
The Column Subtraction Method

for the Traveling Salesman Problem

by

Friedel Wolff

Dissertation

submitted in fulfilment

of the requirements for the degree

Master Of Science

in

Computer Science

in the

Faculty of Science

at the

Rand Afrikaans University

Supervisor: Prof. T.H.C. Smith

November 2004

Abstract

Keywords:

• Combinatorial optimization

• Parallel programming (Computer science)

• Branch and bound algorithms

• Traveling-salesman problem

The Set Partitioning Problem (SPP) and the Traveling Salesman Prob-

lem (TSP) are problems in discrete optimisation. The Column Subtraction

Method (CSM) is presented as a method to solve these two problems. It

was implemented to execute in uniprocessor and parallel computing environ-

ments.

The CSM [13] is an efficient branch-and-bound technique for solving the

SPP. The CSM is also adapted to solve the TSP, and the efficiency of the

method in solving the TSP is investigated. An implementation of the CSM

for the TSP is also presented. The CSM starts by solving a relaxation of the

problem. A search tree is constructed in which each node corresponds to a

subproblem where certain variables are fixed at certain values. Several rules

exist to limit the size of the search tree.

For the TSP the special structure of the relaxation (the Relaxed 2-

Matching Problem, RMP2) is exploited and specialised primal and dual sim-

plex methods are used. These methods can be implemented entirely with

i

ABSTRACT ii

integer variables. A new method is also presented to calculate which nodes

are connected by a given edge. The Union-Find algorithm is used as a scal-

able method for determining if a candidate solution is a valid tour. The CSM

is tested for both the SPP and TSP in a uniprocessor configuration and on a

cluster of workstations. Superlinear speedup is obtained in some instances.

Opsomming

Trefwoorde:

• Kombinatoriese optimering

• Parallelle programmering (Rekenaarwetenskap)

• Vertak-en-begrensalgoritme

• Handelsreisigerprobleem

Die Versamelingpartisieprobleem (Eng: Set Partitioning Problem, SPP)

en die Handelsreisigerprobleem (Eng: Traveling Salesman Problem, TSP)

is beide 0-1-probleme in diskrete optimering. Die Kolomaftrekkingsmetode

(Eng: Column Subtraction Method, CSM) word aangebied as metode om

hierdie probleme op te los. Dit is gëımplementeer om in enkelverwerker- en

in parallelle omgewings te kan uitvoer.

Die CSM [13] is ’n vertak-en-begrensmetode wat met groot sukses ge-

bruik is om die SPP op te los. Vir die SPP begin dit met die oplos van

’n LP-verslapping van die probleem. ’n Soekboom word geskep waarin elke

nodus ooreenstem met ’n subprobleem waar sekere veranderlikes by spesifieke

waardes vasgemaak word. Hierdie vasmaak van die veranderlikes word ge-

doen deur ’n wysiging van die regterkant van die beperkings van die Lineêre

Programmeringsformulering van die probleem (b in die formulering Ax = b).

Kolomme van A wat ooreenstem met die veranderlikes wat by 1 vasgemaak

word, word naamlik afgetrek van b.

iii

OPSOMMING iv

Hierdie verhandeling begin met ’n bespreking van die verbeterde CSM

vir die SPP van Smith en Thompson [30]. Verskeie tegnieke bestaan om die

grootte van die soekboom te beperk. Die verbeterde CSM is gëımplementeer

vir ’n CRAY T3E superrekenaar. Vir hierdie verhandeling is die implemen-

tasie aangepas en daar word hier ook verduidelik wat nodig was om dit aan

te pas sodat dit kan loop op ’n gewone boodskapstuurstelsel (MPI in hierdie

geval). Uitvoertye vir hierdie implementasie dui aan dat die CSM ook suk-

sesvol uitvoer op ’n werkstasietros - superlineêre versnelling word in sekere

gevalle behaal.

Die CSM is aangepas om die TSP op te los. Vir die TSP begin die

CSM met die oplos van ’n verslapping van die probleem, die Kontinue 2-

Paringsprobleem (Eng: Relaxed 2-Matching Problem, RMP2). Die RMP2

het ’n spesiale struktuur wat uitgebuit kan word met ’n gespesialiseerde

primaal-simpleksmetode. Hierdie simpleksmetode kan geheel en al met heel-

getalveranderlikes gëımplementeer word. Weens hierdie simpleksmetode kan

nie-basiese veranderlikes moontlik by hul bogrens (1) wees. ’n Soekboom

word geskep waarin elke nodus ooreenstem met ’n subprobleem waar sekere

veranderlikes by spesifieke waardes vasgemaak word. By elke nodus word ten

minste een veranderlike vasgemaak by ’n veranderde waarde: ’n verander-

like wat by sy ondergrens (0) was word vasgemaak by 1, of ’n veranderlike

wat by sy bogrens (1) was word vasgemaak by 0. Hierdie verandering van

die veranderlikes word gedoen deur ’n wysiging van b. Kolomme van A

wat ooreenstem met die veranderlikes wat by veranderde waardes vasgemaak

word, word óf afgetrek van b, óf by b getel. Hierdie manipulasie kan tot duale

onuitvoerbaarheid lei. Vir die heroptimering in die geval van duale onuitvoer-

baarheid, word ook gebruik gemaak van ’n duaal-simpleksmetode wat die

spesiale struktuur van die probleem uitbuit. Hierdie duaal-simpleksmetode

is aangepas vir die CSM om ook geheel en al met heelgetalveranderlikes

gëımplementeer te word. Daar is dus geen dryfpuntveranderlikes nodig vir

die CSM vir die TSP nie. Dit het die voordeel dat numeriese onstabiliteit

tydens die simpleksmetodes nie moontlik is nie.

OPSOMMING v

Tydens implementasie is gebruik gemaak van sekere algoritmes wat spe-

sifiek gekies is weens hulle geskiktheid vir groot probleme. ’n Berekening wat

baie gebruik word tydens die CSM vir die TSP is om te bereken watter stede

verbind word deur ’n gegewe pad. ’n Nuwe metode wat hierdie berekening

in O(1) uitvoer, word aangebied. ’n Toets wat gereeld uitgevoer moet word,

is om te bepaal of die oplossing van ’n subprobleem by ’n nodus in die soek-

boom wel ’n geldige toer vorm. Vir hierdie toets is gebruik gemaak van die

Vereniging-Vindalgoritme (Eng: Union-Find algorithm) wat ’n asimptotiese

uitvoertyd het wat amper so goed is soos Θ(n) vir n stede.

Die implementasie is getoets op sommige van die probleme uit die TSPLIB

- ’n biblioteek van Handelsreisigerprobleme. ’n Vertaler is ontwikkel om

die lêerformaat van die TSPLIB te kan lees. Daar is gevind dat die CSM-

soekboom baie groot is, selfs vir klein probleme. Sommige van die reëls wat

gebruik is om die soekboom se grootte te beperk by die CSM vir die SPP

was oneffektief by die TSP. Alhoewel die probleme met minder as 30 stede in

redelike tyd opgelos kan word (enkele sekondes op ’n hedendaagse Pentium

4-rekenaar) het uitvoertye aansienlik gegroei met die groter probleme.

Parallelisering van die CSM vir die TSP is getoets op ’n werkstasietros,

en superlineêre versnelling is weer in sekere gevalle behaal. Die skema vir

ladingbalansering wat gebruik is vir die SPP was soms egter oneffektief wan-

neer 16 of meer werkstasies gebruik is.

Contents

Abstract i

Opsomming iii

Contents vi

1 Introduction 1

1.1 The Set Partitioning Problem 2

1.2 The Traveling Salesman Problem 2

1.3 Overview of this dissertation 4

1.4 Prerequisites for reading this dissertation 5

2 The CSM for the SPP 6

2.1 The Set Partitioning Problem 7

2.2 The Column Subtraction Method 7

2.3 The improved Column Subtraction Method 9

2.4 Implementation . 11

2.5 Porting the CSM for the SPP 12

2.6 Work distribution . 13

2.6.1 Using shared memory 13

vi

CONTENTS vii

2.6.2 Using message passing 14

2.7 Updating the best known solution 16

2.7.1 Using shared memory 16

2.7.2 Using message passing 16

2.8 Termination detection . 18

2.8.1 Using shared memory 18

2.8.2 Using message passing 18

2.9 Results . 19

2.10 Conclusion . 20

3 The RMP2 22

3.1 Formulation . 23

3.1.1 The TSP . 23

3.1.2 The 2-Matching Problem 24

3.1.3 The Relaxed 2-Matching problem 25

3.2 Solving the Relaxed 2-Matching problem 25

3.2.1 Properties of the basis 26

3.2.2 Representing the basis graph 28

3.2.3 Dual values and reduced costs 29

3.2.4 An initial basic feasible solution 31

3.2.5 Primal and dual feasibility 32

3.2.6 Selecting an entering variable 34

3.2.7 Selecting a leaving variable 34

3.2.8 Pivoting . 37

3.3 Conclusion . 37

CONTENTS viii

4 The dual simplex method for the RMP2 39

4.1 Selecting the leaving variable 40

4.2 Selecting the entering variable 40

4.3 Ratio test . 42

4.4 Pivoting . 45

4.5 Implementation . 48

4.6 Conclusion . 49

5 The CSM for the TSP 50

5.1 Constructing the CSM search tree 52

5.1.1 L followed by U as separate lists 53

5.1.2 All non-basic variables in one list 54

5.2 Fixing a non-basic variable at an altered value 55

5.2.1 Fixing a variable in L at altered value 1 55

5.2.2 Fixing a variable in U at altered value 0 56

5.3 Fathoming rules . 57

5.3.1 The inexpensive fathoming rules 58

5.3.2 Row-wise fathoming rules 59

5.3.3 After subtracting (or adding) a column 60

5.3.4 When the dual simplex cannot be avoided 61

5.4 Refinements and future research 61

5.5 Conclusion . 62

6 Techniques used in the CSM for the TSP 64

6.1 Calculating node numbers and edge numbers 65

6.1.1 Node and edge numbering 65

CONTENTS ix

6.1.2 Calculating an edge number from node numbers 66

6.1.3 Calculating node numbers from an edge number -O(log(n)) 67

6.1.4 Calculating node numbers from an edge number - O(1) 68

6.2 Testing if a solution is a tour 71

6.2.1 The Union-Find algorithm 72

6.2.2 Implementing istour() 77

6.3 Conclusion . 79

7 Implementing the CSM for the TSP 80

7.1 The TSPLIB . 81

7.2 Using integer variables for fractional quantities 82

7.2.1 Edge costs and objective function value 82

7.2.2 Arithmetic with doubled quantities 83

7.3 Calculating node numbers from an edge number 85

7.4 Parallelisation . 87

7.5 Running times . 88

7.6 Conclusion . 89

A Source code 91

A.1 Makefile . 93

A.2 global.h . 95

A.3 simplex.h . 98

A.4 primal.h . 99

A.5 dual.h . 100

A.6 parallel.h . 101

A.7 csmtree.h . 102

CONTENTS x

A.8 istour.h . 104

A.9 set.h . 105

A.10 csm.c . 106

A.11 global.c . 119

A.12 tsplib.l . 128

A.13 tsplib.y . 131

A.14 simplex.c . 146

A.15 primal.c . 152

A.16 dual.c . 162

A.17 parallel.c . 170

A.18 csmtree.c . 174

A.19 istour.c . 181

A.20 set.c . 184

Bibliography 186

Index 190

Chapter 1

Introduction

The Set Partitioning Problem (SPP) and the Traveling Salesman Problem

(TSP) are problems in discrete optimisation. They can be defined with

the aid of linear programming formulations. They have many real world

applications and there has been continued effort to solve them in less time

and to solve bigger problems of these types.

This dissertation discusses the Column Subtraction Method (CSM) as an

efficient technique for solving the SPP. The CSM is also adapted to solve the

TSP, and the efficiency of the method in solving the TSP is investigated. An

implementation of the CSM for the TSP is also presented.

The use of parallel computing, both with multi-processor computers and

clusters of workstations, has increased in recent years and are often used to

solve big optimisation problems. In solving the biggest TSP to date, the

majority of the work was done on a cluster of 96 dual processor Intel Xeon

Linux workstations [4].

Parallelised versions of the CSM for both the SPP and the TSP are dis-

cussed and their efficiency is determined. Running times on different config-

urations are presented for comparison. A cluster of Linux workstations was

used for this purpose.

1

CHAPTER 1. INTRODUCTION 2

1.1 The Set Partitioning Problem

The SPP is structurally related to the Set Covering and Set Packing Prob-

lems. The linear programming formulations of these three problems are very

similar. The CSM was presented in [13] as a method for solving all three

types of problems. Only the CSM for the SPP will be discussed in this

dissertation.

The SPP will be formally defined in Chapter 2 along with the CSM

for the SPP. This discussion of the CSM will serve as background for the

implementation of the CSM for the TSP, to be discussed in Chapter 5.

1.2 The Traveling Salesman Problem

The TSP has long been studied as one of the hardest problems in combinato-

rial optimisation. It is often mentioned as an example of a class of problems

that are hard to solve.

It can informally be formulated as follows: A salesman has to visit n

cities, visiting each city exactly once, and also has to return to his starting

city. Such a route is called a tour. Traveling on a path between two cities

has an associated cost, which is supplied as part of the problem. The goal

is to find the tour the salesman must travel in order to minimise the sum of

all the costs associated with the tour which he travels.

Various ways of solving the TSP have been proposed. Leenen [21] gives

a summary of the developments in this research field. For more detail, see

[20]. Techniques have also been developed to find provably good tours which

are not necessarily optimal. Such techniques are called heuristics. Most

research on exact solutions for the TSP in recent years has been based on

the Cutting-Plane method of Dantzig, Fulkerson, and Johnson [8].

Of particular interest is the Branch-and-Cut method by Padberg and Ri-

naldi [23] that begins by solving a relaxation of the TSP. Side constraints

are continually added to reduce the search space that needs to be consid-

CHAPTER 1. INTRODUCTION 3

ered. The Concorde TSP solver [2] by Applegate, Bixby, Chvátal, Cook,

and Helsgaun has to date solved the hardest problems and is based on the

Branch-and-Cut method. The following table from [3] outlines some of the

milestones in TSP computation:

Year Research Team Size of In-

stance

TSPLIB Name

1954 G. Dantzig, R. Fulkerson,

and S. Johnson

42 cities dantzig42

1971 M. Held and R.M. Karp 64 cities
dantzig42 + 22

random cities

1975 P.M. Camerini, L. Fratta,

and F. Maffioli

100 cities

hk48 + two

smaller

instances

1977 M. Grötschel 120 cities gr120

1980 H. Crowder and M.W. Pad-

berg

318 cities lin318

1987 M. Padberg and G. Rinaldi 532 cities att532

1987 M. Grötschel and O. Hol-

land

666 cities gr666

1987 M. Padberg and G. Rinaldi 2 392 cities pr2392

1994 D. Applegate, R. Bixby, V.

Chvátal, and W. Cook

7 397 cities pla7397

1998 D. Applegate, R. Bixby, V.

Chvátal, and W. Cook

13 509 cities usa13509

2001 D. Applegate, R. Bixby, V.

Chvátal, and W. Cook

15 112 cities d15112

2004 D. Applegate, R. Bixby, V.

Chvátal, W. Cook, and K.

Helsgaun

24 978 cities sw24978

All of these problems are part of the TSPLIB [24] which is discussed in

CHAPTER 1. INTRODUCTION 4

Chapter 7.

To implement the CSM for the TSP, several changes had to be made. Con-

tributions by Leenen [21] and Geldenhuys [9] on implementing the Branch-

and-Cut method [23] were used to implement parts of the Column Subtrac-

tion Method.

1.3 Overview of this dissertation

The CSM for the SPP is presented in Chapter 2. It introduces the idea

of column subtraction, and explains how the search space of the problem

is covered by constructing a search tree. Fathoming rules that prune the

search tree are discussed. The implementation of the CSM was also ported

to a general message passing system, and this is also discussed. This chapter

is based on the work of Smith and Thompson [30] and provides background

knowledge of the CSM for Chapter 5 where the CSM for the TSP is presented.

From Chapter 2 the role of the primal and dual simplex method in the

CSM will be clear. The relaxation used for the TSP has a special structure

that allows for specialised versions of the primal and dual simplex method.

These methods are discussed in Chapters 3 and 4 respectively. This is based

on the work of Leenen [21] and Geldenhuys [9].

With the background presented in Chapters 2 to 4, the CSM for the TSP

is presented in Chapter 5. Column subtraction (and addition) in the case of

the TSP is discussed as well as the adaption of the fathoming rules.

Chapter 6 presents certain techniques that are needed for the implemen-

tation of some of the fathoming rules described in Chapter 5. The algorithms

in this chapter focus on scalability.

The TSPLIB (mentioned earlier) is discussed in Chapter 7. Other details

of implementation are discussed, such as the use of integer variables to rep-

resent fractional quantities. Results from executing the CSM for the TSP on

a cluster of workstations are also presented and analysed.

CHAPTER 1. INTRODUCTION 5

1.4 Prerequisites for reading this dissertation

It is assumed that the reader is mostly familiar with the following topics and

their associated terminology:

• Graph theory - the TSP is first defined as a graph theoretic problem,

and terminology from graph theory is used throughout Chapters 3 to

7.

• Linear programming - relaxations of both the SPP and TSP are formu-

lated as linear programs and linear programming terminology is used

throughout. With the graph theoretic formulation of the TSP, the

linear programming formulation can be presented.

• Pseudocode - many pieces of pseudocode are provided to formulate

techniques and to illustrate implementation detail.

Chapter 2

The Column Subtraction

Method for the Set

Partitioning Problem

Harche and Thompson [13] presented the Column Subtraction Method (CSM)

for solving large Set Covering, Set Packing and Set Partitioning Problems. It

works by first solving a Linear Programming relaxation and then performing

a branch-and-bound search. It has been shown that the CSM can effectively

be parallelised. Good results were reported by Smith and Thompson [29]

after implementing the CSM on a massively parallel Connection Machine,

obtaining in some instances superlinear speedups. Smith and Thompson

[30] presented several improvements to the original CSM for Set Partitioning

Problems (SPP), resulting in speedups of several orders of magnitude.

This chapter serves as a background for the CSM for the Traveling Sales-

man Problem (see Chapter 5) and will cover the original CSM and the im-

provements presented in [30]. Only the application for the SPP is discussed

here. The implementation by Smith and Thompson [30] made use of platform

specific libraries on the CRAY T3E which they used. Through the rest of

the chapter the process of porting this implementation to a general message

passing system, MPI [11], is discussed.

6

CHAPTER 2. THE CSM FOR THE SPP 7

2.1 The Set Partitioning Problem

The Set Partitioning Problem is a problem in combinatorial optimisation.

Along with the Set Packing and Set Covering problems it has many applica-

tions, as mentioned in [17]:

Many applications arise having the packing, partitioning and cov-

ering structure. Delivery and routing problems, scheduling prob-

lems and location problems often take on a set covering struc-

ture whereby one wishes to assure that every customer is served

by some location, vehicle or person. Other applications include

switching theory, the testing of VLSI circuits, and line balancing.

The SPP can be formulated as follows:

Minimise cx

Subject to Ax = e

x ∈ {0, 1}n,

where c is an n-dimensional vector of positive costs, A is an m × n 0-1

matrix, and e is an m-dimensional vector of ones. When a set of variables

provides an integer solution to the SPP, the columns corresponding to the

positive variables add up to a vector of ones. This set of columns is said to

cover the rows or to provide a cover.

2.2 The Column Subtraction Method

The CSM starts by solving a relaxation of the Integer Programming for-

mulation given above. The objective function value of the optimal solution

associated with the relaxation (zLP) provides a lower bound on the optimal

objective function value for the SPP. If this solution to the relaxation con-

tains only integer valued variables, it is also a solution to the SPP and the

algorithm can be terminated. If the solution is not integer, one or more of

the non-basic columns will form part of an optimal integer solution.

CHAPTER 2. THE CSM FOR THE SPP 8

A heuristic is used to find an upper bound (zIP) on the objective function

value of the Integer Programming problem. If the heuristic fails, zIP is set

to ∞. A list L is constructed with the indices of all the variables that are

non-basic in the optimal solution to the relaxation and that have a reduced

cost less than zIP − zLP . These are the only variables that we need to

consider for increasing their value to one, as increasing a non-basic variable

outside this list will cause the objective function value to equal or exceed the

cost of the current best known solution (zIP). L will interchangeably be used

to refer to a list of variables as well as indices.

A search tree is constructed where at each node (except the root node)

the CSM will fix some of these non-basic variables in L to a value of 1, while

prohibiting others to assume positive values.

The first child of the root node is created by fixing the variable L1 to a

value of 1. The i-th child of the root node, i > 1, is created by fixing the

variable Li to a value of 1 while fixing L1 to Li−1 to a value of 0. The j-th

child of a node for which Li was fixed at value 1, is created by additionally

fixing Li+j to value 1 and also fixing Li+1 to Li+j−1 to value 0. The set of

variables fixed at 1 on the path from the root node to a node is the partial

partition associated with that node. By constructing these partial partitions

differently for each child, we ensure that we will cover the entire search space

for the problem.

In some cases, however, it is not necessary to explicitly create all nodes in

a branch if they cannot yield better solutions. The original CSM gave three

rules that specify when a node in the search tree can be fathomed without

creating any children. The improvements presented in [30] specified six rules

over and above the original three. These nine rules will be numbered Rule 1

to 9.

When a column is fixed at 1 to become part of the partial partition for a

node, it has to be orthogonal to those already present. If it is not, the node

can be fathomed (Rule 1). With m constraints, this ensures that the depth

of the search tree can never exceed m.

CHAPTER 2. THE CSM FOR THE SPP 9

For each node an Associated Linear Program (ALP) can be formulated:

Minimise cx

Subject to Ax = e′

x ≥ 0,

where e′ is formed by subtracting the columns of A that corresponds to the

partial partition, from e. The optimal basis (B) for the SPP relaxation

provides a dual-feasible basic solution for the ALP, with B−1e′ giving the

values of the basic variables. The objective function value of this solution

provides a lower bound on the cost of completing the node’s associated partial

partition. This lower bound also holds for all nodes below the current node in

the search tree. The node can therefore be fathomed if the cost of completing

the associated partial partition is greater than or equal to zIP (Rule 2).

If the solution is primal feasible and integer, a better solution to the SPP

has been found and zIP can be updated. The node can also be fathomed as

no children can provide a better solution (Rule 3). When zIP is updated,

L can be shortened by removing all variables with reduced cost greater than

or equal to zIP - zLP.

2.3 The improved Column Subtraction Method

Rules 2 and 3 of the original CSM made it necessary to use x = B−1e′. Smith

and Thompson [30] suggested that by using the revised simplex method and

storing the basis B in product form, better accuracy can be achieved. They

also presented six extra rules to further aid in pruning the search tree. These

improvements resulted in speedups of several orders of magnitude.

A node can be fathomed without computing B−1e′ if one of these condi-

CHAPTER 2. THE CSM FOR THE SPP 10

tions hold:

• the cost of the partial partition alone is greater than or equal to zIP

(Rule 4).

• the partial partition provides a complete cover (e′ = 0) (Rule 5).

If a node could not be fathomed by any of Rules 1 to 5, then the basic solu-

tion B−1e′ is either non-integer or primal-infeasible. If it is primal-infeasible,

the dual simplex method can be applied to the ALP.

The size of the ALP can be reduced by eliminating from consideration

all columns of A which are not orthogonal to the sum of the columns of the

partial partition. Let A′ be this reduced matrix. Furthermore, if a row of A′

contains only a single 1 where e′ has a 1, the column containing the 1 will

necessarily be part of a solution. Therefore only a single child node need to

be created in such a case.

If the row of A′ only contains zeros where e′ has a 1, the node can be

fathomed as no solution is possible (Rule 6). If a node could still not be

fathomed, the dual simplex algorithm is applied.

The node can now be fathomed if one of these conditions hold:

• primal feasibility could not be obtained (Rule 7)

• the resulting objective function value is greater than or equal to zIP

(Rule 8)

• primal feasibility is obtained and the resulting solution is integer (Rule

9). In this case the list L is truncated as we did for Rule 3.

If none of these rules apply, the node cannot be fathomed and the search

needs to continue down this branch of the search tree.

CHAPTER 2. THE CSM FOR THE SPP 11

2.4 Implementation

An implementation of the improved CSM was programmed in the C program-

ming language. It was also adapted to execute in a parallel programming

environment. Initially, the i-th process would start processing the subtree

rooted at the i-th child of the root node of the search tree. After exhausting

the search of a specific subtree, a process will continue the search in a new

subtree rooted at another child of the root node. Each of these children of

the root node corresponds to an entry in the list L. This process continues

until the end of the list L is reached. A master-slave approach is used where

the master process supplies slave processes with unprocessed subtrees.

The following descriptions define some of the additional variables and

functions used in the following sections:

rcsize the size of the list L

numProcs the number of processes in the parallel computer

rootNext this variable stores the number of the next subtree to process

zIPs an array where zIPs[i] stores the best zIP value discovered by process

i

subtrees an array where subtrees[i] stores the number of the subtree that

process i processes

reduce() a function that updates the list L by removing indices of columns

with a reduced cost greater than or equal to zIP - zLP

EPS (ε) a small positive fractional number used for floating point compar-

isons

All entries of the zIPs array are initialised to the best known zIP value

after solving the LP relaxation. The subtrees array is initialised to distribute

the first set of subtrees to process, in sequential fashion.

CHAPTER 2. THE CSM FOR THE SPP 12

for (j = 0 ; j < numProcs ; j++) {
zIPs [j] = zIP ;

subtrees [j] = j + 1;

}

The author added the following while adapting the program:

finalize count the number of processes that have terminated locally

status a variable used to store information about the MPI function calls

The following definitions are used to tag communication

#define JOB TAG 101

#define ZIP TAG 102

2.5 Porting the CSM for the SPP

The implementation developed by Smith and Thompson [30] was tested on

a CRAY T3E parallel computer. Excellent results were reported - with some

problem instances they reported super linear speedup. It used a combination

of message passing and shared memory. On the CRAY, shared memory is

emulated with a custom library (mpp/shmem.h). As this architecture was not

available to the author, the parts of the program that used this library had

to be adapted to make use of platform independent message passing only.

MPI was used on a cluster of Linux workstations.

The inter process communication that takes place in the program achieves

the following goals:

• distributing the original problem information

• communicating the best (lowest) upper bound for the SPP of the upper

bounds found by all nodes

CHAPTER 2. THE CSM FOR THE SPP 13

• distributing the basis for the solution found by the master process (to

ensure that all slaves continue with the same basis)

• work distribution (distribution of subtrees of the root node of the search

tree)

• updating the best known solution

• termination detection

• profiling to measure the success of different fathoming rules

Work distribution, updating the best known solution and termination

detection made use of shared memory. These are the parts that were reim-

plemented to make use of message passing only. In the next section these

changes are discussed.

2.6 Work distribution

2.6.1 Using shared memory

At the slaves

A subtrees array, shared by all processes, stored the number of the subtree

that each process was searching through. Once the search of the subtree has

been exhausted, an idle slave process would insert a negative value into the

shared array and wait for the value to become positive. A positive number

would indicate the next subtree to process.

/∗ send i d l e i n d i c a t o r to proces s 0 ∗/
rootNext = −1;

shmem_int_put (subtrees + myId , & rootNext , 1 , 0) ;

/∗ wai t f o r number o f next s u b t r e e ∗/
do

shmem_int_get(&rootNext , subtrees + myId , 1 , 0) ;

while (rootNext < 0) ;

CHAPTER 2. THE CSM FOR THE SPP 14

At the master

The master process frequently iterates through the subtrees array. If it finds

a negative value, it changes it to the number of the next subtree to be pro-

cessed. The subtrees array is directly accessible by the master process and

the master therefore need not use the special library functions (shmem ...).

In the following code, the variable j starts at 1, which is the number of the

first slave process. The master need not update the entry for itself (process

0), because it rather keeps track of subtrees by means of rootNext.

/∗ send a s u b t r e e number to each i d l e proces s ∗/
for (j = 1 ; j < numProcs ; j++) {

i f (subtrees [j] < 0) {
subtrees [j] = rootNext ; /∗ now s l a v e j can cont inue ∗/
rootNext++; /∗ the next s u b t r e e to d e l e g a t e ∗/

}
}

2.6.2 Using message passing

At the slaves

When becoming idle, a slave process sends a message to the master process

asking for a new subtree to process. It makes use of a JOB TAG to make it

clear what the message is for. The process blocks until it receives the next

subtree to process.

MPI_Send(&rcsize , 1 , MPI_INT , 0 , JOB_TAG , MPI_COMM_WORLD) ;

//now we wai t f o r the r e p l y from the master proces s

MPI_Recv(&rootNext , 1 , MPI_INT , 0 , JOB_TAG , MPI_COMM_WORLD , & status) ;

At the master

Because the master will not know if a slave has asked for a new subtree to

process, it has to probe the message queue for messages with the relevant

CHAPTER 2. THE CSM FOR THE SPP 15

tag (JOB TAG). If an appropriate message is in the message queue, it will

receive the message (remove it from the message queue) and respond with

the number of the next subtree to be processed.

Slaves send their current rcsize to enable the master process to deter-

mine whether the slave will definitely interpret the master’s response as an

indication of termination.

void send_jobs ()

{
int flag , other_rcsize ;

MPI_Iprobe (MPI_ANY_SOURCE , JOB_TAG ,

MPI_COMM_WORLD , &flag , & status) ;

while (flag) { // w h i l e t h e r e i s a message in the queue

//now we remove the message from the message queue

MPI_Recv(&other_rcsize , 1 , MPI_INT , MPI_ANY_SOURCE ,

JOB_TAG , MPI_COMM_WORLD , & status) ;

// r e p l y to the sender o f the message

MPI_Send(&rootNext , 1 , MPI_INT , status . MPI_SOURCE ,

JOB_TAG , MPI_COMM_WORLD) ;

// f o r terminat ion d e t e c t i o n :

i f (rootNext > other_rcsize) finalize_count++;

rootNext++;

// t e s t again

MPI_Iprobe (MPI_ANY_SOURCE , JOB_TAG ,

MPI_COMM_WORLD , &flag , & status) ;

}
}

CHAPTER 2. THE CSM FOR THE SPP 16

2.7 Updating the best known solution

2.7.1 Using shared memory

Each process has a shared array storing the best known objective function

value per process. When process i finds a solution that was better than the

best known to it, it updates the value in the i-th position in the array. It also

updates the i-th position in the array of each of the other processes. When

the other processes iterate through their local array, they compare each of

the values with their previously known best and update it if necessary.

Code executed when finding a new objective function value:

for (i = 0 ; i < numProcs ; i++)

i f (i != myId) shmem_int_put (zIPs + myId , &zIP , 1 , i) ;

zIPs [myId] = zIP ;

Code executed to update best known objective function value:

do {
flag = 0;

min = zIP ;

for (j = 0 ; j < numProcs ; j++)

i f (zIPs [j] < min) min = zIPs [j] ;

i f (min < zIP) {
flag = 1;

zIP = min ;

rcsize = reduce (zIP − zLP − 1.0 + EPS) ;

}
} while (flag) ;

2.7.2 Using message passing

When a process finds a solution that is better than the best known to it, it

sends a message to all processes excluding itself. It sends the new objective

CHAPTER 2. THE CSM FOR THE SPP 17

function value and uses ZIP TAG to indicate that the purpose of the message

is to update the zIP variable.

Code executed when finding a new objective function value:

for (i = 0 ; i < numProcs ; i++)

i f (i != myId) MPI_Send(&zIP , 1 , MPI_INT , i ,

ZIP_TAG , MPI_COMM_WORLD) ;

Code executed to update best known objective function value:

void update_zIP ()

{
int flag , min ;

MPI_Iprobe (MPI_ANY_SOURCE , ZIP_TAG ,

MPI_COMM_WORLD , &flag , & status) ;

while (flag) { // w h i l e t h e r e i s a message in the queue

// now we remove the message from the message queue

MPI_Recv(&min , 1 , MPI_INT , MPI_ANY_SOURCE ,

ZIP_TAG , MPI_COMM_WORLD , & status) ;

i f (min < zIP) {
flag = 1;

zIP = min ;

rcsize = reduce (zIP − zLP − 1.0 + EPS) ;

}
// t e s t again

MPI_Iprobe (MPI_ANY_SOURCE , ZIP_TAG ,

MPI_COMM_WORLD , &flag , & status) ;

}
}

CHAPTER 2. THE CSM FOR THE SPP 18

2.8 Termination detection

2.8.1 Using shared memory

As discussed above, a slave sets an entry in the subtrees array to a negative

value to indicate that it has finished processing the subtree it was busy

with. When the master process terminates locally, it iterates through the

subtrees array. When it finds a negative value, it changes the value to

a positive, but invalid value. The slave will realise that the invalid value

indicates termination. By counting the number of slaves to which it replied,

the master can detect global termination.

/∗ wai t f o r a l l p r o c e s s e s to f i n i s h ∗/
do {

count = 1;

for (j = 1 ; j < numProcs ; j++) {
i f (subtrees [j] < 0) { /∗ ‘ ‘ answer ” i d l e p r o c e s s e s ∗/

subtrees [j] = rootNext ;

count++;

} else i f (subtrees [j] >= rootNext)

count++

}
} while (count < numProcs) ;

2.8.2 Using message passing

As discussed above, a slave would send a message with a JOB TAG to the mas-

ter to ask for the next subtree to process. If the returned message contains

the number of a valid subtree to process, the slave continues. Otherwise the

slave terminates locally. The master counts the number of invalid subtrees

it sends out and detects global termination in that way. Note that the vari-

able finalize count might already be positive when the master terminates

locally as the master could already detect local termination of slaves during

CHAPTER 2. THE CSM FOR THE SPP 19

work distribution.

finalize_count++; // master proces s f i n i s h e d

rootNext = −1; // to have d e f i n i t e i n d i c a t i o n o f terminat ion

while (finalize_count < numProcs) {
MPI_Recv(&j , 1 , MPI_INT , MPI_ANY_SOURCE , JOB_TAG ,

MPI_COMM_WORLD , & status) ;

MPI_Send(&rootNext , 1 , MPI_INT , status . MPI_SOURCE , JOB_TAG ,

MPI_COMM_WORLD) ;

finalize_count++;

}

2.9 Results

This section reports on the results obtained with the CSM on a cluster of

workstations. The program was tested with problems described in table 1 of

Hoffman and Padberg [16]. The problems were pre-processed as suggested

in [16].

The testing environment was a cluster of identical single processor work-

stations, each with the following configuration:

Hardware

Processor Pentium III 730MHz

Physical memory 128 MBytes

Interconnection 100 Mbits/s switched Ethernet

Software

Operating System Linux 2.4.20

File system Network File System

(file server not part of the cluster)

MPI Implementation LAM/MPI 6.5.9

C compiler GNU C Compiler 3.3

CHAPTER 2. THE CSM FOR THE SPP 20

In the discussed implementation, solving the LP relaxation is not paral-

lelised. By Amdahl’s law (see [1]), if f is the fraction of the runtime on a

single processor that cannot be parallelised, the maximum speedup attain-

able is 1/f . Below, only those results where a speedup of more than 5 is

possible, are reported. Execution time is the average of three runs and is

measured in seconds. Utilisation is the ratio of actual processor time used,

to available processor time.

Processors

Problem 1 2 4 8 16

Hp10757 avg time 390.850 125.875 41.542 33.874 22.744

speedup 3.11 9.41 11.54 17.19

utilisation 1.000 0.999 0.979 0.860

Hp43749 avg time 16.378 4.922 4.387 4.403 4.866

speedup 3.33 3.73 3.72 3.37

utilisation 1.000 0.999 0.998 0.946

nw04 avg time 36.735 18.187 4.740 3.781 4.165

speedup 2.02 7.75 9.72 8.82

utilisation 1.000 0.997 0.960 0.868

Superlinear speedup is observed in many of these cases, although the

speedup is not as big as those achieved by Smith and Thompson [30] on

the CRAY T3E. For more information about speedup when solving Integer

Programming problems with a cluster of workstations, see [6] and [12]. For

information on anomalies in parallel processing, see [19].

2.10 Conclusion

The CSM is an effective method for solving Set Partitioning Problems. Test-

ing the CSM on a cluster of workstations confirmed the results reported in

CHAPTER 2. THE CSM FOR THE SPP 21

[30], namely that superlinear speedups are obtained in some instances.

Chapter 3

The Relaxed 2-Matching

Problem

A basic introduction to the TSP was given in Chapter 1. In this chapter a

mathematical formulation is given. The formulation involves decision vari-

ables and constraints on those variables and includes an objective function

which is minimised. Most techniques for solving the TSP make use of some

relaxation (see [21] for details on different relaxations). A relaxation is a

similar problem with fewer constraints, that is easier to solve and that can

help to guide the search for the optimal solution. The choice of relaxation

for this thesis, the Relaxed 2-Matching Problem (RMP2), is presented here

as well as the techniques to solve it.

The TSP can be formulated using a complete, undirected, weighted graph.

Suppose G is a complete graph with node set N = {1, 2, ..., n} and edge set

E = {1, 2, ...,m} where an edge e = (i, j) in E connects two nodes i and

j in N and has a cost ce. Each node in the graph represents a city that

the salesman has to visit. Each edge represents the connection between two

cities. The edge weight represents the cost associated with traveling between

the two cities connected by the edge. As the graph is complete, there are

m = n(n− 1)/2 edges in the graph.

22

CHAPTER 3. THE RMP2 23

Definitions

A (simple) path is a sequence of distinct edges such that any two successive

edges in the sequence are incident to a common node, but at most two edges

in the path are incident to any node. A subgraph is connected if it contains

a path between any two nodes in the subgraph. A cycle is a path with at

least three edges in which the first and last edge have a common node. A

1-tree is a connected subgraph containing exactly one cycle. A 2-matching is

a subgraph containing exactly two edges incident to each node. A tour of G

is a cycle with n edges while a subtour of G is a cycle with less than n edges.

(A tour is both a 2-matching and a 1-tree.) The cost of a subgraph is the

total cost of the edges in the subgraph. The TSP is the problem of finding

the minimum cost tour in G.

3.1 Formulation

3.1.1 The TSP

For each edge e ∈ E a 0-1 variable xe is introduced. The value indicates

inclusion (1) or exclusion (0) from the current solution. For each node in N

a constraint is added that limits the chosen edges incident to that node to

two edges (representing the 2-matching). This corresponds to the two edges

that connect that node to the rest of the graph (the “roads” the salesman

uses for entering and leaving the city). Considering the definition of the TSP

given in the previous section, the TSP can be formulated mathematically as

follows:

Minimise cx (cost)

Subject to Ax = b (2-matching constraints)

x ∈ X (1-tree constraints)

x ∈ {0, 1}m (integer constraints and bounds),

where c is an m-dimensional vector of positive costs, A is the n×m node-edge

CHAPTER 3. THE RMP2 24

incidence matrix of the graph G, b is an n-dimensional vector of twos and

X is a polyhedron of which the extreme points are the 1-trees in the graph

G (see Held and Karp [14]). The two ones in ae (ae is the e-th column of A)

represent the two nodes connected by edge e.

Strictly speaking, only the optimal tour is a solution for the TSP. In

this dissertation, however, any subgraph that satisfies the constraints in this

formulation (a tour) will informally be called a solution. In searching for the

optimal tour, we use an upper and lower bound on the objective function

value to guide our search. Details on how the bounds are used will follow

later. An upper bound can be computed using a heuristic and can be updated

as we find increasingly cheaper tours. To find a lower bound, we use a

relaxation of the TSP formulation given above.

3.1.2 The 2-Matching Problem

A possible relaxation is to relax the 1-tree constraints. The 2-Matching

Problem (MP2) is formulated as an integer program (IP) without the 1-tree

constraints:

Minimise cx

Subject to Ax = b

x ∈ {0, 1}m,

where c, A, and b have the same meanings as before.

A solution to the MP2 (a 2-matching, as defined earlier) might, however,

not be a solution to the TSP, as a solution to this IP could contain subtours

(two or more disjoint cycles). As a cycle contains at least three nodes, this

can only happen where a graph has six or more nodes. Solutions containing

subtours have to be eliminated, as they don not solve the TSP. Solving the

MP2 gives a lower bound on the cost of the optimal solution to the TSP, but

the MP2 remains a difficult problem to solve.

CHAPTER 3. THE RMP2 25

3.1.3 The Relaxed 2-Matching problem

The Relaxed 2-Matching problem (RMP2) is a relaxation of the MP2 (and

therefore also the TSP) where the integrality constraints on the variables are

relaxed to allow arbitrary values within the interval [0, 1]. The formulation

for this relaxation is as follows:

Minimise cx

Subject to Ax = b

0 ≤ x ≤ 1,

where c, A, and b have the same meanings as before.

Naturally, a solution to the RMP2 will also not necessarily be a tour (but

could be). The lower bound obtained from solving the RMP2 could also

be lower than that obtained from the MP2. The RMP2 is however much

easier to solve than the MP2 because the simplex method can be used. The

RMP2 is the relaxation that will be used in this dissertation. The rest of

this chapter continues with material necessary for solving the RMP2.

3.2 Solving the Relaxed 2-Matching problem

Solving the RMP2 is the first step taken to solve the TSP. The cost of the

optimal solution to the RMP2 is used as a lower bound on the objective

function value of the TSP. The standard simplex method can be used to

solve the RMP2, but the RMP2 has a special structure that allows for a

more efficient solution.

A generalised network problem is a special Linear Programming case

where each column of the A matrix has at most two non-zero entries (see

Kennington and Helgason [18], chapter 5). Each of the columns of the matrix

A in the definitions above contain two ones and n− 2 zeros. The RMP2 can

therefore be seen as a generalised network problem. This special structure

has been exploited to implement a very efficient simplex algorithm for the

CHAPTER 3. THE RMP2 26

RMP2 (see Smith et al [28]).

The method involves the same basic steps as the standard simplex algo-

rithm: selecting an entering variable, doing a ratio test to select a leaving

variable, and pivoting. The following sections explain some of the techniques

used to implement these steps very efficiently for the RMP2. For a complete

discussion see Meyer [22].

Definitions

A basis structure (B,L, U) partitions the edge set E such that the n × n

matrix formed by the columns ae, ∀e ∈ B is a basis for A. A basis graph is

a spanning subgraph of G with edge set B. The edges in B are called the

basic edges and the variables in x that correspond to the basic edges are the

basic variables and are denoted by xB. Similarly, the costs of the basic edges

are denoted by cB.

L ∪ U contains the edges corresponding to the non-basic variables. Be-

cause of the upper bounds that are imposed on the variables, the implemen-

tation of the simplex method used here, allows non-basic variables to assume

non-zero values. Variables corresponding to edges in L are non-basic at the

lower bound 0 and variables corresponding to edges in U are non-basic at

the upper bound 1.

The basic solution corresponding to a basis structure (B,L, U) is obtained

by setting xe = 0 for all e ∈ L and xe = 1 for all e ∈ U , and solving

BxB = b−
∑

j∈L
xeae −

∑

e∈U
xeae (3.1)

for xB. Here B is additionally used to refer to the basis.

3.2.1 Properties of the basis

The 1-tree structure is important when discussing the RMP2. It’s properties

are used in sections to come for certain calculations and algorithms. It was

CHAPTER 3. THE RMP2 27

noted earlier that a tour is both a 2-matching and a 1-tree.

When a variable has a value of 1, it means that the edge the variable cor-

responds to, is included in the tour (or current solution to the relaxation).

This of course applies to non-basic variables as well. Therefore, the basis

graph will not necessarily contain all the edges included in the current solu-

tion (with corresponding variables at value 1), and also, could contain edges

that are not part of the current solution (with corresponding variables at

value 0).

With the RMP2, the variables’ integrality restrictions are relaxed. There-

fore, it is possible for a variable to assume a value between zero and one. In

such a case the meaning of the variable value is lost and the particular solu-

tion will not be a solution to the TSP. In the algorithm discussed here, this

can only happen with basic variables.

It should therefore be noted that the basis graph for the RMP2 consists

of one or more 1-trees (see Proposition 5.9 in [18]). A basis graph consisting

of more than one 1-tree, could still correspond to a solution to the TSP when

one or more basic edges are not part of the tour and some non-basic edges

are part of the tour. In a solution to the TSP the edges that correspond to

all the variables with a value of one (basic and non-basic) will form both a

tour and a 1-tree.

Leenen [21] points out that the cycle on any 1-tree in a basis graph con-

tains an odd number of nodes. This is an important attribute when we

calculate the dual values in a following section.

Solving for xB in 3.1, shows the role of B−1 in calculating xB. Leenen

also indicated that the odd number of nodes in the cycle of a 1-tree has the

effect that each element of B−1 is an integer divided by 2. This important

result causes values in x to be one of {0, 1
2
, 1}.

When a basic variable xe = 1
2
, it imposes restrictions on the values of the

variables corresponding to edges incident to the same node as e in the 1-tree.

To satisfy the equations of the RMP2, these variables which correspond to

edges in the cycle incident to the same node as e have to be fractional too.

CHAPTER 3. THE RMP2 28

For each of these edges that are incident to the same node as e, the same

argument can be applied. Because of the structure of the basis graph, xe = 1
2

is only possible if e is part of a cycle in the basis graph. In such a case xe = 1
2

for all e in that particular cycle. If xe were to be fractional outside the cycle

of the 1-tree, the equations of the RMP2 would only be satisfiable up to the

leaf nodes of the 1-tree, at which point it would not be possible anymore.

At each equation of the RMP2 involving a fractional xe, at least one other

variable has to be fractional too. The edges corresponding to these fractional

basic variables are incident to a common node. The equation of the RMP2

corresponding to the second node adjacent to this common node will cause

another variable to be fractional. This process can be repeated up to the

leaf nodes of the 1-tree, but at the leaf nodes the equation will not be able

to force another variable to be fractional.

This is a very important result: as 2xe is an integer, it makes it possible

to use integers to store variable values by storing 2xe ∀e ∈ B. Computation

is faster than with floating point variables. Integers possibly also consume

less memory.

In a following section where dual values and reduced costs are defined,

we will see that they too can be represented with integers.

3.2.2 Representing the basis graph

The basis graph is represented by the augmented predecessor index method

(see Glover et al [10]). For each node indices are held for a parent, a sibling

and a child node as well as the distance from the cycle. For Figure 3.1, the

following table indicates the values at each node:

CHAPTER 3. THE RMP2 29

1

2
3

4
5

6 7

8

9

10

11

Figure 3.1: A 1-tree with arrows indicating parent relationships

Node Parent Sibling Child Distance
1 2 - 6 0
2 3 - 1 0
3 4 - 2 0
4 5 - 3 0
5 1 - 4 0
6 1 5 7 1
7 6 - 10 2
8 7 - 9 3
9 8 - - 4
10 7 8 11 3
11 10 - - 4

For several calculations the basis graph needs to be traversed (usually par-

tially), with the needed traversal pattern usually being from a node towards

the cycle of the 1-tree, using the path formed by following parent indices.

3.2.3 Dual values and reduced costs

Just as with the standard simplex method, the reduced costs are used to

select the entering variable. In the standard simplex method the calculation

of the reduced costs involves expensive matrix multiplication. In the RMP2,

our knowledge of the special structure of the A matrix allows us to vastly

simplify the computation of the reduced costs. To this end, we define the

n-vector u.

CHAPTER 3. THE RMP2 30

The dual values uj ∀j ∈ N are defined as the solution to the set of dual

value equations:

ui + uj = ce ∀e = (i, j) ∈ B.

The dual values are used to define the reduced costs

ve = ce − ui − uj ∀e = (i, j) ∈ E (3.2)

or alternatively

ve = ce − uae ∀e ∈ E

The reduced costs for basic variables are, of course, 0:

ve = ce − (ui + uj)

= ce − ce
= 0

The dual values can easily be calculated by solving the set of equations

in a way that will be illustrated with a concrete example:

Firstly we solve for the dual values of the nodes on the cycle of a 1-tree

in the basis graph. For example, in a 1-tree with three nodes a, b and c

that follow consecutively on each other on the cycle, we use the dual value

equations for edges (a, b), (b, c) and (c, a). We alternately add and subtract

the dual value equations for all the edges on the cycle in the order in which

they are connected, which allows us to solve for one of the dual values:

(ua + ub)− (ub + uc) + (uc + ua) = cab − cbc + cca

2ua = cab − cbc + cca

Because there is always an odd number of nodes (and therefore edges) in

a cycle of a 1-tree in the basis graph of the RMP2, a summation of the dual

value equations such as the one above, will always simplify to allow one to

solve for a single dual value.

CHAPTER 3. THE RMP2 31

We can now use the dual value obtained (ua in the example above) to

solve for another dual value by substitution in a dual value equation that

contains both dual values (for example ua+ub = cab), and in this fashion the

dual values for all nodes on the 1-tree can be solved. If there is more than

one 1-tree, the same technique can be used to calculate the dual values on

all the 1-trees.

When all dual values are computed, the calculation of reduced costs is

straight forward. It will be shown later that even the dual values need not

be recalculated after each pivot, but that they can be updated efficiently.

In the previous section it was indicated that variable values can be stored

as integers. The dual values and reduced costs can also be stored as integers,

but for an unrelated reason: if the edge costs are given as integers, the first

dual value calculated on the cycle of a 1-tree (ua in the example) is the sum

of (integer) costs divided by two. 2ua is therefore an integer. It can similarly

be shown to be true for all dual values and also for the reduced costs. We

will use the same technique used with the variable values to store dual values

and reduced costs as integers.

3.2.4 An initial basic feasible solution

The first step in solving the RMP2 is to construct an initial basic feasible

solution. Any tour can provide the necessary starting basis structure, but an

initial tour that is closer to the optimum solution will reduce the number of

pivots necessary to reach optimality.

A heuristic is therefore used to find an initial solution: nodes 1, 2 and

3 are included in a small initial cycle. Each of the nodes 4, 5, ..., n are then

sequentially inserted into the cycle in the cheapest way. If n is odd, the

resultant tour can be used as a starting basis structure. If n is even, the

basis structure needs to altered to ensure it has all the properties mentioned

in the previous sections.

In such a case, the structure is altered around three consecutive nodes

CHAPTER 3. THE RMP2 32

in the tour, say a, b and c. The edges (a, b) and (b, c) are currently included

in the basis structure. If the cycle is shortened by inserting (a, c), a cycle is

obtained with an odd number of nodes. Now one edge has to be removed, as

B can only contain n edges. (b, c) can therefore be made non-basic by moving

it to U , and then a valid basis structure is obtained. All basic variables will

have initial values of one, except xac that will start out with a value of zero.

After obtaining a starting basic feasible solution, the simplex method can

be used to move from this solution to increasingly better feasible solutions.

Definitions for primal and dual feasibility are needed in order to describe

when it is possible to proceed to a better basic feasible solution.

3.2.5 Primal and dual feasibility

For any RMP2 solution and basis structure (B,L, U), we have

Ax = BxB +
∑

e∈L
xeae +

∑

e∈U
xjae = b

xB = B−1(b−
∑

e∈L
xeae −

∑

e∈U
xeae) (3.3)

= B−1b−
∑

e∈L
xeye −

∑

e∈U
xeye

= B−1b−
∑

e∈U
ye −

∑

e∈L
xeye −

∑

e∈U
(xe − 1)ye

= d−
∑

e∈L
xeye −

∑

e∈U
(xe − 1)ye (3.4)

where ye = B−1ae and d = B−1b − ∑e∈U ye. In the basic solution corre-

sponding to the basis structure (B,L, U), xe is set to 0 for all e ∈ L and xe

is set to 1 for all e ∈ U and, therefore, d contains the values of the basic

variables.

CHAPTER 3. THE RMP2 33

The objective function z can be written as

z = cx

= cBxB +
∑

e∈L∪U
cexe

Substituting xB using equation (3.3):

z = cB(B−1(b−
∑

e∈L
xeae −

∑

e∈U
xeae)) +

∑

e∈L
cexe +

∑

e∈U
cexe

= cBd− cB
∑

e∈L
xeB

−1ae − cB
∑

e∈U
(xe − 1)B−1ae +

∑

e∈L
cexe +

∑

e∈U
ce(xe − 1) +

∑

e∈U
ce

= cBd +
∑

e∈L
cexe − cB

∑

e∈L
xeB

−1ae +
∑

e∈U
ce(xe − 1)− cB

∑

e∈U
(xe − 1)B−1ae +

∑

e∈U
ce

= cBd +
∑

e∈L
xe(ce − cBB

−1ae) +
∑

e∈U
(xe − 1)(ce − cBB

−1ae) +
∑

e∈U
ce

= cBd +
∑

e∈L
xe(ce − uae) +

∑

e∈U
(xe − 1)(ce − uae) +

∑

e∈U
ce

= cBd +
∑

e∈U
ce +

∑

e∈L
vexe +

∑

e∈U
ve(xe − 1)

= z0 +
∑

e∈L
vexe +

∑

e∈U
ve(xe − 1)

where z0 = cBd +
∑
e∈U ce, u = cBB

−1 and ve = ce − uae ∀e ∈ L ∪ U .

The elements of the vectors u and v are respectively the dual values and the

reduced costs defined earlier.

A basis structure (B,L, U) is primal feasible if 0 ≤ xB ≤ 1 in the cor-

responding basic solution. A basis structure (B,L, U) is dual feasible if

(ve ≥ 0 ∀e ∈ L) and (ve ≤ 0 ∀e ∈ U).

When a basis structure is both primal and dual feasible, the corresponding

basic solution is optimal.

CHAPTER 3. THE RMP2 34

3.2.6 Selecting an entering variable

While a basis structure is not dual feasible, we can select a variable to enter

the set of basic variables (hereafter referred to as entering the basis). Selec-

tion of an entering variable is mostly the same as with the standard simplex

method: a dual infeasible non-basic variable is chosen to enter the basis.

With the RMP2, a basis structure can be dual infeasible when a variable

in L has a negative reduced cost, or when a variable in U has a positive re-

duced cost. The absolute value of the reduced cost, |ve| for all dual infeasible

variables e are compared and the largest value indicates the variable to enter

the basis.

3.2.7 Selecting a leaving variable

Now that an entering variable has been selected, a variable must be chosen

to leave the set of basic variables (hereafter referred to as leaving the basis)

in such a way as to ensure that primal feasibility is maintained. To this end

the ratio test is used, but in a very specialised way to exploit the special

structure of the RMP2.

Suppose the variable corresponding to edge e = (i, j) has been selected as

entering variable. We can see the effect of changing the value of the variable

xe in equation (3.4). To perform the ratio test, we need to solve for y in

By = ae, where B is the current basis. For detail on the ratio test for

the RMP2, see Leenen [21]. The technique will only be illustrated here by

means of a few graphical examples (see Figures 3.2 to 3.5 on pp. 35-36). The

direction of edges in these graphs indicates parent relationships. The value

displayed on an edge (a, b) is yab.

In all cases the basis graph is traversed from nodes i and j towards the

cycle of the 1-tree(s) they are part of. The values of y corresponding to the

first edge on these two paths (the two edges incident on i and j) are +1

for both (see [21]). From there on the values alternate between -1 and +1

on the path towards the cycle. If the two paths meet (i and j are part of

CHAPTER 3. THE RMP2 35

0

0

0

0

0

0 0

-1

+1

+1

-1

i

j

+1

Figure 3.2: Calculating y: Two paths meet and cancel each other out

+1

-1

+1

-1

+1

-2 +2

-1

+1

-1

+1

i

j

Figure 3.3: Calculating y: Non-zero values throughout a 1-tree

the same 1-tree), the results from there onwards are the cumulative effect

of the calculations for i and j separately. The entries for y corresponding

to the edges on the cycle have half of the value they would have in a path

outside the cycle. Parent links are followed until the node where the cycle

was entered into, is reached for the second time. Entries in y that correspond

to edges that were never traversed are all 0.

The values for y are actually never stored, but are used for the ratio test

as they are calculated. At each edge e in the traversal, de/ye is calculated

and compared with the minimum ratio found so far. The ratio test is stopped

if a ratio of 0 is found, as that is the smallest attainable ratio.

CHAPTER 3. THE RMP2 36

+1
2

−1
2

+1
2

−1
2

+1
2

-1 +1
i

−1
2

+1
2

−1
2

j
+1-1+1

Figure 3.4: Calculating y: i and j in separate 1-trees

−1

0

0

0

+1

i

j

+1 -1 +1

-1 +1

Figure 3.5: Calculating y: Paths meeting the cycle in different places

CHAPTER 3. THE RMP2 37

3.2.8 Pivoting

Now that both the entering and leaving variables have been selected, we

can proceed to change the basis. The minimum ratio can be added to the

entering variable value (or subtracted from it if the entering variable was in

U). The dual values need to be updated as well.

Not all dual values need to be updated; once again we will use traversal

of the basis graph to aid us in updating the dual values efficiently. After the

basis change with e = (i, j) that entered the basis, the subgraph with edge

set B − {e} contains a maximal tree in the 1-tree that contained e.

Let us assume that i is the node furthest away from the cycle (ties are

broken arbitrarily). The nodes of this tree can be separated into two sets:

• P = {k | k and i are connected by a path of even length}

• Q = {k | k and i are connected by a path of odd length}

The values for ui after the change, u′i, can be calculated as follows:

u′i =

ui + ∆ ∀i ∈ P
ui −∆ ∀i ∈ Q
ui otherwise

where ∆ =

re/2 e is in a cycle of the basis graph

re otherwise

This can be proven (see [21] p. 15) by showing that the dual value equa-

tions are still satisfied after the change.

3.3 Conclusion

A formulation of the TSP was presented here along with the relaxation that

is used to obtain a lower bound on the cost of the optimal TSP tour. The

CHAPTER 3. THE RMP2 38

RMP2 was formulated as a linear programming problem that can be solved

by the simplex method.

The version of the simplex method discussed here, exploits properties that

exist in the basis graph to solve the RMP2 very efficiently. The fact that the

1-trees in the basis graph always contain an odd number of nodes, makes it

possible to store and manipulate variable values as integers. Instead of cal-

culating the reduced costs by means of expensive matrix multiplication, they

are calculated by first calculating the dual values, which can be computed

easily by traversing the basis graph. Dual values and reduced costs can be

stored as integers too.

Smith et al [28] reported speedups of several orders of magnitude using

this simplex method, and their results suggested that it is asymptotically

faster than the commercial solver with which they compared their results.

After solving the RMP2, we can proceed to solve the TSP. In the next

chapter the dual simplex method, which is necessary for solving the TSP, is

presented.

Chapter 4

The dual simplex method for

the Relaxed 2-Matching

Problem

In this chapter the dual simplex method for the Relaxed 2-matching Prob-

lem (RMP2) is discussed. The implementation of the dual simplex method

discussed here, is based on the work of Leenen [21] and Geldenhuys [9]. As

mentioned before, they used the dual simplex method as part of the Branch-

and-Cut method. This implementation is part of the Column Subtraction

Method and is, therefore, based on different assumptions.

Winston [31] gives three uses for the dual simplex method:

• Solving an LP for which a dual feasible basic solution is initially avail-

able

• Reoptimising when loosing primal feasibility after a constraint has been

added to an LP

• Reoptimising when loosing primal feasibility after changing a right-

hand side of an LP

The Branch-and-Cut method used by Leenen and Geldenhuys necessi-

39

CHAPTER 4. THE DUAL SIMPLEX METHOD FOR THE RMP2 40

tated the consideration of additional constraints (aka side constraints). Pri-

mal infeasibility arose because of the extra constraints added to the RMP2.

This necessarily influenced the implementation in, for example, the calcula-

tion of the basis and the storing of the variable values. In the implementation

presented here, side constraints are not used, and therefore some of the re-

strictions of Leenen and Geldenhuys’ implementation are not present. Primal

infeasibility arises because of the right-hand side of the RMP2 changing. The

structure that is exploited in the primal simplex method for the RMP2, can

then be exploited in the dual simplex method as well.

Given a dual feasible basic solution, the dual simplex method obtains pri-

mal feasibility. The basic method is to find a primal infeasible basic variable

that will leave the basis, select a nonbasic variable to enter the basis in such

a way that dual feasibility is maintained and to pivot. These steps will be

discussed in this chapter.

4.1 Selecting the leaving variable

For each primal infeasible basic variable xBj, a deviation Dj (from primal

feasibility) is computed: For a variable xBj with negative value dj, the de-

viation Dj is simply −dj (the magnitude of the negative value) and for a

variable xj with value dj greater than one, Dj = dj − 1. A primal infeasible

basic variable xBr, with greatest deviation Dr, is chosen to leave the set of

basic variables. The index r denotes the index in B of the leaving variable

in the following sections.

4.2 Selecting the entering variable

In the previous section we saw how a leaving variable is selected. An entering

variable must be chosen to replace xBr in the set of basic variables. Because

of the upper bounds on the variables, an adapted form of the ratio test is

used to select the entering variable.

CHAPTER 4. THE DUAL SIMPLEX METHOD FOR THE RMP2 41

In the simplex method without upper bounds on variables, a basic variable

is primal infeasible when it is negative. To restore primal feasibility in such

a case, the value of an infeasible variable is increased. In such cases, the

ratio test considers the ratio ve/yre for all non-basic edges e, where yre is the

component of the vector ye = B−1ae which corresponds to xBr (the leaving

basic variable). With a dual feasible basis, the reduced costs (v) are all non-

negative. To maintain dual feasibility the entering variable xk is selected

in such a way that vk/yrk = max{ve/yre | yre < 0}. This is necessary and

sufficient to maintain dual feasibility.

However, in the RMP2 we have 1 as upper bound on all variables, and

the basic variable xBr may be primal infeasible either because dr < 0 or

dr > 1. To achieve primal feasibility, a basic variable must increase if it is

negative, or decrease if it exceeds its upper bound. Furthermore, the normal

requirement of just ensuring that reduced costs remain non-negative has to

be extended according to the definition of dual feasibility (see p. 33). As the

infeasible basic variable might have to decrease to obtain primal feasibility,

and as the reduced costs of non-basic variables at the upper bound (1) has to

remain non-positive, the set of variables that is considered for the ratio test

is constructed differently with the RMP2 than with an LP without upper

bounds on variables.

From equation (3.4) we can see the change in a single variable xBr. The

equation

xBr = dr −
∑

e∈L
xeyre −

∑

e∈U
(xe − 1)yre

shows how a change in non-basic variables influences the basic variables. Us-

ing this we can construct the set of non-basic variables that can be considered

for entering the basis. If the entering non-basic variable xk is in L, it will

increase. If it is in U , it will decrease.

• If xBr has to increase (dr < 0), a non-basic variable xe, e ∈ L can

only be considered for entering the basis if yre < 0, because xeyre is

subtracted from xBr. For e ∈ U , yre must be positive to be able to

increase xBr as (xe − 1)yre is subtracted from xBr.

CHAPTER 4. THE DUAL SIMPLEX METHOD FOR THE RMP2 42

The set of indices of variables that can be considered for entering the

basis when dr < 0, is S1 = {e ∈ L | yre < 0} ∪ {e ∈ U | yre > 0}.

• If xBr has to decrease (dr > 1), a non-basic variable xe, e ∈ L can

only be considered for entering the basis if yre > 0, because xeyre is

subtracted from xBr. For e ∈ U , yre must be negative to be able to

decrease xBr as (xe − 1)yre is subtracted from xBr.

The set of indices of variables that can be considered for entering the

basis when dr > 1, is S2 = {e ∈ L | yre > 0} ∪ {e ∈ U | yre < 0}.

4.3 Ratio test

The values for ve after pivoting, v′e can be calculated as follows:

v′e = ve − yre(vk/yrk)

where k is the index of the entering column.

To maintain dual feasibility, we must ensure that ve ≥ 0 ∀e ∈ L and

ve ≤ 0 ∀e ∈ U after the change. To this end, knowledge of the sign of vk/yrk

is important. If k ∈ L, vk ≥ 0 because of the dual feasibility requirement.

If k ∈ U , vk ≤ 0. The sign of yrk depends on the value of xBr, as outlined

above.

To ensure that dual feasibility is maintained, the following cases have to

be considered:

• If dr < 0, then vk/yrk ≤ 0

– For all e ∈ L: if yre ≥ 0, ve cannot decrease and will there-

fore remain non-negative, else ve can only remain non-negative if

ve/yre ≤ vk/yrk.

– For all e ∈ U : if yre ≤ 0, ve cannot increase and will there-

fore remain non-positive, else ve can only remain non-positive if

ve/yre ≤ vk/yrk.

CHAPTER 4. THE DUAL SIMPLEX METHOD FOR THE RMP2 43

Therefore, when dr < 0, vk/yrk = max{ve/yre | e ∈ S1}.

• If dr > 1, then vk/yrk ≥ 0

– For all e ∈ L: if yre ≤ 0, ve cannot decrease and will there-

fore remain non-negative, else ve can only remain non-negative if

ve/yre ≥ vk/yrk.

– For all e ∈ U : if yre ≥ 0, ve cannot increase and will there-

fore remain non-positive, else ve can only remain non-positive if

ve/yre ≥ vk/yrk.

Therefore when dr > 1, vk/yrk = min{ve/yre | e ∈ S2}.

For each non-basic variable xe that can be considered for entering the

basis, the ratio ve/yre has to be considered. Either the maximum or the

minimum ratio will indicate the entering variable, depending on whether xBr

must increase or decrease. Geldenhuys [9, p.15] suggested a slightly more

streamlined form which combines the two cases. This also makes it possible

to simplify the two cases given above for constructing the set of non-basic

variables that can be considered for entering the basis.

The set S = S1 ∪ S2 is the set of all non-basic variables that can be

considered for entering the basis. The process of choosing the entering edge

k from the set S can be summarised as follows:

if (dr < 0)
then δ ← −1
else δ ← +1

end if
S ← {e ∈ L | δyre > 0} ∪ {e ∈ U | δyre < 0}
if (S = ∅)

then //no column suitable to enter the basis
//primal feasibility cannot be achieved
stop

end if
Select k ∈ S such that vk/δyrk ≤ ve/δyre ∀e ∈ S

CHAPTER 4. THE DUAL SIMPLEX METHOD FOR THE RMP2 44

The value yre can be calculated as outlined in Chapter 3, but that would

mean a traversal of the basis graph for each ratio that is calculated. In the

next section a more efficient method is given.

β values

In Chapter 3 an efficient method was discussed to calculate the entries of a

column vector y that corresponds to the entering edge e. These entries were

used in the ratio test for the primal simplex method. For the ratio test in the

dual simplex method, we need entries of a row vector that contains the r-th

entries of all vectors ye = B−1ae, ∀e ∈ L ∪ U . The denominator yre used in

the ratio test is therefore the e-th component of the row vector needed for

the ratio test, with r corresponding to the leaving variable xBr.

Therefore

yre = erB
−1ae

where er is the r-th unit row vector.

The repetitive traversal of the basis graph for the calculation of yre for

each non-basic edge e, can be eliminated by first calculating the row vector

β = erB
−1 (the r-th row of B−1). Then, for each calculation of each yre, we

simply add the two entries in β corresponding to the two ones in ae. Since

βB = er and each column of B contains exactly two ones, it is possible to

solve for the entries in β. Each of the following equations corresponds to a

column in B (and an edge in the basis graph) and the corresponding entry

in er.

If (a, b) is the edge corresponding to xBr,

βa + βb = 1

βi + βj = 0 for all other basic edges (i,j)

The structure of a 1-tree helps us again to solve these equations efficiently.

These equations can be solved in the same way as the dual value equations

CHAPTER 4. THE DUAL SIMPLEX METHOD FOR THE RMP2 45

in section 3.2.3 with a “cost” of 1 for basic edge (a, b) and a “cost” of 0 for all

other basic edges. Entries in β can only be non-zero where entries correspond

to nodes in the 1-tree that contains the edge (a, b). For calculation of the

non-zero components, two different cases can be identified:

• If the edge (a, b) forms part of the cycle of a 1-tree, the β equations

for all edges on the cycle can alternately be added and subtracted to

solve for one β value (say βa) : 2βa = 1 − 0 + 0.... From the equation

for (a, b) it follows then that βa = βb = 1
2
. To solve the equations

corresponding to each remaining edge (i, j) 6= (a, b) on the cycle, β

values corresponding to consecutive nodes on the cycle of the 1-tree

have to alternate between − 1
2

and 1
2
. All β values for the rest of the

1-tree can be calculated by substitution in a β equation containing one

unknown quantity. β values at consecutive nodes connected by an edge

e on a path away from the cycle alternate between 1
2

and −1
2

to add

up to 0 for each basic edge e except for (a, b).

• Otherwise, (a, b) is outside the cycle of a 1-tree with (say) node a

closest to the cycle. The β values are non-zero only for the nodes in

the subtree that contains b. βb = 1 and β values corresponding to nodes

that are connected by basic edges alternate between -1 and 1 to solve

the equations defining β.

When all entries in β have been calculated, yre can be calculated for any

edge e = (i, j) ∈ L ∪ U with yre = βi + βj.

4.4 Pivoting

Now that the leaving and entering variables are selected, we must proceed to

change the basis. As side constraints were used in the dual simplex imple-

mentation of Leenen [21] and Geldenhuys [9], updating the basic variables

and pivoting was much more involved than in the primal simplex method

for the RMP2. As side constraints are not considered here, the basis uses

CHAPTER 4. THE DUAL SIMPLEX METHOD FOR THE RMP2 46

exactly the same structure than that of the primal simplex method. This

makes it possible to use the same algorithm for updating the basis structure

and the dual values that were used for the primal simplex method.

Denote by ∆ the amount by which the entering variable xk is changed.

In an LP without upper bounds on the variables, ∆ would simply be dr/yrk.

Here dr reflects the change in value for the leaving variable.

As upper bounds are considered here in the RMP2, dr does not necessarily

reflect the change in value for the leaving variable: if xBr was primal infeasible

because dr > 1, xBr will become non-basic at its upper bound, 1. The change

in value for xBr when dr > 1 is therefore (dr − 1). ∆ is therefore defined as

dr/yrk if dr < 0, and as (dr−1)/yrk when dr > 1 to correspond to the change

in the value of xBr.

Change in a non-basic variable affects the objective function value as

follows:

z = z0 +
∑

e∈L
vexe +

∑

e∈U
ve(xe − 1)

We will be changing the entering variable xk by ∆. Therefore, the change in

z is vk∆ regardless of whether k is in L or in U .

The technique used in the primal simplex method to update the dual

values after the basis change, can be used again here, without any change.

The complete dual simplex algorithm is now given:

CHAPTER 4. THE DUAL SIMPLEX METHOD FOR THE RMP2 47

while ((B,L, U) is primal infeasible) do
Calculate the deviation Dj for each primal infeasible variable
Select r such that Dr = max{Dj | dj < 0 or dj > 1}
if (dr < 0)

then δ ← −1
else δ ← +1

end if
S = {e ∈ L | δyre > 0} ∪ {s ∈ U | δyre < 0}
if (S = ∅)

then stop
end if
Select k ∈ S such that vk/δyrk = min{ve/δyre | ∀e ∈ S}
if (δ < 0)

then ∆← dr/yrk
else ∆← (dr − 1)/yrk

end if
xk ← xk + ∆
xBj ← dj −∆yjk ∀j ∈ B
z ← z + vk∆
if (δ < 0)

then if (k ∈ L)
then L← L+ {Br} − {k}
else U ← U − {k}

L← L+ {Br}
end if

else
if (k ∈ L)

then U ← U + {Br}
L← L− {k}

else U ← U − {k}+ {Br}
end if

end if
B ← B + {k} − {Br}
Update the dual values

end

CHAPTER 4. THE DUAL SIMPLEX METHOD FOR THE RMP2 48

4.5 Implementation

It was illustrated in Chapter 3 that variables assume one of the values in

{0, 1
2
, 1} during the primal simplex method. The addition of side constraints

to the RMP2 as part of the dual simplex method in the work of Leenen

[21] and Geldenhuys [9] caused variables to assume any real value. This

necessitated the use of floating point variables to store the values of the

variables. The variables were converted from integers to floating point values

after completion of the primal simplex method.

As there are no side constraints in the implementation discussed in Chap-

ter 5, the basis structure (B,L, U) has similar attributes throughout the

dual simplex method compared with what it had during the primal simplex

method. Each element in the inverse of the basis remains an integer divided

by 2. As primal feasibility is not maintained here, the range of a basic vari-

able is however now not limited to {0, 1
2
, 1} as during the primal simplex

method, but the value of each remains an integer divided by 2. During im-

plementation, this can be exploited throughout the dual simplex method.

Since 2xBj is an integer, basic variables can be stored as integer values by

simply storing 2xBj instead of xBj. Non-basic variables, as with the primal

simplex method, assume only the values of either their upper bound (0) or

lower bound (1).

These properties of the values of the variables have the further advan-

tage that the same representation can be used for both the primal and dual

simplex methods, without the need to convert after completion of the primal

simplex method. The use of floating point variables is therefore eliminated

entirely. Computation is faster than with floating point numbers. The nu-

merical instability that Geldenhuys and Leenen experienced is also eliminated

because of the perfectly accurate presentation.

CHAPTER 4. THE DUAL SIMPLEX METHOD FOR THE RMP2 49

4.6 Conclusion

The dual simplex method for the RMP2 was presented here. Primal feasibil-

ity that is lost because of changing the right-hand side vector (b) is restored.

The techniques presented here are simpler than those of Geldenhuys [9]

and make it possible to implement these techniques entirely with the use of

integer variables. As similar attributes are present during the dual simplex

method compared with the primal simplex method, certain operations dis-

cussed as part of the primal simplex method can be used without change in

the dual simplex method.

In the following chapter the CSM for the TSP is presented, which ma-

nipulates the right-hand side vector (b). When primal infeasibility arises,

the dual simplex method presented in this chapter is used to restore primal

feasibility.

Chapter 5

The Column Subtraction

Method for the Traveling

Salesman Problem

In Chapter 2 the Column Subtraction Method (CSM) for solving Set Par-

titioning Problems (SPP) was introduced. It was shown to be an effective

method for solving SPPs and also achieved excellent speedup in a parallel

processing environment. This chapter presents the CSM as a method for

solving the Traveling Salesman Problem (TSP). The algorithms discussed in

Chapters 3 and 4 are used to implement efficient primal and dual simplex

methods.

The CSM has to be adapted for the TSP since the relaxation used for the

TSP (the RMP2) differs from the LP relaxation used for the SPP in three

ways:

• The right hand side of the relaxation is a vector of twos (not ones).

• Upper bounds are used and therefore non-basic variables can assume

the value of their upper bound (1).

• Even when all the variables are integer, they do not necessarily define

a solution for the TSP, as they might define subtours.

50

CHAPTER 5. THE CSM FOR THE TSP 51

The basic process for solving the TSP with the CSM is similar to that

which was discussed in Chapter 2. A relaxation of the TSP (the RMP2) is

first solved to find an optimal basis structure (B,L, U) (see Chapter 3). If

the optimal basic solution does not correspond to a tour at least one of the

edges in L must be in the optimal tour or at least one of the edges in U must

not be part of the optimal tour. A search tree is constructed in which at

each node certain non-basic variables are either fixed at the value they had

in the optimal solution to the RMP2, or fixed at an altered value. Fixing a

variable at an altered value entails either that an edge in L is fixed into the

optimal tour for the subproblem (the variable is fixed at altered value 1), or

an edge in U is fixed out of the optimal tour for the subproblem (the variable

is fixed at altered value 0).

Fixing a variable at an altered value can result in primal infeasibility,

and in such cases the dual simplex method can be applied to restore primal

feasibility. The resulting basic solution can then be tested to see if it defines

a solution to the TSP.

The improved CSM by Smith and Thompson [30] specifies nine rules

under which a node can be fathomed (see Chapter 2). Some of these rules

are tied to the attributes of the SPP and cannot be used directly in the

TSP. This chapter describes which of the nine rules can be used in the TSP

and how some of them were adapted for the attributes that are present

in the TSP. This chapter also discusses some of the techniques that were

used to implement the CSM for the TSP. In closing, some ideas for future

improvements are mentioned.

Definitions

A few definitions follow that describe the extent to which the constraints of

the RMP2 are satisfied by a set of variables:

• When a set of variables provides an integer solution to the RMP2, the

columns corresponding to the positive variables add up to a vector of

CHAPTER 5. THE CSM FOR THE TSP 52

twos. This set of columns is said to cover the rows or to provide a

cover.

• When a set of columns add up to a vector that only contains values

from 0, 1, 2, the set of columns is said to partially cover the rows or to

provide a partial cover.

• When a set of columns add up to a vector containing values of which

one or more exceed 2, the set of columns is said to overcover the rows

or to provide an overcover.

5.1 Constructing the CSM search tree

At each node of the search tree one or more variables that are non-basic in

the optimal solution to the relaxation are either fixed at their upper bound

(1) or their lower bound (0).

Just as in the case of the SPP, an upper and a lower bound on the optimal

objective function value are kept, denoted by zIP and zLP respectively. As

indicated below, the lists can be trimmed to exclude all variables with reduced

cost greater than or equal to zIP − zLP , because they cannot become part

of a tour with a cost less than zIP .

The change in cost from zLP , the cost of the optimal solution to the

RMP2, when changing the value of a non-basic variable, is seen in the fol-

lowing:

z = zLP +
∑

e∈L
vexe +

∑

e∈U
ve(xe − 1)

If xf , f ∈ L increases to 1, we have

z = zLP + vf .

Therefore, for variables in L, only those with reduced cost less than zIP −
zLP can possibly equal 1 in a tour with cost less than zIP .

CHAPTER 5. THE CSM FOR THE TSP 53

Similarly, if xf , f ∈ U decreases to 0, we have

z = zLP − vf .

Therefore, for variables in U , only those with reduced cost greater than

−(zIP − zLP) can possibly equal 0 in a tour with cost less than zIP .

The edges corresponding to the set of variables that are fixed at 1 are

called the partial tour defined by the subproblem, because they define part

of the optimal tour that is sought at a subproblem.

Whenever a tour is found with a lower objective function value than zIP,

zIP is updated. The amount of non-basic variables that now need to be

considered decreases too, because the gap between zIP and zLP decreases.

Different orderings for the non-basic variables are possible. Two of these

are discussed next.

5.1.1 L followed by U as separate lists

Two sorted lists are constructed that correspond to the index sets L and

U . L is sorted in non-decreasing order of reduced cost, and U is sorted in

non-increasing order of reduced costs. L and U will interchangeably be used

to refer to a set of variables, edges or columns that correspond to the index

sets L and U . When constructing the search tree, the non-basic variables

can be considered as part of one list which is formed by appending the list

U to the list L. If i > |L|, the i-th variable is Ui−|L|. The use of non-basic

variables in creating the search tree is different compared with the SPP, to

allow the correct consideration of non-basic variables in U that are at their

upper bound in the optimal solution to the relaxation.

To create the first child of the root node the variable L1 is fixed at the

altered value 1. For 1 < i ≤ |L|, the i-th child of the root node is created by

fixing the variable Li at the altered value 1 and fixing the variables L1 to Li−1

at 0. For i > |L|, the i-th child of the root node is created by fixing variable

Ui−|L| at the altered value 0, fixing all variables in L at 0 and if i > |L|+ 1,

CHAPTER 5. THE CSM FOR THE TSP 54

fixing variables U1 to Ui−1−|L| to 1.

The first child of a node for which the i-th variable was fixed at an altered

value is created by additionally fixing the (i + 1)-th variable at an altered

value. For 1 < j, the j-th child of a node for which the i-th variable was fixed

at an altered value is created by additionally fixing the (i+ j)-th variable at

an altered value and fixing the (i + 1)-th to (i + j − 1)-th variables at their

original values (0 for variables in L, and 1 for variables in U).

When a new tour is found and zIP is updated, the lists L and U can be

trimmed to reflect the new gap.

5.1.2 All non-basic variables in one list

Another possibility is to compile a single list E with all non-basic variables.

Such a list is then sorted according to non-increasing order of the absolute

values of the reduced costs of the variables (to account for the fact that

variables from L and U have different signs). The variables in U will therefore

be interleaved between the variables in L.

To create the first child of the root node the variable E1 is fixed at an

altered value (1 for variables in L, 0 for variables in U). For 1 < i, the i-th

child of the root node is created by fixing the variable Ei at the altered value

and fixing the variables E1 to Ei−1 at their original values (0 for variables in

L, 1 for variables in U).

The first child of a node for which the i-th variable was fixed at an altered

value is created by additionally fixing the (i + 1)-th variable at an altered

value. For 1 < j, the j-th child of a node for which the i-th variable was fixed

at an altered value is created by additionally fixing the (i+ j)-th variable at

an altered value and fixing the (i + 1)-th to (i + j − 1)-th variables at their

original values (0 for variables in L, and 1 for variables in U).

When a new tour is found and zIP is updated, the list E can be trimmed

to reflect the new gap. This technique was not tested computationaly.

CHAPTER 5. THE CSM FOR THE TSP 55

5.2 Fixing a non-basic variable at an altered

value

At each node in the search tree of the SPP, a set of non-basic columns was

fixed into the optimal partition for a subproblem by fixing the corresponding

variables at 1, and then re-optimising. This was done by subtracting all the

columns of A that were fixed into the optimal partition of the subproblem,

from the right hand side of the LP formulation. The process of fixing columns

into the optimal partition and fixing the corresponding variables equal to 1

had to be adapted for use with the TSP as non-basic variables could possibly

have a value of 1 (the variables in U). The use of upper bounds necessitates

consideration of adding a column of A to the right hand side and fixing the

variable equal to 0.

5.2.1 Fixing a variable in L at altered value 1

To fix a variable xf , f ∈ L, at a value of 1, the corresponding column af of

the matrix A is subtracted from the right hand vector of the equations (b in

our formulation). The manipulations discussed next will show why column

subtraction can possibly cause primal infeasibility.

As the vector b is not used in the implementation, but only d, d has to

be updated in such a manner as to reflect the change in b. Suppose a column

af corresponding to variable xf , f ∈ L, and edge (u, v) is subtracted from

b. Subtracting af from b corresponds to fixing xf at 1. Two entries in b, bu

and bv, are decreased by 1. This means that rows u and v need to be covered

one time less because af will complete the cover. Since

d = B−1b−
∑

e∈U
ye

the values in d after the column subtraction, d′, are as follows:

d′ = B−1(b− af)−
∑

e∈U
ye

CHAPTER 5. THE CSM FOR THE TSP 56

= B−1b−B−1af −
∑

e∈U
ye

= B−1b−
∑

e∈U
ye −B−1af

= d− yf

Therefore, only yf = B−1af need to be subtracted from the current value

of d. The calculation of the vector yf was discussed in Chapter 3 (p. 34).

During the Column Subtraction Method, more than one column can be

subtracted from the right-hand side. Under such circumstances d is updated

at each node in the search tree for each of the edges that is fixed into the

optimal tour of the subproblem by subtracting yf for each variable xf , f ∈ L
fixed at 1.

5.2.2 Fixing a variable in U at altered value 0

To fix a variable xf , f ∈ U , at a value of 0, the corresponding column af of

the matrix A is added to the right hand vector of the equations (b in our

formulation). This can also result in primal infeasibility.

CHAPTER 5. THE CSM FOR THE TSP 57

The two entries in b that correspond to the nodes connected by edge

f = (u, v), bu and bv, are increased by 1. This means that rows u and v need

to be covered one time more as af no longer contributes to the cover. The

values in d after the column addition, d′, are as follows:

d′ = B−1(b + af)−
∑

e∈U
ye

= B−1b +B−1af −
∑

e∈U
ye

= B−1b−
∑

e∈U
ye +B−1af

= d + yf

If S is a set that contains all variables with altered values,

d′ = d−
∑

e∈L∩S
ye +

∑

e∈U∩S
ye

Updating d in this manner can result in values in d′ becoming negative

or greater than one. Therefore, primal feasibility can possibly be lost at this

point.

Once primal feasibility has been lost, the dual simplex method discussed

in Chapter 4 can be applied in an attempt to regain primal feasibility.

5.3 Fathoming rules

By far the greatest part of the time spent in solving the TSP with the CSM, is

spent on traversing the search tree and applying the dual simplex method. It

is therefore desirable to prune the search tree as much as possible, to reduce

unnecessary calculations.

Almost all the rules for fathoming a node that were used for the SPP

can be used for the TSP with no or minor changes. This section describes

how the rules are applied to the TSP. The rules are presented in the order

CHAPTER 5. THE CSM FOR THE TSP 58

in which they are applied. The ordering attempts to do inexpensive tests

before computationally expensive checks are attempted. The TSP exhibited

behaviour different from that of the SPP with regard to the effectiveness

of certain fathoming rules to fathom nodes as well as the computational

efficiency of the rules. These rules will be discussed in the following sections.

5.3.1 The inexpensive fathoming rules

If certain conditions hold, it may be possible to detect that a node can be

fathomed before a column is subtracted (or added) and therefore also before

the dual simplex method may need to be applied. The checks described here

are easy to carry out and can avoid expensive checks in some cases.

With the SPP a node could be fathomed if a column were fixed into the

partial partition and the column were not orthogonal to the other columns

in the partial partition. This was easy to implement as it was only necessary

to check that the new column in the partial partition only covered rows that

were not covered by other columns in the partial partition. Since the right

hand side for the TSP is b, a vector of twos, this fathoming rule has to be

adapted.

A different formulation of this rule for the TSP (which also applies to the

SPP) is that a node can be fathomed if the column fixed to create the node

causes an overcover (Rule 1). Therefore, if a row is only covered by a single

fixed column in the TSP, the node of the search tree cannot yet be fathomed,

as another edge corresponding to a column with a one in that row can also

be fixed into the partial tour for that node.

If the cost of the partial tour equals or exceeds the current best known

solution, the node can be fathomed (Rule 4). This rule is directly applicable

to the TSP as in the case of the SPP.

With the SPP Rule 5 considered the case where a partial partition is

a complete cover and therefore provides a solution by itself. The node can

be fathomed as no child can give a better solution. With the TSP, however,

CHAPTER 5. THE CSM FOR THE TSP 59

such partial covering defines a 2-matching, but not necessarily a tour. If it

defines a tour, zIP can be updated and the node can be fathomed. If the

partial covering does not define a tour, the node can be fathomed nonetheless

because no more variables can be fixed at value 1, as that would cause an

overcover. No more variables in U are left to fix at 0, otherwise the fixed

columns would not be able to define a cover.

With the TSP this rule is unlikely to ever find a tour, but checking for it

is not expensive, and it is useful as no child node can provide a solution to

improve on the current best known solution.

5.3.2 Row-wise fathoming rules

The rules discussed in this section can also be applied before column subtrac-

tion or column addition takes place and can therefore possibly fathom a node

before necessitating the dual simplex method. They are more expensive than

the ones mentioned before as it is necessary to iterate over a large amount

of variables to obtain the necessary information. Only edges remaining in

L and U that are incident to a node for which less than two incident edges

have been fixed into the partial tour, have to be considered.

With the SPP, where there was only one column left that could cover an

uncovered row, it had to form part of the solution. Where there was no col-

umn left to cover an uncovered row, the node could be fathomed (Rule 6).

These considerations are slightly more involved in the case of the TSP, be-

cause the right hand side contains twos, not ones, and therefore the technique

has to be adapted.

When there is any row that cannot be covered entirely (twice) by the

available columns, a solution is impossible. This condition includes both the

cases where there is no column or only one column that can cover a row.

This is also applicable where there is a column corresponding to a variable

fixed at 1, already partially covering a row, and where there are no available

columns to complete the cover for that row. In such a case only one column

need to be found to complete the covering.

CHAPTER 5. THE CSM FOR THE TSP 60

It is therefore not possible to apply the concept of a one-row directly to

the TSP. However, there exist cases where a cover can only be achieved in one

way. This could happen if only one column is needed to complete the cover

in a row that is partially covered by a fixed column, or where two columns

are still needed and only two candidates exist. This check is not present in

the implementation presented as part of this study.

5.3.3 After subtracting (or adding) a column

If none of the previous fathoming rules could help to fathom the node, a

column must be subtracted from or added to the right hand side. Similarly

to the SPP, we formulate an associated LP (ALP) as follows:

Minimise cx

Subject to Ax = b′

0 ≤ x ≤ 1

where b′ is obtained from b by subtracting all the columns associated with

edges in L ∩ S and adding all the columns associated with edges in U ∪ S.

As mentioned earlier, an upper and a lower bound on the optimal objective

function value is kept, denoted by zIP and zLP respectively. The basis B

in the optimal solution to the RMP2 defines a dual feasible basic solution

for the ALP. The cost of this solution provides a lower bound on the cost of

completing the node’s partial tour. Rule 2 specifies (as in the case of the

SPP) that a node can be fathomed if the cost of the basic solution equals or

exceeds zIP.

It was mentioned in the introduction that in the case of the TSP, if

all variables are integer, they do not necessarily define a solution, as the

subgraph with edge set corresponding to the positive variables may contain

subtours. In the case of the SPP an integer solution meant that no children

could produce solutions that are better than the current best known solution

and a node could therefore be fathomed.

CHAPTER 5. THE CSM FOR THE TSP 61

For the TSP this fathoming rule can be applied after column subtraction

(or addition) before the dual simplex method is invoked, if the current so-

lution is not only integer, but also forms a tour (Rule 3). Therefore, if the

solution to the ALP at a node has all variables as integers, but subtours are

present, the node cannot be fathomed as children nodes might still provide a

solution with an objective function value better than the current best known

value (zIP).

5.3.4 When the dual simplex cannot be avoided

If a node cannot be fathomed by one of the previous fathoming rules, the

dual simplex algorithm has to be applied.

If primal feasibility cannot be obtained with the dual simplex method,

the node can be fathomed (Rule 7). This applies exactly as in the case of

the SPP.

During the dual simplex method, if the resulting objective function value

for a subproblem is greater than or equal to zIP, the node can be fathomed

(Rule 8). This applies exactly as in the case of the SPP.

In the case of the SPP, if primal feasibility is obtained and the resulting

solution is integer, it can be considered as a solution. For the TSP it addi-

tionally has to form a tour to be considered a solution. If the solution is in

fact a tour, the node can be fathomed as no child node can provide a better

solution (Rule 9). In such a case zIP is updated. If the objective function

value does not exceed zIP, and the solution is not integer or not a tour, the

node cannot be fathomed.

5.4 Refinements and future research

The CSM for the TSP, as presented here, is based on the CSM for the SPP

(see Chapter 2). Mostly the same structure and fathoming rules could be

used.

CHAPTER 5. THE CSM FOR THE TSP 62

Further improvements to what was presented here are possible. Extra

fathoming rules might be possible. For example: if the partial tour contains

a subtour, a node can be fathomed as all children will also contain that

subtour. To implement this rule, a method for detecting subtours in a subset

of less than n edges, will have to be used.

In some cases (notably the bigger problems), tours found in the CSM

search tree exhibited relative locality in the search tree, i.e. two or more

solutions were found in reasonably short succession. It might be worthwhile

to investigate the properties of the branches in which these tours are found,

to perhaps first search in such branches.

Heuristics can also be used to speed up the CSM:

• Instead of blindly using the objective function value of the initial basis

for the RMP2 as an initial value for zIP, zIP can possibly be lowered.

Objective function values of the optimal solutions to the investigated

problems were found to be within 10% of the optimal value of the RMP2

solution, zLP, with the exception of problem gr17 from the TSPLIB

(discussed in Chapter 7). This will allow for consideration of fewer non-

basic variables for constructing the CSM search tree, and will therefore

limit the width of the search tree.

• The use of a better heuristic for the initial starting basis for the RMP2

could also provide a better initial value for zIP.

• Optimal solutions were mostly found at relatively shallow depth in the

CSM search tree. A possible heuristic could therefore be to limit the

depth of the search tree. A possible heuristic is to limit it to 25% of n.

This heuristic will of course make fathoming rule 5 redundant.

5.5 Conclusion

The CSM was presented here as a method to solve the TSP. The primal

simplex method discussed in Chapter 3 is used to solve a relaxation of the

CHAPTER 5. THE CSM FOR THE TSP 63

TSP (namely the RMP2). A depth-first search tree is constructed where

at each node a subproblem is created with certain variables fixed at 0 or 1.

Fixing a variable at an altered value is achieved by subtracting (or adding)

a column of A from (or to) the right hand side vector b. The dual simplex

method discussed in Chapter 4 is used if the subtraction (or addition) results

in primal infeasibility.

In Chapter 6 certain techniques are presented that are used to implement

some of the fathoming rules described in this chapter. The algorithms in

Chapter 6 focus on scalability. Implementation details and running times

are reported in Chapter 7. The CSM for the TSP lends itself to the same

method of parallelisation than that described with regard to the SPP (see

Chapter 2). The parallelisation and the running times on more than one

processor are also presented in Chapter 7.

Chapter 6

Techniques used in the Column

Subtraction Method for the

Traveling Salesman Problem

In Chapter 5 the CSM for the TSP was presented. In this chapter some of

the techniques that were used in the method are presented. Two calculations

that are very often needed during the CSM for the TSP is to calculate which

edge is incident on two given nodes, or to calculate which two nodes are

connected by a given edge. For the discussion of these calculations the node

and edge numbering scheme is presented, followed by the techniques used to

perform these calculations.

In the section on fathoming rules (Chapter 5), the necessity of testing

whether a basic solution defines a tour was frequently mentioned. (See rules

3, 5, and 9.) The method employed to perform this test is presented here.

As the methods and calculations presented here are performed often, the

potential impact on the running time of an implementation can be huge.

They should be efficient, and should ideally scale favourably to be useful in

large problem instances.

64

CHAPTER 6. TECHNIQUES USED IN THE CSM FOR THE TSP 65

6.1 Calculating node numbers and edge num-

bers

Throughout the implementation of the CSM for the TSP, it is very often

necessary to calculate which edge connects two given nodes, or to calculate

which two nodes are connected by a given edge. Profiling of the code in-

dicated that functions to do these calculations are called more than any of

the other functions in the program, and that a substantial amount of time

is spent on these calculations (5% - 10%). It is therefore important that

these functions are implemented efficiently. One possibility is to store all the

information in memory, but this would consume a large amount of memory.

6.1.1 Node and edge numbering

Before presenting the methods used to do the above mentioned calculations,

the numbering scheme that is employed will be presented. Both edges and

nodes can either be numbered from 0 or numbered from 1. The choice influ-

ences the exact details of the formulas presented here. Only the numbering

scheme from zero is presented. It is assumed that both nodes and edges are

numbered from zero.

Say we have n nodes numbered from 0 to (n− 1) and m edges numbered

from 0 to (m− 1). As G (see p. 22) is a fully connected, undirected graph,

m = n(n−1)/2. The edge (0,1) connecting node 0 with node 1, is numbered

0. The edges incident on node 0 are numbered 0 through n− 2. Edge (1,2)

is numbered n− 1. The edges (1, i) with i > 1 are numbered n− 1 through

(n− 1) + (n− 3).

Below is a table listing the edge numbers for a graph with n = 6. Numbers

are only given for the upper triangle to indicate the numbering scheme.

The ordering in this numbering scheme corresponds to the left-to-right,

top-to-bottom reading of the upper triangle of the square cost matrix. This

is the format used for some of the problems in the TSPLIB [24] that is

CHAPTER 6. TECHNIQUES USED IN THE CSM FOR THE TSP 66

Node numbers 0 1 2 3 4 5
0 0 1 2 3 4
1 5 6 7 8
2 9 10 11
3 12 13
4 14

Table 6.1: Edge numbers with n = 6 when numbering from zero

marked as being in UPPER ROW format. Other formats used in the TSPLIB

can of course be converted to this numbering scheme easily. The TSPLIB is

discussed in Chapter 7.

6.1.2 Calculating an edge number from node numbers

Edge numbers can be calculated as follows:

In general, the edge (x, x+ 1) is numbered

k = (n− 1) + (n− 2) + (n− 3) + ...+ (n− x)

=
x∑

i=1

(n− i)

An edge (x, y) connecting two arbitrary nodes is numbered relative to the

edge (x, x + 1) by adding (y − x − 1). The edge number k for an arbitrary

edge (x, y) is therefore

k =
x∑

i=1

(n− i) + y − x− 1 (6.1)

The summations in the above formulas can be done in constant time with

a formula, and therefore the calculation of edge numbers can be done in O(1)

time. Geldenhuys [9] used a lookup table for the values of the summations

minus 1 (
∑x
i=1(n−i)−1) for x ∈ {0, 1, 2, ..., (n−1)}. Using a lookup table, the

CHAPTER 6. TECHNIQUES USED IN THE CSM FOR THE TSP 67

number of edge (x, y) can be found by using x as index in the lookup table,

and merely adding the difference between y and x to the retrieved value.

The lookup table can easily be constructed to work with both numbering

schemes.

base[0]← −1
j ← 0
i← n− 1
while (j < n− 1) do

base[j + 1]← base[j] + i
j ← j + 1
i← i− 1

end

It is however important that x < y. Using the lookup table base, this

calculation can be described as follows (this calculation is the same for both

numbering schemes):

integer function edgenumber(x, y)
if (x < y)

then return (base[x] + y − x)
else return (base[y] + x− y)

end if
end

6.1.3 Calculating node numbers from an edge number

- O(log(n))

During the dual simplex method (see Chapter 4) and the CSM (see Chapter

5) it is often necessary to know which nodes are connected by a given edge.

Geldenhuys [9] used a binary search on the lookup table used in the previous

section to find one of the node numbers (the one with the smallest number)

and could then calculate the second node number using the edge number,

CHAPTER 6. TECHNIQUES USED IN THE CSM FOR THE TSP 68

the lookup table and the number of the first node. Given an edge k, the

following algorithm can determine the nodes x and y that is connected by k.

(The division in the following algorithms is, of course, integer division.)

function nodenumbers(k, x, y)
l← 0
r ← n− 1
while (l < r) do

m← (l + r)/2
if (k > base[m])

then l ← m+ 1
else r ← m

end if
end
x← l − 1
y ← k − base[x] + x

end

The search on the lookup table is O(log(n)). Next a new method is

presented which can do the calculation in O(1) time.

6.1.4 Calculating node numbers from an edge number

- O(1)

A technique is presented here which is able to eliminate the search on the

lookup table to calculate the node number x of an arbitrary edge (x, y) with

x < y. It is assumed again that nodes and edges are numbered form zero.

While it is possible to adapt the technique to work with numbering from one,

the formulas presented in this section are affected by the decision, and the

adaption is not straight forward.

First we develop the technique for an edge (x, x+ 1).

k =
x∑

i=1

(n− i)

CHAPTER 6. TECHNIQUES USED IN THE CSM FOR THE TSP 69

k =
x∑

i=1

n−
x∑

i=1

i

k = xn− (x+ 1)x/2

2k = 2xn− (x+ 1)x

Now we have a quadratic equation in x:

0 = x2 + (1− 2n)x+ 2k

The roots are

x =
2n− 1±

√
(2n− 1)2 − 8k

2

x = n−
1±

√
(2n− 1)2 − 8k

2
(6.2)

These roots will always be real: since k is an edge number, the maximum

value it can attain is therefore less than n(n − 1)/2 (when numbering from

zero). The discriminant in the equation is thus:

= (2n− 1)2 − 8k

> (2n− 1)2 − 8n(n− 1)/2

= 4n2 − 4n+ 1− 4n2 + 4n

= 1

For the positive sign in the fraction in equation 6.2, the fraction has a

value that is greater than 1. For the negative sign the fraction has a value

that is negative. The greater of the two roots therefore yields a value for

x that is greater than n - which is not a valid node number. Therefore the

smaller root is the correct one:

x = n−
1 +

√
(2n− 1)2 − 8k

2
(6.3)

The difference between the edge numbers for an arbitrary edge (x, y) with

CHAPTER 6. TECHNIQUES USED IN THE CSM FOR THE TSP 70

x < y, and that of the edge (x, x+ 1), corresponds to the difference between

their respective second components of the node pairs. The edge numbers will

therefore differ by y − (x + 1). If the number k of edge (x, x + 1) were to

increase by n− x− 1 or more, it would not be incident on x anymore. This

fact enables us to analyse the effect on equation 6.3 of passing a value of k

which corresponds to an edge (x, y) where y 6= x+ 1:

An increase in k of exactly n − x − 1 will yield x + 1 in equation 6.3.

An increase in k of less than n − x− 1 will cause (fractional) increase in x,

but x will not reach or exceed x+ 1. The floor of equation 6.3 will therefore

calculate a correct value of x for an arbitrary value of k, 0 <= k < m. This

corresponds to taking the ceiling of the fractional part (that is subtracted).

From equation 6.1 we can then also calculate y:

k =
x∑

i=1

(n− i) + y − x− 1

y = x+ k + 1− (
x∑

i=1

n−
x∑

i=1

i)

y = x+ k + 1− (xn− x(x+ 1)/2)

y = x+ k + 1− x(n− (x+ 1)/2)

y = x+ k + 1− x(2n− x− 1)/2

To summarise:

k =
x∑

i=1

(n− i) + y − x− 1

x = n−
⌈

1 +
√

(2n−1)2−8k

2

⌉

y = x+ k + 1− x(2n− x− 1)/2

The time complexity of this new technique is O(1) and should scale much

better than the previous method. It does unfortunately involve floating point

arithmetic for the calculation of the square root and of the ceiling. Quite a

CHAPTER 6. TECHNIQUES USED IN THE CSM FOR THE TSP 71

few integer calculations are necessary as well.

6.2 Testing if a solution is a tour

An often needed functionality in the CSM for the TSP is to test whether a

basic solution defines a tour. It is therefore important that the test be per-

formed efficiently. This section describes the data structures and algorithms

used to perform this test.

When the basic solution at a node is both primal and dual feasible, it is

known to be an optimal solution for the ALP. Additionally a TSP tour has

the following attributes:

• All variables must be integer, i.e. 0 or 1

• The set of edges corresponding to the variables with value 1 must define

a tour (there may be no subtours)

When testing whether a solution to the ALP defines a tour, its important

to remember that edges corresponding to the following variables can form

part of the tour:

• basic variables with value 1,

• non-basic variables originally in L that is fixed at value 1 by means of

column subtraction,

• non-basic variables originally in L that entered U when applying the

dual simplex method,

• non-basic variables originally in U and still present in U that have not

been fixed at value 0 by means of column addition.

In the implementation presented here, the Union-Find algorithm (see [27],

[5] and [7]) is used to determine if the current solution is a tour.

CHAPTER 6. TECHNIQUES USED IN THE CSM FOR THE TSP 72

6.2.1 The Union-Find algorithm

In the way we use the Union-Find algorithm, it receives a set of edges as

input. It determines whether the subgraph with this edge set is connected

or not. If the subgraph is connected, it defines a tour.

A new graph G′ with n nodes is considered which initially has no edges.

Edges added to G′ will always result in G′ defining a set of trees. For each

node in the graph, a parent index is kept in an array. These indices are used

to traverse upward in a tree of nodes defined by these parent relationships. A

parent relationship indicates that the corresponding two nodes in the TSP are

connected. A subgraph in G′ defined by any subset of these nodes are acyclic

and therefore the whole graph defined by the nodes and parent relationships

define a forest of trees. Initially all nodes are initialised to have no parent by

setting all parent indeces to an invalid index, -1. (The choice of this number

will be explained later.) Therefore, each node defines a tree with only one

node.

Two important functions are necessary to implement the Union-Find al-

gorithm:

• The findroot(x) function takes one node, x, as parameter. From node

x it traverses the graph by following parent indices until it reaches the

root node, i.e. a node without a parent. It returns the index of this

root node. (If the parameter to the function does not have a parent,

the node itself is returned.)

• The union(a, b) function receives two nodes a and b connected in G

by an edge as parameters. For each of these nodes the findroot()

function is called to obtain the roots of the trees to which they belong.

One of these root nodes is assigned as the parent of the other root node

and thus combines the two trees to become one tree.

The Union-Find algorithm can determine whether a solution is a tour

by executing the union() operation for all node pairs connected by edges

CHAPTER 6. TECHNIQUES USED IN THE CSM FOR THE TSP 73

corresponding to variables with value 1 and then determining whether the

edges form a connected subgraph. The code for these functions follows:

function findroot(x)
while (x has a parent) do

x← parent[x]
end
return x

end

function union(a, b)
a← findroot(a)
b← findroot(b)
if (a = b)

then stop
end if
parent[a]← b

end

After all union operations are carried out, the structure of the tree formed

by the parent relationships among the nodes depend on the order in which

the edges were supplied to the union operation. From the algorithm above,

it is clear that even the ordering of the nodes a and b makes a difference to

the direction of the parent-child relationship between a and b. This leaves

the door open for a tall narrow tree to form, which will make the findroot

operation more expensive than with a flatter tree.

For scalability this can be fixed by means of two improvements on the

union-find algorithm.

Path compression

The parent relationships are only needed to be able to do the findroot op-

eration. The exact relationships are therefore arbitrary, as long as the root

of the tree that is formed remains the same. We can therefore arbitrarily

CHAPTER 6. TECHNIQUES USED IN THE CSM FOR THE TSP 74

change a node’s parent index to that of another node higher up in the tree

structure, or specifically, directly to that of the root. After such a change the

time complexity for a findroot operation for that node is O(1) where before

it was O(h) where h is the depth of that node.

Because the path that is followed to the root node is shortened this is

called path compression. A suitable time to perform the path compression

has to be sought. After traversing from a node to the root of the containing

tree in a findroot operation, we can traverse over the whole path again and

set each node’s parent index to the root node that was found in the previous

step.

An algorithm for findroot() with path compression is as follows:

function findroot(x)
xroot← x
while (xroot has a parent) do

xroot← parent[xroot]
end
//Now we can do the path compression:
while (x has a parent) do

temp parent← parent[x]
parent[x]← xroot
x← temp parent

end
return xroot

end

Path compression will ensure that paths that were traversed before will

be compressed, but paths formed by union operations, could still cause long

uncompressed paths. A possible solution is height balancing.

It was mentioned before that the ordering of the nodes a and b as pa-

rameters to the union operation determines the direction of the parent rela-

tionship. This ordering affects the length of the resulting paths, because no

path compression is performed as part of the union operation. It is therefore

CHAPTER 6. TECHNIQUES USED IN THE CSM FOR THE TSP 75

advantageous to make a guided choice rather than an arbitrary one. One

possibility is height balancing, where the choice minimises the height of the

tree resulting from the union operation. The use of path compression in

combination with height balancing diminishes some of the advantages pro-

vided by height balancing because the height of a tree might change after

the findroot() operation.

Weight balancing

Another possibility is weight balancing, which is slightly more suited to the

implementation discussed here. Weight balancing uses the number of nodes

in each tree instead of the height and is therefore unaffected by path com-

pression. Weight balancing makes the root of the tree with fewer nodes a

child of the root of the tree with more nodes. For example, a union operation

for the nodes a and b belonging to trees of size 10 and 15 respectively, will

make a a child of b. It can be proven (see [5]) that a tree with n nodes

constructed with weight balancing will have a depth of at most blog(n)c.

An algorithm for weighted union() is as follows:

proc weighted union(a, b)
a← findroot(a)
b← findroot(b)
if (a = b)

then stop
end if
if (a’s tree has less nodes than b’s tree)

then
parent[b]← parent[b] + parent[a]
parent[a]← b

else
parent[a[← parent[a] + parent[b]
parent[b]← a

end if
end

CHAPTER 6. TECHNIQUES USED IN THE CSM FOR THE TSP 76

Apart from choosing the direction of the parent relationship more care-

fully, a further advantage of weight balancing lies in the implementation

details - it will be easy for us to determine if all nodes are in the same tree.

Instead of storing the weight of each tree separately, it can be stored as a

negative number at the root of each of the trees in the place where the parent

index is stored (there is of course no parent for a root node). This is done

by letting non-negative numbers denote real parents and negative numbers

indicate that the relevant node is the root of a tree, with the negative number

indicating the negative of how many nodes are in the tree. When the root of

a tree contains −n it is an indication that there are n nodes in the tree and

therefore that the edges that were provided to the Union-Find algorithm is

a connected subgraph and therefore defines a tour. Therefore it is easy to

determine whether a union operation caused G′ to become connected.

For this reason weighted union() is also used to determine whether a

union operation causes G′ to become connected. A more complete algorithm

for weighted union() that includes this check is now provided.

boolean function weighted union(a, b)
a← findroot(a)
b← findroot(b)
if (a = b)

then return (parent[a] = -n)
end if
if (parent[a] > parent[b])

then //a’s tree has less nodes than b’s tree
parent[b]← parent[b] + parent[a]
parent[a]← b
return (parent[b] = -n)

else
parent[a]← parent[a] + parent[b]
parent[b]← a
return (parent[a] = -n)

end if
end

CHAPTER 6. TECHNIQUES USED IN THE CSM FOR THE TSP 77

6.2.2 Implementing istour()

The istour() function invokes the weighted union() function to determine

whether the current basis structure at a node in the CSM search tree defines

a tour. Edges corresponding to three types of variables could form part of

the tour:

• Basic variables with a value of 1

• Variables in L that are fixed at an altered value

• Variables in U that are not fixed at an altered value

An algorithm for istour() is now provided. The type CSMnode refers

to a node in the search tree used by the CSM. The function csm parent()

returns the parent node in the CSM search tree of the CSMnode given as

parameter. Current U refers to the set of variables that are in U at the

point this term is used. It is important to note that this includes variables

originally in U that have since been temporarily fixed at 0.

CHAPTER 6. TECHNIQUES USED IN THE CSM FOR THE TSP 78

boolean function istour(CSMnode current)
initialise all nodes to have no parents
for (all basic edges e) do

if (xe = 1
2
)

then return false //definitely not a tour
end if
if (xe = 1)

then (a, b)← the nodes touched by e
if (weighted union(a, b))

then return true
end if

end if
end
while (current 6= root node of CSM search tree) do

if (current fixed a variable originally from L)
then (a, b)← the nodes of the edge fixed in current

if (weighted union(a, b))
then return true

end if
end if
current← csm parent(current)

end
for (all edges e in current U) do

if (xe is not fixed at 0)
then (a, b)← the nodes touched by e

if (weighted union(a, b))
then return true

end if
end if

end
return false

end

Time complexity

The Union-Find algorithm without path compression or weight balancing has

a worst case time complexity of Θ(n2). Path compression and weight balanc-

CHAPTER 6. TECHNIQUES USED IN THE CSM FOR THE TSP 79

ing improves the time complexity of the Union-Find algorithm. Analysis in

[5] suggests that the time complexity when either one of these techniques are

used, improves to Θ(nlog(n)). The combined effect of the two techniques is

an time complexity of Θ(nG(n)), where G(n) grows extremely slowly. The

running time is therefore almost linear, but not quite. For a more complete

analysis, see [27].

6.3 Conclusion

In this chapter efficient techniques were presented for use in the CSM for

the TSP. Constant time techniques were presented to calculate which edge is

incident on two given nodes, and to calculate which two nodes are connected

by a given edge. The Union-Find algorithm has a time complexity almost as

good as Θ(n) and is used to test if a basic solution defines a tour. As these

algorithms scale well, they are suitable for use in large Traveling Salesman

Problems.

Chapter 7

Implementation of the Column

Subtraction Method for the

Traveling Salesman Problem

In Chapter 5 the CSM for the TSP was presented. In Chapter 6 some of

the techniques that were used in the method were presented. In this chapter

some of the implementation details are presented along with execution times.

Problems from the TSPLIB were used to test the implementation. The

TSPLIB is introduced in this chapter. The implementation details that are

discussed include the technique to implement fractional calculations using

integer variables, as well as the programming code level issues that arise

because of this technique. The technique used for parallelisation is also pre-

sented. To test the parallel implementation, use was made of a cluster of

workstations running the Message Passing Interface (MPI).

Several techniques can also be used to speed up the CSM for the TSP.

Possible heuristics include techniques to limit the size of the CSM search tree

in width and in height. Some of these techniques will be presented.

Execution times are reported for the uniprocessor case and for the pro-

gram running on multiple processors. The speedup in the parallel cases are

80

CHAPTER 7. IMPLEMENTING THE CSM FOR THE TSP 81

reported and compared with the results given in Chapter 2.

7.1 The TSPLIB

The TSPLIB [24] is a collection of TSP instances used in TSP research. It

consists of more than 100 problems, ranging from small problems with less

than 20 nodes, up to huge problems with more than 10 000 nodes. Optimal

objective function values as well as optimal tours are available for some of

the problems.

The problems of the TSPLIB are distributed in a standard format de-

scribed in [26]. This format is also used to specify problem instances for

related problems, like:

• Hamiltonian Cycle Problem

• Asymmetric Traveling Salesman Problem

• Sequential Ordering Problem

• Capacitated Vehicle Routing Problem

For the TSP, the edge costs can be specified in a number of ways. Most

of the problems are specified in one of the following formats:

• Explicitly listed edge costs

• Edge costs are calculated as distances in Euclidean 2-space

• Edge costs are calculated as geographical distances

Edge costs are always integral, and the rounding is specified to use the

nint() function. This is a FORTRAN function which is not present in C.

The function nint() is however not described in the file format specification.

In the TSPLIB FAQ [25] the following implementation is suggested as being

equivalent:

CHAPTER 7. IMPLEMENTING THE CSM FOR THE TSP 82

int nint (double x)

{
return (int) (x + 0 . 5) ;

}

For the implementation, a small compiler was developed for the TSPLIB

format, which enabled seamless use of problems of all supported types. The

compiler was implemented with the use of flex and bison.

7.2 Using integer variables for fractional quan-

tities

It was already mentioned in Chapters 3 and 4 that variable values, reduced

costs, and dual values can be stored as integers. This section will illustrate

why it is worthwhile to handle the edge costs and objective function value in

a similar way. Furthermore, this section will show how computations can be

done within such an integer-only setup.

7.2.1 Edge costs and objective function value

Many of the quantities in the problem are already handled as integers. It

will now be shown that all quantities discussed in the previous chapters can

indeed be handled as integers.

As mentioned earlier, the problem instances from the TSPLIB work with

integral edge costs. Edge costs can therefore easily be handled with integer

variables. However, because we store dual values at double their real value, it

simplifies calculations if edge costs are stored at double their real values too.

Similarly, it is advantageous to store the objective function value at double

its real value as well, and only dividing by two when output is required.

In its basic form, the objective function value, z = cx. We know the edge

costs in c are integral and the variable values in x are integers divided by

CHAPTER 7. IMPLEMENTING THE CSM FOR THE TSP 83

two. z can therefore assume non-integral values when x contains non-integral

values. However, if we store edge costs at double their real value, the result

of the multiplication will always be integral and z can therefore be stored as

an integer variable too.

We can therefore handle all the quantities that were discussed in the pre-

vious chapters as integers by storing double their real value where necessary,

or where otherwise advantageous. This method is even used for intermediate

quantities like the entries in the vectors ye

7.2.2 Arithmetic with doubled quantities

In the previous section it was indicated that all quantities in the implementa-

tion of the CSM for the TSP are handled with integer variables. In previous

chapters, several basic arithmetic operations were defined on these quanti-

ties. It is therefore important to note how the operations are influenced by

doubling of the values concerned.

For addition and subtraction, there are of course few consequences. The

result of addition or subtraction of two doubled quantities is doubled as well.

Care should be taken when comparing this result to constants (such as 1,

which is implemented as 2 in the program). When constants are added or

subtracted from doubled quantities, they should of course also be doubled.

For multiplication and division, the implications are slightly more subtle.

Multiplying two doubled quantities, c ← ab, results in c storing four times

the real value. Dividing two doubled quantities, c ← a
b
, results in c storing

the real value exactly. The intended use of the result of multiplication or

division will determine to which answer the result must be scaled for correct

use.

For division there is an extra implication: dividing two doubled quantities

can result in a remainder which will be lost if not accounted for. Apart from

handling the division as described in the previous paragraph, we have to

know that the answer of the division can be represented without loss of

CHAPTER 7. IMPLEMENTING THE CSM FOR THE TSP 84

information. It must therefore also be an integer divided by two.

For the implementation of the CSM for the TSP, this discussion on divi-

sion is relevant in two cases. Both are in the dual simplex method (p. 46).

The two quantities that are calculated are ve/δyre and dr/yrk (the calcula-

tion of (dr − 1)/yrk is no different in this respect to dr/yrk). Both of these

fractions have an entry of a vector ye as the denominator. Firstly we will

investigate the properties of this quantity.

The calculation of yrk (or yre in general) for the dual simplex method was

discussed on p. 44. When all entries in β have been calculated, yre can be

calculated for any edge e = (i, j) ∈ L∪U with yre = βi + βj. Possible values

for entries in β were in {0,± 1
2
,±1}. An important observation can be made

from the beta equations (see p. 44): for a specific basis structure, non-zero

β values all have the same absolute value, i.e. non-zero β values are either

all ±1, or all ± 1
2
. Possible values for yre are thus {0,± 1

2
,±1,±2}. A value

of 3
2

is not possible.

Let us consider division by each of these possible quantities:

• Dividing by yre = 0 is naturally not possible. (In the dual simplex

method, yre = 0 indicates that xe cannot be considered as an entering

variable.)

• Dividing by the values ± 1
2

corresponds to multiplying by ±2.

• Dividing by ±1 only affects the sign.

• Dividing by ±2 has to be considered more carefully. This could only

happen when the edge r is outside the cycle of the 1-tree (see figure 3.3,

p. 35), and all non-zero values of β are, therefore, outside the cycle

of the 1-tree (see p. 45). The importance of this fact will soon be

illustrated.

To consider the division involving the reduced costs (v) we observe that

there is a similarity to the values of yre that was just discussed. The similarity

arises because of the dual values (p. 29) that are calculated in a similar way

CHAPTER 7. IMPLEMENTING THE CSM FOR THE TSP 85

to the β values. Similarly to the β value equations, the dual value equations

will cause all dual values in a single 1-tree to either be all fractional (an odd

integer divided by 2) or all integer (even integers in the implementation).

Equation 3.2 defined the reduced costs as:

ve = ce − ui − uj ∀e = (i, j) ∈ E

As mentioned before, the edge costs (c) are also doubled in the imple-

mentation. The reduced cost of a non-basic edge connecting nodes within a

single 1-tree is therefore an integer (ce) minus the sum of two dual values (ui

and uj), which are either both fractional (an odd integer divided by 2) or

both integer. In this case the reduced cost will therefore be integer (an even

integer in the implementation). As this is the only case in which |yre| can

become as large as 2, no remainder will be lost as part of integer division in

calculating the ratio ve/yre

Calculation of the ratio dr/yrk can be analysed in a similar way. We know

that we only need to consider the case where |yrk| = 2. It was mentioned to

be a property of the basis (see section 3.2.1, p. 26) that basic variables only

assume values of 1
2

on the cycle of a 1-tree. In section 3.2.1 primal feasibility

(which was not yet defined at that point) was assumed.

Even though the above mentioned calculations are during the dual sim-

plex method, the same property in terms of fractional variable values exists.

Fractional variable values are only possible on the cycle of a 1-tree. Calcu-

lating the ratio dr/yrk will therefore never cause the loss of a remainder.

7.3 Calculating node numbers from an edge

number

In section 6.1.4 a constant time technique was presented to calculate which

nodes are connected by a given edge. The improvement in asymptotic run-

ning time compared to the O(log(n)) method is of course good for solving

CHAPTER 7. IMPLEMENTING THE CSM FOR THE TSP 86

larger problems, but the second reason for its importance is the fact that the

calculation is performed many times during the execution of the program.

Careful consideration of the implications of integer calculations allows for

a more optimised implementation. The exact technique used is therefore

presented here.

The formulas for calculating x and y, given k, is as follows (see section

6.1.4):

x = n−
⌈

1 +
√

(2n−1)2−8k

2

⌉

y = x+ k + 1− x(2n− x− 1)/2

The calculation of the square root and ceiling involves floating point arith-

metic, which should be limited as far as possible. The calculation for x given

above can be simplified to make use of fewer floating point operations. The

following manipulations show the intermediate steps that are necessary to

understand the simplified algorithm given later. For x:

x = n−
⌈

1 +
√

(2n−1)2−8k

2

⌉

x = n−
⌈

2

2
+

√
(2n−1)2−8k

2

⌉

x = n− 1−
⌈√

(2n−1)2−8k

2

⌉

The ceiling operation can be restricted to include only the square root

function in the numerator, as long as the fraction is still integer. Taking the

attributes of integer division into account, this requirement is unnecessary to

enforce because the possible loss of information during the integer division

still produces the correct result. In this way floating point arithmetic has

been limited to fewer instructions.

CHAPTER 7. IMPLEMENTING THE CSM FOR THE TSP 87

x = n− 1−

⌈√
(2n− 1)2 − 8k

⌉

2

Although calculations for y can also be slightly simplified, it cannot be

done without loss of information during the integer division. The only re-

maining improvement is to rewrite the formulas using two quantities c1 and

c2, defined as follows to avoid unnecessary recalculation:

• c1 = 2n− 1

• c2 = (2n− 1)2

The following algorithm for the function give nodes() summarises all the

improvements. The extra brackets in the calculation of y indicate the nec-

essary order of calculation to avoid loss of information with integer division.

Because c1 is always odd, (x(c1−x)) will always be even, and no information

will ever be lost during the division by 2.

function give nodes(k, x, y)

x = n− 1−
⌈√

c2 − 8k
⌉
/2;

y = x+ k + 1− (x(c1 − x))/2;
end

7.4 Parallelisation

In Chapter 2 the parallelisation of the CSM for the SPP was discussed. Good

results were reported and superlinear speedup was achieved in some cases.

Because of the computational complexity of the TSP, it is of course also

worthwhile to consider parallelisation in order to solve bigger problems in

reasonable time.

A similar technique is presented here for distributing the work on different

processors. Each subtree rooted at a child of the root node of the CSM search

CHAPTER 7. IMPLEMENTING THE CSM FOR THE TSP 88

tree is distributed from the master process to the next available process.

When a solution is found that is better than the current best-known, the

objective function value is sent to all the other processes, each of which

updates its local copy of zIP, and shortens its list(s) of non-basic variables.

This has shown to be an ineffective technique for the smaller problems

reported on here: the subtrees that are processed by the first few processors

consume much more processor time than the other trees, with the effect that

proper load balancing cannot be achieved. A more fine-grained approach

should rectify this problem. One possibility is handing out grandchildren of

the root node of the CSM search tree while those are big enough to justify

the extra overhead.

7.5 Running times

The testing environment was a cluster of identical single processor worksta-

tions, each with the following configuration:

Hardware

Processor Pentium III 730MHz

Physical memory 128 MBytes

Interconnection 100 Mbits/s switched Ethernet

Software

Operating System Linux 2.4.20

File system Network File System

(file server not part of the cluster)

MPI Implementation LAM/MPI 6.5.9

C compiler GNU C Compiler 3.3

Running times for the five smallest problems that were solved are given

here. The reported time is the average of three runs and is measured in

seconds. Utilisation is the ratio of actual processor time used, to available

processor time. Superlinear speedup was achieved with some problems (gr24

CHAPTER 7. IMPLEMENTING THE CSM FOR THE TSP 89

and fri26). The bad processor utilisation when running on sixteen or more

processors could possibly explain the lack of good speedup in those cases.

For more information about acceleration when solving Integer Programming

problems with a cluster of workstations, see [6] and [12].

Processors

Problem 1 2 4 8 16 32

gr17 avg time 2.059 1.067 0.521 0.331 0.404 0.573

speedup 1.930 3.955 6.228 5.097 3.594

utilisation 1.000 1.000 0.869 0.451 0.242

gr24 avg time 2.596 0.337 0.262 0.223 0.200 0.237

speedup 7.701 9.919 11.653 12.993 10.955

utilisation 1.000 0.999 0.799 0.519 0.338

fri26 avg time 10.922 4.705 3.282 1.348 1.589 2.059

speedup 2.321 3.328 8.103 6.874 5.305

utilisation 1.000 1.000 0.815 0.491 0.253

bayg29 avg time 4.663 2.392 1.334 1.157 1.229 1.453

speedup 1.949 3.497 4.029 3.794 3.208

utilisation 1.000 1.000 0.827 0.510 0.275

bays29 avg time 4.203 2.918 2.425 2.241 2.408 3.126

speedup 1.440 1.733 1.876 1.745 1.345

utilisation 1.000 0.937 0.848 0.499 0.272

average utilisation 1.000 0.987 0.832 0.494 0.276

7.6 Conclusion

The CSM has been implemented for the TSP and has also been parallelised.

From the results reported here, it can be seen that the CSM implementation

was not very efficient at solving larger TSP instances.

The difference between the SPP and the TSP affected the success of the

CSM. Some of the fathoming rules that fathomed many nodes when applied

CHAPTER 7. IMPLEMENTING THE CSM FOR THE TSP 90

to the SPP were inefficient when applied to the TSP - their cost outweighed

their use.

Although good upper bounds (zIP) improved the running time, substan-

cial amount of time was still spent on larger problems - even after the optimal

solution has been found. More fathoming rules could possibly help to allevi-

ate this problem.

Hoffman [15] suggested that removing integrality constraints from a com-

binatorial optimisation problem can possibly alter the structure of the prob-

lem too much. For the TSP, not only the integrality constraints, but also the

1-tree constraints were dropped. The approach to the solution was started

from this substantially relaxed form. Such a relaxation alters the problem

substantially. Hoffman suggests the consideration of extra constraints, which,

for the TSP, could possibly correspond to the techniques presented by Pad-

berg and Rinaldi [23].

Appendix A

Source code

The complete source code for the implementation of the CSM for the TSP

is presented here. It was implemented in the C programming language. The

compiler for the TSPLIB problem files were implemented using flex and bison

(lex and yacc should work as well). GNU make was used for the build process.

The following files are provided:

• Makefile (p. 93) - specifies how build process must work

• global.h (p. 95) - header file for global.c

• simplex.h (p. 98) - header file for simplex.c

• primal.h (p. 99) - header file for primal.c

• dual.h (p. 100) - header file for dual.c

• parallel.h (p. 101) - header file for parallel.c

• csmtree.h (p. 102) - header file for csmtree.c

• istour.h (p. 104) - header file for istour.c

• set.h (p. 105)- header file for set.c

• csm.c (p. 106) - the main program and the implementation of the CSM

91

APPENDIX A. SOURCE CODE 92

• global.c (p. 119) - global variables, defines, functions

• tsplib.l (p. 128) - lexical analyser (scanner) for the TSPLIB format

• tsplib.y (p. 131) - syntactical analyser for the TSPLIB format

• simplex.c (p. 146) - variables and functions common to both the primal

and dual simplex methods

• primal.c (p. 152) - variables and functions for the primal simplex

method

• dual.c (p. 162) - variables and functions for the dual simplex method

• parallel.c (p. 170) - variables and functions for parallel programming

• csmtree.c (p. 174) - variables and functions for dealing with the CSM

search tree

• istour.c (p. 181) - variables and functions implementing the Union-Find

algorithm to determine if a solution defines a tour

• set.c (p. 184) - variables and functions for dealing with the set U

APPENDIX A. SOURCE CODE 93

A.1 Makefile

Makef i l e for csm

make

w i l l make csm

make compi le r

w i l l make a smal l program to parse t s p l i b f i l e s

make c l ean

w i l l remove coredumps , ob j e c t f i l e s , backup f i l e s ,

executab l e s and generated f i l e s

make l i n e c o u n t

w i l l make c l ean and count the number o f l i n e s

make t e s t a l l

w i l l run the t e s t a l l s c r i p t to do each o f the problems

in the t s p l i b . Use fu l when combined with MAXNODES

de f ined in g l o b a l . h

#

#f l a g s for gcc

#DEFINES = −D debug

#DEFINES += −D debug g loba l

#DEFINES += −D debug simplex

#DEFINES += −D debug primal

#DEFINES += −D debug dual

#DEFINES += −D debug csm=2

#DEFINES += −D debug MPI

#DEFINES += −D debug mark

#DEFINES += −D debug csmtree

#DEFINES += −D debug i s tour

#DEFINES += −D debug t sp l ib

#DEFINES += −D debug U

PROFILE = −fprofile−arcs −fbranch−probabilities
NOG = −ftracer −fnew−ra −ffast−math
CFLAGS = −march=pentium4 −g −pg −Wall −Wshadow −Wunreachable−code $ (DEFINES)

#CFLAGS = −O3 −march=pentium4 $ (DEFINES)

LDFLAGS = −lm −pg
LDFLAGS = −lm
#CC = mpicc

YACC = bison

#f l a g s for l e x (f l e x)

LFLAGS =

#f l a g s for yacc (b i son)

YFLAGS = −d
#YFLAGS = −vd

all : csm

APPENDIX A. SOURCE CODE 94

csm . o : csm . c ∗ . h Makefile

$ (CC) −c $ (CFLAGS) $ (CPPFLAGS) $< −o $@

%.o : % . c %.h Makefile global . h parallel . h

$ (CC) −c $ (CFLAGS) $ (CPPFLAGS) $< −o $@

#or b e t t e r :

#include ∗ . d − generated with gcc −M

Star t o f th ing s for t s p l i b compi le r

lex . yy . c : tsplib . l global . h Makefile

$ (LEX) $ (LFLAGS) tsplib . l

tsplib . tab . c : tsplib . y global . h Makefile

$ (YACC) $ (YFLAGS) tsplib . y

compiler : lex . yy . c tsplib . tab . c global . h Makefile

$ (CC) $ (CFLAGS) $ (LDFLAGS) − DSTANDALONE=1 −o compiler tsplib . tab . c

End o f th ing s for the t s p l i b compi le r

tsplib . tab . o : tsplib . tab . c lex . yy . c global . h Makefile

$ (CC) $ (CFLAGS) − DSTANDALONE=0 −Wno−unreachable−code −Wno−shadow \
−Wno−unused−function −Wno−unused−label −c tsplib . tab . c

#To d i s a b l e some warnings in the generated code .

#But the re i s handwritten code in the re as we l l !

csm : tsplib . tab . o global . o simplex . o primal . o dual . o istour . o set . o csm . o \
csmtree . o parallel . o

linecount : clean

wc −l ∗ . [chly]

clean :

rm −f ∗˜

rm −f lex . yy . c

rm −f ∗ . tab . [ch] ∗ . output

rm −f ∗ . o

rm −f csm

APPENDIX A. SOURCE CODE 95

A.2 global.h

/∗∗
∗ @ f i l e g l o b a l . h

∗ Global de f ines , v a r i a b l e s and f u n c t i o n s

∗/

#ifndef g l o b a l h

#define g l o b a l h 1

#define MAXNODES 1000

/∗∗< Used to l i m i t the s i z e o f problems t h a t are attempted ∗/
#define ONE 2

#define HALF 1

#define ZERO 0

#i f MPI

#define DEBUG(msg) p r i n t f (”myId=%d, % s(%d) : :% s () − % s ” , myId , FILE , LINE , \
__FUNCTION__ , msg) ;

#else

#define DEBUG(msg) p r i n t f (”%s(%d) : :% s () − % s ” , FILE , LINE , \
__FUNCTION__ , msg) ;

#endif

/∗∗< Used f o r e a s i l y t r a c e a b l e debug output ∗/

/∗ ∗ Used as bitmask to enab le verbose debugging output ∗/
#define VERBOSE 2

#define INDEX(i , j) ((i<j)? Base [i]+ j−i : Base [j]+ i−j)

/∗∗< Used to lookup the index o f the edge touching nodes i and j ∗/

// t y p e d e f s

typedef struct {
int Parent , Child , Sibling ;

int Dist , Dual , Flow ;

} NodeType ;

typedef struct node ∗ nodeptr ;

struct node { /∗ conta ins data f o r a node in the search t r e e ∗/
nodeptr parent , sibling , child ;

int next ; /∗ rc [next] . column = number o f next column to be

f i x e d to 1 in a new c h i l d ∗/
int fixed ; /∗ number o f column f i x e d to 1 to c r e a t e t h i s node ∗/
int sum ; /∗ sum of c o s t s o f columns f i x e d to 1 from root down

to t h i s node . Can be i n t f o r TSP ∗/
char ∗ flows ; // the Node [] . Flow v a l u e s f o r t h i s node

// makes b a c k t r a c k i n g e a s i e r

} ;

APPENDIX A. SOURCE CODE 96

/∗ g l o b a l v a r i a b l e s ∗/
extern int pivots ;

extern NodeType ∗ Node ;

extern int NumNodes , NumEdges ;

extern int zLP ;

extern int zIP ;

extern int ∗ Base ;

extern int ∗ cost ;

extern nodeptr root ; // root node o f the csm search t r e e

extern NodeType ∗ NodeCopy ; // copy o f Node [] a t root

extern unsigned char ∗ UCopy ; // copy o f U [] a t root

extern int ∗∗ UPairCopy ; // copy o f UPair [] [] a t root

extern int USizeCopy ; // copy o f USize at root

/∗ ∗ s o l u t i o n s t o r e s the i n d i c e s o f the columns in the s o l u t i o n ∗/
extern int ∗ solution ; // array o f l e n g t h NumNodes

extern int solutions ;

/∗ ∗ f i s a s c r a t c h array used f o r d i f f e r e n t purposes in the code ∗/
extern char ∗ f ; // array o f l e n g t h NumNodes

/∗ ∗ cover s t o r e s a 1 f o r each covered row ∗/
extern char ∗ cover ; // array o f l e n g t h NumNodes

extern int covered ;

extern char ∗ mark ;

/∗ Values in mark :

∗−−−−−−−−−−−−−−−
∗ −1 denotes a column f i x e d at an a l t e r e d va lue

∗ (1 f o r columns in L , 0 f o r columns in U)

∗ 0 denotes a f r e e (normal) column

∗ 1 denotes a column f i x e d at i t ’ s i n i t i a l va lue

∗ (0 f o r columns in L , 1 f o r columns in U)

∗ 2 has the same meaning as 1 , but when i n d i c a t e d with 2 , the column ’ s

∗ s t a t u s can ’ t change anymore . This w i l l i n d i c a t e t h a t the column ’ s

∗ reduced c o s t exceeds the d i f f e r e n c e between the b e s t known g o a l f u n c t i o n

∗ va lue and the g o a l va lue o f the LP r e l a x a t i o n . The column shou ld never

∗ be cons idered f o r i n c l u s i o n in the b a s i s again .

∗/
void printParents () ;

void printDuals () ;

void printFlows () ;

void printU () ;

void printAll () ;

int CheckDuals () ;

void CheckDFeasibility () ;

int CheckVars () ; //TODO: check : Just f o r primal f e a s i b l i t y ?

APPENDIX A. SOURCE CODE 97

void give_nodes (int edge , int ∗ x , int ∗ y) ;

void give_nodes_init () ; // j u s t i n i t i a l i s e s to cons tan t s f o r o p t i m i s i n g code

const char ∗ double_value (int a) ;

void checkEquations () ;

void solutionprint () ;

void solution_found (nodeptr node , int subtree) ;

void time_init () ;

double seconds () ;

#endif // g l o b a l h

APPENDIX A. SOURCE CODE 98

A.3 simplex.h

/∗∗
∗ @ f i l e s implex . h

∗ Defines , d a t a s t r u c t u r e s and i n t e r f a c e s f o r network s implex a lgor i thm

∗ These are used in both the primal and dual s implex a l gor i thms

∗/

#ifndef s imp l ex h

#define s imp l ex h 1

#i f debug

#define debug s implex 1

//#e l s e

//#d e f i n e d e b u g s i m p l e x 0

#endif

extern int pivots ;

extern long long dual_pivots ;

extern int ∗ Queue ;

extern char ∗ beta ;

void simplex_init () ;

void simplex_free () ;

void WandYw (int U , int V , int ∗ pW , int ∗ pYw) ;

void ChangeFlows (int U , int V , int Sign , int W , int Yw , int Ratio) ;

void UpdateOneTrees (int U , int V , int OutNode , int NewFlow) ;

void UpdateDualsDistsSubTree (int U , int DualChange) ;

void UpdateDualsDistsOneTree (int U , int V , int CycleLength , int DualChange) ;

#endif

APPENDIX A. SOURCE CODE 99

A.4 primal.h

/∗∗
∗ @ f i l e primal . h

∗ Header f i l e f o r primal . c t h a t conta ins code f o r the primal s implex

∗ a lgor i thm in the column s u b t r a c t i o n method

∗/

#ifndef p r i m a l h

#define p r i m a l h 1

void SolveRMP2 (int ∗ ZRatioP , int ∗ HRatioP , int ∗ ORatioP) ;

#endif // p r i m a l h

APPENDIX A. SOURCE CODE 100

A.5 dual.h

/∗∗
∗ @ f i l e dual . h

∗ Header f i l e f o r dual . c t h a t conta ins code f o r the dual s implex

∗ a lgor i thm in the column s u b t r a c t i o n method

∗/

#ifndef d u a l h

#define d u a l h 1

#include ” csmtree . h”

extern int dual_simplex ;

int DualSimplex (nodeptr node , int ∗ pZ) ;

#endif // d u a l h

APPENDIX A. SOURCE CODE 101

A.6 parallel.h

/∗∗
∗ @ f i l e p a r a l l e l . h

∗ Header f i l e f o r p a r a l l e l . c t h a t conta ins some of the code f o r p a r a l l i s a t i o n

∗/

#ifndef p a r a l l e l h

#define p a r a l l e l h 1

#define MPI 0 // s e t to 1 f o r message pass ing code

#define JOB TAG 101

#define ZIP TAG 102

extern int myId ;

extern int numProcs ;

extern int rootNext ;

#i f MPI

#include ”mpi . h”

extern int zIPowner ; // which process found current zIP?

//Now the s t u f f f o r c r e a t i n g an MPI s t r u c t :

extern int blockcount ; // 6 i n t s in NodeType (see g l o b a l . h)

extern MPI_Datatype type ;

extern MPI_Aint displacement ;

extern MPI_Datatype tsp_node ;

extern MPI_Status status ;

extern int finalize_count ; // count how many p r o c e s s e s are f i n i s h e d

void parallel_arrays_init () ; // r e g i s t e r custom type , broadcas t arrays

void update_zIP () ; // see i f another process found b e t t e r zIP

void send_jobs () ; // node 0 hand out j o b s

void parallel_setRootNext () ; // setRootNext f o r p a r a l l e l environment

void parallel_finish () ; // wait f o r a l l p r o c e s s e s to f i n i s h

void fetch_solution () ; // f e t c h s o l u t i o n from zIPowner

#endif //MPI

#endif // p a r a l l e l h

APPENDIX A. SOURCE CODE 102

A.7 csmtree.h

/∗∗
∗ @ f i l e csmtree . h

∗ s t r u c t u r e s , p r o t o t y p e s and # d e f i n e s f o r d e a l i n g with the csm search t r e e

∗/

#ifndef c smtr e e h

#define c smtr e e h 1

#include ” g l o b a l . h”

#define RC COLUMN(j) ((j < o r i g i n a l L l i s t s i z e) ? \
L_list [j] . column : \
U_list [j−original_L_list_size] . column)

/∗#d e f i n e RC REDCOST(j) (j < L l i s t s i z e) ? \
L l i s t [j] . r e d c o s t : \
U l i s t [j−o r i g i n a l L l i s t s i z e] . r e d c o s t

//TODO:?? # d e f i n e RC(j) (j < L l i s t s i z e) ? L l i s t [j] : U l i s t [j]

∗/
struct pair {

int column ;

int redcost ;

} ;

extern struct pair ∗ L_list , ∗ U_list ; // L i s t s o f non−b a s i c v a r i a b l e s at t h e i r lower &

// upper bounds r e s p e c t i v e l y

extern int L_list_size , U_list_size ; // the s i z e s o f the l i s t s

extern int original_L_list_size ; // the s i z e o f the o r i g i n a l L l i s t

extern long long total_created ;

extern long long created ;

extern int depth ;

extern int maxdepth ;

extern int treesize ;

extern int maxtreesize ;

// ex tern i n t r c s i z e ;

extern int maxbranches ;

extern long long fathom_solution ;

extern long long fathom_early_solution ;

extern long long fathom_dual ;

extern long long fathom_marked ;

extern long long fathom_inconsistent ;

extern long long fathom_nocolumns ;

extern long long fathom_onezerorows ;

APPENDIX A. SOURCE CODE 103

extern long long fathom_bounded ;

extern long long fathom_depth ;

extern long long fathom_branches ;

nodeptr newnode (nodeptr parent , int next , int column) ;

nodeptr getnode () ;

void putnode (nodeptr ptr) ;

void nodes_free (nodeptr tmp_root) ;

int rc_init (int gap) ;

int rc_reduce (int gap) ;

void rc_free () ;

void fathom_statistics () ;

#endif

APPENDIX A. SOURCE CODE 104

A.8 istour.h

/∗∗
∗ @ f i l e i s t o u r . h

∗ Header f o r i s t o u r . c − Used to determine i f a s o l u t i o n i s a v a l i d tour

∗/

#ifndef i s t o u r h

#define i s t o u r h 1

#include ” csmtree . h”

void istour_init () ;

void istour_free () ;

int istour (nodeptr node) ;

#endif

APPENDIX A. SOURCE CODE 105

A.9 set.h

/∗∗
∗ @ f i l e s e t . h

∗ d a t a s t r u c t u r e s and i n t e r f a c e s f o r hand l ing the s e t s in RMP2

∗/

#ifndef s e t h

#define s e t h 1

#include ” s implex . h”

//#d e f i n e AddToSet (i , Set) Set [i /8]ˆ= b i t s [i %8]

//#d e f i n e DeleteFromSet (i , Set) Set [i /8]ˆ= b i t s [i %8]

#define InSet (i , Set) (Set [i /8]& b i t s [i %8])

#define InU(id) (UArray [id /8] & b i t s [id %8])

extern int USize ;

extern unsigned char ∗ UArray ;

extern int ∗∗ UPair ; //UPair [0] [i] −> UPair [1] [i] i s an edge in U

//UPair [0] [i] < UPair [1] [i]

extern unsigned char bits [8] ;

void InitSet (int NumElts , unsigned char Set []) ;

void U_init () ;

void U_free () ;

void AddToU (int i , int j , int id) ;

void DeleteFromU (int i , int j , int id) ;

#endif

APPENDIX A. SOURCE CODE 106

A.10 csm.c

/∗∗
∗ @ f i l e csm . c

∗ This i s an implementation o f the column s u b t r a c t i o n a lgor i thm f o r s o l v i n g

∗ the t r a v e l i n g salesman problem . I t uses the continuous 2−matching problem

∗ (RMP2) as r e l a x a t i o n which i s s o l v e d us ing the g e n e r a l i s e d network s implex

∗ a lgor i thm .

∗/

#include < s t d i o . h>

#include < s t d l i b . h>

#include <math . h>

#include <time . h>

#include < l i m i t s . h>

#include < s t r i n g . h>

#include <uni s td . h>

#include < s i g n a l . h>

#include < errno . h>

#include < s y s e x i t s . h>

#include ” g l o b a l . h”

#include ” s implex . h”

#include ” pr imal . h”

#include ” dual . h”

#include ” s e t . h”

#include ” csmtree . h”

#include ” i s t o u r . h”

#include ” p a r a l l e l . h”

#i f MPI

#include ”mpi . h”

#endif

/∗ ∗ The f o l l o w i n g d e f i n e s c o n t r o l which fathoming r u l e s are used .

∗ Set to 1 to use . They are c o n f i g u r a b l e because they are a v a i l a b l e ,

∗ but have been found to not imporove execu t ion times .

∗/
#define CONFIG RULE4 0

#define CONFIG RULE5 0

int zero_ratio , half_ratio , one_ratio ;

/∗ account ing v a r i a b l e s f o r zero − , h a l f − and one−r a t i o ∗/

double elapsed , utilized , mintime , maxtime ;

int ∗ remember ;

APPENDIX A. SOURCE CODE 107

/∗ XXX non−e l e g a n t l i n e needed to take compi ler warning away . Problematic

∗ s i n c e the t s p l i b compi ler f i l e s are generated

∗/
int readfile (char ∗ filename) ;

stat ic void csm_init ()

{
root = getnode () ;

root−>parent = root−>sibling = root−>child = NULL ;

root−>next = 1 ; root−>fixed = −1;

root−>sum = 0;

mark = (char ∗) calloc (NumEdges , s izeof (char)) ;

cover = (char ∗) calloc (NumNodes , s izeof (char)) ;

solution = (int ∗) calloc (NumNodes , s izeof (int)) ;

NodeCopy = (NodeType ∗) malloc (NumNodes ∗ s izeof (NodeType)) ;

UCopy = (unsigned char ∗) malloc (1+NumEdges /8 ∗ s izeof (unsigned char)) ;

UPairCopy = (int ∗ ∗) malloc (2∗ s izeof (int ∗)) ;

UPairCopy [0] = (int ∗) malloc (NumNodes ∗ s izeof (int)) ;

UPairCopy [1] = (int ∗) malloc (NumNodes ∗ s izeof (int)) ;

istour_init () ;

U_init () ;

simplex_init () ;

remember = (int ∗) malloc (NumEdges ∗ s izeof (int)) ;

f = (char ∗) calloc (NumNodes , s izeof (char)) ;

i f (f == NULL) {
printf (” out o f memory ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ \n”) ;

exit (0) ;

}
give_nodes_init () ;

}

stat ic void csm_free ()

{
free (f) ;

free (remember) ;

free (NodeCopy) ;

free (UCopy) ;

free (UPairCopy [0]) ;

free (UPairCopy [1]) ;

free (UPairCopy) ;

free (solution) ;

free (cover) ;

free (mark) ;

free (cost) ;

nodes_free (root) ;

APPENDIX A. SOURCE CODE 108

rc_free () ;

istour_free () ;

U_free () ;

simplex_free () ;

}

/∗ ∗ Determines which s u b t r e e shou ld be t r a v e r s e d next ∗/
stat ic void setRootNext ()

{
int next ;

long long old_created ;

#i f MPI

parallel_setRootNext () ;

#endif

total_created += created ;

old_created = created ;

created = 0;

next = root−>next ;

root−>next = rootNext ;

i f (rootNext >= maxbranches) return ;

while (next < rootNext) { /∗ TODO: only # i f MPI ? ∗/
#i f debug mark

DEBUG (”marking column ”) ;

printf (”%d” , RC_COLUMN (next)) ;

i f (InU (RC_COLUMN (next))) printf (” (In U) ”) ;

printf (”\n”) ;

#endif

mark [RC_COLUMN (next)] = 2 ;

next++;

}
#i f debug MPI

/∗ We p r i n t

∗ − The number o f nodes in the prev ious t r e e

∗ − The next root

∗ − maxbranches

∗/
printf (”myId=%d , nodes=%l ld , rootNext=%d , maxbranches=%d\n” ,

myId , old_created , rootNext , maxbranches) ;

#endif

i f (myId == 0) {
rootNext++;

/∗ Do we need to s k i p over the gap between L and U? ∗/
i f ((rootNext >= L_list_size) &&

(rootNext < original_L_list_size)) {
rootNext = original_L_list_size ;

}
}

}

APPENDIX A. SOURCE CODE 109

/∗ ∗ Fix a column i n t o the opt imal tour ∗/
stat ic void fixcolumn (int k , int node_a , int node_b)

{
i f (! InU (k)) {

cover [node_a]++;

cover [node_b]++;

covered += 2;

}
}

/∗ ∗ Remove a column from the opt imal tour ∗/
stat ic void freecolumn (int k)

{
int node_a , node_b ;

i f (! InU (k)) {
give_nodes (k , & node_a , & node_b) ;

cover [node_a]−−;

cover [node_b]−−;

covered −= 2;

}
}

/∗∗
∗ Does the qu ick checks to see i f a node can be e a s i l y fathomed

∗ Returns 1 i f f node can not be e a s i l y fathomed

∗ s e t s mark f o r column i f not s e t

∗ Also c a l l s f ixco lumn () i f the node cou ld not be e a s i l y fathomed

∗/
stat ic int checked (nodeptr node)

{
int fixed ;

int node_a , node_b ; /∗ temporary nodes ∗/
fixed = node−>fixed ;

#i f MPI

i f (mark [fixed]) {
fathom_marked++;

return 0 ;

}
#endif //MPI

mark [fixed] = 1 ;

/∗ check f o r c o n s i s t e n c y with f i x e d columns ∗/
give_nodes (fixed , & node_a , & node_b) ;

i f ((cover [node_a] >= 2) | | (cover [node_b] >= 2)) {
fathom_inconsistent++; /∗ Rule 1 ∗/
return 0 ;

}
#i f MPI

/∗ Updating zIP too o f t e n cou ld a c t u a l l y hurt performance . As

APPENDIX A. SOURCE CODE 110

∗ r e l a t i v e l y few s o l u t i o n s are found , the overhead o f t h i s

∗ opera t ion i s q u i t e c o s t l y .

∗/
// update zIP () ;

#endif

#i f CONFIG RULE4

/∗ check f o r worse s o l u t i o n ∗/
i f (node−>sum >= zIP) {

fathom_bounded++; /∗ Rule 4 ∗/
return 0 ;

}
#endif

#i f CONFIG RULE5

/∗ check f o r f u l l cover − meaningless i f we l i m i t depth ∗/
i f (covered + 2 == 2 ∗ NumNodes) {

i f (istour (node)) {
zIP = (int) node−>sum ;

maxbranches = rc_reduce (zIP − zLP) ;

solution_found (node , root−>next) ;

fathom_solution++; /∗ TODO: c o r r e c t v a r i a b l e ? Rule 5 ∗/
}
return 0 ;

}
#endif

mark [fixed] = −1;

fixcolumn (fixed , node_a , node_b) ;

return 1 ;

}

/∗ ∗ Restores the f l o w in the b a s i s as i t i s s t o r e d in the parameter ∗/
stat ic void restore_flows (nodeptr node)

/∗ TODO: t h i s f u n c t i o n can perhaps be sped up i f . Flow v a l u e s are not kep t

∗ in the node s t r u c t but in an array so t h a t a s imple memcpy can do

∗ what t h i s f u n c t i o n does .

∗/
{

int i ;

char ∗ flows = node−>flows ;

for (i = 0 ; i < NumNodes ; i++) {
Node [i] . Flow = flows [i] ;

}

}

/∗ ∗ Restores the b a s i s to what i t i s a t the root o f the csm search t r e e ∗/
stat ic void restore_basis ()

{

APPENDIX A. SOURCE CODE 111

// Restore Node [] , U

memcpy (UArray , UCopy , 1+ NumEdges /8 ∗ s izeof (unsigned char)) ;

memcpy (UPair [0] , UPairCopy [0] , NumNodes ∗ s izeof (int)) ;

memcpy (UPair [1] , UPairCopy [1] , NumNodes ∗ s izeof (int)) ;

memcpy (Node , NodeCopy , NumNodes ∗ s izeof (NodeType)) ;

USize = USizeCopy ;

}

/∗ ∗ Does the expens ive checks to see i f a node can be fathomed ∗/
stat ic int fathomed (nodeptr ∗ pnode)

{
int i , edge ;

int node_a , node_b ;

nodeptr node = ∗ pnode ;

int tmp_zIP = node−>sum ;

int return_value ;

int W , Yw ;

// f o r (i = 0 ; i < NumNodes ; i ++) f [i] = cover [i] ;

// can r a t h e r use memcpy as long as f and cover are same type !

memcpy (f , cover , NumNodes ∗ s izeof (char)) ;

give_nodes (node−>fixed , & node_a , & node_b) ;

/∗ s u b t r a c t r i g h t column node−>f i x e d from r i g h t hand s i d e

∗ (column SUBTRACTION method)

∗/
WandYw (node_a , node_b , &W , & Yw) ; // : 1 , −1 , 0 , ONE) ;

ChangeFlows (node_a , node_b , (InU (node−>fixed)) ? − 1 : 1 , W , Yw , ONE) ;

// save a l t e r e d f l o w s :

for (i = 0 ; i < NumNodes ; i++) node−>flows [i] = Node [i] . Flow ;

/∗ C a l c u l a t e the o b j e c t i v e f u n c t i o n va lue t h a t corresponds to the

∗ b a s i s as i t i s a t the moment . We have to d i v i d e the r e s u l t by

∗ 2 otherwi se we w i l l be i n c r e a s i n g tmp zIP by 4 times the a c t u a l

∗ change i n s t e a d o f the 2 times we want

∗/
for (i = 0 ; i < NumNodes ; i++) {

tmp_zIP += (Node [i] . Flow ∗ cost [INDEX (i , Node [i] . Parent)]) / 2 ;

}
for (i = 0 ; i < USize ; i++) {

edge = INDEX (UPair [0] [i] , UPair [1] [i]) ;

i f (−1 == mark [edge]) continue ;

tmp_zIP += cost [edge] ;

}
#i f MPI

update_zIP () ;

#endif

i f (tmp_zIP >= zIP) {

APPENDIX A. SOURCE CODE 112

fathom_bounded++; /∗ Rule 2 ∗/
return 1 ;

}

/∗ Lets check f o r a tour b e f o r e Dualsimplex .

∗ (no t i ced in bays29 . t s p f o r example)

∗/
i f (CheckVars () && istour (node)) {

zIP = tmp_zIP ;

solution_found (node , root−>next) ;

maxbranches = rc_reduce (zIP − zLP) ;

fathom_early_solution++; /∗ Rule 3 ∗/
return 1 ;

}

/∗ now we know we have to do dual s implex ∗/
return_value = DualSimplex (node , & tmp_zIP) ;

fathom_dual += return_value ; /∗ Rules 7 and 8 ∗/

i f (! return_value && istour (node)) {
zIP = tmp_zIP ;

solution_found (node , root−>next) ;

maxbranches = rc_reduce (zIP − zLP) ;

fathom_solution++; /∗ Rule 9 ∗/
restore_basis () ;

return 1 ;

}
restore_basis () ;

return return_value ;

}// fathomed

/∗ ∗ used to s o r t the s o l u t i o n v a r i a b l e s ∗/
stat ic void sort (int ∗ x , int first , int last)

{
int left , right , key , temp ;

i f (last − first >= 0) {
key = x [first] ;

left = first − 1;

right = last + 1;

while (1) {
do right−−; while (x [right] > key) ;

do left++; while (x [left] < key) ;

i f (left >= right) break ;

temp = x [left] ;

x [left] = x [right] ;

x [right] = temp ;

}
sort (x , first , left − 1) ;

sort (x , right + 1 , last) ;

APPENDIX A. SOURCE CODE 113

}
}

/∗ ∗ C a l c u l a t e and p r i n t some informat ion about the problem ∗/
stat ic void problemstats (char ∗ filename)

{
int i ;

double avecost = 0 . 0 , stdcost = 0 . 0 ;

int mincost , maxcost ;

time_t now = time (NULL) ;

mincost = maxcost = cost [0] ;

for (i = 1 ; i < NumEdges ; i++) {
avecost += cost [i] ;

i f (cost [i] < mincost)

mincost = cost [i] ;

else i f (cost [i] > maxcost)

maxcost = cost [i] ;

}
avecost /= NumEdges ;

stdcost = 0 . 0 ;

for (i = 0 ; i < NumEdges ; i++)

stdcost += (cost [i] − avecost) ∗ (cost [i] − avecost) ;

stdcost /= NumEdges ;

stdcost = sqrt (stdcost) ;

i f (myId == 0) {
printf (”%sCSM s o l v i n g %s on %d p r o c e s s o r s \n” ,

ctime(&now) , filename , numProcs) ;

printf (”NumNodes=%d NumEdges=%d cos t range=%d ”

” co s t stdev=%5.1 f \n” , NumNodes , NumEdges ,

maxcost−mincost , stdcost) ;

}
}

/∗∗
∗ Reduce and c a l c u l a t e some s t a t i s t i c s about s o l v i n g o f the problem

∗/
stat ic void solutionstats ()

{
#i f MPI

int tmp ;

MPI_Reduce (&elapsed , & mintime , 1 , MPI_DOUBLE , MPI_MIN , 0 ,

MPI_COMM_WORLD) ;

MPI_Reduce (&elapsed , & maxtime , 1 , MPI_DOUBLE , MPI_MAX , 0 ,

MPI_COMM_WORLD) ;

MPI_Reduce (&elapsed , & utilized , 1 , MPI_DOUBLE , MPI_SUM , 0 ,

MPI_COMM_WORLD) ;

MPI_Reduce (&solutions , & tmp , 1 , MPI_INT , MPI_SUM , 0 ,

MPI_COMM_WORLD) ;

solutions = tmp ;

APPENDIX A. SOURCE CODE 114

MPI_Reduce (&total_created , & tmp , 1 , MPI_LONG_LONG_INT , MPI_SUM , 0 ,

MPI_COMM_WORLD) ;

total_created = tmp ;

MPI_Reduce (&dual_simplex , & tmp , 1 , MPI_INT , MPI_SUM , 0 ,

MPI_COMM_WORLD) ;

dual_simplex = tmp ;

MPI_Reduce (&dual_pivots , & tmp , 1 , MPI_INT , MPI_SUM , 0 ,

MPI_COMM_WORLD) ;

dual_pivots = tmp ;

MPI_Reduce (&maxdepth , & tmp , 1 , MPI_INT , MPI_MAX , 0 ,

MPI_COMM_WORLD) ;

maxdepth = tmp ;

MPI_Reduce (&maxtreesize , & tmp , 1 , MPI_INT , MPI_MAX , 0 ,

MPI_COMM_WORLD) ;

maxtreesize = tmp ;

i f (myId == 0) {
utilized /= (numProcs ∗ maxtime) ;

}
#else

mintime = maxtime = elapsed ;

utilized = 1;

#endif //MPI

i f (myId ! = 0) return ;

printf (”−−−−−−−−−−−−−−−−−−−\n”) ;

printf (” So lu t i on s t a t i s t i c s \n”) ;

printf (”−−−−−−−−−−−−−−−−−−−\n”) ;

printf (”zIP=%d min=%7.4 f s max=%7.4 f s u t i l i z a t i o n =%7.4 f \n” ,

zIP /2 , mintime , maxtime , utilized) ;

printf (”DualSimplex executed %d times \n” , dual_simplex) ;

printf (”%l l d Dual p i vo t s in t o t a l \n” , dual_pivots) ;

printf (”%l l d subproblems in search t r e e \n” , total_created) ;

printf (”%f p ivo t s per DualSimplex\n” ,

dual_pivots / (double) dual_simplex) ;

printf (”%f p ivo t s per subproblem \n” ,

dual_pivots / (double) total_created) ;

printf (”Maximum depth i s %d\n” , maxdepth) ;

printf (”Maximum t r e e s i z e in memory i s %d\n” , maxtreesize) ;

}

/∗∗
∗ The column s u b t r a c t i o n method .

∗ The r e l a x a t i o n has been s o l v e d to o p t i m a l i t y . Now we perform a

∗ depth− f i r s t t r a v e r s a l o f the search t r e e .

∗/
stat ic void csm ()

{
int i , k , next ;

nodeptr child , tmp_node , current ;

APPENDIX A. SOURCE CODE 115

/∗ prepare f o r column s u b t r a c t i o n ∗/
for (i = 0 ; i < NumNodes ; i++) root−>flows [i] = Node [i] . Flow ;

for (i = 0 ; i < myId ; i++) {
mark [RC_COLUMN (i)] = 2 ;

}
root−>next = myId ;

rootNext = numProcs ; /∗ rootNext = next f o r f i r s t i d l e processor ∗/
current = root ;

total_created = 1; /∗ l e t s count root e x p l i c i t l y ∗/
created = 0;

do {
next = current−>next ;

/∗ c r e a t e c h i l d r e n o f ∗ current ∗/
while (next < maxbranches) {

// I f we reach the gap between L and U, we can s k i p :

i f (next == L_list_size) next = original_L_list_size ;

k = RC_COLUMN (next) ;

child = newnode (current , next + 1 , k) ;

current−>next = next + 1;

i f (checked (child)) {
/∗ checked () f i x e s the column whether

∗ i t i s fathomed or not

∗/
current = child ;

depth++;

i f (NumNodes/depth <= 4) {
/∗TODO: benchmark <=4 vs <4 etc , a l s o

∗ cons ider p l a c i n g a f t e r fathomed ()

∗ or perhaps in checked ()

∗/
fathom_depth++;

break ;

}

i f (depth > maxdepth) maxdepth = depth ;

i f (fathomed(¤t)) break ;

restore_flows (current) ; /∗ TODO: check ! ! ! ∗/
}
i f (depth == 0) setRootNext () ;

next = current−>next ;

}
child = current−>child ; /∗ r i gh tmos t c h i l d ∗/
/∗ now remove marks f o r v a r i a b l e s f i x e d in c h i l d r e n

∗ of ∗ current

∗/
// i f (c h i l d != NULL && c h i l d−>s i b l i n g != NULL) fathom branches++;

i f (child != NULL) fathom_branches++;

while (child != NULL) {
i f (mark [child−>fixed] ! = 2) {

APPENDIX A. SOURCE CODE 116

mark [child−>fixed] = 0 ;

}
tmp_node = child ;

child = child−>sibling ;

putnode (tmp_node) ;

}
/∗ move up ∗/
i f (current == root) break ;

freecolumn (current−>fixed) ;

i f (mark [current−>fixed] ! = 2) {
mark [current−>fixed] = 1 ;

}
tmp_node = current ;

current = current−>parent ;

depth−−;

i f (depth == 0) {
setRootNext () ;

}
restore_flows (current) ;

#i f MPI

i f (myId == 0) send_jobs () ;

#endif

} while (1) ;

}//csm ()

stat ic void arrays_init ()

{
#i f MPI

parallel_arrays_init () ; /∗ a l s o r e g i s t e r NodeType s t r u c t wi th MPI ∗/
#endif

USizeCopy = USize ;

memcpy (NodeCopy , Node , NumNodes ∗ s izeof (NodeType)) ;

memcpy (UCopy , UArray , 1+ NumEdges /8 ∗ s izeof (unsigned char)) ;

memcpy (UPairCopy [0] , UPair [0] , NumNodes ∗ s izeof (int)) ;

memcpy (UPairCopy [1] , UPair [1] , NumNodes ∗ s izeof (int)) ;

}

int main (int argc , char ∗∗ argv)

{
#i f MPI

int tmp ;

MPI_Init(&argc , & argv) ;

MPI_Comm_size (MPI_COMM_WORLD , & numProcs) ;

MPI_Comm_rank (MPI_COMM_WORLD , & myId) ;

#endif //MPI

i f (argc ! = 2) {
i f (myId == 0)

fprintf (stderr , ”Usage : \ n%s < f i l ename>\n” , argv [0]) ;

exit (1) ;

}

APPENDIX A. SOURCE CODE 117

i f (! readfile (argv [1])) {
fprintf (stderr , ” F i l e not s u c c e s s f u l l y read \n”) ;

exit (EX_UNAVAILABLE) ;

}

problemstats (argv [1]) ;

csm_init () ;

time_init () ;

SolveRMP2(&zero_ratio , & half_ratio , & one_ratio) ;

i f (myId == 0) {
printf (”SolveRMP2 re tu rn s zLP=%.1 f time=%5.3 f p i vo t s=%d\n” ,

(double) zLP /2 , seconds () , pivots) ;

}

i f (istour (root)) {
zIP = −zLP ;

}
#i f MPI

MPI_Allreduce(&zIP , & tmp , 1 , MPI_INT , MPI_MIN , MPI_COMM_WORLD) ;

/∗ This c a l l can be used to see i f the RMP2 s o l u t i o n i s perhaps

∗ a tour . A n e g a t i v e zIP w i l l work , as we reduce the minimum

∗/
zIP = tmp ;

#endif

i f (zIP < 0) goto finish ;

i f ((NumNodes > 23) && (zIP > 1 . 1 ∗ zLP)) zIP = (int) (1 . 1 ∗ zLP) ;

/∗ 2 3 i s j u s t a hack to make gr17 . t s p work again

∗ i t i s the only problem with opt imal zIP > 1.1 ∗ zLP

∗/
arrays_init () ;

/∗ Bui ld l i s t o f non−b a s i c v a r i a b l e s with

∗ reduced c o s t s < gap . maxbranches i s the index o f the

∗ f i r s t unconsidered v a r i a b l e in U

∗/
maxbranches = rc_init (zIP − zLP) ;

csm () ;

elapsed = seconds () ;

#i f MPI

parallel_finish () ;

#endif

finish :

i f (myId == 0) {
i f (zIP < 0) {

printf (”csm not nece s sa ry \n”) ;

zIP = −zIP ;

}

APPENDIX A. SOURCE CODE 118

sort (solution , 0 , NumNodes − 1) ;

solutionprint () ;

}
solutionstats () ;

fathom_statistics () ;

#i f MPI

MPI_Finalize () ;

i f (myId == 0) sleep (1) ;

/∗ h o p e f u l l y we can g e t node 0 ’ s p r o f i l e o v e r w r i t i n g the o t h e r s ∗/
#endif

csm_free () ;

return 0 ;

}//main

APPENDIX A. SOURCE CODE 119

A.11 global.c

/∗∗
∗ @ f i l e g l o b a l . c

∗ Global de f ines , v a r i a b l e s and f u n c t i o n s

∗/

#include < s t d i o . h>

#include < s t d l i b . h>

#include <math . h>

#include < s t r i n g . h>

#include < l i m i t s . h>

#include <time . h>

#include < errno . h>

#include ” g l o b a l . h”

#include ” csmtree . h” // f o r depth

#include ” s e t . h”

#include ” p a r a l l e l . h”

#i f MPI

#include ”mpi . h”

#endif

int NumNodes , NumEdges ;

NodeType ∗ Node ;

int zLP = 0;

int zIP = INT_MAX ;

int ∗ Base ;

int ∗ cost ;

nodeptr root ; // the root o f the csm search t r e e

NodeType ∗ NodeCopy ; // copy o f Node [] a t root

unsigned char ∗ UCopy ; // copy o f U [] a t root

int ∗∗ UPairCopy ; // copy o f UPair [] [] a t root

int USizeCopy ; // copy o f USize at root

int ∗ solution ; // array o f l e n g t h NumNodes

int solutions ;

char ∗ f ; // array o f l e n g t h NumNodes

char ∗ cover ; // array o f l e n g t h NumNodes

int covered = 0;

char ∗ mark ; // array o f l e n g t h NumEdges

/∗ Two cons tant s f o r o p t i m i s i n g o f g i v e n o d e s () ; ∗/
stat ic int magic_constant1 ; // 2∗NumNodes − 1

stat ic int magic_constant2 ; // (2∗NumNodes − 1) ∗ (2∗NumNodes − 1)

APPENDIX A. SOURCE CODE 120

#i f MPI

stat ic double start ;

#else

stat ic clock_t start ; // f o r t iming

#endif

void printParents ()

{
int i , counter = 1;

char ∗ printed ;

printed = (char ∗) calloc (NumNodes , s izeof (char)) ;

printf (”0−>”) ;

printed [0]++;

i = Node [0] . Parent ;

while (counter < NumNodes) {
printf (”%d” , i) ;

i f (! printed [i]) {
printed [i]++;

counter++;

i = Node [i] . Parent ;

printf (”−>%d” , i) ;

}
i f (! printed [i]) {

i = Node [i] . Parent ;

printf (”−>”) ;

} else {
printf (” ”) ;

while (printed [i] && counter < NumNodes) {
i++;

i f (i == NumNodes) {
i = 1; /∗ 0 i s a l ready p r i n t e d ∗/

}
}

}
}
printf (”\n”) ;

free (printed) ;

}

void printDuals ()

{
int i , right = 0;

printf (”Duals at double t h e i r va lue :\n”) ;

for (i = 0 ; i < NumNodes ; i++, right = ! right) {
printf (”Node[%3d] . Dual=%4d\ t ” , i , Node [i] . Dual) ;

i f (right) printf (”\n”) ;

}

APPENDIX A. SOURCE CODE 121

i f (right) printf (”\n”) ;

}

void printFlows ()

{
int i , right = 0;

for (i = 0 ; i < NumNodes ; i++, right = ! right) {
printf (”Node[%3d] . Flow=%10s ” , i , double_value (Node [i] . Flow)) ;

i f (right) printf (”\n”) ;

}
i f (right) printf (”\n”) ;

}

void printU ()

{
int i , right = 0;

int edge ;

for (i = 0 ; i < USize ; i++, right = ! right) {
edge = INDEX (UPair [0] [i] , UPair [1] [i]) ;

switch (mark [edge]) {
case 2 : printf (” (f i x e d 2) ”) ; break ;

case 1 : printf (” (f i x e d 1) ”) ; break ;

case −1 : printf (” (now 0) ”) ; break ;

case 0 : printf (” ”) ; break ;

default : fprintf (stderr , ” I n v a l i d entry in ”

”mark[%d] = %d !\n” , edge , mark [edge]) ;

}
printf (”U:(%3d,%3d) ” , UPair [0] [i] , UPair [1] [i]) ;

i f (right) printf (”\n”) ;

}
i f (right) printf (”\n”) ;

}

void printCover ()

{
int i , right = 0;

for (i = 0 ; i < NumNodes ; i++, right = ! right) {
printf (” cover [%d]=%4d\ t ” , i , cover [i]) ;

i f (right) printf (”\n”) ;

}
i f (right) printf (”\n”) ;

}

void printAll ()

{
printParents () ;

printDuals () ;

printFlows () ;

printU () ;

printCover () ;

APPENDIX A. SOURCE CODE 122

}

int CheckDuals ()

{
int i , j ;

int correct = 1;

for (i = 0 ; i < NumNodes ; i++) {
j = Node [i] . Parent ;

i f (Node [i] . Dual + Node [j] . Dual != cost [INDEX (i , j)]) {
printf (” Error in dua l s o f (%d,%d) (%d , should be %d)\n” ,

i , j , Node [i] . Dual − Node [j] . Dual ,

cost [INDEX (i , j)]) ;

correct = 0;

}
}
return correct ;

}

/∗ ∗ Checks to see i f current b a s i s i s dual f e a s i b l e . ∗/
void CheckDFeasibility ()

{
int i , dual_feasible ;

int rc ;

int a , b ;

#i f debug dua l & VERBOSE

printf (”Checking dual f e a s i b i l i t y . . . ”) ;

#endif

dual_feasible = CheckDuals () ;

for (i = 0 ; i < NumEdges ; i++) {
i f (mark [i]) continue ;

give_nodes (i , &a , & b) ;

rc = cost [i] − Node [a] . Dual − Node [b] . Dual ;

i f ((InU (i) && rc > 0) | | (! InU (i) && rc < 0)) {
printf (”\nColumn %d (%d,%d) not dual f e a s i b l e − rc=%d” ,

i , a , b , rc) ;

i f (InU (i)) printf (” (in U) ”) ;

else printf (” (in L) ”) ;

printf (”\ ncost [%d]=%d , Node[%d] . Dual=%d , Node[%d] . Dual=%d” ,

i , cost [i] , a , Node [a] . Dual ,

b , Node [b] . Dual) ;

dual_feasible = 0;

}
}

#i f debug dua l & VERBOSE

i f (dual_feasible) printf (”Ok”) ;

printf (”\n”) ;

#endif

}

/∗ ∗ Check f o r primal f e a s i b i l i t y . This f u n c t i o n i s c a l l e d in normal operat ion ,

APPENDIX A. SOURCE CODE 123

∗ not j u s t f o r debugging

∗/
int CheckVars () {

int i ;

for (i = 0 ; i < NumNodes ; i++) {
i f (Node [i] . Flow < ZERO | | Node [i] . Flow > ONE) {

return 0 ;

}
}
return 1 ;

}

inline int my_sqrt (int x)

{
int y = ceil (sqrt (x) − 1e−12);

/∗ Lets avoid the branching by r e w r i t i n g as an a d d i t i o n : ∗/
// i f (! (y %2)) y++;

//y += 1 − (y%2);

//y += 1;

/∗ r a t h e r j u s t a l t e r the re turn va lue from the c a l l e r , s i n c e i t s

∗ modif ied anyway

∗/
return y ;

}

/∗ ∗ C a l c u l a t e s which two nodes are connected by edge .

∗ This f u n c t i o n i s c a l l e d A LOT. There i s u s u a l l y an order o f magnitude

∗ more f u n c t i o n c a l l s to t h i s code than anything e l s e . Therefore the

∗ hand−o p t i m i s a t i o n . See a l s o above in my sqrt () . See t h e s i s f o r why t h i s

∗ works .

∗/
void give_nodes (int edge , int ∗ x , int ∗ y)

{
/∗ Note : a s s i g n i n g ∗ x to a temporary v a r i a b l e didn ’ t i n c r e a s e performance −
∗ i t a c t u a l l y decreased i t s l i g h t l y

∗/

∗x = NumNodes + (−2 − my_sqrt (magic_constant2 − 8∗ edge)) / 2 ;

∗y = ∗x + edge + 1 − (∗ x) ∗ (magic_constant1 − ∗x) / 2 ;

}

/∗ ∗ Just i n i t i a l i s e s two cons tant s f o r o p t i m i s i n g g i v e n o d e s () ∗/
void give_nodes_init ()

{
magic_constant1 = 2∗ NumNodes − 1;

magic_constant2 = magic_constant1 ∗ magic_constant1 ;

}

APPENDIX A. SOURCE CODE 124

const char ∗ double_value (int a)

{
stat ic char output_string [] = ” −0 / 2 (! ! !) ” ;

switch (a) {
/∗ XXX we don ’ t need breaks because we re turn ∗/
case −ONE : return (”(−ONE) ”) ;

case −HALF : return (”(−HALF) ”) ;

case ZERO : return (”ZERO”) ;

case HALF : return (”HALF”) ;

case ONE : return (”ONE”) ;

default : sprintf (output_string ,

”%2d / 2 (! ! !) ” , a) ;

return (output_string) ;

}
}

/∗ ∗ Check to see i f a l l the c o n s t r a i n t s are s a t i s f i e d ∗/
void checkEquations ()

{
int i ;

int success = 1;

/∗ Rows covered by f i x e d columns ∗/
memcpy (f , cover , NumNodes ∗ s izeof (char)) ;

for (i = 0 ; i < NumNodes ; i++) {
f [i] <<= 1;

}

/∗ Basic Var iab l e s ∗/
for (i = 0 ; i < NumNodes ; i++) {

f [i] += Node [i] . Flow ;

f [Node [i] . Parent] += Node [i] . Flow ;

}
/∗ Non−b a s i c v a r i a b l e s in U ∗/
for (i = 0 ; i < USize ; i++) {

i f (−1 == mark [INDEX (UPair [0] [i] , UPair [1] [i])]) continue ;

f [UPair [0] [i]] += ONE ;

f [UPair [1] [i]] += ONE ;

}

/∗ check f o r uncovered and overcovered rows ∗/
for (i = 0 ; i < NumNodes ; i++) {

i f (f [i] ! = 2 ∗ ONE) {
fprintf (stdout , ” ∗∗ equat ion %d ! = 2 (%s)∗∗\n” ,

i , double_value (f [i])) ;

success = 0;

}
}
i f (! success) {

fprintf (stdout , ” ∗ ∗ Equations not s a t i s f i e d ! ! \ n”) ;

printAll () ;

APPENDIX A. SOURCE CODE 125

exit (2) ;

}
}

/∗ ∗ Disp lays the c u r r e n t l y s t o r e d s o l u t i o n ∗/
void solutionprint ()

{
int i , a , b , u_vars = 0;

printf (” s o l u t i o n : zIP = %d\n” , zIP / 2) ;

printf (”−−−−−−−−−−−−(0−based)(1−based)\n”) ;

i f (numProcs > 1) printf (” S o l u t i o n s found by other p r o c e s s e s \
are not r e t r i e v e d ! ! ! \ n”) ;

for (i = 0 ; i < NumNodes ; i++) {
give_nodes (solution [i] , & a , & b) ;

printf (”Edge %5d , (%3d,%3d)(%3d,%3d) ” , solution [i] ,

a , b , a+1 , b+1);

i f (InSet (solution [i] , UCopy)) {
printf (” (in U) ”) ;

u_vars++;

}
printf (”\n”) ;

}
printf (”%d s o l u t i o n v a r i a b l e s in U\n” , u_vars) ;

printf (”−−−−−−−−−−−−−−\n”) ;

}

/∗∗
∗ Cal l ed when a s o l u t i o n has been found .

∗ Some s a n i t y check ing i s done , and the current s o l u t i o n i s s t o r e d

∗/
void solution_found (nodeptr node , int subtree)

{
int i ;

int column , nextvar = 0;

int node_a , node_b ; /∗ two temporary nodes ∗/
int sum = 0;

nodeptr next = node ;

#i f MPI

for (i = 0 ; i < numProcs ; i++)

i f (i != myId)

MPI_Send(&zIP , 1 , MPI_INT , i , ZIP_TAG , MPI_COMM_WORLD) ;

#endif

solutions++;

memset (f , 0 , NumNodes ∗ s izeof (char)) ;

/∗ p i c k up v a r i a b l e s f i x e d at 1 ∗/
while (next != root && next != NULL) {

column = next−>fixed ;

i f (InSet (column , UCopy)) {
/∗ we do a l l v a r i a b l e s in U l a t e r ∗/

APPENDIX A. SOURCE CODE 126

next = next−>parent ;

continue ;

}
sum += cost [column] ;

solution [nextvar++] = column ;

give_nodes (column , & node_a , & node_b) ;

f [node_a]++;

f [node_b]++;

next = next−>parent ;

}
/∗ Basic Var iab l e s at ONE ∗/
for (i = 0 ; i < NumNodes ; i++) {

i f (Node [i] . Flow) {
column = INDEX (i , Node [i] . Parent) ;

solution [nextvar++] = column ;

sum += cost [column] ;

f [i]++;

f [Node [i] . Parent]++;

}
}
/∗ Non−b a s i c v a r i a b l e s in U ∗/
for (i = 0 ; i < USize ; i++) {

node_a = UPair [0] [i] ;

node_b = UPair [1] [i] ;

column = INDEX (node_a , node_b) ;

i f (−1 == mark [column]) continue ;

solution [nextvar++] = column ;

sum += cost [column] ;

f [node_a]++;

f [node_b]++;

}
/∗ Can ’ t use the f o l l o w i n g i f we use a h e u r i s t i c to improve zIP ,

∗ or when we might update zIP because o f o ther p r o c e s s e s ’

∗ a c t i v i t i e s .

∗/
/∗ i f (sum != zIP) {

f p r i n t f (s tderr , ” sum = %d , zIP = %d ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n” ,

sum , zIP / 2) ;

f p r i n t f (s tderr , ” edges in s o l u t i o n :%d\n ” , nextvar) ;

s o l u t i o n p r i n t () ;

p r i n t A l l () ;

e x i t (0) ;

}
∗/

/∗ check f o r uncovered and overcovered rows ∗/
for (i = 0 ; i < NumNodes ; i++) {

i f (f [i] ! = 2)

fprintf (stderr , ” ∗∗ row %d ! = 2 (%d)∗∗\n” , i , f [i]) ;

}

APPENDIX A. SOURCE CODE 127

i f (node != NULL) {
#i f MPI

printf (”myId=%d , ” , myId) ;

#endif

printf (”Tour found in subt ree %d at depth %d , zIP=%d\n” ,

subtree , depth , zIP / 2) ;

} else {
i f (myId == 0)

printf (”Tour found during RMP2, zIP=%d\n” , zIP / 2) ;

}
i f (fflush (stdout)) perror (strerror (errno)) ;

}

void time_init ()

{
#i f MPI

start = MPI_Wtime () ;

#else

start = clock () ;

#endif

}

/∗ ∗ re turns the seconds t h a t passed s i n c e t0 ∗/
double seconds ()

{
#i f MPI

/∗ Wall c l o c k time − we need to account i d l e time to c a l c u l a t e

∗ u t i l i s a t i o n

∗/
return MPI_Wtime () − start ;

#else

/∗ c l o c k () re turns user time (not system / i d l e e t c) . U s e f u l l w h i l e

∗ machine i s used f o r o ther th ings , but i t o v e r f l o w s a f t e r something

∗ l i k e 120 minutes .

∗/
return (clock () − start)/ (double) CLOCKS_PER_SEC ;

#endif

}

APPENDIX A. SOURCE CODE 128

A.12 tsplib.l

%{
/∗ t s p l i b . l

∗ A l e x i c a l ana lyser f o r problems of the t s p l i b

∗ Use f l e x to generate the scanner . The scanner i s used in conjunct ion with

∗ t s p l i b . y , the parser

∗
∗ Some problems were encountered with the f i l e s o f the TSPLIB t h a t doesn ’ t

∗ conform e x a c t l y to the format s p e c i f i e d . Every e f f o r t was made to make a l l

∗ the f i l e s work

∗
∗ F Wolff (2003)

∗/
#include <math . h>

#include ” t s p l i b . tab . h”

%}

%option noyywrap

%option yylineno

DIGIT [0−9]

%x string

%x integer

%x type

%x capacity

%x edge_weight_type

%x edge_weight_format

%x edge_data_format

%x node_coord_type

%x display_data_type

%%

<∗>\n {return NEWLINE ;}

<INITIAL>[+−]?{DIGIT}+ {yylval = atoi (yytext) ; return INTEGER ;}

<INITIAL>[+−]?{DIGIT}+” . ”{DIGIT }∗ ([Ee] [+−]?{ DIGIT }+)? { yylval = atoi (yytext) ; return REAL ;}

<INITIAL>NAME {BEGIN (string) ; return NAME ;}

<INITIAL>TYPE {BEGIN (type) ; return TYPE ;}
<type>TSP {BEGIN (INITIAL) ; return TSP ;}
<type>ATSP {BEGIN (INITIAL) ; return ATSP ;}
<type>SOP {BEGIN (INITIAL) ; return SOP ;}
<type>HCP {BEGIN (INITIAL) ; return HCP ;}
<type>CVRP {BEGIN (INITIAL) ; return CVRP ;}

APPENDIX A. SOURCE CODE 129

<type>TOUR {BEGIN (INITIAL) ; return TOUR ;}

<INITIAL>COMMENT {BEGIN (string) ; return COMMENT ;}

<INITIAL>DIMENSION {return DIMENSION ;}

<INITIAL>CAPACITY {return CAPACITY ;}

<INITIAL>EDGE_WEIGHT_TYPE {BEGIN (edge_weight_type) ; return EDGE_WEIGHT_TYPE ;}
<edge_weight_type>EXPLICIT {BEGIN (INITIAL) ; return EXPLICIT ;}
<edge_weight_type>EUC_2D {BEGIN (INITIAL) ; return EUC_2D ;}
<edge_weight_type>EUC_3D {BEGIN (INITIAL) ; return EUC_3D ;}
<edge_weight_type>MAX_2D {BEGIN (INITIAL) ; return MAX_2D ;}
<edge_weight_type>MAX_3D {BEGIN (INITIAL) ; return MAX_3D ;}
<edge_weight_type>MAN_2D {BEGIN (INITIAL) ; return MAN_2D ;}
<edge_weight_type>MAN_3D {BEGIN (INITIAL) ; return MAN_3D ;}
<edge_weight_type>CEIL_2D {BEGIN (INITIAL) ; return CEIL_2D ;}
<edge_weight_type>GEO {BEGIN (INITIAL) ; return GEO ;}
<edge_weight_type>ATT {BEGIN (INITIAL) ; return GEO ;}
<edge_weight_type>XRAY1 {BEGIN (INITIAL) ; return GEO ;}
<edge_weight_type>XRAY2 {BEGIN (INITIAL) ; return GEO ;}
<edge_weight_type>SPECIAL {BEGIN (INITIAL) ; return GEO ;}

<INITIAL>EDGE_WEIGHT_FORMAT {BEGIN (edge_weight_format) ; return EDGE_WEIGHT_FORMAT ;}
<edge_weight_format>FUNCTION {BEGIN (INITIAL) ; return FUNCTION ;}
<edge_weight_format>FULL_MATRIX {BEGIN (INITIAL) ; return FULL_MATRIX ;}
<edge_weight_format>UPPER_ROW {BEGIN (INITIAL) ; return UPPER_ROW ;}
<edge_weight_format>LOWER_ROW {BEGIN (INITIAL) ; return LOWER_ROW ;}
<edge_weight_format>UPPER_DIAG_ROW {BEGIN (INITIAL) ; return UPPER_DIAG_ROW ;}
<edge_weight_format>LOWER_DIAG_ROW {BEGIN (INITIAL) ; return LOWER_DIAG_ROW ;}
<edge_weight_format>UPPER_COL {BEGIN (INITIAL) ; return UPPER_COL ;}
<edge_weight_format>LOWER_COL {BEGIN (INITIAL) ; return LOWER_COL ;}
<edge_weight_format>UPPER_DIAG_COL {BEGIN (INITIAL) ; return UPPER_DIAG_COL ;}
<edge_weight_format>LOWER_DIAG_COL {BEGIN (INITIAL) ; return LOWER_DIAG_COL ;}

<INITIAL>EDGE_DATA_FORMAT {BEGIN (edge_data_format) ; return EDGE_DATA_FORMAT ;}
<edge_data_format>EDGE_LIST {BEGIN (INITIAL) ; return EDGE_LIST ;}
<edge_data_format>ADJ_LIST {BEGIN (INITIAL) ; return ADJ_LIST ;}

<INITIAL>NODE_COORD_TYPE {BEGIN (node_coord_type) ; return NODE_COORD_TYPE ;}
<node_coord_type>TWOD_COORDS {BEGIN (INITIAL) ; return TWOD_COORDS ;}
<node_coord_type>THREED_COORDS {BEGIN (INITIAL) ; return THREED_COORDS ;}
<node_coord_type>NO_COORDS {BEGIN (INITIAL) ; return NO_COORDS ; /∗DEFAULT∗/}

<INITIAL>DISPLAY_DATA_TYPE {BEGIN (display_data_type) ; return DISPLAY_DATA_TYPE ;}
<display_data_type>COORD_DISPLAY { BEGIN (INITIAL) ; return COORD_DISPLAY ;}
<display_data_type>TWOD_DISPLAY { BEGIN (INITIAL) ; return TWOD_DISPLAY ;}
<display_data_type>NO_DISPLAY {BEGIN (INITIAL) ; return NO_DISPLAY ;}

APPENDIX A. SOURCE CODE 130

<INITIAL>NODE_COORD_SECTION {return NODE_COORD_SECTION ;}

<INITIAL>DEPOT_SECTION {return DEPOT_SECTION ;}

<INITIAL>DEMAND_SECTION {return DEMAND_SECTION ;}

<INITIAL>EDGE_DATA_SECTION {return EDGE_DATA_SECTION ;}

<INITIAL>FIXED_EDGES_SECTION {return FIXED_EDGES_SECTION ;}

<INITIAL>DISPLAY_DATA_SECTION {return DISPLAY_DATA_SECTION ;}

<INITIAL>TOUR_SECTION {return TOUR_SECTION ;}

<INITIAL>EDGE_WEIGHT_SECTION {return EDGE_WEIGHT_SECTION ;}

<string > [a−zA−z0−9\t () { } \ [\] ‘ ˜ ! @#$%ˆ&∗\−_+=\\/\. ,<>:;\” \ ’]+ {
BEGIN(INITIAL) ; re turn STRING;

}

<∗>[]+ ;

<INITIAL , type , edge weight type , edge weight format , node coord type , d i sp l ay data type >: ;

<<EOF>> { re turn END;}
<INITIAL>EOF { re turn END;}

. ;

%%

APPENDIX A. SOURCE CODE 131

A.13 tsplib.y

/∗ t s p l i b . y

∗ A bison grammar f i l e f o r f i l e s o f the t s p l i b

∗
∗ TSPLIB w e b s i t e are a v a i l a b l e at

∗ h t t p ://www. iwr . uni−h e i d e l b e r g . de/ groups /comopt/ so f tware /TSPLIB95/

∗ or

∗ h t t p ://www. d e n s i s . f e e . unicamp . br /˜ moscato/TSPBIB home . html

∗
∗ F Wolff (2003)

∗/

%token STRING

%token INTEGER

%token REAL

%token NEWLINE

%token COLON

%token NAME

%token TYPE

%token TSP ATSP SOP HCP CVRP TOUR // a l l the problem t y p e s

%token COMMENT

%token DIMENSION

%token CAPACITY

%token EDGE_WEIGHT_TYPE

%token EXPLICIT EUC_2D EUC_3D MAX_2D MAX_3D MAN_2D MAN_3D CEIL_2D GEO ATT XRAY1 XRAY2 SPECIAL

// a l l the e d g e w e i g h t t y p e s

%token EDGE_WEIGHT_FORMAT

%token FUNCTION FULL_MATRIX UPPER_ROW LOWER_ROW UPPER_DIAG_ROW LOWER_DIAG_ROW

%token UPPER_COL LOWER_COL UPPER_DIAG_COL LOWER_DIAG_COL

// a l l the e d g e w e i g h t f o r m a t s

%token EDGE_DATA_FORMAT

%token EDGE_LIST ADJ_LIST // a l l the edge da ta formats

%token NODE_COORD_TYPE

%token TWOD_COORDS THREED_COORDS NO_COORDS // a l l the node coord types DEFAULT:NO COORDS

%token DISPLAY_DATA_TYPE

%token COORD_DISPLAY TWOD_DISPLAY NO_DISPLAY // a l l the d i s p l a y d a t a t y p e s

%token END //EOF

%token NODE_COORD_SECTION

APPENDIX A. SOURCE CODE 132

%token DEPOT_SECTION

%token DEMAND_SECTION

%token EDGE_DATA_SECTION

%token FIXED_EDGES_SECTION

%token DISPLAY_DATA_SECTION

%token TOUR_SECTION

%token EDGE_WEIGHT_SECTION

%{

#include < s t d i o . h>

#include < s t d l i b . h>

#include <math . h>

#include < errno . h>

#include < s y s e x i t s . h> // f o r a d i t i o n a l proper e x i t codes

#include < a s s e r t . h>

#include ” g l o b a l . h”

#include ” l ex . yy . c”

#include ” s implex . h”

#i f debug

#define d e b u g t s p l i b 1

//#e l s e

//#d e f i n e d e b u g t s p l i b 0

#endif

#define ROUND(x) (int) (x + 0 .5)

/∗< nint () in the TSPLIB s p e c i f i c a t i o n . This code i s from the FAQ ∗/
//#d e f i n e STANDALONE 0 // used to t e s t as a s tanda lone app

/∗ ∗∗ Defined in Make f i l e ∗∗ ∗/

#i f STANDALONE

int ∗ cost = NULL ; // s t o r e s c o s t s in upper−t r i a n g u l a r form

int NumNodes , NumEdges ;

#endif

// i n t counter = 0;

int ∗∗ matrix = NULL ; // used f o r e x p l i c i t we ight s p e c i f i c a t i o n s

double ∗∗ coords = NULL ; // used to s t o r e node c o o r d i n a t e s

// i n t c o s t i n d e x = 1;

int current_edge_weight_type = −1;

int current_edge_weight_format = −1;

int current_edge_data_format = −1;

int current_node_coord_type = −1;

int current_display_data_type = −1;

int edge_weight_type_warning = 1; // 1 means warning shou ld be g iven

int edge_weight_format_warning = 1;

APPENDIX A. SOURCE CODE 133

int edge_data_format_warning = 1;

int node_coord_type_warning = 1;

int display_data_type_warning = 1;

int success = 1;

void yyerror (char ∗) ; // yyerror p r i n t s the message , wi th the l i n e

//number where i t was found . Se t s success = 0

void yyassert (int condition , char ∗ msg) ; // checks i f c o n d i t i o n i s true , i f not c a l l s

// yyerror (msg)

void custom_error (char ∗) ; // j u s t p r i n t s the message . Se t s success = 0

void problem_init (int) ; // s e t NumEdges , mal loc c o s t

void all_free () ;

void coords_init () ;

void coords_free () ;

void matrix_init () ;

void matrix_free () ;

void calc_costs () ;

void explicit_costs () ;

void next_edge_weight (int weight) ;

void next_node_coord (int index , double x , double y , double z) ;

%}

%start tspfile

%%

tspfile : specification data END {
#i f d e b u g t s p l i b

printf (” s u c c e s s \n”) ;

#endif

YYACCEPT ;

}
| specification error {yyerror (” Error in data s e c t i o n ”) ; YYABORT ;}

// | error { yyerror (” Error in s p e c i f i c a t i o n s e c t i o n ”) ; YYABORT;}
;

/∗ ∗∗∗ ∗/
specification : specification_line

| specification specification_line

;

specification_line :

name

| type

| comment

| dimension

APPENDIX A. SOURCE CODE 134

| capacity

| edge_weight_type

| edge_weight_format

| edge_data_format

| node_coord_type

| display_data_type

// | s p e c i f i c a t i o n error

// { f p r i n t f (s tderr , ” Error in s p e c i f i c a t i o n s e c t i o n \n ”) ; YYABORT;}
;

name : NAME STRING NEWLINE

;

type : TYPE type_param NEWLINE

| TYPE error {yyerror (” Error in TYPE: ”) ; YYABORT ;}
;

type_param :

TSP {}
| ATSP {custom_error (”TYPE: ATSP i s unsupported”) ; YYABORT ;}
| SOP {custom_error (”TYPE: SOP i s unsupported”) ; YYABORT ;}
| HCP {custom_error (”TYPE: HCP i s unsupported”) ; YYABORT ;}
| CVRP {custom_error (”TYPE: CVRP i s unsupported”) ; YYABORT ;}
| TOUR {custom_error (”TYPE: TOUR i s unsupported”) ; YYABORT ;}

;

comment : COMMENT STRING NEWLINE

;

dimension : DIMENSION INTEGER NEWLINE {problem_init ($2) ; }
;

capacity : CAPACITY INTEGER NEWLINE

{yyerror (”CAPACITY i s used f o r CVRP, which i s unsupported”) ;

YYABORT ;

}
;

edge_weight_type :

EDGE_WEIGHT_TYPE edge_weight_type_param NEWLINE

;

edge_weight_type_param :

EXPLICIT {current_edge_weight_type = EXPLICIT ;}
| EUC_2D {current_edge_weight_type = EUC_2D ; coords_init () ; }
| EUC_3D {current_edge_weight_type = EUC_3D ; coords_init () ; }
| MAX_2D {current_edge_weight_type = MAX_2D ; coords_init () ; }
| MAX_3D {current_edge_weight_type = MAX_3D ; coords_init () ; }
| MAN_2D {current_edge_weight_type = MAN_2D ; coords_init () ; }
| MAN_3D {current_edge_weight_type = MAN_3D ; coords_init () ; }
| CEIL_2D {current_edge_weight_type = CEIL_2D ; coords_init () ; }
| GEO {current_edge_weight_type = GEO ; coords_init () ; }
| ATT {current_edge_weight_type = ATT ;}
| XRAY1 {current_edge_weight_type = XRAY1 ;}
| XRAY2 {current_edge_weight_type = XRAY2 ;}
| SPECIAL {current_edge_weight_type = SPECIAL ;}

APPENDIX A. SOURCE CODE 135

| STRING {yyerror (” I n v a l i d edge we ight type \n”) ; }
;

edge_weight_format :

EDGE_WEIGHT_FORMAT edge_weight_format_param NEWLINE

;

edge_weight_format_param :

FUNCTION {yyassert (current_edge_weight_type == EXPLICIT ,

”EDGE WEIGHT TYPE should be EXPLICIT”) ;

current_edge_weight_format = EXPLICIT ;

}
| FULL_MATRIX {yyassert (current_edge_weight_type == EXPLICIT ,

”EDGE WEIGHT TYPE should be EXPLICIT”) ;

current_edge_weight_format = FULL_MATRIX ;

matrix_init () ;

}
| UPPER_ROW {yyassert (current_edge_weight_type == EXPLICIT ,

”EDGE WEIGHT TYPE should be EXPLICIT”) ;

current_edge_weight_format = UPPER_ROW ;

matrix_init () ;

}
| LOWER_ROW {yyassert (current_edge_weight_type == EXPLICIT ,

”EDGE WEIGHT TYPE should be EXPLICIT”) ;

current_edge_weight_format = LOWER_ROW ;

matrix_init () ;

}
| UPPER_DIAG_ROW {yyassert (current_edge_weight_type == EXPLICIT ,

”EDGE WEIGHT TYPE should be EXPLICIT”) ;

current_edge_weight_format = UPPER_DIAG_ROW ;

matrix_init () ;

}
| LOWER_DIAG_ROW {yyassert (current_edge_weight_type == EXPLICIT ,

”EDGE WEIGHT TYPE should be EXPLICIT”) ;

current_edge_weight_format = LOWER_DIAG_ROW ;

matrix_init () ;

}
| UPPER_COL {yyassert (current_edge_weight_type == EXPLICIT ,

”EDGE WEIGHT TYPE should be EXPLICIT”) ;

current_edge_weight_format = UPPER_COL ;

matrix_init () ;

}
| LOWER_COL {yyassert (current_edge_weight_type == EXPLICIT ,

”EDGE WEIGHT TYPE should be EXPLICIT”) ;

current_edge_weight_format = LOWER_COL ;

matrix_init () ;

}
| UPPER_DIAG_COL {yyassert (current_edge_weight_type == EXPLICIT ,

”EDGE WEIGHT TYPE should be EXPLICIT”) ;

current_edge_weight_format = UPPER_DIAG_COL ;

matrix_init () ;

APPENDIX A. SOURCE CODE 136

}
| LOWER_DIAG_COL {yyassert (current_edge_weight_type == EXPLICIT ,

”EDGE WEIGHT TYPE should be EXPLICIT”) ;

current_edge_weight_format = LOWER_DIAG_COL ;

matrix_init () ;

}
| STRING {yyerror (” I n v a l i d edge we ight fo rmat \n”) ; }
;

edge_data_format : EDGE_DATA_FORMAT edge_data_format_param NEWLINE

;

edge_data_format_param :

EDGE_LIST {current_edge_data_format = EDGE_LIST ;}
| ADJ_LIST {current_edge_data_format = ADJ_LIST ;

yyerror (”ADJ LIST i s not supported ”) ;

}
| STRING {yyerror (” I n v a l i d edge data format ”) ; }
;

node_coord_type : NODE_COORD_TYPE node_coord_type_param NEWLINE

;

node_coord_type_param :

TWOD_COORDS {current_node_coord_type = TWOD_COORDS ;}
| THREED_COORDS {current_node_coord_type = THREED_COORDS ;}
| NO_COORDS // d e f a u l t

| STRING {yyerror (” I n v a l i d node coord type ”) ; }
;

display_data_type : DISPLAY_DATA_TYPE display_data_type_param NEWLINE

;

display_data_type_param :

COORD_DISPLAY {current_display_data_type = COORD_DISPLAY ;}
| TWOD_DISPLAY {current_display_data_type = TWOD_DISPLAY ;}
| NO_DISPLAY {}
| STRING {yyerror (” I n v a l i d d i s p l a y d a t a t y p e ”) ; }
;

/∗ ∗∗∗ ∗/
data : data_section

| data data_section /∗ perhaps t h i s i s not always a l lowed ∗/
;

data_section :

node_coord_section

| depot_section

| demand_section

| edge_data_section

| fixed_edges_section

| display_data_section

| tour_section

| edge_weight_section

// | error { yyerror (” Error in data par t o f f i l e \n ”) ;}
;

APPENDIX A. SOURCE CODE 137

node_coord_section :

NODE_COORD_SECTION NEWLINE node_coord_section_data {calc_costs () ; }
;

node_coord_section_data :

node_coord_section_data_line

| node_coord_section_data node_coord_section_data_line

;

node_coord_section_data_line :

INTEGER REAL REAL NEWLINE { next_node_coord ($1 , $2 , $3 , 0) ; }
| INTEGER REAL INTEGER NEWLINE {next_node_coord ($1 , $2 , $3 , 0) ; }
| INTEGER INTEGER REAL NEWLINE {next_node_coord ($1 , $2 , $3 , 0) ; }
| INTEGER INTEGER INTEGER NEWLINE {next_node_coord ($1 , $2 , $3 , 0) ; }
| INTEGER REAL REAL REAL NEWLINE{next_node_coord ($1 , $2 , $3 , $4) ; }
;

depot_section : DEPOT_SECTION NEWLINE depot_section_data

;

depot_section_data : /∗ empty ∗/
| depot_section_data INTEGER NEWLINE {yyerror (” d e p o t s e c t i o n i s unsupported\n”) ; }
;

demand_section : DEMAND_SECTION NEWLINE demand_section_data

;

demand_section_data : /∗ empty ∗/
| demand_section_data INTEGER INTEGER NEWLINE

;

edge_data_section :

EDGE_DATA_SECTION NEWLINE edge_data_section_data

;

edge_data_section_data : /∗ empty ∗/
| edge_data_section_data INTEGER INTEGER NEWLINE // f o r EDGE LIST

//ADJ LIST unsupported

;

fixed_edges_section : FIXED_EDGES_SECTION NEWLINE fixed_edges_section_data

;

fixed_edges_section_data :

INTEGER INTEGER NEWLINE

| fixed_edges_section_data INTEGER NEWLINE { assert ($2 == −1);}
| fixed_edges_section_data INTEGER INTEGER NEWLINE

// terminated by −1

;

display_data_section :

DISPLAY_DATA_SECTION NEWLINE display_data_section_data

| DISPLAY_DATA_SECTION error {yyerror (” e r r o r in DISPLAY DATA SECTION”) ; }
;

display_data_section_data :

APPENDIX A. SOURCE CODE 138

display_data_section_data_line NEWLINE

| display_data_section_data display_data_section_data_line NEWLINE

;

display_data_section_data_line :

INTEGER REAL REAL

| INTEGER REAL INTEGER

| INTEGER INTEGER REAL

| INTEGER INTEGER INTEGER

// A l l on ly v a l i d i f DISPLAY DATA TYPE i s TWOD DISPLAY

;

tour_section : TOUR_SECTION NEWLINE tour_section_data

;

tour_section_data :

INTEGER NEWLINE

| tour_section_data INTEGER NEWLINE

;

edge_weight_section :

EDGE_WEIGHT_SECTION NEWLINE edge_weight_section_data {
edge_weight_format_warning = 1;

explicit_costs () ;

}
;

edge_weight_section_data :

edge_weight_section_data_line NEWLINE {}
| edge_weight_section_data edge_weight_section_data_line NEWLINE

;

edge_weight_section_data_line :

INTEGER {next_edge_weight ($1) ; }
| edge_weight_section_data_line INTEGER {next_edge_weight ($2) ; }
;

%%

/∗ ∗∗∗ ∗/
void next_upper_row_edge_weight (int weight)

{
stat ic int cost_index = 0;

cost [cost_index++] = weight ;

}

void next_full_matrix_edge_weight (int weight)

{
stat ic int matrix_x = 0 , matrix_y = 0;

yyassert (matrix_y < NumNodes , ”Too many rows in matrix ”) ;

matrix [matrix_x] [matrix_y] = weight ;

matrix [matrix_y] [matrix_x] = weight ;

matrix_x++;

i f (matrix_x >= NumNodes) {
matrix_x = 0;

APPENDIX A. SOURCE CODE 139

matrix_y++;

}
}

void next_lower_row_edge_weight (int weight)

{
stat ic int matrix_x = 0 , matrix_y = 1;

yyassert (matrix_y < NumNodes , ”Too many rows in matrix ”) ;

matrix [matrix_x] [matrix_y] = weight ;

matrix [matrix_y] [matrix_x] = weight ;

matrix_x++;

i f (matrix_x == matrix_y+1) {
matrix_x = 0;

matrix_y++;

}
}

void next_lower_diag_row_edge_weight (int weight)

{
stat ic int matrix_x = 0 , matrix_y = 0;

i f (matrix_x == matrix_y) {
yyassert (weight == 0 , ”Entry on d iagona l not 0 ”) ;

matrix_x = 0;

matrix_y++;

return ;

}
matrix [matrix_y] [matrix_x] = weight ;

matrix [matrix_x] [matrix_y] = weight ;

matrix_x++;

}

void next_edge_weight (int weight)

{
switch (current_edge_weight_format) {
case UPPER_ROW : next_upper_row_edge_weight (weight) ; break ;

case FULL_MATRIX : next_full_matrix_edge_weight (weight) ; break ;

case LOWER_ROW : next_lower_row_edge_weight (weight) ; break ;

case LOWER_DIAG_ROW : next_lower_diag_row_edge_weight (weight) ; break ;

/∗
case FUNCTION :

case UPPER DIAG ROW : / / n e x t u p p e r d i a g r o w e d g e w e i g h t (weight) ; break ;

case UPPER COL :

case LOWER COL :

case UPPER DIAG COL :

case LOWER DIAG COL : break ;

∗/
default :

i f (edge_weight_format_warning)

yyerror (” Current EDGE WEIGHT FORMAT not s p e c i f i e d / supported ”) ;

edge_weight_format_warning = 0;

APPENDIX A. SOURCE CODE 140

}// swi tch

}// n e x t e d g e w e i g h t ()

void next_node_coord (int index , double x , double y , double z)

{
#i f d e b u g t s p l i b

printf (” next node coord %d\n” , index) ;

#endif

coords [index] [0] = x ;

coords [index] [1] = y ;

coords [index] [2] = z ;

}

void calc_costs ()

{
int i , j , k=0;

double dx , dy , dz ;

#i f d e b u g t s p l i b

printf (” c a l c c o s t s ()\n”) ;

#endif

for (i = 1 ; i < NumNodes ; i++) {
for (j = i+1; j <= NumNodes ; j++) {

errno = 0;

dx = coords [i] [0] − coords [j] [0] ;

dy = coords [i] [1] − coords [j] [1] ;

dz = coords [i] [2] − coords [j] [2] ;

switch (current_edge_weight_type) {
case EXPLICIT :

fprintf (stderr , ” c a l c c o s t () should not be \
c a l l e d f o r EXPLICIT edge we ight type \n”) ;

exit (EX_SOFTWARE) ; // i n t e r n a l so f tware error

break ;

case EUC_2D :

case EUC_3D :

cost [k++] = ROUND (sqrt (dx∗dx + dy∗dy + dz∗dz)) ;

i f (errno ! = 0) perror (NULL) ;

break ;

case CEIL_2D :

cost [k++] = ceil (sqrt (dx∗dx + dy∗dy + dz∗dz)) ;

i f (errno ! = 0) perror (NULL) ;

break ;

case MAX_2D :

case MAX_3D :

case MAN_2D :

case MAN_3D :

case GEO :

case ATT :

APPENDIX A. SOURCE CODE 141

case XRAY1 :

case XRAY2 :

case SPECIAL :

default : i f (edge_weight_type_warning)

custom_error (” Current EDGE WEIGHT TYPE not implemented”) ;

edge_weight_type_warning = 0;

}// swi tch

}
}
coords_free () ;

#i f d e b u g t s p l i b

printf (” f i n i s h e d c a l c c o s t s ()\n”) ;

#endif

}// c a l c c o s t s ()

/∗ ∗ e x p l i c i t c o s t s () i s c a l l e d to copy the c o r r e c t format o f v a l u e s i n t o the c o s t

∗ matrix .

∗/
void explicit_costs ()

{
int i , j , k = 0;

#i f d e b u g t s p l i b

printf (” e x p l i c i t c o s t s ()\n”) ;

#endif

switch (current_edge_weight_format) {
case UPPER_ROW : break ; // a l ready done ;

case FUNCTION :

case FULL_MATRIX :

case LOWER_ROW :

case UPPER_DIAG_ROW :

case LOWER_DIAG_ROW :

case UPPER_COL :

case LOWER_COL :

case UPPER_DIAG_COL :

case LOWER_DIAG_COL :

for (i=0; i < NumNodes − 1 ; i++) {
for (j = i + 1 ; j < NumNodes ; j++) {

cost [k++] = matrix [i] [j] ;

}
}
break ;

default : i f (edge_weight_format_warning)

custom_error (” I n v a l i d / unsupported EDGE WEIGHT FORMAT”) ;

edge_weight_format_warning = 0;

}
#i f d e b u g t s p l i b

printf (” f i n i s h e d e x p l i c i t c o s t s ()\n”) ;

#endif

}

APPENDIX A. SOURCE CODE 142

void coords_init ()

{
int j ;

#i f d e b u g t s p l i b

printf (” A l l o c a t i n g memory f o r coo rd ina t e s o f %d nodes\n” , NumNodes) ;

#endif

coords = (double ∗ ∗) malloc ((NumNodes +1) ∗ s izeof (double)) ;

for (j = 1 ; j <= NumNodes ; j++) {
coords [j] = (double ∗) malloc (3 ∗ s izeof (double)) ;

}
i f (coords == NULL) {

fprintf (stderr , ”Out o f memory\n”) ;

exit (ENOMEM) ;

}
}// c o o r d s i n i t ()

void matrix_init ()

{
int j ;

#i f d e b u g t s p l i b

printf (” A l l o c a t i n g memory f o r %dx%d matrix \n” , NumNodes , NumNodes) ;

#endif

matrix = (int ∗ ∗) malloc (NumNodes ∗ s izeof (int)) ;

for (j = 0 ; j < NumNodes ; j++) {
matrix [j] = (int ∗) malloc (NumNodes ∗ s izeof (int)) ;

}
i f (matrix == NULL) {

fprintf (stderr , ”Out o f memory\n”) ;

exit (ENOMEM) ;

}
}

/∗ ∗ This i s c a l l e d as soon as we know how what the dimension o f the problem i s

∗/
void problem_init (int dimension)

{
i f (dimension > MAXNODES) {

fprintf (stderr , ”Problem too big \n”) ;

exit (ENOMEM) ;

}
NumNodes = dimension ;

i f (NumNodes % 2) //odd

NumEdges = (NumNodes − 1) / 2 ∗ NumNodes ;

else // even

NumEdges = NumNodes / 2 ∗ (NumNodes − 1) ;

cost = (int ∗) malloc (NumEdges ∗ s izeof (int)) ;

i f (cost == NULL) {
fprintf (stderr , ”Out o f memory\n”) ;

exit (ENOMEM) ;

APPENDIX A. SOURCE CODE 143

}
}

void coords_free ()

{
int j ;

i f (coords == NULL) return ;

for (j = 1 ; j <= NumNodes ; j++)

free (coords [j]) ;

free (coords) ;

coords = NULL ;

}

void matrix_free ()

{
int j ;

i f (matrix == NULL) return ;

for (j = 0 ; j < NumNodes ; j++)

free (matrix [j]) ;

free (matrix) ;

matrix = NULL ;

}

void all_free ()

{
#i f STANDALONE

free (cost) ;

cost = NULL ;

#endif

coords_free () ;

matrix_free () ;

}

void yyerror (char ∗ msg)

{
success = 0;

fprintf (stderr , ”%s − (Discovered in l i n e %d)\n” , msg , yylineno) ;

}

void yyassert (int condition , char ∗ msg)

{
i f (! condition) {

yyerror (msg) ;

}
}

void custom_error (char ∗ msg)

{

APPENDIX A. SOURCE CODE 144

success = 0;

fprintf (stderr , ”%s \n” , msg) ;

}

/∗ ∗∗∗ ∗/

#i f ! STANDALONE

int readfile (char ∗ filename)

{
int i ;

FILE ∗ f ;

f = fopen (filename , ” r ”) ;

i f (f == NULL)

{
fprintf (stderr , ” could not open %s \n” , filename) ;

exit (EIO) ;

}
yyin = f ;

success &= ! yyparse () ; // yyparse () re turns 0 on success

for (i = 0 ; i < NumEdges ; i++) cost [i] ∗= 2 ;

// the c o s t s are doub led f o r our own implementation

#i f d e b u g t s p l i b

// p r i n t out the f i r s t 100 c o s t s (upper−t r i a n g u l a r form)

for (i = 0 ; i < NumEdges && i < 300 ; i++) printf (” co s t [%d]:%d\ t ” , i , cost [i]) ;

#endif

all_free () ;

fclose (f) ;

return success ;

}

#else

int main (int argc , char ∗∗ argv)

{
#i f d e b u g t s p l i b

int i ;

#endif

FILE ∗ f ;

i f (argc > 1) {
f = fopen (argv [1] , ” r ”) ;

i f (f == NULL) {
fprintf (stderr , ” could not open %s \n” , argv [1]) ;

exit (EIO) ;

}
yyin = f ;

}
success &= ! yyparse () ; // This i s the f u n c t i o n f o r to c a l l b i son ’ s parser

// yyparse () re turns 0 on success

printf (”NumNodes : % d\tNumEdges : % d\n” , NumNodes , NumEdges) ;

APPENDIX A. SOURCE CODE 145

#i f d e b u g t s p l i b

// p r i n t out the f i r s t 100 c o s t s (upper−t r i a n g u l a r form)

for (i = 0 ; i < NumEdges && i < 100 ; i++) printf (” co s t [%d]:%d\ t ” , i , cost [i]) ;

#endif

all_free () ;

fclose (f) ;

i f (success)

return EX_OK ;

else

return EX_UNAVAILABLE ; //we don ’ t know e x a c t l y why we didn ’ t succeed

}
#endif

APPENDIX A. SOURCE CODE 146

A.14 simplex.c

/∗∗
∗ @ f i l e s implex . c

∗ This f i l e conta ins the code t h a t i s common to both the primal and

∗ dual s implex methods . Also conta ins some u s e f u l f u n c t i o n s f o r

∗ debugging .

∗
∗/

#include < s t d l i b . h>

#include < s t d i o . h>

#include < l i m i t s . h>

#include <math . h>

#include ” g l o b a l . h”

#include ” s implex . h”

#include ” s e t . h”

int pivots = 0;

long long dual_pivots = 0;

int ∗ Queue ;

char ∗ beta ;

void simplex_init ()

{
int i , j ;

beta = (char ∗) malloc (NumNodes ∗ s izeof (char)) ;

Node = (NodeType ∗) malloc (NumNodes ∗ s izeof (NodeType)) ;

Base = (int ∗) malloc (NumNodes ∗ s izeof (int)) ;

Queue = (int ∗) malloc (NumNodes ∗ s izeof (int)) ;

Base [0] = −1 ; /∗ upper t r i a n g l e o f c o s t matrix i s s t o r e d rowwise ∗/
for (j = 0 , i = NumNodes − 1 ; j < NumNodes − 1 ; j++, i−−) {

Base [j + 1] = Base [j] + i ;

}
}

void simplex_free ()

{
free (beta) ; beta = NULL ;

free (Node) ; Node = NULL ;

free (Base) ; Base = NULL ;

free (Queue) ; Queue = NULL ;

}

/∗∗
∗ Temporary f u n c t i o n to c a l c u l a t e where (i f) two nodes ’ path meet

APPENDIX A. SOURCE CODE 147

∗ on t h e i r way to the c y c l e . Should do b e t t e r l a t e r .

∗/
void WandYw (int U , int V , int ∗ pW , int ∗ pYw)

{
int YofPath [2] , NodeOnPath [2] ;

int Path = −1;

int Y , Yw , W = −1;

int dist , SumDist , k , i , j , r ;

NodeOnPath [0] = U ;

NodeOnPath [1] = V ;

YofPath [0] = YofPath [1] = 1 ;

i f (Node [U] . Dist < 0) { /∗ U i s on c y c l e ∗/
i f (Node [V] . Dist < 0) dist = 0;

else { /∗ V i s not on c y c l e ∗/
dist = Node [V] . Dist ;

Path = 1;

}
SumDist = dist ;

} else { /∗ U not on c y c l e ∗/
i f (Node [V] . Dist < 0) { /∗ V on c y c l e ∗/

dist = Node [U] . Dist ;

SumDist = dist ;

Path = 0;

} else { /∗ V i s a l s o not on c y c l e ∗/
dist = Node [U] . Dist − Node [V] . Dist ;

i f (dist > 0) Path = 0;

else {
Path = 1;

dist = −dist ;

}
SumDist = Node [U] . Dist + Node [V] . Dist ;

}
}
i f (dist > 0) {

/∗ move towards c y c l e on l o n g e s t path ∗/
i = NodeOnPath [Path] ;

Y = YofPath [Path] ;

k = 0;

while (k < dist) { /∗ Trace l o n g e s t o f Pu and Pv ∗/
Y = −Y ;

i = Node [i] . Parent ;

k++;

}
NodeOnPath [Path] = i ;

YofPath [Path] = Y ;

}
/∗ now same d i s t a n c e away from c y c l e (s) on both paths ∗/
dist = Node [NodeOnPath [0]] . Dist ;

i f (dist < 0) dist = 0;

APPENDIX A. SOURCE CODE 148

while (NodeOnPath [0] ! = NodeOnPath [1] && dist > 0) {
/∗ move towards c y c l e (s) on both paths ∗/
k = 0;

while (k < 2) { /∗ Trace Pu and Pv ∗/
i = NodeOnPath [k] ;

NodeOnPath [k] = Node [i] . Parent ;

YofPath [k] = − YofPath [k] ;

k++;

}
dist−−;

}
i f (NodeOnPath [0] == NodeOnPath [1]) {

W = NodeOnPath [0] ;

i f (YofPath [0] == − YofPath [1]) Yw = 0;

else { /∗ t r a c e common path to c y c l e ∗/
Yw = YofPath [0] ;

}
} else { /∗ (NodeOnPath [0] ! = NodeOnPath [1] && (d i s t == 0) ∗/

/∗ at d i f f e r e n t nodes on c y c l e (s) on both paths ∗/
i = NodeOnPath [0] ;

j = NodeOnPath [1] ;

r = i ;

i f (Node [i] . Dist == Node [j] . Dist) { /∗ i f c y c l e s o f same s i z e ∗/
dist = 0;

do {
r = Node [r] . Parent ;

dist++;

} while (r != j && r != i) ;

}

i f (r == j) { /∗ i and j on same c y c l e ∗/
i f ((SumDist + dist) % 2 == 1) {

Path = 0;

} else {
Path = 1;

}
i = NodeOnPath [Path] ;

//// Y = YofPath [Path] ;

W = NodeOnPath [1 − Path] ;

Yw = 0;

}/∗ otherwi se i and j in d i f f e r e n t c y c l e s ∗/
}

∗pW = W ;

∗pYw = Yw ;

}

void ChangeFlows (int U , int V , int Sign , int W , int Yw , int Ratio)

{
int I , K , R , Y ;

APPENDIX A. SOURCE CODE 149

i f (W >= 0) { /∗PathNode [1] and PathNode [2] in same one−t r e e ∗/
I = U ;

for (K = 0 ; K < 2 ; K++) { /∗ t r a c e to W on Pu and Pv ∗/
Y = Sign ∗ Ratio ; /∗ Sign = +− 1 ∗/
while (I != W) {

Node [I] . Flow −= Y ;

I = Node [I] . Parent ;

Y = −Y ;

}
I = V ;

}
i f (Yw ! = 0) {

Y ∗= 2 ; I = W ;

while (Node [I] . Dist > 0) { /∗ t r a c e from W to c y c l e ∗/
Node [I] . Flow −= Y ;

I = Node [I] . Parent ;

Y = −Y ;

}
Y /= 2;

R = I ;

do {
Node [I] . Flow −= Y ;

I = Node [I] . Parent ;

Y = −Y ;

} while (I != R) ;

}
} else { /∗ U and V on d i f f e r e n t c y c l e s ∗/

I = U ;

for (K = 0 ; K < 2 ; K++) {
Y = Sign ∗ Ratio ; /∗ Sign = +− I ∗/
while (Node [I] . Dist > 0) { /∗ t r a c e to c y c l e ∗/

Node [I] . Flow −= Y ;

I = Node [I] . Parent ;

Y = −Y ;

}
R = I ;

Y /= 2;

do {
Node [I] . Flow −= Y ;

I = Node [I] . Parent ;

Y = −Y ;

} while (I != R) ;

I = V ;

}
}

} /∗ ChangeFlows ∗/

/∗∗
∗ Makes U a c h i l d o f V.

∗ Also makes a l l the parents o f U part o f the s u b t r e e rooted at V

APPENDIX A. SOURCE CODE 150

∗ p r e c o n d i t i o n : node OutNode must be on backpath o f node U

∗/
void UpdateOneTrees (int U , int V , int OutNode , int NewFlow)

{
// taken from Geldenhuys − uses fewer v a r i a b l e s

int K , W ;

int OldFlow ;

do {
W = Node [U] . Parent ;

/∗ remove c h i l d U of W ∗/
i f (Node [W] . Child == U)

Node [W] . Child = Node [U] . Sibling ;

else {
K = Node [W] . Child ;

while (Node [K] . Sibling != U) K = Node [K] . Sibling ;

Node [K] . Sibling = Node [U] . Sibling ;

}
/∗ i n s e r t U as c h i l d o f V ∗/
Node [U] . Parent = V ;

Node [U] . Sibling = Node [V] . Child ;

Node [V] . Child = U ;

OldFlow = Node [U] . Flow ;

Node [U] . Flow = NewFlow ;

NewFlow = OldFlow ;

V = U ; U = W ; /∗ move up on backpath ∗/
} while (V != OutNode) ;

} /∗ UpdateOneTrees ∗/

/∗∗
∗ Change dual v a r i a b l e s and d i s t a n c e s f o r arborescence with root U.

∗/
void UpdateDualsDistsSubTree (int U , int DualChange)

{
int Head , Tail , Parent , Child , OldTail , NewDist ;

Parent = Node [U] . Parent ;

NewDist = (Node [Parent] . Dist < 0) ? 1 : Node [Parent] . Dist + 1;

Node [U] . Dual += DualChange ;

Node [U] . Dist = NewDist ;

Head = 0;

Tail = 0;

Queue [Tail] = U ;

do {
DualChange = −DualChange ;

NewDist++;

OldTail = Tail ;

do {

APPENDIX A. SOURCE CODE 151

Parent = Queue [Head] ;

Child = Node [Parent] . Child ;

while (Child > −1) {
Node [Child] . Dual += DualChange ;

Node [Child] . Dist = NewDist ;

Queue[++Tail] = Child ;

Child = Node [Child] . Sibling ;

}
} while (++Head <= OldTail) ;

} while (Tail != OldTail) ; /∗ no new nodes added to queue ∗/
#i f debug s implex

printDuals () ;

#endif

} /∗ UpdateDualsDistsSubTree ∗/

/∗∗
∗ Updates the . Dual and . Dis t v a l u e s in the b a s i s t r e e .

∗ Sets d i s t a n c e s f o r a l l nodes on new c y c l e = −CycleLength . Updates

∗ the dua l s and d i s t a n c e s f o r every arborescence with a node o f the

∗ new c y c l e as root .

∗/
void UpdateDualsDistsOneTree (int U , int V , int CycleLength , int DualChange)

{
int Child , Start ;

Start = V ;

do {
Node [V] . Dist = −CycleLength ;

Node [V] . Dual += DualChange ;

Child = Node [V] . Child ;

DualChange = −DualChange ;

while (Child > −1) {
i f (Child != U)

UpdateDualsDistsSubTree (Child , DualChange) ;

Child = Node [Child] . Sibling ;

}
U = V ;

V = Node [V] . Parent ;

} while (V != Start) ;

} /∗ UpdateDualsDistsOneTree ∗/

APPENDIX A. SOURCE CODE 152

A.15 primal.c

/∗∗
∗ @ f i l e primal . c

∗ This f i l e conta ins code f o r the s implex method t h a t only a p p l i e s

∗ to the primal s implex par t o f column s u b t r a c t i o n method .

∗ Almost e n t i r e l y the o r i g i n a l o f Leenen

∗/

#include < s t d i o . h>

#include < l i m i t s . h>

#include < s t d l i b . h>

#include ” g l o b a l . h”

#include ” pr imal . h”

#include ” s implex . h”

#include ” s e t . h”

#include ” p a r a l l e l . h”

#include ” i s t o u r . h”

/∗∗
∗ Bui lds the i n i t i a l b a s i c s o l u t i o n .

∗ Finds a tour by a r b i t r a r y i n s e r t i o n . I f NumNodes i s odd , t h i s tour can

∗ be used as s t a r t i n g b a s i s f o r the primal s implex . I f even , one b a s i c

∗ i s t r a n s f e r r e d to U to make the i n i t i a l 1− t r e e have a c y c l e with an odd

∗ number o f nodes .

∗/
stat ic void FindTour ()

{
int ∗ Cst ;

int Inc , Min , I , J , K , R , S , Dist , Sign , Start ;

int Sum ;

Cst = (int ∗) malloc (NumNodes ∗ s izeof (int)) ;

Node [0] . Parent = 1;

Node [1] . Parent = 0;

Cst [0] = cost [0] ;

Cst [1] = cost [0] ;

for (J = 2 ; J < NumNodes ; J++) {
/∗ f i n d the node S such t h a t the c o s t o f i n s e r t i n g node J

∗ between Node [S] . Parent and S i s a minimum over a l l such

∗ i n s e r t i o n s

∗/
Min = INT_MAX ;

K = 0;

do {
I = Node [K] . Parent ;

Inc = cost [INDEX (I , J)] + cost [INDEX (J , K)] − Cst [K] ;

i f (Inc < Min) { Min = Inc ; S = K ;}

APPENDIX A. SOURCE CODE 153

K = I ;

} while (K ! = 0) ;

/∗ r e p l a c e edge (Node [S] . Parent , S) with the edges

∗ (Node [S] . Parent , J) and (J , S)

∗/
R = Node [S] . Parent ;

Node [J] . Parent = R ;

Cst [J] = cost [INDEX (R , J)] ;

Node [S] . Parent = J ;

Cst [S] += Min − Cst [J] ;

}

/∗ compute tour va lue and s e t c h i l d , s i b l i n g and f l o w v a l u e s ∗/
for (J = 0 ; J < NumNodes ; J++) {

zLP += Cst [J] ;

I = Node [J] . Parent ;

Node [J] . Sibling = −1;

Node [J] . Flow = ONE ;

Node [I] . Child = J ;

}
zIP = zLP ;

solution_found (NULL , 0) ;

i f ((NumNodes % 2) == 0) {
/∗ makes edge between node 1 and Node [1] . Chi ld non−b a s i c

∗ with f l o w of 1 and edge between node Node [1] . Parent

∗ and Node [1] . Chi ld b a s i c with f l o w of 0

∗/
K = Node [0] . Child ;

Node [0] . Child = −1;

Node [0] . Sibling = K ;

I = Node [0] . Parent ;

AddToU (K , 0 , K − 1) ;

Node [K] . Parent = I ;

Node [K] . Flow = 0;

Cst [K] = cost [INDEX (K , I)] ;

}
J = Node [0] . Parent ;

/∗ compute dual va lue o f node J on c y c l e ∗/
Sum = 0;

Sign = 1;

Start = J ;

do {
I = Node [J] . Parent ;

Sum += Sign ∗ Cst [J] ;

J = I ;

Sign = −Sign ;

} while (J != Start) ;

Node [J] . Dual = Sum / 2 ;

/∗ compute dual d i s t a n c e v a l u e s ∗/

APPENDIX A. SOURCE CODE 154

i f ((NumNodes % 2) == 1) Node [J] . Dist = −NumNodes ;

else {
Node [J] . Dist = −(NumNodes − 1) ;

Node [0] . Dual = Cst [0] − Node [J] . Dual ;

Node [0] . Dist = 1;

}
Dist = Node [J] . Dist ;

for (K = 1 ; K < −Dist ; K++) {
I = Node [J] . Parent ;

Node [I] . Dual = Cst [J] − Node [J] . Dual ;

Node [I] . Dist = Dist ;

J = I ;

}
free (Cst) ;

} /∗ FindTour ∗/

/∗∗
∗ Performs the r a t i o t e s t to s e l e c t l e a v i n g edge .

∗ W i s s e t to a node in both backpaths only i f U and V are in the

∗ same onetree w h i l e CycleLength i s s e t to the l e n g t h o f the new

∗ c y c l e only i f such a c y c l e can be formed when adding the edge

∗ between U and V to the b a s i s graph

∗/
stat ic void RatioTest (int U , int V , int Sign , int ∗ PathP , int ∗ OutNodeP ,

int ∗ WP , int ∗ CycleLengthP , int ∗ YwP , int ∗ RatioP)

{
int YofPath [2] , NodeOnPath [2] ;

int I , Dist , SumDist , K , MinPath , R , J ;

int Path = −1 , OutNode , W = −1 , CycleLength = 0;

int Y , MinRatio , Yw , Ratio ;

Ratio = ONE ;

NodeOnPath [0] = U ;

NodeOnPath [1] = V ;

YofPath [0] = YofPath [1] = 1 ;

i f (Node [U] . Dist < 0) { /∗ U i s on c y c l e ∗/
i f (Node [V] . Dist < 0) Dist = 0;

else { /∗ V i s not on c y c l e ∗/
Dist = Node [V] . Dist ;

Path = 1;

}
SumDist = Dist ;

} else { /∗ U not on c y c l e ∗/
i f (Node [V] . Dist < 0) { /∗ V on c y c l e ∗/

Dist = Node [U] . Dist ;

SumDist = Dist ;

Path = 0;

} else { /∗ V i s a l s o not on c y c l e ∗/
Dist = Node [U] . Dist − Node [V] . Dist ;

APPENDIX A. SOURCE CODE 155

i f (Dist > 0) Path = 0;

else {
Path = 1;

Dist = −Dist ;

}
SumDist = Node [U] . Dist + Node [V] . Dist ;

}
}
i f (Dist > 0) {

/∗ move towards c y c l e on l o n g e s t path ∗/
I = NodeOnPath [Path] ;

Y = YofPath [Path] ;

K = 0;

while (K < Dist && Ratio == ONE) { /∗ Trace l o n g e s t o f Pu and Pv ∗/
i f (Y == Sign) {

i f (Node [I] . Flow == ZERO) {
Ratio = ZERO ;

OutNode = I ;

}
} else {

i f (Node [I] . Flow == ONE) {
Ratio = ZERO ;

OutNode = I ;

}
}
Y = −Y ;

I = Node [I] . Parent ;

K++;

}
NodeOnPath [Path] = I ;

YofPath [Path] = Y ;

}
/∗ now same d i s t a n c e away from c y c l e (s) on both paths ∗/
Dist = Node [NodeOnPath [0]] . Dist ;

i f (Dist < 0) Dist = 0;

while (NodeOnPath [0] ! = NodeOnPath [1] && Dist > 0 && Ratio == ONE) {
/∗ move towards c y c l e (s) on both paths ∗/
K = 0;

while (K < 2 && Ratio == ONE) { /∗ Trace Pu and Pv ∗/
I = NodeOnPath [K] ;

i f (YofPath [K] == Sign) {
i f (Node [I] . Flow == ZERO) {

Ratio = ZERO ;

OutNode = I ;

Path = K ;

}
} else {

i f (Node [I] . Flow == ONE) {
Ratio = ZERO ;

OutNode = I ;

APPENDIX A. SOURCE CODE 156

Path = K ;

}
}
NodeOnPath [K] = Node [I] . Parent ;

YofPath [K] = − YofPath [K] ;

K++;

}
Dist−−;

}
i f (Ratio == ONE) {

i f (NodeOnPath [0] == NodeOnPath [1]) {
W = NodeOnPath [0] ;

CycleLength = (SumDist − 2 ∗ Dist) + 1 ;

i f (YofPath [0] == − YofPath [1]) Yw = 0;

else { /∗ t r a c e common path to c y c l e ∗/
Y = Yw = YofPath [0] ;

MinPath = (Node [U] . Dist < Node [V] . Dist) ? 0 : 1 ;

I = W ;

while (Dist > 0 && Ratio > ZERO) { /∗ Trace Pw − Cw ∗/
i f (Y == Sign) {

i f (Ratio > Node [I] . Flow / 2) {
Ratio = Node [I] . Flow / 2 ;

OutNode = I ;

Path = MinPath ;

}
} else {

i f (Ratio > (ONE − Node [I] . Flow) / 2) {
Ratio = (ONE − Node [I] . Flow) / 2 ;

OutNode = I ;

Path = MinPath ;

}
}
Y = −Y ;

I = Node [I] . Parent ;

Dist−−;

}
i f (Ratio > ZERO) {

R = I ;

MinRatio = (Node [R] . Flow == HALF) ? HALF : ZERO ;

do { /∗ t r a c e common c y c l e ∗/
i f (Y == Sign) {

i f (Ratio > Node [I] . Flow) {
Ratio = Node [I] . Flow ;

OutNode = I ;

Path = MinPath ;

}
} else {

i f (Ratio > (ONE − Node [I] . Flow)) {
Ratio = (ONE − Node [I] . Flow) ;

OutNode = I ;

APPENDIX A. SOURCE CODE 157

Path = MinPath ;

}
}
Y = −Y ;

I = Node [I] . Parent ;

} while (I != R && Ratio > MinRatio) ;

}
}

} else { /∗ (NodeOnPath [0] ! = NodeOnPath [1] && (Dis t == 0) ∗/
/∗ at d i f f e r e n t nodes on c y c l e (s) on both paths ∗/
I = NodeOnPath [0] ;

J = NodeOnPath [1] ;

R = I ;

i f (Node [I] . Dist == Node [J] . Dist) { /∗ i f c y c l e s o f same s i z e ∗/
Dist = 0;

do {
R = Node [R] . Parent ;

Dist++;

} while (R != J && R != I) ;

}

i f (R == J) { /∗ I and J on same c y c l e ∗/
i f ((SumDist + Dist) % 2) { // == 1

Path = 0;

CycleLength = SumDist − Dist − Node [R] . Dist + 1;

} else {
Path = 1;

CycleLength = SumDist + Dist + 1;

}
I = NodeOnPath [Path] ;

Y = YofPath [Path] ;

W = NodeOnPath [1 − Path] ;

Yw = 0;

MinRatio = (Node [I] . Flow == HALF) ? HALF : ZERO ;

do {
i f (Y == Sign) {

i f (Ratio > Node [I] . Flow) {
Ratio = Node [I] . Flow ;

OutNode = I ;

}
} else {

i f (Ratio > (ONE − Node [I] . Flow)) {
Ratio = (ONE − Node [I] . Flow) ;

OutNode = I ;

}
}
Y = −Y ;

I = Node [I] . Parent ;

} while (I != W && Ratio > MinRatio) ;

} else { /∗ I and J in d i f f e r e n t c y c l e s ∗/

APPENDIX A. SOURCE CODE 158

K = 0;

while (K < 2 && Ratio > ZERO) {
R = NodeOnPath [K] ;

i f (Node [R] . Flow != HALF) {
Y = YofPath [K] ;

I = R ;

do { /∗ t r a c e c y c l e ∗/
i f (Y == Sign) {

i f (Node [I] . Flow == ZERO) {
Ratio = ZERO ;

OutNode = I ;

Path = K ;

}
} else {

i f (Node [I] . Flow == ONE) {
Ratio = ZERO ;

OutNode = I ;

Path = K ;

}
}
Y = −Y ;

I = Node [I] . Parent ;

} while (I != R && Ratio > ZERO) ;

}
K++;

}
} /∗ I and J on d i f f e r e n t c y c l e s ∗/

}
}

#i f debug pr imal

printf (”Path=%d , OutNode=%d , Ratio=%d , CycleLength=%d , W=%d\n” ,

Path , OutNode , Ratio , CycleLength , W) ;

#endif

∗PathP = Path ;

∗OutNodeP = OutNode ;

∗WP = W ;

∗CycleLengthP = CycleLength ;

∗YwP = Yw ;

∗RatioP = Ratio ;

} /∗ RatioTest ∗/

/∗∗
∗ Searches f o r nonbasic edges with ∗UP as the ” endnode ” onwards .

∗ Returns the endnodes ∗UP and ∗VP of the incoming edge . I f the

∗ s o l u t i o n i s optimal , ReducedCost i s 0 . Otherwise ReducedCost i s the

∗ reduced c o s t o f the e n t e r i n g edge .

∗/
stat ic void SelectEnteringEdge (int ∗ UP , int ∗ VP , int ∗ ReducedCostP)

{
int BaseU , StartU , U , J , K ;

APPENDIX A. SOURCE CODE 159

int DualU , MaxD = 0 , D ;

U = ∗ UP ;

StartU = U ;

do {
DualU = Node [U] . Dual ;

BaseU = Base [U] − U ;

for (J = 0 ; J < U ; J++) {
K = Base [J] + U − J ; //don ’ t need to t e s t i f U < J

D = Node [J] . Dual + DualU − cost [K] ; //−reduced c o s t

i f (InU (K)) D = −D ;

i f (D > MaxD) {
MaxD = D ;

∗VP = J ;

}
}
for (J = U + 1 ; J < NumNodes ; J++) {

K = BaseU + J ;

D = Node [J] . Dual + DualU − cost [K] ;

i f (InU (K)) D = −D ;

i f (D > MaxD) {
MaxD = D ;

∗VP = J ;

}
}
i f (U == NumNodes − 1) U = 0 ; else U++;

} while (MaxD == 0 && U != StartU) ;

i f (MaxD > 0) {
∗UP = (U == 0) ? NumNodes − 1 : U − 1;

∗ReducedCostP = InU (INDEX (∗ UP , ∗ VP)) ? MaxD : − MaxD ;

}
else {

∗ReducedCostP = 0;

}
} /∗ Se lec tEnter ingEdge ∗/

/∗∗
∗ Primal network s implex a lgor i thm s o l v i n g the RMP2 r e l a x a t i o n .

∗/
void SolveRMP2 (int ∗ ZRatioP , int ∗ HRatioP , int ∗ ORatioP)

{
int Sign , Path , W , V , U , OldU , OutNode , CycleLength , K ;

int ReducedCost ;

int NewFlow ;

int ZRatio = 0 , HRatio = 0 , ORatio = 0 , i = 0 , Ratio , Yw ;

int Zchange = 0;

FindTour () ;

APPENDIX A. SOURCE CODE 160

U = 0;

/∗U i s a node o f the current incoming edge ∗/
SelectEnteringEdge (&U , &V , & ReducedCost) ;

while (abs (ReducedCost) > 0) {
i++;

K = INDEX (U , V) ;

i f (InU (K)) {
Sign = −1;

DeleteFromU (U , V , K) ;

} else {
Sign = 1;

}
RatioTest (U , V , Sign , & Path , & OutNode , &W , & CycleLength ,

&Yw , & Ratio) ;

i f (Path) { /∗ == 1 − we want U f u r t h e s t from c y c l e ∗/
OldU = U ;

U = V ;

V = OldU ;

} /∗ change f l o w s ∗/
i f (Ratio > ZERO) {

Zchange += Sign ∗ (ReducedCost ∗ Ratio) / 2 ;

/∗ We have to d i v i d e by 2 because Zchange i s increased

∗ by 4 times i t s r e a l va lue i n s t e a d o f the 2 times i t s

∗ va lue t h a t we want

∗/
ChangeFlows (U , V , Sign , W , Yw , Ratio) ;

}
/∗ change b a s i s s t r u c t u r e ∗/
i f (Ratio == ONE) {

i f (Sign == 1) AddToU (U , V , K) ;

ORatio++;

} else {
(Ratio) ? HRatio++ : ZRatio++;

NewFlow = (Sign == 1) ? Ratio : ONE − Ratio ;

i f (Node [OutNode] . Flow == ONE)

AddToU (OutNode , Node [OutNode] . Parent ,

INDEX (OutNode , Node [OutNode] . Parent)) ;

UpdateOneTrees (U , V , OutNode , NewFlow) ;

i f (CycleLength > 0)

UpdateDualsDistsOneTree (U , V , CycleLength ,

ReducedCost / 2) ;

else

UpdateDualsDistsSubTree (U , ReducedCost) ;

}
i f (Path) U = OldU ; // i f Path == 1

i f (U == NumNodes − 1) U = 0 ; else U++;

#i f debug pr imal

CheckDuals (NumNodes) ;

APPENDIX A. SOURCE CODE 161

CheckVars (NumNodes) ;

#endif

SelectEnteringEdge (&U , &V , & ReducedCost) ;

pivots++;

i f ((pivots % numProcs == myId) &&

(zLP + Zchange < zIP) && istour (NULL)) {
zIP = zLP + Zchange ;

solution_found (NULL , −1) ;

}
}
zLP += Zchange ; // Zchange a l ready devided by 2 each time

∗ZRatioP = ZRatio ;

∗HRatioP = HRatio ;

∗ORatioP = ORatio ;

#i f debug pr imal

printf (”Optimal s o l u t i o n :\n”) ;

printAll () ;

CheckDFeasibility () ;

#endif

} /∗ SolveRMP2 ∗/

APPENDIX A. SOURCE CODE 162

A.16 dual.c

/∗∗
∗ @ f i l e dual . c

∗ The implementation o f the dual s implex method f o r use in

∗ the column s u b t r a c t i o n method .

∗
∗ Based on the code by Geldenhuys

∗ TODO: Reference parameters i n t ∗param W and i n t local W ?

∗ ∗param W = local W ;

∗ re turn ;

∗ −Check SelectEnteringColumn and o t h e r s

∗/

#include < s t d l i b . h>

#include < s t d i o . h>

#include < s t r i n g . h>

#include < l i m i t s . h>

#include ” g l o b a l . h”

#include ” s implex . h”

#include ” csmtree . h”

#include ” s e t . h”

int dual_simplex ;

/∗∗
∗ Return the row with the most i n f e a s i b l e va lue

∗/
stat ic int leavingrow (int ∗ ChangeFlow , int ∗ IncreaseIndic)

{
int i , r ;

int maxDev = 0 , flow ;

r = −1;

for (i = 0 ; i < NumNodes ; i++) {
flow = Node [i] . Flow ;

i f (flow < ZERO) {
i f (−flow > maxDev) {

∗ChangeFlow = flow ;

maxDev = −flow ;

r = i ;

∗IncreaseIndic = 1;

}
} else i f (flow > ONE) {

flow −= ONE ;

i f (flow > maxDev) {
∗ChangeFlow = flow ;

maxDev = flow ;

APPENDIX A. SOURCE CODE 163

r = i ;

∗IncreaseIndic = 0;

}
}
i f (maxDev >= 2) return i ; //TODO: t e s t e f f e c t more

}
return r ;

} /∗ l eav ingrow ∗/

stat ic void betaInSubTree (int R)

{
int head , tail , oldTail , child , parent ;

int nextBeta ;

head = 0;

tail = 0;

Queue [tail] = R ;

do {
oldTail = tail ;

do {
parent = Queue [head] ;

nextBeta = −beta [parent] ;

child = Node [parent] . Child ;

while (child > −1) {
beta [child] = nextBeta ;

Queue[++tail] = child ;

child = Node [child] . Sibling ;

}
} while (++head <= oldTail) ;

} while (tail != oldTail) ;

} /∗ betaInSubTree ∗/

stat ic void calcBeta (int R)

{
/∗ C a l c u l a t e be ta = 2 ∗ (row R of B i n v e r s e) ∗/

int j , k , child , start , nextBeta ;

memset (beta , 0 , NumNodes ∗ s izeof (char)) ;

i f (Node [R] . Dist < 0) {
j = Node [R] . Parent ;

start = j ;

k = R ;

nextBeta = HALF ;

do {
beta [j] = nextBeta ;

nextBeta = −nextBeta ;

child = Node [j] . Child ;

while (child > −1) {
i f (child != k) {

beta [child] = nextBeta ;

betaInSubTree (child) ;

APPENDIX A. SOURCE CODE 164

}
child = Node [child] . Sibling ;

}
k = j ;

j = Node [k] . Parent ;

} while (j != start) ;

} else {
beta [R] = ONE ;

betaInSubTree (R) ;

}
} /∗ ca lcBeta ∗/

/∗∗
∗ S e l e c t s which column shou ld enter the b a s i s .

∗ re turns a 0 i f no e n t e r i n g column could be s e l e c t e d

∗ (Set corresponding to I n c r e a s e I n d i c i s empty)

∗ re turns a 1 i f e n t e r i n g column found (S u c c e s s f u l)

∗/
stat ic int selectEnteringColumn (int IncreaseIndic , int leaving ,

int ∗ min_ratio_edge , int ∗ min_y_re , int ∗ min_rc ,

int ∗ min_W , int ∗ min_Yw)

/∗ min y re i s y r k in d i s s e r t a t i o n ∗/
{

int j ; /∗ j i s c u r r e n t l y cons idered edge ∗/
int a , b ; /∗ nodes touched by edge j = (a , b) ∗/
int rc ; /∗ reduced c o s t o f j ∗/
int y_re ;

int delta ;

int ratio , min_ratio = INT_MAX ;

delta = IncreaseIndic ? − 1 : 1 ;

∗min_W = −1;

a = 0;

b = 0;

calcBeta (leaving) ;

/∗ TODO: r a t h e r use l i s t s L and U because :

∗ − they are s h o r t e r (fewer v a r i a b l e s) ;

∗ − we can most ly e l i m i n a t e the i t e r a t i o n over permanently f i x e d vars ;

∗ − don ’ t need to check f o r b a s i c v a r i a b l e s ;

∗ − we can p o s s i b l y break out o f l o o p s e a r l y i f we d e t e c t an i n c r e a s e

∗ in Z t h a t w i l l be too b i g .

∗ Having to c a l l g i v e n o d e s () makes i t too slow , though

∗/
for (j = 0 ; j < NumEdges ; j++) {

b++;

i f (b == NumNodes) {
a++;

b = a+1;

}

APPENDIX A. SOURCE CODE 165

/∗ i f j i s a f i x e d column , cont inue (can ’ t change i t) ∗/
i f (mark [j]) continue ;

/∗ We check f o r v a l i d v a l u e s o f y r e f i r s t . y r e == 0

∗ very o f t e n . Only NumNodes edges w i l l be b a s i c (see

∗ l a t e r t e s t)

∗/
y_re = beta [a] + beta [b] ;

i f (! y_re) continue ;

y_re ∗= delta ;

/∗ the check f o r e q u a l i t y in the f o l l o w i n g l i n e s are

∗ s u p e r f l u o u s i f we do i t be fore , but i t makes i t

∗ e a s i e r to t e s t the e f f e c t o f t e s t i n g f o r e q u a l i t y

∗ s e p e r a t e l y

∗/
i f (InU (j)) {

i f (y_re >= ZERO) continue ;

} else {
i f (y_re <= ZERO) continue ;

}

/∗ Check i f v a r i a b l e i s b a s i c : ∗/
i f (Node [a] . Parent == b | | Node [b] . Parent == a) continue ;

/∗ TODO: check :

∗ XXX: This seems to cause dual i n f e a s i b l i t y sometimes :

∗/
i f ((cover [a] >= 2) | | (cover [b] >= 2)) {

continue ;

}
/∗ c a l c u l a t e ra t io , compare to b e s t ∗/
rc = cost [j] − Node [a] . Dual − Node [b] . Dual ;

/∗ Because we are d i v i d i n g rc by y re , (both o f which

∗ are s t o r e d at 2 t imes t h e i r a c t u a l va lue) , we might

∗ l o o s e informat ion because o f the i n t e g e r d i v i s i o n .

∗ Therefore we have to m u l t i p l y rc with 2 . This g e t s

∗ r i d o f i n t e g e r d i v i s i o n problems .

∗
∗ There i s no remainder p o s s i b l e wi th the d i v i s i o n in

∗ the case where | y r e | == 2 (4 in our r e p r e s e n t a t i o n) .

∗ See d i s e r t a t i o n f o r d e t a i l .

∗/
ratio = 2∗ rc / y_re ;

i f (ratio < min_ratio) {
min_ratio = ratio ;

∗min_y_re = y_re ∗ delta ;

∗min_rc = rc ;

∗min_ratio_edge = j ;

i f (min_ratio == 0) break ;

APPENDIX A. SOURCE CODE 166

}
}
i f (min_ratio == INT_MAX) return 0 ;

return 1 ;

} /∗ SelectEnteringColumn ∗/

/∗∗
∗ o r i e n t a t e (∗N1,∗N2) to have R on the backpath o f ∗N1.

∗ I f no new c y c l e i s formed by r e p l a c i n g (R, Node [R] . Parent)

∗ by (∗N1,∗N2) then ∗CycleLength i s s e t to 0 , o therwi se

∗ ∗CycleLength i s s e t to l e n g t h o f new c y c l e

∗/
stat ic void orientate (int ∗ N1 , int ∗ N2 , int R , int ∗ CycleLength)

{
int NodeOnPath [2] , Path ;

int Dist , SumDist , I , K , U , V , S , J ;

∗CycleLength = 0 ; /∗ no new c y c l e i s formed ∗/
U = ∗ N1 ;

V = ∗ N2 ;

NodeOnPath [0] = U ;

NodeOnPath [1] = V ;

i f (Node [U] . Dist < 0) {
i f (Node [V] . Dist < 0) {

Dist = 0;

Path = 0;

} else {
Dist = Node [V] . Dist ;

Path = 1;

}
SumDist = Dist ;

} else {
i f (Node [V] . Dist < 0) {

Dist = Node [U] . Dist ;

SumDist = Dist ;

Path = 0;

} else {
Dist = Node [U] . Dist − Node [V] . Dist ;

i f (Dist > 0)

Path = 0;

else {
Path = 1;

Dist = −Dist ;

}
SumDist = Node [U] . Dist + Node [V] . Dist ;

}
}
i f (Dist > 0) { /∗ t r a c e l o n g e s t backpath to a c y c l e ∗/

I = NodeOnPath [Path] ;

for (K = 0 ; K < Dist && I != R ; K++) I = Node [I] . Parent ;

APPENDIX A. SOURCE CODE 167

i f (K < Dist) { /∗ encountered R b e f o r e comple t ing t r a c e ∗/
i f (Path == 1) {

∗N1 = V ;

∗N2 = U ;

}
return ;

}
NodeOnPath [Path] = I ;

}
/∗ now NodeOnPath [0] . Dis t = NodeOnPath [1] . Dis t ∗/
Dist = Node [NodeOnPath [0]] . Dist ;

i f (Dist < 0) Dist = 0;

while (NodeOnPath [0] ! = NodeOnPath [1] && Dist > 0) {
I = NodeOnPath [0] ;

i f (I == R) {
return ; /∗ R on path 0 ∗/

} else {
NodeOnPath [0] = Node [I] . Parent ;

I = NodeOnPath [1] ;

i f (I == R) {
∗N1 = V ;

∗N2 = U ;

return ; /∗ R on path 1 ∗/
} else {

NodeOnPath [1] = Node [I] . Parent ;

Dist−−;

}
}

}
i f (NodeOnPath [0] == NodeOnPath [1]) { /∗ new c y c l e i s formed ∗/

∗CycleLength = (SumDist − Dist ∗ 2) + 1 ;

i f (Node [U] . Dist < Node [V] . Dist) Path = 0 ; else Path = 1;

} else { /∗ on c y c l e on both backpaths ∗/
/∗ NodeOnPath [0] ! = NodeOnPath [1] and Dis t = 0 ∗/
I = NodeOnPath [0] ;

J = NodeOnPath [1] ;

S = I ;

Dist = 0;

do {
S = Node [S] . Parent ;

Dist++;

} while (S != J && S != I) ;

i f (S == J) { /∗ I and J on same c y c l e ∗/
i f ((SumDist + Dist) % 2) {

Path = 0;

∗CycleLength = SumDist − Dist − Node [R] . Dist + 1;

} else {
Path = 1;

∗CycleLength = SumDist + Dist + 1;

}

APPENDIX A. SOURCE CODE 168

} else { /∗ I and J on d i f f e r e n t c y c l e s ∗/
S = J ;

/∗ search f o r R in backpath 2 ∗/
do S = Node [S] . Parent ; while (S != R && S != J) ;

i f (S == R) Path = 1 ; else Path = 0;

}
}
i f (Path == 1) {

∗N1 = V ;

∗N2 = U ;

}
} /∗ o r i e n t a t e ∗/

/∗∗
∗ Attempts to r e s t o r e primal f e a s i b i l i t y

∗ Returns 1 i f the node can be fathomed

∗ Returns 0 o therwi se

∗ @param node the current node in the csm search t r e e

∗ @param Z the current o b j e c t i v e f u n c t i o n va lue at node b e f o r e invok ing

∗ the dual s implex method

∗/
int DualSimplex (nodeptr node , int ∗ pZ)

{
int leaving , ChangeFlow , IncreaseIndic , entering ;

int y_rk , rc , W , Yw ;

int node_a , node_b ;

int CycleLength ;

int Z = ∗ pZ ;

/∗ ChangeFlow , y r k and Yw s t o r e t h e i r va lue ∗2 ∗/
dual_simplex++;

while ((leaving = leavingrow (&ChangeFlow , & IncreaseIndic)) >= 0) {
#i f debug dua l

checkEquations () ;

#endif

i f (! selectEnteringColumn (IncreaseIndic , leaving , & entering ,

&y_rk , & rc , &W , & Yw)) {
return 1 ;

}
Z += (ChangeFlow ∗ rc) / y_rk ;

i f (Z >= zIP) {
return 1 ;

}
/∗ Because we are d i v i d i n g ChangeFlow by y rk , (both o f which

∗ are s t o r e d at 2 t imes t h e i r a c t u a l va lue) , the r e s u l t w i l l

∗ not be two times the va lue i t r e p r e s e n t s (the change in

∗ f l o w) . We want i t to be 2 times the va lue i t r e p r e s e n t s −
∗ we w i l l be updat ing f l o w v a l u e s with i t . Therefore we have

∗ to m u l t i p l y ChangeFlow with 2 .

∗
∗ As y r k might go up to +−4 (2∗(+−2)) , do we need to do

APPENDIX A. SOURCE CODE 169

∗ more?

∗
∗ No , | y r k | w i l l on ly be 4 o u t s i d e the c y c l e o f the 1− t ree ,

∗ where the f l o w v a l u e s w i l l be i n t e g e r (even i n t e g e r s in our

∗ r e p r e s e n t a t i o n) . Therefore the d i v i s i o n w i l l work i f we

∗ m u l i t p l y with 2 only

∗/
ChangeFlow ∗= 2;

/∗ Update the f l o w v a l u e s f o r a l l nodes : ∗/
give_nodes (entering , & node_a , & node_b) ;

/∗ TODO: can remove above c a l l i f se lectEnteringColumn () can

∗ a l s o re turn the two nodes i t had anyway

∗/
ChangeFlow /= y_rk ;

WandYw (node_a , node_b , &W , & Yw) ;

ChangeFlows (node_a , node_b , 1 , W , Yw , ChangeFlow) ;

/∗ Update b a s i s s t r u c t u r e : ∗/
i f (InU (entering)) {

DeleteFromU (node_a , node_b , entering) ;

ChangeFlow += ONE ;

}
i f (! IncreaseIndic) {

AddToU (leaving , Node [leaving] . Parent ,

INDEX (leaving , Node [leaving] . Parent)) ;

}
orientate(&node_a , & node_b , leaving , & CycleLength) ;

UpdateOneTrees (node_a , node_b , leaving , ChangeFlow) ;

i f (CycleLength > 0) {
UpdateDualsDistsOneTree (node_a , node_b , CycleLength ,

rc / 2) ;

} else {
UpdateDualsDistsSubTree (node_a , rc) ;

}

#i f debug dua l

CheckDFeasibility () ;

#endif

dual_pivots++;

}
#i f debug dua l

i f (! CheckVars ())

printf (”NOT PRIMAL FEASIBLE AFTER duals implex () ! ! ! ! \ n”) ;

checkEquations () ;

#endif

∗pZ = Z ;

return 0 ;

} /∗ DualSimplex () ∗/

APPENDIX A. SOURCE CODE 170

A.17 parallel.c

/∗∗
∗ @ f i l e p a r a l l e l . c

∗ Var iab l e s and f u n c t i o n s f o r m u l t i p r o c e s s i n g

∗/

#include < s t d i o . h>

#include ” g l o b a l . h”

#include ” p a r a l l e l . h”

#include ” csmtree . h”

#include ” s e t . h”

int myId = 0;

int numProcs = 1;

int rootNext ;

#i f MPI

#include ”mpi . h”

int zIPowner ; // which process found current zIP?

//Now the s t u f f f o r c r e a t i n g an MPI s t r u c t :

int blockcount = 6; // 6 i n t s in NodeType (see g l o b a l . h)

MPI_Datatype type = MPI_INT ;

MPI_Aint displacement = 0;

MPI_Datatype tsp_node ;

MPI_Status status ; // used in a l l MPI code

int finalize_count = 0; // count how many p r o c e s s e s are f i n i s h e d

/∗ ∗ R e g i s t e r the NodeType s t r u c t wi th MPI and broadcas t arrays

∗ Since t h e r e i s only one type in the s t r u c t , i t i s q u i t e s imple . We a l s o

∗ need to pass the arrays from the root node to the o t h e r s so t h a t a l l

∗ p r o c e s s e s have the same s t a r t i n g b a s i s each time . Also necessary f o r

∗ c r e a t i n g the array (s) o f non−b a s i c v a r i a b l e s

∗/
void parallel_arrays_init ()

{
MPI_Type_struct (1 , & blockcount , & displacement , & type , & tsp_node) ;

MPI_Type_commit (&tsp_node) ;

MPI_Bcast (Node , NumNodes , tsp_node , 0 , MPI_COMM_WORLD) ;

MPI_Bcast (UArray , 1+ NumEdges /8 , MPI_UNSIGNED_CHAR , 0 , MPI_COMM_WORLD) ;

MPI_Bcast (UPair [0] , NumNodes , MPI_INT , 0 , MPI_COMM_WORLD) ;

MPI_Bcast (UPair [1] , NumNodes , MPI_INT , 0 , MPI_COMM_WORLD) ;

MPI_Bcast(&USize , 1 , MPI_INT , 0 , MPI_COMM_WORLD) ;

}

APPENDIX A. SOURCE CODE 171

/∗ ∗ See i f another process found b e t t e r zIP

∗ When a process f i n d s a b e t t e r zIP , i t sends i t to a l l o ther p r o c e s s e s . So

∗ we probe to see i f t h e r e i s a message , and update t h i n g s as necessary .

∗/
void update_zIP ()

{
int flag , min ;

// see i f a message has been sent

MPI_Iprobe (MPI_ANY_SOURCE , ZIP_TAG ,

MPI_COMM_WORLD , & flag , & status) ;

while (flag) {
MPI_Recv(&min , 1 , MPI_INT , MPI_ANY_SOURCE ,

ZIP_TAG , MPI_COMM_WORLD , & status) ;

i f (min < zIP) {
zIPowner = status . MPI_SOURCE ;

zIP = min ;

maxbranches = rc_reduce (zIP − zLP) ;

i f ((myId == 0) && (rootNext >= L_list_size)

&& (rootNext < original_L_list_size))

rootNext = original_L_list_size ;

}
// t e s t again

MPI_Iprobe (MPI_ANY_SOURCE , ZIP_TAG ,

MPI_COMM_WORLD , & flag , & status) ;

}
}

/∗ ∗ Hand out j o b s from process 0 . Also be c a r e f u l l to jump over h o l e between

∗ L and U and update f i n a l i z e c o u n t i f a p p l i c a b l e .

∗/
void send_jobs ()

{
int flag , other_maxbranches ;

MPI_Iprobe (MPI_ANY_SOURCE , JOB_TAG ,

MPI_COMM_WORLD , & flag , & status) ;

while (flag) {
MPI_Recv(&other_maxbranches , 1 , MPI_INT , MPI_ANY_SOURCE ,

JOB_TAG , MPI_COMM_WORLD , & status) ;

MPI_Send(&rootNext , 1 , MPI_INT , status . MPI_SOURCE ,

JOB_TAG , MPI_COMM_WORLD) ;

#i f debug MPI

printf (” Just sent out %d , maxbranches=%d at node 0\n” ,

rootNext , maxbranches) ;

printf (” got maxbranches=%d sending out rootNext=%d\n” ,

other_maxbranches , rootNext) ;

#endif

i f (rootNext >= other_maxbranches) {
finalize_count++;

#i f debug MPI

APPENDIX A. SOURCE CODE 172

DEBUG (” f i n a l i z e c o u n t=”) ;

printf (”%d\n” , finalize_count) ;

#endif

}
rootNext++;

i f ((rootNext >= L_list_size) &&

(rootNext < original_L_list_size))

rootNext = original_L_list_size ;

// rootNext w i l l increment 1 by 1 , but L l i s t s i z e might

//become much l e s s suddenly

// t e s t again

MPI_Iprobe (MPI_ANY_SOURCE , JOB_TAG ,

MPI_COMM_WORLD , & flag , & status) ;

}
}

/∗ ∗ setRootNext () f o r p a r a l l e l environment ∗/
void parallel_setRootNext ()

{
#i f debug MPI

printf (” id=%d , setRootNext ()\n” , myId) ;

#endif

i f (myId > 0) {
/∗ send i d l e i n d i c a t o r to processor 0 ∗/
MPI_Send(&maxbranches , 1 , MPI_INT , 0 , JOB_TAG , MPI_COMM_WORLD) ;

MPI_Recv(&rootNext , 1 , MPI_INT , 0 ,

JOB_TAG , MPI_COMM_WORLD , & status) ;

#i f debug MPI

printf (”myId=%d , r e c e i v e d t r e e %d , maxbranches=%d\n” ,

myId , rootNext , maxbranches) ;

#endif

i f (rootNext == −1) rootNext = maxbranches ;

} else {
send_jobs () ;

// rootNext++;

}
}

/∗ ∗ Wait f o r a l l p r o c e s s e s to f i n i s h ∗/
void parallel_finish ()

{
int tmp ;

#i f debug MPI & VERBOSE

printf (”myId=%d f i n i s h e d csm ()\n” , myId) ;

#endif

rootNext = maxbranches ;

i f (myId == 0) {
finalize_count++;

rootNext = −1; // to have d e f i n i t e i n d i c a t i o n o f terminat ion

APPENDIX A. SOURCE CODE 173

#i f debug MPI & VERBOSE

printf (” root has f i n a l i z e c o u n t=%d\n” , finalize_count) ;

#endif

while (finalize_count < numProcs) {
MPI_Recv(&tmp , 1 , MPI_INT , MPI_ANY_SOURCE ,

JOB_TAG , MPI_COMM_WORLD , & status) ;

MPI_Send(&rootNext , 1 , MPI_INT , status . MPI_SOURCE ,

JOB_TAG , MPI_COMM_WORLD) ;

finalize_count++;

}
update_zIP () ; // other p r o c e s s e s cou ld f i n d b e t t e r zIP a f t e r

// root node has f i n i s h e d csm () .

//TODO: need to g e t a c t u a l s o l u t i o n data from

//node f o r s o l u t i o n p r i n t ()XXX

//do in s o l u t i o n p r i n t ()

}
MPI_Barrier (MPI_COMM_WORLD) ;

}

#endif //MPI

APPENDIX A. SOURCE CODE 174

A.18 csmtree.c

/∗∗
∗ @ f i l e csmtree . c

∗ This i s the implementation o f the methods t h a t d e a l wi th the csm search t r e e

∗/

#include < s t d l i b . h>

#include < s t d i o . h>

#include < errno . h> //For errno

#include < s t r i n g . h> //For s t r e r r o r ()

#include ” g l o b a l . h”

#include ” csmtree . h”

#include ” s implex . h”

#include ” s e t . h”

#include ” p a r a l l e l . h”

#i f MPI

#include <mpi . h>

#endif

struct pair ∗ L_list , ∗ U_list ; // L i s t s o f non−b a s i c v a r i a b l e s at t h e i r lower &

// upper bounds r e s p e c t i v e l y

int L_list_size , U_list_size ; // the s i z e s o f the l i s t s (number o f e lements)

int original_L_list_size ; // the s i z e o f the o r i g i n a l L l i s t

// 1/0 i n d i c a t e f i x e d / not f i x e d by csm

nodeptr nodelist = NULL ;

long long total_created = 0;

long long created = 0;

int depth = 0;

int maxdepth = 0;

int treesize = 0;

int maxtreesize = 0;

// i n t r c s i z e ;

int maxbranches ;

long long fathom_solution = 0;

long long fathom_early_solution = 0;

long long fathom_dual = 0;

long long fathom_marked = 0;

long long fathom_inconsistent = 0;

long long fathom_nocolumns = 0;

long long fathom_onezerorows = 0;

long long fathom_bounded = 0;

long long fathom_depth = 0;

APPENDIX A. SOURCE CODE 175

long long fathom_branches = 0;

//#i f debug csmtree

void rc_print ()

{
int i ;

for (i = 0 ; i < L_list_size ; i++) {
printf (” L l i s t [%d] . column=%d . r edco s t=%d\n” ,

i , L_list [i] . column , L_list [i] . redcost) ;

}
for (i = 0 ; i < U_list_size ; i++) {

printf (” U l i s t [%d] . column=%d . r edco s t=(−)%d\n” ,

i , U_list [i] . column , U_list [i] . redcost) ;

}
}
//#e n d i f

nodeptr newnode (nodeptr parent , int next , int column)

{
#i f debug csmtree

printf (”newnode (parent :%d , next :%d , f i x e d :%d)\n” ,

parent−>fixed , next , column) ;

#endif

/∗ add node as l e f t c h i l d o f ∗ parent and f i x column ∗/
nodeptr child = getnode () ;

child−>parent = parent ;

child−>child = NULL ;

child−>sibling = parent−>child ;

child−>next = next ;

child−>sum = parent−>sum ;

child−>fixed = column ;

i f (! InU (column)) child−>sum += cost [column] ;

parent−>child = child ;

i f ((total_created + created) % 1000000 == 0) {
printf (”added node %d on l e v e l %d below %d\n” ,

column , depth + 1 , parent−>fixed) ;

i f (fflush (stdout)) perror (strerror (errno)) ;

}
return child ;

}

nodeptr getnode ()

{
nodeptr temp ;

created++;

treesize++;

i f (treesize > maxtreesize) maxtreesize = treesize ;

i f (nodelist == NULL) {
temp = (nodeptr) calloc (1 , s izeof (struct node)) ;

APPENDIX A. SOURCE CODE 176

temp−>flows = (char ∗) malloc (NumNodes ∗ s izeof (char)) ;

#i f debug csmtree

printf (” a l l o c a t e d new node\n”) ;

#endif

} else {
temp = nodelist ;

nodelist = nodelist−>child ;

#i f debug csmtree

printf (” reused o ld node\n”) ;

#endif

}
return temp ;

}

void putnode (nodeptr ptr)

{
i f (ptr−>parent) {

ptr−>parent−>child = ptr−>sibling ;

}
treesize−−;

ptr−>child = nodelist ;

nodelist = ptr ;

}

void nodes_free (nodeptr tmp_root)

{
free (tmp_root−>flows) ;

free (tmp_root) ;

while (nodelist != NULL) {
tmp_root = nodelist−>child ;

free (nodelist−>flows) ;

free (nodelist) ;

nodelist = tmp_root ;

}
}

stat ic void selectsort (struct pair ∗ rc , int first , int last)

{
int i , j , min_pos ;

struct pair temp ;

int min ;

for (i = first ; i < last ; i++) {
min = rc [i] . redcost ;

min_pos = i ;

for (j = i + 1 ; j <= last ; j++)

i f (rc [j] . redcost < min) {
min = rc [j] . redcost ;

min_pos = j ;

}
i f (min_pos > i) {

APPENDIX A. SOURCE CODE 177

temp = rc [i] ;

rc [i] = rc [min_pos] ;

rc [min_pos] = temp ;

}
}

}

stat ic void quicksort (struct pair ∗ rc , int first , int last)

{
int left , right ;

struct pair temp ;

int key ;

i f (last − first >= 4) {
key = rc [first] . redcost ;

left = first − 1;

right = last + 1;

while (1) {
do right−−; while (rc [right] . redcost > key) ;

do left++; while (rc [left] . redcost < key) ;

i f (left >= right) break ;

temp = rc [left] ;

rc [left] = rc [right] ;

rc [right] = temp ;

}
quicksort (rc , first , left − 1) ;

quicksort (rc , right + 1 , last) ;

} else

selectsort (rc , first , last) ;

}

/∗ ∗ I n i t i a l i s e s L l i s t and U l i s t and c a l l s rc reduce () ∗/
int rc_init (int gap)

{
int i ;

int node_a , node_b ; /∗ two temporary nodes ∗/
int L_counter = 0 , U_counter = 0; /∗ current s i z e o f each l i s t ∗/
U_list_size = USize ;

L_list_size = NumEdges − NumNodes − USize ;

original_L_list_size = L_list_size ;

L_list = (struct pair ∗) malloc (L_list_size ∗ s izeof (struct pair)) ;

U_list = (struct pair ∗) malloc (U_list_size ∗ s izeof (struct pair)) ;

node_a = 0;

node_b = 0;

for (i = 0 ; i < NumEdges ; i++) {
node_b++;

i f (node_b == NumNodes) {
node_a++;

node_b = node_a + 1;

}

APPENDIX A. SOURCE CODE 178

i f ((Node [node_a] . Parent == node_b) | |
(Node [node_b] . Parent == node_a)) {
continue ; /∗ b a s i c ∗/

}
i f (InU (i)) {

U_list [U_counter] . column = i ;

U_list [U_counter] . redcost = cost [i]

− Node [node_a] . Dual − Node [node_b] . Dual ;

/∗ We i n v e r t the s i g n . This e n a b l e s us to use the

∗ same s o r t i n g f u n c t i o n f o r both arrays :

∗/
U_list [U_counter] . redcost ∗= −1;

U_counter++;

continue ;

}
/∗ i i s in L ∗/
L_list [L_counter] . column = i ;

L_list [L_counter] . redcost = cost [i]

− Node [node_a] . Dual − Node [node_b] . Dual ;

L_counter++;

}
quicksort (L_list , 0 , L_list_size − 1) ;

quicksort (U_list , 0 , U_list_size − 1) ;

#i f debug csmtree

i f (myId == 0) {
rc_print () ;

printf (”%d v a r i a b l e s in L\n” , L_list_size) ;

printf (”%d v a r i a b l e s in U\n” , U_list_size) ;

printf (”Now reduc ing rc with gap=%d\n” , gap / 2) ;

}
#endif

return (rc_reduce (gap)) ;

}

/∗∗
∗ Reduces both L l i s t and U l i s t according to the gap s p e c i f i e d

∗ The gap shou ld always be g iven as (zIP − zLP) . NOT zIP − zLP − ONE. The

∗ reduc t ion done here only a l l o w s columns with reduced c o s t s LESS than the

∗ s p e c i f i e d gap .

∗/
int rc_reduce (int gap)

{
while (L_list_size > 0) { /∗ L l i s t s i z e : number o f e lements ∗/

L_list_size−−;

i f (L_list [L_list_size] . redcost < gap) {
L_list_size++;

break ;

} else {
mark [L_list [L_list_size] . column] = 2 ;

}

APPENDIX A. SOURCE CODE 179

}
// gap ∗= −1;

while (U_list_size > 0) { /∗ U l i s t s i z e : number o f e lements ∗/
U_list_size−−;

i f (U_list [U_list_size] . redcost < gap) {
U_list_size++;

break ;

} else {
mark [U_list [U_list_size] . column] = 2 ;

}
}

#i f debug csmtree

i f (myId == 0) {
rc_print () ;

printf (”Reduced rc with gap=%d\n” , gap / 2) ;

}
#endif

i f (myId == 0) printf (” r c s i z e now %d\n” , U_list_size + L_list_size) ;

return (original_L_list_size + U_list_size) ;

}

void rc_free ()

{
free (L_list) ;

free (U_list) ;

}

void fathom_statistics ()

{
#i f MPI

long long int tmp ;

MPI_Reduce (&fathom_marked , & tmp , 1 , MPI_LONG_LONG_INT ,

MPI_SUM , 0 , MPI_COMM_WORLD) ;

fathom_marked = tmp ;

MPI_Reduce (&fathom_inconsistent , & tmp , 1 , MPI_LONG_LONG_INT ,

MPI_SUM , 0 , MPI_COMM_WORLD) ;

fathom_inconsistent = tmp ;

MPI_Reduce (&fathom_depth , & tmp , 1 , MPI_LONG_LONG_INT ,

MPI_SUM , 0 , MPI_COMM_WORLD) ;

fathom_depth = tmp ;

MPI_Reduce (&fathom_branches , & tmp , 1 , MPI_LONG_LONG_INT ,

MPI_SUM , 0 , MPI_COMM_WORLD) ;

fathom_branches = tmp ;

MPI_Reduce (&fathom_bounded , & tmp , 1 , MPI_LONG_LONG_INT ,

MPI_SUM , 0 , MPI_COMM_WORLD) ;

fathom_bounded = tmp ;

MPI_Reduce (&fathom_onezerorows , & tmp , 1 , MPI_LONG_LONG_INT ,

MPI_SUM , 0 , MPI_COMM_WORLD) ;

fathom_onezerorows = tmp ;

MPI_Reduce (&fathom_nocolumns , & tmp , 1 , MPI_LONG_LONG_INT ,

APPENDIX A. SOURCE CODE 180

MPI_SUM , 0 , MPI_COMM_WORLD) ;

fathom_nocolumns = tmp ;

MPI_Reduce (&fathom_solution , & tmp , 1 , MPI_LONG_LONG_INT ,

MPI_SUM , 0 , MPI_COMM_WORLD) ;

fathom_solution = tmp ;

MPI_Reduce (&fathom_early_solution , & tmp , 1 , MPI_LONG_LONG_INT ,

MPI_SUM , 0 , MPI_COMM_WORLD) ;

fathom_early_solution = tmp ;

MPI_Reduce (&fathom_dual , & tmp , 1 , MPI_LONG_LONG_INT ,

MPI_SUM , 0 , MPI_COMM_WORLD) ;

fathom_dual = tmp ;

i f (myId ! = 0) return ;

#endif

printf (”−−−−−−−−−−−−−−−−−−−−\n”) ;

printf (”Fathoming s t a t i s t i c s \n”) ;

printf (”−−−−−−−−−−−−−−−−−−−−\n”) ;

printf (”marked\ t \ t%l l d \n” , fathom_marked) ;

printf (” i n c o n s i s t e n t \ t%l l d \n” , fathom_inconsistent) ;

printf (”depth\ t \ t%l l d \n” , fathom_depth) ;

printf (” branches \ t%l l d \n” , fathom_branches) ;

printf (”bounded\ t \ t%l l d \n” , fathom_bounded) ;

printf (”onerow/ zerorow \ t%l l d \n” , fathom_onezerorows) ;

printf (”no columns\ t%l l d \n” , fathom_nocolumns) ;

printf (” s o l u t i o n \ t%l l d \n” , fathom_solution) ;

printf (” e a r l y s o l u t i o n \ t%l l d \n” , fathom_early_solution) ;

printf (” dual\ t \ t%l l d \n” , fathom_dual) ;

printf (”\ n t o t a l fathoms\ t%l l d \n” , fathom_marked +

fathom_inconsistent +

fathom_depth +

fathom_branches +

fathom_bounded +

fathom_onezerorows +

fathom_nocolumns +

fathom_solution+

fathom_dual) ;

printf (” not accounted \ t%l l d \n” , total_created − fathom_marked −
fathom_inconsistent −
fathom_depth −
fathom_branches −
fathom_bounded −
fathom_onezerorows −
fathom_nocolumns −
fathom_solution −
fathom_dual) ;

}

APPENDIX A. SOURCE CODE 181

A.19 istour.c

/∗∗
∗ @ f i l e i s t o u r . c

∗ used to determine i f a s o l u t i o n i s a v a l i d tour

∗ We use the Union−Find a lgor i thm with path compression and weight ba lanc ing

∗/

#include < s t d l i b . h>

#include < s t d i o . h>

#include ” g l o b a l . h”

#include ” i s t o u r . h”

#include ” s implex . h”

#include ” s e t . h”

stat ic int ∗ parent ;

/∗∗<
∗ parent r e p r e s e n t s a f o r e s t o f t r e e s

∗ i f parent [i] i s non−negat ive , i t i s the parent o f i

∗ i f parent [i] i s negat ive , i i s a root o f a t r e e with −parent [i] nodes

∗ numbered from 0 to n−1

∗/

#i f d e b u g i s t o u r

void istour_print ()

{
int i ;

for (i = 0 ; i < NumNodes ; i++)

printf (” parent [%d] = %d\n” , i , parent [i]) ;

}
#endif

void istour_init ()

{
parent = (int ∗) malloc (NumNodes ∗ s izeof (int)) ;

}

void istour_free ()

{
free (parent) ;

}

/∗∗
∗ f i n d r o o t re turns the root o f the g iven node and compresses the whole

∗ path from x to i t s root

∗/
stat ic int findroot (int x)

{

APPENDIX A. SOURCE CODE 182

int xroot , temp ;

xroot = x ;

while (parent [xroot] >= 0) xroot = parent [xroot] ;

while (parent [x] >= 0) {
temp = x ;

x = parent [x] ;

parent [temp] = xroot ;

}
return xroot ;

}

/∗∗
∗ weighted union puts i and j in the same t r e e

∗/
stat ic int weighted_union (int i , int j)

{
i = findroot (i) ;

j = findroot (j) ;

i f (i == j) { /∗ a l ready par t o f the same t r e e ∗/
return (−parent [i] == NumNodes) ;

}
i f (parent [i] > parent [j]) {

parent [j] += parent [i] ;

parent [i] = j ;

return (parent [j] == −NumNodes) ;

} else { /∗ parent [j] <= parent [i] ∗/
parent [i] += parent [j] ;

parent [j] = i ;

return (parent [i] == −NumNodes) ;

}

}

/∗ ∗ Determine i f current b a s i s s t r u c t u r e with f i x e d columns d e f i n e a tour .

∗ When c a l l e d i s t o u r () assumes primal and dual f e a s i b i l i t y , but does check

∗ i n t e g r a l i t y .

∗/
int istour (nodeptr node)

{
int i , j ; /∗ f o r f o r l o o p s ∗/
int a , b ; /∗ temp nodes ∗/
int return_value = 0;

/∗ I n i t i a l i s e the whole array to −1

∗ in o ther words , each node i s the root o f a t r e e with 1 node

∗/
for (i = 0 ; i < NumNodes ; i++) parent [i] = −1;

/∗ f i r s t we i t e r a t e through a l l the b a s i c edges ∗/
for (i = 0 ; i < NumNodes ; i++) {

/∗ Now we l o o k f o r a l l nodes with f l o w v a l u e s o f 1 ∗/

APPENDIX A. SOURCE CODE 183

i f (Node [i] . Flow == HALF) {
return 0 ; /∗ not an i n t e g e r s o l u t i o n ∗/

}
i f (Node [i] . Flow == ONE) {

j = Node [i] . Parent ;

return_value = weighted_union (i , j) ;

}
/∗ Nodes with Flow == ZERO i s s imply sk ipped ∗/

}
i f (return_value) return 1 ;

/∗ Now we i n s e r t a l l the f i x e d columns ∗/
while (node != NULL) {

i f (node−>fixed == −1) break ; /∗ t e s t f o r root ∗/
i f (! InSet (node−>fixed , UCopy)) {

/∗ we ’ l l handle v a r i a b l e s in U l a t e r ∗/
give_nodes (node−>fixed , &a , & b) ;

return_value = weighted_union (a , b) ;

}
node = node−>parent ;

}
i f (return_value) return 1 ;

/∗ Now we do the edges in U ∗/
for (i = 0 ; i < USize ; i++) {

a = UPair [0] [i] ;

b = UPair [1] [i] ;

i f ((−1 < mark [INDEX (a , b)]) && weighted_union (a , b))

return 1 ;

}

#i f d e b u g i s t o u r

printf (” i s t o u r () r e tu rn s 0\n”) ;

istour_print () ;

#endif

return 0 ;

}/∗ i s t o u r ∗/

APPENDIX A. SOURCE CODE 184

A.20 set.c

/∗∗
∗ @ f i l e s e t . c

∗ Implementation o f the f u n c t i o n a l i t y f o r hand l ing the s e t U (non−b a s i c v a r i a b l e s

∗ at the upper−bound)

∗/

#include < s t d l i b . h>

#include < s t d i o . h>

#include ” g l o b a l . h”

#include ” s e t . h”

#i f debug U

#include < s t d i o . h>

#endif

unsigned char bits [8] = {1 , 2 , 4 , 8 , 1 6 , 3 2 , 6 4 , 1 2 8} ;

unsigned char ∗ UArray ;

int ∗∗ UPair ;

int USize ;

void U_init ()

{
UArray = (unsigned char ∗) calloc (1+NumEdges /8 , s izeof (unsigned char)) ;

UPair = (int ∗ ∗) malloc (2∗ s izeof (int ∗)) ;

UPair [0] = (int ∗) malloc (NumNodes ∗ s izeof (int)) ;

UPair [1] = (int ∗) malloc (NumNodes ∗ s izeof (int)) ;

USize = 0;

} /∗ InitU ∗/

void U_free ()

{
free (UArray) ;

UArray = NULL ;

free (UPair [0]) ;

free (UPair [1]) ;

free (UPair) ;

USize = 0;

}

/∗∗
∗ adds edge id between i and j to U

∗/
void AddToU (int i , int j , int id)

{
i f (mark [id]) {

fprintf (stderr , ” ∗∗ putt ing f i x e d column in to U\n”) ;

APPENDIX A. SOURCE CODE 185

}
UArray [id /8] ˆ= bits [id%8];

i f (i < j) {
UPair [0] [USize] = i ;

UPair [1] [USize] = j ;

} else {
UPair [0] [USize] = j ;

UPair [1] [USize] = i ;

}
USize++;

} /∗AddToU∗/

/∗ ∗ d e l e t e s edge id between i and j from U ∗/
void DeleteFromU (int i , int j , int id)

{
int Help ;

i f (mark [id]) {
fprintf (stderr , ” ∗∗ putt ing f i x e d column in to U\n”) ;

}
UArray [id /8] ˆ= bits [id%8];

i f (i > j) {
Help = i ;

i = j ;

j = Help ;

}
Help = 0;

USize−−;

do {
i f (UPair [0] [Help] == i && UPair [1] [Help] == j) {

i f (Help != USize) {
UPair [0] [Help] = UPair [0] [USize] ;

UPair [1] [Help] = UPair [1] [USize] ;

}
Help = −1;

} else Help++;

} while (Help != −1) ;

} /∗DeleteFromU∗/

Bibliography

[1] Amdahl, G. M. Validity of the single processor approach to achieving

large-scale computing capabilities. In AFIPS Conference Proceedings

(1967), vol. 30, pp. 483–485.

[2] Applegate, D., Bixby, R., Chvátal, V., and Cook, W. Con-

corde tsp solver. http://www.tsp.gatech.edu/concorde.html.

[3] Applegate, D., Bixby, R., Chvátal, V., and

Cook, W. Milestones in the solution of tsp instances.

http://www.tsp.gatech.edu/histmain.html.

[4] Applegate, D., Bixby, R., Chvátal, V., Cook, W., and

Helsgaun, K. Sweden 24,978. http://www.tsp.gatech.edu/

sweden/index.html.

[5] Baase, S. Computer Algorithms - Introduction to Design and Analysis,

second ed. Addison-Wesley Publishing Company, Inc, 1988.

[6] Cannon, T. L., and Hoffman, K. L. Large-scale 0-1 linear pro-

gramming on distributed workstations. Annals of Operations Research

22 (1990), 181–217.

[7] Cormen, T. H., Leiserson, C. E., and Rivest, R. L. Introduction

to Algorithms. MIT Press, 1990.

[8] Dantzig, G. B., Fulkerson, R., and Johnson, S. M. Solution of

a large-scale traveling salesman problem. Operations Research 2 (1954),

393–410.

186

BIBLIOGRAPHY 187

[9] Geldenhuys, C. E. An implementation of a Branch-and-Cut algo-

rithm for the travelling salesman problem. Master’s dissertation, RAU,

May 1998.

[10] Glover, F., Klingman, D., and Stutz, J. Extensions of the

augmented predecessor index method to generalized network problems.

Transportation Science 7 (1974), 377–384.

[11] Gropp, W., Lusk, E., and Skjellum, A. Using MPI - Portable

Parallel Programming with the Message-Passing Interface, 2nd ed. MIT

Press, 1999.

[12] Hajian, M. T., Hai, I., and Mitra, G. A distributed processing

algorithm for solving integer programs using a cluster of workstations.

Parallel Computing 23 (June 1997), 733 – 753. Issue 6.

[13] Harche, F., and Thompson, G. L. The column subtraction algo-

rithm: an exact method for solving weighted set covering, packing and

partitioning problems. Computers and Operations Research 21, 6 (1994),

689–705.

[14] Held, M., and Karp, R. M. The traveling-salesman problem and

minimum spanning trees. Operations Research 18 (1970), 1138–1162.

[15] Hoffman, K. L. Combinatorial optimization: Current successes and

directions for the future. Journal of Computational and Applied Math-

ematics 124 (December 2000), 341–360.

[16] Hoffman, K. L., and Padberg, M. Solving airline crew scheduling

problems by branch-and-cut. Management Science 39 (1993), 657–682.

[17] Hoffman, K. L., and Padberg, M. Set-covering, packing and par-

titioning problems. In Encyclopedia of Optimization, C. Floudas and

P. Pardalos, Eds., vol. 5. Kluwer Academic Publishers, 2001, pp. 174–

178.

[18] Kennington, J., and Helgason, R. Algorithms for network pro-

gramming. John Wiley and Sons, New York, 1980.

BIBLIOGRAPHY 188

[19] Lai, T.-H., and Sahni, S. Anomalies in parallel b&b algorithms.

Research Contributions 27, 6 (1984), 594 – 602.

[20] Lawler, E. L., Lenstra, J. K., Rinnooy Kan, A. H. G., and

Shmoys, D. B., Eds. The Traveling Salesman Problem - A Guided

Tour of Combinatorial Optimization. John Wiley and Sons, New York,

1986.

[21] Leenen, L. Contributions towards an implementation of a Branch-and-

Cut algorithm for the travelling salesman problem. Master’s dissertation,

RAU, September 1992.

[22] Meyer, T. W. S. Die implementering en eksperimentele evaluering

van enkele diskrete optimeringsalgoritmes. Master’s dissertation, RAU,

May 1986.

[23] Padberg, M., and Rinaldi, G. A branch-and-cut algorithm for the

resolution of large-scale symmetric traveling salesman problems. SIAM

Review 33, 1 (March 1991), 60–100.

[24] Reinelt, G. Tsplib home page. http://www.iwr.uni-heidelberg.de/

groups/comopt/software/TSPLIB95/.

[25] Reinelt, G. Tsplib: Questions and answers. http://www.informatik.

uni-heidelberg.de/groups/comopt/software/TSPLIB95/TSPFAQ.html.

[26] Reinelt, G. Tsplib95. http://www.informatik.uni-heidelberg.de/

groups/comopt/software/TSPLIB95/DOC.PS.

[27] Sedgewick, R. Algorithms, second ed. Addison-Wesley Publishing

Company, Inc, 1988.

[28] Smith, T. H. C., Meyer, T. W. S., and Leenen, L. An efficient

primal simplex implementation for the continuous 2-matching problem.

South African Computer Journal 5 (1991), 28–31.

BIBLIOGRAPHY 189

[29] Smith, T. H. C., and Thompson, G. L. A parallel implementation

of the column subtraction algorithm. Parallel Computing 21 (1995),

63–74.

[30] Smith, T. H. C., and Thompson, G. L. An improved column sub-

traction method for the set partitioning problem. Working paper, Au-

gust 2000.

[31] Winston, W. L. Operations Research : Applications and algorithms,

third ed. International Thomson Publishing, 1994.

Index

1-tree, 22, 25

2-matching, 22

Associated Linear Program, 9, 59

augmented predecessor index method,

27

basic solution, 25

basic variables, 25

basis graph, 25

basis structure, 25

beta (β), 43, 83

connected graph, 22

cover

RMP2, 50

SPP, 7

CSM

SPP, 7

TSP, 50

CSM search tree, 51

cycle, 22

dual simplex algorithm, 45

dual value equations, 28

dual values, 28

edge numbering, 64

edge numbers, 64

entering variable

dual simplex method, 39

primal simplex method, 33

feasibility

dual, 32

primal, 32

findroot, 71

with path compression, 73

generalised network problem, 24

heuristic, 2, 7, 23, 30, 61

initial basic feasible solution, 30

integer variables, 37, 47, 81

istour(), 76

leaving variable

dual simplex method, 39

primal simplex method, 33

MP2, 23

nint(), 80

node numbering, 64

overcover

190

INDEX 191

RMP2, 51

parallelisation

SPP, 10

TSP, 86

partial cover

RMP2, 51

partial partition, 8

partial tour, 52

path, 22

path compression, 72

pivoting

dual simplex method, 44

primal simplex method, 36

ratio test

dual simplex method, 41

primal simplex method, 33

reduced costs, 29, 84

relaxation, 7, 21

RMP2, 24

Rule 1

SPP, 8

TSP, 57

Rule 2

SPP, 9

TSP, 59

Rule 3

SPP, 9

TSP, 59

Rule 4

SPP, 9

TSP, 57

Rule 5

SPP, 10

TSP, 57

Rule 6

SPP, 10

TSP, 58

Rule 7

SPP, 10

TSP, 60

Rule 8

SPP, 10

TSP, 60

Rule 9

SPP, 10

TSP, 60

time complexity, 77

tour, 22, 70

TSP, 2, 22

TSPLIB, 80

union, 71

weighted, 75

Union-Find algorithm, 71

UPPER ROW format, 65

weight balancing, 74

