
INTERACTIVE SPEECH-DRIVEN FACIAL ANIMATION

by

WARREN HODGKINSON

DISSERTATION

submitted in the fulfilment

of the requirements for the degree

MASTER OF SCIENCE

in

COMPUTER SCIENCE

in the

FACULTY OF SCIENCE

at the

UNIVERSITY OF JOHANNESBURG

SUPERVISOR: MR A HARDY

CO-SUPERVISOR: PROF S VON SOLMS

JANUARY 2005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Johannesburg Institutional Repository

https://core.ac.uk/display/18215046?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

Summary

One of the fastest developing areas in the entertainment industry is digital animation.

Television programmes and movies frequently use 3D animations to enhance or replace

actors and scenery. With the increase in computing power, research is also being done

to apply these animations in an interactive manner. Two of the biggest obstacles to the

success of these undertakings are control (manipulating the models) and realism. This

text describes many of the ways to improve control and realism aspects, in such a way

that interactive animation becomes possible. Specifically, lip-synchronisation (driven

by human speech), and various modeling and rendering techniques are discussed. A

prototype that shows that interactive animation is feasible, is also described.

Audio processing
In order to perform lip-synchronisation, speech processing techniques are required. The

more widely used of these techniques are described in this text. These include feature

extraction and classification. One chapter also describes the difficulties that need to be

overcome, in order to perform audio processing successfully (especially human speech

for lip-synchronisation).

Facial rasterisation
There are many different techniques that can be used to improve the quality of the ani-

mation. Different methods that can be used to represent the models mathematically are

presented. Techniques that can be used to improve the quality of the rendered model

are also presented, including shading and texturing. Ways to make use of dedicated 3D

hardware are also presented.

Implementation
A prototype that evaluates the implications of these techniques all working together,

is described. The implementation of methods for performing speech processing and

classification are explained. The results of the performance and accuracy tests on the

prototype show that interactive speech-driven animation is feasible. The speed at which

modeling and rendering techniques implemented in the prototype execute, further illus-

trate that interactive animation is feasible.

iii

Samevatting

Een van die velde in die vermaak industrie wat die vinnigste groei is dié van digitale an-

imasie. Televisie programme en rolprente gebruik dikwels 3D animasie om akteurs en

toneelstukke te verbeter of vervang. Met die verbetering van rekenaar krag, word baie

navorsing gedoen om hierdie animasies in ’n wisselwerkende manier te implementeer.

Twee van die grootste probleem areas in die sukses van die ondernemings, is die be-

heer en die akkuraatheid van die modelle. Hierdie verhandeling beskryf baie van die

metodes wat gebruik word om die probleme te oorkom, om wisselwerkende animasie

moontlik te maak. Spesifiek word lip-sinchronisasie, en die verskillende uitvoerings

tegnieke vir modelleerwerk en grafika-vertolking bespreek. ’n Prototipe wat wys dat

wisselwerkende animasie doenbaar is, word ook beredeneer.

Klank prosessering
Om lip-sinchronisasie metodes te implementeer, is die gebruik van spraak prosessering

tegnieke noodsaaklik. Dié verhandeling beskryf die metodes wat die meeste gebruik

word in klank prosessering applikasies. Dit sluit in kenmerk berekeninge en klassi-

fikasie. Een hoofstuk hanteer ook die moeilikhede wat ’n mens moet oorkom om spraak

prosessering suksesvol te implementeer.

Gesigs Vertoning
Daar is baie metodes wat gebruik word om die kwaliteit van animasie te verbeter. Ver-

skillende maniere wat die modelle op ’n wiskundige manier weergee word verduidelik.

Beskrywings van die tegnieke wat die voorkoms van die model verbeter is ook in hi-

erdie verhandeling ingesluit. Die gebruik van 3D hardeware vir die implementering van

die stelsel word ook bespreek, asook skadueering end tekstuur.

Implementasie
’n Prototipe wat die implikasies van die samewerking van die tegnieke evalueër, word

in hierdie verhandeling beskryf. Die implementasie van die metodes wat spraak pros-

essering en klasifikasie hanteer word verduidelik. Die resultate van die spoed en akku-

raatheids toetse op die prototipe, wys dat wisselwerkende spraak-aangedrewe animasie

uitvoerbaar is. Die spoed van die gebruikte modelleerwerk and grafika-vertolkings teg-

nieke dui verder aan dat wisselwerkende animasie wel doenbaar is.

Contents

Contents iv

List of Figures ix

List of Tables xi

I Introduction 1

1 Introduction to Audio Driven Facial Animations 2

1.1 Problem Statement . 3

1.2 Objectives . 3

1.3 Approach . 3

1.4 A Brief Overview of Previous Work 4

II Audio Processing 6

2 Introduction to Speech Analysis 7

3 Human Speech 8

3.1 Introduction . 8

3.2 Wave Theory . 8

3.3 Noise . 10

3.4 The Human Vocal System . 10

3.4.1 Voiced Sounds . 11

3.4.2 Unvoiced Sounds . 12

3.4.3 Classifying Sounds as Voiced or Unvoiced 12

3.5 Phonemes . 13

3.5.1 Classification of Phonemes . 14

3.6 Graphs of Speech . 17

3.6.1 Wave Patterns . 17

3.6.2 Spectrogram . 18

iv

CONTENTS v

3.6.3 Formants . 20

3.7 Co-articulation . 21

3.8 Additional References . 21

3.9 Summary . 22

4 Digital Signal Processing 23

4.1 Introduction . 23

4.2 Sampling . 23

4.2.1 Sampling Problems . 24

4.2.2 Sampling Theorem . 25

4.3 Energy . 26

4.4 Digital Filters . 27

4.4.1 How Digital Filters Work . 27

4.4.2 Notation of Digital Filters . 28

4.5 Mathematical Foundations for DSP . 30

4.5.1 The Geometry of Functions 30

4.5.2 The Inner Product . 31

4.5.3 Spanning the L2 Space . 34

4.5.4 The Importance of Orthogonality 35

4.5.5 Raising e to a Complex Power 36

4.5.6 The Delta Function . 36

4.6 Change-of-Base Transforms . 37

4.6.1 The Reason for Doing Change-Of-Base Transforms 38

4.7 The Fourier Transform . 39

4.7.1 Introduction to the Fourier Transform 39

4.7.2 The Discrete Fourier Transform 40

4.7.3 The Fast Fourier Transform 41

4.7.4 Other FFT Algorithms . 43

4.7.5 Problems with Fourier Transforms 44

4.8 Wavelets . 46

4.8.1 A Brief History of Wavelets 46

4.8.2 Understanding Wavelets . 47

4.8.3 The Mathematics of Wavelets 49

4.8.4 The Discrete Wavelet Transform 51

4.8.5 More Useful Wavelets . 53

4.9 Feature Extraction Techniques . 54

4.9.1 Processing of Fourier Data . 54

4.9.2 Processing of Wavelet Information 55

4.10 Frames and Windows . 56

CONTENTS vi

4.11 Additional DSP References . 58

4.12 Summary . 58

5 Classification 59

5.1 Introduction . 59

5.2 Neural Networks . 60

5.2.1 Training Neural Networks . 63

5.2.2 Identifying Phonemes Using Neural Networks 67

5.2.3 Additional References . 68

5.2.4 Summary . 68

5.3 Hidden Markov Models . 69

5.3.1 How Hidden Markov Models Work 69

5.3.2 HMM Notation . 70

5.3.3 Solving HMM Problems . 71

5.3.4 The Three HMM Problems . 73

5.3.5 Applying HMMs to Speech Recognition 77

5.3.6 Recognising Words using HMMs 78

5.4 Other Classification Techniques . 79

5.4.1 Additional References . 79

5.5 Summary . 79

6 Speech Recognition Challenges 80

6.1 Acquiring Training Data . 80

6.2 Dealing with Incorrectly Labelled Phonemes 81

6.3 Phoneme Borders . 81

6.4 Summary . 82

III Facial Rasterisation 83

7 Introduction 84

8 Facial Modeling 86

8.1 Different Ways of Modeling Faces . 86

8.1.1 Performance-Based Models 87

8.1.2 Parameterised Models . 89

8.1.3 Muscle Based Models . 93

8.1.4 Manipulating Skin Vertices Based On Muscle Movements . . . 94

8.2 Automated Model Creation . 98

8.3 An Alternative To Anatomical Correctness 98

8.4 Additional References . 99

CONTENTS vii

8.5 Summary . 99

9 Techniques For Improving Rasterisation 100

9.1 Shading Techniques . 101

9.1.1 Flat Shading . 101

9.1.2 Gouraud Shading . 101

9.1.3 Phong Shading . 102

9.1.4 PN Triangles . 103

9.1.5 Shading Techniques for Facial Animation 105

9.2 Advanced Texturing . 105

9.2.1 Bump Mapping . 106

9.2.2 Height Maps . 106

9.2.3 Dot 3 Bump Maps . 107

9.2.4 Displacement Maps . 107

9.2.5 Calculating Bump Maps . 107

9.2.6 Self Shadow . 108

9.2.7 Light Mapping . 108

9.2.8 Gloss Mapping . 108

9.3 Anti-Aliasing . 109

9.4 The Cg Language . 110

9.5 Summary . 110

10 Video Realism 112

10.1 Introduction . 112

10.2 Motion Capture . 112

10.3 Physics . 114

10.4 Co-articulation . 115

10.5 Summary . 116

IV Implementation 117

11 Implementation 118

11.1 Digital Signal Processing . 118

11.1.1 Sampling . 118

11.1.2 Signal Processing . 119

11.1.3 Classification . 120

11.1.4 Training . 121

11.2 Modelling . 121

11.3 Rasterisation . 122

CONTENTS viii

11.4 Driving the Model Parameters . 124

12 The Prototype System 125

12.1 The Overall Design . 125

12.2 Problems Encountered . 125

12.3 Facts about the Prototype . 126

13 Results 128

13.1 System Specification . 128

13.2 Model Information . 128

13.3 Phoneme Recognition Performance 129

13.3.1 The DWT . 129

13.3.2 Classification results of log cepstral coefficients 130

13.4 Mesh Manipulation Performance . 130

13.5 Conclusion . 131

14 Conclusions and Contributions 134

14.1 Speech Classification . 134

14.2 Facial Modeling . 135

14.3 Entire Solution . 135

15 Additional Applications 137

15.1 Speech Recognition Techniques . 137

15.1.1 Speaker Identification . 137

15.1.2 Speech Samples for Speaker Identification 138

15.1.3 Reliability of Speaker Identification 138

15.2 Wavelet Transforms . 139

A Data Structures Used 142

A.1 Windowing Algorithm . 142

A.2 Fast Fourier Transform . 143

A.3 Cepstral Coefficients Algorithms . 146

A.4 Neural Network Data Structure . 148

A.5 Phoneme Identifier . 152

A.6 Geometry Structures . 153

A.7 Mesh Structure . 156

A.8 Skeleton Data Structures . 158

A.9 Muscle Data Structures . 159

References 162

List of Figures

3.1 A low frequency sound wave . 9

3.2 A high frequency sound wave . 9

3.3 The superposition of two sound waves 9

3.4 Voiced sound wave . 11

3.5 Unvoiced sound wave . 12

3.6 Monophthong sound wave . 15

3.7 Diphthong sound wave . 15

3.8 Approximant sound wave . 15

3.9 Nasal sound wave . 16

3.10 Fricative sound wave . 16

3.11 Plosive sound wave . 16

3.12 Africate sound wave . 17

3.13 A wave-graph (phonetics produced by Microsoft Liset [60]) 18

3.14 A spectrogram for the word “election” 19

4.1 Undersampling . 24

4.2 Periodic undersampling . 25

4.3 Raising e to a complex power . 36

4.4 Symmetry in fourier transforms . 41

4.5 The working of the Cooley-Tukey FFT algorithm 43

4.6 Frequency leakage . 45

4.7 The difference between Fourier and Wavelet transformations 48

4.8 The effects of the Blackman windowing function [5] 58

5.1 A neural network structure . 62

8.1 The effect of a muscle on vertices - [93] 95

8.2 Muscle vector parameters . 96

9.1 Normal calculations for shading techniques 102

9.2 Flat shading . 102

9.3 Gouraud shading . 103

ix

LIST OF FIGURES x

9.4 Phong shading . 103

9.5 Subdividing a PN triangle . 104

9.6 Curving the PN triangles . 104

9.7 Output from PN triangles . 105

9.8 Aliasing . 109

9.9 Anti-aliasing . 110

10.1 Exploring facial performance capture 113

11.1 Implication of normals on shading . 123

15.1 The original fingerprint [8] . 140

15.2 The fingerprint compressed using the JPEG standard [8] 141

15.3 The fingerprint compressed using WSQ [8] 141

List of Tables

3.1 The American English phonemes . 14

4.1 Bit-reversing indices . 42

4.2 Definitions of some common windowing functions 57

5.1 Activation functions . 63

5.2 HMM state transition matrix . 70

5.3 HMM observation matrix . 70

5.4 HMM state sequence probabilities . 72

13.1 The accuracy of phoneme identification using the DWT 130

13.2 The effect of cepstral coefficient counts 131

13.3 The effect of training data composition 132

13.4 The speeds of the different modules 132

13.5 The effect of polygon count . 132

13.6 The effect of muscles . 133

xi

Part I

Introduction

1

Chapter 1

Introduction to Audio Driven Facial

Animations

One very profitable industry in the world today is the entertainment industry. Compa-

nies seeking an edge on competitors are continually looking for innovative and creative

new techniques to communicate their messages. One of the more popular techniques

employs computer animation to convey the message.

Computer animation for entertainment is not a new idea - even early movies some-

times used computers to generate special effects like fireballs and spaceships. Over

time the quality of these pre-made animations has been steadily improving. This can

be observed by movies like ‘Lord of the Rings’, where it is nearly impossible to dif-

ferentiate between reality and animation. One application of computer animation in the

entertainment industry that has been less used is real-time animation.

Real-time animation is computer animation, but the models being animated are con-

trolled at the time they are displayed. A prime example is a model interacting with a

live audience. In traditional animation (off-line animation) it is possible for an artist to

perfect aspects such as motion and shape before rendering. Very often several cycles

of rendering → reviewing → adjustment to models, may be required before the artist

is satisfied with the animation. In a real-time environment this is not possible - the

movements of the model must be accurately, flexibly and quickly controllable. Also the

rendering process itself must be real-time.

When animating the facial features of a character, the spoken message of that character

is conveyed more clearly when one can see the actual lip movements of that character

[3]. In off-line scenarios, a recorded sound file is analysed in detail, to identify seg-

ments of speech. This information is then applied to a model’s face so that it appears

that the model is speaking the contents of the sound file. This analysis process may

2

CHAPTER 1. INTRODUCTION TO AUDIO DRIVEN FACIAL ANIMATIONS 3

take quite a while and require several passes. Furthermore, the entire sound file is on

hand at the time of animation. This is not the case in a real-time environment. The

requirement for real-time facial animation is that the model appears to speak the sounds

while those sounds are being recorded and output - there can be no (or very little time)

for pre-processing of this sound information.

1.1 Problem Statement

The problem being solved in this document is to determine whether real-time human

speech can be effectively used to drive a facial animation.

1.2 Objectives

Our objectives are:

• To determine whether real-time human speech can be used to drive a facial ani-

mation.

• To build a prototype system to demonstrate this.

• To investigate ways to improve the performance of such a system.

1.3 Approach

In order to solve the above-mentioned problem, we utilise the following methods:

1. We first conduct a literature survey to determine to what extent other work has

solved the problem. This includes real-time scenario and offline scenario work.

2. We also use our findings from the literature survey to determine which of the

techniques that could be used provide the most benefits (accuracy, speed, effec-

tiveness and such).

3. Having completed our survey, we progress to design and build a prototype to

demonstrate our findings.

4. Once a working prototype has been completed, we work to implement some of

the potential speed, accuracy and effectiveness enhancements identified in the

literature survey.

CHAPTER 1. INTRODUCTION TO AUDIO DRIVEN FACIAL ANIMATIONS 4

1.4 A Brief Overview of Previous Work

In order to accomplish interactive audio-driven facial animation there are several aspects

one must consider:

1. Audio-analysis.

2. Facial animation.

3. Making it look appealing.

4. Doing it in real-time.

Audio analysis is a well defined area of research. Early techniques included reading

spectrograms [15], Fourier Transforms [45] and Wavelet transforms [35] applied to-

gether with classification systems.

Facial animation is also a mature field of research. In the early days, creative peo-

ple’s hand-drawn artwork was used [24]. Later people learnt to create animations by

stitching together appropriate photographic still images. One example of this approach

is described in [30]. In later years still images were morphed into one another to cor-

rect minor defects in the animation and to improve the synchronisation of the animation

with the audio channel [31]. 3D Rendered models have also been applied, sometimes to

great effect. Keith Waters [93] describes using muscle simulations to animate a model

of a human face, and later work expanded on many of his original ideas.

Advanced texturing and rendering techniques [63] have also allowed the quality of ren-

dered models to be vastly improved. Many of these techniques can even be applied in

real-time rendering scenarios by dedicated 3D hardware [59].

Different combinations of these above requirements have been achieved with great suc-

cess: real-time facial animation (items 2 and 4) [99], photorealistic facial animations

(items 2 and 3) [98], and even audio-driven facial animation (items 1 and 2) [34].

Putting them all together has been achieved, but with marginal success. The hindrances

of real-time speech analysis are probably the largest stumbling block. The reason for

this is that sounds that are about to be spoken have an effect on sounds currently being

spoken [18].

This document studies each of the above-mentioned problems in detail:

• Human speech (chapter 3) - we describe human speech, illustrating key factors to

consider at audio processing time.

CHAPTER 1. INTRODUCTION TO AUDIO DRIVEN FACIAL ANIMATIONS 5

• Digital Signal Processing (chapter 4) - this section describes the techniques used

to analyse digital signals (in specific audio signals), together with optimisations

that allow for feature extraction in real-time.

• Classification (chapter 5) - the state-of-the-art techniques for classifying data,

specifically human speech are studied.

• Facial Modelling (chapter 8) - different modeling techniques and their advantages

and disadvantages are shown in this section.

• Techniques for Improving Renderings (chapter 9) - this section describes some of

the more popular techniques that can (a) be used for facial animation and (b) that

can be executed in real-time, that contribute to improving the overall quality of

rendered animation.

• Video Realism (chapter 10) - in this section techniques are described which im-

prove the quality of the movement of the models to be animated. Co-articulation

effects (one of the major drawbacks to real-time facial animation) is one of the

major focuses of the chapter.

For each section an attempt is made to show how the technique is applied in a real-time

environment.

The document also includes a description of our implementation of a real-time facial

animation system (chapters 11 and 13). The last chapter then describes future research

that could be conducted.

Part II

Audio Processing

6

Chapter 2

Introduction to Speech Analysis

When we hear human speech, our brains process the audio information in many ways

before we actually understand what is being said. Our brains are however extremely

complex and can be compared to a vast system of parallel computers all doing their

share of work at the same time. Modern computers still primarily rely on a single CPU

that can do only one instruction at a time. The problem is that the computer must still do

all the same work as the human brain if it aims to gain the same accuracy of understand-

ing of speech. For purposes of this document we need not comprehend the meaning of

the speech itself, but we do need to process it sufficiently to identify the words (or at

least sub-words or phonemes) being spoken.

This part of the document will explain:

• Human Speech (chapter 3) - This chapter shows how the human vocal system

produces sounds. This will help us to identify desired features of sounds and

potential classifications of sounds. It also provides some of the history of our

modern speech-related knowledge including speech-graphs.

• Digital Signal Processing (chapter 4) - This chapter deals with processing the dig-

ital signal (recorded spoken sound) in various ways. Focus is placed on extracting

important features of the signals for use in a classification system. Performance

details are explained as well, as these play a large role in performing the calcula-

tions in real-time.

• Classification (chapter 5) - This chapter deals with using artificial intelligence and

learning techniques to classify audio features.

• Speech Recognition Challenges (chapter 6) - This chapter explains some obsta-

cles that one can expect to encounter when writing speech recognition applica-

tions.

7

Chapter 3

Human Speech

3.1 Introduction

In order to accurately analyse speech it is important to first understand how speech is

produced. This chapter will describe the various parts of the human vocal system and

the roles they play, as well as providing an important introduction to audio theory. This

information helps once we start using some digital signal processing techniques (which

are described in chapter 4).

Firstly, the theory of sound will be briefly explained, as this information is crucial to

anybody undertaking speech analysis at any level.

3.2 Wave Theory

Sound vibrations are caused by some disturbance in a medium (air). These vibrations

travel in a wave-like motion through this medium. Should the vibrations reach our ears,

we hear the sound. The higher the frequency of the vibrations, the higher the pitch of

the sound. The higher the amplitude of the vibrations, the louder the sound. Several

sound waves passing each other are superimposed. (See figures 3.1 to 3.3).

When one hears sounds, one is really hearing the sum of many vibrations that have

reached our ears. Any given sound may be composed of many different frequencies and

amplitudes of vibrations. The ear separates these superimposed vibrations into their

component vibrations. The way this works is as follows: inside the human ear there is a

spiral structure called the cochlea. Inside the cochlea is a membrane (called the basilar

membrane) that resonates as the sound causes it to vibrate. High pitch sounds cause the

front of the membrane to resonate, while lower pitch sounds cause it to resonate nearer

to the back. Tiny hair-like cells sense this resonance and convey the message to the

8

CHAPTER 3. HUMAN SPEECH 9

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

45 90 135 180 225 270 315 360

Figure 3.1: A low frequency sound wave

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

45 90 135 180 225 270 315 360

Figure 3.2: A high frequency sound wave

brain via the auditory nerve. The intensity with which the hair vibrates is determined

by the amplitude of the vibration. This process is simulated mathematically by Fourier

Transforms (chapter 4.7). The brain interprets these signals and we ‘hear’ the sound.

We have seen in this section how the ear interprets sounds, but we need to be aware

that our brains ‘filter’ out a lot of unimportant sounds (noise).

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

45 90 135 180 225 270 315 360

Figure 3.3: The superposition of two sound waves

CHAPTER 3. HUMAN SPEECH 10

3.3 Noise

Unfortunately the ear hears all sounds entering it, not just the ones that are important.

Noise can be superimposed with the original vibration, and would then be heard by the

ear as well. The brain fortunately is extremely complicated and has been trained over

years to ignore the noise. This is more difficult for a computer to accomplish.

Noise needs to be mathematically defined before it can be filtered out. If the noise

signal can be predicted, then a simple subtraction of the noise from the signal would

result in the uncorrupted signal, but this case of prediction is extremely rare in real-

world scenarios. Noisy information occurs with varying pitches and intensities, often

at unpredictable times. To eliminate this noise therefore usually involves searching for

chaotic features in the sound signal and using filtering algorithms to rebuild the original

signal without these features.

By gaining an understanding of the specific source of the original sounds (for exam-

ple knowing that human voice ranges between 300 and 3400Hz [6]), one can filter out

sounds that are undesirable.

One effective way of coping with noise is to pass the audio signal through dedicated

hardware filters that remove the noise, but in this document we focus on using software

for this task.

We have now seen how sounds are transmitted and perceived. We have also described

that understanding the source of the sounds can help filter out noisy information. In the

next section, the source of human speech sounds will be explained: the human vocal

system.

3.4 The Human Vocal System

As mentioned in the previous section, knowledge of the source of a sound signal can

help filter out noisy information from that signal. Some of the other techniques (Linear

Predictive Coding inter alia) used to identify features of the signal are also enhanced by

an understanding of the actual workings of the human vocal system.

By knowing how the different parts of the human vocal system create the vibrations

in the air, we can calculate what sounds to expect. These sounds have certain properties

by which they can be identified. This in turn helps to classify the individual sounds.

CHAPTER 3. HUMAN SPEECH 11

The human vocal tract is a complex set of structures each of which cause different

vibrations and disturbances in the air as the air passes them. These structures are:

• the nasal cavity,

• the mouth cavity,

• the tongue,

• the glottis (voice-box),

• the trachea and lungs and

• the velum (soft palate at the back of the mouth).

Each of these structures adds certain features to the sound. One of the most important

distinctions in sound classification is whether the sound is voiced or unvoiced - ie.

whether the vocal chords vibrate or not.

3.4.1 Voiced Sounds

Voiced sounds are caused by air from the lungs flowing over the vocal cords. This

causes vibrations of a specific frequency in the air (ie. a very regular vibration in the

air is created). These sounds are known as glottal pulses - so called because they are

produced by the glottis (voice-box) in the throat. They are usually vowels of high en-

ergy levels and have distinct formant frequencies [6] (formants are described in section

3.6.3). This frequency can be clearly seen in figure 3.4. For now all we need know

about formants is that the vibrations causing them have large amplitudes and are thus

easily identified from the sampled wave.

Figure 3.4: 850 samples of the voiced sound ‘ao’ (22050 samples/sec)

Not all sounds are caused by the glottis - in the next section another class of sounds

called unvoiced sounds will be described.

CHAPTER 3. HUMAN SPEECH 12

3.4.2 Unvoiced Sounds

In the previous section we saw that vowels and similar sounds are caused by air flowing

over the vocal chords, and the resulting vibrations were regular. Some structures cause

a more chaotic set of vibrations. These are known as unvoiced sounds and are typically

created by turbulence in the air flowing through the vocal tract. Examples are:

• air flowing through the tight space between the tongue and the teeth - eg. the ‘s’

sound,

• air flowing through the space between the tongue and the roof of the mouth - eg.

the ‘sh’ sound,

• air flowing through the constriction in the lips while whistling and

• explosions of air that is totally trapped by obstructions in the vocal tract being

released - eg. the ‘p’ sound.

According to Bradbury [6], pitch is not an important characteristic of unvoiced sounds.

This is due to the fact that the turbulent air produces vibrations of many different fre-

quencies, typically each of which are of a relatively low amplitude. This can be seen in

figure 3.5.

Figure 3.5: 850 samples of the unvoiced sound ‘s’ (22050 samples/sec)

One of the first steps of speech classification is usually to distinguish between the two

above-mentioned classes of sounds. This process will be explained next.

3.4.3 Classifying Sounds as Voiced or Unvoiced

In the previous two sections, we classified sounds into voiced and unvoiced categories.

This is the first step of a hierarchy of classifications. As a result we need to first identify

in which of these classes a sound belongs.

It is relatively easy to classify sounds as voiced or unvoiced (compared to the rest of the

CHAPTER 3. HUMAN SPEECH 13

analysis process at any rate). By observing the number of times the wave signal crosses

the x-axis (see figures 3.4 and 3.5) we can get a fairly accurate indication whether or

not the sound is a voiced sound. In our experiments we found that with a sample rate of

22050 samples / second - taking 4096 consecutive samples resulted in an average of 607

crossings of the x-axis given unvoiced input as opposed to 197 crossings with voiced

input. The reason behind this observation is that unvoiced sounds result in higher fre-

quencies which would in turn cause the signal to cross the axis more frequently.

Using this metric results in a fairly definite classification that is irrespective of sound

volume (sound volume is another one of the metrics that is sometimes used to determine

whether a sound is voiced or unvoiced).

In the past few sections we have shown two classes of sounds and how signals are

placed into these two classes. In the next few sections we will go one step further and

describe common sub-classifications for both voiced and unvoiced sounds.

3.5 Phonemes

The most common way to classify human speech is to break up the sounds into phonemes.

A phoneme is considered a basic unit of human speech [7, 26, 35]. To see an example

of phonemes, one can observe phonetic spellings for words. Phonetic spelling shows

how words are pronounced by showing the set of phonemes that make up a word. Each

language has their own set of phonemes - American English consists of the phonemes

listed in table 3.1. For example, the word ‘phoneme’ spelt using phonetic spelling is

“/f/ /ow/ /n/ /iy/ /m/”. Sometimes different symbols are used to represent these letters

also, such as using a horizontal bar over a letter.

There is a set of symbols which represent the phonemes used not only in English but in

all commonly spoken languages. This is called the International Phonetic Alphabet.

As seen in section 3.4 phonemes are first classified as voiced and unvoiced. Divid-

ing sounds into these categories is an important part of the analysis process, as the two

sounds exhibit different features due to the way they are formed, but this is insuffi-

cient. Sounds within these categories needs to be further classified as described in the

following section.

CHAPTER 3. HUMAN SPEECH 14

Symbol Example Symbol Example
1 - Syllable boundary 26 h help
2 ! Sentence terminator 27 ih fill
3 & Word boundary 28 iy feel
4 , Sentence terminator (comma) 29 jh joy
5 . Sentence terminator (period) 30 k cut
6 ? Sentence terminator (question mark) 31 l lid
7 Silence 32 m mat
8 1 Primary stress 33 n no
9 2 Secondary stress 34 ng sing
10 aa father 35 ow go
11 ae cat 36 oy toy
12 ah cut 37 p put
13 ao dog 38 r red
14 aw foul 39 s sit
15 ax ago 40 sh she
16 ay bite 41 t talk
17 b big 42 th thin
18 ch chin 43 uh book
19 d dig 44 uw too
20 dh the 45 v vat
21 eh pet 46 w with
22 er fur 47 y yard
23 ey ate 48 z zap
24 f fork 49 zh pleasure
25 g gut

Table 3.1: The American English phonemes

3.5.1 Classification of Phonemes

Phonemes are initially classified into voiced or unvoiced [15], which approximately

map to the concept of vowel and consonant respectively.

Vowels are further classified into monophthongs and diphthongs. Monophthongs are

vowels where the sound remains relatively unchanged (example ‘oo’ in ‘book’), while

diphthongs are vowels that change as the vowel is spoken (example ‘i’ in ‘bite’).

If one looks at figure 3.6 one can see that the wave pattern remains relatively unchanged

while speaking a monophthong compared to figure 3.7 where the shape of the wave

changes as a diphthong is spoken.

Consonants are divided into 5 sub-categories:

• Approximants - these sounds are midway between vowels and consonants. This

is caused by restriction in the vocal tract. Look at figure 3.8 to observe the vowel

CHAPTER 3. HUMAN SPEECH 15

Figure 3.6: 850 samples of the monophthong ‘ao’ (22050 samples/sec)

Figure 3.7: 1700 samples of the diphthong ‘oy’ (22050 samples/sec)

features (low frequency wave) together with the consonant features (high fre-

quency wave). Examples of approximants are ‘w’ and ‘l’ sounds.

• Nasals are produced by air being completely blocked from escaping from the

mouth (either by the tongue, lips or velum), thereby forcing the air out of the

nasal cavity. Examples of nasals are ‘n’, ‘m’ and ‘ng’. By studying figure 3.9,

one can see that nasals cause an additional, lower-amplitude, double frequency

wave to the standard wave caused by the glottis (voice box). This is noticeable

by looking at the smaller spike roughly half-way between the tallest spikes in the

figure.

• Fricatives are caused when there is severe turbulence in the air passing through the

vocal tract. This is due to the sound articulators being very close to one another.

Sounds like ‘s’ and ‘h’ are examples of fricatives. Due to the severe turbulence

in the air, the resulting wave has a broad range of frequencies, many of which

Figure 3.8: 1700 samples of the approximant ‘w’ (22050 samples/sec)

CHAPTER 3. HUMAN SPEECH 16

Figure 3.9: 3400 samples of the nasal ‘n’ (22050 samples/sec)

Figure 3.10: 850 samples of the fricative ‘s’ (22050 samples/sec)

are very high. This can be seen in figure 3.10. The fricative h is also called an

aspirate because of the puff of air released while saying it (to aspirate means to

breathe). Another example of an aspirate is the t in the word ‘kit’, because after

saying the ‘t’ there is an extra release of air.

• Plosives are caused by a complete sealing of the vocal tract for a short period of

time, causing air pressure to build up, then folowed by a sudden and complete

release of the air. This creates an explosive sound. The English language has

six plosives each of which are caused by blocking off different volumes of the

vocal tract or releasing air at different pressure. These are ‘p’, ‘t’, ‘k’, ‘b’, ‘d’,

‘g’. These six plosives can be divided into two groups - ‘p’, ‘t’ and ‘k’) and (‘b’,

‘d’ and ‘g’). The latter group builds up less pressure in the vocal cavity than their

counterparts (which block off the same volume of air) in the former group. By

looking at the plosive in figure 3.11, one can see how the sound is restricted (no

vibrations) then suddenly released (sudden start to the vibrations). The largest

Figure 3.11: 1700 samples of the plosive ‘p’ (22050 samples/sec)

CHAPTER 3. HUMAN SPEECH 17

Figure 3.12: 850 samples of the affricate ‘j’ (22050 samples/sec)

amplitude vibrations only last until the air has been released, then the intensity of

the vibrations drops.

• Affricates are similar to plosives except that when the air is finally released, the

vocal tract still remains slightly obstructed. The phonemes ‘j’ and ‘ch’ are the

only two affricates in the English language. By looking at figure 3.12 one can see

how the air is initially trapped (very little vibration) followed by a turbulent (high

frequency wave) release of air.

Understanding what phonemes are and how they are produced is only part of the knowl-

edge we need to be able to classify sound into phonemes. In the next section some

graphs that are studied by human sound-analysers will be shown. These graphs are ex-

tensively used to gain better understandings of sound features (one of the most noteable

being formants).

3.6 Graphs of Speech

In this chapter we have described the different aspects that make up sounds focussing

on human speech. We mentioned that analysis techniques can be improved if we have

knowledge of the signals being analysed. We continue in this section by showing some

of the graphs that are used to gain a better understanding of sound features, to aid in the

analysis process.

The specific graph used depends on the features that should be highlighted. This section

will explain the roles of the different graphs that are commonly used.

3.6.1 Wave Patterns

Wave patterns are the easiest graph to obtain, as no processing is required. The samples

from the microphone are simply plotted. The x-axis is time, and the y-axis is amplitude.

One will notice that the samples have both positive and negative values. (One can think

CHAPTER 3. HUMAN SPEECH 18

of these samples as electrical current passed to an electromagnet in a hi-fi speaker. As

these samples go above and below zero this would cause attractive and repulsive forces

between the electromagnet and the permanent magnet attached to the speaker mem-

brane - thus producing vibrations in the membrane and hence sound).

By studying the wave patterns, one can identify certain patterns in the sound with the

naked eye. If one looks at figure 3.13, one can see that the unvoiced sound ‘ch’ from the

word “each” has high frequency with low amplitude, while the ‘ea’ sound has a lower,

less chaotic frequency, with a higher amplitude.

Figure 3.13: A wave-graph (phonetics produced by Microsoft Liset [60])

Unfortunately the patterns which we can identify easily with our brains are much harder

to spot using purely mathematical techniques. For this reason very little success has

been achieved by analysing the wave pattern alone. There are also other graphs which

can highlight more obscure features. The next section will describe one such graph: the

spectrogram.

3.6.2 Spectrogram

Speech analysis is frequently aided by using a spectrogram as the simple wave data

(mentioned in the previous section) seldom reveals enough by itself. This is a graph

where the x-axis is usually time, the y-axis is frequency, and the amplitude of the com-

ponent of the wave of the given frequency is represented by the brightness (or darkness)

of the dot (pixel) on the graph. The louder the sound at a given frequency and time,

the brighter (or darker - depending on the graph palette) the appropriate pixel would be.

At the top of figure 3.14), is a spectrogram of the word “election”. Notice the darker

CHAPTER 3. HUMAN SPEECH 19

coloured linear patches near the bottom on the left. These lines are high-energy areas

representing formants (see next section) of the vowels ‘ih’ and ‘eh’ shown in the wave-

graph below the spectrogram.

Often a spectrogram will use the logarithm of the energy of the sound at the given

frequencies as opposed to the energy itself. This is known as the decibel scale. As with

Figure 3.14: A spectrogram for the word “election” (with phoneme breakdown pro-
duced by Microsoft Liset [60])

most sound analysis techniques, the spectrogram relies on the Fourier Transform (see

chapter 4.7 for more information about the Fourier Transform).

CHAPTER 3. HUMAN SPEECH 20

3.6.3 Formants

As mentioned previously in this chapter, phonemes are initially classified as voiced or

unvoiced phonemes. The reason for this is that the two are analysed differently: voiced

sounds, when viewed on a spectrogram exhibit high amounts of energy clustered around

certain frequency levels, while unvoiced sounds exhibit more of a general low-intensity

cloud of energy spread across many different frequencies [15]. (To observe this phe-

nomenon notice the dark lines near the bottom of the spectrogram in figure 3.14 while

the two vowels ‘ih’ and ‘eh’ are spoken). In this section we will focus on the features

of voiced sounds: formants. These are the clusters of high energy (observed on a spec-

trogram) for voiced sounds.

Notice that there may be more than one formant at a given point in time. This is ob-

served in the dark patches on the spectrogram above one another. These formants are

numbered starting at one (F1) - the lowest frequency formant, and increasing in number

as the frequency range increases (F2, F3, ...).

F1 ranges from 300Hz to 1000Hz, and is caused by proximity of the tongue to the

roof of the mouth. The closer the proximity, the higher the pitch of the formant.

F2 ranges from 850Hz to 2500Hz, and is caused by the position of the tongue from the

back of the mouth together with the rounding of the lips. The further back in the mouth

the tongue, the smaller the oral cavity, the higher the pitch of the formant. Rounding

the lips lowers the pitch of F2.

The first two formants are the most important in identifying phonemes. The latter for-

mants are primarily used to determine quality of the phoneme [15].

Due to the chaotic nature of unvoiced sounds, there is no unvoiced counterpart to for-

mants. One must use the properties described in section 3.5.1 to categorise unvoiced

sounds.

In this section we looked at different graphs that can help us analyse sound signals.

We conclude this chapter by studying the effects that one phoneme has on those spoken

just before or after that phoneme: co-articulation.

CHAPTER 3. HUMAN SPEECH 21

3.7 Co-articulation

Up until now in this chapter we have studied phonemes which we assumed to be atomic,

ie. they could be totally isolated from sounds adjacent (in time) to them. This is un-

fortunately only an approximation - in practise there is interference between phonemes

called co-articulation [18], [67].

Co-articulation is the interpolation on the vocal tract shape between uttering one phoneme

and uttering the next one [3]. What this means is that the sounds one produces before

and after any sound, influence the mouth position of that sound. An example given by

Albrecht et al. [3] is in the mouth shape during the ‘/k/’ sound in the words “coin” and

“cow”. In the first instance the mouth is round, while in the second instance the exact

same sound is formed by a wide-open mouth. It can therefore be seen that the sounds

(the ‘/oi/’ and ‘/ow/’) adjacent to a given sound (the ‘/k/’) influence the mouth (and the

rest of the vocal tract) shape for that given sound.

Co-articulation is one of the greatest hurdles to cross in real-time facial animation, be-

cause the phonemes that a person is about to say (in the future) will influence their

mouth shape during phonemes they are currently saying. For this reason one of two

courses of action needs to be taken (a) ignore the sounds following a given phoneme,

and use exclusively those sounds preceding the one currently being uttered (to predict

co-articulation effects), or (b) delay output of the sound by some relatively short time,

say 1
2

second.

Solution (a) would lead to inaccuracies and should only be applied when real-time is

essential (as opposed to mere continuous-time). If this inaccuracy is tolerable then this

method is suitable. Solution (b) would result in more accurate predictions of mouth

positions at the expense of real-time output. If a delay in output is acceptable then this

solution is the more suitable of the two.

In section 10.4 we will discuss more about co-articulation, focusing on the effect it

has on video-realism.

Additional resources about human speech are provided in the next section.

3.8 Additional References

Speech analysis is a vast field that spans many disciplines including medical, psycho-

logical, language and several others. As such one can find a lot of information about

CHAPTER 3. HUMAN SPEECH 22

specific details of speech recognition. For more tutorial information about speech anal-

ysis see [37] and [52].

3.9 Summary

In this chapter we discussed human speech so as to understand its production. Wave

theory, the articulators, phonemes and graphs of speech were discussed to improve our

understanding of speech. This in turn should help in the design of speech processing

applications.

The next section will describe how to use digital signal processing techniques to process

these human speech patterns.

Chapter 4

Digital Signal Processing

4.1 Introduction

Digital Signal Processing (DSP) is a collection of techniques for analysing any form of

digital signal. In this document the signals referred to will be sounds recorded using a

microphone and sampled using the sound card of a computer, but the techniques apply

to other signals as well.

In this chapter basic sampling theory will be introduced followed by a short mathe-

matical foundation for DSP techniques. Then an in-depth study of some of the more

useful DSP techniques will be conducted. The chapter will then conclude with a de-

scription of ways of actually using the results provided by those techniques (feature

extraction).

4.2 Sampling

Digital signals are usually samples from a continuous analog source sampled at regular

time intervals. This sampling usually occurs using a microphone when dealing with

audio signals. What this means is that at some interval (44100 samples per second for

cd-quality sound) the signal is measured. These measurements are called samples and

are proportional to the amplitude of the sound vibration at that time.

The convention that this document uses when dealing with sampled signals is that

there is a discrete function f where f [n] returns the amplitude of sample n. For ex-

ample, a continuous, single-pitch sound will be produced by a sinusoidal function say

f(t) = cos(t) where 0◦ ≤ t < 360◦. If this signal is sampled every 45◦, then the

resultant values would be:

• f [0◦] = 1

23

CHAPTER 4. DIGITAL SIGNAL PROCESSING 24

• f [45◦] ≈ 0.707

• f [90◦] = 0

• f [135◦] ≈ −0.707

• etc.

Having briefly introduced sampling principles, it is important to describe some issues

with the usage of sampling techniques. In the next section, some potential problems

with sampling techniques will be illustrated.

4.2.1 Sampling Problems

One should be careful to collect sufficient samples to gain an accurate understanding

of the function being sampled. Taking samples too sparsely (figure 4.1) can result in

certain ‘details’ of the signal being ignored. These details would be the high-frequency

portions of the signals.

Taking samples at a rate too closely matching the period of a sample (figure 4.2) will

produce a completely incorrect representation of the signal - even low frequency sam-

ples would be excluded.

The opposite extreme - oversampling - does not produce accuracy problems, it wastes

resources (it would need larger storage buffers) and processing time.

Now that we have seen some of the potential problems with sampling techniques, it

would be valuable to find the balance between undersampling and oversampling. In the

next section, a theorem will be described that allows one to place an upper bound on

sampling frequency so as to minimise the number of samples required (prevent over-

sampling problems) without compromising the accuracy of signal representation (pre-

vent undersampling problems).

1

0

−1

90◦ 180◦ 270◦ 360◦

Figure 4.1: f(x) = cos(8x) sampled every 360◦

7
appears to be f(x) = cos(x)

CHAPTER 4. DIGITAL SIGNAL PROCESSING 25

1

0

−1

90◦ 180◦ 270◦ 360◦

Figure 4.2: f(x) = cos(8x) sampled every 45◦ appears to be f(x) = 1

4.2.2 Sampling Theorem

In the previous section, we saw that there are several problems that can arise when sam-

pling a signal. This section will describe a theorem that can be used to prevent these

problems.

There is a theorem (called the Nyquist Limit [89]) that can be used to place an upper

bound on the required sampling rate. When a continuous function f(t) has a maximum

frequency of ωm then that function can be accurately reproduced by its samples taken

at a frequency of 2ωm to give samples f(nπ
ωm

) where n ∈ Z. The original continuous

function (signal), f(t), can then be derived by:

f(t) =
∞

∑

n=−∞

f [nT]sincT (t− nT), (4.1)

where

sincT (t) =
sin(πt/T)

πt/T
.

For the proof of this theorem see [89]. The importance of this theorem (as mentioned

above) is that it provides an upper bound on the sampling rate needed to accurately

represent a signal containing a specific maximum frequency. This is useful because we

know that humans can only hear sounds between 20Hz and 20kHz, and of that most of

the phonetic information is concentrated below 8kHz [15].

So if 8000Hz (8kHz) is taken to be the maximum frequency of the signal it follows

that sampling the signal at 16kHz is sufficient to represent the signal accurately. For

other sources of information about sampling issues see [5, 73].

This concludes the section on sampling techniques, where we observed how poor appli-

cation of sampling techniques can provide innaccurate results, and we showed that the

Nyquist Limit can be used to improve sampling results.

CHAPTER 4. DIGITAL SIGNAL PROCESSING 26

Energy calculations (which are typically a first phase of digital signal processing) will

be described in the next section.

4.3 Energy

In the previous section, sampling theory was discussed including several issues and

their solutions. In this section energy calculations will be described within the context

of sampled signals.

The intensity of the signal (how loud you speak) is an important part of digital sig-

nal processing. This intensity is also referred to as energy (E). Energy can be measured

over the entire signal f(x) (see equation 4.2) or over a given sub-band of frequencies

(set of adjacent frequencies) within the signal. In order to measure energy within these

sub-bands, the signal itself will need to be split up into signals of different frequencies.

This is accomplished using Fourier Transforms (See section 4.7) or some other change-

of-base transform.

The equation for calculating the energy of the entire discrete function f is [89]:

E =

∞
∑

x=−∞

|f [x]|2. (4.2)

For regions of the infinite domain over which the signal is undefined, it is assumed to

equal 0.

This value for energy is typically one of the features that is extracted and passed to

a signal classification system. Most often the energy over the entire signal as well as

the energy for each sub-band are used as inputs to the classification system. In this way,

if the overall intensity of the signal has no bearing on the signal (only relative intensity

between subbands) then the classification system can normalise these features.

The use of energy as a feature set of a signal will be explored in more detail in the

section about the analysis process (section 4.9) and again in the chapter on signal clas-

sifications (chapter 5).

In this section, the energy calculations for a discrete (sampled) signal were described

including sub-band energy level calculations. Next, the concept of digital filters will be

described because they are used in nearly all aspects of digital signal processing (DSP)

and hence form one of the necessary foundational sections of DSP in this document.

CHAPTER 4. DIGITAL SIGNAL PROCESSING 27

4.4 Digital Filters

In the previous section, energy calculations were briefly described. A related, yet dif-

ferent concept is the digital filter which also performs a function on samples of a signal.

The difference is that the energy calculation outputs a single value, while the digital

filter outputs a new signal.

Digital filters form a huge part of the theory of Digital Signal Processing. Digital filters

are used to extract only the desired features from a signal. Typical uses of digital filters

are to strip high or low frequency information out of a signal (low pass or high pass

filters respectively), to strip noisy data out of a signal and to produce delays, echoes,

distortion and other effects.

Digital filters can be implemented in hardware or in software, but the filters that will be

discussed in this document are all implemented in software. Software filters tend to be

very stable (always produce the same output given the same input), whereas hardware

filters can be severely affected by temperature and other factors [80, ch14]. Software

filters are also a lot more versatile and are faster to alter, due to the dynamic nature of

software.

This section of the document describes some of the more important aspects of digi-

tal filters, from both an intuitive and a mathematical viewpoint.

4.4.1 How Digital Filters Work

Digital Filters perform some transformation on a signal, resulting in a new signal. In

many documents discussing digital filters the original signal is denoted

X = (x0, x1, x2, ..., xn−1),

the filter itself is denoted H and the resultant signal is

Y = (y0, y1, y2, ..., ym−1).

Notice that the transformed result need not be the same length as the original signal,

nor does yi need to occur at the same time that xi occurs. For the remainder of this

document, we will only use yi occurring at the same time that xi occurs.

In many applications the signal is continuously being sampled and processed. This

means that to compute the output value for yi, the only input values available are those

CHAPTER 4. DIGITAL SIGNAL PROCESSING 28

that occurred before yi in time. These include previously-recorded x values and already-

calculated y values.

Some example filters are:

• Amplification filters:

yi = kxi (4.3)

Values of k from 0 < k < 1 will reduce the signal intensity (attenuation) while k

values of k > 1 will increase the signal intensity (amplification).

• Delay filters:

yi = xi−l (4.4)

The output signal after being passed through a delay filter is the original signal

shifted by l samples. Assuming sampling starts at i = 0, values of xi<0 (which

would be undefined) are defined to be xi<0 = 0.

• Echo filters:

yi = xi + kxi−l (4.5)

This results in the original signal, together with a (typically attenuated) copy of

the signal as it was l samples earlier.

• Running total:

yi = x0 + x1 + ... + xi (4.6)

or more efficiently (once again taking xi = 0 when i < 0):

yi = xi + yi−1 (4.7)

In this section the workings of digital filters on an intuitive level were shown. In the

next section, formal mathematical notation will be introduced.

4.4.2 Notation of Digital Filters

Now that the basic workings of digital filters have been shown intuitively, some of the

notation and formulae will be described in a more formal manner.

Digital filters typically operate on samples that were recently sampled. The order (o) of

a digital filter is defined as one less than the greater of (a) number of previous samples

xi and (b) the number of previous outputs yi required as input to the filter. (Note that xb

for a < b < i is assumed to be used if xa is used). So the amplification filter (equation

4.3) is of order 0, the delay filter (equation 4.4) is of order l. The first running-total filter

CHAPTER 4. DIGITAL SIGNAL PROCESSING 29

(in equation 4.6) is of order i, while the second one (in equation (4.7) is of order 1.

The order of the filter is related to the number of previous samples that need be stored

in a processing buffer for the filter to work. Obviously the smaller the buffer the less

memory would be used (and the less work the CPU must do to execute the filter).

Another way of thinking about a digital filter is to think of it as a type of discrete

signal itself. The convention is to represent the filter as H = (h0, ..., ho−1). A function

called convolution (which will be explained shortly) is applied - the original signal X is

convoluted with H to produce Y [80, ch6].

The formal formula for convolution of two discrete signals X and H in mathematical

notation (Y = X ∗ H) is:

yi =

∞
∑

k=−∞

xkhi+k.

Usually a digital filter H is defined as zero for all points outside of some active domain

(the domain for which it has non-zero values). In those cases it is possible to modify the

interval over which the summation occurs to apply only to the appropriate filter values.

This is very important for implementation purposes, as it is impossible to execute an

infinite summation in a loop on a CPU. Therefore:

yi =
n−o−1
∑

k=0

xkhi+k, (4.8)

where o is the order of the filter as define at the start of this section.

Filters that only use the original samples (no previously calculated filter outputs) as

their input are called Finite Impulse Response filters (FIR filters), while those that also

make use of previously calculated filter output values are called Infinite Impulse Re-

sponse filters (IIR filters). For the change-of-base transforms described in this paper,

the IIR filters will often be used.

So far the workings of digital filters have been described and the applicable formu-

lae given. In the next section this notation will be written in a more compact form

to facilitate understanding some of the more advanced concepts that will be described

later.

CHAPTER 4. DIGITAL SIGNAL PROCESSING 30

A more compact representation of filters

A FIR filter of order l written as yi = a0xi−0 + a1xi−1... + alxi−l is often written as

(a0, a1, ..., al). For example, a filter that takes the average of every two consecutive

samples would be written (1
2
, 1

2
).

A related filter to the one described above is (1
2
, −1

2
). Together these two filters applied

to a signal calculate the average shape of the signal (the first filter of the two), while

the latter filter calculates the detail of the signal (it represents the amount by which the

original signal differs from the average signal). These two filters together (but applied

only to non-overlapping sets of samples) make up the discrete Haar wavelet, which will

be explained later.

In this section a compact representation for digital filters was given. This represen-

tation will be used for the remainder of this document. In the next section, we will

continue to discuss some of the other mathematical foundations needed for digital sig-

nal processing.

4.5 Mathematical Foundations for DSP

In previous sections, sampling, energy calculations and digital filters were described.

In this section, some additional mathematical foundations for DSP techniques will be

established. These will include:

• Geometry of functions (a comparison between vector geometry and function ge-

ometry, required for the change-of-base transforms described later).

• Using eiθ to represent sinusoids, which is used (amongst others) in Fourier Trans-

forms, also described later.

4.5.1 The Geometry of Functions

In the next few sections, some function geometry will be described. Function geometry

is merely an extension of some of the geometrical rules defined for vectors so they can

be applied to functions and still (intuitively) behave the same way. This is important to

us because signals can be thought of as functions, and so all the techniques described

in the following few sections can also be applied to signals. The specific geometrical

rules that will be described are: inner products, norms and angles.

CHAPTER 4. DIGITAL SIGNAL PROCESSING 31

4.5.2 The Inner Product

The inner product is a very useful function defined for some given space S. The inner

product for S must fulfil the properties described below [47], [89, p19]:

• The inner product function takes two inputs (x ∈ S and y ∈ S) and outputs a

single scalar (usually a real or a complex number). It is denoted 〈x, y〉

• Rule of linearity: 〈ax + by, v〉 = a〈x, v〉 + b〈y, v〉, a ∈ R, b ∈ R and v ∈ S

• Rule of symmetry: 〈x, y〉 = 〈y, x〉 (where c is the complex conjugate of c)

• Zero Vector : There exists x ∈ S such that x + x = x. x is then called the zero

vector.

• Positivity: 〈x, x〉 ≥ 0 and (〈x, x〉 = 0) implies that x is the zero vector.

• Cauchy Schwartz inequality: |〈x, y〉| ≤ ‖x‖‖y‖, where ‖x‖ =
√

〈x, x〉 (equation

4.12).

• Triangle inequality: ‖x+ y‖ ≤ ‖x‖ + ‖y‖

Having described the inner product function in general, we will show how it is applied to

vectors, then extend the application to functions (and signals) as well. In later sections

we describe how we can use the inner product to perform additional calculations on

functions.

The Inner Product Applied to Functions

The inner product, as mentioned above, is very useful in digital signal processing. In

this section, inner products as they apply to vectors (dot product), will be extended to

apply to functions as well. Because signals are functions themselves, we would then be

able to apply this theory to our DSP techniques.

For two equal-dimensioned vectors a = (a0, a1, ..., an−1) and b = (b0, b1, ..., bn−1),

the dot product (a function that fulfils inner product rules) is defined as:

a·b =

n−1
∑

i=0

aibi,

for ai ∈ R and bi ∈ R or for complex numbers (ai ∈ C and bi ∈ C):

a · b =

N
∑

i=0

aibi, (4.9)

CHAPTER 4. DIGITAL SIGNAL PROCESSING 32

where bi is the complex conjugate of bi.

In the same way as we can denote a vector v with a finite number of dimensions as:

v = (v0, v1, ..., vn−1),

a discrete function f [x] defined over some domain 0 ≤ x ≤ (n − 1), x ∈ N can be

denoted:

F = (f [0], f [1], ..., f [n− 1]).

The dot product defined for vectors then also works for these functions:

F ·G =

n−1
∑

i=0

FiGi =

n−1
∑

i=0

f [i]g[i] (4.10)

The formula is only slightly different for continuous functions. For the family of all

continuous functions fi(x) which are defined over the domain dmin ≤ x ≤ dmax, the

standard inner product is defined as:

〈fj, fk〉 =

∫ dmax

dmin

fj(x)fk(x)dx. (4.11)

This is also called the L2 inner product [47] - see section 4.5.3 for more details.

We have applied basic inner product theory to functions, and can now start using these

inner products in other formulae. Specifically norm and angle calculations will be

shown.

The Norm of a Function

It was shown in the previous few sections how inner products can be applied to func-

tions. These principles will be applied in this section to show how to calculate the norm

of a function, as well as showing what use this norm value is to us.

The length (which is also called the norm) of a vector v = (v0, v1, ..., vn−1), denoted

‖v‖, is given by:

‖v‖ =

√

√

√

√

n−1
∑

i=0

v2
i .

CHAPTER 4. DIGITAL SIGNAL PROCESSING 33

(This is really just the repeated application of Pythagoras’ theorem for calculating the

length of the hypotenuse of right-angled triangles). This is equivalent to

‖v‖ =
√

v · v =
√

〈v,v〉. (4.12)

This latter definition of norm (equation 4.12) is used verbatim to apply to functions as

well [47]. In other words the norm of a function f is:

‖f‖ =
√

〈f, f〉. (4.13)

The norm value is very useful for normalising calculations in order to preserve energy

values after a transformation. The norm will also be used in determining orthonormal-

ity, which is described towards the end of the next section.

Besides calculating the norm value, the inner product can also be applied to determine

angles between vectors. A similar concept for functions will be described in the next

section.

‘Angles’ Between Functions

In the previous sections, the inner product as it applies to functions was explained. One

application of the inner product was also shown: norm calculations. In this section an-

other application of inner product calculations will be used to derive the concept of the

‘angle’ between two functions.

In order to calculate the angle between two vectors v and w, we solve for θ in the

following formula:

v · w = 〈v,w〉 = ‖v‖‖w‖ cos θ. (4.14)

The concept of the ‘angle’ between two functions has been defined to be the same as for

vectors [47]. By starting with the above formula we can calculate the ‘angle’ θ between

functions v and w [47]:

〈v, w〉 = ‖v‖‖w‖ cos θ

〈v, w〉
‖v‖‖w‖ = cos θ

θ = arccos
〈v, w〉
‖v‖‖w‖ .

Using the above calculations, orthogonality (θ = 90◦ = π
2
) can be determined. Orthog-

onality plays a large role in deciding the effectiveness of many change-of-base trans-

forms (see section 4.6). Two functions f and g are said to be orthogonal if 〈f, g〉 = 0

CHAPTER 4. DIGITAL SIGNAL PROCESSING 34

(because if cos θ = 0 then θ = 90◦ which implies orthogonality). This can be extended

to sets of more than two functions: a set of functions {fi} from the same function space

is said to be orthogonal if 〈fj, fk〉 = 0, j 6=k.

Furthermore, a set of functions {fi} from the same function space is said to be or-

thonormal if the set is orthogonal and ‖fi‖ = 1, ∀i.

In the next two sections it will be explained why orthogonality is so important and

(in an intuitive manner) exactly what it means to span the L2 space (this was mentioned

after equation 4.11 and is a term that is frequently used in DSP techniques). These two

concepts are of vital importance to the change-of-base transforms.

4.5.3 Spanning the L2 Space

It was mentioned in a section 4.5.2, that there exists a space called L2, whose elements

are functions. In this section the concept of spanning this L2 space will be explained. A

good place to start is with vectors on the Cartesian Plane (what we usually think of as

the X-Y axis or R2). By writing co-ordinates as pairs (x, y) we can represent points on

that plane.

If we take (1, 0) and (0, 1) as base vectors, we can (for any x and y) say that (x, y) =

x(1, 0) + y(0, 1). Because this can be done for any x and y, we can say that (1, 0) and

(0, 1) are vectors that span the plane.

These are not the only possible base vectors, they just happen to be the most com-

monly used ones to represent points on the Cartesian Plane.

Should we use any additional vectors to attempt to span the plane, then there are too

many vectors. Any given point on the plane could then be written in more than one way.

We cannot use fewer than two vectors either. Hence we can say that the vectors (1, 0)

and (0, 1) minimally span the R2 plane.

Now a parallel between the above concept of spanning (for vectors), and a similar

one for functions will be shown. In the same way as the R2 plane contained vec-

tors (x, y), the L2 space contains functions fi(x). In the same way as we wanted

to represent any point in R2 space by using the sum of multiples of basis vectors

((x, y) = x(1, 0) + y(0, 1)), we want to represent any function f in L2 space by the

CHAPTER 4. DIGITAL SIGNAL PROCESSING 35

sum of multiples (αi) of basis functions (ψi):

f =

∞
∑

i=0

αiψi. (4.15)

The reason this summation stretches to infinity is that in n dimensional space, there are

n base vectors. L2 space has infinite dimensions, unless the domain of the functions has

a finite number of elements.

The first problem is to find such a set of basis functions {ψi}. The second is to as-

cribe some additional meaning to this newly created transform (otherwise the exercise

is probably just wasted effort). Unfortunately (as can be seen from the interval of the

summation in equation 4.15) the size of any family of functions capable of spanning L2

happens to be infinitely large. Fortunately these functions are usually strongly related

to one another and are therefore usually easy to use. In practise it is usually possible

to utilise some subset of these basis functions to represent the original function with

appropriate accuracy (this is especially useful in compression techniques), or to limit

the functions to discrete functions over finite domains (this would give the function do-

mains a finite number of elements).

Later in this chapter, the problem of finding these basis functions and their meanings

will be discussed. For now it is sufficient that one understand the concept of spanning

L2 space.

We continue with this example in the next section to explain the importance of or-

thogonality.

4.5.4 The Importance of Orthogonality

We know that (1, 0) and (0, 1) are at 90◦ to one another, and this means that should a

point move in the direction of one of these base vectors, the coefficient of the other base

vector does not change (a horizontal movement does not alter the vertical coefficient).

This implies that a movement in the direction of one base vector requires only a single

coefficient to represent - all other coefficients are 0. So orthogonality of basis vectors

promotes representing features of a given vector using minimally few (non-zero) basis

vectors.

For the same reason, orthogonality is important to basis functions. One area of DSP

where this is particularly important is wavelet theory.

CHAPTER 4. DIGITAL SIGNAL PROCESSING 36

This concludes our introduction to function geometry, but there are still two more math-

ematical concepts to cover before the actual DSP transforms will be explained: raising

e to a complex power and the delta functions.

4.5.5 Raising e to a Complex Power

DSP calculations often rely on the sinusoidal functions sin θ and cos θ as a pair. Fourier

(and other) transforms (see section 4.7) are one example. You will frequently notice

the formula eiθ. In this context, i2 = −1. (Some texts use the symbol j instead of i).

While this does not really make intuitive sense using the conventional understanding of

exponents, it has been defined to be:

eiθ = cos(θ) + i sin(θ). (4.16)

It can be helpful to think of this as a 2-D vector in the complex plane, at an angle of θ

radians and of length 1 (see figure 4.3).

θ

<

= 1

Figure 4.3: Raising e to a complex power (eiθ)

There is one last foundational concept that will be explained in this section - the delta

function - before the actual DSP algorithms start.

4.5.6 The Delta Function

Up until now in this chapter, certain foundational mathematical concepts for digital sig-

nal processing have been introduced. The final concept we will describe is the delta

function.

Many of the techniques in digital signal processing involve extracting a single sample

(discrete signals) or an infinitely narrow portion of the domain (continuous functions).

To do this, the signal is multiplied by a shifted delta function. The shifting is done to

select the correct sample in the domain of the function. The delta function is more use-

ful from a theoretical viewpoint than from an actual application viewpoint.

CHAPTER 4. DIGITAL SIGNAL PROCESSING 37

The continuous delta function is defined as:

δ(x) =

{

∞, x = 0

0, x6=0
,

where
∫ ∞

−∞

δ(x)dx = 1.

The discrete delta function is defined as:

δ(x) =

{

1, x = 0

0, x6=0.

This concludes our coverage of the mathematical foundation for DSP techniques. We

will now study a set of DSP techniques collectively called change-of-base transforms.

4.6 Change-of-Base Transforms

In the remainder of this chapter, we are going to describe certain DSP techniques. Some

of the concepts and notation we use were described in the earlier sections of this chapter.

In order to make sampled signals easier to study, a basis transform is frequently used.

What this means is that we would like to write an arbitrary discrete function f [n] as:

f [n] =
∑

k∈Z

〈ϕk, f〉ϕk[n], n ∈ Z (4.17)

where ϕk are the new basis functions.

One of the most commonly used change-of-base transforms, transforms a periodic func-

tion based on time (t) to a function based on frequency. This specific transform is known

as the Fourier Transform and will be discussed in detail in section 4.7. Another power-

ful transform is the Wavelet Transform (section 4.8) which has certain advantages over

the Fourier technique when applied to rapidly changing signals and signals with very

localised features. These are just examples of change-of-base transform and will be

explained in detail later.

Before delving into too much detail regarding change-of-base functions, we will ex-

plain some of the reasons for using them in the first place.

CHAPTER 4. DIGITAL SIGNAL PROCESSING 38

4.6.1 The Reason for Doing Change-Of-Base Transforms

Changing the basis of a function is a fair amount of effort (perhaps seemingly too much

just to represent some function in a different way). This section will explain some of

the advantages of converting a function to one using a different basis, so as to justify

the effort.

We will begin with an example. Let us say we have a function f(x) = 3 sin(x) +

5 sin(2x). This is the superposition of two sine functions. Should two of our basis

functions happen to be f1(x) = sin(x) and f2(x) = sin(2x), then we could write

f(x) = 3f1 + 5f2 or alternatively (using only the coefficients of these basis functions)

f(x) = (3, 5). This has reduced a complicated function defined over the infinite real

domain down to a mere two coefficients. This will only work if the original function

can be written in this manner. Using the basis functions we will be using later, this will

always be the case because the set of basis functions span the L2 space (see section

4.5.3). The two functions used here do not span the L2 space, but are sufficient to un-

derstand the above-mentioned advantages on an intuitive level.

The first advantage of acquiring this representation is compression. Another is func-

tion analysis.

Compression

The above-mentioned technique could possibly be useful if we can predict that func-

tions being compressed would always be the sum of very few basis functions. For

lossy compression, small coefficients or coefficients of unimportant functions (inaudi-

bly high frequencies in a sound signal, for example) could be zeroed, resulting in better

compression, while retaining a sufficiently accurate reproduction of the original signal.

Thus change-of-base transforms can be a useful technique in compression algorithms.

One practical example of using DSP techniques for compression is given in chapter

15.

Analysis

Typically the basis functions are structured - the formulae for the basis functions are

usually similar to one another (often differing only by a coefficient). This helps a lot

when actually implementing the algorithms in software. (A finite subset of the basis

functions can often be used to implement the change of base transform with a desired

level of accuracy. This is called successive approximation [89, p93]). This can be ad-

vantageous not only to compression applications, but also to analysis ones. If we know

CHAPTER 4. DIGITAL SIGNAL PROCESSING 39

that certain basis functions exhibit certain behaviour (eg. some specific frequency) -

then if the coefficient for any basis function is significant, then the original function

possibly exhibits the same behaviour (to some extent) as that basis function. It is for

this reason that change-of-base transforms can be a useful signal analysis tool.

Now that we see why change-of-basis transforms can be useful, we will study some

of them. We look first at the Fourier Transform followed by wavelets. Both of these are

widely used transforms in the field of DSP especially audio processing.

4.7 The Fourier Transform

In the previous sections, several goals for DSP were described (analysis and compres-

sion, inter alia) and a mathematical foundation for some DSP techniques was estab-

lished. Now the actual transforms will be described starting with Fourier Transforms.

4.7.1 Introduction to the Fourier Transform

When a function over an infinitely long time domain exhibits periodicity then that func-

tion can be represented as the superposition of sine and cosine waves of differing peri-

ods and amplitudes. This transform is known as the Fourier Transform, named after its

discoverer - Joseph Fourier who discovered it in 1807 [42]. The Fourier Transform for

an integrable function f(ω) is defined by [89, p37]:

F (ω) =

∫ ∞

−∞

f(t)e−iωtdt. (4.18)

Therefore it can be observed that the Fourier Transform results in a set of complex (see

section 4.5.5) coefficients of sinusoidal basis functions of differing periods. These co-

efficients can be used to derive the amplitudes of sine and cosine functions, which when

superimposed would result in the original function.

The function in equation 4.18 is also called the Fourier Analysis formula because it

uses the Fourier technique to study (analyse) the periodicity of the function.

The inverse Fourier Transform is defined as:

f(t) =
1

2π

∫ ∞

−∞

F (ω)eiωtdω =
1

2π
〈eiωt, F (ω)〉 (4.19)

This function is also called the Fourier Synthesis formula as it can be used to synthesize

the original function using Fourier techniques.

CHAPTER 4. DIGITAL SIGNAL PROCESSING 40

The Fourier analysis function was originally designed to work with signals that are

continuous, but the Discrete Fourier Transform, which will be discussed next, can be

used for discretely sampled signals over an infinite duration (or finite duration in the

case of the Short-Time Fourier Transform).

4.7.2 The Discrete Fourier Transform

As mentioned in the previous section, the Fourier Analysis function was originally ap-

plied to continuous periodic functions. This has limited use in software-based signal

processing environments, as the signals are typically sampled at discrete intervals, or

are only periodic over a short period of time (or are sometimes not periodic at all).

The intuitive understanding is that the continuous and discrete versions work the same

way, except that the continuous case uses integration, while the discrete case uses a

summation.

Given a sequence of samples (f [n]), the Discrete Fourier Transform (DFT) is defined

by [89, p51]:

F [k] =
N−1
∑

n=0

f [n](e−i2π/N)nk.

This is almost as if the entire signal f is being convoluted with a sinusoid, except that the

sinusoid changes frequency slightly as k increases. Some texts substitute WN = e
−i2π

N :

F [k] =

N−1
∑

n=0

f [n]W kn
N . (4.20)

The W k
N values are called the Nth roots of unity. This is because (W k

N)N = 1 for all

k ∈ {0...N − 1}. The inverse of this function is:

f [n] =
1

N

N−1
∑

k=0

F [k]W−kn
N . (4.21)

As can be seen from the formulae above, the F [k] values are complex numbers (see

also section 4.5.5). The coefficient of the cosine wave can be determined from the real

portion, while the coefficient of the sine wave can be determined from the imaginary

portion.

The amplitude of the F [k] values are proportional to both the amplitude of the orig-

inal signal f [n] as well as the length of the set (N). By doubling the number of samples

CHAPTER 4. DIGITAL SIGNAL PROCESSING 41

of the signal (while still maintaining periodicity), the values F [k] double.

Another interesting result is a complex-conjugate symmetry (See figure 4.4):

F [k] = F [N − 1 − k] (4.22)

This Discrete Fourier Transform is extremely useful, yet relatively slow to execute.

-1.5

-1

-0.5

0

0.5

1

1.5

32 64 96 128 160 192 224 256

(a) The graph of samples of f(x) = sin(2x) + 0.5cos(8x)

(b) The real portion of the DFT

(c) The imaginary portion of the DFT

Figure 4.4: Symmetry in fourier transforms

In the next section, it will be shown how to optimise the Fourier Transform algorithm

complexity from O(N 2) to O(N log2(N)) using the Fast Fourier Transform.

4.7.3 The Fast Fourier Transform

The Discrete Fourier Transform algorithm executes in O(N 2) time. This can easily be

seen. There areN F [k] values, and each of those values is anN length summation. This

execution time can be reduced given certain assumptions. These optimised algorithms

are generally called Fast Fourier Transforms (FFT). The Cooley-Tukey Decimation in

Time FFT algorithm is one such algorithm. [5, 73, 89]

CHAPTER 4. DIGITAL SIGNAL PROCESSING 42

Position Binary Bits Reversed New Value
0 000 000 0
1 001 100 4
2 010 010 2
3 011 110 6
4 100 001 1
5 101 101 5
6 110 011 3
7 111 111 7

Table 4.1: Bit-reversing indices

The Cooley-Tukey Decimation-in-Time FFT

If the number N of samples in the original discrete signal can be written as 2l, where l

is a positive integer, then we can optimise the DFT:

F [k] =
∑N−1

n=0 f(n)e−i2πkn/N

=
∑N/2−1

n=0 f(n)e−i2πkn/N +
∑N−1

n=N/2 f(n)e−i2πkn/N

=
∑N/2−1

n=0 {f(n) + f(n+N/2)e−iπk}e−i2πkn/N

=
∑N/2−1

n=0 {f(n) + f(n+N/2)(−1)k}e−i2πkn/N .

It can be seen that the intervals over which the summation is executed is half that of

the original - reducing the complexity of the problem by a factor of two. This whole

process can be iterated l − 1 (remember N = 2l) times, eventually leading to trivial

(N = 2 sized) DFT’s making the complexity of the total algorithm O(N log2N). This

can be derived from N = 2l which means that l = log2N and there are N F [k] values

to calculate. [89, p339]

For another explanation of the Cooley-Tukey algorithm see [45]. A diagram repre-

senting the workings of this algorithm is shown in figure 4.5. The input values on the

left of the diagram (a values) have indices which are bit-reversed. This is a part of the

algorithm that can be calculated once and the results reused every time the function is

used. Table 4.1 shows how to determine bit-reversed numbers.

The reason one uses this bit-reversal becomes apparent if one fully expands the Cooley-

Tukey DFT. By dividing the set in half in the manner described in the technique, the

effective transformation to the indices used is the bit-reversal function. The number of

bits used in the bit-reversal scheme is dependant on the number of samples over which

the DFT is being performed.

CHAPTER 4. DIGITAL SIGNAL PROCESSING 43

a0

a4

a2

a6

a1

a5

a3

a7

1

−1

1

−1

1

−1

1

−1

W 0

W 2

W 4

W 6

W 0

W 2

W 4

W 6

W 0

W 1

W 2

W 3

W 4

W 5

W 6

W 7

A0

A1

A2

A3

A4

A5

A6

A7

The algorithm itself

p

q

p + qαα

The key for the symbols for the algorithm, p, q∈C and α∈R

Figure 4.5: The working of the Cooley-Tukey FFT algorithm [45] for N = 8 (See table
4.1 for index calculations).

4.7.4 Other FFT Algorithms

There are other FFT algorithms - especially those used when N can be written as

N = N1·N2, where N1 and N2 are coprime. Some examples are the Good-Thomas

(or Prime Factor) FFT algorithm and the Winograd FFT algorithm. While these algo-

rithms can result in slightly fewer multiplications, their complexity has lead to mixed

success. For this reason the Cooley-Tukey FFT remains the most popular [89, p340].

The saving by reducing the algorithm complexity (reduction fromO(N 2) toO(Nlog2N))

is a huge saving, (especially when dealing with large numbers of samples), but there are

further optimisations that while not altering the complexity of the algorithm, do reduce

the execution time. These are typical computer optimisations such as:

• pre-calculated trigonometric lookup tables,

• pre-calculated bit-reversed indexes (see table 4.1) and

• using fixed-point numbers as opposed to floating point numbers (depending on

desired accuracy and CPU architecture).

CHAPTER 4. DIGITAL SIGNAL PROCESSING 44

4.7.5 Problems with Fourier Transforms

Despite its usefulness, the Fourier Transform has several limitations. Two of these are

period shifting and frequency leakage:

Period Shifting

One important aspect of the Discrete Fourier Transform is period shifting. Should the

DFT be executed twice for the same periodic function, but starting at a different position

(relative to the start of the function’s period), the results will differ. Should this fact be

ignored, then using the result of the Fourier Transform as an input vector to a classifi-

cation system could reduce the accuracy of classifications. Fortunately, it is possible to

alter the results so they remain unchanged when applied to the same signal, irrespective

of shifting the function.

When the signal is shifted, the magnitude of the complex number for each frequency

in the result remains constant - only the angle of rotation differs (see figure 4.3). For-

tunately for phoneme recognition, only the amplitudes of the signal (magnitudes of the

complex numbers) at the different frequencies are important. Using Pythagoras’ Theo-

rem, one can calculate this magnitude:

Mk =
√

<2
k + =2

k,

where Mk is the magnitude and <k and =k are the real and imaginary portions of the

kth coefficient after a Fourier Transform respectively.

One possible optimisation is to ignore the square-root portion of the magnitude cal-

culation, and simply use the energy value of each frequency:

Ek = M2
k = <2

k + =2
k.

This is faster because the square-root function can take a long time to calculate depend-

ing on the CPU architecture.

Period shifting is only one of the issues with which one must deal when using Fourier

Transforms. Another is that of frequency leakage.

Frequency Leakage

When the signal passed to the Fourier Transform is not exactly periodic within the given

domain, frequency leakage results. This is observed as ’glitches’ - non-zero coefficients

CHAPTER 4. DIGITAL SIGNAL PROCESSING 45

for frequencies that are not actually present in the original signal, or to produce inaccu-

rate amplitude information about a given frequency [5].

Fortunately the errors are localised near the true frequency of the signal (see figure

4.6). This means that using the energy over bands of adjacent frequencies as features

for our classification system, we should still be able to classify the signal fairly accu-

rately. The Inverse DFT still results in the original samples despite this non-periodicity.

-1

-0.5

0

0.5

1

90 180 270 360

a) A periodic function over 0◦ to 360◦ - f(x) = cos(2x)

b) Desired result after Fourier Transform

-1

-0.5

0

0.5

1

90 180 270 360

c) A non-periodic function over 0◦ to 360◦ - f(x) = cos(2.5x)

d) Undesired ‘noise’ after fourier transform

Figure 4.6: Frequency leakage [5]

In summary the Fourier Tranformation is a useful tool for DSP, but has certain limi-

tations. In the next section a different transform will be described that can overcome or

reduce the effect of these limitations.

CHAPTER 4. DIGITAL SIGNAL PROCESSING 46

4.8 Wavelets

In the previous section, the Fourier Transform was discussed, including optimisations

for real-time use as well as potential shortfalls when using the technique. This section

will describe Wavelet Transforms, which can (to some extent) overcome the following

issues:

• The signal is assumed to be periodic. Human speech however is not truly periodic,

even over small durations. The DFT typically takes as input, the samples over

some fixed-length portion (frame) of the signal. This technique fails when there

are sudden changes to the signal part-way through the frame, for example the

explosion of released air while uttering the phoneme ’p’ may occur in the middle

of a frame, thus producing strange results. Wavelets do not require periodicity.

They are in fact extremely useful for highlighting localised features in a signal.

• The Short-Time-Fourier-Transform (STFT) cannot be easily reversed to recon-

struct the signal. After the signal is transformed in some way while represented

in the frequency domain, and the STFT is reversed, the new signal contains dis-

continuities between time frames. Fortunately this is only a problem when the

STFT needs to be reversed. Wavelet Transforms can easily be reversed.

• The narrower the window used for better time resolution the poorer the frequency

resolution and vice-versa. Some reasons for this are: (a) in a small window, the

lower frequencies do not oscillate over one complete period, and (b) in a large

window, the signal’s periodicity may change. The effects of this problem can be

reduced by using a dynamically sized window that shrinks as the frequency reso-

lution increases. This technique is applied when performing Wavelet Transforms

and is the core of multi-resolution analysis.

The list shown above shows some of the reasons why we would want to use wavelets,

but their value has not been appreciated until recently. The following brief history will

illustrate some of the collaborative efforts that have caused wavelets to be so useful

today.

4.8.1 A Brief History of Wavelets

The earliest reference to wavelets were in one of the appendices to Haar’s thesis (1909).

Since then researchers from many fields of study have used wavelet theory to aid in

their work.

Paul Levy, a physicist in the 1930’s used the Haar wavelet to investigate Brownian

motion (the random motion of particles in gas) because of the superiority of wavelets

CHAPTER 4. DIGITAL SIGNAL PROCESSING 47

for studying localised details of signals.

Over time correlations between Fourier Transforms and other techniques (including

quadrature mirror filters, pyramid algorithms and wavelets) were discovered (Some of

the most significant work was done by Stephane Mallat in 1985 [42]). This aided in the

search for better wavelet basis functions.

In 1988 Ingrid Daubechies, working at AT&T Bell Laboratories discovered several

wavelets that have fractaline properties, and are extremely useful for processing many

different types of signals [82]. This makes the Daubechies family of wavelets some of

the most commonly used wavelet transforms today.

Fortunately for us wavelets are now a well-defined branch of mathematics. The fol-

lowing sections will explain the maths behind wavelets.

4.8.2 Understanding Wavelets

Wavelet Transforms, like Discrete Fourier Transforms (DFTs), are used to represent a

function as the sum of multiples of basis functions. Where Fourier Transforms use si-

nusoids (which have infinite support), wavelets use functions that have more localised

support.

Support in a function merely describes the domain of the function over which it re-

turns non-zero values. So sine waves have infinite support. A function f(x) that is zero

outside of a ≤ x ≤ b has localised support over the domain [a, b].

Note: In many texts (including this one) about wavelets the word frequency is used.

This term is more of an intuitive understanding, than a mathematically correct one.

Wavelets differ from the Fourier Transform in that the range of samples over which

each value of the transformation is calculated varies depending on the scale (frequency

resolution) of the transformation. The higher the scale represented, the fewer the num-

ber of samples used. For a diagrammatic comparison between the results of the Discrete

Fourier Transform and the Wavelet Transform see figure 4.7. This diagram also shows

that (with wavelets) at a given frequency resolution, over a single frame of samples,

there may be more than one result, where the Fourier Transform produces a single re-

sult per frequency per frame of samples.

First an intuitive understanding of wavelet thinking will be described, using the Haar

CHAPTER 4. DIGITAL SIGNAL PROCESSING 48

Frames of samples in time periods

F
re

q
u

en
cy

a) Discrete Fourier Transform

Frames of samples in time periods

F
re

q
u

en
cy

b) Wavelet

Figure 4.7: The difference between Fourier and Wavelet transformations [42]

wavelet (one of the simplest wavelets to understand) as an example. This will be fol-

lowed by a more rigorous mathematical treatment.

To understand wavelets properly, it is useful to understand the notion of dimension-

ality. A vector on the Cartesian plane (x, y) is two-dimensional. Similarly if you use

N samples from a signal F , they can be written as (f0, f1, ..., fN−1). The vector whose

elements are those samples is N dimensional. If a function space is 2j dimensional

(N = 2j), then the space is written as V j. It is important to know that all functions in

V j can also be represented in V j+1. An example of this is (1, 2, 3, 4) can be written as

(1, 2, 3, 4, 0, 0, 0, 0). Intuitively this means that these spaces are nested. This nesting is

one of the core foundation facts of wavelets.

Given a function space V j, we define W j as the orthogonal complement of V j in V j+1.

This means that W j space is the set of all functions in V j+1 not representable in V j .

(Intuitively this means that W j is the set of functions ’left over’ when signals are de-

scribed using basis functions from V j). Put another way, if one takes the functions that

span V j and the functions that span W j, then using all those functions, we can span

V j+1.

We will now make this clearer using the Haar wavelet as an example. Take a tiny

signal of 4 samples (4, 6, 22, 20). This size 4 can be written as 22 so we can think of

CHAPTER 4. DIGITAL SIGNAL PROCESSING 49

the vector as a vector in V 2 space. The Haar wavelet reduces this to a vector in V 1 by

averaging every two samples to produce (5, 21).

It is obvious that this is a lossy representation - it would be impossible to reconstruct the

original signal using only this information. To reconstruct the true original signal in V 2

we need an additional vector that gives the rest of the data (from V 2) not representable in

V 1. These would come fromW 1. This is known as the detail basis and in this case repre-

sents how far the original samples are from their averages - in this case (−1, 1). So using

the vector from V 1 space - (5, 21) - and the one fromW 1 space - (−1, 1) - we can repre-

sent the original signal. (((5)+(−1), (5)−(−1), (21)+(1), (21)−(1)) = (4, 6, 22, 20)).

The vectors spanning V j are typically denoted φ and are called scaling functions or fa-

ther functions. Those spanning W j are denoted ψ and are called wavelet functions or

mother functions.

Now that a vague intuitive understanding of the workings of wavelets has been es-

tablished, the mathematics behind wavelets will be formalised.

4.8.3 The Mathematics of Wavelets

In the previous section, we gave an example of a Wavelet Transform. In this section we

expand on that same example, except that we use continuous functions.

Given a functionψ(t) called the mother function, and a signal f(t), the Morlet-Grossman

definition of the Continuous Wavelet Transform (CWT) of a 1-dimensional signal f(t) ∈
L2 is:

W (a, b) ≡ 1√
a

∫ ∞

−∞

f(t)ψ

(

t− b

a

)

dt, (4.23)

where ψ is the complex-conjugate of ψ.

The variable a is the scale of the mother function and b is the shift. By altering these

variables, one can use the Wavelet Transform for multi-resolution analysis. For the

dilations and shifts of the mother function to be orthogonal to each other:

• The shifts of the Wavelet Transform need to have non-overlapping support (see

the previous section for a description of support). What this typically implies is

that if the mother function ψ(t) has non-zero coefficients only for some domain

x ≤ t ≤ y then the shifts must be larger than y − x. If the mother function

is scaled to have smaller or larger support, then the shifts may be appropriately

smaller or larger respectively.

• The scales of the wavelet function need to be orthogonal to each other. Designing

CHAPTER 4. DIGITAL SIGNAL PROCESSING 50

functions with this property can be tricky.

As can be seen, executing the above-mentioned equation (4.23), there is a single fre-

quency resolution (scale - a value). Multiple executions with different values for a result

in a multi-resolution wavelet analysis of the signal.

Converting the Haar wavelet used in the previous section to its continuous form we

get:

φ(x) =

{

1
2
, x ∈ [0..2]

0, x /∈ [0..2].
(4.24)

The Haar wavelet (detail) function is defined as:

ψ(x) =

1, 0 ≤ x < 0.5

−1, 0.5 ≤ x < 1

0, otherwise.

(4.25)

These two functions are orthogonal (their inner products are zero). Furthermore the

norm of both functions is equal to 1, so they are orthonormal.

Mother functions are typically dilated by powers of two. Doing this results in an or-

thogonal spanning of L2 as described in section 4.5.3. It is also possible to dilate the

mother wavelet in other ways so as to obtain the desired resolution. Doing so would not

result in a minimal set of functions spanning L2, but can prove useful in signal analysis.

Sometimes one needs to reverse the process (usually after making some adjustments

to the resulting signal). The following formula shows a formula to accomplish this and

more:

f(t) =
1

Cx

∫ ∞

0

∫ ∞

−∞

1√
a
W (a, b)χ(

x− b

a
)
da.db

a2
, (4.26)

where

Cx =

∫ ∞

0

ψ̂∗(v)χ̂(v)

v
dv =

∫ 0

−∞

ψ̂∗(v)χ̂(v)

v
dv.

Typically χ(x) = ψ(x), but it can be a different to enhance certain features (in which

case the result would be different from the original function).

Continuous Wavelet Transform formulae are useful for deriving new wavelet functions,

but are of little use to a software program. The discrete version is extremely important

for the actual implementation of Wavelet Transforms, and will be discussed next.

CHAPTER 4. DIGITAL SIGNAL PROCESSING 51

4.8.4 The Discrete Wavelet Transform

To aid in the explanation of the application of Wavelet Transforms, we resort to using the

discrete version. We again use the Haar Wavelet to assist our explanations (see section

4.8.2). The earlier explanation of what the Haar Wavelet does will be reinforced, fol-

lowed by a generalisation to show how other Wavelet Transforms can be implemented

in software.

We start our example with a signal consisting of eight samples:

f = (4, 8, 7, 13, 0, 12, 6, 2).

The first step of the Haar transform acquires the average shape of the signal (it takes the

average of every two adjacent samples). This leaves us with:

average = (
4 + 8

2
,
7 + 13

2
,
0 + 12

2
,
6 + 2

2
)

= (6, 10, 6, 4).

(4.27)

The next step records how far the original signal differs from this average. We take

every second sample from the original (even-numbered samples), because using the

odd-numbered samples merely results in the negative of these, and can therefore be

discarded). This leaves us with:

detail = (4 − 6, 7 − 10, 0 − 6, 6 − 4)

= (−2,−3,−6, 2).

(4.28)

Concatenating these two sets we have:

(6, 10, 6, 4,−2,−3,−6, 2).

The first portion of the new signal is the average of the original signal, and the latter

portion is the detail part.

Digital filters (described in section 4.4) will now be incorporated into the picture, as

these form the foundation for actual implementation.

CHAPTER 4. DIGITAL SIGNAL PROCESSING 52

Digital Filters in Wavelets

If one applies the digital filter (0.5, 0.5) this is the same as calculating the average of

every pair of samples. The detail portion (of the Haar Wavelet transform) would be

achieved using the filter (0.5, -0.5) on each pair of signals. Other wavelets such as the

Daubechies 4 and Daubechies 6 wavelets, have longer filters.

Many texts about wavelets give the formulae in a much more compact way, which is

described by Edwards [27]. This view of these filters is given by representing the two

generic wavelet filters (mother and father functions or analysing and scaling functions)

as two formulae taking certain coefficients Ck. These two formulae can be thought

of as low-pass (other names are: average function, father function, scaling function or

function from V j) and high-pass (other names are: detail function, wavelet function,

analysing function or function from W j) filters. The low-pass filter for f can be written

as:

ai =
1

2

N−1
∑

j=0

C2i−j+1fj, (4.29)

and the high-pass filter as:

bi =
1

2

N−1
∑

j=0

(−1)jCj−2ifj. (4.30)

Using this style of writing, the Haar wavelet can be described as C0 = 1, C1 = 1 instead

of the two filters (1, 1) and (1,−1).

According to Graps [42], these wavelet coefficients must satisfy the following con-

straints:
N−1
∑

k=0

Ck = 2,

N−1
∑

k=0

CkCk+2l = 2δl,0.

where δ is the delta function (see section 4.5.6) and l is the shift.

To utilise the mother wavelet to span the data domain at different resolutions, we apply

the following equation [42]:

W (x) =
N−1
∑

k=0

(−1)k−1Ckψ(2x+ k), (4.31)

where Ck are the wavelet coefficients, and W (x) is the scaling function for the mother

function ψ.

CHAPTER 4. DIGITAL SIGNAL PROCESSING 53

Knowing this syntax for representing wavelets may also help to use wavelet defini-

tions acquired from other sources.

To summarise: the theory of wavelets was applied to discrete signals. The result was a

finite summation that is implementable in software.

Having the knowledge to calculate a wavelet, however, does not necessarily provide

us with clues of how they can be useful. The next section will show some wavelets

widely considered more powerful and useful than the Haar wavelet.

4.8.5 More Useful Wavelets

Now that the theory of wavelets has been covered, we can advance to more useful and

powerful wavelets. These wavelets are designed to produce near-zero values after the

high-pass filter. One such wavelet - which is widely used in today’s world - is the

Daubechies-4 wavelet, named after Ingrid Daubechies who discovered it [51, 54]. She

designed the wavelet function with certain properties in mind:

• The wavelet should have good support for constant signals. This implies that (1,

1, 1, 1) should be representable entirely using the low-pass filter.

• The wavelet should accurately represent linear signals (1, 2, 3, 4).

• Other properties of the different Daubechies wavelets are application specific.

The Daubechies-4 wavelet has coefficients c0 = 1
4
(1 +

√
3), c1 = 1

4
(3 +

√
3), c2 =

1
4
(3 −

√
3), c3 = 1

4
(1 −

√
3). This wavelet is commonly used, because it is a relatively

small filter (and therefore fast to execute), yet very effective for signal analysis and

compression.

The Daubechies-6 wavelet is even better than the Daubechies-4 wavelet for study-

ing sounds. It’s coefficients are c0 = 0.332671, c1 = 0.806891, c2 = 0.459877,

c3 = −0.135011, c4 = −0.085441, c5 = 0.035226. There are other wavelet filters

with huge numbers of coefficients designed to represent many common nuances ex-

pected in a signal.

Like the Haar wavelet these wavelets are applied to the signal, then shifted two samples

on. Doing this results in a new signal the same size as the original. This is slightly

different behaviour to standard convolution (see equation 4.8).

Converting a signal using Wavelet or Fourier Transforms is of little use, unless one

CHAPTER 4. DIGITAL SIGNAL PROCESSING 54

knows how to actually interpret the results of the transformation. In the next section,

feature extraction techniques (for both Fourier and Wavelet data) will be described.

4.9 Feature Extraction Techniques

Once one has transformed the signal to a different set of bases, it becomes easier to ex-

tract features from the signal that can be used for analysis. Extracting features from the

two above-mentioned transforms (Fourier Transform and Wavelet Transform) requires

some additional processing. This process will first be applied to the Fourier Transform,

then to the Wavelet Transform.

4.9.1 Processing of Fourier Data

Fourier Transforms result in complex coefficients - the real portion and imaginary por-

tions being coefficients of sinusoids that are 90◦ out of synchronisation (sine waves and

cosine waves). A shift in the original signal could alter the actual values of these com-

plex numbers, but not their norms (magnitudes) (see section 4.7.5).

So if one uses only the norms of these coefficients, or even the energy (square of the

norms - chosen due to the fact that we then need not execute the square-root function,

which is slow), then the features extracted from a given signal will remain unchanged,

regardless of shift.

Merely using these values however, seldom causes a classification system to converge

(to consistently classify signals). In order to accurately train a classification network

using Fourier transformed information, one more step is required. One needs to extract

the cepstral coefficients [88].

The log cepstrum (the word spectrum with the first syllable reversed) is defined as:

cepstrum(x) = FT(log(FT(x))), (4.32)

where FT is the Fourier Transform.

Note: some texts incorrectly define the cepstrum as:

cepstrum(x) = IFT(log(FT(x))),

where IFT is the Inverse Fourier Transform.

CHAPTER 4. DIGITAL SIGNAL PROCESSING 55

Often the log scale used is the Mel scale. This scale is a scale of pitches judged by

human listeners to be equidistant from one another. To convert fHz to the Mel scale

we use the following formula:

m(f) = 1127.01048× log(1 + f/700). (4.33)

The logarithmic cepstrum is not the only type of cepstral coefficient that can be used.

Success has been reported by people using the root-cepstrum (using a square-root or

other root function instead of the logarithm) as well [77]. Once the cepstrum has been

calculated, the first 20-50 coefficients of the result are usually sufficient for most sound

classification applications.

In the next section, a similar process for wavelet data will be described.

4.9.2 Processing of Wavelet Information

Wavelet Transforms result in information that is decidedly different to the results of the

Fourier Transforms:

• While a single Fourier Transform results in energy levels across the entire spec-

trum of frequency ranges, and are assumed constant throughout the duration of the

given frame (see section 4.10), wavelets typically produce results for frequency

bands one octave apart (double the frequency each time), and the results usually

vary over the duration of the frame. This is caused by localised features in the

original signal.

• By using the norm of the complex values returned after a Fourier Transform, one

can accurately determine the energy of a given frequency. With the results of the

wavelet, the results are typically similar to the original signal, only ’averaged’ in

some way. For this reason some additional processing is required after a Wavelet

Transform before frequency amplitudes can be determined.

• By using the above-mentioned norm (see section 4.9.1) after a Fourier Transform,

the results become shift invariant. Wavelets also suffer from shift variance unless

corrective measures are taken. Farooq and Datta [35] describe a technique to over-

come this problem. They relate acquiring energy distributions using Short-Time

Fourier Transforms (STFT) and acquiring bandwidth-limited energy distributions

from Discrete Wavelet Transform (DWT) data. By retrieving the energy distribu-

tions from a given frequency band, the problem of shift variance is overcome.

Once one has obtained energy readings from the various frequency bands returned by

the DWT, those energy values can be used as features for the classification process. The

CHAPTER 4. DIGITAL SIGNAL PROCESSING 56

features are typically passed to a neural-network (see section 5.2) or a Hidden Markov

Model (section 5.3) for the actual identification process.

Next the technique of using Frames and Windows will be described, as these can min-

imise frequency leakage of basis transformation functions especially the Fourier Trans-

form.

4.10 Frames and Windows

Because of the fact that

1. the signals need to be processed in real-time (ie. processing starts before the

entire signal has been acquired) and

2. the signal varies (sometimes sharply) over time,

the entire signal is broken up into small processable sections (frames), say perhaps

20ms long. Hopefully each frame accurately portrays the desired features of the sig-

nal over the domain near the frame. When analysis techniques are used to study these

frames, we expect to get a fairly clear idea of the general shape of the signal over time.

Unfortunately, due to the fact that the signal does change within a frame, there is often

a distinct discontinuity between transformed samples at the borders between adjacent

frames. To avoid this behaviour, a commonly used technique is to overlap the frames

(eg. take 20ms-long frames once every 10ms). A complementary technique is to di-

minish the signal at the ends of the frame, so that the samples from the central region of

the frame contribute most to the understanding of the features of the frame. The latter

technique is called windowing.

Typically the effective domain (support) of a windowing function w(x) is 0 ≤ x ≤ 1

(ie. w(x) = 0, x/∈[0..1]). Towards 0 and 1 the signal is diminished (attenuated). In so

doing, the continuity of signals between frames is enhanced. Bores [5] describes this

continuity as: “Put mathematically, a window function has the property that its value

and all its derivatives are zero at the ends”. By using a windowing function that has the

properties Bores describes, the problem of frequency leakage is eliminated, as the func-

tion becomes periodic over the duration of the window. This results in better frequency

resolution. Windowing functions can be scaled and shifted to operate on different sized

windows and windows not starting at time t = 0.

The most common windowing function is the rectangular window which leaves the

CHAPTER 4. DIGITAL SIGNAL PROCESSING 57

values untouched within the window (0 ≤ x ≤ N − 1, where N is the number of sam-

ples desired) and makes the values 0 outside the window. (Technically this is merely

a frame). This function though, does not fulfill the above mentioned property of good

windowing functions. Table 4.2 shows some other common windowing functions [58],

[73].

Name Formula

Rectangular w(n) =

{

1, 0 ≤ n ≤ N − 1
0, elsewhere

Bartlett w(n) =

2n/(N − 1), 0 ≤ n ≤ (N − 1)/2
2 − 2n/(N − 1), (N − 1)/2 ≤ n ≤ N − 1
0, elsewhere

Hanning w(n) =

{

(1 − cos(2πn/(N − 1))/2, 0 ≤ n ≤ N − 1
0, elsewhere

Hamming w(n) =

{

0.54 − 0.46cos(2πn/(N − 1)), 0 ≤ n ≤ N − 1
0, elsewhere

Blackman w(n) =

0.42 −0.5cos(2πn/(N − 1))
+0.08cos(4πn/(N − 1)), 0 ≤ n ≤ N − 1

0, elsewhere

Table 4.2: Definitions of some common windowing functions

Using Windowing Functions

Windowing functions (ω(t)) are multiplied with the original signal (f(t)) to return a

new function (g(t)). Notice that this is not a convolution as with digital filters, as there

is a one-to-one mapping of samples of the window and the signal itself. This is the

formula for multiplication by a window:

g(t) = ω(N(t− τ))f(t), (4.34)

where τ represents the start of the effective window and N the size of the window.

Of the windowing functions defined in table 4.2, one that results in very little distor-

tion after a Fourier Transform is the Blackman windowing function. (Its derivatives are

all zero at n = 0 and at n = 1). Figure 4.8 shows the effect of applying the Blackman

windowing function.

This work by no means covers the entire spectrum of DSP techniques, and further re-

sources on the topic are provided in the next section.

CHAPTER 4. DIGITAL SIGNAL PROCESSING 58

0

0.25

0.5

0.75

1

0 64 128 192 256

a) The Blackman Window for N = 256

f(t)

×

w(t)

=

f(t)w(t)

b) Multiplication by the Blackman Window

Figure 4.8: The effects of the Blackman windowing function [5]

4.11 Additional DSP References

DSP is a vast subject, and there are many other sources of information. [73] provides

an applet which illustrates the DSP functions. [11], [20], [36], [46], and [61] give fur-

ther insight into Fourier Transforms. [39] is a library of software that provides Fourier

Transform functionality in extremely optimised code. [6] and [16] give a linear predic-

tive coding approach to DSP. [10], [41], [82] and [83] give some further background

about wavelets, and [35], [43], [57], [84], and [85] give more information about using

wavelets for phoneme identification.

4.12 Summary

In this chapter we studied digital signal processing techniques. Focus was placed on

the analysis of speech signals. Different change of base transformations were also de-

scribed. Techniques for extracting feature sets from the signal were also mentioned.

The chapter concluded with ways of dividing a signal into smaller units and enhancing

those units using windowing algorithms.

Now that DSP techniques have been described, the following chapter will show how

to use the results these techniques provide to classify signals.

Chapter 5

Classification

In the previous chapter we illustrated ways to extract feature information from a sound

signal. In this chapter we continue the analysis process by illustrating various tech-

niques for classifying those feature sets.

This chapter is divided into the following sections:

• Introduction - this is an introduction to classification systems in general, and de-

scribes some of the aspects that are common to all classification systems.

• Neural Networks - this section describes neural networks, which are one of the

most popular techniques for classifying phonemes.

• Hidden Markov Models - these are also widely used to solve speech recognition

problems.

• Classification Summary

5.1 Introduction

Classification systems are designed to classify a set of input information. For example

if one gives a fruit classification system the inputs: “red”, “heart-shaped” and “smooth”,

it might place that input vector into the “apple” category.

In order to make such a classification, certain calculations need to be performed on the

data. The types of calculations performed vary greatly between classification systems.

The actual data used as input also plays a role in deciding which calculations to perform.

Very frequently the formulae of these calculations are fixed in structure, but certain

constants of the function are adjusted in order to produce the correct output. This ad-

justment process is usually the hardest part of creating classification systems due to

59

CHAPTER 5. CLASSIFICATION 60

the number of calculations and size of input vectors. As a result, adjustment of the

constants is seldom accomplished through a manual process. A better technique that

is often used is to give the system many sets of input vectors and inform it what the

desired output vector for each input vector is. Some learning algorithm is then used to

adjust the constants in the formulae to better produce the desired output. By repeating

this process sufficiently many times, it is hoped that the system will (eventually) con-

sistently produce the correct output vector given some input vector.

This learning process can be achieved in many different ways, and so forms much of

the theory of classification systems.

Unfortunately though, the success of most classification systems depends on the data it-

self. Designing the structure (formulae) of the classification system often requires some

trial and error. The number and types of functions play a large role in the success of the

system.

Classifications systems are very diversified in their applications, accuracy, operation

and speed. The remainder of this chapter deals with specific classification algorithms,

starting with neural networks.

5.2 Neural Networks

The first classification system we will discuss is the neural network - modelled after the

human brain. At present there is no better classification system than the human brain for

solving general classification problems. When we look around us, we can immediately

identify what objects are present. When seeing people we know, our brains can identify

them based on minute details. We usually don’t even know that we are thinking about

when identifying people, but the calculations performed by our brains are extremely

complicated.

There are some systems that can classify certain inputs better or faster, but the human

brain consistently performs well for nearly all classifications. Each brain-cell (neuron)

takes certain chemical inputs (neurotransmitters), which are processed to produce a cer-

tain amount of an output chemical. This process, occurring in a single cell, is called

activation. The structure of the brain causes a cell to receive as chemical input, the out-

put chemicals of thousands of other cells. This is the way in which we think and relate

ideas [14].

Computer-based neural networks attempt to model the brain’s structure mathematically.

CHAPTER 5. CLASSIFICATION 61

The network takes several external inputs (an input vector) which are passed to a num-

ber of neurons. These inputs are typically real numbers. The neurons do the following:

• weight the inputs (multiply them by a constant),

• sum the weighted inputs together,

• optionally add a constant value to this sum,

• pass that sum (activation input) to an activation function, and

• output the result of the computation of the activation function.

The above process occurs concurrently in many, many neurons of the human brain.

Each applicable neuron receives the same input at the same time. This is why the brain

can perform such complex classifications in so little time. A similar concept happens

in the computer version, except that the calculations are done for one neuron at a time.

A set of neurons where each neuron receives the same input as the others is called a

neuron layer.

Neural networks are usually created by fully connecting several neuron layers to one

another - all the outputs from the current layer form the inputs to the next layer. The

size of the output vector of the neural network as a whole is the same as the number

of neurons in the final layer of the network. The actual weight values and activation

functions for the individual neurons in the structure may differ from neuron to neuron.

See figure 5.1 for an illustration of the structure of a neural network.

It is also possible to utilise other structures of neural networks [25], but for purposes

of the problems dealt with in this document, the network structure described above is

sufficient.

The convention used in this document is that:

• There are L layers.

• The first layer is layer 0, and the last is layer L− 1.

• Each layer i contains J(i) neurons.

• The first neuron in layer i is N(i, 0), the last is N(i, J(i) − 1).

• Input k to N(i, j) is I(i, j, k).

• The weight for I(i, j, k) is W (i, j, k).

CHAPTER 5. CLASSIFICATION 62

Input(0) Input(1) Input(2)

N(1,0) N(1,1) N(1,2)

N(2,0) N(2,1)

Output(0) Output(1)

I(1,0,0)

I(1,1,0)
I(1,2,0)

I(1,0,1)

I(1,1,1)

I(1,2,1)
I(1,0,2)

I(1,1,2)

I(1,2,2)

I(2,0,0)

I(2,1,0)

I(2,0,1)
I(2,1,1)

I(2,0,2)

I(2,1,2)

Figure 5.1: A neural network structure

• The output of N(i, j) is O(i, j).

• Because neurons in a layer are grouped, the neurons, inputs, weights and outputs

can also be thought of as vectors.

• The set of neurons in layer i can be thought of as N(i).

• The set of inputs to N(i, j) written as a vector are I(i, j).

• The set of weights for N(i, j) written as a vector are W(i, j).

• The set of outputs for layer i can be written as O(i).

• Note: there is usually an additional input of constant value 1 (with its own weight

value) to each node in the entire network. This implies that there are J(i− 1)+ 1

inputs to N(i, j). These are O(i− 1) and 1.

An important aspect of a neural network is the activation function used. Table 5.1 is

a table of some of the most commonly used activation functions. Unless otherwise

specified, the activation function used in examples in this document is the log-sigmoid

function.

CHAPTER 5. CLASSIFICATION 63

Name Formula
Linear f(x) = x

Saturating Linear f(x) =

0, if x < 0
x, if 0 ≤ x < 1
1, if 1 ≤ x

Symmetrical Saturating Linear f(x) =

−1, if x < −1
x, if − 1 ≤ x < 1
1, if 1 ≤ x

Hard Limit f(x) =

{

1, if x ≥ 0
0, if x < 0

Symmetrical Hard Limit f(x) =

{

1, if x ≥ 0
−1, if x < 0

Log-Sigmoid f(x) = 1
1+e−x

Symmetrical Log-Sigmoid f(x) = 2
1+e−x − 1

Hyperbolic Tangent Sigmoid f(x) = ex−e−x

ex+e−x

Competitive f(x) =

{

1, if x is highest in network layer
0, otherwise

Table 5.1: Activation functions

Now that we have shown how neural networks are structured, and the general idea

behind their workings, we will describe how they are trained.

5.2.1 Training Neural Networks

The weight vectors of a neural network need to be properly initialised in order for the

network to give an appropriate output vector, given some input vector. These values are

seldom assigned manually (it would take too long) - they are usually assigned through

a training process.

The training of a neural network involves providing the network with an input vector

and the desired output vector for that input vector. The neural network weight values

are then adjusted so that the network better produces the desired output from the given

inputs. This process is repeated until the network consistently produces satisfactory

classifications for all classes of inputs. There are several training algorithms that can be

applied to train neural networks, but most of them are variants of the gradient-descent

method.

Gradient-descent works by adjusting weights based on how they each contribute to

the output error E(i, j) value for neuron N(i, j). The goal is to cause each weight to

have no contribution to the error function (which means the error would be zero, which

implies that the result would be accurate). Each weight W (i, j, k) is increased or de-

creased depending on whether the gradient function δE(i,j)
δW (i,j,k)

is increasing or decreasing.

CHAPTER 5. CLASSIFICATION 64

To calculate the error gradient for each weight in the network the following algorithm

is executed:

//L = number of layers

//therefore L-1 = number of the last layer

//J(i) = number of nodes in layer i

//therefore J(i)-1 is the number of the last node in layer i

//N(i,j) = jth node in layer i

//I(i,j,k) = input k for N(i,j)

//W(i,j,k) = weight k for N(i,j)

//desired_Outp uts is an array of the desired outputs for the nodes

//in the output layer

calculate_All_ Gra di en ts (desired_Output s)

{

for j = 0 to J(L-1)-1

{

calculate_Error _G ra di ent s_ Ou tp ut _No de (desired_Outpu ts [j], j)

}

for i = L-2 downto 0

{

for j = 0 to J(i)-1

{

calculate_Error _G ra die nt s_ No n_ Out pu t_ No de (i,j)

}

}

}

//desired_Outp ut is the desired output for the node

//j is the number of the node in the output layer

calculate_Erro r_G ra di en ts _Ou tp ut _N od e (desired_Outpu t, j)

{

//calculate dE(L-1, j) / dOutput (L-1, j)

dE_dOutput = O(L-1,j)-desire d_ Ou tp ut

//Save the result for use in other parts of algorithm

N(L-1,j).dE_dOu tp ut = dE_dOutput

//Calculate activation function specific gradient

//This is the activation function for N(L-1, j)

CHAPTER 5. CLASSIFICATION 65

dOutput_dActiva ti on = activation_Func ti on _G ra die nt (O(L-1,j))

//Calculate gradients for the individual weights of the node

//including the constant 1 input

for k = 0 to J(L-1)

{

dOutput_dW = dOutput_dActiva ti on * I(L-1, j, k)

W(L-1, j, k).gradient = dE_dOutput * dOutput_dW

}

}

calculate_Erro r_G ra di en ts _No n_ Ou pu t_ Nod e (i, j)

{

//Calculate how this whole node contributes to all errors

//in all outputs

dE_dOutput = 0

for k = 0 to J(i+1)-1

{

//Calculate activation function specific gradient

//This is the activation function for N(i+1, k)

dOutput_dActiva ti on j2 = activation_Func ti on _Gr ad ie nt (O(i+1,k))

dE_dOutput += dOutput_dActiv at io nj2 * W(i+1, k)

}

dOutput_dActiva ti on = activation_Func ti on _G ra die nt (O(i,j))

//Adjust weights for all inputs including the constant 1 input

for k = 0 to J(i)

{

W(i,j,k).gradie nt = dE_dOutput * dOutput_dActiva ti on * I(i,j,k)

}

}

In the algorithm, it is shown that to calculate δE(i,j)
δW (i,j,k)

, we use the following chain rule:

δE(i,j)
δW (i,j,k)

= δE(i,j)
δO(i,j)

· δO(i,j)
δW (i,j,k)

= δE(i,j)
δO(i,j)

· δO(i,j)
δActivation(i,j)

· δActivation(i,j)
δW (i,j,k)

.

To apply the algorithm described above requires (inter alia) δoutput
δactivation

(or δO(i,j)
δActivation(i,j)

)

to be calculated. This is the only portion of the gradient function that differs for different

CHAPTER 5. CLASSIFICATION 66

activation functions. Examples in this document use the log-sigmoid transfer function.
δO(i,j)

δActivation(i,j)
for this function (log-sigmoid) is O(i, j)(1 −O(i, j)).

Once the error gradient has been calculated for each weight in the network, we ap-

ply a training algorithm that adjusts the weights. We will first describe the Widrow-Hoff

algorithm, then show a more effective gradient descent algorithm called resilient prop-

agation.

Widrow-Hoff

The Widrow-Hoff gradient descent method simply determines the sign of the error gra-

dient for a given weight. If the sign is positive, we add an input-weighted learning value

to the weight. If the sign is negative we subtract. In other words the amount we add or

subtract is proportional to the magnitude of the input [64, p41].

The Widrow-Hoff method was one of the first methods to be used, but it is dependant

on the size of the inputs. This is a problem because weights associated with small input

values may need to be adjusted by large amounts. This would not happen – the weights

would be adjusted by small amounts, thereby causing the required number of training

iterations to be increased. Similarly weights associated with large-value inputs would

be adjusted greatly, even if only a small adjustment is needed. This overcompensation

may cause the training process to require more iterations before it converges or – in the

worst case – to never converge (to be divergent).

In summary the Widrow-Hoff method causes convergence to be relatively slow (for

small inputs) and unstable (overcompensation due to large inputs). A better approach

would be one where the speed of the training is not dependant on the magnitude of the

input values. One such approach is resilient propagation.

Resilient Propagation

As mentioned above, the Widrow-Hoff method for adjusting weight vectors does not

always produce stable results. A better approach is to give each weight change a ve-

locity, and to accelerate (η+) them while they move in the same direction, and drop the

speed suddenly (η−) if they change direction. This causes the changes to be irrespective

of input magnitude and the algorithm as a whole is therefore more stable. This stabil-

ity usually results in faster convergence. This technique is called resilient propagation

(RProp) due to the resilience of changes to weight vectors [72].

Initial velocities of learning rate components ∆t
ij are usually set to 0.1 (although other

CHAPTER 5. CLASSIFICATION 67

values may be used in some cases). Changes to the ∆ values are made according to the

following formula:

∆
(t)
ij =

η+.∆
(t−1)
ij , δE(t−1)

δwij
. δE

(t)

δwij
> 0

η−.∆
(t−1)
ij , δE(t−1)

δwij
. δE

(t)

δwij
< 0

∆
(t−1)
ij , otherwise,

(5.1)

where the default values for η+ and η− are 1.2 and 0.5 respectively. (These constants

are suitable for many applications and should seldom need to be changed [72]).

Once these ∆ values have been calculated, the weights are updated as follows:

wij(t) = wij(t− 1) +

−∆ij(t),
δE

δwij
(t) > 0

+∆ij(t),
δE

δwij
(t) < 0

0, otherwise.

(5.2)

It has been shown that RProp performs very well in most applications of neural net-

works [72]. For descriptions of additional training algorithms see [72].

In the next section, we will describe a technique that can be applied together with other

learning techniques to improve the stability of the learning process - epoched training.

Epoched Training

When training a neural network, the weights are often over-adjusted due to some input

vector causing a steep error gradient for one or more weights. To overcome this prob-

lem, error gradients are averaged over a set of many inputs before adjustment of the

weights occurs. This causes only those weights that should be adjusted greatly for all

classes of inputs to receive large adjustments [72].

Overall this causes a smoother learning curve, with very few over-compensations due to

one obscure input set. The technique mentioned here is called epoched training because

each training cycle occurs only after a period of time (multiple inputs). The word epoch

means a time period.

5.2.2 Identifying Phonemes Using Neural Networks

Using the descriptions mentioned in the previous sections, we can build a neural net-

work that is capable of classifying phonemes in an audio stream. In chapter 4.9.1, we

showed how to extract cepstral coefficients from an audio stream using Fourier Trans-

forms. These coefficients make up the input vectors to our neural network.

CHAPTER 5. CLASSIFICATION 68

As was mentioned earlier, the first 20 to 50 of these coefficients is sufficient to ac-

curately classify phonemes in an audio stream (also see chapter 13). To perform this

classification however, we need to understand what kinds of problems neural networks

can solve.

Due to the fact that the activation function can be altered, a neural network can solve a

wide variety of problems. Using the log-sigmoid function, a neural network can typi-

cally answer a yes/no type question. Given inputs, a network is trained to output a 1 if

the answer is yes or a 0 if the answer is no (or vice versa).

Going back to the example described at the start of this chapter, we can use a neu-

ral network to tell us whether a fruit is an apple. Given “redness”, “roundness” and

“smoothness” values each from say 0 to 1, we can output a 0 (not an apple) or a 1 (re-

ally an apple). Results are not always exactly 0 or 1, but are sufficiently close.

In a similar manner, we can use neural networks to classify sounds progressively. The

first neural network could classify the sound as either voiced or unvoiced. (See chapter

3). Once we know whether the sound is voiced or unvoiced, we can further classify it.

By passing the sound through several steps of the classification process, we can classify

the sound. Very often the process may end up deducing that the sound could be one

of a set of similar sounding phonemes (each with a specific probability) due to noise,

vocal accents or poor pronunciation. If one listens to one of the sound extracts that

is inconclusively classified, it is found that even the human brain might be confused.

Only when the whole utterance is heard can we be sure which phoneme the extract rep-

resented. Therefore the context in which the phoneme occurred (previous phonemetic

data acquired) can aid the classification process substantially.

5.2.3 Additional References

Due to the fact that neural networks are typically designed around the problem they are

to solve, the field of neural networks is vast. For additional tutorial matter see [68]. For

tools to help design neural networks see [71]. For a neural network application written

in Java see [4].

5.2.4 Summary

It has been shown that neural networks can be used to fairly accurately classify sounds

into categories of phonemes [92]. This process usually follows a hierarchy of classifi-

CHAPTER 5. CLASSIFICATION 69

cations. We also know that sometimes sounds cannot be completely classified (even by

a human). In the next section it will be shown how to also use Hidden Markov Models

for selected speech processing problems.

5.3 Hidden Markov Models

In chapter 3 we showed that phonemes are the building blocks of words, and in the pre-

vious sections we showed how to use neural networks to classify audio extracts (frames)

into phonemes. We also showed that sometimes audio cannot be exactly classified, it

can only be narrowed down to a set of phonemes. In this section we will show how Hid-

den Markov Models (HMMs) can be used to string these phonemes toegether to make

words.

There are two main reasons one would want to know what words are being spoken:

• To gain an understanding of what is being communicated - or to attribute meaning

to the sentences

• To help clarify which phoneme was uttered. Often we can identify an unclear

phoneme by hearing the rest of the word in which it was spoken.

This section on HMMs is structured as follows:

• How Hidden Markov Models Work

• The Three HMM Problems

• Applying HMMs To Word Recognition

5.3.1 How Hidden Markov Models Work

Hidden Markov Models are used to determine the probability of a sequence of events

occurring, given certain observations. To make this concept clear we will start with an

example.

Suppose we want to guess which beverages a certain colleague consumed over the last

few days - decaffeinated coffee (D) or standard coffee (S). We don’t know for certain,

because both beverages look the same, but we can guess based on indirect evidence.

Suppose that research has shown that if a person drinks decaffeinated coffee one day,

the chances of them drinking it again the next day is 0.7. If they drink standard coffee

CHAPTER 5. CLASSIFICATION 70

one day, then the chance they’ll drink it again the next day is 0.5. Using this infor-

mation we can draw up a table where the vertical axis is what the person drank today,

then horizontal is what they might drink tomorrow, and the values in the table are the

probabilities.

Decaffienated Standard
Decaffienated 0.7 0.3

Standard 0.5 0.5

Table 5.2: HMM state transition matrix

We know that caffeine stimulates the adrenal gland to produce adrenaline. There could

conceivably be a link between coffee consumption and observed energy levels (low,

medium and high) or (0, 1 and 2) with the following probabilities:

Low Energy Medium Energy High Energy
Decaffienated 0.7 0.2 0.1

Standard 0.1 0.2 0.7

Table 5.3: HMM observation matrix

Suppose we know that over the years the probability of a person drinking decaffeinated

coffee was 0.5.

As we mentioned earlier our goal is to observe whether or not the person drank de-

caffeinated coffee or standard coffee on a given day. These are called states of the

Hidden Markov Model, and the process of determining a state given the previous one is

called the Markov Process.

The state transition matrix we label A, and the observation matrix B. There is an

initial state distribution π = [0.5, 0.5]. We will consider the days Monday to Thursday

for our observations, where we observed the following energy levels in our colleague:

O = (Low,Medium,Medium,High) = (0, 1, 1, 2).

This problem specification is sufficient to understand the general types of problems

solved by HMMs. We leave the actual solution to this problem for a later section, but

first we will give some notes about the notation of Hidden Markov Models.

5.3.2 HMM Notation

In HMM formulae the following symbols are used:

• T is the length of the observation sequence - in our case Monday to Thursday =

4.

CHAPTER 5. CLASSIFICATION 71

• N is the number of states possible - in our case decaffeinated or standard = 2.

• M is the number of observation symbols - in our case low energy, medium energy

and high energy = 3 symbols.

• Q is the vector of the actual states of the Markov Process = Q = (Q0, ..., QN−1)

- in our case the type of coffee consumed each day.

• V is the set of all possible observations = V = (V0, ..., VM−1) = (0, ...,M − 1).

• A is the state transition matrix - in our case table 5.2.

ai,j = P (qj at time t + 1|qi at time t) (note that (a|b) means the probability of a

occurring given the fact that b has occurred).

• B is the observation probability matrix - table 5.3

bj,k = P (Vk at time t|qj at time t).

• π is the initial state distribution of the problem.

• O is the actual observation sequence - in our case the energy levels observed -

(0, 1, 1, 2).

The HMM is defined by A, B and π and is denoted λ = (A,B, π).

Now that we have a notational framework from which to work, we can set about show-

ing how to solve HMM problems.

5.3.3 Solving HMM Problems

We will first show step by step how to solve the coffee problem described earlier, then

generalise to show how HMM problems are solved in general. We want to calculate

the probability of a given sequence of states X = (x0, x1, x2, x3):

P (X) = (πx0 × bx0,Oo
)(ax0,x1 × bx1,O1)(ax1,x2 × bx2,O2)(ax2,x3 × bx3,O3) (5.3)

So given the fact that we observed O = (L,M,M,H) = (0, 1, 1, 2), the probability of

X = (D,D, S, S) = (0, 0, 1, 1) is:

P (D,D, S, S) = (0.5×0.7)(0.7×0.2)(0.3×0.2)(0.5×0.7) = 0.001029

The other results are listed in table 5.4. In the table, the last column is the normalised

values. There are two ways to interpret the ‘best’ result from this table:

CHAPTER 5. CLASSIFICATION 72

State Probability Normalised Probability
D D D D 0.0004802 0.0926883878937616
D D D S 0.0014406 0.278065163681285
D D S D 0.000147 0.0283739962940086
D D S S 0.001029 0.19861797405806
D S D D 0.000147 0.0283739962940086
D S D S 0.000441 0.0851219888820259
D S S D 0.000105 0.0202671402100062
D S S S 0.000735 0.141869981470043
S D D D 0.000049 0.00945799876466955
S D D S 0.000147 0.0283739962940086
S D S D 0.000015 0.0028953057442866
S D S S 0.000105 0.0202671402100062
S S D D 0.000035 0.00675571340333539
S S D S 0.000105 0.0202671402100062
S S S D 0.000025 0.00482550957381099
S S S S 0.000175 0.033778567016677

Table 5.4: HMM state sequence probabilities

• Choose the sequence of the highest probability - in our case (D, D, D, S).

• Choose states in such a way that the expected number of states correctly predicted

is maximised.

The latter is the answer looked for when using HMMs. To find this answer we need to

take the sum of the probabilities of sequences that have a specific symbol in a specific

position. As an example we will decide whether to use D or S as the first state.

We need to sum the probabilities of all the sequences that have a D as the first state.

This would be the sum of the normalised probabilities of the first 8 sequences in the

table (0.8733786287831989). The probabilities of sequences with an S as the first state

sum to 0.1266213712168011. We can therefore see that there should be a D in the first

position.

By continuing the process we can see, for this example, that by maximising the ex-

pected number of correct states, we also end up with the sequence D, D, D, S. It is not

always the case that the optimal state sequence is the same as the optimal state at each

position. By maximising the expected number of correct states one might actually end

up with a state sequence that is not actually possible.

Now that we have seen one example worked through, we will explain the HMM prob-

lems in general, then show how they apply to speech recognition.

CHAPTER 5. CLASSIFICATION 73

5.3.4 The Three HMM Problems

As we saw in the previous chapter, the HMM process maximises the probabilities of

specific states being observed at specific places in the sequence. There are however

three different problems that can be solved using HMM techniques, depending on what

information is already known, and what results are required [70], [81]:

1. If we have been given the HMM model λ, we can use HMM techniques to deter-

mine the probabilities of observing sequence O. (In our example we would know

what he drank on given days, but would use HMM to determine the probabilities

of observing certain energy levels in our colleague).

2. If we have an observation sequence O and state transition probabilities (A, B and

π), we can maximise the expected number of correctly predicted states at specific

positions in the sequence. This is exactly the problem that was solved earlier.

3. Given the observation sequence O and the state sequence Q, we can determine

the HMM model. In other words we can use HMMs to calculate A, B and π. It

is usually assumed that T , N and M are fixed. This is the problem that one needs

to solve in speech recognition applications.

Solving the First HMM Problem

The solution to the first problem requires nothing but standard probability theory. We

wish to calculate the probability of observing sequence O given Markov Model λ -

P (O|λ). Because the information we seek is irrespective of the states, we basically

need to sum all possibilities over all possible state sequences (X).

For more details about the following formulae see [70] and [81].

We start by using the arbitrary state sequence:

(X) = (x0, ..., xT−1).

The following two equations are described because they will be used later. By defini-

tion:

P (O|X, λ) = bx0,O0 × bx1,O1 × ...× bxT−1,OT−1
. (5.4)

We also know that:

P (X|λ) = πx0 × ax0,x1 × ax1,x2 × ...× axT−2,xT−1
. (5.5)

CHAPTER 5. CLASSIFICATION 74

We know (by probability theory) that:

P (O,X|λ) =
P (O ∩ X ∩ λ)

P (λ)
, (5.6)

and

P (O|X, λ) × P (X|λ) =
P (O ∩ X ∩ λ)

P (X ∩ λ)
× P (X ∩ λ)

P (λ)
(5.7)

=
P (O ∩ X ∩ λ)

P (λ)
.

From equations 5.6 and 5.7 we have:

P (O,X|λ) = P (O|X, λ)× P (X|λ). (5.8)

And so we have:

P (O|λ) =
∑

X

P (O,X|λ)

=
∑

X

P (O|X, λ) × P (X|λ) (using equation 5.8)

=
∑

X

(πx0bx0,O0)(ax0,x1bx1,O1)...(axT−2,xT−1
bxT−1,OT−1

) (eqn 5.4 and 5.5).

Unfortunately to iterate over all possible combinations of X takesN T cycles, and inside

the summation there are roughly 2T multiplications (T for a and another T for b). This

leaves us with an O(TNT) complex algorithm, which is terrible.

There is a recursive algorithm that can reduce this to O(TN 2), which is far better.

We define an α pass to be the probability of the observation sequence occurring up

until time t:

αt(i) = P (O0,O1, ...,Ot, xt = qi|λ). (5.9)

By definition:

α0(i) = πibi,O0, (5.10)

and

αt(i) = (
N−1
∑

j=0

αt−1(j)aji)bi,Ot
. (5.11)

CHAPTER 5. CLASSIFICATION 75

From equation 5.9 we can then see that:

P (O|λ) =

N−1
∑

i=0

αT−1(i). (5.12)

It can be seen that the two summations cause N 2 complexity, and the recursive function

is of T complexity, so the algorithm as a whole executes in O(TN 2) time.

Using these results, specifically the α calculation, we can also solve the second HMM

problem.

Solving the Second HMM Problem

The example problem we described at the start of the HMM section happens to be an

instance of the second HMM problem. We are given an HMM model λ (fixed values

T , M , N , A, B, π) and a sequence of actual observations O. We need to find the most

likely state sequence Q. By that we mean the most likely state at each position in the

sequence. As with the previous section, one can read [70] and [81] for more details.

In order to solve this problem, we go about defining a recursive function β similar

to the α function from the previous section. The only difference is that while the α

function calculated the probability of an observation sequence up until time t, the β

function is the probability of observing the O sequence for the sequence after point t.

In other words:

βt(i) = P (Ot+1, Ot+2, ..., OT−1|xt = qi, λ) (5.13)

If t = T −1 then it can be shown that βT−1(i) = 1 for all i, 0 ≤ i < (N −1). From that

result we can calculate β for other values of t by using the following recursive formula:

βt(i) =

N−1
∑

j=0

aijbj,Ot+1βt+1(j). (5.14)

Our problem statement written mathematically is that we wish to calculate:

γt(i) = P (xo = qi|O, λ), (5.15)

so that at each position t in the state sequence, we can find the maximum value for γ,

over all values of i.

We know that α returns the probability of sequence O up until time t, and β returns

CHAPTER 5. CLASSIFICATION 76

the probability of sequence O after time t so:

γt(i) =
αt(i)βt(i)

P (O|λ)
. (5.16)

Now that we’ve shown how to solve the first two HMM problems, we come to the third

(and more useful in our field) problem.

Solving the Third HMM Problem

The previous two problems are only of limited application to our field, but their solu-

tions provide us with formulae that we’ll be needing to solve this third problem. As

with the previous two sections, one can read [70] and [81] for more details.

Our problem statement is this: we have fixed sized matrices (the values T , M and

N are fixed), but the contents of the matrices need to be optimised. After calculation,

the values of A, B and π need to maintain their stochastic property (their rows must

always sum to 1). Typically the matrices are filled with random information, then their

contents are replaced with better and better values.

We can assign values to the initial state distribution π by taking the γ functions from

problem 2 at time 0:

πi = γ0(i).

To calculate the A and B values requires a little more work. We define the ε function

similar to the γ function used to solve the previous problem. ε takes three parameters t

(a subscript) and i and j:

εt(i, j) = P (xt = qi, xt+1 = qj|O, λ). (5.17)

This ε function is the probability of transiting from state qi to qj between time t and

t+ 1. By stochastic theory we can write ε as:

εt(i, j) =
αt(i)[aijbj,Ot+1]βt+1(j)

P (O|λ)
. (5.18)

We will use the following formulae to calculate A and B:

T−2
∑

t=0

γt(i) = expected number of transitions from qi, (5.19)

CHAPTER 5. CLASSIFICATION 77

and
T−2
∑

t=0

εt(i, j) = expected number of transitions from qi to qj. (5.20)

To get the values for the aij we take the expected number of transitions from state qi to

state qj (equation 5.20), and divide that by the number of transitions from qi to any state

(equation 5.19):

aij =

T−2
∑

t=0

εt(i, j)/

T−2
∑

t=0

γt(i). (5.21)

A similar formula gives the b values. We know that bj,k is the probability of observing

k while in state qj . This can be given by the ratio:

bj,k =
expected number of times in state qj and observing symbol k

expected number of times in state qj

=

T−2
∑

t=0,Ot=k

γt(j)/

T−2
∑

t=0

γt(j), (5.22)

where the Ot = k in the first summation affects the α and β formulae.

We will now show how to apply the calculations for this third problem to perform

speech recognition.

5.3.5 Applying HMMs to Speech Recognition

In this section we will describe how to use HMMs to recognise phonemes given audio

features. We will also introduce the identification of words given phonemes, but the

complexity of this topic makes the details beyond the scope of this document. These

are not the only ways to apply HMMs to speech recognition calculations. See [70] for

descriptions of these other applications of HMMs to speech recognition.

As mentioned in the last section, the way we use HMMs to recognise speech is that

we solve the third HMM problem - we approximate the model λ itself.

It is useful to note that while solving this problem, we assumed a state sequence X,

but it cancelled itself out of the formulae by the end. (α, β and γ are independent of

(X)). The only thing we need in order to be able to perform the calculations are our

observations (O).

CHAPTER 5. CLASSIFICATION 78

Recognising Phonemes using HMMs

Recognising phonemes using HMMs is a two part process: (a) training and (b) identifi-

cation.

In order to recognise phonemes using HMMs, we train one HMM per phoneme to

recognise. We pass to each of the HMMs the feature vectors extracted from utterances

of that model’s specific phoneme. We then update the A, B and π matrices for that

model.

The actual observation sequence is the set of features extracted from the audio signal

itself. Unfortunately the HMMs use observations from a discrete (finite) set of possible

observations. In order to satisfy this condition, we round (or truncate) all observation

values to the nearest integer and clip the observations between specific minimum and

maximum values. In our case the features used are the first couple of cepstral coeffi-

cients.

Once we have trained the HMMs, we can identify phonemes by passing our observed

audio features into the HMMs and checking which HMM returns the highest probabil-

ity of the observation sequence.

Up until this stage, we have a sequence of identified phonemes. Sometimes at a specific

position within a word, the phoneme is not identified precisely, and may require further

classification (this problem was also present when using neural networks). As a result

we may wish to try identify the word in which the phonemes existed, and then know

more certainly which phoneme was uttered.

5.3.6 Recognising Words using HMMs

In order to recognise individual words given our sub-word units (phonemes), the words

need to be represented in terms of these sub-units. Once this has been done, one needs

to match the given sequence of phonemes to the words to find the most likely match.

With a small vocabulary it is possible to use an HMM for each word, and find the most

likely HMM, but this approach is impractical with large vocabularies.

In his paper about using HMMs for speech recognition [70], Lawrence Rabiner de-

scribes a triple-layer system of HMMs that can be used to identify words. He further

mentions other work regarding the stack algorithm and other techniques. Unfortunately

many of the methods proposed are of extreme computational complexity, and for pur-

poses of our work regarding animated faces, the additional accuracy given by identify-

CHAPTER 5. CLASSIFICATION 79

ing words is too computationally costly.

Due to the vast size of the field, the interested reader is refered to additional resources

in the next section.

5.4 Other Classification Techniques

Neural networks and Hidden Markov Models are by no means the only classification

techniques used for speech recognition. Campbell [48] states that Dynamic Time Warp-

ing (DTW) and Vector Quantisation (VQ) are also popular. Furthermore the simplistic

neural network structure described in this document can also be extended. Time delay

neural networks and binary-pair partitioned neural networks have been used to great

effect in phoneme recognition applications as well.

5.4.1 Additional References

The methods described above are by no means the only way in which speech can be

classified. Marcus Fillipson [37] and George White [94] have written useful tutorials

about speech analysis and recognition. Stephen Cook [23] has also set up a useful

website that also provides lots of additional information for people wishing to write

speech processing applications. Conversational technologies [21] is another useful web-

site providing many useful links of up-to-date research in speech recognition. Salomon

et al. [76] show how to use support vector machines for phonetic classification.

5.5 Summary

In this chapter we looked at two methods for classifying sub-word units such as phonemes

(or even entire words given a small vocabulary): Neural Networks and Hidden Markov

Models. We showed how to train these networks and apply them to speech recognition

problems.

Before this part of the document is concluded, a brief mention of some of the chal-

lenges one should expect to encounter when writing speech recognition applications is

given.

Chapter 6

Speech Recognition Challenges

Now that we have a basic understanding of how sound signals are recorded, processed

and classified it is appropriate that we study the difficulties regarding the implementa-

tion of these systems.

The following issues will be dicussed in this chapter:

• Acquiring training data,

• Dealing with incorrectly labelled phonemes, and

• Dealing with training data during the transition from one phoneme to the next in

a given word (phoneme borders).

6.1 Acquiring Training Data

In our experience, one of the worst problems with acquiring speech training data is to

label the phonemes of that data correctly. To describe the phonemes from which the

word is made up is trivial, but noting the location of the phonemes within the utterance

is far more difficult. The difficulty arises from the fact that there is a blending between

phonemes making up a word - their positions are not distinct.

Perhaps the most typical method of determining phoneme positions is to listen to the ut-

terance and locate the phoneme positions manually. This process can be time-consuming,

especially if one considers the number of utterances required to accurately train a typ-

ical classification system. A better technique would be to leverage existing work and

use automated or semi-automated tools such as Microsoft Liset to identify phonetic po-

sitions within words.

If one knows beforehand which word is being uttered, then the process becomes easier.

80

CHAPTER 6. SPEECH RECOGNITION CHALLENGES 81

The set of potential phonemes that can be at a given position within the word is limited.

This allows one to build in greater tolerances. If one, for example, has an utterance

of the word “monitor” (/m/ /ao/ /n/ /ih/ /t/ /er/), then we know that the word will begin

with the phoneme ‘/m/’. All that is then needed is to determine when the ‘/ao/’ phoneme

becomes more dominant than the ‘/m/’. By repeating the process, we can identify the

positions of each phoneme in the utterance.

The next section will explain what happens when the actual phonemes of the word

are incorrently labelled.

6.2 Dealing with Incorrectly Labelled Phonemes

Some dictionaries (such as the Carnegie Mellon University (CMU) dictionary) describe

phonetic pronounciation of words. Unfortunately the pronounciation of words is cul-

ture dependant. One example is the utterance of the word “tomato”. Some cultures

pronounce the word as “/t/ /ow/ /m/ /ah/ /t/ /ow/” and others pronounce it as “/t/ /ow/

/m/ /ey/ /t/ /ow/”.

In order to solve matters like these, Colin and Lua [19] describe a relabelling process

based on preliminary training results. They mention that discrepancies arise from one

of two causes: incorrect identification (with correct labelling) or correct identification

(with incorrect labelling). Unless one can prove the former case to be true, the rela-

belling process must be manual.

In the next section we describe how to deal with phoneme borders within words.

6.3 Phoneme Borders

As mentioned in section 3.7, speech flows from one phoneme to the next instead of oc-

curing as distinct jumps. For this reason, it is difficult to accurately determine the exact

position of transition from one phoneme to the next. Even if this border is precisely

known, it remains a question of how to label a single frame, containing data from both

sides of the border (one frame with parts of two phonemes in it).

Methods to handle this would be:

• label the entire frame as the dominant phoneme, or

• use a weighting factor describing the ratios between the phonemes.

Making this decision requires an understanding of the application itself.

CHAPTER 6. SPEECH RECOGNITION CHALLENGES 82

6.4 Summary

This chapter described some of the challenges one should expect to face when training

speech-recognition systems. Three of the more common challenges were discussed:

acquiring training data, dealing with incorrectly labelled phonemes and dealing with

phoneme borders. Possible solutions were given for each problem.

Part III

Facial Rasterisation

83

Chapter 7

Introduction

In the previous major part of this document, we discussed ways of analysing and clas-

sifying audio inputs. In this part we will discuss how to use those inputs to effectively

animate facial models.

The need for visual cues to supplement audio signals improves a listener’s compre-

hension of the message by an average of 17% (from 55% accuracy using hearing only,

to 72% accuracy using both hearing and vision) [18] and [65]. When building an Avatar

(virtual image of a talking head [74]), one needs to consider the quality of the output.

This (subjective) measurement is separated into two classifications - videorealism and

photorealism.

According to Poggio and Ezzat [33], photorealism is a measurement of how correct

the facial features (such as face-shape and skin texture) look in each individual frame of

video output. To achieve photorealism, one needs to create biologically accurate mod-

els of the face, driven by physics models that produce correct results or utilise imagery

of the actual speaker. Texturing methods also play a role in determining photorealism.

Videorealism refers to the accuracy of the motion of the facial structures. To deter-

mine videorealism one would ask questions like: “Is the speed of interpolation of, for

example, lip positions (between two consecutive phonemes of speech) the same as the

speed of the actual speaker’s lips?”.

The chapters discussing these issues are:

• Modelling Techniques (chapter 8)- This chapter describes techniques for mod-

elling faces. It includes descriptions about how the models can be manipulated,

based on various inputs, especially audio streams. The end of the chapter provides

a contrasting viewpoint to anatomical correctness.

84

CHAPTER 7. INTRODUCTION 85

• Rendering Techniques (chapter 9) - This chapter focuses on way to make the ren-

dered models more visually appealing or effective. Shading techniques, texturing

techniques and related concepts are described. The Cg language, which can be

used to implement many of these techniques will be also described.

• Video-Realism (chapter 10) - This chapter will focus on ways to accurately ani-

mate our models, so that their movements appear to be at the correct speed. Model

manipulation will be revised, but speech synchronisation will be the major focus

of this chapter.

Chapter 8

Facial Modeling

In this chapter, we will focus on building a model of our animation. This is a mathemat-

ical model of that which we wish to display. Such a model must be controlable so it can

be positioned in the ways we desire. Furthermore, based on such a model we should

easily be able to produce (render) an appropriate image of the face.

This chapter is divided into the following sections:

• Different ways of modeling faces - this section describes the mathematical models

used to manipulate the overall shape (geometry) of the facial models. It therefore

will describe techniques currently used to move facial features.

• Automated Model Creation - in this section we describe ways to automatically

create models of faces.

• An alternative to anatomical correctness - this section describes certain techniques

that rely on aspects other than realism of facial features to enhance communica-

tion effectiveness.

• Additional References.

• Summary.

8.1 Different Ways of Modeling Faces

In this chapter, we present techniques used to display an animated facial image (Avatar).

In this first section of the chapter we review the various techniques that have been (and

are still) used to accomplish the animations themselves. This is purely a discussion

about the geometrical structure (usually 3D) of the face - improving the quality of the

displayed image is left for later sections of the chapter.

86

CHAPTER 8. FACIAL MODELING 87

Over time, techniques for facial modeling have been placed into 3 categories [3], [49]

and [50]:

1. Performance-based models (section 8.1.1)

2. Parameterised models (section 8.1.2)

3. Muscle based models (section 8.1.3)

These will be discussed in the following few sections.

8.1.1 Performance-Based Models

Performance-Based Models Explained

According to Irene Albrecht et al. [3], the performance-based models rely on a set of

pre-rendered images, or pre-created video segments of the object (in our case a hu-

man head). These are played in a sequence best representing the object at key-points

in time. Some techniques ([69] and [95]) involve slightly altering the original images

to match the audio track, while others [7] pre-create short video clips of the object (in

our case mouth animations) for each triphone. (A triphone is a set of three consecutive

phonemes). The appropriate video sequence is then displayed, based on the given in-

puts (current triphone from the audio track).

Performance-based models, while usually being extremely photo-realistic, can prove

difficult or slow to animate accurately. The following section describes some of the

criteria that are needed to make the technique possible.

Criteria For Using Performance-Based Models

The success of this model usually relies on having a huge database of original images

or video clips to display. This large number of video clips would give the model the

flexibility required to exhibit accurate animation. This would unfortunately be at the

cost of:

• Storage size of the database - still images and video usually take up quite a lot of

hard-drive space, even when compressed.

• Time taken to load these different images / videos (trivial in non-realtime scenar-

ios). Loading images from the hard-drive (and often decompressing on the fly)

can be a time-costly exercise.

• The inflexibility of having to pre-create every image that will be displayed. When

using performance-based modelling, one is unable to display images that have

CHAPTER 8. FACIAL MODELING 88

not been pre-created. This limits the set of positions into which an object can be

deformed.

One extension to performance-based modeling relies on being able to combine two or

more original images into a more appropriate one. Examples of this technique are de-

scribed in [31], [34] and [32]. This would provide a near-limitless set of images to

display, but is usually too computationally expensive to be used in real-time environ-

ments.

It is (at the time of writing this document) impossible to store an unlimited database

of images or videos. This poses a problem because there are a huge number of pho-

netic sequences that could be uttered at any given time. As a result, performance-based

models can potentially suffer from video discontinuity, where consecutive frames are

displayed that are so different from one another that a viewer perceives a distinct ‘glitch’

in the video [7], [33]. The next section will explain solutions undertaken to overcome

this problem.

Coping With Video-Sequence Discontinuities

We mentioned in the previous section that performance-based models suffer from po-

tential discontinuities. When videos are simply strung together based on the current

triphone, then this issue becomes noticeable. The issue of discontinuous video is wors-

ened by catering for any possible head movements (lateral movements or rotational

movements). To solve this problem, morphing techniques are typically employed. This

is done by morphing one viseme (visual imagery corresponding to an audio phoneme)

into the next, so that the transition is smooth (typically, doing this is equivalent to sim-

ply using the parameterised models that are described later). Bregler et al. [7] also

describe the technique of slowing down (or speeding up) frames in the video sequence

between two phonemes, so as to synchronise the video with the audio.

Despite the difficulties of using performance-based models they are still used today

because they also offer several advantages. The next two sections describe these ad-

vantages, then contrasts them with some other issues that have not been sufficiently

overcome yet.

Advantages of Performance-Based Models

The greatest advantage of using performance-based models is photorealism. By using

actual footage of a real person, subtle nuances of emotion (a sparkle in the eye, or dim-

ples of a smile) that are difficult to create using other techniques are reproduced. Also,

the actual skin textures (except when using morphing) are completely accurate.

CHAPTER 8. FACIAL MODELING 89

Another advantage to using pre-created images is that skilled artists can often draw,

paint or air-brush original images on paper which can then be scanned in.

Disadvantages of Performance-Based Models

One of the great disadvantages of performance-based models is the time taken to ren-

der the models. Because of the fact that still images are relatively large (depending

on compression, size and resolution) it can take quite a long time to load still images

from a disk fast enough to be displayed in real-time. Caching these images in RAM

normally doesn’t work either because RAM is typically too small to hold large numbers

of images. Morphing techniques are especially slow - they usually perform a per-pixel

calculation between two or more images. This requires many computations (depending

on the size of the images) and could overwork the primary CPU, unless performed by

dedicated hardware.

Another disadvantage of using the performance based technique, is the difficulty of

trying to synthesize facial rotations. The images shown have usually been pre-recorded.

As soon as there are head rotations, shadows and lighting changes occur, not to mention

the fact that previously obscured features for example ears could become visible. To

calculate these changes, given only 2D original images is extremely difficult to achieve

(especially in real-time), and often requires the use of a 3D model.

In summary we can see that performance-based models can result in photo-realistic

images, but video-realism poses a problem. Computational complexity poses problems

in real-time environments, and limitations of movement may reduce the effectiveness

of the video. In the next section, we describe a technique that overcomes many of these

problems - parameterised models.

8.1.2 Parameterised Models

In the previous section we described the first of the three techniques for modeling a

face - performance-based modeling - and explained some of the disadvantages of using

that technique. In this section we present a different model, that has become one of

the most widely used techniques to animate 3D objects. We will explain how this tech-

nique works and show that it can overcome the problems related to performance-based

modeling.

CHAPTER 8. FACIAL MODELING 90

Parameterised Models Explained

This technique relies on a model of the face (or any other object) being manipulated by

certain parameters (skeletal movements, region locations, vertex node locations, texture

parameters ,etc.) [3], [18], [66][ch6]. The model typically stores the co-ordinates of the

vertices of several polygons that make up the geometry of the object (and edges between

these vertices). Such a model is called a mesh. It is the vertices of the mesh that are

adjusted using the given parameters. The vertices may be in two or three dimensional

space.

The art of using parameterised models is an old one, and has been successfully im-

plemented by many groups of people each with subtle differences in technique that

overcame certain obstacles. Some of the more popular techniques that are used will be

explained in the sections that follow.

Vertex Blending

Arguably, the most popular implementation of parameterised models is to use skeletal

bones to deform the vertices of a mesh. This technique is known by several names -

skinning, vertex blending, enveloping and skeleton-subspace deformation [63, ch 3.4].

The bone itself is purely mathematical - it is not actually part of the image that is ren-

dered. The artist models the vertices of the skin mesh and the bone structure in their

relaxed positions. The vertices of the skin are then paired up with bones of the skeleton

together with a blend-weight. As a bone moves or rotates, the vertices that are influ-

enced by that bone are displaced by an amount related to the influence (blend-weight)

that bone has over those vertices.

Part of this technique allows a single vertex to be influenced by many different bones.

(For example vertices of an elbow’s skin would be influenced by both upper-arm and

fore-arm bones). This gives the entire mesh the property of elasticity. The formula for

this vertex-bone transformations is a simple summation:

u(t) =

n−1
∑

i=o

wiBi(t)M
−1
i P, (8.1)

where
n−1
∑

i=0

wi = 1, wi ≥ 0,

and P is the original vertex in world co-ordinates, u(t) is the transformed vertex at time

t, n bones influence vertex P, and matrix Mi transforms bone i to world co-ordinates.

Bi(t) is the transformation matrix for bone i at time t. [63, ch 3.4]

CHAPTER 8. FACIAL MODELING 91

This technique for manipulating meshes is particularly effective in real-time applica-

tions, due to the speed at which it executes. This speed is further enhanced by many

types of modern day graphics acceleration hardware. This leaves the primary CPU of

the computer free to do other work. Matrix mathematics additionally helps when bones

are arranged in a hierarchy and movement of one bone affects the bones below it in the

hierarchy.

Blend Shapes

Another example of vertex blending is that of blend shapes. A single mesh for each

facial expression is modeled. The vertices of two or more meshes are then blended to

create new facial expressions [49]. The difference between vertex blending and blend

shapes is that with blend shapes there is no skeleton involved, but there are several

source meshes with which to work.

One example of this technique is a dolphin swimming. Meshes are created with the

tail up, down and horizontal. From these three meshes a fairly accurate animation of a

swimming dolphin can be created.

This technique is most useful when the source meshes are very accurate. Automated

techniques (laser scanners or video analysers) are used to create these meshes, which

then fairly accurately represent the objects to be displayed. Blend shapes are not used

as frequently as traditional vertex blending because of the flexibility that using skeletal

structures provides.

In summary, the above two techniques use the parameters to directly transform the

vertices of the mesh. The next technique described accomplishes this in a more indirect

manner.

Free Form Deformations

In earlier sections we showed how parameters could directly affect the vertices of a

model. Free-form deformations adjust the space in which an object resides in some way.

The vertices within this space are then adjusted accordingly. This technique is particu-

larly effective when dealing with soft tissued objects like blobs of gel. Yoshizawa et al.

[96] describe how to move a skeleton to which nodes of the skin are attached. The mesh

deformation occurs using a force caused by the skeleton on the skin itself. This force

then deforms the skin to fit the new shape of the skeleton. While this sounds similar

to vertex blending it is fundamentally different because the skeleton is used to modify

CHAPTER 8. FACIAL MODELING 92

space, not the vertices.

In essence, most of the other parameterised models are similar to either vertex blending

or free-form deformations. These techniques are however pretty useless to us unless we

know how we can use the parameters to achieve the desired effects. This will be briefly

described before we proceed with the next facial modeling technique.

Driving the Parameters

Once the model’s mesh has been created and the parameters that influence that mesh

are set up, the challenge lies in controlling the parameters to create realistic or artistic

results.

When synthesizing speech imagery, the parameters of the model would normally be

driven by the audio track. The phonemes identified would be mapped to some set of pa-

rameter values. As the speech progresses from one phoneme to the next, the parameters

would be interpolated in such a way that the motion appears realistic (see chapter 10

for more details). There are several different techniques used to identify how the input

should drive the parameters, and from there, how the parameters should drive the model

itself. These are split into two categories: (a) manual and (b) automatic.

• The manual techniques relies on studying how the different phonemes should

appear on the model, then manually adjusting the parameters so that the desired

output is produced. These values are then stored, and used at run-time.

• The automatic process is seldom easy. One needs to provide some training input

for the automated process. People have been successful using a computer to anal-

yse a video (with audio) of a person speaking. The audio is analysed to identify

what the person is saying. The video is studied to try to identify the parameter

values that (when applied to a model) most closely produce the video imagery.

In practise the face in the video has coloured dots on it to help identify how it is

being deformed as the speech occurs. [13], [95]

Other parameters such as appropriate head motion and random blinking could be driven

by timers or keyboard (or touch-screens, joysticks, mice etc). This would help to create

natural looking motion and could contribute to the performance being more believable.

There is another facial synthesis model that while being very strongly related to pa-

rameter based models, is sufficiently different to warrant separate discussion: muscle

based modeling. This is discussed next.

CHAPTER 8. FACIAL MODELING 93

8.1.3 Muscle Based Models

Muscle Based Models Explained

In the past, many ‘tricks’ were necessary to create accurate looking 3D models. This

was due (in part) to inferior computing power. It is said that computing power doubles

roughly every 18 to 24 months. This increase in power over the years has allowed (a)

more complex models of 3D characters to be created and (b) the use of more true-to-life

models instead of using these ‘tricks’ to approximate them.

3D modellers have, in recent years, started creating models that are more and more

anatomically correct. Instead of the skeletal bone-influence (see section 8.1.2) methods

of vertex-blending, modellers are creating their models using layers of muscle, fatty

tissue and other layers that exist in real people [3], [29] and [50]. While not a new tech-

nique, it is only in recent years that computing power has allowed the muscle modeling

technique to be used in real-time rendering applications.

The principle behind muscle based modeling is fairly simple: typically one end of the

muscle is fixed to a skeleton (non-visible), and the other to the skin mesh itself. The

skeleton can move or rotate around a pivot point, causing the muscles and skin vertices

to move or rotate as well. (So far, this exactly like skinning discussed in the previous

section). The muscles can contract (and expand) which push or pull the skin vertices

away from, or nearer to the skeleton. (It will be shown later how the effects of muscles

acting on skin vertices are smoothed out over an area of the mesh).

Another type of muscle is only connected to vertices of the skin mesh. These are

typically sphincter-type muscles which are elliptical in shape, and contract towards a

central point in 3D space - pulling the skin vertices with it. A good example of a

sphincter muscle is the lips of the mouth. (In typical models of mouths the sphincter

muscle is combined with other muscles to produce many degrees of motion of the lips).

Some of the earliest work in muscle based modeling was done by P. Eckman et al. [28].

They attempted to develop a comprehensive system which could produce all possible

facial movements. This system was the Facial Action Coding System, which grouped

sets of muscle movements into indivisible action units. Many of the formulae used in

muscle based modeling today were described in that paper.

The remainder of this section is organised as follows:

• Muscle placement - this describes how muscles and skeletons are placed, so that

they can produce the most effective results.

CHAPTER 8. FACIAL MODELING 94

• The maths behind muscle contraction - this section describes the formulae used

to deform skin vertices based on muscle movements.

• Skin bulging - this describes the effect of muscles bulging when they contract. In

other words, the conservation of muscle volume.

• Using the muscles - this section describes how one uses the muscles to create the

desired effects.

Skeleton and Muscle Placement

According to Fatih Erol and Ugur Güdübay [29], there are nine pairs of muscles placed

symmetrically through the human face. These are zygomatic major, angular depressors,

labi nasi, inner labi nasi, frontalis outer, frontalis major, frontalis inner, lateral coriga-

tor and secondary frontalis.

Kolja et al. [50] further add to this model by describing the use of sphincter muscles

(orbicularis oris). They also use a semi-automatic way of allocating a skeletal mesh:

the mesh of the skin is slightly shrunken to create a skeleton structure inside the skin

that forms a stationary platform for the fixed ends of the muscles. Optionally the mesh

is also expanded to create invisible muscles outside the face boundaries that pull the

skin outwards as well. This semi-automated method has the advantage of being able to

quickly calculate an appropriate skeletal structure for any given mesh.

Yoshizawa et al. [96] describe using Voronoi vertices as an alternative method to ap-

proximate an appropriate skeleton of a model.

In summary, the skeleton structure is placed inside of the skin-mesh. Muscles are then

connection to the skeleton and the skin, and can contract and relax, thereby pushing and

pulling the vertices of the skin appropriately. Should the muscles be connected to only

one vertex of the skin mesh, then the deformations to the skin would cause unsightly

spikes in the skin as opposed to smooth bulges. As a result multiple vertices are con-

nected to a single muscle, and the muscle effect is smoothed out over the vertices. This

smoothing will be explained in the next section.

8.1.4 Manipulating Skin Vertices Based On Muscle Movements

We have shown that rotations and other movements to a bone of a skeleton must are also

be applied to all objects connected to that bone. Previously these objects were only skin

vertices, but the principle applies to muscle directions and starting locations as well. In

CHAPTER 8. FACIAL MODELING 95

this section we show how to manipulate skin vertices based on contractions (and elon-

gations) of muscles, in such a way that the results are visually ‘smooth’. Firstly we will

describe the behaviour for linear muscles, then for sphincter muscles.

Mathematically speaking, skin vertices are ‘connected’ to a muscle, in such a way that

as the muscle contracts towards the skeleton, the vertices are also moved towards the

skeleton. This is a fairly trivial observation, except that it needs to be determined which

vertices are connected to muscles. If each vertex has its own muscle then the skin ef-

fects could be made to be smooth by allowing subtly different contractions for adjacent

muscles. This is seldom done in practise. A far better method is to have several vertices

near a muscle being affected by that muscle, but reducing intensity of the muscle effects

(on the vertices), depending on the distance between the vertex and the muscle. Figure

8.1 shows how skin vertices arranged on a flat plane are moved by varying amounts

depending on their proximity to the muscle itself.

Figure 8.1: The effect of a muscle on vertices - [93]

This technique is described in Keith Waters’ [93] paper, and the formulae for this sec-

tion can also be found in that paper, together with additional explanations. Some of the

diagrams from that paper have been included in this one to aid in our explanations.

For the following explanations of the workings of muscle models, one can refer to

figure 8.2). A muscle stretches between a start point V1 (which is constant relative to

the skeleton), and target point V2 (which is indicative of the direction of the muscle).

Between these two points are two arcs specifying the effectiveness of the muscle along

its length. The radii of these arcs are named Rs (the distance of highest effect) and

Rf (the distance after which the muscle no longer effects the vertices). Rs/Rf is the

contraction amount. There is also an operational angle from the muscle Ω over which

the effectiveness decays laterally. Furthermore a muscle has a spring constant k which

determines its strength.

CHAPTER 8. FACIAL MODELING 96

Figure 8.2: Muscle vector parameters

To calculate the effect a muscle movement has on a given point P we do the following:

• We need to displace P along the vector V1 P by some appropriate distance

• So we calculate D, the distance from P to V1 and µ the angle between V1 P (the

vertex vector) and V1 V2 (the muscle vector).

• Using these values we calculate the lateral angular displacement factor A:

A =

{

cos(µ/π × π/2) × (1 − µ/Ω), µ ≤ Ω

0, µ > Ω

• We also calculate the radial displacement factor R:

R =

cos((1 −D/Rs) × π/2), 0 < D < Rs

cos((D −Rs)/(Rf −Rs) × π/2), Rs ≤ D < Rf

0, otherwise.

• Once we have these values we can calculate a new position P ′:

P ′ ∝ f(A× R× P × E),

where f is an appropriate function that can model skin elasticityE (the logarithm

is sometimes used).

So in summary we can specify a skeleton, then connect muscles to that skeleton with

various operational parameters, and place those inside a skin mesh. As we move the

CHAPTER 8. FACIAL MODELING 97

skeleton, the muscles and skin vertices move accordingly. As the muscles contract to-

wards the skeleton, nearby vertices are also pulled towards the skeleton.

We mentioned that not all muscles are connected to a fixed skeleton, and that some pull

in towards themselves: sphincter muscles. The mathematics behind sphincter muscles

works in very much the same way as linear muscles except that the angular displace-

ment factor A is ignored as all points equidistant from the centre of the muscle are

transformed equally. Some sphincter muscles are not circular, but elliptical in nature.

The formula can be adjusted to work with horizontal and vertical dimensions of the

ellipse.

This concludes our mathematical explanation for skin manipulations using muscles.

Before we explain how to create and use muscle models, we will briefly explain one

last aspect of muscle modelling that can add to the realism of the models: skin bulging.

Skin Bulging

In reality true skin is not perfectly elastic but is visco-elastic, [29, 50] and should there-

fore bulge and flatten as the muscles under it bulge. To accurately produce this effect

layers of muscle, fat and other skin tissues that are inserted under the skin have volumes

that are preserved as they are manipulated [50].

Muscle fibres tend to bulge in the centre, and remain flat towards the end points, while

sphincter muscles bulge evenly. To simulate how skin slides smoothly over fatty tissue,

’muscles’ of low stiffness are used.

While skin bulging can add to the effectiveness of the model, there are many aspects to

be considered, such as intersection testing. The interested reader might read the papers

by Fatih Erol and Ugur Güdübay [29] and Kolja Kähler and Jörg Haber [50] mentioned

earlier for more details.

So far we have explained the formulae used to manipulate models based on muscles

and skeletons, but what remains to be shown is how to go about actually creating these

models with skeletal and muscular layers. Techniques to do this are shown next.

Using the Muscles

One way of manipulating the muscles is to have an artist with knowledge of the work-

ings of muscles manually manipulate the muscles to create the desired effect for each

key phoneme. This usually takes quite a long time and can prove to be expensive.

CHAPTER 8. FACIAL MODELING 98

Tony Ezzat [30] describes a more automated approach where video clips can be com-

pared to 3D models of faces. These images are ’reverse engineered’ to determine how

the muscles in the face could be manipulated to produce the same effects. Once these

images are linked to the phonemes extracted from the audio stream (the image is then

called a viseme - visual representation of a phoneme), phoneme strings can be extracted

from a new audio source and be used to synthesize new video.

This concludes the first major part of this chapter - modelling techniques. A contrasting

viewpoint will be illustrated in section 8.3 that shows that anatomical correctness is not

the only way to improve communication quality of an avatar (artificially created face).

8.2 Automated Model Creation

In the previous section we described ways to manipulate models, but one of the major

problems with models is the actual creation of the models. Many different projects have

had success in automatically generating models or portions of models.

One of the ways in which mesh models are created is through the use of laser scan-

ners. Using this technique, a physical model is created. The scanner then shines a laser

beam at the model to determine its contours. At each point at which the laser scans the

model a vertex is created, and the vertices joined to created a mesh.

Liu et al. [56] have developed software whereby a mesh model of a human face can

be acquired from a video sequence. One identifies key facial features on two of the im-

ages, and then the software generates an animateable mesh. The software also extracts

appropriate texture information.

8.3 An Alternative To Anatomical Correctness

As can be seen by reading the papers cited in the prrevious sections, there has been a

lot of work in recent years to build models that are as anatomically correct as possi-

ble. Often the creation of these models take a lot of time, both from the artist, and at

rendering time (due to complexity of the models, and the computational complexity of

the rendering processing). This section illustrates a different objective to the quest for

anatomical correctness.

Chris Crawford describes in his article about anatomical correctness [24] that there are

CHAPTER 8. FACIAL MODELING 99

certain areas of a face that are important in conveying information. These are typically

the eyes, eyebrows and mouth. The rest of the face is relatively unimportant in the pro-

cess of conveying information. He says that a lot of the work being done by anatomists

does not aid in making the artwork more effective. He gives an example by comparing

the movie ‘Shrek’ to the movie ‘Final Fantasy’. He describes that in Shrek, a large part

of artistic effort was spent on the emotion-conveying parts of the face, while less work

is done ensuring absolute anatomical correctness. In the movie Final Fantasy, extreme

care is taken to make the characters anatomically correct, down to individual strands of

hair. He shows that people thought Shrek was “... a superb film on any level”, while

the opinion of Final Fantasy was that “... its dreamscape images almost make up for its

cardboard characters...”.

Chris Crawford explains this phenomenon by quoting from Scott McCloud’s book, Un-

derstanding Comics - “When we abstract an image through cartooning, we’re not so

much eliminating details as we are focusing on specific details. By stripping down an

image to its essential ‘meaning’ an artist can amplify that meaning in a way that realistic

art can’t.” This opinion illustrates that the pursuit of anatomical correctness is a lack of

focus on the important details at the ultimate cost of effectiveness of the artwork.

8.4 Additional References

Over time, modelling techniques have continued to improve, which has resulted in a

wealth of additional reading on the topic. For more information about skinning, one

can read [79]. For more information about muscle modeling see [99].

Advanced Animation using DirectX [2] provides details about many other modeling

techniques including (inter alia.) ragdoll physics.

8.5 Summary

In this chapter we described techniques for the creation and animation of models. We

discussed three techniques that focus on improving anatomical correctness: performance-

based models, parameterised models and muscle based models. We showed that, of the

three, muscle models produce the most realistic results. Work that focuses on aspects

other than anatomical correctness for effectiveness was also described.

In the next chapter we will show how we can improve the quality of the visual impact

of our rendered models.

Chapter 9

Techniques For Improving

Rasterisation

In the previous chapter, we discussed techniques that could be used to create models of

an animated face. In this chapter, we continue by describing photo-realism, and other

concepts related to improving the quality of our rendered output.

There are several techniques that have been developed by programmers and artists from

a wide range of disciplines (including huge input from computer-game programmers),

that can be used to improve rendering speed and quality. This chapter describes these

techniques.

The layout of this chapter is as follows:

• Shading Techniques - This discusses the three typical shading techniques: flat,

Gouraud and Phong shading. It also describes PN triangles, which achieve geo-

metrically, what the shading techniques achieve through lighting effects.

• Advanced Texturing - This discusses additional uses for textures (other than mere

images that are displayed). It includes bump mapping, light mapping and similar

techniques.

• Anti Aliasing - This is a technique that reduces blockiness of lines on pixellated

displays.

• Cg - This is a graphics language which can be used to program advanced func-

tionality

• Additional References

• Summary

100

CHAPTER 9. TECHNIQUES FOR IMPROVING RASTERISATION 101

9.1 Shading Techniques

Unless measures are taken, renderings appear blocky. This is due to the fact that models

are approximations of the real object - several flat polygons are used to represent curved

surfaces. In these cases, it would be undesirable for these polygons to be seen individ-

ually. For this reason shading techniques are employed to disguise these polygons.

There are three commonly used shading techniques - each with their own advantages

and disadvantages:

• Flat Shading

• Gouraud Shading

• Phong Shading

9.1.1 Flat Shading

Flat shading is the simplest shading technique. The normal vector for each triangle

in the mesh is calculated, using the position (and order) of the vertices of the triangle.

That normal vector is used to calculate the lighting for the entire triangle (see figure 9.1).

While flat shading is by far the fastest and easiest to implement, it causes each triangle

making up a mesh to be highly visible (see figure 9.2). For this reason flat shading tends

not to be used in practise with models that are supposed to be smooth in appearance.

Two rendering techniques which do attempt to disguise polygons are described next.

9.1.2 Gouraud Shading

One of the most popular shading techniques for real-time rendering is Gouraud shading.

With this technique meshes containing relatively few triangles can be rendered in such

a way that the edges between the triangles are smoothly blended - thus disguising the

fact that the model is actually made of very few polygons (see figure 9.3).

Gouraud shading calculates the lighting based on the normals of the vertices of the

triangles and then interpolates those lighting values over the rest of the triangle (see fig-

ure 9.1). This shading technique is really fast (as shading techniques go), and is often

implemented in hardware. It’s speed makes it a favourite for real-time rendering. [63,

ch 4.3]

Gouraud shading, while better than flat shading does still lack the ability to produce

highlights from spotlighting effects in the middle of a single triangle. Phong shading,

described next, can overcome this problem.

CHAPTER 9. TECHNIQUES FOR IMPROVING RASTERISATION 102

9.1.3 Phong Shading

As mentioned previously, Gouraud shading, which interpolates lighting values over ver-

tices of a triangle, may miss certain highlights and spotlight effects that could occur in

the middle of the triangle.

Phong shading interpolates the normal vector for each pixel of the triangle (see fig-

ure 9.1). These normal vectors are used to calculate the lighting effect at each pixel (as

opposed to interpolating the lighting effect as with Gouraud shading). This technique

has the advantage of producing highlights and other effects that would only appear when

lighting is recalculated per pixel as opposed to merely being calculated once per vertex

and interpolated for each pixel (see figure 9.4).

While Phong shading looks really good, the recalculation of the lighting values for

each pixel is computationally expensive. This technique is therefore seldom used for

real-time rendering of complex scenes.

In summary, the above two shading techniques (flat shading being excluded) cause the

illusion of smooth geometry through effective lighting. The next technique helps create

a similar illusion, except not through the use of lighting.

Figure 9.1: Normal calculations for shading techniques

Figure 9.2: An example of flat shading

CHAPTER 9. TECHNIQUES FOR IMPROVING RASTERISATION 103

Figure 9.3: An example of Gouraud shading

Figure 9.4: An example of Phong shading

9.1.4 PN Triangles

In previous sections we described techniques that use lighting effects to create the illu-

sion that objects’ surfaces are smooth. This is very effective except when one looks at

the silhouette of the shape (the outer borders). The blockiness is then clearly shown -

something more than mere lighting tricks are needed to improve this. This can be seen

in the shading-related figures 9.2 to 9.4.

One possibility would be to increase the number of polygons in the model, thus making

the surfaces rounder. Unfortunately this would introduce many other issues: the model

would take more disk space to store, more time to load, and when animating the model

there would be more calculations required as there would be more vertices to transform.

Vlachos et al. [90] describes the use of PN Triangles. With PN triangles, a large triangle

is subdivided into smaller triangles, where the smaller triangles bulge outwards (Figure

9.5). The inner triangles’ bulges are calculated by interpolating the normals of the outer

CHAPTER 9. TECHNIQUES FOR IMPROVING RASTERISATION 104

vertices as shown in figure 9.6. The number of sub-triangles determines how effectively

this technique improves smoothness.

The advantage to using PN triangles is that the models are stored, loaded and animated

in their low-polygon-count forms. The few polygons making up the model are sent

to the graphics hardware, where the polygon count is then increased. This causes the

increased workload to be isolated to the graphics hardware alone, while retaining the

improved appearance of increased polygon count.

So in summary, PN triangles cause models to appear more smooth when seen from

the side (see figure 9.7) - a feat that mere shading techniques do not achieve.

Figure 9.5: Subdividing a PN triangle [90]

Figure 9.6: Curving the PN triangles [90]

CHAPTER 9. TECHNIQUES FOR IMPROVING RASTERISATION 105

Figure 9.7: Output from PN triangles [90]

In the next section, we show which of these techniques is most suitable for real-time

facial animation.

9.1.5 Shading Techniques for Facial Animation

The irregularities produced when using flat shading would be highly evident after ren-

dering a face - the triangles making up the mesh would be highly evident (for an example

see figure 11.1). This eliminates flat shading as the best choice.

Due to the fact that the majority of faces rendered are not shiny, (the specular com-

ponent of the skin material would be either very low or non-existent) the advantages of

using Phong shading would not be evident after rendering. The time taken to do Phong

shading in a real-time render would however be evident, especially with high polygon

counts. This eliminates Phong shading as the best choice, making Gouraud shading the

best of the three for real-time facial animation.

PN triangles are typically used in conjunction with either Gouraud or Phong shading.

When PN triangles are employed during facial rendering, the contours of the face would

appear smoother.

Besides shading techniques, one can use advanced texturing techniques to improve the

quality of rendered images [86].

9.2 Advanced Texturing

In the previous section, we explained how different shading techniques can maintain the

illusion of smoothness of geometry by using special lighting effects. We continue now

by describing other techniques for enhancing the appearance of models, by applying

CHAPTER 9. TECHNIQUES FOR IMPROVING RASTERISATION 106

textures in innovative ways. Most of the techniques described have existed for many

years and have been especially useful in computer games due to the speed with which

they can be executed.

9.2.1 Bump Mapping

Bump mapping refers to the technique of using a texture to create effects that appear

to be altitude differences. Instead of increasing computational expense using additional

polygons to represent these tiny features, an extra texture is used that alters the lighting

normal for each pixel on a surface [63, ch 5.7]. This texture is not a visible image in

the normal sense of textures. The ‘pixels’ of the texture are actually values from which

normal vectors can be calculated.

When rendered, this additional texture alters the apparent angle that the light source

strikes the surface (because the bump-map’s normal together with the polygon’s normal

is used). This can create the effect of bumps and wrinkles on the otherwise flat surface.

When seen from the side, the effects are not apparent (just like Gouraud and Phong

shading), as they are also a lighting illusion, not actual geometry. In the field of render-

ing human faces, the bump map could indent tiny pores in the skin, or even wrinkles

that would add too much work (in time-critical scenarios) when represented as part of

the geometry.

There are several algorithms to achieve bump-mapping, three of which will be described

here:

• Height Maps

• Dot 3 Bump Maps

• Displacement Maps

9.2.2 Height Maps

One way of representing a bump map is to use a monochrome texture where each pixel

of the texture represents the height of the texture above the polygon itself. The normal

vector for each point is obtained by first calculating the slope between the point and its

neighbours, then taking the normal of that slope. This is called a height map.

This technique can be computationally expensive as the calculation for each pixel relies

on studying the pixel’s neighbours.

CHAPTER 9. TECHNIQUES FOR IMPROVING RASTERISATION 107

9.2.3 Dot 3 Bump Maps

A technique that works faster than height mapping is dot 3 bump mapping, where each

pixel of the bump map texture is assigned a normal vector. (The 8 bit R, G, B values

of the texture map to the range of values between −1 and 1 for x, y and z respectively).

The lighting calculation merely involves computing the dot-product of the lighting vec-

tor with the normal vector read from the bump-map. Most modern day 3D hardware

can do this calculation, so it can be implemented to run very quickly.

Like height maps, dot 3 bump maps do not modify the actual geometry of an object,

so when seen from the side a polygon would still appear flat. The method described

next overcomes this problem.

9.2.4 Displacement Maps

A technique described by Cook [22] is displacement mapping, where the bump map is

used to modify the actual geometry of the object, not just the lighting illusion. Support

for this technique has been added to Microsoft’s DirectX 9.

Technically what happens is that the surface is tessellated into smaller triangles, then

the height map is sampled to determine a displacement for the vertices of the new tri-

angles. This is similar to PN triangles described earlier. As the process of tessellating

the triangles can result in added computational expense, the degree of tessellation de-

creases with increased distance from the camera (this is similar to mip-mapping, where

increasingly low-resolution textures are used, the further a mesh is from the viewer).

Volino and Thalmann [91] describe the technique of using displacement mapping to

create wrinkles on the skin texture. Their technique bases the wrinkle effects on a

skeletal mesh, to animate wrinkles easily and quickly.

9.2.5 Calculating Bump Maps

To calculate the texture required for dot 3 bump mapping, one usually begins with a

height map, and then calculate normal values for that texture based on slopes, then

store the results.

This process can also be automated. One could use either high-precision laser scan-

ners [98] to scan the actual face (normally too expensive or inaccurate), or a feature

detection program that analyses the skin-texture bitmap itself for spots of darkness and

brightness, and computes normals appropriately [75].

CHAPTER 9. TECHNIQUES FOR IMPROVING RASTERISATION 108

Rushmeier et al. [75] describe a system for capturing bump-map information from a

series of images. Their system makes using of lighting variation to predict surface ge-

ometry for the creation of bump-map textures. In their system the images of the object

are all captured from the same angle, but the lighting parameters vary.

9.2.6 Self Shadow

Because bump maps are an illusion of additional geometry - we may want shadows to

be displayed. The tiny elevations of the bump-map cast shadows onto the mesh itself to

accentuate the slight nuances of the geometry. This could greatly add to the realism of

features such as skin-wrinkles on a face.

Interpolated horizon maps are the usual technique to accomplish this, but Forsyth [38]

shows how to use volumetric textures to achieve hardware accelerated texturing to cal-

culate these shadows.

9.2.7 Light Mapping

Another technique that uses textures in an innovative manner is that of light-mapping

[63, ch 5.7]. A ’texture’ of lighting values is pre-computed and multiplied with the tex-

ture of the actual surface. This achieves Phong-like shading without the computational

expense of true Phong shading. The downside of this technique is that the light source

in the environment must remain stationary (the texture is pre-computed with values for

that light source).

Because multiplying textures can be executed on modern-day hardware, this technique

becomes computationally cheap to use, while the results are phenomenal (this technique

was used in the rendering of Dr. Sid from the movie Final Fantasy). It works especially

well to enhance specular lighting, which could be used to on a face that is slightly shiny.

9.2.8 Gloss Mapping

Related to standard light mapping is the technique of gloss mapping where sections

of the texture are glossy, while others are less so. This glossiness is the quantity of

reflected light as opposed to direction of the light (when using light mapping). This

pre-computed texture map can be blended in with colour-based textures during specular

lighting calculations to provide a glossy sheen. An excellent place to use this technique

would be the trail of wetness on a model’s cheek after a tear rolls down.

CHAPTER 9. TECHNIQUES FOR IMPROVING RASTERISATION 109

So in summary, textures can be used in innovative ways to create really brilliant effects

that add to effectiveness or realism, without adding significant calculation overheads.

In the next section, anti-aliasing (which causes edges of polygons to appear smoother)

will be discussed,

9.3 Anti-Aliasing

Besides shading techniques and effective texturing, one can do smoothing in another

way - antialiasing. Due to the fact that images are rendered in pixels, the edge of an

object that has been rendered typically is either represented in an entire pixel or not at

all - there is no such thing as a partial pixel (see figure 9.8).

The technique of anti-aliasing blends the border pixels of the object with the back-

ground pixels depending on where the object’s border lies relative to the centre of the

pixel. (see figure 9.9).

Using this technique causes the rendering to look more smooth around the silhouette

of the image - the way the edges would appear had they been photographed. It is

slightly computationally expensive, but can be successfully implemented in real-time

by sufficiently powerful hardware.

Figure 9.8: Aliasing

Many of the techniques described in this section can be implemented in hardware. In

the next section a way to implement them in a platform independent manner will be

described.

CHAPTER 9. TECHNIQUES FOR IMPROVING RASTERISATION 110

Figure 9.9: Anti-aliasing

9.4 The Cg Language

One of the newer tools of the trade is Cg - a language very similar in syntax to the C

language. This language is used to write small programs that leverage the power of

modern graphics card’s powerful calculating abilities. The difference between normal

C programs and Cg programs is that Cg programs are written to be executed on graph-

ics hardware, not a standard CPU. The language is typically used to write one of two

classes of programs: vertex shaders and pixel shaders.

Vertex shaders are used when vertices of polygons need to be shifted or interpolated

by some formula. The vertex shader can use the graphics hardware to do these calcu-

lations as opposed to using the computer’s CPU. This can really free up a lot of work

from the computer’s processor, leaving it available for other work.

A pixel shader is used to calculate the colour of a pixel based on lights in the scene,

materials, textures and other inputs. The pixel shader needs to be a highly optimised

piece of code, as it is executed once for each pixel drawn. By writing multiple versions

of a pixel shader using Cg, one can choose one that best balances the performance of

the graphics card with quality of the output (the typical time-quality tradeoff) [59].

Cg is not the only shader language that has been developed. HLSL and the OpenGL

shaders can be used as well [55].

9.5 Summary

In this chapter, we showed various methods for improving photo-realism. We concluded

that Gouraud shading provides the best balance between effectiveness and computa-

tional complexity. The texturing methods described could each be used add to the ef-

fectiveness, depending on the desired effects. We showed how full-screen anti-aliasing

CHAPTER 9. TECHNIQUES FOR IMPROVING RASTERISATION 111

can be used to create the appearance of smoother (sub-pixel) renderings. We concluded

with a description of the Cg language which can be used to implement many of these

techniques on dedicated graphics hardware.

In the next chapter, we continue with our descriptions by explaining methods of im-

proving video-realism (the accuracy of motion of the animations).

Chapter 10

Video Realism

In previous chapters of this document, we discussed modelling and rendering tech-

niques that can aid us in improving the quality of our output. We continue in this

direction by illustrating ways to improve the quality of the motion of the animations.

10.1 Introduction

In the early days of computer rendering, many people were impressed by the quality of

the models themselves, but complained that movement of the models appeared unnat-

ural. Many different factors contribute to this unnatural motion, and as a result, many

different research projects are underway to improve this. In this chapter we discusses

some of this work, focusing on the following topics:

• Motion Capture - this describes ways to capture the motion of real human actors.

• Physics - by paying attention to the rules of physics, we can further improve our

motion quality.

• Co-articulation - this focuses on co-articulation aspects of speech synchronisation

efforts.

• Summary.

10.2 Motion Capture

Despite the best efforts of artists and animators, realistic model motion remains diffi-

cult. Many animation packages provide tools that aid in standard actions like walking

and running, but even these tools can be time-consuming to apply correctly.

In a real-time environment, one cannot afford the time to delicately apply these tools

112

CHAPTER 10. VIDEO REALISM 113

to the models - a faster method is necessary. Over the past years several direct motion

capture devices have been used. In essence they all work in the same way: sensors

are applied to an actor’s body. These sensors track the movement of a specific part of

that actors body in 3D space. The model that is being animated is then deformed in a

way that matches the movements of the real actor. The model can therefore do nearly

anything that a real actor can do.

What makes this method very versatile is that the model need not have the same char-

acteristics as the actor. A prime example of this type of actor-controlled animation

occurred in the movie ‘The Lord of the Rings’. In an article about the making of the

movie [40], the animation of Gollum (and other creatures) is described. Actors’ mo-

tion was captured using high-resolution cameras that observed retro-reflecting spheres

(placed on the actor’s face, body, fingers and toes). This motion was then applied to a

model with physical attributes that were different to the real actor’s. Animation of the

Gollum actually used several different models (character maps) for different types of

motion (walking, crawling, climbing).

Figure 10.1: Left to right: Remington Scott and Andy Serkis (Gollum) exploring
facial performance capture. Read about bringing Middle Earth creatures to life;
“Sparking Life” by Remington Scott, cover story, SIGGRAPH, Nov 2003 (v37 n4)
http://www.siggraph.org/publications/newsletter/ [12, 40]

This motion capture was extended to facial expressions as well with sensors being ap-

plied to key points on the actor’s face. By tracking these sensors, the actor could control

the facial expressions and lip movements of the model directly. This provided extreme

CHAPTER 10. VIDEO REALISM 114

levels of emotional realism.

Not only are reflective spheres used in industry. Magnetic sensors can (within a rel-

atively small area) be pinpointed in 3D space as well. When applied to an actor’s body,

these sensors can identify the movements of the actor’s body. Magnetic positioning

is not used to detect facial animations due to the physical size of the sensors. Instead

markers placed on the actor’s face are tracked using more than one video feed of the

actor [44]. The positioning of these markers are usually in accordance with MPEG-4’s

facial points (FP).

In this manner facial animation can be controlled in real-time. There are cases where

facial sensors are impractical, but can still be used in a once-off manner during train-

ing. By capturing video sequences of actors speaking, one can use tools such as neural

networks to identify the relationship between spoken sounds and facial parameters. At

run-time the networks can be used to predict the facial parameters given audio input.

For additional information about motion capture techniques, see [53] and [62].

For times when motion capture cannot be used at run-time, one can use mathemati-

cal formulae to help control these movements. In the next section we will describe

techniques that control the speeds of these minute adjustments.

10.3 Physics

In the previous section, we described how to use motion capture sensors to study the

movements of a real actor. Unfortunately, due to the necessary sparseness of the sensors,

many movements are done through interpolation techniques instead of being measured.

Usually the model itself takes care of these minute details, but with one problem. Dif-

ferent muscles contract and relax at different speeds. In this section we discuss how one

can use spring physics to control the speed of muscle adjustments.

In his original paper about muscle modeling [93], Keith Waters mentions skin elasticity

and muscle spring constants. These two related concepts are used to return a model to

its relaxed position at an acceptable rate.

The mathematical principle concerning springs and elasticity is Hooke’s Law. Hooke’s

Law [1] states that if a force (F) is applied to an elastic spring (of length L, cross-

section A and elasticity E) then its extension (∆L) is proportional to its tensile stress

CHAPTER 10. VIDEO REALISM 115

(σ) :

∆L = 1/E×F×L/A = 1/E×σ (10.1)

By assigning appropriate parameters to the muscles in our models, the motion follows

true spring physics. This allows relaxation of facial features to occur at the correct rate.

In order to make use of this technique, manipulations to the muscles should be de-

scribed in terms of forces being applied, not as absolute lengths. In this manner several

different forces acting on a muscle could be combined, and a net force calculated.

10.4 Co-articulation

In section 3.7 we introduced the concept of co-articulation. In this section, we describe

one of the methods used to predict co-articulation effects, and show how to apply it to

improve video realism.

It was mentioned that co-articulation is the interpolation of vocal tract structures (mouth,

lips etc.) between adjacent phoneme utterances. All co-articulation models predict this

interpolation, but the methods for doing so differ.

Attempts at identifying a mathematical formula to predict this mouth anticipation have

met with varied degrees of success. One reason for this is cultural – different cultures,

languages and accents accentuate different co-articulation effects [18]. Despite this

problem, some of the attempts at modeling co-articulation have shown success.

In the model by Pelachaud et al. [67], phonemes are assigned a deformability rank-

ing. This is a measure of the extent to which surrounding phonemes can influence that

phoneme (in the sense of vocal tract shapes). A blending interpolation then occurs be-

tween adjacent sets of phonemes. For each phoneme the ideal lip shape is computed,

and then in later passes, muscle movement is calculated based on contraction and relax-

ation times of the muscles (together with the deformability of the current phoneme).

Cohen and Massaro [18] describe in their model, that at any given time, phonemes have

a given dominance over the various articulators of the vocal tract. A set of overlapping

functions determines this dominance value which leads to a blending of the articulatory

commands. This includes functions for dominance of the lips, jaw, tongue tip, tongue

body, tongue root, velum and larynx. These functions differ in duration, magnitude and

time offset. They are usually at their peak at the moment of utterance of the phoneme,

and fall off to zero influence over a short period of time.

CHAPTER 10. VIDEO REALISM 116

Cohen and Massaro describe a formula for predicting the dominance D of a facial con-

trol parameter p for speech segment (phoneme) s. The distance in time from the centre

of the speech segment is τ and θ←sp and θ→sp represents the rate parameter.

Dsp =

{

αspe
−θ←sp|τ |c, if τ ≥ 0

αspe
−θ→sp|τ |c, if τ < 0.

(10.2)

The c parameter comes from the model proposed by Löfqvist in 1990 as mentioned in

the paper by Cohen and Massaro.

In most common situations for calculating co-articulation effects, knowledge is needed

of speech units (a) before, and (b) after the current one. The fact that we need to know

(b) implies that it is not possible to accurately perform co-articulation calculations in

true real-time. It is only possible in continuous-time, coupled with a slight delay in the

output.

One can observe (by the fact that the function is a negative exponential) that the value of

the function decreases with increasing |τ |. These functions are asymptotic and as such

we can assume some cut-off value for |τ | for each function. By so doing we can ef-

fectively eliminate the influence of a phoneme before and after some time period. This

enables us to work with sounds spanning a finite time duration. The minimum value

for τ is then used to calculate the time, after which buffered sound may be discarded.

The maximum value for τ is used to calculate the delay in output needed to perform

look-ahead co-articulation calculations.

10.5 Summary

In this chapter we defined video realism and looked at some of the techniques that can

be applied to enhance it. These included using motion capture devices both at run-time

and at training time, using physics models especially spring physics to allow for correct

muscle movement speeds and co-articulation which more accurately predicts vocal tract

positions.

Part IV

Implementation

117

Chapter 11

Implementation

Up until this point, we have described the different techniques that can, and have been

used to perform the various aspects of interactive speech-driven facial animation. We

now mention which ones we chose to implement our system, and describe the implica-

tions of our choices.

The techniques employed are described under the following categories:

• Digital Signal Processing,

• Modelling,

• Rasterisation, and

• Driving the model parameters.

11.1 Digital Signal Processing

In part II of this document we described that speech processing is a multi-step process

consisting of: digitisation (sampling) of the signal, signal processing and then classifi-

cation.

11.1.1 Sampling

In order to decide which sampling settings would be most appropriate, we needed to

find a balance between (a) sufficient data for accurate classification and (b) not allow-

ing sufficient time for the signal to change significantly.

The Advanced Linux Sound Architecture (ALSA) was the sound API used. We chose

to use 22050 (16 bit) samples per second recorded using a single channel (mono).

118

CHAPTER 11. IMPLEMENTATION 119

During the digitisation process these samples were stored in a buffer that could store

up to 1024 samples. Every time the buffer had 512 or more samples we removed and

processed the first 512 of them. As will be explained in section 11.1.2, the number

of samples we had to process at a time needed to be an integer power of 2. Had this

number been too small, our classification system would have had insufficient samples

with which to work and would not have classified the data accurately. Had the number

been too large, the delay between classifications would have caused the model’s move-

ments to be too abrupt. Using 512 samples provides sufficient data to classify while

still enabling the classification system to execute roughly 50 times per second – allow-

ing for smooth animation while still leaving the features of the signal relatively constant

through the frame.

Once we decided on the sampling rates, we needed to choose an appropriate technique

to extract features from the digital signal.

11.1.2 Signal Processing

In chapter 4 we described essentially two major techniques to extract features from

sound signals: Fourier Transforms and Wavelet Transforms. After testing, we found

that despite the fact that the DWT provide better localisation in time, the broadness of

the specrum of Fourier Transforms provides for more accurate classifications than the

DWT. See chapter 13 for the results of this comparison.

We mentioned (in section 4.7.3) that the standard Fourier Transform executes in O(n2)

time, which is fairly slow. If the number of samples, n, over which the Fourier Trans-

form executes can be written as n = 2k, k ∈ N then the algorithm can be optimised

using the Cooley-Tukey Fast Fourier Transform (FFT) which executes in O(n log(n))

time. For this reason we chose to use frames containing 512 samples.

We also mentioned that in order to execute the Fourier Transform, the input signal

is expected to be periodic. Human speech is a non-periodic function (even within a

single frame), so a windowing function needs to be applied to each frame to make the

signal periodic (in that frame). We chose to use the Blackman windowing function be-

cause of the fact that all derivatives of the window at its borders are zero (as opposed to

only the signal itself being zero at the borders). While the Blackman windowing func-

tion requires a relatively large number of calculations to execute, the results for a fixed

size window can be pre-calculated once and applied many times. This implies that the

computational cost of using the Blackman window is no higher than any of the other

windowing techniques.

CHAPTER 11. IMPLEMENTATION 120

Towards the end of chapter 4, we described the fact that a Fourier Transform (or Wavelet

Transform) alone does not transform the data sufficiently for classification. We de-

scribed (in section 4.9.1) how cepstral coefficients provide a better classification vector.

Thus after applying the Blackman windowing function and the Fourier Transform, we

calculate the Mel cepstral coefficients.

Next we needed to choose the best method to classify phonemes based on these fea-

ture sets.

11.1.3 Classification

As mentioned in chapter 5, due to the age of the field and the difficulty of the research

(see chapter 6), many different classification techniques can be employed to perform

phoneme identification with different degrees of success. If one looks through the vast

resources available regarding phoneme classification, one is able to see a trend that

two of the more commonly used phoneme classification techniques are Hidden Markov

Models and Neural Networks.

We decided to use neural networks for classification of the cepstral coefficients instead

of Hidden Markov Models. The reason for our choice is that Hidden Markov Models

are used to identify a state sequence (in our case a whole word) given the observed input

vector [97]. Our problem requires real-time recognition, not continuous-time recogni-

tion. In other words Hidden Markov Models would require the utterance of complete

words before identification occurs, while neural networks can effectively classify pho-

netic information without the presence of the rest of the word.

Based on the fact that our training data was English language utterances, and that our

phoneme descriptions come from the CMU dictionary, we chose to identify 39 different

phonemes and an extra one for silence (see table 3.1). We used individual networks for

each of the 40 phonemes. The structure of the networks is as follows:

• the input to each network was the vector of cepstral coefficients,

• each network had one output,

• the activation function used was log-sigmoid,

• the training algorithm was resilient propagation (section 5.2.1) and

• the number of nodes in the neural networks is a parameter to the application

CHAPTER 11. IMPLEMENTATION 121

11.1.4 Training

The manner in which training data is passed to a neural network has a large influence

on the success of the training. One of the problems with a neural network is that train-

ing information passed to the network only affects the current training epoch. Further

training can hinder the network’s ability to classify accurately. For example, consider a

network that classifies phonetic information. Assume that the network is given feature

sets from the phoneme ‘/zh/’ and informed that the expected output is 1, and features for

the phoneme ‘/ae/’ and informed that a 0 is expected. Assume that after several training

epochs the network has the ability to distinguish between the two phonemes. Then the

network is given features from the phoneme ‘/s/’ and informed that a 0 is expected.

This last step is repeated many times. After several epochs of only the ‘/s/’ as input, the

network may lose the ability to identify the ’/zh/’ phoneme.

In order to prevent this problem, all available training data was pre-processed into sets

of input vectors and desired outputs. Training data was then chosen at random from

the entire set of available training data, instead of training the network using a single

utterance at a time.

Due to the fact that the gradient vector is summed over each training set in the epoch,

it is important to balance the number of positive (expected output of 1) training inputs

with the number of negative (expected output of 0) training inputs. This will ensure

that the magnitude of the gradient vector is biased neither towards the positive nor the

negative training sets.

In order to accomplish the above-mentioned balance, counters (of the number of pos-

itive and negative trainings in the epoch) were used. If too many positive (or negative

training vectors) had already been received, then additional positive (or negative) train-

ing vectors were ignored. An epoch was declared finished when the correct number of

positive and negative training sets had contributed to the gradient vector.

Next we will describe the modelling techniques we chose to employ.

11.2 Modelling

As described in chapter 8, there are many different modelling techniques, each with

their own advantages and disadvantages. The model to be chosen, therefore depends on

the requirements of the application.

CHAPTER 11. IMPLEMENTATION 122

Our application requirement are:

• our model must be 3D,

• the manipulations to the model must be achievable in real-time,

• the manipulations should be implementable on dedicated 3D hardware and

• the quality of the model should be flexible, depending on available computing

power.

We chose to use a mesh to represent our facial model due to the flexibility provided by

doing vertex manipulation. Vertices of a mesh are easily transformed using matrices –

a technique that is widely supported on common graphics hardware.

To control vertices we used two sets of transformations. We first applied skeletal ma-

nipulations to manipulate the jaw-bone and tongue. To achieve the more subtle manip-

ulations such as cheeks and lips we implemented Waters’ muscle model [93].

In order to implement this model, we stored the vertices of the mesh at rest. These

vertices were transformed by the skeletal animations into a second buffer of vertices.

A third buffer was then required to store the muscle-manipulated vertices. This latter

transformation could not be done in place due to the fact that several muscles might

affect a single vertex. The mesh of the vertices stored in this third buffer were then

rendered.

The number of vertices in the mesh itself as well as relationships between the mesh,

bones and muscles can be adjusted per model that is displayed.

Having decided on a model, the rasterisation parameters needed to be chosen.

11.3 Rasterisation

In order to rasterise our model, we chose to use the OpenGL API. Due to the speed

constraints of our system (and the fact that a human face is not particularly shiny) we

decided that Gouraud shading was adequate. In order to achieve Gouraud shading (see

section 9.1, specifically figure 9.1), normals for vertices had to be calculated according

to the following algorithm:

for each vertex v in mesh m:

set v.normal = (0, 0, 0)

CHAPTER 11. IMPLEMENTATION 123

for each face f in mesh m:

vector edge1 = f.vertex [1] - f.vertex [0]

vector edge2 = f.vertex [2] - f.vertex [0]

f.normal = crossproduct (edge1, edge2)

for each vertex v in face f:

v.normal = v.normal + f.normal

for each vertex v in mesh m:

v.normal = v.normal / v.normal.lengt h

This calculation leaves us with a normal value for a given vertex that is an average of

the normals of the faces of which that vertex is a part. The difference in image quality

this provides can be seen in figure 11.1. (The image on the left was rendered using

non-averaged normals, while the one on the right did have averaged normals).

Figure 11.1: Implication of normals on shading

The final part of this chapter describes the relationship between the phonetic data that

was acquired and the model parameters themselves.

CHAPTER 11. IMPLEMENTATION 124

11.4 Driving the Model Parameters

In order to make a decision about how to drive the model parameters using phonetic

information, one must first understand the parameters themselves.

As mentioned in section 11.2 our model is manipulated by means of skeletal manip-

ulations and muscle contractions. Skeletal manipulations are a rotation (in a specific

direction) about the origin of a given bone of the skeleton. This rotation in 3D space is

represented by two orthogonal angles. Muscle manipulations are a scalar value that de-

scribe the amount of contraction of the muscle. In our model the muscles can elongate

as well as contract (muscles in our bodies only contract or relax – they do not elongate).

For each of the 40 phonemes, we stored the desired parameters for each bone and

muscle in the face. Roughly 50 times per second, we acquired a frame of audio in-

formation from which we identified the current phoneme being spoken. We also knew

what phoneme was being spoken during the previous frame. Using these two values we

could, for each display cycle, interpolate the parameters linearly.

A problem arises out of the fact that our target phoneme is the one that has already

been spoken, thereby causing the output to no longer be real-time, but only continuous-

time (delayed by one frame of audio information).

In the next section, we provide some additional information about the implementation

of the prototype.

Chapter 12

The Prototype System

In the previous two chapter, we described the techniques that we chose to use to im-

plement our system. These results do not however give any information regarding the

actual design and implementation of the prototype. This chapter describes some de-

tails of our implementation and highlights some of the problems we experienced while

implementing the prototype. Also mentioned are conclusions that were drawn during

practical research before and during implementation of the actual prototype.

12.1 The Overall Design

Due to the dynamic nature of the system (different models can be used), we chose

to design our system as follows. We created an abstract class (DisplayManager) that

provides an interface to handle any sound, keyboard, mouse and display events. This

abstract class was then extended to create a model-choosing menu class, and a model-

display class.

These classes were organised in a stack, with the menu at the bottom. In this man-

ner, when one DisplayManager terminated, the system defaulted back to the previous

one (the menu). In this manner all sound and graphics needed only be initialised once,

but the events from these modules could be handled dynamically.

During implementation of a prototype, one often encounters problems that were not

predicted at design-time. The next section describes some of these problems which we

encountered.

12.2 Problems Encountered

During the implementation of our system, we encountered some problems:

125

CHAPTER 12. THE PROTOTYPE SYSTEM 126

• Initially our prototype was designed with the polygon normals being stored with

the mesh itself. After adjusting the vertices of the mesh, the normals were inac-

curate. This created very strange shading effects, such as a bulge in the cheeks of

the model didn’t produce a shadow under the bulge (the normals were still those

of a vertical cheek surface).

In order to solve this problem, we were forced to re-calculate the normals after

any changes to the vertices.

• In order to use display-lists (an OpenGL feature that reduces function call over-

heads), our texture co-ordinate indices and vertex indices needed to coincide.

This was a problem because a single vertex may have been on the border be-

tween two different textures, and would therefore require more than one texture

co-ordinate.

In order to solve this problem, we created a python-script for Blender (the 3D

modelling tool we used), which duplicated vertices that used texture co-ordinates

from two or more textures.

• During the testing phase of our classification system, our training data was pre-

recorded wave files with very little noise. When we implemented the system

using live recording, we found that ambient noise levels were extreme due to low

quality sound-recording equipment.

In order to overcome this problem, we used the pre-recorded sounds in a man-

ner as if they were being recorded in real-time. This enabled us to observe the

effectiveness of the system as it would be with high quality recording equipment.

12.3 Facts about the Prototype

The prototype was implemented in the C++ language. We chose the language due its

execution speeds and the fact that it provided us with class inheritance (needed for the

DisplayManager class). Other than the DisplayManager class, no classes nor structs

use virtual methods. This causes the execution speed to increase as there is no method

lookup time wasted, all method pointers can be determined at compile-time.

We made extensive use of template classes, which improved the maintainability and

readability of the source code.

The combined size of the source-code (excluding standard libraries) is less than 6000

CHAPTER 12. THE PROTOTYPE SYSTEM 127

lines of code. The Python script to export our Blender models into our custom format

is 315 lines of code. It took roughly six weeks to integrate the neural network with

the facial model to achieve animation. The prior work converning fourier transforms,

wavelets, cepstral coefficients, and neural network training took just over a year to im-

plement. The binary compilation of the prototype is 124 Kb in size.

In the next chapter we describe the results obtained by driving our system as described

in this and the previous chapters.

Chapter 13

Results

In this chapter we give descriptions about the system on which the prototype was im-

plemented and results obtained. The source-code for the prototype can be found on the

accompanying CD.

13.1 System Specification

The hardware and software settings for the execution environment were as follows:

• CPU - Intel Pentium 4 2400MHz (hyperthreaded)

• RAM - 1Gb 333MHz (dual channel)

• 3D Hardware - nVidia GeForce FX 5200 (128Mb)

• Operating System - Mandrake Linux 10.0 (Kernel 2.6.3)

• Graphics Driver - NVIDIA-Linux-x86-1.0.6111

• Sound API - Advanced Linux Sound Architecture

• Graphics API - OpenGL

• Screen Resolution - 1280 × 1024

13.2 Model Information

The model (on which the following results are based) had the following properties (un-

less otherwise specified):

• There were 3479 vertices,

• There were 6626 triangular faces,

128

CHAPTER 13. RESULTS 129

• There were 4 textures - each 256 × 256 pixels in size.

The results of our implementation are divided into the following sections:

• Phoneme recognition performance and

• Mesh manipulation performance.

13.3 Phoneme Recognition Performance

The results of our phoneme recogniser are measured at two stages: training and usage.

The training metric describes the various parameters of the neural networks, the type

of input vectors given, epoch sizes, accuracy and convergence time. The usage metric

describes the speed of phoneme identification during use. We first provide results for

the DWT, then more detailed results for the Fourier Transform.

The sample training data was a collection of English utterances spoken by an adult

female. In order to measure accuracy we took the ratio of: number of correctly identi-

fied phonemes / total number of test phonemes.

Due to the fact that the number of positive and negative trainings per epoch were limited

(see 11.1.4 for more details about this training method), the number of epochs per neu-

ral network varied depending on the number of instances of the appropriate phoneme in

the training data. The metric given, therefore, is number of training cycles executed -

irrespective of whether some networks ignored the data or not. In all cases the number

of tests executed is 5000.

13.3.1 The DWT

Due to the DWT’s ability to provide more localised support, it was one of the choices

as a transformation tool. Unfortunately as the following results illustrate, the DWT did

not provide effective phoneme recognition in the prototype. (See the accompanying CD

for the source code of the prototype).

Table 13.1 describes the classification accuracy of the DWT in our prototype. The

Daubechies-4 Wavelet Transform was used. In the table, the numbers in brackets indi-

cate the number of sets of training data passed to the neural network. As we can see,

the DWT does not allow for accurate classification of phonetic information. In the next

section we describe the classification statistics for log cepstral coefficients.

CHAPTER 13. RESULTS 130

Coefficients Accuracy (2000) Accuracy (12000) Time (12000)
10 16% 16% 4s
15 17% 15% 6s
50 16% 15% 44s
100 15% 17% 165s

Table 13.1: The accuracy of phoneme identification using the DWT

13.3.2 Classification results of log cepstral coefficients

As mentioned in the previous chapter, we used one neural network per phoneme. (We

chose not to use Hidden Markov Models due to the fact that HMMs are used to identify

most probable sequences (of phonemes in our case) - not a single isolated item). To

train these networks, we extracted cepstral coefficients from the signal and passed them

as inputs to the neural networks. Different numbers of coefficients resulted in different

levels of accuracy and speeds of execution.

The first tests executed were designed to determine the minimum number of cepstral

coefficients required as inputs before the neural networks performed sufficiently accu-

rate classifications. Table 13.2 illustrates these findings (numbers in parentheses are the

number of training inputs – not the number of epochs as might be expected). It shows

that 50 coefficients provides a good balance between accuracy and speed, so we chose

to use 50 coefficients for our system. The accuracy is almost 50% better than the DWT

in this case. (See the accompanying CD for the source code of the prototype).

The next set of tests, was designed to choose the ratio of positive and negative train-

ings per epoch. The number of coefficients was fixed at 50. As can be seen from table

13.3, the ratio of positive and negative trainings per epoch has a large influence on the

training rate of the neural networks. For our application the optimum ratio is 10 positive

trainings to 10 negative ones per epoch.

The speed of execution of the classification module is left for the next section, which

also deals with the speed of the mesh manipulations and renderings.

13.4 Mesh Manipulation Performance

In this section we will describe the performance of the various parts of the system. The

metric used is frames per second. In table 13.4 we show the effect that each module has

on the execution speed of the system.

CHAPTER 13. RESULTS 131

Coefficients Accuracy (2000) Accuracy (12000) Time (12000)
10 42% 49% 1s
15 46% 51% 1s
20 43% 44% 1s
25 53% 63% 3s
30 53% 66% 3s
40 31% 72% 5s
50 49% 74% 7s
75 39% 73% 13s
100 54% 80% 28s

Table 13.2: The effect of cepstral coefficient counts

All the above tests were done with relatively few polygons (6626 triangles) in the mesh.

We will now show how polygon count affected the performance of the application. Each

consecutive result was caused by smooth-subdividing the mesh from the previous result.

Table 13.5 illustrates these results. We can see that polygon count has a severe effect on

the performance of the system as a whole.

One area where a performance dip is expected is when the number of muscles is in-

creased. Table 13.6, however, shows that effect of muscles on frame rates is not drastic.

The reason for this is that the effect of the muscles is limited to a few vertices (approx-

imately 60 vertices per muscle).

13.5 Conclusion

A full description of conclusions about these results can be found in the following chap-

ter.

CHAPTER 13. RESULTS 132

Positive Negative Accuracy (12000)
1 1 18%
1 3 36%
1 5 47%
1 10 62%
1 20 53%
3 1 25%
3 3 62%
3 5 69%
3 10 68%
3 20 69%
5 1 30%
5 3 55%
5 5 68%
5 10 71%
5 20 74%
10 1 6%
10 3 64%
10 5 65%
10 10 74%
10 20 73%
20 1 4%
20 3 51%
20 5 36%
20 10 44%
20 20 61%

Table 13.3: The effect of training data composition

Activated modules Frame rate
Display 143
Display, skeleton 140
Display, skeleton, muscles 138
Display, skeleton, muscles, normals 130
Display, skeleton, muscles, normals, sound 128

Table 13.4: The speeds of the different modules

Vertices Faces Frame Rate
1443 2650 128
5537 10600 98
21675 42400 30
85751 169600 8

Table 13.5: The effect of polygon count

CHAPTER 13. RESULTS 133

Muscles Frame Rate
2 46
10 45
50 43

Table 13.6: The effect of muscles

Chapter 14

Conclusions and Contributions

This chapter takes the results of the previous chapter and uses them to show the extent

to which the original problem has been solved. The chapter is broken up into three

sections :

• Speech Classification - in this section we describe how the speech classification

portion of the problem statement has been solved.

• Facial Modeling - in this section we show how our prototype solves the facial

animation portion of the problem.

• Entire Solution - this section shows how the integration of all the modules of the

prototype show that the problem stated has been completely solved.

14.1 Speech Classification

During the early stages of the prototype development, phoneme classification was at-

tempted on Fourier Transformed data (without cepstral coefficients). In our attempts,

no amount of training (with any structure of neural network) was able to classify this

data. This information led us to initiate studies about wavelets and cepstral coefficients.

It was mentioned that Wavelets have been used to classify phonemes. Our attempts

at classification using the DWT (see table 13.1) proved fruitless. Our opinion is that

the results are poor due to the fact that the number of frequencies present is the log

of the number of samples in the frame (Nfrequencies = log2(Nsamples)), whereas after

performing the FFT, data for far more frequencies is present.

The results for classification of cepstral coefficients (tables 13.2 to 13.3) show that cep-

stral coefficients provide for effective classification. They allow us to conclude that real-

time speech processing is possible. While the accuracy could potentially be improved

134

CHAPTER 14. CONCLUSIONS AND CONTRIBUTIONS 135

with additional effort, the accuracy given is sufficient for purposes of the prototype.

Next we discuss the facial animation portion of the prototype.

14.2 Facial Modeling

During execution of our prototype, we observed that the lighting effects were incorrect.

This was due to statically defined normals, which are inadequate for a flexible model.

This led us to perform normal calculations for all vertices. The speed reduction was

noticeable, which led us to perform the normal calculations only for necessary vertices.

During the implementation of texturing in our prototype, we realised that a single ver-

tex may contain texture information for several textures. This would occur on the mesh

at the border between two textured regions. Unfortunately due to an OpenGL optimi-

sation, the index for texture co-ordinates for a vertex has to match the index for the

vertex itself. This 1 to 1 relationship prevents a single vertex having multiple texture

co-ordinates. In order to solve this problem, we enhanced our python script (which ex-

ports Blender meshes - see accompanying CD) to duplicate vertices that have multiple

textures. One unsolved problem is the fact that when a vertex is duplicated for multiple

textures, then the normal calculations are slightly incorrect as the calculation utilises

fewer faces for that vertex than it should. To solve this problem, some manner of relat-

ing vertices during normal calculations would need to be implemented.

Overall, our results show that the facial model parameters can be driven in real-time

by the classified speech signals. Tables 13.4, 13.5 show that the facial animation can

occur in real-time.

In the next section, we discuss the conclusions about the integration of the two modules

of the prototype.

14.3 Entire Solution

Our initial problem statement was to determine whether or not real-time human speech

can be effectively used to drive a facial animation. It is insufficient to merely show that

real-time speech classification and real-time facial animation are possible. The integra-

tion of the two is necessary to solve the problem.

In order to perform this step in our prototype, we manually adjusted the facial model

CHAPTER 14. CONCLUSIONS AND CONTRIBUTIONS 136

into an appropriate pose for each phoneme. The properties of each bone and muscle

were then recorded. (This process is unfortunately a very labour intensive one). Upon

identification of a given phoneme, the prototype interpolated the skeletal and muscle

properties from those of the previous phoneme to those of the current one.

By integrating the phoneme classification and the facial animation modules in our pro-

totype, we demonstrated that our problem is solved : real-time human speech can be

effectively used to drive a facial animation.

In the next chapter, we describe additional uses for some of the techniques mentioned

in this document.

Chapter 15

Additional Applications

Despite the fact that our software is intended to be used in the entertainment indus-

try, much of the technology described has applications in other environments. In this

chapter we will describe additional uses for:

• speech recognition techniques, and

• wavelet transforms.

Almost all of the other techniques described do have other applications, but the inter-

ested reader is referred to the additional resources section of the relevant chapter.

15.1 Speech Recognition Techniques

When we hear other people speaking, we gather much more information than just the

sounds that person is saying. We understand the words and context of that person’s

message. We can often determine subtle undertones of emotion based on the speed and

pitch of the speech. People also use speech to identify people by their voices.

By careful study of how our brains perform these functions, it becomes possible to

implement them on a computer as well.

15.1.1 Speaker Identification

One of the earliest forms of biometric identification systems was speaker identification.

Despite the fact that to a human, some people’s voices sound very similar, a computer

can detect very minute details in a person’s voice signal, that a human cannot.

Speaker identification is done in one of two ways:

• speaker verification or

137

CHAPTER 15. ADDITIONAL APPLICATIONS 138

• speaker identification

Speaker verification is used to verify that a speaker is who they claim to be. Typically

some form of identification such as a user name or smart card is provided to the system.

This informs the system who is expected to be speaking. The system calculates the

probability of the speaker being who they say they are (based on the recording of their

voice). If the probability is above a certain threshold, then the speaker is assumed to be

who they say they are.

Speaker identification is a far more difficult, and less accurate process. The system

receives a recording of a person speaking. It then extracts the appropriate features from

the signal for processing. By comparing those features with ones stored in a database,

the closest matching profile is found, and the speaker is identified. By placing a mini-

mum threshold on the identification criteria, non-matches can also be returned.

15.1.2 Speech Samples for Speaker Identification

Sherlock and Monro [78] mention that only voiced speech (section 3.4.1) is suitable for

feature extraction for purposes of speaker recognition. Unvoiced speech is too chaotic

to extract reliable features.

Claude Norton, III [17] mentions that differences between the speakers’ voices are the

result of different resonance characteristics of the speakers’ vocal tracts. These reso-

nance differences are attributed to length and cross-sectional area differences, as well

as vocal chord characteristics.

Toutios and Margaritis [87] describe a speaker identification system that uses Mel-

frequency cepstrum coefficients (MFCC) and perceptual linear prediction (PLP) fea-

tures. They also mention that PLP was originally used to supress speaker-dependant

features, but can also be used for speaker identification. Their system uses a neural

network to perform the identification from the features.

15.1.3 Reliability of Speaker Identification

Unfortunately human speech is influenced by many different factors, some of which are

not reliable. For example, when a person who has contracted a cold speaks, many of

the original features of the sound can become distorted. This may prevent or seriously

hamper the identification process.

Another important factor to consider when evaluating the effectiveness of speaker iden-

CHAPTER 15. ADDITIONAL APPLICATIONS 139

tification is physical changes to the vocal tract over time. People’s voices change a huge

amount during puberty. This is caused by an enlarging and stretching of the larynx and

other parts of the vocal tract. During this phase a person’s voice may drop as much as

one octave in pitch. This pitch change in itself may not be sufficient to confuse a speaker

recognition system, but many other unpredictable changes also occur at the same time.

The next application is also used in the biometrics field.

15.2 Wavelet Transforms

Another technology that was described in this document that has applications in other

fields is the wavelet transform. Due to the speed with which the wavelet transform exe-

cutes, it is a very useful tool in time-critical applications.

One of the more noteable applications of the wavelet transform is in fingerprint com-

pression. In order to identify a person by their fingerprint, many details of the fingerprint

are studied. This included not only the visible ridges and valleys of the print itself, but

also tinier details such as sweat pores in the middle of a ridge. For a fingerprint recog-

nition engine to be most effective, these tiny details must be provided as input. It is

therefore critical that should the image of a person’s fingerprint be digitised that the

image retain these details, despite any compression.

The FBI database of fingerprints exceeds 200 million fingerprint images, which need

to be compressed for storage purposes. One of the major concerns was the quality of

the image after compression and the time taken to compress the images. During the

digitisation process (the originals are inked impressions on paper cards), the resultant

image is 8 bits/pixel, 500dpi grayscale images (figure 15.1. This means that each image

is approximately 10Mb.

When the FBI researched different image compression techniques, the first one re-

searched was the JPEG standard. JPEG is known to be very effective at compressing

the size of images. The most major problem encountered was the ‘tiling artifacts’ that

even moderate compression ratios produced (figure 15.2) [9].

Finally, the FBI made the decision to use wavelet transform/scalar quantisation (WSQ)

for fingerprint image compression. The reasons are that using wavelet compression, the

detail loss rates are extremely low, and the tiling artifacts are absent. Brislawn [9] writes

that the standard that the FBI developed (which is entirely within the public domain)

involves a 2D discrete wavelet transform, uniform scalar quantisation and Huffman en-

CHAPTER 15. ADDITIONAL APPLICATIONS 140

tropy coding.

Using this wavelet transform, the images can be compressed to an average of 0.6 bit-

s/pixel. This results in approximately 750Kb images (figure 15.3). This saving becomes

huge when there are 200 million such images.

Figure 15.1: The original fingerprint [8]

The following chapter is an appendix that may be referred to for a better understanding

of the working of the prototype.

CHAPTER 15. ADDITIONAL APPLICATIONS 141

Figure 15.2: The fingerprint compressed using the JPEG standard [8]

Figure 15.3: The fingerprint compressed using WSQ [8]

Appendix A

Data Structures Used

In this appendix, listings of appropriate extracts from the source code of the prototype

are given. This may aid in the overall understanding of the operation of the prototype.

For the complete source-code of the prototype please see the accompanying CD.

A.1 Windowing Algorithm

The following code defines the behaviour of the abstract concept of a window

t e m p l a t e<typename T>

s t r u c t Window

{
u i n t s i z e ;

T ∗ f i l t e r ;

Window (u i n t s i z e) ;

˜ Window () ;

void t r a n s f o r m (T ∗ d a t a) ;

} ;

t e m p l a t e<typename T>

Window<T> : : Window (u i n t s i z e)

{
t h i s −>s i z e = s i z e ;

f i l t e r = new T [s i z e] ;

}

t e m p l a t e<typename T>

Window<T> : : ˜ Window ()

142

APPENDIX A. DATA STRUCTURES USED 143

{
d e l e t e [] f i l t e r ;

}

t e m p l a t e<typename T>

void Window<T> : : t r a n s f o r m (T ∗ d a t a)

{
f o r (u i n t i = 0 ; i < s i z e ; i + +) d a t a [i] ∗ = f i l t e r [i] ;

}

A.2 Fast Fourier Transform

The following code extract defines the structure and behaviour of the Fast Fourier Trans-

form used in the prototype.

i n c l u d e <math . h>

t e m p l a t e<typename T>

s t r u c t FFT

{
FFT (u i n t l o g S i z e) ;

˜ FFT () ;

void c a l c u l a t e (T ∗ d a t a) ;

p r i v a t e :

u i n t r e v e r s e B i t s (u i n t a , u i n t b i t s) ;

u i n t l o g S i z e ;

u i n t s i z e ;

u i n t ∗ i n d i c e s ;

T ∗ r e a l ;

T ∗ imag ;

T ∗ s i n e s ;

T ∗ c o s i n e s ;

} ;

t e m p l a t e<typename T>

FFT<T> : : FFT (u i n t l o g S i z e)

{
t h i s −>l o g S i z e = l o g S i z e ;

APPENDIX A. DATA STRUCTURES USED 144

s i z e = 1 << l o g S i z e ;

i n d i c e s = new u i n t [s i z e] ;

f o r (i n t i = 0 ; i < s i z e ; i ++)

i n d i c e s [i] = r e v e r s e B i t s (i , l o g S i z e) ;

r e a l = new T [s i z e + 1] ;

imag = new T [s i z e + 1] ;

s i n e s = new T [s i z e + 1] ;

c o s i n e s = new T [s i z e + 1] ;

double a n g l e = 0 . 0 ;

double d i f f A n g l e = 2 . 0 ∗ 3 . 1 4 1 5 9 2 6 5 3 5 / s i z e ;

f o r (i n t i = 0 ; i <= s i z e ; i ++)

{
s i n e s [i] = s i n (a n g l e) ;

c o s i n e s [i] = cos (a n g l e) ;

a n g l e + = d i f f A n g l e ;

}
}

t e m p l a t e<typename T>

FFT<T> : : ˜ FFT ()

{
i f (i n d i c e s ! = NULL) d e l e t e [] i n d i c e s ; i n d i c e s = NULL;

i f (r e a l ! = NULL) d e l e t e [] r e a l ; r e a l = NULL;

i f (imag ! = NULL) d e l e t e [] imag ; imag = NULL;

i f (s i n e s ! = NULL) d e l e t e [] s i n e s ; s i n e s = NULL;

i f (c o s i n e s ! = NULL) d e l e t e [] c o s i n e s ; c o s i n e s = NULL;

}

t e m p l a t e<typename T>

void FFT<T> : : c a l c u l a t e (T ∗ d a t a)

{
u i n t h a l f S i z e = s i z e / 2 ;

u i n t l o g S i z e 2 = l o g S i z e − 1 ;

T tempReal ;

T tempImag ;

/ / S e t u p

f o r (u i n t i = 0 ; i < s i z e ; i ++)

APPENDIX A. DATA STRUCTURES USED 145

{
r e a l [i] = d a t a [i] ;

imag [i] = 0 . 0 ;

}

u i n t k = 0 ;

f o r (u i n t l o g S k i p = 1 ; l o g S k i p <= l o g S i z e ; l o g S k i p ++)

{
whi le (k < s i z e)

{
f o r (u i n t i = 1 ; i <= h a l f S i z e ; i ++)

{
u i n t t r i g I n d e x = i n d i c e s [k >> l o g S i z e 2] ;

T cosVa l = c o s i n e s [t r i g I n d e x] ;

T s i n V a l = s i n e s [t r i g I n d e x] ;

u i n t o f f s e t = k + h a l f S i z e ;

tempReal = r e a l [o f f s e t] ∗ cosVa l + imag [o f f s e t] ∗ s i n V a l ;

tempImag = imag [o f f s e t] ∗ cosVa l − r e a l [o f f s e t] ∗ s i n V a l ;

r e a l [o f f s e t] = r e a l [k] − t empReal ;

imag [o f f s e t] = imag [k] − tempImag ;

r e a l [k] + = tempReal ;

imag [k] + = tempImag ;

k ++;

}
k + = h a l f S i z e ;

}
k = 0 ;

l o g S i z e 2 −−;

h a l f S i z e / = 2 ;

}

k = 0 ;

u i n t r ;

whi le (k < s i z e)

{

APPENDIX A. DATA STRUCTURES USED 146

r = i n d i c e s [k] ;

i f (r > k)

{
t empReal = r e a l [k] ;

tempImag = imag [k] ;

r e a l [k] = r e a l [r] ;

imag [k] = imag [r] ;

r e a l [r] = tempReal ;

imag [r] = tempImag ;

}
k ++;

}

f o r (u i n t i = 0 ; i < s i z e / 2 ; i ++)

{
t empReal = r e a l [i] ;

tempImag = imag [i] ;

d a t a [i] = (2 ∗ s q r t (tempReal ∗ t empReal +

tempImag ∗ tempImag) / s i z e) ;

d a t a [i + s i z e / 2] = 0 ;

}
}

t e m p l a t e<typename T>

u i n t FFT<T> : : r e v e r s e B i t s (u i n t a , u i n t b i t s)

{
u i n t r e t = 0 ;

f o r (u i n t i = 0 ; i < b i t s ; i ++)

{
r e t + = (a & 1) < < (b i t s − i − 1) ;

a >>= 1;

}
re turn r e t ;

}

A.3 Cepstral Coefficients Algorithms

i n c l u d e <math . h>

APPENDIX A. DATA STRUCTURES USED 147

i n c l u d e ” f f t . h”

t e m p l a t e<typename T>

s t r u c t LogCepstrum

{
FFT<T> ∗ f f t ;

u i n t s i z e ;

LogCepstrum (u i n t l o g S i z e) ;

˜ LogCepstrum () ;

void c a l c u l a t e (T ∗ d a t a) ;

void c a l c u l a t e D e l t a (T ∗ d a t a) ;

p r i v a t e :

void melLog (T ∗ d a t a) ;

} ;

t e m p l a t e<typename T>

LogCepstrum<T> : : LogCepstrum (u i n t l o g S i z e)

{
t h i s −>s i z e = 1 << l o g S i z e ;

f f t = new FFT<T> (l o g S i z e) ;

}

t e m p l a t e<typename T>

LogCepstrum<T> : : ˜ LogCepstrum ()

{
i f (f f t ! = NULL) d e l e t e f f t ; f f t = NULL;

}

t e m p l a t e<typename T>

void LogCepstrum<T> : : c a l c u l a t e (T ∗ d a t a)

{
f f t −>c a l c u l a t e (d a t a) ;

melLog (d a t a) ;

f f t −>c a l c u l a t e (d a t a) ;

}

t e m p l a t e<typename T>

APPENDIX A. DATA STRUCTURES USED 148

void LogCepstrum<T> : : c a l c u l a t e D e l t a (T ∗ d a t a)

{
c a l c u l a t e (d a t a) ;

f o r (u i n t i = s i z e −2 ; i >= 1 ; i −−)

{
d a t a [i] = d a t a [i] − d a t a [i − 1] ;

}
d a t a [s i z e − 1] = 0 ;

}

t e m p l a t e<typename T>

void LogCepstrum<T> : : melLog (T ∗ d a t a)

{
f o r (u i n t i = 0 ; i < s i z e ; i ++)

{
d a t a [i] = 1 1 2 7 . 0 1 0 4 0 8 ∗ l o g (1 + d a t a [i] / 7 0 0 . 0) ;

}
}

A.4 Neural Network Data Structure

The following code extract defines the structure of the Neural Networks.

i n c l u d e < s t d i o . h>

c l a s s T r a i n e r ;

c l a s s A c t i v a t i o n ;

c l a s s Node ;

c l a s s Layer ;

c l a s s Neura lNetwork ;

d e f i n e NN DATA TYPE f l o a t

i n c l u d e ” a r r a y L i s t . h ”

t y p e d e f ArrayListND<NN DATA TYPE> NNDATALIST ;

t y p e d e f A r r a y L i s t<Node ∗> NODELIST ;

t y p e d e f A r r a y L i s t<Layer ∗> LAYERLIST ;

c l a s s T r a i n e r

APPENDIX A. DATA STRUCTURES USED 149

{
p r o t e c t e d :

Neura lNetwork ∗ n e u r a l N e t w o r k ;

p u b l i c :

T r a i n e r () ;

T r a i n e r (Neura lNetwork ∗ n e u r a l N e t w o r k) ;

˜ T r a i n e r () ;

v i r t u a l void t r a i n () = 0 ;

v i r t u a l void f r e e (void ∗ d a t a) = 0 ;

v i r t u a l void ∗ newData (Node ∗ node) = 0 ;

} ;

c l a s s A c t i v a t i o n

{
p u b l i c :

v i r t u a l NN DATA TYPE a c t i v a t i o n (NN DATA TYPE i n p u t) = 0 ;

v i r t u a l void c a l c u l a t e O u t p u t L a y e r E r r o r G r a d i e n t (Node ∗ node ,

NN DATA TYPE d e s i r e d V a l u e) = 0 ;

v i r t u a l void c a l c u l a t e N o n O u t p u t L a y e r E r r o r G r a d i e n t

(Node ∗ node) = 0 ;

} ;

c l a s s Node

{
f r i e n d c l a s s T r a i n e r ;

f r i e n d c l a s s A c t i v a t i o n ;

f r i e n d c l a s s Layer ;

f r i e n d c l a s s Neura lNetwork ;

p r i v a t e :

Layer ∗ l a y e r ;

u i n t i d ;

NNDATALIST ∗ i n p u t s ;

NN DATA TYPE ∗ o u t p u t ;

NNDATALIST w e i g h t s ;

NNDATALIST g r a d i e n t s ;

NNDATALIST e p o c h e d G r a d i e n t s ;

APPENDIX A. DATA STRUCTURES USED 150

A c t i v a t i o n ∗ a c t i v a t i o n ;

NN DATA TYPE dEdOutput ;

void ∗ t r a i n i n g S p e c i f i c ;

u i n t we igh tCoun t () ;

u i n t i n p u t C o u n t () ;

void f i n a l i s e () ;

p u b l i c :

Node (u i n t id , Layer ∗ l a y e r) ;

˜ Node () ;

u i n t ge t ID () ;

Layer ∗ g e t L a y e r () ;

NNDATALIST ∗ g e t W e i g h t s () ;

NNDATALIST ∗ g e t I n p u t s () ;

NN DATA TYPE ∗ g e t O u t p u t () ;

NNDATALIST ∗ g e t G r a d i e n t s () ;

NNDATALIST ∗ g e t E p o c h e d G r a d i e n t s () ;

NN DATA TYPE ∗ ge tdEdOutpu t () ;

void ∗ g e t T r a i n i n g S p e c i f i c () ;

void r andomiseWeigh t s (NN DATA TYPE min , NN DATA TYPE max) ;

void c a l c u l a t e () ;

void e p o c h a r i s e () ;

void c l e a r E p o c h s () ;

void f p r i n t f (FILE ∗ f i l e) ;

} ;

c l a s s Layer

{
f r i e n d c l a s s T r a i n e r ;

f r i e n d c l a s s Node ;

f r i e n d c l a s s Neura lNetwork ;

p r i v a t e :

Neura lNetwork ∗ n e u r a l N e t w o r k ;

u i n t i d ;

NODELIST nodes ;

u i n t nodeCount () ;

APPENDIX A. DATA STRUCTURES USED 151

NNDATALIST ∗ i n p u t s ;

NNDATALIST ∗ o u t p u t s ;

u i n t i n p u t C o u n t () ;

u i n t o u t p u t C o u n t () ;

void f i n a l i s e () ;

p u b l i c :

Layer (u i n t id , Neura lNetwork ∗ n e u r a l N e t w o r k) ;

˜ Layer () ;

u i n t ge t ID () ;

NODELIST ∗ getNodes () ;

Layer ∗ p r e v i o u s () ;

Layer ∗ n e x t () ;

Node ∗ addNode () ;

void r andomiseWeigh t s (NN DATA TYPE min , NN DATA TYPE max) ;

void c a l c u l a t e () ;

void e p o c h a r i s e () ;

void c l e a r E p o c h s () ;

void f p r i n t f (FILE ∗ f i l e) ;

} ;

c l a s s Neura lNetwork

{
f r i e n d c l a s s T r a i n e r ;

f r i e n d c l a s s Node ;

f r i e n d c l a s s Layer ;

p r i v a t e :

A c t i v a t i o n ∗ a c t i v a t i o n ;

T r a i n e r ∗ t r a i n e r ;

boo l f i n a l i s e d ;

A r r a y L i s t<NNDATALIST∗> v a l u e s ;

u i n t l a y e r C o u n t () ;

NNDATALIST ∗ l a y e r I n p u t s (u i n t l a y e r) ;

NNDATALIST ∗ l a y e r O u t p u t s (u i n t l a y e r) ;

void k i l l N o d e T r a i n i n g D a t a () ;

APPENDIX A. DATA STRUCTURES USED 152

p u b l i c :

LAYERLIST l a y e r s ;

NNDATALIST ∗ i n p u t s ;

NNDATALIST ∗ o u t p u t s ;

NNDATALIST d e s i r e d ;

u i n t p o s T r a i n C o u n t ;

u i n t negTra inCoun t ;

u i n t t r a i n C o u n t ;

Neura lNetwork (u i n t inpu tCoun t , A c t i v a t i o n ∗ a c t i v a t i o n) ;

˜ Neura lNetwork () ;

LAYERLIST ∗ g e t L a y e r s () ;

void f i n a l i s e () ;

Layer ∗ addLayer () ;

Layer ∗ g e t L a y e r (u i n t i d) ;

void r andomiseWeigh t s (NN DATA TYPE min , NN DATA TYPE max) ;

void c a l c u l a t e () ;

void c a l c u l a t e G r a d i e n t s () ;

void e p o c h a r i s e () ;

void c l e a r E p o c h s () ;

void t r a i n () ;

void f p r i n t f (FILE ∗ f i l e) ;

void f p r i n t f I n p u t s (FILE ∗ f i l e) ;

void f p r i n t f O u t p u t s (FILE ∗ f i l e) ;

} ;

A.5 Phoneme Identifier

The following code defines the structure of the phoneme identification modeul.

i n c l u d e ” a r r a y L i s t . h ”

i n c l u d e ” nn . h”

i n c l u d e ” logCeps t rum . h”

i n c l u d e ” window . h ”

s t r u c t P h o n e m e I d e n t i f i e r

{

APPENDIX A. DATA STRUCTURES USED 153

p r i v a t e :

u i n t windowSize ;

u i n t f e a t u r e V e c t o r S i z e ;

u i n t a l l F e a t u r e V e c t o r s S i z e ;

u i n t windows ;

u i n t d a t a S i z e ;

u i n t c u r r e n t W i n d o w O f f s e t ;

A r r a y L i s t<Neura lNetwork ∗> nn ;

LogCepstrum<NN DATA TYPE> ∗ l c ;

NN DATA TYPE ∗ d a t a ;

Window<NN DATA TYPE> ∗ w;

void t r a n s f o r m (s h o r t ∗ samples) ;

void l oadNe tworks (char ∗ path , u i n t c o u n t) ;

p u b l i c :

P h o n e m e I d e n t i f i e r (u i n t l o g S i z e , u i n t windows , char ∗ p a t h) ;

˜ P h o n e m e I d e n t i f i e r () ;

u i n t i d e n t i f y (s h o r t ∗ samples) ;

} ;

A.6 Geometry Structures

The following code defines the geometry structures used in the prototype.

t e m p l a t e<typename T>

s t r u c t Vec to r2

{
union

{
s t r u c t {T u , v ; } ;

s t r u c t {T x , y ; } ;

} ;

Vec to r2 () ;

Vec to r2 (T u , T v) ;

void copy (Vec to r2 v) ;

APPENDIX A. DATA STRUCTURES USED 154

} ;

t e m p l a t e<typename T>

s t r u c t Vec to r3

{
union

{
T v [3] ;

s t r u c t {T x , y , z ; } ;

s t r u c t {T r , g , b ; } ;

} ;

Vec to r3 () ;

Vec to r3 (T x , T y , T z) ;

Vec to r3 (T ∗ v) ;

Vec to r3 (Vector3<T> ∗ v) ;

Vec to r3 (Vector3<T> v1 , Vector3<T> v2) ;

boo l e q u a l s (Vector3<T> v) ;

void n o r m a l i s e () ;

T norm () ;

T normSquared () ;

void z e r o () ;

void s e t (T x , T y , T z) ;

void copy (Vector3<T> v1) ;

void s u b t r a c t (Vector3<T> v1 , Vector3<T> v2) ;

void s u b t r a c t (Vector3<T> v) ;

void add (Vector3<T> v) ;

void d i v i d e (f l o a t v) ;

void m u l t i p l y (f l o a t v) ;

void i n t e r p o l a t e (Vector3<T> v1 , Vector3<T> v2 , f l o a t f a c t o r) ;

s t a t i c T i n n e r P r o d u c t (Vector3<T> v1 , Vector3<T> v2) ;

s t a t i c T a n g l e (Vector3<T> v1 , Vector3<T> v2) ;

void c r o s s P r o d u c t (Vector3<T> v1 , Vector3<T> v2) ;

void f p r i n t f (FILE ∗ f i l e , char ∗ fo rma t , char ∗ t x t) ;

s t a t i c void t r a n s f e r (Vector3<T> ∗ source ,

Vector3<T> ∗ d e s t , unsigned i n t c o u n t) ;

s t a t i c T d o t P r o d u c t (Vector3<T> ∗ v1 , Vector3<T> ∗ v2) ;

} ;

APPENDIX A. DATA STRUCTURES USED 155

t e m p l a t e<typename T>

s t r u c t Vec to r4

{
union

{
T v [4] ;

s t r u c t {T x , y , z , w; } ;

s t r u c t {T r , g , b , a ; } ;

} ;

Vec to r4 () ;

Vec to r4 (T x , T y , T z , T w) ;

Vec to r4 (T ∗ v) ;

void f p r i n t f (FILE ∗ f i l e , char ∗ fo rma t , char ∗ t x t) ;

s t a t i c void t r a n s f e r (Vec to r4 ∗ source , Vec to r4 ∗ d e s t ,

unsigned i n t c o u n t) ;

} ;

s t r u c t Matr ix

{
f l o a t v [1 6] ;

Mat r ix () ;

void m u l t i p l y (Vector3<f l o a t > ∗ s o u r c e) ;

void m u l t i p l y (Vector3<f l o a t > ∗ source ,

Vector3<f l o a t > ∗ d e s t) ;

void m u l t i p l y (Mat r ix ∗ s o u r c e) ;

void m u l t i p l y (Mat r ix ∗ source , Mat r ix ∗ d e s t) ;

void z e r o () ;

void copy (Mat r ix ∗ m a t r i x) ;

void i d e n t i t y () ;

void t r a n s l a t e (f l o a t x , f l o a t y , f l o a t z) ;

void t r a n s l a t e (Vector3<f l o a t > v) ;

void t r a n s l a t e N (Vector3<f l o a t > v) ;

void r o t a t e X (f l o a t a) ;

void r o t a t e Y (f l o a t a) ;

APPENDIX A. DATA STRUCTURES USED 156

void r o t a t e Z (f l o a t a) ;

void r o t a t e A x i s (Vector3<f l o a t > v1 , Vector3<f l o a t > v2 ,

f l o a t a n g l e) ;

void r o t a t e P l a n e (Vector3<f l o a t > v1 , Vector3<f l o a t > v2 ,

f l o a t a n g l e) ;

void h e a d i n g A t t i t u d e B a n k (f l o a t h , f l o a t a , f l o a t b) ;

void f p r i n t f (FILE ∗ f i l e) ;

} ;

t y p e d e f Vector3<GLfloa t > V e r t e x ;

t y p e d e f Vector3<GLfloa t > Normal ;

t y p e d e f Vector3<u i n t > Face ;

t y p e d e f Vector2<GLfloa t > Tex tu reCoord ;

t y p e d e f Vector3<unsigned char> Colo r3 ;

t y p e d e f ArrayListND<Vertex > V e r t e x L i s t ;

t y p e d e f ArrayListND<Normal> N o r m a l L i s t ;

t y p e d e f ArrayListND<Face > F a c e L i s t ;

t y p e d e f ArrayListND<TextureCoord > T e x t u r e C o o r d L i s t ;

t y p e d e f ArrayListND<bool > Ver texMovedLis t ;

t y p e d e f ArrayListND<char> V e r t e x F a c e C o u n t L i s t ;

A.7 Mesh Structure

The following code defines the structure of the mesh itself.

s t r u c t D i s p l a y I t e m

{
T e x t u r e ∗ t e x t u r e ;

F a c e L i s t f a c e s ;

} ;

t y p e d e f A r r a y L i s t<D i s p l a y I t e m ∗> D i s p l a y I t e m L i s t ;

s t r u c t Mesh

{
p u b l i c :

boo l i n i t i a l i s e d ;

V e r t e x L i s t o V e r t i c e s ; / / O r i g i n a l v e r t i c e s

APPENDIX A. DATA STRUCTURES USED 157

V e r t e x L i s t s V e r t i c e s ; / / S k e l e t a l t r a n s f o r m e d v e r t i c e s

V e r t e x L i s t m V e r t i c e s ; / / Muscle t r a n s f o r m e d v e r t i c e s

ArrayListND<u i n t > v e r t e x T e x t u r e I n d i c e s ;

N o r m a l L i s t no rma l s ;

M u s c l e L i s t musc le s ;

T e x t u r e C o o r d L i s t t e x t u r e C o o r d s ;

Ver t exMovedLis t ver texMoved ;

V e r t e x F a c e C o u n t L i s t v e r t e x F a c e C o u n t ;

S k e l e t o n s k e l e t o n ;

D i s p l a y I t e m L i s t d i s p l a y I t e m s ;

boo l t e x t u r e d ;

Mesh () ;

u i n t v e r t e x C o u n t () ;

u i n t i t emCoun t () ;

u i n t musc leCount () ;

u i n t boneCount () ;

void c a l c u l a t e N o r m a l s () ;

void c a l c u l a t e A l l N o r m a l s () ;

void moveBones () ;

void moveMuscles () ;

void d i s p l a y () ;

void d i s p l a y N o r m a l s () ;

void n o r m a l i s e () ;

void n o r m a l i s e (V e r t e x i g n o r e) ;

void n o r m a l i s e (Mesh ∗ mesh , V e r t e x i g n o r e) ;

i n t addVer t ex (V e r t e x v) ;

i n t addTex tu reCoord (Tex tu reCoord t c) ;

Muscle ∗ addMuscle () ;

D i s p l a y I t e m ∗ a d d D i s p l a y I t e m () ;

void addMuscle (Muscle ∗ muscle) ;

void f p r i n t f (FILE ∗ f i l e) ;

void t r a n s f e r () ;

void s h o w s t a t s (char ∗ d e s c r i p t i o n , V e r t e x ∗ n o n e x i s t) ;

APPENDIX A. DATA STRUCTURES USED 158

s t a t i c Mesh ∗ c l o n e I n d e x (Mesh ∗ base , Mesh ∗ sub ,

V e r t e x d e f a u l t V e r t e x , f l o a t minDis t) ;

s t a t i c Mesh ∗ c l o n e I n d e x N o t (Mesh ∗ base , Mesh ∗ sub ,

V e r t e x d e f a u l t V e r t e x , f l o a t minDis t) ;

} ;

A.8 Skeleton Data Structures

The following code extract defines the data structures related to skeletal manipulations.

d e f i n e VERTEX BONE COUNT TYPE u i n t

s t r u c t Bone ;

s t r u c t S k e l e t o n ;

s t r u c t Bone

{
u i n t i n d e x ;

V e r t e x s t a r t ;

V e r t e x s t o p ;

boo l i n i t i a l i s e d ;

Mat r ix m a t r i x ; / / R o t a t i o n s i n t h i s m a t r i x are abou t t h e

/ / o r i g i n − t h e API h a n d l e s t h e r e s t

S k e l e t o n ∗ s k e l e t o n ;

ArrayListND<u i n t > b o n e I n d i c e s ;

ArrayListND<u i n t > v e r t e x I n d i c e s ;

ArrayListND<u i n t > m u s c l e I n d i c e s ;

Bone () ;

Bone (S k e l e t o n ∗ s k e l e t o n , u i n t index , V e r t e x s t a r t ,

V e r t e x s t o p) ;

˜ Bone () ;

u i n t ch i ldBoneCoun t () ;

u i n t v e r t e x C o u n t () ;

u i n t musc leCount () ;

void i n i t (V e r t e x s t a r t , V e r t e x s top , S k e l e t o n ∗ s k e l e t o n) ;

void a d d V e r t e x I n d e x (u i n t i n d e x) ;

void addMusc le Index (u i n t i n d e x) ;

APPENDIX A. DATA STRUCTURES USED 159

void a d d V e r t e x I n d i c e s (V e r t e x L i s t ∗ v e r t i c e s) ;

void a d d V e r t e x I n d i c e s (V e r t e x L i s t ∗ v e r t i c e s , V e r t e x i g n o r e) ;

void addBoneIndex (u i n t i n d e x) ;

void t r a n s f o r m (V e r t e x L i s t ∗ o V e r t i c e s , V e r t e x L i s t ∗ s V e r t i c e s ,

Mat r ix ∗ b a s e M a t r i x) ;

void draw () ;

} ;

s t r u c t S k e l e t o n

{
boo l i n i t i a l i s e d ;

void ∗ mesh ;

A r r a y L i s t<Bone ∗> bones ;

ArrayListND<VERTEX BONE COUNT TYPE> ve r t exBoneCoun t ;

S k e l e t o n () ;

˜ S k e l e t o n () ;

u i n t boneCount () ;

void i n i t (void ∗ Mesh) ;

Bone ∗ addBone (V e r t e x s t a r t , V e r t e x s t o p) ;

void t r a n s f o r m (V e r t e x L i s t ∗ o V e r t i c e s ,

V e r t e x L i s t ∗ s V e r t i c e s , Ver t exMovedLis t ∗ ver texMoved) ;

} ;

A.9 Muscle Data Structures

The following code extract defines the data structures used to store and manipulate the

muscles in the prototype.

i n c l u d e ” a r r a y L i s t . h ”

i n c l u d e ” geometry . h”

d e f i n e PI 3 . 1 4 1 5 9 2 f

s t r u c t Muscle

{
u i n t i n d e x ;

boo l i n i t i a l i s e d ;

APPENDIX A. DATA STRUCTURES USED 160

void ∗ mesh ;

Vector3<f l o a t > v1 ;

Vector3<f l o a t > v2 ;

Vector3<f l o a t > oV1 ; / / o r i g i n a l s t a r t

Vector3<f l o a t > oV2 ; / / o r i g i n a l s t o p

f l o a t omega ;

f l o a t r s ;

f l o a t r f ;

f l o a t c o n t r a c t i o n ;

ArrayListND<u i n t > i n d i c e s ;

ArrayListND<f l o a t > w e i g h t s ;

ArrayListND<Vertex > o C o n e V e r t i c e s ;

ArrayListND<Vertex > c o n e V e r t i c e s ;

ArrayListND<u i n t > c o n e I n d i c e s ;

Muscle () ;

void i n i t (V e r t e x v1 , V e r t e x v2 , f l o a t omega , f l o a t r s ,

f l o a t r f , V e r t e x L i s t ∗ o r i g i n a l V e r t i c e s ,

boo l useAngu la r , boo l u s e R a d i a l) ;

void i n i t (V e r t e x v1 , V e r t e x v2 , f l o a t omega , f l o a t r s ,

f l o a t r f) ;

void ca l cCone () ;

void addVer t ex (u i n t index , f l o a t weigh t) ;

˜ Muscle () ;

void copy (Muscle ∗ muscle) ;

void c o n t r a c t (V e r t e x L i s t ∗ v e r t i c e s ,

V e r t e x L i s t ∗ o r i g i n a l V e r t i c e s ,

Ver t exMovedLis t ∗ ver texMoved) ;

void t r a n s f o r m (Mat r ix ∗ m a t r i x) ;

void draw () ;

} ;

t y p e d e f A r r a y L i s t<Muscle ∗> M u s c l e L i s t ;

t y p e d e f ArrayListND<Muscle ∗> MuscleListND ;

APPENDIX A. DATA STRUCTURES USED 161

References

[1] Robert K. Adair. Concepts in Physics. Academic Press Inc., 1969. Library of

Congress catalog card number 69-13481.

[2] Jim Adams. Advanced Animation with DirectX. Muska and

Lipman/Premier-Trade, 2003.

[3] Irene Albrecht, Jörg Haber, and Hans-Peter Seidel. Speech synchronization for

physics-based facial animation. In WSCG, pages 9–16, 2002.

[4] Sébastien Baehni. Neural java - neural networks tutorial with java applets.

http://diwww.epfl.ch/mantra/tutorial/english/, October 2000.

[5] Bores introduction to dsp. http://www.bores.com/courses/intro/index.htm, 2004.

[6] Jeremy Bradbury. Linear predictive coding.

http://www.cs.queensu.ca/home/bradbury/pdf/lpc paper.pdf, December 2000.

[7] Christoph Bregler, Michele Covell, and Malcolm Slaney. Video rewrite: driving

visual speech with audio. In Proceedings of the 24th annual conference on

Computer graphics and interactive techniques, pages 353–360. ACM

Press/Addison-Wesley Publishing Co., 1997.

[8] Chris Brislawn. The fbi fingerprint compression standard.

http://www.c3.lanl.gov/ brislawn/FBI/FBI.html, June 2002.

[9] Christopher Brislawn. Fingerprints go digital. Notices American Mathematical

Society, 42(11):1278–1283, November 1995.

[10] Robert Bryll. Introduction to wavelets, September 2000.

[11] C. S. Burrus. Notes on the fft. http://www-dsp.rice.edu/res/fft/fftnote.asc, 1997.

[12] Photo by Karin Last. Exploring facial performance capture. Contact

remington@gmail.com.

162

REFERENCES 163

[13] Yong Cao, Petros Faloutsos, and Frédéric Pighin. Unsupervised learning for

speech motion editing. In Proceedings of the 2003 ACM

SIGGRAPH/Eurographics Symposium on Computer Animation, pages 225–231.

Eurographics Association, 2003.

[14] Joseph Carey, editor. Brain Facts - A Primer on the Brain and Nervous System.

The Society for Neuroscience, 4 edition, 2002.

[15] Tim Carmell, Andrew Cronk, Ed Kaiser, Richard Wesson, Johan Wouters, and

Xintian Wu. Spectrogram reading.

http://cslu.cse.ogi.edu/tutordemos/SpectrogramReading/⇒
spectrogram reading.html, March 1997.

[16] M. Chetouani, B. Gas, J.L. Zarader, and C. Chavy. Neural predictive coding for

speech discriminant feature extraction. In ESANN, pages pp275–280, April 2002.

[17] III Claude Norton. Text independent speaker verification using binary-pair

partitioned neural networks, December 1995.

[18] M. Cohen and D. Massaro. Modeling coarticulation in synthetic visual speech.

In N. Thalmann and D. Thalmann, editors, Models and Techniques in Computer

Animation, pages 139–156, Tokyo, 1994. Springer.

[19] Tan Colin and Kim Teng Lua. A neural network based phoneme recognizer.

http://www.comp.nus.edu.sg/ ctank/tdnn.pdf, 2005.

[20] Computation of the discrete fourier transform.

http://jwc.njust.edu.cn/nj/jxwdxz/wdw/szxh/chapter9.pdf, August 2002.

[21] Conversational technologies. http://www.conversational-technologies.com/,

2005.

[22] Robert L. Cook. Shade trees. In Proceedings of the 11th annual conference on

Computer graphics and interactive techniques, pages 223–231. ACM Press,

1984.

[23] Stephen C. Cook. Speech recognition howto.

http://www.gear21.com/speech/html/index.html, April 2002.

[24] Chris Crawford. Artists against anatomists. Computer Graphics, 36(1):pp 8–10,

February 2002.

[25] Howard B. Demuth, Mark H. Beale, and Martin T. Hagan. Neural network

design. http://hagan.ecen.ceat.okstate.edu/nnd.html, 1996.

REFERENCES 164

[26] N. Rex Dixon and Thomas B. Martin, editors. Automatic Speech and Speaker

Recognition. IEEE Press, 1979.

[27] Tim Edwards. Discrete wavelet transforms: Theory and implementation.

http://qss.stanford.edu/˜godfrey/wavelets/wave paper.ps, June 1991.

[28] P. Ekman and W.V. Friesen. Facial action coding system.

http://www-2.cs.cmu.edu/afs/cs/project/face/www/facs.htm, 1978.

[29] Fatih Erol and Ugur Güdübay. An interactive facial animation system. In

V. Skala, editor, WSCG 2001 Conference Proceedings, 2001.

[30] Tony F. Ezzat. Example-based analysis and synthesis for images of human faces.

Master’s thesis, Massachusetts Institute of Technology, February 1996.

[31] Tony F. Ezzat, Gadi Geiger, and Tomaso Poggio. Trainable videorealistic speech

animation. In Proceedings of Siggraph, 2002.

[32] Tony F. Ezzat and Tomaso Poggio. Facial analysis and synthesis using

image-based models. In Second International Conference on Automatic Face and

Gesture Recognition, August 1996.

[33] Tony F. Ezzat and Tomaso Poggio. Videorealistic talking faces: A morphing

approach. In Proceedings of the AVSP ’97 Workshop, Rhodes, Greece, September

1997.

[34] Tony F. Ezzat and Tomaso Poggio. Miketalk: A talking facial display based on

morphing visemes. In Computer Animation Conference, Philadelphia, June 1998.

[35] O. Farooq and S. Datta. Phoneme recognition using wavelet based features.

Information Sciences, 150:5–15, April 2001.

[36] The fft demystified. http://www.eptools.com/tn/T0001/INDEX.HTM, 1999.

[37] Marcus Fillipsson. Speech analysis tutorial.

http://www.ling.lu.se/research/speechtutorial/tutorial.html, 1995.

[38] Tom Forsyth. Self-shadowing bump map using 3d texture hardware. J. Graph.

Tools, 7(4):19–26, 2002.

[39] Matteo Frigo and Steven G. Johnson. Fastest fourier transform in the west.

http://www.fftw.org/, 2005.

[40] Patricia Galvis-Assmus, editor. Computer Graphics, volume 37(4). ACM

Siggraph, November 2003.

REFERENCES 165

[41] Peter De Gersem, Bart De Moor, and Marc Moonen. Applications of wavelets in

audio and computer music.

http://www.esat.kuleuven.ac.be/sista/yearreport96/node22.html, March 1997.

[42] Amara Graps. An introduction to wavelets. IEEE Computational Science and

Engineering, 2(2), Summer 1995.

[43] Maya Gupta and Anna Gilbert. Robust speech recognition using wavelet

coefficient features. In ASRU, 2001.

[44] R. Gutierrez-Osuna, P. Kakumanu, A. Esposito, O. N. Garcia, A. Bojorquez,

J. Castillo, and I. Rudomin. Speech-driven facial animation with realistic

dynamics. In IEEE Transactions on Multimedia, 2003.

[45] Paul Heckbert. Fourier transforms and the fft algorithm.

http://www-2.cs.cmu.edu/afs/cs/project/anim/ph/463.95/pub/www/ps/fourier.ps,

January 1998.

[46] Forrest Hoffman. An introduction to fourier theory.

http://gershwin.ens.fr/vdaniel/Doc-Locale/Cours-Mirrored/Maths-

Stuff/fourier/index.ps,

2004.

[47] Evans M. Harrell II and James V. Herod. Linear methods of applied mathematics.

http://www.mathphysics.com/pde/, September 1997.

[48] JR. Joseph P. Campbell. Speaker recognition: A tutorial. In Proceedings of the

IEEE, volume 85 no. 9, September 1997.

[49] Pushkar Joshi, Wen C. Tien, Mathieu Desbrun, and Frédéric Pighin. Learning

controls for blend shape based realistic facial animation. In Proceedings of the

2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pages

187–192. Eurographics Association, 2003.

[50] Kolja Kähler, Jörg Haber, and Hans-Peter Seidel. Geometry-based muscle

modeling for facial animation. In No description on Graphics interface 2001,

pages 37–46. Canadian Information Processing Society, 2001.

[51] Ian Kaplan. The daubechies d4 wavelet transform.

http://www.bearcave.com/misl/misl tech/wavelets/daubechies/, July 2001.

[52] Eric Keller. Signalyze. http://www.signalyze.com, February 2002.

REFERENCES 166

[53] Tony Kobayashi. Using recorded motion for facial animation. Master’s thesis,

University of British Columbia, April 1994.

http://www.cs.ubc.ca/labs/imager/th/pdf/kobayashi.msc.1997.pdf.

[54] University of Colorado at Boulder Kristian Sandberg, Dept. of

Applied Mathematics. The daubechies wavelet transform.

http://amath.colorado.edu/courses/4720/2000Spr/Labs/DB/db.html, April 2000.

[55] Feng Liu, G. Scott Owen, and Ying Zhu. Universal converter for

platform-independent procedural shaders in x3d. In Siggraph, August 2004.

[56] Zicheng Liu, Zhengyou Zhang, Chuck Jacobs, and Michael Cohen. Rapid

modeling of animated faces from video. Technical Report MSR-TR-2000-11,

Microsoft Research, Microsoft Corporation, February 2000.

[57] C.J. Long and S. Datta. Wavelet based feature extraction for phoneme recogition.

In Proc. ICSLP ’96, volume 1, pages 264–267, Philadelphia, PA, 1996.

[58] Lonnie C. Ludeman. Fundamentals of Digital Signal Processing, chapter 4.6,

pages pp196–197. John Wiley and Sons, New York, 1986.

[59] William R. Mark, R. Stephen Glanville, Kurt Akeley, and Mark J. Kilgard. Cg: A

system for programming graphics hardware in a c-like language. ACM Trans,

Graph, 22(3):896–907, 2003.

[60] Liset web site. http://www.microsoft.com/msagent/default.asp, April 2003.

[61] Bartosz Milewski. The fourier transform.

http://www.relisoft.com/Science/Physics/sound.html, 2004.

[62] Tom Molet, Zhiyong Huang, Ronan Boulic, and Daniel Thalmann. An animation

interface designed for motion capture. In Computer Animation ’97 Conference,

Geneva, Switzerland, pages 77–85. IEEE Press, 1997.

[63] Thomas Akenine Möller and Eric Haines. Real Time Rendering, 2nd edition. AK

Peters Ltd, 2002.

[64] Nils J. Nilsson. Artificial Intelligence: A New Synthesis. Morgan Kauffman

Publishers Inc., 1998.

[65] Christophe Pallier, Laura Bosch, and Nuria Sebastian-Gallés. A limit on

behavioral plasticity in speech perception. Cognition, 64(3):B9–B17, 1997.

[66] Frederic Parke and Keith Waters. Computer Facial Animation. A.K. Peters, 1996.

REFERENCES 167

[67] Catherine Pelaud, Norman I. Badler, and Mark Steedman. Linguistic issues in

facial animation. In N. Magnenat-Thalmann and D. Thalmann, editors,

Computer Animation ’91, pages 15–30. Springer-Verlag, 1991.

[68] Vikram Pudi. Neural networks. http://www.iiit.net/ vikram/nn intro.html, 2004.

[69] Hyewon Pyun, Yejin Kim, Wonseok Chae, Hyung Woo Kang, and Sung Yong

Shin. An example-based approach for facial expression cloning. In Proceedings

of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation,

pages 167–176. Eurographics Association, 2003.

[70] L. R. Rabiner. A tutorial on hidden markov models and selected applications in

speech recognition. In A. Waibel and K.-F. Lee, editors, Readings in Speech

Recognition, pages 267–296. Kaufmann, San Mateo, CA, 1990.

[71] David Rehagen and Rebecca Kirk. The gnnv project tutorial.

www.iwu.edu/ shelley/gnnv/tutorial.html, 2004.

[72] Martin Riedmiller. Advanced supervised learning in multi-layer perceptrons -

from backpropagation to adaptive learning algorithms. Int. Journal of Computer

Standards and Interfaces - Special Issue on Neural Networks, 5, 1994.

[73] Dr Iain A Robin. Digital signal processing tutorial.

http://www.dsptutor.freeuk.com/index.htm, 2004.

[74] Philip Rubin and Eric Vatikiotis-Bateson. Talking heads. In Auditory-Visual

Speech Processing (AVSP’98), December 1998.

[75] Holly Rushmeier, Gabriel Taubin, and André Guéziec. Applying shape from

lighting variation to bump map capture. In Eurographics Rendering Workshop

Proceedings, 1997.

[76] J. Salomon, K. Simon, and M. Osborne. Framewise phone classification using

support vector machines. In 7th International Conference on Spoken Language

Processing, pages 2645–2648, 2002.

[77] Ruhi Sarikaya and John H. L. Hansen. Analysis of the root-cepstrum for

aucoustic modeling and fast decoding in speech recognition. In Eurospeech,

September 2001.

[78] B.G. Sherlock and D.M. Monro. Optimized wavelets for fingerprint compression.

In International Conference on Accoustic, Speech and Signal Processing

(ICASSP ’96, Atlanta, Georgia), volume III, pages 1447–1450, May 1996.

REFERENCES 168

[79] Karan Singh and Evangelos Kokkevis. Skinning characters using

surface-oriented free-form deformations. In Proceedings of the Graphics

Interface, pages 35–42, May 2000.

[80] Stephen W. Smith. The Scientist and Engineer’s Guide to Digital Signal

Processing 2nd Edition. California Technical Publishing, 1999.

[81] Mark Stamp. A revealing introduction to hidden markov models.

http://www.cs.sjsu.edu/faculty/stamp/RUA/HMM.pdf, 2004.

[82] Gilbert Strang. Wavelets. In American Scientist, volume 82, pages 250–255,

April 1994.

[83] Wim Sweldens and Peter Schröder. Building your own wavelets at home.

http://cm.bell-labs.com/who/wim/papers/athome/athome.pdf, 1996.

[84] Beng T. Tan, Minyue Fu, Andrew Spray, and Phillip Dermody. The use of

wavelet transforms in phoneme recognition. In The Fourth International

Conference on Spoken Language Processing (ICSLP) , Philadelphia, October

1996.

[85] Yu Tao, Ernest C.M. Lam, and Yuan Y. Tang. Feature extraction using wavelet

and fractal. Pattern Recognition Letters, 22:271–287, November 2001.

[86] Marco Tarini, Hitoshi Yamauchi, Jörg Haber, and Hans-Peter Seidel. Texturing

Faces. In Proc. Graphics Interface, pages 89–98, May 2002.

[87] Asterios Toutios and K. G. Margaritis. Development of a text dependent speaker

identification system with the ogi toolkit. In 2nd Hellenic Conference on AI,

SETN, pages 525–530, 2002.

[88] J.W. Tukey, B. P. Bogert, and M. J. R. Healy. The quefrency alanysis of time

series for echoes: cepstrum, pseudo-autocovariance, cross-cepstrum, and

saphe-cracking. In Proceedings of the Symposium on Time Series Analysis, 1963.

[89] Marting Vetterli and Jelena Kovačevicć. Wavelets and Subband Coding.

Prentice-Hall PTR, 1995.

[90] Alex Vlachos, Jörg Peters, Chas Boyd, and Jason L. Mitchell. Curved pn

triangles. In Proceedings of the 2001 symposium on Interactive 3D graphics,

pages 159–166. ACM Press, 2001.

[91] Pascal Volino and Nadia Magnenat Thalmann. Fast geometric wrinkles on

animated surfaces. In WSCG, October 1999.

REFERENCES 169

[92] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K.J. Lang. Phoneme

recognition using time-delay neural networks. In IEEE Transactions on

Accoustic, Speech and Signal Processing ASSP-37, 1989.

[93] Keith Waters. A muscle model for animating three-dimensional facial

expression. In Proceedings of the 14th annual conference on Computer graphics

and interactive techniques, pages 17–24. ACM Press, 1987.

[94] George M. White. Speech recognition: A tutorial overview. Computer, 9:pp.

40–53, May 1976.

[95] Jin xiang Chai, Jing Xiao, and Jessica Hodgins. Vision-based control of 3d facial

animation. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics

Symposium on Computer Animation, pages 193–206. Eurographics Association,

2003.

[96] Shin Yoshizawa, Alexander G. Belyaev, and Hans-Peter Seidel. Free-form

skeleton-driven mesh deformations. In Proceedings of the eighth ACM

symposium on Solid modeling and applications, pages 247–253. ACM Press,

2003.

[97] Steve Young, Gunnar Evermann, Thomas Hain, Dan Kershaw, Gareth Moore,

Julian Odell, Dave Ollason, Dan Povey, Valtcho Valtchev, and Phil Woodland.

The htk book, 2002.

[98] Qingshan Zhang, Zicheng Liu, Baining Guo, and Harry Shum. Geometry-driven

photorealistic facial expression synthesis. In Proceedings of the 2003 ACM

SIGGRAPH/Eurographics Symposium on Computer Animation, pages 177–186.

Eurographics Association, 2003.

[99] Li Zuo, Jin tao Li, and Zhao qi Wang. Anatomical human musculature modeling

for real-time deformation. In Winter School of Graphics Computing (WSGC),

2003.

