

UNIVERSITY OF JOHANNESBURG

AN INVESTIGATION OF FUNGI AND MYCOTOXINS IN BARLEY GRAIN AND MATERIALS USED FOR BREWING

PHOLO WILSON MAENETJE

AN INVESTIGATION OF FUNGI AND MYCOTOXINS IN BARLEY GRAIN AND MATERIALS USED IN BREWING

By

PHOLO WILSON MAENETJE

DISSERTATION

Submitted in compliance of the requirement for the

MASTERS'S DEGREE IN TECHNOLOGY

in the Department of

BIOTECHNOLOGY

at the

UNIVERSITY OF JOHANNESBURG

SUPERVISOR AND PROMOTOR: PROFESSOR M. F DUTTON

CO-SUPERVISOR:

MR E. VAN ZYL

ABSTRACT

Mycotoxins, secondary metabolites of filamentous fungi, are associated with foods due to the ubiquitous nature of certain fungi that infect crops during harvesting or storage. These toxins have been implicated as chemical agents of acute and chronic diseases in animal and man. The most commonly acute effects of mycotoxin poisoning is the deterioration of the liver and kidney functions, allergic responses and immunosuppression, whereas chronic effects include mutagenicity, teratogenicity and carcinogenicity. The most common toxigenic fungal genera include *Aspergillus, Fusarium* and *Penicillium*. Aflatoxins (AFs), ochratoxin A (OTA), fumonisins (FBs), trichothecenes and zearalenone (ZEA) are the most important mycotoxins in terms of occurrence on food.

A study was conducted to evaluate and quantify the occurrence of mycotoxins in barley as well as barley-producing beer products in South Africa. A total of 86 barley samples were randomly obtained from Gauteng retail outlets, Maltsters and South African Breweries and were screened for toxigenic fungi. Two fungal genera, *Aspergillus, Penicillium* occurred regularly whereas *Fusarium* and *Mucor* were detected at low incidences. High levels of fungal contamination were found in barley obtained in Gauteng as compared to Maltsters barley samples, however, most of the fungal strains isolated from Gauteng purchased barley were non-toxigenic as compared to Maltsters.

Barley samples were further screened for mycotoxins by multi-mycotoxins extraction coupled with thin layer chromatography (TLC). Mycotoxins detected in the barley extracts were aflatoxins, ochratoxins, deoxynivalenol (DON) and zearalenone at trace levels on the thin layer chromatograms. However, TLC only indicated qualitative results. The presence of the toxins were confirmed by techniques that a highly sensitive and quantitative, such as gas chromatography-mass spectroscopy (GC-MS) and immunoaffinity analysis.

The presence of deoxynivalenol in the barley fractions was confirmed by GC-MS at mean concentration levels ranging from 0.0628 to 0.832 ppm. Barley samples from Maltsters, however, showed to be highly contaminated with DON compared to barley

obtained in Gauteng (p < 0.05). As barley is known to be one of the major ingredients of beer, a total of 48 beer samples were also randomly collected from retail outlets in the Gauteng region and were surveyed for the presence of AFB_1 , AFB_2 and ochratoxin A. Trace levels of AFB_1 were detected in some of the beer samples, whereas AFB_2 was not detected. Ochratoxin A contamination, however, in beer ranged from 0.07 to 0.081 ppb.

The level of mycotoxins contamination in barley samples analysed by immunoaffinity analysis ranged from: 0.0 to 3.9 ppb AFs, 5.0 to 10.0 ppb OTA, 0.0 to 10.0 ppm DON, 0.0 to 5.0 ppm FBs and 0.4 to 2.9 ppm ZEA in Maltsters barley, whereas in Gauteng samples mycotoxin contamination levels ranged from 0.0 to 6.0 ppb OTA, 2.0 to 2.0 ppm DON, 0.0 to 2.0 ppm FBs and 0.5 to 3.4 ppm ZEA. Although high fungal infection was found in Gauteng samples, Maltsters samples were found to be more contaminated with mycotoxins (p < 0.05).

An investigation was also conducted to confirm the natural occurrence of fumonisin B_1 (FB₁) in barley samples at levels of up to 5 ppm, as determined by Vicam immunoaffinity analysis. The HPLC analysis was used to determine FB₁ in these barley samples. HPLC analysis of the barley samples previously found to be positive for fumonisins revealed detectable levels of ≤ 0.21 ppm FB₁ in only 7 samples of the 24 samples analysed.

Materials found to contain fungi and mycotoxins were further examined for cytotoxicity using human lymphocytes for possible chronic effects. Pure mycotoxins and selected barley fractions were found to be toxic to the lymphocytes. A study was also conducted to determine whether cytotoxicity testing could be used as additional tool for estimating the amount of toxin present in a commodity.

The differences in the level of fungal and mycotoxins contamination between Gauteng and Maltsters could have been due to the difference in the environmental conditions, which the barley was harvested, or the varying degree of handling and storage within the companies. This study may also present the general picture on the quality of products in the brewery industry. Although some of the barley samples were of low quality in regards

to food safety, the issue of upgrading quality control measures in the barley producing regions in South Africa will be of paramount importance.

DECLARATION

I hereby declare the dissertation, which I herewith submit for the research qualification

......

to the University of Johannesburg is, apart from recognized assistance, my own work and has not previously been submitted by me to another institution to obtain a research diploma or degree.

ACKNOWLEDGEMENTS

There are a number of people to whom I am indebted for their contribution to this study and I wish to express my gratitude and sincerest thanks to them.

Thanks firstly, to my supervisor Professor M. F Dutton, for his timely acceptance as my supervisor, giving me the opportunity to conduct this study and providing professional guidance and suggestions regarding all aspects of the study.

To Mr Eric Van Zyl, my Head of Department for all the assistance he offered during my studies through the provision of financial assistance as well literature materials relevant to my research. I am eternally grateful for the assistance you have given to me.

I am sincerely grateful to Dr I. Meijering of South African Maltsters and Dr P. Toline of South African Breweries for the supplying me with barley samples.

My sincerest thanks to Mr Neil De Villiers, of The Department of Biomedical Technology for his invaluable assistance with statistical analysis of data and with the use of Bench Mark plate reader as well as other aspects of the laboratory.

I am also grateful to Mr Patrick Njobeh for his assistance with the preparation of this manuscript. His insightful, relevant and critical assessment of the writing was most helpful.

Thanks to Mr. Jan Voster and Mr. Rui Krause of The Department of Chemistry for their assistance with the use of the Gas Chromatography-Mass Spectroscopy and the High Performance Liquid Chromatography.

Thanks to Prof. A. Chuturgoon of the Department of Physiology in Natal University for the assistance with analysis of samples using High Performance-Liquid Chromatography.

To Mr Alaister Campbell, of the Department of Biotechnology for his assistance is drawing blood necessary for the lymphocytes studies and valuable technical advise and assistance with many aspects of my study, I offer my sincerest thanks.

My profound gratitude to all members of Food, Health and Environmental Research Group, for their invaluable advice and assistance with various aspects of this study.

I would like to offer my sincerest gratitude to my friends, particularly Mr Josef Rakoma, Mr Lebo Mmatli, Mr Lucas Ledwaba, Mr Thabo Makena, Miss Mabusha Mabetoa and Miss Thokozile Ledwaba for their encouragement in the darker hours, of they were many.

To Miss Nomfanelo Matiwane, you have been a constant source of love, support and assistance. Thank you so much for everything that you have done. You are my guiding light and I don't know what I would have done without you!

To all the students and staff in The Department of Biotechnology and throughout the University of Johannesburg, past and present. Many of you have contributed in some way towards this study, that any assistance received was truly appreciated.

My utmost thanks and appreciation go to my parents for their sacrifice, support, motivation and encouragement. They have stood by me, prayed for my success and supported me all my life. God's protection and love for me is due to their prayers. I also thank my brothers; Tshepo Maenetje and Samuel Maenetje and my sisters; Maurine Maenetje and Margate Maenetje for the trust and support. Thanks to my grandmother Elsie Maenetje (Blessed memory) for her love and guidance in my life.

I thank TCR funding of Technikon Witwatersrand for the financial assistance of this research.

Finally, TO THE ALMIGHT GOD, for giving the strength to overcome obstacles I had.

TABLE OF CONTENTS

ABSTRACT		. III
DECLARATION		. VI
ACKNOWLEDGE	MENTS	. VII
TABLE OF CONTI	ENTS	Х
LIST OF FIGURES	\$. XIV
LIST OF TABLES.		. XVIII
CHAPTER ONE		1
1.0 Introduction		1
1.1 Mycotoxi	ns	. 1
1.2 Aims of the	his study	. 2
CHAPTER TWO		3
2.0 Literature review		3
2.1 Introducti	onJOHANNESBURG	3
2.2 Toxigenic	fungi	4
2.2.1	Aspergillus spp.	6
2.2.2	Fusarium spp.	. 7
2.2.3	Penicillium spp.	8
2.3 Occurrence	ce of mycotoxins	8
2.3.1	Aflatoxins	10
2.3.2	Ochratoxins	. 10
2.3.3	Fumonisins	12
2.3.4	Zearalenone	13
2.3.5	Trichothecenes	14
2.3.6	Other significant mycotoxins	15
2.4 Mycotoxi	n intake and their biological effects	. 19
2.4.1	Aflatoxins	19
2.4.2	Ochratoxins	. 20

2.4.3	Fumonisins	21
2.4.4	Zearalenone	22
2.4.5	Trichothecenes	22
2.4.6	Other mycotoxins	23
2.5 Control of	f mycotoxin contamination in the food industry	25
2.5.1	Concept of quality control	25
	2.5.1.1 Fungal control	25
	2.5.1.2 Mycotoxin control	26
2.6 Agricultur	ral and food commodities as reservoir for mycotoxin	27
2.6.1	Barley as a reservoir of mycotoxins	27
	2.6.1.1 The brewing process	28
	2.6.1.2 Fungal contamination in South African barley and malt	29
	2.6.1.3 Mycotoxins in barley, malt and beer	30
2.7 Legislatio	n	31
2.8 Conclusio	n	33
CHAPTER THREE		34
	UNIVERSITY JOHANNESBURG	
3.0 Morphological st	JOHANNESBURG	34
3.0 Morphological str 3.1 Fungal co	JOHANNESBURG	34 34
3.0 Morphological str3.1 Fungal co3.2 Methodole	JOHANNESBURG udies on fungal screening ntamination.	34 34 34
3.0 Morphological str3.1 Fungal co3.2 Methodole3.2.1 \$	JOHANNESBURG udies on fungal screening ntamination	34 34 34 34
3.0 Morphological str 3.1 Fungal co 3.2 Methodole 3.2.1 S 3.2.2 I	JOHANNESBURG udies on fungal screening ntamination	 34 34 34 34 35
3.0 Morphological str 3.1 Fungal co 3.2 Methodolo 3.2.1 S 3.2.2 I 3.3 Statistical	JOHANNESBURG udies on fungal screening ntamination ogy Sample collection and preparation Evaluation of toxigenic fungi	 34 34 34 34 35 35
3.0 Morphological str 3.1 Fungal co 3.2 Methodole 3.2.1 S 3.2.2 I 3.3 Statistical 3.4 Results	JOHANNESBURG udies on fungal screening ntamination ogy Sample collection and preparation Evaluation of toxigenic fungi analysis	 34 34 34 34 35 35 36
3.0 Morphological str 3.1 Fungal co 3.2 Methodole 3.2.1 S 3.2.2 I 3.3 Statistical 3.4 Results 3.4.1 I	JOHANNESBURG udies on fungal screening ntamination ogy Sample collection and preparation Evaluation of toxigenic fungi analysis	 34 34 34 34 35 35 36 .36
 3.0 Morphological str 3.1 Fungal co 3.2 Methodole 3.2.1 S 3.2.2 I 3.3 Statistical 3.4 Results 3.4.1 I 3.4.2 T 	JOHANNESBURG udies on fungal screening	 34 34 34 34 35 35 36 36 40
 3.0 Morphological str 3.1 Fungal co 3.2 Methodole 3.2.1 S 3.2.2 I 3.3 Statistical 3.4 Results 3.4.1 I 3.4.2 T 3.5 Discussion 	JOHANNESBURG udies on fungal screening	 34 34 34 34 35 35 36 36 40 42
3.0 Morphological str 3.1 Fungal co 3.2 Methodole 3.2.1 S 3.2.2 I 3.3 Statistical 3.4 Results 3.4.1 I 3.4.2 T 3.5 Discussion 3.5.1 I	JOHANNESBURG	 34 34 34 34 35 35 36 36 40 42 42

CHAPTER FOUR	49
4.0 Multi-Mycotoxin screening	49
4.1 Thin layer chromatography	49
4.2 Methodology	50
4.2.1 Extraction of toxins	50
4.3 Statistical analysis	51
4.4 Results	51
4.4.1 Determination of spots on thin layer chromatograms	. 51
4.4.2 Determination of spots on thin layer chromatograms using spray	
reagents	54
4.5 Discussion	58
4.6 Conclusion	61
CHAPTER FIVE	62
5.0 Gas Chromatography- Mass Spectrometry (GC-MS) and High Performance Liquid	
Chromatography (HPLC).	
5.1 OverviewJOHANNESBURG	62
5.2 Methodology	62
5.2.1 Gas-Chromatography-Mass Spectroscopy determination	62
5.2.1.1 Derivatisation of mycotoxins	63
5.2.1.2 Analysis	63
5.2.2 High Performance Liquid Chromatography determination	64
5.2.2.1 Aflatoxin B ₁ analysis	. 64
5.2.2.2 Ochratoxin A analysis	64
5.3 Statistical analysis	65
5.4 Results	65
5.4.1 Gas-Chromatography-Mass Spectroscopy	65
5.4.2 High Performance Liquid Chromatography	70
5.4.2.1 Aflatoxin B ₁	70
5.4.2.2 Ochratoxin A	73
5.5 Discussion	75

	7-
5.5.1 Gas-Chromatography-Mass Spectroscopy	
5.5.2 High Performance Liquid Chromatography	
5.5.2.1 Aflatoxin B_1	77
5.5.2.1 Ochratoxin A	78
5.6 Conclusion	80
CHAPTER SIX	81
6.0 Quantification of mycotoxins using Vicam	
6.1 Immunoaffinity analysis	81
6.2 Methodology	
6.2.1 Spiking of barley samples	81
6.2.2 Extraction and immunoaffinity clean-up of barley samples	
6.2.2.1 Summary of clean-up procedures	82
6.3 Confirmation of Fumonisin B ₁ in barley samples using High-Performance	ce
Liquid Chromatography	
6.3.1 HPLC analysis. UNIVERSITY	82
6.4 Statistical analysis.	82
6.5 Results	83
6.5.1 Quantification of mycotoxins in barley samples	
6.5.2 Comparison between samples from Gauteng region	
6.5.3 Comparison between samples from Maltsters	
6.5.6 Confirmation of FB ₁ in barley fractions	89
6.6 Discussion.	
6.6.1 Confirmation fumonisin in barley	94
6.7 Conclusion	95
CHAPTER SEVEN	07
7.0 Cytotoxicity testing	
7.1 Methyl tetrazolium analysis.	
7.2 Methodology	
7.2.1 Sample collection	

7.2.2 Isolation and purification of peripheral blood mononuclear cells98
7.2.2.1 Cell enumeration by Trypan blue method
7.2.2.2 Dose response to individual mycotoxins
7.2.2.3 Methyl thiazole tetrazolium assay
7.2.3 Estimation of toxin concentration in extracts using cytotoxicity test100
7.4 Statistical analysis
7.5 Results100
7.5.1 Toxicity of mycotoxin standards and barley fractions
7.5.2 Estimation of toxin concentration in barley fractions using
cytotoxicity test
7.6 Discussion
7.5.1 Toxicity of mycotoxin standards107
7.5.2 Toxicity of mycotoxin standards in comparison to barley fractions109
7.5.3 Estimation of toxin concentration in barley fractions using
cytotoxicity test
7.7 Conclusion. 111
CHAPTER 8
8.0 General Conclusion112
REFERENCES
APPENDICES
Appendix I
Appendix II
Appendix III
Appendix IV
Appendix V153
RAW DATA

LIST OF FIGURES

CHAPTER TWO

Fig. 2.1 Penicillium (left), Fusarium (middle) and Aspergillus (right) (Kendrick, 1986)	5
Fig. 2.2 Chemical structure of Aflatoxin B ₁ (Sweeney and Dobson, 1998)	10
Fig. 2.3 Chemical structure of Ochratoxin A (Sweeney and Dobson, 1998)	. 11
Fig. 2.4 Chemical structure of Fumonisin B ₁ (Sweeney and Dodson, 1998)	13
Fig. 2.5 Chemical structure of Zearalenone (Bhatnagar et al., 2002)	14
Fig. 2.6 Chemical structure of Deoxynivalenol (Moss, 1996)	15
Fig. 2.7 Chemical structure of Ergotamine (Moss, 1996)	16
Fig. 2.8 Chemical structure of Sterigmatocystin (Sweeney and Dobson, 1998)	17
Fig. 2.9 Chemical structure of Patulin (Sweeney and Dobson, 1998)	17
Fig. 2.10 Chemical structure of Citrinin (Sweeny and Dobson, 1998)	. 18
Fig. 2.11 Chemical structure of Moniliformin (Pineda-Valdes and Bullerman, 2000)	19
Fig. 2.12 The simplified scheme for brewing (Linko et al., 1998)	28

CHAPTER THREE

CHAPTER FOUR

Fig. 4.1 A flow diagram representing an overview of multi-mycotoxin extraction	
procedure (Patterson and Roberts, 1979)	50
Fig. 4.2 Diagrammatic representation of the overall spots occurring on TLC plates from	
barley and malted barley neutral fractions under UV light	51
Fig. 4.3 Diagrammatic representation of the overall spots occurring on TLC plates from	
barley and malted barley neutral fractions under UV light	52
Fig. 4.4 A thin layer chromatogram indicating AFB_1 (A) and AFB_2 (B) and OTA (C)	
under UV light	54
Fig. 4.5 A thin layer chromatogram indicating pure T-2 toxin (A) and DON (B). Mobile	
phases: CEI (1 st dimension) and TEF (2 nd dimension)	55

- Fig. 4.6 A thin layer chromatogram indicating a barley neutral fraction indicating the presence of DON. Mobile phases: CEI (1st dimension) TEF (2nd dimension)...... 55
- Fig. 4.7 A thin layer chromatogram indicating pure zearalenone. Mobile phases: 2 % methanol in dichloromethane (1st dimension) and cyclohexane (2ⁿ dimension)..... 56

CHAPTER FIVE

Fig. 5.1 Chromatogram of a silylated barley sample spiked with 50 ppm DON	66
Fig. 5.2 Mass spectrum of a silylated barley sample spiked with 50 ppm DON	66
Fig. 5.3 Chromatogram of a silylated blank barley fraction	67
Fig. 5.4 Chromatogram of a naturally contaminated barley fraction with DON	68
Fig. 5.5 Level of DON contamination in Gauteng and Maltsters barley samples	70
Fig. 5.6 Chromatogram of a spiked beer sample with 0.05 ppb AFB_2 (A) and AFB_1 (B))70
Fig. 5.7 UV-spectra and the absorption maxima (nm) of a spiked beer sample	
(0.1 ppb AFB ₁)	71
Fig. 5.8 UV-spectra and the absorption maxima (nm) of a spiked beer sample	
(0.1 ppb (AFB ₂)	71
Fig. 5.9 UV-spectra and absorption maxima (nm) of naturally contaminated beer samp	le
with AFB ₁	72
Fig. 5.10 Chromatogram of a beer sample spiked with 0.05 ppb OTA	73
Fig. 5.11 UV-spectra and the absorption maxima (nm) of a spiked beer sample	73
Fig. 5.12 UV-spectra and the absorption maxima (nm) of a naturally contaminated bee	r
sample at estimated concentration of 0.09 ppb OTA	74

CHAPTER SIX

Fig. 6.	1 Level of aflatoxin and ochratoxin contamination in Gauteng and Maltsters	
	barley sample using Vicam fluorometry analysis	85
Fig. 6.	2 Level of deoxynivalenol, fumonisin and zearalenone in Gauteng and Maltsters	
	barley samples using Vicam fluorometry analysis	85
Fig. 6.	3 Level of aflatoxin and ochratoxin in barley samples from Gauteng using	
	Vicam fluorometry analysis	87

Fig. 6.4 Level of deoxynivalenol, fumonisin and zearalenone in barley samples from	
Gauteng using Vicam fluorometry analysis	. 87
Fig. 6.5 Level of aflatoxin and ochratoxin in barley samples from Maltsters using	
Vicam fluorometry analysis	88
Fig. 6.6 Level of deoxynivalenol, fumonisin and zearalenone in barley samples from	
Maltsters using Vicam fluorometry analysis	89
Fig. 6.7 Chromatogram of a derivatised pure fumonisin at 10 ppm FB_1 indicated by	90
Fig. 6.8 Chromatogram of naturally contaminated barley fraction with FB ₁	90

CHAPTER SEVEN

Fig. 7.1 Dose- response linear regression curve of pure fumonisin B_1 on the human
PBMCs ($r = 0.958$). All plotted dots of the curves represent means
of 3 measurements in 3 distinct test procedures101
Fig. 7.2 Dose-response linear regression curve of pure deoxynivalenol on the human
PBMCs ($r = 0.713$). All plotted dots of the curves represent means
of 3 measurements in 3 distinct test procedures
Fig. 7.3 Dose- response linear regression curve of pure ochratoxin A on the human
PBMCs ($r = 0.819$). All plotted dots of the curves represent means
of 3 measurements in 3 distinct test procedures103
Fig. 7.4 Dose- response linear regression curve of a neutral barley extract on the human
PBMCs ($r = 0.811$). All plotted dots of the curves represent means
of 2 measurements in 3 distinct test procedures104
Fig. 7.5 Dose- response linear regression curve of acid barley extract on the human
PBMCs ($r = 0.714$). All plotted dots on the curve represent means
of 3 measurements in 3 distinct test procedures105
Fig. 7.6 Linear regression curve of FB1 actual and estimated concentration values
(r = 0.946)
Fig. 7.7 Linear regression curve of DON actual and estimated concentration values
(r = 0.802)
Fig. 7.8 Linear regression curve of FB ₁ actual and estimated concentration values
(r = 0.371)

LIST OF TABLES

CHAPTER TWO

Table 2.1 Incidence of mycotoxins in South African Agricultural commodities from	
1984- 1993 (Dutton and Kinsey, 1996)	9
CHAPTER THREE	
Table 3.1 Results of fungal species detected in barley samples from Gauteng	36
Table 3.2 Results of fungal species detected in pearl barley samples from Gauteng	37
Table 3.3 Results of fungal species detected in barley samples from Maltsters	38
Table 3.4 Results of fungal species detected in malted barley samples from Maltsters	38
Table 3.5 Detected fungal species belonging to the genera Penicillium	40
Table 3.6 The toxigenic potential of fungal strains isolated from Gauteng barley samples	41
Table 3.7 The toxigenic potential of fungal strains isolated from Maltsters barley samples.	42

CHAPTER FOUR

CHAPTER FIVE				
	in Maltsters barley fractions	58		
Table 4.5	Results of the intensity of mycotoxins detected on thin layer chromatograms			
	in Gauteng barley fractions	7		
Table 4.4	Results of the intensity of mycotoxins detected on thin layer chromatograms			
	by thin layer chromatograms5	7		
Table 4.3	Results of the incidence rate of mycotoxins from barley fractions determined			
Table 4.2	Results of the incidence rate of common spots on thin layer chromatograms 5	3		
	thin layer chromatograms	3		
Table 4.1	Results of the averaged RF values of the spots that commonly occurred on			

Table 5.1 Results of the incidence rate of DON from barley fractions determined by	
gas chromatography- mass spectroscopy	68
Table 5.2 Level of DON contamination in the barley fractions from Gauteng region	69
Table 5.3 Level of DON contamination in the barley fractions from Maltsters	69
Table 5.4 The incidence of AFB_1 contamination in beer samples obtained from the	
Gauteng region	72
Table 5.5 Level OTA contamination in beer samples obtained from the Gauteng region	75

CHAPTER SIX

Table 6.1	Results of barley samples spiked with pure mycotoxins using Vicam	
	fluorometry analysis	83
Table 6.2	Results of the incident rate of mycotoxin contamination in barley samples	
	using Vicam fluorometry analysis	83
Table 6.3	Results of level of mycotoxin contamination in barley samples using Vicam	
	fluorometry analysis	84
Table 6.4	Level of mycotoxin contamination in Gauteng and Maltsters barley samples	
	using Vicam fluorometry analysis	86

CHAPTER EIGHT

Table 8.1 Comparison of analytical results for barley samples from Gaut	teng and
Maltsters	113

