision repair, 

mismatch repair and double strand DNA break repair. The genetic alterations 

of these genes may affect the function of their proteins and lead to 
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development of diseases or cancers (Friedberg, 2003; Goode et al., 2002). 

Ronen and Glickman (2001) observed that about 125 human genes were 

directly involved in five major DNA repair pathways. With this in mind, the 

study of genes related to DNA repair would expose more insights in the field 

of molecular biology and phototherapy. 

 

 
Table 1 Proteins which repair DNA damage. 
 

PROTEIN SUBSTRATE REFERENCE 

Fpg Oxidised purine Buschini et al., (2007) 

uvrABC UV damage Houten et al., (2005) 

3 methyladenine DNA 
glycosylase* 3 methyladenine sites 

7 methylguanine DNA 
glycosylase* 7 methylguanine sites 

Samson et al., (1991) 

Uracil DNA glycosylase Misincorporated uracil Krokan et al., (1997) 

hOGG1 Oxidative DNA damage Sidorenko et al., (2008) 

* Commonly known as methylpurine DNA glycosylase; hOGG1 (human oxoguanine 
DNA glycosylase 1); Fpg (Formamido pyrimidine glycosylase); uvrABC (ultraviolet 
radiation A, B, C). 
 

 

MPG is involved in DNA repair by catalysing the excision of a variety of 

modified bases. Increased expression of MPG has been observed in high risk 

human papilloma virus (HPV) infected tissues and breast cancers when 

compared to normal primary epithelial cells (Sohn et al., 2001; Cerda et al., 

1998). This finding suggests the role of MPG in DNA repair. MPG is the major 

repair protein in mammalian cells that is responsible for the removal of a 

variety of alkyl and cyclic ethanoabase adducts in the cellular genome (Roy et 

al., 1997). Thus, studies of regulation of MPG expression in mammalian cells 

are highly significant so as to check the correlation of DNA damage due to 
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phototherapy and repair. It has been noted that under expression of MPG in 

rats renders them susceptible to mutation (Holt et al., 2000). Other studies 

indicated that over expression of MPG did not increase tolerance to alkylating 

agents, but increased the number of apurinic sites and lead to a higher 

incidence of sensitised sister chromatid exchanges (Fishel et al., 2003). The 

presence of accumulated apurinic/apyrimidinic (AP) sites may lead to a 

miscoding or further stress in downstream base excision repairs. The above 

observation suggests that increased expression of MPG does not necessarily 

protect cells, but could in some instances lead to a decrease in resistance to 

environmental stress.   

 

 

There are also reports that MPG removes intact bases in addition to damaged 

ones. Therefore at higher than physiological levels, this promiscuity could 

become significant (Fishel et al., 2003; Berdal et al., 1998). With this 

observation, the expression of MPG is expected to be highly regulated in 

order to protect both against external exposure to DNA damaging agents and 

to reduce induction of spontaneous mutations. 

 

 

To prevent the potentially deleterious effects of DNA lesions, cells have 

evolved sophisticated DNA repair systems (base excision repair [BER], 

nucleotide excision repair [NER] and DNA repair methyltransferase [Mtase]), 

(Friedberg et al., 1995). BER is initiated by DNA glycosylases, a class of 

enzymes that recognise a specific set of modified bases such as 

7,8-dihydro-8-oxoguanine (8-oxoG) or thymine glycol (Croteau and Bohr, 

1997).  
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Lesions that cause greater disturbances to double helical DNA are corrected 

by NER, which removes a segment of DNA surrounding the alteration. 

Contrary, simple modifications to single damaged bases are dealt with by 

BER, which sequentially removes the modified base and deoxyribose sugar. 

In both excision repair processes, the missing bases are resynthesised by a 

DNA polymerase, using the complementary strand as a template (Wood, 

1994). Methyltransferases are enzymes found in many organisms that 

remove methyl groups from the susceptible positions. Each enzyme transfers 

a methyl group to one of its own cysteine residues. Human cells lacking this 

enzyme are more susceptible to alkylation than normal (Wood, 1994).  

 

 

Most damage or inappropriate bases in DNA are removed by excision repair, 

while a minority are repaired by direct damage reversal (Lindahl and Wood, 

1999; Sancar et al., 2004).  MPG is one of the DNA glycosylases, which is 

involved in BER. It is a broad spectrum excision repair protein which 

recognises a wide variety of damaged bases (Rinnie et al., 2004). There are 

two classes of DNA glycosylases; the monofunctional, exhibiting only the 

glycosylase activity, such as MPG and uracil DNA glycosylase, which use an 

activated water molecule as a nucleophile to generate an AP site in DNA 

(Adhikari et al., 2008), and the bifunctional such as human oxoguanine DNA 

glycosylase 1 (hOGG1) and human endonuclease III, which are 

glycosylases/AP lyases. The later possess both an activity to remove the 

substrate bases and an activity to incise the phosphodiester backbone. In 

human cells, an example of the first category is the 3-methyladenine DNA 

glycosylase and the alkyl N-purine DNA glycosylase (ANPG) protein. The 

second category has hOGG1 which excises the potent premutagenic lesion, 

8-oxoG (Croteau and Bohr, 1997; Blainey et al., 2006). 
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MPG is responsible for the hydrolysis of the deoxyribose N-glycosyl bond, 

excising 3-methyladenine and 3-methylguanine from the damaged DNA. The 

resulting AP site is further processed by an AP endonuclease which cleaves 

5’ to the AP site and a phosphodiesterase releases the remaining 5’-

deoxyribose phosphate to leave a nucleotide gap in the DNA that is filled by 

the repair DNA polymerase, and thus the remaining nick is sealed by a DNA 

ligase (Seeberg et al., 1995).  

 

 

MPG has been studied and detected in humans as well as other organisms. 

In both cases it has been shown to be involved in DNA repair whereby it 

catalyses the excision of a variety of modified bases (Olsen et al., 2001). 

Zheng et al., (2006) observed that MPG could not be associated with the 

initiation and development of astrocytosoma because there was no significant 

difference in its expression in all the grades.  

 

 

Intermediates formed during BER can be more deleterious to the cell than the 

initial damage if repair is not completed. In many cases, damaged DNA bases 

are less toxic, but lead to mutagenesis during DNA replication. On the other 

hand, unrepaired AP sites are cytotoxic lesions that block DNA replication. 

Also, single stranded breaks (SSBs) can form at AP sites that may lead to 

double stranded breaks during replication (Maher et al., 2007). Fan and 

Wilson (2005) observed that BER pathways must be coordinated to ensure 

that the repair process is completed so as to minimise the aforementioned 

circumstances.  
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2.8     Gene Expression 
 

Gene expression analysis provides significant insight to understanding 

regulatory mechanisms of cell biology. According to the literature, 

phototherapy is known to increase cell proliferation, viability, enhance wound 

healing and reduce stress (Atabey et al., 1995; Damante et al., 2004). 

However, the mechanism by which phototherapy provides these beneficial 

effects is not clearly known. It has been shown that phototherapy up 

regulates genes involved in cell proliferation such as Platelet Derived Growth 

Factor c and Mitogen Activated Protein Kinase II and antioxidant related 

genes which include Selenoprotein W 1, just to mention a few (Zhang et al., 

2003).  

 

 

Whelan et al., (2003) observed that mouse tissue regenerating genes were 

significantly up regulated upon LED treatment when compared to the 

untreated sample. Examples of these genes include Integrins, Nidogen, 

Laminin, Actin and Kinesin motor proteins. These genes were identified upon 

gene array experiments with RNA isolated from sponges from the wound site, 

with and without LED treatment. In the same study, cell death associated 

genes were down regulated upon LED treatment, which increased 

proliferation. This shows that depending on the regulation of genes, the 

normal function may be increased or slowed down. For instance if MPG is 

optimally up regulated, the excision of oxidised bases would be increased 

(Table 2) whereas the down regulation of Cullin 1 enhances cell growth 

(Zhang et al., 2003). The down regulation of genes enhancing apoptosis 

genes slows down apoptosis. 
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Table 2 Gene activation in wound healing. 
 

GENE FUNCTION REFERENCE 

N-methylpurine DNA 
glycosylase (MPG) 

Zhang et al., (2003) 

Nucleoside diphosphate 
linked moiety X type motif 1 
(NUDT1) 

Zheng et al., (2006) 

Adenine 
phosphoribosyltransferase 
(APRT) 

DNA synthesis and 
repair 

Samson et al., (1991) 

Heat shock 70 kD protein 
1A (HSPA1A) 
Caspase 6 (CASP6) 

Apoptosis and stress 
protein 

Zhang et al., (2003) 

Serum response factor 
(SRF) 

Schratt et al., (2001) 

Platelet derived growth 
factor c (PDGFC) 

Cell proliferation 
Iyer et al., (1999) 

Leukocyte receptor cluster 
(LRC) member 5  (LENG5) 

Martin et al., (2002) 

E74 like factor 1 (ELF1) Peng, (2004) 

Septin 6 (SEP2) 

Immune 
inflammation and 

cytokine 
Senese et al., (2007) 

 

 

MPG, nucleoside diphosphate linked moiety X type motif 1 (NUDT1) and 

adenine phosphoribosyltransferase (APRT), just to mention a few, are some 

of the genes involved in DNA repair or removal of oxidised bases incurred 

due to ROS or irradiation. Zhang et al., (2003) demonstrated that red light 

(λ 628 nm) up regulated these genes. Phototherapy has also been linked to 

the up regulation of the production of growth factor genes such as fibroblast 

growth factor-2 (FGF-2), transforming growth factor-beta (TGF-b), epidermal 

growth factor (EGF) and growth factor receptors, which are directly involved 

in cell proliferation. It is in view of this that this study was conceived to look at 

the effects of phototherapy on gene activation related to DNA repair. 

   22 



2.9 Detection of Damaged DNA (Enzyme-Linked Comet Assay)  
 

The comet assay, also known as single cell gel electrophoresis (SCGE), 

(Andreoli et al., 1999; Wang et al., 2007), when linked with enzymes produce 

models of greater specificity and sensitivity. It is then also known as the 

modified comet assay because of an additional step of enzyme treatment to 

incise the DNA strand at the site of the damage (Collins et al., 1996; Møller et 

al., 2000). In addition to SSBs, double strand breaks (DSBs) and AP sites, 

other types of damage such as oxidised bases or ultraviolet-induced 

dimmers, which do not cause strand breaks, exist. These types of damage 

cannot be detected unless lesion specific enzymes are added at the post lysis 

stage to create breaks at the sites of damage.  

 

 

Enzymes that have been used in the comet assay to date include 

endonuclease III, which detects oxidised pyrimidines (Collins et al., 1993), 

formamidopyrimidine glycosylase (Fpg), which detects oxidised purines, 

uvrABC, an enzyme complex that can be used to detect UV damage on bulky 

lesions (Dušinská and Collins, 1996), 3-methyladenine DNA glycosylase II 

(AlkA) that reveals 3-methyladenine sites (Collins et al., 2001), and uracil 

DNA glycosylase (UDG), which exposes sites of misincorporated uracil. Smith 

et al., (2006) also demonstrated that hOGG1 is more specific to oxidative 

DNA damage than other enzymes. Many studies have used the modified 

comet assay to investigate DNA damage in vitro for over 10 years because of 

its simplicity, sensitivity and the large number of samples that can be 

examined at once (Collins et al., 2001; Collins et al., 1993; Møller et al., 

2000). On the other hand, the end point measured by the traditional comet 

assay is a mixture of direct strand breaks and DNA damage that is converted 

to strand breaks by alkaline treatment (Møller et al., 2000). 
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Although studies in both laboratory conditions and clinical settings seem to 

show that phototherapy is an effective treatment for enhancing wound healing 

in different types of wounds, the molecular mechanisms induced by low level 

laser irradiation are still poorly understood. This study is therefore justified as 

it is apparent that there is a need for more molecular and cellular research 

into laser biology in order to elucidate the effects of phototherapy on human 

cells. 
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CHAPTER 3 MATERIALS AND METHODS 
 
 

3.1 Cell Culture 
  
This study received ethical approval from the University of Johannesburg, 

Faculty of Health Sciences Ethics Committee (approval clearance reference 

number 06/06). All materials and cells used were supplied by Scientific Group 

Adcock Ingram S.A., unless specified otherwise. A flow diagram of the study 

design can be seen in Appendix A1. Human skin fibroblast cells, WS1, 

(ATCC, CRL 1502), (Appendix B1) were cultured in minimum essential 

medium (MEM) with Earle’s balanced salt solution (INV/32360-026). The 

medium was modified to contain 2 mM L-glutamine (INV/25030-O24), 1.0 mM 

sodium pyruvate (INV/11360-039), 0.1 mM nonessential amino acids 

(INV/11140-053), 1% v/v Penicillin Streptomycin Fungizone (INV/17-745E), 

and supplemented with 10% v/v foetal bovine serum (FBS), (INV/10108-165). 

This modified media was called complete media (Appendix B2). Stocks of 

WS1 cells were stored in liquid nitrogen, when required, cells were rapidly 

thawed at 37 °C, added to 10 ml complete media and spun in a centrifuge 

(Digicen-R, Instrulab SA) at 2,200 rpm for 4 min. The supernatant was 

discarded; the cell pellet was resuspended in 25 ml complete media and 

seeded into a 75 cm2 flask. WS1 cells were incubated aseptically in 5% 

carbon dioxide (CO2) and 85% humidity at 37 °C (Figure A2).  

 

 
3.1.1 Subculture 
 

When cells reached a confluence of 90%, cells were subcultured according to 

standard cell culture techniques. The media in which cells were growing was 

discarded and the monolayer cell sheet was rinsed twice with Hanks 
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Balanced Salt Solution (HBSS), (INV/14170-0881) to remove traces of FBS 

which interfere with trypsinisation. Cells were then trypsinised (1 ml/25 cm2) 

using a 0.25% v/v trypsin-0.03% EDTA solution and incubated at 37 °C for 

4 min to facilitate detachment of cells. Thereafter, an equal amount of 10% 

FBS in MEM was added to the cell suspension to inactivate trypsin which is 

toxic to cells. The suspension was poured into a 50 ml centrifuge tube 

(Scientific Group Adcock Ingram S.A., CR/430829), gently mixed and spun in 

a centrifuge (Digicen-R, Instrulab SA) for 4 min at 2,200 rpm (Figure A3). The 

supernatant was discarded and the cell pellet resuspended in 5 ml complete 

media. The suspension was then added to 70 ml of complete media in a 

175 cm2 flask and cultured. After growing to 90% confluence, cells were 

harvested, resuspended and split into four equal volumes. Two volumes were 

used for conducting tests, the third volume was cultured again in a 75 cm2 

flask for propagation of cells and was given a consecutive passage number. 

The fourth volume was frozen in cryopreservative media for future use. 

 

 

3.1.2 Cell model 
 

For the experiments, 20 µl of resuspended trypsinised cells was mixed with 

an equal volume of 0.4% Trypan blue (Sigma-Aldrich S.A., T-8154) and the 

number of viable cells was determined (see 3.4.1 and Appendix B7). 

Approximately 6 x 105 cells in 3 ml culture medium were grown in 3.4 cm 

diameter culture dishes. Normal (N) and wounded (W) cells were used in this 

study as shown in the flow diagram (Appendix A1). A central scratch was 

made across a monolayer of cells using a 1 ml sterile pipette to simulate a 

wound according to Rigau et al., (1995). Several studies have used this 

wound model to study the effect of phototherapy using a He-Ne laser 

(Abrahamse et al., 2006; Hamuro et al., 2002; Hawkins and Abrahamse, 

2007a; Mbene et al., 2006; Pullar et al., 2006; Yarrow et al., 2004).  
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3.2       Laser Irradiation 
 

The He-Ne laser is the most common and familiar type of laser. This laser 

was developed between 1960 and 1961 (Siegman, 1986) and it is one of the 

earliest lasers to be made (Hartley, 2004). It produces visible red light in a 

continuous wave (CW). A CW laser emits a constant (or slowly changing) 

power for a period of more than half of a second (King, 1989) and may result 

in non selective injury (Carroll and Humphrey, 2006).  

 

 

Lasers were supplied and set up by the National Laser Centre (NLC) S.A. 

Normal and wounded WS1 cells were irradiated with a He-Ne laser 

(Spectraphysics, Model 127) at λ 632.8 nm with a fluence of 5 or 16 J/cm2 

(Figure 4). Laser parameters are shown in Table 3.  
 
 

 
Figure 4 A He-Ne laser (Spectraphysics, model 127) was used to irradiate cells at 

λ 632.8 nm. This laser has a spot size of 9.08 cm2. He-Ne gas is the 
amplifying medium in this laser. 
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Table 3 Irradiation parameters using the He-Ne laser.   
 

VARIABLE PARAMETERS 

Wavelength 632.8 nm 

Wave emission  Continuous wave (CW) 

Power density 1 - 3 mW/cm2 

Spot size 9.08 cm2  

Fluence 5 or 16 J/cm2 

Cells N and W (WS1) 

No. of exposures 2 

Days exposed 1 and 4 

Duration of effect 1 or 24 h post irradiation 
 N = normal; W = wounded 
 
 
All irradiations were performed from the top with the culture plate lid off in a 

temperature controlled room (21 °C) with the lights off so as to minimise 

interference from other light sources. The visible red laser beam was 

expanded using a concave lens and reflected downwards towards the cells 

using a mirror and clipped with an iris to produce a truncated Gaussian beam 

with a spot size of 9.08 cm2 (Figure 5). The area of the beam is the same as 

the area of the culture dishes. Carroll and Humphreys (2006) observed that 

the spot size of a laser is equivalent to the laser beam cross section and 

directly affects the fluence and the irradiance of a laser beam. A power meter 

(Fieldmate) was used to measure the power output prior to irradiation; the 

value obtained was used to calculate the duration of laser exposure as 

follows:  

 
X mW x 4       =   mW/cm2 
π (Diameter)2 
 
Time (s) = Energy density (J/cm2) 
                  Work (W/cm2) 

 

 

 

   28 



 
            

Y

Z 

X 

 Figure 5 The laser beam was clipped with an iris 
at X and produced a spot size of 
9.08 cm2. The timer (Y) was used to time 
duration of laser exposure. WS1 cells 
were irradiated in a 3.4 cm diameter 
culture plate (Z). 

 

 

On average the power output for the two lasers used during the study was 

20 mW and 15.9 mW. However, due to expansion and reflection of the laser 

beam, power density at the level of the cells decreased to 78.7% and 87.1% 

respectively. Thus, the power density at the cellular level was determined by 

multiplying the power output by either 0.787 or 0.871 and divided by the area 

of the culture dish (9.08 cm2). This then translated to a power density of 

1.7 mW/cm2 and 1.5 mW/cm2 respectively. The average irradiation time to 

achieve a fluence of 5 J/cm2 was calculated to be 45 min 18 s and 51 min 

29 s respectively, while for 16 J/cm2 irradiation time was calculated to be 2 h 

24 min 57 s and 2 h 44 min 55 s respectively. Control cells were treated in the 

same manner but were not irradiated.  
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Cells were irradiated 30 min and 72 h (day 1 and 4) post wound induction 

using 5 or 16 J/cm2. Hawkins and Abrahamse (2005) and Houreld and 

Abrahamse (2008) demonstrated that 5 J/cm2 promoted healing while 

16 J/cm2 produced a significant amount of cellular and molecular damage. 

Therefore, 5 J/cm2 was selected with the view that it would equally stimulate 

healing while 16 J/cm2 would have a damaging effect therefore provide a 

good comparison for (1) comet assay with and without Fpg and (2) the up or 

down regulation of MPG using 5 or 16 J/cm2. 

 

 

3.3 Cell Morphology  
 
Cellular and molecular responses were assessed on day 4 at 1 or 24 h post 

irradiation. Abrahamse et al., (2006) observed that irradiation of cells with 5 or 

16 J/cm2 and measuring responses 24 h post irradiation produced stimulatory 

and inhibitory effects on irradiated cells respectively. Kreisler et al., (2003) 

reported that cells showed increased proliferation and viability 24 h post 

irradiation. Therefore, it was with this understanding that 24 h was chosen as 

cells seem to have maximum time to repair while 1 h seems not enough time 

for cells to repair. This provided a way of comparing responses at 1 or 24 h.  
 
 
N and W human skin fibroblast cells were observed for changes in cell 

morphology using an inverted light microscope (Olympus CKX 41), (Figure 

A4). Observation was focussed on colony formation (cell regrouping at wound 

margin), haptotaxis (cell orientation) of the edge fibroblast cells, chemotaxis 

(cell migration across the central scratch) and number of cells in the central 

scratch (Rigau et al., 1995). A camera (Olympus Camedia C-3030 zoom) 

attached to an inverted microscope was used to digitally record the behaviour 

of cells on day 1 and 4.  
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3.4 Cell Viability 
 

There are various methods of assessing cell viability. In this study, the Trypan 

blue exclusion test and ATP luminescent assay were used. Trypan blue is 

used to examine the integrity of the cell membrane and thus viability, while 

the ATP luminescent assay measures the mitochondrial activity of the cell. 

ATP is the primary energy unit for cells and levels of this compound offer a 

potential marker for cell viability and growth. The availability of a luminescent 

assay allows a rapid, sensitive, and reproducible measurement of ATP (Riss 

et al., 2002). 

 

 

3.4.1 Trypan blue exclusion test 
 
Trypan blue is a vital stain used to determine the number of viable cells 

present in a cell suspension. Due to the selectivity in staining, this assay is 

also called the dye exclusion test (Ridder et al., 1988). The test is based on 

the principle that live cells possess an intact cell membrane that exclude 

certain dyes, such as Trypan blue, eosin or propidium, whereas dead cells 

allow the stain to penetrate. The chromophore in Trypan blue is negatively 

charged and does not interact with the cell nucleus unless the membrane is 

damaged. Thus viable cells remain colourless, while non viable cells stain 

blue.  

 

 

Itoh and Linn (2005) and Ridder et al., (1988) used the Trypan blue exclusion 

test to determine cell viability by looking at permeability. Azevedo et al., 

(2006) also used the Trypan blue exclusion test with a haemocytometer to 

determine the number of human gingival fibroblast cells. In this study an 

equal volume (25 µl) of a 0.4% Trypan blue in HBSS and cell suspension was 
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added and incubated at room temperature for 5 min. Ten microlitres was then 

loaded on either side (chamber) of the haemocytometer (Figure 6a). Viable 

and non viable cells were counted in the 1 mm centre square (C) and four 

1 mm corner squares (W), (Figure 6b).  

 

 

        
Figure 6 A haemocytometer showing two chambers in which cells were 

counted using a light microscope. A mixture of the cell suspension 
was loaded on either side (chamber). Both chambers were counted 
and a total cell count per ml was calculated. Chamber A has been 
enlarged so as to show the 5 big squares in which cells were 
counted; one centre square (C) and 4 corner squares (W). Each 
square has an area of 1 mm2 and has 16 tiny squares. When the 
chamber is charged, it has a depth of 0.1 mm. 

  

  

Cells touching the top and left  lines of each small square were counted, 

leaving out cells which touched the bottom and right sides so as not to count 

the same cells twice. This procedure was repeated for the other chamber (B). 

The total number of viable and non viable cells was recorded and the number 

of cells per ml was calculated (Appendix B5). The percentage of viable cells 

for each chamber was then calculated as follows: 

 

 

 
 

Viable cells (%) =     total number of viable cells per ml of aliquot   x 100 
       total number of cells per ml of aliquot 
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3.4.2 ATP luminescent assay 
 

The CellTiter-Glo luminescent cell viability assay (Whitehead Scientific S.A., 

Promega G7571) is based on the quantification of ATP present, which signals 

the presence of metabolically active or viable cells (Riss et al., 2002). Equal 

volumes (50 µl) of cell suspension (7 x 104) and CellTiter-Glo reagent were 

added and mixed using an orbital shaker for 2 min to induce lysis. The tube 

was incubated at room temperature for 10 min for the signal to stabilise. 

Luminescence was measured in reading light units (RLU) using the Junior EG 

and G Berthold luminometer. The reading from the negative control (CellTiter-

Glo reagent and media without cells) was subtracted from each sample’s raw 

data to eliminate background absorbance due to media and other 

substances. 

 
 
3.5  Cell Proliferation 
 

The XTT, (Roche S.A., 1465015), (Sodium 3’ - (1 - (phenylaminocarbonyl) - 3, 

4 - tetrazolium) - bis (4 – methoxy – 6 -nitro) benzene sulfonic acid hydrate) 

assay was used to assess cell proliferation. Mitochondrial succinate 

dehydrogenase in metabolically active cells cleaves the yellow tetrazolium 

salt (XTT) forming an orange formazan dye. The formed dye is soluble in 

aqueous solutions and was spectrophotometrically quantified using a 

BIO-RAD Benchmark plus microplate reader. The absorbance is directly 

proportional to the number of proliferating cells. Lewis et al., (2001) used this 

test to determine cell proliferation on the effects of ketamine administration in 

high concentrations on cultured cells.  
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To determine the effect of phototherapy on migration and proliferation, a mini 

project was done. Hydroxyurea (HU), (Sigma-Aldrich S.A., H8627) was added 

to experimental cells to a final concentration of 5 mM in 3 ml complete media. 

Cells were then incubated overnight and irradiated with 5 J/cm2 on day 1 and 

4. The mode of action of HU includes inhibition of DNA synthesis without 

affecting RNA or protein synthesis in a fluence dependent manner. HU at a 

final concentration of 5 mM has been used in many studies to inhibit 

proliferation (Hamuro et al., 2002; Sarkar et al., 1996; Yabro et al., 1965). 

 

 

A total of 2 X 104 cells/ml (20 µl) in 80 µl of original media, was added to the 

wells of a sterile tissue culture grade 96 well microtitre plate (Flat bottom, 

AEC-Amersham S.A., 167008). The same culture media (80 µl) was used so 

as to maintain the same environment. Cells were incubated for 3 h to allow 

attachment. The reaction reagent was made by adding 1 µl of PMS (N-methyl 

dibenzopyrazine methyl sulphate), a coupling reagent, to 50 µl of XTT. 

Thereafter, 50 µl of the reaction reagent was added to the respective wells. 

The mixture was incubated for a further 3 h at 37 °C to allow cells to react 

with the reagent. Prior to reading absorbance, the microtitre plate was gently 

shaken so that the dye could be evenly distributed. The absorbance was read 

at A450 nm and corrected at A630 nm.  

 

 

3.6  Genetic Integrity 
 
3.6.1 Alkaline comet assay  
 

The comet assay is a single cell based technique that allows detection and 

quantification of DNA damage. The principle of the assay is based on the 

ability of denatured, cleaved DNA fragments to migrate out of the cell nucleus 
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under the influence of an electric field, whereas undamaged DNA migrates 

slower and remains within the confines of the nucleoid. The comet assay 

without Fpg (conventional) detects SSBs while the comet assay with Fpg 

(modified) detects and cleaves oxidised bases, thereby inducing additional 

strand breaks (Collins, 2000). The specificity of the comet assay can be 

enhanced to investigate specific types of DNA damage by adding DNA 

modifying enzymes. Fpg (Mut M) is amongst the enzymes which have been 

successfully used in the comet assay to investigate oxidative damage. The 

comet assay protocol has four steps namely: lysis, DNA unwinding, 

electrophoresis and neutralisation. 

 

 

Prior to commencement of the comet assay, reagents were prepared 

(Appendix B8) and slides coated with 1% standard agarose and left to dry 

overnight at room temperature. Slides and tubes were then labelled in 

duplicate with the respective sample numbers for the modified and 

conventional comet assay. Since cells which were used for the comet assay 

were stored in liquid nitrogen, they were rapidly thawed and 100 µl of cell 

suspension (2 X 104 cells/ml per sample) was spun in a centrifuge (Harneus 

Fresco 17, Separation Scientific SA) at 3,000 rpm for 3 min at 4 °C to remove 

cryoprotective media which is toxic to cells at room temperature. The cell 

pellet was washed twice in phosphate buffered saline (PBS) by centrifugation. 

After the last wash, the supernatant was discarded and the pellet 

resuspended in the remaining PBS. Cell suspensions rested on ice between 

centrifugations to minimise DNA degradation. Thereafter, 140 µl of 1% low 

melting point agarose (37 °C) was added to each of the cell suspensions and 

gently mixed with a pipette. Two equal drops of the suspension were placed 

on each of the pre-coated slides with the respective sample numbers. 

Coverslips (22 X 22 mm) were placed on top of each gel so as to evenly 

spread the sample and slides were then left at 4 °C to let the agarose set.  

   35 



After the agarose had set, coverslips were removed from the slides and cells 

were lysed in lysis solution for 1 h at 4 °C. Lysis solution contains high salt 

concentrations and detergent (2.5 M NaCl, 0.1 M EDTA, 10 mM Tris, pH 10 

and 1% Triton X-100 added prior to use). Slides were then rinsed in three 

changes of enzyme reaction buffer at 4 °C for 5 min each (40 mM HEPES, 

0.1 M KCl, 0.5 mM EDTA, 0.2 mg/ml bovine serum albumin, pH 8). 

Thereafter, one set of slides was incubated with 50 µl of Fpg (Sigma-Aldrich 

S.A., F3174), diluted 1:3,000 in enzyme reaction buffer at 37 °C for 30 min to 

allow the enzyme to react with the DNA strands. The other set which acted as 

a control was incubated with 50 µl enzyme reaction buffer only. Slides were 

incubated in a humidifying chamber which was warmed prior to incubation. 

Slides were then transferred to a horizontal electrophoresis tank containing 

electrophoresis buffer (0.3 M NaOH, 1 mM EDTA), where damaged DNA 

underwent alkaline unwinding for 40 min at 4 °C. During electrophoresis (in 

the same buffer) at 4 °C at a power of 300 mA (BIO-RAD, Power Pac 300), 

relaxed coils were pulled towards the anode forming the tail of a comet like 

image (Figure 7). After electrophoresis, cells were rinsed in three changes of 

neutralisation buffer (0.4 mM Tris, pH 7.5) for 5 min each and then in distilled 

water for the same period to remove salts. Slides were then left to dry.  

 

 
Figure 7 Cell DNA migration pattern produced by the comet assay as a result of 

strand breakage. The cell looks like a comet hence the name “comet 
assay”. Damaged DNA is pulled towards the anode during electrophoresis. 
The more the damage the longer the tail (400x magnification). 

   36 



Slides were stained with 20 µl of 1 µg/ml 4’6 diamidine-2-phenylindol 

dihydrochloride (DAPI), (Sigma-Aldrich S.A., D9564). Stained slides were 

examined at 400x magnification using a fluorescent microscope (Olympus 

BX41/BX51), (Figure A5) and an epifluorescent microscope (Olympus BH2-

RFCA) was used to record the digital images. One hundred randomly 

selected comets per gel were visually analysed and scored according to the 

five recognisable classes of comets ranging from class 0 to 4, with the most 

damage in class 4 (Figure 8).  

            

 

 
Figure 8 Classes of comets (0-4) stained with DAPI (1 µg/ml). Images were visualised 

under the Olympus BH2-RFCA Epifluorescent microscope. Class 0 does not 
have a tail; class 1 has a short almost indistinguishable tail and a large head; 
class 2 has a big head and short tail; class 3 has a slightly bigger head than 
class 4 but shorter tail, while class 4 has the smallest head and the longest 
tail. Severe DNA damage is indicated by class 4 (400x magnification). 

 

 

To quantify the amount of DNA damage, the number of comets allocated to 

each class was multiplied by the class number and added, thus giving an 

arbitrary unit. Arbitrary units ranged from 0 to 400; the sum for arbitrary units 

for each gel was calculated and the mean for each sample was then 

determined to find the DNA damage grade for each sample. An increase in 

arbitrary units indicates an increase in DNA damage.  
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3.7      Real Time Reverse Transcription PCR 
  
Microarray and real time reverse transcription Polymerase Chain Reaction 

(real time RT-PCR) are amongst the several methods in which gene 

expression levels can be monitored. Microarray can be defined as a tool for 

monitoring gene expression levels for thousands of genes in parallel; it is 

typically a glass or polymer slide onto which DNA molecules are attached at 

fixed locations called spots or features.  An array may contain many spots, 

each containing millions of identical DNA molecules (Causton et al., 2003). 

Among the other names, this technology is referred to as DNA microarray, 

DNA array, Gene chips or DNA chips. On the other hand, real time RT-PCR 

refers to the process where the production of amplification products is directly 

monitored during each amplification cycle. This is different to the traditional or 

conventional PCR which measures the final endpoint products (Wang et al., 

2006). Real time RT-PCR can be used to monitor expression levels of one or 

more genes. The expression of one gene can be monitored using SYBR 

green, while if more genes are to be monitored labelled DNA probes are 

used. SYBR green dye intercalates with double stranded DNA and hence 

gives high signal of fluorescence when more double stranded DNA is bound 

(Wang et al., 2006).  

 

 

Reverse transcription PCR involves the use of complimentary 

deoxyribonucleic acid (cDNA), which is transcribed from ribonucleic acid 

(RNA), as a template for PCR. There are several kits on the market which can 

be used to extract RNA and synthesise cDNA. In this study a Fastlane cell 

cDNA synthesis kit (Southern Cross Biotechnology S.A., Qiagen 215011) 

which generates the first strand cDNA directly from cultured cells was used. 

With this kit RNA purification or RNase H digestion steps are not necessary, 

thus minimising pipetting tasks.  
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3.7.1 Primers 
 
In this study, MPG was the gene of interest, beta Actin (ACTB), 

Glyceraldehyde 3 phosphate dehydrogenase (GAPDH) and Ubiquitin c (UBC) 

were selected as reference genes. The nucleotide sequences for these genes 

were obtained from GenBank using the following acquisition numbers: 

NM 002434 (MPG), NM 001101 (ACTB), NM 002046 (GAPDH) and NM 

021009 (UBC), (Appendix C). The primer sequences were designed using 

Primer3 (http://frodo.wi.mit.edu/cgi-bin/primer3/primer3-www.cgi). Specificity 

and alignment of the primers were checked using the Basic local Alignment 

Search Tool (BLAST) on the National Centre for Biotechnology Information 

(NCBI) website (www.ncbi.nhm.nih.gov). The primer sets were then 

developed by Whitehead Scientific S.A. (Table 4). 

 

 
Table 4 PCR primer sets and product sizes for gene of interest and reference genes. 
 

 

GENE PRIMER SEQUENCE PRODUCT SIZE 

Forward 5’-tggcacaggatgaagctgta-3’ MPG 
Reverse 5’-gtgtcctgctcagccactct-3’ 

181 bp 

Forward 5’-ggacttcgagcaagagatgg-3’ ACTB 
Reverse 5’-agcactgtgttggcgtacag-3’ 

234 bp 

Forward 5’-gagtcaacggatttggtcgt-3’ GAPDH 
Reverse 5’-ttgattttggagggatctcg-3’ 

238 bp 

Forward 5’-ctttccagagagcggaacag-3’ UBC 
Reverse 5’-atcacagcgatccacaaaca-3’

175 bp 
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Upon receipt of the developed primers, they were dissolved in Tris EDTA (TE) 

buffer, pH 8.0 (Appendix B9.1) to make a stock solution of 100 µM. The 

reconstituted primers were stored at -20 °C in 20 µl aliquots to avoid repeated 

freeze thawing which would degrade them. The working primer concentration 

(10 µM) was made by diluting the stock solution 1:10 with PCR grade water 

(Celtic Molecular Diagnostic S.A., Bioline, BIO-37080). 

 

 

3.7.2 Ribonucleic acid (RNA) isolation 
 
According to manufacturer’s instructions, the kit comprises of 4 steps namely: 

removal of extracellular contaminants, cell lysis with RNA stabilisation, 

elimination of genomic DNA, and reverse transcription. Approximately 6 x 105 

cells were irradiated with 5 or 16 J/cm2 on day 1 and 4 and left to incubate for 

1 or 24 h. After finding that MPG could not be detected, the project changed 

the irradiation frequency to irradiation on day 1 and isolated RNA at 0, 1, 3 or 

8 h. Post irradiation cells were trypsinised and a cell count was performed, as 

described previously, and 5 x 103 cells were used in the real time RT-PCR 

reaction. Cells were mixed with 25 µl of wash buffer (FCW) to remove 

extracellular contaminants. The cell suspension was spun in a centrifuge 

(Harneus Fresco 17, Separation Scientific SA) at 2,200 rpm for 4 min and the 

supernatant discarded. Thereafter, 12.5 µl of lysis buffer (FCP) was added to 

the resuspended cell pellet and incubated for 10 min at room temperature to 

lyse the cells. This buffer stabilised cellular RNA and blocked inhibitors of 

reverse transcription. During the incubation, the following reagents were 

thawed at room temperature: quantiscript reverse transcriptase, quantiscript 

reverse transcriptase buffer, reverse transcriptase primer mix, genomic DNA 

wipe out buffer and RNase free water. Thereafter, quantiscript reverse 

transcriptase, quantiscript reverse transcriptase buffer and reverse 

transcriptase primer mix were stored on ice to avoid degeneration while the 
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other two reagents were left at room temperature. A mastermix for the 

common components of the genomic elimination was prepared by adding 2 µl 

genomic DNA wipe out buffer and 8 µl DNase/RNase free water per sample. 

A 5% more mastermix was prepared so that it was enough for the required 

tubes. Mastermixes are prepared so as to reduce pipetting errors and to 

achieve better reproducibility (Wang et al., 2006). The mixture was gently 

mixed by inverting the tube six times and briefly centrifuged to collect the 

residual liquid from the sides of the tube (Figure A6). The mastermix was then 

stored on ice. The Fastlane cell lysate (12.5 µl) for each group of cells was 

split into three equal biological samples (4 µl each) into which the mastermix 

(10 µl) was added (Table 5). The tubes were then incubated for 5 min at 

42 °C and thereafter were immediately placed on ice to stop the reaction.  

 
                                        

   Table 5 Genomic DNA elimination. 
    

COMPONENTS SAMPLE TUBE (µl) 
Fastlane cell lysate 4 

Mastermix 10 

Total volume 14 
 
 

 

3.7.3 cDNA synthesis 
 
During incubation, the mastermix for the reverse transcription was made by 

adding 4 µl quantiscript reverse transcriptase buffer and 1 µl reverse 

transcriptase primer mix per sample. The mastermix was mixed by flicking, 

centrifuged briefly to collect the residual liquid from the sides of the tube and 

then stored on ice. From the mastermix, 5 µl was drawn and added to tubes 

with 14 µl Fastlane cell lysate. Thereafter, 1 µl quantiscript reverse 

transcriptase or PCR grade water was added to the sample and no reverse 
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transcriptase (NRT) control tube respectively (Table 6). The mixture was 

vortexed and briefly centrifuged. The contents in the tube were incubated for 

30 min at 42 °C to synthesise the first strand cDNA and then for 3 min at 

95 °C to inactivate reverse transcriptase. The cDNA was then stored at 

-20 °C. The NRT tube was included in the reaction to serve as a negative 

control since the enzyme to transcribe RNA to cDNA was not added.  

 

 
      Table 6 Reverse transcription reaction. 

                                              
COMPONENTS SAMPLE TUBE (µl) NRT TUBE (µl) 

Fastlane cell lysate 14 14 

Mastermix 5 5 

Reverse 
transcriptase 

1 - 

PCR grade water - 1 

Total volume 20 20 
          NRT = no reverse transcriptase  
 
 
cDNA quantification 
The cDNA synthesis kit did not recommend quantification of cDNA prior to 

PCR. The manufacturers of the kit believe that after the PCR reaction, 

differences in gene expression (reference gene and gene of interest) would 

only be due to experimental conditions if the same volume of cDNA is added 

to the reactions. However, cDNA was quantified using a UV 

spectrophotometer (Thermospectronic) to determine average cDNA 

concentration per reaction. Each sample (2 µl) was diluted with 498 µl of Tris 

(Tris [hydroxymethyl] aminomethane) EDTA (TE) buffer, pH 8.0 and the 

spectrophotometer was zeroed with the same buffer at 260 nm. The 

absorption of DNA and RNA is maximum at 260 nm. Quartz cuvettes were 

used for reading the absorbance. The reading was multiplied by the dilution 
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factor (250) and then by the average extinction coefficient of 37 µg/ml (de 

Mey et al., 2006). The concentration was converted from µg/ml to µg/µl since 

it is easier to work with the latter than the former in PCR reactions. For 

calculation and concentration of samples see Appendix D.  

 

 

3.7.4 PCR 
 

Real time RT-PCR was set up using the cDNA which was stored at -20 °C. 

PCR reactions were performed using the SensiMix™ dT PCR kit (Celtic 

Molecular Diagnostic S.A., Quantace, QT6T3-02). The kit contents and 

samples were thawed at room temperature and immediately stored on ice. All 

the reactions were performed on ice. Each experimental group had three 

biological samples. From each of the biological samples of the non irradiated 

N cells, 6 µl cDNA was drawn and pooled so that a standard curve could be 

made up of representative cDNA concentration. A 10 fold dilution series 

(1:10; 1:100; 1:1,000) was performed on 3 µl of the pooled cDNA. Undiluted 

and diluted cDNA was used to construct standard curves for each of the 

reference genes and gene of interest. Biological samples were also diluted 

1:10 so that if the gene copy number was higher it would fall within the linear 

range of the standard curve and to minimise potentially interfering substances 

that inhibit PCR amplifications (Wang et al., 2006).  

 

 

The mastermix for the 25 µl PCR reaction was made by adding 12.5 µl 

sensimix, 9 µl PCR grade water and 0.5 µl SYBR green per sample. The 

mixture was gently mixed by flicking the bottom of the tube and briefly 

centrifuged to collect any residual liquid from the sides of the tube. PCR 

reaction components were then added to the respective tubes containing 2 µl 

template (Table 7). On average 300 ng of cDNA was added to each of the 
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sample tubes. PCR reactions were run in duplicate on each of the two 

biological samples for the experimental conditions, negative controls and for 

the standard curve dilutions. NRT and no template control (NTC) tubes were 

included to check if RNA samples, reagents in the reverse transcription or 

PCR mixes were contaminated with genomic DNA. A NTC sample also helps 

to determine if primers have formed primer dimmers. 

 
 
Table 7 PCR reaction components. 
 
COMPONENTS SAMPLE TUBE (µl) NRT TUBE (µl) NTC TUBE (µl) 

Mastermix  22 22  22.0 

Primer - Forward   0.5  0.5 0.5 

Primer - Reverse   0.5  0.5 0.5 

cDNA   2.0  - - 

NRT sample - 2.0 - 

PCR grade water  - - 2.0 
Total volume     25.0    25.0   25.0 
NTC = No template control 

 

 

PCR was carried out using the Corbet (Corbet Research, Australia) 

RotorGene 6000 series (Celtic Molecular Diagnostics S.A.) with SYBR green 

as a fluorescent marker (Figure A7). The thermocycler was programmed to 

commence PCR with incubation at 95 °C for 10 min to activate the Taq DNA 

polymerase, which is inactive at room temperature, and denature non 

specifically annealed primers to ensure highly specific amplifications. This 

was followed by 40 cycles at 95 °C for 5 s to denature the double stranded 

DNA, 60 °C for 15 s for primers to anneal to the template and 72 °C for 15 s 

for DNA synthesis. Amplicon extension was performed in 1 cycle at 72 °C for 

10 min (Table 8).  
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Table 8 Three step PCR cycling program. 
 

CYCLES DURATION TEMPERATURE (°C) 

1 10 min 95  

               5 s 95  

               15 s 60  40 

               15 s 72 

1                10 min 72 

 
 
3.7.5 Melt curve analysis 
 
A melt curve is used to distinguish specificity of an amplified product. Each 

double stranded DNA has its own specific melting temperature (Tm) 

depending on its base composition. All PCR products of a particular primer 

pair should have the same melting temperature, unless there is 

contamination, mispriming or primer dimer artefacts. Since SYBR green does 

not distinguish between different DNA samples, an important means of quality 

control is to check that all PCR products for a particular primer pair have a 

similar Tm. Thus, by measuring the Tm the DNA can be easily identified. At the 

melting point, the two strands of DNA separate and fluorescence rapidly 

decreases. The software plots the rate of change of relative fluorescence 

units (RFU) or derivatives of fluorescence over temperature (dF/dT) on the 

Y-axis versus temperature on the X-axis, and this peaks at the Tm.   

 

 

After 40 cycles of real time RT-PCR amplification, the thermocycler performed 

a melt curve, which was set from 72 to 95 °C. The product was incubated at 

72 °C for 90 s for pre-melt conditioning, followed by heating for 5 s in 1 °C 

increments, starting at 72 °C with fluorescence measured at each cycle. 
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3.7.6 Reference gene validation 
 
Reference genes are used to normalise the gene of interest to correct for 

sample to sample variations such as cell number, RNA integrity or quantity or 

experimental treatment (Wang et al., 2006; Gao et al., 2008). ACTB, GAPDH 

and UBC were chosen as reference genes because they had been previously 

used in other studies (Gao et al., 2008; Hosseini et al., 2008; Vandesompele 

et al., 2002). Since various factors can affect reference gene expression 

leading to false normalisation, the best solution to avoid this artefact is to 

study the expression profile of several potential reference genes and choose 

one which is least regulated. Having this in mind, three reference genes were 

studied prior to real time RT-PCR on the gene of interest. 

 
 
3.7.7 REST program 
 
REST, which is known as the relative expression software tool, is a stand 

alone software tool used to estimate the up or down regulation of gene 

expression. It is a relatively new program which statistically analyses the 

regulation of genes about 50,000 times (Pfaffl et al., 2002). Data collected 

from the PCR reaction is fed into the program, whereby threshold cycle (Ct) 

values for the target gene and calibrator (control) gene are randomly 

compared and analysed. Results are also presented graphically via whisker 

box-plots which provide visual representation of variation for each gene and 

highlights potential issues such as distribution skew. In order to choose the 

least regulated reference gene, data (PCR efficiency, Ct values for controls 

and experimental samples) for each was fed into the program and analysed.  
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3.7.8 Gel electrophoresis 
 

Once PCR reactions were complete, PCR products were run on a 2% 

agarose gel to confirm the presence of a single product of the appropriate 

molecular size. Thus, when the PCR reaction was in its 30th cycle, 1,500 ml of 

1x TAE buffer was prepared from the stock solution (Appendix B9.2) and 

75 µl of Ethidium bromide (10 mg/ml) was added to a final concentration of 

0.5 µg/ml. Thereafter, 400 ml of the buffer was used to prepare a 2% agarose 

gel (Celtic Molecular Diagnostics S.A, Bioline, BIO-41026), which was poured 

into the casting tray and set in the refrigerator. The loading dye (Celtic 

Molecular Diagnostics S.A., Bioline, BIO-37045) was added to the samples 

and gently mixed, and then the mixture was loaded into the wells of the gel 

(Table 9). The dye makes samples dense, and hence they sink to the bottom 

of the well. During electrophoresis, the dye helps track samples. DNA 

hypperladder IV (580 ng) (Celtic Molecular Diagnostics S.A, Bioline, BIO-

33058) was used to estimate the size of the PCR products. The remaining 

buffer was used for electrophoresis. The gel was run at 100 V for 1 h. 

Thereafter, the gel was scanned using a gel Bio Imaging System (Gene 

Genius, Syngene, Vacutec).  

 

 
Table 9 Gel loading. 
 

REAGENT SAMPLE TUBE (µl) NTC TUBE (µl) MARKER (µl) 

Loading dye (5x)   2.5   2.5 - 

PCR product 10  10   - 

Hypperladder IV   - - 5 
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3.8 Statistical Analysis 
 

Experiments were repeated six times (n=6), assays were performed in 

duplicate and the mean was used. Results were graphically presented and 

statistically analysed using Sigma Plot Version 8.0. A student t test and 

one-way ANOVA was performed to detect differences between the control 

and experiments, and as well as between experimental groups. Error bars 

were calculated using standard error. Results were considered to be 

statistically significant when P≤0.05. Statistical significance, compared to their 

respective control (0 J/cm2) is shown in graphs as P≤0.05 (*), P≤0.01 (**) or 

P≤0.001 (***).  
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CHAPTER 4 RESULTS 
 

 

Normal (N) and wounded (W) human skin fibroblast cells were irradiated with 

5 or 16 J/cm2 on day 1 and 4 using a He-Ne laser (λ 632.8 nm). Cellular 

responses were assessed on day 4 at 1 or 24 h post irradiation. Cell 

morphology was assessed by light microscopy, cell viability by the Trypan 

blue exclusion test and ATP luminescent assay, cell proliferation by the XTT 

assay, DNA integrity by the comet assay and gene activation related to DNA 

repair (MPG) by real time RT-PCR. Non irradiated cells were used as 

controls. 

 

 

4.1  Cell Morphology 
 

The behaviour of N and W cells was observed using an inverted light 

microscope and digitally recorded at 1 or 24 h post irradiation on day 4. The 

number and intensity of colony formation, haptotaxis (direction) of the edge 

cells, number of fibroblasts present in the central scratch, and chemotaxis 

(movement or migration of cells across the central scratch) were evaluated to 

determine fibroblast activity (Rigau et al., 1995).  

 

 

There was no structural difference between irradiated and non irradiated N 

cells assessed at 1 or 24 h (Figure 9 a-f). Similarly, irradiated and non 

irradiated N and W cells showed typical morphology of long elongated 

cylindrical cells (Figure 9 and 10). Haptotaxis and cell migration was observed 

in all the wounded cultures but was more evident in cells irradiated with 

5 J/cm2 (Figure 10 c and d). The central scratch (CS) of non irradiated W cells 

showed incomplete closure at 1 or 24 h (Figure 10 a and b). There were 
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fewer cells in the CS of non irradiated cultures at 1 h compared to 24 h. 

Similarly, W cells irradiated with 16 J/cm2 showed fewer cells in the CS at 1 h 

than at 24 h (Figure 10 e and f). In both cases the CS was about to close at 

24 h due to the presence of more cells than at 1 h. W cells irradiated with 

5 J/cm2 showed complete wound closure at 1 and 24 h.   

 

 

 
Figure 9 Micrograph of irradiated and non irradiated normal (N) WS1 cells. N WS1 

cells are elongated and cylindrical in shape. WS1 cells were irradiated 
with 5 or 16 J/cm2 on day 1 and 4 (c-f), while control cells were not 
irradiated (a and b). The behaviour of cells was digitally recorded at 1 or 
24 h post irradiation on day 4. There was no structural difference between 
irradiated and non irradiated cells at 1 or 24 h (200x magnification). 

   50 



 
Figure 10 Micrograph of irradiated and non irradiated wounded (W) WS1 cells. A 

confluent monolayer of cells was scratched with a sterile 1 ml pipette to 
simulate a wound. Cells were irradiated at λ 632.8 nm using 5 or 16 J/cm2 
on day 1 and 4. The behaviour of cells was digitally recorded at 1 or 24 h 
post irradiation on day 4. Non irradiated cells were used as controls (a 
and b). The central scratch (CS) of cells irradiated with 16 J/cm2 (e and f) 
and non irradiated cells showed incomplete closure at both 1 and 24 h, 
while cells irradiated with 5 J/cm2 showed complete closure and more 
haptotaxis (H) at both 1 and 24 h (c and d). Non irradiated cells showed 
colony formation (C) and migration (M) along the CS in an attempt to 
close the wound (200x magnification). 
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4.2 Cell Viability 
  
4.2.1 Trypan blue exclusion test 
 

The Trypan blue exclusion test was used to assess the integrity of the cell 

membrane thus, cell viability (Table 10). Cells with intact membranes do not 

pick up the dye; only damaged membranes allow the dye to penetrate. Non 

irradiated cells (0 J/cm2) were used as controls. The total number of viable 

and non viable cells was calculated (Table 11).  

 
 

Percent cell viability 
Non irradiated N cells did not show any statistical difference in percentage 

cell viability when compared at 1 and 24 h (P=0.5), while N cells irradiated 

with 5 J/cm2 showed an insignificant increase when compared at 1 and 24 h 

(P=0.06). N cells irradiated with 16 J/cm2 did not show any significant 

difference when compared at 1 and 24 h (P=0.6). N cells irradiated with 5 or 

16 J/cm2 and left to incubate for 1 h showed an insignificant decrease 

compared to non irradiated N cells (1 h), (P=0.07 and P=0.06 respectively).  
 

 
Table 10 Percent cell viability as determined by the Trypan blue exclusion test in 

normal (N) and wounded (W) WS1 cells. Cells irradiated with 5 or 16 J/cm2 
were compared with the respective controls (non irradiated cells), (0 J/cm2). 
The significance of results was indicated as follows: P≤0.05 (*), P≤0.01 (**) or 
P≤0.001 (***). 
 

CELLS 0 J/cm2 5 J/cm2 16 J/cm2 

N (1 h)     96.9% ± 0.59     95.7% ± 1.1 95% ± 0.35 

N (24 h)     97.5% ± 0.31     97% ± 0.18 95.4% ± 0.73 

W (1 h)     97% ± 0.61    98.7% ± 0.17 * 94.4% ± 0.59 ** 

W (24 h)     97% ± 0.26  98%  ± 0.1 ** 94.9% ± 0.54 *** 
 ± Standard error 
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Similar results were seen when cells were left to incubate for 24 h (P=0.6 and 

P=0.09 respectively). There was no significant difference between N cells 

irradiated at 5 or 16 J/cm2 and left for 1 or 24 h (P=0.6 and P=0.8 

respectively). 

 

 

Non irradiated W cells did not show any statistical difference in cell viability 

when compared at 1 and 24 h (P=0.4), likewise W cells irradiated with 5 or 

16 J/cm2 did not show any significant difference (P=0.7 and P=0.6 

respectively). W cells (1 h) irradiated with 5 J/cm2 showed a significant 

increase compared to non irradiated W cells (1 h) (P=0.05), while irradiation 

with 16 J/cm2 showed a significant decrease (P=0.01). Equivalent results 

were observed when W cells (24 h) irradiated with 5 or 16 J/cm2 were 

compared with non irradiated W cells (24 h), (P=0.01 and P<0.001 

respectively). At both 1 and 24 h, W cells irradiated with 5 J/cm2 showed a 

significant increase in cell viability when compared to W cells irradiated with 

16 J/cm2, (P<0.001). 

 

 

Comparison of non irradiated, W cells, N cells showed no differences at both 

1 and 24 h (P=0.6 and P=0.4 respectively). W cells (1 h) irradiated with 

5 J/cm2 showed a significant increase when compared to N cells (1 h) 

irradiated with the same fluence (P=0.005), while the increase at 24 h was 

approaching statistical significance (P=0.06). W cells (1 h) irradiated with 

16 J/cm2 showed a significant decrease when compared to N cells (1 h) 

irradiated with the same fluence (P=0.05). On the other hand, there was no 

significant change at 24 h (P=0.55). 
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Cell number 
Non irradiated N cells did not show any statistical difference in total number of 

viable cells when compared at 1 and 24 h (P=0.28), (Table 11). Similarly, 

there was no difference when irradiated with 5 or 16 J/cm2 (P=0.06 and 

P=0.79 respectively). N cells (1 h) irradiated with 5 J/cm2 showed an 

insignificant difference in cell number compared to N cells (1 h) irradiated with 

0 or 16 J/cm2 (P=0.06 and P=0.13 respectively). Equally, cells irradiated with 

16 J/cm2 showed an insignificant increase compared to non irradiated cells 

(P=0.07). 

 

 
Table 11 Total number of viable and non viable cells as determined by the Trypan blue 

exclusion test. Significance of results was indicated by P≤0.05 (*), P≤0.01 (**) 
or P≤0.001 (***). 

 
0 J/cm2 5 J/cm2 16 J/cm2 

CELLS 
VIABLE NON 

VIABLE VIABLE NON 
VIABLE VIABLE NON  

VIABLE 

N (1 h) 

7.0x105  

±  

1.3x104 

1.2x105 

±  

1.2x103 

7.4x105 

±  

8.6x103 

1.0x105 

±  

1.3x103 

7.38x105 

±  

8.2x103 

1.1x105 

±  

0.8x103 

N (24 h) 

7.45x105 

±  

1.8x104 

1.3x105 

±  

1.0x103 

8.0x105  

±  

2.7x104 

1.15x105 

±  

0.8x103 

7.42x105 

±  

1.2x104 

1.2x105 

±  

0.9x103 

W (1 h) 

8.06x105 

±  

7.8x104 

1.6x105 

±  

1.4x103 

8.35x105 * 

±  

9.9x103 

1.5x105 

±  

1.4x103 

7.71x105 

±  

2.2x104 

1.7x105 

±  

1.3x103 

W (24 h) 

8.1x105 

±  

1.1x104 

1.5x105 

±  

0.9x103 

8.76x105 **

±  

2.7x104 

1.47x105 

±  

1.0x103 

8.0x105 

±  

5.8x103 

1.76x105 

±  

1.2x103 
± Standard error 
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Non irradiated W cells showed an insignificant difference in total viable cells 

when compared at 1 and 24 h (P=0.77). Similarly irradiation with 16 J/cm2 did 

not cause any significant difference, while irradiation with 5 J/cm2 caused a 

significant difference (P=0.51 and P=0.003 respectively). W cells (1 h) 

irradiated with 5 J/cm2 showed a significant increase in viable cells compared 

to same cells irradiated with 0 or 16 J/cm2 (P=0.04 and P=0.02 respectively), 

while W cells irradiated with 16 J/cm2 showed an insignificant decrease 

compared to control cells (0 J/cm2), (P=0.08). Similar results were observed 

when W cells (24 h) were irradiated with 5 or 16 J/cm2 and compared to non 

irradiated cells (P=0.01 and P=0.54 respectively). 

 

 

4.2.2 ATP luminescent assay 
 
Results of cell viability as determined by ATP luminescence (Figure 11) 

showed that non irradiated N cells did not show any statistical difference in 

ATP when compared at 1 and 24 h (P=0.56). Similarly, N cells irradiated with 

5 J/cm2 did not show any significant change when compared at 1 and 24 h 

(P=0.93), while N cells irradiated with 16 J/cm2 showed an insignificant 

increase at 1 h when compared to 24 h, (P=0.17). N cells (1 h) irradiated with 

5 or 16 J/cm2 showed an insignificant decrease compared to non irradiated N 

cells (1 h), (P=0.9 and P=0.44 respectively). Contrary, N cells (24 h) irradiated 

with 5 J/cm2 showed an insignificant increase, while irradiation with 16 J/cm2 

showed an insignificant decrease compared to non irradiated N cells (24 h), 

(P=0.76 and P=0.09 respectively). N cells (1 h) irradiated with 5 J/cm2 

showed an insignificant decrease when compared to N cells (1 h) irradiated 

with 16 J/cm2 (P=0.71), while an insignificant increase was observed when 

left to incubate for 24 h (P=0.43). 
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Non irradiated W cells did not show any statistical difference in ATP when 

compared at 1 and 24 h (P=0.25). Likewise, W cells irradiated with 5 or 

16 J/cm2 did not show any significant difference when compared at 1 and 

24 h (P=0.4 and P=0.1 respectively). W cells (1 h) irradiated with 5 J/cm2 

showed a significant increase compared to non irradiated W cells (1 h), 

(P=0.04), while irradiation with 16 J/cm2 showed a significant decrease 

(P=0.02). Equivalent results were observed when W cells were irradiated with 

5 or 16 J/cm2 and left for 24 h (P=0.04 and P=0.003 respectively). W cells (1 

and 24 h) irradiated with 5 J/cm2 showed a significant increase in ATP 

luminescence compared to cells irradiated with 16 J/cm2 (P=0.02 and 

P=0.001 respectively).  

 

 

Non irradiated W cells (1 h) showed no significant change in ATP compared 

to non irradiated N cells (1 h), (P=0.55), while non irradiated W cells (24 h) 

showed an insignificant increase compared to non irradiated N cells (24 h), 

(P=0.3). W cells (1 h) irradiated with 5 J/cm2 showed a significant increase 

when compared to N cells (1 h) irradiated with the same fluence (P=0.05). On 

the other hand, W cells (24 h) irradiated with 5 J/cm2 showed an insignificant 

increase compared to N cells (24 h) irradiated with the same fluence 

(P=0.69). W cells irradiated with 16 J/cm2, and left to incubate for 1 or 24 h, 

showed an insignificant decrease compared to N cells irradiated with the 

same fluence (P=0.21 and P=0.34 respectively). 
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Figure 11 ATP luminescent assay graph. Normal (N) and wounded (W) WS1 cells were 

irradiated at λ 632.8 nm with a He-Ne laser using 5 or 16 J/cm2 on day 1 and 
4. ATP luminescence was assessed at 1 or 24 h post laser irradiation on 
day 4. Non irradiated cells (0 J/cm2) were used as controls. W cells non 
irradiated did not show any statistical difference in ATP compared to N 
cells non irradiated. W cells (1 h) irradiated with 5 J/cm2 showed a 
significant increase compared to non irradiated W cells (1 h), while 
irradiation with 16 J/cm2 showed a significant decrease. W cells (24 h) 
irradiated with 5 J/cm2 also showed a significant increase in ATP when 
compared to non irradiated W cells (24 h), while irradiation with 16 J/cm2 
showed a significant decrease compared to non irradiated cells (24 h).  

 

 

4.3  Cell Proliferation 
 

Cell proliferation is one of the basic elements in the wound healing process, 

therefore its assessment is important (Koutiná et al., 2003). Fibroblast cells 

proliferate under normal growth conditions. Mitochondrial succinate 

dehydrogenase in metabolically active cells cleaves XTT forming an orange 

formazan dye which is directly proportional to the number of proliferating 

cells.  
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Cell proliferation as determined by the XTT assay (Figure 12) demonstrated 

that non irradiated N cells did not show any statistical difference in cell 

proliferation when compared at 1 and 24 h (P=0.08). N cells irradiated with 

5 J/cm2 showed an insignificant difference when compared at 1 and 24 h 

(P=0.07). Similarly, N cells irradiated with 16 J/cm2 did not show any 

significant difference (P=0.06). N cells (1 h) irradiated with 5 J/cm2 showed an 

insignificant increase compared to non irradiated N cells (1 h), (P=0.65), while 

irradiation with 16 J/cm2 showed an insignificant decrease (P=0.08). 

Equivalent results were observed when N cells (24 h) were irradiated with 5 

or 16 J/cm2 (P=0.06 and P=0.94 respectively). When cells were left to 

incubate for 1 h, N cells irradiated with 5 J/cm2 showed an insignificant 

increase compared to N cells irradiated with 16 J/cm2 (P=0.32). Equally, an 

insignificant increase was observed when the incubation period was changed 

to 24 h (P=0.27). 

 

 

There was no significant change between 1 and 24 h in irradiated (5 and 

16 J/cm2) and non irradiated W cells (P=0.7, P=0.41 and P=0.08 

respectively). W cells (1 and 24 h) irradiated with 5 J/cm2 showed a significant 

increase compared to their respective controls (P=0.01 and P<0.01 

respectively). Contrary, W cells (1 h) irradiated with 16 J/cm2 showed a 

significant decrease compared to non irradiated W cells (1 h), (P<0.01), while 

the decrease at 24 h was insignificant (P=0.52). W cells (1 h) irradiated with 5 

or 16 J/cm2 showed a significant difference when compared to each other 

(P<0.01). Equally, the same observation was noted at 24 h (P=0.01). 

 

 

Non irradiated W cells at 1 and 24 h showed an insignificant increase in cell 

proliferation compared to non irradiated N cells (1 and 24 h), (P=0.48 and 

P=0.54 respectively). W cells (1 h) irradiated with 5 J/cm2 showed a 
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significant increase when compared to N cells (1 h) irradiated with the same 

fluence (P=0.01). The same significant increase in W cells irradiated with 

5 J/cm2 was seen when left to incubate for 24 h (P=0.03). W cells (1 h) 

irradiated with 16 J/cm2 showed a significant decrease when compared to N 

cells (1 h) irradiated with the same fluence (P=0.01), while the decrease at 

24 h was insignificant (P=0.93). 

 

 

 
Figure 12 Cell proliferation as determined by XTT in normal (N) and wounded (W) 

cells. N and W WS1 cells were irradiated at λ 632.8 nm with a He-Ne laser 
using 5 or 16 J/cm2 on day 1 and 4. Cell proliferation was assessed on 
day 4 at 1 or 24 h post irradiation. Non irradiated cells (0 J/cm2) were 
used as controls. W cells (1 and 24 h) irradiated with 5 J/cm2 showed a 
significant increase compared to their respective controls. W cells (1 h) 
irradiated with 16 J/cm2 showed a significant decrease compared to W 
cells (1 h) non irradiated. However, W cells (1 h) irradiated with 5 J/cm2 
showed a significant increase compared to N cells (1 h) irradiated with 
the same fluence (P=0.01). Though not significant, W cells irradiated with 
16 J/cm2 showed more proliferation at 24 h compared to 1 h.   
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HU at a final concentration of 5 mM has been used in many studies to inhibit 

proliferation while having no effect on other cell functions such as cell 

migration. The XTT assay was used to assess W cells treated with HU and 

irradiated with 5 J/cm2 (Figure 13).  

 

 

 
Figure 13 Hydroxyurea graph showing cell proliferation. The effect of phototherapy 

on 5 mM hydroxyurea (HU) treated cells (HU+) was assessed using the 
XTT assay. HU (+) cells showed a decrease in cell proliferation when 
compared to non treated cells (HU-). HU (-) irradiated cells showed a 
significant increase in cell proliferation compared to its respective 
control. Irradiated HU (+) cells showed a significant decrease in cell 
proliferation compared to irradiated HU (-) cells. 

 
 
Non irradiated HU treated cells (HU+) showed a significant decrease in cell 

proliferation compared to non irradiated HU non treated cells (HU-), (P=0.01). 

Similarly, irradiated HU (+) cells showed a significant decrease in proliferation 
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compared to irradiated HU (-) cells, (P=0.01). Irradiated HU (+) cells showed 

an insignificant increase in cell proliferation compared to non irradiated 

HU (+) cells (P=0.06). Irradiated HU (-) cells showed a significant increase 

compared to non irradiated HU (-) cells, (P=0.01), (Zungu et al., 2008). 

 
 
4.4      Genetic Integrity 
 
4.4.1 Alkaline comet assay    
 
The alkaline comet assay was used to detect and quantify DNA damage. 

Comet assays which use enzymes have greater specificity and sensitivity 

compared to ordinary comet assays. Enzymes are used to detect lesion 

specific damage. For instance, Fpg detects and cleaves oxidised bases in 

DNA strands thereby creating additional strand breaks and hence produces 

an increase in arbitrary units. The alkaline comet assay with and without Fpg 

assessed DNA damage at 1 or 24 h post irradiation on day 4 (Figure 14). Non 

irradiated cells (0 J/cm2) were used as controls and the comet assay without 

Fpg was used as a control for the comet assay with Fpg because the latter 

detects both strand breaks and oxidised bases. 

 

 

Comet assay without Fpg 
N cells irradiated with 0, 5 and 16 J/cm2 did not show any significant change 

when incubated for 24 h and compared to incubation at 1 h (P=0.68, P=0.34 

and P=0.57 respectively). N cells irradiated with 5 or 16 J/cm2 and incubated 

post laser irradiation on day 4 for 1 h showed an insignificant increase in 

arbitrary units compared to non irradiated N cells (1 h), (P=0.51 and P=0.18 

respectively). Equivalent results were observed when N cells (24 h) were 

irradiated with 5 or 16 J/cm2 (P=0.99 and P=0.34 respectively). N cells (1 h) 
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irradiated with 5 J/cm2 showed an insignificant decrease when compared to N 

cells (1 h) irradiated with 16 J/cm2 (P=0.43). Likewise, an insignificant 

difference was observed when N cells (24 h) irradiated with 5 J/cm2 was 

compared to N cells (24 h) irradiated with 16 J/cm2 (P=0.5). 

 

 

 
Figure 14 Comet assay with and without Fpg. Normal (N) and wounded (W) cells 

were irradiated at λ 632.8 nm with a He-Ne laser using 5 or 16 J/cm2 on 
day 1 and 4. DNA damage was assessed at 1 or 24 h post irradiation on 
day 4 using the comet assay with and without Fpg. An increase in 
arbitrary units indicates an increase in DNA damage. Non irradiated cells 
(0 J/cm2) were used as controls. N cells irradiated with 5 or 16 J/cm2 
showed no significant change in DNA damage at 1 and 24 h when 
compared to their respective controls. W cells (1 and 24 h) irradiated 
with 16 J/cm2 showed a significant increase in damage with and without 
Fpg compared to their respective controls. W cells irradiated with 
16 J/cm2 showed a significant increase in arbitrary units with Fpg when 
compared at 1 and 24 h (P=0.02), and similarly without Fpg (P=0.04). 
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Non irradiated W cells incubated for 24 h showed a decrease in DNA damage 

which was approaching statistical significance compared to the same cells 

incubated for 1 h (P=0.06). W cells irradiated with 5 J/cm2 did not show any 

significant difference when 1 and 24 h incubation times were compared 

(P=0.11). Contrary, W cells irradiated with 16 J/cm2 showed a significant 

difference (P=0.04) with a decrease at 24 h. W cells (1 and 24 h) irradiated 

with 5 J/cm2 showed no significant change compared to their respective non 

irradiated W controls (P=0.33 and P=0.36 respectively), while irradiation with 

16 J/cm2 showed a significant increase on both repair times (P<0.01). W cells 

(1 h) irradiated with 5 or 16 J/cm2 showed a significant difference when 

compared to each other (P<0.01), with cells irradiated with 5 J/cm2 showing a 

decrease in DNA damage. Equally, the same observation was noted when W 

cells (24 h) irradiated with 5 or 16 J/cm2 were compared (P=0.02). 

 

 

Non irradiated W cells (1 h) showed an insignificant increase in DNA damage 

compared to non irradiated N cells (1 h), (P=0.09). Non irradiated W cells 

(24 h) showed no significant change compared to non irradiated N cells 

(24 h), (P=0.46). W cells (1 and 24 h) irradiated with 5 J/cm2 showed an 

insignificant increase when compared to N cells (1 and 24 h) irradiated with 

the same fluence (P=0.19 and P=0.52 respectively). W cells (1 h) irradiated 

with 16 J/cm2 showed a significant increase when compared to N cells (1 h) 

irradiated with the same fluence (P<0.01), while the increase at 24 h was 

approaching statistical significance (P=0.06). 

 

 

Comet assay with Fpg 
Non irradiated N cells did not show any statistical difference in DNA damage 

when compared at 1 and 24 h (P=0.06), (Figure 14). Similarly, N cells 

irradiated with 5 or 16 J/cm2 showed insignificant changes when incubation 
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times (1 or 24 h) were compared (P=0.09 and P=0.13 respectively). N cells 

(1 h) irradiated with 5 J/cm2 showed an insignificant increase in DNA damage 

compared to non irradiated N cells (1 h), (P=0.11). Contrary, irradiation with 

16 J/cm2 showed an insignificant decrease (P=0.16). Similar results were 

observed when N cells (24 h) were irradiated with 5 or 16 J/cm2 and each 

compared with the respective control (P=0.75 and P=0.27 respectively). N 

cells (1 h) irradiated with 5 J/cm2 showed an insignificant increase when 

compared to N cells (1 h) irradiated with 16 J/cm2 (P=0.06). Equally, an 

insignificant difference was observed when N cells (24 h) irradiated with 

5 J/cm2 was compared to N cells (24 h) irradiated with 16 J/cm2 (P=0.21). 

 

 

Non irradiated W cells did not show any statistical difference when the 

different incubation times were compared (P=0.2). Similarly, W cells irradiated 

with 5 J/cm2 did not show any significant difference (P=0.12), while W cells 

irradiated with 16 J/cm2 and incubated for 24 h showed a significant decrease 

compared to incubation for 1 h (P=0.02). W cells (1 h) irradiated with 5 J/cm2 

showed an insignificant decrease compared to non irradiated W cells (1 h), 

(P=0.32), while irradiation with 16 J/cm2 showed a significant increase 

(P<0.01). W cells (24 h) irradiated with 5 J/cm2 showed an insignificant 

increase compared to non irradiated W cells (24 h), (P=0.35), while irradiation 

with 16 J/cm2 showed a significant increase (P<0.01). W cells irradiated with 

16 J/cm2 and incubated for 1 or 24 h post irradiation showed a significant 

increase in oxidised DNA damage compared to the same cells irradiated with 

5 J/cm2 (P<0.01 and P=0.01 respectively).  

 

 

When incubated for 1 h, the increase in DNA damage in non irradiated W 

cells was approaching statistical significance (P=0.08) compared to non 

irradiated N cells, while there was no significant change at 24 h (P=0.11). W 
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cells (1 h) irradiated with 5 J/cm2 showed an insignificant decrease when 

compared to N cells (1 h) irradiated with the same fluence (P=0.06). W cells 

(24 h) irradiated with 5 J/cm2 showed no significant change compared to 

N cells (24 h) irradiated with the same fluence (P=0.09). W cells (1 and 24 h) 

irradiated with 16 J/cm2 showed a significant increase when compared to N 

cells (1 and 24 h) irradiated with the same fluence (P<0.01).  

 

 

4.5      Real Time Reverse Transcription PCR 
 
Real time RT-PCR was used to assess the up or down regulation of MPG 

in WS1 cells after exposure with a He-Ne laser at λ 632.8 nm. Zhang et al., 

(2003) reported that when HS27 fibroblast cells were exposed to red light 

(λ 628 nm, 0.88 J/cm2) several genes were up regulated, including MPG.  

 
 
4.5.1 Reference gene validation 
 
Prior to the study of the regulation of MPG expression by irradiation with the 

validated reference gene, PCR results for the selected reference genes were 

analysed using the standard curve, melt curve and gel electrophoresis to 

check if they were influenced by wounding and irradiation, and if primers were 

of good quality. According to Wang et al., (2006) a good primer set produces 

a single product, which is distinguished by a single melt peak in all the dilution 

series except NTC and produces a standard curve with acceptable correlation 

coefficient of R2 (>0.995) and PCR efficiency (~100%). The R∧2 value or R2 

value is the percentage of the data which is consistent with the statistical 

hypothesis that the given standards form a standard curve. Standard curves 

are used to quantify unknown samples. If the standard curve is generated 

from a sample of known abundance, the starting quantity of unknown 
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samples can be inferred from its Ct value relative to the standard curve. Even 

when the standard curve is generated from an abundant but unknown 

absolute quantity, the relative abundance of different unknown samples can 

be directly compared by calculating the position of their Ct values along the 

same standard curve.  

 

 

Using data from serial dilutions of the standards, an arbitrary threshold was 

set and Ct values from all PCR samples were recorded. The insertion of a 

threshold allowed the generation of standard curves and corresponding 

correlation coefficient of R2 and PCR efficiency for the respective reference 

genes ACTB, GAPDH and UBC (Figure 15, 16, and 17 respectively). The 

PCR efficiencies for ACTB, GAPDH and UBC were 94%, 82% and 97% 

respectively, with an R2 value of 0.999, 0.995 and 0.895 respectively. 

 

 

 
Figure 15 Standard curve for reference gene beta Actin (ACTB). The standard 

curve was generated from the Ct values of a 10 fold dilution series (1:10; 
1:100; 1:1,000) of non irradiated N cells. Unknown samples were diluted 
1:10 prior to the PCR run. The R∧2 value or R2 value is the percentage of 
data consistent with a statistical hypothesis that the given standards 
form a standard curve. 
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Figure 16 Standard curve for reference gene Glyceraldehyde 3 phosphate 

dehydrogenase (GAPDH). A 10 fold dilution series was made from 
pooled cDNA of non irradiated N samples (1:10; 1:100 and 1:1,000). All 
unknown samples were diluted 1:10 prior to the PCR run. R∧2 is the 
percentage of data consistent with a statistical hypothesis that the 
given standards form a standard curve. 

 
 
 
 

 
Figure 17 Standard curve for reference gene Ubiquitin c (UBC). A 10 fold dilution 

series (1:10; 1:100 and 1:1,000) was made from pooled cDNA of non 
irradiated N samples. All unknown samples were diluted 1:10 prior to the 
PCR run. R∧2 is the percentage of data consistent with a statistical 
hypothesis that the given standards form a standard curve. 
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Melt curve analysis 
In this study, the melt curve analysis for ACTB, GAPDH and UBC (Figure 18, 

19 and 20 respectively), (Appendix E) showed that a single product was 

formed in each of the treatment conditions for the respective genes during the 

PCR run and was melt at a particular temperature (87.7 °C, 84.0 °C, and 

88 °C respectively). However, one of the duplicates for NTC (blue-gray line) 

in the melt curve for ACTB appears to have had some genomic DNA 

contamination because the melt peak resembles those of the experimental 

samples.  

 

 

 
Figure 18 A melt curve analysis for ACTB PCR product. The formed product melted 

at 87.7 °C. The 4 lines below the threshold cycle are from the NTC 
samples. 
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Figure 19 A melt curve analysis for GAPDH PCR product. The single PCR product 

melted at 84.0 °C. Products for NTC samples were not detected. 
 
 

 
Figure 20 A melt curve analysis for UBC PCR product. A single PCR product was 

melted at 88 °C. The product was not detected in NTC samples and 
standard dilutions from1:100 to 1:1,000. 
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Gel electrophoresis 
Agarose gel electrophoresis, as another method of checking primer 

specificity, also showed a single PCR product of appropriate molecular size 

that was absent from the control (Figure 21). However, there is a faint band in 

lane 1 (NTC for ACTB) which appears to be contamination. This corresponds 

with the melt curve analysis. The photograph of the gel was taken by the 

Gene Genius (Syngene, Vacutec). 

 

 

 
Figure 21 A 2% agarose gel was made to check PCR products of the reference genes. 

Beta Actin (ACTB), Glyceraldehyde 3 phosphate dehydrogenase (GAPDH) 
and Ubiquitin C (UBC) were the selected reference genes.  ACTB showed a 
single product at 234 bp, GAPDH at 238 bp and UBC at 175 bp. Samples 
were loaded into the following lanes: ACTB; 1 and 2 (NTC), 4 and 5 (N non 
irradiated [N0]), 6 and 7 (W non irradiated [W0]), 8 and 9 (W irradiated with 
5 J/cm2 [W5]) and 10 and 11 (W irradiated with 16 J/cm2 [W16]). GAPDH; 14 
and 15 (NTC), 18 and 19 (N0), 20 and 21 (W0), 22 and 23 (W5) and 24 and 25 
(W16).  UBC; 28 and 29 (NTC), 32 and 33 (N0), 34 and 35 (W0), 36 and 37 (W5) 
and 38 and 39 (W16). Lane 42; DNA marker (580 ng).  
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REST program  
A computer software tool (REST) was used to analyse the regulation of genes 

by providing statistics of their variability. The software randomly analyses 

genes and gives statistics in a table (Appendix E4) and graph form (Figure 

22). Results from REST showed that ACTB in W cells non irradiated or 

irradiated with 5 or 16 J/cm2 was no different to the N cells non irradiated 

(P=0.095, P=0.055, and P=0.052 respectively) (Figure 22). Similarly, the 

expression of UBC was not regulated by all the treatment conditions 

(P=0.541, P=0.101, and P=0.481 respectively). On the other hand, the 

expression of GAPDH in W cells irradiated with 16 J/cm2 was significantly up 

regulated by a mean factor of 1.424 (P=0.047), while W cells non irradiated or 

irradiated by 5 J/cm2 were not affected (P=0.110 and P=0.574 respectively).   

 

 
 

 
Figure 22 Relative gene expressions for ACTB, GAPDH and UBC. ACTB and UBC 

were least variable in their expression, while GAPDH was highly variable 
by irradiation with 16 J/cm2.  
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4.5.2 MPG expression 
 

Based on the results obtained from reference genes expression, ACTB was 

chosen as a gene with which to normalise the expression of MPG. It was 

the least variable and regulated gene amongst the three genes. Thus, the 

real time RT-PCR for MPG was run alongside ACTB, when W cells were 

irradiated with 5 J/cm2 on day 1. These cells were left to incubate for 1 h 

post irradiation. The quantitative analysis of MPG showed that Ct values for 

W cells irradiated with 5 J/cm2 were very close to those of the NTC samples 

(Appendix E5). The melt curve analysis showed that there was no specific 

MPG PCR product except for the reference gene, which is shown by a red 

line (ACTB), (Figure 23). 

 

 

 
Figure 23 A melt curve analysis for MPG and ACTB PCR products. W cells were 

irradiated with 5 J/cm2 and incubated for 1 h post irradiation. MPG and 
NTC melt peaks were formed at lower temperatures, and hence were non 
specific products. The ACTB PCR product was specific; it melted at 
88.7 °C.  
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Results from the agarose gel electrophoresis further confirmed results 

obtained from the melt curve analysis; MPG PCR product was not detected, 

while the expected ACTB PCR product was detected (Figure 24).  

 

 

  
Figure 24 A 2% agarose gel for MPG and ACTB PCR products. W WS1 cells were 

irradiated with 5 J/cm2 and incubated for 1 h post irradiation. Equal 
volume of PCR products (10 µl) was loaded, except the DNA marker 
(5 µl). RNA was extracted and transcribed by a Fastlane cell cDNA 
synthesis kit. Lane 1 and 2 = MPG products, lane 3 = NTC for MPG, lane 
4 = ACTB PCR product, lane 5 = NTC for ACTB and 7 = DNA marker 
(580 ng). 

 

 

Since MPG expression was not detected in W cells irradiated with 5 J/cm2, it 

was decided to irradiate the cells with a higher fluence (16 J/cm2) so that 

more damage could be caused, and hence induce the expression of the 

gene. In addition, MPG expression was also monitored in MCF 7 cells 

(breast cancer cells) because reports indicate that these cells express more 

MPG than WS1 cells (Cerda et al., 1998; Bouziane et al., 2000). This cell 

line was to act as a positive control. MCF 7 cells were then analysed 

alongside WS1 W cells which were left to incubate at 0, 3 or 8 h post 

irradiation; MCF 7 cells were not irradiated.  
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When the expression of MPG in W cells irradiated on day 1 with 16 J/cm2 

and in MCF 7 cells was analysed at 0 h, it was observed that the Ct values 

for these cells were not different to the values of NRT and NTC samples 

(Appendix E6). The MPG melt curve (Figure 25) and gel electrophoresis 

(Figure 26) analysis showed that the PCR products melted at lower 

temperatures and thus they were not the expected products while the gel 

did not detect any PCR product.  

 

 

          
Figure 25 A melt curve analysis for MPG PCR products at 0 h incubation post 

irradiation. W WS1 cells were irradiated with 16 J/cm2 on 1 day, while 
MCF 7 cells were not irradiated. No specific MPG PCR melt peaks were 
detected in W WS1 cells, MCF 7 cells, NRT and NTC samples; all peaks 
melted at temperatures lower than the specific PCR product.  
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Figure 26 A 2% agarose gel for MPG PCR products 0 h incubation post irradiation.  

W WS1 cells were irradiated with 16 J/cm2 on day 1, while MCF 7 cells 
were not irradiated. RNA was extracted and transcribed by a Fastlane cell 
cDNA synthesis kit. Equal volume of PCR products (10 µl) was loaded, 
except the DNA marker (5 µl). MPG PCR products were not detected in all 
the samples. Lane 2 and 3 = NRT, lane 4 and 5 = NTC, lane 8 and 9 = W 
WS1 cells, lane 10 and 11 = MCF 7 cells, and 14 = DNA marker (580 ng).  

 
 

The PCR result for W WS1 cells irradiated on day 1 with 16 J/cm2 and 
incubated for 3 h prior to RNA extraction and transcription to cDNA, showed 
that the Ct values for MPG in WS1 and MCF 7 cells were not different to 
values for NRT samples (Appendix E7). The melt curve analysis did not 
detect any specific MPG PCR product as all the peaks melted at 
temperatures lower than the specific MPG PCR product (90.7 °C), (Figure 
27). The agarose gel electrophoresis did not detect any PCR product (Figure 
28).  
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Figure 27 A melt curve analysis for MPG PCR products at 3 h incubation post 

irradiation. W WS1 cells were irradiated with 16 J/cm2 on day 1, while 
MCF 7 cells were not irradiated. Non specific PCR product was formed 
which melted at 79.2 °C. 

 

 

   
Figure 28 A 2% agarose gel for MPG PCR products 3 h incubation post irradiation. 

W WS1 cells were irradiated with 16 J/cm2 on day 1, while MCF 7 cells 
were not irradiated. RNA was extracted and transcribed by a Fastlane 
cell cDNA synthesis kit. Equal volume of PCR products (10 µl) were 
loaded into labelled lanes except the DNA marker (5 µl). MPG PCR 
products were not detected in all lanes. Lane 1 and 2 = NRT, lane 3 and  
4 = W WS1 cells, lane 5 and 6 = MCF 7 cells, and 7 = DNA marker 
(580 ng).          
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The quantitative results for W WS1 cells irradiated with 16 J/cm2 and 

incubated for 8 h post irradiation, showed that Ct values for MPG in WS1 

and MCF 7 cells were not different to the values of NRT samples; the Ct 

value for MPG in WS1 cells was less by 2 cycles, while in MCF 7 cells by 

0.5 cycles (Appendix E8). The melt curve analysis showed that a non 

specific product was formed and melted at 81 °C (Figure 29). Agarose gel 

electrophoresis showed that MPG PCR product was not formed (Figure 30). 

Zhang et al., (2003) detected MPG 8 h post irradiation. It was because of 

this observation that it was decided to use 8 h incubation post irradiation. 

 

 

 
Figure 29 A melt curve analysis for MPG PCR product at 8 h incubation post 

irradiation. A non specific PCR product was formed. W WS1 cells were 
irradiated with 16 J/cm2 on day 1, while MCF 7 cells were not irradiated. 
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Figure 30 A 2% agarose gel for MPG PCR products 8 h incubation post irradiation. 

W WS1 cells were irradiated with 16 J/cm2 on day 1. MCF 7 cells were not 
irradiated. RNA was extracted and transcribed by a Fastlane cell cDNA 
synthesis kit. Equal volume of PCR products (10 µl) were loaded into 
labelled lanes except the DNA marker (5 µl). MPG PCR products were not 
detected in all lanes. Lane 1 and 2 = NRT, lane 3 and 4 = W WS1 cells, 
lane 5 and 6 = MCF 7 cells, and 7 = DNA marker (580 ng).  
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CHAPTER 5 DISCUSSION AND CONCLUSION 
 

 

Phototherapy has been proven worldwide to enhance proliferation and 

migration of biological cells. However, these cellular responses seem to 

confuse scientists as to whether wound healing is due to cell proliferation or 

migration or both. Thus, prior to the study to determine the effect of 

phototherapy on DNA damage and gene activation related to DNA repair in W 

WS1 human skin cells, a mini project was performed to determine whether in 

vitro wound closure was due to migration or proliferation or both (Zungu et al., 

2008). Cell proliferation was arrested using hydroxyurea (HU) so that cell 

migration could be assessed properly. HU is a known antiproliferative drug. 

The desired effects of HU are known to be dependent on cell type, 

concentration and stage of the cell cycle at the time of use (Rocha et al., 

1984; Schrell et al., 1997). Fibach et al., (1993) observed that high a 

concentration of HU could ablate cells and this meant that concentration was 

an important factor when using HU.  

 

 

W WS1 cells, with or without HU (5 mM) were irradiated with 5 J/cm2 using a 

He-Ne laser on day 1 and 4. Cell morphology, viability and proliferation were 

assessed 24 h post irradiation on day 4. The study showed that there was a 

decrease in cell number in HU treated cells, however, there was no apparent 

cytotoxicity as evidenced by cell morphology and the Trypan blue exclusion 

test (Zungu et al., 2008). This finding was in agreement with what Hamuro et 

al., (2002) observed, when 5 mM HU was used to inhibit cell proliferation; it 

was found that HU arrested cell proliferation in human aortic endothelial cells 

(HAECs) without detectable cytotoxicity. This suggested that 5 mM HU was 

able to inhibit proliferation through its cytostatic effect without damaging the 

viability of W cells. There was also a significant decrease in ATP which could 
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be attributed to the inhibition of ribonucleotide reductase which is responsible 

for DNA synthesis. This might have resulted in the depletion of intracellular 

deoxyadenosine triphosphate (dATP). The decrease in ATP might also have 

been due to a decrease in cell number as a direct result of the 

antiproliferative effect of HU and not due to a decrease in cell viability or 

induction of apoptosis. The decrease in cell number also directly correlated 

with the results of the XTT assay, which showed a significant decrease in the 

formazan dye in HU treated cells compared to non treated cells (Zungu et al., 

2008). 

 

 

Skog et al., (1987) observed that HU concentrations of between 3 and 6 mM 

applied to mouse S49 T-lymphoma and human CEM T-lymphoblastoid cells 

resulted in cytotoxicity that led to irreparable DNA lesions and chromosomal 

fragmentation. This finding was different to the observation made in this study 

and that of Hamuro et al., (2002). Cai et al., (2000) observed that 2 mM of HU 

completely inhibited proliferation and had limited effect on cell migration. 

Other authors have found that HU exhibited antiproliferative and cytotoxic 

effects on HeLa cells in a fluence dependent manner. These authors noted 

that the response of HeLa cells to HU differed, depending on the growth 

phase of cells. For instance when non confluent (proliferating) cultures of 

HeLa cells were treated with 100 ng/ml of HU, a significant antiproliferative 

effect was observed. However, when confluent (non proliferating) HeLa cells 

were treated with the same concentration, 20% cell death was observed 

(Akça and Özeş, 2001).  

 

 

The above mentioned observations led to the speculation that HU mainly 

affected DNA synthesis, thereby interfering with the growth of proliferating 

cells, and that HU has direct cytotoxic effects on non proliferating cells. This 
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study showed enhanced cell migration and an insignificant increase in cell 

proliferation. The enhanced cell migration was attributed to laser irradiation 

which was absent in the study by Cai et al., (2000),  and correlates with the 

findings of Hamuro et al., (2002) in terms of non cytotoxicity, and with Akça 

and Özeş, (2001) in terms of HU antiproliferative effect in proliferating cells 

(Zungu et al., 2008). 

 

 

According to Hayashi et al., (2003), the role of apoptosis in the anticancer 

activity was not clear. Induction of apoptosis might occur in only some types 

of cells, such as those of the haematopoietic lineage. Linke et al., (1996) 

proposed that HU, which was dependent on concentration, through a p53 

dependent effect, leads to reversible cell quiescence (arrest above G1), most 

probably due to depletion of deoxyribonucleotide triphosphates (dNTPs) and 

non senescence like irreversible cell arrest. In this study apoptosis could not 

be ruled out since the Trypan blue exclusion test might not be sensitive 

enough to detect apoptosis in its early stages. However, other researchers 

have found that HU causes apoptosis, while others did not at similar 

concentrations (Cai et al., 2000; Hayashi et al., 2003). At the same time, 

irradiation is known to down regulate genes involved in apoptosis (Zhang et 

al., 2003).  

 

 

Morphologically, HU treated cells appeared normal and were still able to 

migrate towards the central scratch. There was a decrease in the number of 

cells in the central scratch, corresponding with a decrease in cell proliferation 

as determined by the XTT and ATP assay results (Zungu et al., 2008). Thus, 

HU inhibited cell proliferation. This correlates with the findings of Schrell et al., 

(1997) that HU has an antiproliferative effect on cells. The few cells across 

the central scratch of the non irradiated cells could be explained as due to a 
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lack of stimuli required to stimulate an increase in the rate of cell migration 

when compared with cells irradiated with 5 J/cm2. This was in agreement with 

findings in the literature, where phototherapy had been shown to stimulate 

cell proliferation and migration (Hawkins and Abrahamse, 2005; Hopkins et 

al., 2004; Houreld and Abrahamse, 2007). Proliferation in the treated non 

irradiated and irradiated cells was limited by HU; the presence of more cells in 

the central scratch of the treated irradiated cells was due to migration as a 

result of irradiation at 5 J/cm2.  

 

 

The slight increase in cell viability, as determined by the Trypan blue 

exclusion test, in irradiated and HU treated and non treated cells was due to 

the stimulatory effect of using a correct fluence (5 J/cm2) and λ (632.8 nm). 

HU at 5 mM was not toxic to cells; cells were able to normalise despite 

receiving three stressors, namely wounding, irradiation and HU treatment.  

 

 

The number of cells remained relatively constant, when proliferation was 

blocked by HU as evidenced by the Trypan blue cell count (Zungu et al., 

2008). Treated cells were limited in their response to the injury due to the 

inhibition of cell proliferation. Thus, the presence of cells in the central scratch 

could only be attributed to migration, as the effect of cell number or 

proliferation could be excluded. Few cells had migrated to the central scratch 

of the non irradiated HU treated cells, while more cells were observed in the 

central scratch of the irradiated treated cells. Thus, the presence of more cells 

in the central scratch is due to laser irradiation stimulation on migration.  
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Thereafter, the main project looked at cell morphology, viability, proliferation 

and DNA damage as a source of baseline data in the study of gene 

expression. WS1 cells were irradiated with 5 or 16 J/cm2 using a He-Ne laser 

(λ 632.8 nm) on day 1 and 4; responses were measured 1 or 24 h post 

irradiation on day 4. Morphologically N cells irradiated with 0, 5 or 16 J/cm2 

did not show any structural differences at either 1 or 24 h incubation. This 

was also true for other parameters such as cell viability, proliferation and DNA 

damage; they did not show any significant differences when compared at 1 or 

24 h. This observation is in agreement with Karu et al., (2003) who 

demonstrated that laser irradiation on non stressed cells does not alter their 

biological behaviour because the physiological activity of the cells is at the 

maximum, hence there is nothing to stimulate. On the other hand, irradiation 

of W cells with 5 J/cm2 showed that it was able to stimulate cellular viability, 

proliferation and migration, and hence complete wound closure was 

observed. The total number of viable cells increased significantly at both 1 

and 24 h compared to the respective controls.  

 

 

The importance of ATP in a cell cannot be overemphasised because it 

provides readily available energy to the cells. Cells that lack ATP, depending 

on severity, result in decreased cellular function. In extreme cases, energy 

depletion leads to a calcium influx and activation of apoptotic and necrotic 

processes (Streeter et al., 2004). Coulter (2003) stated that an increase in 

ATP encourages cell proliferation and since wound healing requires new 

cells, increased ATP indicates enhanced wound healing. In this study, 

increased levels of ATP was noted in cells irradiated with 5 J/cm2. This might 

have increased the biological activity of the cells and hence stimulated 

proliferation and migration of the cells. This could be the explanation why 

there was complete wound closure in cells irradiated with 5 J/cm2. This 

observation is in agreement with the comet assay results which showed that 
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irradiation of cells with 5 J/cm2 did not cause significant damage. Hawkins 

and Abrahamse (2007a) observed that W cells irradiated with 5 J/cm2 in the 

dark using a He-Ne laser at λ of 632.8 nm showed an increase in ATP 

viability.    

 

 

Irradiation using a higher fluence of 16 J/cm2 showed a decrease in cell 

migration, viability and proliferation. W cells irradiated with 16 J/cm2 showed 

incomplete wound closure at both 1 and 24 h. There was also a decrease in 

percentage viability and ATP in these cells. Furthermore, W cells irradiated 

with 16 J/cm2, showed a higher number of non viable cells than cells 

irradiated with 5 J/cm2. These results concur with those of the comet assay 

which showed more DNA damage with irradiation using 16 J/cm2. This 

fluence appears to be too high to stimulate the behaviour of cells. Karu (1988) 

observed that high fluences cause destruction of photoreceptors which is 

accompanied by growth inhibition and cell lethality. A decrease in ATP 

production cannot support life for the reason that biological activities depend 

on ATP which provide energy to the cells. Simunovic (2000) observed that 

cells’ biological activities correlate with the amount of ATP in the cells. This 

means that when cells have less ATP their biological activities are also 

reduced as evidenced in W cells non irradiated or irradiated with 16 J/cm2. 

Other researchers have also demonstrated that irradiation with fluences 

higher than 10 J/cm2 damages DNA (Houreld and Abrahamse, 2008). The 

behaviour of the two fluences used in this study can be explained well using 

the Arndt-Schultz law which states that small fluences stimulate biological 

activity while higher fluences inhibit (Sommer et al., 2001). Therefore, it can 

be deduced that laser irradiation at 5 J/cm2 definitely promotes wound closure 

in vitro. 
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Contrary, the failure of non irradiated W cells to close the wound at both 1 

and 24 h, could mean that there was possibly nothing more, apart from the 

wound, to stimulate the biological activity of the cells. However, it was noted 

that an incubation period of 24 h post irradiation had an effect on these cells. 

For instance, non irradiated W cells left to incubate for 24 h had more cells in 

the central scratch compared to cells incubated for 1 h. The difference in the 

observation could be attributed to cell proliferation and migration as they had 

more time. For cells that were irradiated with 16 J/cm2, the difference would 

be ascribed to DNA repair. More DNA was repaired at 24 h compared to 1 h 

and hence more cells were able to multiply (proliferate) and migrate. Thus, 

the total number of cells was increased at 24 h than at 1 h, supporting what 

other studies found (Hawkins and Abrahamse, 2007b; Kreisler et al., 2003). If 

cells were left longer than 24 h, the damage could be completely repaired. 

 

  

The hypothesis for using Fpg in the modified comet assay and assessment of 

MPG expression was that the oxidised bases formed by irradiation would be 

repaired by MPG. Previous studies showed that irradiation of W cells with 

16 J/cm2 caused more DNA damage compared to irradiation with 5 J/cm2 

(Hawkins and Abrahamse, 2006; Houreld and Abrahamse, 2008). With this in 

mind, it was thought that irradiation of cells with 16 J/cm2 would cause more 

DNA damage, and hence up regulate MPG expression. Since the damage in 

the form of oxidised bases would be excised and repaired by MPG using the 

BER pathway, Fpg would detect insignificant damage in terms of arbitrary 

units compared to the conventional comet assay. This view was supported by 

the comet assay results in this study and has been alluded to below. Though 

insignificant, the modified comet assay detected more arbitrary units 

compared to the conventional comet assay.  
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The modified comet assay showed that it was more sensitive than the 

conventional comet assay. This was manifested by the higher number of 

arbitrary units in the former assay than in the later. It can be explained that 

the modified comet assay detected and cleaved oxidised bases in addition to 

single strand breaks, which the conventional comet assay detected. 

Therefore, it could be said that the additional strand breaks could be 

attributed to irradiation with 16 J/cm2, however care must be taken in this 

interpretation since Fpg is multifunctional; it is not specific to oxidised bases 

due to irradiation only.  

 

 

According to literature oxidised bases are caused due to several factors, 

namely: ROS, laser irradiation and diseases just to mention a few (Dale and 

Park, 2004). ROS is also known to induce SSBs (Takao and Yasui, 2005). 

Molecular oxygen is consumed during respiration in mitochondria and thereby 

converted to ROS as byproducts. It is known that continued irradiation 

increases production of ROS possibly due to an increase in cellular 

metabolism and so increases the rate of their scavenging (Lubart et al., 

2006). If there is dysfunction, there is increased ROS leakage and hence an 

increase in oxidative DNA damage. Therefore, it can be postulated that with a 

higher irradiation fluence of 16 J/cm2 more oxidised bases would be formed 

as this would disrupt the normal biochemical functions of cells, while 

irradiation with 5 J/cm2 would produce an insignificant number of oxidised 

bases as this fluence has been proven to be stimulatory and not DNA 

damaging. This rationale was proved by the comet assay, where more 

damage was observed in W cells irradiated with 16 J/cm2 compared to 

irradiation with 5 J/cm2.  
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Real time RT-PCR has been described as the most sensitive method for 

measuring low abundance mRNA. It was used in this study to assess the 

expression of MPG, which is a DNA repair gene. Reference genes were 

validated in order to select the least regulated gene to be used for 

normalisation of the gene of interest (MPG). Most researchers have 

recommended validation of reference genes prior to the study of the gene of 

interest (Dheda et al., 2004). Most reference genes are affected by the 

experimental conditions. If they are not validated, false regulation of the gene 

of interest may be observed since the variable expression might be that of the 

reference gene and not the gene of interest (Dheda et al., 2004).  The issue 

of reference genes need not be generalised because experimental models 

are different and should be looked at as per individual experiment. 

 

 

This study found that ACTB was the least regulated gene and that its 

expression levels were consistent. It produced an acceptable PCR efficiency 

of 94% and R2 of 0.999. However, GAPDH primers produced a low PCR 

efficiency (82%), while UBC produced a low R2 (0.898). Wang et al., (2006) 

recommends an R2 of more than 0.995 and a PCR efficiency of between 90 

and 100%. If the R2 value is low, the given standards do not easily fit into a 

line of best fit and thus, if used, the results obtained may not be reliable. PCR 

efficiency threshold is used to exclude samples with noise from the analysis. 

Wang et al., (2006) observed that ACTB, as a reference gene, was highly 

regulated. Similarly, Wilson et al., (2003) demonstrated that it was regulated 

by 2.5 fold with Argon laser irradiation, possibly because an ablative laser 

was used, whereas this study used a He-Ne laser which is non photothermic. 
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After observing that MPG expression could not be detected when W cells 

were irradiated with 5 J/cm2, it was decided to irradiate W cells with 

16 J/cm2 and alter incubation periods to 0, 3, or 8 h. A breast cancer cell 

line, MCF 7, was included as a positive control. Cerda et al., (1998) found 

that MPG protein was increased approximately 3 to 6 fold in these cells as 

compared to normal cells. Zhang et al., (2003) detected MPG when cells 

were left to incubate for 8 h post irradiation. Holt et al., (2000) observed that 

most DNA inducible proteins increase between 2 and 8 h after exposure to 

damage. Thus, MPG expression was explored at the different incubation 

periods so as to increase chances of its detection. However, its expression 

was not detected. The Ct values of MPG in W and MCF 7 cells were similar 

to the negative control values. This meant that MPG was not present for 

amplification during the PCR. There should be a difference of 5 Ct values 

between a negative and positive expression. The absence of MPG 

expression was confirmed by the 2% agarose gel electrophoresis, which 

also did not detect the MPG PCR product.  

 

 

The comet assay showed that W cells irradiated with 16 J/cm2 had more 

DNA damage compared to W cells irradiated with 5 J/cm2 and non 

irradiated cells. However, the degree of damage became less when cells 

were left to incubate for 24 h post irradiation. It is apparent that DNA repair 

took place. MPG, which is one of the main DNA glycosylases involved in 

BER of the altered or abnormal bases, was not detected in WS1 or MCF 7 

cells. Possibly the altered bases produced may not have been specific for 

MPG, and hence an alternative repair mechanism was induced and repaired 

the damage. In this case, it might be that MPG was not induced and hence 

the failure to be detected. Other studies established that when glycosylase 

genes were disrupted they showed either mild or no effect in mice 

(Engelward et al., 1997). However, it was observed in these studies that 
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DNA repair took place suggesting that cells frontline defences have back up 

systems. It has also been observed that a number of DNA glycosylases 

have overlapping substrate specificity (Takao and Yasui, 2005). So, it 

appears that an unexpected number of DNA glycosylases may participate in 

the maintenance of the genome integrity from oxidative DNA lesions in 

mammalian cells. All these arguments augment the idea that DNA damage 

which was observed in W cells irradiated with 16 J/cm2, was repaired by 

alternative pathways apart from MPG since it was not expressed.  

 

 

Reports indicate that on the basis of substrate specificity, there are two 

classes of DNA glycosylase in mammals namely; uracil DNA glycosylase 

(UDG) and MPG. UDG exclusively acts on uracil in DNA (Krokan et al., 

1997), while MPG excises oxidised purines. It might be that the altered 

bases were of the uracil type, and hence UDG might have repaired the 

damage. Secondly, the DNA damage might have been repaired by the 

human Nth homologue (NTH) protein which is known to excise oxidised 

bases. Surprisingly, this protein is localised in the same chromosomal 

region as MPG. Human oxoguanine DNA glycosylase 1 (hOGG1) has also 

been implicated in the repair of the most mutagenic lesion, 8-oxoG of which 

MPG also repairs. However, according to literature, MPG is inferior to 

hOGG1 in the excision of this lesion.  

 

 

It has been recently discovered that MPG is a low copy gene and is poorly 

expressed in cells in vitro (Adhikari et al., 2008). It appears that the low copy 

number of MPG creates a healthy balance between base excision and 

repair. MPG overexpression has been shown to increase the normally slow 

rate excision of 7 methylguanine, leading to the accumulation of the toxic 

repair intermediates (Rinne et al., 2005). Due to this, its expression is highly 
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controlled. Most studies have also demonstrated that MPG expression is 

cell cycle dependent and is known to increase by 2.5 to 3.5 fold in 

synchronised cells. It increases during the G1 phase and decreases after 

mitosis. In studies where it was detected, cells were cultured in serum free 

medium for 14 days to ensure that cells were synchronised in gap 0 (G0). 

After 14 days at 0 h, approximately 95% of the cells were in the G0 phase. 

Expression of MPG mRNA increased 10 to 20 h after the addition of serum 

(Bouziane et al., 2000). 

 

 

FBS provides serum response factors to cells and thus, contributes to 

mitogen stimulated transcriptional induction of many immediate early genes 

during the G0 to G1 cell cycle transition and is also essential for cell cycle 

progression (Schratt et al., 2001). Thus, the absence of serum in the 

medium slows down proliferation and cell cycle progression. Lau and 

Nathans (1985) speculated that time of accumulation of particular mRNA 

appeared to be an ordered expression of genes that comprised a genetic 

program for growth, so a disruption to a single gene might affect others. 

Even though Zhang et al., (2003) observed an increase in cell proliferation 

when 5% FBS was used during cell cultures, it is possible that cell cycle 

progression was slowed and hence many cells were maintained in the G1 

phase. This could be the possible reason they detected MPG expression.  

 

 

In contrast, in this study 10% FBS was supplemented to the media so cells 

might have been actively proliferating and progressing to the next cell cycle, 

which according to literature, slows down MPG expression after mitosis. It 

would, therefore, be possible that during the assessment of MPG 

expression, most cells had just passed through mitosis in which case MPG 

expression was low. The proportion of W WS1 or MCF 7 cells in the G1 
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phase at the various time intervals might have been so few that MPG was 

undetectable. The other intriguing observation is that magnesium ions are 

said to inhibit MPG activity by abrogating its substrate binding and 

decreases the active enzyme concentration (Adhikari et al., 2008). MEM, 

the media which was used in this study, contained Magnesium sulphate 

(200 mg/L) at a higher concentration than the other media (Dulbecco’s 

Modified Eagle Medium [D-MEM] and Roswell Park Memorial Institute 

medium 1460 [RPMI]) which was used by the others authors who detected 

its expression. It might be possible that the high concentration of 

magnesium ions in the media down regulated MPG expression.  

 

 

It was also noted that Zhang et al., (2003) used a fluence of 0.88 J/cm2 at 

λ of 628 nm to detect MPG expression through microarray. The fluence and 

wavelength used might have been ideal to induce MPG expression. On the 

other hand, 5 or 16 J/cm2, which was used in this study, might have been 

too much and therefore damaged the sensor protein for MPG expression. It 

might be that MPG does not need a high fluence to be induced. In 

summary, the effects of irradiation on cells are mediated by many factors 

such as fluence, duration of exposure, cell culture conditions, and 

wavelength. These parameters can greatly vary results. For instance, Zhang 

et al., (2003) used a very short duration of exposure every day for 3 days. 

The effect this kind of irradiation might have on cells would possibly be 

different to cells irradiated once or after 3 days with a higher fluence. 

 

 

Most studies both in vivo and in vitro, in which MPG expression has been 

investigated, have used Southern blot, Western blot or Northern blot. If any, 

very few studies have used real time RT-PCR to study MPG expression. It 

is difficult to exactly compare with what other studies have found because 
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gene expression and protein expression are relatively different. DNA repair 

genes are induced at specific times and do not remain elevated for long 

periods. Therefore, to detect their expression timing must be correct and 

accurate. Furthermore, more cells and hence more protein is used in 

Western blots, whereas only 5 x 103 cells were used in this study (according 

to manufacturer’s recommendations).  

 

 

Few reports are available with regards to the use of He-Ne laser irradiation 

in the study of MPG expression. Many in vivo studies have induced MPG 

expression by the use of alkylating chemicals as DNA damaging agents 

(Holt et al., 2000). Laser irradiation has been shown to be beneficial in many 

areas. Therefore, in this study, it is possible that irradiation switched off 

MPG expression since its molecular biomodulation is not well known. These 

observations might help to explain why MPG was not detected in W cells 

grown for 4 days and analysed at 1 or 24 h or grown for 1 day and analysed 

at 0, 1, 3 or 8 h. 

 

 

In conclusion, this project has demonstrated that irradiation of W cells with 

5 J/cm2 increases ATP, cell proliferation and migration which was evidenced 

by cell morphology for both the mini and main project. Irradiation of cells 

with higher fluences such as 16 J/cm2 is damaging to DNA and inhibitory to 

cell proliferation and migration. MPG expression was not detected possibly 

due to differences in cell culture conditions, fluence and duration of 

exposures. 
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Therefore, this project would like to propose further investigations on DNA 

repair genes like human NTH and other genes, which are not cell cycle 

dependent to suit the project design of growing cells. For instance, it would 

be necessary to look at DNA repair genes, which encode proteins for both 

glycosylases and AP lyases because these have both activities to remove 

the substrate bases and incise the phosphodiester backbone. This would be 

more sensitive in inducing the DNA repair gene as it would be affected by 

both activities and hence would be up regulated. Smith et al., (2006) 

demonstrated that hOGG1 was more specific to excise oxidised bases than 

Fpg. Fpg recognises oxidised bases including alkylation damage. It would 

be important in the follow up study to the current one to use hOGG1 in the 

modified comet assay to assess the type of DNA damage caused by 

irradiation. Thereafter, the expression of hOGG1 can be assessed with real 

time RT-PCR. The proposed study would give a more direct comparison.  
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          APPENDIX A   
 
MATERIALS AND METHODS       
   
A1 Flow Diagram 
 

 
 
 
 

Group 1 Group 2 Group 3 Group 4 
Normal 
Non irradiated 

Wounded 
Non irradiated 

Normal 
Irradiated 

Wounded 
Irradiated 

632.8 nm 
5 or 16 J/cm2  

Expose day 1 and 4 post 
wound induction 

Assess cellular and molecular responses on day 4 (1 or 24 h) 

0 J/cm2  

 Tissue Culture 
        (WS1) 

n=6 

Cell morphology (Light microscope) 
Cell viability (Trypan blue & ATP) 

Cell proliferation (XTT) 
DNA integrity (Alkaline comet assay with & without Fpg) 

DNA repair gene expression (Real time RT- PCR) 

Figure A1 Flow diagram of normal (N) and wounded (W) WS1 cells irradiated with a He-Ne 
laser (λ 632.8 nm) on day 1 and 4. Cellular responses were measured 1 or 24 h 
post irradiation on day 4. Non irradiated cells were used as controls. 
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A2 Equipment Used 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
         

Figure A2 An incubator in which cells were 
grown at 37 °C in 5% CO2 and 85% 
humidity.  

  
 

 
Figure A3 A centrifuge (DIGICEN-R, INSTRULAB S.A) used to spin cell culture 

suspensions at 2,200 rpm for 4 min. 
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Figure A4 An inverted light microscope used to study cell morphology, check 
contamination and confluence of cells in the 75 cm2 culture flasks 
and 3.4 cm diameter culture dishes. The microscope has a camera 
attached for digitally recording photographs. 

 

 
Figure A5 A fluorescent microscope used to score comet assay slides stained 

with DAPI. 
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 Figure A6 A centrifuge used to spin samples during RNA and cDNA synthesis. 

This centrifuge has both rpm and gravitation functions. 
 
 
            

        
Figure A7 The RotorGene thermocycler which was used for the real time RT-PCR. 

It has a hardware for high resolution melts (HRM) which characterises 
samples based on sequence length, GC content and complementarity. 
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 APPENDIX B 
 
MEDIA, SOLUTIONS AND CALCULATIONS 
 

B1 Cell Line Description 
 

ATCC catalogue number  CRL-1502 

Cell line designation   WS1 

Organism    Homo sapiens (human) 

Tissue     Normal skin fibroblast 

Age/stage    12 weeks gestation 

Gender     Female 

Ethnicity     Black 

Morphology    Fibroblast 

Depositors    R.J. Hay 

Growth properties   Adherent 

Comments    WS1 cells are restricted to 67 population  

doublings 

 

 

B2 Composition of Complete Media  
 
Minimum essential medium (MEM), (INV/32360-026)              43 ml 

10% Foetal bovine serum (FBS), (INV/10108-165)              5 ml 

2 mM L-glutamine (INV/25030-024)               1 ml 

1 mM Sodium pyruvate (INV/11360-039)     0.5 ml 

1% Pen-strep fungizone (INV/17-745E)      0.5 ml  

0.1 mM Non essential amino acid (NEAA), (INV/11140-053)  0.5 ml 

Complete media prepared for 1 week, labelled and stored in the refrigerator 

at 4 – 6 °C 
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B3 0.25% Trypsin in HBSS 
 

Hanks balanced salt solution (HBSS), (INV/14170-088)           45 ml 

2.5% Trypsin (INV/ 15090-046)       5 ml 

Label and store at 4 – 6 °C 
 
 

B4 3% EDTA (Ethylenediaminetetracetic acid)  
 

EDTA (Merck S.A., A2236020EM)      1.8 g 

Distilled water                   100 ml 

Aliquot in 5 ml tubes, autoclave at 121 °C for 15 min or filter sterilise using a 

0.2 μm syringe filter. Label and store at 4 - 6 °C 

 

Working solution of 0.25% Trypsin and 0.03% EDTA  

Add 100 µl stock 3% EDTA to 9.9 ml of Trypsin in HBSS 
 

 
B5 Calculation of Cell Number and Seeding of Culture Dishes (Plates)  
 

Cells/ml = average number of viable cells/square X dilution factor X 104* 

Total number of viable cells = viable cells/ml X total volume (ml) 

* Factor to convert number of cells to per ml 
 

6 x 105 cells in 3 ml media is seeded into 3.4 cm diameter culture plates.  To 

determine the number of culture plates and number of cells per plate the 

following calculations were used: 

Number of plates = Total viable cells 
   6 x105 cells 
 
Volume of cells to add = Total volume (ml) 
           Number of plates 
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Make up to 3 ml with complete media 
  

Example 1: If the total cell count was 4.09 X 106/5 ml, the number of plates to 

be made would be   

4.09 X 106 cells = 6.817 plates 
       6 X 105 cells 
 

  

Therefore, theoretically among the 6.817 plates, each would get: 

5 ml = 0.733 ml of the total cell suspension in 5 ml.  
6.817 
 

This would translate to 5.99594 x 105 cells/culture plate. Practically 6 plates 

would be made.  The volume of complete medium to be added to each plate 

would be: 3.0 – 0.733 ml = 2.267 ml 

 
Example 2: After harvesting cells from small culture plates, cells are 

resuspended in 500 µl HBSS. The total number of  

(a) cells would be:  

average number of cells/square X dilution factor X 104 X 0.5 ml. 

(b) the total number of viable cells would be:  

average number of viable cells/square X dilution factor X 104 X 0.5 ml. 

  
  
B6 ATP Assay  
 

CellTiter-Glo® Luminescent Cell Viability Assay (Promega S.A., G7571)  

Aliquot 500 µl buffer  into eppendorfs. Label and store at -20 °C.  

Weigh 0.0035 g of substrate and store in labelled eppendorfs at -20 °C. 

 

Working solution          

Dissolve 0.0035 g of substrate into the thawed buffer. 
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B7 XTT Assay  
 

Thaw XTT labelling reagent (Sodium 3’ – [1 – {phenylaminocarbonyl} - 3, 4 – 

tetrazolium] - bis [4 – methoxy – 6 –nitro] benzene sulfonic acid hydrate) and 

coupling reagent (PMS [N-methyl dibenzopyrazine methyl sulphate]) (Roche 

S.A., 11 465 015 001).  

Aliquot the thawed reagents into labelled 1.5 ml and 30 µl eppendorfs 

respectively. Protect from light and store at -80 °C 

 

Working solution 

Thaw and add 1.5 ml of XTT labelling reagent to 30 µl coupling reagent. This 

is enough for 30 tests. Working reagent should be used fresh. 

 
 
B8 Comet Assay Solutions 
 

B8.1 Phosphate buffered saline (PBS), 1% standard agarose and slide 
preparation 

 
PBS – dry powder (Sigma-Aldrich S.A., P3744) 
The pre-weighed contents of PBS were dissolved in distilled water in a one 

litre labelled bottle. The solution was autoclaved and stored at 4 – 6 °C. 

 

1% standard agarose  
Agarose (Celtic Molecular Diagnostics S.A., Bioline, BIO-41025)   0.8 g 

PBS                 80 ml 

 

Slides 
Cleaned slides were dipped into 1% standard agarose set at 37 °C and let to 

dry at room temperature over night. 
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B8.2 1% Low melting point agarose (LMP) 
1g LMP agarose (Sigma-Aldrich S.A., A-9414)                     0.8g 

PBS                 80 ml 

 

B8.3 Lysis solution  
2.5 M NaCl (Merck S.A., 5822320 EM)            146.1 g/L 

0.1 M EDTA                37.2 g/L 

10 mM Tris base (Sigma-Aldrich S.A., T-6066)            1.21 g/L 

Dissolve in 0.8 L of distilled water, immediately add 35 ml of NaOH to ensure 

that NaCl, EDTA and Tris dissolve. Add drop wise to pH 10.0 and raise 

volume to 1 L. Label and autoclave the solution. Store at 4 – 6 °C. Add 1 ml 

Triton X - 100 per 100 ml of lysis solution immediately before use. 

 
B8.4 Electrophoresis solution 
0.3 M NaOH (Merck S.A., 5823200 EM)            12 g/L 

1 mM EDTA                0.372 g/L 

Add distilled water up to 1 litre. Label, autoclave and store at 4 – 6 °C. 

 

B8.5 Neutralisation buffer 
0.4 M Tris base (Tris [hydroxymethyl]aminomethane)                    48.44 g/L 

Dissolve in 0.8 L of distilled water, pH to 7.5 with concentrated HCl then make 

up volume to 1 L with distilled water. 

Label, autoclave and store at 4 – 6 °C. 

 
B8.6 Sodium hydroxide (NaOH) solution (10 M) 
10 M NaOH                                                           200 g 

Dissolve 200 g of NaOH in distilled water to a final volume of 500 ml. Label 

and autoclave the solution; crystals dissolve during autoclaving. Store the 

solution at 4 – 6 °C. 
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B8.7 Enzyme reaction buffer 
40 mM HEPES (N-[2-Hydroxyethyl] piperazine-N’-[2-ethane-sulfonic 

acid]), (Sigma-Aldrich S.A., H-7006)                                   10.412 g/L 

0.1 M KCl (Merck S.A., AB004936.500)           7.455 g/L 

0.5 mM EDTA                       0.1861 g/L 

0.2 mg/ml Bovine Serum Albumin (AEC-Amersham S.A., RPN 412) 

       0.2 g/L 

pH 8.0 with KOH                    

Stock 1 M KOH                                56.11g/L 

BSA was filter sterilised and added after autoclaving so as not to denature the 

protein. The reaction buffer was aliquoted into labeled 500 ml bottles and 

stored at -20 °C. 

 

B8.8 Formamido pyrimidine glycosylase (Fpg)  
Fpg (Sigma-Aldrich S.A., F-3174); 10 µg/ml stock (1 ml) in enzyme buffer 

stored at -20 °C. Add 2 µl of the stock to 598 µl of enzyme buffer (1:300). 

Aliquot 30 µl into 20 tubes and store at -20 °C. 

 

Working solution 

Add 270 µl enzyme reaction buffer to 30 µl aliquoted tubes (1:10 dilution). 

Therefore, final dilution was 1:3,000. 

 

B8.9 4’6-diamidine-2-phenylindol dihydrochloride (DAPI)  
Store DAPI (Sigma-Aldrich S.A., D-9564) at room temperature upon receipt 

and protect from light. To prepare 1 mg/ml stock DAPI, 10 mg DAPI dissolved 

in 10 ml of sterile distilled water. Protect from light, label and store at -20 °C.  

Working solution (1 µg/ml) 

Dilute 1 µl of 1 mg/ml DAPI with 999 µl of PBS. Aliquot into labelled 500 µl 

eppendorfs wrapped in a foil and stored at -20 °C and used within 6 months. 
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B9 Real Time RT-PCR Solutions  
 

B9.1 Tris-EDTA (TE) buffer, pH 8.0 
0.01 M Tris                                                    0.606 g/L 

0.001 M EDTA                                                         0.372 g/L 

Dissolve in about 600 ml of distilled water. Adjust pH with 5 M HCl 

(Sigma-Aldrich S.A., H-1111CCO2500) to pH 8.0. Allow the solution to cool to 

room temperature before making the final pH adjustments. Adjust final 

volume to one litre with distilled water. Label, autoclave and store at room 

temperature. 

 
B9.2 50x Tris acetate EDTA (TAE) buffer 
4 M Tris base               242 g/L 

0.025 M EDTA                9.3 g/L 

17.4 M Glacial acetic acid (Merck S.A., 1021020LC)          57.1 ml 

Dissolve Tris and EDTA in 600 ml of distilled water and add 57.1 ml glacial 

acetic acid. Adjust the pH of the solution to pH 8.0 and make up the volume 

with distilled water to 1 litre. Label, autoclave and store at room temperature.  

 

Working solution (1x TAE buffer) 

For 1 litre, mix 20 ml of 50x TAE buffer with 980 ml of sterile distilled water. 
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APPENDIX C 
REFERENCE GENE SEQUENCE 
 
 
C1 MPG Gene Sequence 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

    1 actgccccccttctcccggcttccgtccccttctgcgcaggcgccgctccgccccggtcc 
                                                                   
   61 taggggtgcttccgtggtcggcggctgctgggctccgcgccggggtccgagtcccacgaa 
                                                    
  121 gccccggcccgagccgccggatgcccgcgcgcagcggggcccaggtcatgcagcctgggc 
                                                                   
  181 ccccatgccgtgcagctcgcacatatgtggggcagagcagccaccctgcccccagcagca 
                                                                   
  241 gccgtccatcgtcagacgtgatcatttcctgaggcctcgagtgtgtcagggtgtttgtgc 
                                                                   
  301 ctcataacaacccacaggatggtcacccccgctttgcagatgaagaaaccaaagcagttt 
                                                                   
  361 tgccgacggatggggcaaaagaagcagcgaccagctagagcagggcagccacacagctcg 
                                                                   
  421 tccgacgcagcccaggcacctgcagagcagccacacagctcgtccgatgcagcccaggca 
                                                                   
  481 ccttgccccagggagcgctgcttgggaccgcccaccactccgggcccataccgcagcatc 
                                                                   
  541 tatttctcaagcccaaagggccaccttacccgactggggttggagttcttcgaccagccg 
                                                                   
  601 gcagtccccctggcccgggcatttctgggacaggtcctagtccggcgacttcctaatggc 
                                                                   
  661 acagaactccgaggccgcatcgtggagaccgaggcatacctggggccagaggatgaagcc 
                                                                   
  721 gcccactcaaggggtggccggcagaccccccgcaaccgaggcatgttcatgaagccgggg 
                                                                   
  781 accctgtacgtgtacatcatttacggcatgtacttctgcatgaacatctccagccagggg 
                                                                   
  841 gacggggcttgcgtcttgctgcgagcactggagcccctggaaggtctggagaccatgcgt 
                                                                   
  901 cagcttcgcagcaccctccggaaaggcaccgccagccgtgtcctcaaggaccgcgagctc 
                                                                   
  961 tgcagtggcccctccaagctgtgccaggccctggccatcaacaagagctttgaccagagg 
                                                                   
 1021 gacctggcacaggatgaagctgtatggctggagcgtggtcccctggagcccagtgagccg 
          >>>>>>>>>>>>>>>>>>>>                                     
 1081 gctgtagtggcagcagcccgggtgggcgtcggccatgcaggggagtgggcccggaaaccc 
                                                                   

agagtggctgagcag  1141 ctccgcttctatgtccggggcagcccctgggtcagtgtggtcgac
                                                   <<<<<<<<<<<<<<< 
 1201 gacacacaggcctgagcaaagggcctgcccagacaagattttttaattgtttaaaaaccg 
    <<<<<                                                          

 1261 aataaatgttttatttctagaaaaaaaaaaaaaaaaaaaaaaaaa 

Figure C1 MPG gene sequence showing forward (>>>>) and reverse primers (<<<<). 
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C2 ACTB Gene Sequence 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 

 

    1 cgcgtccgccccgcgagcacagagcctcgcctttgccgatccgccgcccgtccacacccg 
                                                                   

ctccggcat    61 ccgccagctcaccatggatgatgatatcgccgcgctcgtcgtcgacaacgg
                                                         
  121 gtgcaaggccggcttcgcgggcgacgatgccccccgggccgtcttcccctccatcgtggg 
                                                                   
  181 gcgccccaggcaccagggcgtgatggtgggcatgggtcagaaggattcctatgtgggcga 
                                                                 
  241 cgaggcccagagcaagagaggcatcctcaccctgaagtaccccatcgagcacggcatcgt 
                                                                   
  301 caccaactgggacgacatggagaaaatctggcaccacaccttctacaatgagctgcgtgt 
                                                                   
  361 ggctcccgaggagcaccccgtgctgctgaccgaggcccccctgaaccccaaggccaaccg 
                                                                   
  421 cgagaagatgacccagatcatgtttgagaccttcaacaccccagccatgtacgttgctat 
                                                                   
  481 ccaggctgtgctatccctgtacgcctctggccgtaccactggcatcgtgatggactccgg 
                                                                   
  541 tgacggggtcacccacactgtgcccatctacgaggggtatgccctcccccatgccatcct 
                                                                   
  601 gcgtctggacctggctggccgggacctgactgactacctcatgaagatcctcaccgagcg 
                                                                   
  661 cggctacagcttcaccaccacggccgagcgggaaatcgtgcgtgacattaaggagaagct 
                                                                   
  721 gtgctacgtcgccctggacttcgagcaagagatggccacggctgcttccagctcctccct 
                     >>>>>>>>>>>>>>>>>>>>                          
  781 ggagaagagctacgagctgcctgacggccaggtcatcaccattggcaatgagcggttccg 
                                                                   
  841 ctgccctgaggcactcttccagccttccttcctgggcatggagtcctgtggcatccacga 
                                                                   
  901 aactaccttcaactccatcatgaagtgtgacgtggacatccgcaaagacctgtacgccaa 

<<<<<<<<<<<                                                        
  961 cacagtgctgtctggcggcaccaccatgtaccctggcattgccgacaggatgcagaagga 

<<<<<<<<<                                                          
 1021 gatcactgccctggcacccagcacaatgaagatcaagatcattgctcctcctgagcgcaa 
                                                                   
 1081 gtactccgtgtggatcggcggctccatcctggcctcgctgtccaccttccagcagatgtg 
                                                                   
 1141 gatcagcaagcaggagtatgacgagtccggcccctccatcgtccaccgcaaatgcttcta 
                                                                   
 1201 ggcggactatgacttagttgcgttacaccctttcttgacaaaacctaacttgcgcagaaa 
                                                                   
 1261 acaagatgagattggcatggctttatttgttttttttgttttgttttggttttttttttt 
                                                                   
 1321 tttttggcttgactcaggatttaaaaactggaacggtgaaggtgacagcagtcggttgga 
                                                                   
 1381 gcgagcatcccccaaagttcacaatgtggccgaggactttgattgcacattgttgttttt 
                                                                   
 1441 ttaatagtcattccaaatatgagatgcattgttacaggaagtcccttgccatcctaaaag 
                                                                   
 1501 ccaccccacttctctctaaggagaatggcccagtcctctcccaagtccacacaggggagg 
                                                                   
 1561 tgatagcattgctttcgtgtaaattatgtaatgcaaaatttttttaatcttcgccttaat 
                                                                   
 1621 acttttttattttgttttattttgaatgatgagccttcgtgcccccccttcccccttttt 
                                                                   
 1681 gtcccccaacttgagatgtatgaaggcttttggtctccctgggagtgggtggaggcagcc 
 
  1741 agggcttacctgtacactgacttgagaccagttgaataaaagtgcacacctta 
                                                                

 

Figure C2 ACTB gene sequence showing forward (>>>>) and reverse primers (<<<<). 
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      C3 GAPDH Gene Sequence 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

 
 
   

    1 aaattgagcccgcagcctcccgcttcgctctctgctcctcctgttcgacagtcagccgca 
                                                          
   61 tcttcttttgcgtcgccagccgagccacatcgctcagacaccatggggaaggtgaaggtc 
 
  121 ggagtcaacggatttggtcgtattgggcgcctggtcaccagggctgcttttaactctggt 
       >>>>>>>>>>>>>>>>>>>>                                        
  181 aaagtggatattgttgccatcaatgaccccttcattgacctcaactacatggtttacatg 
                                                             
  241 ttccaatatgattccacccatggcaaattccatggcaccgtcaaggctgagaacgggaag 
                                                         
  301 cttgtcatcaatggaaatcccatcaccatcttccaggagcgagatccctccaaaatcaag 
                                             <<<<<<<<<<<<<<<<<<<<  
  361 tggggcgatgctggcgctgagtacgtcgtggagtccactggcgtcttcaccaccatggag 
                                                                  
  421 aaggctggggctcatttgcaggggggagccaaaagggtcatcatctctgccccctctgct 
                                                                  
  481 gatgcccccatgttcgtcatgggtgtgaaccatgagaagtatgacaacagcctcaagatc 
                                                                  
  541 atcagcaatgcctcctgcaccaccaactgcttagcacccctggccaaggtcatccatgac 
                                                                  
  601 aactttggtatcgtggaaggactcatgaccacagtccatgccatcactgccacccagaag 
                                                                   
  661 actgtggatggcccctccgggaaactgtggcgtgatggccgcggggctctccagaacatc 
                                                                 
  721 atccctgcctctactggcgctgccaaggctgtgggcaaggtcatccctgagctgaacggg 
                                                                 
  781 aagctcactggcatggccttccgtgtccccactgccaacgtgtcagtggtggacctgacc 
                                                                 
  841 tgccgtctagaaaaacctgccaaatatgatgacatcaagaaggtggtgaagcaggcgtcg 
                                                                 
  901 gagggccccctcaagggcatcctgggctacactgagcaccaggtggtctcctctgacttc 
                                                                 
  961 aacagcgacacccactcctccacctttgacgctggggctggcattgccctcaacgaccac 
                                                                  
 1021 tttgtcaagctcatttcctggtatgacaacgaatttggctacagcaacagggtggtggac 
                                                                   
 1081 ctcatggcccacatggcctccaaggagtaagacccctggaccaccagccccagcaagagc 
                                                                  
 1141 acaagaggaagagagagaccctcactgctggggagtccctgccacactcagtcccccacc 
                                                                   
 1201 acactgaatctcccctcctcacagttgccatgtagaccccttgaagaggggaggggccta 
                                                                   
 1261 gggagccgcaccttgtcatgtaccatcaataaagtaccctgtgctcaacc 
                                                         

    Figure C3 GAPDH gene sequence showing forward (>>>>) and reverse primers (<<<<). 
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C4 UBC Gene Sequence 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    1 cccgctgctcataagactcggccttagaaccccagtatcagcagaaggacattttaggac    
   61 gggacttgggtgactctagggcactggttttctttccagagagcggaacaggcgaggaaa 
                                     >>>>>>>>>>>>>>>>>>>>          
  121 agtagtcccttctcggcgattctgcggagggatctccgtggggcggtgaacgccgatgat    
  181 tatataaggacgcgccgggtgtggcacagctagttccgtcgcagccgggatttgggtcgc    
  241 agttcttgtttgtggatcgctgtgatcgtcacttgacaatgcagatcttcgtgaagactc 
            <<<<<<<<<<<<<<<<<<<<                                   
  301 tgactggtaagaccatcaccctcgaggttgagcccagtgacaccatcgagaatgtcaagg    
  361 caaagatccaagataaggaaggcatccctcctgaccagcagaggctgatctttgctggaa    
  421 aacagctggaagatgggcgcaccctgtctgactacaacatccagaaagagtccaccctgc    
  481 acctggtgctccgtctcagaggtgggatgcaaatcttcgtgaagacactcactggcaaga    
  541 ccatcacccttgaggtcgagcccagtgacaccatcgagaacgtcaaagcaaagatccagg    
  601 acaaggaaggcattcctcctgaccagcagaggttgatctttgccggaaagcagctggaag    
  661 atgggcgcaccctgtctgactacaacatccagaaagagtctaccctgcacctggtgctcc    
  721 gtctcagaggtgggatgcagatcttcgtgaagaccctgactggtaagaccatcaccctcg    
  781 aggtggagcccagtgacaccatcgagaatgtcaaggcaaagatccaagataaggaaggca    
  841 ttccttctgatcagcagaggttgatctttgccggaaaacagctggaagatggtcgtaccc    
  901 tgtctgactacaacatccagaaagagtccaccttgcacctggtactccgtctcagaggtg    
  961 ggatgcaaatcttcgtgaagacactcactggcaagaccatcacccttgaggtcgagccca    
 1021 gtgacactatcgagaacgtcaaagcaaagatccaagacaaggaaggcattcctcctgacc    
 1081 agcagaggttgatctttgccggaaagcagctggaagatgggcgcaccctgtctgactaca    
 1141 acatccagaaagagtctaccctgcacctggtgctccgtctcagaggtgggatgcagatct    
 1201 tcgtgaagaccctgactggtaagaccatcactctcgaagtggagccgagtgacaccattg    
 1261 agaatgtcaaggcaaagatccaagacaaggaaggcatccctcctgaccagcagaggttga    
 1321 tctttgccggaaaacagctggaagatggtcgtaccctgtctgactacaacatccagaaag    
 1381 agtccaccttgcacctggtgctccgtctcagaggtgggatgcagatcttcgtgaagaccc    
 1441 tgactggtaagaccatcactctcgaggtggagccgagtgacaccattgagaatgtcaagg    
 1501 caaagatccaagacaaggaaggcatccctcctgaccagcagaggttgatctttgctggga    
 1561 aacagctggaagatggacgcaccctgtctgactacaacatccagaaagagtccaccctgc    
 1621 acctggtgctccgtcttagaggtgggatgcagatcttcgtgaagaccctgactggtaaga    
 1681 ccatcactctcgaagtggagccgagtgacaccattgagaatgtcaaggcaaagatccaag    
 1741 acaaggaaggcatccctcctgaccagcagaggttgatctttgctgggaaacagctggaag    
 1801 atggacgcaccctgtctgactacaacatccagaaagagtccaccctgcacctggtgctcc    
 1861 gtcttagaggtgggatgcagatcttcgtgaagaccctgactggtaagaccatcactctcg    
 1921 aagtggagccgagtgacaccattgagaatgtcaaggcaaagatccaagacaaggaaggca    
 1981 tccctcctgaccagcagaggttgatctttgctgggaaacagctggaagatggacgcaccc    
 2041 tgtctgactacaacatccagaaagagtccaccctgcacctggtgctccgtctcagaggtg    
 2101 ggatgcaaatcttcgtgaagaccctgactggtaagaccatcaccctcgaggtggagccca    
 2161 gtgacaccatcgagaatgtcaaggcaaagatccaagataaggaaggcatccctcctgatc    
 2221 agcagaggttgatctttgctgggaaacagctggaagatggacgcaccctgtctgactaca    
 2281 acatccagaaagagtccactctgcacttggtcctgcgcttgagggggggtgtctaagttt    
 2341 ccccttttaaggtttcaacaaatttcattgcactttcctttcaataaagttgttgcattc    
 2401 ccaaaaaaaaaaaaaaaa 

Figure C4 UBC gene sequence showing forward (>>>>) and reverse primers (<<<<). 

   128



         APPENDIX D 
 
CALCULATION AND CONCENTRATION OF cDNA 
 
 
Samples were diluted in Tris EDTA buffer, pH 8.0 and the same buffer was 

used to zero the UV spectrophotometer at 260 nm using the quartz cuvettes. 

The average extinction coefficient of single stranded DNA at 260 nm is 

37 µg/ml. Thus, using a 1 cm path length 1 unit of absorbance at 260 (A260) = 

37 µg/ml single stranded DNA. The final concentration was divided by 1000 to 

convert to µg/µl. 

 
Table D1 Average concentration of cDNA 

EXPERIMENTAL 
SAMPLE 

BIOLOGICAL 
SAMPLE 

A260 DILUTION 
FACTOR 

EXTINCTION 
COEFFICIENT 

CONCENTRATION 
(µg/µl) 

1 0.145 250 37 1.3 
2 0.156 250 37 1.4 N 

Average                                                                                       1.4 
1 0.160 250 37 1.5 
2 0.159 250 37 1.5 W 

Average                                                                                       1.5 
1 0.169 250 37 1.6 
2 0.178 250 37 1.6 W5 

Average                                                                                       1.6 
1 0.155 250 37 1.4 
2 0.180 250 37 1.7 W16 

Average                                                                                       1.6 
N = normal; W = wounded; W5 = wounded irradiated with 5 J/cm2; W16 = wounded 
irradiated with 16 J/cm2. 
 
 
On average the concentration of cDNA was 1.5 µg/µl (1500 ng/µl). Samples 

were diluted 1:10 prior to PCR reaction therefore cDNA concentration after 

dilution was 150 ng/µl. Since 2 µl of cDNA was used per PCR reaction that 

means total cDNA concentration was 300 ng per reaction.  
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          APPENDIX E 
 
REAL TIME RT-PCR RESULTS  
 
E1 Melt Report for ACTB 
 
 

 
 

Experiment Information 
Run Name Expression ACTB 
Run Start 2008/03/13 10:31:11 AM 
Run Finish 2008/03/13 11:44:19 AM 
Operator Alwin 
Notes Expression of house keeping gene (ACTB) 
Run On Software Version Rotor-Gene 1.7.75 
Run Signature The Run Signature is valid. 
Gain Green 5. 

Melt Information 
Digital Filter Light 
Imported Analysis Settings   
Sample Page Page 1 
Temp. Threshold 0°c 
Threshold 1.95948

Messages 
Message 

Profile 
Cycle Cycle Point 
Hold @ 95°c, 10 min 0 sec    
Cycling (40 repeats)  Step 1 @ 95°c, hold 5 sec 
  Step 2 @ 60°c, hold 15 sec 
  Step 3 @ 72°c, hold 15 sec, acquiring to 

Cycling A([Green][1][1]) 
Melt (72-95°c) , hold sec on the 1st step, hold 5 
sec on next steps, Melt A([Green][1][1]) 
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Melt data for Melt A. Green 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

No. Colour Name Genotype Peak 1
1 

 
Normal (0J) 1 1 :10 ACTB  88.0 

2 
 

Normal (0J) 1 1 :10 ACTB  88.0 

3 
 

Normal (0J) 2 1 :10 ACTB  88.0 

4 
 

Normal (0J) 2 1 :10 ACTB  88.0 

5 
 

Normal (0J) 3 1 :10 ACTB  88.0 

6 
 

Normal (0J) 3 1 :10 ACTB  88.0 

7 
 

Wounded (0J) 1 1 :10 ACTB  88.0 

8 
 

Wounded (0J) 1 1 :10 ACTB  88.0 

9 
 

Wounded (0J) 2 1 :10 ACTB  88.0 

10 
 

Wounded (0J) 2 1 :10 ACTB  88.0 

11 
 

Wounded (0J) 3 1 :10 ACTB  87.8 

12 
 

Wounded (0J) 3 1 :10 ACTB  88.0 
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No. Colour Name Genotype Peak 1

13 
 

d (5J) 1 1 :10 ACTB Wounde  88.0 

14 Wounded (5J) 1 1 :10 ACTB  88.0 
 

15 
 

Wounded (5J) 2 1 :10 ACTB  88.0 

16 
 

Wounded (5J) 2 1 :10 ACTB  88.2 

17 
 

Wounded (5J) 3 1 :10 ACTB  88.0 

18 
 

Wounded (5J) 3 1 :10 ACTB  88.0 

19 
 

Wounded (16J) 1 1 :10 ACTB  87.8 

20 
 

Wounded (16J) 1 1 :10 ACTB  88.0 

21 
 

Wounded (16J) 2 1 :10 ACTB  88.0 

22 
 

Wounded (16J) 2 1 :10 ACTB  88.0 

23 
 

Wounded (16J) 3 1 :10 ACTB  88.0 

24 
 

Wounded (16J) 3 1 :10 ACTB  88.0 

25 
 

Water   

26 
 

Water   

27 
 

Undiluted  88.0 

28 
 

Undiluted  88.0 

29 
 

Standard 1:10  88.0 

30 
 

Standard 1.10  88.0 

31 
 

Standard 1:100  88.0 

32 
 

Standard 1:100  88.0 

33 
 

Standard 1:1000  88.0 

34 
 

Standard 1:1000  88.0 

35 
 

Water   

36 
 

Water   
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Bin Name Temperature Sample No. Sample Name Peak

 

This report generated by Rotor-Gene 6000 Series Software 1.7 (Build 75) 
Copyright 2000-2006 Corbett Research, a Division of Corbett Life Science. All rights reserved. 
ISO 9001:2000 (Reg. No. QEC21313)  
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E2 Melt Report for GAPDH 
 

 

 
 

Experiment Information 
Run Name Run 2008-03-07 Reference genes GAPDH
Run Start 3/7/2008 10:02:35 AM 
Run Finish 3/7/2008 11:15:32 AM 
Operator Alwin 
Notes Reference genes (GAPDH) 
Run On Software Version Rotor-Gene 1.7.75 
Run Signature The Run Signature is valid. 
Gain Green 5. 

Melt Information 
Digital Filter Light 
Imported Analysis Settings   
Sample Page Reference gene (GAPDH)
Temp. Threshold 0°c 
Threshold 1.62928 

 

 

Profile 
Cycle Cycle Point 
Hold @ 95°c, 10 min 0 sec   
Cycling (40 repeats)  Step 1 @ 95°c, hold 5 sec 
  Step 2 @ 60°c, hold 15 sec 
  Step 3 @ 72°c, hold 15 sec, acquiring to 

Cycling A([Green][1][1]) 
Melt (72-95°c) , hold sec on the 1st step, hold 5 
sec on next steps, Melt A([Green][1][1]) 
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Melt data for Melt A. Green 
 

 
 
 
No. Colour Name Genotype Peak 1
29  Normal sample (0J) 1 1:10  84.0 

30  Normal sample (0J) 1 1:10  84.0 

31  Normal sample (0J) 2 1:10  84.0 

32  Normal sample (0J) 2 1:10  84.0 

33  Wounded sample (0J) 1 1:10  84.0 

34  Wounded sample (0J) 1 1:10  84.0 

35  Wounded sample (0J) 2 1:10  84.0 

36  Wounded sample (0J) 2 1:10  84.0 

37  Wounded sample (5J) 1 1:10  84.2 

38  Wounded sample (5J) 1 1:10  84.2 

39  Wounded sample (5J) 2 1:10  83.8 

40  Wounded sample (5J) 2 1:10  84.2 

41  Wounded sample (16J) 1 1:10  84.0 

42  Wounded sample (16J) 1 1:10  84.0 

43  Wounded sample (16J) 2 1:10  84.0 

44  Wounded sample (16J) 2 1:10  84.0 
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No. Colour Name Genotype Peak 1
45  Water   

46  Water   

47  Undiluted std  84.0 

48  Undiluted std   

49  Std 1:10  84.0 

50  Std 1:10  84.0 

51  Std 1:100  84.0 

52  Std 1:100  84.0 

53  Std 1:1000  84.3 

54  Std 1:1000  84.3 

55  Water   

56  Water   

 
 
Bin Name Temperature Sample No. Sample Name Peak
 

 

This report generated by Rotor-Gene 6000 Series Software 1.7 (Build 75) 
Copyright 2000-2006 Corbett Research, a Division of Corbett Life Science. 
All rights reserved. 
ISO 9001:2000 (Reg. No. QEC21313)  
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E3 Melt Report for UBC 
 

 
 

Experiment Information 
Run Name Alwin (Reference gene (UBC) 2008-03-07 
Run Start 3/7/2008 2:18:21 PM 
Run Finish 3/7/2008 3:31:39 PM 
Operator Alwin 
Notes Reference gene (UBC) 
Run On Software Version Rotor-Gene 1.7.75 
Run Signature The Run Signature is valid. 
Gain Green 5. 

Melt Information 
Digital Filter Light 
Imported Analysis Settings   
Sample Page Reference gene
Temp. Threshold 0°c 
Threshold 0.36554 

 

 

Profile 
Cycle Cycle Point 
Hold @ 95°c, 10 min 0 sec    
Cycling (45 repeats)  Step 1 @ 95°c, hold 5 sec 
  Step 2 @ 60°c, hold 15 sec 
  Step 3 @ 72°c, hold 15 sec, acquiring to 

Cycling A([Green][1][1]) 
Melt (72-95°c) , hold sec on the 1st step, hold 5 
sec on next steps, Melt A([Green][1][1]) 
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Melt data for Melt A. Green 

 
 
 
No. Colour Name Genotype Peak 1 Peak 2
1  Normal (0J) 1 1:10  88.0  

2  Normal (0J) 1 1:10  88.0  

3  Normal (0J) 2 1:10  88.0  

4  Normal (0J) 2 1:10  88.0  

5  Wounded (0J) 1 1:10  88.0  

6  Wounded (0J) 1 1:10  87.8  

7  Wounded (0J) 2 1:10  88.0  

8  Wounded (0J) 2 1:10  88.0  

9  Wounded (5J) 1 1:10  88.0  

10  Wounded (5J) 1 1:10  87.8  

11  Wounded (5J) 2 1:10  87.7  

12  Wounded (5J) 2 1:10  87.5  

13  Wounded (16J) 1 1:10  87.8  

14  Wounded (16J) 1 1:10  87.7  

15  Wounded (16J) 2 1:10  87.8  

16  Wounded (16J) 2 1:10  87.8  

17  Water    

18  Water    
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No. Colour Name Genotype Peak 1 Peak 2
19  Undiluted  88.0  

20  Undiluted  83.5 87.7 

21  Std 1:10  87.8  

22  Std 1:10  87.7  

23  Std 1:100    

24  Std 1:100    

25  Std 1:1000    

26  Std 1:1000    

27  Water    

28  Water    

 
 
Bin Name Temperature Sample No. Sample Name Peak
 

 

This report generated by Rotor-Gene 6000 Series Software 1.7 (Build 75) 
Copyright 2000-2006 Corbett Research, a Division of Corbett Life Science. All rights reserved.
ISO 9001:2000 (Reg. No. QEC21313)  
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E4 Relative Expression Report for Reference Genes 
 

Notes 
 
Relative expression of the 3 reference genes (ACTB, GAPDH and UBC) 

 
Assay Parameters 

 
Parameter Value 
Iterations 50000 
Normalisation Factor 1.00 

 
 

Gene Reaction 
Efficiency 

Expression Std 
Error 

95% C.I. P(HI) Results 

ACTB 
N 1.000 0.9 -1.11 0.8 - 1.2 1.000  
W 0.851 0.8 - 0.9 0.7 - 1.0 0.095  
W5 0.773 0.7 - 0.8 0.6 - 1.0 0.055  
W16 

94% 

0.798 0.7 - 0.9 0.6 - 1.0 0.052  
GAPDH 

N 1.000 0.7 - 1.3 0.6 - 1.5 1.000  
W 1.256 1.0 - 1.5 0.9 - 1.6 0.110  
W5 0.691 0.2 - 1.2 0.1 - 1.4 0.574  
W16 

82% 

1.424 1.1 - 1.8 1.0 - 1.9 0.047 UP 
UBC 

N 1.000 0.3 - 5.5 0.1 - 11 1.000  
W 0.620 0.2 - 2.5 0.2 - 4.9 0.541  
W5 4.574 1.3 - 14 0.8 - 52 0.101  
W16 

97% 

1.940 0.6 – 8.0 0.3 - 19 0.481  
N = Normal non irradiated; W = Wounded non irradiated; W5 = Wounded irradiated 
with 5 J/cm2; W16 = Wounded irradiated with 16 J/cm2; P(HI) = Probability of alternate 
hypothesis that difference between sample and control groups is due only to chance. 
 

Interpretation 
 
N(ACT) sample group is not different to control group. P(H1)=1.000 
  
W sample group is not different to control group. P(H1)=0.095 
  
W(5) sample group is not different to control group. P(H1)=0.055 
  
W(16) sample group is not different to control group. P(H1)=0.052 
  
N(GAP) sample group is not different to control group. P(H1)=1.000 
  
W sample group is not different to control group. P(H1)=0.110 
  
W(5) sample group is not different to control group. P(H1)=0.574 

   140



W(16) is UP-regulated in sample group (in comparison to control group) by a mean factor of 
1.424 (S.E. range is 1.139 - 1.862). 

W(16) sample group is different to control group. P(H1)=0.047 
  
N(UBC) sample group is not different to control group. P(H1)=1.000 
  
W sample group is not different to control group. P(H1)=0.541 
  
W(5) sample group is not different to control group. P(H1)=0.101 
  
W(16) sample group is not different to control group. P(H1)=0.481 
  

 
 
 
Boxes represent the interquartile range, or the middle 50% of observations. The dotted line 
represents the median gene expression. Whiskers represent the minimum and maximum 
observations. 
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E5 MPG Expression in W Cells Irradiated With 5 J/cm2 1 h Incubation 
Post Irradiation 

 
Quantitation Report 
 

 
 

Experiment Information 
 
Run Name Alwin 2008-02-14 (1) 
Run Start 2008/02/14 10:47:13 AM 
Run Finish 2008/02/14 11:52:54 AM 
Operator Alwin 
Notes 14/02/08 
Run On Software Version Rotor-Gene 1.7.75 
Run Signature The Run Signature is valid.
Gain Green 5. 

 

Quantitation Information 
 
Threshold 0.01103 
Left Threshold 1.000 
Standard Curve Imported No 
Standard Curve (1) N/A 
Standard Curve (2) N/A 
Start normalising from cycle 1 
Noise Slope Correction No 
No Template Control Threshold 0%  
Reaction Efficiency Threshold Disabled  
Normalisation Method Dynamic Tube Normalisation
Digital Filter Light 
Sample Page Page 1 
Imported Analysis Settings   
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Profile 
Cycle Cycle Point 
Hold @ 95°c, 10 min     
Cycling (40 repeats)  Step 1 @ 95°c, hold 5 s 
  Step 2 @ 60°c, hold 15 s 
  Step 3 @ 72°c, hold 15 s, acquiring to 

Cycling A([Green][1][1]) 
Melt (72-95°c) , hold on the 1st step, hold 5 s on 
next steps, Melt A ([Green][1][1]) 

  

 

 

Raw Data For Cycling A. Green 
 

 

 

 
 
 
 
 
 
 
 

   143



Quantitation data for Cycling A. Green 
 

 
 
 
 
Threshold cycles (Ct) for ACTB and MPG in W WS1 cells irradiated with 5 J/cm2 and left to 
incubate 1 h post irradiation. 
 
  
 No. Colour Type  Ct 

1 
 

W cells  ACTB 13.60 

2 
 

W cells NTC 21.2 

3 
 

W cells  MPG 22.15 

4 
 

W cells MPG 21.22 

5 W cells NTC 20.88 

 
 
 
 
 
 
 
 
 
 
 
 

 

This report generated by Rotor-Gene 6000 Series Software 1.7 (Build 75) 
Copyright 2000-2006 Corbett Research, a Division of Corbett Life Science. All rights reserved.
ISO 9001:2000 (Reg. No. QEC21313)  
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E6 MPG Expression in W Cells Irradiated With 16 J/cm2 0 h 
Incubation Post Irradiation 

 
Quantitation Report 
 

 

 

Experiment Information 
Run Name Expression of MPG in WS1 or MCF7 cells 2008-04-18 (1)  
Run Start 2008/04/18 11:54:56 AM 
Run Finish 2008/04/18 01:06:41 PM 
Operator Alwin 
Notes Expression of MPG in WS1 (W cells irradiated with 16 J/cm2) or MCF 7 

cells 0 h post irradiation 
Run On Software 
Version 

Rotor-Gene 1.7.75 

Run Signature The Run Signature is valid. 
Gain Green 5. 

Quantitation Information 
Threshold 0.01609 
Left Threshold 1.000 
Standard Curve Imported No 
Standard Curve (1) N/A 
Standard Curve (2) N/A 
Start normalising from cycle 1 
Noise Slope Correction No 
No Template Control Threshold 0%  
Reaction Efficiency Threshold Disabled  
Normalisation Method Dynamic Tube Normalisation
Digital Filter Light 
Sample Page Page 1 
Imported Analysis Settings   
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Profile     

Cycle  Cycle point 
Hold @ 95°c, 10 min   
Cycling (45 repeats)  Step 1 @ 95°c, hold 5 s 
  Step 2 @ 60°c, hold 15 s 
  Step 3 @ 72°c, hold 15 s, acquiring to 

Cycling A ([Green][1][1]) 
Melt (72-95°c) , hold on the 1st step, hold 5 s on 
next steps, Melt A ([Green][1][1]) 

  

 

 

 Raw Data For Cycling A. Green 
 

 

   146



     Quantitation data for Cycling A. Green 

 
 
Threshold cycles (Ct) for NTC, NRT samples, MCF 7 cells and wounded (W) cells irradiated 
with 16 J/cm2 and left to incubate 0 h post irradiation. 
 
 No. Colour Type Ct 

1 
 

W16  29.37 

2 
 

W16  26.36 

3 
 

MCF 7 27.35 

4 
 

MCF 7 29.70 

5 
 

NRT 30.14 

6 
 

NRT 27.64 

7 
 

NTC 29.46 

8 NTC 29.40 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

This report generated by Rotor-Gene 6000 Series Software 1.7 (Build 75) 
Copyright 2000-2006 Corbett Research, a Division of Corbett Life Science. All rights reserved.
ISO 9001:2000 (Reg. No. QEC21313)  
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E7 MPG Expression in W Cells Irradiated With 16 J/cm2 3 h 
Incubation Post Irradiation 

 
Quantitation Report 
 

 
 

Experiment Information 
Run Name Expression of MPG in WS1 or MCF7 cells 2008-04-13  
Run Start 2008/04/13 03:01:15 PM 
Run Finish 2008/04/13 04:13:32 PM 
Operator Alwin 
Notes Expression of MPG in WS1 (W cells irradiated with 16 J/cm2) or MCF 7 

cells 3 h post irradiation 
Run On Software 
Version 

Rotor-Gene 1.7.75 

Run Signature The Run Signature is valid. 
Gain Green 5. 

Quantitation Information 
Threshold 0.06348 
Left Threshold 1.000 
Standard Curve Imported No 
Standard Curve (1) N/A 
Standard Curve (2) N/A 
Start normalising from cycle 1 
Noise Slope Correction No 
No Template Control Threshold 0%  
Reaction Efficiency Threshold Disabled  
Normalisation Method Dynamic Tube Normalisation
Digital Filter Light 
Sample Page Page 1 
Imported Analysis Settings   
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Profile 
 
Cycle Cycle Point 
Hold @ 95°c, 10 min     
Cycling (45 repeats)  Step 1 @ 95°c, hold 5 s 
  Step 2 @ 60°c, hold 15 s 
  Step 3 @ 72°c, hold 15 s, acquiring to 

Cycling A([Green][1][1]) 
Melt (72-95°c) , hold s on the 1st step, hold 5 s on 
next steps, Melt A([Green][1][1]) 

  

 

 

Raw Data For Cycling A. Green 
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  Quantitation data for Cycling A. Green 
 

 
Threshold cycles (Ct) for MCF 7 cells non irradiated, NRT samples and wounded (W) WS1 
cells irradiated with 16 J/cm2 and left to incubate 3 h post irradiation,  
 
 No. Colour Type Ct 

1 
 

W16  30.13 

2 
 

W16  30.30 

3 
 

MCF 7 29.63 

4 
 

MCF 7 30.05 

5 
 

NRT 29.68 

6 NRT 30.32 

  
 
     
 
 
 
 
 
 
 
 
    
 

 

This report generated by Rotor-Gene 6000 Series Software 1.7 (Build 75) 
Copyright 2000-2006 Corbett Research, a Division of Corbett Life Science. All rights reserved.
ISO 9001:2000 (Reg. No. QEC21313)  

 

   150



E8 MPG Expression in W Cells Irradiated on day 1 With 16 J/cm2 8 h 
Incubation Post Irradiation 

 
Quantitation Report 
 

 
 

Experiment Information 
Run Name Expression of MPG in WS1 or MCF 7 cells 2008-04-11 (1) 
Run Start 2008/04/11 07:26:22 AM 
Run Finish 2008/04/11 08:43:35 AM 
Operator Alwin 
Notes Expression of MPG in WS1(W cells irradiated with 16 J/cm2) or MCF 7 

cells 8 h post irradiation 
Run On Software 
Version 

Rotor-Gene 1.7.75 

Run Signature The Run Signature is valid. 
Gain Green 5. 

 

Quantitation Information 
 
Threshold 0.02838 
Left Threshold 1.000 
Standard Curve Imported No 
Standard Curve (1) N/A 
Standard Curve (2) N/A 
Start normalising from cycle 1 
Noise Slope Correction No 
No Template Control Threshold 0%  
Reaction Efficiency Threshold Disabled  
Normalisation Method Dynamic Tube Normalisation
Digital Filter Light 
Sample Page Page 1 
Imported Analysis Settings   
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Profile 
 
Cycle Cycle Point 
Hold @ 95°c, 10 min     
Cycling (50 repeats)  Step 1 @ 95°c, hold 5 s 
  Step 2 @ 60°c, hold 15 s 
  Step 3 @ 72°c, hold 15 s, acquiring to 

Cycling A([Green][1][1]) 
Melt (72-95°c) , hold on the 1st step, hold 5 s on 
next steps, Melt A ([Green][1][1]) 

  

 

 

Raw Data For Cycling A. Green 
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    Quantitation data for cycling A. Green 

 
 
 
 
Threshold cycles (Ct) for NRT sample, MCF 7 cells and wounded (W) WS1 cells irradiated 
with 16 J/cm2 and left to incubate 8 h post irradiation. 
 
 
 No. Colour Type Ct 

1 
 

W16  29.95 

2 
 

W16  29.78 

3 
 

MCF 7 33.37 

4 
 

MCF 7 32.54 

5 
 

NRT 33.87 

6 NRT 30.94 

 
 
 
 
 
 
 
 
 
 
 
 

 

This report generated by Rotor-Gene 6000 Series Software 1.7 (Build 75) 
Copyright 2000-2006 Corbett Research, a Division of Corbett Life Science. All rights reserved.
ISO 9001:2000 (Reg. No. QEC21313)  
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